WorldWideScience

Sample records for fractalkine receptor cx3cr1

  1. Fractalkine receptor chemokine (CX3CR1) influences on cervical and lumbar disc herniation

    Science.gov (United States)

    Oh, In-Soo; Suh, Dong-Whan; Park, Sung-Ryeoll; Ha, Kee-Yong

    2015-01-01

    Background: Herniation of nuclear or disc material along with, inflammatory chemokines such as prostaglandin E2, interleukin-6, matrix metalloproteinase and nitric oxide has definite correlation, possibly they are over produced. CX3CL1 and its receptor (CX3CR1) are part of chemokine system involved in leukocyte recruitment and adhesion in chronic inflammatory disease, but its role in spinal herniated nucleus pulposus (HNP) is unknown. We evaluated the expression of CX3CL1 and CX3CR1 in patients with disc herniation to clarify the role of CX3CL1 and CX3CR1 in the disc degeneration and to compare between cervical and lumbar HNP. Materials and Methods: The mRNA concentrations of CX3CL1/CX3CR1 chemokine were analyzed in the surgically obtained disc specimens from C-HNP (n = 13) and L-HNP (n = 13) by real-time polymerase chain reaction (PCR). The localization of CX3CL1/CX3CR1 chemokine in the disc of C-HNP and L-HNP patients was determined using immunohistochemical study. Blood samples from patients with C-HNP and L-HNP patients were stained for CX3CR1 with flow cytometric analysis. Results: The CX3CL1 positive cell ratio in the discs was observed in both groups by immunohistochemical study. CX3CR1 was strongly expressed on endothelial cells in C-spine disc, but sparely expressed in L-spine disc. There was greater CX3CR1 mRNA expression in C-HNP patients than in L-HNP patients as quantified by reversal transcription-PCR (P = 0.010). CX3CR1 positive cell frequencies and CX3CR1 expression levels were increased in CD4 (+) T-cells and natural killer (NK) cells from patients with C-HNP (P = 0.210 and P = 0.040). Conclusions: This study identified that increases in CX3CL1 and CX3CR1-expressing cells are significantly related to pathomechanism of HNP for the first time. Especially, CD4 (+) T-cells and NK cells expressing CX3CR1 may play an important role in developing C-HNP. PMID:26015616

  2. Polymorphism of the Fractalkine Receptor CX3CR1 and Systemic Sclerosis-associated Pulmonary Arterial Hypertension

    Directory of Open Access Journals (Sweden)

    Bianca Marasini

    2005-01-01

    Full Text Available Fractalkine (FKN and its receptor CX3CR1 are critical mediators in the vascular and tissue damage of several chronic diseases, including systemic sclerosis (SSc and pulmonary arterial hypertension (PAH. Interestingly, the V249I and T280M genetic polymorphisms influence CX3CR1 expression and function. We investigated whether these polymorphisms are associated with PAH secondary to SSc. CX3CR1 genotypes were analyzed by PCR and sequencing in 76 patients with limited SSc and 204 healthy controls. PAH was defined by colorDoppler echocardiography. Homozygosity for 249II as well as the combined presence of 249II and 280MM were significantly more frequent in patients with SSc compared to controls (17 vs 6%, p = 0.0034 and 5 vs 1%, p = 0.0027, respectively. The 249I and 280M alleles were associated with PAH (odd ratio [OR] 2.2, 95% confidence interval [CI] 1.01-4.75, p = 0.028 and OR 7.37, 95%CI: 2.45-24.60, p = 0.0001, respectively. In conclusion, the increased frequencies of 249I and 280M CX3CR1 alleles in a subgroup of patients with SSc-associated PAH suggest a role for the fractalkine system in the pathogenesis of this condition. Further, the 249I allele might be associated with susceptibility to SSc.

  3. Effect of electroacupuncture on the cervicospinal P2X7 receptor/fractalkine/CX3CR1 signaling pathway in a rat neck-incision pain model.

    Science.gov (United States)

    Gao, Y H; Li, C W; Wang, J Y; Tan, L H; Duanmu, C L; Jing, X H; Chang, X R; Liu, J L

    2017-06-01

    Increasing evidence supports that acupuncture intervention is an effective approach for intraoperative and postoperative pain. Neuron-microglia crosstalk, mediated by the purinergic P2X7 receptor (R)/fractalkine/CX3CR1 cascade in the spinal cord dorsal horn, plays a pivotal role in pain processing. However, its involvement in the analgesic effect of electroacupuncture (EA) remains unclear. In this study, a rat neck-incision pain model was established by making a longitudinal incision along the midline of the neck and subsequent repeated mechanical stimulation. EA stimulation was applied to bilateral LI18, LI4-PC6, or ST36-GB34. The thermal pain threshold, cervicospinal ATP concentration, expression levels of purinergic P2XR and P2YR subunits mRNAs, and fractalkine, CX3CR1 and p38 MAPK proteins, were detected separately. The neck incision induced strong thermal hyperalgesia and upregulation of spinal ATP within 48 h. No significant change was found in thermal hyperalgesia after a single session of EA intervention. However, a single session of EA dramatically enhanced the neck incision-induced upregulation of ATP and upregulated the expression of P2X7R, which was reversed by two sessions of EA. Two sessions of EA at bilateral LI18 or LI4-PC6 attenuated hyperalgesia significantly, accompanied with downregulation of P2X7R/fractalkine/ CX3CR1 signaling after three sessions of EA. EA stimulation of LI18 or LI4-PC6 alleviates thermal hyperalgesia in neck-incision pain rats, which may be associated with its effects in regulating the neck incision-induced increase of ATP and P2X7R and subsequently suppressing fractalkine/CX3CR1 signaling in the cervical spinal cord.

  4. NF-κB-mediated inverse regulation of fractalkine and CX3CR1 during CLP-induced sepsis.

    Science.gov (United States)

    Raspé, C; Höcherl, K; Rath, S; Sauvant, C; Bucher, M

    2013-01-01

    Fractalkine is a unique member of the CX3C chemokine family by unfolding its potential through the chemokine (C-X3-C motif) receptor 1 (CX3CR1) with dual function acting both as an adhesion molecule and a soluble chemokine. The regulation of this chemokine is still not clear. Therefore, we were interested in the regulation of fractalkine and of CX3CR1 in experimental sepsis. In addition, we investigated the role of NF-κB for the regulation of fractalkine and of CX3CR1. Using a mouse model of cecal ligation and puncture (CLP)-induced sepsis, we found elevated fractalkine mRNA levels in the heart, lung, kidney, and liver, as well as increased plasma levels 24 and 48h after CLP, respectively. In parallel, CLP resulted in a significant downregulation of CX3CR1 mRNA receptor expression in all investigated murine tissues. Septic mice that were pretreated with the selective NF-κB inhibitor pyrrolidine dithiocarbamate (PDTC) were found to have a decreased liberation of proinflammtory cytokines such as TNF-α, IL-1β, IL-6, or IFN-γ. Further PDTC pretreatment attenuated CLP-induced downregulation of CX3CR1 mRNA as well as CLP-induced upregulation of fractalkine mRNA expression in the heart, lung, kidney, liver, and the increase in fractalkine plasma levels of septic mice. In addition, CLP-induced downregulation of renal CX3CR1 protein expression was inhibited by PDTC-pretreatment. Taken together, our data indicate a CLP-induced inverse regulation of the expression between the relating ligand and the receptor with an upregulation of fractalkine and downregulation of CX3CR1, which seems to be mediated by the transcripting factor NF-κB likely via reduced liberation of proinflammtory cytokines in the whole murine organism. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  5. Role of fractalkine/CX3CR1 interaction in light-induced photoreceptor degeneration through regulating retinal microglial activation and migration.

    Directory of Open Access Journals (Sweden)

    Meng Zhang

    Full Text Available BACKGROUND: Excessive exposure to light enhances the progression and severity of some human retinal degenerative diseases. While retinal microglia are likely to be important in neuron damage associated with these diseases, the relationship between photoreceptor damage and microglial activation remains poorly understood. Some recent studies have indicated that the chemokine fractalkine is involved in the pathogenesis of many neurodegenerative diseases. The present study was performed to investigate the cross-talk between injured photoreceptors and activated retinal microglia, focusing on the role of fractalkine and its receptor CX3CR1 in light-induced photoreceptor degeneration. METHODOLOGY/PRINCIPAL FINDINGS: Both in vivo and in vitro experiments were involved in the research. In vivo, Sprague-Dawley rats were exposed to blue light for 24 hours. In vitro, the co-culture of primary retinal microglia and a photoreceptor cell line (661W cell was exposed to blue light for five hours. Some cultures were pretreated by the addition of anti-CX3CR1 neutralizing antibody or recombinant fractalkine. Expression of fractalkine/CX3CR1 and inflammatory cytokines was detected by immunofluorescence, real-time PCR, Western immunoblot analysis, and ELISA assay. TUNEL method was used to detect cell apoptosis. In addition, chemotaxis assay was performed to evaluate the impact of soluble fractalkine on microglial migration. Our results showed that the expression of fractalkine that was significantly upregulated after exposure to light, located mainly at the photoreceptors. The extent of photoreceptor degeneration and microglial migration paralleled the increased level of fractalkine/CX3CR1. Compared with the control, the expression of inflammatory cytokines was significantly downregulated in the anti-CX3CR1 neutralizing antibody-treated group, and the number of photoreceptors was also well preserved. The addition of recombinant full-length fractalkine or soluble

  6. Association of chemokine receptor CX3CR1 V249I and T280M polymorphisms with chronic kidney disease

    Directory of Open Access Journals (Sweden)

    A K Yadav

    2016-01-01

    Full Text Available The chemokine fractalkine (CX3CL1 and its receptor CX3CR1 are involved in the activation of leukocytes. Two common single-nucleotide polymorphisms of the CX3CR1 gene, V249I and T280M, have been associated with reduced fractalkine signaling, leading to decreased adhesive function and leukocyte chemotaxis. We hypothesized that variation in the CX3CR1 gene could be associated with chronic kidney disease (CKD, a disease of inflammatory activation. We studied the association between CX3CR1 V249I and T280M polymorphisms, and fractalkine and highly sensitive C-reactive protein (hs-CRP levels in 123 patients with CKD and 100 healthy controls (HCs. Genotype analysis was done by polymerase chain reaction-restriction fragment length polymorphism, and fractalkine and hs-CRP levels were analyzed by enzyme-linked immunosorbent assay. MM genotype of T280M was absent in CKD patients, while in controls it was seen in 1% of the individuals. The allele frequencies in both the groups were similar (P = 0.059. Compared to HC, M280M + T280M genotype was more frequent in CKD (P = 0.041. The frequency of II genotype of V249I was 0.8% in CKD, whereas in HC, it was 2%. I249I + V249I genotype was more frequent in CKD as compared to HC (P = 0.034. No difference in allelic frequency of V249I was noted between the two groups (P = 0.061, odds ratios = 1.74, 95% confidence intervals = 0.96–3.12. Plasma fractalkine and serum hs-CRP levels were higher in CKD subjects (P = 0.004 and P 's 0.0001. No association of either genotype was found with fractalkine and hs-CRP levels. Polymorphisms at I249 and M280 genotype in CX3CR1 gene are associated with CKD; however, there was no association of fractalkine or inflammatory marker with these genotypes.

  7. CX3CL1 (fractalkine and CX3CR1 expression in myelin oligodendrocyte glycoprotein-induced experimental autoimmune encephalomyelitis: kinetics and cellular origin

    Directory of Open Access Journals (Sweden)

    Olsson Tomas

    2005-07-01

    Full Text Available Abstract Background Multiple sclerosis (MS is a chronic inflammatory disease of the central nervous system (CNS. It is associated with local activation of microglia and astroglia, infiltration of activated macrophages and T cells, active degradation of myelin and damage to axons and neurons. The proposed role for CX3CL1 (fractalkine in the control of microglia activation and leukocyte infiltration places this chemokine and its receptor CX3CR1 in a potentially strategic position to control key aspects in the pathological events that are associated with development of brain lesions in MS. In this study, we examine this hypothesis by analyzing the distribution, kinetics, regulation and cellular origin of CX3CL1 and CX3CR1 mRNA expression in the CNS of rats with an experimentally induced MS-like disease, myelin oligodendrocyte glycoprotein (MOG-induced autoimmune encephalomyelitis (EAE. Methods The expression of CX3CL1 and its receptor CX3CR1 was studied with in situ hybridization histochemical detection of their mRNA with radio labeled cRNA probes in combination with immunohistochemical staining of phenotypic cell markers. Both healthy rat brains and brains from rats with MOG EAE were analyzed. In defined lesional stages of MOG EAE, the number of CX3CR1 mRNA-expressing cells and the intensity of the in situ hybridization signal were determined by image analysis. Data were statistically evaluated by ANOVA, followed by Tukeyprimes multiple comparison test. Results Expression of CX3CL1 mRNA was present within neuronal-like cells located throughout the neuraxis of the healthy rat. Expression of CX3CL1 remained unaltered in the CNS of rats with MOG-induced EAE, with the exception of an induced expression in astrocytes within inflammatory lesions. Notably, the brain vasculature of healthy and encephalitic animals did not exhibit signs of CX3CL1 mRNA expression. The receptor, CX3CR1, was expressed by microglial cells in all regions of the healthy brain

  8. Fractalkine is expressed in early and advanced atherosclerotic lesions and supports monocyte recruitment via CX3CR1.

    Directory of Open Access Journals (Sweden)

    Moritz Stolla

    Full Text Available Fractalkine (CX3CL1, FKN is expressed in the inflamed vascular wall and absence of FKN reduces atherogenesis. Whether FKN is expressed throughout all stages of atherosclerotic disease and whether it directly contributes to monocyte recruitment to atherosclerotic lesions is not known. We collected human atherosclerotic plaque material and blood samples from patients with carotid artery disease undergoing endarterectomy. Plaques were analyzed by immunohistochemistry and qPCR. We found that FKN is expressed at all stages of atherosclerotic lesion formation, and that the number of FKN-expressing cells positively correlates with the number of CX3CR1-positive cells in human carotid artery plaques. In the circulation, soluble FKN levels are significantly elevated in the presence of high-grade (sub-occlusive stenosis. To determine the role of the FKN-CX3CR1 axis for monocyte adhesion in vivo we then performed intravital videofluorescence microscopy of the carotid artery in ApoE(-/- mice. Notably, FKN-CX3CR1 interactions are critical for recruitment of circulating monocytes to the injured atherosclerotic vascular wall. Thus, this chemokine dyad could represent an attractive target for anti-atherosclerotic strategies.

  9. Pancreatic stellate cells and CX3CR1: occurrence in normal pancreas, acute and chronic pancreatitis and effect of their activation by a CX3CR1 agonist

    Science.gov (United States)

    Uchida, Masahiko; Ito, Tetsuhide; Nakamura, Taichi; Hijioka, Masayuki; Igarashi, Hisato; Oono, Takamasa; Kato, Masaki; Nakamura, Kazuhiko; Suzuki, Koichi; Takayanagi, Ryoichi; Jensen, Robert T.

    2014-01-01

    Objectives Numerous studies suggest important roles of the chemokine, fractalkine (CX3CL1) in acute/chronic pancreatitis, however the possible mechanisms of the effects are unclear. Pancreatic stellate cells (PSCs) can play important roles in pancreatitis, secreting inflammatory cytokines/chemokines, as well as proliferation. Therefore, we investigated CX3CL1 receptor (CX3CR1) occurrence in normal pancreas and pancreatitis (acute/chronic) tissues, and the effects of CX3CL1 on activated-PSCs. Methods CX3CR1 expression/localization in normal pancreas and pancreatitis (acute/chronic) tissues were evaluated with immunohistochemical analysis. CX3CR1 expression and effects of CX3CL1 on activated-PSCs were examined with realtime-PCR, BrdU assays and Western Blotting. Results In normal pancreas, acinar cells expressed CX3CR1 within granule-like-formations in the cytoplasm, whereas in acute/chronic pancreatitis, acinar, ductal and activated-PSCs expressed CX3CR1 on cell membranes. With activation of normal PSCs, CX3CR1 is increased. CX3CL1 activated multiple signaling cascades in PSCs. CX3CL1, did not induce inflammatory-genes expression in activated-PSCs, but induced proliferation. Conclusions CX3CR1s are expressed in normal pancreas. Expression is increased in acute/chronic pancreatitis and the CX3CR1s are activated. CX3CL1 induces proliferation of activated-PSCs without increasing release of inflammatory-mediators. These results suggest that CX3CR1 activation of PSCs could be important in their effects in pancreatitis, especially to PSCs proliferation in pancreatitis where CX3CL1 levels are elevated. PMID:24681877

  10. CX3CL1/CX3CR1 and CCL2/CCR2 Chemokine/Chemokine Receptor Complex in Patients with AMD

    DEFF Research Database (Denmark)

    Falk, Mads Krüger; Singh, Amardeep; Faber, Carsten

    2014-01-01

    PURPOSE: The chemokine receptors CX3CR1 and CCR2 have been implicated in the development of age-related macular degeneration (AMD). The evidence is mainly derived from experimental cell studies and murine models of AMD. The purpose of this study was to investigate the association between expression...... of CX3CR1 and CCR2 on different leukocyte subsets and AMD. Furthermore we measured the plasma levels of ligands CX3CL1 and CCL2. METHODS: Patients attending our department were asked to participate in the study. The diagnosis of AMD was based on clinical examination and multimodal imaging techniques...... positive correlation between CCR2 and CX3CR1 expression on CD8+ cells (r = 0.727, p = 0.0001). We found no difference in plasma levels of CX3CL1 and CCL2 among the groups. CONCLUSIONS: Our results show a down regulation of CX3CR1 on CD8+ cells; this correlated to a low expression of CCR2 on CD8+ cells...

  11. Experience-Dependent Synaptic Plasticity in V1 Occurs without Microglial CX3CR1.

    Science.gov (United States)

    Schecter, Rachel W; Maher, Erin E; Welsh, Christina A; Stevens, Beth; Erisir, Alev; Bear, Mark F

    2017-11-01

    Brief monocular deprivation (MD) shifts ocular dominance and reduces the density of thalamic synapses in layer 4 of the mouse primary visual cortex (V1). We found that microglial lysosome content is also increased as a result of MD. Previous studies have shown that the microglial fractalkine receptor CX3CR1 is involved in synaptic development and hippocampal plasticity. We therefore tested the hypothesis that neuron-to-microglial communication via CX3CR1 is an essential component of visual cortical development and plasticity in male mice. Our data show that CX3CR1 is not required for normal development of V1 responses to visual stimulation, multiple forms of experience-dependent plasticity, or the synapse loss that accompanies MD in layer 4. By ruling out an essential role for fractalkine signaling, our study narrows the search for understanding how microglia respond to active synapse modification in the visual cortex. SIGNIFICANCE STATEMENT Microglia in the visual cortex respond to monocular deprivation with increased lysosome content, but signaling through the fractalkine receptor CX3CR1 is not an essential component in the mechanisms of visual cortical development or experience-dependent synaptic plasticity. Copyright © 2017 the authors 0270-6474/17/3710541-13$15.00/0.

  12. Pancreatic stellate cells and CX3CR1: occurrence in normal pancreas and acute and chronic pancreatitis and effect of their activation by a CX3CR1 agonist.

    Science.gov (United States)

    Uchida, Masahiko; Ito, Tetsuhide; Nakamura, Taichi; Hijioka, Masayuki; Igarashi, Hisato; Oono, Takamasa; Kato, Masaki; Nakamura, Kazuhiko; Suzuki, Koichi; Takayanagi, Ryoichi; Jensen, Robert T

    2014-07-01

    Numerous studies suggest important roles of the chemokine, fractalkine (CX3CL1), in acute/chronic pancreatitis; however, the possible mechanisms of the effects are unclear. Pancreatic stellate cells (PSCs) can play important roles in pancreatitis, secreting inflammatory cytokines/chemokines, as well as proliferation. Therefore, we investigated CX3CL1 receptor (CX3CR1) occurrence in normal pancreas and pancreatitis (acute/chronic) tissues and the effects of CX3CL1 on activated PSCs. CX3CR1 expression/localization in normal pancreas and pancreatitis (acute/chronic) tissues was evaluated with immunohistochemical analysis. CX3CR1 expression and effects of CX3CL1 on activated PSCs were examined with real-time polymerase chain reaction, BrdU (5-bromo-2-deoxyuridine) assays, and Western blotting. In normal pancreas, acinar cells expressed CX3CR1 within granule-like formations in the cytoplasm, whereas in acute/chronic pancreatitis, acinar, ductal, and activated PSCs expressed CX3CR1 on cell membranes. With activation of normal PSCs, CX3CR1 is increased. CX3CL1 activated multiple signaling cascades in PSCs. CX3CL1 did not induce inflammatory genes expression in activated PSCs, but induced proliferation. CX3CR1s are expressed in normal pancreas. Expression is increased in acute/chronic pancreatitis, and the CX3CR1s are activated. CX3CL1 induces proliferation of activated PSCs without increasing release of inflammatory mediators. These results suggest that CX3CR1 activation of PSCs could be important in their effects in pancreatitis, especially to PSC proliferation in pancreatitis where CX3CL1 levels are elevated.

  13. CX3CR1 is a modifying gene of survival and progression in amyotrophic lateral sclerosis.

    Directory of Open Access Journals (Sweden)

    Alan Lopez-Lopez

    Full Text Available The objective of this study was to investigate the association of functional variants of the human CX3CR1 gene (Fractalkine receptor with the risk of Amyotrophic Lateral Sclerosis (ALS, the survival and the progression rate of the disease symptoms in a Spanish ALS cohort. 187 ALS patients (142 sporadic [sALS] and 45 familial and 378 controls were recruited. We investigated CX3CR1 V249I (rs3732379 and T280M (rs3732378 genotypes and their haplotypes as predictors of survival, the progression rate of the symptoms (as measured by ALSFRS-R and FVC decline and the risk of suffering ALS disease. The results indicated that sALS patients with CX3CR1 249I/I or 249V/I genotypes presented a shorter survival time (42.27 ± 4.90 than patients with 249V/V genotype (67.65 ± 7.42; diff -25.49 months 95%CI [-42.79,-8.18]; p = 0.004; adj-p = 0.018. The survival time was shorter in sALS patients with spinal topography and CX3CR1 249I alleles (diff =  -29.78 months; 95%CI [-49.42,-10.14]; p = 0.003. The same effects were also observed in the spinal sALS patients with 249I-280M haplotype (diff =  -27.02 months; 95%CI [-49.57, -4.48]; p = 0.019. In the sALS group, the CX3CR1 249I variant was associated with a faster progression of the disease symptoms (OR = 2.58; 95IC% [1.32, 5.07]; p = 0.006; adj-p = 0.027. There was no evidence for association of these two CX3CR1 variants with ALS disease risk. The association evidenced herein is clinically relevant and indicates that CX3CR1 could be a disease-modifying gene in sALS. The progression rate of the disease's symptoms and the survival time is affected in patients with one or two copies of the CX3CR1 249I allele. The CX3CR1 is the most potent ALS survival genetic factor reported to date. These results reinforce the role of the immune system in ALS pathogenesis.

  14. Metabolic Effects of CX3CR1 Deficiency in Diet-Induced Obese Mice.

    Directory of Open Access Journals (Sweden)

    Rachana Shah

    Full Text Available The fractalkine (CX3CL1-CX3CR1 chemokine system is associated with obesity-related inflammation and type 2 diabetes, but data on effects of Cx3cr1 deficiency on metabolic pathways is contradictory. We examined male C57BL/6 Cx3cr1-/- mice on chow and high-fat diet to determine the metabolic effects of Cx3cr1 deficiency. We found no difference in body weight and fat content or feeding and energy expenditure between Cx3cr1-/- and WT mice. Cx3cr1-/- mice had reduced glucose intolerance assessed by intraperitoneal glucose tolerance tests at chow and high-fat fed states, though there was no difference in glucose-stimulated insulin values. Cx3cr1-/- mice also had improved insulin sensitivity at hyperinsulinemic-euglycemic clamp, with higher glucose infusion rate, rate of disposal, and hepatic glucose production suppression compared to WT mice. Enhanced insulin signaling in response to acute intravenous insulin injection was demonstrated in Cx3cr1-/- by increased liver protein levels of phosphorylated AKT and GSK3β proteins. There were no differences in adipose tissue macrophage populations, circulating inflammatory monocytes, adipokines, lipids, or inflammatory markers. In conclusion, we demonstrate a moderate and reproducible protective effect of Cx3cr1 deficiency on glucose intolerance and insulin resistance.

  15. Molecular determinants of receptor binding and signaling by the CX3C chemokine fractalkine

    DEFF Research Database (Denmark)

    Mizoue, L S; Sullivan, S K; King, D S

    2001-01-01

    , but not all, pathways required for migration. Fractalkine also binds the human cytomegalovirus receptor US28, and analysis of the mutants indicates that US28 recognizes many of the same epitopes of fractalkine as CX3CR1. Comparison of the binding surfaces of fractalkine and the CC chemokine MCP-1 reveals...

  16. Expression pattern of Ccr2 and Cx3cr1 in inherited retinal degeneration.

    Science.gov (United States)

    Kohno, Hideo; Koso, Hideto; Okano, Kiichiro; Sundermeier, Thomas R; Saito, Saburo; Watanabe, Sumiko; Tsuneoka, Hiroshi; Sakai, Tsutomu

    2015-10-12

    Though accumulating evidence suggests that microglia, resident macrophages in the retina, and bone marrow-derived macrophages can cause retinal inflammation which accelerates photoreceptor cell death, the details of how these cells are activated during retinal degeneration (RD) remain uncertain. Therefore, it is important to clarify which cells play a dominant role in fueling retinal inflammation. However, distinguishing between microglia and macrophages is difficult using conventional techniques such as cell markers (e.g., Iba-1). Recently, two mouse models for visualizing chemokine receptors were established, Cx3cr1 (GFP/GFP) and Ccr2 (RFP/RFP) mice. As Cx3cr1 is expressed in microglia and Ccr2 is reportedly expressed in activated macrophages, these mice have the potential to distinguish microglia and macrophages, yielding novel information about the activation of these inflammatory cells and their individual roles in retinal inflammation. In this study, c-mer proto-oncogene tyrosine kinase (Mertk) (-/-) mice, which show photoreceptor cell death due to defective retinal pigment epithelium phagocytosis, were employed as an animal model of RD. Mertk (-/-) Cx3cr1 (GFP/+) Ccr2 (RFP/+) mice were established by breeding Mertk (-/-) , Cx3cr1 (GFP/GFP) , and Ccr2 (RFP/RFP) mice. The retinal morphology and pattern of inflammatory cell activation and invasion of Mertk (-/-) Cx3cr1 (GFP/+) Ccr2 (RFP/+) mice were evaluated using retina and retinal pigment epithelium (RPE) flat mounts, retinal sections, and flow cytometry. Four-week-old Mertk (-/-) Cx3cr1 (GFP/+) Ccr2 (RFP/+) mice showed Cx3cr1-GFP-positive microglia in the inner retina. Cx3cr1-GFP and Ccr2-RFP dual positive activated microglia were observed in the outer retina and subretinal space of 6- and 8-week-old animals. Ccr2-RFP single positive bone marrow-derived macrophages were observed to migrate into the retina of Mertk (-/-) Cx3cr1 (GFP/+) Ccr2 (RFP/+) mice. These invading cells were still observed in the

  17. TLR4-dependent internalization of CX3CR1 aggravates sepsis-induced immunoparalysis.

    Science.gov (United States)

    Ge, Xin-Yu; Fang, Shang-Ping; Zhou, Miao; Luo, Jing; Wei, Juan; Wen, Xue-Ping; Yan, Xiao-Di; Zou, Zui

    2016-01-01

    Sepsis, the most severe manifestation of infection, poses a major challenge to health-care systems around the world. Limited ability to clean and remove the pathogen renders difficulty in septic patients to recover from the phase of immunoparalysis. The present study found the vital role of CX3CR1 internalization on sepsis-induced immunoparalysis. A mouse model with cecal ligation and puncture (CLP) and cell model with lipopolysaccharides (LPS) were employed to explore the relationship between CX3CR1 internalization and septic immunoparalysis. Immunoparalysis model in mice was established 4 days after CLP with significantly decreased proinflammatory cytokines. Flow cytometry analysis found a decreased surface expression of CX3CR1 during immunoparalysis, which was associated with reduced mRNA level and increased internalization of CX3CR1. G-protein coupled receptor kinase 2 (GRK2) and β-arrestin2 were significantly increased during septic immunoparalysis and involved in the internalization of CX3CR1. TLR4 -/- or TLR4 inhibitor-treated macrophages exhibited an inhibited expression of GRK2 and β-arrestin2, along with reduced internalization of CX3CR1. Moreover, the knockdown of GRK2 and β-arrestin2 inhibited the internalization of CX3CR1 and led to a higher response on the second hit, which was associated with an increased activation of NF-κB. The critical association between internalization of CX3CR1 and immunosuppression in sepsis may provide a novel reference for clinical therapeutics.

  18. Microglial CX3CR1 promotes adult neurogenesis by inhibiting Sirt 1/p65 signaling independent of CX3CL1.

    Science.gov (United States)

    Sellner, Sabine; Paricio-Montesinos, Ricardo; Spieß, Alena; Masuch, Annette; Erny, Daniel; Harsan, Laura A; Elverfeldt, Dominik V; Schwabenland, Marius; Biber, Knut; Staszewski, Ori; Lira, Sergio; Jung, Steffen; Prinz, Marco; Blank, Thomas

    2016-09-17

    Homo and heterozygote cx3cr1 mutant mice, which harbor a green fluorescent protein (EGFP) in their cx3cr1 loci, represent a widely used animal model to study microglia and peripheral myeloid cells. Here we report that microglia in the dentate gyrus (DG) of cx3cr1 (-/-) mice displayed elevated microglial sirtuin 1 (SIRT1) expression levels and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB) p65 activation, despite unaltered morphology when compared to cx3cr1 (+/-) or cx3cr1 (+/+) controls. This phenotype was restricted to the DG and accompanied by reduced adult neurogenesis in cx3cr1 (-/-) mice. Remarkably, adult neurogenesis was not affected by the lack of the CX3CR1-ligand, fractalkine (CX3CL1). Mechanistically, pharmacological activation of SIRT1 improved adult neurogenesis in the DG together with an enhanced performance of cx3cr1 (-/-) mice in a hippocampus-dependent learning and memory task. The reverse condition was induced when SIRT1 was inhibited in cx3cr1 (-/-) mice, causing reduced adult neurogenesis and lowered hippocampal cognitive abilities. In conclusion, our data indicate that deletion of CX3CR1 from microglia under resting conditions modifies brain areas with elevated cellular turnover independent of CX3CL1.

  19. Modulating neurotoxicity through CX3CL1/CX3CR1 signaling

    Directory of Open Access Journals (Sweden)

    Cristina eLimatola

    2014-08-01

    Full Text Available Since the initial cloning of fractalkine/CX3CL1, it was proposed that the only known member of the CX3C or delta subfamily of chemotactic cytokines could play some significant role in the nervous system, due to its high expression on neurons. The pivotal description of the localization of the unique CX3CL1 receptor, CX3CR1, on microglial cells, firmed up by the generation of cx3cr1GFP/GFP mice, opened the road to the hypothesis of some specific key interactions between microglia and neurons mediated by this pair. This expectation has been indeed supported by recent exciting evidence indicating that CX3CL1-mediated microglia-neuron interaction modulates basic physiological activities during development, adulthood and aging, including: synaptic pruning; promoting survival of neurons and neural precursors; modulating synaptic transmission and plasticity; enhancing synapse and network maturation; and facilitating the establishment of neuropathic pain circuits. Beyond playing such fascinating roles in physiological conditions, CX3CL1 signaling has been implicated in different neuropathologies. Early papers demonstrated that the levels of CX3CL1 may be modulated by various toxic stimuli in vitro and that CX3CL1 signaling is positively or negatively regulated in EAE and MS, in HIV infection and LPS challenge, in epilepsy, in brain tumors, and in other neuropathologies. In this review we focus on the experimental evidence of CX3CL1 involvement in neuroprotection and survey the common molecular and cellular mechanisms described in different brain diseases.

  20. Microglia and their CX3CR1 signaling are involved in hippocampal- but not olfactory bulb-related memory and neurogenesis.

    Science.gov (United States)

    Reshef, Ronen; Kreisel, Tirzah; Beroukhim Kay, Dorsa; Yirmiya, Raz

    2014-10-01

    Recent studies demonstrate that microglia play an important role in cognitive and neuroplasticity processes, at least partly via microglial CX3C receptor 1 (CX3CR1) signaling. Furthermore, microglia are responsive to environmental enrichment (EE), which modulates learning, memory and neurogenesis. In the present study we examined the role of microglial CX3CR1 signaling in hippocampal- and olfactory-bulb (OB)-related memory and neurogenesis in homozygous mice with microglia-specific transgenic expression of GFP under the CX3CR1 promoter (CX3CR1(-/-) mice), in which the CX3CR1 gene is functionally deleted, as well as heterozygous CX3CR1(+/-) and WT controls. We report that the CX3CR1-deficient mice displayed better hippocampal-dependent memory functioning and olfactory recognition, along with increased number and soma size of hippocampal microglia, suggestive of mild activation status, but no changes in OB microglia. A similar increase in hippocampal-dependent memory functioning and microglia number was also induced by pharmacological inhibition of CX3CR1 signaling, using chronic (2weeks) i.c.v. administration of CX3CR1 blocking antibody. In control mice, EE improved hippocampal-dependent memory and neurogenesis, and increased hippocampal microglia number and soma size, whereas odor enrichment (OE) improved olfactory recognition and OB neurogenesis without changing OB microglia status. In CX3CR1-deficient mice, EE and OE did not produce any further improvement in memory functioning or neurogenesis and had no effect on microglial status. These results support the notion that in the hippocampus microglia and their interactions with neurons via the CX3CR1 play an important role in memory functioning and neurogenesis, whereas in the OB microglia do not seem to be involved in these processes. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Examination of the Fractalkine and Fractalkine Receptor Expression in Fallopian Adenocarcinoma Reveals Differences When Compared to Ovarian Carcinoma

    Directory of Open Access Journals (Sweden)

    Hilal Gurler

    2015-12-01

    Full Text Available Fallopian adenocarcinoma is a rare malignancy arising in the epithelium of the fallopian tube. Fallopian tube epithelium has been proposed as a tissue origin for high-grade serous ovarian carcinoma, the deadliest gynecologic malignancy. Given the commonalities in dissemination and treatment of these malignancies, we contemplated the possibility of similar patterns of gene expression underlying their progression. To reveal potential similarities or differences in the gene expression of fallopian adenocarcinoma and high-grade serous ovarian carcinoma, we tested expression of the fractalkine receptor (CX3CR1 and its ligand, fractalkine (CX3CL1, in the specimens of normal and pathologic fallopian tube using immunohistochemistry. Our data show that CX3CR1 is expressed in the normal, cancer adjacent normal, inflammatory, and malignant fallopian epithelium. CX3CL1 was expressed only by the normal and cancer adjacent normal fallopian tube epithelium; its expression was largely lost in the inflammatory and malignant fallopian epithelium. In opposite, both CX3CR1 and CX3CL1 are expressed in high-grade serous ovarian carcinoma. These findings are consistent with an idea that fallopian adenocarcinoma and high-grade serous ovarian carcinoma, although currently thought to arise from the same organ, may not share similar molecular characteristics.

  2. Elevated Fractalkine (CX3CL1) Levels in the Trigeminal Ganglion Mechanically Sensitize Temporalis Muscle Nociceptors.

    Science.gov (United States)

    Cairns, Brian E; O'Brien, Melissa; Dong, Xu-Dong; Gazerani, Parisa

    2017-07-01

    It has been proposed that after nerve injury or tissue inflammation, fractalkine (CX3CL1) released from dorsal root ganglion neurons acts on satellite glial cells (SGCs) through CX3C receptor 1 (CX3CR1) to induce neuroplastic changes. The existence and importance of fractalkine/CX3CR1 signaling in the trigeminal ganglia has not yet been clarified. This study investigated (1) whether trigeminal ganglion neurons that innervate temporalis muscle and their associated SGCs contain fractalkine and/or express CX3CR1, (2) if intraganglionic injection of fractalkine increases the mechanical sensitivity of temporalis muscle afferent fibers, (3) whether complete Freund's adjuvant (CFA)-induced inflammation of the temporalis muscle alters the expression of fractalkine or its receptor in the trigeminal ganglion, and (4) if intraganglionic administration of CX3CR1 antibodies alters afferent mechanical sensitivity. Immunohistochemistry and in vivo electrophysiological recordings in male and female rats were used to address these questions. It was found that ∼50 % of temporalis ganglion neurons and ∼25 % of their associated SGCs express CX3CR1, while only neurons expressed fractalkine. Temporalis muscle inflammation increased the expression of fractalkine, but only in male rats. Intraganglionic injection of fractalkine (25 g/ml; 3 μl) induced prolonged afferent mechanical sensitization. Intraganglionic injection of CX3CR1 antibody increased afferent mechanical threshold, but this effect was greater in controls than in rats with CFA-induced muscle inflammation. These findings raise the possibility that basal fractalkine signalling within the trigeminal ganglion plays an important role in mechanical sensitivity of masticatory muscle sensory afferent fibers and that inhibition of CX3CR1 signaling within the trigeminal ganglia may induce analgesia through a peripheral mechanism.

  3. Disruption of Fractalkine Signaling Leads to Microglial Activation and Neuronal Damage in the Diabetic Retina

    Directory of Open Access Journals (Sweden)

    Sandra M. Cardona

    2015-10-01

    Full Text Available Fractalkine (CX3CL1 or FKN is a membrane-bound chemokine expressed on neuronal membranes and is proteolytically cleaved to shed a soluble chemoattractant domain. FKN signals via its unique receptor CX3CR1 expressed on microglia and other peripheral leukocytes. The aim of this study is to determine the role of CX3CR1 in inflammatory-mediated damage to retinal neurons using a model of diabetic retinopathy. For this, we compared neuronal, microglial, and astroglial densities and inflammatory response in nondiabetic and diabetic (Ins2Akita CX3CR1-wild-type and CX3CR1-deficient mice at 10 and 20 weeks of age. Our results show that Ins2Akita CX3CR1-knockout mice exhibited (a decreased neuronal cell counts in the retinal ganglion cell layer, (b increased microglial cell numbers, and (c decreased astrocyte responses comparable with Ins2Akita CX3CR1-Wild-type mice at 20 weeks of age. Analyses of the inflammatory response using PCR arrays showed several inflammatory genes differentially regulated in diabetic tissues. From those, the response in Ins2Akita CX3CR1-deficient mice at 10 weeks of age revealed a significant upregulation of IL-1β at the transcript level that was confirmed by enzyme-linked immunosorbent assay in soluble retinal extracts. Overall, IL-1β, VEGF, and nitrite levels as a read out of nitric oxide production were abundant in Ins2Akita CX3CR1-deficient retina. Notably, double immunofluorescence staining shows that astrocytes act as a source of IL-1β in the Ins2Akita retina, and CX3CR1-deficient microglia potentiate the inflammatory response via IL-1β release. Collectively, these data demonstrate that dysregulated microglial responses in absence of CX3CR1 contribute to inflammatory-mediated damage of neurons in the diabetic retina.

  4. A murine model for developmental dysplasia of the hip: ablation of CX3CR1 affects acetabular morphology and gait

    Directory of Open Access Journals (Sweden)

    George Feldman

    2017-11-01

    Full Text Available Abstract Background Developmental dysplasia of the hip (DDH is a debilitating condition whose distinguishing signs include incomplete formation of the acetabulum leading to dislocation of the femur, accelerated wear of the articular cartilage and joint laxity resulting in osteoarthritis. It is a complex disorder having environmental and genetic causes. Existing techniques fail to detect milder forms of DDH in newborns leading to hip osteoarthritis in young adults. A sensitive, specific and cost effective test would allow identification of newborns that could be non-invasively corrected by the use of a Pavlik harness. Previously, we identified a 2.5 MB candidate region on human chromosome 3 by using linkage analysis of a 4 generation, 72 member family. Whole exome sequencing of the DNA of 4 severely affected members revealed a single nucleotide polymorphism variant, rs3732378 co-inherited by all 11 affected family members. This variant causes a threonine to methionine amino acid change in the coding sequence of the CX3CR1 chemokine receptor and is predicted to be harmful to the function of the protein To gain further insight into the function of this mutation we examined the effect of CX3CR1 ablation on the architecture of the mouse acetabulum and on the murine gait. Methods The hips of 5 and 8 weeks old wild type and CX3CR1 KO mice were analyzed using micro-CT to measure acetabular diameter and ten additional dimensional parameters. Eight week old mice were gait tested using an inclined treadmill with and without load and then underwent micro-CT analysis. Results (1 KO mice showed larger a 5–17% larger diameter left acetabula than WT mice at both ages. (2 At 8 weeks the normalized area of space (i.e. size discrepancy between the femur head and acetabulum is significantly larger [38% (p = 0.001–21% (p = 0.037] in the KO mice. (3 At 8 weeks gait analysis of these same mice shows several metrics that are consistent with impairment in

  5. Altered fractalkine cleavage potentially promotes local inflammation in NOD salivary gland

    NARCIS (Netherlands)

    Wildenberg, Manon E.; van Helden-Meeuwsen, Cornelia G.; Drexhage, Hemmo A.; Versnel, Marjan A.

    2008-01-01

    In the nonobese diabetic (NOD) mouse model of Sjögren's syndrome, lymphocytic infiltration is preceded by an accumulation of dendritic cells in the submandibular glands (SMGs). NOD mice also exhibit an increased frequency of mature, fractalkine receptor (CX3C chemokine receptor [CX3CR]1) expressing

  6. Gas6 Promotes Inflammatory (CCR2hiCX3CR1lo) Monocyte Recruitment in Venous Thrombosis.

    Science.gov (United States)

    Laurance, Sandrine; Bertin, François-René; Ebrahimian, Talin; Kassim, Yusra; Rys, Ryan N; Lehoux, Stéphanie; Lemarié, Catherine A; Blostein, Mark D

    2017-07-01

    Coagulation and inflammation are inter-related. Gas6 (growth arrest-specific 6) promotes venous thrombosis and participates to inflammation through endothelial-innate immune cell interactions. Innate immune cells can provide the initiating stimulus for venous thrombus development. We hypothesize that Gas6 promotes monocyte recruitment during venous thrombosis. Deep venous thrombosis was induced in wild-type and Gas6-deficient (-/-) mice using 5% FeCl 3 and flow reduction in the inferior vena cava. Total monocyte depletion was achieved by injection of clodronate before deep venous thrombosis. Inflammatory monocytes were depleted using an anti-C-C chemokine receptor type 2 (CCR2) antibody. Similarly, injection of an anti-chemokine ligand 2 (CCL2) antibody induced CCL2 depletion. Flow cytometry and immunofluorescence were used to characterize the monocytes recruited to the thrombus. In vivo, absence of Gas6 was associated with a reduction of monocyte recruitment in both deep venous thrombosis models. Global monocyte depletion by clodronate leads to smaller thrombi in wild-type mice. Compared with wild type, the thrombi from Gas6 -/- mice contain less inflammatory (CCR2 hi CX 3 CR1 lo ) monocytes, consistent with a Gas6-dependent recruitment of this monocyte subset. Correspondingly, selective depletion of CCR2 hi CX 3 CR1 lo monocytes reduced the formation of venous thrombi in wild-type mice demonstrating a predominant role of the inflammatory monocytes in thrombosis. In vitro, the expression of both CCR2 and CCL2 were Gas6 dependent in monocytes and endothelial cells, respectively, impacting monocyte migration. Moreover, Gas6-dependent CCL2 expression and monocyte migration were mediated via JNK (c-Jun N-terminal kinase). This study demonstrates that Gas6 specifically promotes the recruitment of inflammatory CCR2 hi CX 3 CR1 lo monocytes through the regulation of both CCR2 and CCL2 during deep venous thrombosis. © 2017 American Heart Association, Inc.

  7. CX3CR1 polymorphisms associated with an increased risk of developmental dysplasia of the hip in human.

    Science.gov (United States)

    Li, Lianyong; Wang, Xi; Zhao, Qun; Wang, Enbo; Wang, Lili; Cheng, Jinshan; Zhang, Lijun; Wang, Binbin

    2017-02-01

    Developmental dysplasia of the hip, also termed congenital hip dislocation, is one of the major causes of children disability and early onset osteoarthritis. Previous study has identified a variant of CX3CR1 underlying this disorder in a large family. However, genetic evidence from population was still lacking. Here, we performed a case-control association study by genotyping two SNPs of CX3CR1, rs3732378, and rs3732379, in 689 unrelated hip dislocation patients and 689 normal controls. Genotyping results showed significant difference in genotype distributions of both two polymorphisms (p = 0.003 for rs3732378 and p = 0.017 for rs3732379). The minor allele frequency of rs3732378 was higher in cases (4.79%) than in controls (2.47%), predisposing carriers to hip dislocation with a 2.25-fold risk (OR = 2.25, 95%CI 1.42-3.56) after adjustment for gender. Another SNP, rs3732379, was also significantly associated with an increased risk of hip dislocation (adjusted OR = 1.84, 95%CI 1.19-2.84). Through the population study, we demonstrated that CX3CR1 was candidate for the pathogenesis of the disorder, and identified rs3732378 and rs3732379 as susceptibility loci instead of disease-causing mutations. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:377-380, 2017. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  8. Loss of fractalkine signaling exacerbates axon transport dysfunction in a chronic model of glaucoma

    Directory of Open Access Journals (Sweden)

    Kevin T Breen

    2016-11-01

    Full Text Available Neurodegeneration in glaucoma results in decline and loss of retinal ganglion cells (RGCs, and is associated with activation of myeloid cells such as microglia and macrophages. The chemokine fractalkine (FKN or Cx3cl1 mediates communication from neurons to myeloid cells. Signaling through its receptor Cx3cr1 has been implicated in multiple neurodegenerative diseases, but the effects on neuronal pathology are variable. Since it is unknown how FKN-mediated crosstalk influences RGC degeneration in glaucoma, we assessed this in a chronic mouse model, DBA/2J. We analyzed a DBA/2J substrain deficient in Cx3cr1, and compared compartmentalized RGC degeneration and myeloid cell responses to those in standard DBA/2J mice. We found that loss of FKN signaling exacerbates axon transport dysfunction, an early event in neurodegeneration, with a significant increase in RGCs with somal accumulation of the axonal protein phosphorylated neurofilament, and reduced retinal expression of genes involved in axon transport, Kif1b and Atp8a2. There was no change in the loss of Brn3-positive RGCs, and no difference in the extent of damage to the proximal optic nerve, suggesting that the loss of fractalkine signaling primarily affects axon transport. Since Cx3cr1 is specifically expressed in myeloid cells, we assessed changes in retinal microglial number and activation, changes in gene expression, and the extent of macrophage infiltration. We found that loss of fractalkine signaling led to innate immune changes within the retina, including increased infiltration of peripheral macrophages and upregulated nitric oxide synthase-2 (Nos-2 expression in myeloid cells, which contributes to the production of NO and can promote axon transport deficits. In contrast, resident retinal microglia appeared unchanged either in number, morphology, or expression of the myeloid activation marker ionized calcium binding adaptor molecule 1 (Iba1. There was also no significant increase in the

  9. In Vivo Imaging of Cx3cr1gfp/gfp Reporter Mice with Spectral-domain Optical Coherence Tomography and Scanning Laser Ophthalmoscopy.

    Science.gov (United States)

    Kokona, Despina; Jovanovic, Joël; Ebneter, Andreas; Zinkernagel, Martin S

    2017-11-11

    Spectral domain optical coherence tomography (SD-OCT) and scanning laser ophthalmoscopy (SLO) are extensively used in experimental ophthalmology. In the present protocol, mice expressing green fluorescent protein (gfp) under the promoter of Cx3cr1 (BALB/c-Cx3cr1 gfp/gfp ) were used to image microglia cells in vivo in the retina. Microglia are resident macrophages of the retina and have been implicated in several retinal diseases 1 , 2 , 3 , 4 , 5 , 6 . This protocol provides a detailed approach for generation of retinal B-scans, with SD-OCT, and imaging of microglia cell distribution in Cx3cr1 gfp/gfp mice with SLO in vivo, using an ophthalmic imaging platform system. The protocol can be used in several reporter mouse lines. However, there are some limitations to the protocol presented here. First, both SLO and SD-OCT, when used in the high-resolution mode, collect data with high axial resolution but the lateral resolution is lower (3.5 µm and 6 µm, respectively). Moreover, the focus and saturation level in SLO is highly dependent on parameter selection and correct alignment of the eye. Additionally, using devices designed for human patients in mice is challenging due to the higher total optical power of the mouse eye compared to the human eye; this can lead to lateral magnification inaccuracies 7 , which are also dependent on the magnification by the mouse lens among others. However, despite that the axial scan position is dependent upon lateral magnification, the axial SD-OCT measurements are accurate 8 .

  10. Fractalkine depresses cardiomyocyte contractility.

    Directory of Open Access Journals (Sweden)

    David Taube

    Full Text Available Our laboratory reported that male mice with cardiomyocyte-selective knockout of the prostaglandin E2 EP4 receptor sub-type (EP4 KO exhibit reduced cardiac function. Gene array on left ventricles (LV showed increased fractalkine, a chemokine implicated in heart failure. We therefore hypothesized that fractalkine is regulated by PGE2 and contributes to depressed contractility via alterations in intracellular calcium.Fractalkine was measured in LV of 28-32 week old male EP4 KO and wild type controls (WT by ELISA and the effect of PGE2 on fractalkine secretion was measured in cultured neonatal cardiomyocytes and fibroblasts. The effect of fractalkine on contractility and intracellular calcium was determined in Fura-2 AM-loaded, electrical field-paced cardiomyocytes. Cardiomyocytes (AVM from male C57Bl/6 mice were treated with fractalkine and responses measured under basal conditions and after isoproterenol (Iso stimulation.LV fractalkine was increased in EP4 KO mice but surprisingly, PGE2 regulated fractalkine secretion only in fibroblasts. Fractalkine treatment of AVM decreased both the speed of contraction and relaxation under basal conditions and after Iso stimulation. Despite reducing contractility after Iso stimulation, fractalkine increased the Ca(2+ transient amplitude but decreased phosphorylation of cardiac troponin I, suggesting direct effects on the contractile machinery.Fractalkine depresses myocyte contractility by mechanisms downstream of intracellular calcium.

  11. The viral KSHV chemokine vMIP-II inhibits the migration of Naive and activated human NK cells by antagonizing two distinct chemokine receptors.

    Directory of Open Access Journals (Sweden)

    Rachel Yamin

    2013-08-01

    Full Text Available Natural killer (NK cells are innate immune cells able to rapidly kill virus-infected and tumor cells. Two NK cell populations are found in the blood; the majority (90% expresses the CD16 receptor and also express the CD56 protein in intermediate levels (CD56(Dim CD16(Pos while the remaining 10% are CD16 negative and express CD56 in high levels (CD56(Bright CD16(Neg. NK cells also reside in some tissues and traffic to various infected organs through the usage of different chemokines and chemokine receptors. Kaposi's sarcoma-associated herpesvirus (KSHV is a human virus that has developed numerous sophisticated and versatile strategies to escape the attack of immune cells such as NK cells. Here, we investigate whether the KSHV derived cytokine (vIL-6 and chemokines (vMIP-I, vMIP-II, vMIP-III affect NK cell activity. Using transwell migration assays, KSHV infected cells, as well as fusion and recombinant proteins, we show that out of the four cytokine/chemokines encoded by KSHV, vMIP-II is the only one that binds to the majority of NK cells, affecting their migration. We demonstrate that vMIP-II binds to two different receptors, CX3CR1 and CCR5, expressed by naïve CD56(Dim CD16(Pos NK cells and activated NK cells, respectively. Furthermore, we show that the binding of vMIP-II to CX3CR1 and CCR5 blocks the binding of the natural ligands of these receptors, Fractalkine (Fck and RANTES, respectively. Finally, we show that vMIP-II inhibits the migration of naïve and activated NK cells towards Fck and RANTES. Thus, we present here a novel mechanism in which KSHV uses a unique protein that antagonizes the activity of two distinct chemokine receptors to inhibit the migration of naïve and activated NK cells.

  12. The viral KSHV chemokine vMIP-II inhibits the migration of Naive and activated human NK cells by antagonizing two distinct chemokine receptors.

    Science.gov (United States)

    Yamin, Rachel; Kaynan, Noa S; Glasner, Ariella; Vitenshtein, Alon; Tsukerman, Pinchas; Bauman, Yoav; Ophir, Yael; Elias, Shlomo; Bar-On, Yotam; Gur, Chamutal; Mandelboim, Ofer

    2013-08-01

    Natural killer (NK) cells are innate immune cells able to rapidly kill virus-infected and tumor cells. Two NK cell populations are found in the blood; the majority (90%) expresses the CD16 receptor and also express the CD56 protein in intermediate levels (CD56(Dim) CD16(Pos)) while the remaining 10% are CD16 negative and express CD56 in high levels (CD56(Bright) CD16(Neg)). NK cells also reside in some tissues and traffic to various infected organs through the usage of different chemokines and chemokine receptors. Kaposi's sarcoma-associated herpesvirus (KSHV) is a human virus that has developed numerous sophisticated and versatile strategies to escape the attack of immune cells such as NK cells. Here, we investigate whether the KSHV derived cytokine (vIL-6) and chemokines (vMIP-I, vMIP-II, vMIP-III) affect NK cell activity. Using transwell migration assays, KSHV infected cells, as well as fusion and recombinant proteins, we show that out of the four cytokine/chemokines encoded by KSHV, vMIP-II is the only one that binds to the majority of NK cells, affecting their migration. We demonstrate that vMIP-II binds to two different receptors, CX3CR1 and CCR5, expressed by naïve CD56(Dim) CD16(Pos) NK cells and activated NK cells, respectively. Furthermore, we show that the binding of vMIP-II to CX3CR1 and CCR5 blocks the binding of the natural ligands of these receptors, Fractalkine (Fck) and RANTES, respectively. Finally, we show that vMIP-II inhibits the migration of naïve and activated NK cells towards Fck and RANTES. Thus, we present here a novel mechanism in which KSHV uses a unique protein that antagonizes the activity of two distinct chemokine receptors to inhibit the migration of naïve and activated NK cells.

  13. Fractalkine/CX3CL1 engages different neuroprotective responses upon selective glutamate receptor overactivation.

    Directory of Open Access Journals (Sweden)

    Clotilde eLauro

    2015-01-01

    Full Text Available Neuronal death induced by overactivation of N-methyl-d-aspartate receptors (NMDARs is implicated in the pathophysiology of many neurodegenerative diseases such as stroke, epilepsy and traumatic brain injury. This toxic effect is mainly mediated by NR2B-containing extrasynaptic NMDARs, while NR2A-containing synaptic NMDARs contribute to cell survival, suggesting the possibility of therapeutic approaches targeting specific receptor subunits. We report that fractalkine/CX3CL1 protects hippocampal neurons from NMDA-induced cell death with a mechanism requiring the adenosine receptors type 2A (A2AR. This is different from CX3CL1-induced protection from glutamate-induced cell death, that fully depends on A1R and requires in part A3R. We show that CX3CL1 neuroprotection against NMDA excitotoxicity involves D-serine, a co-agonist of NR2A/NMDAR, resulting in cyclic AMP-dependent transcription factor (CREB phosphorylation.

  14. Sifting through CD8+T Cell Memory.

    Science.gov (United States)

    Martin, Matthew D; Badovinac, Vladimir P

    2016-12-20

    In this issue of Immunity, Gerlach et al. (2016) describe three distinct memory CD8 + T cell subsets based upon expression of the fractalkine receptor CX3CR1. Their findings revise the paradigm of effector and central memory T cells by revealing a subset of CD8 + memory T cells defined by intermediate levels of expression of CX3CR1 that conducts tissue surveillance. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Fractalkine (CX3CL1) enhances hippocampal N-methyl-d-aspartate receptor (NMDAR) function via d-serine and adenosine receptor type A2 (A2AR) activity

    Science.gov (United States)

    2013-01-01

    Background N-Methyl-d-aspartate receptors (NMDARs) play fundamental roles in basic brain functions such as excitatory neurotransmission and learning and memory processes. Their function is largely regulated by factors released by glial cells, including the coagonist d-serine. We investigated whether the activation of microglial CX3CR1 induces the release of factors that modulate NMDAR functions. Methods We recorded the NMDAR component of the field excitatory postsynaptic potentials (NMDA-fEPSPs) elicited in the CA1 stratum radiatum of mouse hippocampal slices by Shaffer collateral stimulation and evaluated d-serine content in the extracellular medium of glial primary cultures by mass spectrometry analysis. Results We demonstrated that CX3CL1 increases NMDA-fEPSPs by a mechanism involving the activity of the adenosine receptor type A2 (A2AR) and the release of the NMDAR coagonist d-serine. Specifically (1) the selective A2AR blocker 7-(2-phenylethyl)-5-amino-2-(2-furyl)-pyrazolo-[4,3-e]-1,2,4-triazolo[1,5-c]pyrimidine (SCH58261) and the genetic ablation of A2AR prevent CX3CL1 action while the A2AR agonist 5-(6-amino-2-(phenethylthio)-9H-purin-9-yl)-N-ethyl-3,4-dihydroxytetrahydrofuran-2-carboxamide (VT7) mimics CX3CL1 effect, and (2) the selective blocking of the NMDAR glycine (and d-serine) site by 5,7-dicholorokynurenic acid (DCKA), the enzymatic degradation of d-serine by d-amino acid oxidase (DAAO) and the saturation of the coagonist site by d-serine, all block the CX3CL1 effect. In addition, mass spectrometry analysis demonstrates that stimulation of microglia and astrocytes with CX3CL1 or VT7 increases d-serine release in the extracellular medium. Conclusions CX3CL1 transiently potentiates NMDAR function though mechanisms involving A2AR activity and the release of d-serine. PMID:23981568

  16. Fractalkine overexpression suppresses tau pathology in a mouse model of tauopathy.

    Science.gov (United States)

    Nash, Kevin R; Lee, Daniel C; Hunt, Jerry B; Morganti, Josh M; Selenica, Maj-Linda; Moran, Peter; Reid, Patrick; Brownlow, Milene; Guang-Yu Yang, Clement; Savalia, Miloni; Gemma, Carmelina; Bickford, Paula C; Gordon, Marcia N; Morgan, David

    2013-06-01

    Alzheimer's disease is characterized by amyloid plaques, neurofibrillary tangles, glial activation, and neurodegeneration. In mouse models, inflammatory activation of microglia accelerates tau pathology. The chemokine fractalkine serves as an endogenous neuronal modulator to quell microglial activation. Experiments with fractalkine receptor null mice suggest that fractalkine signaling diminishes tau pathology, but exacerbates amyloid pathology. Consistent with this outcome, we report here that soluble fractalkine overexpression using adeno-associated viral vectors significantly reduced tau pathology in the rTg4510 mouse model of tau deposition. Furthermore, this treatment reduced microglial activation and appeared to prevent neurodegeneration normally found in this model. However, in contrast to studies with fractalkine receptor null mice, parallel studies in an APP/PS1 model found no effect of increased fractalkine signaling on amyloid deposition. These data argue that agonism at fractalkine receptors might be an excellent target for therapeutic intervention in tauopathies, including those associated with amyloid deposition. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Monocyte chemoattractant protein 1 and fractalkine play opposite roles in angiogenesis via recruitment of different macrophage subtypes

    Directory of Open Access Journals (Sweden)

    Lei Chen

    2018-02-01

    Full Text Available AIM: To explore the interaction between macrophages and chemokines [monocyte chemoattractant protein 1 (MCP-1/CCL2 and fractalkine/CX3CL1] and the effects of their interaction on neovascularization. METHODS: Human peripheral blood mononuclear cells, donated by healthy volunteers, were separated and cultured in RPMI-1640 medium containing 10% fetal bovine serum, then induced into macrophages by stimulation with 30 μg/L granulocyte macrophage-colony stimulating factor (GM-CSF. The expression of CCR2 and/or CX3CR1 in the macrophages was examined using flow cytometry. Macrophages were then stimulated with recombinant human CCL2 (rh-CCL2 or recombinant human CX3CL1 (rh-CX3CL1. The expression of angiogenesis-related genes, including VEGF-A, THBS-1 and ADAMTS-1 were examined using real-time quantitative polymerase chain reaction (PCR. Supernatants from stimulated macrophages were used in an assay of human retinal endothelial cell (HREC proliferation. Finally, stimulated macrophages were co-cultured with HREC in a migration assay. RESULTS: The expression rate of CCR2 in macrophages stimulated by GM-CSF was 42%±1.9%. The expression rate of CX3CR1 was 71%±3.3%. Compared with vehicle-treated groups, gene expression of VEGF-A in the macrophages was greater in 150 mg/L CCL2-treated groups (P<0.05, while expression of THBS-1 and ADAMTS-1 was significantly lower (P<0.05. By contrast, compared with vehicle-treated groups, expression of VEGF-A in 150 mg/L CX3CL1-treated groups was significantly lower (P<0.05, while expression of THBS-1 and ADAMTS-1 was greater (P<0.05. Supernatants from CCL2 treated macrophages promoted proliferation of HREC (P<0.05, while supernatants from CX3CL1-treated macrophages inhibited the proliferation of HREC (P<0.05. HREC migration increased when co-cultured with CCL2-treated macrophages, but decreased with CX3CL1-treated macrophages (P<0.05. CONCLUSION: CCL2 and CX3CL1 exert different effects in regulation of macrophage in

  18. Selective chemokine receptor usage by central nervous system myeloid cells in CCR2-red fluorescent protein knock-in mice.

    Directory of Open Access Journals (Sweden)

    Noah Saederup

    2010-10-01

    Full Text Available Monocyte subpopulations distinguished by differential expression of chemokine receptors CCR2 and CX3CR1 are difficult to track in vivo, partly due to lack of CCR2 reagents.We created CCR2-red fluorescent protein (RFP knock-in mice and crossed them with CX3CR1-GFP mice to investigate monocyte subset trafficking. In mice with experimental autoimmune encephalomyelitis, CCR2 was critical for efficient intrathecal accumulation and localization of Ly6C(hi/CCR2(hi monocytes. Surprisingly, neutrophils, not Ly6C(lo monocytes, largely replaced Ly6C(hi cells in the central nervous system of these mice. CCR2-RFP expression allowed the first unequivocal distinction between infiltrating monocytes/macrophages from resident microglia.These results refine the concept of monocyte subsets, provide mechanistic insight about monocyte entry into the central nervous system, and present a novel model for imaging and quantifying inflammatory myeloid populations.

  19. Fractalkine in obstructive sleep apnea patients.

    Science.gov (United States)

    Afsar, Gulgun Cetintas; Oruc, Ozlem; Sarac, Sema; Topçuoğlu, Özgür Bilgin; Salturk, Cuneyt; Tepetam, Fatma Merve; Bulut, Ismet

    2017-05-01

    Obstructive sleep apnea (OSA) is the most common sleep disorder affecting 2-4 % of the adult population. In addition to several potential mechanisms, inflammation is one of the suggested etiological factors in OSA. Fractalkine/CX3CL1 which is detected in activated or stressed endothelium, smooth muscle cells, skeletal muscle cells, macrophages, neurons, and hepatocytes is an inflammatory marker and attracts attention of sleep specialists in OSA pathogenesis. In this study, we had two goals. The first one was to investigate the role of fractalkine in OSA pathogenesis while the second one was to detect the impact of OSA treatment with positive airway pressure (PAP) on serum fractalkine levels. This study included 34 patients (6 females, 28 males) diagnosed as OSA and 20 healthy controls (4 females, 16 males). Initial serum fractalkine levels of both groups were first evaluated in order to demonstrate any potential relation of OSA with fractalkine. Subsequently, serum fractalkine levels of the OSA patients were evaluated following 1 week of PAP treatment to demonstrate the impact of PAP treatment on serum fractalkine levels. Although there was no significant difference between OSA patients and healthy controls by means of plasma fractalkine levels (p, 0.67) statistically, plasma fractalkine levels significantly decreased in OSA patients after 1 week of PAP treatment (p, 0.001). This study showed that fractalkine, a potential mediator of chronic inflammation, was not sensitive in diagnosing OSA but might be an indicator of the success of OSA treatment.

  20. Metalloprotease Dependent Release of Placenta Derived Fractalkine

    Directory of Open Access Journals (Sweden)

    Monika Siwetz

    2014-01-01

    Full Text Available The chemokine fractalkine is considered as unique since it exists both as membrane-bound adhesion molecule and as shed soluble chemoattractant. Here the hypothesis was tested whether placental fractalkine can be shed and released into the maternal circulation. Immunohistochemical staining of human first trimester and term placenta sections localized fractalkine at the apical microvillous plasma membrane of the syncytiotrophoblast. Gene expression analysis revealed abundant upregulation in placental fractalkine at term, compared to first trimester. Fractalkine expression and release were detected in the trophoblast cell line BeWo, in primary term trophoblasts and placental explants. Incubation of BeWo cells and placental explants with metalloprotease inhibitor Batimastat inhibited the release of soluble fractalkine and at the same time increased the membrane-bound form. These results demonstrate that human placenta is a source for fractalkine, which is expressed in the syncytiotrophoblast and can be released into the maternal circulation by constitutive metalloprotease dependent shedding. Increased expression and release of placental fractalkine may contribute to low grade systemic inflammatory responses in third trimester of normal pregnancy. Aberrant placental metalloprotease activity may not only affect the release of placenta derived fractalkine but may at the same time affect the abundance of the membrane-bound form of the chemokine.

  1. Autocrine role of vascular IL-15 in intimal thickening

    International Nuclear Information System (INIS)

    Cercek, Miha; Matsumoto, Michiaki; Li, Hongyan; Chyu, K.-Y.; Peter, Ashok; Shah, Prediman K.; Dimayuga, Paul C.

    2006-01-01

    Interleukin 15 (IL-15) is a pro-inflammatory cytokine that modulates T cell recruitment and activation, independent of antigen. It has been detected in human atherosclerotic plaques and atherosclerotic plaques of apoE-/- mice. IL-15 regulates fractalkine (FKN)-CX3CR1 chemokine signaling which is involved in atherogenesis and promotes SMC proliferation. We investigated the role of IL-15 in intimal thickening after arterial injury. Treatment of serum-stimulated SMC with IL-15 in vitro attenuated proliferation and suppressed CX3CR1 and FKN mRNA expression. The role of endogenous IL-15 in vivo was investigated in injured carotid arteries of mice. Periadventitial arterial injury resulted in increased IL-15 expression in the media and neointima, paralleled by increased IL-15 receptor α expression. Blockade of endogenous IL-15 increased intimal thickening. FKN and CX3CR1 expression increased after injury and were further augmented after IL-15 blockade. These data suggest that endogenous IL-15 attenuated intimal thickening after arterial injury. The potential mechanism of action is suppression of CX3CR1 signaling

  2. Fractalkine in rheumatoid arthritis: a review to date.

    LENUS (Irish Health Repository)

    Murphy, G

    2012-02-03

    Rheumatoid arthritis (RA) is characterized by the expansion of the synovium, with infiltration of pro-inflammatory cells, neovascularization and an abundance of pro-inflammatory cytokines resulting in tissue destruction and bone erosion. Fractalkine (FKN), a recently described chemokine, possesses chemotactic, angiogenic and adhesive functions that associates it with all of these destructive processes. In this review, we describe the research to date, which implicates FKN and its receptor in the pathogenesis of RA and propose that this molecule may represent a future therapeutic target for RA.

  3. Soluble fractalkine in the plasma of fibromyalgia patients

    Directory of Open Access Journals (Sweden)

    JUAN J. GARCIA

    2014-12-01

    Full Text Available Fibromyalgia is a form of non-articular rheumatism in which inflammatory cytokines seem to be involved. However, there is still no analytical specific diagnostic criterion for this disease. The aim was to examine a possible role of fractalkine as a biomarker in fibromyalgia. Plasma levels of soluble fractalkine were compared between women diagnosed with fibromyalgia (n=17 and healthy women (n=10 as controls. Fractalkine released by monocytes was also evaluated. Fibromyalgia patients showed lower plasma fractalkine than healthy women. Since most inflammatory pathologies show elevated plasma levels of soluble fractalkine, the results may contribute towards a differential diagnosis for fibromyalgia.

  4. Fractalkine in type 2 Egyptian diabetics with and without nephropathy

    Directory of Open Access Journals (Sweden)

    Ebtissam Zakaria

    2013-01-01

    Results and Conclusion Our study showed that the serum fractalkine concentration was significantly elevated in type 2 diabetic patients with nephropathy (1153.14±261.1 compared with type 2 diabetic patients without nephropathy (705.78±150.59 and the control group (251.5±64 (both P=0.000. There was a significant correlation between serum fractalkine level and 24-h UAE, HBA1C, and serum creatinine. Thus, this positive correlation between serum fractalkine level and UAE could be an early predictor of microvascular complications in diabetic patients. We can conclude that serum fractalkine plays a pathogenic role in the development of diabetic nephropathy.

  5. Lupeol derivative mitigates Echis carinatus venom-induced tissue destruction by neutralizing venom toxins and protecting collagen and angiogenic receptors on inflammatory cells.

    Science.gov (United States)

    Katkar, G D; Sharma, Rachana D; Vishalakshi, G J; Naveenkumar, S K; Madhur, Gaurav; Thushara, R M; Narender, T; Girish, K S; Kemparaju, K

    2015-12-01

    Echis carinatus bite is a serious threat in South-Asian countries including India, as it causes highest number of deaths and terrifying long-term tissue destruction at the bitten site. Although venom metalloproteinases and hyaluronidases are the suggested key players, studies on the effect of venom on polymorphonuclear cells, peripheral blood mononuclear cells and platelets, and their role in long-term tissue destruction are still in infancy. While, the effect of venom on collagen receptors, integrin α2β1/GP VI/DDR1 and CX3CR1 chemokine receptor present on these cells is an untouched area. Lupeol, lupeol acetate, its synthetic derivatives 2-8 were screened for inhibition of E. carinatus venom induced-hemorrhage in mouse model where compound 8 was found to be the most potent. Further, compound 8 efficiently neutralized venom induced hemorrhage, edema, dermonecrosis, myonecrosis, myotoxicity, pro-coagulant, oxidative stress, inflammatory cytokines and cleavage of collagen and CX3CR1 receptors on inflammatory cells in in vivo, in silico, ex vivo and in vitro studies. This study for the first time demonstrated the cleavage of collagen receptors and the receptor for angiogenesis and wound healing by the venom and its inhibition by compound 8, as these are important for firm adhesion of inflammatory cells at the damaged site to resolve inflammation and promote tissue repair. This study provides a lead in venom pharmacology, wherein, compound 8 could be a therapeutic agent for the better management of viper venom-induced long-term tissue destruction. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Fibroblast growth factor receptor 1 activation in mammary tumor cells promotes macrophage recruitment in a CX3CL1-dependent manner.

    Directory of Open Access Journals (Sweden)

    Johanna R Reed

    Full Text Available Tumor formation is an extensive process requiring complex interactions that involve both tumor cell-intrinsic pathways and soluble mediators within the microenvironment. Tumor cells exploit the intrinsic functions of many soluble molecules, including chemokines and their receptors, to regulate pro-tumorigenic phenotypes that are required for growth and progression of the primary tumor. Previous studies have shown that activation of inducible FGFR1 (iFGFR1 in mammary epithelial cells resulted in increased proliferation, migration, and invasion in vitro and tumor formation in vivo. These studies also demonstrated that iFGFR1 activation stimulated recruitment of macrophages to the epithelium where macrophages contributed to iFGFR1-mediated epithelial cell proliferation and angiogenesis. The studies presented here further utilize this model to identify the mechanisms that regulate FGFR1-induced macrophage recruitment. Results from this study elucidate a novel role for the inflammatory chemokine CX3CL1 in FGFR1-induced macrophage migration. Specifically, we illustrate that activation of both the inducible FGFR1 construct in mouse mammary epithelial cells and endogenous FGFR in the triple negative breast cancer cell line, HS578T, leads to expression of the chemokine CX3CL1. Furthermore, we demonstrate that FGFR-induced CX3CL1 is sufficient to recruit CX3CR1-expressing macrophages in vitro. Finally, blocking CX3CR1 in vivo leads to decreased iFGFR1-induced macrophage recruitment, which correlates with decreased angiogenesis. While CX3CL1 is a known target of FGF signaling in the wound healing environment, these studies demonstrate that FGFR activation also leads to induction of CX3CL1 in a tumor setting. Furthermore, these results define a novel role for CX3CL1 in promoting macrophage recruitment during mammary tumor formation, suggesting that the CX3CL1/CX3CR1 axis may represent a potential therapeutic approach for targeting breast cancers associated

  7. VEGF receptor blockade markedly reduces retinal microglia/macrophage infiltration into laser-induced CNV.

    Directory of Open Access Journals (Sweden)

    Hu Huang

    Full Text Available Although blocking VEGF has a positive effect in wet age-related macular degeneration (AMD, the effect of blocking its receptors remains unclear. This was an investigation of the effect of VEGF receptor (VEGFR 1 and/or 2 blockade on retinal microglia/macrophage infiltration in laser-induced choroidal neovascularization (CNV, a model of wet AMD. CNV lesions were isolated by laser capture microdissection at 3, 7, and 14 days after laser and analyzed by RT-PCR and immunofluorescence staining for mRNA and protein expression, respectively. Neutralizing antibodies for VEGFR1 or R2 and the microglia inhibitor minocycline were injected intraperitoneally (IP. Anti-CD11b, CD45 and Iba1 antibodies were used to confirm the cell identity of retinal microglia/macrophage, in the RPE/choroidal flat mounts or retinal cross sections. CD11b(+, CD45(+ or Iba1(+ cells were counted. mRNA of VEGFR1 and its three ligands, PlGF, VEGF-A (VEGF and VEGF-B, were expressed at all stages, but VEGFR2 were detected only in the late stage. PlGF and VEGF proteins were expressed at 3 and 7 days after laser. Anti-VEGFR1 (MF1 delivered IP 3 days after laser inhibited infiltration of leukocyte populations, largely retinal microglia/macrophage to CNV, while anti-VEGFR2 (DC101 had no effect. At 14 days after laser, both MF1 and DC101 antibodies markedly inhibited retinal microglia/macrophage infiltration into CNV. Therefore, VEGFR1 and R2 play differential roles in the pathogenesis of CNV: VEGFR1 plays a dominant role at 3 days after laser; but both receptors play pivotal roles at 14 days after laser. In vivo imaging demonstrated accumulation of GFP-expressing microglia into CNV in both CX3CR1(gfp/gfp and CX3CR1(gfp/+ mice. Minocycline treatment caused a significant increase in lectin(+ cells in the sub-retinal space anterior to CNV and a decrease in dextran-perfused neovessels compared to controls. Targeting the chemoattractant molecules that regulate trafficking of retinal microglia

  8. CLEC5A is a critical receptor in innate immunity against Listeria infection.

    Science.gov (United States)

    Chen, Szu-Ting; Li, Fei-Ju; Hsu, Tzy-Yun; Liang, Shu-Mei; Yeh, Yi-Chen; Liao, Wen-Yu; Chou, Teh-Ying; Chen, Nien-Jun; Hsiao, Michael; Yang, Wen-Bin; Hsieh, Shie-Liang

    2017-08-21

    The C-type lectin member 5A (CLEC5A) is a pattern recognition receptor for members of the Flavivirus family and has critical functions in response to dengue virus and Japanese encephalitis virus. Here we show that CLEC5A is involved in neutrophil extracellular trap formation and the production of reactive oxygen species and proinflammatory cytokines in response to Listeria monocytogenes. Inoculation of Clec5a -/- mice with L. monocytogenes causes rapid bacterial spreading, increased bacterial loads in the blood and liver, and severe liver necrosis. In these mice, IL-1β, IL-17A, and TNF expression is inhibited, CCL2 is induced, and large numbers of CD11b + Ly6C hi CCR2 hi CX3CR1 low inflammatory monocytes infiltrate the liver. By day 5 of infection, these mice also have fewer IL-17A + γδ T cells, severe liver necrosis and a higher chance of fatality. Thus, CLEC5A has a pivotal function in the activation of multiple aspects of innate immunity against bacterial invasion.The lectin receptor CLEC5A is a pattern recognition receptor that has been shown to detect dengue and Japanese encephalitis virus. Here the authors show that CLEC5A is needed for optimal ROS production, NET formation and other immune responses to Listeria monocytogenes in mice.

  9. Dysregulation of chemokine/chemokine receptor axes and NK cell tissue localization during diseases

    Directory of Open Access Journals (Sweden)

    Giovanni Bernardini

    2016-10-01

    Full Text Available ABSTRACTChemokines are small chemotactic molecules that play key roles in physiological and pathological conditions. Upon signaling via their specific receptors, chemokines regulate tissue mobilization and trafficking of a wide array of immune cells, including NK cells. Current research is focused in analyzing changes of chemokine/chemokine receptor expression during various diseases to interfere with pathological trafficking of cells, or to recruit selected cell types to specific tissues. NK cells are a heterogeneous lymphocyte population comprising several subsets endowed with distinct functional properties and mainly representing distinct stages of a linear development process. Because of their different functional potential, the type of subset that accumulates in a tissue drives the final outcome of NK cell-regulated immune response, leading to either protection or pathology. Correspondingly, chemokine receptors including CXCR4, CXCR3 and CX3CR1 are differentially expressed by NK cell subsets and their expression levels can be modulated during NK cell activation. This review will at first summarize the current knowledge on the contribution of chemokines to the localization and generation of NK cell subsets in homeostasis. How an inappropriate chemotactic response can lead to pathology and how chemokine targeting can therapeutically affect tissue recruitment/localization of distinct NK cell subsets will also be discussed.

  10. Rhinovirus induction of fractalkine (CX3CL1 in airway and peripheral blood mononuclear cells in asthma.

    Directory of Open Access Journals (Sweden)

    Nadine Upton

    Full Text Available Rhinovirus infection is associated with the majority of asthma exacerbations. The role of fractalkine in anti-viral (type 1 and pathogenic (type 2 responses to rhinovirus infection in allergic asthma is unknown. To determine whether (1 fractalkine is produced in airway cells and in peripheral blood leucocytes, (2 rhinovirus infection increases production of fractalkine and (3 levels of fractalkine differ in asthmatic compared to non-asthmatic subjects. Fractalkine protein and mRNA levels were measured in bronchoalveolar lavage (BAL cells and peripheral blood mononuclear cells (PBMCs from non-asthmatic controls (n = 15 and mild allergic asthmatic (n = 15 subjects. Protein levels of fractalkine were also measured in macrophages polarised ex vivo to give M1 (type 1 and M2 (type 2 macrophages and in BAL fluid obtained from mild (n = 11 and moderate (n = 14 allergic asthmatic and non-asthmatic control (n = 10 subjects pre and post in vivo rhinovirus infection. BAL cells produced significantly greater levels of fractalkine than PBMCs. Rhinovirus infection increased production of fractalkine by BAL cells from non-asthmatic controls (P<0.01 and in M1-polarised macrophages (P<0.05, but not in BAL cells from mild asthmatics or in M2 polarised macrophages. Rhinovirus induced fractalkine in PBMCs from asthmatic (P<0.001 and healthy control subjects (P<0.05. Trends towards induction of fractalkine in moderate asthmatic subjects during in vivo rhinovirus infection failed to reach statistical significance. Fractalkine may be involved in both immunopathological and anti-viral immune responses to rhinovirus infection. Further investigation into how fractalkine is regulated across different cell types and into the effect of stimulation including rhinovirus infection is warranted to better understand the precise role of this unique dual adhesion factor and chemokine in immune cell recruitment.

  11. IFN-γ modulates Ly-49 receptors on NK cells in IFN-γ-induced pregnancy failure.

    Science.gov (United States)

    Li, Zhong-Yin; Song, Zhi-Hui; Meng, Chao-Yang; Yang, Dan-Dan; Yang, Ying; Peng, Jing-Pian

    2015-12-11

    We have previously shown that interferon gamma (IFN-γ) induces aberrant CD49b(+) natural killer (NK) cell recruitment by regulating CX3CL1 and eventually provokes foetal loss. In this study, we show that IFN-γ also modulates Ly-49 receptors on NK cells during pregnancy failure. The percentages of Ly-49A(+) and Ly-49G2(+) NK cells in the uteri of the IFN-γ-treated group were significantly lower than those observed in the control group. Moreover, the median fluorescence intensity (MFI) values of Ly-49A and Ly-49G2 expression on NK cells in the uteri of the IFN-γ-treated group were significantly lower than those of the control group. Using isolated spleen leucocytes, we further found that IFN-γ significantly reduced the percentage of Ly-49A(+) NK cells in vitro. However, CX3CL1 was not involved in the modulation of Ly-49 receptors, and the expression of CX3CR1 was not regulated by IFN-γ in spleen leucocytes. Collectively, our data indicate that IFN-γ can modulate Ly-49 receptors on NK cells and this process may play a role in IFN-γ-induced pregnancy failure. Thus, we provide a new line of evidence correlating the deleterious effects of IFN-γ with its role in regulating NK cell Ly-49 receptors during pregnancy failure.

  12. Stress-Induced In Vivo Recruitment of Human Cytotoxic Natural Killer Cells Favors Subsets with Distinct Receptor Profiles and Associates with Increased Epinephrine Levels.

    Directory of Open Access Journals (Sweden)

    Marc B Bigler

    Full Text Available Acute stress drives a 'high-alert' response in the immune system. Psychoactive drugs induce distinct stress hormone profiles, offering a sought-after opportunity to dissect the in vivo immunological effects of acute stress in humans.3,4-methylenedioxymethamphetamine (MDMA, methylphenidate (MPH, or both, were administered to healthy volunteers in a randomized, double-blind, placebo-controlled crossover-study. Lymphocyte subset frequencies, natural killer (NK cell immune-phenotypes, and changes in effector function were assessed, and linked to stress hormone levels and expression of CD62L, CX3CR1, CD18, and stress hormone receptors on NK cells.MDMA/MPH > MDMA > MPH robustly induced an epinephrine-dominant stress response. Immunologically, rapid redistribution of peripheral blood lymphocyte-subsets towards phenotypically mature NK cells occurred. NK cytotoxicity was unaltered, but they expressed slightly reduced levels of the activating receptor NKG2D. Preferential circulation of mature NK cells was associated with high epinephrine receptor expression among this subset, as well as expression of integrin ligands previously linked to epinephrine-induced endothelial detachment.The acute epinephrine-induced stress response was characterized by rapid accumulation of mature and functional NK cells in the peripheral circulation. This is in line with studies using other acute stressors and supports the role of the acute stress response in rapidly mobilizing the innate immune system to counteract incoming threats.

  13. The DRF motif of CXCR6 as chemokine receptor adaptation to adhesion.

    Directory of Open Access Journals (Sweden)

    Andrea Koenen

    Full Text Available The CXC-chemokine receptor 6 (CXCR6 is a class A GTP-binding protein-coupled receptor (GPCRs that mediates adhesion of leukocytes by interacting with the transmembrane cell surface-expressed chemokine ligand 16 (CXCL16, and also regulates leukocyte migration by interacting with the soluble shed variant of CXCL16. In contrast to virtually all other chemokine receptors with chemotactic activity, CXCR6 carries a DRF motif instead of the typical DRY motif as a key element in receptor activation and G protein coupling. In this work, modeling analyses revealed that the phenylalanine F3.51 in CXCR6 might have impact on intramolecular interactions including hydrogen bonds by this possibly changing receptor function. Initial investigations with embryonic kidney HEK293 cells and further studies with monocytic THP-1 cells showed that mutation of DRF into DRY does not influence ligand binding, receptor internalization, receptor recycling, and protein kinase B (AKT signaling. Adhesion was slightly decreased in a time-dependent manner. However, CXCL16-induced calcium signaling and migration were increased. Vice versa, when the DRY motif of the related receptor CX3CR1 was mutated into DRF the migratory response towards CX3CL1 was diminished, indicating that the presence of a DRF motif generally impairs chemotaxis in chemokine receptors. Transmembrane and soluble CXCL16 play divergent roles in homeostasis, inflammation, and cancer, which can be beneficial or detrimental. Therefore, the DRF motif of CXCR6 may display a receptor adaptation allowing adhesion and cell retention by transmembrane CXCL16 but reducing the chemotactic response to soluble CXCL16. This adaptation may avoid permanent or uncontrolled recruitment of inflammatory cells as well as cancer metastasis.

  14. Fractalkine expression induces endothelial progenitor cell lysis by natural killer cells.

    Directory of Open Access Journals (Sweden)

    Dilyana Todorova

    Full Text Available BACKGROUND: Circulating CD34(+ cells, a population that includes endothelial progenitors, participate in the maintenance of endothelial integrity. Better understanding of the mechanisms that regulate their survival is crucial to improve their regenerative activity in cardiovascular and renal diseases. Chemokine-receptor cross talk is critical in regulating cell homeostasis. We hypothesized that cell surface expression of the chemokine fractalkine (FKN could target progenitor cell injury by Natural Killer (NK cells, thereby limiting their availability for vascular repair. METHODOLOGY/PRINCIPAL FINDINGS: We show that CD34(+-derived Endothelial Colony Forming Cells (ECFC can express FKN in response to TNF-α and IFN-γ inflammatory cytokines and that FKN expression by ECFC stimulates NK cell adhesion, NK cell-mediated ECFC lysis and microparticles release in vitro. The specific involvement of membrane FKN in these processes was demonstrated using FKN-transfected ECFC and anti-FKN blocking antibody. FKN expression was also evidenced on circulating CD34(+ progenitor cells and was detected at higher frequency in kidney transplant recipients, when compared to healthy controls. The proportion of CD34(+ cells expressing FKN was identified as an independent variable inversely correlated to CD34(+ progenitor cell count. We further showed that treatment of CD34(+ circulating cells isolated from adult blood donors with transplant serum or TNF-α/IFN-γ can induce FKN expression. CONCLUSIONS: Our data highlights a novel mechanism by which FKN expression on CD34(+ progenitor cells may target their NK cell mediated killing and participate to their immune depletion in transplant recipients. Considering the numerous diseased contexts shown to promote FKN expression, our data identify FKN as a hallmark of altered progenitor cell homeostasis with potential implications in better evaluation of vascular repair in patients.

  15. The chemokine receptor CXCR3 and its splice variant are expressed in human airway epithelial cells.

    Science.gov (United States)

    Kelsen, Steven G; Aksoy, Mark O; Yang, Yi; Shahabuddin, Syed; Litvin, Judith; Safadi, Fayez; Rogers, Thomas J

    2004-09-01

    Activation of the chemokine receptor CXCR3 by its cognate ligands induces several differentiated cellular responses important to the growth and migration of a variety of hematopoietic and structural cells. In the human respiratory tract, human airway epithelial cells (HAEC) release the CXCR3 ligands Mig/CXCL9, IP-10/CXCL10, and I-TAC/CXCL11. Simultaneous expression of CXCR3 by HAEC would have important implications for the processes of airway inflammation and repair. Accordingly, in the present study we sought to determine whether HAEC also express the classic CXCR3 chemokine receptor CXCR3-A and its splice variant CXCR3-B and hence may respond in autocrine fashion to its ligands. We found that cultured HAEC (16-HBE and tracheocytes) constitutively expressed CXCR3 mRNA and protein. CXCR3 mRNA levels assessed by expression array were approximately 35% of beta-actin expression. In contrast, CCR3, CCR4, CCR5, CCR8, and CX3CR1 were <5% beta-actin. Both CXCR3-A and -B were expressed. Furthermore, tracheocytes freshly harvested by bronchoscopy stained positively for CXCR3 by immunofluorescence microscopy, and 68% of cytokeratin-positive tracheocytes (i.e., the epithelial cell population) were positive for CXCR3 by flow cytometry. In 16-HBE cells, CXCR3 receptor density was approximately 78,000 receptors/cell when assessed by competitive displacement of 125I-labeled IP-10/CXCL10. Finally, CXCR3 ligands induced chemotactic responses and actin reorganization in 16-HBE cells. These findings indicate constitutive expression by HAEC of a functional CXC chemokine receptor, CXCR3. Our data suggest the possibility that autocrine activation of CXCR3 expressed by HAEC may contribute to airway inflammation and remodeling in obstructive lung disease by regulating HAEC migration.

  16. Neuron-macrophage crosstalk in the intestine: a ‘microglia’ perspective

    Directory of Open Access Journals (Sweden)

    Simon eVerheijden

    2015-10-01

    Full Text Available Intestinal macrophages are strategically located in different layers of the intestine, including the mucosa, submucosa and muscularis externa, where they perform complex tasks to maintain intestinal homeostasis. As the gastrointestinal tract is continuously challenged by foreign antigens, macrophage activation should be tightly controlled to prevent chronic inflammation and tissue damage. Unraveling the precise cellular and molecular mechanisms underlying the tissue-specific control of macrophage activation is crucial to get more insight into intestinal immune regulation. Two recent reports provide unanticipated evidence that the enteric nervous system acts as a critical regulator of macrophage function in the myenteric plexus. Both studies clearly illustrate that enteric neurons reciprocally interact with intestinal macrophages and are actively involved in shaping their phenotype. This concept has striking parallels with the central nervous system (CNS, where neuronal signals maintain microglia, the resident macrophages of the CNS, in a quiescent, anti-inflammatory state. This inevitably evokes the perception that the ENS and CNS share mechanisms of neuroimmune interaction. In line, intestinal macrophages, both in the muscularis externa and (submucosa, express high levels of CX3CR1, a feature that was once believed to be unique for microglia. CX3CR1 is the sole receptor of fractalkine (CX3CL1, a factor mainly produced by neurons in the CNS to facilitate neuron-microglia communication. The striking parallels between resident macrophages of the brain and intestine might provide a promising new line of thought to get more insight into cellular and molecular mechanisms controlling macrophage activation in the gut.

  17. A spirulina-enhanced diet provides neuroprotection in an α-synuclein model of Parkinson's disease.

    Directory of Open Access Journals (Sweden)

    Mibel M Pabon

    Full Text Available Inflammation in the brain plays a major role in neurodegenerative diseases. In particular, microglial cell activation is believed to be associated with the pathogenesis of neurodegenerative diseases, including Parkinson's disease (PD. An increase in microglia activation has been shown in the substantia nigra pars compacta (SNpc of PD models when there has been a decrease in tyrosine hydroxylase (TH positive cells. This may be a sign of neurotoxicity due to prolonged activation of microglia in both early and late stages of disease progression. Natural products, such as spirulina, derived from blue green algae, are believed to help reverse this effect due to its anti-inflammatory/anti-oxidant properties. An adeno-associated virus vector (AAV9 for α-synuclein was injected in the substantia nigra of rats to model Parkinson's disease and to study the effects of spirulina on the inflammatory response. One month prior to surgeries, rats were fed either a diet enhanced with spirulina or a control diet. Immunohistochemistry was analyzed with unbiased stereological methods to quantify lesion size and microglial activation. As hypothesized, spirulina was neuroprotective in this α-synuclein model of PD as more TH+ and NeuN+ cells were observed; spirulina concomitantly decreased the numbers of activated microglial cells as determined by MHCII expression. This decrease in microglia activation may have been due, in part, to the effect of spirulina to increase expression of the fractalkine receptor (CX3CR1 on microglia. With this study we hypothesize that α-synuclein neurotoxicity is mediated, at least in part, via an interaction with microglia. We observed a decrease in activated microglia in the rats that received a spirulina- enhanced diet concomitant to neuroprotection. The increase in CX3CR1 in the groups that received spirulina, suggests a potential mechanism of action.

  18. A Spirulina-Enhanced Diet Provides Neuroprotection in an α-Synuclein Model of Parkinson's Disease

    Science.gov (United States)

    Pabon, Mibel M.; Jernberg, Jennifer N.; Morganti, Josh; Contreras, Jessika; Hudson, Charles E.; Klein, Ronald L.; Bickford, Paula C.

    2012-01-01

    Inflammation in the brain plays a major role in neurodegenerative diseases. In particular, microglial cell activation is believed to be associated with the pathogenesis of neurodegenerative diseases, including Parkinson’s disease (PD). An increase in microglia activation has been shown in the substantia nigra pars compacta (SNpc) of PD models when there has been a decrease in tyrosine hydroxylase (TH) positive cells. This may be a sign of neurotoxicity due to prolonged activation of microglia in both early and late stages of disease progression. Natural products, such as spirulina, derived from blue green algae, are believed to help reverse this effect due to its anti-inflammatory/anti-oxidant properties. An adeno-associated virus vector (AAV9) for α-synuclein was injected in the substantia nigra of rats to model Parkinson's disease and to study the effects of spirulina on the inflammatory response. One month prior to surgeries, rats were fed either a diet enhanced with spirulina or a control diet. Immunohistochemistry was analyzed with unbiased stereological methods to quantify lesion size and microglial activation. As hypothesized, spirulina was neuroprotective in this α-synuclein model of PD as more TH+ and NeuN+ cells were observed; spirulina concomitantly decreased the numbers of activated microglial cells as determined by MHCII expression. This decrease in microglia activation may have been due, in part, to the effect of spirulina to increase expression of the fractalkine receptor (CX3CR1) on microglia. With this study we hypothesize that α-synuclein neurotoxicity is mediated, at least in part, via an interaction with microglia. We observed a decrease in activated microglia in the rats that received a spirulina- enhanced diet concomitant to neuroprotection. The increase in CX3CR1 in the groups that received spirulina, suggests a potential mechanism of action. PMID:23028885

  19. Stimulation of oral fibroblast chemokine receptors identifies CCR3 and CCR4 as potential wound healing targets

    Science.gov (United States)

    Buskermolen, Jeroen K.; Roffel, Sanne

    2017-01-01

    The focus of this study was to determine which chemokine receptors are present on oral fibroblasts and whether these receptors influence proliferation, migration, and/or the release of wound healing mediators. This information may provide insight into the superior wound healing characteristics of the oral mucosa. The gingiva fibroblasts expressed 12 different chemokine receptors (CCR3, CCR4, CCR6, CCR9, CCR10, CXCR1, CXCR2, CXCR4, CXCR5, CXCR7, CX3CR1, and XCR1), as analyzed by flow cytometry. Fourteen corresponding chemokines (CCL5, CCL15, CCL20, CCL22, CCL25, CCL27, CCL28, CXCL1, CXCL8, CXCL11, CXCL12, CXCL13, CX3CL1, and XCL1) were used to study the activation of these receptors on gingiva fibroblasts. Twelve of these fourteen chemokines stimulated gingiva fibroblast migration (all except for CXCL8 and CXCL12). Five of the chemokines stimulated proliferation (CCL5/CCR3, CCL15/CCR3, CCL22/CCR4, CCL28/CCR3/CCR10, and XCL1/XCR1). Furthermore, CCL28/CCR3/CCR10 and CCL22/CCR4 stimulation increased IL‐6 secretion and CCL28/CCR3/CCR10 together with CCL27/CCR10 upregulated HGF secretion. Moreover, TIMP‐1 secretion was reduced by CCL15/CCR3. In conclusion, this in‐vitro study identifies chemokine receptor‐ligand pairs which may be used in future targeted wound healing strategies. In particular, we identified the chemokine receptors CCR3 and CCR4, and the mucosa specific chemokine CCL28, as having an predominant role in oral wound healing by increasing human gingiva fibroblast proliferation, migration, and the secretion of IL‐6 and HGF and reducing the secretion of TIMP‐1. PMID:28387445

  20. Role of exonic variation in chemokine receptor genes on AIDS: CCRL2 F167Y association with pneumocystis pneumonia.

    Directory of Open Access Journals (Sweden)

    Ping An

    2011-10-01

    Full Text Available Chromosome 3p21-22 harbors two clusters of chemokine receptor genes, several of which serve as major or minor coreceptors of HIV-1. Although the genetic association of CCR5 and CCR2 variants with HIV-1 pathogenesis is well known, the role of variation in other nearby chemokine receptor genes remain unresolved. We genotyped exonic single nucleotide polymorphisms (SNPs in chemokine receptor genes: CCR3, CCRL2, and CXCR6 (at 3p21 and CCR8 and CX3CR1 (at 3p22, the majority of which were non-synonymous. The individual SNPs were tested for their effects on disease progression and outcomes in five treatment-naïve HIV-1/AIDS natural history cohorts. In addition to the known CCR5 and CCR2 associations, significant associations were identified for CCR3, CCR8, and CCRL2 on progression to AIDS. A multivariate survival analysis pointed to a previously undetected association of a non-conservative amino acid change F167Y in CCRL2 with AIDS progression: 167F is associated with accelerated progression to AIDS (RH = 1.90, P = 0.002, corrected. Further analysis indicated that CCRL2-167F was specifically associated with more rapid development of pneumocystis pneumonia (PCP (RH = 2.84, 95% CI 1.28-6.31 among four major AIDS-defining conditions. Considering the newly defined role of CCRL2 in lung dendritic cell trafficking, this atypical chemokine receptor may affect PCP through immune regulation and inducing inflammation.

  1. Circulating CD36 and fractalkine levels are associated with vulnerable plaque progression in patients with unstable angina pectoris.

    Science.gov (United States)

    Li, Rui Jian; Yang, Ming; Li, Ji Fu; Xue, Li; Chen, Yu Guo; Chen, Wen Qiang

    2014-11-01

    The chemokine, fractalkine, independently enhances the vulnerability of coronary atherosclerotic plaques. The present study investigated the combined effects of CD36 and fractalkine on coronary plaque progression in patients with unstable angina pectoris. In the present study, 120 unstable angina pectoris patients undergoing coronary angiography and intravascular ultrasound were divided into two groups: an intermediate lesion group (lumen diameter stenosis 50-70%, 80 patients) and a severe lesion group (at least one lesion with lumen diameter stenosis > 70%, 40 patients). The control group consisted of 40 healthy age- and sex-matched subjects. Concentrations of CD36 and fractalkine were measured by enzyme-linked immunosorbent assay. Major adverse cardiovascular events were monitored over a 2-year follow up. Intravascular ultrasound showed that patients with severe lesions had more calcified and mixed plaques, and a larger plaque area and plaque burden than patients with intermediate lesions (P < 0.05-0.01). More patients with severe lesions underwent stent deployment (P < 0.05) than those with intermediate lesions. CD36 and fractalkine concentrations were significantly higher in the severe lesion patients (P < 0.05), and both had significant positive correlations (P < 0.05) with the plaque burden of atherosclerotic lesions. Using the matched nested case-control study, we found that CD36 and fractalkine levels were higher in patients with recurrent major adverse cardiovascular events than controls (P < 0.05). In conclusion, CD36 and fractalkine both promote, and might synergistically enhance, the progression of coronary atherosclerotic plaques. © 2014 Wiley Publishing Asia Pty Ltd.

  2. Changes of dendritic cells and fractalkine in type 2 diabetic patients with unstable angina pectoris: a preliminary report.

    Science.gov (United States)

    Yao, Kang; Lu, Hao; Huang, Rongchong; Zhang, Shuning; Hong, Xiaowu; Shi, Hongyu; Sun, Aijun; Qian, Juying; Zou, Yunzeng; Ge, Junbo

    2011-06-10

    It has been shown that dendritic cells (DCs) and fractalkine play a role in accelerating progression of the inflamed atherosclerotic lesions and plaque rupture. We evaluated the numbers and functional changes of DCs and its subsets in human type 2 diabetes with or without unstable angina pectoris (UAP). The study population consisted of 39 diabetic patients (DM:18 without CAD; DM + UAP: 21 with UAP), 18 non-diabetic UAP patients (UAP), and 15 healthy control (Normal). Peripheral blood DCs and its subsets were measured by three color flow cytometry. Serum levels of fractalkine, IL-12, and IFN-α were also measured. The functional status of the monocyte-derived DCs was analyzed by flow cytometry and allogeneic mixed T lymphocytes reaction. The percent and absolute numbers of DCs and mDC within the total leukocyte population was similar for Normal and DM, while significantly lower in DM + UAP. pDC numbers were not significantly altered. Serum fractalkine in DM + UAP was highest among the four groups (p = 0.04 vs. UAP, p = 0.0003 vs. DM, p < 0.0001 vs. Normal). Circulating mDC inversely correlated with serum fractalkine (r = -0.268, p = 0.01) level. Compared with DM and UAP, the costimulatory molecules CD86 and proliferation of T cells stimulated by DCs were significantly increased in DM + UAP group. Our study suggested that increases in the fractalkine level and the number and functional changes of blood DCs might contribute to diabetic coronary atherosclerosis and plaque destabilization.

  3. A FUNCTIONAL RELATIONSHIP BETWEEN TRIGEMINAL ASTROGLIAL ACTIVATION AND NR1 EXPRESSION IN A RAT MODEL OF TEMPOROMANDIBULAR JOINT INFLAMMATION

    Science.gov (United States)

    Wang, Shuxing; Song, Li; Tan, Yonghui; Ma, Yuxin; Tian, Yinghong; Jin, Xu; Lim, Grewo; Zhang, Shuzhuo; Chen, Lucy; Mao, Jianren

    2012-01-01

    Objective To examine the hypothesis that glial activation would regulate the expression of the NR1 subunit of the N-methyl-D-aspartate receptor in the trigeminal subnucleus caudalis (Sp5C) after temporomandibular joint (TMJ) inflammation. Methods Inflammation of temporomandibular joint (TMJ) was produced in rats by injecting 50μl complete Freund's adjuvant (CFA) into unilateral TMJ space. Sham control rats received incomplete Freund's adjuvant (IFA) injection. Mechanical nociception in the affected and non-affected TMJ site was tested by using a digital algometer. Fractalkine, fluorocitrate, and/or MK801 were intracisternally administrated to examine the relationship between astroglial activation and NR1 upregulation. Results CFA TMJ injection resulted in persistent ipsilateral mechanical hyperalgesia 1, 3 and 5 days after CFA injection. The inflammation also induced significant upregulation of CX3CR1 and GFAP beginning on day 1, and of NR1 beginning on day 3, within the ipsilateral Sp5C. Intracisternal administration of fluorocitrate for 5 days blocked the development of mechanical hyperalgesia as well as the upregulation of GFAP and NR1 in the Sp5C. Conversely, intracisternal injection of fractalkine for 5 days exacerbated the expression of NR1 in Sp5C and mechanical hyperalgesia induced by TMJ inflammation. Moreover, once daily intracisternal fractalkine administration for five days in naïve rats induced the upregulation of NR1 and mechanical hyperalgesia. Conclusions These results suggest that astroglial activation contributes to the mechanism of TMJ pain through the regulation of NR1 expression in Sp5C. PMID:23110394

  4. Involvement of fractalkine and macrophage inflammatory protein-1 alpha in moderate-severe depression

    Directory of Open Access Journals (Sweden)

    Rosaria Alba Merendino

    2004-01-01

    Full Text Available MODERATE-severe depression (MSD is linked to overexpression of proinflammatory cytokines and chemokines. Fractalkine (FKN and macrophage inflammatory protein-1 alpha (MIP-1α are, respectively, members of CX3C and C-C chemokines, and both are involved in recruiting and activating mononuclear phagocytes in the central nervous system. We analysed the presence of FKN and MIP-1α in sera of untreated MSD patients and healthy donors. High FKN levels were observed in all MSD patients as compared with values only detectable in 26% of healthy donors. MIP-1α was measurable in 20% of patients, while no healthy donors showed detectable chemokine levels. In conclusion, we describe a previously unknown involvement of FKN in the pathogenesis of MSD, suggesting that FKN may represent a target for a specific immune therapy of this disease.

  5. Evidence that LPS-reactive arthritis in rats depends on the glial activity and the fractalkine-TNF-α signaling in the spinal cord.

    Science.gov (United States)

    Bressan, Elisângela; Peres, Kaite Cristiane; Tonussi, Carlos Rogério

    2012-02-01

    It is known that primary afferent central terminal sensitization can influence peripheral inflammation, however, it remains to be understood whether spinal cord glia can also contribute to this process. Our aim was to investigate the effect of spinal cord glia inhibition on the pathogenesis of LPS-induced knee-joint monoarthritis in rats and also to investigate the role of fractalkine and TNF-α. LPS was injected into the knee-joint previously primed with carrageenan to cause articular incapacitation, edema, synovial leukocyte infiltration, and GFAP and CD11b/c spinal immunoreactivity (glia-IR) increase. Articular edema was more sensitive to the inhibition by intrathecal fluorocitrate and minocycline than nociception and synovial leukocyte content. The higher doses of both drugs were ineffective when given by intraperitoneal route. Corticosteroid synthesis inhibition by aminoglutethimide did not change the glia inhibitors effect. The inhibitory effect of the dorsal root potential inhibitor, furosemide, was not additive to that caused by fluorocitrate and minocycline. Intrathecal anti-fractalkine and anti-TNF-α inhibited edema, nociception, and synovial leukocytes, while fractalkine caused the opposite effects. The fractalkine effect was inhibited by fluorocitrate and anti-TNF-α. Finally, fluorocitrate, minocycline and anti-fractalkine attenuated, but fractalkine increased, GFAP and CD11b/c IR. The evidence reported herein supports the hypothesis that spinal fractalkine release is involved in glia activation, which via the spinal release of TNF-α, seems to be involved in the development and maintenance of this arthritis model. A possible modulation of the dorsal root reflexes is discussed. This article is part of a Special Issue entitled 'Post-Traumatic Stress Disorder'. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Evolution of the ability to modulate host chemokine networks via gene duplication in human cytomegalovirus (HCMV).

    Science.gov (United States)

    Scarborough, Jessica A; Paul, John R; Spencer, Juliet V

    2017-07-01

    Human cytomegalovirus (HCMV) is a widespread pathogen that is particularly skillful at evading immune detection and defense mechanisms, largely due to extensive co-evolution with its host. One aspect of this co-evolution involves the acquisition of virally encoded G protein-coupled receptors (GPCRs) with homology to the chemokine receptor family. GPCRs are the largest family of cell surface proteins, found in organisms from yeast to humans, and they regulate a variety of cellular processes including development, sensory perception, and immune cell trafficking. The US27 and US28 genes are encoded by human and primate CMVs, but homologs are not found in the genomes of viruses infecting rodents or other species. Phylogenetic analysis was used to investigate the US27 and US28 genes, which are adjacent in the unique short (US) region of the HCMV genome, and their relationship to one another and to human chemokine receptor genes. The results indicate that both US27 and US28 share the same common ancestor with human chemokine receptor CX3CR1, suggesting that a single host gene was captured and a subsequent viral gene duplication event occurred. The US28 gene product (pUS28) has maintained the function of the ancestral gene and has the ability to bind and signal in response to CX3CL1/fractalkine, the natural ligand for CX3CR1. In contrast, pUS27 does not bind to any known chemokine ligand, and the sequence has diverged significantly, highlighted by the fact that pUS27 currently exhibits greater sequence similarity to human CCR1. While the evolutionary advantage of the gene duplication and neofunctionalization event remains unclear, the US27 and US28 genes are highly conserved among different HCMV strains and retained even in laboratory strains that have lost many virulence genes, suggesting that US27 and US28 have each evolved distinct, important functions during virus infection. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Spinal Microgliosis Due to Resident Microglial Proliferation Is Required for Pain Hypersensitivity after Peripheral Nerve Injury

    Directory of Open Access Journals (Sweden)

    Nan Gu

    2016-07-01

    Full Text Available Peripheral nerve injury causes neuropathic pain accompanied by remarkable microgliosis in the spinal cord dorsal horn. However, it is still debated whether infiltrated monocytes contribute to injury-induced expansion of the microglial population. Here, we found that spinal microgliosis predominantly results from local proliferation of resident microglia but not from infiltrating monocytes after spinal nerve transection (SNT by using two genetic mouse models (CCR2RFP/+:CX3CR1GFP/+ and CX3CR1creER/+:R26tdTomato/+ mice as well as specific staining of microglia and macrophages. Pharmacological inhibition of SNT-induced microglial proliferation correlated with attenuated neuropathic pain hypersensitivities. Microglial proliferation is partially controlled by purinergic and fractalkine signaling, as CX3CR1−/− and P2Y12−/− mice show reduced spinal microglial proliferation and neuropathic pain. These results suggest that local microglial proliferation is the sole source of spinal microgliosis, which represents a potential therapeutic target for neuropathic pain management.

  8. Estrogens regulate neuroinflammatory genes via estrogen receptors α and β in the frontal cortex of middle-aged female rats

    Directory of Open Access Journals (Sweden)

    Mahó Sándor

    2011-07-01

    Full Text Available Abstract Background Estrogens exert anti-inflammatory and neuroprotective effects in the brain mainly via estrogen receptors α (ERα and β (ERβ. These receptors are members of the nuclear receptor superfamily of ligand-dependent transcription factors. This study was aimed at the elucidation of the effects of ERα and ERβ agonists on the expression of neuroinflammatory genes in the frontal cortex of aging female rats. Methods To identify estrogen-responsive immunity/inflammation genes, we treated middle-aged, ovariectomized rats with 17β-estradiol (E2, ERα agonist 16α-lactone-estradiol (16α-LE2 and ERβ agonist diarylpropionitrile (DPN, or vehicle by Alzet minipump delivery for 29 days. Then we compared the transcriptomes of the frontal cortex of estrogen-deprived versus ER agonist-treated animals using Affymetrix Rat230 2.0 expression arrays and TaqMan-based quantitative real-time PCR. Microarray and PCR data were evaluated by using Bioconductor packages and the RealTime StatMiner software, respectively. Results Microarray analysis revealed the transcriptional regulation of 21 immunity/inflammation genes by 16α-LE2. The subsequent comparative real-time PCR study analyzed the isotype specific effects of ER agonists on neuroinflammatory genes of primarily glial origin. E2 regulated the expression of sixteen genes, including down-regulation of complement C3 and C4b, Ccl2, Tgfb1, macrophage expressed gene Mpeg1, RT1-Aw2, Cx3cr1, Fcgr2b, Cd11b, Tlr4 and Tlr9, and up-regulation of defensin Np4 and RatNP-3b, IgG-2a, Il6 and ER gene Esr1. Similar to E2, both 16α-LE2 and DPN evoked up-regulation of defensins, IgG-2a and Il6, and down-regulation of C3 and its receptor Cd11b, Ccl2, RT1-Aw2 and Fcgr2b. Conclusions These findings provide evidence that E2, 16α-LE2 and DPN modulate the expression of neuroinflammatory genes in the frontal cortex of middle-aged female rats via both ERα and ERβ. We propose that ERβ is a promising target to suppress

  9. Endothelial Protective Monocyte Patrolling in Large Arteries Intensified by Western Diet and Atherosclerosis.

    Science.gov (United States)

    Quintar, Amado; McArdle, Sara; Wolf, Dennis; Marki, Alex; Ehinger, Erik; Vassallo, Melanie; Miller, Jacqueline; Mikulski, Zbigniew; Ley, Klaus; Buscher, Konrad

    2017-05-26

    Nonclassical mouse monocyte (CX3CR1 high , Ly-6C low ) patrolling along the vessels of the microcirculation is critical for endothelial homeostasis and inflammation. Because of technical challenges, it is currently not established how patrolling occurs in large arteries. This study was undertaken to elucidate the molecular, migratory, and functional phenotypes of patrolling monocytes in the high shear and pulsatile environment of large arteries in healthy, hyperlipidemic, and atherosclerotic conditions. Applying a new method for stable, long-term 2-photon intravital microscopy of unrestrained large arteries in live CX3CR1-GFP (green fluorescent protein) mice, we show that nonclassical monocytes patrol inside healthy carotid arteries at a velocity of 36 μm/min, 3× faster than in microvessels. The tracks are less straight but lead preferentially downstream. The number of patrolling monocytes is increased 9-fold by feeding wild-type mice a Western diet or by applying topical TLR7/8 (Toll-like receptor) agonists. A similar increase is seen in CX3CR1 +/GFP /apoE -/- mice on chow diet, with a further 2- to 3-fold increase on Western diet (22-fold over healthy). In plaque conditions, monocytes are readily captured onto the endothelium from free flow. Stable patrolling is unaffected in CX3CR1-deficient mice and involves the contribution of LFA-1 (lymphocyte-associated antigen 1) and α 4 integrins. The endothelial damage in atherosclerotic carotid arteries was assessed by electron microscopy and correlates with the number of intraluminal patrollers. Abolishing patrolling monocytes in Nr4a1 -/- apoE -/- mice leads to pronounced endothelial apoptosis. Arterial patrolling is a prominent new feature of nonclassical monocytes with unique molecular and kinetic properties. It is highly upregulated in hyperlipidemia and atherosclerosis in a CX3CR1-independent fashion and plays a potential role in endothelial protection. © 2017 The Authors.

  10. NCBI nr-aa BLAST: CBRC-VPAC-01-0807 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-VPAC-01-0807 gb|AAO73490.1| CX3CR1 [Macaca fascicularis] gb|AAO73491.1| CX3CR1 [Maca...ca fascicularis] gb|AAO73498.1| CX3CR1 [Macaca mulatta] gb|AAO73500.1| CX3CR1 [Macaca mulatta] gb|AAO73501.1| CX3CR1 [Macaca mulatta] AAO73490.1 5e-67 81% ...

  11. NCBI nr-aa BLAST: CBRC-STRI-01-0392 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-STRI-01-0392 gb|AAO73490.1| CX3CR1 [Macaca fascicularis] gb|AAO73491.1| CX3CR1 [Maca...ca fascicularis] gb|AAO73498.1| CX3CR1 [Macaca mulatta] gb|AAO73500.1| CX3CR1 [Macaca mulatta] gb|AAO73501.1| CX3CR1 [Macaca mulatta] AAO73490.1 1e-60 85% ...

  12. TGFβ produced by IL-10 re-directed Astrocytes Attenuates Microglial Activation

    Science.gov (United States)

    Norden, Diana M.; Fenn, Ashley M.; Dugan, Allison; Godbout, Jonathan P.

    2014-01-01

    While there clearly is an intimate relationship between astrocytes and microglia, few studies have examined these potentially dynamic interactions. In this study, cytokine-mediated communication between microglia and astrocytes under inflammatory conditions was investigated. We have previously shown that activated microglia produce Interleukin (IL)-10, a regulatory cytokine that plays an important role in resolving neuroinflammation. Nonetheless, the mechanism by which IL-10 attenuates pro-inflammatory cytokine expression in the brain is unclear. Here we show that IL-10 re-directed astrocytes regulate the activation of microglia in a Transforming growth factor (TGF)-β dependent manner. In support of this concept, astrocytes in the brain maintained higher IL-10 receptor (IL-10R1) expression and primary astrocytes in culture were markedly more sensitive to the anti-inflammatory effects of IL-10 compared to microglia. Moreover, studies using primary cultures and an astrocyte-microglia co-culture system revealed that astrocytes mediated the anti-inflammatory effects of IL-10 on microglia through the production of TGFβ. For instance, only when astrocytes were present did IL-10 stimulation reduce the expression of IL-1β and increase expression of anti-inflammatory mediators fractalkine receptor (CX3CR1) and interleukin 4 receptor-α (IL-4Rα) in microglia. Importantly, these IL-10-astrocyte dependent effects on microglia were blocked by a TGFβ inhibitor. Furthermore, inhibition of TGFβ signaling in the brain resulted in prolonged sickness behavior and amplified pro-inflammatory cytokine expression in mice challenged with lipopolysaccharide (LPS). Taken together, IL-10 stimulated the production of TGFβ by astrocytes, which in turn, attenuated microglial activation. Overall, these findings provide novel insight into the mechanisms by which astrocytes modulate microglia under inflammatory conditions. PMID:24616125

  13. Microglia in Health and Disease

    Science.gov (United States)

    Ransohoff, Richard M.; Khoury, Joseph El

    2016-01-01

    Microglia, the major myeloid cells of the central nervous system (CNS) are implicated in physiologic processes and in the pathogenesis of several CNS disorders. Since their initial description early in the 20th century, our ability to identify and isolate microglia has significantly improved and new research is providing insight into the functions of these cells in sickness and in health. Here, we review recent advances in our understanding of the role of microglia in physiological and pathological processes of the CNS with a focus on multiple sclerosis and Alzheimer’s disease. Because of the prominent roles CX3CR1 and its ligand fractalkine played in bringing about these advances, we discuss the physiological and pathological roles of microglia as viewed from the CX3CR1fractalkine perspective, providing a unique viewpoint. Based on the most recent studies of molecular profiling of microglia, we also propose a molecular and functional definition of microglia that incorporates the properties attributed to these cells in recent years. PMID:26354893

  14. Functional role of monocytes and macrophages for the inflammatory response in acute liver injury

    Directory of Open Access Journals (Sweden)

    Henning W Zimmermann

    2012-10-01

    Full Text Available Different etiologies such as drug toxicity, acute viral hepatitis B or acetaminophen poisoning can cause acute liver injury (ALI or even acute liver failure (ALF. Excessive cell death of hepatocytes in the liver is known to result in a strong hepatic inflammation. Experimental murine models of liver injury highlighted the importance of hepatic macrophages, so-called Kupffer cells, for initiating and driving this inflammatory response by releasing proinflammatory cytokines and chemokines including tumor necrosis factor (TNF, interleukin-6 (IL-6, IL-1-beta or monocyte chemoattractant protein 1 (MCP-1, CCL2 as well as activating other non-parenchymal liver cells, e.g. endothelial or hepatic stellate cells (HSC. Many of these proinflammatory mediators can trigger hepatocytic cell death pathways, e.g. via caspase activation, but also activate protective signaling pathways, e.g. via nuclear factor kappa B (NF-kB. Recent studies in mice demonstrated that these macrophage actions largely depend on the recruitment of monocytes into the liver, namely of the inflammatory Ly6c+ (Gr1+ monocyte subset as precursors of tissue macrophages. The chemokine receptor CCR2 and its ligand MCP-1/CCL2 promote monocyte subset infiltration upon liver injury. In contrast, the chemokine receptor CX3CR1 and its ligand fractalkine (CX3CL1 are important negative regulators of monocyte infiltration by controlling their survival and differentiation into functionally diverse macrophage subsets upon injury. The recently identified cellular and molecular pathways for monocyte subset recruitment, macrophage differentiation and interactions with other hepatic cell types in the injured liver may therefore represent interesting novel targets for future therapeutic approaches in ALF.

  15. Headmasters: Microglial regulation of learning and memory in health and disease

    Directory of Open Access Journals (Sweden)

    Laetitia Weinhard

    2018-03-01

    Full Text Available Microglia are mononuclear phagocytes that reside throughout the lifetime of the animal in the central nervous system (CNS. Originating from the yolk sac, microglial progenitors infiltrate the developing brain anlage even before the formation of the neural network. Mature microglial cells persist by slow rates of self-renewal that vary across brain regions. Eminent studies in the recent decade have highlighted a role for steady state microglia in neurogenesis, synaptic pruning, and formation and maintenance of connectivity within the CNS, which are critical to learning and memory functions. Activity- and learning-dependent synaptic remodeling by microglia has been described in various contexts. Molecular pathways, including signaling through fractalkine CX3CL1 and its receptor CX3CR1, transforming growth factor-beta, classical complement system, colony-stimulating factor 1 receptor, adaptor protein DAP12, and brain-derived neurotropic factor, have been proposed to be important mediators of synaptic plasticity regulated by microglia. Reactive, dysfunctional, or aged microglia are thought to impact learning and memory, and are implicated in human neurodegenerative disorders in which dementia is a hallmark. These disorders include Nasu-Hakola disease, hereditary diffuse leukoencephaly with spheroids, Alzheimer’s disease, frontotemporal dementia, and Parkinson’s disease. Focusing on microglia, here we discuss the potential detrimental effects and risks presented by microglia-specific genetic variants, the environmental factors that target microglia, and microglial aging that likely lead to progressive memory loss in neurodegenerative diseases. Finally, we consider some caveats of the animal model systems that to date have advanced our understanding of microglial regulation of learning and memory.

  16. Therapeutic potential of mesenchymal stromal cells and MSC conditioned medium in Amyotrophic Lateral Sclerosis (ALS--in vitro evidence from primary motor neuron cultures, NSC-34 cells, astrocytes and microglia.

    Directory of Open Access Journals (Sweden)

    Hui Sun

    Full Text Available Administration of mesenchymal stromal cells (MSC improves functional outcome in the SOD1G93A mouse model of the degenerative motor neuron disorder amyotrophic lateral sclerosis (ALS as well as in models of other neurological disorders. We have now investigated the effect of the interaction between MSC and motor neurons (derived from both non-transgenic and mutant SOD1G93A transgenic mice, NSC-34 cells and glial cells (astrocytes, microglia (derived again from both non-transgenic and mutant SOD1G93A ALS transgenic mice in vitro. In primary motor neurons, NSC-34 cells and astrocytes, MSC conditioned medium (MSC CM attenuated staurosporine (STS - induced apoptosis in a concentration-dependent manner. Studying MSC CM-induced expression of neurotrophic factors in astrocytes and NSC-34 cells, we found that glial cell line-derived neurotrophic factor (GDNF and ciliary neurotrophic factor (CNTF gene expression in astrocytes were significantly enhanced by MSC CM, with differential responses of non-transgenic and mutant astrocytes. Expression of Vascular Endothelial Growth Factor (VEGF in NSC-34 cells was significantly upregulated upon MSC CM-treatment. MSC CM significantly reduced the expression of the cytokines TNFα and IL-6 and iNOS both in transgenic and non-transgenic astrocytes. Gene expression of the neuroprotective chemokine Fractalkine (CX3CL1 was also upregulated in mutant SOD1G93A transgenic astrocytes by MSC CM treatment. Correspondingly, MSC CM increased the respective receptor, CX3CR1, in mutant SOD1G93A transgenic microglia. Our data demonstrate that MSC modulate motor neuronal and glial response to apoptosis and inflammation. MSC therefore represent an interesting candidate for further preclinical and clinical evaluation in ALS.

  17. Serum CX3CL1/fractalkine concentrations are positively associated with disease severity in postmenopausal osteoporotic patients.

    Science.gov (United States)

    Chen, Yi-Ding; Huang, Ci-You; Liu, Hai-Ying; Yao, Wei-Feng; Wu, Wei-Guo; Lu, Yu-Lian; Wang, Wen

    2016-07-01

    The chemokine (C-X3-C motif) ligand 1 (CX3CL1), also called fractalkine (FKN), has recently been reported to be involved in osteoclastogenic process and pathological bone destruction. This study aimed to investigate the link between serum CX3CL1/FKN levels with disease progression of postmenopausal osteoporotic patients. A total of 53 women with postmenopausal osteoporosis (PMOP group), 51 postmenopausal non-osteoporotic female patients (PMNOP group) and 50 premenopausal non-osteoporotic healthy women of childbearing age (control group) were enrolled in the study. The bone mineral density (BMD) for all subjects was determined via dual-energy X-ray absorptiometry of the lumbar spine, femoral neck, internal trochanter, total hip, greater trochanter and Ward's triangle. The levels of FKN in the serum were examined using the enzyme-linked immunosorbent assay method. The serum bone resorption markers TRACP-5b, NTX levels, inflammation markers IL-1β and IL-6 as well as oestrogen-2(E2) were also detected in all participants. The visual analogue scores (VAS) and Oswestry Disability Index (ODI) for low back pain were recorded in PMOP females for evaluation of osteoporotic pain and function. FKN levels were significantly higher in postmenopausal osteoporotic patients compared with postmenopausal non-osteoporotic females (139.8 ± 44.3 pg/mL VS 116.5 ± 23.1 pg/mL, p osteoporotic patients. Serum FKN may serve as a novel biomarker for assessing disease progression and a new potential therapeutic target for anti-resorptive treatment in osteoporosis patients.

  18. Effect of fractalkine, IP-10 and different signal pathway inhibitors on NK cells in the tumor microenvironment

    Directory of Open Access Journals (Sweden)

    Zhao-zhen WU

    2015-07-01

    Full Text Available Objective To investigate the inducing effects of chemokines [fractalkine (FKN, IP-10] and different signal pathway inhibitors on NK cells in the tumor microenvironment (TME. Methods Immunohistochemistry was performed using antibodies for CD56 and DAP10 respectively on human breast carcinoma. Murine macrophages (RAW 264.7 and breast cancer cells (4T1 were co-cultivated at a 1:4 ratio to imitate the TME with NK cells (KY-1 set as the object. RT-PCR was used to determine the mRNA expressions of CD16, NKG2D and NK1.1, and the content of CD107a in the supernatants was determined by ELISA. 10ng/ml FKN and 10ng/ml IP-10 were added into the TME, NK1.1+CD16+KY-1 cells were counted with flow cytometry, migration and adhesion assays were used to assess the related function of KY-1 cells. 4T1 cells were incubated in 10nmol/L of rapamycin, 30μmol/L of LY294002, 500ng/μl of andrographolide and 2mmol/L of wortmannin, the 4T1 tumor supernatants (TSNs were harvested separately and used to incubate RAW 264.7 for 48h, then the expressions of Rae1α and H60a mRNA in 4T1, RAW 264.7 and their mixture were determined by RT-PCR. Results The related indicators of KY-1 cells such as NK1.1+ number, chemotaxis rate, and adhesion function decreased obviously in TME, and the above indices increased after the addition of FKN and IP-10, and some signal pathway inhibitors indirectly promoted NK cells' function in TME, and among them rapamycin was the most efficient one (P<0.05. Conclusion FKN and IP-10 may up-regulate the number and function of NK cells in TME, and rapamycin can promote NK cells' killing function by inducing high expression of NKG2DLs (Rae1, H60a on tumor cells. DOI: 10.11855/j.issn.0577-7402.2015.07.07

  19. CX3CL1, a chemokine finely tuned to adhesion: critical roles of the stalk glycosylation and the membrane domain

    Directory of Open Access Journals (Sweden)

    Mariano A. Ostuni

    2014-11-01

    Full Text Available The multi-domain CX3CL1 transmembrane chemokine triggers leukocyte adherence without rolling and migration by presenting its chemokine domain (CD to its receptor CX3CR1. Through the combination of functional adhesion assays with structural analysis using FRAP, we investigated the functional role of the other domains of CX3CL1, i.e., its mucin stalk, transmembrane domain, and cytosolic domain. Our results indicate that the CX3CL1 molecular structure is finely adapted to capture CX3CR1 in circulating cells and that each domain has a specific purpose: the mucin stalk is stiffened by its high glycosylation to present the CD away from the membrane, the transmembrane domain generates the permanent aggregation of an adequate amount of monomers to guarantee adhesion and prevent rolling, and the cytosolic domain ensures adhesive robustness by interacting with the cytoskeleton. We propose a model in which quasi-immobile CX3CL1 bundles are organized to quickly generate adhesive patches with sufficiently high strength to capture CX3CR1+ leukocytes but with sufficiently low strength to allow their patrolling behavior.

  20. receptores

    Directory of Open Access Journals (Sweden)

    Salete Regina Daronco Benetti

    2006-01-01

    Full Text Available Se trata de un estudio etnográfico, que tuvo lo objetivo de interpretar el sistema de conocimiento y del significado atribuidos a la sangre referente a la transfusión sanguínea por los donadores y receptores de un banco de sangre. Para la colecta de las informaciones se observaron los participantes y la entrevista etnográfica se realizó el análisis de dominio, taxonómicos y temáticos. Los dominios culturales fueron: la sangre es vida: fuente de vida y alimento valioso; creencias religiosas: fuentes simbólicas de apoyos; donación sanguínea: un gesto colaborador que exige cuidarse, gratifica y trae felicidad; donación sanguínea: fuente simbólica de inseguridad; estar enfermo es una condición para realizar transfusión sanguínea; transfusión sanguínea: esperanza de vida; Creencias populares: transfusión sanguínea como riesgo para la salud; donadores de sangre: personas benditas; donar y recibir sangre: como significado de felicidad. Temática: “líquido precioso que origina, sostiene, modifica la vida, provoca miedo e inseguridad”.

  1. Key Aging-Associated Alterations in Primary Microglia Response to Beta-Amyloid Stimulation

    Directory of Open Access Journals (Sweden)

    Cláudia Caldeira

    2017-08-01

    Full Text Available Alzheimer’s disease (AD is characterized by a progressive cognitive decline and believed to be driven by the self-aggregation of amyloid-β (Aβ peptide into oligomers and fibrils that accumulate as senile plaques. It is widely accepted that microglia-mediated inflammation is a significant contributor to disease pathogenesis; however, different microglia phenotypes were identified along AD progression and excessive Aβ production was shown to dysregulate cell function. As so, the contribution of microglia to AD pathogenesis remains to be elucidated. In this study, we wondered if isolated microglia cultured for 16 days in vitro (DIV would react differentially from the 2 DIV cells upon treatment with 1000 nM Aβ1–42 for 24 h. No changes in cell viability were observed and morphometric alterations associated to microglia activation, such as volume increase and process shortening, were obvious in 2 DIV microglia, but less evident in 16 DIV cells. These cells showed lower phagocytic, migration and autophagic properties after Aβ treatment than the 2 DIV cultured microglia. Reduced phagocytosis may derive from increased CD33 expression, reduced triggering receptor expressed on myeloid cells 2 (TREM2 and milk fat globule-EGF factor 8 protein (MFG-E8 levels, which were mainly observed in 16 DIV cells. Activation of inflammatory mediators, such as high mobility group box 1 (HMGB1 and pro-inflammatory cytokines, as well as increased expression of Toll-like receptor 2 (TLR2, TLR4 and fractalkine/CX3C chemokine receptor 1 (CX3CR1 cell surface receptors were prominent in 2 DIV microglia, while elevation of matrix metalloproteinase 9 (MMP9 was marked in 16 DIV cells. Increased senescence-associated β-galactosidase (SA-β-gal and upregulated miR-146a expression that were observed in 16 DIV cells showed to increase by Aβ in 2 DIV microglia. Additionally, Aβ downregulated miR-155 and miR-124, and reduced the CD11b+ subpopulation in 2 DIV microglia, while

  2. M2-like macrophages are responsible for collagen degradation through a mannose receptor-mediated pathway

    DEFF Research Database (Denmark)

    Madsen, Daniel H; Leonard, Daniel; Masedunskas, Andrius

    2013-01-01

    Tissue remodeling processes critically depend on the timely removal and remodeling of preexisting collagen scaffolds. Nevertheless, many aspects related to the turnover of this abundant extracellular matrix component in vivo are still incompletely understood. We therefore took advantage of recent...... advances in optical imaging to develop an assay to visualize collagen turnover in situ and identify cell types and molecules involved in this process. Collagen introduced into the dermis of mice underwent cellular endocytosis in a partially matrix metalloproteinase-dependent manner and was subsequently...... routed to lysosomes for complete degradation. Collagen uptake was predominantly executed by a quantitatively minor population of M2-like macrophages, whereas more abundant Col1a1-expressing fibroblasts and Cx3cr1-expressing macrophages internalized collagen at lower levels. Genetic ablation...

  3. Elevated atherosclerosis-related gene expression, monocyte activation and microparticle-release are related to increased lipoprotein-associated oxidative stress in familial hypercholesterolemia

    DEFF Research Database (Denmark)

    Hjuler Nielsen, Morten; Irvine, Helle; Vedel, Simon

    2015-01-01

    LDL-C-CD36 interaction was increased in FH, especially in ATX+ subjects. Monocyte chemokine receptor CX3CR1 was identified as an independent contributor to IMT. CONCLUSIONS: Our data support that lipoprotein-associated oxidative stress is involved in accelerated atherosclerosis in FH, particularly......OBJECTIVE: Animal and in vitro studies have suggested that hypercholesterolemia and increased oxidative stress predisposes to monocyte activation and enhanced accumulation of oxidized LDL cholesterol (oxLDL-C) through a CD36-dependent mechanism. The aim of this study was to investigate...

  4. Structural basis for chemokine recognition and activation of a viral G protein-coupled receptor

    Energy Technology Data Exchange (ETDEWEB)

    Burg, John S.; Ingram, Jessica R.; Venkatakrishnan, A.J.; Jude, Kevin M.; Dukkipati, Abhiram; Feinberg, Evan N.; Angelini, Alessandro; Waghray, Deepa; Dror, Ron O.; Ploegh, Hidde L.; Garcia, K. Christopher (Stanford); (Stanford-MED); (Whitehead); (MIT)

    2015-03-05

    Chemokines are small proteins that function as immune modulators through activation of chemokine G protein-coupled receptors (GPCRs). Several viruses also encode chemokines and chemokine receptors to subvert the host immune response. How protein ligands activate GPCRs remains unknown. We report the crystal structure at 2.9 angstrom resolution of the human cytomegalovirus GPCR US28 in complex with the chemokine domain of human CX3CL1 (fractalkine). The globular body of CX3CL1 is perched on top of the US28 extracellular vestibule, whereas its amino terminus projects into the central core of US28. The transmembrane helices of US28 adopt an active-state-like conformation. Atomic-level simulations suggest that the agonist-independent activity of US28 may be due to an amino acid network evolved in the viral GPCR to destabilize the receptor’s inactive state.

  5. Endocannabinoid system acts as a regulator of immune homeostasis in the gut.

    Science.gov (United States)

    Acharya, Nandini; Penukonda, Sasi; Shcheglova, Tatiana; Hagymasi, Adam T; Basu, Sreyashi; Srivastava, Pramod K

    2017-05-09

    Endogenous cannabinoids (endocannabinoids) are small molecules biosynthesized from membrane glycerophospholipid. Anandamide (AEA) is an endogenous intestinal cannabinoid that controls appetite and energy balance by engagement of the enteric nervous system through cannabinoid receptors. Here, we uncover a role for AEA and its receptor, cannabinoid receptor 2 (CB2), in the regulation of immune tolerance in the gut and the pancreas. This work demonstrates a major immunological role for an endocannabinoid. The pungent molecule capsaicin (CP) has a similar effect as AEA; however, CP acts by engagement of the vanilloid receptor TRPV1, causing local production of AEA, which acts through CB2. We show that the engagement of the cannabinoid/vanilloid receptors augments the number and immune suppressive function of the regulatory CX3CR1 hi macrophages (Mϕ), which express the highest levels of such receptors among the gut immune cells. Additionally, TRPV1 -/- or CB2 -/- mice have fewer CX3CR1 hi Mϕ in the gut. Treatment of mice with CP also leads to differentiation of a regulatory subset of CD4 + cells, the Tr1 cells, in an IL-27-dependent manner in vitro and in vivo. In a functional demonstration, tolerance elicited by engagement of TRPV1 can be transferred to naïve nonobese diabetic (NOD) mice [model of type 1 diabetes (T1D)] by transfer of CD4 + T cells. Further, oral administration of AEA to NOD mice provides protection from T1D. Our study unveils a role for the endocannabinoid system in maintaining immune homeostasis in the gut/pancreas and reveals a conversation between the nervous and immune systems using distinct receptors.

  6. Insulin receptors

    International Nuclear Information System (INIS)

    Kahn, C.R.; Harrison, L.C.

    1988-01-01

    This book contains the proceedings on insulin receptors. Part A: Methods for the study of structure and function. Topics covered include: Method for purification and labeling of insulin receptors, the insulin receptor kinase, and insulin receptors on special tissues

  7. Peroxisome Proliferator-Activated Receptor Agonists Modulate Neuropathic Pain: a Link to Chemokines?

    Directory of Open Access Journals (Sweden)

    Caroline eFreitag

    2014-08-01

    Full Text Available Chronic pain presents a widespread and intractable medical problem. While numerous pharmaceuticals are used to treat chronic pain, drugs that are safe for extended use and highly effective at treating the most severe pain do not yet exist. Chronic pain resulting from nervous system injury (neuropathic pain is common in conditions ranging from multiple sclerosis to HIV-1 infection to type II diabetes. Inflammation caused by neuropathy is believed to contribute to the generation and maintenance of neuropathic pain. Chemokines are key inflammatory mediators, several of which (MCP-1, RANTES, MIP-1α, fractalkine, SDF-1 among others have been linked to chronic, neuropathic pain in both human conditions and animal models. The important roles chemokines play in inflammation and pain make them an attractive therapeutic target. Peroxisome proliferator-activated receptors are a family of nuclear receptors known for their roles in metabolism. Recent research has revealed that PPARs also play a role in inflammatory gene repression. PPAR agonists have wide-ranging effects including inhibition of chemokine expression and pain behavior reduction in animal models. Experimental evidence suggests a connection between PPAR agonists' pain ameliorating effects and suppression of inflammatory gene expression, including chemokines. In early clinical research, one PPARα agonist, palmitoylethanolamide, shows promise in relieving chronic pain. If this link can be better established, PPAR agonists may represent a new drug therapy for neuropathic pain.

  8. REV-ERBs agonism suppresses osteoclastogenesis and prevents ovariectomy-induced bone loss partially via FABP4 upregulation.

    Science.gov (United States)

    Song, Chao; Tan, Peng; Zhang, Zheng; Wu, Wei; Dong, Yonghui; Zhao, Liming; Liu, Huiyong; Guan, Hanfeng; Li, Feng

    2018-01-22

    REV-ERBs (REV-ERBα and REV-ERBβ) are transcription repressors and circadian regulators. Previous investigations have shown that REV-ERBs repress the expression of target genes, including MMP9 and CX3CR1, in macrophages. Because MMP9 and CX3CR1 reportedly participate in receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclastogenesis, we inferred that REV-ERBs might play a role in osteoclastogenesis. In the present study, we found that the REV-ERBα level decreased significantly during RANKL-induced osteoclast differentiation from primary bone marrow-derived macrophages (BMMs). REV-ERBα knockdown by small interfering RNA in BMMs resulted in the enhanced formation of osteoclasts, whereas REV-ERBβ knockdown showed no effect on osteoclast differentiation. Moreover, the REV-ERB agonist SR9009 inhibited osteoclast differentiation and bone resorption. Intraperitoneal SR9009 administration prevented ovariectomy-induced bone loss; this effect was accompanied by decreased serum RANKL and C-terminal telopeptide of type I collagen levels and increased osteoprotegerin levels. Further investigation revealed that NF-κB and MAPK activation and nuclear factor of activated T cells, cytoplasmic 1, and c-fos expression were suppressed by SR9009. The level of reactive oxygen species was also decreased by SR9009, with NADPH oxidase subunits also being down-regulated. In addition, an expression microarray showed that FABP4, an intracellular lipid-binding protein, was up-regulated by REV-ERB agonism. BMS309403, an inhibitor of FABP4, partially prevented the suppression of osteoclastogenesis by SR9009 through stabilizing phosphorylation of p65. To summarize, our results proved that the REV-ERB agonism inhibited osteoclastogenesis partially via FABP4 up-regulation.-Song, C., Tan, P., Zhang, Z., Wu, W., Dong, Y., Zhao, L., Liu, H., Guan, H., Li, F. REV-ERBs agonism suppresses osteoclastogenesis and prevents ovariectomy-induced bone loss partially via FABP4 upregulation.

  9. Granulocyte-colony-stimulating factor (G-CSF) signaling in spinal microglia drives visceral sensitization following colitis.

    Science.gov (United States)

    Basso, Lilian; Lapointe, Tamia K; Iftinca, Mircea; Marsters, Candace; Hollenberg, Morley D; Kurrasch, Deborah M; Altier, Christophe

    2017-10-17

    Pain is a main symptom of inflammatory diseases and often persists beyond clinical remission. Although we have a good understanding of the mechanisms of sensitization at the periphery during inflammation, little is known about the mediators that drive central sensitization. Recent reports have identified hematopoietic colony-stimulating factors as important regulators of tumor- and nerve injury-associated pain. Using a mouse model of colitis, we identify the proinflammatory cytokine granulocyte-colony-stimulating factor (G-CSF or Csf-3) as a key mediator of visceral sensitization. We report that G-CSF is specifically up-regulated in the thoracolumbar spinal cord of colitis-affected mice. Our results show that resident spinal microglia express the G-CSF receptor and that G-CSF signaling mediates microglial activation following colitis. Furthermore, healthy mice subjected to intrathecal injection of G-CSF exhibit pronounced visceral hypersensitivity, an effect that is abolished by microglial depletion. Mechanistically, we demonstrate that G-CSF injection increases Cathepsin S activity in spinal cord tissues. When cocultured with microglia BV-2 cells exposed to G-CSF, dorsal root ganglion (DRG) nociceptors become hyperexcitable. Blocking CX3CR1 or nitric oxide production during G-CSF treatment reduces excitability and G-CSF-induced visceral pain in vivo. Finally, administration of G-CSF-neutralizing antibody can prevent the establishment of persistent visceral pain postcolitis. Overall, our work uncovers a DRG neuron-microglia interaction that responds to G-CSF by engaging Cathepsin S-CX3CR1-inducible NOS signaling. This interaction represents a central step in visceral sensitization following colonic inflammation, thereby identifying spinal G-CSF as a target for treating chronic abdominal pain.

  10. Bone marrow-derived microglia infiltrate into the paraventricular nucleus of chronic psychological stress-loaded mice.

    Directory of Open Access Journals (Sweden)

    Koji Ataka

    Full Text Available BACKGROUND: Microglia of the central nervous system act as sentinels and rapidly react to infection or inflammation. The pathophysiological role of bone marrow-derived microglia is of particular interest because they affect neurodegenerative disorders and neuropathic pain. The hypothesis of the current study is that chronic psychological stress (chronic PS induces the infiltration of bone marrow-derived microglia into hypothalamus by means of chemokine axes in brain and bone marrow. METHODS AND FINDINGS: Here we show that bone marrow-derived microglia specifically infiltrate the paraventricular nucleus (PVN of mice that received chronic PS. Bone marrow derived-microglia are CX3CR1(lowCCR2(+CXCR4(high, as distinct from CX3CR1(highCCR2(-CXCR4(low resident microglia, and express higher levels of interleukin-1β (IL-1β but lower levels of tumor necrosis factor-α (TNF-α. Chronic PS stimulates the expression of monocyte chemotactic protein-1 (MCP-1 in PVN neurons, reduces stromal cell-derived factor-1 (SDF-1 in the bone marrow and increases the frequency of CXCR4(+ monocytes in peripheral circulation. And then a chemokine (C-C motif receptor 2 (CCR2 or a β3-adrenoceptor blockade prevents infiltration of bone marrow-derived microglia in the PVN. CONCLUSION: Chronic PS induces the infiltration of bone marrow-derived microglia into PVN, and it is conceivable that the MCP-1/CCR2 axis in PVN and the SDF-1/CXCR4 axis in bone marrow are involved in this mechanism.

  11. Mononuclear phagocytes contribute to intestinal invasion and dissemination of Yersinia enterocolitica.

    Science.gov (United States)

    Drechsler-Hake, Doreen; Alamir, Hanin; Hahn, Julia; Günter, Manina; Wagner, Samuel; Schütz, Monika; Bohn, Erwin; Schenke-Layland, Katja; Pisano, Fabio; Dersch, Petra; Autenrieth, Ingo B; Autenrieth, Stella E

    2016-09-01

    Enteropathogenic Yersinia enterocolitica (Ye) enters the host via contaminated food. After colonisation of the small intestine Ye invades the Peyer's patches (PPs) via M cells and disseminates to the mesenteric lymph nodes (MLNs), spleen and liver. Whether Ye uses other invasion routes and which pathogenicity factors are required remains elusive. Oral infection of lymphotoxin-β-receptor deficient mice lacking PPs and MLNs with Ye revealed similar bacterial load in the spleen 1h post infection as wild-type mice, demonstrating a PP-independent dissemination route for Ye. Immunohistological analysis of the small intestine revealed Ye in close contact with mononuclear phagocytes (MPs), specifically CX3CR1(+) monocyte-derived cells (MCs) as well as CD103(+) dendritic cells (DCs). This finding was confirmed by flow cytometry and imaging flow cytometry analysis of lamina propria (LP) leukocytes showing CD103(+) DCs and MCs with intracellular Ye. Uptake of Ye by LP CD103(+) DCs and MCs was dependent on the pathogenicity factor invasin, whereas the adhesin YadA was dispensable as demonstrated by Ye deletion mutants. Furthermore, Ye were found exclusively associated with CD103(+) DCs in the MLNs from wild-type mice, but not from CCR7(-/-) mice, demonstrating a CCR7 dependent transport of Ye by CD103(+) DCs from LP to the MLNs. In contrast, dissemination of Ye to the spleen was dependent on MCs as significantly less Ye could be recovered from the spleen of CX3CR1(GFP/GFP) mice compared to wild-type mice. Altogether, MCs and CD103(+) DCs contribute to immediate invasion and dissemination of Ye. This together with data from other bacteria suggests MPs as general pathogenic entry site in the intestine. Copyright © 2016 Elsevier GmbH. All rights reserved.

  12. Somatostatin receptors

    DEFF Research Database (Denmark)

    Møller, Lars Neisig; Stidsen, Carsten Enggaard; Hartmann, Bolette

    2003-01-01

    therefore been acknowledged to be a third endogenous ligand at SRIF receptors. This review goes through mechanisms of signal transduction, pharmacology, and anatomical distribution of SRIF receptors. Structurally, SRIF receptors belong to the superfamily of G protein-coupled (GPC) receptors, sharing....... The generation of knock-out (KO) mice, intended as a means to define the contributions made by individual receptor subtypes, necessarily marks but an approximation. Furthermore, we must now take into account the stunning complexity of receptor co-operation indicated by the observation of receptor homo......-peptides, receptor agonists and antagonists. Relatively long half lives, as compared to those of the endogenous ligands, have been paramount from the outset. Motivated by theoretical puzzles or the shortcomings of present-day diagnostics and therapy, investigators have also aimed to produce subtype...

  13. Somatostatin receptors

    DEFF Research Database (Denmark)

    Møller, Lars Neisig; Stidsen, Carsten Enggaard; Hartmann, Bolette

    2003-01-01

    therefore been acknowledged to be a third endogenous ligand at SRIF receptors. This review goes through mechanisms of signal transduction, pharmacology, and anatomical distribution of SRIF receptors. Structurally, SRIF receptors belong to the superfamily of G protein-coupled (GPC) receptors, sharing......- and heterodimerisation, let alone oligomerisation. Theoretically, this phenomenon adds a novel series of functional megareceptors/super-receptors, with varied pharmacological profiles, to the catalogue of monomeric receptor subtypes isolated and cloned in the past. SRIF analogues include both peptides and non......-peptides, receptor agonists and antagonists. Relatively long half lives, as compared to those of the endogenous ligands, have been paramount from the outset. Motivated by theoretical puzzles or the shortcomings of present-day diagnostics and therapy, investigators have also aimed to produce subtype...

  14. Glutamate receptors

    DEFF Research Database (Denmark)

    Kristensen, Anders S; Geballe, Matthew T; Snyder, James P

    2006-01-01

    Fast excitatory synaptic transmission in the CNS relies almost entirely on the neurotransmitter glutamate and its family of ion channel receptors. An appreciation of the coupling between agonist binding and channel opening has advanced rapidly during the past five years, largely as a result of ne...

  15. Reversal of neurochemical alterations in the spinal dorsal horn and dorsal root ganglia by Mas-related gene (Mrg) receptors in a rat model of spinal nerve injury.

    Science.gov (United States)

    Wang, Dongmei; Xue, Yaping; Yan, Yanhua; Lin, Minjie; Yang, Jiajia; Huang, Jianzhong; Hong, Yanguo

    2016-07-01

    The rodent Mas-related gene (Mrg) receptor subtype C has been demonstrated to inhibit pathological pain. This study investigated the mechanisms underlying the reversal of pain hypersensitivity by the selective MrgC receptor agonist bovine adrenal medulla 8-22 (BAM8-22) in a rat model of L5 spinal nerve ligation (SNL). Intrathecal (i.t.) administration of BAM8-22 (0.1-10nmol) attenuated mechanical allodynia in a dose-dependent manner on day 10 after SNL. The antiallodynia effect of BAM8-22 was abolished by MrgC receptor antibody, but not by naloxone. I.t. BAM8-22 (10nmol) inhibited SNL-induced upregulation of neuronal nitric oxide synthesis (nNOS) and phosphorylation of cyclic AMP response element-binding protein (p-CREB) in the spinal dorsal horn. The BAM8-22 treatment reversed the SNL-induced astrocyte activation, increase of interleukin-1β (IL-1β) expression and phosphorylation of extracellular signal-regulated kinase (p-ERK) in the spinal cord. BAM8-22 also reversed the upregulation of fractalkine and IL-1β in small- and medium-sized dorsal root ganglion (DRG) neurons. Furthermore, the BAM8-22 exposure suppressed the lipopolysaccharide (LPS)-induced increase of nNOS and IL-1β in the DRG explant cultures and the BAM8-22-induced suppression disappeared in the presence of MrgC receptor antibody. The present study provides evidence that activation of MrgC receptors inhibits nerve injury-induced increase of pronociceptive molecules in DRG neurons, suppressing astrocyte activation, the upregulation of excitatory mediators and phosphorylation of transcription factors in the spinal dorsal horn. As MrgC receptors are unequally expressed in the dorsal root and trigeminal ganglia, this study suggests that targeting MrgC receptors could be a new therapy for neuropathic pain with limited unwanted effects. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Novel Chemokine-Based Immunotoxins for Potent and Selective Targeting of Cytomegalovirus Infected Cells

    Directory of Open Access Journals (Sweden)

    Katja Spiess

    2017-01-01

    Full Text Available Immunotoxins as antiviral therapeutics are largely unexplored but have promising prospective due to their high selectivity potential and their unparalleled efficiency. One recent example targeted the virus-encoded G protein-coupled receptor US28 as a strategy for specific and efficient treatment of human cytomegalovirus (HCMV infections. US28 is expressed on virus-infected cells and scavenge chemokines by rapid internalization. The chemokine-based fusion-toxin protein (FTP consisted of a variant (F49A of CX3CL1 specifically targeting US28 linked to the catalytic domain of Pseudomonas exotoxin A (PE. Here, we systematically seek to improve F49A-FTP by modifications in its three structural domains; we generated variants with (1 altered chemokine sequence (K14A, F49L, and F49E, (2 shortened and elongated linker region, and (3 modified toxin domain. Only F49L-FTP displayed higher selectivity in its binding to US28 versus CX3CR1, the endogenous receptor for CX3CL1, but this was not matched by a more selective killing of US28-expressing cells. A longer linker and different toxin variants decreased US28 affinity and selective killing. Thereby, F49A-FTP represents the best candidate for HCMV treatment. Many viruses encode internalizing receptors suggesting that not only HCMV but also, for instance, Epstein-Barr virus and Kaposi’s sarcoma-associated herpesvirus may be targeted by FTPs.

  17. Dectin-1 is essential for reverse transcytosis of glycosylated SIgA-antigen complexes by intestinal M cells.

    Directory of Open Access Journals (Sweden)

    Nicolas Rochereau

    2013-09-01

    Full Text Available Intestinal microfold (M cells possess a high transcytosis capacity and are able to transport a broad range of materials including particulate antigens, soluble macromolecules, and pathogens from the intestinal lumen to inductive sites of the mucosal immune system. M cells are also the primary pathway for delivery of secretory IgA (SIgA to the gut-associated lymphoid tissue. However, although the consequences of SIgA uptake by M cells are now well known and described, the mechanisms whereby SIgA is selectively bound and taken up remain poorly understood. Here we first demonstrate that both the Cα1 region and glycosylation, more particularly sialic acid residues, are involved in M cell-mediated reverse transcytosis. Second, we found that SIgA is taken up by M cells via the Dectin-1 receptor, with the possible involvement of Siglec-5 acting as a co-receptor. Third, we establish that transcytosed SIgA is taken up by mucosal CX3CR1⁺ dendritic cells (DCs via the DC-SIGN receptor. Fourth, we show that mucosal and systemic antibody responses against the HIV p24-SIgA complexes administered orally is strictly dependent on the expression of Dectin-1. Having deciphered the mechanisms leading to specific targeting of SIgA-based Ag complexes paves the way to the use of such a vehicle for mucosal vaccination against various infectious diseases.

  18. Transcriptional profiling reveals developmental relationship and distinct biological functions of CD16+ and CD16- monocyte subsets

    Directory of Open Access Journals (Sweden)

    Zhou Xiaobo

    2009-08-01

    Full Text Available Abstract Background Human peripheral blood monocytes (Mo consist of subsets distinguished by expression of CD16 (FCγRIII and chemokine receptors. Classical CD16- Mo express CCR2 and migrate in response to CCL2, while a minor CD16+ Mo subset expresses CD16 and CX3CR1 and migrates into tissues expressing CX3CL1. CD16+ Mo produce pro-inflammatory cytokines and are expanded in certain inflammatory conditions including sepsis and HIV infection. Results To gain insight into the developmental relationship and functions of CD16+ and CD16- Mo, we examined transcriptional profiles of these Mo subsets in peripheral blood from healthy individuals. Of 16,328 expressed genes, 2,759 genes were differentially expressed and 228 and 250 were >2-fold upregulated and downregulated, respectively, in CD16+ compared to CD16- Mo. CD16+ Mo were distinguished by upregulation of transcripts for dendritic cell (DC (SIGLEC10, CD43, RARA and macrophage (MΦ (CSF1R/CD115, MafB, CD97, C3aR markers together with transcripts relevant for DC-T cell interaction (CXCL16, ICAM-2, LFA-1, cell activation (LTB, TNFRSF8, LST1, IFITM1-3, HMOX1, SOD-1, WARS, MGLL, and negative regulation of the cell cycle (CDKN1C, MTSS1, whereas CD16- Mo were distinguished by upregulation of transcripts for myeloid (CD14, MNDA, TREM1, CD1d, C1qR/CD93 and granulocyte markers (FPR1, GCSFR/CD114, S100A8-9/12. Differential expression of CSF1R, CSF3R, C1QR1, C3AR1, CD1d, CD43, CXCL16, and CX3CR1 was confirmed by flow cytometry. Furthermore, increased expression of RARA and KLF2 transcripts in CD16+ Mo coincided with absence of cell surface cutaneous lymphocyte associated antigen (CLA expression, indicating potential imprinting for non-skin homing. Conclusion These results suggest that CD16+ and CD16- Mo originate from a common myeloid precursor, with CD16+ Mo having a more MΦ – and DC-like transcription program suggesting a more advanced stage of differentiation. Distinct transcriptional programs, together

  19. Gabapentin reduces CX3CL1 signaling and blocks spinal microglial activation in monoarthritic rats

    Directory of Open Access Journals (Sweden)

    Yang Jia-Le

    2012-05-01

    Full Text Available Abstract Background Spinal glia, particularly microglia and astrocytes, are of the utmost importance in the development and maintenance of chronic pain. A recent study from our laboratory revealed that gabapentin, a recommended first-line treatment for multiple neuropathic conditions, could also efficiently antagonize thermal hyperalgesia evoked by complete Freund's adjuvant (CFA-induced monoarthritis (MA. In the present study, we investigated whether the spinal glia are involved in the anti-hyperalgesic effect of gabapentin and how this event occurs. Results Unilateral intra-articular injection of CFA produced a robust activation of microglia and astrocytes. These cells exhibited large cell bodies, thick processes and increases in the ionized calcium binding adapter molecule 1 (Iba-1, a microglial marker or the glia fibrillary acidic protein (GFAP, an astrocytic marker. These cells also displayed immunoreactive signals, and an upregulation of the voltage-gated calcium channels (VGCCs α2/δ-1 subunit, CX3CL1 and CX3CR1 expression levels in the spinal cord. These changes were associated with the development of thermal hyperalgesia. Immunofluorescence staining showed that VGCC α2/δ-1 subunit, a proposed gabapentin target of action, was widely distributed in primary afferent fibers terminals and dorsal horn neurons. CX3CL1, a potential trigger to activate microglia, colocalized with VGCC α2/δ-1 subunits in the spinal dorsal horn. However, its receptor CX3CR1 was mainly expressed in the spinal microglia. Multiple intraperitoneal (i.p. gabapentin injections (100 mg/kg, once daily for 4 days with the first injection 60 min before intra-articular CFA suppressed the activation of spinal microglia, downregulated spinal VGCC α2/δ-1 subunits decreased CX3CL1 levels and blocked the development of thermal hyperalgesia in MA rats. Conclusions Here we provide the first evidence that gabapentin diminishes CX3CL1 signaling and spinal microglia

  20. Effect of Aspirin on Fractalkine in Rats with Pulmonary Embolism

    African Journals Online (AJOL)

    distributed in lung, heart, brain, kidney, pancreas and skeletal muscles [4] and plays an important role in vascular inflammation and endothelial cell injury by binding to ... was run in a Bio-Rad MJ Mini Opticon Real-Time. PCR system and analyzed by Bio-Rad CFX. Manager. Preparation of PE model. The rat PE model was ...

  1. Effect of Aspirin on Fractalkine in Rats with Pulmonary Embolism ...

    African Journals Online (AJOL)

    Results: The serum levels of FKN, IL-8, TNF-α and IL-1β were significantly decreased by treatment with aspirin compared with the PE group (p < 0.05). Furthermore, mRNA expressions of lung FKN, TNF- α and IL-1β in PE group were markedly decreased by treatment with aspirin compared with that in PE group. PE-induced ...

  2. Chemokines in neuron-glial cell interaction and pathogenesis of neuropathic pain.

    Science.gov (United States)

    Zhang, Zhi-Jun; Jiang, Bao-Chun; Gao, Yong-Jing

    2017-09-01

    Neuropathic pain resulting from damage or dysfunction of the nervous system is a highly debilitating chronic pain state and is often resistant to currently available treatments. It has become clear that neuroinflammation, mainly mediated by proinflammatory cytokines and chemokines, plays an important role in the establishment and maintenance of neuropathic pain. Chemokines were originally identified as regulators of peripheral immune cell trafficking and were also expressed in neurons and glial cells in the central nervous system. In recent years, accumulating studies have revealed the expression, distribution and function of chemokines in the spinal cord under chronic pain conditions. In this review, we provide evidence showing that several chemokines are upregulated after peripheral nerve injury and contribute to the pathogenesis of neuropathic pain via different forms of neuron-glia interaction in the spinal cord. First, chemokine CX3CL1 is expressed in primary afferents and spinal neurons and induces microglial activation via its microglial receptor CX3CR1 (neuron-to-microglia signaling). Second, CCL2 and CXCL1 are expressed in spinal astrocytes and act on CCR2 and CXCR2 in spinal neurons to increase excitatory synaptic transmission (astrocyte-to-neuron signaling). Third, we recently identified that CXCL13 is highly upregulated in spinal neurons after spinal nerve ligation and induces spinal astrocyte activation via receptor CXCR5 (neuron-to-astrocyte signaling). Strategies that target chemokine-mediated neuron-glia interactions may lead to novel therapies for the treatment of neuropathic pain.

  3. Characterization of the CD14++CD16+ monocyte population in human bone marrow.

    Directory of Open Access Journals (Sweden)

    Manuela Mandl

    Full Text Available Numerous studies have divided blood monocytes according to their expression of the surface markers CD14 and CD16 into following subsets: classical CD14(++CD16(-, intermediate CD14(++CD16(+ and nonclassical CD14(+CD16(++ monocytes. These subsets differ in phenotype and function and are further correlated to cardiovascular disease, inflammation and cancer. However, the CD14/CD16 nature of resident monocytes in human bone marrow remains largely unknown. In the present study, we identified a major population of CD14(++CD16(+ monocytes by using cryopreserved bone marrow mononuclear cells from healthy donors. These cells express essential monocyte-related antigens and chemokine receptors such as CD11a, CD18, CD44, HLA-DR, Ccr2, Ccr5, Cx3cr1, Cxcr2 and Cxcr4. Notably, the expression of Ccr2 was inducible during culture. Furthermore, sorted CD14(++CD16(+ bone marrow cells show typical macrophage morphology, phagocytic activity, angiogenic features and generation of intracellular oxygen species. Side-by-side comparison of the chemokine receptor profile with unpaired blood samples also demonstrated that these rather premature medullar monocytes mainly match the phenotype of intermediate and partially of (nonclassical monocytes. Together, human monocytes obviously acquire their definitive CD14/CD16 signature in the bloodstream and the medullar monocytes probably transform into CD14(++CD16- and CD14(+CD16(++ subsets which appear enriched in the periphery.

  4. Genes involved in immunity and apoptosis are associated with human presbycusis based on microarray analysis.

    Science.gov (United States)

    Dong, Yang; Li, Ming; Liu, Puzhao; Song, Haiyan; Zhao, Yuping; Shi, Jianrong

    2014-06-01

    Genes involved in immunity and apoptosis were associated with human presbycusis. CCR3 and GILZ played an important role in the pathogenesis of presbycusis, probably through regulating chemokine receptor, T-cell apoptosis, or T-cell activation pathways. To identify genes associated with human presbycusis and explore the molecular mechanism of presbycusis. Hearing function was tested by pure-tone audiometry. Microarray analysis was performed to identify presbycusis-correlated genes by Illumina Human-6 BeadChip using the peripheral blood samples of subjects. To identify biological process categories and pathways associated with presbycusis-correlated genes, bioinformatics analysis was carried out by Gene Ontology Tree Machine (GOTM) and database for annotation, visualization, and integrated discovery (DAVID). Quantitative RT-PCR (qRT-PCR) was used to validate the microarray data. Microarray analysis identified 469 up-regulated genes and 323 down-regulated genes. Both the dominant biological processes by Gene Ontology (GO) analysis and the enriched pathways by Kyoto encyclopedia of genes and genomes (KEGG) and BIOCARTA showed that genes involved in immunity and apoptosis were associated with presbycusis. In addition, CCR3, GILZ, CXCL10, and CX3CR1 genes showed consistent difference between groups for both the gene chip and qRT-PCR data. The differences of CCR3 and GILZ between presbycusis patients and controls were statistically significant (p < 0.05).

  5. Activated NKT cells facilitated functional switch of myeloid-derived suppressor cells at inflammation sites in fulminant hepatitis mice.

    Science.gov (United States)

    Wu, Danxiao; Shi, Yu; Wang, Cheng; Chen, Hanwen; Liu, Qiaoyun; Liu, Jianhua; Zhang, Lihuang; Wu, Yihua; Xia, Dajing

    2017-02-01

    Myeloid-derived suppressor cells (MDSCs) confer immunosuppressive properties, but their roles in fulminant hepatitis have not been well defined. In this study, we systematically examined the distribution of MDSCs in bone marrow (BM), liver and spleen, and their functional and differentiation status in an acute fulminant hepatitis mouse model induced by lipopolysaccharide and D-galactosamine (LPS-GalN). Moreover, the interaction between NKT cells and MDSCs was determined. Our study revealed that BM contained the largest pool of MDSCs during pathogenesis of fulminant hepatitis compared with liver and spleen. MDSCs in liver/spleen expressed higher levels of chemokine receptors such as CCR2, CX3CR1 and CXCR2. At inflamed tissues such as liver or spleen, activated NKT cells induced differentiation of MDSCs through cell-cell interaction, which markedly dampened the immunosuppressive effects and promoted MDSCs to produce pro-inflammatory cytokines and activate inflammatory cells. Our findings thus demonstrated an unexpected pro-inflammatory state for MDSCs, which was mediated by the activated NKT cells that precipitated the differentiation and functional evolution of these MDSCs at sites of inflammation. Copyright © 2016. Published by Elsevier GmbH.

  6. Lipophorin Receptor: The Insect Lipoprotein Receptor

    Indian Academy of Sciences (India)

    IAS Admin

    physiology and develop- mental biology of silkworms, and use of silk in industrial applications. The low-density lipoprotein receptor (LDLR), one of the best characterized cell-surface receptors, mediates cholesterol ho- meostasis and other functions in mammals. The members of the LDLR superfamily are structurally related ...

  7. Lipophorin Receptor: The Insect Lipoprotein Receptor

    Indian Academy of Sciences (India)

    Permanent link: http://www.ias.ac.in/article/fulltext/reso/018/08/0748-0755. Keywords. Low-density lipoprotein receptor; lipophorin; lipophorin receptor; insects. Author Affiliations. G Ravikumar1 N B Vijayaprakash1. Seri-biotech Research Laboratory Central Silk Board Kodathi, Carmelaram Post Bangalore 560 035, India.

  8. Acetylcholine receptor antibody

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/003576.htm Acetylcholine receptor antibody To use the sharing features on this page, please enable JavaScript. Acetylcholine receptor antibody is a protein found in the blood ...

  9. Androgen receptor abnormalities

    NARCIS (Netherlands)

    A.O. Brinkmann (Albert); G.G.J.M. Kuiper (George); C. Ris-Stalpers (Carolyn); H.C.J. van Rooij (Henri); G. Romalo (G.); G. Trifiro (Gianluca); E. Mulder (Eppo); L. Pinsky (L.); H.U. Schweikert (H.); J. Trapman (Jan)

    1991-01-01

    markdownabstract__Abstract__ The human androgen receptor is a member of the superfamily of steroid hormone receptors. Proper functioning of this protein is a prerequisite for normal male sexual differentiation and development. The cloning of the human androgen receptor cDNA and the elucidation of

  10. Androgen receptor abnormalities

    NARCIS (Netherlands)

    Brinkmann, A. O.; Kuiper, G. G.; Ris-Stalpers, C.; van Rooij, H. C.; Romalo, G.; Trifiro, M.; Mulder, E.; Pinsky, L.; Schweikert, H. U.; Trapman, J.

    1991-01-01

    The human androgen receptor is a member of the superfamily of steroid hormone receptors. Proper functioning of this protein is a prerequisite for normal male sexual differentiation and development. The cloning of the human androgen receptor cDNA and the elucidation of the genomic organization of the

  11. GABA receptor imaging

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jong Doo [Yonsei University College of Medicine, Seoul (Korea, Republic of)

    2007-04-15

    GABA is primary an inhibitory neurotransmitter that is localized in inhibitory interneurons. GABA is released from presynaptic terminals and functions by binding to GABA receptors. There are two types of GABA receptors, GABA{sub A}-receptor that allows chloride to pass through a ligand gated ion channel and GABA{sub B}-receptor that uses G-proteins for signaling. The GABA{sub A}-receptor has a GABA binding site as well as a benzodiazepine binding sites, which modulate GABA{sub A}-receptor function. Benzodiazepine GABAA receptor imaging can be accomplished by radiolabeling derivates that activates benzodiazepine binding sites. There has been much research on flumazenil (FMZ) labeled with {sup 11}C-FMZ, a benzodiazepine derivate that is a selective, reversible antagonist to GABAA receptors. Recently, {sup 18}F-fluoroflumazenil (FFMZ) has been developed to overcome {sup 11}C's short half-life. {sup 18}F-FFMZ shows high selective affinity and good pharmacodynamics, and is a promising PET agent with better central benzodiazepine receptor imaging capabilities. In an epileptic focus, because the GABA/benzodiazepine receptor amount is decreased, using '1{sup 1}C-FMZ PET instead of {sup 18}F-FDG, PET, restrict the foci better and may also help find lesions better than high resolution MR. GABA{sub A} receptors are widely distributed in the cerebral cortex, and can be used as an viable neuronal marker. Therefore it can be used as a neuronal cell viability marker in cerebral ischemia. Also, GABA-receptors decrease in areas where neuronal plasticity develops, therefore, GABA imaging can be used to evaluate plasticity. Besides these usages, GABA receptors are related with psychological diseases, especially depression and schizophrenia as well as cerebral palsy, a motor-related disorder, so further in-depth studies are needed for these areas.

  12. GABA receptor imaging

    International Nuclear Information System (INIS)

    Lee, Jong Doo

    2007-01-01

    GABA is primary an inhibitory neurotransmitter that is localized in inhibitory interneurons. GABA is released from presynaptic terminals and functions by binding to GABA receptors. There are two types of GABA receptors, GABA A -receptor that allows chloride to pass through a ligand gated ion channel and GABA B -receptor that uses G-proteins for signaling. The GABA A -receptor has a GABA binding site as well as a benzodiazepine binding sites, which modulate GABA A -receptor function. Benzodiazepine GABAA receptor imaging can be accomplished by radiolabeling derivates that activates benzodiazepine binding sites. There has been much research on flumazenil (FMZ) labeled with 11 C-FMZ, a benzodiazepine derivate that is a selective, reversible antagonist to GABAA receptors. Recently, 18 F-fluoroflumazenil (FFMZ) has been developed to overcome 11 C's short half-life. 18 F-FFMZ shows high selective affinity and good pharmacodynamics, and is a promising PET agent with better central benzodiazepine receptor imaging capabilities. In an epileptic focus, because the GABA/benzodiazepine receptor amount is decreased, using '1 1 C-FMZ PET instead of 18 F-FDG, PET, restrict the foci better and may also help find lesions better than high resolution MR. GABA A receptors are widely distributed in the cerebral cortex, and can be used as an viable neuronal marker. Therefore it can be used as a neuronal cell viability marker in cerebral ischemia. Also, GABA-receptors decrease in areas where neuronal plasticity develops, therefore, GABA imaging can be used to evaluate plasticity. Besides these usages, GABA receptors are related with psychological diseases, especially depression and schizophrenia as well as cerebral palsy, a motor-related disorder, so further in-depth studies are needed for these areas

  13. Dengue virus receptor

    OpenAIRE

    Hidari, Kazuya I.P.J.; Suzuki, Takashi

    2011-01-01

    Dengue virus is an arthropod-borne virus transmitted by Aedes mosquitoes. Dengue virus causes fever and hemorrhagic disorders in humans and non-human primates. Direct interaction of the virus introduced by a mosquito bite with host receptor molecule(s) is crucial for virus propagation and the pathological progression of dengue diseases. Therefore, elucidation of the molecular mechanisms underlying the interaction between dengue virus and its receptor(s) in both humans and mosquitoes is essent...

  14. Therapeutic androgen receptor ligands

    Science.gov (United States)

    Allan, George F.; Sui, Zhihua

    2003-01-01

    In the past several years, the concept of tissue-selective nuclear receptor ligands has emerged. This concept has come to fruition with estrogens, with the successful marketing of drugs such as raloxifene. The discovery of raloxifene and other selective estrogen receptor modulators (SERMs) has raised the possibility of generating selective compounds for other pathways, including androgens (that is, selective androgen receptor modulators, or SARMs). PMID:16604181

  15. AMPA receptor ligands

    DEFF Research Database (Denmark)

    Strømgaard, Kristian; Mellor, Ian

    2004-01-01

    Alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptors (AMPAR), subtype of the ionotropic glutamate receptors (IGRs), mediate fast synaptic transmission in the central nervous system (CNS), and are involved in many neurological disorders, as well as being a key player...

  16. Angiotensin type 2 receptors

    DEFF Research Database (Denmark)

    Sumners, Colin; de Kloet, Annette D; Krause, Eric G

    2015-01-01

    In most situations, the angiotensin AT2-receptor (AT2R) mediates physiological actions opposing those mediated by the AT1-receptor (AT1R), including a vasorelaxant effect. Nevertheless, experimental evidence vastly supports that systemic application of AT2R-agonists is blood pressure neutral...

  17. Glutamate receptor agonists

    DEFF Research Database (Denmark)

    Vogensen, Stine Byskov; Greenwood, Jeremy R; Bunch, Lennart

    2011-01-01

    The neurotransmitter (S)-glutamate [(S)-Glu] is responsible for most of the excitatory neurotransmission in the central nervous system. The effect of (S)-Glu is mediated by both ionotropic and metabotropic receptors. Glutamate receptor agonists are generally a-amino acids with one or more...... stereogenic centers due to strict requirements in the agonist binding pocket of the activated state of the receptor. By contrast, there are many examples of achiral competitive antagonists. The present review addresses how stereochemistry affects the activity of glutamate receptor ligands. The review focuses...... mainly on agonists and discusses stereochemical and conformational considerations as well as biostructural knowledge of the agonist binding pockets, which is useful in the design of glutamate receptor agonists. Examples are chosen to demonstrate how stereochemistry not only determines how the agonist...

  18. P2X receptors.

    Science.gov (United States)

    North, R Alan

    2016-08-05

    Extracellular adenosine 5'-triphosphate (ATP) activates cell surface P2X and P2Y receptors. P2X receptors are membrane ion channels preferably permeable to sodium, potassium and calcium that open within milliseconds of the binding of ATP. In molecular architecture, they form a unique structural family. The receptor is a trimer, the binding of ATP between subunits causes them to flex together within the ectodomain and separate in the membrane-spanning region so as to open a central channel. P2X receptors have a widespread tissue distribution. On some smooth muscle cells, P2X receptors mediate the fast excitatory junction potential that leads to depolarization and contraction. In the central nervous system, activation of P2X receptors allows calcium to enter neurons and this can evoke slower neuromodulatory responses such as the trafficking of receptors for the neurotransmitter glutamate. In primary afferent nerves, P2X receptors are critical for the initiation of action potentials when they respond to ATP released from sensory cells such as taste buds, chemoreceptors or urothelium. In immune cells, activation of P2X receptors triggers the release of pro-inflammatory cytokines such as interleukin 1β. The development of selective blockers of different P2X receptors has led to clinical trials of their effectiveness in the management of cough, pain, inflammation and certain neurodegenerative diseases.This article is part of the themed issue 'Evolution brings Ca(2+) and ATP together to control life and death'. © 2016 The Author(s).

  19. The Role of Microglia and Peripheral Monocytes in Retinal Damage Following Corneal Chemical Injury.

    Science.gov (United States)

    Paschalis, Eleftherios I; Lei, Fengyang; Zhou, Chengxin; Kapoulea, Vassiliki; Thanos, Aristomenis; Dana, Reza; Vavvas, Demetrios; Chodosh, James; Dohlman, Claes H

    2018-04-06

    Eyes that have suffered alkali burn to the surface are excessively susceptible to subsequent severe glaucoma and retinal ganglion cell loss, despite maximal efforts to prevent or slow down the disease. Recently, we have shown in mice and rabbits, that such retinal damage is neither mediated by the alkali itself reaching the retina nor by intraocular pressure elevation. Rather, it is caused by the up-regulation of tumor necrosis factor alpha (TNF-α) that rapidly diffuses posteriorly, causing retinal ganglion cell apoptosis and CD45 + cell activation. Here, we investigated the involvement of peripheral blood monocytes and microglia in retinal damage. Using CX3CR1 +/EGFP ::CCR2 +/RFP reporter mice and bone marrow chimeras, we show that peripheral CX3CR1 + CD45 hi CD11b + MHC-II + monocyte infiltrate into the retina from the optic nerve at 24 hours after the burn and release further TNF-α. A secondary source of peripheral monocyte response originates from a rare population of 'patrolling' myeloid CCR2 + cells of the retina that differentiate into CX3CR1 + macrophages within hours after the injury. As a result, CX3CR1 + CD45 lo CD11b + microglia become reactive at 7 days, causing further TNF-α release. Prompt TNF-α inhibition after corneal burn suppresses monocyte infiltration and microglia activation, and protects the retina. This study may prove relevant to other injuries of the central nervous system. Copyright © 2018. Published by Elsevier Inc.

  20. Nrf2: A Novel Biomarker of Disease Severity and Target for Therapeutic Intervention in Multiple Sclerosis

    Science.gov (United States)

    2014-10-01

    beta CFP mice to derive mice expressing 2D2-CFP cells for in vivo tracking by TPM . Similarly, OTII mice expressing the TCR transgene specific for...OVA323–339 peptide / I-Ab were crossed with ubiquitin GFP mice to derive OTII-GFP cells for in vivo TPM tracking. Cx3cr1 +/GFP reporter mice have one

  1. The Role of SDF-1 (Alpha) CXCR4/MMP in PC Bone Metastasis

    Science.gov (United States)

    2006-03-01

    metastasis. The IVth International conference on cancer induced bone diseases. San Antonio , TX. December 2003. Role of CXCR4 and MMP-9 in prostate...chemoinvasion of breast cancer cells. Oncogene, 23: 157-167, 2004. 11. Shulby, S. A., Dolloff, N. G., Stearns, M. E., Meucci , O., and Fatatis, A. CX3CR1

  2. Muscarinic receptor oligomerization.

    Science.gov (United States)

    Marsango, Sara; Ward, Richard J; Alvarez-Curto, Elisa; Milligan, Graeme

    2017-11-14

    G protein-coupled receptors (GPCRs) have been classically described as monomeric entities that function by binding in a 1:1 stoichiometric ratio to both ligand and downstream signalling proteins. However, in recent years, a growing number of studies has supported the hypothesis that these receptors can interact to form dimers and higher order oligomers although the molecular basis for these interactions, the overall quaternary arrangements and the functional importance of GPCR oligomerization remain topics of intense speculation. Muscarinic acetylcholine receptors belong to class A of the GPCR family. Each muscarinic receptor subtype has its own particular distribution throughout the central and peripheral nervous systems. In the central nervous system, muscarinic receptors regulate several sensory, cognitive, and motor functions while, in the peripheral nervous system, they are involved in the regulation of heart rate, stimulation of glandular secretion and smooth muscle contraction. Muscarinic acetylcholine receptors have long been used as a model for the study of GPCR structure and function and to address aspects of GPCR dimerization using a broad range of approaches. In this review, the prevailing knowledge regarding the quaternary arrangement for the various muscarinic acetylcholine receptors has been summarized by discussing work ranging from initial results obtained using more traditional biochemical approaches to those generated with more modern biophysical techniques. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  3. Glutamate receptor agonists

    DEFF Research Database (Denmark)

    Vogensen, Stine Byskov; Greenwood, Jeremy R; Bunch, Lennart

    2011-01-01

    stereogenic centers due to strict requirements in the agonist binding pocket of the activated state of the receptor. By contrast, there are many examples of achiral competitive antagonists. The present review addresses how stereochemistry affects the activity of glutamate receptor ligands. The review focuses...... mainly on agonists and discusses stereochemical and conformational considerations as well as biostructural knowledge of the agonist binding pockets, which is useful in the design of glutamate receptor agonists. Examples are chosen to demonstrate how stereochemistry not only determines how the agonist...

  4. P2X receptors

    OpenAIRE

    North, R. Alan

    2016-01-01

    Extracellular adenosine 5′-triphosphate (ATP) activates cell surface P2X and P2Y receptors. P2X receptors are membrane ion channels preferably permeable to sodium, potassium and calcium that open within milliseconds of the binding of ATP. In molecular architecture, they form a unique structural family. The receptor is a trimer, the binding of ATP between subunits causes them to flex together within the ectodomain and separate in the membrane-spanning region so as to open a central channel. P2...

  5. Serotonin Receptors in Hippocampus

    Science.gov (United States)

    Berumen, Laura Cristina; Rodríguez, Angelina; Miledi, Ricardo; García-Alcocer, Guadalupe

    2012-01-01

    Serotonin is an ancient molecular signal and a recognized neurotransmitter brainwide distributed with particular presence in hippocampus. Almost all serotonin receptor subtypes are expressed in hippocampus, which implicates an intricate modulating system, considering that they can be localized as autosynaptic, presynaptic, and postsynaptic receptors, even colocalized within the same cell and being target of homo- and heterodimerization. Neurons and glia, including immune cells, integrate a functional network that uses several serotonin receptors to regulate their roles in this particular part of the limbic system. PMID:22629209

  6. Somatostatin receptor skintigrafi

    DEFF Research Database (Denmark)

    Rasmussen, Karin; Nielsen, Jørn Theil; Rehling, Michael

    2005-01-01

    Somatostatin receptor scintigraphy (SRS) is a very valuable imaging technique for visualisation of a diversity of neuroendocrine tumours. The sensitivity for localisation of carcinoid tumours is high, but somewhat lower for other neuroendocrine tumours. The methodology, multiple clinical aspects ...

  7. Muscarinic receptor oligomerization

    OpenAIRE

    Marsango, Sara; Ward, Richard J.; Alvarez-Curto, Elisa; Milligan, Graeme

    2017-01-01

    G protein-coupled receptors (GPCRs) have been classically described as monomeric entities that function by binding in a 1:1 stoichiometric ratio to both ligand and downstream signalling proteins. However, in recent years, a growing number of studies has supported the hypothesis that these receptors can interact to form dimers and higher order oligomers although the molecular basis for these interactions, the overall quaternary arrangements and the functional importance of GPCR oligomerization...

  8. Adenosine receptor neurobiology: overview.

    Science.gov (United States)

    Chen, Jiang-Fan; Lee, Chien-fei; Chern, Yijuang

    2014-01-01

    Adenosine is a naturally occurring nucleoside that is distributed ubiquitously throughout the body as a metabolic intermediary. In the brain, adenosine functions as an important upstream neuromodulator of a broad spectrum of neurotransmitters, receptors, and signaling pathways. By acting through four G-protein-coupled receptors, adenosine contributes critically to homeostasis and neuromodulatory control of a variety of normal and abnormal brain functions, ranging from synaptic plasticity, to cognition, to sleep, to motor activity to neuroinflammation, and cell death. This review begun with an overview of the gene and genome structure and the expression pattern of adenosine receptors (ARs). We feature several new developments over the past decade in our understanding of AR functions in the brain, with special focus on the identification and characterization of canonical and noncanonical signaling pathways of ARs. We provide an update on functional insights from complementary genetic-knockout and pharmacological studies on the AR control of various brain functions. We also highlight several novel and recent developments of AR neurobiology, including (i) recent breakthrough in high resolution of three-dimension structure of adenosine A2A receptors (A2ARs) in several functional status, (ii) receptor-receptor heterodimerization, (iii) AR function in glial cells, and (iv) the druggability of AR. We concluded the review with the contention that these new developments extend and strengthen the support for A1 and A2ARs in brain as therapeutic targets for neurologic and psychiatric diseases. © 2014 Elsevier Inc. All rights reserved.

  9. Genetics of taste receptors.

    Science.gov (United States)

    Bachmanov, Alexander A; Bosak, Natalia P; Lin, Cailu; Matsumoto, Ichiro; Ohmoto, Makoto; Reed, Danielle R; Nelson, Theodore M

    2014-01-01

    Taste receptors function as one of the interfaces between internal and external milieus. Taste receptors for sweet and umami (T1R [taste receptor, type 1]), bitter (T2R [taste receptor, type 2]), and salty (ENaC [epithelial sodium channel]) have been discovered in the recent years, but transduction mechanisms of sour taste and ENaC-independent salt taste are still poorly understood. In addition to these five main taste qualities, the taste system detects such noncanonical "tastes" as water, fat, and complex carbohydrates, but their reception mechanisms require further research. Variations in taste receptor genes between and within vertebrate species contribute to individual and species differences in taste-related behaviors. These variations are shaped by evolutionary forces and reflect species adaptations to their chemical environments and feeding ecology. Principles of drug discovery can be applied to taste receptors as targets in order to develop novel taste compounds to satisfy demand in better artificial sweeteners, enhancers of sugar and sodium taste, and blockers of bitterness of food ingredients and oral medications.

  10. Ionotropic crustacean olfactory receptors.

    Directory of Open Access Journals (Sweden)

    Elizabeth A Corey

    Full Text Available The nature of the olfactory receptor in crustaceans, a major group of arthropods, has remained elusive. We report that spiny lobsters, Panulirus argus, express ionotropic receptors (IRs, the insect chemosensory variants of ionotropic glutamate receptors. Unlike insects IRs, which are expressed in a specific subset of olfactory cells, two lobster IR subunits are expressed in most, if not all, lobster olfactory receptor neurons (ORNs, as confirmed by antibody labeling and in situ hybridization. Ligand-specific ORN responses visualized by calcium imaging are consistent with a restricted expression pattern found for other potential subunits, suggesting that cell-specific expression of uncommon IR subunits determines the ligand sensitivity of individual cells. IRs are the only type of olfactory receptor that we have detected in spiny lobster olfactory tissue, suggesting that they likely mediate olfactory signaling. Given long-standing evidence for G protein-mediated signaling in activation of lobster ORNs, this finding raises the interesting specter that IRs act in concert with second messenger-mediated signaling.

  11. IFN regulatory factor 8 is a key constitutive determinant of the morphological and molecular properties of microglia in the CNS.

    Directory of Open Access Journals (Sweden)

    Carsten Minten

    Full Text Available IFN regulatory factor (IRF 8 is a transcription factor that has a key role in the cellular response to IFN-γ and is pivotal in myeloid cell differentiation. Whether IRF8 plays a role in the development and function of microglia, the tissue-resident myeloid cells of the brain, is unknown. Here, we show IRF8 is a constitutively produced nuclear factor in microglia, which suggested that IRF8 might also be a key homeostatic transcriptional determinant of the microglial cell phenotype. In support of this, in mice with a targeted disruption of the IRF8 gene, microglia were increased in number and showed gross alterations in morphology and surface area. In situ analysis of some key myeloid markers revealed that IRF8-deficient microglia had significantly reduced levels of Iba1, but increased levels of CD206 (mannose receptor and F4/80 as well as increased tomato lectin binding. Analysis of microglia ex vivo revealed IRF8-deficient microglia had significantly increased levels of CD45, CD11b and F4/80, but significantly decreased levels of the chemokine receptors CCR2, CCR5 and CX3CR1. The known involvement of some of these molecular markers in membrane dynamics and phagocytosis led us to examine the phagocytic capacity of cultured IRF8-deficient microglia, however, this was found to be similar to wild type microglia. We conclude IRF8 is a constitutively produced nuclear factor in resident microglia of the CNS being a crucial transcriptional determinant of the phenotype of these cells in the healthy brain.

  12. Peripheral blood gene expression as a novel genomic biomarker in complicated sarcoidosis.

    Directory of Open Access Journals (Sweden)

    Tong Zhou

    Full Text Available Sarcoidosis, a systemic granulomatous syndrome invariably affecting the lung, typically spontaneously remits but in ~20% of cases progresses with severe lung dysfunction or cardiac and neurologic involvement (complicated sarcoidosis. Unfortunately, current biomarkers fail to distinguish patients with remitting (uncomplicated sarcoidosis from other fibrotic lung disorders, and fail to identify individuals at risk for complicated sarcoidosis. We utilized genome-wide peripheral blood gene expression analysis to identify a 20-gene sarcoidosis biomarker signature distinguishing sarcoidosis (n = 39 from healthy controls (n = 35, 86% classification accuracy and which served as a molecular signature for complicated sarcoidosis (n = 17. As aberrancies in T cell receptor (TCR signaling, JAK-STAT (JS signaling, and cytokine-cytokine receptor (CCR signaling are implicated in sarcoidosis pathogenesis, a 31-gene signature comprised of T cell signaling pathway genes associated with sarcoidosis (TCR/JS/CCR was compared to the unbiased 20-gene biomarker signature but proved inferior in prediction accuracy in distinguishing complicated from uncomplicated sarcoidosis. Additional validation strategies included significant association of single nucleotide polymorphisms (SNPs in signature genes with sarcoidosis susceptibility and severity (unbiased signature genes - CX3CR1, FKBP1A, NOG, RBM12B, SENS3, TSHZ2; T cell/JAK-STAT pathway genes such as AKT3, CBLB, DLG1, IFNG, IL2RA, IL7R, ITK, JUN, MALT1, NFATC2, PLCG1, SPRED1. In summary, this validated peripheral blood molecular gene signature appears to be a valuable biomarker in identifying cases with sarcoidoisis and predicting risk for complicated sarcoidosis.

  13. Human T cell responses to Dengue and Zika virus infection compared to Dengue/Zika coinfection.

    Science.gov (United States)

    Badolato-Corrêa, Jessica; Sánchez-Arcila, Juan Camilo; Alves de Souza, Thiara Manuele; Santos Barbosa, Luciana; Conrado Guerra Nunes, Priscila; da Rocha Queiroz Lima, Monique; Gandini, Mariana; Bispo de Filippis, Ana Maria; Venâncio da Cunha, Rivaldo; Leal de Azeredo, Elzinandes; de-Oliveira-Pinto, Luzia Maria

    2017-12-28

    Zika virus (ZIKV) and dengue virus (DENV) co-circulated during latest outbreaks in Brazil, hence, it is important to evaluate the host cross-reactive immune responses to these viruses. So far, little is known about human T cell responses to ZIKV and no reports detail adaptive immune responses during DENV/ZIKV coinfection. Here, we studied T cells responses in well-characterized groups of DENV, ZIKV, or DENV/ZIKV infected patients and DENV-exposed healthy donors. We evaluated chemokine receptors expression and single/multifunctional frequencies of IFNγ, TNF, and IL2-producing T cells during these infections. Even without antigenic stimulation, it was possible to detect chemokine receptors and IFNγ, TNF, and IL2-producing T cells from all individuals by flow cytometry. Additionally, PBMCs' IFNγ response to DENV NS1 protein and to polyclonal stimuli was evaluated by ELISPOT. DENV and ZIKV infections and DENV/ZIKV coinfections similarly induced expression of CCR5, CX3CR1, and CXCR3 on CD4 and CD8 T cells. DENV/ZIKV coinfection decreased the ability of CD4 + T cells to produce IFNγ + , TNF + , TNF  +  IFNγ + , and TNF  +  IL2 + , compared to DENV and ZIKV infections. A higher magnitude of IFNγ response to DENV NS1 was found in donors with a history of dengue infection, however, a hyporesponsiveness was found in acute DENV, ZIKV, or DENV/ZIKV infected patients, even previously infected with DENV. Therefore, we emphasize the potential impact of coinfection on the immune response from human hosts, mainly in areas where DENV and ZIKV cocirculate. © 2017 The Authors. Immunity, Inflammation and Disease Published by John Wiley & Sons Ltd.

  14. Apoptotic effects of antilymphocyte globulins on human pro-inflammatory CD4+CD28- T-cells.

    Directory of Open Access Journals (Sweden)

    Christina Duftner

    Full Text Available BACKGROUND: Pro-inflammatory, cytotoxic CD4(+CD28(- T-cells with known defects in apoptosis have been investigated as markers of premature immuno-senescence in various immune-mediated diseases. In this study we evaluated the influence of polyclonal antilymphocyte globulins (ATG-Fresenius, ATG-F on CD4(+CD28(- T-cells in vivo and in vitro. PRINCIPAL FINDINGS: Surface and intracellular three colour fluorescence activated cell sorting analyses of peripheral blood mononuclear cells from 16 consecutive transplant recipients and short-term cell lines were performed. In vivo, peripheral levels of CD3(+CD4(+CD28(- T-cells decreased from 3.7 ± 7.1% before to 0 ± 0% six hours after ATG-F application (P = 0.043 in 5 ATG-F treated but not in 11 control patients (2.9 ± 2.9% vs. 3.9 ± 3.0%. In vitro, ATG-F induced apoptosis even in CD4(+CD28(- T-cells, which was 4.3-times higher than in CD4(+CD28(+ T-cells. ATG-F evoked apoptosis was partially reversed by the broad-spectrum caspase inhibitor benzyloxycarbonyl (Cbz-Val-Ala-Asp(OMe-fluoromethylketone (zVAD-fmk and prednisolon-21-hydrogensuccinate. ATG-F triggered CD25 expression and production of pro-inflammatory cytokines, and induced down-regulation of the type 1 chemokine receptors CXCR-3, CCR-5, CX3CR-1 and the central memory adhesion molecule CD62L predominately in CD4(+CD28(- T-cells. CONCLUSION: In summary, in vivo depletion of peripheral CD3(+CD4(+CD28(- T-cells by ATG-F in transplant recipients was paralleled in vitro by ATG-F induced apoptosis. CD25 expression and chemokine receptor down-regulation in CD4(+CD28(- T-cells only partly explain the underlying mechanism.

  15. Elevated atherosclerosis-related gene expression, monocyte activation and microparticle-release are related to increased lipoprotein-associated oxidative stress in familial hypercholesterolemia.

    Science.gov (United States)

    Hjuler Nielsen, Morten; Irvine, Helle; Vedel, Simon; Raungaard, Bent; Beck-Nielsen, Henning; Handberg, Aase

    2015-01-01

    Animal and in vitro studies have suggested that hypercholesterolemia and increased oxidative stress predisposes to monocyte activation and enhanced accumulation of oxidized LDL cholesterol (oxLDL-C) through a CD36-dependent mechanism. The aim of this study was to investigate the hypothesis that elevated oxLDL-C induce proinflammatory monocytes and increased release of monocyte-derived microparticles (MMPs), as well as up-regulation of CD36, chemokine receptors and proinflammatory factors through CD36-dependent pathways and that this is associated with accelerated atherosclerosis in subjects with heterozygous familial hypercholesterolemia (FH), in particular in the presence of Achilles tendon xanthomas (ATX). We studied thirty FH subjects with and without ATX and twenty-three healthy control subjects. Intima-media thickness (IMT) and Achilles tendon (AT) thickness were measured by ultrasonography. Monocyte classification and MMP analysis were performed by flow cytometry. Monocyte expression of genes involved in atherosclerosis was determined by quantitative PCR. IMT and oxLDL-C were increased in FH subjects, especially in the presence of ATX. In addition, FH subjects had elevated proportions of intermediate CD14++CD16+ monocytes and higher circulating MMP levels. Stepwise linear regression identified oxLDL-C, gender and intermediate monocytes as predictors of MMPs. Monocyte expression of pro-atherogenic and pro-inflammatory genes regulated by oxLDL-C-CD36 interaction was increased in FH, especially in ATX+ subjects. Monocyte chemokine receptor CX3CR1 was identified as an independent contributor to IMT. Our data support that lipoprotein-associated oxidative stress is involved in accelerated atherosclerosis in FH, particularly in the presence of ATX, by inducing pro-inflammatory monocytes and increased release of MMPs along with elevated monocyte expression of oxLDL-C-induced atherosclerosis-related genes.

  16. Elevated atherosclerosis-related gene expression, monocyte activation and microparticle-release are related to increased lipoprotein-associated oxidative stress in familial hypercholesterolemia.

    Directory of Open Access Journals (Sweden)

    Morten Hjuler Nielsen

    Full Text Available Animal and in vitro studies have suggested that hypercholesterolemia and increased oxidative stress predisposes to monocyte activation and enhanced accumulation of oxidized LDL cholesterol (oxLDL-C through a CD36-dependent mechanism. The aim of this study was to investigate the hypothesis that elevated oxLDL-C induce proinflammatory monocytes and increased release of monocyte-derived microparticles (MMPs, as well as up-regulation of CD36, chemokine receptors and proinflammatory factors through CD36-dependent pathways and that this is associated with accelerated atherosclerosis in subjects with heterozygous familial hypercholesterolemia (FH, in particular in the presence of Achilles tendon xanthomas (ATX.We studied thirty FH subjects with and without ATX and twenty-three healthy control subjects. Intima-media thickness (IMT and Achilles tendon (AT thickness were measured by ultrasonography. Monocyte classification and MMP analysis were performed by flow cytometry. Monocyte expression of genes involved in atherosclerosis was determined by quantitative PCR. IMT and oxLDL-C were increased in FH subjects, especially in the presence of ATX. In addition, FH subjects had elevated proportions of intermediate CD14++CD16+ monocytes and higher circulating MMP levels. Stepwise linear regression identified oxLDL-C, gender and intermediate monocytes as predictors of MMPs. Monocyte expression of pro-atherogenic and pro-inflammatory genes regulated by oxLDL-C-CD36 interaction was increased in FH, especially in ATX+ subjects. Monocyte chemokine receptor CX3CR1 was identified as an independent contributor to IMT.Our data support that lipoprotein-associated oxidative stress is involved in accelerated atherosclerosis in FH, particularly in the presence of ATX, by inducing pro-inflammatory monocytes and increased release of MMPs along with elevated monocyte expression of oxLDL-C-induced atherosclerosis-related genes.

  17. Elevated Atherosclerosis-Related Gene Expression, Monocyte Activation and Microparticle-Release Are Related to Increased Lipoprotein-Associated Oxidative Stress in Familial Hypercholesterolemia

    Science.gov (United States)

    Hjuler Nielsen, Morten; Irvine, Helle; Vedel, Simon; Raungaard, Bent; Beck-Nielsen, Henning; Handberg, Aase

    2015-01-01

    Objective Animal and in vitro studies have suggested that hypercholesterolemia and increased oxidative stress predisposes to monocyte activation and enhanced accumulation of oxidized LDL cholesterol (oxLDL-C) through a CD36-dependent mechanism. The aim of this study was to investigate the hypothesis that elevated oxLDL-C induce proinflammatory monocytes and increased release of monocyte-derived microparticles (MMPs), as well as up-regulation of CD36, chemokine receptors and proinflammatory factors through CD36-dependent pathways and that this is associated with accelerated atherosclerosis in subjects with heterozygous familial hypercholesterolemia (FH), in particular in the presence of Achilles tendon xanthomas (ATX). Approach and Results We studied thirty FH subjects with and without ATX and twenty-three healthy control subjects. Intima-media thickness (IMT) and Achilles tendon (AT) thickness were measured by ultrasonography. Monocyte classification and MMP analysis were performed by flow cytometry. Monocyte expression of genes involved in atherosclerosis was determined by quantitative PCR. IMT and oxLDL-C were increased in FH subjects, especially in the presence of ATX. In addition, FH subjects had elevated proportions of intermediate CD14++CD16+ monocytes and higher circulating MMP levels. Stepwise linear regression identified oxLDL-C, gender and intermediate monocytes as predictors of MMPs. Monocyte expression of pro-atherogenic and pro-inflammatory genes regulated by oxLDL-C-CD36 interaction was increased in FH, especially in ATX+ subjects. Monocyte chemokine receptor CX3CR1 was identified as an independent contributor to IMT. Conclusions Our data support that lipoprotein-associated oxidative stress is involved in accelerated atherosclerosis in FH, particularly in the presence of ATX, by inducing pro-inflammatory monocytes and increased release of MMPs along with elevated monocyte expression of oxLDL-C-induced atherosclerosis-related genes. PMID:25875611

  18. adrenergic receptor with preeclampsia

    African Journals Online (AJOL)

    User

    2011-05-09

    May 9, 2011 ... expenditure and lipolysis. The mechanisms underlying lipolytic resistance to catecholamines in obesity are not clear and may include desensitization of ADRB2 function. (Yamada et al., 1999). Many studies have reported on the relationship between obesity and genetic variants in β-2 adrenergic receptors ...

  19. Ginkgolides and glycine receptors

    DEFF Research Database (Denmark)

    Jaracz, Stanislav; Nakanishi, Koji; Jensen, Anders A.

    2004-01-01

    Ginkgolides from the Ginkgo biloba tree are diterpenes with a cage structure consisting of six five-membered rings and a unique tBu group. They exert a variety of biological properties. In addition to being antagonists of the platelet activating factor receptor (PAFR), it has recently been shown ...

  20. Meeting report: nuclear receptors

    DEFF Research Database (Denmark)

    Tuckermann, Jan; Bourguet, William; Mandrup, Susanne

    2010-01-01

    The biannual European Molecular Biology Organization (EMBO) conference on nuclear receptors was organized by Beatrice Desvergne and Laszlo Nagy and took place in Cavtat near Dubrovnik on the Adriatic coast of Croatia September 25-29, 2009. The meeting brought together researchers from all over...

  1. Metformin and insulin receptors

    International Nuclear Information System (INIS)

    Vigneri, R.; Gullo, D.; Pezzino, V.

    1984-01-01

    The authors evaluated the effect of metformin (N,N-dimethylbiguanide), a biguanide known to be less toxic than phenformin, on insulin binding to its receptors, both in vitro and in vivo. Specific 125 I-insulin binding to cultured IM-9 human lymphocytes and MCF-7 human breast cancer cells was determined after preincubation with metformin. Specific 125 I-insulin binding to circulating monocytes was also evaluated in six controls, eight obese subjects, and six obese type II diabetic patients before and after a short-term treatment with metformin. Plasma insulin levels and blood glucose were also measured on both occasions. Metformin significantly increased insulin binding in vitro to both IM-9 lymphocytes and MCF-7 cells; the maximum increment was 47.1% and 38.0%, respectively. Metformin treatment significantly increased insulin binding in vivo to monocytes of obese subjects and diabetic patients. Scatchard analysis indicated that the increased binding was mainly due to an increase in receptor capacity. Insulin binding to monocytes of normal controls was unchanged after metformin as were insulin levels in all groups; blood glucose was significantly reduced after metformin only in diabetic patients. These data indicate that metformin increases insulin binding to its receptors in vitro and in vivo. The effect in vivo is observed in obese subjects and in obese type II diabetic patients, paralleling the clinical effectiveness of this antidiabetic agent, and is not due to receptor regulation by circulating insulin, since no variation in insulin levels was recorded

  2. Angiotensin type 2 receptor (AT2R) and receptor Mas

    DEFF Research Database (Denmark)

    Villela, Daniel; Leonhardt, Julia; Patel, Neal

    2015-01-01

    The angiotensin type 2 receptor (AT2R) and the receptor Mas are components of the protective arms of the renin-angiotensin system (RAS), i.e. they both mediate tissue protective and regenerative actions. The spectrum of actions of these two receptors and their signalling mechanisms display striking...... the phenomenon of blockade of angiotensin-(1-7) [Ang-(1-7)] actions by AT2R antagonists and vice versa. Such mechanisms may comprise dimerization of the receptors or dimerization-independent mechanisms such as lack of specificity of the receptor ligands used in the experiments or involvement of the Ang-(1...

  3. Prostaglandin Receptor Signaling in Disease

    Directory of Open Access Journals (Sweden)

    Toshiyuki Matsuoka

    2007-01-01

    Full Text Available Prostanoids, consisting of the prostaglandins (PGs and the thromboxanes (TXs, are a group of lipid mediators formed in response to various stimuli. They include PGD2, PGE2, PGF2α, PGI2, and TXA2. They are released outside of the cells immediately after synthesis, and exert their actions by binding to a G-protein coupled rhodopsin-type receptor on the surface of target cells. There are eight types of the prostanoid receptors conserved in mammals from mouse to human. They are the PGD receptor (DP, four subtypes of the PGE receptor (EP1, EP2, EP3, and EP4, the PGF receptor (FP, PGI receptor (IP, and TXA receptor (TP. Recently, mice deficient in each of these prostanoid receptors were generated and subjected to various experimental models of disease. These studies have revealed the roles of PG receptor signaling in various pathological conditions, and suggest that selective manipulation of the prostanoid receptors may be beneficial in treatment of the pathological conditions. Here we review these recent findings of roles of prostanoid receptor signaling and their therapeutic implications.

  4. Receptors for enterovirus 71.

    Science.gov (United States)

    Yamayoshi, Seiya; Fujii, Ken; Koike, Satoshi

    2014-07-01

    Enterovirus 71 (EV71) is one of the major causative agents of hand, foot and mouth disease (HFMD). Occasionally, EV71 infection is associated with severe neurological diseases, such as acute encephalitis, acute flaccid paralysis and cardiopulmonary failure. Several molecules act as cell surface receptors that stimulate EV71 infection, including scavenger receptor B2 (SCARB2), P-selectin glycoprotein ligand-1 (PSGL-1), sialylated glycan, heparan sulfate and annexin II (Anx2). SCARB2 plays critical roles in attachment, viral entry and uncoating, and it can facilitate efficient EV71 infection. The three-dimensional structures of the mature EV71 virion, procapsid and empty capsid, as well as the exofacial domain of SCARB2, have been elucidated. This structural information has greatly increased our understanding of the early steps of EV71 infection. Furthermore, SCARB2 plays essential roles in the development of EV71 neurological disease in vivo. Adult mice are not susceptible to infection by EV71, but transgenic mice that express human SCARB2 become susceptible to EV71 infection and develop similar neurological diseases to those found in humans. This mouse model facilitates the in vivo investigation of many issues related to EV71. PSGL-1, sialylated glycan, heparan sulfate and Anx2 are attachment receptors, which enhance viral infection by retaining the virus on the cell surface. These molecules also contribute to viral infection in vitro either by interacting with SCARB2 or independently of SCARB2. However, the cooperative effects of these receptors, and their contribution to EV71 pathogenicity in vivo, remain to be elucidated.

  5. The interleukin-4 receptor: signal transduction by a hematopoietin receptor.

    Science.gov (United States)

    Keegan, A D; Pierce, J H

    1994-02-01

    Over the last several years, the receptors for numerous cytokines have been molecularly characterized. Analysis of their amino acid sequences shows that some of these receptors bear certain motifs in their extracellular domains that define a family of receptors called the Hematopoietin receptor superfamily. Significant advances in characterizing the structure, function, and mechanisms of signal transduction have been made for several members of this family. The purpose of this review is to discuss the recent advances made for one of the family members, the interleukin (IL) 4 receptor. Other receptor systems have recently been reviewed elsewhere. The IL-4 receptor consists of, at the minimum, the cloned 140 kDa IL-4-binding chain with the potential for associating with other chains. The IL-4 receptor transduces its signal by activating a tyrosine kinase that phosphorylates cellular substrates, including the receptor itself, and the 170 kDa substrate called 4PS. Phosphorylated 4PS interacts with the SH2 domain of the enzyme PI-3'-kinase and increases its enzymatic activity. These early events in the IL-4 receptor initiated signaling pathway may trigger a series of signals that will ultimately lead to an IL-4 specific biologic outcome.

  6. Evolutionary analysis of functional divergence among chemokine receptors, decoy receptors and viral receptors

    Directory of Open Access Journals (Sweden)

    Hiromi eDaiyasu

    2012-07-01

    Full Text Available Chemokine receptors (CKRs function in the inflammatory response and in vertebrate homeostasis. Decoy and viral receptors are two types of CKR homologues with modified functions from those of the typical CKRs. The decoy receptors are able to bind ligands without signaling. On the other hand, the viral receptors show constitutive signaling without ligands. We examined the sites related to the functional difference. At first, the decoy and viral receptors were each classified into five groups, based on the molecular phylogenetic analysis. A multiple amino acid sequence alignment between each group and the CKRs was then constructed. The difference in the amino acid composition between the group and the CKRs was evaluated as the Kullback-Leibler (KL information value at each alignment site. The KL information value is considered to reflect the difference in the functional constraints at the site. The sites with the top 5% of KL information values were selected and mapped on the structure of a CKR. The comparisons with decoy receptor groups revealed that the detected sites were biased on the intracellular side. In contrast, the sites detected from the comparisons with viral receptor groups were found on both the extracellular and intracellular sides. More sites were found in the ligand-binding pocket in the analyses of the viral receptor groups, as compared to the decoy receptor groups. Some of the detected sites were located in the GPCR motifs. For example, the DRY motif of the decoy receptors was often degraded, although the motif of the viral receptors was basically conserved. The observations for the viral receptor groups suggested that the constraints in the pocket region are loose and that the sites on the intracellular side are different from those for the decoy receptors, which may be related to the constitutive signaling activity of the viral receptors.

  7. Melatonin Receptor Genes in Vertebrates

    Directory of Open Access Journals (Sweden)

    Hua Dong Yin

    2013-05-01

    Full Text Available Melatonin receptors are members of the G protein-coupled receptor (GPCR family. Three genes for melatonin receptors have been cloned. The MT1 (or Mel1a or MTNR1A and MT2 (or Mel1b or MTNR1B receptor subtypes are present in humans and other mammals, while an additional melatonin receptor subtype, Mel1c (or MTNR1C, has been identified in fish, amphibians and birds. Another melatonin related orphan receptor, GPR50, which does not bind melatonin, is found exclusively in mammals. The hormone melatonin is secreted primarily by the pineal gland, with highest levels occurring during the dark period of a circadian cycle. This hormone acts systemically in numerous organs. In the brain, it is involved in the regulation of various neural and endocrine processes, and it readjusts the circadian pacemaker, the suprachiasmatic nucleus. This article reviews recent studies of gene organization, expression, evolution and mutations of melatonin receptor genes of vertebrates. Gene polymorphisms reveal that numerous mutations are associated with diseases and disorders. The phylogenetic analysis of receptor genes indicates that GPR50 is an outgroup to all other melatonin receptor sequences. GPR50 may have separated from a melatonin receptor ancestor before the split between MTNR1C and the MTNR1A/B ancestor.

  8. Flavivirus Entry Receptors: An Update

    Directory of Open Access Journals (Sweden)

    Manuel Perera-Lecoin

    2013-12-01

    Full Text Available Flaviviruses enter host cells by endocytosis initiated when the virus particles interact with cell surface receptors. The current model suggests that flaviviruses use at least two different sets of molecules for infectious entry: attachment factors that concentrate and/or recruit viruses on the cell surface and primary receptor(s that bind to virions and direct them to the endocytic pathway. Here, we present the currently available knowledge regarding the flavivirus receptors described so far with specific attention to C-type lectin receptors and the phosphatidylserine receptors, T-cell immunoglobulin and mucin domain (TIM and TYRO3, AXL and MER (TAM. Their role in flavivirus attachment and entry as well as their implication in the virus biology will be discussed in depth.

  9. Dimerization of nuclear receptors.

    Science.gov (United States)

    Germain, Pierre; Bourguet, William

    2013-01-01

    Multicellular organisms require specific intercellular communication to properly organize the complex body plan during embryogenesis and maintain its properties and functions during the entire life. While growth factors, neurotransmitters, and peptide hormones bind to membrane receptors, thereby inducing the activity of intracellular kinase cascades or the JAK-STAT signaling pathways, other small signaling compounds such as steroid hormones, certain vitamins, and metabolic intermediates enter, or are generated, within the target cells and bind to members of a large family of nuclear receptors (NRs). NRs are ligand-inducible transcription factors that control a plethora of biological phenomena, thus orchestrating complex events like development, organ homeostasis, immune function, and reproduction. NR-NR interactions are of major importance in these regulatory processes, as NRs regulate their target genes by binding to cognate DNA response elements essentially as homo- or heterodimers. A number of structural and functional studies have provided significant insights as to how combinatorial NRs rely on protein-protein contacts that discriminate geometric features of their DNA response elements, thereby allowing both binding site diversity and physiological specificity. Here, we will review our current understanding of NR-NR interactions and provide protocols for a number of experimental approaches that are useful for their study. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Receptor studies in biological psychiatry

    International Nuclear Information System (INIS)

    Fujiwara, Yutaka

    1992-01-01

    Recent advances in the pharmacological treatment of endogenous psychosis have led to the development of biological studies in psychiatry. Studies on neurotransmitter receptors were reviewed in order to apply positron-emission tomograph (PET) for biological psychiatry. The dopamine (DA) hypothesis for schizophrenia was advanced on the basis of the observed effects of neuroleptics and methamphetamine, and DA(D 2 ) receptor supersensitivity measured by PET and receptor binding in the schizophrenic brain. The clinical potencies of neuroleptics for schizophrenia were correlated with their abilities to inhibit the D 2 receptor, and not other receptors. The σ receptor was expected to be a site of antipsychotic action. However, the potency of drugs action on it was not correlated with clinical efficacy. Haloperidol binds with high affinity to the σ receptor, which may mediate acute dystonia, an extrapyramidal side effect of neuroleptics. Behavioral and neurochemical changes induced by methamphetamine treatment were studied as an animal model of schizophrenia, and both a decrease of D 2 receptor density and an increase of DA release were detected. The monoamine hypothesis for manic-depressive psychosis was advanced on the basis of the effect of reserpine, monoamine oxidase inhibitor and antidepressants. 3 H-clonidine binding sites were increased in platelet membranes of depressive patients, 3 H-imipramine binding sites were decreased. The GABA A receptor is the target site for the action of anxiolytics and antiepileptics such as benzodiazepines and barbiturates. Recent developments in molecular biology techniques have revealed the structure of receptor proteins, which are classified into two receptor families, the G-protein coupled type (D 2 ) and the ion-channel type (GABA A ). (J.P.N.)

  11. Possible Relevance of Receptor-Receptor Interactions between Viral- and Host-Coded Receptors for Viral-Induced Disease

    Directory of Open Access Journals (Sweden)

    Luigi F. Agnati

    2007-01-01

    Full Text Available It has been demonstrated that some viruses, such as the cytomegalovirus, code for G-protein coupled receptors not only to elude the immune system, but also to redirect cellular signaling in the receptor networks of the host cells. In view of the existence of receptor-receptor interactions, the hypothesis is introduced that these viral-coded receptors not only operate as constitutively active monomers, but also can affect other receptor function by interacting with receptors of the host cell. Furthermore, it is suggested that viruses could also insert not single receptors (monomers, but clusters of receptors (receptor mosaics, altering the cell metabolism in a profound way. The prevention of viral receptor-induced changes in host receptor networks may give rise to novel antiviral drugs that counteract viral-induced disease.

  12. Peptide Receptor Radionuclide Therapy & Oncology

    NARCIS (Netherlands)

    H. Bergsma (Hendrik)

    2017-01-01

    markdownabstractNeuroendocrine tumors (NETs) are rare neoplasms with differences in clinical presentation, course and prognosis. Most of the NETs express the somatostatine receptor, which can be utilized for imaging and therapy. Radiolabeled somatostatin analogs can be used for peptide receptor

  13. Hydrocarbon Receptor Pathway in Dogs

    NARCIS (Netherlands)

    Steenbeek, F.G. van; Spee, B.; Penning, L.C.; Kummeling, A.; Gils, I.H.M.; Grinwis, G.C.M.; Leenen, D. van; Holstege, F.C.P.; Vos-Loohuis, M.; Rothuizen, J.; Leegwater, P.A.J.

    The aryl hydrocarbon receptor (AHR) mediates biological responses to toxic chemicals. An unexpected role for AHR in vascularization was suggested when mice lacking AHR displayed impaired closure of the ductus venosus after birth, as did knockout mice for aryl hydrocarbon receptor interacting

  14. Coronavirus spike-receptor interactions

    NARCIS (Netherlands)

    Mou, H.

    2015-01-01

    Coronaviruses cause important diseases in humans and animals. Coronavirus infection starts with the virus binding with its spike proteins to molecules present on the surface of host cells that act as receptors. This spike-receptor interaction is highly specific and determines the virus’ cell, tissue

  15. Neurobeachin regulates neurotransmitter receptor trafficking to synapses

    NARCIS (Netherlands)

    Nair, R.; Lauks, J.; Jung, S; Cooke, N.E.; de Wit, H.; Brose, N.; Kilimann, M.W.; Verhage, M.; Rhee, J.

    2013-01-01

    The surface density of neurotransmitter receptors at synapses is a key determinant of synaptic efficacy. Synaptic receptor accumulation is regulated by the transport, postsynaptic anchoring, and turnover of receptors, involving multiple trafficking, sorting, motor, and scaffold proteins. We found

  16. Probing Biased Signaling in Chemokine Receptors

    DEFF Research Database (Denmark)

    Amarandi, Roxana Maria; Hjortø, Gertrud Malene; Rosenkilde, Mette Marie

    2016-01-01

    The chemokine system mediates leukocyte migration during homeostatic and inflammatory processes. Traditionally, it is described as redundant and promiscuous, with a single chemokine ligand binding to different receptors and a single receptor having several ligands. Signaling of chemokine receptor...

  17. Dopamine Receptors and Parkinson's Disease

    Directory of Open Access Journals (Sweden)

    Shin Hisahara

    2011-01-01

    Full Text Available Parkinson's disease (PD is a progressive extrapyramidal motor disorder. Pathologically, this disease is characterized by the selective dopaminergic (DAergic neuronal degeneration in the substantia nigra. Correcting the DA deficiency in PD with levodopa (L-dopa significantly attenuates the motor symptoms; however, its effectiveness often declines, and L-dopa-related adverse effects emerge after long-term treatment. Nowadays, DA receptor agonists are useful medication even regarded as first choice to delay the starting of L-dopa therapy. In advanced stage of PD, they are also used as adjunct therapy together with L-dopa. DA receptor agonists act by stimulation of presynaptic and postsynaptic DA receptors. Despite the usefulness, they could be causative drugs for valvulopathy and nonmotor complication such as DA dysregulation syndrome (DDS. In this paper, physiological characteristics of DA receptor familyare discussed. We also discuss the validity, benefits, and specific adverse effects of pharmaceutical DA receptor agonist.

  18. Ryanodine receptor channelopathies

    Science.gov (United States)

    Betzenhauser, Matthew J.

    2010-01-01

    Ryanodine receptors (RyR) are intracellular Ca2+-permeable channels that provide the sarcoplasmic reticulum Ca2+ release required for skeletal and cardiac muscle contractions. RyR1 underlies skeletal muscle contraction, and RyR2 fulfills this role in cardiac muscle. Over the past 20 years, numerous mutations in both RyR isoforms have been identified and linked to skeletal and cardiac diseases. Malignant hyperthermia, central core disease, and catecholaminergic polymorphic ventricular tachycardia have been genetically linked to mutations in either RyR1 or RyR2. Thus, RyR channelopathies are both of interest because they cause significant human diseases and provide model systems that can be studied to elucidate important structure–function relationships of these ion channels. PMID:20179962

  19. Molecular characterization of opioid receptors

    Energy Technology Data Exchange (ETDEWEB)

    Howard, A.D.

    1986-01-01

    The aim of this research was to purify and characterize active opioid receptors and elucidate molecular aspects of opioid receptor heterogeneity. Purification to apparent homogeneity of an opioid binding protein from bovine caudate was achieved by solubilization in the non-ionic detergent, digitonin, followed by sequential chromatography on the opiate affinity matrix, ..beta..-naltrexylethylenediamine-CH-Sepharose 4B, and on the lectine affinity matrix, wheat germ agglutinin-agarose. Polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate (SDS-PAGE) followed by autoradiography revealed that radioiodinated purified receptor gave a single band. Purified receptor preparations showed a specific activity of 12,000-15,000 fmol of opiate bound per mg of protein. Radioiodinated human beta-endorphin (/sup 125/I-beta-end/sub H/) was used as a probe to investigate the ligand binding subunits of mu and delta opioid receptors. /sup 125/I-beta-end/sub H/ was shown to bind to a variety of opioid receptor-containing tissues with high affinity and specificity with preference for mu and delta sites, and with little, if any, binding to kappa sites. Affinity crosslinking techniques were employed to covalently link /sup 125/I-beta-end/sub H/ to opioid receptors, utilizing derivatives of bis-succinimidyl esters that are bifunctional crosslinkers with specificities for amino and sulfhydryl groups. This, and competition experiments with high type-selective ligands, permitted the assignment of two labeled peptides to their receptor types, namely a peptide of M/sub r/ = 65,000 for mu receptors and one of M/sub r/ = 53,000 for delta receptors.

  20. Estrogen-related receptor β (ERRβ) - renaissance receptor or receptor renaissance?

    Science.gov (United States)

    Divekar, Shailaja D; Tiek, Deanna M; Fernandez, Aileen; Riggins, Rebecca B

    2016-01-01

    Estrogen-related receptors (ERRs) are founding members of the orphan nuclear receptor (ONR) subgroup of the nuclear receptor superfamily. Twenty-seven years of study have yet to identify cognate ligands for the ERRs, though they have firmly placed ERRα and ERRγ at the intersection of cellular metabolism and oncogenesis. The pace of discovery for novel functions of ERRβ, however, has until recently been somewhat slower than that of its family members. ERRβ has also been largely ignored in summaries and perspectives of the ONR literature. Here, we provide an overview of established and emerging knowledge of ERRβ in mouse, man, and other species, highlighting unique aspects of ERRβ biology that set it apart from the other two estrogen-related receptors, with a focus on the impact of alternative splicing on the structure and function of this receptor.

  1. Corticosteroids decrease glomerular angiotensin receptors

    Energy Technology Data Exchange (ETDEWEB)

    Douglas, J.G.

    1987-03-01

    Angiotensin II (ANG II) receptors of glomerular mesangial cells are regulated in vivo by changes in Na balance, effects that are presumed to be secondary to changes in circulating ANG II. However, since changes in ANG II were accompanied by parallel changes in plasma aldosterone in all models tested, it is possible that aldosterone may have also participated in the modulation of glomerular ANG II receptors. To test this hypothesis, short-term aldosterone infusions within the physiological range were employed to favor actions that would be mediated through a high-affinity mineralocorticoid receptor. The glucocorticoid, dexamethasone, was also tested to determine the mineralocorticoid specificity of the response. Two infusion rates were associated with a decrease in glomerular /sup 125/I ANG II receptor density of 33 and 45%, respectively. Serum potassium and urinary Na/K ratio were lower in the aldosterone group. Spironolactone abolished the effect of aldosterone consistent with an action mediated through a specific mineralocorticoid receptor. These studies support the hypothesis that corticosteroids modulate glomerular ANG II receptors and validate the complexity of glomerular receptor modulation. The downregulation observed would be expected to diminish the ability of ANG II to influence glomerular hemodynamics in models such as mineralocorticoid and glucocorticoid-induced hypertension.

  2. Radioiodinated ligands for dopamine receptors

    International Nuclear Information System (INIS)

    Kung, H.F.

    1994-01-01

    The dopamine receptor system is important for normal brain function; it is also the apparent action site for various neuroleptic drugs for the treatment of schizophrenia and other metal disorders. In the past few years radioiodinated ligands for single photon emission tomography (SPECT) have been successfully developed and tested in humans: [ 123 I]TISCH for D1 dopamine receptors; [ 123 I]IBZM, epidepride, IBF and FIDA2, four iodobenzamide derivatives, for D2/D3 dopamine receptors. In addition, [ 123 I]β-CIT (RTI-55) and IPT, cocaine derivatives, for the dopamine reuptake site are potentially useful for diagnosis of loss of dopamine neurons. The first iodinated ligand, (R)trans-7-OH-PIPAT, for D3 dopamine receptors, was synthesized and characterized with cloned cell lines (Spodoptera frugiperda, Sf9) expressing the D2 and D3 dopamine receptors and with rat basal forebrain membrane preparations. Most of the known iodobenzamides displayed similar potency in binding to both D2 and D3 dopamine receptors expressed in the cell lines. Initial studies appear to suggest that by fine tuning the structures it may be possible to develop agents specific for D2 and D3 dopamine receptors. It is important to investigate D2/D3 selectivity for this series of potent ligands

  3. Lysophospholipid receptors in drug discovery.

    Science.gov (United States)

    Kihara, Yasuyuki; Mizuno, Hirotaka; Chun, Jerold

    2015-05-01

    Lysophospholipids (LPs), including lysophosphatidic acid (LPA), sphingosine 1-phospate (S1P), lysophosphatidylinositol (LPI), and lysophosphatidylserine (LysoPS), are bioactive lipids that transduce signals through their specific cell-surface G protein-coupled receptors, LPA1-6, S1P1-5, LPI1, and LysoPS1-3, respectively. These LPs and their receptors have been implicated in both physiological and pathophysiological processes such as autoimmune diseases, neurodegenerative diseases, fibrosis, pain, cancer, inflammation, metabolic syndrome, bone formation, fertility, organismal development, and other effects on most organ systems. Advances in the LP receptor field have enabled the development of novel small molecules targeting LP receptors for several diseases. Most notably, fingolimod (FTY720, Gilenya, Novartis), an S1P receptor modulator, became the first FDA-approved medicine as an orally bioavailable drug for treating relapsing forms of multiple sclerosis. This success is currently being followed by multiple, mechanistically related compounds targeting S1P receptor subtypes, which are in various stages of clinical development. In addition, an LPA1 antagonist, BMS-986020 (Bristol-Myers Squibb), is in Phase 2 clinical development for treating idiopathic pulmonary fibrosis, as a distinct compound, SAR100842 (Sanofi) for the treatment of systemic sclerosis and related fibrotic diseases. This review summarizes the current state of drug discovery in the LP receptor field. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. A transient receptor potential channel expressed in taste receptor cells.

    Science.gov (United States)

    Pérez, Cristian A; Huang, Liquan; Rong, Minqing; Kozak, J Ashot; Preuss, Axel K; Zhang, Hailin; Max, Marianna; Margolskee, Robert F

    2002-11-01

    We used differential screening of cDNAs from individual taste receptor cells to identify candidate taste transduction elements in mice. Among the differentially expressed clones, one encoded Trpm5, a member of the mammalian family of transient receptor potential (TRP) channels. We found Trpm5 to be expressed in a restricted manner, with particularly high levels in taste tissue. In taste cells, Trpm5 was coexpressed with taste-signaling molecules such as alpha-gustducin, Ggamma13, phospholipase C-beta2 (PLC-beta2) and inositol 1,4,5-trisphosphate receptor type III (IP3R3). Our heterologous expression studies of Trpm5 indicate that it functions as a cationic channel that is gated when internal calcium stores are depleted. Trpm5 may be responsible for capacitative calcium entry in taste receptor cells that respond to bitter and/or sweet compounds.

  5. Quantitative receptor radioautography in the study of receptor-receptor interactions in the nucleus tractus solitarii

    Directory of Open Access Journals (Sweden)

    Fior-Chadi D.R.

    1998-01-01

    Full Text Available The nucleus tractus solitarii (NTS in the dorsomedial medulla comprises a wide range of neuropeptides and biogenic amines. Several of them are related to mechanisms of central blood pressure control. Angiotensin II (Ang II, neuropeptide Y (NPY and noradrenaline (NA are found in the NTS cells, as well as their receptors. Based on this observation we have evaluated the modulatory effect of these peptide receptors on a2-adrenoceptors in the NTS. Using quantitative receptor radioautography, we observed that NPY and Ang II receptors decreased the affinity of a2-adrenoceptors for their agonists in the NTS of the rat. Cardiovascular experiments agreed with the in vitro data. Coinjection of a threshold dose of Ang II or of the NPY agonists together with an ED50 dose of adrenergic agonists such as NA, adrenaline and clonidine counteracted the depressor effect produced by the a2-agonist in the NTS. The results provide evidence for the existence of an antagonistic interaction between Ang II at1 receptors and NPY receptor subtypes with the a2-adrenoceptors in the NTS. This receptor interaction may reduce the transduction over the a2-adrenoceptors which can be important in central cardiovascular regulation and in the development of hypertension

  6. Glutamate receptor ligands

    DEFF Research Database (Denmark)

    Guldbrandt, Mette; Johansen, Tommy N; Frydenvang, Karla Andrea

    2002-01-01

    Homologation and substitution on the carbon backbone of (S)-glutamic acid [(S)-Glu, 1], as well as absolute stereochemistry, are structural parameters of key importance for the pharmacological profile of (S)-Glu receptor ligands. We describe a series of methyl-substituted 2-aminoadipic acid (AA...... or slightly lower potencies than (S)-AA [e.g., EC(50) = 76 microM for (2S,4S)-4-methyl-AA (5a) as compared to EC(50) = 35 microM for (S)-AA]. The position of the methyl substituent had a profound effect on the observed pharmacology, whereas the absolute stereochemistry at the methylated carbon atom had a very......) analogs, and the synthesis, stereochemistry, and enantiopharmacology of 3-methyl-AA (4a-d), 4-methyl-AA (5a-d), 5-methyl-AA (6a-d), and (E)-Delta(4)-5-methyl-AA (7a and 7b) are reported. The compounds were resolved using chiral HPLC and the configurational assignments of the enantiomers were based on X...

  7. Nuclear Receptor Signaling Atlas (NURSA)

    Data.gov (United States)

    U.S. Department of Health & Human Services — The Nuclear Receptor Signaling Atlas (NURSA) is designed to foster the development of a comprehensive understanding of the structure, function, and role in disease...

  8. Fractalkine (CX3CL1, a new factor protecting β-cells against TNFα

    Directory of Open Access Journals (Sweden)

    Sabine Rutti

    2014-10-01

    Conclusions: We demonstrate for the first time that human islets express and secrete CX3CL1 and CX3CL1 impacts them by decreasing glucagon secretion without affecting insulin secretion. Moreover, CX3CL1 decreases basal apoptosis of human β-cells. We further demonstrate that CX3CL1 protects β-cells from the adverse effects of TNFα on their function by restoring the expression and phosphorylation of key proteins of the insulin secretion pathway.

  9. L-glutamate Receptor In Paramecium

    Science.gov (United States)

    Bernal-Martínez, Juan; Ortega-Soto, Arturo

    2004-09-01

    Behavioral, electrophysiological and biochemical experiments were performed in order to establish the presence of a glutamate receptor in the ciliate Paramecium. It was found that an AMPA/KA receptor is functionally expressed in Paramecium and that this receptor is immunologically and fillogenetically related to the AMPA/KA receptor present in vertebrates.

  10. Receptor-targeted metalloradiopharmaceuticals. Final technical report

    International Nuclear Information System (INIS)

    Green, Mark A.

    2000-01-01

    Copper (II) and platinum (II) coordination complexes were prepared and characterized. These complexes were designed to afford structural homology with steroidal and non-steroidal estrogens for possible use as receptor-targeted radiopharmaceuticals. While weak affinity for the estrogen receptor was detectable, none would appear to have sufficient receptor-affinity for estrogen-receptor-targeted imaging or therapy

  11. [The receptor theory of atherosclerosis].

    Science.gov (United States)

    Likhoded, V G; Bondarenko, V M; Gintsburg, A L

    2010-01-01

    Lipopolysaccharides of Gram-negative bacteria can interact with Toll-like receptor 4 (TLR4) and induce atheroma formation. The risk of atherosclerosis is decreased in case of TLR4 mutation. Other bacterial ligands and endogenous ligands of TLRs can also be involved in induction of atherogenesis. The general concept of atherosclerosis pathogentsis is presented. According to this concept atherogenesis can be initiated by some reactions resulting from interaction of exogenous and endogenous microbial ligands with Toll-like receptors.

  12. Odorant Receptor Desensitization in Insects

    Directory of Open Access Journals (Sweden)

    Hao Guo

    2017-12-01

    Full Text Available Insects and other arthropods transmit devastating human diseases, and these vectors use chemical senses to target humans. Understanding how these animals detect, respond, and adapt to volatile odorants may lead to novel ways to disrupt host localization or mate recognition in these pests. The past decade has led to remarkable progress in understanding odorant detection in arthropods. Insects use odorant-gated ion channels, first discovered in Drosophila melanogaster , to detect volatile chemicals. In flies, 60 “tuning” receptor subunits combine with a common subunit, Orco ( o dorant r eceptor co receptor to form ligand-gated ion channels. The mechanisms underlying odorant receptor desensitization in insects are largely unknown. Recent work reveals that dephosphorylation of serine 289 on the shared Orco subunit is responsible for slow, odor-induced receptor desensitization. Dephosphorylation has no effect on the localization of the receptor protein, and activation of the olfactory neurons in the absence of odor is sufficient to induce dephosphorylation and desensitization. These findings reveal a major component of receptor modulation in this important group of disease vectors, and implicate a second messenger feedback mechanism in this process.

  13. Nuclear Receptors, RXR, and the Big Bang.

    Science.gov (United States)

    Evans, Ronald M; Mangelsdorf, David J

    2014-03-27

    Isolation of genes encoding the receptors for steroids, retinoids, vitamin D, and thyroid hormone and their structural and functional analysis revealed an evolutionarily conserved template for nuclear hormone receptors. This discovery sparked identification of numerous genes encoding related proteins, termed orphan receptors. Characterization of these orphan receptors and, in particular, of the retinoid X receptor (RXR) positioned nuclear receptors at the epicenter of the "Big Bang" of molecular endocrinology. This Review provides a personal perspective on nuclear receptors and explores their integrated and coordinated signaling networks that are essential for multicellular life, highlighting the RXR heterodimer and its associated ligands and transcriptional mechanism. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Expression of GABAergic receptors in mouse taste receptor cells.

    Directory of Open Access Journals (Sweden)

    Margaret R Starostik

    Full Text Available BACKGROUND: Multiple excitatory neurotransmitters have been identified in the mammalian taste transduction, with few studies focused on inhibitory neurotransmitters. Since the synthetic enzyme glutamate decarboxylase (GAD for gamma-aminobutyric acid (GABA is expressed in a subset of mouse taste cells, we hypothesized that other components of the GABA signaling pathway are likely expressed in this system. GABA signaling is initiated by the activation of either ionotropic receptors (GABA(A and GABA(C or metabotropic receptors (GABA(B while it is terminated by the re-uptake of GABA through transporters (GATs. METHODOLOGY/PRINCIPAL FINDINGS: Using reverse transcriptase-PCR (RT-PCR analysis, we investigated the expression of different GABA signaling molecules in the mouse taste system. Taste receptor cells (TRCs in the circumvallate papillae express multiple subunits of the GABA(A and GABA(B receptors as well as multiple GATs. Immunocytochemical analyses examined the distribution of the GABA machinery in the circumvallate papillae. Both GABA(A-and GABA(B- immunoreactivity were detected in the peripheral taste receptor cells. We also used transgenic mice that express green fluorescent protein (GFP in either the Type II taste cells, which can respond to bitter, sweet or umami taste stimuli, or in the Type III GAD67 expressing taste cells. Thus, we were able to identify that GABAergic receptors are expressed in some Type II and Type III taste cells. Mouse GAT4 labeling was concentrated in the cells surrounding the taste buds with a few positively labeled TRCs at the margins of the taste buds. CONCLUSIONS/SIGNIFICANCE: The presence of GABAergic receptors localized on Type II and Type III taste cells suggests that GABA is likely modulating evoked taste responses in the mouse taste bud.

  15. Toll-like receptors in neonatal sepsis.

    LENUS (Irish Health Repository)

    O'Hare, Fiona M

    2013-06-01

    Toll-like receptors are vital transmembrane receptors that initiate the innate immune response to many micro-organisms. The discovery of these receptors has improved our understanding of host-pathogen interactions, and these receptors play an important role in the pathogenesis of multiple neonatal conditions such as sepsis and brain injury. Toll-like receptors, especially TLRs 2 and 4, are associated with necrotizing enterocolitis, periventricular leukomalacia and sepsis.

  16. NMDA receptor signaling: death or survival?

    OpenAIRE

    LUO, Tong; WU, Wei-Hua; CHEN, Bo-Shiun

    2011-01-01

    Glutamate-induced neuronal damage is mainly caused by overactivation of N-methyl-D-aspartate (NMDA) receptors. Conversely, normal physiological brain function and neuronal survival require adequate activation of NMDA receptors. Studies have revealed that NMDA receptor-induced neuronal death or survival is mediated through distinct subset of NMDA receptors triggering different intracellular signaling pathways. Here we discuss recent advances in the characterization of NMDA receptors in neurona...

  17. Regulation of NMDA Receptors by Phosphorylation

    OpenAIRE

    Chen, Bo-Shiun; Roche, Katherine W.

    2007-01-01

    N-methyl-D-aspartate (NMDA) receptors are critical for neuronal development and synaptic plasticity. The molecular mechanisms underlying the synaptic localization and functional regulation of NMDA receptors have been the subject of extensive studies. In particular, phosphorylation has emerged as a fundamental mechanism that regulates NMDA receptor trafficking and can alter the channel properties of NMDA receptors. Here we summarize recent advances in the characterization of NMDA receptor phos...

  18. Studies on insulin receptor, 2

    International Nuclear Information System (INIS)

    Sakai, Yukio

    1979-01-01

    The present study is to investigate an influence of starvation and high fat diet on insulin receptor of the plasma membrane by means of radioreceptor assay using 125 I-labelled insulin. Male guinea pigs of Hartley strain were employed for the starvation study, and 125 I-insulin binding capacity on the plasma membrane of the liver and kidney was determined at 24, 48 and 72 hours of the fast after the last meal. Male rats of Wistar strain were employed for the high fat study where the diet containing 35% of butter was fed ad libitum for 38 or 68 days. The animals were killed at the fast of 12 hours, and 125 I-insulin binding capacity on the plasma membrane of the liver was determined. The results obtained are summarized as follows: 1) An increase in 125 I-insulin binding capacity on the plasma membrane of the liver and kidney was observed by the starvation for 24 to 72 hours. 2) The mechanism of the increase by starvation was considered to be different by the organs; it was due to an increase in number of insulin receptor in the liver, and due to an increase in affinity of insulin receptor in the kidney. 3) In non-obese rats fed with high fat diet, the number of insulin receptor on the liver plasma membrane showed a decrease, and this observation clearly indicated that the decrease in number of the receptor did not depend on the obesity. 4) Obese rats also fed with high fat diet presented a decrease in number of insulin receptor without an elevation of insulin levels in the circulating blood. This indicated that at least in the obese rats fed with high fat diet, the decrease in number of the receptor was not due to hyperinsulinemia. (author)

  19. Purinergic Receptors in Ocular Inflammation

    Directory of Open Access Journals (Sweden)

    Ana Guzman-Aranguez

    2014-01-01

    Full Text Available Inflammation is a complex process that implies the interaction between cells and molecular mediators, which, when not properly “tuned,” can lead to disease. When inflammation affects the eye, it can produce severe disorders affecting the superficial and internal parts of the visual organ. The nucleoside adenosine and nucleotides including adenine mononucleotides like ADP and ATP and dinucleotides such as P1,P4-diadenosine tetraphosphate (Ap4A, and P1,P5-diadenosine pentaphosphate (Ap5A are present in different ocular locations and therefore they may contribute/modulate inflammatory processes. Adenosine receptors, in particular A2A adenosine receptors, present anti-inflammatory action in acute and chronic retinal inflammation. Regarding the A3 receptor, selective agonists like N6-(3-iodobenzyl-5′-N-methylcarboxamidoadenosine (CF101 have been used for the treatment of inflammatory ophthalmic diseases such as dry eye and uveoretinitis. Sideways, diverse stimuli (sensory stimulation, large intraocular pressure increases can produce a release of ATP from ocular sensory innervation or after injury to ocular tissues. Then, ATP will activate purinergic P2 receptors present in sensory nerve endings, the iris, the ciliary body, or other tissues surrounding the anterior chamber of the eye to produce uveitis/endophthalmitis. In summary, adenosine and nucleotides can activate receptors in ocular structures susceptible to suffer from inflammatory processes. This involvement suggests the possible use of purinergic agonists and antagonists as therapeutic targets for ocular inflammation.

  20. Photo-antagonism of the GABAA receptor.

    Science.gov (United States)

    Mortensen, Martin; Iqbal, Favaad; Pandurangan, Arun P; Hannan, Saad; Huckvale, Rosemary; Topf, Maya; Baker, James R; Smart, Trevor G

    2014-07-29

    Neurotransmitter receptor trafficking is fundamentally important for synaptic transmission and neural network activity. GABAA receptors and inhibitory synapses are vital components of brain function, yet much of our knowledge regarding receptor mobility and function at inhibitory synapses is derived indirectly from using recombinant receptors, antibody-tagged native receptors and pharmacological treatments. Here we describe the use of a set of research tools that can irreversibly bind to and affect the function of recombinant and neuronal GABAA receptors following ultraviolet photoactivation. These compounds are based on the competitive antagonist gabazine and incorporate a variety of photoactive groups. By using site-directed mutagenesis and ligand-docking studies, they reveal new areas of the GABA binding site at the interface between receptor β and α subunits. These compounds enable the selected inactivation of native GABAA receptor populations providing new insight into the function of inhibitory synapses and extrasynaptic receptors in controlling neuronal excitation.

  1. Scavenger receptors in homeostasis and immunity.

    Science.gov (United States)

    Canton, Johnathan; Neculai, Dante; Grinstein, Sergio

    2013-09-01

    Scavenger receptors were originally identified by their ability to recognize and to remove modified lipoproteins; however, it is now appreciated that they carry out a striking range of functions, including pathogen clearance, lipid transport, the transport of cargo within the cell and even functioning as taste receptors. The large repertoire of ligands recognized by scavenger receptors and their broad range of functions are not only due to the wide range of receptors that constitute this family but also to their ability to partner with various co-receptors. The ability of individual scavenger receptors to associate with different co-receptors makes their responsiveness extremely versatile. This Review highlights recent insights into the structural features that determine the function of scavenger receptors and the emerging role that these receptors have in immune responses, notably in macrophage polarization and in the pathogenesis of diseases such as atherosclerosis and Alzheimer's disease.

  2. Identification and mechanism of ABA receptor antagonism

    Energy Technology Data Exchange (ETDEWEB)

    Melcher, Karsten; Xu, Yong; Ng, Ley-Moy; Zhou, X. Edward; Soon, Fen-Fen; Chinnusamy, Viswanathan; Suino-Powell, Kelly M; Kovach, Amanda; Tham, Fook S.; Cutler, Sean R.; Li, Jun; Yong, Eu-Leong; Zhu, Jian-Kang; Xu, H. Eric (NU Sinapore); (Van Andel); (UCR)

    2010-11-11

    The phytohormone abscisic acid (ABA) functions through a family of fourteen PYR/PYL receptors, which were identified by resistance to pyrabactin, a synthetic inhibitor of seed germination. ABA activates these receptors to inhibit type 2C protein phosphatases, such as ABI1, yet it remains unclear whether these receptors can be antagonized. Here we demonstrate that pyrabactin is an agonist of PYR1 and PYL1 but is unexpectedly an antagonist of PYL2. Crystal structures of the PYL2-pyrabactin and PYL1-pyrabactin-ABI1 complexes reveal the mechanism responsible for receptor-selective activation and inhibition, which enables us to design mutations that convert PYL1 to a pyrabactin-inhibited receptor and PYL2 to a pyrabactin-activated receptor and to identify new pyrabactin-based ABA receptor agonists. Together, our results establish a new concept of ABA receptor antagonism, illustrate its underlying mechanisms and provide a rational framework for discovering novel ABA receptor ligands.

  3. Modulation of Xenobiotic Receptors by Steroids

    Directory of Open Access Journals (Sweden)

    Delira Robbins

    2013-06-01

    Full Text Available Nuclear receptors (NRs are ligand-activated transcription factors that regulate the expression of their target genes. NRs play important roles in many human diseases, including metabolic diseases and cancer, and are therefore a key class of therapeutic targets. Steroids play important roles in regulating nuclear receptors; in addition to being ligands of steroid receptors, steroids (and their metabolites also regulate other NRs, such as the pregnane X receptor and constitutive androstane receptor (termed xenobiotic receptors, which participate in steroid metabolism. Xenobiotic receptors have promiscuous ligand-binding properties, and their structurally diverse ligands include steroids and their metabolites. Therefore, steroids, their metabolism and metabolites, xenobiotic receptors, steroid receptors, and the respective signaling pathways they regulate have functional interactions. This review discusses these functional interactions and their implications for activities mediated by steroid receptors and xenobiotic receptors, focusing on steroids that modulate pathways involving the pregnane X receptor and constitutive androstane receptor. The emphasis of the review is on structure-function studies of xenobiotic receptors bound to steroid ligands.

  4. 5-Hydroxytryptamine type 7 receptor neuroprotection against NMDA-induced excitotoxicity is PDGFβ receptor dependent.

    Science.gov (United States)

    Vasefi, Maryam S; Kruk, Jeff S; Heikkila, John J; Beazely, Michael A

    2013-04-01

    The serotonin (5-HT) type 7 receptor is expressed throughout the CNS including the hippocampus. Long-term (2-24 h) activation of 5-HT7 receptors regulates growth factor receptor expression, including the expression of platelet-derived growth factor (PDGF) β receptors. Direct activation of PDGFβ receptors in primary hippocampal and cortical neurons inhibits NMDA receptor activity and attenuates NMDA receptor-induced neurotoxicity. Our objective was to investigate whether the 5-HT7 receptor-induced increase in PDGFβ receptor expression would be similarly neuroprotective. We demonstrate that 5-HT7 receptor agonist treatment in primary hippocampal neurons also increases the expression of phospholipase C (PLC) γ, a downstream effector of PDGFβ receptors associated with the inhibition of NMDA receptor activity. To determine if the up-regulation of PDGFβ receptors is neuroprotective, primary hippocampal neurons were incubated with the 5-HT7 receptor agonist, LP 12, for 24 h. Indeed, LP 12 treatment prevented NMDA-induced neurotoxicity and this effect was dependent on PDGFβ receptor kinase activity. Treatment of primary neurons with LP 12 also differentially altered NMDA receptor subunit expression, reducing the expression of NR1 and NR2B, but not NR2A. These findings demonstrate the potential for providing growth factor receptor-dependent neuroprotective effects using small-molecule ligands of G protein-coupled receptors. © 2013 International Society for Neurochemistry.

  5. Prolactin receptors in uterine leiomyomas

    International Nuclear Information System (INIS)

    Baban, Rayah S.; Farid, Yahya Y.; Al-Zuheiri, Shatha T.

    2008-01-01

    Objective was to identify the location of prolactin receptors in patientswith uterine leiomyomas and their host myometrium as well as normalmyometrium. A case control study was conducted at the College of MedicineAl-Nahrain University, Baghdad, Iraq during the period from 2004-2006. Thesamples were collected at Obstetrics and Gynecological Departments of 4hospitals in Baghdad City (Al-Khadimiya Teaching Hospital, Al-Noor,Al-Kharch, and Al-Sadoon Hospital). Sections from large and small tumors(n=53) with their host myometriums and from normal myometriums (n=40) werestained immunohistochemically for prolactin receptors. Prolactin receptorswere positively seen in all cases examined including patient and comparisontissues, in the form of dark brown staining. Staining was heterogeneous andvaried in intensity from one case to another and sometimes from one are toanother in the same section. The increase in prolactin receptors in leiomyomais expected given that the underlying host myometrium abnormal. (author)

  6. Mechanism for the activation of glutamate receptors

    Science.gov (United States)

    Scientists at the NIH have used a technique called cryo-electron microscopy to determine a molecular mechanism for the activation and desensitization of ionotropic glutamate receptors, a prominent class of neurotransmitter receptors in the brain and spina

  7. Genetics Home Reference: leptin receptor deficiency

    Science.gov (United States)

    ... People with leptin receptor deficiency also have hypogonadotropic hypogonadism, which is a condition caused by reduced production ... weight gain associated with this disorder. Because hypogonadotropic hypogonadism occurs in leptin receptor deficiency , researchers suggest that ...

  8. Excitatory amino acid receptor antagonists

    DEFF Research Database (Denmark)

    Johansen, T N; Frydenvang, Karla Andrea; Ebert, B

    1997-01-01

    We have previously shown that (RS)-2-amino-2-(5-tert-butyl-3-hydroxyisoxazol-4-yl)acetic acid (ATAA) is an antagonist at N-methyl-D-aspartic acid (NMDA) and (RS)-2-amino-3-(3-hydroxy-5-methylisoxazol-4-yl)propionic acid (AMPA) receptors. We have now resolved ATAA via diastereomeric salt formation...

  9. Pharmacological approach of the receptors

    International Nuclear Information System (INIS)

    Puech, A.J.

    1989-01-01

    This paper explains the three main goals for clinical positron emission tomography (PET) studies: detection of receptor abnormalities in groups of patients to propose therapeutic indication of new ligands; validation of current hypothesis of drug effect; rational clinical drug development specially for dose-finding studies. (H.W.)

  10. Are olfactory receptors really olfactive?

    DEFF Research Database (Denmark)

    Giorgi, Franco; Maggio, Roberto; Bruni, Luis Emilio

    2011-01-01

    Any living organism interacts with and responds specifically to environmental molecules by expressing specific olfactory receptors. This specificity will be first examined in causal terms with particular emphasis on the mechanisms controlling olfactory gene expression, cell-to-cell interactions a...

  11. Cannabinoid receptor localization in brain

    Energy Technology Data Exchange (ETDEWEB)

    Herkenham, M.; Lynn, A.B.; Little, M.D.; Johnson, M.R.; Melvin, L.S.; de Costa, B.R.; Rice, K.C. (National Institute of Mental Health, Bethesda, MD (USA))

    1990-03-01

    (3H)CP 55,940, a radiolabeled synthetic cannabinoid, which is 10-100 times more potent in vivo than delta 9-tetrahydrocannabinol, was used to characterize and localize a specific cannabinoid receptor in brain sections. The potencies of a series of natural and synthetic cannabinoids as competitors of (3H)CP 55,940 binding correlated closely with their relative potencies in several biological assays, suggesting that the receptor characterized in our in vitro assay is the same receptor that mediates behavioral and pharmacological effects of cannabinoids, including human subjective experience. Autoradiography of cannabinoid receptors in brain sections from several mammalian species, including human, reveals a unique and conserved distribution; binding is most dense in outflow nuclei of the basal ganglia--the substantia nigra pars reticulata and globus pallidus--and in the hippocampus and cerebellum. Generally high densities in forebrain and cerebellum implicate roles for cannabinoids in cognition and movement. Sparse densities in lower brainstem areas controlling cardiovascular and respiratory functions may explain why high doses of delta 9-tetrahydrocannabinol are not lethal.

  12. Ligand-guided receptor optimization.

    Science.gov (United States)

    Katritch, Vsevolod; Rueda, Manuel; Abagyan, Ruben

    2012-01-01

    Receptor models generated by homology or even obtained by crystallography often have their binding pockets suboptimal for ligand docking and virtual screening applications due to insufficient accuracy or induced fit bias. Knowledge of previously discovered receptor ligands provides key information that can be used for improving docking and screening performance of the receptor. Here, we present a comprehensive ligand-guided receptor optimization (LiBERO) algorithm that exploits ligand information for selecting the best performing protein models from an ensemble. The energetically feasible protein conformers are generated through normal mode analysis and Monte Carlo conformational sampling. The algorithm allows iteration of the conformer generation and selection steps until convergence of a specially developed fitness function which quantifies the conformer's ability to select known ligands from decoys in a small-scale virtual screening test. Because of the requirement for a large number of computationally intensive docking calculations, the automated algorithm has been implemented to use Linux clusters allowing easy parallel scaling. Here, we will discuss the setup of LiBERO calculations, selection of parameters, and a range of possible uses of the algorithm which has already proven itself in several practical applications to binding pocket optimization and prospective virtual ligand screening.

  13. Molecular imaging of estrogen receptors

    NARCIS (Netherlands)

    van Kruchten, Michel

    2015-01-01

    For patients with estrogen receptor (ER) positive breast cancer, endocrine therapy plays a major role in both the adjuvant and palliative setting. For adequate treatment decision-making it is crucial to obtain up-to-date information on the ER-status of the tumor(s), since ER-expression is the sole

  14. Stability of solubilized benzodiazepine receptors

    NARCIS (Netherlands)

    Janssen, M.J; Ensing, K; de Zeeuw, R.A

    1997-01-01

    According to the observations of other researchers, benzodiazepine receptors solubilized with sodium deoxycholate are unstable, but stability can be improved by exchanging deoxycholate for Triton X-100. In our experiments we conclude that the choice of detergent is not the restrictive factor for the

  15. Uncompetitive antagonism of AMPA receptors

    DEFF Research Database (Denmark)

    Andersen, Trine F; Tikhonov, Denis B; Bølcho, Ulrik

    2006-01-01

    Philanthotoxins are uncompetitive antagonists of Ca2+-permeable AMPA receptors presumed to bind to the pore-forming region, but a detailed molecular mechanism for this interaction is missing. Here a small library of novel philanthotoxins was designed and synthesized using a solid-phase strategy. ...

  16. New horizons for lipoprotein receptors

    DEFF Research Database (Denmark)

    Andersen, Olav M.; Dagil, Robert; Kragelund, Birthe Brandt

    2013-01-01

    , this dogma has transformed with the observation that β-propellers of some LRs actively engage in complex formation too. Based on an in-depth decomposition of current structures and sequences, we suggest that exploitation of the β-propellers as binding targets depends on receptor subgroups. In particular, we...

  17. Virally encoded 7TM receptors

    DEFF Research Database (Denmark)

    Rosenkilde, M M; Waldhoer, M; Lüttichau, H R

    2001-01-01

    expression of this single gene in certain lymphocyte cell lineages leads to the development of lesions which are remarkably similar to Kaposi's sarcoma, a human herpesvirus 8 associated disease. Thus, this and other virally encoded 7TM receptors appear to be attractive future drug targets....

  18. Repeated blockade of mineralocorticoid receptors, but not of glucocorticoid receptors impairs food rewarded spatial learning

    NARCIS (Netherlands)

    Douma, BRK; Korte, SM; Buwalda, B; la Fleur, SE; Bohus, B; Luiten, PGM

    Corticosteroids from the adrenal cortex influence a variety of behaviours including cognition, learning and memory. These hormones act via two intracellular receptors, the mineralo-corticoid receptor (MR) and the glucocorticoid receptor (GR). These two receptor types display a high concentration and

  19. Repeated blockade of mineralocorticoid receptors, but not of glucocorticoid receptors impairs food rewarded spatial learning

    NARCIS (Netherlands)

    Douma, B. R.; Korte, S. M.; Buwalda, B.; La Fleur, S. E.; Bohus, B.; Luiten, P. G.

    1998-01-01

    Corticosteroids from the adrenal cortex influence a variety of behaviours including cognition, learning and memory. These hormones act via two intracellular receptors, the mineralo-corticoid receptor (MR) and the glucocorticoid receptor (GR). These two receptor types display a high concentration and

  20. The substance P/NK-1 receptor system: NK-1 receptor antagonists ...

    Indian Academy of Sciences (India)

    The substance P (SP)/neurokinin (NK)-1 receptor system plays an important role in cancer. SP promotes the proliferation of tumour cells, angiogenesis and the migration of tumour cells. We review the involvement of SP, the NK-1 receptor and NK-1 receptor antagonists in cancer. Tumour cells overexpress NK-1 receptors, ...

  1. Muscarinic receptors and drugs in cardiovascular medicine

    NARCIS (Netherlands)

    van Zwieten, P. A.; Doods, H. N.

    1995-01-01

    The parasympathetic system and its associated muscarinic receptors have been the subject of a renaissance of interest for the following two main reasons: (1) the association of endothelial muscarinic receptors and the nitric oxide (NO) pathway; (2) the discovery of several muscarinic receptor

  2. A new family of insect tyramine receptors

    DEFF Research Database (Denmark)

    Cazzamali, Giuseppe; Klærke, Dan Arne; Grimmelikhuijzen, Cornelis J P

    2005-01-01

    in the genomic databases from the malaria mosquito Anopheles gambiae and the honeybee Apis mellifera. These four tyramine or tyramine-like receptors constitute a new receptor family that is phylogenetically distinct from the previously identified insect octopamine/tyramine receptors. The Drosophila tyramine...

  3. Metabotropic glutamate receptors in glial cells

    NARCIS (Netherlands)

    D'Antoni, Simona; Berretta, Antonio; Bonaccorso, Carmela Maria; Bruno, Valeria; Aronica, Eleonora; Nicoletti, Ferdinando; Catania, Maria Vincenza

    2008-01-01

    Glutamate is the major excitatory neurotransmitter in the mammalian central nervous system (CNS) and exerts its actions via a number of ionotropic glutamate receptors/channels and metabotropic glutamate (mGlu) receptors. In addition to being expressed in neurons, glutamate receptors are expressed in

  4. Neurotransmitter Receptor Binding in Bovine Cerebral Microvessels

    Science.gov (United States)

    Peroutka, Stephen J.; Moskowitz, Michael A.; Reinhard, John F.; Synder, Solomon H.

    1980-05-01

    Purified preparations of microvessels from bovine cerebral cortex contain substantial levels of alpha-adrenergic, beta-adrenergic, and histamine 1 receptor binding sites but only negligible serotonin, muscarinic cholinergic, opiate, and benzodiazepine receptor binding. Norepinephrine and histamine may be endogenous regulators of the cerebral microcirculation at the observed receptors.

  5. Imaging of receptors in clinical neurosciences

    NARCIS (Netherlands)

    Korf, J

    This article deals with the question why should one determine receptors in the brain with positron and single photon emission tomography (PET and SPECT, respectively). Radiopharmaceuticals for a wide variety of receptors are available now. Receptors studies with PET and SPECT have thus far focused

  6. Modified Receptor Internalization upon Coexpression of 5-HT1B Receptor and 5-HT2B Receptors

    OpenAIRE

    Janoshazi , Agnes; Deraet , Maud; Callebert , Jacques; Setola , Vincent; Guenther , Silke; Saubamea , Bruno; Manivet , Philippe; Launay , Jean-Marie; Maroteaux , Luc

    2007-01-01

    International audience; Serotonin 5-HT(2B) receptors are often coexpressed with 5-HT(1B) receptors, and cross-talk between the two receptors has been reported in various cell types. However, many mechanistic details underlying 5-HT(1B) and 5-HT(2B) receptor cross-talk have not been elucidated. We hypothesized that 5-HT(2B) and 5-HT(1B) receptors each affect the others' signaling by modulating the others' trafficking. We thus examined the agonist stimulated internalization kinetics of fluoresc...

  7. Triheteromeric NMDA Receptors at Hippocampal Synapses

    Science.gov (United States)

    Tovar, Kenneth R.; McGinley, Matthew J.; Westbrook, Gary L.

    2013-01-01

    NMDA receptors are composed of two GluN1 (N1) and two GluN2 (N2) subunits. Constituent N2 subunits control the pharmacological and kinetic characteristics of the receptor. NMDA receptors in hippocampal or cortical neurons are often thought of as diheteromeric, i.e., containing only one type of N2 subunit. However, triheteromeric receptors with more than one type of N2 subunit also have been reported and the relative contribution of di- and triheteromeric NMDA receptors at synapses has been difficult to assess. Because wild-type hippocampal principal neurons express N1, N2A and N2B, we used cultured hippocampal principal neurons from N2A and N2B-knockout mice as templates for diheteromeric synaptic receptors. Summation of N1/N2B and N1/N2A excitatory postsynaptic currents could not account for the deactivation kinetics of wild-type excitatory postsynaptic currents (EPSCs) however. To make a quantitative estimate of NMDA receptor subtypes at wild-type synapses, we used the deactivation kinetics, as well as the effects of the competitive antagonist NVP-AAM077. Our results indicate that three types of NMDA receptors contribute to the wild-type EPSC, with at least two-thirds being triheteromeric receptors. Functional isolation of synaptic triheteromeric receptors revealed deactivation kinetics and pharmacology distinct from either diheteromeric receptor subtype. Because of differences in open probability, synaptic triheteromeric receptors outnumbered N1/N2A receptors by 5.8 to 1 and N1/N2B receptors by 3.2 to 1. Our results suggest that triheteromeric NMDA receptors must be either preferentially assembled or preferentially localized at synapses. PMID:23699525

  8. In vivo multi-modal imaging of experimental autoimmune uveoretinitis in transgenic reporter mice reveals the dynamic nature of inflammatory changes during disease progression.

    Science.gov (United States)

    Chen, Xiangting; Kezic, Jelena M; Forrester, John V; Goldberg, Gabrielle L; Wicks, Ian P; Bernard, Claude C; McMenamin, Paul G

    2015-01-27

    Experimental autoimmune uveoretinitis (EAU) is a widely used experimental animal model of human endogenous posterior uveoretinitis. In the present study, we performed in vivo imaging of the retina in transgenic reporter mice to investigate dynamic changes in exogenous inflammatory cells and endogenous immune cells during the disease process. Transgenic mice (C57Bl/6 J Cx 3 cr1 (GFP/+) , C57Bl/6 N CD11c-eYFP, and C57Bl/6 J LysM-eGFP) were used to visualize the dynamic changes of myeloid-derived cells, putative dendritic cells and neutrophils during EAU. Transgenic mice were monitored with multi-modal fundus imaging camera over five time points following disease induction with the retinal auto-antigen, interphotoreceptor retinoid binding protein (IRBP1-20). Disease severity was quantified with both clinical and histopathological grading. In the normal C57Bl/6 J Cx 3 cr1 (GFP/+) mouse Cx3cr1-expressing microglia were evenly distributed in the retina. In C57Bl/6 N CD11c-eYFP mice clusters of CD11c-expressing cells were noted in the retina and in C57Bl/6 J LysM-eGFP mice very low numbers of LysM-expressing neutrophils were observed in the fundus. Following immunization with IRBP1-20, fundus examination revealed accumulations of Cx3cr1-GFP(+) myeloid cells, CD11c-eYFP(+) cells and LysM-eGFP(+) myelomonocytic cells around the optic nerve head and along retinal vessels as early as day 14 post-immunization. CD11c-eYFP(+) cells appear to resolve marginally earlier (day 21 post-immunization) than Cx3cr1-GFP(+) and LysM-eGFP(+) cells. The clinical grading of EAU in transgenic mice correlated closely with histopathological grading. These results illustrate that in vivo fundus imaging of transgenic reporter mice allows direct visualization of various exogenously and endogenously derived leukocyte types during EAU progression. This approach acts as a valuable adjunct to other methods of studying the clinical course of EAU.

  9. Some theoretical aspects of hormone receptor determination

    International Nuclear Information System (INIS)

    Sluiter, W.J.

    1981-01-01

    Suitable antisera for determination of hormone receptors are not available for the majority of hormone receptors. Therefore, the determination of hormone receptors is mostly performed in terms of binding capacity for the appropriate hormone, using radioactive hormone labels. Some theoretical aspects of such a receptor determination are discussed including the length of incubation (total or unoccupied receptor concentration), single point or multiple point (Scatchard) analysis (regarding the influence of other specific binders), the correction procedure for non-specific binding and the influence of the circulating hormone level. (Auth.)

  10. Regulation of alternative macrophage activation in the liver following acetaminophen intoxication by stem cell-derived tyrosine kinase

    Energy Technology Data Exchange (ETDEWEB)

    Gardner, Carol R., E-mail: cgardner@pharmacy.rutgers.edu [Department of Pharmacology and Toxicology, Rutgers University, Ernest Mario School of Pharmacy, Piscataway, NJ 08854 (United States); Hankey, Pamela [Department of Veterinary and Biomedical Science, Pennsylvania State University, University Park, PA 16802 (United States); Mishin, Vladimir; Francis, Mary [Department of Pharmacology and Toxicology, Rutgers University, Ernest Mario School of Pharmacy, Piscataway, NJ 08854 (United States); Yu, Shan [Department of Veterinary and Biomedical Science, Pennsylvania State University, University Park, PA 16802 (United States); Laskin, Jeffrey D. [Department of Environmental and Occupational Medicine, UMDNJ-Robert Wood Johnson Medical School, Piscataway, NJ 08854 (United States); Laskin, Debra L. [Department of Pharmacology and Toxicology, Rutgers University, Ernest Mario School of Pharmacy, Piscataway, NJ 08854 (United States)

    2012-07-15

    Stem cell-derived tyrosine kinase (STK) is a transmembrane receptor reported to play a role in macrophage switching from a classically activated/proinflammatory phenotype to an alternatively activated/wound repair phenotype. In the present studies, STK{sup −/−} mice were used to assess the role of STK in acetaminophen-induced hepatotoxicity as evidence suggests that the pathogenic process involves both of these macrophage subpopulations. In wild type mice, centrilobular hepatic necrosis and increases in serum transaminase levels were observed within 6 h of acetaminophen administration (300 mg/kg, i.p.). Loss of STK resulted in a significant increase in sensitivity of mice to the hepatotoxic effects of acetaminophen and increased mortality, effects independent of its metabolism. This was associated with reduced levels of hepatic glutathione, rapid upregulation of inducible nitric oxide synthase, and prolonged induction of heme oxygenase-1, suggesting excessive oxidative stress in STK{sup −/−} mice. F4/80, a marker of mature macrophages, was highly expressed on subpopulations of Kupffer cells in livers of wild type, but not STK{sup −/−} mice. Whereas F4/80{sup +} macrophages rapidly declined in the livers of wild type mice following acetaminophen intoxication, they increased in STK{sup −/−} mice. In wild type mice hepatic expression of tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-12, products of classically activated macrophages, increased after acetaminophen administration. Monocyte chemotactic protein-1 (MCP-1) and its receptor, CCR2, as well as IL-10, mediators involved in recruiting and activating anti-inflammatory/wound repair macrophages, also increased in wild type mice after acetaminophen. Loss of STK blunted the effects of acetaminophen on expression of TNFα, IL-1β, IL-12, MCP-1 and CCR2, while expression of IL-10 increased. Hepatic expression of CX3CL1, and its receptor, CX3CR1 also increased in STK{sup −/−} mice

  11. Chapter 8. Activation mechanisms of chemokine receptors

    DEFF Research Database (Denmark)

    Jensen, Pia C; Rosenkilde, Mette M

    2009-01-01

    Chemokine receptors belong to the large family of 7-transmembrane (7TM) G-protein-coupled receptors. These receptors are targeted and activated by a variety of different ligands, indicating that activation is a result of similar molecular mechanisms but not necessarily similar modes of ligand...... binding. Attempts to unravel the activation mechanism of 7TM receptors have led to the conclusion that activation involves movements of the transmembrane segments VI and VII in particular, as recently gathered in the Global Toggle Switch Model. However, to understand the activation mechanism completely......, more research has to be done in this field. Chemokine receptors are interesting tools in this matter. First, the chemokine system has a high degree of promiscuity that allows several chemokines to target one receptor in different ways, as well as a single chemokine ligand to target several receptors...

  12. DMPD: Signal transduction by the lipopolysaccharide receptor, Toll-like receptor-4. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 15379975 Signal transduction by the lipopolysaccharide receptor, Toll-like receptor... Signal transduction by the lipopolysaccharide receptor, Toll-like receptor-4. PubmedID 15379975 Title Signa...l transduction by the lipopolysaccharide receptor, Toll-like receptor-4. Authors

  13. Further characterization of tuftsin receptors

    Energy Technology Data Exchange (ETDEWEB)

    Bump, N.J.; Lee, J.; Najjar, V.A.

    1986-03-05

    Tuftsin receptor was purified from rabbit peritoneal granulocytes by affinity chromatography. The pentapeptide analog, Thr-Lys-Pro-Pro-Arg was covalently linked to a solid support column. Rabbit granulocyte membrane was prepared, dissolved in 8 mM CHAPS and run through the column, eluted with 20 eta M free pentapeptide and subjected to dialysis concentration. When this was run on SDS-PAGE, two bands were obtained at a migration equivalent to Mr 60 and 62 K. These were electroblotted on nitrocellulose paper which showed two corresponding (/sup 3/H)-tuftsin binding bands. After reduction, and boiling, SDS-PAGE runs showed two bands Mr 85 and 70 K. When the purified receptor was reduced, alkylated and treated with endo-..beta..-N-acetylglucosaminidase H, only one band was obtained at Mr of about 90 K.

  14. Ketamine: NMDA Receptors and Beyond

    OpenAIRE

    Zorumski, Charles F.; Izumi, Yukitoshi; Mennerick, Steven

    2016-01-01

    Human studies examining the effects of the dissociative anesthetic ketamine as a model for psychosis and as a rapidly acting antidepressant have spurred great interest in understanding ketamine's actions at molecular, cellular, and network levels. Although ketamine has unequivocal uncompetitive inhibitory effects on N-methyl-d-aspartate receptors (NMDARs) and may preferentially alter the function of NMDARs on interneurons, recent work has questioned whether block of NMDARs is critical for its...

  15. Assay for the glucagon receptor

    International Nuclear Information System (INIS)

    Rojas, F.J.; Birnbaumer, L.

    1985-01-01

    A new iodination procedure for glucagon using 1,3,4,6-tetracholoro-3α,6α-diphenylglycouril (Iodogen) as the oxidizing agent, and the subsequent separation in pure form of [ 125 I-Tyr 10 ]mono-iodoglucagon by reverse-phase high-pressure liquid chromatography (HPLC) over C 18 -μ Bondapak columns is described. The newly synthesized [ 125 I]mono-iodoglucagon is shown to be a suitable probe for studying structural and functional properties of glucagon receptors

  16. Keratinocyte cytokine and chemokine receptors.

    Science.gov (United States)

    Tüzün, Yalçin; Antonov, Meltem; Dolar, Neslihan; Wolf, Ronni

    2007-10-01

    Chemokines are a superfamily of small, secreted proteins that regulate cell traffic in homeostatic and inflammatory conditions. Keratinocytes synthesize many chemokines, including members of the CC and CXC subfamilies, such as regulated on activation of normal T-cell expressed and secreted, gamma-interferon inducible protein-10, monokine induced by gamma-interferon, and thymus- and activation-regulated chemokine. They also express some chemokine receptors that mediate the inflammatory or immune response by attracting various kinds of leukocytes.

  17. Insulin receptor in Drosophila melanogaster

    International Nuclear Information System (INIS)

    Petruzzelli, L.; Herrera, R.; Rosen, O.

    1986-01-01

    A specific, high affinity insulin receptor is present in both adult Drosophila and in Drosophila embryos. Wheat germ lectin-enriched extracts of detergent-solubilized membranes from embryos and adults bind insulin with a K/sub d/ of 15 nM. Binding is specific for insulin; micromolar concentrations of proinsulin, IGFI, and IGFII are required to displace bound 125 I-insulin. Insulin-dependent protein tyrosine kinase activity appears during embryogenesis. It is evident between 6 and 12 hours of development, peaks between 12 and 18 hours and falls in the adult. During 0-6 hours of embryogenesis, and in the adult, a specific protein band (Mr = 135,000) is crosslinked to 125 I-insulin. During 6-12 and 12-18 hours of embryogenesis stages in which insulin-dependent protein tyrosine kinase is high, an additional band (Mr = 100,000) becomes crosslinked to 125 I-insulin. Isolation and DNA sequence analysis of genomic clones encoding the Drosophila insulin receptor will be presented as will the characterization of insulin receptor mRNA's during development

  18. PAF receptor structure: a hypothesis.

    Science.gov (United States)

    Godfroid, J J; Dive, G; Lamotte-Brasseur, J; Batt, J P; Heymans, F

    1991-12-01

    Different hypotheses of the structure of platelet-activating factor (PAF) receptor based on structure-activity relationships of agonists and antagonists are reviewed. For an agonistic effect, strong hydrophobic interactions and an ether function are required in position-1 of the glycerol backbone; chain length limitations and steric hindrance demand a small group in position-2. The unusual structural properties of non-PAF-like antagonists required 3-D electrostatic potential calculations. This method applied to seven potent antagonists suggests a strong "Cache-orielles" (ear-muff) effect, i.e., two strong electronegative wells (isocontour at -10 Kcal/mole) are located at 180 degrees to each other and at a relatively constant distance. Initial consideration of the "Cache-oreilles" effect implied the structure of a bipolarized cylinder of 10-12 A diameter for the receptor. However, very recent results on studies with agonists and antagonists structurally similar to PAF suggest that the receptor may in fact be a multi-polarized cylinder.

  19. NGA/Insulin receptor scanning

    International Nuclear Information System (INIS)

    Kurtaran, A.; Virgolini, I.

    1994-01-01

    Tc-99m-galactosyl-neoglycoalbumin (NGA) is one of the first receptor-based radiopharmaceuticals which specifically recognizes the hepatic binding protein (HBP) located on the surface of the hepatocytes. The exclusive interactin of NGA with HBP provided the basis for a kinetic model for the evaluation hepatocellular function. During the last years we have used NGA in more than 300 patients with various liver diseases including liver cirrhosis (Stages Child A to Child C), viral hepatitis, and carcinomas. In these studies, the calculated HBP densities, after i.v.-injection of Tc-99m-NGA, significantly correlated with the clinical course of the diseases. Furthermore, similar to conventional Tc-colloid, NGA provided excellent demonstration of 'cold spots' for hepatic masses. In a further approach we used another hepatocyte receptor-seeking radioligand, I-123-Tyr-A14- insulin, and found, that its in vitro-binding to hepatocellular carcinomas is greatly enhanced over normal hepatic tissue. On this basis, we developed a double-tracer method using NGA and insulin in a single study. Thus, areas of 'cold spots' identifying hepatic masses on NGA scans, take up I-123-Tyr-A14-insulin immediately after i.v.-injection. This was true for hepatocellular hepatomas, but not for adenocarcinomas. In conclusion, NGA/insulin receptor scanning could be a novel and save method for the demonstration of hepatocellular hepatomas. (author)

  20. Lymphocyte receptors for pertussis toxin

    Energy Technology Data Exchange (ETDEWEB)

    Clark, C.G.; Armstrong, G.D. (Univ. of Alberta, Edmonton (Canada))

    1990-12-01

    We have investigated human T-lymphocyte receptors for pertussis toxin by affinity isolation and photoaffinity labeling procedures. T lymphocytes were obtained from peripheral human blood, surface iodinated, and solubilized in Triton X-100. The iodinated mixture was then passed through pertussis toxin-agarose, and the fractions were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Autoradiography of the fixed, dried gels revealed several bands in the pertussis toxin-bound fraction that were not observed in fractions obtained from histone or fetuin-agarose. Further investigations employed a photoaffinity labeling reagent, sulfosuccinimidyl 2-(p-azido-salicylamido)-1,3'-dithiopropionate, to identify pertussis toxin receptors in freshly isolated peripheral blood monocytic cells, T lymphocytes, and Jurkat cells. In all three cell systems, the pertussis toxin affinity probe specifically labeled a single protein species with an apparent molecular weight of 70,000 that was not observed when the procedure was performed in the presence of excess unmodified pertussis toxin. A protein comparable in molecular weight to the one detected by the photoaffinity labeling technique was also observed among the species that bound to pertussis toxin-agarose. The results suggest that pertussis toxin may bind to a 70,000-Da receptor in human T lymphocytes.

  1. Nuclear receptors for thyroid hormones

    International Nuclear Information System (INIS)

    Ricketts, M.H.; Groenewald, J. de W.; Wilson, B.D.

    1980-01-01

    The thyroid hormones, T 3 and T 4 , modulate a vast number of metabolic processes in mammalian tissues. High affinity, low capacity binding sites for T 3 and T 4 have been demonstrated in cell nuclei of target organs using both in vivo and in vitro labelling techniques. The displacement of [ 125 I]T 3 from nuclear binding sites by thyroid hormone analogues correlates well with the thyromimetic activities of the analogues tested. Dose-response relationships between T 3 occupancy and growth hormone secretion as a function of free T 3 concentration have been established with the GH 1 cell line. The equilibrium dissociation constant of the equation which describes how T 3 binds to the nuclei of intact cells is essentially the same as the free T 3 concentration that elicits the half-maximal biological response of the hormone. It is becoming apparent that these nuclear binding sites represent specific thyroid hormone receptors, whose function may be to regulate gene activity in target tissues. This report concerns the binding of the rat liver nuclear receptor to duplex and random coil DNA as well as to non-mammalian and synthetic DNAs. We postulate that the receptor binds in vivo to native DNA in the minor groove of the DNA helix

  2. Complex GABAB receptor complexes: how to generate multiple functionally distinct units from a single receptor

    Directory of Open Access Journals (Sweden)

    Chanjuan eXU

    2014-02-01

    Full Text Available The main inhibitory neurotransmitter, GABA, acts on both ligand-gated and G protein-coupled receptors, the GABAA/C and GABAB receptors, respectively. The later play important roles in modulating many synapses, both at the pre- and post-synaptic levels, and are then still considered as interesting targets to treat a number of brain diseases, including addiction. For many years, several subtypes of GABAB receptors were expected, but cloning revealed only two genes that work in concert to generate a single type of GABAB receptor composed of two subunits. Here we will show that the signaling complexity of this unit receptor type can be largely increased through various ways, including receptor stoichiometry, subunit isoforms, membrane expression and localization, crosstalk with other receptors or interacting proteins. These recent data revealed how complexity of a receptor unit can be increased, observation that certainly are not unique to the GABAB receptor.

  3. The two-state dimer receptor model: a general model for receptor dimers.

    Science.gov (United States)

    Franco, Rafael; Casadó, Vicent; Mallol, Josefa; Ferrada, Carla; Ferré, Sergi; Fuxe, Kjell; Cortés, Antoni; Ciruela, Francisco; Lluis, Carmen; Canela, Enric I

    2006-06-01

    Nonlinear Scatchard plots are often found for agonist binding to G-protein-coupled receptors. Because there is clear evidence of receptor dimerization, these nonlinear Scatchard plots can reflect cooperativity on agonist binding to the two binding sites in the dimer. According to this, the "two-state dimer receptor model" has been recently derived. In this article, the performance of the model has been analyzed in fitting data of agonist binding to A(1) adenosine receptors, which are an example of receptor displaying concave downward Scatchard plots. Analysis of agonist/antagonist competition data for dopamine D(1) receptors using the two-state dimer receptor model has also been performed. Although fitting to the two-state dimer receptor model was similar to the fitting to the "two-independent-site receptor model", the former is simpler, and a discrimination test selects the two-state dimer receptor model as the best. This model was also very robust in fitting data of estrogen binding to the estrogen receptor, for which Scatchard plots are concave upward. On the one hand, the model would predict the already demonstrated existence of estrogen receptor dimers. On the other hand, the model would predict that concave upward Scatchard plots reflect positive cooperativity, which can be neither predicted nor explained by assuming the existence of two different affinity states. In summary, the two-state dimer receptor model is good for fitting data of binding to dimeric receptors displaying either linear, concave upward, or concave downward Scatchard plots.

  4. Characterization of astrocytic and neuronal benzodiazepine receptors

    Energy Technology Data Exchange (ETDEWEB)

    Bender, A.S.

    1988-01-01

    Primary cultures of astrocytes and neurons express benzodiazepine receptors. Neuronal benzodiazepine receptors were of high-affinity, K{sub D} values were 7.5-43 nM and the densities of receptors (B{sub max}) were 924-4131 fmol/mg protein. Astrocytes posses a high-affinity benzodiazepine receptor, K{sub D} values were 6.6-13 nM. The B{sub max} values were 6,033-12,000 fmol/mg protein. The pharmacological profile of the neuronal benzodiazepine receptor was that of the central-type benzodiazepine receptor, where clonazepam has a high-affinity and Ro 5-4864 (4{prime}-chlorodiazepam) has a low-affinity. Whereas astrocytic benzoidazepine receptor was characteristic of the so called peripheral-type benzodiazepine receptors, which shows a high-affinity towards Ro 5-4863, and a low-affinity towards clonazepam. The astrocytic benzodiazepine receptors was functionally correlated with voltage dependent calcium channels, since dihydropyridines and benzodiazepines interacted with ({sup 3}H) diazepam and ({sup 3}H) nitrendipine receptors with the same rank order of potency, showing a statistically significant correlation. No such correlation was observed in neurons.

  5. Localization of mineralocorticoid receptors at mammalian synapses.

    Directory of Open Access Journals (Sweden)

    Eric M Prager

    Full Text Available In the brain, membrane associated nongenomic steroid receptors can induce fast-acting responses to ion conductance and second messenger systems of neurons. Emerging data suggest that membrane associated glucocorticoid and mineralocorticoid receptors may directly regulate synaptic excitability during times of stress when adrenal hormones are elevated. As the key neuron signaling interface, the synapse is involved in learning and memory, including traumatic memories during times of stress. The lateral amygdala is a key site for synaptic plasticity underlying conditioned fear, which can both trigger and be coincident with the stress response. A large body of electrophysiological data shows rapid regulation of neuronal excitability by steroid hormone receptors. Despite the importance of these receptors, to date, only the glucocorticoid receptor has been anatomically localized to the membrane. We investigated the subcellular sites of mineralocorticoid receptors in the lateral amygdala of the Sprague-Dawley rat. Immunoblot analysis revealed the presence of mineralocorticoid receptors in the amygdala. Using electron microscopy, we found mineralocorticoid receptors expressed at both nuclear including: glutamatergic and GABAergic neurons and extra nuclear sites including: presynaptic terminals, neuronal dendrites, and dendritic spines. Importantly we also observed mineralocorticoid receptors at postsynaptic membrane densities of excitatory synapses. These data provide direct anatomical evidence supporting the concept that, at some synapses, synaptic transmission is regulated by mineralocorticoid receptors. Thus part of the stress signaling response in the brain is a direct modulation of the synapse itself by adrenal steroids.

  6. Protein Connectivity in Chemotaxis Receptor Complexes.

    Directory of Open Access Journals (Sweden)

    Stephan Eismann

    2015-12-01

    Full Text Available The chemotaxis sensory system allows bacteria such as Escherichia coli to swim towards nutrients and away from repellents. The underlying pathway is remarkably sensitive in detecting chemical gradients over a wide range of ambient concentrations. Interactions among receptors, which are predominantly clustered at the cell poles, are crucial to this sensitivity. Although it has been suggested that the kinase CheA and the adapter protein CheW are integral for receptor connectivity, the exact coupling mechanism remains unclear. Here, we present a statistical-mechanics approach to model the receptor linkage mechanism itself, building on nanodisc and electron cryotomography experiments. Specifically, we investigate how the sensing behavior of mixed receptor clusters is affected by variations in the expression levels of CheA and CheW at a constant receptor density in the membrane. Our model compares favorably with dose-response curves from in vivo Förster resonance energy transfer (FRET measurements, demonstrating that the receptor-methylation level has only minor effects on receptor cooperativity. Importantly, our model provides an explanation for the non-intuitive conclusion that the receptor cooperativity decreases with increasing levels of CheA, a core signaling protein associated with the receptors, whereas the receptor cooperativity increases with increasing levels of CheW, a key adapter protein. Finally, we propose an evolutionary advantage as explanation for the recently suggested CheW-only linker structures.

  7. Amphipathic benzenes are designed inhibitors of the estrogen receptor alpha/steroid receptor coactivator interaction.

    Science.gov (United States)

    Gunther, Jillian R; Moore, Terry W; Collins, Margaret L; Katzenellenbogen, John A

    2008-05-16

    We report here on the design, synthesis, and evaluation of small molecule inhibitors of the interaction between a steroid receptor coactivator and estrogen receptor alpha. These inhibitors are based upon an amphipathic benzene scaffold whose hydrophobic face mimics the leucine-rich alpha-helical consensus sequence on the steroid receptor coactivators that interacts with a shallow groove on estrogen receptor alpha. Several of these molecules are among the most potent inhibitors of this interaction described to date and are active at low micromolar concentrations in both in vitro models of estrogen receptor action and in cell-based assays of estrogen receptor-mediated coactivator interaction and transcription.

  8. Activation of glucocorticoid receptors increases 5-HT2A receptor levels

    DEFF Research Database (Denmark)

    Trajkovska, Viktorija; Kirkegaard, Lisbeth; Krey, Gesa

    2009-01-01

    of depression is unknown. In mice with altered glucocorticoid receptor (GR) expression we investigated 5-HT2A receptor levels by Western blot and 3H-MDL100907 receptor binding. Serotonin fibre density was analyzed by stereological quantification of serotonin transporter immunopositive fibers. To establish...... an effect of GR activation on 5-HT2A levels, mature organotypic hippocampal cultures were exposed to corticosterone with or without GR antagonist mifepristone and mineralocorticoid receptor (MR) antagonist spironolactone. In GR under-expressing mice, hippocampal 5-HT2A receptor protein levels were decreased...... in dorsal hippocampus (77 +/- 35%, p effect of GR activation on 5-HT2A receptor...

  9. Receptor Tyrosine Kinases in Drosophila Development

    Science.gov (United States)

    Sopko, Richelle; Perrimon, Norbert

    2013-01-01

    Tyrosine phosphorylation plays a significant role in a wide range of cellular processes. The Drosophila genome encodes more than 20 receptor tyrosine kinases and extensive studies in the past 20 years have illustrated their diverse roles and complex signaling mechanisms. Although some receptor tyrosine kinases have highly specific functions, others strikingly are used in rather ubiquitous manners. Receptor tyrosine kinases regulate a broad expanse of processes, ranging from cell survival and proliferation to differentiation and patterning. Remarkably, different receptor tyrosine kinases share many of the same effectors and their hierarchical organization is retained in disparate biological contexts. In this comprehensive review, we summarize what is known regarding each receptor tyrosine kinase during Drosophila development. Astonishingly, very little is known for approximately half of all Drosophila receptor tyrosine kinases. PMID:23732470

  10. Acetylcholine receptors in the human retina

    International Nuclear Information System (INIS)

    Hutchins, J.B.; Hollyfield, J.G.

    1985-01-01

    Evidence for a population of acetylcholine (ACh) receptors in the human retina is presented. The authors have used the irreversible ligand 3 H-propylbenzilylcholine mustard ( 3 H-PrBCM) to label muscarinic receptors. 3 H- or 125 I-alpha-bungarotoxin (alpha-BTx) was used to label putative nicotinic receptors. Muscarinic receptors are apparently present in the inner plexiform layer of the retina. Autoradiographic grain densities are reduced in the presence of saturating concentrations of atropine, quinuclidinyl benzilate or scopolamine; this indicates that 3 H-PrBCM binding is specific for a population of muscarinic receptors in the human retina. Binding sites for radiolabeled alpha-BTx are found predominantly in the inner plexiform layer of the retina. Grain densities are reduced in the presence of d-tubocurarine, indicating that alpha-BTx may bind to a pharmacologically relevant nicotinic ACh receptor. This study provides evidence for cholinergic neurotransmission in the human retina

  11. Characteristic molecular vibrations of adenosine receptor ligands.

    Science.gov (United States)

    Chee, Hyun Keun; Yang, Jin-San; Joung, Je-Gun; Zhang, Byoung-Tak; Oh, S June

    2015-02-13

    Although the regulation of membrane receptor activation is known to be crucial for molecular signal transduction, the molecular mechanism underlying receptor activation is not fully elucidated. Here we study the physicochemical nature of membrane receptor behavior by investigating the characteristic molecular vibrations of receptor ligands using computational chemistry and informatics methods. By using information gain, t-tests, and support vector machines, we have identified highly informative features of adenosine receptor (AdoR) ligand and corresponding functional amino acid residues such as Asn (6.55) of AdoR that has informative significance and is indispensable for ligand recognition of AdoRs. These findings may provide new perspectives and insights into the fundamental mechanism of class A G protein-coupled receptor activation. Copyright © 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  12. Subtype selective kainic acid receptor agonists

    DEFF Research Database (Denmark)

    Bunch, Lennart; Krogsgaard-Larsen, Povl

    2009-01-01

    (S)-Glutamic acid (Glu) is the major excitatory neurotransmitter in the mammalian central nervous system, activating the plethora of glutamate receptors (GluRs). In broad lines, the GluRs are divided into two major classes: the ionotropic Glu receptors (iGluRs) and the metabotropic Glu receptors (m......GluRs). Within the iGluRs, five subtypes (KA1, KA2, iGluR5-7) show high affinity and express full agonist activity upon binding of the naturally occurring amino acid kainic acid (KA). Thus these receptors have been named the KA receptors. This review describes all-to our knowledge-published KA receptor agonists...

  13. Androgen receptor in estrogen receptor positive breast cancer: Beyond expression.

    Science.gov (United States)

    Basile, Debora; Cinausero, Marika; Iacono, Donatella; Pelizzari, Giacomo; Bonotto, Marta; Vitale, Maria Grazia; Gerratana, Lorenzo; Puglisi, Fabio

    2017-12-01

    In recent years, new therapeutic approaches have reshaped the overall strategy of breast cancer (BC) treatment and have markedly improved patient survival. This is, in part, due to novel therapies for estrogen receptor (ER)-positive BC. Unfortunately, many patients present de novo resistance to these therapies or develop an acquired resistance over time. Therefore, research is now focused on discovering new molecular targets to overcome these resistances. Interestingly, preclinical and clinical studies have shown a critical role for the cross-talk between androgen receptor (AR) and ER in luminal-like BC. AR is expressed in >60% of BC and in up to 90% of ERα-positive tumors. Multiple studies suggest that AR is associated with a favorable prognosis. However, AR overexpression and, in particular, the high AR:ER ratio, seem to be involved in resistance to hormonal treatment. In this setting, a group of BCs could benefit from AR-inhibitors; nevertheless, some ER-positive BC patients do not seem to benefit from this strategy. Therefore, it is crucial to identify biomarkers that would enable the selection of patients who might benefit from combination treatment with ER and AR inhibitors. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Xenobiotics and the Glucocorticoid Receptor.

    Science.gov (United States)

    Gulliver, Linda S M

    2017-03-15

    Glucocorticoid Receptor (GR) is present in virtually every human cell type. Representing a nuclear receptor superfamily, GR has several different isoforms essentially acting as ligand-dependent transcription factors, regulating glucocorticoid-responsive gene expression in both a positive and a negative manner. Although the natural ligand of the Glucocorticoid Receptor, glucocorticoids (GC) represent only some of the multiple ligands for GR. Xenobiotics, ubiquitous in the environment, bind to GR and are also capable of activating or repressing GR gene expression, thereby modulating GR cell and tissue-specific downstream effects in a multitude of ways that include responses to inflammatory, allergic, metabolic, neoplastic and autoimmune processes. Many xenobiotics, if inadequately metabolized by xenobiotic metabolizing enzymes and not wholly eliminated, could have deleterious toxic effects with potentially lethal consequences. This review examines GR, the genomic and non-genomic actions of natural and synthetic GC and the body's handling of xenobiotic compounds, before reviewing what is presently known about GR's interactions with many of the more commonly encountered and some of the less well known GR-associated xenobiotics. GR promiscuity and crosstalk with other signaling pathways is discussed, alongside novel roles for GR that include mood disorder and addiction. A knowledge of GR interactions with xenobiotics is increasingly relevant when considering aging populations and the related prevalence of neoplastic disease, together with growing concerns around human exposure to mixtures of chemicals in the environment. Furthermore, escalating rates of obesity, Type 2 diabetes; autoimmune, allergy, addiction and mood disorder-related pathologies, require novel targeted interventions and GR appears a promising pharmacological candidate. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. NUREBASE: database of nuclear hormone receptors

    OpenAIRE

    Duarte, Jorge; Perrière, Guy; Laudet, Vincent; Robinson-Rechavi, Marc

    2002-01-01

    Nuclear hormone receptors are an abundant class of ligand activated transcriptional regulators, found in varying numbers in all animals. Based on our experience of managing the official nomenclature of nuclear receptors, we have developed NUREBASE, a database containing protein and DNA sequences, reviewed protein alignments and phylogenies, taxonomy and annotations for all nuclear receptors. The reviewed NUREBASE is completed by NUREBASE_DAILY, automatically updated every 24 h. Both databases...

  16. Progesterone receptor modulators in breast cancer

    OpenAIRE

    WIEHLE, Ronald D.

    2015-01-01

    Breast cancer has been treated successfully with selective estrogen receptor antagonists (SERMs) such as tamoxifen, receptor-depleting agents such as fulvestrant, and aromatase inhibitors such as anastrozole. Selective progesterone receptor modulators (SPRMs or PRMs) have not been studied as much and are currently under investigation for inhibition of mammary carcinogenesis in animal models and breast cancer prevention trials in women. They might follow tamoxifen and aromatase inhibitors in t...

  17. Hemoglobin and heme scavenger receptors

    DEFF Research Database (Denmark)

    Nielsen, Marianne Jensby; Møller, Holger Jon; Moestrup, Søren Kragh

    2010-01-01

    Heme, the functional group of hemoglobin, myoglobin, and other hemoproteins, is a highly toxic substance when it appears in the extracellular milieu. To circumvent potential harmful effects of heme from hemoproteins released during physiological or pathological cell damage (such as hemolysis...... and rhabdomyolysis), specific high capacity scavenging systems have evolved in the mammalian organism. Two major systems, which essentially function in a similar way by means of a circulating latent plasma carrier protein that upon ligand binding is recognized by a receptor, are represented by a) the hemoglobin...

  18. CERAPP: Collaborative Estrogen Receptor Activity Prediction Project

    Data.gov (United States)

    U.S. Environmental Protection Agency — Data from a large-scale modeling project called CERAPP (Collaborative Estrogen Receptor Activity Prediction Project) demonstrating using predictive computational...

  19. Human dopamine receptor and its uses

    Energy Technology Data Exchange (ETDEWEB)

    Civelli, Olivier (Portland, OR); Van Tol, Hubert Henri-Marie (Toronto, CA)

    1999-01-01

    The present invention is directed toward the isolation, characterization and pharmacological use of the human D4 dopamine receptor. The nucleotide sequence of the gene corresponding to this receptor and alleleic variant thereof are provided by the invention. The invention also includes recombinant eukaryotic expression constructs capable of expressing the human D4 dopamine receptor in cultures of transformed eukaryotic cells. The invention provides cultures of transformed eukaryotic cells which synthesize the human D4 dopamine receptor, and methods for characterizing novel psychotropic compounds using such cultures.

  20. Characterization of the chicken muscle insulin receptor

    International Nuclear Information System (INIS)

    Adamo, M.; Simon, J.; Rosebrough, R.W.; McMurtry, J.P.; Steele, N.C.; LeRoith, D.

    1987-01-01

    Insulin receptors are present in chicken skeletal muscle. Crude membrane preparations demonstrated specific 125 I-insulin binding. The nonspecific binding was high (36-55% of total binding) and slightly lower affinity receptors were found than are typically observed for crude membrane insulin binding in other chicken tissues. Affinity crosslinking of 125 I-insulin to crude membranes revealed insulin receptor alpha-subunits of Mr 128K, intermediate between those of liver (134K) and brain (124K). When solubilized and partially purified on wheat germ agglutinin (WGA) affinity columns, chicken muscle insulin receptors exhibited typical high affinity binding, with approximately 10(-10) M unlabeled insulin producing 50% inhibition of the specific 125 I-insulin binding. WGA purified chicken muscle insulin receptors also exhibited insulin-stimulated autophosphorylation of the beta-subunit, which appeared as phosphorylated bands of 92- and 81K. Both bands were immunoprecipitated by anti-receptor antiserum (B10). WGA purified membranes also demonstrated dose-dependent insulin-stimulated phosphorylation of the exogenous substrate poly(Glu,Tyr)4:1. However, unlike chicken liver, chicken muscle insulin receptor number and tyrosine kinase activity were unaltered by 48 hr of fasting or 48 hr of fasting and 24 hr of refeeding. Thus, despite the presence of insulin receptors in chicken muscle showing normal coupling to receptor tyrosine kinase activity, nutritional alterations modulate these parameters in a tissue-specific manner in chickens

  1. Evolution of Class I cytokine receptors

    Science.gov (United States)

    Liongue, Clifford; Ward, Alister C

    2007-01-01

    Background The Class I cytokine receptors have a wide range of actions, including a major role in the development and function of immune and blood cells. However, the evolution of the genes encoding them remains poorly understood. To address this we have used bioinformatics to analyze the Class I receptor repertoire in sea squirt (Ciona intestinalis) and zebrafish (Danio rerio). Results Only two Class I receptors were identified in sea squirt, one with homology to the archetypal GP130 receptor, and the other with high conservation with the divergent orphan receptor CLF-3. In contrast, 36 Class I cytokine receptors were present in zebrafish, including representative members for each of the five structural groups found in mammals. This allowed the identification of 27 core receptors belonging to the last common ancestor of teleosts and mammals. Conclusion This study suggests that the majority of diversification of this receptor family occurred after the divergence of urochordates and vertebrates approximately 794 million years ago (MYA), but before the divergence of ray-finned from lobe-finned fishes around 476 MYA. Since then, only relatively limited lineage-specific diversification within the different Class I receptor structural groups has occurred. PMID:17640376

  2. Identification and mechanism of ABA receptor antagonism

    KAUST Repository

    Melcher, Karsten

    2010-08-22

    The phytohormone abscisic acid (ABA) functions through a family of fourteen PYR/PYL receptors, which were identified by resistance to pyrabactin, a synthetic inhibitor of seed germination. ABA activates these receptors to inhibit type 2C protein phosphatases, such as ABI1, yet it remains unclear whether these receptors can be antagonized. Here we demonstrate that pyrabactin is an agonist of PYR1 and PYL1 but is unexpectedly an antagonist of PYL2. Crystal structures of the PYL2-pyrabactin and PYL1-pyrabactin-ABI1 complexes reveal the mechanism responsible for receptor-selective activation and inhibition, which enables us to design mutations that convert PYL1 to a pyrabactin-inhibited receptor and PYL2 to a pyrabactin-activated receptor and to identify new pyrabactin-based ABA receptor agonists. Together, our results establish a new concept of ABA receptor antagonism, illustrate its underlying mechanisms and provide a rational framework for discovering novel ABA receptor ligands. © 2010 Nature America, Inc. All rights reserved.

  3. ABA Receptors: Past, Present and Future

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Jianjun [Harvard University; Yang, Xiaohan [ORNL; Weston, David [ORNL; Chen, Jay [ORNL

    2011-01-01

    Abscisic acid (ABA) is the key plant stress hormone. Consistent with the earlier studies in support of the presence of both membrane- and cytoplasm-localized ABA receptors, recent studies have identified multiple ABA receptors located in various subcellular locations. These include a chloroplast envelope-localized receptor (the H subunit of Chloroplast Mg2+-chelatase/ABA Receptor), two plasma membrane-localized receptors (G-protein Coupled Receptor 2 and GPCR-type G proteins), and one cytosol/nucleus-localized Pyrabactin Resistant (PYR)/PYR-Like (PYL)/Regulatory Component of ABA Receptor 1 (RCAR). Although the downstream molecular events for most of the identified ABA receptors are currently unknown, one of them, PYR/PYL/RACR was found to directly bind and regulate the activity of a long-known central regulator of ABA signaling, the A-group protein phosphatase 2C (PP2C). Together with the Sucrose Non-fermentation Kinase Subfamily 2 (SnRK2s) protein kinases, a central signaling complex (ABA-PYR-PP2Cs-SnRK2s) that is responsible for ABA signal perception and transduction is supported by abundant genetic, physiological, biochemical and structural evidence. The identification of multiple ABA receptors has advanced our understanding of ABA signal perception and transduction while adding an extra layer of complexity.

  4. Amphipathic Benzenes Are Designed Inhibitors of the Estrogen Receptor α/Steroid Receptor Coactivator Interaction

    OpenAIRE

    Gunther, Jillian R.; Moore, Terry W.; Collins, Margaret L.; Katzenellenbogen, John A.

    2008-01-01

    We report here on the design, synthesis and evaluation of small molecule inhibitors of the interaction between a steroid receptor coactivator and estrogen receptor α. These inhibitors are based upon an amphipathic benzene scaffold whose hydrophobic face mimics the leucine-rich α-helical consensus sequence on the steroid receptor coactivators that interacts with a shallow groove on estrogen receptor α. Several of these molecules are among the most potent inhibitors of this interaction describe...

  5. Hypothyroidism Affects D2 Receptor-mediated Breathing without altering D2 Receptor Expression

    OpenAIRE

    Schlenker, Evelyn H.; Rio, Rodrigo Del; Schultz, Harold D.

    2014-01-01

    Bromocriptine depressed ventilation in air and D2 receptor expression in the nucleus tractus solitaries (NTS) in male hypothyroid hamsters. Here we postulated that in age- matched hypothyroid female hamsters, the pattern of D2 receptor modulation of breathing and D2 receptor expression would differ from those reported in hypothyroid males. In females hypothyroidism did not affect D2 receptor protein levels in the NTS, carotid bodies or striatum. Bromocriptine, but not carmoxirole (a periphera...

  6. Hierarchical Phosphorylation of δ-Opioid Receptor Regulates Agonist-induced Receptor Desensitization and Internalization*

    OpenAIRE

    Maestri-El Kouhen, Odile; Wang, Guilin; Solberg, Jonathan; Erickson, Laurie J.; Law, Ping-Yee; Loh, Horace H.

    2000-01-01

    Treatment of HEK293 cells expressing the δ-opioid receptor with agonist [d-Pen2,5]enkephalin (DPDPE) resulted in the rapid phosphorylation of the receptor. We constructed several mutants of the potential phosphorylation sites (Ser/Thr) at the carboxyl tail of the receptor in order to delineate the receptor phosphorylation sites and the agonist-induced desensitization and internalization. The Ser and Thr were substituted to alanine, and the corresponding mutants were transiently and stably exp...

  7. The repertoire of trace amine G-protein-coupled receptors

    DEFF Research Database (Denmark)

    Gloriam, David E.; Bjarnadóttir, Thóra K; Yan, Yi-Lin

    2005-01-01

    eukaryotic species for receptors similar to the mammalian trace amine (TA) receptor subfamily. We identified 18 new receptors in rodents that are orthologous to the previously known TA-receptors. Remarkably, we found 57 receptors (and 40 pseudogenes) of this type in the zebrafish (Danio rerio), while fugu...

  8. One for all: the receptor-associated kinase BAK1.

    NARCIS (Netherlands)

    Chinchilla, D.; Shan, L.; He, P.; Vries, de S.C.; Kemmerling, B.

    2009-01-01

    The plant receptor kinase BAK1/SERK3 has been identified as a partner of ligand-binding leucine-rich repeat receptor kinases, in particular the brassinosteroid receptor BRI1 and the immune receptor FLS2. BAK1 positively regulates BRI1 receptor function via physical interaction and

  9. The G protein-coupled receptor, class C, group 6, subtype A (GPRC6A) receptor

    DEFF Research Database (Denmark)

    Clemmensen, C; Smajilovic, S; Wellendorph, P

    2014-01-01

    GPRC6A (G protein-coupled receptor, class C, group 6, subtype A) is a class C G protein-coupled receptor, that has been cloned from human, mouse and rat. Several groups have shown that the receptor is activated by a range of basic and small aliphatic L-α-amino acids of which L-arginine, L-lysine...

  10. The substance P/NK-1 receptor system: NK-1 receptor antagonists ...

    Indian Academy of Sciences (India)

    2015-04-27

    Apr 27, 2015 ... The substance P (SP)/neurokinin (NK)-1 receptor system plays an important role in cancer. SP promotes the ... NK-1 receptor may be a promising target in the treatment of cancer; NK-1 receptor antagonists could act as specific ...... mycin, ifosfamide, cisplatin) in MG-63 human osteosarcoma cells, but not in ...

  11. Interaction of epidermal growth factor receptors with the cytoskeleton is related to receptor clustering

    NARCIS (Netherlands)

    van Belzen, N.; Spaargaren, M.; Verkleij, A. J.; Boonstra, J.

    1990-01-01

    Recently it has been established that cytoskeleton-associated epidermal growth factor (EGF) receptors are predominantly of the high-affinity class and that EGF induces a recruitment of low-affinity receptors to the cytoskeleton. The nature of this EGF-induced receptor-cytoskeleton interaction,

  12. Posttransplant chimeric antigen receptor therapy.

    Science.gov (United States)

    Smith, Melody; Zakrzewski, Johannes; James, Scott; Sadelain, Michel

    2018-03-08

    Therapeutic T-cell engineering is emerging as a powerful approach to treat refractory hematological malignancies. Its most successful embodiment to date is based on the use of second-generation chimeric antigen receptors (CARs) targeting CD19, a cell surface molecule found in most B-cell leukemias and lymphomas. Remarkable complete remissions have been obtained with autologous T cells expressing CD19 CARs in patients with relapsed, chemo-refractory B-cell acute lymphoblastic leukemia, chronic lymphocytic leukemia, and non-Hodgkin lymphoma. Allogeneic CAR T cells may also be harnessed to treat relapse after allogeneic hematopoietic stem cell transplantation. However, the use of donor T cells poses unique challenges owing to potential alloreactivity. We review different approaches to mitigate the risk of causing or aggravating graft-versus-host disease (GVHD), including CAR therapies based on donor leukocyte infusion, virus-specific T cells, T-cell receptor-deficient T cells, lymphoid progenitor cells, and regulatory T cells. Advances in CAR design, T-cell selection and gene editing are poised to enable the safe use of allogeneic CAR T cells without incurring GVHD. © 2018 by The American Society of Hematology.

  13. Microarray-Based Determination of Estrogen Receptor, Progesterone Receptor, and HER2 Receptor Status in Breast Cancer

    NARCIS (Netherlands)

    Roepman, Paul; Horlings, Hugo M.; Krijgsman, Oscar; Kok, Marleen; Bueno-de-Mesquita, Jolien M.; Bender, Richard; Linn, Sabine C.; Glas, Annuska M.; van de Vijver, Marc J.

    2009-01-01

    Purpose: The level of estrogen receptor (ER), progesterone receptor (PR), and HER2 aids in the determination of prognosis and treatment of breast cancer. Immunohistochemistry is currently the predominant method for assessment, but differences in methods and interpretation can substantially affect

  14. The lactate receptor, G-protein-coupled receptor 81/hydroxycarboxylic acid receptor 1

    DEFF Research Database (Denmark)

    Morland, Cecilie; Lauritzen, Knut Huso; Puchades, Maja

    2015-01-01

    , and schizophrenia and in the deposition of phosphorylated tau protein in Alzheimer's disease. HCAR1 could serve to ameliorate these conditions and might also act through downstream mechanisms other than cAMP. Lactate exits cells through monocarboxylate transporters in an equilibrating manner and through astrocyte...... anion channels activated by depolarization. In addition to locally produced lactate, lactate produced by exercising muscle as well as exogenous HCAR1 agonists, e.g., from fruits and berries, might activate the receptor on cerebral blood vessels and brain cells....

  15. A bioluminescence resonance energy transfer 2 (BRET2) assay for monitoring seven transmembrane receptor and insulin receptor crosstalk

    DEFF Research Database (Denmark)

    Sanni, Samra Joke; Kulahin, Nikolaj; Jorgensen, Rasmus

    2017-01-01

    The angiotensin AT1 receptor is a seven transmembrane (7TM) receptor, which mediates the regulation of blood pressure. Activation of angiotensin AT1 receptor may lead to impaired insulin signaling indicating crosstalk between angiotensin AT1 receptor and insulin receptor signaling pathways. To el...

  16. Cannabinoid 2 Receptor- and Beta Arrestin 2-Dependent Upregulation of Serotonin 2A Receptors

    OpenAIRE

    Franklin, J.M.; Vasiljevik, T.; Prisinzano, T.E.; Carrasco, G.A.

    2012-01-01

    Recent evidence suggests that cannabinoid receptor agonists may regulate serotonin 2A (5-HT2A) receptor neurotransmission in the brain, although no molecular mechanism has been identified. Here, we present experimental evidence that sustained treatment with a non-selective cannabinoid agonist (CP 55,940) or selective CB2 receptor agonists (JWH 133 or GP 1a) upregulate 5-HT2A receptors in a neuronal cell line. Furthermore, this cannabinoid receptor agonist-induced upregulation of 5-HT2A recept...

  17. Identifying the receptor subtype selectivity of retinoid X and retinoic acid receptors via quantum mechanics.

    Science.gov (United States)

    Tsuji, Motonori; Shudo, Koichi; Kagechika, Hiroyuki

    2017-03-01

    Understanding and identifying the receptor subtype selectivity of a ligand is an important issue in the field of drug discovery. Using a combination of classical molecular mechanics and quantum mechanical calculations, this report assesses the receptor subtype selectivity for the human retinoid X receptor (hRXR) and retinoic acid receptor (hRAR) ligand-binding domains (LBDs) complexed with retinoid ligands. The calculated energies show good correlation with the experimentally reported binding affinities. The technique proposed here is a promising method as it reveals the origin of the receptor subtype selectivity of selective ligands.

  18. In vivo studies of opiate receptors

    International Nuclear Information System (INIS)

    Frost, J.J.; Dannals, R.F.; Duelfer, T.; Burns, H.D.; Ravert, H.T.; Langstroem, B.; Balasubramanian, V.; Wagner, H.N. Jr.

    1984-01-01

    To study opiate receptors noninvasively in vivo using positron emission tomography, techniques for preferentially labeling opiate receptors in vivo can be used. The rate at which receptor-bound ligand clears from the brain in vivo can be predicted by measuring the equilibrium dissociation constant (KD) at 37 degrees C in the presence of 100 mM sodium chloride and 100 microM guanyl-5'-imidodiphosphate, the drug distribution coefficient, and the molecular weight. A suitable ligand for labeling opiate receptors in vivo is diprenorphine, which binds to mu, delta, and kappa receptors with approximately equal affinity in vitro. However, in vivo diprenorphine may bind predominantly to one opiate receptor subtype, possibly the mu receptor. To predict the affinity for binding to the opiate receptor, a Hansch correlation was determined between the 50% inhibitory concentration for a series of halogen-substituted fentanyl analogs and electronic, lipophilic, and steric parameters. Radiochemical methods for the synthesis of carbon-11-labeled diprenorphine and lofentanil are presented

  19. In vivo studies of opiate receptors

    Energy Technology Data Exchange (ETDEWEB)

    Frost, J.J.; Dannals, R.F.; Duelfer, T.; Burns, H.D.; Ravert, H.T.; Langstroem, B.; Balasubramanian, V.; Wagner, H.N. Jr.

    1984-01-01

    To study opiate receptors noninvasively in vivo using positron emission tomography, techniques for preferentially labeling opiate receptors in vivo can be used. The rate at which receptor-bound ligand clears from the brain in vivo can be predicted by measuring the equilibrium dissociation constant (KD) at 37 degrees C in the presence of 100 mM sodium chloride and 100 microM guanyl-5'-imidodiphosphate, the drug distribution coefficient, and the molecular weight. A suitable ligand for labeling opiate receptors in vivo is diprenorphine, which binds to mu, delta, and kappa receptors with approximately equal affinity in vitro. However, in vivo diprenorphine may bind predominantly to one opiate receptor subtype, possibly the mu receptor. To predict the affinity for binding to the opiate receptor, a Hansch correlation was determined between the 50% inhibitory concentration for a series of halogen-substituted fentanyl analogs and electronic, lipophilic, and steric parameters. Radiochemical methods for the synthesis of carbon-11-labeled diprenorphine and lofentanil are presented.

  20. The Relationship of Erythropoietin Receptor Expression and ...

    African Journals Online (AJOL)

    2018-04-04

    Apr 4, 2018 ... A critical role of erythropoietin receptor in neurogenesis and post‑stroke recovery. J Neurosci 2006;26:1269‑74. 4. Ribatti D, Poliani PL, Longo V, Mangieri D, Nico B,. Vacca A. Erythropoietin/erythropoietin receptor system is involved in angiogenesis in human neuroblastoma. Histopathology 2007 ...

  1. Progesterone Receptor Scaffolding Function in Breast Cancer

    Science.gov (United States)

    2012-10-01

    response. PR are expressed in multiple human tissues including the uterus, mammary gland , brain, pancreas, thymus , bone, ovary, testes, and in the...ABSTRACT Progesterone receptors (PR) are critical mediators of mammary gland development and contribute to breast cancer progression. Progestin...receptors (PR) are critical for massive breast epithelial cell expansion during mammary gland development and contribute to breast cancer progression

  2. Structural Studies of Nicotinic Acetylcholine Receptors

    DEFF Research Database (Denmark)

    Shahsavar, Azadeh; Gajhede, Michael; Kastrup, Jette

    2016-01-01

    Nicotinic acetylcholine receptors (nAChRs) are members of the pentameric ligand-gated ion channel superfamily that play important roles in control of neurotransmitter release in the central and peripheral nervous system. These receptors are important therapeutic targets for development of drugs...

  3. Docking to flexible nicotinic acetylcholine receptors

    DEFF Research Database (Denmark)

    Sander, Tommy; Bruun, Anne T; Balle, Thomas

    2010-01-01

    Computational docking to nicotinic acetylcholine receptors (nAChRs) and other members of the Cys-loop receptor family is complicated by the flexibility of the so-called C-loop. As observed in the large number of published crystal structures of the acetylcholine binding protein (AChBP), a structural...

  4. Structural Mapping of Adenosine Receptor Mutations

    DEFF Research Database (Denmark)

    Jespers, Willem; Schiedel, Anke C; Heitman, Laura H

    2018-01-01

    The four adenosine receptors (ARs), A1, A2A, A2B, and A3, constitute a subfamily of G protein-coupled receptors (GPCRs) with exceptional foundations for structure-based ligand design. The vast amount of mutagenesis data, accumulated in the literature since the 1990s, has been recently supplemente...

  5. Interactions of Rodent Coronaviruses with Cellular Receptors

    Science.gov (United States)

    2016-05-08

    bluecomb disease). b. Other diseases caused by corooaviruses inc lude infectious peritonitis, r!¥lting, nephritis , pancreatitis , parotitis, and...homology with the MEV receptor, perhaps a different member of the CEA family such as the rat pregnancy specific glycoprotein could serve as a receptor

  6. Receptors, G proteins, and their interactions

    NARCIS (Netherlands)

    Hollmann, Markus W.; Strumper, Danja; Herroeder, Susanne; Durieux, Marcel E.

    2005-01-01

    Membrane receptors coupling to intracellular G proteins (G protein-coupled receptors) form one of the major classes of membrane signaling proteins. They are of great importance to the practice of anesthesiology because they are involved in many systems of relevance to the specialty (cardiovascular

  7. Lipoprotein receptors in cultured bovine endothelial cells

    International Nuclear Information System (INIS)

    Struempfer, A.E.M.

    1983-07-01

    In this study, receptors that may be involved in the uptake of low density lipoproteins (LDL) and low density lipoproteins which have been modified by acetylation (AcLDL), were characterized. Aortic epithelial cells were used and a cell culture system which closely resembled the in vivo monolayer was established. Endothelial cell and lipoprotein interactions were examined by incubating the cells with 125 l-labelled lipoproteins under various conditions. The receptor affinity of bovine aortic endothelial cells was higher for AcLDL than that for LDL. Competition studies demonstrated that there were two distinct receptors for LDL and AcLDL on the endothelial cells. AcLDL did not compete with LDL for the LDL receptor, and conversely LDL did not compete with AcLDL for the AcLDL receptor. The receptor activities for LDL and AcLDL were examined as a function of culture age. Whereas the LDL receptor could be regulated, the AcLDL receptor was not as susceptible to regulation. Upon exposing endothelial cells for 72 h to either LDL or AcLDL, it was found that the total amount of cellular cholesterol increased by about 50%. However, the increase of total cholesterol was largely in the form of free cholesterol. This is in contrast to macrophages, where the increase in total cholesterol upon exposure to AcLDL is largely in the form cholesteryl esters

  8. Molecular identification of the first SIFamide receptor

    DEFF Research Database (Denmark)

    Jørgensen, Lars M; Hauser, Frank; Cazzamali, Giuseppe

    2006-01-01

    . Database searches revealed SIFamide receptor orthologues in the genomes from the malaria mosquito Anopheles gambiae, the silkworm Bombyx mori, the red flour beetle Tribolium castaneum, and the honey bee Apis mellifera. An alignment of the five insect SIFamide or SIFamide-like receptors showed, again...

  9. Genetic features of thyroid hormone receptors

    Indian Academy of Sciences (India)

    Abstract. Thyroid hormone receptors (TR) are prototypes of nuclear transcription factors that regulate the expression of target genes. These receptors play an important role in many physiological processes. Moreover, a dysfunction of these proteins is often implicated in several human diseases and malignancies. Here we ...

  10. Emerging functions for neuropeptide Y5 receptors

    NARCIS (Netherlands)

    Bischoff, A.; Michel, M. C.

    1999-01-01

    The Y5 subtype of neuropeptide Y (NPY) receptors has raised considerable interest as a mediator of NPY-stimulated food intake, but with the advent of recent data, this hypothesis has come into question. Moreover, Y5 receptor-selective drugs might not be specific for food intake because additional

  11. Receptor study of psychiatric disorders using PET

    International Nuclear Information System (INIS)

    Suhara, Tetsuya

    1992-01-01

    Recent receptor studies of psychiatric disorders using PET have been focused on the change in the number of D 2 dopamine receptors in the striatum of drug-naive schizophrenic patients. One study confirmed an increase in D 2 receptors, while another study denied it. Although there were some differences in the approaches of the two groups, the reason for the discrepancy is not clear yet. Looking to psychiatric disorders other than schizophrenia, our recent study revealed a possible role of dopamine D 1 receptors in bipolar mood disorders. However, some problems must be resolved for further receptor studies with PET. For example, our recent study shows that desipamine decreases the in vivo binding of dopramine D 1 and D 2 receptors whereas these is no effect on dopamine D 1 and D 2 receptors in vitro. Additionally significant methodological problems lie in the method of evaluation of the non-specific binding and the effect of endogenous neurotransmitters. Moreover, difficulties in the diagnosis of psychiatric disorders and ethical problems in psychiatric research are critical factors in receptor studies with PET in psychiatric disorders. (author)

  12. Thermogenic characterization of ghrelin receptor null mice

    Science.gov (United States)

    Ghrelin is the only known circulating orexigenic hormone that increases food intake and promotes adiposity, and these physiological functions of ghrelin are mediated through its receptor growth hormone secretagogue receptor (GHS-R). Ghrelin/GHS-R signaling plays a crucial role in energy homeostasis....

  13. Enantioselective Transport by a Steroidal Guanidinium Receptor

    NARCIS (Netherlands)

    Baragaña, Beatriz; Blackburn, Adrian G.; Breccia, Perla; Davis, Anthony P.; Mendoza, Javier de; Padrón-Carrillo, José M.; Prados, Pilar; Riedner, Jens; Vries, Johannes G. de

    2002-01-01

    The cationic steroidal receptors 9 and 11 have been synthesized from cholic acid 3. Receptor 9 extracts N-acetyl-α-amino acids from aqueous media into chloroform with enantioselectivities (L:D) of 7-10:1. The lipophilic variant 11 has been employed for the enantioselective transport of

  14. How calcium makes endocytic receptors attractive

    DEFF Research Database (Denmark)

    Andersen, Christian B F; Moestrup, Søren K

    2014-01-01

    'lynchpin' that stabilizes favorable positioning of ligand-attractive receptor residues. In addition to explaining how calcium depletion can cause ligand-receptor dissociation, the new data add further insight into how acidification contributes to dissociation through structural changes that affect...

  15. Immunohistochemical assessment of oestrogen and progesterone receptors

    DEFF Research Database (Denmark)

    Grabau, D A; Thorpe, S M; Knoop, A

    2000-01-01

    Two different methods to determine steroid receptors were analysed with respect to their ability to estimate prognosis in primary breast cancer patients. The immunohistochemical assay (IHA) was compared with the dextran-coated charcoal (DCC) method of receptor determination. A random sample of 281...

  16. P2X receptors in epithelia

    DEFF Research Database (Denmark)

    Leipziger, Jens Georg

    2015-01-01

    P2X receptors are ubiquitously expressed in all epithelial tissues but their functional roles are less well studied. Here we review the current state of knowledge by focusing on functional effects of P2X receptor in secretory and in absorptive tissues. In glandular tissue like the parotid gland b...

  17. Carbamate Insecticides Target Human Melatonin Receptors.

    Science.gov (United States)

    Popovska-Gorevski, Marina; Dubocovich, Margarita L; Rajnarayanan, Rajendram V

    2017-02-20

    Carbaryl (1-naphthyl methylcarbamate) and carbofuran (2,3-dihydro-2,2-dimethyl-7-benzofuranyl methylcarbamate) are among the most toxic insecticides, implicated in a variety of diseases including diabetes and cancer among others. Using an integrated pharmacoinformatics based screening approach, we have identified these insecticides to be structural mimics of the neurohormone melatonin and were able to bind to the putative melatonin binding sites in MT 1 and MT 2 melatonin receptors in silico. Carbaryl and carbofuran then were tested for competition with 2-[ 125 I]-iodomelatonin (300 pM) binding to hMT 1 or hMT 2 receptors stably expressed in CHO cells. Carbaryl and carbofuran showed higher affinity for competition with 2-[ 125 I]-iodomelatonin binding to the hMT 2 compared to the hMT 1 melatonin receptor (33 and 35-fold difference, respectively) as predicted by the molecular modeling. In the presence of GTP (100 μM), which decouples the G-protein linked receptors to modulate signaling, the apparent efficacy of carbaryl and carbofuran for 2-[ 125 I]-iodomelatonin binding for the hMT 1 melatonin receptor was not affected but significantly decreased for the hMT 2 melatonin receptor compatible with receptor antagonist/inverse agonist and agonist efficacy, respectively. Altogether, our data points to a potentially new mechanism through which carbamate insecticides carbaryl and carbofuran could impact human health by altering the homeostatic balance of key regulatory processes by directly binding to melatonin receptors.

  18. NRSAS: Nuclear Receptor Structure Analysis Servers.

    NARCIS (Netherlands)

    Bettler, E.J.M.; Krause, R.; Horn, F.; Vriend, G.

    2003-01-01

    We present a coherent series of servers that can perform a large number of structure analyses on nuclear hormone receptors. These servers are part of the NucleaRDB project, which provides a powerful information system for nuclear hormone receptors. The computations performed by the servers include

  19. Progesterone receptor levels independently predict survival in endometrial adenocarcinoma

    DEFF Research Database (Denmark)

    Nyholm, H C; Christensen, Ib Jarle; Nielsen, Anette Lynge

    1995-01-01

    Estrogen receptor (ER) and progesterone receptor (PR) contents were determined by biochemical (dextran charcoal-coated (DCC) assay) and immunohistochemical (ICA) methods in biopsies from 145 primary endometrial adenocarcinomas and those with eligible receptor measurements were analyzed with respect...

  20. Steroid Hormone Receptor Signals as Prognosticators for Urothelial Tumor

    Directory of Open Access Journals (Sweden)

    Hiroki Ide

    2015-01-01

    Full Text Available There is a substantial amount of preclinical or clinical evidence suggesting that steroid hormone receptor-mediated signals play a critical role in urothelial tumorigenesis and tumor progression. These receptors include androgen receptor, estrogen receptors, glucocorticoid receptor, progesterone receptor, vitamin D receptor, retinoid receptors, peroxisome proliferator-activated receptors, and others including orphan receptors. In particular, studies using urothelial cancer tissue specimens have demonstrated that elevated or reduced expression of these receptors as well as alterations of their upstream or downstream pathways correlates with patient outcomes. This review summarizes and discusses available data suggesting that steroid hormone receptors and related signals serve as biomarkers for urothelial carcinoma and are able to predict tumor recurrence or progression.

  1. Current Research on Opioid Receptor Function

    Science.gov (United States)

    Feng, Yuan; He, Xiaozhou; Yang, Yilin; Chao, Dongman; Lazarus, Lawrence H.; Xia, Ying

    2012-01-01

    The use of opioid analgesics has a long history in clinical settings, although the comprehensive action of opioid receptors is still less understood. Nonetheless, recent studies have generated fresh insights into opioid receptor-mediated functions and their underlying mechanisms. Three major opioid receptors (μ-opioid receptor, MOR; δ-opioid receptor, DOR; and κ-opioid receptor, KOR) have been cloned in many species. Each opioid receptor is functionally sub-classified into several pharmacological subtypes, although, specific gene corresponding each of these receptor subtypes is still unidentified as only a single gene has been isolated for each opioid receptor. In addition to pain modulation and addiction, opioid receptors are widely involved in various physiological and pathophysiological activities, including the regulation of membrane ionic homeostasis, cell proliferation, emotional response, epileptic seizures, immune function, feeding, obesity, respiratory and cardiovascular control as well as some neurodegenerative disorders. In some species, they play an essential role in hibernation. One of the most exciting findings of the past decade is the opioid-receptor, especially DOR, mediated neuroprotection and cardioprotection. The up-regulation of DOR expression and DOR activation increase the neuronal tolerance to hypoxic/ischemic stress. The DOR signal triggers (depending on stress duration and severity) different mechanisms at multiple levels to preserve neuronal survival, including the stabilization of homeostasis and increased pro-survival signaling (e.g., PKC-ERK-Bcl 2) and anti-oxidative capacity. In the heart, PKC and KATP channels are involved in the opioid receptor-mediated cardioprotection. The DOR-mediated neuroprotection and cardioprotection have the potential to significantly alter the clinical pharmacology in terms of prevention and treatment of life-threatening conditions like stroke and myocardial infarction. The main purpose of this article

  2. Reduction in inflammatory gene expression in skeletal muscle from Roux-en-Y gastric bypass patients randomized to omentectomy.

    Directory of Open Access Journals (Sweden)

    Robyn A Tamboli

    Full Text Available To examine the effects of Roux-en-Y gastric bypass (RYGB surgery with and without laparoscopic removal of omental fat (omentectomy on the temporal gene expression profiles of skeletal muscle.Previously reported were the whole-body metabolic effects of a randomized, single-blinded study in patients receiving RYGB surgery stratified to receive or not receive omentectomy. In this follow up study we report on changes in skeletal muscle gene expression in a subset of 21 patients, for whom biopsies were collected preoperatively and at either 6 months or 12 months postoperatively.RNA isolated from skeletal muscle biopsies of 21 subjects (8 without omentectomy and 13 with omentectomy taken before RYGB or at 6 and 12 months postoperatively were subjected to gene expression profiling via Exon 1.0 S/T Array and Taqman Low Density Array. Robust Multichip Analysis and gene enrichment data analysis revealed 84 genes with at least a 4-fold expression difference after surgery. At 6 and 12 months the RYGB with omentectomy group displayed a greater reduction in the expression of genes associated with skeletal muscle inflammation (ANKRD1, CDR1, CH25H, CXCL2, CX3CR1, IL8, LBP, NFIL3, SELE, SOCS3, TNFAIP3, and ZFP36 relative to the RYGB non-omentectomy group. Expressions of IL6 and CCL2 were decreased at all postoperative time points. There was differential expression of genes driving protein turnover (IGFN1, FBXW10 in both groups over time and increased expression of PAAF1 in the non-omentectomy group at 12 months. Evidence for the activation of skeletal muscle satellite cells was inferred from the up-regulation of HOXC10. The elevated post-operative expression of 22 small nucleolar RNAs and the decreased expression of the transcription factors JUNB, FOS, FOSB, ATF3 MYC, EGR1 as well as the orphan nuclear receptors NR4A1, NR4A2, NR4A3 suggest dramatic reorganizations at both the cellular and genetic levels.These data indicate that RYGB reduces skeletal muscle

  3. Computer modeling of Cannabinoid receptor type 1

    Directory of Open Access Journals (Sweden)

    Sapundzhi Fatima

    2018-01-01

    Full Text Available Cannabinoid receptors are important class of receptors as they are involved in various physiological processes such as appetite, pain-sensation, mood, and memory. It is important to design receptor-selective ligands in order to treat a particular disorder. The aim of the present study is to model the structure of cannabinoid receptor CB1 and to perform docking between obtained models and known ligands. Two models of CBR1 were prepared with two different methods (Modeller of Chimera and MOE. They were used for docking with GOLD 5.2. It was established a high correlation between inhibitory constant Ki of CB1 cannabinoid ligands and the ChemScore scoring function of GOLD, which concerns both models. This suggests that the models of the CB1 receptors obtained could be used for docking studies and in further investigation and design of new potential, selective and active cannabinoids with the desired effects.

  4. Complex Pharmacology of Free Fatty Acid Receptors

    DEFF Research Database (Denmark)

    Milligan, Graeme; Shimpukade, Bharat; Ulven, Trond

    2017-01-01

    G protein-coupled receptors (GPCRs) are historically the most successful family of drug targets. In recent times it has become clear that the pharmacology of these receptors is far more complex than previously imagined. Understanding of the pharmacological regulation of GPCRs now extends beyond...... pharmacology have shaped understanding of the complex pharmacology of receptors that recognize and are activated by nonesterified or "free" fatty acids (FFAs). The FFA family of receptors is a recently deorphanized set of GPCRs, the members of which are now receiving substantial interest as novel targets...... for the treatment of metabolic and inflammatory diseases. Further understanding of the complex pharmacology of these receptors will be critical to unlocking their ultimate therapeutic potential....

  5. Molecular pharmacology of human NMDA receptors

    DEFF Research Database (Denmark)

    Hedegaard, Maiken; Hansen, Kasper Bø; Andersen, Karen Toftegaard

    2012-01-01

    current knowledge of the relationship between NMDA receptor structure and function. We summarize studies on the biophysical properties of human NMDA receptors and compare these properties to those of rat orthologs. Finally, we provide a comprehensive pharmacological characterization that allows side......-by-side comparison of agonists, un-competitive antagonists, GluN2B-selective non-competitive antagonists, and GluN2C/D-selective modulators at recombinant human and rat NMDA receptors. The evaluation of biophysical properties and pharmacological probes acting at different sites on the receptor suggest...... that the binding sites and conformational changes leading to channel gating in response to agonist binding are highly conserved between human and rat NMDA receptors. In summary, the results of this study suggest that no major detectable differences exist in the pharmacological and functional properties of human...

  6. Ror receptor tyrosine kinases: orphans no more.

    Science.gov (United States)

    Green, Jennifer L; Kuntz, Steven G; Sternberg, Paul W

    2008-11-01

    Receptor tyrosine kinase-like orphan receptor (Ror) proteins are a conserved family of tyrosine kinase receptors that function in developmental processes including skeletal and neuronal development, cell movement and cell polarity. Although Ror proteins were originally named because the associated ligand and signaling pathway were unknown, recent studies in multiple species have now established that Ror proteins are Wnt receptors. Depending on the cellular context, Ror proteins can either activate or repress transcription of Wnt target genes and can modulate Wnt signaling by sequestering Wnt ligands. New evidence implicates Ror proteins in planar cell polarity, an alternative Wnt pathway. Here, we review the progress made in understanding these mysterious proteins and, in particular, we focus on their function as Wnt receptors.

  7. Androgen insensitivity syndrome: gonadal androgen receptor activity

    International Nuclear Information System (INIS)

    Coulam, C.B.; Graham, M.L.; Spelsberg, T.C.

    1984-01-01

    To determine whether abnormalities of the androgen receptor previously observed in skin fibroblasts from patients with androgen insensitivity syndrome also occur in the gonads of affected individuals, androgen receptor activity in the gonads of a patient with testicular feminization syndrome was investigated. Using conditions for optimal recovery of androgen receptor from human testes established by previous studies, we detected the presence of a high-affinity (dissociation constant . 3.2 X 10(-10) mol/L), low-capacity (4.2 X 10(-12) mol/mg DNA), androgen-binding protein when tritium-labeled R1881 was incubated at 4 degrees C with nuclear extracts from the gonads of control patients or from a patient with testicular feminization syndrome but not when incubated at 37 degrees C. Thus this patient has an androgen receptor with a temperature lability similar to that of receptors from normal persons

  8. Kinetic Profile of Neuropeptide-Receptor Interactions.

    Science.gov (United States)

    Nederpelt, Indira; Bunnik, Julia; IJzerman, Adriaan P; Heitman, Laura H

    2016-12-01

    Currently, drug discovery focusses only on quantifying pharmacological parameters, sometimes including binding kinetics, of drug candidates. For a complete understanding of a drug's desired binding kinetics, the kinetics of both the target and its endogenous ligands should be considered. This is because the release and binding kinetics of endogenous ligands in addition to receptor internalization rates are significant contributors to drug-target interactions. Here, we discuss the kinetic profile of three neuropeptides and their receptors; gonadotropin-releasing hormone receptor (GnRHR), neuropeptide Y receptors, and corticotropin-releasing factor receptor 1 (CRF 1 R). These three examples provide new insights into the importance of kinetic profiles which could improve the understanding of desired drug-target binding kinetics and advance drug discovery for various neurological and psychiatric illnesses. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Mutations in G protein-coupled receptors that impact receptor trafficking and reproductive function.

    Science.gov (United States)

    Ulloa-Aguirre, Alfredo; Zariñán, Teresa; Dias, James A; Conn, P Michael

    2014-01-25

    G protein coupled receptors (GPCRs) are a large superfamily of integral cell surface plasma membrane proteins that play key roles in transducing extracellular signals, including sensory stimuli, hormones, neurotransmitters, or paracrine factors into the intracellular environment through the activation of one or more heterotrimeric G proteins. Structural alterations provoked by mutations or variations in the genes coding for GPCRs may lead to misfolding, altered plasma membrane expression of the receptor protein and frequently to disease. A number of GPCRs regulate reproductive function at different levels; these receptors include the gonadotropin-releasing hormone receptor (GnRHR) and the gonadotropin receptors (follicle-stimulating hormone receptor and luteinizing hormone receptor), which regulate the function of the pituitary-gonadal axis. Loss-of-function mutations in these receptors may lead to hypogonadotropic or hypergonadotropic hypogonadism, which encompass a broad spectrum of clinical phenotypes. In this review we describe mutations that provoke misfolding and failure of these receptors to traffick from the endoplasmic reticulum to the plasma membrane. We also discuss some aspects related to the therapeutic potential of some target-specific drugs that selectively bind to and rescue function of misfolded mutant GnRHR and gonadotropin receptors, and that represent potentially valuable strategies to treat diseases caused by inactivating mutations of these receptors. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  10. Real-Time G-Protein-Coupled Receptor Imaging to Understand and Quantify Receptor Dynamics

    Directory of Open Access Journals (Sweden)

    María S. Aymerich

    2011-01-01

    Full Text Available Understanding the trafficking of G-protein-coupled receptors (GPCRs and their regulation by agonists and antagonists is fundamental to develop more effective drugs. Optical methods using fluorescent-tagged receptors and spinning disk confocal microscopy are useful tools to investigate membrane receptor dynamics in living cells. The aim of this study was to develop a method to characterize receptor dynamics using this system which offers the advantage of very fast image acquisition with minimal cell perturbation. However, in short-term assays photobleaching was still a problem. Thus, we developed a procedure to perform a photobleaching-corrected image analysis. A study of short-term dynamics of the long isoform of the dopamine type 2 receptor revealed an agonist-induced increase in the mobile fraction of receptors with a rate of movement of 0.08 μm/s For long-term assays, the ratio between the relative fluorescence intensity at the cell surface versus that in the intracellular compartment indicated that receptor internalization only occurred in cells co-expressing G protein-coupled receptor kinase 2. These results indicate that the lateral movement of receptors and receptor internalization are not directly coupled. Thus, we believe that live imaging of GPCRs using spinning disk confocal image analysis constitutes a powerful tool to study of receptor dynamics.

  11. Receptor oligomerization in family B1 of G-protein-coupled receptors

    DEFF Research Database (Denmark)

    Roed, Sarah Norklit; Ørgaard, Anne; Jørgensen, Rasmus

    2012-01-01

    , investigation of family B1 receptor oligomerization and especially its pharmacological importance is still at an early stage. Even though GPCR oligomerization is a well-established phenomenon, there is a need for more investigations providing a direct link between these interactions and receptor functionality......The superfamily of the seven transmembrane G-protein-coupled receptors (7TM/GPCRs) is the largest family of membrane-associated receptors. GPCRs are involved in the pathophysiology of numerous human diseases, and they constitute an estimated 30-40% of all drug targets. During the last two decades......, GPCR oligomerization has been extensively studied using methods like bioluminescence resonance energy transfer (BRET) and today, receptor-receptor interactions within the GPCR superfamily is a well-established phenomenon. Evidence of the impact of GPCR oligomerization on, e.g., ligand binding, receptor...

  12. Enhanced sensitivity of muscarinic cholinergic receptor associated with dopaminergic receptor subsensitivity after chronic antidepressant treatment

    International Nuclear Information System (INIS)

    Koide, T.; Matsushita, H.

    1981-01-01

    The chronic effects of antidepressant treatment on striatal dopaminergic (DA) and muscarinic cholinergic (mACh) receptors of the rat brain have been examined comparatively in this study using 3 H-spiroperidol ( 3 H-SPD) and 3 H-quinuclidinyl benzilate ( 3 H-QNB) as the respective radioactive ligands. Imipramine and desipramine were used as prototype antidepressants. Although a single administration of imipramine or desipramine did not affect each receptor sensitivity, chronic treatment with each drug caused a supersensitivity of mACh receptor subsequent to DA receptor subsensitivity. Furthermore, it has been suggested that anti-mACh properties of imipramine or desipramine may not necessarily be related to the manifestation of mACh receptor supersensitivity and that sustained DA receptor subsensitivity may play some role in the alterations of mACh receptor sensitivity

  13. Multiple autophosphorylation sites of the epidermal growth factor receptor are essential for receptor kinase activity and internalization. Contrasting significance of tyrosine 992 in the native and truncated receptors

    DEFF Research Database (Denmark)

    Sorkin, A; Helin, K; Waters, C M

    1992-01-01

    for cells expressing kinase-negative receptor (A721). Moreover, tyrosine kinase activity of the Dc-123F receptor toward phospholipase C-gamma 1, compared to wild-type receptor, was reduced by 90%. Taken together, these results show that EGF receptor lacking five autophosphorylation sites functions similar...

  14. Emerging GLP-1 receptor agonists

    DEFF Research Database (Denmark)

    Lund, Asger; Knop, Filip K; Vilsbøll, Tina

    2011-01-01

    Introduction: Recently, glucagon-like peptide-1 receptor (GLP-1R) agonists have become available for the treatment of type 2 diabetes. These agents exploit the physiological effects of GLP-1, which is able to address several of the pathophysiological features of type 2 diabetes. GLP-1R agonists...... presently available are administered once or twice daily, but several once-weekly GLP-1R agonists are in late clinical development. Areas covered: The present review aims to give an overview of the clinical data on the currently available GLP-1R agonists used for treatment of type 2 diabetes, exenatide...... and liraglutide, as well as the emerging GLP-1R agonists including the long-acting compounds. Expert opinion: An emerging therapeutic trend toward initial or early combination therapy with metformin- and incretin-based therapy is anticipated for patients with type 2 diabetes. GLP-1-based therapy has so far proven...

  15. Ketamine: NMDA Receptors and Beyond.

    Science.gov (United States)

    Zorumski, Charles F; Izumi, Yukitoshi; Mennerick, Steven

    2016-11-02

    Human studies examining the effects of the dissociative anesthetic ketamine as a model for psychosis and as a rapidly acting antidepressant have spurred great interest in understanding ketamine's actions at molecular, cellular, and network levels. Although ketamine has unequivocal uncompetitive inhibitory effects on N-methyl-d-aspartate receptors (NMDARs) and may preferentially alter the function of NMDARs on interneurons, recent work has questioned whether block of NMDARs is critical for its mood enhancing actions. In this viewpoint, we examine the evolving literature on ketamine supporting NMDARs as important triggers for certain psychiatric effects and the possibility that the antidepressant trigger is unrelated to NMDARs. The rapidly evolving story of ketamine offers great hope for untangling and treating the biology of both depressive and psychotic illnesses. Copyright © 2016 the authors 0270-6474/16/3611158-07$15.00/0.

  16. THE NATURE OF ACETYLCHOLINE RECEPTOR

    Directory of Open Access Journals (Sweden)

    M.E. TASHAYOD

    1983-05-01

    Full Text Available The present work with consideratlon to the autoradiographic pictures, suggests that cholinergic receptors are located at the gate of a channel originating from synaptic cleft coming to lie within the muscle fibre. AChE molecules stand at the gate of this channel,controlling the entrance of different cholinergic agents. It was report- ••• ed previously that dtc molecules s t.abD ;:.2e the AChE rnolecules and will obstruct the gate. This blocks the acess of ionic flux within the channel thus producing a non-depolarizing neuromuscular paralysis.The presented experiments imply that depolarizing agent will bring a considerable change in conformation of AChE mole cule and this causes the opening of the gate allowing ioni flux and depolarization .In case of ACh this process is repeated in a fraction of milli second, due to rapid regeneration of AChE while in case of suxamethonium and neostigmine(given in high dose, the regeneration of AChE takes much longer time thus will produce a depolarizing blockade. In this hypothepis the main responsa~ility of AChE"nis confined to identification of cholinergic agents and Cooperation in their function so,it can be accepted as Cholinergic receptor. In regard to clinic, this work suggests that only the use of minimum effective dose of neostigmine is advisable, in reversing curarisation. In contrast to general belief , the dose of neostigmine should be s elec t ed in relation to r eceptor dtc occupation and not depending on pati ent 's weight . As it was demonstrated , the early use"nof high dose o f neostigmine may a lso potent i a te curar i s a tion

  17. G-protein Receptor Kinase 5 Regulates the Cannabinoid Receptor 2-induced Up-regulation of Serotonin 2A Receptors*

    Science.gov (United States)

    Franklin, Jade M.; Carrasco, Gonzalo A.

    2013-01-01

    We have recently reported that cannabinoid agonists can up-regulate and enhance the activity of serotonin 2A (5-HT2A) receptors in the prefrontal cortex (PFCx). Increased expression and activity of cortical 5-HT2A receptors has been associated with neuropsychiatric disorders, such as anxiety and schizophrenia. Here we report that repeated CP55940 exposure selectively up-regulates GRK5 proteins in rat PFCx and in a neuronal cell culture model. We sought to examine the mechanism underlying the regulation of GRK5 and to identify the role of GRK5 in the cannabinoid agonist-induced up-regulation and enhanced activity of 5-HT2A receptors. Interestingly, we found that cannabinoid agonist-induced up-regulation of GRK5 involves CB2 receptors, β-arrestin 2, and ERK1/2 signaling because treatment with CB2 shRNA lentiviral particles, β-arrestin 2 shRNA lentiviral particles, or ERK1/2 inhibitor prevented the cannabinoid agonist-induced up-regulation of GRK5. Most importantly, we found that GRK5 shRNA lentiviral particle treatment prevented the cannabinoid agonist-induced up-regulation and enhanced 5-HT2A receptor-mediated calcium release. Repeated cannabinoid exposure was also associated with enhanced phosphorylation of CB2 receptors and increased interaction between β-arrestin 2 and ERK1/2. These latter phenomena were also significantly inhibited by GRK5 shRNA lentiviral treatment. Our results suggest that sustained activation of CB2 receptors, which up-regulates 5-HT2A receptor signaling, enhances GRK5 expression; the phosphorylation of CB2 receptors; and the β-arrestin 2/ERK interactions. These data could provide a rationale for some of the adverse effects associated with repeated cannabinoid agonist exposure. PMID:23592773

  18. Arginase-1 expressing microglia in close proximity to motor neurons were increased early in disease progression in canine degenerative myelopathy, a model of amyotrophic lateral sclerosis.

    Science.gov (United States)

    Toedebusch, Christine M; Snyder, John C; Jones, Maria R; Garcia, Virginia B; Johnson, Gayle C; Villalón, Eric L; Coates, Joan R; Garcia, Michael L

    2018-02-07

    Toxicity within superoxide dismutase-1 (SOD1)-associated familial amyotrophic lateral sclerosis (ALS) is non-cell autonomous with direct contribution from microglia. Microglia exhibit variable expression of neuroprotective and neurotoxic molecules throughout disease progression. The mechanisms regulating microglial phenotype within ALS are not well understood. This work presents a first study to examine the specific microglial phenotypic response in close association to motor neurons in a naturally occurring disease model of ALS, canine degenerative myelopathy (DM). Microglia closely associated with motor neurons were increased in all stages of DM progression, although only DM Late reached statistical significance. Furthermore, the number of arginase-1 expressing microglia per motor neuron were significantly increased in early stages of DM, whereas the number of inducible nitric oxide synthase (iNOS)-expressing microglia per motor neuron was indistinguishable from aged controls at all stages of disease. Fractalkine, a chemotactic molecule for microglia, was expressed in motor neurons, and the fractalkine receptor was specifically localized to microglia. However, we found no correlation between microglial response and lumbar spinal cord fractalkine levels. Taken together, these data suggest that arginase-1-expressing microglia are recruited to the motor neuron early in DM disease through a fractalkine-independent mechanism. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Renal tubular vasopressin receptors downregulated by dehydration

    International Nuclear Information System (INIS)

    Steiner, M.; Phillips, M.I.

    1988-01-01

    Receptors for arginine vasopressin (AVP) were characterized in tubular epithelial basolateral membranes (BL membranes) prepared from the kidneys of male Spraque-Dawley rats. Association of [ 3 H]AVP was rapid, reversible, and specific. Saturation studies revealed a single class of saturable binding sites with a maximal binding (B max ) of 184 ± 15 fmol/mg protein. The V 2 receptor antagonist was more than 3,700 times as effective in displacing [ 3 H]AVP than was the V 1 antagonist. To investigate the physiological regulation of vasopressin receptors, the effects of elevated levels of circulating AVP on receptor characteristics were studied. Seventy-two-hour water deprivation significantly elevated plasma osmolality and caused an 11.5-fold increase in plasma [AVP]. Scatchard analysis revealed a 38% decreased in the number of AVP receptors on the BL membranes from dehydrated animals. The high-affinity binding sites on the BL membranes fit the pharmacological profile for adenylate cyclase-linked vasopressin receptors (V 2 ), which mediate the antidiuretic action of the hormone. The authors conclude that physiologically elevated levels of AVP can downregulate vasopressin receptors in the kidney

  20. Muscarinic Receptor Signaling in Colon Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Rosenvinge, Erik C. von, E-mail: evonrose@medicine.umaryland.edu; Raufman, Jean-Pierre [University of Maryland School of Medicine, Division of Gastroenterology & Hepatology, 22 S. Greene Street, N3W62, Baltimore, MD 21201 (United States); Department of Veterans Affairs, VA Maryland Health Care System, 10 North Greene Street, Baltimore, MD 21201 (United States)

    2011-03-02

    According to the adenoma-carcinoma sequence, colon cancer results from accumulating somatic gene mutations; environmental growth factors accelerate and augment this process. For example, diets rich in meat and fat increase fecal bile acids and colon cancer risk. In rodent cancer models, increased fecal bile acids promote colon dysplasia. Conversely, in rodents and in persons with inflammatory bowel disease, low-dose ursodeoxycholic acid treatment alters fecal bile acid composition and attenuates colon neoplasia. In the course of elucidating the mechanism underlying these actions, we discovered that bile acids interact functionally with intestinal muscarinic receptors. The present communication reviews muscarinic receptor expression in normal and neoplastic colon epithelium, the role of autocrine signaling following synthesis and release of acetylcholine from colon cancer cells, post-muscarinic receptor signaling including the role of transactivation of epidermal growth factor receptors and activation of the ERK and PI3K/AKT signaling pathways, the structural biology and metabolism of bile acids and evidence for functional interaction of bile acids with muscarinic receptors on human colon cancer cells. In murine colon cancer models, deficiency of subtype 3 muscarinic receptors attenuates intestinal neoplasia; a proof-of-concept supporting muscarinic receptor signaling as a therapeutic target for colon cancer.

  1. Action mechanisms of Liver X Receptors

    International Nuclear Information System (INIS)

    Gabbi, Chiara; Warner, Margaret; Gustafsson, Jan-Åke

    2014-01-01

    Highlights: • LXRα and LXRβ are ligand-activated nuclear receptors. • They share oxysterol ligands and the same heterodimerization partner, RXR. • LXRs regulate lipid and glucose metabolism, CNS and immune functions, and water transport. - Abstract: The two Liver X Receptors, LXRα and LXRβ, are nuclear receptors belonging to the superfamily of ligand-activated transcription factors. They share more than 78% homology in amino acid sequence, a common profile of oxysterol ligands and the same heterodimerization partner, Retinoid X Receptor. LXRs play crucial roles in several metabolic pathways: lipid metabolism, in particular in preventing cellular cholesterol accumulation; glucose homeostasis; inflammation; central nervous system functions and water transport. As with all nuclear receptors, the transcriptional activity of LXR is the result of an orchestration of numerous cellular factors including ligand bioavailability, presence of corepressors and coactivators and cellular context i.e., what other pathways are activated in the cell at the time the receptor recognizes its ligand. In this mini-review we summarize the factors regulating the transcriptional activity and the mechanisms of action of these two receptors

  2. Action mechanisms of Liver X Receptors

    Energy Technology Data Exchange (ETDEWEB)

    Gabbi, Chiara; Warner, Margaret [Center for Nuclear Receptors and Cell Signaling, University of Houston, 3056 Cullen Blv, 77204 Houston, Texas (United States); Gustafsson, Jan-Åke, E-mail: jgustafs@central.uh.edu [Center for Nuclear Receptors and Cell Signaling, University of Houston, 3056 Cullen Blv, 77204 Houston, Texas (United States); Department of Biosciences and Nutrition, Karolinska Institutet, Novum S-141 86 (Sweden)

    2014-04-11

    Highlights: • LXRα and LXRβ are ligand-activated nuclear receptors. • They share oxysterol ligands and the same heterodimerization partner, RXR. • LXRs regulate lipid and glucose metabolism, CNS and immune functions, and water transport. - Abstract: The two Liver X Receptors, LXRα and LXRβ, are nuclear receptors belonging to the superfamily of ligand-activated transcription factors. They share more than 78% homology in amino acid sequence, a common profile of oxysterol ligands and the same heterodimerization partner, Retinoid X Receptor. LXRs play crucial roles in several metabolic pathways: lipid metabolism, in particular in preventing cellular cholesterol accumulation; glucose homeostasis; inflammation; central nervous system functions and water transport. As with all nuclear receptors, the transcriptional activity of LXR is the result of an orchestration of numerous cellular factors including ligand bioavailability, presence of corepressors and coactivators and cellular context i.e., what other pathways are activated in the cell at the time the receptor recognizes its ligand. In this mini-review we summarize the factors regulating the transcriptional activity and the mechanisms of action of these two receptors.

  3. Tachykinins and tachykinin receptors in bone.

    Science.gov (United States)

    Goto, Tetsuya; Tanaka, Teruo

    2002-07-15

    Tachykinins are neuropeptides that are widely distributed in the body and function as neurotransmitters and neuromodulators. Five tachykinin subtypes: substance P (SP), neurokinin A, neurokinin B, neuropeptide K, and neuropeptide gamma; and three receptor subtypes: neurokinin-1, -2, and -3 receptors, have been identified. SP was the first peptide of the tachykinin family to be identified. It is considered to be an important neuropeptide, and to function in the nervous system and intestine. However, recent advances in the analysis of SP receptors, particularly neurokinin-1 receptors (NK(1)-Rs) that have high affinity for SP, have demonstrated that NK(1)-Rs are distributed not only in neurons and immune cells, but also in other peripheral cells, including bone cells. This article reviews the current understanding of the distribution of SP and other tachykinins in bone, and the function of tachykinins, through neurokinin receptors. The distribution of tachykinin-immunoreactive axons and neurokinin receptors suggests that tachykinins may directly modulate bone metabolism through neurokinin receptors. Copyright 2002 Wiley-Liss, Inc.

  4. Pharmacological analysis of calcium antagonist receptors

    International Nuclear Information System (INIS)

    Reynolds, I.J.

    1987-01-01

    This work focuses on two aspects of the action of calcium antagonist drugs, namely, the interaction of drugs with receptors for verapamil-like calcium antagonists, and the interactions of drugs with voltage-sensitive calcium fluxes in rat brain synaptosomes. From binding studies I have found that the ligand of choice for labeling the verapamil receptor is (-)[ 3 H]desmethoxy-verapamil. This drug labels potently, reversibly and stereoselectively two receptors in membranes prepared from rat brain and rabbit skeletal muscle tissues. In equilibrium studies dihydropyridine calcium antagonists interact in a non-competitive fashion, while many non-DHPs are apparently competitive. In-depth kinetic studies in skeletal muscle membranes indicate that the two receptors are linked in a negative heterotropic fashion, and that low-affinity binding of (-) [ 3 H]desmethoxy-verapamil may be to the diltiazem receptor. However, these studies were not able to distinguish between the hypothesis that diltiazem binds to spatially separate, allosterically coupled receptors, and the hypothesis that diltiazem binds to a subsite of the verapamil receptor

  5. Psychopharmacology of 5-HT1A receptors

    International Nuclear Information System (INIS)

    Cowen, Philip J.

    2000-01-01

    Serotonin 1A (5-HT 1A ) receptors are located on both 5-HT cell bodies where they act as inhibitory autoreceptors and at postsynaptic sites where they mediate the effects of 5-HT released from nerve terminals. The sensitivity of 5-HT 1A receptors in humans can be measured using the technique of pharmacological challenge. For example, acute administration of a selective 5-HT 1A receptor agonist, such as ipsapirone, decreases body temperature and increases plasma cortisol through activation of pre- and postsynaptic 5-HT 1A receptors, respectively. Use of this technique has demonstrated that unmedicated patients with major depression have decreased sensitivity of both pre- and postsynaptic 5-HT 1A receptors. Treatment with selective serotonin reuptake inhibitors further down-regulates 5-HT 1A receptor activity. Due to the hypotheses linking decreased sensitivity of 5-HT 1A autoreceptors with the onset of antidepressant activity, there is current interest in the therapeutic efficacy of combined treatment with selective serotonin reuptake inhibitors and 5-HT 1A receptor antagonists

  6. Receptor mapping in psychiatric patients with SPECT

    International Nuclear Information System (INIS)

    Schlegel, S.

    1997-01-01

    This paper summarizes some data of our studies with the single-photon-emission-computerized tomography (SPECT), focussing on the dopamine-D2- and the benzodiazepine receptor mapping. Benzodiazepine receptors: Central benzodiazepine receptors (BZr) can be visualized with iomazenil which is an analogue of the benzodiazepine antagonist flumazenil, labeled with 123-iodine. Since the involvement of the BZr system is discussed in the pathogenesis of anxiety and depression, patients with these disorders were investigated. A third study investigated the BZr-occupancy during benzodiazepine treatment (lorazepam). Results: (a) Patients with panic disorders had lower iomazenil uptake values compared to epileptic patients. (b) Depressed patients showed a positive correlation between severity of illness and frontal uptake. (c) BZr occupancy during lorazepam treatment was measurable, but not associated with lorazepam plasma levels. Dopamine-D2-receptors: With 123-I-iodobenzamide (IBZM), and iodine-labeled dopamine receptor ligand, the D2 receptor density can be measured by a semiquantitative approach (striatum/frontal cortex=ST/FC). Therefore, we investigated the D2-receptor occupancy during treatment with typical and atypical neuroleptics in relationship to dosages (normalized with different formulas of chlorpromazine equivalents), side effects, and prolactin plasma levels. Results: Dependent on the selected formula for chlorpromazine equivalents, the ST/FC ratio was correlated with dosages. Side effects and prolactin plasma levels showed a negative association with lower ST/FC ratios. (orig.) [de

  7. Muscarinic Receptor Signaling in Colon Cancer

    International Nuclear Information System (INIS)

    Rosenvinge, Erik C. von; Raufman, Jean-Pierre

    2011-01-01

    According to the adenoma-carcinoma sequence, colon cancer results from accumulating somatic gene mutations; environmental growth factors accelerate and augment this process. For example, diets rich in meat and fat increase fecal bile acids and colon cancer risk. In rodent cancer models, increased fecal bile acids promote colon dysplasia. Conversely, in rodents and in persons with inflammatory bowel disease, low-dose ursodeoxycholic acid treatment alters fecal bile acid composition and attenuates colon neoplasia. In the course of elucidating the mechanism underlying these actions, we discovered that bile acids interact functionally with intestinal muscarinic receptors. The present communication reviews muscarinic receptor expression in normal and neoplastic colon epithelium, the role of autocrine signaling following synthesis and release of acetylcholine from colon cancer cells, post-muscarinic receptor signaling including the role of transactivation of epidermal growth factor receptors and activation of the ERK and PI3K/AKT signaling pathways, the structural biology and metabolism of bile acids and evidence for functional interaction of bile acids with muscarinic receptors on human colon cancer cells. In murine colon cancer models, deficiency of subtype 3 muscarinic receptors attenuates intestinal neoplasia; a proof-of-concept supporting muscarinic receptor signaling as a therapeutic target for colon cancer

  8. Muscarinic Receptor Signaling in Colon Cancer

    Directory of Open Access Journals (Sweden)

    Jean-Pierre Raufman

    2011-03-01

    Full Text Available According to the adenoma-carcinoma sequence, colon cancer results from accumulating somatic gene mutations; environmental growth factors accelerate and augment this process. For example, diets rich in meat and fat increase fecal bile acids and colon cancer risk. In rodent cancer models, increased fecal bile acids promote colon dysplasia. Conversely, in rodents and in persons with inflammatory bowel disease, low-dose ursodeoxycholic acid treatment alters fecal bile acid composition and attenuates colon neoplasia. In the course of elucidating the mechanism underlying these actions, we discovered that bile acids interact functionally with intestinal muscarinic receptors. The present communication reviews muscarinic receptor expression in normal and neoplastic colon epithelium, the role of autocrine signaling following synthesis and release of acetylcholine from colon cancer cells, post-muscarinic receptor signaling including the role of transactivation of epidermal growth factor receptors and activation of the ERK and PI3K/AKT signaling pathways, the structural biology and metabolism of bile acids and evidence for functional interaction of bile acids with muscarinic receptors on human colon cancer cells. In murine colon cancer models, deficiency of subtype 3 muscarinic receptors attenuates intestinal neoplasia; a proof-of-concept supporting muscarinic receptor signaling as a therapeutic target for colon cancer.

  9. Andrographolide regulates epidermal growth factor receptor and transferrin receptor trafficking in epidermoid carcinoma (A-431) cells

    Science.gov (United States)

    Tan, Y; Chiow, KH; Huang, D; Wong, SH

    2010-01-01

    Background and purpose: Andrographolide is the active component of Andrographis paniculata, a plant used in both Indian and Chinese traditional medicine, and it has been demonstrated to induce apoptosis in different cancer cell lines. However, not much is known about how it may affect the key receptors implicated in cancer. Knowledge of how andrographolide affects receptor trafficking will allow us to better understand new mechanisms by which andrographolide may cause death in cancer cells. Experimental approach: We utilized the well-characterized epidermal growth factor receptor (EGFR) and transferrin receptor (TfR) expressed in epidermoid carcinoma (A-431) cells as a model to study the effect of andrographolide on receptor trafficking. Receptor distribution, the total number of receptors and surface receptors were analysed by immunofluorescence, Western blot as well as flow-cytometry respectively. Key results: Andrographolide treatment inhibited cell growth, down-regulated EGFRs on the cell surface and affected the degradation of EGFRs and TfRs. The EGFR was internalized into the cell at an increased rate, and accumulated in a compartment that co-localizes with the lysosomal-associated membrane protein in the late endosomes. Conclusion and implications: This study sheds light on how andrographolide may affect receptor trafficking by inhibiting receptor movement from the late endosomes to lysosomes. The down-regulation of EGFR from the cell surface also indicates a new mechanism by which andrographolide may induce cancer cell death. PMID:20233216

  10. Serotonin 5-HT4 receptors and forebrain cholinergic system: receptor expression in identified cell populations.

    Science.gov (United States)

    Peñas-Cazorla, Raúl; Vilaró, M Teresa

    2015-11-01

    Activation of serotonin 5-HT4 receptors has pro-cognitive effects on memory performance. The proposed underlying neurochemical mechanism is the enhancement of acetylcholine release in frontal cortex and hippocampus elicited by 5-HT4 agonists. Although 5-HT4 receptors are present in brain areas related to cognition, e.g., hippocampus and cortex, the cellular localization of the receptors that might modulate acetylcholine release is unknown at present. We have analyzed, using dual label in situ hybridization, the cellular localization of 5-HT4 receptor mRNA in identified neuronal populations of the rat basal forebrain, which is the source of the cholinergic innervation to cortex and hippocampus. 5-HT4 receptor mRNA was visualized with isotopically labeled oligonucleotide probes, whereas cholinergic, glutamatergic, GABAergic and parvalbumin-synthesizing neurons were identified with digoxigenin-labeled oligonucleotide probes. 5-HT4 receptor mRNA was not detected in the basal forebrain cholinergic cell population. In contrast, basal forebrain GABAergic, parvalbumin synthesizing, and glutamatergic cells contained 5-HT4 receptor mRNA. Hippocampal and cortical glutamatergic neurons also express this receptor. These results indicate that 5-HT4 receptors are not synthesized by cholinergic cells, and thus would be absent from cholinergic terminals. In contrast, several non-cholinergic cell populations within the basal forebrain and its target hippocampal and cortical areas express these receptors and are thus likely to mediate the enhancement of acetylcholine release elicited by 5-HT4 agonists.

  11. Andrographolide regulates epidermal growth factor receptor and transferrin receptor trafficking in epidermoid carcinoma (A-431) cells.

    Science.gov (United States)

    Tan, Y; Chiow, K H; Huang, D; Wong, S H

    2010-04-01

    Andrographolide is the active component of Andrographis paniculata, a plant used in both Indian and Chinese traditional medicine, and it has been demonstrated to induce apoptosis in different cancer cell lines. However, not much is known about how it may affect the key receptors implicated in cancer. Knowledge of how andrographolide affects receptor trafficking will allow us to better understand new mechanisms by which andrographolide may cause death in cancer cells. We utilized the well-characterized epidermal growth factor receptor (EGFR) and transferrin receptor (TfR) expressed in epidermoid carcinoma (A-431) cells as a model to study the effect of andrographolide on receptor trafficking. Receptor distribution, the total number of receptors and surface receptors were analysed by immunofluorescence, Western blot as well as flow-cytometry respectively. Andrographolide treatment inhibited cell growth, down-regulated EGFRs on the cell surface and affected the degradation of EGFRs and TfRs. The EGFR was internalized into the cell at an increased rate, and accumulated in a compartment that co-localizes with the lysosomal-associated membrane protein in the late endosomes. This study sheds light on how andrographolide may affect receptor trafficking by inhibiting receptor movement from the late endosomes to lysosomes. The down-regulation of EGFR from the cell surface also indicates a new mechanism by which andrographolide may induce cancer cell death.

  12. Pharmacological and autoradiographic characterization of sigma receptors

    International Nuclear Information System (INIS)

    Largent, B.L.

    1986-01-01

    The existence of three types of opioid receptors - μ, kappa, and sigma - was postulated to explain the effects of different opioids in the chronic spinal dog. Sigma receptors, named for the prototypic agonist SKF 10,047 (N-allylnormetazocine), were suggested to mediate the psychotomimetic-like effects of SKF 10,047 in the dog. 3-(3-Hydroxyphenyl)-N-(1-propyl)piperidine (3-PPP) has been proposed as a selective dopamine autoreceptor agonist. However, the drug specificity of (+)[ 3 H]3-PPP binding in brain is identical to that of sigma receptor binding sites which may mediate psychotomimetic effects of some opioids. Pharmacological and autoradiographic analyses reveal that (+)[ 3 H]SKF 10,047, the prototypic sigma agonist, labels two sites in brain. The drug specificity of the high affinity site for (+)[ 3 H]SKF 10,047 resembles that of putative sigma receptors labeled with (+)[ 3 H]3-PPP, being potently inhibited by (+)3-PPP, haloperidol, and (+/-)pentazocine, and demonstrating stereoselectivity for the (+) isomer of SKF 10,047. Autoradiographic localizations of high affinity (+)[ 3 H]SKF 10,047 binding sites closely resemble those of (+)[ 3 H]3-PPP labeled sites with high levels of binding in the hippocampal pyramidal cell layer, hypothalamus, and pontine and cranial nerve nuclei. Thus, putative sigma receptors and PCP receptors represent distinct receptor populations in brain. This proposal is supported by the presence of sigma binding sites - and absence of PCP receptors - on NCB-20 cell membranes, a hybrid neurotumor cell line that provides a model system for the physiological and biochemical study of sigma receptors

  13. Role of adenosine receptors in caffeine tolerance

    International Nuclear Information System (INIS)

    Holtzman, S.G.; Mante, S.; Minneman, K.P.

    1991-01-01

    Caffeine is a competitive antagonist at adenosine receptors. Receptor up-regulation during chronic drug treatment has been proposed to be the mechanism of tolerance to the behavioral stimulant effects of caffeine. This study reassessed the role of adenosine receptors in caffeine tolerance. Separate groups of rats were given scheduled access to drinking bottles containing plain tap water or a 0.1% solution of caffeine. Daily drug intake averaged 60-75 mg/kg and resulted in complete tolerance to caffeine-induced stimulation of locomotor activity, which could not be surmounted by increasing the dose of caffeine. 5'-N-ethylcarboxamidoadenosine (0.001-1.0 mg/kg) dose dependently decreased the locomotor activity of caffeine-tolerant rats and their water-treated controls but was 8-fold more potent in the latter group. Caffeine (1.0-10 mg/kg) injected concurrently with 5-N-ethylcarboxamidoadenosine antagonized the decreases in locomotor activity comparably in both groups. Apparent pA2 values for tolerant and control rats also were comparable: 5.05 and 5.11. Thus, the adenosine-antagonist activity of caffeine was undiminished in tolerant rats. The effects of chronic caffeine administration on parameters of adenosine receptor binding and function were measured in cerebral cortex. There were no differences between brain tissue from control and caffeine-treated rats in number and affinity of adenosine binding sites or in receptor-mediated increases (A2 adenosine receptor) and decreases (A1 adenosine receptor) in cAMP accumulation. These results are consistent with theoretical arguments that changes in receptor density should not affect the potency of a competitive antagonist. Experimental evidence and theoretical considerations indicate that up-regulation of adenosine receptors is not the mechanism of tolerance to caffeine-induced stimulation of locomotor activity

  14. Identification of the haemoglobin scavenger receptor

    DEFF Research Database (Denmark)

    Kristiansen, M; Graversen, Jonas Heilskov; Jacobsen, C

    2001-01-01

    haptoglobin, which is depleted from plasma during elevated haemolysis. Here we report the identification of the acute phase-regulated and signal-inducing macrophage protein, CD163, as a receptor that scavenges haemoglobin by mediating endocytosis of haptoglobin-haemoglobin complexes. CD163 binds only...... haptoglobin and haemoglobin in complex, which indicates the exposure of a receptor-binding neoepitope. The receptor-ligand interaction is Ca2+-dependent and of high affinity. Complexes of haemoglobin and multimeric haptoglobin (the 2-2 phenotype) exhibit higher functional affinity for CD 163 than do complexes...

  15. Transitional cell carcinoma express vitamin D receptors

    DEFF Research Database (Denmark)

    Hermann, G G; Andersen, C B

    1997-01-01

    Recently, vitamin D analogues have shown antineoplastic effect in several diseases. Vitamin D analogues exert its effect by interacting with the vitamin D receptor (VDR). Studies of VDR in transitional cell carcinoma (TCC) have not been reported. The purpose of the present study was therefore.......05). Similarly, also tumor grade appeared to be related to the number of cells expressing the receptor. Normal urothlium also expressed VDR but only with low intensity. Our study shows that TCC cells possess the VDR receptor which may make them capable to respond to stimulation with vitamin D, but functional...

  16. [Progress of pattern recognition receptors of molluscs].

    Science.gov (United States)

    Gao, Qian; Zhao, Qin-ping; Ma, Xiao-xue; Dong, Hui-fen

    2015-08-01

    Molluscs have established complete innate immunity to defense against pathogens. The pattern recognition receptors (PRRs) are the sensory receptors of molluscs to resist outside invaders, as the first reactor to initiate the innate immune response. Some PRRs have been identified in several molluscs, including Toll-like receptors (TLRs) , C-type lectins, galectins, lipopolysaccharide-β-1,3-glucan binding protein (LGBP), Clq domain-containing protein (ClqDC), and peptidoglycan recognition protein (PGRP). PRRs have various biological activities and play important roles in the defense system of molluscs. This paper reviews the research progress of PRRs in molluscs.

  17. Dynamics of the actin cytoskeleton mediates receptor cross talk: An emerging concept in tuning receptor signaling

    Science.gov (United States)

    Mattila, Pieta K.; Batista, Facundo D.

    2016-01-01

    Recent evidence implicates the actin cytoskeleton in the control of receptor signaling. This may be of particular importance in the context of immune receptors, such as the B cell receptor, where dysregulated signaling can result in autoimmunity and malignancy. Here, we discuss the role of the actin cytoskeleton in controlling receptor compartmentalization, dynamics, and clustering as a means to regulate receptor signaling through controlling the interactions with protein partners. We propose that the actin cytoskeleton is a point of integration for receptor cross talk through modulation of protein dynamics and clustering. We discuss the implication of this cross talk via the cytoskeleton for both ligand-induced and low-level constitutive (tonic) signaling necessary for immune cell survival. PMID:26833785

  18. Group I Metabotropic Glutamate Receptors

    DEFF Research Database (Denmark)

    Erichsen, Julie Ladeby; Blaabjerg, Morten; Bogetofte Thomasen, Helle

    2015-01-01

    is, however, needed to realise their therapeutic potential. Glutamate and group I metabotropic glutamate receptors (mGluRs) affect proliferation and survival of rodent NSCs both during embryonic and postnatal development. To investigate the role of group I mGluRs (mGluR1 and mGluR5) on human NSCs, we...... differentiated an immortalized, forebrain-derived stem cell line in the presence or absence of glutamate and with addition of either the group I mGluR agonist DHPG or the selective antagonists; MPEP (mGluR5) and LY367385 (mGluR1). Characterization of differentiated cells revealed that both mGluR1 and mGluR5 were...... present on the cells. Addition of glutamate to the growth medium significantly increased cell proliferation and reduced cell death, resulting in increased cell numbers. In the presence of glutamate, selective activation of group I mGluRs reduced gliogenesis, whereas selective inhibition of group I m...

  19. Endogenous Receptor Agonists: Resolving Inflammation

    Directory of Open Access Journals (Sweden)

    Gerhard Bannenberg

    2007-01-01

    Full Text Available Controlled resolution or the physiologic resolution of a well-orchestrated inflammatory response at the tissue level is essential to return to homeostasis. A comprehensive understanding of the cellular and molecular events that control the termination of acute inflammation is needed in molecular terms given the widely held view that aberrant inflammation underlies many common diseases. This review focuses on recent advances in the understanding of the role of arachidonic acid and ω-3 polyunsaturated fatty acids (PUFA–derived lipid mediators in regulating the resolution of inflammation. Using a functional lipidomic approach employing LC-MS-MS–based informatics, recent studies, reviewed herein, uncovered new families of local-acting chemical mediators actively biosynthesized during the resolution phase from the essential fatty acids eicosapentaenoic acid (EPA and docosahexaenoic acid (DHA. These new families of local chemical mediators are generated endogenously in exudates collected during the resolution phase, and were coined resolvins and protectins because specific members of these novel chemical families control both the duration and magnitude of inflammation in animal models of complex diseases. Recent advances on the biosynthesis, receptors, and actions of these novel anti-inflammatory and proresolving lipid mediators are reviewed with the aim to bring to attention the important role of specific lipid mediators as endogenous agonists in inflammation resolution.

  20. Teleost Chemokines and Their Receptors

    Directory of Open Access Journals (Sweden)

    Steve Bird

    2015-11-01

    Full Text Available Chemokines are a superfamily of cytokines that appeared about 650 million years ago, at the emergence of vertebrates, and are responsible for regulating cell migration under both inflammatory and physiological conditions. The first teleost chemokine gene was reported in rainbow trout in 1998. Since then, numerous chemokine genes have been identified in diverse fish species evidencing the great differences that exist among fish and mammalian chemokines, and within the different fish species, as a consequence of extensive intrachromosomal gene duplications and different infectious experiences. Subsequently, it has only been possible to establish clear homologies with mammalian chemokines in the case of some chemokines with well-conserved homeostatic roles, whereas the functionality of other chemokine genes will have to be independently addressed in each species. Despite this, functional studies have only been undertaken for a few of these chemokine genes. In this review, we describe the current state of knowledge of chemokine biology in teleost fish. We have mainly focused on those species for which more research efforts have been made in this subject, specially zebrafish (Danio rerio, rainbow trout (Oncorhynchus mykiss and catfish (Ictalurus punctatus, outlining which genes have been identified thus far, highlighting the most important aspects of their expression regulation and addressing any known aspects of their biological role in immunity. Finally, we summarise what is known about the chemokine receptors in teleosts and provide some analysis using recently available data to help characterise them more clearly.

  1. 5-HT7 receptor activation promotes an increase in TrkB receptor expression and phosphorylation

    Directory of Open Access Journals (Sweden)

    Anshula eSamarajeewa

    2014-11-01

    Full Text Available The serotonin (5-HT type 7 receptor is expressed throughout the CNS including cortical neurons. We have previously demonstrated that the application of 5-HT7 receptor agonists to primary hippocampal neurons and SH-SY5Y cells increases platelet-derived growth factor (PDGF receptor expression and promotes neuroprotection against N-methyl-D-aspartate-(NMDA-induced toxicity. The tropomyosin-related kinase B (TrkB receptor is one of the receptors for brain-derived neurotrophic factor (BDNF and is associated with neurodevelopmental and neuroprotective effects. Application of LP 12 to primary cerebral cortical cultures, SH-SY5Y cells, as well as the retinal ganglion cell line, RGC-5, increased both the expression of full length TrkB as well as its basal phosphorylation state at tyrosine 816. The increase in TrkB expression and phosphorylation was observed as early as 30 min after 5-HT7 receptor activation. In addition to full-length TrkB, kinase domain-deficient forms may be expressed and act as dominant-negative proteins towards the full length receptor. We have identified distinct patterns of TrkB isoform expression across our cell lines and cortical cultures. Although TrkB receptor expression is regulated by cyclic AMP and Gαs-coupled GPCRs in several systems, we demonstrate that, depending on the model system, pathways downstream of both Gαs and Gα12 are involved in the regulation of TrkB expression by 5-HT7 receptors. Given the number of psychiatric and degenerative diseases associated with TrkB/BDNF deficiency and the current interest in developing 5-HT7 receptor ligands as pharmaceuticals, identifying signaling relationships between these two receptors will aid in our understanding of the potential therapeutic effects of 5-HT7 receptor ligands.

  2. Acetylcholine Receptor: Complex of Homologous Subunits

    Science.gov (United States)

    Raftery, Michael A.; Hunkapiller, Michael W.; Strader, Catherine D.; Hood, Leroy E.

    1980-06-01

    The acetylcholine receptor from the electric ray Torpedo californica is composed of five subunits; two are identical and the other three are structurally related to them. Microsequence analysis of the four polypeptides demonstrates amino acid homology among the subunits. Further sequence analysis of both membrane-bound and Triton-solubilized, chromatographically purified receptor gave the stoichiometry of the four subunits (40,000:50,000:60,000:65,000 daltons) as 2:1:1:1, indicating that this protein is a pentameric complex with a molecular weight of 255,000 daltons. Genealogical analysis suggests that divergence from a common ancestral gene occurred early in the evolution of the receptor. This shared ancestry argues that each of the four subunits plays a functional role in the receptor's physiological action.

  3. Tachykinins and tachykinin receptors: a growing family.

    Science.gov (United States)

    Pennefather, Jocelyn N; Lecci, Alessandro; Candenas, M Luz; Patak, Eva; Pinto, Francisco M; Maggi, Carlo Alberto

    2004-02-06

    The peptides of the tachykinin family are widely distributed within the mammalian peripheral and central nervous systems and play a well-recognized role as excitatory neurotransmitters. Currently, the concept that tachykinins act exclusively as neuropeptides is being challenged, since the best known members of the family, substance P, neurokinin A and neurokinin B, are also present in non-neuronal cells and in non-innervated tissues. Moreover, the recently cloned mammalian tachykinins hemokinin-1 and endokinins are primarily expressed in non-neuronal cells, suggesting a widespread distribution and important role for these peptides as intercellular signaling molecules. The biological actions of tachykinins are mediated through three types of receptors denoted NK(1), NK(2) and NK(3) that belong to the family of G protein-coupled receptors. The identification of additional tachykinins has reopened the debate of whether more tachykinin receptors exist. In this review, we summarize the current knowledge of tachykinins and their receptors.

  4. Lactate Transport and Receptor Actions in Retina

    DEFF Research Database (Denmark)

    Kolko, Miriam; Vosborg, Fia; Henriksen, Jens Ulrik Lütken

    2016-01-01

    In retina, like in brain, lactate equilibrates across cell membranes via monocarboxylate transporters and in the extracellular space by diffusion, forming a basis for the action of lactate as a transmitter of metabolic signals. In the present paper, we argue that the lactate receptor GPR81, also...... known as HCAR1, may contribute importantly to the control of retinal cell functions in health and disease. GPR81, a G-protein coupled receptor, is known to downregulate cAMP both in adipose and nervous tissue. The receptor also acts through other down-stream mechanisms to control functions...... reveal high GPR81 mRNA in retina and indicate GPR81 localization in Müller cells and retinal ganglion cells. Moreover, monocarboxylate transporters are expressed in retinal cells. We envision that lactate receptors and transporters could be useful future targets of novel therapeutic strategies to protect...

  5. Molecular Mechanisms of Dopamine Receptor Mediated Neuroprotection

    National Research Council Canada - National Science Library

    Sealfon, Stuart

    2000-01-01

    ... of the cellular changes characteristic of this process. Evidence from our laboratory and others suggest that activation of dopamine receptors can oppose the induction of apoptosis in dopamine neurons...

  6. Agonism and antagonism at the insulin receptor

    DEFF Research Database (Denmark)

    Knudsen, Louise; Hansen, Bo Falck; Jensen, Pia

    2012-01-01

    Insulin can trigger metabolic as well as mitogenic effects, the latter being pharmaceutically undesirable. An understanding of the structure/function relationships between insulin receptor (IR) binding and mitogenic/metabolic signalling would greatly facilitate the preclinical development of new...... insulin analogues. The occurrence of ligand agonism and antagonism is well described for G protein-coupled receptors (GPCRs) and other receptors but in general, with the exception of antibodies, not for receptor tyrosine kinases (RTKs). In the case of the IR, no natural ligand or insulin analogue has been...... shown to exhibit antagonistic properties, with the exception of a crosslinked insulin dimer (B29-B'29). However, synthetic monomeric or dimeric peptides targeting sites 1 or 2 of the IR were shown to be either agonists or antagonists. We found here that the S961 peptide, previously described to be an IR...

  7. Agonist induction, conformational selection, and mutant receptors.

    Science.gov (United States)

    Giraldo, Jesús

    2004-01-02

    Current models of receptor activation are based on either of two basic mechanisms: agonist induction or conformational selection. The importance of one pathway relative to the other is controversial. In this article, the impossibility of distinguishing between the two mechanisms under a thermodynamic approach is shown. The effect of receptor mutation on the constants governing ligand-receptor equilibria is discussed. The two-state model of agonism both in its original formulation (one cycle) and including multiple active states (multiple cycles) is used. Pharmacological equations for the double (two cycles) two-state model are derived. The simulations performed suggest that the double two-state model of agonism can be a useful model for assessing quantitatively the changes in pharmacological activity following receptor mutation.

  8. Brain nuclear receptors and body weight regulation

    Science.gov (United States)

    Neural pathways, especially those in the hypothalamus, integrate multiple nutritional, hormonal, and neural signals, resulting in the coordinated control of body weight balance and glucose homeostasis. Nuclear receptors (NRs) sense changing levels of nutrients and hormones, and therefore play essent...

  9. Ecdysteroid receptors in Drosophila melanogaster adult females

    Science.gov (United States)

    Ecdysteroid receptors were identified and partially characterized from total cell extracts of whole animals and dissected tissues from Drosophila melanogaster adult females. Binding studies indicated the presence of two ecdysteroid binding components having high affinity and specificity consistent w...

  10. Familial hypocalciuric hypercalcemia and calcium sensing receptor

    DEFF Research Database (Denmark)

    Mrgan, Monija; Nielsen, Sanne; Brixen, Kim

    2014-01-01

    Familial hypocalciuric hypercalcemia (FHH) is a lifelong, benign autosomal dominant disease characterized by hypercalcemia, normal to increased parathyroid hormone level, and a relatively low renal calcium excretion. Inactivation of the calcium-sensing receptor in heterozygous patients results in...

  11. Clinical and Genomic Crosstalk between Glucocorticoid Receptor and Estrogen Receptor α In Endometrial Cancer

    Directory of Open Access Journals (Sweden)

    Jeffery M. Vahrenkamp

    2018-03-01

    Full Text Available Summary: Steroid hormone receptors are simultaneously active in many tissues and are capable of altering each other’s function. Estrogen receptor α (ER and glucocorticoid receptor (GR are expressed in the uterus, and their ligands have opposing effects on uterine growth. In endometrial tumors with high ER expression, we surprisingly found that expression of GR is associated with poor prognosis. Dexamethasone reduced normal uterine growth in vivo; however, this growth inhibition was abolished in estrogen-induced endometrial hyperplasia. We observed low genomic-binding site overlap when ER and GR are induced with their respective ligands; however, upon simultaneous induction they co-occupy more sites. GR binding is altered significantly by estradiol with GR recruited to ER-bound loci that become more accessible upon estradiol induction. Gene expression responses to co-treatment were more similar to estradiol but with additional regulated genes. Our results suggest phenotypic and molecular interplay between ER and GR in endometrial cancer. : Estrogen receptor α (ER and glucocorticoid receptor (GR are expressed in the uterus and have differential effects on growth. Vahrenkamp et al. find that expression of both receptors is associated with poor outcome in endometrial cancer and that simultaneous induction of ER and GR leads to molecular interplay between the receptors. Keywords: estrogen receptor, glucocorticoid receptor, endometrial cancer

  12. Evidence for Heterodimerization and Functional Interaction of the Angiotensin Type 2 Receptor and the Receptor MAS

    DEFF Research Database (Denmark)

    Leonhardt, Julia; Villela, Daniel C.; Teichmann, Anke

    2017-01-01

    The angiotensin type 2 receptor (AT2R) and the receptor MAS are receptors of the protective arm of the renin-angiotensin system. They mediate strikingly similar actions. Moreover, in various studies, AT2R antagonists blocked the effects of MAS agonists and vice versa. Such cross-inhibition may......, subfamily C-member 6. Dimerization of the AT2R was abolished when it was mutated at cysteine residue 35. AT2R and MAS stimulation with the respective agonists, Compound 21 or angiotensin-(1-7), significantly induced CX3C chemokine receptor-1 messenger RNA expression. Effects of each agonist were blocked...

  13. Determination of co-receptor usage of HIV-1

    NARCIS (Netherlands)

    Schuitemaker, Hanneke; Kootstra, Neeltje A.

    2005-01-01

    In addition to CD4, HIV-1 uses chemokine receptors for entry in their target cells. The most important chemokine receptors in this respect are beta-chemokine receptor 5 (CCR5) and alpha-chemokine receptor 4 (CXCR4). Coreceptor usage is an important feature of the biological phenotype of HIV-1

  14. Dopamine receptors - physiological understanding to therapeutic intervention potential

    NARCIS (Netherlands)

    Emilien, G; Maloteaux, JM; Hoogenberg, K; Cragg, S

    1999-01-01

    There are two families of dopamine (DA) receptors, called D(1) and D(2), respectively. The D(1) family consists of D(1)- and D(5)-receptor subtypes and the D(2) family consists of D(2)-, D(3)-, and D(4)-receptor subtypes. The amino acid sequences of these receptors show that they all belong to a

  15. A recipe for ridding synapses of the ubiquitous AMPA receptor.

    Science.gov (United States)

    Turrigiano, Gina G

    2002-12-01

    Getting AMPA receptors into and out of synapses represents an important mechanism for changing synaptic strength, but the signals that target AMPA receptors for removal from the synaptic membrane are incompletely understood. A recent study in Ceanorhabditis elegans suggests that ubiquitination of AMPA receptors is one important signal that targets these receptors for endocytosis.

  16. NK-1 receptor antagonists as anti-cancer drugs

    Indian Academy of Sciences (India)

    The substance P (SP)/neurokinin (NK)-1 receptor system plays an important role in cancer. SP promotes the proliferation of tumour cells, angiogenesis and the migration of tumour cells. We review the involvement of SP, the NK-1 receptor and NK-1 receptor antagonists in cancer. Tumour cells overexpress NK-1 receptors, ...

  17. The MC4 receptor and control of appetite

    NARCIS (Netherlands)

    Adan, R. A. H.; Tiesjema, B.; Hillebrand, J. J. G.; La Fleur, S. E.; Kas, M. J. H.; de Krom, M.

    2006-01-01

    Mutations in the human melanocortin (MC)4 receptor have been associated with obesity, which underscores the relevance of this receptor as a drug target to treat obesity. Infusion of MC4R agonists decreases food intake, whereas inhibition of MC receptor activity by infusion of an MC receptor

  18. Agonist discrimination between AMPA receptor subtypes

    DEFF Research Database (Denmark)

    Coquelle, T; Christensen, J K; Banke, T G

    2000-01-01

    The lack of subtype-selective compounds for AMPA receptors (AMPA-R) led us to search for compounds with such selectivity. Homoibotenic acid analogues were investigated at recombinant GluR1o, GluR2o(R), GluR3o and GluR1o + 3o receptors expressed in Sf9 insect cells and affinities determined in [3H...

  19. Methodological aspects on drug receptor binding analysis

    International Nuclear Information System (INIS)

    Wahlstroem, A.

    1978-01-01

    Although drug receptors occur in relatively low concentrations, they can be visualized by the use of appropriate radioindicators. In most cases the procedure is rapid and can reach a high degree of accuracy. Specificity of the interaction is studied by competition analysis. The necessity of using several radioindicators to define a receptor population is emphasized. It may be possible to define isoreceptors and drugs with selectivity for one isoreceptor. (Author)

  20. The Angiotensin AT2 Receptor

    DEFF Research Database (Denmark)

    Unger, Thomas; Steckelings, Ulrike M.; Dzau, Victor J.

    2015-01-01

    Since its discovery, 25 years ago, the angiotensin AT2 receptor (AT2R) has puzzled the scientific community because of its distinct -localization, regulation, signaling pathways, and biological effects separating it clearly from the classical features of the renin-angiotensin...... system (RAS) mediated by the angiotensin AT1 receptor. Intensive research over the years has revealed major characteristics of the AT2R as a modulatory player involved in antiproliferation, anti-inflammation, natriuresis, neuroregeneration, and apoptosis, that is, -biological...

  1. Moth sex pheromone receptors and deceitful parapheromones.

    Directory of Open Access Journals (Sweden)

    Pingxi Xu

    Full Text Available The insect's olfactory system is so selective that male moths, for example, can discriminate female-produced sex pheromones from compounds with minimal structural modifications. Yet, there is an exception for this "lock-and-key" tight selectivity. Formate analogs can be used as replacement for less chemically stable, long-chain aldehyde pheromones, because male moths respond physiologically and behaviorally to these parapheromones. However, it remained hitherto unknown how formate analogs interact with aldehyde-sensitive odorant receptors (ORs. Neuronal responses to semiochemicals were investigated with single sensillum recordings. Odorant receptors (ORs were cloned using degenerate primers, and tested with the Xenopus oocyte expression system. Quality, relative quantity, and purity of samples were evaluated by gas chromatography and gas chromatography-mass spectrometry. We identified olfactory receptor neurons (ORNs housed in trichoid sensilla on the antennae of male navel orangeworm that responded equally to the main constituent of the sex pheromone, (11Z,13Z-hexadecadienal (Z11Z13-16Ald, and its formate analog, (9Z,11Z-tetradecen-1-yl formate (Z9Z11-14OFor. We cloned an odorant receptor co-receptor (Orco and aldehyde-sensitive ORs from the navel orangeworm, one of which (AtraOR1 was expressed specifically in male antennae. AtraOR1•AtraOrco-expressing oocytes responded mainly to Z11Z13-16Ald, with moderate sensitivity to another component of the sex pheromone, (11Z,13Z-hexadecadien-1-ol. Surprisingly, this receptor was more sensitive to the related formate than to the natural sex pheromone. A pheromone receptor from Heliothis virescens, HR13 ( = HvirOR13 showed a similar profile, with stronger responses elicited by a formate analog than to the natural sex pheromone, (11Z-hexadecenal thus suggesting this might be a common feature of moth pheromone receptors.

  2. External Imaging of Cerebral Muscarinic Acetylcholine Receptors

    Science.gov (United States)

    Eckelman, William C.; Reba, Richard C.; Rzeszotarski, Waclaw J.; Gibson, Raymond E.; Hill, Thomas; Holman, B. Leonard; Budinger, Thomas; Conklin, James J.; Eng, Robert; Grissom, Michael P.

    1984-01-01

    A radioiodinated ligand that binds to muscarinic acetylcholine receptors was shown to distribute in the brain by a receptor-mediated process. With single-photon-emission imaging techniques, radioactivity was detected in the cerebrum but not in the cerebellum, whereas with a flow-limited radiotracer, radioactivity was detected in cerebrum and cerebellum. Single-photon-emission computed tomography showed good definition of the caudate putamen and cortex in man.

  3. Angiotensin Receptors, Autoimmunity, and Preeclampsia1

    OpenAIRE

    Xia, Yang; Zhou, Cissy Chenyi; Ramin, Susan M.; Kellems, Rodney E.

    2007-01-01

    Preeclampsia is a pregnancy-induced hypertensive disorder that causes substantial maternal and fetal morbidity and mortality. Despite being a leading cause of maternal death and a major contributor to maternal and perinatal morbidity, the mechanisms responsible for the pathogenesis of preeclampsia are poorly understood. Recent studies indicate that women with preeclampsia have autoantibodies that activate the angiotensin receptor, AT1, and that autoantibody-mediated receptor activation contri...

  4. Neurokinin-1 receptor activation in globus pallidus

    Directory of Open Access Journals (Sweden)

    Lei Chen

    2009-10-01

    Full Text Available The undecapeptide substance P has been demonstrated to modulate neuronal activity in a number of brain regions by acting on neurokinin-1 receptors. Anatomical studies revealed a moderate level of neurokinin-1 receptor in rat globus pallidus. To determine the electrophysiological effects of neurokinin-1 receptor activation in globus pallidus, whole-cell patch-clamp recordings were performed in the present study. Under current-clamp recordings, neurokinin-1 receptor agonist, [Sar9, Met(O211] substance P (SM-SP at 1 μM, depolarized globus pallidus neurons and increased their firing rate. Consistently, SM-SP induced an inward current under voltage-clamp recording. The depolarization evoked by SM-SP persisted in the presence of tetrodotoxin, glutamate and GABA receptor antagonists, indicating its direct postsynaptic effects. The neurokinin-1 receptor antagonist, SR140333B, could block SM-SP-induced depolarization. Further experiments showed that suppression of potassium conductance was the predominant ionic mechanism of SM-SP-induced depolarization. To determine if neurokinin-1 receptor activation exerts any effects on GABAergic and glutamatergic neurotransmission, the action of SM-SP on synaptic currents was studied. SM-SP significantly increased the frequency of spontaneous inhibitory postsynaptic currents, but only induced a transient increase in the frequency of miniature inhibitory postsynaptic currents. No change was observed in both spontaneous and miniature excitatory postsynaptic currents. Based on the direct excitatory effects of SM-SP on pallidal neurons, we hypothesize that neurokinin-1 receptor activation in globus pallidus may be involved in the beneficial effect of substance P in Parkinson’s disease.

  5. Toll-like receptors in skin

    OpenAIRE

    Miller, Lloyd S.

    2008-01-01

    The skin not only plays an important role as a physical barrier between the host and the environment, but also plays a key immunologic role in sensing and responding to invading pathogens from the environment. Toll-like receptors (TLRs), which are expressed by many different types of cells in human skin, have been found to be important pattern recognition receptors that are involved in recognizing components of microbial pathogens and initiating and instructing cutaneous immune responses. Thi...

  6. Beta adrenergic receptors in human cavernous tissue

    Energy Technology Data Exchange (ETDEWEB)

    Dhabuwala, C.B.; Ramakrishna, C.V.; Anderson, G.F.

    1985-04-01

    Beta adrenergic receptor binding was performed with /sup 125/I iodocyanopindolol on human cavernous tissue membrane fractions from normal tissue and transsexual procedures obtained postoperatively, as well as from postmortem sources. Isotherm binding studies on normal fresh tissues indicated that the receptor density was 9.1 fmoles/mg. with a KD of 23 pM. Tissue stored at room temperature for 4 to 6 hours, then at 4C in saline solution for 19 to 20 hours before freezing showed no significant changes in receptor density or affinity, and provided evidence for the stability of postmortem tissue obtained within the same time period. Beta receptor density of 2 cavernous preparations from transsexual procedures was not significantly different from normal control tissues, and showed that high concentrations of estrogen received by these patients had no effect on beta adrenergic receptor density. Displacement of /sup 125/iodocyanopindolol by 5 beta adrenergic agents demonstrated that 1-propranolol had the greatest affinity followed by ICI 118,551, zinterol, metoprolol and practolol. When the results of these displacement studies were subjected to Scatfit, non- linear regression line analysis, a single binding site was described. Based on the relative potency of the selective beta adrenergic agents it appears that these receptors were of the beta 2 subtype.

  7. ROR-Family Receptor Tyrosine Kinases.

    Science.gov (United States)

    Stricker, Sigmar; Rauschenberger, Verena; Schambony, Alexandra

    2017-01-01

    ROR-family receptor tyrosine kinases form a small subfamily of receptor tyrosine kinases (RTKs), characterized by a conserved, unique domain architecture. ROR RTKs are evolutionary conserved throughout the animal kingdom and act as alternative receptors and coreceptors of WNT ligands. The intracellular signaling cascades activated downstream of ROR receptors are diverse, including but not limited to ROR-Frizzled-mediated activation of planar cell polarity signaling, RTK-like signaling, and antagonistic regulation of WNT/β-Catenin signaling. In line with their diverse repertoire of signaling functions, ROR receptors are involved in the regulation of multiple processes in embryonic development such as development of the axial and paraxial mesoderm, the nervous system and the neural crest, the axial and appendicular skeleton, and the kidney. In humans, mutations in the ROR2 gene cause two distinct developmental syndromes, recessive Robinow syndrome (RRS; MIM 268310) and dominant brachydactyly type B1 (BDB1; MIM 113000). In Robinow syndrome patients and animal models, the development of multiple organs is affected, whereas BDB1 results only in shortening of the distal phalanges of fingers and toes, reflecting the diversity of functions and signaling activities of ROR-family RTKs. In this chapter, we give an overview on ROR receptor structure and function. We discuss their signaling functions and role in vertebrate embryonic development with a focus on those developmental processes that are affected by mutations in the ROR2 gene in human patients. © 2017 Elsevier Inc. All rights reserved.

  8. Functional reconstitution of the glycine receptor

    International Nuclear Information System (INIS)

    Garcia-Calvo, M.; Ruiz-Gomez, A.; Vazquez, J.; Morato, E.; Valdivieso, F.; Mayor, F. Jr.

    1989-01-01

    The functional reconstitution of the chloride channel coupled glycine receptor is described. Glycine receptors were purified from the cholate extract of rat spinal cord membranes by affinity chromatography and incorporated into phospholipid vesicles by the addition of phosphatidylcholine and removal of detergent by gel filtration. The reconstituted vesicles showed the same polypeptide composition as the purified receptor. The pharmacological characteristics of the glycine receptor were also preserved in the proteoliposomes, as demonstrated by the displacement of [ 3 H]strychnine binding by several glycinergic ligands and by photoaffinity labeling experiments. In order to observe functional responses (i.e., specific agonist-induced anion translocation), the authors have developed an assay based on the fluorescence quenching of an anion-sensitive entrapped probe, SPQ [6-methoxy-N-(3-sulfopropyl)quinolinium]. Reconstituted vesicles were loaded with the fluorescent probe during a freeze-thaw-sonication cycle in the presence of added liposomes containing cholesterol. In such a reconstituted system, glycine receptor agonists are able to increase the rate of anion influx into the vesicles. The action of agonists is blocked by the simultaneous presence of strychnine or other glycine antagonists. The results show that the purified 48,000- and 58,000-dalton polypeptides reconstituted into phospholipid vesicles can bind ligands and promote specific ion translocation in a way similar to the glycine receptor in its native environment

  9. Vitamin D receptors and parathyroid glands.

    Science.gov (United States)

    Landry, Christine S; Ruppe, Mary D; Grubbs, Elizabeth G

    2011-01-01

    To describe the function and metabolism of the vitamin D hormone and the role of the vitamin D receptor and the calcium-sensing receptor in the secretion of parathyroid hormone. A review of the literature was undertaken regarding the function and metabolism of vitamin D; the role of the vitamin D receptor and calcium-sensing receptor in the secretion of parathyroid hormone; and the contemporary research regarding the interaction of vitamin D and parathyroid hormone in patients with vitamin D deficiency, primary hyperparathyroidism, and secondary hyperparathyroidism. Over the last several years, great interest has been generated about the interaction of vitamin D and the parathyroid glands, gastrointestinal tract, kidney, and bone in relation to calcium and parathyroid hormone levels. Vitamin D has an important role in calcium and parathyroid hormone metabolism. Likewise, the vitamin D axis appears to be involved with the development of both primary and secondary hyperparathyroidism. The specific mechanism by which vitamin D interacts with the parathyroid gland to bring about observed effects is not yet fully understood. Future studies investigating the relationship of the vitamin D receptor, calcium-sensing receptor, and parathyroid glands are needed to enhance our knowledge of vitamin D deficiency and primary and secondary vitamin D deficiency.

  10. Development of selective androgen receptor modulators (SARMs).

    Science.gov (United States)

    Narayanan, Ramesh; Coss, Christopher C; Dalton, James T

    2017-06-15

    The Androgen Receptor (AR), a member of the steroid hormone receptor family, plays important roles in the physiology and pathology of diverse tissues. AR ligands, which include circulating testosterone and locally synthesized dihydrotestosterone, bind to and activate the AR to elicit their effects. Ubiquitous expression of the AR, metabolism and cross reactivity with other receptors limit broad therapeutic utilization of steroidal androgens. However, the discovery of selective androgen receptor modulators (SARMs) and other tissue-selective nuclear hormone receptor modulators that activate their cognate receptors in a tissue-selective manner provides an opportunity to promote the beneficial effects of androgens and other hormones in target tissues with greatly reduced unwanted side-effects. In the last two decades, significant resources have been dedicated to the discovery and biological characterization of SARMs in an effort to harness the untapped potential of the AR. SARMs have been proposed as treatments of choice for various diseases, including muscle-wasting, breast cancer, and osteoporosis. This review provides insight into the evolution of SARMs from proof-of-concept agents to the cusp of therapeutic use in less than two decades, while covering contemporary views of their mechanisms of action and therapeutic benefits. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Modulators of androgen and estrogen receptor activity.

    Science.gov (United States)

    Clarke, Bart L; Khosla, Sundeep

    2010-01-01

    This review focuses on significant recent findings regarding modulators of androgen and estrogen receptor activity. Selective androgen receptor modulators (SARMs) interact with androgen receptors (ARs), and selective estrogen receptor modulators (SERMs) interact with estrogen receptors (ERs), with variable tissue selectivity. SERMs, which interact with both ERб and ERв in a tissue-specific manner to produce diverse outcomes in multiple tissues, continue to generate significant interest for clinical application. Development of SARMs for clinical application has been slower to date because of potential adverse effects, but these diverse compounds continue to be investigated for use in disorders in which modulation of the AR is important. SARMs have been investigated mostly at the basic and preclinical level to date, with few human clinical trials published. These compounds have been evaluated mostly for application in different stages of prostate cancer to date, but they hold promise for multiple other applications. Publication of the large STAR and RUTH clinical trials demonstrated that the SERMs tamoxifen and raloxifene have interesting similarities and differences in tissues that contain ERs. Lasofoxifene, bazedoxifene, and arzoxifene are newer SERMs that have been demonstrated in clinical trials to more potently increase bone mineral density and lower serum cholesterol values than tamoxifen or raloxifene. Both SARMs and SERMs hold great promise for therapeutic use in multiple disorders in which tissue-specific effects are mediated by their respective receptors.

  12. Structural basis for ligand recognition of incretin receptors

    DEFF Research Database (Denmark)

    Underwood, Christina Rye; Parthier, Christoph; Reedtz-Runge, Steffen

    2010-01-01

    The glucose-dependent insulinotropic polypeptide (GIP) receptor and the glucagon-like peptide-1 (GLP-1) receptor are homologous G-protein-coupled receptors (GPCRs). Incretin receptor agonists stimulate the synthesis and secretion of insulin from pancreatic β-cells and are therefore promising agents...... appear to be the main driving force for ligand binding to the ECD of incretin receptors. Obviously, the-still missing-structures of full-length incretin receptors are required to construct a complete picture of receptor function at the molecular level. However, the progress made recently in structural...

  13. Family C 7TM receptor dimerization and activation

    DEFF Research Database (Denmark)

    Bonde, Marie Mi; Sheikh, Søren P; Hansen, Jakob Lerche

    2006-01-01

    changes that lead to receptor activation. Despite extensive studies of the receptor transmembrane domain, several key features, including the exact organization of the complete receptor dimer, the sequence of events leading to receptor activation, and the functional significance of dimerization, have yet...... to be fully defined. This review presents the biochemical support for family C 7TM receptor dimerization and discusses its importance for receptor biosynthesis, surface expression, ligand binding and activation, since lessons learnt here may well be applicable to the whole superfamily of 7TM receptors....

  14. Ligand specificity of nuclear hormone receptors: sifting through promiscuity.

    Science.gov (United States)

    Noy, Noa

    2007-11-27

    The superfamily of nuclear hormone receptors includes transcription factors that play key roles in regulating multiple biological functions during embryonic development and in adult tissues, as well as in many disease states. The quintessential characteristic of nuclear receptors, and the basis for the name of the family, is that their transcriptional activities can be regulated by small molecules, usually comprised of hydrophobic compounds. However, the endogenous ligands for approximately half of the members of the nuclear receptor family are unknown, and these receptors are thus designated as "orphan receptors". One class of orphan receptors encompasses receptors that display a broad ligand selectivity; i.e., they can promiscuously bind to and may be activated by multiple ligands. This characteristic complicates the identification of physiologically meaningful ligands that activate these receptors in vivo. Here, we discuss a few examples of promiscuous receptors and outline strategies that may be employed in shedding light on the nature of bona fide ligands for such receptors.

  15. Cloning the interleukin 1 receptor from human T cells

    International Nuclear Information System (INIS)

    Sims, J.E.; Acres, R.B.; Grubin, C.E.; McMahan, C.J.; Wignall, J.M.; March, C.J.; Dower, S.K.

    1989-01-01

    cDNA clones of the interleukin 1 (IL-1) receptor expressed in a human T-cell clone have been isolated by using a murine IL-1 receptor cDNA as a probe. The human and mouse receptors show a high degree of sequence conservation. Both are integral membrane proteins possessing a single membrane-spanning segment. Similar to the mouse receptor, the human IL-1 receptor contains a large cytoplasmic region and an extracellular, IL-1 binding portion composed of three immunoglobulin-like domains. When transfected into COS cells, the human IL-1 receptor cDNA clone leads to expression of two different affinity classes of receptors, with K a values indistinguishable from those determined for IL-1 receptors in the original T-cell clone. An IL-1 receptor expressed in human dermal fibroblasts has also been cloned and sequenced and found to be identical to the IL-1 receptor expressed in T cells

  16. Coantagonism of Glutamate Receptors and Nicotinic Acetylcholinergic Receptors Disrupts Fear Conditioning and Latent Inhibition of Fear Conditioning

    Science.gov (United States)

    Gould, Thomas J.; Lewis, Michael C.

    2005-01-01

    The present study investigated the hypothesis that both nicotinic acetylcholinergic receptors (nAChRs) and glutamate receptors ([alpha]-amino-3-hydroxy-5-methyl-4-isoxazole propionate receptors (AMPARs) and N-methyl-D-aspartate glutamate receptors (NMDARs)) are involved in fear conditioning, and may modulate similar processes. The effects of the…

  17. Development and validation of fluorescent receptor assays based on the human recombinant estrogen receptor subtypes alpha and beta

    NARCIS (Netherlands)

    de boer, T; Otjens, D; Muntendam, A; Meulman, E; van Oostijen, M; Ensing, K

    2004-01-01

    This article describes the development and validation of two fluorescent receptor assays for the hRec-estrogen receptor subtypes alpha and beta. As a labelled ligand an autofluorescent phyto-estrogen (coumestrol) has been used. The estrogen receptor (ER) belongs to the nuclear receptor family, a

  18. Characterization of melanocortin receptor ligands on cloned brain melanocortin receptors and on grooming behavior in the rat

    NARCIS (Netherlands)

    Gispen, W.H.; Adan, R.A.H.; Szklarczyk, A.W.; Oosterom, J.; Brakkee, J.H.; Nijenhuis, W.A.; Schaaper, W.M.; Meloen, R.H.

    1999-01-01

    Since the melanocortin MC3 and melanocortin MC4 receptors are the main melanocortin receptor subtypes expressed in rat brain, we characterized the activity and affinity of nine melanocortin receptor ligands using these receptors in vitro, as well as their activity in a well-defined

  19. Characterization of G-protein coupled receptor kinase interaction with the neurokinin-1 receptor using bioluminescence resonance energy transfer

    DEFF Research Database (Denmark)

    Jorgensen, Rasmus; Holliday, Nicholas D; Hansen, Jakob L

    2007-01-01

    activation, the full-length NK-1 receptor, but not a functional C-terminal tail-truncated receptor, is preassociated with GRK5 in a relatively low-affinity state. We demonstrate that GRK5 can compete for agonist induced GRK2 interaction with the NK-1 receptor, whereas GRK2 does not compete for receptor...

  20. Receptor autoradiography in the hippocampus of man and rat

    International Nuclear Information System (INIS)

    Zilles, K.

    1988-01-01

    This chapter deals with the following questions: regional distribution of binding sites for 5-HT, glutamate, and acetylcholine in Ammon's horn and the dentate gyrus of rat and human brain; comparison of receptor distribution and neuronal pathways with identified transmitters; correlation of region-specific densities between different receptors and receptor subtypes (colocalization of different receptors on the level of hippocampal layers) and comparison of receptor distribution in human and rat hippocampus

  1. Scavenger receptors and β-glucan receptors participate in the recognition of yeasts by murine macrophages.

    Science.gov (United States)

    Józefowski, Szczepan; Yang, Zhiping; Marcinkiewicz, Janusz; Kobzik, Lester

    2012-02-01

    Numerous receptors have been implicated in recognition of pathogenic fungi by macrophages, including the β-glucan receptor dectin-1. The role of scavenger receptors (SRs) in anti-fungal immunity is not well characterized. We studied uptake of unopsonized Saccharomycetes cerevisiae (zymosan) and live Candida albicans yeasts as well as zymosan-stimulated H(2)O(2) production in J774 macrophage-like cells and peritoneal exudate macrophages (PEMs). The role of different receptors was assessed with the use of competitive ligands, transfected cells and receptor-deficient macrophages. The uptake of zymosan by untreated J774 cells was mediated approximately half by SRs and half by a β-glucan receptor which was distinct from dectin-1 and not linked to stimulation of H(2)O(2) production. Ligands of β-glucan receptors and of SRs also inhibited uptake of C. albicans by macrophages (J774 cells and PEMs). In macrophages pretreated with a CpG motif-containing oligodeoxynucleotide (CpG-ODN) the relative contribution of SRs to yeast uptake increased and that of β-glucan receptors decreased. Whereas the class A SR MARCO participated in the uptake of both zymosan and C. albicans by CpG-ODN-pretreated, but not untreated macrophages, the related receptor SR-A/CD204 was involved in the uptake of zymosan, but not of C. albicans. The reduction of zymosan-stimulated H(2)O(2) production observed in DS-pretreated J774 cells and in class A SRs-deficient PEMs suggest that class A SRs mediate part of this process. Our results revealed that SRs belong to a redundant system of receptors for yeasts. Binding of yeasts to different receptors in resting versus CpG-ODN-pre-exposed macrophages may differentially affect polarization of adaptive immune responses.

  2. Atypical chemokine receptors in cancer: friends or foes?

    Science.gov (United States)

    Massara, Matteo; Bonavita, Ornella; Mantovani, Alberto; Locati, Massimo; Bonecchi, Raffaella

    2016-06-01

    The chemokine system is a fundamental component of cancer-related inflammation involved in all stages of cancer development. It controls not only leukocyte infiltration in primary tumors but also angiogenesis, cancer cell proliferation, and migration to metastatic sites. Atypical chemokine receptors are a new, emerging class of regulators of the chemokine system. They control chemokine bioavailability by scavenging, transporting, or storing chemokines. They can also regulate the activity of canonical chemokine receptors with which they share the ligands by forming heterodimers or by modulating their expression levels or signaling activity. Here, we summarize recent results about the role of these receptors (atypical chemokine receptor 1/Duffy antigen receptor for chemokine, atypical chemokine receptor 2/D6, atypical chemokine receptor 3/CXC-chemokine receptor 7, and atypical chemokine receptor 4/CC-chemokine receptor-like 1) on the tumorigenesis process, indicating that their effects are strictly dependent on the cell type on which they are expressed and on their coexpression with other chemokine receptors. Indeed, atypical chemokine receptors inhibit tumor growth and progression through their activity as negative regulators of chemokine bioavailability, whereas, on the contrary, they can promote tumorigenesis when they regulate the signaling of other chemokine receptors, such as CXC-chemokine receptor 4. Thus, atypical chemokine receptors are key components of the regulatory network of inflammation and immunity in cancer and may have a major effect on anti-inflammatory and immunotherapeutic strategies. © Society for Leukocyte Biology.

  3. Pharmacology and function of melatonin receptors

    International Nuclear Information System (INIS)

    Dubocovich, M.L.

    1988-01-01

    The hormone melatonin is secreted primarily from the pineal gland, with highest levels occurring during the dark period of a circadian cycle. This hormone, through an action in the brain, appears to be involved in the regulation of various neural and endocrine processes that are cued by the daily change in photoperiod. This article reviews the pharmacological characteristics and function of melatonin receptors in the central nervous system, and the role of melatonin in mediating physiological functions in mammals. Melatonin and melatonin agonists, at picomolar concentrations, inhibit the release of dopamine from retina through activation of a site that is pharmacologically different from a serotonin receptor. These inhibitory effects are antagonized by the novel melatonin receptor antagonist luzindole (N-0774), which suggests that melatonin activates a presynaptic melatonin receptor. In chicken and rabbit retina, the pharmacological characteristics of the presynaptic melatonin receptor and the site labeled by 2-[125I]iodomelatonin are identical. It is proposed that 2-[125I]iodomelatonin binding sites (e.g., chicken brain) that possess the pharmacological characteristics of the retinal melatonin receptor site (order of affinities: 2-iodomelatonin greater than 6-chloromelatonin greater than or equal to melatonin greater than or equal to 6,7-di-chloro-2-methylmelatonin greater than 6-hydroxymelatonin greater than or equal to 6-methoxymelatonin greater than N-acetyltryptamine greater than or equal to luzindole greater than N-acetyl-5-hydroxytryptamine greater than 5-methoxytryptamine much greater than 5-hydroxytryptamine) be classified as ML-1 (melatonin 1). The 2-[125I]iodomelatonin binding site of hamster brain membranes possesses different binding and pharmacological characteristics from the retinal melatonin receptor site and should be classified as ML-2. 64 references

  4. New selective estrogen and androgen receptor modulators.

    Science.gov (United States)

    Clarke, Bart L; Khosla, Sundeep

    2009-07-01

    The present review focuses on the most significant recent findings regarding selective estrogen receptor modulators (SERMs) and selective androgen receptor modulators (SARMs). SERMs, which interact with estrogen receptor-alpha and estrogen receptor-beta in multiple tissues, continue to generate clinical interest in potential applications in as many disorders as the tissues in which the two known receptors are found. SARMs have been demonstrated to have fewer clinical applications to date, but continue to be investigated for use in multiple disorders in which androgen receptor modulation is likely to be important. Both types of compounds hold great promise for therapeutic use in multiple hormonal disorders involving tissue-specific effects mediated by estrogen or androgen receptors. Although SERMs have been available for clinical use for 50 years, recent investigation has focused on large randomized clinical trials for newer indications of older agents or smaller clinical trials of newer agents with improved clinical activity and reduced side effects in specific tissues. In particular, the large, prospective, randomized, controlled, multiyear Study of Tamoxifen and Raloxifene and Raloxifene Use in the Heart clinical trials have recently shown interesting similarities and differences between tamoxifen and raloxifene in estrogen-responsive tissues. Lasofoxifene and arzoxifene are two newer SERMs that have recently been demonstrated to improve bone mineral density and lower serum cholesterol values compared with older SERMs in smaller clinical trials. SARMs are a newer category of drug still being investigated mostly at the basic and preclinical level, with fewer clinical trials available for review. SARMs are currently being investigated mostly for use in prostate cancer at different stages but hold promise for multiple other applications. Recent clinical trials indicate that SERMs are useful in treatment of disorders of bone and mineral metabolism and breast cancer

  5. Delineation of atypical insulin receptors from classical insulin and type I insulin-like growth factor receptors in human placenta.

    OpenAIRE

    Jonas, H A; Cox, A J; Harrison, L C

    1989-01-01

    Insulin-like growth factor (IGF)-binding sites copurifying with human placental insulin receptors during insulin-affinity chromatography consist of two immunologically distinct populations. One reacts with monoclonal antibody alpha IR-3, but not with antibodies to the insulin receptor, and represents Type I IGF receptors; the other reacts only with antibodies to the insulin receptor and is precipitated with a polyclonal receptor antibody (B-10) after labelling with 125I-multiplication-stimula...

  6. Genomic cloning of the mouse LDL receptor related protein/_2-macroglobulin receptor gene

    NARCIS (Netherlands)

    Zee, A. van der; Stas, L.; Hilleker, C.; Leuven, F. van; Dijk, K.W. van; Havekes, L; Frants, R.A.; Hofker, M.H.

    1994-01-01

    The LDL receptor-related protein (LRP) or alpha 2-macroglobulin receptor (A2mr) is encoded by a 15-kb mRNA in mouse and human. Probes encompassing different regions of the mouse cDNA were used to isolate clones from a cosmid library of mouse strain 129. Four overlapping cosmids were used for

  7. Ligand-independent recruitment of steroid receptor coactivators to estrogen receptor by cyclin D1

    NARCIS (Netherlands)

    Zwijsen, R.M.L.; Buckle, R.S.; Hijmans, E.M.; Loomans, C.J.M.; Bernards, R.A.

    1998-01-01

    The estrogen receptor (ER) is an important regulator of growth and differentiation of breast epithelium. Transactivation by ER depends on a leucine-rich motif, which constitutes a ligand-regulated binding site for steroid receptor coactivators (SRCs). Cyclin D1 is frequently amplified in breast

  8. Receptors and Channels Targeted by Synthetic Cannabinoid Receptor Agonists and Antagonists

    Science.gov (United States)

    Pertwee, R.G.

    2010-01-01

    It is widely accepted that non-endogenous compounds that target CB1 and/or CB2 receptors possess therapeutic potential for the clinical management of an ever growing number of disorders. Just a few of these disorders are already treated with Δ9-tetrahydrocannabinol or nabilone, both CB1/CB2 receptor agonists, and there is now considerable interest in expanding the clinical applications of such agonists and also in exploiting CB2-selective agonists, peripherally restricted CB1/CB2 receptor agonists and CB1/CB2 antagonists and inverse agonists as medicines. Already, numerous cannabinoid receptor ligands have been developed and their interactions with CB1 and CB2 receptors well characterized. This review describes what is currently known about the ability of such compounds to bind to, activate, inhibit or block non-CB1, non-CB2 G protein-coupled receptors such as GPR55, transmitter gated channels, ion channels and nuclear receptors in an orthosteric or allosteric manner. It begins with a brief description of how each of these ligands interacts with CB1 and/or CB2 receptors. PMID:20166927

  9. CGRP receptor antagonists and antibodies against CGRP and its receptor in migraine treatment

    DEFF Research Database (Denmark)

    Edvinsson, Lars

    2015-01-01

    Recently developed calcitonin gene-related peptide (CGRP) receptor antagonistic molecules have shown promising results in clinical trials for acute treatment of migraine attacks. Drugs from the gepant class of CGRP receptor antagonists are effective and do not cause vasoconstriction, one...

  10. Cannabinoid-1 receptor antagonist rimonabant (SR141716) increases striatal dopamine D2 receptor availability

    NARCIS (Netherlands)

    Crunelle, Cleo L.; van de Giessen, Elsmarieke; Schulz, Sybille; Vanderschuren, Louk J. M. J.; de Bruin, Kora; van den Brink, Wim; Booij, Jan

    2013-01-01

    The cannabinoid 1 receptor antagonist rimonabant (SR141716) alters rewarding properties and intake of food and drugs. Additionally, striatal dopamine D2 receptor (DRD2) availability has been implicated in reward function. This study shows that chronic treatment of rats with rimonabant (1.0 and

  11. Dioxin increases the interaction between aryl hydrocarbon receptor and estrogen receptor alpha at human promoters

    DEFF Research Database (Denmark)

    Ahmed, Shaaima; Valen, Eivind; Sandelin, Albin Gustav

    2009-01-01

    Recent studies have shown that activated aryl hydrocarbon receptor (AHR) induced the recruitment of estrogen receptor- (ER ) to AHR-regulated genes and that AHR is recruited to ER -regulated genes. However, these findings were limited to a small number of well-characterized AHR- or ER -responsive...

  12. The Orphan Nuclear Receptor TR4 Is a Vitamin A-activated Nuclear Receptor

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, X. Edward; Suino-Powell, Kelly M.; Xu, Yong; Chan, Cee-Wah; Tanabe, Osamu; Kruse, Schoen W.; Reynolds, Ross; Engel, James Douglas; Xu, H. Eric (Michigan-Med); (Van Andel)

    2015-11-30

    Testicular receptors 2 and 4 (TR2/4) constitute a subgroup of orphan nuclear receptors that play important roles in spermatogenesis, lipid and lipoprotein regulation, and the development of the central nervous system. Currently, little is known about the structural features and the ligand regulation of these receptors. Here we report the crystal structure of the ligand-free TR4 ligand binding domain, which reveals an autorepressed conformation. The ligand binding pocket of TR4 is filled by the C-terminal half of helix 10, and the cofactor binding site is occupied by the AF-2 helix, thus preventing ligand-independent activation of the receptor. However, TR4 exhibits constitutive transcriptional activity on multiple promoters, which can be further potentiated by nuclear receptor coactivators. Mutations designed to disrupt cofactor binding, dimerization, or ligand binding substantially reduce the transcriptional activity of this receptor. Importantly, both retinol and retinoic acid are able to promote TR4 to recruit coactivators and to activate a TR4-regulated reporter. These findings demonstrate that TR4 is a ligand-regulated nuclear receptor and suggest that retinoids might have a much wider regulatory role via activation of orphan receptors such as TR4.

  13. Lipid raft integrity affects GABAA receptor, but not NMDA receptor modulation by psychopharmacological compounds.

    Science.gov (United States)

    Nothdurfter, Caroline; Tanasic, Sascha; Di Benedetto, Barbara; Uhr, Manfred; Wagner, Eva-Maria; Gilling, Kate E; Parsons, Chris G; Rein, Theo; Holsboer, Florian; Rupprecht, Rainer; Rammes, Gerhard

    2013-07-01

    Lipid rafts have been shown to play an important role for G-protein mediated signal transduction and the function of ligand-gated ion channels including their modulation by psychopharmacological compounds. In this study, we investigated the functional significance of the membrane distribution of NMDA and GABAA receptor subunits in relation to the accumulation of the tricyclic antidepressant desipramine (DMI) and the benzodiazepine diazepam (Diaz). In the presence of Triton X-100, which allowed proper separation of the lipid raft marker proteins caveolin-1 and flotillin-1 from the transferrin receptor, all receptor subunits were shifted to the non-raft fractions. In contrast, under detergent-free conditions, NMDA and GABAA receptor subunits were detected both in raft and non-raft fractions. Diaz was enriched in non-raft fractions without Triton X-100 in contrast to DMI, which preferentially accumulated in lipid rafts. Impairment of lipid raft integrity by methyl-β-cyclodextrine (MβCD)-induced cholesterol depletion did not change the inhibitory effect of DMI at the NMDA receptor, whereas it enhanced the potentiating effect of Diaz at the GABAA receptor at non-saturating concentrations of GABA. These results support the hypothesis that the interaction of benzodiazepines with the GABAA receptor likely occurs outside of lipid rafts while the antidepressant DMI acts on ionotropic receptors both within and outside these membrane microdomains.

  14. The orphan receptor GPR17 identified as a new dual uracil nucleotides/cysteinyl-leukotrienes receptor.

    Science.gov (United States)

    Ciana, Paolo; Fumagalli, Marta; Trincavelli, Maria Letizia; Verderio, Claudia; Rosa, Patrizia; Lecca, Davide; Ferrario, Silvia; Parravicini, Chiara; Capra, Valérie; Gelosa, Paolo; Guerrini, Uliano; Belcredito, Silvia; Cimino, Mauro; Sironi, Luigi; Tremoli, Elena; Rovati, G Enrico; Martini, Claudia; Abbracchio, Maria P

    2006-10-04

    Nucleotides and cysteinyl-leukotrienes (CysLTs) are unrelated signaling molecules inducing multiple effects through separate G-protein-coupled receptors: the P2Y and the CysLT receptors. Here we show that GPR17, a Gi-coupled orphan receptor at intermediate phylogenetic position between P2Y and CysLT receptors, is specifically activated by both families of endogenous ligands, leading to both adenylyl cyclase inhibition and intracellular calcium increases. Agonist-response profile, as determined by [(35)S]GTPgammaS binding, was different from that of already known CysLT and P2Y receptors, with EC(50) values in the nanomolar and micromolar range, for CysLTs and uracil nucleotides, respectively. Both rat and human receptors are highly expressed in the organs typically undergoing ischemic damage, that is, brain, heart and kidney. In vivo inhibition of GPR17 by either CysLT/P2Y receptor antagonists or antisense technology dramatically reduced ischemic damage in a rat focal ischemia model, suggesting GPR17 as the common molecular target mediating brain damage by nucleotides and CysLTs. In conclusion, the deorphanization of GPR17 revealed a dualistic receptor for two endogenous unrelated ligand families. These findings may lead to dualistic drugs of previously unexplored therapeutic potential.

  15. The WSXWS motif in cytokine receptors is a molecular switch involved in receptor activation

    DEFF Research Database (Denmark)

    Dagil, Robert; Knudsen, Maiken J.; Olsen, Johan Gotthardt

    2012-01-01

    The prolactin receptor (PRLR) is activated by binding of prolactin in a 2:1 complex, but the activation mechanism is poorly understood. PRLR has a conserved WSXWS motif generic to cytokine class I receptors. We have determined the nuclear magnetic resonance solution structure of the membrane...

  16. PGE2 Modulates GABAA Receptors via an EP1 Receptor-Mediated Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Guang Yang

    2015-07-01

    Full Text Available Aims: PGE2 is one of the most abundant prostanoids in mammalian tissues, but its effect on neuronal receptors has not been well investigated. This study examines the effect of PGE2 on GABAA receptor currents in rat cerebellar granule neurons. Methods: GABAA currents were recorded using a patch-clamp technique. Cell surface and total protein of GABAA β1/2/3 subunits was carried out by Western blot analysis. Results: Upon incubation of neurons with PGE2 (1 µM for 60 minutes, GABAA currents were significantly potentiated. This PGE2-driven effect could be blocked by PKC or CaMKII inhibitors as well as EP1 receptor antagonist, and mimicked by PMA or EP1 receptor agonist. Furthermore, Western blot data showed that PGE2 did not increase the total expression level of GABAA receptors, but significantly increased surface levels of GABAA β1/2/3 subunits after 1 h of treatment. Consistently, both PKC and CaMKII inhibitors were able to reduce PGE2-induced increases in cell surface expression of GABAA receptors. Conclusion: Activation of either the PKC or CaMKII pathways by EP1 receptors mediates the PGE2-induced increase in GABAA currents. This suggests that upregulation of postsynaptic GABAA receptors by PGE2 may have profound effects on cerebellar functioning under physiological and pathological conditions.

  17. Intracellular insulin-receptor dissociation and segregation in a rat fibroblast cell line transfected with a human insulin receptor gene

    International Nuclear Information System (INIS)

    Levy, J.R.; Olefsky, J.M.

    1988-01-01

    The cellular processing of insulin and insulin receptors was studied using a rat fibroblast cell line that had been transfected with a normal human insulin receptor gene, expressing approximately 500 times the normal number of native fibroblasts insulin receptors. These cells bind and internalize insulin normally. Biochemically assays based on the selective precipitation by polyethylene glycol of intact insulin-receptor complexes but not of free intracellular insulin were developed to study the time course of intracellular insulin-receptor dissociation. Fibroblasts were incubated with radiolabeled insulin at 4 0 C, and internalization of insulin-receptor complexes was initiated by warming the cells to 37 0 C. Within 2 min, 90% of the internalized radioactivity was composed of intact insulin-receptor complexes. The dissociation of insulin from internalized insulin-receptor complexes was markedly inhibited by monensin and chloroquine. Furthermore, chloroquine markedly increased the number of cross-linkable intracellular insulin-receptor complexes, as analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis autoradiography. These findings suggest that acidification of intracellular vesicles is responsible for insulin-receptor dissociation. Physical segregation of dissociated intracellular insulin from its receptor was monitored. The results are consistent with the view that segregation of insulin and receptor occurs 5-10 min after initiation of dissociation. These studies demonstrate the intracellular itinerary of insulin-receptor complexes, including internalization, dissociation of insulin from the internalized receptor within an acidified compartment, segregation of insulin from the receptor, and subsequent ligand degradation

  18. CANNABINOID RECEPTOR AGONISTS UPREGULATE AND ENHANCE SEROTONIN 2A (5-HT2A) RECEPTOR ACTIVITY VIA ERK1/2 SIGNALING

    OpenAIRE

    Franklin, Jade M.; Carrasco, Gonzalo A.

    2012-01-01

    Recent behavioral studies suggest that non-selective agonists of cannabinoid receptors may regulate serotonin 2A (5-HT2A) receptor neurotransmission. Two cannabinoids receptors are found in brain, CB1 and CB2 receptors, but the molecular mechanism by which cannabinoid receptors would regulate 5-HT2A receptor neurotransmission remains unknown. Interestingly, we have recently found that certain cannabinoid receptor agonists can specifically upregulate 5-HT2A receptors. Here, we present experime...

  19. Interaction of chemokines with their receptors--from initial chemokine binding to receptor activating steps

    DEFF Research Database (Denmark)

    Thiele, Stefanie; Rosenkilde, Mette Marie

    2014-01-01

    and surveillance. Chemokines are a group of 8-12 kDa large peptides with a secondary structure consisting of a flexible N-terminus and a core-domain usually stabilized by two conserved disulfide bridges. They mainly interact with the extracellular domains of their cognate 7TM receptors. Affinityand activity......-contributing interactions are attributed to different domains and known to occur in two steps. Here, knowledge on chemokine and receptor domains involved in the first binding-step and the second activation-step is reviewed. A mechanism comprising at least two steps seems consistent; however, several intermediate...... interactions possibly occur, resulting in a multi-step process, as recently proposed for other 7TM receptors. Overall, the N-terminus of chemokine receptors is pivotal for binding of all chemokines. During receptor activation, differences between the two major chemokine subgroups occur, as CC-chemokines mainly...

  20. Receptor activity-modifying proteins; multifunctional G protein-coupled receptor accessory proteins.

    Science.gov (United States)

    Hay, Debbie L; Walker, Christopher S; Gingell, Joseph J; Ladds, Graham; Reynolds, Christopher A; Poyner, David R

    2016-04-15

    Receptor activity-modifying proteins (RAMPs) are single pass membrane proteins initially identified by their ability to determine the pharmacology of the calcitonin receptor-like receptor (CLR), a family B G protein-coupled receptor (GPCR). It is now known that RAMPs can interact with a much wider range of GPCRs. This review considers recent developments on the structure of the complexes formed between the extracellular domains (ECDs) of CLR and RAMP1 or RAMP2 as these provide insights as to how the RAMPs direct ligand binding. The range of RAMP interactions is also considered; RAMPs can interact with numerous family B GPCRs as well as examples of family A and family C GPCRs. They influence receptor expression at the cell surface, trafficking, ligand binding and G protein coupling. The GPCR-RAMP interface offers opportunities for drug targeting, illustrated by examples of drugs developed for migraine. © 2016 Authors; published by Portland Press Limited.

  1. Toll-like receptors and their crosstalk with other innate receptors in infection and immunity.

    Science.gov (United States)

    Kawai, Taro; Akira, Shizuo

    2011-05-27

    Toll-like receptors (TLRs) are germline-encoded pattern recognition receptors (PRRs) that play a central role in host cell recognition and responses to microbial pathogens. TLR-mediated recognition of components derived from a wide range of pathogens and their role in the subsequent initiation of innate immune responses is widely accepted; however, the recent discovery of non-TLR PRRs, such as C-type lectin receptors, NOD-like receptors, and RIG-I-like receptors, suggests that many aspects of innate immunity are more sophisticated and complex. In this review, we will focus on the role played by TLRs in mounting protective immune responses against infection and their crosstalk with other PRRs with respect to pathogen recognition. Copyright © 2011 Elsevier Inc. All rights reserved.

  2. G-protein coupling of cannabinoid receptors

    International Nuclear Information System (INIS)

    Glass, M.

    2001-01-01

    Full text: Since the cloning of the cannabinoid CB1 and CB2 receptors in the early 1990's extensive research has focused on understanding their signal transduction pathways. While it has been known for sometime that both receptors can couple to intracellular signalling via pertussis toxin sensitive G-proteins (Gi/Go), the specificity and kinetics of these interactions have only recently been elucidated. We have developed an in situ reconstitution approach to investigating receptor-G-protein interactions. This approach involves chaotropic extraction of receptor containing membranes in order to inactivate or remove endogenous G-proteins. Recombinant or isolated brain G-proteins can then be added back to the receptors, and their activation monitored through the binding of [ 35 S]-GTPγS. This technique has been utilised for an extensive study of cannabinoid receptor mediated activation of G-proteins. In these studies we have established that CB1 couples with high affinity to both Gi and Go type G-proteins. In contrast, CB2 couples strongly to Gi, but has a very low affinity for Go. This finding correlated well with the previous findings that while CB1 and CB2 both couple to the inhibition of adenylate cyclase, CB1 but not CB2 could also inhibit calcium channels. We then examined the ability of a range of cannabinoid agonists to activate the Gi and Go via CB1. Conventional receptor theory suggests that a receptor is either active or inactive with regard to a G-protein and that the active receptor activates all relevant G-proteins equally. However, in this study we found that agonists could produce different degrees of activation, depending on which G-protein was present. Further studies have compared the ability of the two endocannabinoids to drive the activation of Gi or Go. These studies show that agonists can induce multiple forms of activated receptor that differ in their ability to catalyse the activation of Gi or Go. The ability of an agonist to drive a receptor

  3. Tachykinins and tachykinin receptors in human uterus.

    Science.gov (United States)

    Patak, Eva; Candenas, M Luz; Pennefather, Jocelyn N; Ziccone, Sebastian; Lilley, Alison; Martín, Julio D; Flores, Carlos; Mantecón, Antonio G; Story, Margot E; Pinto, Francisco M

    2003-06-01

    (1) Studies were undertaken to determine the nature of the receptors mediating contractile effects of tachykinins in the uteri of nonpregnant women, and to analyse the expression of preprotachykinins (PPT), tachykinin receptors and the cell-surface peptidase, neprilysin (NEP), in the myometrium from pregnant and nonpregnant women. (2) The neurokinin B (NKB) precursor PPT-B was expressed in higher levels in the myometrium from nonpregnant than from pregnant women. Faint expression of PPT-A mRNA was detectable in the myometrium from nonpregnant but not pregnant women. PPT-C, the gene encoding the novel tachykinin peptide hemokinin-1 (HK-1), was present in trace amounts in the uteri from both pregnant and nonpregnant women. (3) Tachykinin NK(2) receptors were more strongly expressed in tissues from nonpregnant than from pregnant women. NK(1) receptor mRNA was present in low levels in tissues from both pregnant and nonpregnant women. A low abundance transcript corresponding to the NK(3) receptor was present only in tissues from nonpregnant women. (4) The mRNA expression of the tachykinin-degrading enzyme NEP was lower in tissues from nonpregnant than from pregnant women. (5) Substance P (SP), neurokinin A (NKA) and NKB, in the presence of the peptidase inhibitors thiorphan, captopril and bestatin, produced contractions of myometrium from nonpregnant women. The order of potency was NKA>SP>/=NKB. The potency of NKA was unchanged in the absence of peptidase inhibitors. (6) The tachykinin NK(2) receptor-selective agonist [Lys(5)MeLeu(9)Nle(10)]NKA(4-l0) was approximately equipotent with NKA, but the tachykinin NK(1) and NK(3) receptor-selective agonists [Sar(9)Met(O(2))(11)]SP and [MePhe(7)]NKB were ineffective in the myometrium from nonpregnant women. (7) The uterotonic effects of [Lys(5)MeLeu(9)Nle(10)]NKA(4-10) were antagonized by the tachykinin NK(2) receptor-selective antagonist SR48968. Neither atropine, nor phentolamine nor tetrodotoxin affected responses to [Lys(5

  4. Radiolabelled GLP-1 receptor antagonist binds to GLP-1 receptor-expressing human tissues

    Energy Technology Data Exchange (ETDEWEB)

    Waser, Beatrice; Reubi, Jean Claude [University of Berne, Division of Cell Biology and Experimental Cancer Research, Institute of Pathology, PO Box 62, Berne (Switzerland)

    2014-06-15

    Radiolabelled glucagon-like peptide 1 (GLP-1) receptor agonists have recently been shown to successfully image benign insulinomas in patients. For the somatostatin receptor targeting of tumours, however, it was recently reported that antagonist tracers were superior to agonist tracers. The present study therefore evaluated various forms of the {sup 125}iodinated-Bolton-Hunter (BH)-exendin(9-39) antagonist tracer for the in vitro visualization of GLP-1 receptor-expressing tissues in rats and humans and compared it with the agonist tracer {sup 125}I-GLP-1(7-36)amide. Receptor autoradiography studies with {sup 125}I-GLP-1(7-36)amide agonist or {sup 125}I-BH-exendin(9-39) antagonist radioligands were performed in human and rat tissues. The antagonist {sup 125}I-BH-exendin(9-39) labelled at lysine 19 identifies all human and rat GLP-1 target tissues and GLP-1 receptor-expressing tumours. Binding is of high affinity and is comparable in all tested tissues in its binding properties with the agonist tracer {sup 125}I-GLP-1(7-36)amide. For comparison, {sup 125}I-BH-exendin(9-39) with the BH labelled at lysine 4 did identify the GLP-1 receptor in rat tissues but not in human tissues. The GLP-1 receptor antagonist exendin(9-39) labelled with {sup 125}I-BH at lysine 19 is an excellent GLP-1 radioligand that identifies human and rat GLP-1 receptors in normal and tumoural tissues. It may therefore be the molecular basis to develop suitable GLP-1 receptor antagonist radioligands for in vivo imaging of GLP-1 receptor-expressing tissues in patients. (orig.)

  5. Medicinal Chemistry of Competitive Kainate Receptor Antagonists

    Science.gov (United States)

    2010-01-01

    Kainic acid (KA) receptors belong to the group of ionotropic glutamate receptors and are expressed throughout in the central nervous system (CNS). The KA receptors have been shown to be involved in neurophysiological functions such as mossy fiber long-term potentiation (LTP) and synaptic plasticity and are thus potential therapeutic targets in CNS diseases such as schizophrenia, major depression, neuropathic pain and epilepsy. Extensive effort has been made to develop subtype-selective KA receptor antagonists in order to elucidate the physiological function of each of the five subunits known (GluK1−5). However, to date only selective antagonists for the GluK1 subunit have been discovered, which underlines the strong need for continued research in this area. The present review describes the structure−activity relationship and pharmacological profile for 10 chemically distinct classes of KA receptor antagonists comprising, in all, 45 compounds. To the medicinal chemist this information will serve as reference guidance as well as an inspiration for future effort in this field. PMID:22778857

  6. Sex Hormone Receptor Repertoire in Breast Cancer

    Directory of Open Access Journals (Sweden)

    Gerald M. Higa

    2013-01-01

    Full Text Available Classification of breast cancer as endocrine sensitive, hormone dependent, or estrogen receptor (ER positive refers singularly to ERα. One of the oldest recognized tumor targets, disruption of ERα-mediated signaling, is believed to be the mechanistic mode of action for all hormonal interventions used in treating this disease. Whereas ERα is widely accepted as the single most important predictive factor (for response to endocrine therapy, the presence of the receptor in tumor cells is also of prognostic value. Even though the clinical relevance of the two other sex hormone receptors, namely, ERβ and the androgen receptor remains unclear, two discordant phenomena observed in hormone-dependent breast cancers could be causally related to ERβ-mediated effects and androgenic actions. Nonetheless, our understanding of regulatory molecules and resistance mechanisms remains incomplete, further compromising our ability to develop novel therapeutic strategies that could improve disease outcomes. This review focuses on the receptor-mediated actions of the sex hormones in breast cancer.

  7. Different endothelin receptor affinities in dog tissues

    International Nuclear Information System (INIS)

    Loeffler, B.M.L.; Loehrer, W.

    1991-01-01

    Endothelin (ET) is a long-lasting potent vasoconstrictor-peptide. Here the authors report different binding affinities of endothelin-1 (ET-1) to ET-receptors of various dog tissues. Crude microsomal fractions were prepared after homogenisation of dog tissues in 50 mM Tris/HCl, 20 mM MnCl2, 1 mM EDTA, pH 7.4 by differential centrifugation. Aliquots of microsomal fractions (70 micrograms of protein) were incubated at 25 degrees C for 180 min in the presence of 20 pM 125I-ET-1 and various concentrations of cold ET-1. Four different ET-1 receptor binding affinities were found: adrenals, cerebrum, liver, heart, skeletal muscle and stomach microsomal membranes contained high affinity binding sites (Kd 50 - 80 pM, Bmax 60 - 250 fmol/mg). In cerebellum and spleen medium affinity ET-1 receptors (Kd 350 pM, Bmax 880 and 1200 fmol/mg respectively) were present. In comparison lung and kidney microsomes contained a low affinity ET-1 receptor (Kd 800 and 880 pM, Bmax 1600 and 350 fmol/mg). Receptors of even lower affinity were present in heart, intestine and liver microsomes with Kd values of 3 - 6 nM

  8. Phagocytosis: receptors, signal integration, and the cytoskeleton.

    Science.gov (United States)

    Freeman, Spencer A; Grinstein, Sergio

    2014-11-01

    Phagocytosis is a remarkably complex and versatile process: it contributes to innate immunity through the ingestion and elimination of pathogens, while also being central to tissue homeostasis and remodeling by clearing effete cells. The ability of phagocytes to perform such diverse functions rests, in large part, on their vast repertoire of receptors. In this review, we address the various receptor types, their mobility in the plane of the membrane, and two modes of receptor crosstalk: priming and synergy. A major section is devoted to the actin cytoskeleton, which not only governs receptor mobility and clustering but also is instrumental in particle engulfment. Four stages of the actin remodeling process are identified and discussed: (i) the 'resting' stage that precedes receptor engagement, (ii) the disruption of the cortical actin prior to formation of the phagocytic cup, (iii) the actin polymerization that propels pseudopod extension, and (iv) the termination of polymerization and removal of preassembled actin that are required for focal delivery of endomembranes and phagosomal sealing. These topics are viewed in the larger context of the differentiation and polarization of the phagocytic cells. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. NMDA Receptor Antagonists for Treatment of Depression

    Directory of Open Access Journals (Sweden)

    Zeynep Ates-Alagoz

    2013-04-01

    Full Text Available Depression is a psychiatric disorder that affects millions of people worldwide. Individuals battling this disorder commonly experience high rates of relapse, persistent residual symptoms, functional impairment, and diminished well-being. Medications have important utility in stabilizing moods and daily functions of many individuals. However, only one third of patients had considerable improvement with a standard antidepressant after 2 months and all patients had to deal with numerous side effects. The N-methyl-d-aspartate (NMDA receptor family has received special attention because of its critical role in psychiatric disorders. Direct targeting of the NMDA receptor could result in more rapid antidepressant effects. Antidepressant-like effects of NMDA receptor antagonists have been demonstrated in different animal models. MK-801 (a use-dependent channel blocker, and CGP 37849 (an NMDA receptor antagonist have shown antidepressant properties in preclinical studies, either alone or combined with traditional antidepressants. A recent development is use of ketamine clinically for refractory depression. The purpose of this review is to examine and analyze current literature on the role of NMDA receptor antagonists for treatment of depression and whether this is a feasible route in drug discovery.

  10. Binding characteristics of swine erythrocyte insulin receptors

    Energy Technology Data Exchange (ETDEWEB)

    Dieberg, G.; Bryan, G.S.; Sartin, J.L.; Williams, J.C.; Prince, T.J.; Kemppainen, R.J.

    1985-09-01

    Crossbred gilts had 8.8 +/- 1.1% maximum binding of ( SVI)insulin to insulin receptors on erythrocytes. The number of insulin-binding sites per cell was 137 +/- 19, with a binding affinity ranging from 7.4 X 10(7)M-1 to 11.2 X 10(7)M-1 and mean of 8.8 X 10(7)M-1. Pregnant sows had a significant increase in maximum binding due to an increase in number of receptor sites per cell. Lactating sows fed a high-fiber diet and a low-fiber diet did not develop a significant difference in maximum binding of insulin. Sows fed the low-fiber diet had a significantly higher number of binding sites and a significantly lower binding affinity than did sows fed a high-fiber diet. Receptor-binding affinity was lower in the low-fiber diet group than in cycling gilts, whereas data from sows fed the high-fiber diet did not differ from data for cycling gilts. Data from this study indicated that insulin receptors of swine erythrocytes have binding characteristics similar to those in other species. Pregnancy and diet will alter insulin receptor binding in swine.

  11. Glutamate receptors and the airways hyperreactivity.

    Science.gov (United States)

    Strapkova, Anna; Antosova, Martina

    2012-03-01

    It is proposed the link between the hyperactivity of NMDA receptors and airway hyperresponsiveness. We investigated the effect of agents modulating the activity of NMDA receptors in the ovalbumin-induced airway hyperreactivity in guinea pigs. The airways hyperreactivity was influenced by the agonist (NMDA) and selective antagonist - competitive (AP-5) and non-competitive (MK-801) of NMDA receptors. Airway responsiveness to histamine or acetylcholine was evaluated in in vitro conditions. NMDA administration caused the increase of tracheal smooth muscle response in ovalbumin-induced hyperreactivity to acetylcholine. MK 801 as well as AP-5 provoked the decrease of reactivity mainly to acetylcholine in tracheal smooth muscle, while the former, non-competitive antagonist was more effective. We recorded more pronounced response in tracheal than in lung tissue smooth muscle with more considerable response to acetylcholine than to histamine. The results of experiments show the modification of airway smooth muscles responses by agents modulating the activity of NMDA receptors. They confirm the possibility of NMDA receptors participation in experimental airway hyperreactivity. The results enlarge information regarding the link of the inflammatory diseases and glutamatergic system.

  12. Responses to microbial challenges by SLAMF receptors

    Directory of Open Access Journals (Sweden)

    Boaz Job Van Driel

    2016-01-01

    Full Text Available The SLAMF Family (SLAMF of cell surface glycoproteins is comprised of nine glycoproteins and whilst SLAMF1, 3, 5, 6, 7, 8, 9 are self-ligand receptors, SLAMF2 and SLAMF4 interact with each other. Their interactions induce signal transduction networks in trans, thereby shaping immune cell-cell communications. Collectively, these receptors modulate a wide range of functions, such as myeloid cell and lymphocyte development and, T and B cell responses to microbes and parasites. In addition, several SLAMF receptors serve as microbial sensors, which either positively or negatively modulate the function of macrophages, dendritic cells, neutrophils and NK cells in response to microbial challenges. The SLAMF receptor-microbe interactions contribute both to intracellular microbicidal activity as well as to migration of phagocytes to the site of inflammation. In this review, we describe the current knowledge on how the SLAMF receptors and their specific adapters SAP and EAT-2 regulate innate and adaptive immune responses to microbes.

  13. Cellular receptors for human enterovirus species a.

    Science.gov (United States)

    Nishimura, Yorihiro; Shimizu, Hiroyuki

    2012-01-01

    Human enterovirus species A (HEV-A) is one of the four species of HEV in the genus Enterovirus in the family Picornaviridae. Among HEV-A, coxsackievirus A16 (CVA16) and enterovirus 71 (EV71) are the major causative agents of hand, foot, and mouth disease (HFMD). Some other types of HEV-A are commonly associated with herpangina. Although HFMD and herpangina due to HEV-A are common febrile diseases among infants and children, EV71 can cause various neurological diseases, such as aseptic meningitis and fatal encephalitis. Recently, two human transmembrane proteins, P-selectin glycoprotein ligand-1 (PSGL-1) and scavenger receptor class B, member 2 (SCARB2), were identified as functional receptors for EV71 and CVA16. In in vitro infection experiments using the prototype HEV-A strains, PSGL-1 and SCARB2 could be responsible for the specific receptors for EV71 and CVA16. However, the involvement of both receptors in the in vitro and in vivo infections of clinical isolates of HEV-A has not been clarified yet. To elucidate a diverse array of the clinical outcome of HEV-A-associated diseases, the identification and characterization of HEV-A receptors may provide useful information in understanding the HEV-A pathogenesis at a molecular level.

  14. Cellular receptors for human enterovirus species A

    Directory of Open Access Journals (Sweden)

    Yorihiro eNishimura

    2012-03-01

    Full Text Available Human enterovirus species A (HEV-A is one of the four species of HEV in the genus Enterovirus in the family Picornaviridae. Among HEV-A, coxsackievirus A16 (CVA16 and enterovirus 71 (EV71 are the major causative agents of hand, foot, and mouth disease (HFMD. Some other types of HEV-A are commonly associated with herpangina. Although HFMD and herpangina due to HEV-A are common febrile diseases among infants and children, EV71 can cause various neurological diseases, such as aseptic meningitis and fatal encephalitis.Recently, two human transmembrane proteins, P-selectin glycoprotein ligand-1 (PSGL-1 and scavenger receptor class B, member 2 (SCARB2, were identified as functional receptors for EV71 and CVA16. In in vitro infection experiments using the prototype HEV-A strains, PSGL-1 and SCARB2 could be responsible for the specific receptors for EV71 and CVA16. However, the involvement of both receptors in the in vitro and in vivo infections of clinical isolates of HEV-A has not been clarified yet. To elucidate a diverse array of the clinical outcome of HEV-A-associated diseases, the identification and characterization of HEV-A receptors may provide useful information in understanding the HEV-A pathogenesis at a molecular level.

  15. Dynamic mobility of functional GABAA receptors at inhibitory synapses.

    Science.gov (United States)

    Thomas, Philip; Mortensen, Martin; Hosie, Alastair M; Smart, Trevor G

    2005-07-01

    Importing functional GABAA receptors into synapses is fundamental for establishing and maintaining inhibitory transmission and for controlling neuronal excitability. By introducing a binding site for an irreversible inhibitor into the GABAA receptor alpha1 subunit channel lining region that can be accessed only when the receptor is activated, we have determined the dynamics of receptor mobility between synaptic and extrasynaptic locations in hippocampal pyramidal neurons. We demonstrate that the cell surface GABAA receptor population shows no fast recovery after irreversible inhibition. In contrast, after selective inhibition, the synaptic receptor population rapidly recovers by the import of new functional entities within minutes. The trafficking pathways that promote rapid importation of synaptic receptors do not involve insertion from intracellular pools, but reflect receptor diffusion within the plane of the membrane. This process offers the synapse a rapid mechanism to replenish functional GABAA receptors at inhibitory synapses and a means to control synaptic efficacy.

  16. Molecular analysis of the nerve growth factor receptor

    International Nuclear Information System (INIS)

    Hempstead, B.; Patil, N.; Olson, K.; Chao, M.

    1988-01-01

    An essential molecule in the translocation of information by nerve growth factor (NGF) to responsive cells is the cell-surface receptor for NGF. This paper presents information on the genomic structure of the NGF receptor gene, NGF receptor models, and transfection of NGF receptors. Equilibrium binding of [ 125 I]NGF to cells reveals two distinct affinity states for the NGF receptor. The human NGF receptor gene is a single-copy gene, consisting of six exons that span 23 kb. The receptor gene is capable of being transferred to fibroblast cells from human genomic DNA and expressed at high levels. The constitutive nature of the receptor promoter sequence is a partial explanation of why this tissue-specific gene is expressed efficiently in a variety of nonneuronal cells after genomic gene transfer. The two kinetic forms of the NGF receptor appear to be encoded by the same protein, which is the product of a single gene

  17. Structural and Molecular Modeling Features of P2X Receptors

    Directory of Open Access Journals (Sweden)

    Luiz Anastacio Alves

    2014-03-01

    Full Text Available Currently, adenosine 5'-triphosphate (ATP is recognized as the extracellular messenger that acts through P2 receptors. P2 receptors are divided into two subtypes: P2Y metabotropic receptors and P2X ionotropic receptors, both of which are found in virtually all mammalian cell types studied. Due to the difficulty in studying membrane protein structures by X-ray crystallography or NMR techniques, there is little information about these structures available in the literature. Two structures of the P2X4 receptor in truncated form have been solved by crystallography. Molecular modeling has proven to be an excellent tool for studying ionotropic receptors. Recently, modeling studies carried out on P2X receptors have advanced our knowledge of the P2X receptor structure-function relationships. This review presents a brief history of ion channel structural studies and shows how modeling approaches can be used to address relevant questions about P2X receptors.

  18. DMPD: Toll-like receptor 3: a link between toll-like receptor, interferon and viruses. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 15031527 Toll-like receptor 3: a link between toll-like receptor, interferon and virus... (.csml) Show Toll-like receptor 3: a link between toll-like receptor, interferon and viruses. PubmedID 1503...1527 Title Toll-like receptor 3: a link between toll-like receptor, interferon and virus

  19. Hypoxia Induces Internalization of κ-Opioid Receptor.

    Science.gov (United States)

    Xi, Chunhua; Liang, Xuan; Chen, Chunhua; Babazada, Hasan; Li, Tianzuo; Liu, Renyu

    2017-05-01

    It has been demonstrated that κ-opioid receptor agonists can reduce hypoxia-ischemia brain injury in animal models. However, it is unclear how the κ-opioid receptor responds to hypoxia-ischemia. In the current study, the authors used an in vitro model of oxygen-glucose deprivation and reoxygenation to explore how κ-opioid receptors respond to hypoxia and reoxygenation. Mouse neuroblastoma Neuro2A cells were stably transfected with mouse κ-opioid receptor-tdTomato fusion protein or Flag-tagged mouse κ-opioid receptor, divided into several groups (n = 6 to 12), and used to investigate the κ-opioid receptor movement. Observations were performed under normal oxygen, at 30 min to 1 h after oxygen-glucose deprivation and at 1 h after reoxygenation using high-resolution imaging techniques including immunoelectronmicroscopy in the presence and absence of κ-opioid receptor antagonist, dynamin inhibitors, potassium channel blockers, and dopamine receptor inhibitor. Hypoxic conditions caused the κ-opioid receptor to be internalized into the cells. Inhibition of dynamin by Dyngo-4a prevented the receptor internalization. Interestingly, a specific κ-opioid receptor antagonist norbinaltorphimine blocked internalization, suggesting the involvement of activation of a specific κ-opioid receptor. κ-Opioid receptor internalization appears to be reversed by reoxygenation. Quantities of intracellular κ-opioid receptor-associated gold particles as demonstrated by immunoelectron microscopy were increased from 37 to 85% (P internalization. Hypoxia induces reversible κ-opioid receptor internalization, which was inhibited by selective κ-opioid receptor antagonists or dynamin inhibitor, and can be reversed by reoxygenation in neuroblastoma cells, indicating the modulating effects between κ-opioid receptor and hypoxia via κ-opioid receptor activation and the dynamin-dependent mechanism.

  20. Molecular piracy of chemokine receptors by herpesviruses.

    Science.gov (United States)

    Murphy, P M

    1994-01-01

    To succeed as a biological entity, viruses must exploit normal cellular functions and elude the host immune system; they often do so by molecular mimicry. One way that mimicry may occur is when viruses copy and modify host genes. The best studied examples of this are the oncogenes of RNA retroviruses, but a growing number of examples are also known for DNA viruses. So far they all come from just two groups of DNA viruses, the herpesviruses and poxviruses, and the majority of examples are for genes whose products regulate immune responses, such as cytokines, cytokine receptors, and complement control proteins. This review will focus on human and herpesvirus receptors for chemokines, a family of leukocyte chemoattractant and activating factors that are thought to be important mediators of inflammation. Although the biological roles of the viral chemokine receptor homologues are currently unknown, their connection to specific sets of chemokines has suggested a number of possible functions.

  1. Transitional cell carcinoma express vitamin D receptors

    DEFF Research Database (Denmark)

    Hermann, G G; Andersen, C B

    1997-01-01

    Recently, vitamin D analogues have shown antineoplastic effect in several diseases. Vitamin D analogues exert its effect by interacting with the vitamin D receptor (VDR). Studies of VDR in transitional cell carcinoma (TCC) have not been reported. The purpose of the present study was therefore.......05). Similarly, also tumor grade appeared to be related to the number of cells expressing the receptor. Normal urothlium also expressed VDR but only with low intensity. Our study shows that TCC cells possess the VDR receptor which may make them capable to respond to stimulation with vitamin D, but functional...... studies of vitamin D's effect on TCC cells in vitro are necessary before the efficacy of treatment with vitamin D analogues in TCC can be evaluated in patients....

  2. Pattern recognition receptors in HIV transmission

    Directory of Open Access Journals (Sweden)

    Teunis B. Geijtenbeek

    2012-03-01

    Full Text Available Dendritic cells (DCs, Langerhans cells (LCs and macrophages are innate immune cells that reside in genital and intestinal mucosal tissues susceptible to HIV-1 infection. These innate cells play distinct roles in initiation of HIV-1 infection and induction of anti-viral immunity. DCs are potent migratory cells that capture HIV-1 and transfer virus to CD4+ T cells in the lymph nodes, whereas LCs have a protective anti-viral function, and macrophages function as viral reservoirs since they produce viruses over prolonged times. These differences are due to the different immune functions of these cells partly dependent on the expression of specific pattern recognition receptors. Expression of Toll-like receptors, C-type lectin receptors and cell-specific machinery for antigen uptake and processing strongly influence the outcome of virus interactions.

  3. Tachykinin receptors mediating airway marcomolecular secretion

    Energy Technology Data Exchange (ETDEWEB)

    Gentry, S.E. (Univ. of Pittsburgh School of Medicine, PA (USA))

    1991-01-01

    Three tachykinin receptor types, termed NK1, NK2, and NK3, can be distinguished by the relative potency of various peptides in eliciting tissue responses. Airway macromolecular secretion is stimulated by the tachykinin substance P (SP). The purposes of this study were to determine the tachykinin receptor subtype responsible for this stimulation, and to examine the possible involvement of other neurotransmitters in mediating this effect. Ferret tracheal explants maintained in organ culture were labeled with {sup 3}H-glucosamine, a precursor of high molecular weight glycoconjugates (HMWG) which are released by airway secretory cells. Secretion of labeled HMWG then was determined in the absence and presence of the tachykinins SP, neurokinin A (NKA), neurokinin B (NKB), physalaemin (PHY), and eledoisin (ELE). To evaluate the possible contribution of other mediators, tachykinin stimulation was examined in the presence of several receptor blockers.

  4. A molecular receptor selective for zwitterionic alanine.

    Science.gov (United States)

    Rubio, Omayra H; Taouil, Rachid; Muñiz, Francisco M; Monleón, Laura M; Simón, Luis; Sanz, Francisca; Morán, Joaquín R

    2017-01-04

    A molecular receptor has been synthesized joining an aza-crown ether with a chiral chromane which mimics the oxyanion hole of the enzymes. With this receptor an apolar host-guest complex with zwitterionic alanine has been achieved through the formation of up to seven H-bonds. This complex allows the extraction of aqueous alanine to a chloroform phase, while other natural amino acids are poorly extracted or are not extracted at all. Due to the chiral nature of the receptor, enantioselective extraction from the aqueous alanine solution to a chloroform phase takes place. X-Ray analysis combined with anisotropic effects, NOE and CD studies revealed the absolute configuration of both strong and weak complexes. Modelling studies also support the proposed structures. The presence of an oxyanion-hole motif in this structure was corroborated by X-ray diffraction studies.

  5. Estrogen, Estrogen Receptor and Lung Cancer

    Directory of Open Access Journals (Sweden)

    Li-Han Hsu

    2017-08-01

    Full Text Available Estrogen has been postulated as a contributor for lung cancer development and progression. We reviewed the current knowledge about the expression and prognostic implications of the estrogen receptors (ER in lung cancer, the effect and signaling pathway of estrogen on lung cancer, the hormone replacement therapy and lung cancer risk and survival, the mechanistic relationship between the ER and the epidermal growth factor receptor (EGFR, and the relevant clinical trials combining the ER antagonist and the EGFR antagonist, to investigate the role of estrogen in lung cancer. Estrogen and its receptor have the potential to become a prognosticator and a therapeutic target in lung cancer. On the other hand, tobacco smoking aggravates the effect of estrogen and endocrine disruptive chemicals from the environment targeting ER may well contribute to the lung carcinogenesis. They have gradually become important issues in the course of preventive medicine.

  6. Molecular dynamics of ultradian glucocorticoid receptor action.

    Science.gov (United States)

    Conway-Campbell, Becky L; Pooley, John R; Hager, Gordon L; Lightman, Stafford L

    2012-01-30

    In recent years it has become evident that glucocorticoid receptor (GR) action in the nucleus is highly dynamic, characterized by a rapid exchange at the chromatin template. This stochastic mode of GR action couples perfectly with a deterministic pulsatile availability of endogenous ligand in vivo. The endogenous glucocorticoid hormone (cortisol in man and corticosterone in rodent) is secreted from the adrenal gland with an ultradian rhythm made up of pulses at approximately hourly intervals. These two components - the rapidly fluctuating ligand and the rapidly exchanging receptor - appear to have evolved to establish and maintain a system that is exquisitely responsive to the physiological demands of the organism. In this review, we discuss recent and innovative work that questions the idea of steady state, static hormone receptor responses, and replaces them with new concepts of stochastic mechanisms and oscillatory activity essential for optimal function in molecular and cellular systems. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  7. Covalent labeling of the hepatic glucagon receptor

    International Nuclear Information System (INIS)

    Herberg, J.T.; Iyengar, R.

    1985-01-01

    The procedure for covalently labeling the hepatic glucagon receptor utilizes the light-sensitive heterobifunctional cross-linker hydroxysuccinimidyl-p-azidobenzoate (HSAB) to link the bound [ 125 I-Tyr 10 ]monoiodoglucagon ([ 125 I]MIG) to the receptor protein. The method involves first the binding of the labeled hormone to its receptor and the removal of the excess unbound label. This is followed by incubation with the cross-linker, in the dark and then under ultraviolet illumination to covalently couple the bound [ 125 I]MIG. HSAB contains an amino reactive group as well as an aryl azide which, upon light activation, is converted to an aryl nitrene that reacts in a chemically unspecific manner

  8. Metabotropic Regulation of Extrasynaptic GABAA Receptors

    Directory of Open Access Journals (Sweden)

    William Martin Connelly

    2013-10-01

    Full Text Available A large body of work now shows the importance of GABAA receptor-mediated tonic inhibition in regulating CNS function. However, outside of pathological conditions, there is relatively little evidence that the magnitude of tonic inhibition is itself under regulation. Here we review the mechanisms by which tonic inhibition is known to be modulated, and outline the potential behavioural consequences of this modulation. Specifically, we address the ability of protein kinase A and C to phosphorylate the extrasynaptic receptors responsible for the tonic GABAA current, and how G-protein coupled receptors can regulate tonic inhibition through these effectors. We then speculate about the possible functional consequences of regulating the magnitude of the tonic GABAA current.

  9. Alcohol's actions on neuronal nicotinic acetylcholine receptors.

    Science.gov (United States)

    Davis, Tiffany J; de Fiebre, Christopher M

    2006-01-01

    Although it has been known for many years that alcoholism and tobacco addiction often co-occur, relatively little information is available on the biological factors that regulate the co-use and abuse of nicotine and alcohol. In the brain, nicotine acts at several different types of receptors collectively known as nicotinic acetylcholine receptors (nAChRs). Alcohol also acts on at least some of these receptors, enhancing the function of some nAChR subtypes and inhibiting the activity of others. Chronic alcohol and nicotine administration also lead to changes in the numbers of nAChRs. Natural variations (i.e., polymorphisms) in the genes encoding different nAChR subunits may be associated with individual differences in the sensitivity to some of alcohol's and nicotine's effects. Finally, at least one subtype of nAChR may help protect cells against alcohol-induced neurotoxicity.

  10. Structure of Leptin Receptor Related with Obesity

    DEFF Research Database (Denmark)

    Toleikis, Zigmantas

    of the receptor, while the D5 domain is the central leptin-binding domain, implicated in the first steps of activation. Both domains are characterized by a fibronectin type III fold and both contain a conserved WSXWS motif (X represents an unconserved amino acid residue), a distinct feature of the cytokine...... receptors. This motif is thought to play a major role in correct folding and activation of the receptor. The complex between leptin and the D5CA domain was analyzed using nuclear magnetic resonance spectroscopy and the amino acid residues implicated in the binding were determined. To investigate which parts...... interactions between the aromatic residues of the peptide. It may be speculated that these differences affect the ability of the full domains to form alternative structures around the WSXWS motif....

  11. Humanin and the receptors for humanin.

    Science.gov (United States)

    Matsuoka, Masaaki; Hashimoto, Yuichi

    2010-02-01

    Alzheimer's disease (AD) is a prevalent dementia-causing neurodegenerative disease. Neuronal death is closely linked to the progression of AD-associated dementia. Accumulating evidence has established that a 24-amino-acid bioactive peptide, Humanin, protects neurons from AD-related neuronal death. A series of studies using various murine AD models including familial AD gene-expressing transgenic mice have shown that Humanin is effective against AD-related neuronal dysfunction in vivo. Most recently, it has been shown that Humanin inhibits neuronal cell death and dysfunction by binding to a novel IL-6-receptor-related receptor(s) on the cell surface involving CNTFRalpha, WSX-1, and gp130. These findings suggest that endogenous Humanin [or a Humanin-like substance(s)] may suppress the onset of AD-related dementia by inhibiting both AD-related neuronal cell death and dysfunction.

  12. Orexin Receptors: Pharmacology and Therapeutic Opportunities

    Science.gov (United States)

    Scammell, Thomas E.; Winrow, Christopher J.

    2011-01-01

    Orexin-A and -B (also known as hypocretin-1 and -2) are neuropeptides produced in the lateral hypothalamus that promote many aspects of arousal through the OX1 and OX2 receptors. In fact, they are necessary for normal wakefulness, as loss of the orexin-producing neurons causes narcolepsy in humans and rodents. This has generated considerable interest in developing small-molecule orexin receptor antagonists as a novel therapy for the treatment of insomnia. Orexin antagonists, especially those that block OX2 or both OX1 and OX2 receptors, clearly promote sleep in animals, and clinical results are encouraging: Several compounds are in Phase III trials. As the orexin system mainly promotes arousal, these new compounds will likely improve insomnia without incurring many of the side effects encountered with current medications. PMID:21034217

  13. NMDA receptor activity in neuropsychiatric disorders

    Directory of Open Access Journals (Sweden)

    Shaheen E Lakhan

    2013-06-01

    Full Text Available N-Methyl-D-aspartate (NMDA receptors play a variety of physiologic roles and their proper signaling is essential for cellular homeostasis. Any disruption in this pathway, leading to either enhanced or decreased activity, may result in the manifestation of neuropsychiatric pathologies such as schizophrenia, mood disorders, substance induced psychosis, Huntington's disease, Alzheimer's disease, and neuropsychiatric systemic lupus erythematosus. Here, we explore the notion that the overlap in activity of at least one biochemical pathway, the NMDA receptor pathway, may be the link to understanding the overlap in psychotic symptoms between diseases. This review intends to present a broad overview of those neuropsychiatric disorders for which alternations in NMDA receptor activity is prominent thus suggesting that continued direction of pharmaceutical intervention to this pathway may present a viable option for managing symptoms.

  14. Histamine, histamine receptors and antihistamines: new concepts.

    Science.gov (United States)

    Criado, Paulo Ricardo; Criado, Roberta Fachini Jardim; Maruta, Celina W; Machado Filho, Carlos d'Apparecida

    2010-01-01

    Drugs with antihistamine action are the most commonly prescribed medication in daily dermatologic practice, both to adults and children. This article addresses new concepts of the role of histamine receptors (H1 receptors) and discusses the anti-inflammatory effects of these drugs. Second generation antihistamines differs from first generation because of their high specificity and affinity for peripheral H1-receptors. Second generation antihistamines are also less likely to produce sedation because they have less effect on the central nervous system. Although the efficacy of the various H1-antihistamines in the treatment of allergic patients is similar, even when comparing first- and second-generation drugs, these drugs are still very different in terms of their chemical structure, pharmacology and toxic properties. Consequently, knowledge of their pharmacokinetic and pharmacodynamic characteristics is essential for a better medical care, especially that offered to pregnant women, children, the elderly, and patients with comorbidities.

  15. Integrated Analyses of Gene Expression Profiles Digs out Common Markers for Rheumatic Diseases

    Science.gov (United States)

    Wang, Lan; Wu, Long-Fei; Lu, Xin; Mo, Xing-Bo; Tang, Zai-Xiang; Lei, Shu-Feng; Deng, Fei-Yan

    2015-01-01

    Objective Rheumatic diseases have some common symptoms. Extensive gene expression studies, accumulated thus far, have successfully identified signature molecules for each rheumatic disease, individually. However, whether there exist shared factors across rheumatic diseases has yet to be tested. Methods We collected and utilized 6 public microarray datasets covering 4 types of representative rheumatic diseases including rheumatoid arthritis, systemic lupus erythematosus, ankylosing spondylitis, and osteoarthritis. Then we detected overlaps of differentially expressed genes across datasets and performed a meta-analysis aiming at identifying common differentially expressed genes that discriminate between pathological cases and normal controls. To further gain insights into the functions of the identified common differentially expressed genes, we conducted gene ontology enrichment analysis and protein-protein interaction analysis. Results We identified a total of eight differentially expressed genes (TNFSF10, CX3CR1, LY96, TLR5, TXN, TIA1, PRKCH, PRF1), each associated with at least 3 of the 4 studied rheumatic diseases. Meta-analysis warranted the significance of the eight genes and highlighted the general significance of four genes (CX3CR1, LY96, TLR5, and PRF1). Protein-protein interaction and gene ontology enrichment analyses indicated that the eight genes interact with each other to exert functions related to immune response and immune regulation. Conclusion The findings support that there exist common factors underlying rheumatic diseases. For rheumatoid arthritis, systemic lupus erythematosus, ankylosing spondylitis and osteoarthritis diseases, those common factors include TNFSF10, CX3CR1, LY96, TLR5, TXN, TIA1, PRKCH, and PRF1. In-depth studies on these common factors may provide keys to understanding the pathogenesis and developing intervention strategies for rheumatic diseases. PMID:26352601

  16. Production of antibodies which recognize opiate receptors on murine leukocytes

    Energy Technology Data Exchange (ETDEWEB)

    Carr, D.J.J.; Bost, K.L.; Blalock, J.E.

    1988-01-01

    An antibody has been developed which recognizes opiate receptors on cells of the immune system. This antibody blocks specific binding of the radiolabeled opiate receptor ligand, /sup 3/H-dihydromorphine, to receptors on murine splenocytes. Additionally, the anti-receptor antibody competes with ..beta..-endorphin, meta-enkephalin, and naloxone for the same binding site on the leukocytes. Moreover, the anti-receptor antibody possesses agonist activity similar to ..beta..-endorphin in suppressing cAMP production by lymphocytes. These results suggest the development of an antibody which recognizes classical opiate receptors on cells of the immune system.

  17. Molecular pharmacology of promiscuous seven transmembrane receptors sensing organic nutrients

    DEFF Research Database (Denmark)

    Wellendorph, Petrine; Johansen, Lars Dan; Bräuner-Osborne, Hans

    2009-01-01

    A number of highly promiscuous seven transmembrane (7TM) receptors have been cloned and characterized within the last few years. It is noteworthy that many of these receptors are activated broadly by amino acids, proteolytic degradation products, carbohydrates, or free fatty acids and are expressed...... receptors FFA1, FFA2, FFA3, GPR84, and GPR120. The involvement of the individual receptors in sensing of food intake has been validated to different degrees because of limited availability of specific pharmacological tools and/or receptor knockout mice. However, as a group, the receptors represent potential...

  18. Role of protein dynamics in transmembrane receptor signalling

    DEFF Research Database (Denmark)

    Wang, Yong; Bugge, Katrine Østergaard; Kragelund, Birthe Brandt

    2018-01-01

    Cells are dependent on transmembrane receptors to communicate and transform chemical and physical signals into intracellular responses. Because receptors transport 'information', conformational changes and protein dynamics play a key mechanistic role. We here review examples where experiment...... and computation have been used to study receptor dynamics. Recent studies on three distinct classes of receptors (G-protein coupled receptors, ligand-gated ion-channels and single-pass receptors) are highlighted to show that conformational changes across a range of time-scales and length-scales are central...

  19. PET imaging for receptor occupancy: meditations on calculation and simplification.

    Science.gov (United States)

    Zhang, Yumin; Fox, Gerard B

    2012-03-01

    This invited mini-review briefly summarizes procedures and challenges of measuring receptor occupancy with positron emission tomography. Instead of describing the detailed analytic procedures of in vivo ligand-receptor imaging, the authors provide a pragmatic approach, along with personal perspectives, for conducting positron emission tomography imaging for receptor occupancy, and systematically elucidate the mathematics of receptor occupancy calculations in practical ways that can be understood with elementary algebra. The authors also share insights regarding positron emission tomography imaging for receptor occupancy to facilitate applications for the development of drugs targeting receptors in the central nervous system.

  20. G-protein-coupled receptors for free fatty acids

    DEFF Research Database (Denmark)

    Milligan, Graeme; Ulven, Trond; Murdoch, Hannah

    2014-01-01

    that communicate cellular signals initiated by hormones and neurotransmitters. Recently, based on tissue expression patterns of these receptors and the concept that they may elicit the production of a range of appetite- and hunger-regulating peptides, such nutrient sensing GPCRs are attracting considerable...... of these receptors. However, ongoing clinical trials of agonists of free fatty acid receptor 1 suggest that this receptor and other receptors for free fatty acids may provide a successful strategy for controlling hyperglycaemia and providing novel approaches to treat diabetes. Receptors responsive to free fatty acid...

  1. Amyotrophic Lateral Sclerosis (ALS and Adenosine Receptors

    Directory of Open Access Journals (Sweden)

    Ana M. Sebastião

    2018-04-01

    Full Text Available In the present review we discuss the potential involvement of adenosinergic signaling, in particular the role of adenosine receptors, in amyotrophic lateral sclerosis (ALS. Though the literature on this topic is not abundant, the information so far available on adenosine receptors in animal models of ALS highlights the interest to continue to explore the role of these receptors in this neurodegenerative disease. Indeed, all motor neurons affected in ALS are responsive to adenosine receptor ligands but interestingly, there are alterations in pre-symptomatic or early symptomatic stages that mirror those in advanced disease stages. Information starts to emerge pointing toward a beneficial role of A2A receptors (A2AR, most probably at early disease states, and a detrimental role of caffeine, in clear contrast with what occurs in other neurodegenerative diseases. However, some evidence also exists on a beneficial action of A2AR antagonists. It may happen that there are time windows where A2AR prove beneficial and others where their blockade is required. Furthermore, the same changes may not occur simultaneously at the different synapses. In line with this, it is not fully understood if ALS is a dying back disease or if it propagates in a centrifugal way. It thus seems crucial to understand how motor neuron dysfunction occurs, how adenosine receptors are involved in those dysfunctions and whether the early changes in purinergic signaling are compensatory or triggers for the disease. Getting this information is crucial before starting the design of purinergic based strategies to halt or delay disease progression.

  2. Modulation of nicotinic acetylcholine receptors by strychnine

    Science.gov (United States)

    García-Colunga, Jesús; Miledi, Ricardo

    1999-01-01

    Strychnine, a potent and selective antagonist at glycine receptors, was found to inhibit muscle (α1β1γδ, α1β1γ, and α1β1δ) and neuronal (α2β2 and α2β4) nicotinic acetylcholine receptors (AcChoRs) expressed in Xenopus oocytes. Strychnine alone (up to 500 μM) did not elicit membrane currents in oocytes expressing AcChoRs, but, when applied before, concomitantly, or during superfusion of acetylcholine (AcCho), it rapidly and reversibly inhibited the current elicited by AcCho (AcCho-current). Although in the three cases the AcCho-current was reduced to the same level, its recovery was slower when the oocytes were preincubated with strychnine. The amount of AcCho-current inhibition depended on the receptor subtype, and the order of blocking potency by strychnine was α1β1γδ > α2β4 > α2β2. With the three forms of drug application, the Hill coefficient was close to one, suggesting a single site for the receptor interaction with strychnine, and this interaction appears to be noncompetitive. The inhibitory effects on muscle AcChoRs were voltage-independent, and the apparent dissociation constant for AcCho was not appreciably changed by strychnine. In contrast, the inhibitory effects on neuronal AcChoRs were voltage-dependent, with an electrical distance of ≈0.35. We conclude that strychnine regulates reversibly and noncompetitively the embryonic type of muscle AcChoR and some forms of neuronal AcChoRs. In the former case, strychnine presumably inhibits allosterically the receptor by binding at an external domain whereas, in the latter case, it blocks the open receptor-channel complex. PMID:10097172

  3. Peptide receptor radionuclide therapy: an overview.

    Science.gov (United States)

    Dash, Ashutosh; Chakraborty, Sudipta; Pillai, Maroor Raghavan Ambikalmajan; Knapp, Furn F Russ

    2015-03-01

    Peptide receptor radionuclide therapy (PRRT) is a site-directed targeted therapeutic strategy that specifically uses radiolabeled peptides as biological targeting vectors designed to deliver cytotoxic levels of radiation dose to cancer cells, which overexpress specific receptors. Interest in PRRT has steadily grown because of the advantages of targeting cellular receptors in vivo with high sensitivity as well as specificity and treatment at the molecular level. Recent advances in molecular biology have not only stimulated advances in PRRT in a sustainable manner but have also pushed the field significantly forward to several unexplored possibilities. Recent decades have witnessed unprecedented endeavors for developing radiolabeled receptor-binding somatostatin analogs for the treatment of neuroendocrine tumors, which have played an important role in the evolution of PRRT and paved the way for the development of other receptor-targeting peptides. Several peptides targeting a variety of receptors have been identified, demonstrating their potential to catalyze breakthroughs in PRRT. In this review, the authors discuss several of these peptides and their analogs with regard to their applications and potential in radionuclide therapy. The advancement in the availability of combinatorial peptide libraries for peptide designing and screening provides the capability of regulating immunogenicity and chemical manipulability. Moreover, the availability of a wide range of bifunctional chelating agents opens up the scope of convenient radiolabeling. For these reasons, it would be possible to envision a future where the scope of PRRT can be tailored for patient-specific application. While PRRT lies at the interface between many disciplines, this technology is inextricably linked to the availability of the therapeutic radionuclides of required quality and activity levels and hence their production is also reviewed.

  4. Neuromuscular NMDA Receptors Modulate Developmental Synapse Elimination.

    Science.gov (United States)

    Personius, Kirkwood E; Slusher, Barbara S; Udin, Susan B

    2016-08-24

    At birth, each mammalian skeletal muscle fiber is innervated by multiple motor neurons, but in a few weeks, all but one of those axons retracts (Redfern, 1970) and differential activity between inputs controls this phenomenon (Personius and Balice-Gordon, 2001; Sanes and Lichtman, 2001; Personius et al., 2007; Favero et al., 2012). Acetylcholine, the primary neuromuscular transmitter, has long been presumed to mediate this activity-dependent process (O'Brien et al., 1978), but glutamatergic transmission also occurs at the neuromuscular junction (Berger et al., 1995; Grozdanovic and Gossrau, 1998; Mays et al., 2009). To test the role of neuromuscular NMDA receptors, we assessed their contribution to muscle calcium fluxes in mice and tested whether they influence removal of excess innervation at the end plate. Developmental synapse pruning was slowed by reduction of NMDA receptor activation or expression and by reduction of glutamate production. Conversely, pruning is accelerated by application of exogenous NMDA. We also found that NMDA induced increased muscle calcium only during the first 2 postnatal weeks. Therefore, neuromuscular NMDA receptors play previously unsuspected roles in neuromuscular activity and synaptic pruning during development. In normal adult muscle, each muscle fiber is innervated by a single axon, but at birth, fibers are multiply innervated. Elimination of excess connections requires neural activity; because the neuromuscular junction (NMJ) is a cholinergic synapse, acetylcholine has been assumed to be the critical mediator of activity. However, glutamate receptors are also expressed at the NMJ. We found that axon removal in mice is slowed by pharmacological and molecular manipulations that decrease signaling through neuromuscular NMDA receptors, whereas application of exogenous NMDA at the NMJ accelerates synapse elimination and increases muscle calcium levels during the first 2 postnatal weeks. Therefore, neuromuscular NMDA receptors play

  5. Convulsant bicuculline modifies CNS muscarinic receptor affinity

    Directory of Open Access Journals (Sweden)

    Rodríguez de Lores Arnaiz Georgina

    2006-04-01

    Full Text Available Abstract Background Previous work from this laboratory has shown that the administration of the convulsant drug 3-mercaptopropionic acid (MP, a GAD inhibitor, modifies not only GABA synthesis but also binding of the antagonist [3H]-quinuclidinyl benzilate ([3H]-QNB to central muscarinic receptors, an effect due to an increase in affinity without modifications in binding site number. The cholinergic system has been implicated in several experimental epilepsy models and the ability of acetylcholine to regulate neuronal excitability in the neocortex is well known. To study the potential relationship between GABAergic and cholinergic systems with seizure activity, we analyzed the muscarinic receptor after inducing seizure by bicuculline (BIC, known to antagonize the GABA-A postsynaptic receptor subtype. Results We analyzed binding of muscarinic antagonist [3H]-QNB to rat CNS membranes after i.p. administration of BIC at subconvulsant (1.0 mg/kg and convulsant (7.5 mg/kg doses. Subconvulsant BIC dose failed to develop seizures but produced binding alteration in the cerebellum and hippocampus with roughly 40% increase and 10% decrease, respectively. After convulsant BIC dose, which invariably led to generalized tonic-clonic seizures, binding increased 36% and 15% to cerebellar and striatal membranes respectively, but decreased 12% to hippocampal membranes. Kd value was accordingly modified: with the subconvulsant dose it decreased 27% in cerebellum whereas it increased 61% in hippocampus; with the convulsant dose, Kd value decreased 33% in cerebellum but increased 85% in hippocampus. No change in receptor number site was found, and Hill number was invariably close to unity. Conclusion Results indicate dissimilar central nervous system area susceptibility of muscarinic receptor to BIC. Ligand binding was modified not only by a convulsant BIC dose but also by a subconvulsant dose, indicating that changes are not attributable to the seizure process

  6. Sucrose Ingestion Induces Rapid AMPA Receptor Trafficking

    Science.gov (United States)

    Tukey, David S.; Ferreira, Jainne M.; Antoine, Shannon O.; D’amour, James A.; Ninan, Ipe; de Vaca, Soledad Cabeza; Incontro, Salvatore; Wincott, Charlotte; Horwitz, Julian K.; Hartner, Diana T.; Guarini, Carlo B.; Khatri, Latika; Goffer, Yossef; Xu, Duo; Titcombe, Roseann F.; Khatri, Megna; Marzan, Dave S.; Mahajan, Shahana S.; Wang, Jing; Froemke, Robert C.; Carr, Kenneth D.; Aoki, Chiye; Ziff, Edward B.

    2013-01-01

    The mechanisms by which natural rewards such as sugar affect synaptic transmission and behavior are largely unexplored. Here, we investigate regulation of nucleus accumbens synapses by sucrose intake. Previous studies have shown that AMPA receptor trafficking is a major mechanism for regulating synaptic strength, and that in vitro, trafficking of AMPA receptors containing the GluA1 subunit takes place by a two-step mechanism involving extrasynaptic and then synaptic receptor transport. We report that in rat, repeated daily ingestion of a 25% sucrose solution transiently elevated spontaneous locomotion and potentiated accumbens core synapses through incorporation of Ca2+-permeable AMPA receptors (CPARs), which are GluA1-containing, GluA2-lacking AMPA receptors. Electrophysiological, biochemical and quantitative electron microscopy studies revealed that sucrose training (7 days) induced a stable (>24 hr) intraspinous GluA1 population, and that in these rats a single sucrose stimulus rapidly (5 min) but transiently (<24 hr) elevated GluA1 at extrasynaptic sites. CPARs and dopamine D1 receptors were required in vivo for elevated locomotion after sucrose ingestion. Significantly, a 7-day protocol of daily ingestion of a 3% solution of saccharin, a non-caloric sweetener, induced synaptic GluA1 similarly to 25% sucrose ingestion. These findings identify multi-step GluA1 trafficking, previously described in vitro, as a mechanism for acute regulation of synaptic transmission in vivo by a natural orosensory reward. Trafficking is stimulated by a chemosensory pathway that is not dependent on the caloric value of sucrose. PMID:23554493

  7. Prostaglandins and their receptors in insect biology

    Directory of Open Access Journals (Sweden)

    David eStanley

    2011-12-01

    Full Text Available We treat the biological significance of prostaglandins (PGs and their known receptors in insect biology. PGs and related eicosanoids are oxygenated derivatives of arachidonic acid (AA and two other C20 polyunsaturated fatty acids. PGs are mostly appreciated in the context of biomedicine, but a growing body of literature indicates the biological significance of these compounds extends throughout the animal kingdom, and possibly beyond. PGs act in several crucial areas of insect biology. In reproduction, a specific PG, PGE2, releases oviposition behavior in most crickets and a few other insect species; PGs also mediate events in egg development in some species, which may represent all insects. PGs play major roles in modulating fluid secretion in Malpighian tubules, rectum and salivary glands, although, again, this has been studied in only a few insect species that may represent the Class. Insect immunity is a very complex defense system. PGs and other eicosanoids mediate a large number of immune reactions to infection and invasion. The actions of most PGs are mediated by specific receptors. Biomedical research has discovered a great deal of knowledge about PG receptors in mammals, including their structures, pharmacology, molecular biology and cellular locations. Studies of PG receptors in insects lag behind the biomedical background, however, recent results hold the promise of accelerated research in this area. A PG receptor has been identified in a class of lepidopteran hemocytes and experimentally linked to the release of prophenoloxidase. We conclude that research into PGs and their receptors in insects will lead to important advances in our understanding of insect biology.

  8. Computer Modeling of Human Delta Opioid Receptor

    Directory of Open Access Journals (Sweden)

    Tatyana Dzimbova

    2013-04-01

    Full Text Available The development of selective agonists of δ-opioid receptor as well as the model of interaction of ligands with this receptor is the subjects of increased interest. In the absence of crystal structures of opioid receptors, 3D homology models with different templates have been reported in the literature. The problem is that these models are not available for widespread use. The aims of our study are: (1 to choose within recently published crystallographic structures templates for homology modeling of the human δ-opioid receptor (DOR; (2 to evaluate the models with different computational tools; and (3 to precise the most reliable model basing on correlation between docking data and in vitro bioassay results. The enkephalin analogues, as ligands used in this study, were previously synthesized by our group and their biological activity was evaluated. Several models of DOR were generated using different templates. All these models were evaluated by PROCHECK and MolProbity and relationship between docking data and in vitro results was determined. The best correlations received for the tested models of DOR were found between efficacy (erel of the compounds, calculated from in vitro experiments and Fitness scoring function from docking studies. New model of DOR was generated and evaluated by different approaches. This model has good GA341 value (0.99 from MODELLER, good values from PROCHECK (92.6% of most favored regions and MolProbity (99.5% of favored regions. Scoring function correlates (Pearson r = -0.7368, p-value = 0.0097 with erel of a series of enkephalin analogues, calculated from in vitro experiments. So, this investigation allows suggesting a reliable model of DOR. Newly generated model of DOR receptor could be used further for in silico experiments and it will give possibility for faster and more correct design of selective and effective ligands for δ-opioid receptor.

  9. Ligand-directed trafficking of receptor stimulus.

    Science.gov (United States)

    Chilmonczyk, Zdzisław; Bojarski, Andrzej J; Sylte, Ingebrigt

    2014-12-01

    GPCRs are seven transmembrane-spanning receptors that convey specific extracellular stimuli to intracellular signalling. They represent the largest family of cell surface proteins that are therapeutically targeted. According to the traditional two-state model of receptor theory, GPCRs were considered as operating in equilibrium between two functional conformations, an active (R*) and inactive (R) state. Thus, it was assumed that a GPCR can exist either in an "off" or "on" conformation causing either no activation or equal activation of all its signalling pathways. Over the past several years it has become evident that this model is too simple and that GPCR signalling is far more complex. Different studies have presented a multistate model of receptor activation in which ligand-specific receptor conformations are able to differentiate between distinct signalling partners. Recent data show that beside G proteins numerous other proteins, such as β-arrestins and kinases, may interact with GPCRs and activate intracellular signalling pathways. GPCR activation may therefore involve receptor desensitization, coupling to multiple G proteins, Gα or Gβγ signalling, and pathway activation that is independent of G proteins. This latter effect leads to agonist "functional selectivity" (also called ligand-directed receptor trafficking, stimulus trafficking, biased agonism, biased signalling), and agonist intervention with functional selectivity may improve the therapy. Many commercially available drugs with beneficial efficacy also show various undesirable side effects. Further studies of biased signalling might facilitate our understanding of the side effects of current drugs and take us to new avenues to efficiently design pathway-specific medications. Copyright © 2014 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  10. Involvement of direct inhibition of NMDA receptors in the effects of sigma-receptor ligands on glutamate neurotoxicity in vitro.

    Science.gov (United States)

    Nishikawa, H; Hashino, A; Kume, T; Katsuki, H; Kaneko, S; Akaike, A

    2000-09-15

    This study was performed to examine the roles of the N-methyl-D-aspartate (NMDA) receptor/phencyclidine (PCP) channel complex in the protective effects of sigma-receptor ligands against glutamate neurotoxicity in cultured cortical neurons derived from fetal rats. A 1-h exposure of cultures to glutamate caused a marked loss of viability, as determined by Trypan blue exclusion. This acute neurotoxicity of glutamate was prevented by NMDA receptor antagonists. Expression of sigma(1) receptor mRNA in cortical cultures was confirmed by reverse transcription polymerase chain reaction (RT-PCR). sigma Receptor ligands with affinity for NMDA receptor channels including the PCP site, such as (+)-N-allylnormetazocine ((+)-SKF10,047), haloperidol, and R(-)-N-(3-phenyl-1-propyl)-1-phenyl-2-aminopropane ((-)-PPAP), prevented glutamate neurotoxicity in a concentration-dependent manner. In contrast, other sigma-receptor ligands without affinity for NMDA receptors, such as carbetapentane and R(+)-3-(3-hydroxyphenyl)-N-propylpiperidine ((+)-3-PPP), did not show neuroprotective effects. Putative endogenous sigma receptor ligands such as pregnenolone, progesterone, and dehydroepiandrosterone did not affect glutamate neurotoxicity. The protective effects of (+)-SKF10,047, haloperidol, and (-)-PPAP were not affected by the sigma(1) receptor antagonist rimcazole. These results suggested that a direct interaction with NMDA receptors but not with sigma receptors plays a crucial role in the neuroprotective effects of sigma receptor ligands with affinity for NMDA receptors.

  11. Progesterone receptor modulators for endometriosis.

    Science.gov (United States)

    Fu, Jing; Song, Hao; Zhou, Min; Zhu, Huili; Wang, Yuhe; Chen, Hengxi; Huang, Wei

    2017-07-25

    Endometriosis is defined as the presence of endometrial tissue (glands and stroma) outside the uterine cavity. This condition is oestrogen-dependent and thus is seen primarily during the reproductive years. Owing to their antiproliferative effects in the endometrium, progesterone receptor modulators (PRMs) have been advocated for treatment of endometriosis. To assess the effectiveness and safety of PRMs primarily in terms of pain relief as compared with other treatments or placebo or no treatment in women of reproductive age with endometriosis. We searched the following electronic databases, trial registers, and websites: the Cochrane Gynaecology and Fertility Group (CGFG) Specialised Register of Controlled Trials, the Central Register of Studies Online (CRSO), MEDLINE, Embase, PsycINFO, clinicaltrials.gov, and the World Health Organization (WHO) platform, from inception to 28 November 2016. We handsearched reference lists of articles retrieved by the search. We included randomised controlled trials (RCTs) published in all languages that examined effects of PRMs for treatment of symptomatic endometriosis. We used standard methodological procedures as expected by the Cochrane Collaboration. Primary outcomes included measures of pain and side effects. We included 10 randomised controlled trials (RCTs) with 960 women. Two RCTs compared mifepristone versus placebo or versus a different dose of mifepristone, one RCT compared asoprisnil versus placebo, one compared ulipristal versus leuprolide acetate, and four compared gestrinone versus danazol, gonadotropin-releasing hormone (GnRH) analogues, or a different dose of gestrinone. The quality of evidence ranged from high to very low. The main limitations were serious risk of bias (associated with poor reporting of methods and high or unclear rates of attrition in most studies), very serious imprecision (associated with low event rates and wide confidence intervals), and indirectness (outcome assessed in a select subgroup

  12. Crystal structure of NL63 respiratory coronavirus receptor-binding domain complexed with its human receptor

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Kailang; Li, Weikai; Peng, Guiqing; Li, Fang; (Harvard-Med); (UMM-MED)

    2010-03-04

    NL63 coronavirus (NL63-CoV), a prevalent human respiratory virus, is the only group I coronavirus known to use angiotensin-converting enzyme 2 (ACE2) as its receptor. Incidentally, ACE2 is also used by group II SARS coronavirus (SARS-CoV). We investigated how different groups of coronaviruses recognize the same receptor, whereas homologous group I coronaviruses recognize different receptors. We determined the crystal structure of NL63-CoV spike protein receptor-binding domain (RBD) complexed with human ACE2. NL63-CoV RBD has a novel {beta}-sandwich core structure consisting of 2 layers of {beta}-sheets, presenting 3 discontinuous receptor-binding motifs (RBMs) to bind ACE2. NL63-CoV and SARS-CoV have no structural homology in RBD cores or RBMs; yet the 2 viruses recognize common ACE2 regions, largely because of a 'virus-binding hotspot' on ACE2. Among group I coronaviruses, RBD cores are conserved but RBMs are variable, explaining how these viruses recognize different receptors. These results provide a structural basis for understanding viral evolution and virus-receptor interactions.

  13. Lessons from crystal structures of kainate receptors

    DEFF Research Database (Denmark)

    Møllerud, Stine; Frydenvang, Karla Andrea; Pickering, Darryl S

    2017-01-01

    structure and how they bind agonists, antagonists and ions. The first structure of the ligand-binding domain of the GluK1 subunit was reported in 2005, seven years after publication of the crystal structure of a soluble construct of the ligand-binding domain of the AMPA-type subunit GluA2. Today, a full...... synaptic transmission and modulate network excitability by regulating neurotransmitter release. Dysfunction of kainate receptors has been implicated in several neurological disorders such as epilepsy, schizophrenia and depression. Here we provide a review on the current understanding of kainate receptor...

  14. The α7 nicotinic acetylcholine receptor complex

    DEFF Research Database (Denmark)

    Thomsen, Morten S; Mikkelsen, Jens D

    2012-01-01

    The α7 nicotinic acetylcholine receptor (nAChR) is a promising drug target for a number of diseases ranging from schizophrenia and Alzheimer's disease to chronic pain and inflammatory diseases. Focusing on the central nervous system, we describe how endogenous and experimental compounds and prote......The α7 nicotinic acetylcholine receptor (nAChR) is a promising drug target for a number of diseases ranging from schizophrenia and Alzheimer's disease to chronic pain and inflammatory diseases. Focusing on the central nervous system, we describe how endogenous and experimental compounds...

  15. Positron emission tomography studies of brain receptors

    International Nuclear Information System (INIS)

    Maziere, B.; Maziere, M.

    1991-01-01

    Probing the regional distribution and affinity of receptors in the brain, in vivo, in human and non human primates has become possible with the use of selective ligands labelled with positron emitting radionuclides and positron emission tomography (PET). After describing the techniques used in positron emission tomography to characterize a ligand receptor binding and discussing the choice of the label and the limitations and complexities of the in vivo approach, the results obtained in the PET studies of various neurotransmission systems: dopaminergic, opiate, benzodiazepine, serotonin and cholinergic systems are reviewed

  16. FGF receptor genes and breast cancer susceptibility

    DEFF Research Database (Denmark)

    Agarwal, D; Pineda, S; Michailidou, K

    2014-01-01

    Background:Breast cancer is one of the most common malignancies in women. Genome-wide association studies have identified FGFR2 as a breast cancer susceptibility gene. Common variation in other fibroblast growth factor (FGF) receptors might also modify risk. We tested this hypothesis by studying...... was observed for SNPs in the FGF receptor genes. The strongest evidence in European women was for rs743682 in FGFR3; the estimated per-allele odds ratio was 1.05 (95% confidence interval=1.02-1.09, P=0.0020), which is substantially lower than that observed for SNPs in FGFR2.Conclusion:Our results suggest...

  17. Cerebrovascular endothelin receptor upregulation in cerebral ischemia

    DEFF Research Database (Denmark)

    Edvinsson, Lars

    2009-01-01

    either by an embolus or by local thrombosis. Several studies have shown an involvement of the endothelin system in ischemic stroke. This review aims to examine the alterations of vascular endothelin receptor expression in ischemic stroke. Furthermore, studies of the intracellular signalling pathways...... leading to the enhanced expression of vascular endothelin receptors show that both protein kinase C (PKC) and mitogen activating protein kinase (MAPK) play important roles. The results from this work provide new perspectives on the pathophysiology of ischemic stroke, and give a possible explanation...

  18. Toll-like receptors in neurodegeneration

    DEFF Research Database (Denmark)

    Owens, Trevor

    2009-01-01

    with neurodegeneration. Accompanying roles for infection and inflammation, involvement in clinical neurodegenerative disorders, and heterogeneity of glial response are discussed. A "strength of signal" hypothesis is advanced in an attempt to reconcile evolutionarily selected and therefore likely beneficial effects......Innate pattern recognition receptors are implicated in first-line defense against pathogens but also participate in maintenance of tissue homeostasis and response to injury. This chapter reviews the role of Toll-like receptors (TLRs) in neuronal and glial responses that are associated...

  19. Internalization of the chemokine receptor CCR4 can be evoked by orthosteric and allosteric receptor antagonists.

    Science.gov (United States)

    Ajram, Laura; Begg, Malcolm; Slack, Robert; Cryan, Jenni; Hall, David; Hodgson, Simon; Ford, Alison; Barnes, Ashley; Swieboda, Dawid; Mousnier, Aurelie; Solari, Roberto

    2014-04-15

    The chemokine receptor CCR4 has at least two natural agonist ligands, MDC (CCL22) and TARC (CCL17) which bind to the same orthosteric site with a similar affinity. Both ligands are known to evoke chemotaxis of CCR4-bearing T cells and also elicit CCR4 receptor internalization. A series of small molecule allosteric antagonists have been described which displace the agonist ligand, and inhibit chemotaxis. The aim of this study was to determine which cellular coupling pathways are involved in internalization, and if antagonists binding to the CCR4 receptor could themselves evoke receptor internalization. CCL22 binding coupled CCR4 efficiently to β-arrestin and stimulated GTPγS binding however CCL17 did not couple to β-arrestin and only partially stimulated GTPγS binding. CCL22 potently induced internalization of almost all cell surface CCR4, while CCL17 showed only weak effects. We describe four small molecule antagonists that were demonstrated to bind to two distinct allosteric sites on the CCR4 receptor, and while both classes inhibited agonist ligand binding and chemotaxis, one of the allosteric sites also evoked receptor internalization. Furthermore, we also characterize an N-terminally truncated version of CCL22 which acts as a competitive antagonist at the orthosteric site, and surprisingly also evokes receptor internalization without demonstrating any agonist activity. Collectively this study demonstrates that orthosteric and allosteric antagonists of the CCR4 receptor are capable of evoking receptor internalization, providing a novel strategy for drug discovery against this class of target. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  20. Manipulation of Very Few Receptor Discriminator Residues Greatly Enhances Receptor Specificity of Non-visual Arrestins*

    Science.gov (United States)

    Gimenez, Luis E.; Vishnivetskiy, Sergey A.; Baameur, Faiza; Gurevich, Vsevolod V.

    2012-01-01

    Based on the identification of residues that determine receptor selectivity of arrestins and the analysis of the evolution in the arrestin family, we introduced 10 mutations of “receptor discriminator” residues in arrestin-3. The recruitment of these mutants to M2 muscarinic (M2R), D1 (D1R) and D2 (D2R) dopamine, and β2-adrenergic receptors (β2AR) was assessed using bioluminescence resonance energy transfer-based assays in cells. Seven of 10 mutations differentially affected arrestin-3 binding to individual receptors. D260K and Q262P reduced the binding to β2AR, much more than to other receptors. The combination D260K/Q262P virtually eliminated β2AR binding while preserving the interactions with M2R, D1R, and D2R. Conversely, Y239T enhanced arrestin-3 binding to β2AR and reduced the binding to M2R, D1R, and D2R, whereas Q256Y selectively reduced recruitment to D2R. The Y239T/Q256Y combination virtually eliminated the binding to D2R and reduced the binding to β2AR and M2R, yielding a mutant with high selectivity for D1R. Eleven of 12 mutations significantly changed the binding to light-activated phosphorhodopsin. Thus, manipulation of key residues on the receptor-binding surface modifies receptor preference, enabling the construction of non-visual arrestins specific for particular receptor subtypes. These findings pave the way to the construction of signaling-biased arrestins targeting the receptor of choice for research or therapeutic purposes. PMID:22787152

  1. Manipulation of very few receptor discriminator residues greatly enhances receptor specificity of non-visual arrestins.

    Science.gov (United States)

    Gimenez, Luis E; Vishnivetskiy, Sergey A; Baameur, Faiza; Gurevich, Vsevolod V

    2012-08-24

    Based on the identification of residues that determine receptor selectivity of arrestins and the analysis of the evolution in the arrestin family, we introduced 10 mutations of "receptor discriminator" residues in arrestin-3. The recruitment of these mutants to M2 muscarinic (M2R), D1 (D1R) and D2 (D2R) dopamine, and β(2)-adrenergic receptors (β(2)AR) was assessed using bioluminescence resonance energy transfer-based assays in cells. Seven of 10 mutations differentially affected arrestin-3 binding to individual receptors. D260K and Q262P reduced the binding to β(2)AR, much more than to other receptors. The combination D260K/Q262P virtually eliminated β(2)AR binding while preserving the interactions with M2R, D1R, and D2R. Conversely, Y239T enhanced arrestin-3 binding to β(2)AR and reduced the binding to M2R, D1R, and D2R, whereas Q256Y selectively reduced recruitment to D2R. The Y239T/Q256Y combination virtually eliminated the binding to D2R and reduced the binding to β(2)AR and M2R, yielding a mutant with high selectivity for D1R. Eleven of 12 mutations significantly changed the binding to light-activated phosphorhodopsin. Thus, manipulation of key residues on the receptor-binding surface modifies receptor preference, enabling the construction of non-visual arrestins specific for particular receptor subtypes. These findings pave the way to the construction of signaling-biased arrestins targeting the receptor of choice for research or therapeutic purposes.

  2. Laminar pattern of cholinergic and adrenergic receptors in rat visual cortex using quantitative receptor autoradiography

    International Nuclear Information System (INIS)

    Schliebs, R.; Walch, C.

    1989-01-01

    The laminar distribution of muscarinic acetylcholine receptors, including the M1-receptor subtype, of beta-adrenergic receptors, and noradrenaline uptake sites, was studied in the adult rat visual, frontal, somatosensory and motor cortex, using quantitative receptor autoradiography. In the visual cortex, the highest density of muscarinic acetylcholine receptors was found in layer I. From layer II/III to layer V binding decreases continueously reaching a constant binding level in layers V and VI. This laminar pattern of muscarinic receptor density differs somewhat from that observed in the non-visual cortical regions examined: layer II/III contained the highest receptor density followed by layer I and IV: lowest density was found in layer V and VI. The binding profile of the muscarinic cholinergic M1-subtype through the visual cortex shows a peak in cortical layer II and in the upper part of layer VI, whereas in the non-visual cortical regions cited the binding level was high in layer II/III, moderate in layer I and IV, and low in layer VI. Layers I to IV of the visual cortex contained the highest beta-adrenergic receptor densities, whereas only low binding levels were observed in the deeper layers. A similar laminar distribution was found also in the frontal, somatosensory and motor cortex. The density of noradrenaline uptake sites was high in all layers of the cortical regions studied, but with noradrenaline uptake sites somewhat more concentrated in the superficial layers than in deeper ones. The distinct laminar pattern of cholinergic and noradrenergic receptor sites indicates a different role for acetylcholine and noradrenaline in the functional anatomy of the cerebral cortex, and in particular, the visual cortex. (author)

  3. Evidence for Heterodimerization and Functional Interaction of the Angiotensin Type 2 Receptor and the Receptor MAS.

    Science.gov (United States)

    Leonhardt, Julia; Villela, Daniel C; Teichmann, Anke; Münter, Lisa-Marie; Mayer, Magnus C; Mardahl, Maibritt; Kirsch, Sebastian; Namsolleck, Pawel; Lucht, Kristin; Benz, Verena; Alenina, Natalia; Daniell, Nicholas; Horiuchi, Masatsugu; Iwai, Masaru; Multhaup, Gerhard; Schülein, Ralf; Bader, Michael; Santos, Robson A; Unger, Thomas; Steckelings, Ulrike Muscha

    2017-06-01

    The angiotensin type 2 receptor (AT2R) and the receptor MAS are receptors of the protective arm of the renin-angiotensin system. They mediate strikingly similar actions. Moreover, in various studies, AT2R antagonists blocked the effects of MAS agonists and vice versa. Such cross-inhibition may indicate heterodimerization of these receptors. Therefore, this study investigated the molecular and functional interplay between MAS and the AT2R. Molecular interactions were assessed by fluorescence resonance energy transfer and by cross correlation spectroscopy in human embryonic kidney-293 cells transfected with vectors encoding fluorophore-tagged MAS or AT2R. Functional interaction of AT2R and MAS was studied in astrocytes with CX3C chemokine receptor-1 messenger RNA expression as readout. Coexpression of fluorophore-tagged AT2R and MAS resulted in a fluorescence resonance energy transfer efficiency of 10.8 ± 0.8%, indicating that AT2R and MAS are capable to form heterodimers. Heterodimerization was verified by competition experiments using untagged AT2R and MAS. Specificity of dimerization of AT2R and MAS was supported by lack of dimerization with the transient receptor potential cation channel, subfamily C-member 6. Dimerization of the AT2R was abolished when it was mutated at cysteine residue 35. AT2R and MAS stimulation with the respective agonists, Compound 21 or angiotensin-(1-7), significantly induced CX3C chemokine receptor-1 messenger RNA expression. Effects of each agonist were blocked by an AT2R antagonist (PD123319) and also by a MAS antagonist (A-779). Knockout of a single of these receptors made astrocytes unresponsive for both agonists. Our results suggest that MAS and the AT2R form heterodimers and that-at least in astrocytes-both receptors functionally depend on each other. © 2017 American Heart Association, Inc.

  4. Effect of neoadjuvant chemotherapy on low-density lipoprotein (LDL) receptor and LDL receptor-related protein 1 (LRP-1) receptor in locally advanced breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Pires, L.A. [Laboratório de Metabolismo de Lípides, Instituto do Coração, Faculdade de Medicina, Hospital das Clínicas, Universidade de São Paulo, São Paulo, SP (Brazil); Departamento de Ginecologia, Faculdade de Medicina, Hospital das Clínicas, Universidade de São Paulo, São Paulo, SP (Brazil); Hegg, R. [Departamento de Ginecologia, Faculdade de Medicina, Hospital das Clínicas, Universidade de São Paulo, São Paulo, SP (Brazil); Freitas, F.R.; Tavares, E.R.; Almeida, C.P. [Laboratório de Metabolismo de Lípides, Instituto do Coração, Faculdade de Medicina, Hospital das Clínicas, Universidade de São Paulo, São Paulo, SP (Brazil); Baracat, E.C. [Departamento de Ginecologia, Faculdade de Medicina, Hospital das Clínicas, Universidade de São Paulo, São Paulo, SP (Brazil); Maranhão, R.C. [Laboratório de Metabolismo de Lípides, Instituto do Coração, Faculdade de Medicina, Hospital das Clínicas, Universidade de São Paulo, São Paulo, SP (Brazil); Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, SP (Brazil)

    2012-05-04

    Low-density lipoprotein (LDL) receptors are overexpressed in most neoplastic cell lines and provide a mechanism for the internalization and concentration of drug-laden nanoemulsions that bind to these receptors. The aim of the present study was to determine whether the administration of standard chemotherapeutic schemes can alter the expression of LDL and LDL receptor-related protein 1 (LRP-1) receptors in breast carcinoma. Fragments of tumoral and normal breast tissue from 16 consecutive volunteer women with breast cancer in stage II or III were obtained from biopsies before the beginning of neoadjuvant chemotherapy and after chemotherapy, from fragments excised during mastectomy. Tissues were analyzed by immunohistochemistry for both receptors. Because complete response to treatment was achieved in 4 patients, only the tumors from 12 were analyzed. Before chemotherapy, there was overexpression of LDL receptor in the tumoral tissue compared to normal breast tissue in 8 of these patients. LRP-1 receptor overexpression was observed in tumors of 4 patients. After chemotherapy, expression of both receptors decreased in the tumors of 6 patients, increased in 4 and was unchanged in 2. Nonetheless, even when chemotherapy reduced receptors expression, the expression was still above normal. The fact that chemotherapy does not impair LDL receptors expression supports the use of drug carrier systems that target neoplastic cells by the LDL receptor endocytic pathway in patients on conventional chemotherapy.

  5. Nuclear receptors and nonalcoholic fatty liver disease1

    Science.gov (United States)

    Cave, Matthew C.; Clair, Heather B.; Hardesty, Josiah E.; Falkner, K. Cameron; Feng, Wenke; Clark, Barbara J.; Sidey, Jennifer; Shi, Hongxue; Aqel, Bashar A.; McClain, Craig J.; Prough, Russell A.

    2016-01-01

    Nuclear receptors are transcription factors which sense changing environmental or hormonal signals and effect transcriptional changes to regulate core life functions including growth, development, and reproduction. To support this function, following ligand-activation by xenobiotics, members of subfamily 1 nuclear receptors (NR1s) may heterodimerize with the retinoid X receptor (RXR) to regulate transcription of genes involved in energy and xenobiotic metabolism and inflammation. Several of these receptors including the peroxisome proliferator-activated receptors (PPARs), the pregnane and xenobiotic receptor (PXR), the constitutive androstane receptor (CAR), the liver X receptor (LXR) and the farnesoid X receptor (FXR) are key regulators of the gut:liver:adipose axis and serve to coordinate metabolic responses across organ systems between the fed and fasting states. Non-alcoholic fatty liver disease (NAFLD) is the most common liver disease and may progress to cirrhosis and even hepatocellular carcinoma. NAFLD is associated with inappropriate nuclear receptor function and perturbations along the gut:liver:adipose axis including obesity, increased intestinal permeability with systemic inflammation, abnormal hepatic lipid metabolism, and insulin resistance. Environmental chemicals may compound the problem by directly interacting with nuclear receptors leading to metabolic confusion and the inability to differentiate fed from fasting conditions. This review focuses on the impact of nuclear receptors in the pathogenesis and treatment of NAFLD. Clinical trials including PIVENS and FLINT demonstrate that nuclear receptor targeted therapies may lead to the paradoxical dissociation of steatosis, inflammation, fibrosis, insulin resistance, dyslipidemia and obesity. Novel strategies currently under development (including tissue-specific ligands and dual receptor agonists) may be required to separate the beneficial effects of nuclear receptor activation from unwanted metabolic

  6. Toll-like receptors and NOD-like receptors in rheumatic diseases.

    LENUS (Irish Health Repository)

    McCormack, William J

    2012-02-01

    The past 10 years have seen the description of families of receptors that drive proinflammatory cytokine production in infection and tissue injury. Two major classes have been examined in the context of inflammatory joint disease--the Toll-like receptors (TLRs) and NOD-like receptors (NLRs). TLRs such as TLR2 and TLR4 are being implicated in the pathology of rheumatoid arthritis, ankylosing spondylitis, lyme arthritis and osteoarthritis. Nalp3 has been identified as a key NLR for IL-1beta production and has been shown to have a particular role in gout. These findings present new therapeutic opportunities, possibly allowing for the replacement of biologics with small molecule inhibitors.

  7. Nuclear receptor corepressor-dependent repression of peroxisome-proliferator-activated receptor delta-mediated transactivation

    DEFF Research Database (Denmark)

    Krogsdam, Anne-M; Nielsen, Curt A F; Neve, Søren

    2002-01-01

    delta-RXR alpha heterodimer bound to an acyl-CoA oxidase (ACO)-type peroxisome-proliferator response element recruited a glutathione S-transferase-NCoR fusion protein in a ligand-independent manner. Contrasting with most other nuclear receptors, PPAR delta was found to interact equally well......The nuclear receptor corepressor (NCoR) was isolated as a peroxisome-proliferator-activated receptor (PPAR) delta interacting protein using the yeast two-hybrid system. NCoR interacted strongly with the ligand-binding domain of PPAR delta, whereas interactions with the ligand-binding domains...

  8. Direct interactions between calcitonin-like receptor (CLR) and CGRP-receptor component protein (RCP) regulate CGRP receptor signaling.

    Science.gov (United States)

    Egea, Sophie C; Dickerson, Ian M

    2012-04-01

    Calcitonin gene-related peptide (CGRP) is a neuropeptide with multiple neuroendocrine roles, including vasodilation, migraine, and pain. The receptor for CGRP is a G protein-coupled receptor (GPCR) that requires three proteins for function. CGRP binds to a heterodimer composed of the GPCR calcitonin-like receptor (CLR) and receptor activity-modifying protein (RAMP1), a single transmembrane protein required for pharmacological specificity and trafficking of the CLR/RAMP1 complex to the cell surface. In addition, the CLR/RAMP1 complex requires a third protein named CGRP-receptor component protein (RCP) for signaling. Previous studies have demonstrated that depletion of RCP from cells inhibits CLR signaling, and in vivo studies have demonstrated that expression of RCP correlates with CLR signaling and CGRP efficacy. It is not known whether RCP interacts directly with CLR to exert its effect. The current studies identified a direct interaction between RCP and an intracellular domain of CLR using yeast two-hybrid analysis and coimmunoprecipitation. When this interacting domain of CLR was expressed as a soluble fusion protein, it coimmunoprecipitated with RCP and inhibited signaling from endogenous CLR. Expression of this dominant-negative domain of CLR did not significantly inhibit trafficking of CLR to the cell surface, and thus RCP may not have a chaperone function for CLR. Instead, RCP may regulate CLR signaling in the cell membrane, and direct interaction between RCP and CLR is required for CLR activation. To date, RCP has been found to interact only with CLR and represents a novel neuroendocrine regulatory step in GPCR signaling.

  9. Bombesin and Neurotensin Receptor Targeting Using Radiolabeled Peptide Analogs

    NARCIS (Netherlands)

    M. de Visser (Monique)

    2007-01-01

    textabstractSomatostatin receptor-targeting peptides are widely used for imaging and therapy of neuroendocrine tumors. Peptide receptor radionuclide therapy (PRRT) in neuroendocrine tumor patients with radiolabeled somatostatin analogs has resulted in symptomatic improvement, prolonged survival and

  10. Class I Cytokine Receptors: Structure and function in the Membrane

    DEFF Research Database (Denmark)

    Bugge, Katrine Østergaard

    Class I cytokine receptors are involved in important biological functions of both physiological and pathological nature in mammals. However, the molecular details of the cross-membrane signal transduction through these receptors remain obscure. One of the major reasons for this is the lack...... ample material of high quality for structural studies with NMR spectroscopy of several class I cytokine receptor TMDs. Furthermore, the structure of a class I cytokine receptor TMD in DHPC micelles was solved with solution-state NMR spectroscopy. Additionally, since structural studies of intact proteins...... receptor. This integrative structure opens up for interpreting these receptors in their intact form and offers unique insights on the topology of single-pass transmembrane receptors with intrinsically disordered domains. Dimerization of the TMDs of class I cytokine receptors has been shown to be important...

  11. Selective labeling of apomorphine receptors by 3H-LSD

    International Nuclear Information System (INIS)

    Whitaker, P.M.; Seeman, P.

    1979-01-01

    There are at least two types of dopamine receptors: the 3 H-dopamine or 3 H-apomorphine receptor (with high or nM affinity for dopamine), and the 3 H-neuroleptic receptor (with low or μm affinity for dopamine). While 3 H-LSD can label the 3 H-neuroleptic receptor, this study was done in order to label the 3 H-apomorphine/dopamine receptor site. In the presence of excess phentolamine, serotonin and spiperone (to preculude binding to α-adrenergic, serotonergic and neuroleptic receptors, respectively) similar concentrations of dopaminergic drugs inhibited the binding (to calf caudate) of 3 H-LSD and 3 H-apomorphine. This is compatible with the concept that the 3 H-apomorphine/dopamine receptor and the 3 H-neuroleptic/dopamine receptor are separate. (Auth.)

  12. Toll-like receptor 1 polymorphisms increase susceptibility to candidemia.

    NARCIS (Netherlands)

    Plantinga, T.S.; Johnson, M.D.; Scott, W.K.; Vosse, E. van de; Velez Edwards, D.R.; Smith, P.B.; Alexander, B.D.; Yang, J.C.; Kremer, D.; Laird, G.M.; Oosting, M.; Joosten, L.A.B.; Meer, J.W.M. van der; Dissel, J.T. van; Walsh, T.J.; Perfect, J.R.; Kullberg, B.J.; Netea, M.G.

    2012-01-01

    BACKGROUND: Candidemia is a severe invasive fungal infection with high mortality. Recognition of Candida species is mediated through pattern recognition receptors such as Toll-like receptors (TLRs). This study assessed whether genetic variation in TLR signaling influences susceptibility to

  13. Synaptic Bistability Due to Nucleation and Evaporation of Receptor Clusters

    KAUST Repository

    Burlakov, V. M.

    2012-01-10

    We introduce a bistability mechanism for long-term synaptic plasticity based on switching between two metastable states that contain significantly different numbers of synaptic receptors. One state is characterized by a two-dimensional gas of mobile interacting receptors and is stabilized against clustering by a high nucleation barrier. The other state contains a receptor gas in equilibrium with a large cluster of immobile receptors, which is stabilized by the turnover rate of receptors into and out of the synapse. Transitions between the two states can be initiated by either an increase (potentiation) or a decrease (depotentiation) of the net receptor flux into the synapse. This changes the saturation level of the receptor gas and triggers nucleation or evaporation of receptor clusters. © 2012 American Physical Society.

  14. Endocrine therapy use among elderly hormone receptor-pos...

    Data.gov (United States)

    U.S. Department of Health & Human Services — Clinical guidelines recommend that women with hormone-receptor positive breast cancer receive endocrine therapy (selective estrogen receptor modulators or aromatase...

  15. Family C 7TM receptor dimerization and activation

    DEFF Research Database (Denmark)

    Bonde, Marie Mi; Sheikh, Søren P; Hansen, Jakob Lerche

    2006-01-01

    The family C seven transmembrane (7TM) receptors constitutes a small and especially well characterized subfamily of the large 7TM receptor superfamily. Approximately 50% of current prescription drugs target 7TM receptors, this biologically important family represents the largest class of drug......-targets today. It is well established that family C 7TM receptors form homo- or hetero-dimers on the cell surface of living cells. The large extra-cellular domains (ECD) have been crystallized as a dimer in the presence and absence of agonist. Upon agonist binding, the dimeric ECD undergoes large conformational...... changes that lead to receptor activation. Despite extensive studies of the receptor transmembrane domain, several key features, including the exact organization of the complete receptor dimer, the sequence of events leading to receptor activation, and the functional significance of dimerization, have yet...

  16. Membrane Trafficking of Death Receptors: Implications on Signalling

    Directory of Open Access Journals (Sweden)

    Wulf Schneider-Brachert

    2013-07-01

    Full Text Available Death receptors were initially recognised as potent inducers of apoptotic cell death and soon ambitious attempts were made to exploit selective ignition of controlled cellular suicide as therapeutic strategy in malignant diseases. However, the complexity of death receptor signalling has increased substantially during recent years. Beyond activation of the apoptotic cascade, involvement in a variety of cellular processes including inflammation, proliferation and immune response was recognised. Mechanistically, these findings raised the question how multipurpose receptors can ensure selective activation of a particular pathway. A growing body of evidence points to an elegant spatiotemporal regulation of composition and assembly of the receptor-associated signalling complex. Upon ligand binding, receptor recruitment in specialized membrane compartments, formation of receptor-ligand clusters and internalisation processes constitute key regulatory elements. In this review, we will summarise the current concepts of death receptor trafficking and its implications on receptor-associated signalling events.

  17. Pattern recognition receptors and their role in invasive aspergillosis

    NARCIS (Netherlands)

    Gresnigt, M.S.; Netea, M.G.; van de Veerdonk, F.L.

    2012-01-01

    Pattern recognition receptors (PRRs) are germline receptors that recognize conserved structures on microorganisms. Several PRRs have been identified in the recent years that are involved in the immune response against Aspergillus fumigatus. The role of PRRs in invasive pulmonary aspergillosis

  18. Hormone-receptor expression and ovarian cancer survival

    DEFF Research Database (Denmark)

    Sieh, Weiva; Köbel, Martin; Longacre, Teri A

    2013-01-01

    Few biomarkers of ovarian cancer prognosis have been established, partly because subtype-specific associations might be obscured in studies combining all histopathological subtypes. We examined whether tumour expression of the progesterone receptor (PR) and oestrogen receptor (ER) was associated...

  19. The pathophysiological consequences of somatostatin receptor internalization and resistance

    NARCIS (Netherlands)

    L.J. Hofland (Leo); S.W.J. Lamberts (Steven)

    2003-01-01

    textabstractSomatostatin receptors expressed on tumor cells form the rationale for somatostatin analog treatment of patients with somatostatin receptor-positive neuroendocrine tumors. Nevertheless, although somatostatin analogs effectively control hormonal hypersecretion by

  20. Carboxyl-terminal receptor domains control the differential dephosphorylation of somatostatin receptors by protein phosphatase 1 isoforms.

    Directory of Open Access Journals (Sweden)

    Andreas Lehmann

    Full Text Available We have recently identified protein phosphatase 1β (PP1β as G protein-coupled receptor (GPCR phosphatase for the sst2 somatostatin receptor using siRNA knockdown screening. By contrast, for the sst5 somatostatin receptor we identified protein phosphatase 1γ (PP1γ as GPCR phosphatase using the same approach. We have also shown that sst2 and sst5 receptors differ substantially in the temporal dynamics of their dephosphorylation and trafficking patterns. Whereas dephosphorylation and recycling of the sst2 receptor requires extended time periods of ∼30 min, dephosphorylation and recycling of the sst5 receptor is completed in less than 10 min. Here, we examined which receptor domains determine the selection of phosphatases for receptor dephosphorylation. We found that generation of tail-swap mutants between sst2 and sst5 was required and sufficient to reverse the patterns of dephosphorylation and trafficking of these two receptors. In fact, siRNA knockdown confirmed that the sst5 receptor carrying the sst2 tail is predominantly dephosphorylated by PP1β, whereas the sst2 receptor carrying the sst5 tail is predominantly dephosphorylated by PP1γ. Thus, the GPCR phosphatase responsible for dephosphorylation of individual somatostatin receptor subtypes is primarily determined by their different carboxyl-terminal receptor domains. This phosphatase specificity has in turn profound consequences for the dephosphorylation dynamics and trafficking patterns of GPCRs.

  1. Cannabinoid receptor CB2 modulates axon guidance

    DEFF Research Database (Denmark)

    Duff, Gabriel; Argaw, Anteneh; Cecyre, Bruno

    2013-01-01

    Navigation of retinal projections towards their targets is regulated by guidance molecules and growth cone transduction mechanisms. Here, we present in vitro and in vivo evidences that the cannabinoid receptor 2 (CB2R) is expressed along the retino-thalamic pathway and exerts a modulatory action ...

  2. Kidney Protection During Receptor Radionuclide Therapy

    NARCIS (Netherlands)

    E.J. Rolleman

    2007-01-01

    textabstractThe discovery of somatostatin and the cloning and characterisation of its five receptor subtypes have led to many intriguing developments in clinical nuclear medicine. It was found that somatostatin administration resulted in inhibition of hormonal overproduction syndromes [5], which

  3. Conformational regulation of urokinase receptor function

    DEFF Research Database (Denmark)

    Gårdsvoll, Henrik; Jacobsen, Benedikte; Kriegbaum, Mette C

    2011-01-01

    PA per se into the hydrophobic ligand binding cavity of uPAR that modulates the function of this receptor. Based on these data, we now propose a model in which the inherent interdomain mobility in uPAR plays a major role in modulating its function. Particularly one uPAR conformation, which is stabilized...

  4. Frizzled receptors signal through G proteins.

    Science.gov (United States)

    Nichols, Andrea S; Floyd, Desiree H; Bruinsma, Stephen P; Narzinski, Kirk; Baranski, Thomas J

    2013-06-01

    Frizzled receptors have long been thought to couple to G proteins but biochemical evidence supporting such an interaction has been lacking. Here we expressed mammalian Wnt-Frizzled fusion proteins in Saccharomyces cerevisiae and tested the receptors' ability to activate the yeast mitogen-activated protein kinase (MAPK) pathway via heterotrimeric G proteins. Our results show that Frizzled receptors can interact with Gαi, Gαq, and Gαs proteins, thus confirming that Frizzled functions as a G protein coupled receptor (GPCR). However, the activity level of Frizzled-mediated G protein signaling was much lower than that of a typical GPCR and, surprisingly, was highest when coupled to Gαs. The Frizzled/Gαs interaction was further established in vivo as Drosophila expressing a loss-of-function Gαs allele rescued the photoreceptor differentiation phenotype of Frizzled mutant flies. Together, these data point to an important role for Frizzled as a nontraditional GPCR that preferentially couples to Gαs heterotrimeric G proteins. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Sexual behavior reduces hypothalamic androgen receptor immunoreactivity

    NARCIS (Netherlands)

    Fernandez-Guasti, Alonso; Swaab, Dick; Rodríguez-Manzo, Gabriela

    2003-01-01

    Male sexual behavior is regulated by limbic areas like the medial preoptic nucleus (MPN), the bed nucleus of the stria terminalis (BST), the nucleus accumbens (nAcc) and the ventromedial hypothalamic nucleus (VMN). Neurons in these brain areas are rich in androgen receptors (AR) and express

  6. Expression of Estrogen and Progesterone Receptors among ...

    African Journals Online (AJOL)

    Study design: This is a descriptive study to detect the level of Estrogen (ER) and Progesterone (PR) receptors in a sample of biopsies from Sudanese women with breast cancer presented at Khartoum teaching Hospital Material and Methods: Forty biopsies from breast cancer patients were examined with immunostaining

  7. Nicotinic Acetylcholine Receptors in Sensory Cortex

    Science.gov (United States)

    Metherate, Raju

    2004-01-01

    Acetylcholine release in sensory neocortex contributes to higher-order sensory function, in part by activating nicotinic acetylcholine receptors (nAChRs). Molecular studies have revealed a bewildering array of nAChR subtypes and cellular actions; however, there is some consensus emerging about the major nAChR subtypes and their functions in…

  8. The Relationship of Erythropoietin Receptor Expression and ...

    African Journals Online (AJOL)

    2018-04-04

    Apr 4, 2018 ... brain tumor characterized with poor prognosis and short survival. In addition to the standard treatment protocols, targeted molecular treatment options are under trial. In the recent trials, erythropoietin and erythropoietin receptor were found to be linked with the progression of GBM cells. Aim: In this study, we.

  9. The receptor RAGE: Bridging inflammation and cancer

    Directory of Open Access Journals (Sweden)

    Hess Jochen

    2009-05-01

    Full Text Available Abstract The receptor for advanced glycation end products (RAGE is a single transmembrane receptor of the immunoglobulin superfamily that is mainly expressed on immune cells, neurons, activated endothelial and vascular smooth muscle cells, bone forming cells, and a variety of cancer cells. RAGE is a multifunctional receptor that binds a broad repertoire of ligands and mediates responses to cell damage and stress conditions. It activates programs responsible for acute and chronic inflammation, and is implicated in a number of pathological diseases, including diabetic complications, stroke, atheriosclerosis, arthritis, and neurodegenerative disorders. The availability of Rage knockout mice has not only advanced our knowledge on signalling pathways within these pathophysiological conditions, but also on the functional importance of the receptor in processes of cancer. Here, we will summarize molecular mechanisms through which RAGE signalling contributes to the establishment of a pro-tumourigenic microenvironment. Moreover, we will review recent findings that provide genetic evidence for an important role of RAGE in bridging inflammation and cancer.

  10. Immunoprecipitation of the parathyroid hormone receptor

    International Nuclear Information System (INIS)

    Wright, B.S.; Tyler, G.A.; O'Brien, R.; Caporale, L.H.; Rosenblatt, M.

    1987-01-01

    An 125 I-labeled synthetic analog of bovine parathyroid hormone, [8-norleucine,18-norleucine,34-tyrosine]PTH-(1-34) amide ([Nle]PTH-(1-34)-NH 2 ), purified by high-pressure liquid chromatography (HPLC), was employed to label the parathyroid hormone (PTH) receptor in cell lines derived from PTH target tissues: the ROS 17/2.8 rat osteosarcoma of bone and the CV1 and COS monkey kidney lines. After incubation of the radioligand with intact cultured cells, the hormone was covalently attached to receptors by using either a photoaffinity technique or chemical (affinity) crosslinking. In each case, covalent labeling was specific, as evidenced by a reduction of labeling when excess competing nonradioactive ligand was present. After covalent attachment of radioligand, membranes were prepared form the cells and solubilized in the nonionic detergent Nonidet P-40 or octyl glucoside. Analysis of the immunoprecipitate on NaDod-SO 4 /polyacrylamide gel electrophoresis followed by autoradiography revealed the presence of a doublet of apparent molecular mass 69-70 kDa. Specifically labeled bands of approximate molecular mass 95 and 28 kDa were also observed. The anti-PTH IgG was affinity purified by passage over a PTH-Sepharose column and used to made an immunoaffinity column. These studies suggest that the use of an anti-PTH antiserum that binds receptor-bound hormone is likely to be a useful step in the further physicochemical characterization and purification of the PTH receptor

  11. Gene transfer of MHC-restricted receptors

    NARCIS (Netherlands)

    Kessels, Helmut W. H. G.; Wolkers, Monika C.; Schumacher, Ton N. M.

    2005-01-01

    Adoptive therapy with allogeneic or tumor-specific T-cells has shown substantial clinical effects for several human tumors, but the widespread application of this strategy remains a daunting task. The antigen specificity of T-lymphocytes is solely determined by the T-cell receptor (TCR) alpha and

  12. α-2 adrenergic receptor: a radiohistochemical study

    International Nuclear Information System (INIS)

    Unnerstall, J.R.

    1984-01-01

    α-2 adrenergic agents have been shown to influence blood pressure, heart rate and other physiological and behavioral functions through interactions with adrenergic pathways within the central nervous system. Pharmacologically relevant α-1 adrenergic receptors were biochemically characterized and radiohistochemically analyzed in intact tissue sections of the rat and human central nervous system. The anatomical distribution of the α-2 receptors, labeled with the agonist [ 3 H]para-aminoclonidine, verified the concept that α-2 receptors are closely associated with adrenergic nerve terminals and that α-2 agents can influence autonomic and endocrine function through an action in the central nervous system. Since α-2 agonists can influence sympathetic outflow, α-2 binding sites were closely analyzed in the intermediolateral cell column of the thoracic spinal cord. The transport of putative presynaptic α-2 binding sites in the rat sciatic nerve was analyzed by light microscopic radiohistochemical techniques. Finally, in intact tissue section of the rat central nervous system, the biochemical characteristics of [ 3 H]rauwolscine binding were analyzed. Data were also shown which indicates that the synthetic α-2 antagonist [ 3 H]RX781094 also binds to α-2 receptors with high-affinity. Further, the distribution of [ 3 H]RX781094 binding sites in the rat central nervous system was identical to the distribution seen when using [ 3 H]para-aminoclonidine

  13. Glucocorticoid receptor knockdown and adult hippocampal neurogenesis

    NARCIS (Netherlands)

    Hooijdonk, Leonarda Wilhelmina Antonia van

    2010-01-01

    The research in this thesis is aimed at the elucidation of the role of the glucocorticoid receptor (GR) in hippocampal neuroplasticity and functioning. To achieve this, we have developed a novel method to specifically knockdown GR in a discrete cell population of the mouse brain. In this thesis I

  14. [Ryanodine receptor, calcium leak and arrhythmias].

    Science.gov (United States)

    Rueda, Angélica; de Alba-Aguayo, David R; Valdivia, Héctor H

    2014-01-01

    The participation of the ionic Ca(2+) release channel/ryanodine receptor in cardiac excitation-contraction coupling is well known since the late '80s, when various seminal papers communicated its purification for the first time and its identity with the "foot" structures located at the terminal cisternae of the sarcoplasmic reticulum. In addition to its main role as the Ca(2+) channel responsible for the transient Ca(2+) increase that activates the contractile machinery of the cardiomyocytes, the ryanodine receptor releases Ca(2+) during the relaxation phase of the cardiac cycle, giving rise to a diastolic Ca(2+) leak. In normal physiological conditions, diastolic Ca(2+) leak regulates the proper level of luminal Ca(2+), but in pathological conditions it participates in the generation of both, acquired and hereditary arrhythmias. Very recently, several groups have focused their efforts into the development of pharmacological tools to control the altered diastolic Ca(2+) leak via ryanodine receptors. In this review, we focus our interest on describing the participation of cardiac ryanodine receptor in the diastolic Ca(2+) leak under physiological or pathological conditions and also on the therapeutic approaches to control its undesired exacerbated activity during diastole. Copyright © 2013 Instituto Nacional de Cardiología Ignacio Chávez. Published by Masson Doyma México S.A. All rights reserved.

  15. PHARMACOGENOMICS OF PROSTAGLANDIN AND LEUKOTRIENE RECEPTORS

    Directory of Open Access Journals (Sweden)

    José Antonio Cornejo-García

    2016-09-01

    Full Text Available Individual genetic background together with environmental effects are thought to be behind many human complex diseases. A number of genetic variants, mainly single nucleotide polymorphisms (SNPs, have been shown to be associated with various pathological and inflammatory conditions, representing potential therapeutic targets. Prostaglandins (PTGs and leukotrienes (LTs are eicosanoids derived from arachidonic acid and related polyunsaturated fatty acids that participate in both normal homeostasis and inflammatory conditions. These bioactive lipid mediators are synthesised through two major multistep enzymatic pathways: PTGs by cyclooxygenase and LTs by 5-lipoxygenase. The main physiological effects of PTGs include vasodilation and vascular leakage (PTGE2; mast cell maturation, eosinophil recruitment and allergic responses (PTGD2; vascular and respiratory smooth muscle contraction (PTGF2, and inhibition of platelet aggregation (PTGI2. LTB4 is mainly involved in neutrophil recruitment, vascular leakage, and epithelial barrier function, whereas cysteinyl LTs (CysLTs (LTC4, LTD4 and LTE4 induce bronchoconstriction and neutrophil extravasation, and also participate in vascular leakage. PTGs and LTs exert their biological functions by binding to cognate receptors, which belong to the seven transmembrane, G protein-coupled receptor superfamily. SNPs in genes encoding these receptors may influence their functionality and have a role in disease susceptibility and drug treatment response. In this review we summarize SNPs in PTGs and LTs receptors and their relevance in human diseases. We also provide information on gene expression. Finally, we speculate on future directions for this topic.

  16. P2X Receptors and Synaptic Plasticity

    Czech Academy of Sciences Publication Activity Database

    Pankratov, Y.; Lalo, U.; Krishtal, A.; Verkhratsky, Alexei

    2009-01-01

    Roč. 158, č. 1 (2009), s. 137-148 ISSN 0306-4522 Institutional research plan: CEZ:AV0Z50390512 Keywords : ATP * P2X receptors * synaptic plasticity Subject RIV: FH - Neurology Impact factor: 3.292, year: 2009

  17. Reciprocal developmental regulation of presynaptic ionotropic receptors

    Czech Academy of Sciences Publication Activity Database

    Tureček, Rostislav; Trussell O., Laurence

    2002-01-01

    Roč. 99, č. 21 (2002), s. 13884-13889 ISSN 0027-8424 Grant - others:US(XC) DC04450; US(XC) TW05406-01 Institutional research plan: CEZ:AV0Z5039906 Keywords : ionotropic receptors Subject RIV: FH - Neurology Impact factor: 10.701, year: 2002

  18. Pattern recognitions receptors in immunodeficiency disorders

    NARCIS (Netherlands)

    Mortaz, Esameil; Adcock, Ian M; Tabarsi, Payam; Darazam, Ilad Alavi; Movassaghi, Masoud; Garssen, Johan; Jamaati, Hamidreza; Velayati, Aliakbar

    2017-01-01

    Pattern recognition receptors (PRRs) recognize common microbial or host-derived macromolecules and have important roles in early activation and response of the immune system. Initiation of the innate immune response starts with the recognition of microbial structures called pathogen associated

  19. Killer immunoglobulin receptor genes in spondyloarthritis

    NARCIS (Netherlands)

    Kuijpers, Taco W.; Vendelbosch, Sanne; van den Berg, Merlijn; Baeten, Dominique L. P.

    2016-01-01

    We focus on the role of killer immunoglobulin receptor (KIR) interactions with the human leukocyte antigens (HLA)-B27 ligand and the potential contribution of KIR-expressing natural killer and T cells in spondyloarthritis, more specifically in ankylosing spondylitis (AS). In AS strong

  20. Pregnane X receptor and human malignancy.

    Science.gov (United States)

    Koutsounas, Ioannis; Patsouris, Efstratios; Theocharis, Stamatios

    2013-04-01

    Pregnane X Receptor (PXR) is a member of the nuclear receptor superfamily, expressed in liver, intestine and other tissues. PXR exerts transcriptional regulation by binding to its DNA response elements as an heterodimer with Retinoid X Receptor (RXR). This nuclear receptor is implicated in the homeostasis of numerous endobiotics, such as glucose, lipids, steroids and bile acids. Additionally, the activation of PXR induces expression of drug metabolizing enzymes (DMEs) and transporters, including multidrug resistance protein 1 (MDR1), leading to regulation of xenobiotic metabolism and drug-drug interactions. New roles for PXR have been established in inflammatory bowel disease, bone homeostasis, liver steatosis, antifibrogenesis and oxidative stress. PXR has, additionally, a multifactorial impact on cancer, either by directly affecting cell proliferation and apoptosis or by inducing chemotherapy resistance, in colon, breast, prostate, and endometrial cancer, and in osteosarcoma. PXR polymorphisms may also have clinical significance in certain types of cancer and their treatment. Further studies are needed in order to clarify the mechanisms involved in PXR-regulated carcinogenesis. PXR down-regulation could be considered as a novel therapeutic approach to overcome chemoresistance, while future research should be mainly focused on modulating PXR status in order to increase chemotherapy effectiveness and finally improve cancer patient prognosis.

  1. Genomic growth hormone, growth hormone receptor and ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-07-20

    Jul 20, 2009 ... Genomic growth hormone, growth hormone receptor and transforming growth factor β-3 gene polymorphism in breeder hens of Mazandaran native fowls. Babak Enayati and Ghodrat Rahimi-Mianji*. Laboratory for Molecular Genetics and Animal Biotechnology, Department of Animal Sciences, Faculty of ...

  2. Subunit Arrangement and Function in NMDA Receptors

    Energy Technology Data Exchange (ETDEWEB)

    Furukawa,H.; Singh, S.; Mancusso, R.; Gouaux, E.

    2005-01-01

    Excitatory neurotransmission mediated by NMDA (N-methyl-D-aspartate) receptors is fundamental to the physiology of the mammalian central nervous system. These receptors are heteromeric ion channels that for activation require binding of glycine and glutamate to the NR1 and NR2 subunits, respectively. NMDA receptor function is characterized by slow channel opening and deactivation, and the resulting influx of cations initiates signal transduction cascades that are crucial to higher functions including learning and memory. Here we report crystal structures of the ligand-binding core of NR2A with glutamate and that of the NR1-NR2A heterodimer with glutamate and glycine. The NR2A-glutamate complex defines the determinants of glutamate and NMDA recognition, and the NR1-NR2A heterodimer suggests a mechanism for ligand-induced ion channel opening. Analysis of the heterodimer interface, together with biochemical and electrophysiological experiments, confirms that the NR1-NR2A heterodimer is the functional unit in tetrameric NMDA receptors and that tyrosine 535 of NR1, located in the subunit interface, modulates the rate of ion channel deactivation.

  3. Ghrelin receptor controls obesity by fat burning

    Science.gov (United States)

    Emerging evidence show that brown fat in the body produces heat to burn energy, thus prompting weight loss. Ghrelin is the only known hormone which increases appetite and promotes weight gain. We have reported that mice that lack the receptor which mediates the functions of ghrelin are lean. Our fu...

  4. Cloning of partial putative gonadotropin hormone receptor ...

    Indian Academy of Sciences (India)

    Cloning of partial putative gonadotropin hormone receptor sequence from fish. G KUMARESAN, T VENUGOPAL, A VIKAS, T J PANDIAN andS MATHAVAN*. Department of Genetics, School of Biological Sciences, Madurai Kamaraj University, Madurai 625 021, India. *Corresponding author (Fax, 91-452-859134; Email, ...

  5. Anti-NMDA Receptor Encephalitis and Vaccination.

    Science.gov (United States)

    Wang, Hsiuying

    2017-01-18

    Anti- N -methyl-d-aspartate (Anti-NMDA) receptor encephalitis is an acute autoimmune neurological disorder. The cause of this disease is often unknown, and previous studies revealed that it might be caused by a virus, vaccine or tumor. It occurs more often in females than in males. Several cases were reported to be related to vaccination such as the H1N1 vaccine and tetanus/diphtheria/pertussis and polio vaccines. In this study, we reported an anti-NMDA receptor encephalitis case that may be caused by Japanese encephalitis vaccination. To investigate the association between anti-NMDA receptor encephalitis and vaccination, we analyzed the phylogenetic relationship of the microRNAs, which significantly regulate these vaccine viruses or bacteria, and the phylogenetic relationship of these viruses and bacteria. This reveals that anti-NMDA receptor encephalitis may be caused by Japanese encephalitis vaccination, as well as H1N1 vaccination or tetanus/diphtheria/pertussis and polio vaccinations, from the phylogenetic viewpoint.

  6. Allosteric Modulation of Muscarinic Acetylcholine Receptors

    Czech Academy of Sciences Publication Activity Database

    Jakubík, Jan; El-Fakahany, E. E.

    2010-01-01

    Roč. 3, č. 9 (2010), s. 2838-2860 ISSN 1424-8247 R&D Projects: GA ČR GA305/09/0681 Institutional research plan: CEZ:AV0Z50110509 Keywords : muscarinic acetylcholine receptors * allosteric modulation * Alzheimer ´s disease Subject RIV: CE - Biochemistry

  7. Synaptic AMPA receptor plasticity and behavior

    NARCIS (Netherlands)

    Kessels, Helmut W.; Malinow, Roberto

    2009-01-01

    The ability to change behavior likely depends on the selective strengthening and weakening of brain synapses. The cellular models of synaptic plasticity, long-term potentiation (LTP) and depression (LTD) of synaptic strength, can be expressed by the synaptic insertion or removal of AMPA receptors

  8. Receptors, adenylate cyclase, depression, and lithium.

    Science.gov (United States)

    Belmaker, R H

    1981-04-01

    Although numerous studies have suggested that depression may be associated with a reduction in synaptic noradrenaline in the brain, direct beta-adrenergic receptor agonists have not been tested in the treatment of depression until recently. Moreover, newer theories of antidepressant action suggest that a reduction in beta-adrenergic receptor sensitivity is a better correlate of antidepressant treatment than noradrenaline turnover changes. It is possible to evaluate the beta-adrenergic receptor-adenylate cyclase complex in the human periphery by measuring the plasma cyclic AMP rise after adrenergic agonists. A clinical trial of the beta-2 adrenergic agonist salbutamol in depression provided an opportunity to test whether adrenergic receptor subsensitivity does occur during clinical antidepressant treatment. Plasma cyclic AMP before treatment with salbutamol rose 26% in response to salbutamol 0.25 mg iv. After 1 and 3 weeks of oral salbutamol treatment, depression scores declined significantly in 11 depressed patients, while the plasma cyclic AMP response to iv salbutamol declined over 60%. The beta-adrenergic adenylate cyclase remained subsensitive 4 days after cessation of salbutamol therapy. The results support the concept that receptor sensitivity changes occur during human antidepressant therapy. Data are presented that Li, too, markedly reduces activity of beta-adrenergic adenylate cyclase in humans. The effect was evaluated by studying the effect of Li at therapeutic serum concentrations on the plasma cyclic AMP response to subcutaneous epinephrine. The Li effect is specific, since the plasma cyclic AMP response to glucagon is not inhibited. The plasma cyclic GMP response to subcutaneous epinephrine, suggested as a model for presynaptic alpha-noradrenergic mechanisms, is also partially inhibited by Li therapy. Since cyclic AMP and cyclic GMP may be viewed as balancing substances, their interaction may provide a mechanism for Li's dual clinical effects in mania

  9. Development of prolactin receptor antagonists with reduced pH-dependence of receptor binding

    DEFF Research Database (Denmark)

    Hansen, Mathilde Johanne Kaas; Olsen, Johan Gotthardt; Bernichtein, Sophie

    2011-01-01

    Abstract The cytokine hormone prolactin has a vast number of diverse functions. Unfortunately, it also exhibits tumor growth promoting properties, which makes the development of prolactin receptor antagonists a priority. Prolactin binds to its cognate receptor with much lower affinity at low p....... From evaluation of known molecular structures of human prolactin, of the prolactin receptor and of different complexes of the two, three histidine residues in the hormone-receptor binding site 1 were selected for mutational studies. We analyzed 10 variants by circular dichroism spectroscopy, affinity...... antagonists were developed earlier and the histidine mutations were introduced within such background. The antagonistic properties were maintained and the high affinity at low pH conserved. The implications of these findings may open new areas of research in the field of prolactin cancer biology. Copyright...

  10. Tachykinins and tachykinin receptors in the gut, with special reference to NK2 receptors in human.

    Science.gov (United States)

    Lecci, Alessandro; Capriati, Angela; Altamura, Maria; Maggi, Carlo Alberto

    2006-06-30

    Tachykinins (TKs), substance P (SP), neurokinin A (NKA) and B (NKB) are important peptide modulators of intestinal motility in animal species studied so far, including humans. Modulation of motility by TKs can occur at various levels, since these peptides are expressed in cholinergic excitatory motor neurons projecting to both circular and longitudinal muscle, interneurons, and intramural and extramural sensory neurons. The effects of SP, NKA and NKB are preferentially mediated through the stimulation of NK1, NK2 and NK3 receptors, respectively; however, the selectivity of natural TKs for their preferred receptors is relative. In addition, SP and NKA are expressed in similar quantities in the human intestine and adequate stimuli can release similar amount of these TKs from enteric nerves. Furthermore, a single anatomical substrate can express more than one TK receptor type, so that the blockade of a single receptor type may not reveal functional effects in integrated models of motility. In isolated human small intestine and colon circular muscle strips, both NK1 and NK2 receptors mediate contractile effects. Indeed, in the human small intestine, smooth muscle electrical and motor events induced by electrical field stimulation (EFS) can involve either or both NK1 and NK2 receptors or these latter receptors predominantly, depending on the experimental conditions. In contrast, in the human colonic smooth muscle, only the NK2 receptor-mediated component of the response to EFS is prominent and some evidence would suggest that this component is the main excitatory motor mechanism at this level. Furthermore, a NK2 receptor-mediated secretory component in the human colonic mucosa has been recently demonstrated. Thus, it could be speculated that the blockade of both NK1 and NK2 receptors will be necessary to antagonise motor effects induced by exogenous administration or endogenous release of TKs in the small intestine, whereas the blockade of the NK2 receptors would be

  11. Expression of Novel Steroid/Receptors in Mammary Development: Peroxisome Proliferator Activated Receptors

    National Research Council Canada - National Science Library

    Gimble, Jeffrey

    1999-01-01

    ...) are expressed in the mammary gland and regulated during physiologic and pathologic events. The PPARs are nuclear hormone receptors which bind to fatty acids as ligands and control transcription of lipid metabolic genes...

  12. Pharmacological Studies of NOP Receptor Agonists as Novel Analgesics

    Science.gov (United States)

    2010-05-01

    agents histamine and cowhage activate separate populations of Ko and Naughtonto antinociceptive effects of spinally administered mor- phine or/and NOP...similar to other opioid receptor agonists at the cellular level (Meunier et al., 1995; Rizzi et al., 2007). However, the effects of NOP receptor...the hypotheses that in the non-human primate (1) the functions and behavioral effects of the NOP receptor are independent of classical opioid receptors

  13. Insulin causes insulin-receptor internalization in human erythrocyte ghosts.

    OpenAIRE

    Kelleher, R S; Murray, E F; Peterson, S W

    1987-01-01

    The effect of incubation with insulin on insulin-receptor internalization by erythrocyte ghosts was investigated. The number of surface insulin receptors decreased by 30-40% after incubation of ghosts with insulin. Total insulin-receptor binding to solubilized ghosts was the same in insulin-incubated and control ghosts, whereas insulin binding to an internal vesicular fraction was substantially increased in insulin-incubated ghosts. Our findings suggest that erythrocyte-ghost insulin receptor...

  14. Nociceptin and the nociceptin receptor in learning and memory

    OpenAIRE

    Andero, Raül

    2015-01-01

    There are many processes in which the neuropeptide nociceptin/orphanin FQ (N/OFQ or nociceptin) is involved in the brain. The role of nociceptin in learning and memory holds promise in modulating these processes in health and disease in the human brain. This review summarizes the body of research focused on N/OFQ and its specific receptor, the nociceptin receptor (NOP receptor), in learning and memory, and its potential mechanisms of action, in which acetylcholine, NMDA receptor and noradrena...

  15. Signaling Cascades Regulating NMDA Receptor Sensitivity to Ethanol

    OpenAIRE

    RON, DORIT

    2004-01-01

    One of the major targets for ethanol (alcohol) in the brain is the N-methyl-d-aspartate (NMDA) receptor, a glutamate-gated ion channel. Intriguingly, the effects of ethanol on the NMDA receptor are not homogeneous throughout the brain. This review focuses on recent studies revealing molecular mechanisms that mediate the actions of ethanol on the NMDA receptor in different brain regions via changes in NMDA receptor phosphorylation and compartmentalization. Specifically, the role of the scaffol...

  16. Imaging opiate receptors with positron emission tomography

    International Nuclear Information System (INIS)

    Frost, J.J.; Dannals, R.F.; Ravert, H.T.

    1984-01-01

    Opiate receptors exist in the mammalian brain and are thought to meditate the diverse pharmacological actions of the opiates, such as analgesia, euphoria, and sedation. The 4-carbomethoxyl derivatives of fentanyl, such as lofentanil and R31833 (4-carbomethoxyfentanyl) bind to the opiate receptor with high affinity. C-11 R31833 was synthesized by reacting C-11 methyl iodide with the appropriate carboxylate. Male ICR mice were injected intravenously with C-11 R31833 (5μg/kg), killed 30 minutes later, and the brains rapidly dissected. The thalami, striata, and cerebral cortex are rich in opiate receptors, but the cerebellum contains a very low concentration of opiate receptors. The thalamus/cerebellum and striatum/cerebellum activity ratios, calculated per mg of wet tissue, were 4.1 and 5.2 respectively. Coinjection of 5mg/kg naloxone reduced the ratios to 1.1, which indicates that the preferential localization of C-11 R31833 in the thalami and striata is due to binding to opiate is due to binding to opiate receptors. A 22 kg anesthetized male baboon was imaged using the NeuroECAT after injection of 18.9 mCi of C-11 R13833 (0.50 μg/kg, specific activity 616 Ci/mmole at time of injection). From 15-70 minutes after injection preferential accumulation of activity could be seen in the thalami, caudate nuclei, and cerebral cortex and, conversely, low activity was demonstrated in the cerebellum. At one hour postinjection the maximum measured caudate/cerebellum activity ratio per pixel was 2.9. For the NeuroECAT the recovery coefficient for the baboon caudate is ca. 0.2-0.3, and therefore the actual caudate/cerebellum ratio is ca. 10-15

  17. Imaging opiate receptors with positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Frost, J.J.; Dannals, R.F.; Ravert, H.T.; Wilson, A.A.; Wong, D.F.; Links, J.M.; Burns, H.D.; Kuhar, M.J.; Snyder, S.H.; Wagner, H.N. Jr.

    1984-01-01

    Opiate receptors exist in the mammalian brain and are thought to meditate the diverse pharmacological actions of the opiates, such as analgesia, euphoria, and sedation. The 4-carbomethoxyl derivatives of fentanyl, such as lofentanil and R31833 (4-carbomethoxyfentanyl) bind to the opiate receptor with high affinity. C-11 R31833 was synthesized by reacting C-11 methyl iodide with the appropriate carboxylate. Male ICR mice were injected intravenously with C-11 R31833 (5..mu..g/kg), killed 30 minutes later, and the brains rapidly dissected. The thalami, striata, and cerebral cortex are rich in opiate receptors, but the cerebellum contains a very low concentration of opiate receptors. The thalamus/cerebellum and striatum/cerebellum activity ratios, calculated per mg of wet tissue, were 4.1 and 5.2 respectively. Coinjection of 5mg/kg naloxone reduced the ratios to 1.1, which indicates that the preferential localization of C-11 R31833 in the thalami and striata is due to binding to opiate is due to binding to opiate receptors. A 22 kg anesthetized male baboon was imaged using the NeuroECAT after injection of 18.9 mCi of C-11 R13833 (0.50 ..mu..g/kg, specific activity 616 Ci/mmole at time of injection). From 15-70 minutes after injection preferential accumulation of activity could be seen in the thalami, caudate nuclei, and cerebral cortex and, conversely, low activity was demonstrated in the cerebellum. At one hour postinjection the maximum measured caudate/cerebellum activity ratio per pixel was 2.9. For the NeuroECAT the recovery coefficient for the baboon caudate is ca. 0.2-0.3, and therefore the actual caudate/cerebellum ratio is ca. 10-15.

  18. Personal receptor repertoires: olfaction as a model

    Directory of Open Access Journals (Sweden)

    Olender Tsviya

    2012-08-01

    Full Text Available Abstract Background Information on nucleotide diversity along completely sequenced human genomes has increased tremendously over the last few years. This makes it possible to reassess the diversity status of distinct receptor proteins in different human individuals. To this end, we focused on the complete inventory of human olfactory receptor coding regions as a model for personal receptor repertoires. Results By performing data-mining from public and private sources we scored genetic variations in 413 intact OR loci, for which one or more individuals had an intact open reading frame. Using 1000 Genomes Project haplotypes, we identified a total of 4069 full-length polypeptide variants encoded by these OR loci, average of ~10 per locus, constituting a lower limit for the effective human OR repertoire. Each individual is found to harbor as many as 600 OR allelic variants, ~50% higher than the locus count. Because OR neuronal expression is allelically excluded, this has direct effect on smell perception diversity of the species. We further identified 244 OR segregating pseudogenes (SPGs, loci showing both intact and pseudogene forms in the population, twenty-six of which are annotatively “resurrected” from a pseudogene status in the reference genome. Using a custom SNP microarray we validated 150 SPGs in a cohort of 468 individuals, with every individual genome averaging 36 disrupted sequence variations, 15 in homozygote form. Finally, we generated a multi-source compendium of 63 OR loci harboring deletion Copy Number Variations (CNVs. Our combined data suggest that 271 of the 413 intact OR loci (66% are affected by nonfunctional SNPs/indels and/or CNVs. Conclusions These results portray a case of unusually high genetic diversity, and suggest that individual humans have a highly personalized inventory of functional olfactory receptors, a conclusion that might apply to other receptor multigene families.

  19. The expression of the ACTH receptor

    Directory of Open Access Journals (Sweden)

    L.L.K. Elias

    2000-10-01

    Full Text Available Adrenal glucocorticoid secretion is regulated by adrenocorticotropic hormone (ACTH acting through a specific cell membrane receptor (ACTH-R. The ACTH-R is a member of the G protein superfamily-coupled receptors and belongs to the subfamily of melanocortin receptors. The ACTH-R is mainly expressed in the adrenocortical cells showing a restricted tissue specificity, although ACTH is recognized by the other four melanocortin receptors. The cloning of the ACTH-R was followed by the study of this gene in human diseases such as familial glucocorticoid deficiency (FGD and adrenocortical tumors. FGD is a rare autosomal recessive disease characterized by glucocorticoid deficiency, elevated plasma ACTH levels and preserved renin/aldosterone secretion. This disorder has been ascribed to an impaired adrenal responsiveness to ACTH due to a defective ACTH-R, a defect in intracellular signal transduction or an abnormality in adrenal cortical development. Mutations of the ACTH-R have been described in patients with FGD in segregation with the disease. The functional characterization of these mutations has been prevented by difficulties in expressing human ACTH-R in cells that lack endogenous melanocortin receptor activity. To overcome these difficulties we used Y6 cells, a mutant variant of the Y1 cell line, which possesses a non-expressed ACTH-R gene allowing the functional study without any background activity. Our results demonstrated that the several mutations of the ACTH-R found in FGD result in an impaired cAMP response or loss of sensitivity to ACTH stimulation. An ACTH-binding study showed an impairment of ligand binding with loss of the high affinity site in most of the mutations studied.

  20. Upregulation of Leukotriene Receptors in Gastric Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Venerito, Marino [Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke University, Leipziger Str. 44, Magdeburg 39120 (Germany); Kuester, Doerthe [Institute of Pathology, Otto-von-Guericke University, Leipziger Str. 44, Magdeburg 39120 (Germany); Harms, Caroline [Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke University, Leipziger Str. 44, Magdeburg 39120 (Germany); Schubert, Daniel [Department of General, Visceral and Vascular Surgery, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, Magdeburg 39120 (Germany); Wex, Thomas, E-mail: thomas.wex@med.ovgu.de; Malfertheiner, Peter [Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke University, Leipziger Str. 44, Magdeburg 39120 (Germany)

    2011-08-08

    Leukotrienes (LT) mediate allergic and inflammatory processes. Previously, we identified significant changes in the expression pattern of LT receptors in the gastric mucosa after eradication of Helicobacter pylori infection. The aim of the present study was to evaluate the expression of 5-lipoxygenase (5-LOX) and LT receptors in gastric cancer (GC). The expression of 5-LOX and receptors for LTB4 (BLT-1, BLT-2) and cysteinyl-LT (CysLT-1, CysLT-2) were analyzed by immunohistochemistry (IHC) in GC samples of 35 consecutive patients who underwent gastrectomy and in 29 tumor-free tissue specimens from gastric mucosa. Male-to-female ratio was 24:11. The median age was 70 years (range 34–91). Twenty-two patients had GC of intestinal, six of diffuse, six of mixed and one of undifferentiated type. The IHC analysis showed a nearly ubiquitous expression of studied proteins in GC (88–97%) and in tumor-free specimens as well (89–100%). An increase in the immunoreactive score of both BLT receptors and CysLT-1 was observed in GC compared to tumor-free gastric mucosa (p < 0.001 for BLT-1; p < 0.01 for BLT-2 and CysLT-1, Mann-Whitney U-test). No differences in the IHC expression of 5-LOX and CsyLT-2 were observed between GC and tumor-free mucosa. The expression of BLT-2, CysLT-1 and CysLT-2 was increased in GC of intestinal type when compared to the diffuse type (p < 0.05; Mann-Whitney U-test). LTB4 receptors and CysLT-1 are up-regulated in GC tissue implying a role in gastric carcinogenesis.