WorldWideScience

Sample records for fractal dimensional analysis

  1. Dimensional analysis, scaling and fractals

    International Nuclear Information System (INIS)

    Timm, L.C.; Reichardt, K.; Oliveira Santos Bacchi, O.

    2004-01-01

    Dimensional analysis refers to the study of the dimensions that characterize physical entities, like mass, force and energy. Classical mechanics is based on three fundamental entities, with dimensions MLT, the mass M, the length L and the time T. The combination of these entities gives rise to derived entities, like volume, speed and force, of dimensions L 3 , LT -1 , MLT -2 , respectively. In other areas of physics, four other fundamental entities are defined, among them the temperature θ and the electrical current I. The parameters that characterize physical phenomena are related among themselves by laws, in general of quantitative nature, in which they appear as measures of the considered physical entities. The measure of an entity is the result of its comparison with another one, of the same type, called unit. Maps are also drawn in scale, for example, in a scale of 1:10,000, 1 cm 2 of paper can represent 10,000 m 2 in the field. Entities that differ in scale cannot be compared in a simple way. Fractal geometry, in contrast to the Euclidean geometry, admits fractional dimensions. The term fractal is defined in Mandelbrot (1982) as coming from the Latin fractus, derived from frangere which signifies to break, to form irregular fragments. The term fractal is opposite to the term algebra (from the Arabic: jabara) which means to join, to put together the parts. For Mandelbrot, fractals are non topologic objects, that is, objects which have as their dimension a real, non integer number, which exceeds the topologic dimension. For the topologic objects, or Euclidean forms, the dimension is an integer (0 for the point, 1 for a line, 2 for a surface, and 3 for a volume). The fractal dimension of Mandelbrot is a measure of the degree of irregularity of the object under consideration. It is related to the speed by which the estimate of the measure of an object increases as the measurement scale decreases. An object normally taken as uni-dimensional, like a piece of a

  2. FRACTAL DIMENSIONALITY ANALYSIS OF MAMMARY GLAND THERMOGRAMS

    Directory of Open Access Journals (Sweden)

    Yu. E. Lyah

    2016-06-01

    Full Text Available Thermography may enable early detection of a cancer tumour within a mammary gland at an early, treatable stage of the illness, but thermogram analysis methods must be developed to achieve this goal. This study analyses the feasibility of applying the Hurst exponent readings algorithm for evaluation of the high dimensionality fractals to reveal any possible difference between normal thermograms (NT and malignant thermograms (MT.

  3. Pulmonary vasculature in dogs assessed by three-dimensional fractal analysis and chemometrics

    DEFF Research Database (Denmark)

    Müller, Anna V; Marschner, Clara B; Kristensen, Annemarie T

    2017-01-01

    Fractal analysis of canine pulmonary vessels could allow quantification of their space-filling properties. Aims of this prospective, analytical, cross-sectional study were to describe methods for reconstructing three dimensional pulmonary arterial vascular trees from computed tomographic pulmonary...... angiogram, applying fractal analyses of these vascular trees in dogs with and without diseases that are known to predispose to thromboembolism, and testing the hypothesis that diseased dogs would have a different fractal dimension than healthy dogs. A total of 34 dogs were sampled. Based on computed...... for each dog using a semiautomated segmentation technique. Vascular three-dimensional reconstructions were then evaluated using fractal analysis. Fractal dimensions were analyzed, by group, using analysis of variance and principal component analysis. Fractal dimensions were significantly different among...

  4. Measurement of heterogeneous distribution on technegas SPECT images by three-dimensional fractal analysis

    International Nuclear Information System (INIS)

    Nagao, Michinobu; Murase, Kenya

    2002-01-01

    This review article describes a method for quantifying heterogeneous distribution on Technegas ( 99m Tc-carbon particle radioaerosol) SPECT images by three-dimensional fractal analysis (3D-FA). Technegas SPECT was performed to quantify the severity of pulmonary emphysema. We delineated the SPECT images by using five cut-offs (15, 20, 25, 30 and 35% of the maximal voxel radioactivity), and measured the total number of voxels in the areas surrounded by the contours obtained with each cut-off level. We calculated fractal dimensions from the relationship between the total number of voxels and the cut-off levels transformed into natural logarithms. The fractal dimension derived from 3D-FA is the relative and objective measurement, which can assess the heterogeneous distribution on Technegas SPECT images. The fractal dimension strongly correlate pulmonary function in patients with emphysema and well documented the overall and regional severity of emphysema. (author)

  5. Fractal dimensions from a 3-dimensional intermittency analysis in e+e- annihilation

    International Nuclear Information System (INIS)

    Behrend, H.J.; Criegee, L.; Field, J.H.; Franke, G.; Jung, H.; Meyer, J.; Podobrin, O.; Schroeder, V.; Winter, G.G.; Bussey, P.J.; Campbell, A.J.; Hendry, D.; Lumsdon, S.J.; Skillicorn, I.O.; Ahme, J.; Blobel, V.; Feindt, M.; Fenner, H.; Harjes, J.; Koehne, J.H.; Peters, J.H.; Spitzer, H.; Weihrich, T.; Boer, W. de; Buschhorn, G.; Grindhammer, G.; Gunderson, B.; Kiesling, C.; Kotthaus, R.; Kroha, H.; Lueers, D.; Oberlack, H.; Schacht, P.; Scholz, S.; Wiedenmann, W.; Davier, M.; Grivaz, J.F.; Haissinski, J.; Journe, V.; Le Diberder, F.; Veillet, J.J.; Cozzika, G.; Ducros, Y.; Alexander, G.; Beck, A.; Bella, G.; Grunhaus, J.; Klatchko, A.; Levy, A.; Milstene, C.

    1990-10-01

    The intermittency structure of multihadronic e + e - annihilation is analyzed by evaluating the factorial moments F 2 -F 5 in 3-dimensional Lorentz invariant phase space as a function of the resolution scale. We interpret our data in the language of fractal objects. It turns out that the fractal dimension depends on the resolution scale in a way that can be attributed to geometrical resolution effects and dynamical effects, such as the π 0 Dalitz decay. The LUND 7.2 hadronization model provides an excellent description of the data. There is no indication of unexplained multiplicity fluctuations in small phase space regions. (orig.)

  6. Fractal analysis on a classical hard-wall billiard with openings using a two-dimensional set of initial conditions

    International Nuclear Information System (INIS)

    Ree, Suhan

    2003-01-01

    Fractal analysis is performed to measure the chaoticity of a classical hard-wall billiard with openings. We use the circular billiard with a straight cut with two openings, and a two-dimensional (2D) set of initial conditions that produce all possible trajectories of a particle injected from one opening. We numerically compute the fractal dimension of singular points of the function that maps an initial condition to the number of collisions with the wall before the exit, using the box-counting algorithm that uses uniformly distributed points inside the 2D set of initial conditions. Finally, the classical chaotic properties are observed while the parameters of the billiard are varied, and the results are compared with those with the one-dimensional set of initial conditions

  7. Towards a physics on fractals: Differential vector calculus in three-dimensional continuum with fractal metric

    Science.gov (United States)

    Balankin, Alexander S.; Bory-Reyes, Juan; Shapiro, Michael

    2016-02-01

    One way to deal with physical problems on nowhere differentiable fractals is the mapping of these problems into the corresponding problems for continuum with a proper fractal metric. On this way different definitions of the fractal metric were suggested to account for the essential fractal features. In this work we develop the metric differential vector calculus in a three-dimensional continuum with a non-Euclidean metric. The metric differential forms and Laplacian are introduced, fundamental identities for metric differential operators are established and integral theorems are proved by employing the metric version of the quaternionic analysis for the Moisil-Teodoresco operator, which has been introduced and partially developed in this paper. The relations between the metric and conventional operators are revealed. It should be emphasized that the metric vector calculus developed in this work provides a comprehensive mathematical formalism for the continuum with any suitable definition of fractal metric. This offers a novel tool to study physics on fractals.

  8. Contour fractal analysis of grains

    Science.gov (United States)

    Guida, Giulia; Casini, Francesca; Viggiani, Giulia MB

    2017-06-01

    Fractal analysis has been shown to be useful in image processing to characterise the shape and the grey-scale complexity in different applications spanning from electronic to medical engineering (e.g. [1]). Fractal analysis consists of several methods to assign a dimension and other fractal characteristics to a dataset describing geometric objects. Limited studies have been conducted on the application of fractal analysis to the classification of the shape characteristics of soil grains. The main objective of the work described in this paper is to obtain, from the results of systematic fractal analysis of artificial simple shapes, the characterization of the particle morphology at different scales. The long term objective of the research is to link the microscopic features of granular media with the mechanical behaviour observed in the laboratory and in situ.

  9. Fractal electrodynamics via non-integer dimensional space approach

    Science.gov (United States)

    Tarasov, Vasily E.

    2015-09-01

    Using the recently suggested vector calculus for non-integer dimensional space, we consider electrodynamics problems in isotropic case. This calculus allows us to describe fractal media in the framework of continuum models with non-integer dimensional space. We consider electric and magnetic fields of fractal media with charges and currents in the framework of continuum models with non-integer dimensional spaces. An application of the fractal Gauss's law, the fractal Ampere's circuital law, the fractal Poisson equation for electric potential, and equation for fractal stream of charges are suggested. Lorentz invariance and speed of light in fractal electrodynamics are discussed. An expression for effective refractive index of non-integer dimensional space is suggested.

  10. Fractal analysis in oral leukoplakia

    Directory of Open Access Journals (Sweden)

    Prashant Bhai Pandey

    2015-01-01

    Full Text Available Introduction: Fractal analysis (FA quantifies complex geometric structures by generating a fractal dimension (FD, which can measure the complexity of mucosa. FA is a quantitative tool used to measure the complexity of self-similar or semi-self-similar structures. Aim and Objective: The study was done to perform the FA of oral mucosa with keratotic changes, as it is also made up of self-similar tissues, and thus, its FD can be calculated. Results: In oral leukoplakia, keratinization increases the complexity of mucosa, which denotes fractal geometry. We evaluated and compared pretreated and post-treated oral leukoplakia in 50 patients with clinically proven oral leukoplakia and analyzed the normal oral mucosa and lesional or keratinized mucosa in oral leukoplakia patients through FA using box counting method. Conclusion: FA using the fractal geometry is an efficient, noninvasive prediction tool for early detection of oral leukoplakia and other premalignant conditions in patients.

  11. Fractal dimension analysis of complexity in Ligeti piano pieces

    Science.gov (United States)

    Bader, Rolf

    2005-04-01

    Fractal correlation dimensional analysis has been performed with whole solo piano pieces by Gyrgy Ligeti at every 50ms interval of the pieces. The resulting curves of development of complexity represented by the fractal dimension showed up a very reasonable correlation with the perceptional density of events during these pieces. The seventh piece of Ligeti's ``Musica ricercata'' was used as a test case. Here, each new part of the piece was followed by an increase of the fractal dimension because of the increase of information at the part changes. The second piece ``Galamb borong,'' number seven of the piano Etudes was used, because Ligeti wrote these Etudes after studying fractal geometry. Although the piece is not fractal in the strict mathematical sense, the overall structure of the psychoacoustic event-density as well as the detailed event development is represented by the fractal dimension plot.

  12. Fractals in DNA sequence analysis

    Institute of Scientific and Technical Information of China (English)

    Yu Zu-Guo(喻祖国); Vo Anh; Gong Zhi-Min(龚志民); Long Shun-Chao(龙顺潮)

    2002-01-01

    Fractal methods have been successfully used to study many problems in physics, mathematics, engineering, finance,and even in biology. There has been an increasing interest in unravelling the mysteries of DNA; for example, how can we distinguish coding and noncoding sequences, and the problems of classification and evolution relationship of organisms are key problems in bioinformatics. Although much research has been carried out by taking into consideration the long-range correlations in DNA sequences, and the global fractal dimension has been used in these works by other people, the models and methods are somewhat rough and the results are not satisfactory. In recent years, our group has introduced a time series model (statistical point of view) and a visual representation (geometrical point of view)to DNA sequence analysis. We have also used fractal dimension, correlation dimension, the Hurst exponent and the dimension spectrum (multifractal analysis) to discuss problems in this field. In this paper, we introduce these fractal models and methods and the results of DNA sequence analysis.

  13. Three-dimensional fractal geometry for gas permeation in microchannels

    NARCIS (Netherlands)

    Malankowska, Magdalena; Schlautmann, Stefan; Berenschot, Erwin J.W.; Tiggelaar, Roald M.; Pina, Maria Pilar; Mallada, Reyes; Tas, Niels R.; Gardeniers, Han

    2018-01-01

    The novel concept of a microfluidic chip with an integrated three-dimensional fractal geometry with nanopores, acting as a gas transport membrane, is presented. The method of engineering the 3D fractal structure is based on a combination of anisotropic etching of silicon and corner lithography. The

  14. Fractal Metrology for biogeosystems analysis

    Directory of Open Access Journals (Sweden)

    V. Torres-Argüelles

    2010-11-01

    Full Text Available The solid-pore distribution pattern plays an important role in soil functioning being related with the main physical, chemical and biological multiscale and multitemporal processes of this complex system. In the present research, we studied the aggregation process as self-organizing and operating near a critical point. The structural pattern is extracted from the digital images of three soils (Chernozem, Solonetz and "Chocolate" Clay and compared in terms of roughness of the gray-intensity distribution quantified by several measurement techniques. Special attention was paid to the uncertainty of each of them measured in terms of standard deviation. Some of the applied methods are known as classical in the fractal context (box-counting, rescaling-range and wavelets analyses, etc. while the others have been recently developed by our Group. The combination of these techniques, coming from Fractal Geometry, Metrology, Informatics, Probability Theory and Statistics is termed in this paper Fractal Metrology (FM. We show the usefulness of FM for complex systems analysis through a case study of the soil's physical and chemical degradation applying the selected toolbox to describe and compare the structural attributes of three porous media with contrasting structure but similar clay mineralogy dominated by montmorillonites.

  15. Wetting characteristics of 3-dimensional nanostructured fractal surfaces

    Science.gov (United States)

    Davis, Ethan; Liu, Ying; Jiang, Lijia; Lu, Yongfeng; Ndao, Sidy

    2017-01-01

    This article reports the fabrication and wetting characteristics of 3-dimensional nanostructured fractal surfaces (3DNFS). Three distinct 3DNFS surfaces, namely cubic, Romanesco broccoli, and sphereflake were fabricated using two-photon direct laser writing. Contact angle measurements were performed on the multiscale fractal surfaces to characterize their wetting properties. Average contact angles ranged from 66.8° for the smooth control surface to 0° for one of the fractal surfaces. The change in wetting behavior was attributed to modification of the interfacial surface properties due to the inclusion of 3-dimensional hierarchical fractal nanostructures. However, this behavior does not exactly obey existing surface wetting models in the literature. Potential applications for these types of surfaces in physical and biological sciences are also discussed.

  16. The Validity of Dimensional Regularization Method on Fractal Spacetime

    Directory of Open Access Journals (Sweden)

    Yong Tao

    2013-01-01

    Full Text Available Svozil developed a regularization method for quantum field theory on fractal spacetime (1987. Such a method can be applied to the low-order perturbative renormalization of quantum electrodynamics but will depend on a conjectural integral formula on non-integer-dimensional topological spaces. The main purpose of this paper is to construct a fractal measure so as to guarantee the validity of the conjectural integral formula.

  17. Fractal geometry in an expanding, one-dimensional, Newtonian universe.

    Science.gov (United States)

    Miller, Bruce N; Rouet, Jean-Louis; Le Guirriec, Emmanuel

    2007-09-01

    Observations of galaxies over large distances reveal the possibility of a fractal distribution of their positions. The source of fractal behavior is the lack of a length scale in the two body gravitational interaction. However, even with new, larger, sample sizes from recent surveys, it is difficult to extract information concerning fractal properties with confidence. Similarly, three-dimensional N-body simulations with a billion particles only provide a thousand particles per dimension, far too small for accurate conclusions. With one-dimensional models these limitations can be overcome by carrying out simulations with on the order of a quarter of a million particles without compromising the computation of the gravitational force. Here the multifractal properties of two of these models that incorporate different features of the dynamical equations governing the evolution of a matter dominated universe are compared. For each model at least two scaling regions are identified. By employing criteria from dynamical systems theory it is shown that only one of them can be geometrically significant. The results share important similarities with galaxy observations, such as hierarchical clustering and apparent bifractal geometry. They also provide insights concerning possible constraints on length and time scales for fractal structure. They clearly demonstrate that fractal geometry evolves in the mu (position, velocity) space. The observed patterns are simply a shadow (projection) of higher-dimensional structure.

  18. Elasticity of fractal materials using the continuum model with non-integer dimensional space

    Science.gov (United States)

    Tarasov, Vasily E.

    2015-01-01

    Using a generalization of vector calculus for space with non-integer dimension, we consider elastic properties of fractal materials. Fractal materials are described by continuum models with non-integer dimensional space. A generalization of elasticity equations for non-integer dimensional space, and its solutions for the equilibrium case of fractal materials are suggested. Elasticity problems for fractal hollow ball and cylindrical fractal elastic pipe with inside and outside pressures, for rotating cylindrical fractal pipe, for gradient elasticity and thermoelasticity of fractal materials are solved.

  19. Fractal zeta functions and fractal drums higher-dimensional theory of complex dimensions

    CERN Document Server

    Lapidus, Michel L; Žubrinić, Darko

    2017-01-01

    This monograph gives a state-of-the-art and accessible treatment of a new general higher-dimensional theory of complex dimensions, valid for arbitrary bounded subsets of Euclidean spaces, as well as for their natural generalization, relative fractal drums. It provides a significant extension of the existing theory of zeta functions for fractal strings to fractal sets and arbitrary bounded sets in Euclidean spaces of any dimension. Two new classes of fractal zeta functions are introduced, namely, the distance and tube zeta functions of bounded sets, and their key properties are investigated. The theory is developed step-by-step at a slow pace, and every step is well motivated by numerous examples, historical remarks and comments, relating the objects under investigation to other concepts. Special emphasis is placed on the study of complex dimensions of bounded sets and their connections with the notions of Minkowski content and Minkowski measurability, as well as on fractal tube formulas. It is shown for the f...

  20. Fractal analysis of sulphidic mineral

    Directory of Open Access Journals (Sweden)

    Miklúšová Viera

    2002-03-01

    Full Text Available In this paper, the application of fractal theory in the characterization of fragmented surfaces, as well as the mass-size distributions are discussed. The investigated mineral-chalcopyrite of Slovak provenience is characterised after particle size reduction processes-crushing and grinding. The problem how the different size reduction methods influence the surface irregularities of obtained particles is solved. Mandelbrot (1983, introducing the fractal geometry, offered a new way of characterization of surface irregularities by the fractal dimension. The determination of the surface fractal dimension DS consists in measuring the specific surface by the BET method in several fractions into which the comminuted chalcopyrite is sieved. This investigation shows that the specific surface of individual fractions were higher for the crushed sample than for the short-term (3 min ground sample. The surface fractal dimension can give an information about the adsorption sites accessible to molecules of nitrogen and according to this, the value of the fractal dimension is higher for crushed sample.The effect of comminution processes on the mass distribution of particles crushed and ground in air as well as in polar liquids is also discussed. The estimation of fractal dimensions of particles mass distribution is done on the assumption that the particle size distribution is described by the power-law (1. The value of fractal dimension for the mass distribution in the crushed sample is lower than in the sample ground in air, because it is influenced by the energy required for comminution.The sample of chalcopyrite was ground (10min in ethanol and i-butanol [which according to Ikazaki (1991] are characterized by the parameter µ /V, where µ is its dipole moment and V is the molecular volume. The values of µ /V for the used polar liquids are of the same order. That is why the expressive differences in particle size distributions as well as in the values of

  1. Wetting characteristics of 3-dimensional nanostructured fractal surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Ethan, E-mail: ethan.davis4@huskers.unl.edu [Nano & Microsystems Research Laboratory, Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, W342 Nebraska Hall, Lincoln, NE 68588-0526 (United States); Liu, Ying; Jiang, Lijia; Lu, Yongfeng [Laser Assisted Nano Engineering Lab, Department of Electrical and Computer Engineering, University of Nebraska-Lincoln, 209N Scott Engineering Center, Lincoln, NE 68588-0511 (United States); Ndao, Sidy, E-mail: sndao2@unl.edu [Nano & Microsystems Research Laboratory, Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, W342 Nebraska Hall, Lincoln, NE 68588-0526 (United States)

    2017-01-15

    Highlights: • Hierarchically structured surfaces were fabricated on the micro/nano-scale. • These structures reduced the contact angle of the inherently hydrophilic material. • Similar surfaces have applications in two-phase heat transfer and microfluidics. - Abstract: This article reports the fabrication and wetting characteristics of 3-dimensional nanostructured fractal surfaces (3DNFS). Three distinct 3DNFS surfaces, namely cubic, Romanesco broccoli, and sphereflake were fabricated using two-photon direct laser writing. Contact angle measurements were performed on the multiscale fractal surfaces to characterize their wetting properties. Average contact angles ranged from 66.8° for the smooth control surface to 0° for one of the fractal surfaces. The change in wetting behavior was attributed to modification of the interfacial surface properties due to the inclusion of 3-dimensional hierarchical fractal nanostructures. However, this behavior does not exactly obey existing surface wetting models in the literature. Potential applications for these types of surfaces in physical and biological sciences are also discussed.

  2. Wetting characteristics of 3-dimensional nanostructured fractal surfaces

    International Nuclear Information System (INIS)

    Davis, Ethan; Liu, Ying; Jiang, Lijia; Lu, Yongfeng; Ndao, Sidy

    2017-01-01

    Highlights: • Hierarchically structured surfaces were fabricated on the micro/nano-scale. • These structures reduced the contact angle of the inherently hydrophilic material. • Similar surfaces have applications in two-phase heat transfer and microfluidics. - Abstract: This article reports the fabrication and wetting characteristics of 3-dimensional nanostructured fractal surfaces (3DNFS). Three distinct 3DNFS surfaces, namely cubic, Romanesco broccoli, and sphereflake were fabricated using two-photon direct laser writing. Contact angle measurements were performed on the multiscale fractal surfaces to characterize their wetting properties. Average contact angles ranged from 66.8° for the smooth control surface to 0° for one of the fractal surfaces. The change in wetting behavior was attributed to modification of the interfacial surface properties due to the inclusion of 3-dimensional hierarchical fractal nanostructures. However, this behavior does not exactly obey existing surface wetting models in the literature. Potential applications for these types of surfaces in physical and biological sciences are also discussed.

  3. Fractal spectra in generalized Fibonacci one-dimensional magnonic quasicrystals

    Energy Technology Data Exchange (ETDEWEB)

    Costa, C.H.O. [Departamento de Fisica Teorica e Experimental, Universidade Federal do Rio grande do Norte, 59072-970 Natal-RN (Brazil); Vasconcelos, M.S., E-mail: manoelvasconcelos@yahoo.com.br [Escola de Ciencias e Tecnologia, Universidade Federal do Rio grande do Norte, 59072-970 Natal-RN (Brazil); Barbosa, P.H.R.; Barbosa Filho, F.F. [Departamento de Fisica, Universidade Federal do Piaui, 64049-550 Teresina-Pi (Brazil)

    2012-07-15

    In this work we carry out a theoretical analysis of the spectra of magnons in quasiperiodic magnonic crystals arranged in accordance with generalized Fibonacci sequences in the exchange regime, by using a model based on a transfer-matrix method together random-phase approximation (RPA). The generalized Fibonacci sequences are characterized by an irrational parameter {sigma}(p,q), which rules the physical properties of the system. We discussed the magnonic fractal spectra for first three generalizations, i.e., silver, bronze and nickel mean. By varying the generation number, we have found that the fragmentation process of allowed bands makes possible the emergence of new allowed magnonic bulk bands in spectra regions that were magnonic band gaps before, such as which occurs in doped semiconductor devices. This interesting property arises in one-dimensional magnonic quasicrystals fabricated in accordance to quasiperiodic sequences, without the need to introduce some deferent atomic layer or defect in the system. We also make a qualitative and quantitative investigations on these magnonic spectra by analyzing the distribution and magnitude of allowed bulk bands in function of the generalized Fibonacci number F{sub n} and as well as how they scale as a function of the number of generations of the sequences, respectively. - Highlights: Black-Right-Pointing-Pointer Quasiperiodic magnonic crystals are arranged in accordance with the generalized Fibonacci sequence. Black-Right-Pointing-Pointer Heisenberg model in exchange regime is applied. Black-Right-Pointing-Pointer We use a theoretical model based on a transfer-matrix method together random-phase approximation. Black-Right-Pointing-Pointer Fractal spectra are characterized. Black-Right-Pointing-Pointer We analyze the distribution of allowed bulk bands in function of the generalized Fibonacci number.

  4. Fractal geometry of two-dimensional fracture networks at Yucca Mountain, southwestern Nevada: proceedings

    International Nuclear Information System (INIS)

    Barton, C.C.; Larsen, E.

    1985-01-01

    Fracture traces exposed on three 214- to 260-m 2 pavements in the same Miocene ash-flow tuff at Yucca Mountain, southwestern Nevada, have been mapped at a scale of 1:50. The maps are two-dimensional sections through the three-dimensional network of strata-bound fractures. All fractures with trace lengths greater than 0.20 m were mapped. The distribution of fracture-trace lengths is log-normal. The fractures do not exhibit well-defined sets based on orientation. Since fractal characterization of such complex fracture-trace networks may prove useful for modeling fracture flow and mechanical responses of fractured rock, an analysis of each of the three maps was done to test whether such networks are fractal. These networks proved to be fractal and the fractal dimensions (D) are tightly clustered (1.12, 1.14, 1.16) for three laterally separated pavements, even though visually the fracture networks appear quite different. The fractal analysis also indicates that the network patterns are scale independent over two orders of magnitude for trace lengths ranging from 0.20 to 25 m. 7 refs., 7 figs

  5. Hyper-Fractal Analysis: A visual tool for estimating the fractal dimension of 4D objects

    Science.gov (United States)

    Grossu, I. V.; Grossu, I.; Felea, D.; Besliu, C.; Jipa, Al.; Esanu, T.; Bordeianu, C. C.; Stan, E.

    2013-04-01

    This work presents a new version of a Visual Basic 6.0 application for estimating the fractal dimension of images and 3D objects (Grossu et al. (2010) [1]). The program was extended for working with four-dimensional objects stored in comma separated values files. This might be of interest in biomedicine, for analyzing the evolution in time of three-dimensional images. New version program summaryProgram title: Hyper-Fractal Analysis (Fractal Analysis v03) Catalogue identifier: AEEG_v3_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEEG_v3_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: Standard CPC license, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 745761 No. of bytes in distributed program, including test data, etc.: 12544491 Distribution format: tar.gz Programming language: MS Visual Basic 6.0 Computer: PC Operating system: MS Windows 98 or later RAM: 100M Classification: 14 Catalogue identifier of previous version: AEEG_v2_0 Journal reference of previous version: Comput. Phys. Comm. 181 (2010) 831-832 Does the new version supersede the previous version? Yes Nature of problem: Estimating the fractal dimension of 4D images. Solution method: Optimized implementation of the 4D box-counting algorithm. Reasons for new version: Inspired by existing applications of 3D fractals in biomedicine [3], we extended the optimized version of the box-counting algorithm [1, 2] to the four-dimensional case. This might be of interest in analyzing the evolution in time of 3D images. The box-counting algorithm was extended in order to support 4D objects, stored in comma separated values files. A new form was added for generating 2D, 3D, and 4D test data. The application was tested on 4D objects with known dimension, e.g. the Sierpinski hypertetrahedron gasket, Df=ln(5)/ln(2) (Fig. 1). The algorithm could be extended, with minimum effort, to

  6. Vector calculus in non-integer dimensional space and its applications to fractal media

    Science.gov (United States)

    Tarasov, Vasily E.

    2015-02-01

    We suggest a generalization of vector calculus for the case of non-integer dimensional space. The first and second orders operations such as gradient, divergence, the scalar and vector Laplace operators for non-integer dimensional space are defined. For simplification we consider scalar and vector fields that are independent of angles. We formulate a generalization of vector calculus for rotationally covariant scalar and vector functions. This generalization allows us to describe fractal media and materials in the framework of continuum models with non-integer dimensional space. As examples of application of the suggested calculus, we consider elasticity of fractal materials (fractal hollow ball and fractal cylindrical pipe with pressure inside and outside), steady distribution of heat in fractal media, electric field of fractal charged cylinder. We solve the correspondent equations for non-integer dimensional space models.

  7. Monitoring of dry sliding wear using fractal analysis

    NARCIS (Netherlands)

    Zhang, Jindang; Regtien, Paulus P.L.; Korsten, Maarten J.

    2005-01-01

    Reliable online monitoring of wear remains a challenge to tribology research as well as to the industry. This paper presents a new method for monitoring of dry sliding wear using digital imaging and fractal analysis. Fractal values, namely fractal dimension and intercept, computed from the power

  8. A TUTORIAL INTRODUCTION TO ADAPTIVE FRACTAL ANALYSIS

    Directory of Open Access Journals (Sweden)

    Michael A Riley

    2012-09-01

    Full Text Available The authors present a tutorial description of adaptive fractal analysis (AFA. AFA utilizes an adaptive detrending algorithm to extract globally smooth trend signals from the data and then analyzes the scaling of the residuals to the fit as a function of the time scale at which the fit is computed. The authors present applications to synthetic mathematical signals to verify the accuracy of AFA and demonstrate the basic steps of the analysis. The authors then present results from applying AFA to time series from a cognitive psychology experiment on repeated estimation of durations of time to illustrate some of the complexities of real-world data. AFA shows promise in dealing with many types of signals, but like any fractal analysis method there are special challenges and considerations to take into account, such as determining the presence of linear scaling regions.

  9. Fractal Analysis of Mobile Social Networks

    International Nuclear Information System (INIS)

    Zheng Wei; Pan Qian; Sun Chen; Deng Yu-Fan; Zhao Xiao-Kang; Kang Zhao

    2016-01-01

    Fractal and self similarity of complex networks have attracted much attention in recent years. The fractal dimension is a useful method to describe the fractal property of networks. However, the fractal features of mobile social networks (MSNs) are inadequately investigated. In this work, a box-covering method based on the ratio of excluded mass to closeness centrality is presented to investigate the fractal feature of MSNs. Using this method, we find that some MSNs are fractal at different time intervals. Our simulation results indicate that the proposed method is available for analyzing the fractal property of MSNs. (paper)

  10. Fractal Analysis of Stealthy Pathfinding Aesthetics

    Directory of Open Access Journals (Sweden)

    Ron Coleman

    2009-01-01

    Full Text Available This paper uses a fractal model to analyze aesthetic values of a new class of obstacle-prone or “stealthy” pathfinding which seeks to avoid detection, exposure, openness, and so forth in videogames. This study is important since in general the artificial intelligence literature has given relatively little attention to aesthetic outcomes in pathfinding. The data we report, according to the fractal model, suggests that stealthy paths are statistically significantly unique in relative aesthetic value when compared to control paths. We show furthermore that paths generated with different stealth regimes are also statistically significantly unique. These conclusions are supported by statistical analysis of model results on experimental trials involving pathfinding in randomly generated, multiroom virtual worlds.

  11. Fractals and spectra related to fourier analysis and function spaces

    CERN Document Server

    Triebel, Hans

    1997-01-01

    Fractals and Spectra Hans Triebel This book deals with the symbiotic relationship between the theory of function spaces, fractal geometry, and spectral theory of (fractal) pseudodifferential operators as it has emerged quite recently. Atomic and quarkonial (subatomic) decompositions in scalar and vector valued function spaces on the euclidean n-space pave the way to study properties (compact embeddings, entropy numbers) of function spaces on and of fractals. On this basis, distributions of eigenvalues of fractal (pseudo)differential operators are investigated. Diverse versions of fractal drums are played. The book is directed to mathematicians interested in functional analysis, the theory of function spaces, fractal geometry, partial and pseudodifferential operators, and, in particular, in how these domains are interrelated. ------ It is worth mentioning that there is virtually no literature on this topic and hence the most of the presented material is published here the first time. - Zentralblatt MATH (…) ...

  12. Fractal analysis of Xylella fastidiosa biofilm formation

    Science.gov (United States)

    Moreau, A. L. D.; Lorite, G. S.; Rodrigues, C. M.; Souza, A. A.; Cotta, M. A.

    2009-07-01

    We have investigated the growth process of Xylella fastidiosa biofilms inoculated on a glass. The size and the distance between biofilms were analyzed by optical images; a fractal analysis was carried out using scaling concepts and atomic force microscopy images. We observed that different biofilms show similar fractal characteristics, although morphological variations can be identified for different biofilm stages. Two types of structural patterns are suggested from the observed fractal dimensions Df. In the initial and final stages of biofilm formation, Df is 2.73±0.06 and 2.68±0.06, respectively, while in the maturation stage, Df=2.57±0.08. These values suggest that the biofilm growth can be understood as an Eden model in the former case, while diffusion-limited aggregation (DLA) seems to dominate the maturation stage. Changes in the correlation length parallel to the surface were also observed; these results were correlated with the biofilm matrix formation, which can hinder nutrient diffusion and thus create conditions to drive DLA growth.

  13. Anisotropic fractal media by vector calculus in non-integer dimensional space

    International Nuclear Information System (INIS)

    Tarasov, Vasily E.

    2014-01-01

    A review of different approaches to describe anisotropic fractal media is proposed. In this paper, differentiation and integration non-integer dimensional and multi-fractional spaces are considered as tools to describe anisotropic fractal materials and media. We suggest a generalization of vector calculus for non-integer dimensional space by using a product measure method. The product of fractional and non-integer dimensional spaces allows us to take into account the anisotropy of the fractal media in the framework of continuum models. The integration over non-integer-dimensional spaces is considered. In this paper differential operators of first and second orders for fractional space and non-integer dimensional space are suggested. The differential operators are defined as inverse operations to integration in spaces with non-integer dimensions. Non-integer dimensional space that is product of spaces with different dimensions allows us to give continuum models for anisotropic type of the media. The Poisson's equation for fractal medium, the Euler-Bernoulli fractal beam, and the Timoshenko beam equations for fractal material are considered as examples of application of suggested generalization of vector calculus for anisotropic fractal materials and media

  14. Anisotropic fractal media by vector calculus in non-integer dimensional space

    Energy Technology Data Exchange (ETDEWEB)

    Tarasov, Vasily E., E-mail: tarasov@theory.sinp.msu.ru [Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow 119991 (Russian Federation)

    2014-08-15

    A review of different approaches to describe anisotropic fractal media is proposed. In this paper, differentiation and integration non-integer dimensional and multi-fractional spaces are considered as tools to describe anisotropic fractal materials and media. We suggest a generalization of vector calculus for non-integer dimensional space by using a product measure method. The product of fractional and non-integer dimensional spaces allows us to take into account the anisotropy of the fractal media in the framework of continuum models. The integration over non-integer-dimensional spaces is considered. In this paper differential operators of first and second orders for fractional space and non-integer dimensional space are suggested. The differential operators are defined as inverse operations to integration in spaces with non-integer dimensions. Non-integer dimensional space that is product of spaces with different dimensions allows us to give continuum models for anisotropic type of the media. The Poisson's equation for fractal medium, the Euler-Bernoulli fractal beam, and the Timoshenko beam equations for fractal material are considered as examples of application of suggested generalization of vector calculus for anisotropic fractal materials and media.

  15. Anisotropic fractal media by vector calculus in non-integer dimensional space

    Science.gov (United States)

    Tarasov, Vasily E.

    2014-08-01

    A review of different approaches to describe anisotropic fractal media is proposed. In this paper, differentiation and integration non-integer dimensional and multi-fractional spaces are considered as tools to describe anisotropic fractal materials and media. We suggest a generalization of vector calculus for non-integer dimensional space by using a product measure method. The product of fractional and non-integer dimensional spaces allows us to take into account the anisotropy of the fractal media in the framework of continuum models. The integration over non-integer-dimensional spaces is considered. In this paper differential operators of first and second orders for fractional space and non-integer dimensional space are suggested. The differential operators are defined as inverse operations to integration in spaces with non-integer dimensions. Non-integer dimensional space that is product of spaces with different dimensions allows us to give continuum models for anisotropic type of the media. The Poisson's equation for fractal medium, the Euler-Bernoulli fractal beam, and the Timoshenko beam equations for fractal material are considered as examples of application of suggested generalization of vector calculus for anisotropic fractal materials and media.

  16. FRACTAL ANALYSIS OF TRABECULAR BONE: A STANDARDISED METHODOLOGY

    Directory of Open Access Journals (Sweden)

    Ian Parkinson

    2011-05-01

    Full Text Available A standardised methodology for the fractal analysis of histological sections of trabecular bone has been established. A modified box counting method has been developed for use on a PC based image analyser (Quantimet 500MC, Leica Cambridge. The effect of image analyser settings, magnification, image orientation and threshold levels, was determined. Also, the range of scale over which trabecular bone is effectively fractal was determined and a method formulated to objectively calculate more than one fractal dimension from the modified Richardson plot. The results show that magnification, image orientation and threshold settings have little effect on the estimate of fractal dimension. Trabecular bone has a lower limit below which it is not fractal (λ<25 μm and the upper limit is 4250 μm. There are three distinct fractal dimensions for trabecular bone (sectional fractals, with magnitudes greater than 1.0 and less than 2.0. It has been shown that trabecular bone is effectively fractal over a defined range of scale. Also, within this range, there is more than 1 fractal dimension, describing spatial structural entities. Fractal analysis is a model independent method for describing a complex multifaceted structure, which can be adapted for the study of other biological systems. This may be at the cell, tissue or organ level and compliments conventional histomorphometric and stereological techniques.

  17. Fractal analysis of power spectra

    International Nuclear Information System (INIS)

    Johnston, S.

    1982-01-01

    A general argument is presented concerning the Hausdorff dimension D of the power spectrum curve for a system of N weakly-coupled oscillators. Explicit upper and lower bounds for D are derived in terms of the number N of interacting modes. The mathematical reasoning relies upon the celebrated KAM theorem concerning the perturbation of Hamiltonian systems and the finite measure of the set of destroyed tori in phase space; this set can be related to Hausdorff dimension by certain mathematical theorems. An important consequence of these results is a simple empirical test for the applicability of Hamiltonian perturbation theory in the analysis of an experimentally observed spectrum. As an illustration, the theory is applied to the interpretation of a recent numerical analysis of both the power spectrum of the Sun and certain laboratory spectra of hydrodynamic turbulence. (Auth.)

  18. Fractal-Based Image Analysis In Radiological Applications

    Science.gov (United States)

    Dellepiane, S.; Serpico, S. B.; Vernazza, G.; Viviani, R.

    1987-10-01

    We present some preliminary results of a study aimed to assess the actual effectiveness of fractal theory and to define its limitations in the area of medical image analysis for texture description, in particular, in radiological applications. A general analysis to select appropriate parameters (mask size, tolerance on fractal dimension estimation, etc.) has been performed on synthetically generated images of known fractal dimensions. Moreover, we analyzed some radiological images of human organs in which pathological areas can be observed. Input images were subdivided into blocks of 6x6 pixels; then, for each block, the fractal dimension was computed in order to create fractal images whose intensity was related to the D value, i.e., texture behaviour. Results revealed that the fractal images could point out the differences between normal and pathological tissues. By applying histogram-splitting segmentation to the fractal images, pathological areas were isolated. Two different techniques (i.e., the method developed by Pentland and the "blanket" method) were employed to obtain fractal dimension values, and the results were compared; in both cases, the appropriateness of the fractal description of the original images was verified.

  19. Determination of fish gender using fractal analysis of ultrasound images

    DEFF Research Database (Denmark)

    McEvoy, Fintan J.; Tomkiewicz, Jonna; Støttrup, Josianne

    2009-01-01

    The gender of cod Gadus morhua can be determined by considering the complexity in their gonadal ultrasonographic appearance. The fractal dimension (DB) can be used to describe this feature in images. B-mode gonadal ultrasound images in 32 cod, where gender was known, were collected. Fractal...... by subjective analysis alone. The mean (and standard deviation) of the fractal dimension DB for male fish was 1.554 (0.073) while for female fish it was 1.468 (0.061); the difference was statistically significant (P=0.001). The area under the ROC curve was 0.84 indicating the value of fractal analysis in gender...... result. Fractal analysis is useful for gender determination in cod. This or a similar form of analysis may have wide application in veterinary imaging as a tool for quantification of complexity in images...

  20. Fractal analysis of rainfall occurrence observed in the synoptic ...

    African Journals Online (AJOL)

    Fractal analysis is important for characterizing and modeling rainfall's space-time variations in hydrology. The purpose of this study consists on determining, in a mono-fractal framework, the scale invariance of rainfall series in Benin synopticstations located in two main geographical area: Cotonou, Bohicon , Savè in a sub ...

  1. Two Dimensional Drug Diffusion Between Nanoparticles and Fractal Tumors

    Science.gov (United States)

    Samioti, S. E.; Karamanos, K.; Tsiantis, A.; Papathanasiou, A.; Sarris, I.

    2017-11-01

    Drug delivery methods based on nanoparticles are some of the most promising medical applications in nanotechnology to treat cancer. It is observed that drug released by nanoparticles to the cancer tumors may be driven by diffusion. A fractal tumor boundary of triangular Von Koch shape is considered here and the diffusion mechanism is studied for different drug concentrations and increased fractality. A high order Finite Elements method based on the Fenics library is incorporated in fine meshes to fully resolve these irregular boundaries. Drug concentration, its transfer rates and entropy production are calculated in an up to forth order fractal iteration boundaries. We observed that diffusion rate diminishes for successive prefractal generations. Also, the entropy production around the system changes greatly as the order of the fractal curve increases. Results indicate with precision where the active sites are, in which most of the diffusion takes place and thus drug arrives to the tumor.

  2. Fractal cosmology

    International Nuclear Information System (INIS)

    Dickau, Jonathan J.

    2009-01-01

    The use of fractals and fractal-like forms to describe or model the universe has had a long and varied history, which begins long before the word fractal was actually coined. Since the introduction of mathematical rigor to the subject of fractals, by Mandelbrot and others, there have been numerous cosmological theories and analyses of astronomical observations which suggest that the universe exhibits fractality or is by nature fractal. In recent years, the term fractal cosmology has come into usage, as a description for those theories and methods of analysis whereby a fractal nature of the cosmos is shown.

  3. Usefulness of fractal analysis for the diagnosis of periodontitis

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Sang Yun; Han, Won Jeong; Kim, Eun Kyung [Dankook Univ. School of Dentistry, Seoul (Korea, Republic of)

    2001-03-15

    To evaluate the usefulness of fractal analysis for diagnosis of periodontitis. Each 30 cases of periapical films of male mandibular molar were selected in normal group and patient group which had complete furcation involvement. They were digitized at 300 dpi, 256 gray levels and saved with gif format. Rectangular ROIs (10 X 20 pixel) were selected at furcation, interdental crest, and interdental middle 1/3 area. Fractal dimensions were calculated three times at each area by mass radius method and were determined using a mean of three measurements. We computed fractal dimensions at furcation and interdental crest area of normal group with those of patient group. And then we compared ratio of fractal dimensions at furcation area, interdental crest area to interdental middle 1/3 area. Fractal dimension at interdental crest area of normal group was 1.979{+-}0.018 (p<0.05). The radio of fractal dimension at furcation area to interdental middle 1/3 of normal group was 1.006{+-}0.018 and that of patient group 0.9940.018 (p<0.05). The radio of fractal dimension at interdental crest and furcation area to interdental middle 1/3 area showed a statistically significant difference between normal and patient group. In conclusion, it is thought that fractal analysis might be useful for the diagnosis of periodontitis.

  4. Fractal analysis of polar bear hairs

    Directory of Open Access Journals (Sweden)

    Wang Qing-Li

    2015-01-01

    Full Text Available Hairs of a polar bear (Ursus maritimus are of superior properties such as the excellent thermal protection. Why do polar bears can resist such cold environment? The paper concludes that its fractal porosity plays an important role, and its fractal dimensions are very close to the golden mean, 1.618, revealing the possible optimal structure of polar bear hair.

  5. Fractal Analysis of Rock Joint Profiles

    Science.gov (United States)

    Audy, Ondřej; Ficker, Tomáš

    2017-10-01

    Surface reliefs of rock joints are analyzed in geotechnics when shear strength of rocky slopes is estimated. The rock joint profiles actually are self-affine fractal curves and computations of their fractal dimensions require special methods. Many papers devoted to the fractal properties of these profiles were published in the past but only a few of those papers employed a convenient computational method that would have guaranteed a sound value of that dimension. As a consequence, anomalously low dimensions were presented. This contribution deals with two computational modifications that lead to sound fractal dimensions of the self-affine rock joint profiles. These are the modified box-counting method and the modified yard-stick method sometimes called the compass method. Both these methods are frequently applied to self-similar fractal curves but the self-affine profile curves due to their self-affine nature require modified computational procedures implemented in computer programs.

  6. Insulator Contamination Forecasting Based on Fractal Analysis of Leakage Current

    Directory of Open Access Journals (Sweden)

    Bing Luo

    2012-07-01

    Full Text Available In this paper, an artificial pollution test is carried out to study the leakage current of porcelain insulators. Fractal theory is adopted to extract the characteristics hidden in leakage current waveforms. Fractal dimensions of the leakage current for the security, forecast and danger zones are analyzed under four types of degrees of contamination. The mean value and the standard deviation of the fractal dimension in the forecast zone are calculated to characterize the differences. The analysis reveals large differences in the fractal dimension of leakage current under different contamination discharge stages and degrees. The experimental and calculation results suggest that the fractal dimension of a leakage current waveform can be used as a new indicator of the discharge process and contamination degree of insulators. The results provide new methods and valid indicators for forecasting contamination flashovers.

  7. Time Series Analysis OF SAR Image Fractal Maps: The Somma-Vesuvio Volcanic Complex Case Study

    Science.gov (United States)

    Pepe, Antonio; De Luca, Claudio; Di Martino, Gerardo; Iodice, Antonio; Manzo, Mariarosaria; Pepe, Susi; Riccio, Daniele; Ruello, Giuseppe; Sansosti, Eugenio; Zinno, Ivana

    2016-04-01

    The fractal dimension is a significant geophysical parameter describing natural surfaces representing the distribution of the roughness over different spatial scale; in case of volcanic structures, it has been related to the specific nature of materials and to the effects of active geodynamic processes. In this work, we present the analysis of the temporal behavior of the fractal dimension estimates generated from multi-pass SAR images relevant to the Somma-Vesuvio volcanic complex (South Italy). To this aim, we consider a Cosmo-SkyMed data-set of 42 stripmap images acquired from ascending orbits between October 2009 and December 2012. Starting from these images, we generate a three-dimensional stack composed by the corresponding fractal maps (ordered according to the acquisition dates), after a proper co-registration. The time-series of the pixel-by-pixel estimated fractal dimension values show that, over invariant natural areas, the fractal dimension values do not reveal significant changes; on the contrary, over urban areas, it correctly assumes values outside the natural surfaces fractality range and show strong fluctuations. As a final result of our analysis, we generate a fractal map that includes only the areas where the fractal dimension is considered reliable and stable (i.e., whose standard deviation computed over the time series is reasonably small). The so-obtained fractal dimension map is then used to identify areas that are homogeneous from a fractal viewpoint. Indeed, the analysis of this map reveals the presence of two distinctive landscape units corresponding to the Mt. Vesuvio and Gran Cono. The comparison with the (simplified) geological map clearly shows the presence in these two areas of volcanic products of different age. The presented fractal dimension map analysis demonstrates the ability to get a figure about the evolution degree of the monitored volcanic edifice and can be profitably extended in the future to other volcanic systems with

  8. Quantitative assessment of early diabetic retinopathy using fractal analysis.

    Science.gov (United States)

    Cheung, Ning; Donaghue, Kim C; Liew, Gerald; Rogers, Sophie L; Wang, Jie Jin; Lim, Shueh-Wen; Jenkins, Alicia J; Hsu, Wynne; Li Lee, Mong; Wong, Tien Y

    2009-01-01

    Fractal analysis can quantify the geometric complexity of the retinal vascular branching pattern and may therefore offer a new method to quantify early diabetic microvascular damage. In this study, we examined the relationship between retinal fractal dimension and retinopathy in young individuals with type 1 diabetes. We conducted a cross-sectional study of 729 patients with type 1 diabetes (aged 12-20 years) who had seven-field stereoscopic retinal photographs taken of both eyes. From these photographs, retinopathy was graded according to the modified Airlie House classification, and fractal dimension was quantified using a computer-based program following a standardized protocol. In this study, 137 patients (18.8%) had diabetic retinopathy signs; of these, 105 had mild retinopathy. Median (interquartile range) retinal fractal dimension was 1.46214 (1.45023-1.47217). After adjustment for age, sex, diabetes duration, A1C, blood pressure, and total cholesterol, increasing retinal vascular fractal dimension was significantly associated with increasing odds of retinopathy (odds ratio 3.92 [95% CI 2.02-7.61] for fourth versus first quartile of fractal dimension). In multivariate analysis, each 0.01 increase in retinal vascular fractal dimension was associated with a nearly 40% increased odds of retinopathy (1.37 [1.21-1.56]). This association remained after additional adjustment for retinal vascular caliber. Greater retinal fractal dimension, representing increased geometric complexity of the retinal vasculature, is independently associated with early diabetic retinopathy signs in type 1 diabetes. Fractal analysis of fundus photographs may allow quantitative measurement of early diabetic microvascular damage.

  9. Self-interacting polymer chains terminally anchored to adsorbing surfaces of three-dimensional fractal lattices

    Science.gov (United States)

    Živić, I.; Elezović-Hadžić, S.; Milošević, S.

    2018-01-01

    We have studied the adsorption problem of self-attracting linear polymers, modeled by self-avoiding walks (SAWs), situated on three-dimensional fractal structures, exemplified by 3d Sierpinski gasket (SG) family of fractals as containers of a poor solvent. Members of SG family are enumerated by an integer b (b ≥ 2), and it is assumed that one side of each SG fractal is an impenetrable adsorbing surface. We calculate the critical exponents γ1 ,γ11, and γs, which are related to the numbers of all possible SAWs with one, both, and no ends anchored to the adsorbing boundary, respectively. By applying the exact renormalization group (RG) method (for the first three members of the SG fractal family, b = 2 , 3, and 4), we have obtained specific values of these exponents, for θ-chain and globular polymer phase. We discuss their mutual relations and relations with corresponding values pertinent to extended polymer chain phase.

  10. The study of morphology and formation mechanism for tourmaline nodules of aplites from Khaku area (Hamedan with using fractal and three dimensional analysis

    Directory of Open Access Journals (Sweden)

    Ali Asghar Sepahi-Gerow

    2017-03-01

    Full Text Available In aplites of Khaku area, located in the east of the Alvand body, tourmaline noduleswith spherical and dendritic shapes are dispersed. Some of these nodules have light halothat is actually a transition zone between the core of nodules and the host aplites.Geometrically, these nodules are fractal shapes. In these nodules fractal dimension vary from 1.46 in dendritic nodules to 1.92 in spherical nodules. In three-dimensionalreconstructions of the studied nodule, the average volume for the core is 34% and 66%for its margin. Based on evidences such as lack of veins between nodules, tourmalineswith anhedral forms, presence of a leucocratic halo in the aureole of some nodules, theirspherical shape, their linear and flow dispersion in the host rock these nodules have been crystallized in magmatic condition. In the final stages of magma crystallizationand the B content increment followed by beginning of unmixing in the melt, distinctspherical bubbles have been developed which gave rise to nodules formation. Magmaticsystem acts as chaotic systems and the presence of rotational and limited closed areas inthe vicinity of areas with disturbed paths has led to the formation of rounded anddendritic nodules beside each other.

  11. A fractal analysis of the public transportation system of Paris

    OpenAIRE

    L Benguigui

    1995-01-01

    An analysis of the railway networks of the public transportation system of Paris, based on the notion of fractals, is presented. The two basic networks, (metropolitan and suburban) which have different functions, have also a different fractal dimension: 1.8 for the metropolitan network, and 1.5 for the suburban network. By means of computer simulation, it is concluded that the true dimension of the metro network is probably 2.0. A fractal model of the suburban network, with the same features ...

  12. Fractal analysis of cervical intraepithelial neoplasia.

    Directory of Open Access Journals (Sweden)

    Markus Fabrizii

    Full Text Available INTRODUCTION: Cervical intraepithelial neoplasias (CIN represent precursor lesions of cervical cancer. These neoplastic lesions are traditionally subdivided into three categories CIN 1, CIN 2, and CIN 3, using microscopical criteria. The relation between grades of cervical intraepithelial neoplasia (CIN and its fractal dimension was investigated to establish a basis for an objective diagnosis using the method proposed. METHODS: Classical evaluation of the tissue samples was performed by an experienced gynecologic pathologist. Tissue samples were scanned and saved as digital images using Aperio scanner and software. After image segmentation the box counting method as well as multifractal methods were applied to determine the relation between fractal dimension and grades of CIN. A total of 46 images were used to compare the pathologist's neoplasia grades with the predicted groups obtained by fractal methods. RESULTS: Significant or highly significant differences between all grades of CIN could be found. The confusion matrix, comparing between pathologist's grading and predicted group by fractal methods showed a match of 87.1%. Multifractal spectra were able to differentiate between normal epithelium and low grade as well as high grade neoplasia. CONCLUSION: Fractal dimension can be considered to be an objective parameter to grade cervical intraepithelial neoplasia.

  13. Two-dimensional fractal geometry, critical phenomena and conformal invariance

    International Nuclear Information System (INIS)

    Duplantier, B.

    1988-01-01

    The universal properties of critical geometrical systems in two-dimensions (2D) like the O (n) and Potts models, are described in the framework of Coulomb gas methods and conformal invariance. The conformal spectrum of geometrical critical systems obtained is made of a discrete infinite series of scaling dimensions. Specific applications involve the fractal properties of self-avoiding walks, percolation clusters, and also some non trivial critical exponents or fractal dimensions associated with subsets of the planar Brownian motion. The statistical mechanics of the same critical models on a random 2D lattice (namely in presence of a critically-fluctuating metric, in the so-called 2D quantum gravity) is also addressed, and the above critical geometrical systems are shown to be exactly solvable in this case. The new ''gravitational'' conformal spectrum so derived is found to satisfy the recent Knizhnik, Polyakov and Zamolodchikov quadratic relation which links it to the standard conformal spectrum in the plane

  14. Bony change of apical lesion healing process using fractal analysis

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ji Min; Park, Hyok; Jeong, Ho Gul; Kim, Kee Deog; Park, Chang Seo [Yonsei University College of Medicine, Seoul (Korea, Republic of)

    2005-06-15

    To investigate the change of bone healing process after endodontic treatment of the tooth with an apical lesion by fractal analysis. Radiographic images of 35 teeth from 33 patients taken on first diagnosis, 6 months, and 1 year after endodontic treatment were selected. Radiographic images were taken by JUPITER computerized Dental X-ray System. Fractal dimensions were calculated three times at each area by Scion Image PC program. Rectangular region of interest (30 x 30) were selected at apical lesion and normal apex of each image. The fractal dimension at apical lesion of first diagnosis (L{sub 0}) is 0.940 {+-} 0.361 and that of normal area (N{sub 0}) is 1.186 {+-} 0.727 (p<0.05). Fractal dimension at apical lesion of 6 months after endodontic treatment (L{sub 1}) is 1.076 {+-} 0.069 and that of normal area (N{sub 1}) is 1.192 {+-} 0.055 (p<0.05). Fractal dimension at apical lesion of 1 year after endodontic treatment (L{sub 2}) is 1.163 {+-} 0.074 and that of normal area (N{sub 2}) is 1.225 {+-} 0.079 (p<0.05). After endodontic treatment, the fractal dimensions at each apical lesions depending on time showed statistically significant difference. And there are statistically significant different between normal area and apical lesion on first diagnosis, 6 months after, 1 year after. But the differences were grow smaller as time flows. The evaluation of the prognosis after the endodontic treatment of the apical lesion was estimated by bone regeneration in apical region. Fractal analysis was attempted to overcome the limit of subjective reading, and as a result the change of the bone during the healing process was able to be detected objectively and quantitatively.

  15. Approaches leading to the Three-Dimensional Organization of the Human Interphase Nucleus: Simulations, FISH, Chromatin Labelling in vivo, Fractal Analysis, Carbon Ion Irradiation

    NARCIS (Netherlands)

    T.A. Knoch (Tobias); J. Langowski (Jörg)

    2000-01-01

    textabstractDespite the successful linear sequencing of the human genome its three-dimensional structure is widely unknown, although it is important for gene regulation and replication. For a long time the interphase nucleus has been viewed as a 'spaghetti soup' of DNA without much internal

  16. Dimensional Analysis

    Indian Academy of Sciences (India)

    Dimensional analysis is a useful tool which finds important applications in physics and engineering. It is most effective when there exist a maximal number of dimensionless quantities constructed out of the relevant physical variables. Though a complete theory of dimen- sional analysis was developed way back in 1914 in a.

  17. Fractal analysis for studying the evolution of forests

    International Nuclear Information System (INIS)

    Andronache, Ion C.; Ahammer, Helmut; Jelinek, Herbert F.; Peptenatu, Daniel; Ciobotaru, Ana-M.; Draghici, Cristian C.; Pintilii, Radu D.; Simion, Adrian G.

    2016-01-01

    Highlights: • Legal and illegal deforestation is investigated by fractal analysis. • A new fractal fragmentation index FFI is proposed. • Differences in shapes of forest areas indicate the type of deforestation. • Support of ecological management. - Abstract: Deforestation is an important phenomenon that may create major imbalances in ecosystems. In this study we propose a new mathematical analysis of the forest area dynamic, enabling qualitative as well as quantitative statements and results. Fractal dimensions of the area and the perimeter of a forest were determined using digital images. The difference between fractal dimensions of the area and the perimeter images turned out to be a crucial quantitative parameter. Accordingly, we propose a new fractal fragmentation index, FFI, which is based on this difference and which highlights the degree of compaction or non-compaction of the forest area in order to interpret geographic features. Particularly, this method was applied to forests, where large areas have been legally or illegally deforested. However, these methods can easily be used for other ecological or geographical investigations based on digital images, including deforestation of rainforests.

  18. Fractal Characteristics Analysis of Blackouts in Interconnected Power Grid

    DEFF Research Database (Denmark)

    Wang, Feng; Li, Lijuan; Li, Canbing

    2018-01-01

    The power failure models are a key to understand the mechanism of large scale blackouts. In this letter, the similarity of blackouts in interconnected power grids (IPGs) and their sub-grids is discovered by the fractal characteristics analysis to simplify the failure models of the IPG. The distri......The power failure models are a key to understand the mechanism of large scale blackouts. In this letter, the similarity of blackouts in interconnected power grids (IPGs) and their sub-grids is discovered by the fractal characteristics analysis to simplify the failure models of the IPG....... The distribution characteristics of blackouts in various sub-grids are demonstrated based on the Kolmogorov-Smirnov (KS) test. The fractal dimensions (FDs) of the IPG and its sub-grids are then obtained by using the KS test and the maximum likelihood estimation (MLE). The blackouts data in China were used...

  19. Geometrical study of astrocytomas through fractals and scaling analysis

    International Nuclear Information System (INIS)

    Torres H, F.; Baena N, R.; Vergara V, J.; Guerrero M, M.

    2017-10-01

    The tumor growth is a complex process characterized by the proliferation of uncontrollable cells which invade neighbor tissues. The understanding process of this type of phenomena is very relevant in order to establish diagnosis and proper therapy strategies and to start the valorization of its complexity with proper descriptors produced by the scaling analysis, which define the tumor growth geometry. In this work, obtained results through the scaling analysis for pilocytic astrocytomas, anaplastic and diffuse, are shown, which tumors of primary origin are. On them, it is calculated the fractal dimension and critic exponents of local roughness to characterize in vivo three-dimensional tumor growth. The acquisition of the images for this type of injuries was carried out according to the standard protocol used for brain radiotherapy and radiosurgery, i.e., axial, coronal and sagittal magnetic resonance T1 weighted images and comprising the brain volume for image registration. Image segmentation was performed by the application the K-means procedure upon contrasted images. The results show significant variations of the parameters depending on the tumor stage and its histological origin. (Author)

  20. Fractal analysis of agricultural nozzles spray

    Directory of Open Access Journals (Sweden)

    Francisco Agüera

    2012-02-01

    Full Text Available Fractal scaling of the exponential type is used to establish the cumulative volume (V distribution applied through agricultural spray nozzles in size x droplets, smaller than the characteristic size X. From exponent d, we deduced the fractal dimension (Df which measures the degree of irregularity of the medium. This property is known as 'self-similarity'. Assuming that the droplet set from a spray nozzle is self-similar, the objectives of this study were to develop a methodology for calculating a Df factor associated with a given nozzle and to determine regression coefficients in order to predict droplet spectra factors from a nozzle, taking into account its own Df and pressure operating. Based on the iterated function system, we developed an algorithm to relate nozzle types to a particular value of Df. Four nozzles and five operating pressure droplet size characteristics were measured using a Phase Doppler Particle Analyser (PDPA. The data input consisted of droplet size spectra factors derived from these measurements. Estimated Df values showed dependence on nozzle type and independence of operating pressure. We developed an exponential model based on the Df to enable us to predict droplet size spectra factors. Significant coefficients of determination were found for the fitted model. This model could prove useful as a means of comparing the behavior of nozzles which only differ in not measurable geometric parameters and it can predict droplet spectra factors of a nozzle operating under different pressures from data measured only in extreme work pressures.

  1. Fractal analysis of bone architecture at distal radius

    International Nuclear Information System (INIS)

    Tomomitsu, Tatsushi; Mimura, Hiroaki; Murase, Kenya; Sone, Teruki; Fukunaga, Masao

    2005-01-01

    Bone strength depends on bone quality (architecture, turnover, damage accumulation, and mineralization) as well as bone mass. In this study, human bone architecture was analyzed using fractal image analysis, and the clinical relevance of this method was evaluated. The subjects were 12 healthy female controls and 16 female patients suspected of having osteoporosis (age range, 22-70 years; mean age, 49.1 years). High-resolution CT images of the distal radius were acquired and analyzed using a peripheral quantitative computed tomography (pQCT) system. On the same day, bone mineral densities of the lumbar spine (L-BMD), proximal femur (F-BMD), and distal radius (R-BMD) were measured by dual-energy X-ray absorptiometry (DXA). We examined the correlation between the fractal dimension and six bone mass indices. Subjects diagnosed with osteopenia or osteoporosis were divided into two groups (with and without vertebral fracture), and we compared measured values between these two groups. The fractal dimension correlated most closely with L-BMD (r=0.744). The coefficient of correlation between the fractal dimension and L-BMD was very similar to the coefficient of correlation between L-BMD and F-BMD (r=0.783) and the coefficient of correlation between L-BMD and R-BMD (r=0.742). The fractal dimension was the only measured value that differed significantly between both the osteopenic and the osteoporotic subjects with and without vertebral fracture. The present results suggest that the fractal dimension of the distal radius can be reliably used as a bone strength index that reflects bone architecture as well as bone mass. (author)

  2. Stochastic and fractal analysis of fracture trajectories

    Science.gov (United States)

    Bessendorf, Michael H.

    1987-01-01

    Analyses of fracture trajectories are used to investigate structures that fall between 'micro' and 'macro' scales. It was shown that fracture trajectories belong to the class of nonstationary processes. It was also found that correlation distance, which may be related to a characteristic size of a fracture process, increases with crack length. An assemblage of crack trajectory processes may be considered as a diffusive process. Chudnovsky (1981-1985) introduced a 'crack diffusion coefficient' d which reflects the ability of the material to deviate the crack trajectory from the most energetically efficient path and thus links the material toughness to its structure. For the set of fracture trajectories in AISI 304 steel, d was found to be equal to 1.04 microns. The fractal dimension D for the same set of trajectories was found to be 1.133.

  3. Fractal Dimension Analysis of Subcortical Gray Matter Structures in Schizophrenia.

    Directory of Open Access Journals (Sweden)

    Guihu Zhao

    Full Text Available A failure of adaptive inference-misinterpreting available sensory information for appropriate perception and action-is at the heart of clinical manifestations of schizophrenia, implicating key subcortical structures in the brain including the hippocampus. We used high-resolution, three-dimensional (3D fractal geometry analysis to study subtle and potentially biologically relevant structural alterations (in the geometry of protrusions, gyri and indentations, sulci in subcortical gray matter (GM in patients with schizophrenia relative to healthy individuals. In particular, we focus on utilizing Fractal Dimension (FD, a compact shape descriptor that can be computed using inputs with irregular (i.e., not necessarily smooth surfaces in order to quantify complexity (of geometrical properties and configurations of structures across spatial scales of subcortical GM in this disorder. Probabilistic (entropy-based information FD was computed based on the box-counting approach for each of the seven subcortical structures, bilaterally, as well as the brainstem from high-resolution magnetic resonance (MR images in chronic patients with schizophrenia (n = 19 and age-matched healthy controls (n = 19 (age ranges: patients, 22.7-54.3 and healthy controls, 24.9-51.6 years old. We found a significant reduction of FD in the left hippocampus (median: 2.1460, range: 2.07-2.18 vs. median: 2.1730, range: 2.15-2.23, p<0.001; Cohen's effect size, U3 = 0.8158 (95% Confidence Intervals, CIs: 0.6316, 1.0, the right hippocampus (median: 2.1430, range: 2.05-2.19 vs. median: 2.1760, range: 2.12-2.21, p = 0.004; U3 = 0.8421 (CIs: 0.5263, 1, as well as left thalamus (median: 2.4230, range: 2.40-2.44, p = 0.005; U3 = 0.7895 (CIs: 0.5789, 0.9473 in schizophrenia patients, relative to healthy individuals. Our findings provide in-vivo quantitative evidence for reduced surface complexity of hippocampus, with reduced FD indicating a less complex, less regular GM surface detected in

  4. Bony change of apical lesion healing process using fractal analysis

    International Nuclear Information System (INIS)

    Lee, Ji Min; Park, Hyok; Jeong, Ho Gul; Kim, Kee Deog; Park, Chang Seo

    2005-01-01

    To investigate the change of bone healing process after endodontic treatment of the tooth with an apical lesion by fractal analysis. Radiographic images of 35 teeth from 33 patients taken on first diagnosis, 6 months, and 1 year after endodontic treatment were selected. Radiographic images were taken by JUPITER computerized Dental X-ray System. Fractal dimensions were calculated three times at each area by Scion Image PC program. Rectangular region of interest (30 x 30) were selected at apical lesion and normal apex of each image. The fractal dimension at apical lesion of first diagnosis (L 0 ) is 0.940 ± 0.361 and that of normal area (N 0 ) is 1.186 ± 0.727 (p 1 ) is 1.076 ± 0.069 and that of normal area (N 1 ) is 1.192 ± 0.055 (p 2 ) is 1.163 ± 0.074 and that of normal area (N 2 ) is 1.225 ± 0.079 (p<0.05). After endodontic treatment, the fractal dimensions at each apical lesions depending on time showed statistically significant difference. And there are statistically significant different between normal area and apical lesion on first diagnosis, 6 months after, 1 year after. But the differences were grow smaller as time flows. The evaluation of the prognosis after the endodontic treatment of the apical lesion was estimated by bone regeneration in apical region. Fractal analysis was attempted to overcome the limit of subjective reading, and as a result the change of the bone during the healing process was able to be detected objectively and quantitatively.

  5. Assessment of textural differentiations in forest resources in Romania using fractal analysis

    DEFF Research Database (Denmark)

    Andronache, Ion; Fensholt, Rasmus; Ahammer, Helmut

    2017-01-01

    regions in Romania affected by both deforestation and reforestation using a non-Euclidean method based on fractal analysis.We calculated four fractal dimensions of forest areas: the fractal box-counting dimension of the forest areas, the fractal box-counting dimension of the dilated forest areas......, the fractal dilation dimension and the box-counting dimension of the border of the dilated forest areas. Fractal analysis revealed morpho-structural and textural differentiations of forested, deforested and reforested areas in development regions with dominant mountain relief and high hills (more forested...... and compact organization) in comparison to the development regions dominated by plains or low hills (less forested, more fragmented with small and isolated clusters). Our analysis used the fractal analysis that has the advantage of analyzing the entire image, rather than studying local information, thereby...

  6. Fractal analysis of lateral movement in biomembranes.

    Science.gov (United States)

    Gmachowski, Lech

    2018-04-01

    Lateral movement of a molecule in a biomembrane containing small compartments (0.23-μm diameter) and large ones (0.75 μm) is analyzed using a fractal description of its walk. The early time dependence of the mean square displacement varies from linear due to the contribution of ballistic motion. In small compartments, walking molecules do not have sufficient time or space to develop an asymptotic relation and the diffusion coefficient deduced from the experimental records is lower than that measured without restrictions. The model makes it possible to deduce the molecule step parameters, namely the step length and time, from data concerning confined and unrestricted diffusion coefficients. This is also possible using experimental results for sub-diffusive transport. The transition from normal to anomalous diffusion does not affect the molecule step parameters. The experimental literature data on molecular trajectories recorded at a high time resolution appear to confirm the modeled value of the mean free path length of DOPE for Brownian and anomalous diffusion. Although the step length and time give the proper values of diffusion coefficient, the DOPE speed calculated as their quotient is several orders of magnitude lower than the thermal speed. This is interpreted as a result of intermolecular interactions, as confirmed by lateral diffusion of other molecules in different membranes. The molecule step parameters are then utilized to analyze the problem of multiple visits in small compartments. The modeling of the diffusion exponent results in a smooth transition to normal diffusion on entering a large compartment, as observed in experiments.

  7. Integrated quantitative fractal polarimetric analysis of monolayer lung cancer cells

    Science.gov (United States)

    Shrestha, Suman; Zhang, Lin; Quang, Tri; Farrahi, Tannaz; Narayan, Chaya; Deshpande, Aditi; Na, Ying; Blinzler, Adam; Ma, Junyu; Liu, Bo; Giakos, George C.

    2014-05-01

    Digital diagnostic pathology has become one of the most valuable and convenient advancements in technology over the past years. It allows us to acquire, store and analyze pathological information from the images of histological and immunohistochemical glass slides which are scanned to create digital slides. In this study, efficient fractal, wavelet-based polarimetric techniques for histological analysis of monolayer lung cancer cells will be introduced and different monolayer cancer lines will be studied. The outcome of this study indicates that application of fractal, wavelet polarimetric principles towards the analysis of squamous carcinoma and adenocarcinoma cancer cell lines may be proved extremely useful in discriminating among healthy and lung cancer cells as well as differentiating among different lung cancer cells.

  8. Fractal analysis reveals reduced complexity of retinal vessels in CADASIL.

    Directory of Open Access Journals (Sweden)

    Michele Cavallari

    2011-04-01

    Full Text Available The Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy (CADASIL affects mainly small cerebral arteries and leads to disability and dementia. The relationship between clinical expression of the disease and progression of the microvessel pathology is, however, uncertain as we lack tools for imaging brain vessels in vivo. Ophthalmoscopy is regarded as a window into the cerebral microcirculation. In this study we carried out an ophthalmoscopic examination in subjects with CADASIL. Specifically, we performed fractal analysis of digital retinal photographs. Data are expressed as mean fractal dimension (mean-D, a parameter that reflects complexity of the retinal vessel branching. Ten subjects with genetically confirmed diagnosis of CADASIL and 10 sex and age-matched control subjects were enrolled. Fractal analysis of retinal digital images was performed by means of a computer-based program, and the data expressed as mean-D. Brain MRI lesion volume in FLAIR and T1-weighted images was assessed using MIPAV software. Paired t-test was used to disclose differences in mean-D between CADASIL and control groups. Spearman rank analysis was performed to evaluate potential associations between mean-D values and both disease duration and disease severity, the latter expressed as brain MRI lesion volumes, in the subjects with CADASIL. The results showed that mean-D value of patients (1.42±0.05; mean±SD was lower than control (1.50±0.04; p = 0.002. Mean-D did not correlate with disease duration nor with MRI lesion volumes of the subjects with CADASIL. The findings suggest that fractal analysis is a sensitive tool to assess changes of retinal vessel branching, likely reflecting early brain microvessel alterations, in CADASIL patients.

  9. Quantitative evaluation and modeling of two-dimensional neovascular network complexity: the surface fractal dimension

    International Nuclear Information System (INIS)

    Grizzi, Fabio; Russo, Carlo; Colombo, Piergiuseppe; Franceschini, Barbara; Frezza, Eldo E; Cobos, Everardo; Chiriva-Internati, Maurizio

    2005-01-01

    Modeling the complex development and growth of tumor angiogenesis using mathematics and biological data is a burgeoning area of cancer research. Architectural complexity is the main feature of every anatomical system, including organs, tissues, cells and sub-cellular entities. The vascular system is a complex network whose geometrical characteristics cannot be properly defined using the principles of Euclidean geometry, which is only capable of interpreting regular and smooth objects that are almost impossible to find in Nature. However, fractal geometry is a more powerful means of quantifying the spatial complexity of real objects. This paper introduces the surface fractal dimension (D s ) as a numerical index of the two-dimensional (2-D) geometrical complexity of tumor vascular networks, and their behavior during computer-simulated changes in vessel density and distribution. We show that D s significantly depends on the number of vessels and their pattern of distribution. This demonstrates that the quantitative evaluation of the 2-D geometrical complexity of tumor vascular systems can be useful not only to measure its complex architecture, but also to model its development and growth. Studying the fractal properties of neovascularity induces reflections upon the real significance of the complex form of branched anatomical structures, in an attempt to define more appropriate methods of describing them quantitatively. This knowledge can be used to predict the aggressiveness of malignant tumors and design compounds that can halt the process of angiogenesis and influence tumor growth

  10. Electromagnetic backscattering from one-dimensional drifting fractal sea surface II: Electromagnetic backscattering model

    International Nuclear Information System (INIS)

    Xie Tao; Zhao Shang-Zhuo; Fang He; Yu Wen-Jin; He Yi-Jun; Perrie, William

    2016-01-01

    Sea surface current has a significant influence on electromagnetic (EM) backscattering signals and may constitute a dominant synthetic aperture radar (SAR) imaging mechanism. An effective EM backscattering model for a one-dimensional drifting fractal sea surface is presented in this paper. This model is used to simulate EM backscattering signals from the drifting sea surface. Numerical results show that ocean currents have a significant influence on EM backscattering signals from the sea surface. The normalized radar cross section (NRCS) discrepancies between the model for a coupled wave-current fractal sea surface and the model for an uncoupled fractal sea surface increase with the increase of incidence angle, as well as with increasing ocean currents. Ocean currents that are parallel to the direction of the wave can weaken the EM backscattering signal intensity, while the EM backscattering signal is intensified by ocean currents propagating oppositely to the wave direction. The model presented in this paper can be used to study the SAR imaging mechanism for a drifting sea surface. (paper)

  11. Fractal dimension analysis in a highly granular calorimeter

    CERN Document Server

    Ruan, M; Brient, J.C; Jeans, D; Videau, H

    2015-01-01

    The concept of “particle flow” has been developed to optimise the jet energy resolution by distinguishing the different jet components. A highly granular calorimeter designed for the particle flow algorithm provides an unprecedented level of detail for the reconstruction of calorimeter showers and enables new approaches to shower analysis. In this paper the measurement and use of the fractal dimension of showers is described. The fractal dimension is a characteristic number that measures the global compactness of the shower. It is highly dependent on the primary particle type and energy. Its application in identifying particles and estimating their energy is described in the context of a calorimeter designed for the International Linear Collider.

  12. Fractal and multifractal analysis of LiF thin film surface

    International Nuclear Information System (INIS)

    Yadav, R.P.; Dwivedi, S.; Mittal, A.K.; Kumar, M.; Pandey, A.C.

    2012-01-01

    Highlights: ► Fractal and multifractal analysis of surface morphologies of the LiF thin films. ► Complexity and roughness of the LiF thin films increases as thickness increases. ► LiF thin films are multifractal in nature. ► Strength of the multifractality increases with thickness of the film. - Abstract: Fractal and multifractal analysis is performed on the atomic force microscopy (AFM) images of the surface morphologies of the LiF thin films of thickness 10 nm, 20 nm, and 40 nm, respectively. Autocorrelation function, height–height correlation function, and two-dimensional multifractal detrended fluctuation analysis (MFDFA) are used for characterizing the surface. It is found that the interface width, average roughness, lateral correlation length, and fractal dimension of the LiF thin film increase with the thickness of the film, whereas the roughness exponent decreases with thickness. Thus, the complexity and roughness of the LiF thin films increases as thickness increases. It is also demonstrated that the LiF thin films are multifractal in nature. Strength of the multifractality increases with thickness of the film.

  13. Passenger flow analysis of Beijing urban rail transit network using fractal approach

    Science.gov (United States)

    Li, Xiaohong; Chen, Peiwen; Chen, Feng; Wang, Zijia

    2018-04-01

    To quantify the spatiotemporal distribution of passenger flow and the characteristics of an urban rail transit network, we introduce four radius fractal dimensions and two branch fractal dimensions by combining a fractal approach with passenger flow assignment model. These fractal dimensions can numerically describe the complexity of passenger flow in the urban rail transit network and its change characteristics. Based on it, we establish a fractal quantification method to measure the fractal characteristics of passenger follow in the rail transit network. Finally, we validate the reasonability of our proposed method by using the actual data of Beijing subway network. It has been shown that our proposed method can effectively measure the scale-free range of the urban rail transit network, network development and the fractal characteristics of time-varying passenger flow, which further provides a reference for network planning and analysis of passenger flow.

  14. Diagnosis of Lung Cancer by Fractal Analysis of Damaged DNA

    Directory of Open Access Journals (Sweden)

    Hamidreza Namazi

    2015-01-01

    Full Text Available Cancer starts when cells in a part of the body start to grow out of control. In fact cells become cancer cells because of DNA damage. A DNA walk of a genome represents how the frequency of each nucleotide of a pairing nucleotide couple changes locally. In this research in order to study the cancer genes, DNA walk plots of genomes of patients with lung cancer were generated using a program written in MATLAB language. The data so obtained was checked for fractal property by computing the fractal dimension using a program written in MATLAB. Also, the correlation of damaged DNA was studied using the Hurst exponent measure. We have found that the damaged DNA sequences are exhibiting higher degree of fractality and less correlation compared with normal DNA sequences. So we confirmed this method can be used for early detection of lung cancer. The method introduced in this research not only is useful for diagnosis of lung cancer but also can be applied for detection and growth analysis of different types of cancers.

  15. Helicalised fractals

    OpenAIRE

    Saw, Vee-Liem; Chew, Lock Yue

    2013-01-01

    We formulate the helicaliser, which replaces a given smooth curve by another curve that winds around it. In our analysis, we relate this formulation to the geometrical properties of the self-similar circular fractal (the discrete version of the curved helical fractal). Iterative applications of the helicaliser to a given curve yields a set of helicalisations, with the infinitely helicalised object being a fractal. We derive the Hausdorff dimension for the infinitely helicalised straight line ...

  16. Neutron scattering from fractals

    DEFF Research Database (Denmark)

    Kjems, Jørgen; Freltoft, T.; Richter, D.

    1986-01-01

    The scattering formalism for fractal structures is presented. Volume fractals are exemplified by silica particle clusters formed either from colloidal suspensions or by flame hydrolysis. The determination of the fractional dimensionality through scattering experiments is reviewed, and recent small...

  17. Fractal analysis of granular activated carbons using isotherm data

    Energy Technology Data Exchange (ETDEWEB)

    Khalili, N.R.; Pan, M. [Illinois Institute of Technology, Chicago, IL (United States). Dept. of Chemical and Environmental Engineering; Sandi, G. [Argonne National Lab., IL (United States)

    1997-08-01

    Utilization of adsorption on solid surfaces was exercised for the first time in 1785. Practical application of unactivated carbon filters, and powdered carbon were first demonstrated in the American water treatment plant, and a municipal treatment plant in New Jersey, in 1883 and 1930, respectively. The use of activated carbon became widespread in the next few decades. At present, adsorption on carbons has a wide spread application in water treatment and removal of taste, odor, removal of synthetic organic chemicals, color-forming organics, and desinfection by-products and their naturally occurring precursors. This paper presents an analysis of the surface fractal dimension and adsorption capacity of a group of carbons.

  18. Classification of mammographic masses using geometric symmetry and fractal analysis

    Energy Technology Data Exchange (ETDEWEB)

    Guo Qi; Ruiz, V.F. [Cybernetics, School of Systems Engineering, Univ. of Reading (United Kingdom); Shao Jiaqing [Dept. of Electronics, Univ. of Kent (United Kingdom); Guo Falei [WanDe Industrial Engineering Co. (China)

    2007-06-15

    In this paper, we propose a fuzzy symmetry measure based on geometrical operations to characterise shape irregularity of mammographic mass lesion. Group theory, a powerful tool in the investigation of geometric transformation, is employed in our work to define and describe the underlying mathematical relations. We investigate the usefulness of fuzzy symmetry measure in combination with fractal analysis for classification of masses. Comparative studies show that fuzzy symmetry measure is useful for shape characterisation of mass lesions and is a good complementary feature for benign-versus-malignant classification of masses. (orig.)

  19. Fractal analysis: A new tool in transient volcanic ash plume characterization.

    Science.gov (United States)

    Tournigand, Pierre-Yves; Peña Fernandez, Juan Jose; Taddeucci, Jacopo; Perugini, Diego; Sesterhenn, Jörn

    2017-04-01

    Transient volcanic plumes are time-dependent features generated by unstable eruptive sources. They represent a threat to human health and infrastructures, and a challenge to characterize due to their intrinsic instability. Plumes have been investigated through physical (e.g. visible, thermal, UV, radar imagery), experimental and numerical studies in order to provide new insights about their dynamics and better anticipate their behavior. It has been shown experimentally that plume dynamics is strongly dependent to source conditions and that plume shape evolution holds key to retrieve these conditions. In this study, a shape evolution analysis is performed on thermal high-speed videos of volcanic plumes from three different volcanoes Sakurajima (Japan), Stromboli (Italy) and Fuego (Guatemala), recorded with a FLIR SC655 thermal camera during several field campaigns between 2012 and 2016. To complete this dataset, three numerical gas-jet simulations at different Reynolds number (2000, 5000 and 10000) have been used in order to set reference values to the natural cases. Turbulent flow shapes are well known to feature scale-invariant structures and a high degree of complexity. For this reason we characterized the bi-dimensional shape of natural and synthetic plumes by using a fractal descriptor. Such method has been applied in other studies on experimental turbulent jets as well as on atmospheric clouds and have shown promising results. At each time-step plume contour has been manually outlined and measured using the box-counting method. This method consists in covering the image with squares of variable sizes and counting the number of squares containing the plume outline. The negative slope of the number of squares in function of their size in a log-log plot gives the fractal dimension of the plume at a given time. Preliminary results show an increase over time of the fractal dimension for natural volcanic plume as well as for the numerically simulated ones, but at

  20. Fractal and spectroscopic analysis of soot from internal combustion engines

    Science.gov (United States)

    Swapna, M. S.; Saritha Devi, H. V.; Raj, Vimal; Sankararaman, S.

    2018-03-01

    Today diesel engines are used worldwide for various applications and very importantly in transportation. Hydrocarbons are the most widespread precursors among carbon sources employed in the production of carbon nanotubes (CNTs). The aging of internal combustion engine is an important parameter in deciding the carbon emission and particulate matter due to incomplete combustion of fuel. In the present work, an attempt has been made for the effective utilization of the aged engines for potential applicationapplications in fuel cells and nanoelectronics. To analyze the impact of aging, the particulate matter rich in carbon content areis collected from diesel engines of different ages. The soot with CNTs is purified by the liquid phase oxidation method and analyzed by Field Emission Scanning Electron Microscopy, High-Resolution Transmission Electron Microscopy, Energy Dispersive Spectroscopy, UV-Visible spectroscopy, Raman spectroscopy and Thermogravimetric analysis. The SEM image contains self-similar patterns probing fractal analysis. The fractal dimensions of the samples are determined by the box counting method. We could find a greater amount of single-walled carbon nanotubes (SWCNTs) in the particulate matter emitted by aged diesel engines and thereby giving information about the combustion efficiency of the engine. The SWCNT rich sample finds a wide range of applicationapplications in nanoelectronics and thereby pointing a potential use of these aged engines.

  1. Using fractal analysis of thermal signatures for thyroid disease evaluation

    Science.gov (United States)

    Gavriloaia, Gheorghe; Sofron, Emil; Gavriloaia, Mariuca-Roxana; Ghemigean, Adina-Mariana

    2010-11-01

    The skin is the largest organ of the body and it protects against heat, light, injury and infection. Skin temperature is an important parameter for diagnosing diseases. Thermal analysis is non-invasive, painless, and relatively inexpensive, showing a great potential research. Since the thyroid regulates metabolic rate it is intimately connected to body temperature, more than, any modification of its function generates a specific thermal image on the neck skin. The shapes of thermal signatures are often irregular in size and shape. Euclidean geometry is not able to evaluate their shape for different thyroid diseases, and fractal geometry is used in this paper. Different thyroid diseases generate different shapes, and their complexity are evaluated by specific mathematical approaches, fractal analysis, in order to the evaluate selfsimilarity and lacunarity. Two kinds of thyroid diseases, hyperthyroidism and papillary cancer are analyzed in this paper. The results are encouraging and show the ability to continue research for thermal signature to be used in early diagnosis of thyroid diseases.

  2. Fractal Dimension Analysis of Texture Formation of Whey Protein-Based Foods

    Directory of Open Access Journals (Sweden)

    Robi Andoyo

    2018-01-01

    Full Text Available Whey protein in the form of isolate or concentrate is widely used in food industries due to its functionality to form gel under certain condition and its nutritive value. Controlling or manipulating the formation of gel aggregates is used often to evaluate food texture. Many researchers made use of fractal analysis that provides the quantitative data (i.e., fractal dimension for fundamentally and rationally analyzing and designing whey protein-based food texture. This quantitative analysis is also done to better understand how the texture of whey protein-based food is formed. Two methods for fractal analysis were discussed in this review: image analysis (microscopy and rheology. These methods, however, have several limitations which greatly affect the accuracy of both fractal dimension values and types of aggregation obtained. This review therefore also discussed problem encountered and ways to reduce the potential errors during fractal analysis of each method.

  3. Fractal analysis of fractures and microstructures in rocks

    International Nuclear Information System (INIS)

    Merceron, T.; Nakashima, S.; Velde, B.; Badri, A.

    1991-01-01

    Fractal geometry was used to characterize the distribution of fracture fields in rocks, which represent main pathways for material migration such as groundwater flow. Fractal investigations of fracture distribution were performed on granite along Auriat and Shikoku boreholes. Fractal dimensions range between 0.3 and 0.5 according to the different sets of fracture planes selected for the analyses. Shear, tension and compressional modes exhibit different fractal values while the composite fracture patterns are also fractal but with a different, median, fractal value. These observations indicate that the fractal method can be used to distinguish fracture types of different origins in a complex system. Fractal results for Shikoku borehole also correlate with geophysical parameters recorded along, drill-holes such as resistivity and possibly permeability. These results represent the first steps of the fractal investigation along drill-holes. Future studies will be conducted to verify relationships between fractal dimensions and permeability by using available geophysical data. Microstructures and microcracks were analysed in the Inada granite. Microcrack patterns are fractal but fractal dimensions values vary according to both mineral type and orientations of measurement within the mineral. Microcracks in quartz are characterized by more irregular distribution (average D = 0.40) than those in feldspars (D = 0.50) suggesting a different mode of rupture. Highest values of D are reported along main cleavage planes for feldspars or C axis for quartz. Further fractal investigations of microstructure in granite will be used to characterize the potential pathways for fluid migration and diffusion in the rock matrix. (author)

  4. Fractal Analysis of Radiologists Visual Scanning Pattern in Screening Mammography

    Energy Technology Data Exchange (ETDEWEB)

    Alamudun, Folami T [ORNL; Yoon, Hong-Jun [ORNL; Hudson, Kathy [University of Tennessee, Knoxville (UTK); Morin-Ducote, Garnetta [University of Tennessee, Knoxville (UTK); Tourassi, Georgia [ORNL

    2015-01-01

    Several investigators have investigated radiologists visual scanning patterns with respect to features such as total time examining a case, time to initially hit true lesions, number of hits, etc. The purpose of this study was to examine the complexity of the radiologists visual scanning pattern when viewing 4-view mammographic cases, as they typically do in clinical practice. Gaze data were collected from 10 readers (3 breast imaging experts and 7 radiology residents) while reviewing 100 screening mammograms (24 normal, 26 benign, 50 malignant). The radiologists scanpaths across the 4 mammographic views were mapped to a single 2-D image plane. Then, fractal analysis was applied on the derived scanpaths using the box counting method. For each case, the complexity of each radiologist s scanpath was estimated using fractal dimension. The association between gaze complexity, case pathology, case density, and radiologist experience was evaluated using 3 factor fixed effects ANOVA. ANOVA showed that case pathology, breast density, and experience level are all independent predictors of the visual scanning pattern complexity. Visual scanning patterns are significantly different for benign and malignant cases than for normal cases as well as when breast parenchyma density changes.

  5. Fractal analysis of striatal dopamine re-uptake sites

    International Nuclear Information System (INIS)

    Kuikka, J.T.; Bergstroem, K.A.; Tiihonen, J.; Raesaenen, P.; Karhu, J.

    1997-01-01

    Spatial variation in regional blood flow, metabolism and receptor density within the brain and in other organs is measurable even with a low spatial resolution technique such as emission tomography. It has been previously shown that the observed variance increases with increasing number of subregions in the organ/tissue studied. This resolution-dependent variance can be described by fractal analysis. We studied striatal dopamine re-uptake sites in 39 healthy volunteers with high-resolution single-photon emission tomography using iodine-123 labelled 2β-carbomethoxy-3β-(4-iodophenyl)tropane ([ 123 I]β-CIT). The mean fractal dimension was 1.15±0.07. The results indicate that regional striatal dopamine re-uptake sites involve considerable spatial heterogeneity which is higher than the uniform density (dimension=1.00) but much lower than complete randomness (dimension=1.50). There was a gender difference, with females having a higher heterogeneity in both the left and the right striatum. In addition, we found striatal asymmetry (left-to-right heterogeneity ratio of 1.19±0.15; P<0.001), suggesting functional hemispheric lateralization consistent with the control of motor behaviour and integrative functions. (orig.). With 5 figs., 1 tab

  6. Fractal analysis of striatal dopamine re-uptake sites

    Energy Technology Data Exchange (ETDEWEB)

    Kuikka, J.T.; Bergstroem, K.A. [Department of Clinical Physiology, Kuopio University Hospital, Kuopio (Finland); Tiihonen, J.; Raesaenen, P. [Department of Forensic Psychiatry, University of Kuopio and Niuvanniemi Hospital, Kuopio (Finland); Karhu, J. [Department of Clinical Neurophysiology, Kuopio University Hospital, Kuopio (Finland)

    1997-09-01

    Spatial variation in regional blood flow, metabolism and receptor density within the brain and in other organs is measurable even with a low spatial resolution technique such as emission tomography. It has been previously shown that the observed variance increases with increasing number of subregions in the organ/tissue studied. This resolution-dependent variance can be described by fractal analysis. We studied striatal dopamine re-uptake sites in 39 healthy volunteers with high-resolution single-photon emission tomography using iodine-123 labelled 2{beta}-carbomethoxy-3{beta}-(4-iodophenyl)tropane ([{sup 123}I]{beta}-CIT). The mean fractal dimension was 1.15{+-}0.07. The results indicate that regional striatal dopamine re-uptake sites involve considerable spatial heterogeneity which is higher than the uniform density (dimension=1.00) but much lower than complete randomness (dimension=1.50). There was a gender difference, with females having a higher heterogeneity in both the left and the right striatum. In addition, we found striatal asymmetry (left-to-right heterogeneity ratio of 1.19{+-}0.15; P<0.001), suggesting functional hemispheric lateralization consistent with the control of motor behaviour and integrative functions. (orig.). With 5 figs., 1 tab.

  7. Quantitative evaluation of fluctuation error in X-ray diffraction profiles with fractal analysis

    International Nuclear Information System (INIS)

    Kurose, Masashi; Hirose, Yukio; Sasaki, Toshihiko; Yoshioka, Yasuo.

    1995-01-01

    A method of the fractal analysis was applied to the diffraction profiles for its quantitative evaluation. The fractal dimension was analyzed according to both Box counting method and FFT method. The relationship between the fractal dimension and the measurement criteria in X-ray diffraction analysis was discussed with diffraction data obtained under various conditions of the measurement. It was concluded that the fractal analysis is effective for the quantitative evaluation of diffraction data. Box counting method is suitable for evaluation of a whole profile, and FFT method is for that of a fundamental profile. The range of desirable condition of measurement is 1.0≤D≤1.2, where D is a fractal dimension. The appropriate range of measurement becomes 0.01≤Sw/HVB≤0.03, where Sw is the step width and the HVB is the half-value breadth. Stresses with higher precision were obtained from measurements under this new criteria. (author)

  8. Pulling self-interacting linear polymers on a family of fractal lattices embedded in three-dimensional space

    International Nuclear Information System (INIS)

    Elezović-Hadžić, S; Živić, I

    2013-01-01

    We have studied the problem of force pulling self-interacting linear polymers situated in fractal containers that belong to the Sierpinski gasket (SG) family of fractals embedded in three-dimensional (3D) space. Each member of this family is labeled with an integer b (2 ≤ b ≤ ∞). The polymer chain is modeled by a self-avoiding walk (SAW) with one end anchored to one of the four boundary walls of the lattice, while the other (floating in the bulk of the fractal) is the position at which the force is acting. By applying an exact renormalization group (RG) method we have established the phase diagrams, including the critical force–temperature dependence, for fractals with b = 2,3 and 4. Also, for the same fractals, in all polymer phases, we examined the generating function G 1 for the numbers of all possible SAWs with one end anchored to the boundary wall. We found that besides the usual power-law singularity of G 1 , governed by the critical exponent γ 1 , whose specific values are worked out for all cases studied, in some regimes the function G 1 displays an essential singularity in its behavior. (paper)

  9. Fractal apertures in waveguides, conducting screens and cavities analysis and design

    CERN Document Server

    Ghosh, Basudeb; Kartikeyan, M V

    2014-01-01

    This book deals with the design and analysis of fractal apertures in waveguides, conducting screens and cavities using numerical electromagnetics and field-solvers. The aim is to obtain design solutions with improved accuracy for a wide range of applications. To achieve this goal, a few diverse problems are considered. The book is organized with adequate space dedicated for the design and analysis of fractal apertures in waveguides, conducting screens, and cavities, microwave/millimeter wave applications followed by detailed case-study problems to infuse better insight and understanding of the subject. Finally, summaries and suggestions are given for future work. Fractal geometries were widely used in electromagnetics, specifically for antennas and frequency selective surfaces (FSS). The self-similarity of fractal geometry gives rise to a multiband response, whereas the  space-filling nature of the fractal geometries makes it an efficient element in antenna and FSS unit cell miniaturization. Until now, no e...

  10. Fractal Dimension analysis for seismicity spatial and temporal ...

    Indian Academy of Sciences (India)

    23

    The research can further promote the application of fractal theory in the study ... spatial-temporal propagation characteristics of seismic activities, fractal theory is not ... provide a theoretical basis for the prevention and control of earthquakes. 2. ... random self-similar structure of the earthquake in the time series and the spatial.

  11. Bouguer correction density determination from fractal analysis using ...

    African Journals Online (AJOL)

    In this work, Bouguer density is determined using the fractal approach. This technique was applied to the gravity data of the Kwello area of the Basement Complex, north-western Nigeria. The density obtained using the fractal approach is 2500 kgm which is lower than the conventional value of 2670 kgm used for average ...

  12. Fractal analysis for heat extraction in geothermal system

    Directory of Open Access Journals (Sweden)

    Shang Xiaoji

    2017-01-01

    Full Text Available Heat conduction and convection play a key role in geothermal development. These two processes are coupled and influenced by fluid seepage in hot porous rock. A number of integer dimension thermal fluid models have been proposed to describe this coupling mechanism. However, fluid flow, heat conduction and convection in porous rock are usually non-linear, tortuous and fractal, thus the integer dimension thermal fluid flow models can not well describe these phenomena. In this study, a fractal thermal fluid coupling model is proposed to describe the heat conduction and flow behaviors in fractal hot porous rock in terms of local fractional time and space derivatives. This coupling equation is analytically solved through the fractal travelling wave transformation method. Analytical solutions of Darcy’s velocity, fluid temperature with fractal time and space are obtained. The solutions show that the introduction of fractional parameters is essential to describe the mechanism of heat conduction and convection.

  13. Experimental Study and Fractal Analysis on the Anisotropic Performance of Explosively Welded Interfaces of 304 Stainless Steel/245 Carbon Steel

    Science.gov (United States)

    Fu, Yanshu; Qiu, Yaohui; Li, Yulong

    2018-05-01

    The mechanical anisotropy of an explosive welding composite plate made of 304 stainless steel/245 steel was studied through shear experiments performed on explosively welded wavy interfaces along several orientation angles. The results indicated that the strength and the fracture energy of samples significantly varied with the orientation angles. The fracture surfaces of all samples were observed using a scanning electron microscope and through three-dimensional structure microscopy. The periodic features of all the fracture surfaces were clearly shown in different fracture modes. The fractal dimension of the fracture surfaces was calculated based on the fractal geometry by the box-counting method in MATLAB. The cohesive element model was used to analyze the fracture energy according to the physical dependence of the fractal dimension on thermodynamic entropy and interface separation energy. The fracture energy was an exponential function of the fractal dimension value, which was in good agreement with the experimental results. All results were validated for effective use in the application of anisotropy analysis to the welded interface and structural optimization of explosively welded composite plates.

  14. Fractal analysis of the spatial distribution of earthquakes along the Hellenic Subduction Zone

    Science.gov (United States)

    Papadakis, Giorgos; Vallianatos, Filippos; Sammonds, Peter

    2014-05-01

    slope of the recurrence curve to forecast earthquakes in Colombia. Earth Sci. Res. J., 8, 3-9. Makropoulos, K., Kaviris, G., Kouskouna, V., 2012. An updated and extended earthquake catalogue for Greece and adjacent areas since 1900. Nat. Hazards Earth Syst. Sci., 12, 1425-1430. Papadakis, G., Vallianatos, F., Sammonds, P., 2013. Evidence of non extensive statistical physics behavior of the Hellenic Subduction Zone seismicity. Tectonophysics, 608, 1037-1048. Papaioannou, C.A., Papazachos, B.C., 2000. Time-independent and time-dependent seismic hazard in Greece based on seismogenic sources. Bull. Seismol. Soc. Am., 90, 22-33. Robertson, M.C., Sammis, C.G., Sahimi, M., Martin, A.J., 1995. Fractal analysis of three-dimensional spatial distributions of earthquakes with a percolation interpretation. J. Geophys. Res., 100, 609-620. Turcotte, D.L., 1997. Fractals and chaos in geology and geophysics. Second Edition, Cambridge University Press. Vallianatos, F., Michas, G., Papadakis, G., Sammonds, P., 2012. A non-extensive statistical physics view to the spatiotemporal properties of the June 1995, Aigion earthquake (M6.2) aftershock sequence (West Corinth rift, Greece). Acta Geophys., 60, 758-768.

  15. Assessment of Textural Differentiations in Forest Resources in Romania Using Fractal Analysis

    Directory of Open Access Journals (Sweden)

    Ion Andronache

    2017-02-01

    Full Text Available Deforestation and forest degradation have several negative effects on the environment including a loss of species habitats, disturbance of the water cycle and reduced ability to retain CO2, with consequences for global warming. We investigated the evolution of forest resources from development regions in Romania affected by both deforestation and reforestation using a non-Euclidean method based on fractal analysis. We calculated four fractal dimensions of forest areas: the fractal box-counting dimension of the forest areas, the fractal box-counting dimension of the dilated forest areas, the fractal dilation dimension and the box-counting dimension of the border of the dilated forest areas. Fractal analysis revealed morpho-structural and textural differentiations of forested, deforested and reforested areas in development regions with dominant mountain relief and high hills (more forested and compact organization in comparison to the development regions dominated by plains or low hills (less forested, more fragmented with small and isolated clusters. Our analysis used the fractal analysis that has the advantage of analyzing the entire image, rather than studying local information, thereby enabling quantification of the uniformity, fragmentation, heterogeneity and homogeneity of forests.

  16. Shower fractal dimension analysis in a highly-granular calorimeter

    CERN Document Server

    Ruan, M

    2014-01-01

    We report on an investigation of the self-similar structure of particle showers recorded at a highly-granular calorimeter. On both simulated and experimental data, a strong correlation between the number of hits and the spatial scale of the readout channels is observed, from which we define the shower fractal dimension. The measured fractal dimension turns out to be strongly dependent on particle type, which enables new approaches for particle identification. A logarithmic dependence of the particle energy on the fractal dimension is also observed.

  17. (Multi)fractality of Earthquakes by use of Wavelet Analysis

    Science.gov (United States)

    Enescu, B.; Ito, K.; Struzik, Z. R.

    2002-12-01

    The fractal character of earthquakes' occurrence, in time, space or energy, has by now been established beyond doubt and is in agreement with modern models of seismicity. Moreover, the cascade-like generation process of earthquakes -with one "main" shock followed by many aftershocks, having their own aftershocks- may well be described through multifractal analysis, well suited for dealing with such multiplicative processes. The (multi)fractal character of seismicity has been analysed so far by using traditional techniques, like the box-counting and correlation function algorithms. This work introduces a new approach for characterising the multifractal patterns of seismicity. The use of wavelet analysis, in particular of the wavelet transform modulus maxima, to multifractal analysis was pioneered by Arneodo et al. (1991, 1995) and applied successfully in diverse fields, such as the study of turbulence, the DNA sequences or the heart rate dynamics. The wavelets act like a microscope, revealing details about the analysed data at different times and scales. We introduce and perform such an analysis on the occurrence time of earthquakes and show its advantages. In particular, we analyse shallow seismicity, characterised by a high aftershock "productivity", as well as intermediate and deep seismic activity, known for its scarcity of aftershocks. We examine as well declustered (aftershocks removed) versions of seismic catalogues. Our preliminary results show some degree of multifractality for the undeclustered, shallow seismicity. On the other hand, at large scales, we detect a monofractal scaling behaviour, clearly put in evidence for the declustered, shallow seismic activity. Moreover, some of the declustered sequences show a long-range dependent (LRD) behaviour, characterised by a Hurst exponent, H > 0.5, in contrast with the memory-less, Poissonian model. We demonstrate that the LRD is a genuine characteristic and is not an effect of the time series probability

  18. Characterisation of human non-proliferativediabetic retinopathy using the fractal analysis

    Directory of Open Access Journals (Sweden)

    Carmen Alina Lupaşcu

    2015-08-01

    Full Text Available AIM:To investigate and quantify changes in the branching patterns of the retina vascular network in diabetes using the fractal analysis method.METHODS:This was a clinic-based prospective study of 172 participants managed at the Ophthalmological Clinic of Cluj-Napoca, Romania, between January 2012 and December 2013. A set of 172 segmented and skeletonized human retinal images, corresponding to both normal (24 images and pathological (148 images states of the retina were examined. An automatic unsupervised method for retinal vessel segmentation was applied before fractal analysis. The fractal analyses of the retinal digital images were performed using the fractal analysis software ImageJ. Statistical analyses were performed for these groups using Microsoft Office Excel 2003 and GraphPad InStat software.RESULTS:It was found that subtle changes in the vascular network geometry of the human retina are influenced by diabetic retinopathy (DR and can be estimated using the fractal geometry. The average of fractal dimensions D for the normal images (segmented and skeletonized versions is slightly lower than the corresponding values of mild non-proliferative DR (NPDR images (segmented and skeletonized versions. The average of fractal dimensions D for the normal images (segmented and skeletonized versions is higher than the corresponding values of moderate NPDR images (segmented and skeletonized versions. The lowest values were found for the corresponding values of severe NPDR images (segmented and skeletonized versions.CONCLUSION:The fractal analysis of fundus photographs may be used for a more complete undeTrstanding of the early and basic pathophysiological mechanisms of diabetes. The architecture of the retinal microvasculature in diabetes can be quantitative quantified by means of the fractal dimension. Microvascular abnormalities on retinal imaging may elucidate early mechanistic pathways for microvascular complications and distinguish patients with

  19. Boundary Fractal Analysis of Two Cube-oriented Grains in Partly Recrystallized Copper

    DEFF Research Database (Denmark)

    Sun, Jun; Zhang, Yubin; Dahl, Anders Bjorholm

    2015-01-01

    The protrusions and retrusions observed on the recrystallizing boundaries affect the migration kinetics during recrystallization. Characterization of the boundary roughness is necessary in order to evaluate their effects. This roughness has a structure that can be characterized by fractal analysis...

  20. Spectral Analysis and Dirichlet Forms on Barlow-Evans Fractals

    OpenAIRE

    Steinhurst, Benjamin; Teplyaev, Alexander

    2012-01-01

    We show that if a Barlow-Evans Markov process on a vermiculated space is symmetric, then one can study the spectral properties of the corresponding Laplacian using projective limits. For some examples, such as the Laakso spaces and a Spierpinski P\\^ate \\`a Choux, one can develop a complete spectral theory, including the eigenfunction expansions that are analogous to Fourier series. Also, one can construct connected fractal spaces isospectral to the fractal strings of Lapidus and van Frankenhu...

  1. Factorial moment and fractal analysis of γ families

    International Nuclear Information System (INIS)

    Kalmakhelidze, M.Eh.; Roinishvili, N.N.; Svanidze, M.S.; Khizanishvili, L.A.; Chadranyan, L.Kh.

    1997-01-01

    Factorial and fractal methods were applied to nuclear-electromagnetic cascades in the atmosphere (γ families) to find sensitivity of these methods to multiparticle fluctuations in γ families. Averaged parameters of factorial and fractal methods of the real families were compared with the same quantities for the statistical set of random families. The correlations between the same parameters for families divided into sectors and into rings are studied. The correlations between different parameters for the same families divided into sectors are investigated

  2. Comparison of two fractal interpolation methods

    Science.gov (United States)

    Fu, Yang; Zheng, Zeyu; Xiao, Rui; Shi, Haibo

    2017-03-01

    As a tool for studying complex shapes and structures in nature, fractal theory plays a critical role in revealing the organizational structure of the complex phenomenon. Numerous fractal interpolation methods have been proposed over the past few decades, but they differ substantially in the form features and statistical properties. In this study, we simulated one- and two-dimensional fractal surfaces by using the midpoint displacement method and the Weierstrass-Mandelbrot fractal function method, and observed great differences between the two methods in the statistical characteristics and autocorrelation features. From the aspect of form features, the simulations of the midpoint displacement method showed a relatively flat surface which appears to have peaks with different height as the fractal dimension increases. While the simulations of the Weierstrass-Mandelbrot fractal function method showed a rough surface which appears to have dense and highly similar peaks as the fractal dimension increases. From the aspect of statistical properties, the peak heights from the Weierstrass-Mandelbrot simulations are greater than those of the middle point displacement method with the same fractal dimension, and the variances are approximately two times larger. When the fractal dimension equals to 1.2, 1.4, 1.6, and 1.8, the skewness is positive with the midpoint displacement method and the peaks are all convex, but for the Weierstrass-Mandelbrot fractal function method the skewness is both positive and negative with values fluctuating in the vicinity of zero. The kurtosis is less than one with the midpoint displacement method, and generally less than that of the Weierstrass-Mandelbrot fractal function method. The autocorrelation analysis indicated that the simulation of the midpoint displacement method is not periodic with prominent randomness, which is suitable for simulating aperiodic surface. While the simulation of the Weierstrass-Mandelbrot fractal function method has

  3. Electromagnetic fields in fractal continua

    Energy Technology Data Exchange (ETDEWEB)

    Balankin, Alexander S., E-mail: abalankin@ipn.mx [Grupo “Mecánica Fractal”, Instituto Politécnico Nacional, México D.F., 07738 Mexico (Mexico); Mena, Baltasar [Instituto de Ingeniería, Universidad Nacional Autónoma de México, México D.F. (Mexico); Patiño, Julián [Grupo “Mecánica Fractal”, Instituto Politécnico Nacional, México D.F., 07738 Mexico (Mexico); Morales, Daniel [Instituto Mexicano del Petróleo, México D.F., 07730 Mexico (Mexico)

    2013-04-01

    Fractal continuum electrodynamics is developed on the basis of a model of three-dimensional continuum Φ{sub D}{sup 3}⊂E{sup 3} with a fractal metric. The generalized forms of Maxwell equations are derived employing the local fractional vector calculus related to the Hausdorff derivative. The difference between the fractal continuum electrodynamics based on the fractal metric of continua with Euclidean topology and the electrodynamics in fractional space F{sup α} accounting the fractal topology of continuum with the Euclidean metric is outlined. Some electromagnetic phenomena in fractal media associated with their fractal time and space metrics are discussed.

  4. Fractal analysis in radiological and nuclear medicine perfusion imaging: a systematic review

    Energy Technology Data Exchange (ETDEWEB)

    Michallek, Florian; Dewey, Marc [Humboldt-Universitaet zu Berlin, Freie Universitaet Berlin, Charite - Universitaetsmedizin Berlin, Medical School, Department of Radiology, Berlin (Germany)

    2014-01-15

    To provide an overview of recent research in fractal analysis of tissue perfusion imaging, using standard radiological and nuclear medicine imaging techniques including computed tomography (CT), magnetic resonance imaging (MRI), ultrasound, positron emission tomography (PET) and single-photon emission computed tomography (SPECT) and to discuss implications for different fields of application. A systematic review of fractal analysis for tissue perfusion imaging was performed by searching the databases MEDLINE (via PubMed), EMBASE (via Ovid) and ISI Web of Science. Thirty-seven eligible studies were identified. Fractal analysis was performed on perfusion imaging of tumours, lung, myocardium, kidney, skeletal muscle and cerebral diseases. Clinically, different aspects of tumour perfusion and cerebral diseases were successfully evaluated including detection and classification. In physiological settings, it was shown that perfusion under different conditions and in various organs can be properly described using fractal analysis. Fractal analysis is a suitable method for quantifying heterogeneity from radiological and nuclear medicine perfusion images under a variety of conditions and in different organs. Further research is required to exploit physiologically proven fractal behaviour in the clinical setting. (orig.)

  5. Fractal analysis in radiological and nuclear medicine perfusion imaging: a systematic review

    International Nuclear Information System (INIS)

    Michallek, Florian; Dewey, Marc

    2014-01-01

    To provide an overview of recent research in fractal analysis of tissue perfusion imaging, using standard radiological and nuclear medicine imaging techniques including computed tomography (CT), magnetic resonance imaging (MRI), ultrasound, positron emission tomography (PET) and single-photon emission computed tomography (SPECT) and to discuss implications for different fields of application. A systematic review of fractal analysis for tissue perfusion imaging was performed by searching the databases MEDLINE (via PubMed), EMBASE (via Ovid) and ISI Web of Science. Thirty-seven eligible studies were identified. Fractal analysis was performed on perfusion imaging of tumours, lung, myocardium, kidney, skeletal muscle and cerebral diseases. Clinically, different aspects of tumour perfusion and cerebral diseases were successfully evaluated including detection and classification. In physiological settings, it was shown that perfusion under different conditions and in various organs can be properly described using fractal analysis. Fractal analysis is a suitable method for quantifying heterogeneity from radiological and nuclear medicine perfusion images under a variety of conditions and in different organs. Further research is required to exploit physiologically proven fractal behaviour in the clinical setting. (orig.)

  6. Analysis of a Model for the Morphological Structure of Renal Arterial Tree: Fractal Structure

    Directory of Open Access Journals (Sweden)

    Aurora Espinoza-Valdez

    2013-01-01

    experimental data measurements of the rat kidneys. The fractal dimension depends on the probability of sprouting angiogenesis in the development of the arterial vascular tree of the kidney, that is, of the distribution of blood vessels in the morphology generated by the analytical model. The fractal dimension might determine whether a suitable renal vascular structure is capable of performing physiological functions under appropriate conditions. The analysis can describe the complex structures of the development vasculature in kidney.

  7. Automatic localization of cerebral cortical malformations using fractal analysis.

    Science.gov (United States)

    De Luca, A; Arrigoni, F; Romaniello, R; Triulzi, F M; Peruzzo, D; Bertoldo, A

    2016-08-21

    Malformations of cortical development (MCDs) encompass a variety of brain disorders affecting the normal development and organization of the brain cortex. The relatively low incidence and the extreme heterogeneity of these disorders hamper the application of classical group level approaches for the detection of lesions. Here, we present a geometrical descriptor for a voxel level analysis based on fractal geometry, then define two similarity measures to detect the lesions at single subject level. The pipeline was applied to 15 normal children and nine pediatric patients affected by MCDs following two criteria, maximum accuracy (WACC) and minimization of false positives (FPR), and proved that our lesion detection algorithm is able to detect and locate abnormalities of the brain cortex with high specificity (WACC  =  85%, FPR  =  96%), sensitivity (WACC  =  83%, FPR  =  63%) and accuracy (WACC  =  85%, FPR  =  90%). The combination of global and local features proves to be effective, making the algorithm suitable for the detection of both focal and diffused malformations. Compared to other existing algorithms, this method shows higher accuracy and sensitivity.

  8. Automatic localization of cerebral cortical malformations using fractal analysis

    Science.gov (United States)

    De Luca, A.; Arrigoni, F.; Romaniello, R.; Triulzi, F. M.; Peruzzo, D.; Bertoldo, A.

    2016-08-01

    Malformations of cortical development (MCDs) encompass a variety of brain disorders affecting the normal development and organization of the brain cortex. The relatively low incidence and the extreme heterogeneity of these disorders hamper the application of classical group level approaches for the detection of lesions. Here, we present a geometrical descriptor for a voxel level analysis based on fractal geometry, then define two similarity measures to detect the lesions at single subject level. The pipeline was applied to 15 normal children and nine pediatric patients affected by MCDs following two criteria, maximum accuracy (WACC) and minimization of false positives (FPR), and proved that our lesion detection algorithm is able to detect and locate abnormalities of the brain cortex with high specificity (WACC  =  85%, FPR  =  96%), sensitivity (WACC  =  83%, FPR  =  63%) and accuracy (WACC  =  85%, FPR  =  90%). The combination of global and local features proves to be effective, making the algorithm suitable for the detection of both focal and diffused malformations. Compared to other existing algorithms, this method shows higher accuracy and sensitivity.

  9. Evaluation of peri-implant bone using fractal analysis

    International Nuclear Information System (INIS)

    Jung, Yun Hoa

    2005-01-01

    The purpose of this study was to investigate whether the fractal dimension of successive panoramic radiographs of bone after implant placement is useful in the characterization of structural change in alveolar bone. Twelve subjects with thirty-five implants were retrospectively followed-up from one week to six months after implantation. Thirty-six panoramic radiographs from twelve patients were classified into 1 week. 1-2 months and 3-6 months after implantation and digitized. The windows of bone apical and mesial or distal to the implant were defined as peri apical region of interest (ROI) and inter dental ROI; the fractal dimension of the image was calculated. There was not a statistically significant difference in fractal dimensions during the period up to 6 months after implantation. The fractal dimensions were higher in 13 and 15 mm than 10 and 11.5 mm implant length at inter dental ROIs in 3-6 months after implantation (p<0.01). Longer fixtures showed the higher fractal dimension of bone around implant. This investigation needs further exploration with large numbers of implants for longer follow-up periods.

  10. Fractal analysis of heart rate variability and mortality after an acute myocardial infarction

    DEFF Research Database (Denmark)

    Tapanainen, Jari M; Thomsen, Poul Erik Bloch; Køber, Lars

    2002-01-01

    The recently developed fractal analysis of heart rate (HR) variability has been suggested to provide prognostic information about patients with heart failure. This prospective multicenter study was designed to assess the prognostic significance of fractal and traditional HR variability parameters...... in a large, consecutive series of survivors of an acute myocardial infarction (AMI). A consecutive series of 697 patients were recruited to participate 2 to 7 days after an AMI in 3 Nordic university hospitals. The conventional time-domain and spectral parameters and the newer fractal scaling indexes of HR...... variability were analyzed from 24-hour RR interval recordings. During the mean follow-up of 18.4 +/- 6.5 months, 49 patients (7.0%) died. Of all the risk variables, a reduced short-term fractal scaling exponent (alpha(1)

  11. A fractal model of effective stress of porous media and the analysis of influence factors

    Science.gov (United States)

    Li, Wei; Zhao, Huan; Li, Siqi; Sun, Wenfeng; Wang, Lei; Li, Bing

    2018-03-01

    The basic concept of effective stress describes the characteristics of fluid and solid interaction in porous media. In this paper, based on the theory of fractal geometry, a fractal model was built to analyze the relationship between the microstructure and the effective stress of porous media. From the microscopic point of view, the influence of effective stress on pore structure of porous media was demonstrated. Theoretical analysis and experimental results show that: (i) the fractal model of effective stress can be used to describe the relationship between effective stress and the microstructure of porous media; (ii) a linear increase in the effective stress leads to exponential increases in fractal dimension, porosity and pore number of the porous media, and causes a decreasing trend in the average pore radius.

  12. FRACTAL ANALYSIS OF PHYSICAL ADSORPTION ON SURFACES OF ACID ACTIVATED BENTONITES FROM SERBIA

    Directory of Open Access Journals (Sweden)

    Ljiljana Rožić

    2008-11-01

    Full Text Available Solid surfaces are neither ideally regular, that is, morphological and energeticcally homogeneous, nor are they fully irregular or fractal. Instead, real solid surfaces exhibit a limited degree of organization quantified by the fractal dimension, D. Fractal analysis was applied to investigate the effect of concentrations of HCl solutions on the structural and textural properties of chemically activated bentonite from southern Serbia. Acid treatment of bentonites is applied in order to remove impurities and various exchangeable cations from bentonite clay. Important physical changes in acid-activated smectite are the increase of the specific surface area and of the average pore volume, depending on acid strength, time and temperature of a treatment. On the basis of the sorption-structure analysis, the fractal dimension of the bentonite surfaces was determined by Mahnke and Mögel method. The fractal dimension evaluated by this method was 2.11 for the AB3 and 1.94 for the AB4.5 sample. The estimation of the values of the fractal dimension of activated bentonites was performed in the region of small pores, 0.5 nm < rp < 2 nm.

  13. Multi-fractal analysis of highway traffic data

    Institute of Scientific and Technical Information of China (English)

    Shang Peng-Jian; Shen Jin-Sheng

    2007-01-01

    The purpose of the present study is to investigate the presence of multi-fractal behaviours in the traffic time series not only by statistical approaches but also by geometrical approaches. The pointwise H(o)lder exponent of a function is calculated by developing an algorithm for the numerical evaluation of H(o)lder exponent of time series. The traffic time series observed on the Beijing Yuquanying highway are analysed. The results from all these methods indicate that the traffic data exhibit the multi-fractal behaviour.

  14. Investigations on the two-dimensional aperiodic plasma photonic crystals with fractal Fibonacci sequence

    Directory of Open Access Journals (Sweden)

    Hai-Feng Zhang

    2017-07-01

    Full Text Available In this paper, the properties of photonic band gaps (PBGs and defect modes of two-dimensional (2D fractal plasma photonic crystals (PPCs under a transverse-magnetic (TM wave are theoretically investigated by a modified plane wave expansion (PWE method. The configuration of 2D PPCs is the square lattices with the iteration rule of the Fibonacci sequence whose constituents are homogeneous and isotropic. The proposed 2D PPCs is filled with the dielectric cylinders in the plasma background. The accuracy and convergence of the present modified PWE method also are validated by a numerical example. The calculated results illustrate that the enough accuracy and good convergence can be achieved compared to the conventional PWE method, if the number of meshed grids is large enough. The dispersion curves of the proposed PPCs and 2D PPCs with a conventional square lattice are theoretically computed to study the properties of PBGs and defect modes. The simulated results demonstrate that the advantaged properties can be obtained in the proposed PPCs compared to the 2D conventional PPCs with similar lattices. If the Fibonacci sequence is introduced into the 2D PPCs, the larger PBGs and higher cutoff frequency can be achieved. The lower edges of PBGs are flat, which are originated from the Mie resonances. The defect modes can be considered as the quasi-localized states since the Fibonacci sequence has the self-similarity and non-periodicity at the same time. The effects of configurational parameters on the characters of the present PPCs are investigated. The results show that the PBGs and defect modes can be easily manipulated by tuning those parameters.

  15. Fractal analysis of electrolytically-deposited palladium hydride dendrites

    International Nuclear Information System (INIS)

    Bursill, L.A.; Julin, Peng; Xudong, Fan.

    1990-01-01

    The fractal scaling characteristics of the surface profile of electrolytically-deposited palladium hydride dendritic structures have been obtained using conventional and high resolution transmission electron microscopy. The results are in remarkable agreement with the modified diffusion-limited aggregation model. 19 refs., 3 tabs., 13 figs

  16. The analysis of the influence of fractal structure of stimuli on fractal dynamics in fixational eye movements and EEG signal

    Science.gov (United States)

    Namazi, Hamidreza; Kulish, Vladimir V.; Akrami, Amin

    2016-05-01

    One of the major challenges in vision research is to analyze the effect of visual stimuli on human vision. However, no relationship has been yet discovered between the structure of the visual stimulus, and the structure of fixational eye movements. This study reveals the plasticity of human fixational eye movements in relation to the ‘complex’ visual stimulus. We demonstrated that the fractal temporal structure of visual dynamics shifts towards the fractal dynamics of the visual stimulus (image). The results showed that images with higher complexity (higher fractality) cause fixational eye movements with lower fractality. Considering the brain, as the main part of nervous system that is engaged in eye movements, we analyzed the governed Electroencephalogram (EEG) signal during fixation. We have found out that there is a coupling between fractality of image, EEG and fixational eye movements. The capability observed in this research can be further investigated and applied for treatment of different vision disorders.

  17. A holistic approach to determine tree structural complexity based on laser scanning data and fractal analysis.

    Science.gov (United States)

    Seidel, Dominik

    2018-01-01

    The three-dimensional forest structure affects many ecosystem functions and services provided by forests. As forests are made of trees it seems reasonable to approach their structure by investigating individual tree structure. Based on three-dimensional point clouds from laser scanning, a newly developed holistic approach is presented that enables to calculate the box dimension as a measure of structural complexity of individual trees using fractal analysis. It was found that the box dimension of trees was significantly different among the tested species, among trees belonging to the same species but exposed to different growing conditions (at gap vs. forest interior) or to different kinds of competition (intraspecific vs. interspecific). Furthermore, it was shown that the box dimension is positively related to the trees' growth rate. The box dimension was identified as an easy to calculate measure that integrates the effect of several external drivers of tree structure, such as competition strength and type, while simultaneously providing information on structure-related properties, like tree growth.

  18. Fractal dimension analysis of malignant and benign endobronchial ultrasound nodes

    International Nuclear Information System (INIS)

    Fiz, José Antonio; Monte-Moreno, Enrique; Andreo, Felipe; Auteri, Santiago José; Sanz-Santos, José; Serra, Pere; Bonet, Gloria; Castellà, Eva; Manzano, Juan Ruiz

    2014-01-01

    Endobronchial ultrasonography (EBUS) has been applied as a routine procedure for the diagnostic of hiliar and mediastinal nodes. The authors assessed the relationship between the echographic appearance of mediastinal nodes, based on endobronchial ultrasound images, and the likelihood of malignancy. The images of twelve malignant and eleven benign nodes were evaluated. A previous processing method was applied to improve the quality of the images and to enhance the details. Texture and morphology parameters analyzed were: the image texture of the echographies and a fractal dimension that expressed the relationship between area and perimeter of the structures that appear in the image, and characterizes the convoluted inner structure of the hiliar and mediastinal nodes. Processed images showed that relationship between log perimeter and log area of hilar nodes was lineal (i.e. perimeter vs. area follow a power law). Fractal dimension was lower in the malignant nodes compared with non-malignant nodes (1.47(0.09), 1.53(0.10) mean(SD), Mann–Whitney U test p < 0.05)). Fractal dimension of ultrasonographic images of mediastinal nodes obtained through endobronchial ultrasound differ in malignant nodes from non-malignant. This parameter could differentiate malignat and non-malignat mediastinic and hiliar nodes

  19. Fractal analysis of urban environment: land use and sewer system

    Science.gov (United States)

    Gires, A.; Ochoa Rodriguez, S.; Van Assel, J.; Bruni, G.; Murla Tulys, D.; Wang, L.; Pina, R.; Richard, J.; Ichiba, A.; Willems, P.; Tchiguirinskaia, I.; ten Veldhuis, M. C.; Schertzer, D. J. M.

    2014-12-01

    Land use distribution are usually obtained by automatic processing of satellite and airborne pictures. The complexity of the obtained patterns which are furthermore scale dependent is enhanced in urban environment. This scale dependency is even more visible in a rasterized representation where only a unique class is affected to each pixel. A parameter commonly analysed in urban hydrology is the coefficient of imperviousness, which reflects the proportion of rainfall that will be immediately active in the catchment response. This coefficient is strongly scale dependent with a rasterized representation. This complex behaviour is well grasped with the help of the scale invariant notion of fractal dimension which enables to quantify the space occupied by a geometrical set (here the impervious areas) not only at a single scale but across all scales. This fractal dimension is also compared to the ones computed on the representation of the catchments with the help of operational semi-distributed models. Fractal dimensions of the corresponding sewer systems are also computed and compared with values found in the literature for natural river networks. This methodology is tested on 7 pilot sites of the European NWE Interreg IV RainGain project located in France, Belgium, Netherlands, United-Kingdom and Portugal. Results are compared between all the case study which exhibit different physical features (slope, level of urbanisation, population density...).

  20. Study of heart rate variability in driving situation by fractal analysis; Fractal kaiseki ni yoru untenchu no shinpaku hendo no bunseki

    Energy Technology Data Exchange (ETDEWEB)

    Hirata, Y; Nagaoka, M [Mazda Motor Corp., Hiroshima (Japan)

    1997-10-01

    This paper will explain method of fractal analysis for heart rate variability, as measuring method of mental stress in vehicle driving. In the previous, although there was a measuring method of mental stress by RSA, a issue arise such as reliability of analysis, because driver`s heart rate affect by respiration and muscle motion as well. We have established a method to measure mental stress by fractal dimension. And tried it is the proving ground and public road driving. We have confident that it is more reliable than RSA to quantify driver`s mental stress and fatigue. 9 refs., 9 figs., 1 tab.

  1. A fractal image analysis methodology for heat damage inspection in carbon fiber reinforced composites

    Science.gov (United States)

    Haridas, Aswin; Crivoi, Alexandru; Prabhathan, P.; Chan, Kelvin; Murukeshan, V. M.

    2017-06-01

    The use of carbon fiber-reinforced polymer (CFRP) composite materials in the aerospace industry have far improved the load carrying properties and the design flexibility of aircraft structures. A high strength to weight ratio, low thermal conductivity, and a low thermal expansion coefficient gives it an edge for applications demanding stringent loading conditions. Specifically, this paper focuses on the behavior of CFRP composites under stringent thermal loads. The properties of composites are largely affected by external thermal loads, especially when the loads are beyond the glass temperature, Tg, of the composite. Beyond this, the composites are subject to prominent changes in mechanical and thermal properties which may further lead to material decomposition. Furthermore, thermal damage formation being chaotic, a strict dimension cannot be associated with the formed damage. In this context, this paper focuses on comparing multiple speckle image analysis algorithms to effectively characterize the formed thermal damages on the CFRP specimen. This would provide us with a fast method for quantifying the extent of heat damage in carbon composites, thus reducing the required time for inspection. The image analysis methods used for the comparison include fractal dimensional analysis of the formed speckle pattern and analysis of number and size of various connecting elements in the binary image.

  2. AFM imaging and fractal analysis of surface roughness of AlN epilayers on sapphire substrates

    Energy Technology Data Exchange (ETDEWEB)

    Dallaeva, Dinara, E-mail: dinara.dallaeva@yandex.ru [Brno University of Technology, Faculty of Electrical Engineering and Communication, Physics Department, Technická 8, 616 00 Brno (Czech Republic); Ţălu, Ştefan [Technical University of Cluj-Napoca, Faculty of Mechanical Engineering, Department of AET, Discipline of Descriptive Geometry and Engineering Graphics, 103-105 B-dul Muncii Street, Cluj-Napoca 400641, Cluj (Romania); Stach, Sebastian [University of Silesia, Faculty of Computer Science and Materials Science, Institute of Informatics, Department of Biomedical Computer Systems, ul. Będzińska 39, 41-205 Sosnowiec (Poland); Škarvada, Pavel; Tománek, Pavel; Grmela, Lubomír [Brno University of Technology, Faculty of Electrical Engineering and Communication, Physics Department, Technická 8, 616 00 Brno (Czech Republic)

    2014-09-01

    Graphical abstract: - Highlights: • We determined the complexity of 3D surface roughness of aluminum nitride layers. • We used atomic force microscopy and analyzed their fractal geometry. • We determined the fractal dimension of surface roughness of aluminum nitride layers. • We determined the dependence of layer morphology on substrate temperature. - Abstract: The paper deals with AFM imaging and characterization of 3D surface morphology of aluminum nitride (AlN) epilayers on sapphire substrates prepared by magnetron sputtering. Due to the effect of temperature changes on epilayer's surface during the fabrication, a surface morphology is studied by combination of atomic force microscopy (AFM) and fractal analysis methods. Both methods are useful tools that may assist manufacturers in developing and fabricating AlN thin films with optimal surface characteristics. Furthermore, they provide different yet complementary information to that offered by traditional surface statistical parameters. This combination is used for the first time for measurement on AlN epilayers on sapphire substrates, and provides the overall 3D morphology of the sample surfaces (by AFM imaging), and reveals fractal characteristics in the surface morphology (fractal analysis)

  3. Statistics of semiflexible self-avoiding trails on a family of two-dimensional compact fractals

    International Nuclear Information System (INIS)

    Živić, I; Elezović-Hadžić, S; Milošević, S

    2011-01-01

    We have applied the exact and Monte Carlo renormalization group (MCRG) method to study the statistics of semiflexible self-avoiding trails (SATs) on the family of plane-filling (PF) fractals. Each fractal of the family is compact, that is, the fractal dimension d f is equal to 2 for all members of the PF family, which are enumerated by an odd integer b, 3≤b<∞. Varying values of the stiffness parameter s of trails from 1 to 0 (so that when s decreases the trail stiffness increases) we calculate exactly (for 3 ≤ b ≤ 7) and through the MCRG approach (for b ≤ 201) the sets of the critical exponents ν (associated with the mean squared end-to-end distances of SATs) and γ (associated with the total number of different SATs). Our results show that critical exponents are stiffness dependent functions, so that ν(s) is a monotonically decreasing function of s, for each studied b, whereas γ(s) displays a non-monotonic behavior for some values of b. On the other hand, by fixing the stiffness parameter s, our results show clearly that for highly flexible trails (with s = 1 and 0.9) ν is a non-monotonic function of b, while for stiffer SATs (with s ≤ 0.7) ν monotonically decreases with b. We also show that γ(b) increases with increasing b, independently of s. Finally, we compare the obtained SAT data with those obtained for the semiflexible self-avoiding walk (SAW) model on the same fractal family, and for both models we discuss behavior of the studied exponents in the fractal-to-Euclidean crossover region b→∞

  4. Fractal analysis of the surgical treatment of ligature-induced peri-implantitis in dogs

    International Nuclear Information System (INIS)

    Kim, Hak Kun; Kim, Jin Soo

    2010-01-01

    To evaluate the effect of surgical treatment of ligature-induced peri-implantitis in dogs using fractal analysis. Also, the capabilities of fractal analysis as bone analysis techniques were compared with those of histomorphometric analysis. A total of 24 implants were inserted in 6 dogs. After a 3-months, experimental periimplantitis characterized by a bone loss of about 3 mm was established by inducing with wires. Surgical treatment involving flap procedure, debridement of implants surface with chlorhexidine and saline (group 1), guided bone regeneration (GBR) with absorbable collagen membrane and mineralized bone graft (group 2), and CO2 laser application with GBR (group 3) were performed. After animals were sacrificed in 8 and 16 weeks respectively, bone sections including implants were made. Fractal dimensions were calculated by box-counting method on the skeletonized images, made from each region of interest, including five screws at medial and distal aspects of implant, were selected. Statistically significant differences in the fractal dimensions between the group 1 (0.9340 ± 0.0126) and group 3 (0.9783 ± 0.0118) at 16 weeks were found (P<0.05). The fractal dimension was statistically significant different between 8 (0.9395 ± 0.0283) and 16 weeks in group 3 (P<0.05). These results were similar with the result of the evaluation of new bone formation in histomorphometric analysis. Treatment of experimental peri-implantitis by using CO2 laser with GBR is more useful than other treatments in the formation of new bone and also the tendency of fractal dimension to increase relative to healing time may be a useful means of evaluating.

  5. Fractal analysis of the surgical treatment of ligature-induced peri-implantitis in dogs

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hak Kun; Kim, Jin Soo [School of Dentisity, Chosun University, Gwangju (Korea, Republic of)

    2010-09-15

    To evaluate the effect of surgical treatment of ligature-induced peri-implantitis in dogs using fractal analysis. Also, the capabilities of fractal analysis as bone analysis techniques were compared with those of histomorphometric analysis. A total of 24 implants were inserted in 6 dogs. After a 3-months, experimental periimplantitis characterized by a bone loss of about 3 mm was established by inducing with wires. Surgical treatment involving flap procedure, debridement of implants surface with chlorhexidine and saline (group 1), guided bone regeneration (GBR) with absorbable collagen membrane and mineralized bone graft (group 2), and CO2 laser application with GBR (group 3) were performed. After animals were sacrificed in 8 and 16 weeks respectively, bone sections including implants were made. Fractal dimensions were calculated by box-counting method on the skeletonized images, made from each region of interest, including five screws at medial and distal aspects of implant, were selected. Statistically significant differences in the fractal dimensions between the group 1 (0.9340 {+-} 0.0126) and group 3 (0.9783 {+-} 0.0118) at 16 weeks were found (P<0.05). The fractal dimension was statistically significant different between 8 (0.9395 {+-} 0.0283) and 16 weeks in group 3 (P<0.05). These results were similar with the result of the evaluation of new bone formation in histomorphometric analysis. Treatment of experimental peri-implantitis by using CO2 laser with GBR is more useful than other treatments in the formation of new bone and also the tendency of fractal dimension to increase relative to healing time may be a useful means of evaluating.

  6. Random walk through fractal environments

    OpenAIRE

    Isliker, H.; Vlahos, L.

    2002-01-01

    We analyze random walk through fractal environments, embedded in 3-dimensional, permeable space. Particles travel freely and are scattered off into random directions when they hit the fractal. The statistical distribution of the flight increments (i.e. of the displacements between two consecutive hittings) is analytically derived from a common, practical definition of fractal dimension, and it turns out to approximate quite well a power-law in the case where the dimension D of the fractal is ...

  7. Fractal-Based Analysis of the Influence of Music on Human Respiration

    Science.gov (United States)

    Reza Namazi, H.

    An important challenge in respiration related studies is to investigate the influence of external stimuli on human respiration. Auditory stimulus is an important type of stimuli that influences human respiration. However, no one discovered any trend, which relates the characteristics of the auditory stimuli to the characteristics of the respiratory signal. In this paper, we investigate the correlation between auditory stimuli and respiratory signal from fractal point of view. We found out that the fractal structure of respiratory signal is correlated with the fractal structure of the applied music. Based on the obtained results, the music with greater fractal dimension will result in respiratory signal with smaller fractal dimension. In order to verify this result, we benefit from approximate entropy. The results show the respiratory signal will have smaller approximate entropy by choosing the music with smaller approximate entropy. The method of analysis could be further investigated to analyze the variations of different physiological time series due to the various types of stimuli when the complexity is the main concern.

  8. Fractal Bread.

    Science.gov (United States)

    Esbenshade, Donald H., Jr.

    1991-01-01

    Develops the idea of fractals through a laboratory activity that calculates the fractal dimension of ordinary white bread. Extends use of the fractal dimension to compare other complex structures as other breads and sponges. (MDH)

  9. Site effect classification based on microtremor data analysis using a concentration-area fractal model

    Science.gov (United States)

    Adib, A.; Afzal, P.; Heydarzadeh, K.

    2015-01-01

    The aim of this study is to classify the site effect using concentration-area (C-A) fractal model in Meybod city, central Iran, based on microtremor data analysis. Log-log plots of the frequency, amplification and vulnerability index (k-g) indicate a multifractal nature for the parameters in the area. The results obtained from the C-A fractal modelling reveal that proper soil types are located around the central city. The results derived via the fractal modelling were utilized to improve the Nogoshi and Igarashi (1970, 1971) classification results in the Meybod city. The resulting categories are: (1) hard soil and weak rock with frequency of 6.2 to 8 Hz, (2) stiff soil with frequency of about 4.9 to 6.2 Hz, (3) moderately soft soil with the frequency of 2.4 to 4.9 Hz, and (4) soft soil with the frequency lower than 2.4 Hz.

  10. Site effect classification based on microtremor data analysis using concentration-area fractal model

    Science.gov (United States)

    Adib, A.; Afzal, P.; Heydarzadeh, K.

    2014-07-01

    The aim of this study is to classify the site effect using concentration-area (C-A) fractal model in Meybod city, Central Iran, based on microtremor data analysis. Log-log plots of the frequency, amplification and vulnerability index (k-g) indicate a multifractal nature for the parameters in the area. The results obtained from the C-A fractal modeling reveal that proper soil types are located around the central city. The results derived via the fractal modeling were utilized to improve the Nogoshi's classification results in the Meybod city. The resulted categories are: (1) hard soil and weak rock with frequency of 6.2 to 8 Hz, (2) stiff soil with frequency of about 4.9 to 6.2 Hz, (3) moderately soft soil with the frequency of 2.4 to 4.9 Hz, and (4) soft soil with the frequency lower than 2.4 Hz.

  11. Using fractal analysis in modeling the dynamics of forest areas and economic impact assessment

    DEFF Research Database (Denmark)

    Pintilii, Radu Daniel; Andronache, Ion; Diaconu, Daniel Constantin

    2017-01-01

    This study uses fractal analysis to quantify the spatial changes of forest resources caused by an increase of deforested areas. The method introduced contributes to the evaluation of forest resources being under significant pressure from anthropogenic activities. The pressure on the forest...... resources has been analyzed for Maramures, County, one of the most deforested counties in Romania. In order to evaluate this, the deforested areas were calculated for the period of 2001-2014, by using the Global Forest Change 2000-2014 database. The Fractal Fragmentation Index (FFI) and Fixed Grid 2D...

  12. Fractal analysis and nonlinear forecasting of indoor 222Rn time series

    International Nuclear Information System (INIS)

    Pausch, G.; Bossew, P.; Hofmann, W.; Steger, F.

    1998-01-01

    Fractal analyses of indoor 222 Rn time series were performed using different chaos theory based measurements such as time delay method, Hurst's rescaled range analysis, capacity (fractal) dimension, and Lyapunov exponent. For all time series we calculated only positive Lyapunov exponents which is a hint to chaos, while the Hurst exponents were well below 0.5, indicating antipersistent behaviour (past trends tend to reverse in the future). These time series were also analyzed with a nonlinear prediction method which allowed an estimation of the embedding dimensions with some restrictions, limiting the prediction to about three relative time steps. (orig.)

  13. Vibration modes of 3n-gaskets and other fractals

    Energy Technology Data Exchange (ETDEWEB)

    Bajorin, N; Chen, T; Dagan, A; Emmons, C; Hussein, M; Khalil, M; Mody, P; Steinhurst, B; Teplyaev, A [Department of Mathematics, University of Connecticut, Storrs CT 06269 (United States)

    2008-01-11

    We rigorously study eigenvalues and eigenfunctions (vibration modes) on the class of self-similar symmetric finitely ramified fractals, which include the Sierpinski gasket and other 3n-gaskets. We consider the classical Laplacian on fractals which generalizes the usual one-dimensional second derivative, is the generator of the self-similar diffusion process, and has possible applications as the quantum Hamiltonian. We develop a theoretical matrix analysis, including analysis of singularities, which allows us to compute eigenvalues, eigenfunctions and their multiplicities exactly. We support our theoretical analysis by symbolic and numerical computations. Our analysis, in particular, allows the computation of the spectral zeta function on fractals and the limiting distribution of eigenvalues (i.e., integrated density of states). We consider such examples as the level-3 Sierpinski gasket, a fractal 3-tree, and the diamond fractal.

  14. Random-fractal Ansatz for the configurations of two-dimensional critical systems.

    Science.gov (United States)

    Lee, Ching Hua; Ozaki, Dai; Matsueda, Hiroaki

    2016-12-01

    Critical systems have always intrigued physicists and precipitated the development of new techniques. Recently, there has been renewed interest in the information contained in the configurations of classical critical systems, whose computation do not require full knowledge of the wave function. Inspired by holographic duality, we investigated the entanglement properties of the classical configurations (snapshots) of the Potts model by introducing an Ansatz ensemble of random fractal images. By virtue of the central limit theorem, our Ansatz accurately reproduces the entanglement spectra of actual Potts snapshots without any fine tuning of parameters or artificial restrictions on ensemble choice. It provides a microscopic interpretation of the results of previous studies, which established a relation between the scaling behavior of snapshot entropy and the critical exponent. More importantly, it elucidates the role of ensemble disorder in restoring conformal invariance, an aspect previously ignored. Away from criticality, the breakdown of scale invariance leads to a renormalization of the parameter Σ in the random fractal Ansatz, whose variation can be used as an alternative determination of the critical exponent. We conclude by providing a recipe for the explicit construction of fractal unit cells consistent with a given scaling exponent.

  15. Investigation of diamond wheel topography in Elliptical Ultrasonic Assisted Grinding (EUAG) of monocrystal sapphire using fractal analysis method.

    Science.gov (United States)

    Wang, Qiuyan; Zhao, Wenxiang; Liang, Zhiqiang; Wang, Xibin; Zhou, Tianfeng; Wu, Yongbo; Jiao, Li

    2018-03-01

    The wear behaviors of grinding wheel have significant influence on the work-surface topography. However, a comprehensive and quantitative method is lacking for evaluating the wear conditions of grinding wheel. In this paper, a fractal analysis method is used to investigate the wear behavior of resin-bonded diamond wheel in Elliptical Ultrasonic Assisted Grinding (EUAG) of monocrystal sapphire, and a series of experiments on EUAG and conventional grinding (CG) are performed. The results show that the fractal dimension of grinding wheel topography is highly correlated to the wear behavior, i.e., grain fracture, grain pullout, and wheel loading. An increase in cutting edge density on the wheel surface results in an increase of the fractal dimension, but an increase in the grain pullout and wheel loading results in a decrease in the fractal dimension. The wheel topography in EUAG has a higher fractal dimension than that in CG before 60 passes due to better self-sharpening behavior, and then has a smaller fractal dimension because of more serious wheel loadings after 60 passes. By angle-dependent distribution analysis of profile fractal dimensions, the wheel surface topography is transformed from isotropic to anisotropic. These indicated that the fractal analysis method could be further used in monitoring of a grinding wheel performance in EUAG. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Radiologic assessment of bone healing after orthognathic surgery using fractal analysis

    Energy Technology Data Exchange (ETDEWEB)

    Park, Kwang Soo; Heo, Min Suk; Lee, Sam Sun; Choi, Soon Chul; Park, Tae Won [College of Dentistry, Seoul National University, Seoul (Korea, Republic of); Jeon, In Seong [Department of Dentistry, Inje University Sanggyepaik Hospital, Seoul (Korea, Republic of); Kim, Jong Dae [Division of Information and Communication Engineering, Hallym university, Chuncheon (Korea, Republic of)

    2002-12-15

    To evaluate the radiographic change of operation sites after orthognathic surgery using the digital image processing and fractal analysis. A series of panoramic radiographs of thirty-five randomly selected patients who had undergone mandibular orthognathic surgery (bilateral sagittal split ramus osteotomy) without clinical complication for osseous healing, were taken. The panoramic radiographs of each selected patient were taken at pre-operation (stage 0), 1 or 2 days after operation (stage 1), 1 month after operation (stage 2), 6 months after operation (stage 3), and 12 months after operation (stage 4). The radiographs were digitized at 600 dpi, 8 bit, and 256 gray levels. The region of interest, centered on the bony gap area of the operation site, was selected and the fractal dimension was calculated by using the tile-counting method. The mean values and standard deviations of fractal dimension for each stage were calculated and the differences among stage 0, 1, 2, 3, and 4 were evaluated through repeated measures of the ANOVA and paired t-test. The mean values and standard deviations of the fractal dimensions obtained from stage 0, 1, 2, 3, and 4 were 1.658 {+-} 0.048, 1.580 {+-} 0.050, 1.607 {+-} 0.046, 1.624 {+-} 0.049, and 1.641 {+-} 0.061, respectively. The fractal dimensions from stage 1 to stage 4 were shown to have a tendency to increase (p<0.05). The tendency of the fractal dimesion to increase relative to healing time may be a useful means of evaluating post-operative bony healing of the osteotomy site.

  17. Radiologic assessment of bone healing after orthognathic surgery using fractal analysis

    International Nuclear Information System (INIS)

    Park, Kwang Soo; Heo, Min Suk; Lee, Sam Sun; Choi, Soon Chul; Park, Tae Won; Jeon, In Seong; Kim, Jong Dae

    2002-01-01

    To evaluate the radiographic change of operation sites after orthognathic surgery using the digital image processing and fractal analysis. A series of panoramic radiographs of thirty-five randomly selected patients who had undergone mandibular orthognathic surgery (bilateral sagittal split ramus osteotomy) without clinical complication for osseous healing, were taken. The panoramic radiographs of each selected patient were taken at pre-operation (stage 0), 1 or 2 days after operation (stage 1), 1 month after operation (stage 2), 6 months after operation (stage 3), and 12 months after operation (stage 4). The radiographs were digitized at 600 dpi, 8 bit, and 256 gray levels. The region of interest, centered on the bony gap area of the operation site, was selected and the fractal dimension was calculated by using the tile-counting method. The mean values and standard deviations of fractal dimension for each stage were calculated and the differences among stage 0, 1, 2, 3, and 4 were evaluated through repeated measures of the ANOVA and paired t-test. The mean values and standard deviations of the fractal dimensions obtained from stage 0, 1, 2, 3, and 4 were 1.658 ± 0.048, 1.580 ± 0.050, 1.607 ± 0.046, 1.624 ± 0.049, and 1.641 ± 0.061, respectively. The fractal dimensions from stage 1 to stage 4 were shown to have a tendency to increase (p<0.05). The tendency of the fractal dimesion to increase relative to healing time may be a useful means of evaluating post-operative bony healing of the osteotomy site.

  18. Fractal and mechanical micro- and nanorange properties of sylvite and halite crystals

    Directory of Open Access Journals (Sweden)

    Valery N. Aptukov

    2017-09-01

    Full Text Available This article involves the treatment of micro- and nanorange scanning and indentation data for salt rock crystals obtained with help of the scanning microscope Dimension Icon using the mathematical models. It also describes the basic methods of fractal analysis. It shows the effectiveness of the method of minimal covering which is chosen to research the fractal properties of salt rock crystal surfaces. The article includes the algorithm of this method and the description of its generalization for the two-dimensional case. The values of fractal index and multifractal parameters have been calculated on the basis of the minimal covering method. The article also involves the anisotropy effects for fractal properties, comparison of fractal behavior on different scale levels. It gives the values of hardness for different parts of the crystals and studies the correlation between hardness and fractal index and describes the character of the influence of fractal dimension on roughness.

  19. Fractal analysis of visual search activity for mass detection during mammographic screening.

    Science.gov (United States)

    Alamudun, Folami; Yoon, Hong-Jun; Hudson, Kathleen B; Morin-Ducote, Garnetta; Hammond, Tracy; Tourassi, Georgia D

    2017-03-01

    The objective of this study was to assess the complexity of human visual search activity during mammographic screening using fractal analysis and to investigate its relationship with case and reader characteristics. The study was performed for the task of mammographic screening with simultaneous viewing of four coordinated breast views as typically done in clinical practice. Eye-tracking data and diagnostic decisions collected for 100 mammographic cases (25 normal, 25 benign, 50 malignant) from 10 readers (three board certified radiologists and seven Radiology residents), formed the corpus for this study. The fractal dimension of the readers' visual scanning pattern was computed with the Minkowski-Bouligand box-counting method and used as a measure of gaze complexity. Individual factor and group-based interaction ANOVA analysis was performed to study the association between fractal dimension, case pathology, breast density, and reader experience level. The consistency of the observed trends depending on gaze data representation was also examined. Case pathology, breast density, reader experience level, and individual reader differences are all independent predictors of the complexity of visual scanning pattern when screening for breast cancer. No higher order effects were found to be significant. Fractal characterization of visual search behavior during mammographic screening is dependent on case properties and image reader characteristics. © 2017 American Association of Physicists in Medicine.

  20. A fractal analysis of protein to DNA binding kinetics using biosensors.

    Science.gov (United States)

    Sadana, Ajit

    2003-08-01

    A fractal analysis of a confirmative nature only is presented for the binding of estrogen receptor (ER) in solution to its corresponding DNA (estrogen response element, ERE) immobilized on a sensor chip surface [J. Biol. Chem. 272 (1997) 11384], and for the cooperative binding of human 1,25-dihydroxyvitamin D(3) receptor (VDR) to DNA with the 9-cis-retinoic acid receptor (RXR) [Biochemistry 35 (1996) 3309]. Ligands were also used to modulate the first reaction. Data taken from the literature may be modeled by using a single- or a dual-fractal analysis. Relationships are presented for the binding rate coefficient as a function of either the analyte concentration in solution or the fractal dimension that exists on the biosensor surface. The binding rate expressions developed exhibit a wide range of dependence on the degree of heterogeneity that exists on the surface, ranging from sensitive (order of dependence equal to 1.202) to very sensitive (order of dependence equal to 12.239). In general, the binding rate coefficient increases as the degree of heterogeneity or the fractal dimension of the surface increases. The predictive relationships presented provide further physical insights into the reactions occurring on the biosensor surface. Even though these reactions are occurring on the biosensor surface, the relationships presented should assist in understanding and in possibly manipulating the reactions occurring on cellular surfaces.

  1. Fractal analysis of the hydraulic conductivity on a sandy porous media reproduced in a laboratory facility.

    Science.gov (United States)

    de Bartolo, S.; Fallico, C.; Straface, S.; Troisi, S.; Veltri, M.

    2009-04-01

    The complexity characterization of the porous media structure, in terms of the "pore" phase and the "solid" phase, can be carried out by means of the fractal geometry which is able to put in relationship the soil structural properties and the water content. It is particularly complicated to describe analytically the hydraulic conductivity for the irregularity of the porous media structure. However these can be described by many fractal models considering the soil structure as the distribution of particles dimensions, the distribution of the solid aggregates, the surface of the pore-solid interface and the fractal mass of the "pore" and "solid" phases. In this paper the fractal model of Yu and Cheng (2002) and Yu and Liu (2004), for a saturated bidispersed porous media, was considered. This model, using the Sierpinsky-type gasket scheme, doesn't contain empiric constants and furnishes a well accord with the experimental data. For this study an unconfined aquifer was reproduced by means of a tank with a volume of 10 Ã- 7 Ã- 3 m3, filled with a homogeneous sand (95% of SiO2), with a high percentage (86.4%) of grains between 0.063mm and 0.125mm and a medium-high permeability. From the hydraulic point of view, 17 boreholes, a pumping well and a drainage ring around its edge were placed. The permeability was measured utilizing three different methods, consisting respectively in pumping test, slug test and laboratory analysis of an undisturbed soil cores, each of that involving in the measurement a different support volume. The temporal series of the drawdown obtained by the pumping test were analyzed by the Neuman-type Curve method (1972), because the saturated part above the bottom of the facility represents an unconfined aquifer. The data analysis of the slug test were performed by the Bouwer & Rice (1976) method and the laboratory analysis were performed on undisturbed saturated soil samples utilizing a falling head permeameter. The obtained values either of the

  2. Morphometrical differences between resectable and non-resectable pancreatic cancer: a fractal analysis.

    Science.gov (United States)

    Vasilescu, Catalin; Giza, Dana Elena; Petrisor, Petre; Dobrescu, Radu; Popescu, Irinel; Herlea, Vlad

    2012-01-01

    Pancreatic cancer is a highly aggressive cancer with a rising incidence and poor prognosis despite active surgical treatment. Candidates for surgical resection should be carefully selected. In order to avoid unnecessary laparotomy it is useful to identify reliable factors that may predict resectability. Nuclear morphometry and fractal dimension of pancreatic nuclear features could provide important preoperative information in assessing pancreas resectability. Sixty-one patients diagnosed with pancreatic cancer were enrolled in this retrospective study between 2003 and 2005. Patients were divided into two groups: one resectable cancer group and one with non-resectable pancreatic cancer. Morphometric parameters measured were: nuclear area, length of minor axis and length of major axis. Nuclear shape and chromatin distribution of the pancreatic tumor cells were both estimated using fractal dimension. Morphometric measurements have shown significant differences between the nuclear area of the resectable group and the non-resectable group (61.9 ± 19.8µm vs. 42.2 ± 15.6µm). Fractal dimension of the nuclear outlines and chromatin distribution was found to have a higher value in the non-resectable group (p<0.05). Objective measurements should be performed to improve risk assessment and therapeutic decisions in pancreatic cancer. Nuclear morphometry of the pancreatic nuclear features can provide important pre-operative information in resectability assessment. The fractal dimension of the nuclear shape and chromatin distribution may be considered a new promising adjunctive tool for conventional pathological analysis.

  3. Quantum mechanical analysis of fractal conductance fluctuations: a picture using self-similar periodic orbits

    International Nuclear Information System (INIS)

    Ogura, Tatsuo; Miyamoto, Masanori; Budiyono, Agung; Nakamura, Katsuhiro

    2007-01-01

    Fractal magnetoconductance fluctuations are often observed in experiments on ballistic quantum dots. Although the analysis of the exact self-affine fractal has been given by the semiclassical theory using self-similar periodic orbits in systems with a soft-walled potential with a saddle, there has been no corresponding quantum mechanical investigation. We numerically calculate the quantum conductance with use of the recursive Green's function method applied to open cavities characterized by a Henon-Heiles type potential. The conductance fluctuations show exact self-affinity just as in some of the experimental observations. The enlargement factor for the horizontal axis can be explained by the scaling factor of the area of self-similar periodic orbits, and therefore be attributed to the curvature of the saddle in the cavity potential. The fractal dimension obtained through the box counting method agrees with those evaluated with use of the Hurst exponent, and coincides with the semiclassical prediction. We further investigate the variation of the fractal dimension by changing the control parameters between the classical and quantum domains. (fast track communication)

  4. Trabecular morphometry by fractal signature analysis is a novel marker of osteoarthritis progression.

    Science.gov (United States)

    Kraus, Virginia Byers; Feng, Sheng; Wang, ShengChu; White, Scott; Ainslie, Maureen; Brett, Alan; Holmes, Anthony; Charles, H Cecil

    2009-12-01

    To evaluate the effectiveness of using subchondral bone texture observed on a radiograph taken at baseline to predict progression of knee osteoarthritis (OA) over a 3-year period. A total of 138 participants in the Prediction of Osteoarthritis Progression study were evaluated at baseline and after 3 years. Fractal signature analysis (FSA) of the medial subchondral tibial plateau was performed on fixed flexion radiographs of 248 nonreplaced knees, using a commercially available software tool. OA progression was defined as a change in joint space narrowing (JSN) or osteophyte formation of 1 grade according to a standardized knee atlas. Statistical analysis of fractal signatures was performed using a new model based on correlating the overall shape of a fractal dimension curve with radius. Fractal signature of the medial tibial plateau at baseline was predictive of medial knee JSN progression (area under the curve [AUC] 0.75, of a receiver operating characteristic curve) but was not predictive of osteophyte formation or progression of JSN in the lateral compartment. Traditional covariates (age, sex, body mass index, knee pain), general bone mineral content, and joint space width at baseline were no more effective than random variables for predicting OA progression (AUC 0.52-0.58). The predictive model with maximum effectiveness combined fractal signature at baseline, knee alignment, traditional covariates, and bone mineral content (AUC 0.79). We identified a prognostic marker of OA that is readily extracted from a plain radiograph using FSA. Although the method needs to be validated in a second cohort, our results indicate that the global shape approach to analyzing these data is a potentially efficient means of identifying individuals at risk of knee OA progression.

  5. Quantitative multi-scale analysis of mineral distributions and fractal pore structures for a heterogeneous Junger Basin shale

    International Nuclear Information System (INIS)

    Wang, Y.D.; Ren, Y.Q.; Hu, T.; Deng, B.; Xiao, T.Q.; Liu, K.Y.; Yang, Y.S.

    2016-01-01

    Three dimensional (3D) characterization of shales has recently attracted wide attentions in relation to the growing importance of shale oil and gas. Obtaining a complete 3D compositional distribution of shale has proven to be challenging due to its multi-scale characteristics. A combined multi-energy X-ray micro-CT technique and data-constrained modelling (DCM) approach has been used to quantitatively investigate the multi-scale mineral and porosity distributions of a heterogeneous shale from the Junger Basin, northwestern China by sub-sampling. The 3D sub-resolution structures of minerals and pores in the samples are quantitatively obtained as the partial volume fraction distributions, with colours representing compositions. The shale sub-samples from two areas have different physical structures for minerals and pores, with the dominant minerals being feldspar and dolomite, respectively. Significant heterogeneities have been observed in the analysis. The sub-voxel sized pores form large interconnected clusters with fractal structures. The fractal dimensions of the largest clusters for both sub-samples were quantitatively calculated and found to be 2.34 and 2.86, respectively. The results are relevant in quantitative modelling of gas transport in shale reservoirs

  6. Dimensionality analysis of multiparticle production at high energies

    International Nuclear Information System (INIS)

    Chilingaryan, A.A.

    1989-01-01

    An algorithm of analysis of multiparticle final states is offered. By the Renyi dimensionalities, which were calculated according to experimental data, though it were hadron distribution over the rapidity intervals or particle distribution in an N-dimensional momentum space, we can judge about the degree of correlation of particles, separate the momentum space projections and areas where the probability measure singularities are observed. The method is tested in a series of calculations with samples of fractal object points and with samples obtained by means of different generators of pseudo- and quasi-random numbers. 27 refs.; 11 figs

  7. Delineation of geochemical anomalies based on stream sediment data utilizing fractal modeling and staged factor analysis

    Science.gov (United States)

    Afzal, Peyman; Mirzaei, Misagh; Yousefi, Mahyar; Adib, Ahmad; Khalajmasoumi, Masoumeh; Zarifi, Afshar Zia; Foster, Patrick; Yasrebi, Amir Bijan

    2016-07-01

    Recognition of significant geochemical signatures and separation of geochemical anomalies from background are critical issues in interpretation of stream sediment data to define exploration targets. In this paper, we used staged factor analysis in conjunction with the concentration-number (C-N) fractal model to generate exploration targets for prospecting Cr and Fe mineralization in Balvard area, SE Iran. The results show coexistence of derived multi-element geochemical signatures of the deposit-type sought and ultramafic-mafic rocks in the NE and northern parts of the study area indicating significant chromite and iron ore prospects. In this regard, application of staged factor analysis and fractal modeling resulted in recognition of significant multi-element signatures that have a high spatial association with host lithological units of the deposit-type sought, and therefore, the generated targets are reliable for further prospecting of the deposit in the study area.

  8. A fractal analysis of skin pigmented lesions using the novel tool of the variogram technique

    Energy Technology Data Exchange (ETDEWEB)

    Mastrolonardo, Mario [Department of Medical and Occupational Sciences, Unit of Dermatology, Azienda Ospedaliero-Universitaria ' Ospedali Riuniti' di Foggia (Italy)]. E-mail: mariomastrolonardo@libero.it; Conte, Elio [Department of Medical and Occupational Sciences, Unit of Dermatology, Azienda Ospedaliero-Universitaria ' Ospedali Riuniti' di Foggia (Italy); Department of Pharmacology and Human Physiology, TIRES-Center for Innovative Technology for Signal Detection and Processing, Bari University, 70100 Bari (Italy); Zbilut, Joseph P. [Department of Molecular Biophysics and Physiology, Rush University, Chicago, IL 60612 (United States)

    2006-06-15

    The incidence of the cutaneous malignant melanoma is increasing rapidly in the world [Ferlay J, Bray F, Pisani P, et al. GLOBOCAN 2000: Cancer incidence, mortality and prevalence worldwide, Version 1.0 IARC Cancer Base no. 5. Lyon: IARC Press, 2001]. The therapeutic address requires a method having high sensitivity and capability to diagnose such disease at an early stage. We introduce a new diagnostic method based on non-linear methodologies. In detail we suggest that fractal as well as noise and chaos dynamics are the most important components responsible for genetic instability of melanocytes. As consequence we introduce the new technique of the variogram and of fractal analysis extended to the whole regions of interest of skin in order to obtain parameters able to identify the malignant lesion. In a preliminary analysis, satisfactory results are reached.

  9. Fractal Branching in Vascular Trees and Networks by VESsel GENeration Analysis (VESGEN)

    Science.gov (United States)

    Parsons-Wingerter, Patricia A.

    2016-01-01

    Vascular patterning offers an informative multi-scale, fractal readout of regulatory signaling by complex molecular pathways. Understanding such molecular crosstalk is important for physiological, pathological and therapeutic research in Space Biology and Astronaut countermeasures. When mapped out and quantified by NASA's innovative VESsel GENeration Analysis (VESGEN) software, remodeling vascular patterns become useful biomarkers that advance out understanding of the response of biology and human health to challenges such as microgravity and radiation in space environments.

  10. Fusion of multiscale wavelet-based fractal analysis on retina image for stroke prediction.

    Science.gov (United States)

    Che Azemin, M Z; Kumar, Dinesh K; Wong, T Y; Wang, J J; Kawasaki, R; Mitchell, P; Arjunan, Sridhar P

    2010-01-01

    In this paper, we present a novel method of analyzing retinal vasculature using Fourier Fractal Dimension to extract the complexity of the retinal vasculature enhanced at different wavelet scales. Logistic regression was used as a fusion method to model the classifier for 5-year stroke prediction. The efficacy of this technique has been tested using standard pattern recognition performance evaluation, Receivers Operating Characteristics (ROC) analysis and medical prediction statistics, odds ratio. Stroke prediction model was developed using the proposed system.

  11. Dimensional analysis for engineers

    CERN Document Server

    Simon, Volker; Gomaa, Hassan

    2017-01-01

    This monograph provides the fundamentals of dimensional analysis and illustrates the method by numerous examples for a wide spectrum of applications in engineering. The book covers thoroughly the fundamental definitions and the Buckingham theorem, as well as the choice of the system of basic units. The authors also include a presentation of model theory and similarity solutions. The target audience primarily comprises researchers and practitioners but the book may also be suitable as a textbook at university level.

  12. Some speculations on the critical exponents and fractal dimensionalities relevant to realistic spin glass alloys

    International Nuclear Information System (INIS)

    Mookerjee, A.

    1984-09-01

    The problem of spin-glass to ferromagnetic transition with increasing concentration is then one of the familiar nearest neighbour percolation but on the background of IIC. In the regime p<=psub(c) at T=Tsub(g)(p), the IIC forms a fractal background on which ferromagnetic percolation takes place. The equivalent statement is that the mobility edge Jsub(c)(p) moves outwards as p increases and at a critical psub(c) coincides with the band edge Jsub(B). At and above these concentrations the mode with highest energy is extended and we have the familiar paramagnetic to ferromagnetic transition as temperature is lowered across Jsub(B)/ksub(B). The physical justification of this picture is not at all transparent as in the case of the cluster percolation ideas. To this date no reliable estimates of the behaviour of Jsub(c)(p) as a function of p, for a purely off diagonal random matrix J(R) have been made

  13. Void analysis of target residues at SPS energy -evidence of correlation with fractal behaviour

    International Nuclear Information System (INIS)

    Ghosh, Dipak; Deb, Argha; Das, Rupa . E-mail : dipakghosh_in@yahoo.com

    2007-01-01

    This paper presents an analysis of the target residues in 32 S -AgBr and 16 0 -AgBr interactions at 200 AGeV and 60AGeV respectively in terms of fractal moment by Takagi method and void probability scaling. The study reveals an interesting feature of the production process. In 16 O- AgBr interactions multifractal behaviour is present in both hemispheres and void probability does not show a scaling behaviour, but at high energy the situation changes. In 32 S -AgBr interactions for both hemisphere monofractal behaviour is indicated by that data and void probability also shows good scaling behaviour. This suggests that a possible correlation of void probability with fractal behaviour of target residues. (author)

  14. Alzheimer's Disease Detection in Brain Magnetic Resonance Images Using Multiscale Fractal Analysis

    International Nuclear Information System (INIS)

    Lahmiri, Salim; Boukadoum, Mounir

    2013-01-01

    We present a new automated system for the detection of brain magnetic resonance images (MRI) affected by Alzheimer's disease (AD). The MRI is analyzed by means of multiscale analysis (MSA) to obtain its fractals at six different scales. The extracted fractals are used as features to differentiate healthy brain MRI from those of AD by a support vector machine (SVM) classifier. The result of classifying 93 brain MRIs consisting of 51 images of healthy brains and 42 of brains affected by AD, using leave-one-out cross-validation method, yielded 99.18% ± 0.01 classification accuracy, 100% sensitivity, and 98.20% ± 0.02 specificity. These results and a processing time of 5.64 seconds indicate that the proposed approach may be an efficient diagnostic aid for radiologists in the screening for AD

  15. Classification of diabetic retinopathy using fractal dimension analysis of eye fundus image

    Science.gov (United States)

    Safitri, Diah Wahyu; Juniati, Dwi

    2017-08-01

    Diabetes Mellitus (DM) is a metabolic disorder when pancreas produce inadequate insulin or a condition when body resist insulin action, so the blood glucose level is high. One of the most common complications of diabetes mellitus is diabetic retinopathy which can lead to a vision problem. Diabetic retinopathy can be recognized by an abnormality in eye fundus. Those abnormalities are characterized by microaneurysms, hemorrhage, hard exudate, cotton wool spots, and venous's changes. The diabetic retinopathy is classified depends on the conditions of abnormality in eye fundus, that is grade 1 if there is a microaneurysm only in the eye fundus; grade 2, if there are a microaneurysm and a hemorrhage in eye fundus; and grade 3: if there are microaneurysm, hemorrhage, and neovascularization in the eye fundus. This study proposed a method and a process of eye fundus image to classify of diabetic retinopathy using fractal analysis and K-Nearest Neighbor (KNN). The first phase was image segmentation process using green channel, CLAHE, morphological opening, matched filter, masking, and morphological opening binary image. After segmentation process, its fractal dimension was calculated using box-counting method and the values of fractal dimension were analyzed to make a classification of diabetic retinopathy. Tests carried out by used k-fold cross validation method with k=5. In each test used 10 different grade K of KNN. The accuracy of the result of this method is 89,17% with K=3 or K=4, it was the best results than others K value. Based on this results, it can be concluded that the classification of diabetic retinopathy using fractal analysis and KNN had a good performance.

  16. Infrastructural Fractals

    DEFF Research Database (Denmark)

    Bruun Jensen, Casper

    2007-01-01

    . Instead, I outline a fractal approach to the study of space, society, and infrastructure. A fractal orientation requires a number of related conceptual reorientations. It has implications for thinking about scale and perspective, and (sociotechnical) relations, and for considering the role of the social...... and a fractal social theory....

  17. FDG uptake heterogeneity evaluated by fractal analysis improves the differential diagnosis of pulmonary nodules

    Energy Technology Data Exchange (ETDEWEB)

    Miwa, Kenta, E-mail: kenta5710@gmail.com [Department of Nuclear Medicine, Cancer Institute Hospital of Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550 (Japan); Division of Medical Quantum Science, Department of Health Sciences, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan); Inubushi, Masayuki, E-mail: inubushi@med.kawasaki-m.ac.jp [Department of Nuclear Medicine, Kawasaki Medical School, 577 Matsushima Kurashiki, Okayama 701-0192 (Japan); Wagatsuma, Kei, E-mail: kei1192@hotmail.co.jp [Department of Nuclear Medicine, Cancer Institute Hospital of Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550 (Japan); Nagao, Michinobu, E-mail: minagao@radiol.med.kyushu-u.ac.jp [Department of Molecular Imaging and Diagnosis, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan); Murata, Taisuke, E-mail: taisuke113@gmail.com [Department of Nuclear Medicine, Cancer Institute Hospital of Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550 (Japan); Koyama, Masamichi, E-mail: masamichi.koyama@jfcr.or.jp [Department of Nuclear Medicine, Cancer Institute Hospital of Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550 (Japan); Koizumi, Mitsuru, E-mail: mitsuru@jfcr.or.jp [Department of Nuclear Medicine, Cancer Institute Hospital of Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550 (Japan); Sasaki, Masayuki, E-mail: msasaki@hs.med.kyushu-u.ac.jp [Division of Medical Quantum Science, Department of Health Sciences, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan)

    2014-04-15

    Purpose: The present study aimed to determine whether fractal analysis of morphological complexity and intratumoral heterogeneity of FDG uptake can help to differentiate malignant from benign pulmonary nodules. Materials and methods: We retrospectively analyzed data from 54 patients with suspected non-small cell lung cancer (NSCLC) who were examined by FDG PET/CT. Pathological assessments of biopsy specimens confirmed 35 and 19 nodules as NSCLC and inflammatory lesions, respectively. The morphological fractal dimension (m-FD), maximum standardized uptake value (SUV{sub max}) and density fractal dimension (d-FD) of target nodules were calculated from CT and PET images. Fractal dimension is a quantitative index of morphological complexity and tracer uptake heterogeneity; higher values indicate increased complexity and heterogeneity. Results: The m-FD, SUV{sub max} and d-FD significantly differed between malignant and benign pulmonary nodules (p < 0.05). Although the diagnostic ability was better for d-FD than m-FD and SUV{sub max}, the difference did not reach statistical significance. Tumor size correlated significantly with SUV{sub max} (r = 0.51, p < 0.05), but not with either m-FD or d-FD. Furthermore, m-FD combined with either SUV{sub max} or d-FD improved diagnostic accuracy to 92.6% and 94.4%, respectively. Conclusion: The d-FD of intratumoral heterogeneity of FDG uptake can help to differentially diagnose malignant and benign pulmonary nodules. The SUV{sub max} and d-FD obtained from FDG-PET images provide different types of information that are equally useful for differential diagnoses. Furthermore, the morphological complexity determined by CT combined with heterogeneous FDG uptake determined by PET improved diagnostic accuracy.

  18. Selecting the thermo-cyclic treatment’s optimum parameters based analysis of fractal surfaces indicators

    Directory of Open Access Journals (Sweden)

    Вікторія Юріївна Іващенко

    2015-03-01

    Full Text Available Optimization of complex modes of heat treatments, in which control the properties of processed steel occurs by varying the large number of parameters, is quite time-consuming process. The influence of thermal processes on the formation of the metal structure manifested at the level of micro- and meso-sizes, which are realized qualitatively different mechanisms of destruction. Method of multi-factual description of the fracture’s surfaces, which was got after tests of mechanical properties, was used for the choice of the optimum thermo-cyclic mode with the variable temperatures Tmax and Tmin in cycles in this work. It vas founded the number of TCT-mode’s cycles and order changing Tmax affect the processes of dislocation motion and the formation of micro-voids in the metal. This work shows the relationship between these processes and fractal indices. Fractal indices of micro levels correlate to the dislocation density of the structure, and the meso-level indices - to the percentage reduction of area at fracture. It was proved that the analysis of the topography of the fracture’s surfaces using fractal indices to determine the optimal combination of processing parameters required to obtain the best mechanical properties. The new TCT-modes with variable temperature settings can be seen as reinforcing thermal technology that promotes self-organization phase-structural state of steels because it is able to generate an effective barrier to the movement of dislocations and cracks promotion

  19. Fractal analysis of fracture increasing spontaneous imbibition in porous media with gas-saturated

    KAUST Repository

    Cai, Jianchao; Sun, Shuyu

    2013-01-01

    Spontaneous imbibition (SI) of wetting liquid into matrix blocks due to capillary pressure is regarded as an important recovery mechanism in low permeability fractured reservoir. In this paper, an analytical model is proposed for characterizing SI horizontally from a single plane fracture into gas-saturated matrix blocks. The presented model is based on the fractal character of pores in porous matrix, with gravity force included in the entire imbibition process. The accumulated mass of wetting liquid imbibed into matrix blocks is related to a number of factors such as contact area, pore fractal dimension, tortuosity, maximum pore size, porosity, liquid density and viscosity, surface tension, contact angle, as well as height and tilt angle of the fracture. The mechanism of fracture-enhanced SI is analyzed accordingly. Because of the effect of fracture, the gravity force is positive to imbibition process. Additionally, the farther away from the fracture top of the pore, the more influential the hydrostatic pressure is upon the imbibition action. The presented fractal analysis of horizontal spontaneous imbibition from a single fracture could also shed light on the scaling study of the mass transfer function between matrix and fracture system of fractured reservoirs. © 2013 World Scientific Publishing Company.

  20. Fractal analysis of fracture increasing spontaneous imbibition in porous media with gas-saturated

    KAUST Repository

    Cai, Jianchao

    2013-08-01

    Spontaneous imbibition (SI) of wetting liquid into matrix blocks due to capillary pressure is regarded as an important recovery mechanism in low permeability fractured reservoir. In this paper, an analytical model is proposed for characterizing SI horizontally from a single plane fracture into gas-saturated matrix blocks. The presented model is based on the fractal character of pores in porous matrix, with gravity force included in the entire imbibition process. The accumulated mass of wetting liquid imbibed into matrix blocks is related to a number of factors such as contact area, pore fractal dimension, tortuosity, maximum pore size, porosity, liquid density and viscosity, surface tension, contact angle, as well as height and tilt angle of the fracture. The mechanism of fracture-enhanced SI is analyzed accordingly. Because of the effect of fracture, the gravity force is positive to imbibition process. Additionally, the farther away from the fracture top of the pore, the more influential the hydrostatic pressure is upon the imbibition action. The presented fractal analysis of horizontal spontaneous imbibition from a single fracture could also shed light on the scaling study of the mass transfer function between matrix and fracture system of fractured reservoirs. © 2013 World Scientific Publishing Company.

  1. Dimensional analysis made simple

    International Nuclear Information System (INIS)

    Lira, Ignacio

    2013-01-01

    An inductive strategy is proposed for teaching dimensional analysis to second- or third-year students of physics, chemistry, or engineering. In this strategy, Buckingham's theorem is seen as a consequence and not as the starting point. In order to concentrate on the basics, the mathematics is kept as elementary as possible. Simple examples are suggested for classroom demonstrations of the power of the technique and others are put forward for homework or experimentation, but instructors are encouraged to produce examples of their own. (paper)

  2. Computation of complexity measures of morphologically significant zones decomposed from binary fractal sets via multiscale convexity analysis

    International Nuclear Information System (INIS)

    Lim, Sin Liang; Koo, Voon Chet; Daya Sagar, B.S.

    2009-01-01

    Multiscale convexity analysis of certain fractal binary objects-like 8-segment Koch quadric, Koch triadic, and random Koch quadric and triadic islands-is performed via (i) morphologic openings with respect to recursively changing the size of a template, and (ii) construction of convex hulls through half-plane closings. Based on scale vs convexity measure relationship, transition levels between the morphologic regimes are determined as crossover scales. These crossover scales are taken as the basis to segment binary fractal objects into various morphologically prominent zones. Each segmented zone is characterized through normalized morphologic complexity measures. Despite the fact that there is no notably significant relationship between the zone-wise complexity measures and fractal dimensions computed by conventional box counting method, fractal objects-whether they are generated deterministically or by introducing randomness-possess morphologically significant sub-zones with varied degrees of spatial complexities. Classification of realistic fractal sets and/or fields according to sub-zones possessing varied degrees of spatial complexities provides insight to explore links with the physical processes involved in the formation of fractal-like phenomena.

  3. Changes in Dimensionality and Fractal Scaling Suggest Soft-Assembled Dynamics in Human EEG

    DEFF Research Database (Denmark)

    Wiltshire, Travis; Euler, Matthew J.; McKinney, Ty

    2017-01-01

    Humans are high-dimensional, complex systems consisting of many components that must coordinate in order to perform even the simplest of activities. Many behavioral studies, especially in the movement sciences, have advanced the notion of soft-assembly to describe how systems with many components...

  4. Renormalization Analysis of a Composite Ultrasonic Transducer with a Fractal Architecture

    Science.gov (United States)

    Algehyne, Ebrahem A.; Mulholland, Anthony J.

    To ensure the safe operation of many safety critical structures such as nuclear plants, aircraft and oil pipelines, non-destructive imaging is employed using piezoelectric ultrasonic transducers. These sensors typically operate at a single frequency due to the restrictions imposed on their resonant behavior by the use of a single length scale in the design. To allow these transducers to transmit and receive more complex signals it would seem logical to use a range of length scales in the design so that a wide range of resonating frequencies will result. In this paper, we derive a mathematical model to predict the dynamics of an ultrasound transducer that achieves this range of length scales by adopting a fractal architecture. In fact, the device is modeled as a graph where the nodes represent segments of the piezoelectric and polymer materials. The electrical and mechanical fields that are contained within this graph are then expressed in terms of a finite element basis. The structure of the resulting discretized equations yields to a renormalization methodology which is used to derive expressions for the non-dimensionalized electrical impedance and the transmission and reception sensitivities. A comparison with a standard design shows some benefits of these fractal designs.

  5. A transfer matrix method for the analysis of fractal quantum potentials

    International Nuclear Information System (INIS)

    Monsoriu, Juan A; Villatoro, Francisco R; Marin, Maria J; UrchueguIa, Javier F; Cordoba, Pedro Fernandez de

    2005-01-01

    The scattering properties of quantum particles on a sequence of potentials converging towards a fractal one are obtained by means of the transfer matrix method. The reflection coefficients for both the fractal potential and finite periodic potential are calculated and compared. It is shown that the reflection coefficient for the fractal potential has a self-similar structure associated with the fractal distribution of the potential whose degree of self-similarity has been quantified by means of the correlation function

  6. A transfer matrix method for the analysis of fractal quantum potentials

    Energy Technology Data Exchange (ETDEWEB)

    Monsoriu, Juan A [Departamento de Fisica Aplicada, Universidad Politecnica de Valencia, E-46022 Valencia (Spain); Villatoro, Francisco R [Departamento de Lenguajes y Ciencias de la Computacion, Universidad de Malaga, E-29071 Malaga (Spain); Marin, Maria J [Departamento de Termodinamica, Universitat de Valencia, E-46100 Burjassot (Spain); UrchueguIa, Javier F [Departamento de Fisica Aplicada, Universidad Politecnica de Valencia, E-46022 Valencia (Spain); Cordoba, Pedro Fernandez de [Departamento de Matematica Aplicada, Universidad Politecnica de Valencia, E-46022 Valencia (Spain)

    2005-07-01

    The scattering properties of quantum particles on a sequence of potentials converging towards a fractal one are obtained by means of the transfer matrix method. The reflection coefficients for both the fractal potential and finite periodic potential are calculated and compared. It is shown that the reflection coefficient for the fractal potential has a self-similar structure associated with the fractal distribution of the potential whose degree of self-similarity has been quantified by means of the correlation function.

  7. Fractal dust grains in plasma

    International Nuclear Information System (INIS)

    Huang, F.; Peng, R. D.; Liu, Y. H.; Chen, Z. Y.; Ye, M. F.; Wang, L.

    2012-01-01

    Fractal dust grains of different shapes are observed in a radially confined magnetized radio frequency plasma. The fractal dimensions of the dust structures in two-dimensional (2D) horizontal dust layers are calculated, and their evolution in the dust growth process is investigated. It is found that as the dust grains grow the fractal dimension of the dust structure decreases. In addition, the fractal dimension of the center region is larger than that of the entire region in the 2D dust layer. In the initial growth stage, the small dust particulates at a high number density in a 2D layer tend to fill space as a normal surface with fractal dimension D = 2. The mechanism of the formation of fractal dust grains is discussed.

  8. Fractal analysis of SEM images and mercury intrusion porosimetry data for the microstructural characterization of microcrystalline cellulose-based pellets

    International Nuclear Information System (INIS)

    Gomez-Carracedo, A.; Alvarez-Lorenzo, C.; Coca, R.; Martinez-Pacheco, R.; Concheiro, A.; Gomez-Amoza, J.L.

    2009-01-01

    The microstructure of theophylline pellets prepared from microcrystalline cellulose, carbopol and dicalcium phosphate dihydrate, according to a mixture design, was characterized using textural analysis of gray-level scanning electron microscopy (SEM) images and thermodynamic analysis of the cumulative pore volume distribution obtained by mercury intrusion porosimetry. Surface roughness evaluated in terms of gray-level non-uniformity and fractal dimension of pellet surface depended on agglomeration phenomena during extrusion/spheronization. Pores at the surface, mainly 1-15 μm in diameter, determined both the mechanism and the rate of theophylline release, and a strong negative correlation between the fractal geometry and the b parameter of the Weibull function was found for pellets containing >60% carbopol. Theophylline mean dissolution time from these pellets was about two to four times greater. Textural analysis of SEM micrographs and fractal analysis of mercury intrusion data are complementary techniques that enable complete characterization of multiparticulate drug dosage forms

  9. Empirical analysis of scaling and fractal characteristics of outpatients

    International Nuclear Information System (INIS)

    Zhang, Li-Jiang; Liu, Zi-Xian; Guo, Jin-Li

    2014-01-01

    The paper uses power-law frequency distribution, power spectrum analysis, detrended fluctuation analysis, and surrogate data testing to evaluate outpatient registration data of two hospitals in China and to investigate the human dynamics of systems that use the “first come, first served” protocols. The research results reveal that outpatient behavior follow scaling laws. The results also suggest that the time series of inter-arrival time exhibit 1/f noise and have positive long-range correlation. Our research may contribute to operational optimization and resource allocation in hospital based on FCFS admission protocols.

  10. Empirical analysis of scaling and fractal characteristics of outpatients

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Li-Jiang, E-mail: zljjiang@gmail.com [College of Management and Economics, Tianjin University, Tianjin 300072 (China); Management Institute, Xinxiang Medical University, Xinxiang 453003, Henan (China); Liu, Zi-Xian, E-mail: liuzixian@tju.edu.cn [College of Management and Economics, Tianjin University, Tianjin 300072 (China); Guo, Jin-Li, E-mail: phd5816@163.com [Business School, University of Shanghai for Science and Technology, Shanghai 200093 (China)

    2014-01-31

    The paper uses power-law frequency distribution, power spectrum analysis, detrended fluctuation analysis, and surrogate data testing to evaluate outpatient registration data of two hospitals in China and to investigate the human dynamics of systems that use the “first come, first served” protocols. The research results reveal that outpatient behavior follow scaling laws. The results also suggest that the time series of inter-arrival time exhibit 1/f noise and have positive long-range correlation. Our research may contribute to operational optimization and resource allocation in hospital based on FCFS admission protocols.

  11. Possibilities of fractal analysis of the competitive dynamics: Approaches and procedures

    Science.gov (United States)

    Zagornaya, T. O.; Medvedeva, M. A.; Panova, V. L.; Isaichik, K. F.; Medvedev, A. N.

    2017-11-01

    The possibilities of the fractal approach are used for the study of non-linear nature of the competitive dynamics of the market of trading intermediaries. Based on a statistical study of the functioning of retail indicators in the region, the approach to the analysis of the characteristics of the competitive behavior of market participants is developed. The authors postulate the principles of studying the dynamics of competition as a result of changes in the characteristics of the vector and the competitive behavior of market agents.

  12. Analysis of MRI by fractals for prediction of sensory attributes: A case study in loin

    DEFF Research Database (Denmark)

    Caballero, Daniel; Antequera, Teresa; Caro, Andrés

    2018-01-01

    This study investigates the use of fractal algorithms to analyse MRI of meat products, specifically loin, in order to determine sensory parameters of loin. For that, the capability of different fractal algorithms was evaluated (Classical Fractal Algorithm, CFA; Fractal Texture Algorithm, FTA...... was analysed. Results on this study firstly demonstrate the capability of fractal algorithms to analyse MRI from meat product. Different combinations of the analysed techniques can be applied for predicting most sensory attributes of loins adequately (R > 0.5). However, the combination of SE, OPFTA and MLR...... offered the most appropriate results. Thus, it could be proposed as an alternative to the traditional food technology methods....

  13. Encounters with chaos and fractals

    CERN Document Server

    Gulick, Denny

    2012-01-01

    Periodic Points Iterates of Functions Fixed Points Periodic Points Families of Functions The Quadratic Family Bifurcations Period-3 Points The Schwarzian Derivative One-Dimensional Chaos Chaos Transitivity and Strong Chaos Conjugacy Cantor Sets Two-Dimensional Chaos Review of Matrices Dynamics of Linear FunctionsNonlinear Maps The Hénon Map The Horseshoe Map Systems of Differential Equations Review of Systems of Differential Equations Almost Linearity The Pendulum The Lorenz System Introduction to Fractals Self-Similarity The Sierpiński Gasket and Other "Monsters"Space-Filling Curves Similarity and Capacity DimensionsLyapunov Dimension Calculating Fractal Dimensions of Objects Creating Fractals Sets Metric Spaces The Hausdorff Metric Contractions and Affine Functions Iterated Function SystemsAlgorithms for Drawing Fractals Complex Fractals: Julia Sets and the Mandelbrot Set Complex Numbers and Functions Julia Sets The Mandelbrot Set Computer Programs Answers to Selected Exercises References Index.

  14. NATO Advanced Study Institute and Séminaire de mathématiques supérieures on Fractal Geometry and Analysis

    CERN Document Server

    Dubuc, Serge

    1991-01-01

    This ASI- which was also the 28th session of the Seminaire de mathematiques superieures of the Universite de Montreal - was devoted to Fractal Geometry and Analysis. The present volume is the fruit of the work of this Advanced Study Institute. We were fortunate to have with us Prof. Benoit Mandelbrot - the creator of numerous concepts in Fractal Geometry - who gave a series of lectures on multifractals, iteration of analytic functions, and various kinds of fractal stochastic processes. Different foundational contributions for Fractal Geometry like measure theory, dy­ namical systems, iteration theory, branching processes are recognized. The geometry of fractal sets and the analytical tools used to investigate them provide a unifying theme of this book. The main topics that are covered are then as follows. Dimension Theory. Many definitions of fractional dimension have been proposed, all of which coincide on "regular" objects, but often take different values for a given fractal set. There is ample discussion ...

  15. Fractal characteristics investigation on electromagnetic scattering from 2-D Weierstrass fractal dielectric rough surface

    International Nuclear Information System (INIS)

    Ren Xincheng; Guo Lixin

    2008-01-01

    A normalized two-dimensional band-limited Weierstrass fractal function is used for modelling the dielectric rough surface. An analytic solution of the scattered field is derived based on the Kirchhoff approximation. The variance of scattering intensity is presented to study the fractal characteristics through theoretical analysis and numerical calculations. The important conclusion is obtained that the diffracted envelope slopes of scattering pattern can be approximated as a slope of linear equation. This conclusion will be applicable for solving the inverse problem of reconstructing rough surface and remote sensing. (classical areas of phenomenology)

  16. Fractal Analysis of Elastographic Images for Automatic Detection of Diffuse Diseases of Salivary Glands: Preliminary Results

    Directory of Open Access Journals (Sweden)

    Alexandru Florin Badea

    2013-01-01

    Full Text Available The geometry of some medical images of tissues, obtained by elastography and ultrasonography, is characterized in terms of complexity parameters such as the fractal dimension (FD. It is well known that in any image there are very subtle details that are not easily detectable by the human eye. However, in many cases like medical imaging diagnosis, these details are very important since they might contain some hidden information about the possible existence of certain pathological lesions like tissue degeneration, inflammation, or tumors. Therefore, an automatic method of analysis could be an expedient tool for physicians to give a faultless diagnosis. The fractal analysis is of great importance in relation to a quantitative evaluation of “real-time” elastography, a procedure considered to be operator dependent in the current clinical practice. Mathematical analysis reveals significant discrepancies among normal and pathological image patterns. The main objective of our work is to demonstrate the clinical utility of this procedure on an ultrasound image corresponding to a submandibular diffuse pathology.

  17. pplication of Fractal Technique for Analysis of Geophysical - Geochemical Databases in Tekieh Pb-Zn Ore Deposit (SE of Arak

    Directory of Open Access Journals (Sweden)

    Seyed Reza Mehrnia

    2017-02-01

    calculated based on measuring the fractal dimensional variations in the recursive patterns (Mehrnia, 2013. In practice, the Area-Concentration equations (Mandelbrot, 2005 were applied in resistivity, induction polarization, Pb and Zn datasets for achieving the nonlinear relationships in anomalous regions which were characterized by increasing in regression coefficients with more spatial correlation of the variable than linear statistics (Mehrnia, 2013. Results and Discussion This research showed that both linear and nonlinear statistics are able to estimate the spatial association of geochemical anomalies with geophysical variables. A meaningful increase in the regression coefficient was also revealed after measuring the self-similar peculiarities of concentration values on gridded plots (Salehi, 2004; Torkashvand et al., 2009. From the fractal point of view, Pb ore-minerals have been deposited in the western sub-region, while Zn mineralization seems to be extended in the depth of eastern alterations. Also a predictable geochemical zonation can be considered in the western target (meaningful Pb anomalies that is more patterned than the eastern halos according to geological observations (Momenzadeh and Ziseman, 1981 and mineralogical evidences (Salehi, 2004. An increase in Supra ore/Sub ore proportional content was measured in the western sub-region which indicated more reliable potential of Pb mineralization (Galena as a particular indication of sulfide-rich minerals than the same phases of ore forming processes in the eastern sub-region, although the content of Pb-ores rapidly decreases in the eastern target and is replaced by Zn minerals (Sphalerite as particular indication of sulfide-rich mineralization. Because power law relationships are significant in both geochemical and geophysical anomalies (Mehrnia, 2013 a detailed program including borehole geophysics and litho-geochemical land-surveys should be considered in the prospected regions. Therefore, upcoming phases

  18. Critical behavior of the system of two crossing self-avoiding walks on a family of three-dimensional fractal lattices

    International Nuclear Information System (INIS)

    Zivic, I.; Elezovic-Hadzic, S.; Milosevic, S.

    2009-01-01

    We study the polymer system consisting of two-polymer chains situated in a fractal container that belongs to the three-dimensional Sierpinski Gasket (3D SG) family of fractals. The two-polymer system is modeled by two interacting self-avoiding walks (SAW) immersed in a good solvent. To conceive the inter-chain interactions we apply the model of two crossing self-avoiding walks (CSAW) in which the chains can cross each other. By applying renormalization group (RG) method, we establish the relevant phase diagrams for b=2 and b=3 members of the 3D SG fractal family. Also, at the appropriate transition fixed points we calculate the contact critical exponents φ, associated with the number of contacts between monomers of different chains. For larger b(2≤b≤30) we apply Monte Carlo renormalization group (MCRG) method, and compare the obtained results for φ with phenomenological proposals for the contact critical exponent, as well as with results obtained for other similar models of two-polymer system.

  19. Spatial-temporal data model and fractal analysis of transportation network in GIS environment

    Science.gov (United States)

    Feng, Yongjiu; Tong, Xiaohua; Li, Yangdong

    2008-10-01

    How to organize transportation data characterized by multi-time, multi-scale, multi-resolution and multi-source is one of the fundamental problems of GIS-T development. A spatial-temporal data model for GIS-T is proposed based on Spatial-temporal- Object Model. Transportation network data is systemically managed using dynamic segmentation technologies. And then a spatial-temporal database is built to integrally store geographical data of multi-time for transportation. Based on the spatial-temporal database, functions of spatial analysis of GIS-T are substantively extended. Fractal module is developed to improve the analyzing in intensity, density, structure and connectivity of transportation network based on the validation and evaluation of topologic relation. Integrated fractal with GIS-T strengthens the functions of spatial analysis and enriches the approaches of data mining and knowledge discovery of transportation network. Finally, the feasibility of the model and methods are tested thorough Guangdong Geographical Information Platform for Highway Project.

  20. Detecting Springs in the Coastal Area of the Gunungsewu Karst Terrain, Yogyakarta Special Province, Indonesia, Analysis using Fractal Geometry

    Directory of Open Access Journals (Sweden)

    Sari Bahagiarti Kusumayudha

    2009-11-01

    Full Text Available The Gunungsewu area is a karst terrain with water scarcity, located in the Yogyakarta Special Province, adjacent to the open sea of Indian Ocean in the South. Shorelines of the Gunungsewu southern parts show fractal geometry phenomenon, and there can be found some groundwater outlets discharging to the Indian Ocean. One of the coastal outlets exists at the Baron Beach.The amount of water discharge from this spring reaches 20,000 l/sec in wet season, and approximately 9000 in dry season. In order to find other potential coastal springs, shoreline of the south coast is divided into some segments. By applying fractal analysis utilizing air photo of 1 : 30,000 scale, the fractal dimension of every shore line segment is determined, and then the fractal dimension value is correlated to the existence of spring in the segment being analyzed. The results inform us that shoreline segments having fractal dimension (D > 1.300 are potential for the occurrence of coastal springs.

  1. Detection of architectural distortion in prior screening mammograms using Gabor filters, phase portraits, fractal dimension, and texture analysis

    International Nuclear Information System (INIS)

    Rangayyan, Rangaraj M.; Prajna, Shormistha; Ayres, Fabio J.; Desautels, J.E.L.

    2008-01-01

    Mammography is a widely used screening tool for the early detection of breast cancer. One of the commonly missed signs of breast cancer is architectural distortion. The purpose of this study is to explore the application of fractal analysis and texture measures for the detection of architectural distortion in screening mammograms taken prior to the detection of breast cancer. A method based on Gabor filters and phase portrait analysis was used to detect initial candidates for sites of architectural distortion. A total of 386 regions of interest (ROIs) were automatically obtained from 14 ''prior mammograms'', including 21 ROIs related to architectural distortion. From the corresponding set of 14 ''detection mammograms'', 398 ROIs were obtained, including 18 related to breast cancer. For each ROI, the fractal dimension and Haralick's texture features were computed. The fractal dimension of the ROIs was calculated using the circular average power spectrum technique. The average fractal dimension of the normal (false-positive) ROIs was significantly higher than that of the ROIs with architectural distortion (p = 0.006). For the ''prior mammograms'', the best receiver operating characteristics (ROC) performance achieved, in terms of the area under the ROC curve, was 0.80 with a Bayesian classifier using four features including fractal dimension, entropy, sum entropy, and inverse difference moment. Analysis of the performance of the methods with free-response receiver operating characteristics indicated a sensitivity of 0.79 at 8.4 false positives per image in the detection of sites of architectural distortion in the ''prior mammograms''. Fractal dimension offers a promising way to detect the presence of architectural distortion in prior mammograms. (orig.)

  2. Fractality and the law of the wall

    Science.gov (United States)

    Xu, Haosen H. A.; Yang, X. I. A.

    2018-05-01

    Fluid motions in the inertial range of isotropic turbulence are fractal, with their space-filling capacity slightly below regular three-dimensional objects, which is a consequence of the energy cascade. Besides the energy cascade, the other often encountered cascading process is the momentum cascade in wall-bounded flows. Despite the long-existing analogy between the two processes, many of the thoroughly investigated aspects of the energy cascade have so far received little attention in studies of the momentum counterpart, e.g., the possibility of the momentum-transferring scales in the logarithmic region being fractal has not been considered. In this work, this possibility is pursued, and we discuss one of its implications. Following the same dimensional arguments that lead to the D =2.33 fractal dimension of wrinkled surfaces in isotropic turbulence, we show that the large-scale momentum-carrying eddies may also be fractal and non-space-filling, which then leads to the power-law scaling of the mean velocity profile. The logarithmic law of the wall, on the other hand, corresponds to space-filling eddies, as suggested by Townsend [The Structure of Turbulent Shear Flow (Cambridge University Press, Cambridge, 1980)]. Because the space-filling capacity is an integral geometric quantity, the analysis presented in this work provides us with a low-order quantity, with which, one would be able to distinguish between the logarithmic law and the power law.

  3. Fractal and multifractal approaches for the analysis of crack-size dependent scaling laws in fatigue

    Energy Technology Data Exchange (ETDEWEB)

    Paggi, Marco [Politecnico di Torino, Department of Structural Engineering and Geotechnics, Corso Duca degli Abruzzi 24, 10129 Torino (Italy)], E-mail: marco.paggi@polito.it; Carpinteri, Alberto [Politecnico di Torino, Department of Structural Engineering and Geotechnics, Corso Duca degli Abruzzi 24, 10129 Torino (Italy)

    2009-05-15

    The enhanced ability to detect and measure very short cracks, along with a great interest in applying fracture mechanics formulae to smaller and smaller crack sizes, has pointed out the so-called anomalous behavior of short cracks with respect to their longer counterparts. The crack-size dependencies of both the fatigue threshold and the Paris' constant C are only two notable examples of these anomalous scaling laws. In this framework, a unified theoretical model seems to be missing and the behavior of short cracks can still be considered as an open problem. In this paper, we propose a critical reexamination of the fractal models for the analysis of crack-size effects in fatigue. The limitations of each model are put into evidence and removed. At the end, a new generalized theory based on fractal geometry is proposed, which permits to consistently interpret the short crack-related anomalous scaling laws within a unified theoretical formulation. Finally, this approach is herein used to interpret relevant experimental data related to the crack-size dependence of the fatigue threshold in metals.

  4. Fractal and multifractal approaches for the analysis of crack-size dependent scaling laws in fatigue

    International Nuclear Information System (INIS)

    Paggi, Marco; Carpinteri, Alberto

    2009-01-01

    The enhanced ability to detect and measure very short cracks, along with a great interest in applying fracture mechanics formulae to smaller and smaller crack sizes, has pointed out the so-called anomalous behavior of short cracks with respect to their longer counterparts. The crack-size dependencies of both the fatigue threshold and the Paris' constant C are only two notable examples of these anomalous scaling laws. In this framework, a unified theoretical model seems to be missing and the behavior of short cracks can still be considered as an open problem. In this paper, we propose a critical reexamination of the fractal models for the analysis of crack-size effects in fatigue. The limitations of each model are put into evidence and removed. At the end, a new generalized theory based on fractal geometry is proposed, which permits to consistently interpret the short crack-related anomalous scaling laws within a unified theoretical formulation. Finally, this approach is herein used to interpret relevant experimental data related to the crack-size dependence of the fatigue threshold in metals.

  5. Landslide displacement analysis based on fractal theory, in Wanzhou District, Three Gorges Reservoir, China

    Directory of Open Access Journals (Sweden)

    Lei Gui

    2016-09-01

    Full Text Available Slow moving landslide is a major disaster in the Three Gorges Reservoir area. It is difficult to compare the deformation among different parts of this kind of landslide through GPS measurements when the displacement of different monitoring points is similar in values. So far, studies have been seldom carried out to find out the information hidden behind those GPS monitoring data to solve this problem. Therefore, in this study, three landslides were chosen to perform landslide displacement analysis based on fractal theory. The major advantage of this study is that it has not only considered the values of the displacement of those GPS monitoring points, but also considered the moving traces of them. This allows to reveal more information from GPS measurements and to obtain a broader understanding of the deformation history on different parts of a unique landslide, especially for slow moving landslides. The results proved that using the fractal dimension as an indicator is reliable to estimate the deformation of each landslide and to represent landslide deformation on both spatial and temporal scales. The results of this study could make sense to those working on landslide hazard and risk assessment and land use planning.

  6. The use dynamic avalanching and fractal analysis to characterise uranium oxide powders

    International Nuclear Information System (INIS)

    Hobbs, J.W.; Rhodes, D.

    2000-01-01

    Direct thermal denitration is an attractive method of co-converting mixed-metal nitrate solutions of plutonium and uranium into oxide because of its apparent simplicity. Such benefits are often marred by the relatively poor powder quality and handling characteristics, which can be overcome by modifications to the process chemistry. To ensure that powder synthesis routes under assessment require the minimal further processing it is necessary to be able to characterise the powder fully in term of the key fundamental properties. This paper will demonstrate the use of a dynamic avalanching technique, fractal analysis and morphology to assess processing behaviour. The use of dynamic avalanching to uniquely characterise the chaotic flow properties of urania powders has proved successful and results have shown that this technique is capable of detecting small differences in processing behaviour due changes in morphologies and particle size distribution. This technique has promise for being able to provide nearly instantaneous feedback to the powder generation process being monitored (e.g. calcination, milling, mixing). The use of fractals to describe powders is an interesting characterisation tool when combined with morphological shape factors and the flow index. (authors)

  7. Fractal dimension analysis for robust ultrasonic non-destructive evaluation (NDE) of coarse grained materials

    Science.gov (United States)

    Li, Minghui; Hayward, Gordon

    2018-04-01

    Over the recent decades, there has been a growing demand on reliable and robust non-destructive evaluation (NDE) of structures and components made from coarse grained materials such as alloys, stainless steels, carbon-reinforced composites and concrete; however, when inspected using ultrasound, the flaw echoes are usually contaminated by high-level, time-invariant, and correlated grain noise originating from the microstructure and grain boundaries, leading to pretty low signal-to-noise ratio (SNR) and the flaw information being obscured or completely hidden by the grain noise. In this paper, the fractal dimension analysis of the A-scan echoes is investigated as a measure of complexity of the time series to distinguish the echoes originating from the real defects and the grain noise, and then the normalized fractal dimension coefficients are applied to the amplitudes as the weighting factor to enhance the SNR and defect detection. Experiments on industrial samples of the mild steel and the stainless steel are conducted and the results confirm the great benefits of the method.

  8. Dynamics of metamorphism processes by the fractal textures analysis of garnets, amphiboles and pyroxenes of Lapland Granulite Belt, Kola Peninsula

    Directory of Open Access Journals (Sweden)

    Miłosz A. Huber

    2012-01-01

    Full Text Available About thousand analyzes of garnet, amphibole and pyroxene crystals from selected samples of amphibolite and granulite rocks from Lapland Granulite Belt in Kandalaksha region (Kola Peninsula has been made. Indicated fractal-box dimension of studied minerals has a good correlation with tectonic zones, lead to a new insight in the dynamics of processes, which has modified the examined region. Fractal-box dimension makes the textural analysis more precise, because it consents for the mathematic and repeated review of crystals topology depending directly on processes which had created them.

  9. Fractal analysis as a potential tool for surface morphology of thin films

    Science.gov (United States)

    Soumya, S.; Swapna, M. S.; Raj, Vimal; Mahadevan Pillai, V. P.; Sankararaman, S.

    2017-12-01

    Fractal geometry developed by Mandelbrot has emerged as a potential tool for analyzing complex systems in the diversified fields of science, social science, and technology. Self-similar objects having the same details in different scales are referred to as fractals and are analyzed using the mathematics of non-Euclidean geometry. The present work is an attempt to correlate fractal dimension for surface characterization by Atomic Force Microscopy (AFM). Taking the AFM images of zinc sulphide (ZnS) thin films prepared by pulsed laser deposition (PLD) technique, under different annealing temperatures, the effect of annealing temperature and surface roughness on fractal dimension is studied. The annealing temperature and surface roughness show a strong correlation with fractal dimension. From the regression equation set, the surface roughness at a given annealing temperature can be calculated from the fractal dimension. The AFM images are processed using Photoshop and fractal dimension is calculated by box-counting method. The fractal dimension decreases from 1.986 to 1.633 while the surface roughness increases from 1.110 to 3.427, for a change of annealing temperature 30 ° C to 600 ° C. The images are also analyzed by power spectrum method to find the fractal dimension. The study reveals that the box-counting method gives better results compared to the power spectrum method.

  10. Local connected fractal dimension analysis in gill of fish experimentally exposed to toxicants

    Energy Technology Data Exchange (ETDEWEB)

    Manera, Maurizio, E-mail: mmanera@unite.it [Faculty of Biosciences, Food and Environmental Technologies, University of Teramo, Piano d’Accio, I-64100 Teramo (Italy); Giari, Luisa [Department of Life Sciences and Biotechnology, University of Ferrara, St. Borsari 46, I-44121 Ferrara (Italy); De Pasquale, Joseph A. [Morphogenyx Inc., PO Box 717, East Northport, NY 11731 (United States); Sayyaf Dezfuli, Bahram [Department of Life Sciences and Biotechnology, University of Ferrara, St. Borsari 46, I-44121 Ferrara (Italy)

    2016-06-15

    Highlights: • An objective, operator unbiased method was developed to evaluate gill pathology. • The method relies on the measure of local connected fractal dimension frequency. • Exposure classes were adequately discriminated by linear discriminant analysis. - Abstract: An operator-neutral method was implemented to objectively assess European seabass, Dicentrarchus labrax (Linnaeus, 1758) gill pathology after experimental exposure to cadmium (Cd) and terbuthylazine (TBA) for 24 and 48 h. An algorithm-derived local connected fractal dimension (LCFD) frequency measure was used in this comparative analysis. Canonical variates (CVA) and linear discriminant analysis (LDA) were used to evaluate the discrimination power of the method among exposure classes (unexposed, Cd exposed, TBA exposed). Misclassification, sensitivity and specificity, both with original and cross-validated cases, were determined. LCFDs frequencies enhanced the differences among classes which were visually selected after their means, respective variances and the differences between Cd and TBA exposed means, with respect to unexposed mean, were analyzed by scatter plots. Selected frequencies were then scanned by means of LDA, stepwise analysis, and Mahalanobis distance to detect the most discriminative frequencies out of ten originally selected. Discrimination resulted in 91.7% of cross-validated cases correctly classified (22 out of 24 total cases), with sensitivity and specificity, respectively, of 95.5% (1 false negative with respect to 21 really positive cases) and 75% (1 false positive with respect to 3 really negative cases). CVA with convex hull polygons ensured prompt, visually intuitive discrimination among exposure classes and graphically supported the false positive case. The combined use of semithin sections, which enhanced the visual evaluation of the overall lamellar structure; of LCFD analysis, which objectively detected local variation in complexity, without the possible bias

  11. Local connected fractal dimension analysis in gill of fish experimentally exposed to toxicants

    International Nuclear Information System (INIS)

    Manera, Maurizio; Giari, Luisa; De Pasquale, Joseph A.; Sayyaf Dezfuli, Bahram

    2016-01-01

    Highlights: • An objective, operator unbiased method was developed to evaluate gill pathology. • The method relies on the measure of local connected fractal dimension frequency. • Exposure classes were adequately discriminated by linear discriminant analysis. - Abstract: An operator-neutral method was implemented to objectively assess European seabass, Dicentrarchus labrax (Linnaeus, 1758) gill pathology after experimental exposure to cadmium (Cd) and terbuthylazine (TBA) for 24 and 48 h. An algorithm-derived local connected fractal dimension (LCFD) frequency measure was used in this comparative analysis. Canonical variates (CVA) and linear discriminant analysis (LDA) were used to evaluate the discrimination power of the method among exposure classes (unexposed, Cd exposed, TBA exposed). Misclassification, sensitivity and specificity, both with original and cross-validated cases, were determined. LCFDs frequencies enhanced the differences among classes which were visually selected after their means, respective variances and the differences between Cd and TBA exposed means, with respect to unexposed mean, were analyzed by scatter plots. Selected frequencies were then scanned by means of LDA, stepwise analysis, and Mahalanobis distance to detect the most discriminative frequencies out of ten originally selected. Discrimination resulted in 91.7% of cross-validated cases correctly classified (22 out of 24 total cases), with sensitivity and specificity, respectively, of 95.5% (1 false negative with respect to 21 really positive cases) and 75% (1 false positive with respect to 3 really negative cases). CVA with convex hull polygons ensured prompt, visually intuitive discrimination among exposure classes and graphically supported the false positive case. The combined use of semithin sections, which enhanced the visual evaluation of the overall lamellar structure; of LCFD analysis, which objectively detected local variation in complexity, without the possible bias

  12. Fractals everywhere

    CERN Document Server

    Barnsley, Michael F

    2012-01-01

    ""Difficult concepts are introduced in a clear fashion with excellent diagrams and graphs."" - Alan E. Wessel, Santa Clara University""The style of writing is technically excellent, informative, and entertaining."" - Robert McCartyThis new edition of a highly successful text constitutes one of the most influential books on fractal geometry. An exploration of the tools, methods, and theory of deterministic geometry, the treatment focuses on how fractal geometry can be used to model real objects in the physical world. Two sixteen-page full-color inserts contain fractal images, and a bonus CD of

  13. A fractal-based image encryption system

    KAUST Repository

    Abd-El-Hafiz, S. K.; Radwan, Ahmed Gomaa; Abdel Haleem, Sherif H.; Barakat, Mohamed L.

    2014-01-01

    single-fractal image and statistical analysis is performed. A general encryption system utilising multiple fractal images is, then, introduced to improve the performance and increase the encryption key up to hundreds of bits. This improvement is achieved

  14. Fractal fluctuations and quantum-like chaos in the brain by analysis of variability of brain waves: A new method based on a fractal variance function and random matrix theory: A link with El Naschie fractal Cantorian space-time and V. Weiss and H. Weiss golden ratio in brain

    International Nuclear Information System (INIS)

    Conte, Elio; Khrennikov, Andrei; Federici, Antonio; Zbilut, Joseph P.

    2009-01-01

    We develop a new method for analysis of fundamental brain waves as recorded by the EEG. To this purpose we introduce a Fractal Variance Function that is based on the calculation of the variogram. The method is completed by using Random Matrix Theory. Some examples are given. We also discuss the link of such formulation with H. Weiss and V. Weiss golden ratio found in the brain, and with El Naschie fractal Cantorian space-time theory.

  15. Inverted fractal analysis of TiO{sub x} thin layers grown by inverse pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Égerházi, L., E-mail: egerhazi.laszlo@gmail.com [University of Szeged, Faculty of Medicine, Department of Medical Physics and Informatics, Korányi fasor 9., H-6720 Szeged (Hungary); Smausz, T. [University of Szeged, Faculty of Science, Department of Optics and Quantum Electronics, Dóm tér 9., H-6720 Szeged (Hungary); Bari, F. [University of Szeged, Faculty of Medicine, Department of Medical Physics and Informatics, Korányi fasor 9., H-6720 Szeged (Hungary)

    2013-08-01

    Inverted fractal analysis (IFA), a method developed for fractal analysis of scanning electron microscopy images of cauliflower-like thin films is presented through the example of layers grown by inverse pulsed laser deposition (IPLD). IFA uses the integrated fractal analysis module (FracLac) of the image processing software ImageJ, and an objective thresholding routine that preserves the characteristic features of the images, independently of their brightness and contrast. IFA revealed f{sub D} = 1.83 ± 0.01 for TiO{sub x} layers grown at 5–50 Pa background pressures. For a series of images, this result was verified by evaluating the scaling of the number of still resolved features on the film, counted manually. The value of f{sub D} not only confirms the fractal structure of TiO{sub x} IPLD thin films, but also suggests that the aggregation of plasma species in the gas atmosphere may have only limited contribution to the deposition.

  16. Dimensional analysis in field theory

    International Nuclear Information System (INIS)

    Stevenson, P.M.

    1981-01-01

    Dimensional Transmutation (the breakdown of scale invariance in field theories) is reconciled with the commonsense notions of Dimensional Analysis. This makes possible a discussion of the meaning of the Renormalisation Group equations, completely divorced from the technicalities of renormalisation. As illustrations, I describe some very farmiliar QCD results in these terms

  17. Electromagnetism on anisotropic fractal media

    Science.gov (United States)

    Ostoja-Starzewski, Martin

    2013-04-01

    Basic equations of electromagnetic fields in anisotropic fractal media are obtained using a dimensional regularization approach. First, a formulation based on product measures is shown to satisfy the four basic identities of the vector calculus. This allows a generalization of the Green-Gauss and Stokes theorems as well as the charge conservation equation on anisotropic fractals. Then, pursuing the conceptual approach, we derive the Faraday and Ampère laws for such fractal media, which, along with two auxiliary null-divergence conditions, effectively give the modified Maxwell equations. Proceeding on a separate track, we employ a variational principle for electromagnetic fields, appropriately adapted to fractal media, so as to independently derive the same forms of these two laws. It is next found that the parabolic (for a conducting medium) and the hyperbolic (for a dielectric medium) equations involve modified gradient operators, while the Poynting vector has the same form as in the non-fractal case. Finally, Maxwell's electromagnetic stress tensor is reformulated for fractal systems. In all the cases, the derived equations for fractal media depend explicitly on fractal dimensions in three different directions and reduce to conventional forms for continuous media with Euclidean geometries upon setting these each of dimensions equal to unity.

  18. Steady laminar flow of fractal fluids

    Energy Technology Data Exchange (ETDEWEB)

    Balankin, Alexander S., E-mail: abalankin@ipn.mx [Grupo Mecánica Fractal, ESIME, Instituto Politécnico Nacional, México D.F., 07738 (Mexico); Mena, Baltasar [Laboratorio de Ingeniería y Procesos Costeros, Instituto de Ingeniería, Universidad Nacional Autónoma de México, Sisal, Yucatán, 97355 (Mexico); Susarrey, Orlando; Samayoa, Didier [Grupo Mecánica Fractal, ESIME, Instituto Politécnico Nacional, México D.F., 07738 (Mexico)

    2017-02-12

    We study laminar flow of a fractal fluid in a cylindrical tube. A flow of the fractal fluid is mapped into a homogeneous flow in a fractional dimensional space with metric induced by the fractal topology. The equations of motion for an incompressible Stokes flow of the Newtonian fractal fluid are derived. It is found that the radial distribution for the velocity in a steady Poiseuille flow of a fractal fluid is governed by the fractal metric of the flow, whereas the pressure distribution along the flow direction depends on the fractal topology of flow, as well as on the fractal metric. The radial distribution of the fractal fluid velocity in a steady Couette flow between two concentric cylinders is also derived. - Highlights: • Equations of Stokes flow of Newtonian fractal fluid are derived. • Pressure distribution in the Newtonian fractal fluid is derived. • Velocity distribution in Poiseuille flow of fractal fluid is found. • Velocity distribution in a steady Couette flow is established.

  19. Analysis of fractal dimensions of rat bones from film and digital images

    Science.gov (United States)

    Pornprasertsuk, S.; Ludlow, J. B.; Webber, R. L.; Tyndall, D. A.; Yamauchi, M.

    2001-01-01

    OBJECTIVES: (1) To compare the effect of two different intra-oral image receptors on estimates of fractal dimension; and (2) to determine the variations in fractal dimensions between the femur, tibia and humerus of the rat and between their proximal, middle and distal regions. METHODS: The left femur, tibia and humerus from 24 4-6-month-old Sprague-Dawley rats were radiographed using intra-oral film and a charge-coupled device (CCD). Films were digitized at a pixel density comparable to the CCD using a flat-bed scanner. Square regions of interest were selected from proximal, middle, and distal regions of each bone. Fractal dimensions were estimated from the slope of regression lines fitted to plots of log power against log spatial frequency. RESULTS: The fractal dimensions estimates from digitized films were significantly greater than those produced from the CCD (P=0.0008). Estimated fractal dimensions of three types of bone were not significantly different (P=0.0544); however, the three regions of bones were significantly different (P=0.0239). The fractal dimensions estimated from radiographs of the proximal and distal regions of the bones were lower than comparable estimates obtained from the middle region. CONCLUSIONS: Different types of image receptors significantly affect estimates of fractal dimension. There was no difference in the fractal dimensions of the different bones but the three regions differed significantly.

  20. Results of fractal analysis of the Kiel extensive air shower data

    International Nuclear Information System (INIS)

    Kempa, J.; Samorski, M.

    1998-01-01

    For years there has been a problem in cosmic ray studies of how to distinguish individual extensive air showers (EAS) originating from primary protons, heavy nuclei or primary photons. In this paper results of experimental data obtained from the fractal analysis of particle density distributions in individual EAS detected in the range of shower sizes N e between 1.4x10 5 -5x10 6 by the old Kiel experiment are presented. The Lipschitz-Hoelder exponent distributions of EAS detected by the Kiel experiment are discussed. The examples of EAS most probably originating from primary protons, heavy nuclei and high-energy gamma-rays are presented. The lateral distributions of charged particle densities at small distances, angular and size spectra and the mass composition of primary cosmic ray particles around the 'knee' of the energy spectrum are discussed. The Monte Carlo simulation data illustrating the problem of interest are also shown. (author)

  1. Fractal analysis of the effect of particle aggregation distribution on thermal conductivity of nanofluids

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Wei, E-mail: weiw2015@gmail.com [Hubei Subsurface Multi-scale Imaging Key Laboratory, Institute of Geophysics and Geomatics, China University of Geosciences, Wuhan 430074 (China); Cai, Jianchao, E-mail: caijc@cug.edu.cn [Hubei Subsurface Multi-scale Imaging Key Laboratory, Institute of Geophysics and Geomatics, China University of Geosciences, Wuhan 430074 (China); Hu, Xiangyun, E-mail: xyhu@cug.edu.cn [Hubei Subsurface Multi-scale Imaging Key Laboratory, Institute of Geophysics and Geomatics, China University of Geosciences, Wuhan 430074 (China); Han, Qi, E-mail: hanqi426@gmail.com [Hubei Subsurface Multi-scale Imaging Key Laboratory, Institute of Geophysics and Geomatics, China University of Geosciences, Wuhan 430074 (China); Liu, Shuang, E-mail: lius@cug.edu.cn [Hubei Subsurface Multi-scale Imaging Key Laboratory, Institute of Geophysics and Geomatics, China University of Geosciences, Wuhan 430074 (China); Zhou, Yingfang, E-mail: yingfang.zhou@abdn.ac.uk [School of Engineering, University of Aberdeen, FN 264, King' s College, Aberdeen, AB24 3UE (United Kingdom)

    2016-08-26

    A theoretical effective thermal conductivity model for nanofluids is derived based on fractal distribution characteristics of nanoparticle aggregation. Considering two different mechanisms of heat conduction including particle aggregation and convention, the model is expressed as a function of the fractal dimension and concentration. In the model, the change of fractal dimension is related to the variation of aggregation shape. The theoretical computations of the developed model provide a good agreement with the experimental results, which may serve as an effective approach for quantitatively estimating the effective thermal conductivity of nanofluids. - Highlights: • A thermal conductivity model is derived based on fractal aggregation distribution. • The relationship between aggregation shape and fractal dimension is analyzed. • Predictions of the proposed model show good agreement with experimental data.

  2. Analysis and classification of commercial ham slice images using directional fractal dimension features.

    Science.gov (United States)

    Mendoza, Fernando; Valous, Nektarios A; Allen, Paul; Kenny, Tony A; Ward, Paddy; Sun, Da-Wen

    2009-02-01

    This paper presents a novel and non-destructive approach to the appearance characterization and classification of commercial pork, turkey and chicken ham slices. Ham slice images were modelled using directional fractal (DF(0°;45°;90°;135°)) dimensions and a minimum distance classifier was adopted to perform the classification task. Also, the role of different colour spaces and the resolution level of the images on DF analysis were investigated. This approach was applied to 480 wafer thin ham slices from four types of hams (120 slices per type): i.e., pork (cooked and smoked), turkey (smoked) and chicken (roasted). DF features were extracted from digitalized intensity images in greyscale, and R, G, B, L(∗), a(∗), b(∗), H, S, and V colour components for three image resolution levels (100%, 50%, and 25%). Simulation results show that in spite of the complexity and high variability in colour and texture appearance, the modelling of ham slice images with DF dimensions allows the capture of differentiating textural features between the four commercial ham types. Independent DF features entail better discrimination than that using the average of four directions. However, DF dimensions reveal a high sensitivity to colour channel, orientation and image resolution for the fractal analysis. The classification accuracy using six DF dimension features (a(90°)(∗),a(135°)(∗),H(0°),H(45°),S(0°),H(90°)) was 93.9% for training data and 82.2% for testing data.

  3. Fractal analysis of the ULF geomagnetic data obtained at Izu Peninsula, Japan in relation to the nearby earthquake swarm of June–August 2000

    Directory of Open Access Journals (Sweden)

    K. Gotoh

    2003-01-01

    Full Text Available In our recent papers we applied fractal methods to extract the earthquake precursory signatures from scaling characteristics of the ULF geomagnetic data, obtained in a seismic active region of Guam Island during the large earthquake of 8 August 1993. We found specific dynamics of their fractal characteristics (spectral exponents and fractal dimensions before the earthquake: appearance of the flicker-noise signatures and increase of the time series fractal dimension. Here we analyze ULF geomagnetic data obtained in a seismic active region of Izu Peninsula, Japan during a swarm of the strong nearby earthquakes of June–August 2000 and compare the results obtained in both regions. We apply the same methodology of data processing using the FFT procedure, Higuchi method and Burlaga-Klein approach to calculate the spectral exponents and fractal dimensions of the ULF time series. We found the common features and specific peculiarities in the behavior of fractal characteristics of the ULF time series before Izu and Guam earthquakes. As a common feature, we obtained the same increase of the ULF time series fractal dimension before the earthquakes, and as specific peculiarity – this increase appears to be sharp for Izu earthquake in comparison with gradual increase of the ULF time series fractal dimension for Guam earthquake. The results obtained in both regions are discussed on the basis of the SOC (self-organized criticality concept taking into account the differences in the depths of the earthquake focuses. On the basis of the peculiarities revealed, we advance methodology for extraction of the earthquake precursory signatures. As an adjacent step, we suggest the combined analysis of the ULF time series in the parametric space polarization ratio – fractal dimension. We reason also upon the advantage of the multifractal approach with respect to the mono-fractal analysis for study of the earthquake preparation dynamics.

  4. Analysis of anisotropic crack problems using coupled meshless and fractal finite element method

    International Nuclear Information System (INIS)

    Rao, B N; Rajesh, K N

    2010-01-01

    This paper presents a coupling technique for integrating the element-free Galerkin method (EFGM) with fractal the finite element method (FFEM) for analyzing homogeneous, anisotropic, and two dimensional linear-elastic cracked structures subjected to mixed-mode (modes I and II) loading conditions. FFEM is adopted for discretization of domain close to the crack tip and EFGM is adopted in the rest of the domain. In the transition region interface elements are employed. The proposed method combines the best features of EFGM and FFEM, in the sense that no structured mesh or special enriched basis functions are necessary and no post-processing (employing any path independent integrals) is needed to determine fracture parameters such as stress intensity factors (SIFs) and T-stress. The numerical results based on all four orthotropic cases show that SIFs and T-stress obtained using the proposed method are in excellent agreement with the reference solutions for the structural and crack geometries considered in the present study.

  5. Spatial and radiometric characterization of multi-spectrum satellite images through multi-fractal analysis

    Science.gov (United States)

    Alonso, Carmelo; Tarquis, Ana M.; Zúñiga, Ignacio; Benito, Rosa M.

    2017-03-01

    Several studies have shown that vegetation indexes can be used to estimate root zone soil moisture. Earth surface images, obtained by high-resolution satellites, presently give a lot of information on these indexes, based on the data of several wavelengths. Because of the potential capacity for systematic observations at various scales, remote sensing technology extends the possible data archives from the present time to several decades back. Because of this advantage, enormous efforts have been made by researchers and application specialists to delineate vegetation indexes from local scale to global scale by applying remote sensing imagery. In this work, four band images have been considered, which are involved in these vegetation indexes, and were taken by satellites Ikonos-2 and Landsat-7 of the same geographic location, to study the effect of both spatial (pixel size) and radiometric (number of bits coding the image) resolution on these wavelength bands as well as two vegetation indexes: the Normalized Difference Vegetation Index (NDVI) and the Enhanced Vegetation Index (EVI). In order to do so, a multi-fractal analysis of these multi-spectral images was applied in each of these bands and the two indexes derived. The results showed that spatial resolution has a similar scaling effect in the four bands, but radiometric resolution has a larger influence in blue and green bands than in red and near-infrared bands. The NDVI showed a higher sensitivity to the radiometric resolution than EVI. Both were equally affected by the spatial resolution. From both factors, the spatial resolution has a major impact in the multi-fractal spectrum for all the bands and the vegetation indexes. This information should be taken in to account when vegetation indexes based on different satellite sensors are obtained.

  6. Application of Fractal Technique for Analysis of Geophysical - Geochemical Databases in Tekieh Pb-Zn Ore Deposit (SE of Arak)

    International Nuclear Information System (INIS)

    Mehrnia, S.R.

    2017-01-01

    In this research, two statistical techniques that consist of classical and fractal equations (Mandelbrot, 2005) were applied in geochemical (Torkashvand et al., 2009) and geophysical (Jafari, 2007) databases for obtaining the linear and nonlinear distributions of geochemical elements (Tekieh Pb-Zn content) in association with resistivity variations and induction polarization measurements (Calagari, 2010). According to linear statistical techniques (Torkashvand et al., 2009), the main central parameters such as mean, median and mode in addition to variances and standard deviations as distribution tendencies could be used for obtaining the regression coefficients of the databases. However, in fractal statistics, a reliable regression between geo electrical - geochemical anomalies should be calculated based on measuring the fractal dimensional variations in the recursive patterns (Mehrnia, 2013). In practice, the Area-Concentration equations (Mandelbrot, 2005) were applied in resistivity, induction polarization, Pb and Zn datasets for achieving the nonlinear relationships in anomalous regions which were characterized by increasing in regression coefficients with more spatial correlation of the variable than linear statistics (Mehrnia, 2013).

  7. An approach to study of methods for urban analysis and urban fabric renewal in observation of a city as a multiple fractal structure

    Directory of Open Access Journals (Sweden)

    Bogdanov Ana

    2007-01-01

    Full Text Available Urban forms and processes can be observed as fractal structures since in their seemingly chaotic development and complexity it can be noticed an internal order and regularity, which could be quantified and described by the methods of fractal analysis. With determination of fractal dimension it is possible to quantify the level of irregularity, the complexity and hierarchy of the urban structures, as well as the level of urban transformations in various time intersections. The fractal geometry method has been used in analyses of spatial distribution of population, networks and utilities because it corresponds more than deterministic methods to the nature of urban settlements as open, non-linear and dynamic systems. In that sense, fractal geometry becomes the means to grasp a complex morphological urban structure of urban settlements in general, the interrelationships between the inner spatial elements, and to predict future development possibilities. Moreover on the basis of urban pattern analysis by means of fractal geometry, it is possible to evaluate the growth and development process and to perform a comparative analysis of development in spatially and temporarily different settlement settings. Having in view that complex urban fabric presumes tight connections and diversity, which is in contrast to sprawl and monotony which increasingly characterize urban growth and development, this paper is a contribution to research of potential for modern urban settlements to regain the spirit of spontaneity and human dimension through application of development models that are fractal geometry based.

  8. The Ndynamics package—Numerical analysis of dynamical systems and the fractal dimension of boundaries

    Science.gov (United States)

    Avellar, J.; Duarte, L. G. S.; da Mota, L. A. C. P.; de Melo, N.; Skea, J. E. F.

    2012-09-01

    A set of Maple routines is presented, fully compatible with the new releases of Maple (14 and higher). The package deals with the numerical evolution of dynamical systems and provide flexible plotting of the results. The package also brings an initial conditions generator, a numerical solver manager, and a focusing set of routines that allow for better analysis of the graphical display of the results. The novelty that the package presents an optional C interface is maintained. This allows for fast numerical integration, even for the totally inexperienced Maple user, without any C expertise being required. Finally, the package provides the routines to calculate the fractal dimension of boundaries (via box counting). New version program summary Program Title: Ndynamics Catalogue identifier: %Leave blank, supplied by Elsevier. Licensing provisions: no. Programming language: Maple, C. Computer: Intel(R) Core(TM) i3 CPU M330 @ 2.13 GHz. Operating system: Windows 7. RAM: 3.0 GB Keywords: Dynamical systems, Box counting, Fractal dimension, Symbolic computation, Differential equations, Maple. Classification: 4.3. Catalogue identifier of previous version: ADKH_v1_0. Journal reference of previous version: Comput. Phys. Commun. 119 (1999) 256. Does the new version supersede the previous version?: Yes. Nature of problem Computation and plotting of numerical solutions of dynamical systems and the determination of the fractal dimension of the boundaries. Solution method The default method of integration is a fifth-order Runge-Kutta scheme, but any method of integration present on the Maple system is available via an argument when calling the routine. A box counting [1] method is used to calculate the fractal dimension [2] of the boundaries. Reasons for the new version The Ndynamics package met a demand of our research community for a flexible and friendly environment for analyzing dynamical systems. All the user has to do is create his/her own Maple session, with the system to

  9. Fractal analysis of the dark matter and gas distributions in the Mare-Nostrum universe

    International Nuclear Information System (INIS)

    Gaite, José

    2010-01-01

    We develop a method of multifractal analysis of N-body cosmological simulations that improves on the customary counts-in-cells method by taking special care of the effects of discreteness and large scale homogeneity. The analysis of the Mare-Nostrum simulation with our method provides strong evidence of self-similar multifractal distributions of dark matter and gas, with a halo mass function that is of Press-Schechter type but has a power-law exponent -2, as corresponds to a multifractal. Furthermore, our analysis shows that the dark matter and gas distributions are indistinguishable as multifractals. To determine if there is any gas biasing, we calculate the cross-correlation coefficient, with negative but inconclusive results. Hence, we develop an effective Bayesian analysis connected with information theory, which clearly demonstrates that the gas is biased in a long range of scales, up to the scale of homogeneity. However, entropic measures related to the Bayesian analysis show that this gas bias is small (in a precise sense) and is such that the fractal singularities of both distributions coincide and are identical. We conclude that this common multifractal cosmic web structure is determined by the dynamics and is independent of the initial conditions

  10. Fractal analysis of mandibular trabecular bone: optimal tile sizes for the tile counting method.

    Science.gov (United States)

    Huh, Kyung-Hoe; Baik, Jee-Seon; Yi, Won-Jin; Heo, Min-Suk; Lee, Sam-Sun; Choi, Soon-Chul; Lee, Sun-Bok; Lee, Seung-Pyo

    2011-06-01

    This study was performed to determine the optimal tile size for the fractal dimension of the mandibular trabecular bone using a tile counting method. Digital intraoral radiographic images were obtained at the mandibular angle, molar, premolar, and incisor regions of 29 human dry mandibles. After preprocessing, the parameters representing morphometric characteristics of the trabecular bone were calculated. The fractal dimensions of the processed images were analyzed in various tile sizes by the tile counting method. The optimal range of tile size was 0.132 mm to 0.396 mm for the fractal dimension using the tile counting method. The sizes were closely related to the morphometric parameters. The fractal dimension of mandibular trabecular bone, as calculated with the tile counting method, can be best characterized with a range of tile sizes from 0.132 to 0.396 mm.

  11. Fractal based modelling and analysis of electromyography (EMG) to identify subtle actions.

    Science.gov (United States)

    Arjunan, Sridhar P; Kumar, Dinesh K

    2007-01-01

    The paper reports the use of fractal theory and fractal dimension to study the non-linear properties of surface electromyogram (sEMG) and to use these properties to classify subtle hand actions. The paper reports identifying a new feature of the fractal dimension, the bias that has been found to be useful in modelling the muscle activity and of sEMG. Experimental results demonstrate that the feature set consisting of bias values and fractal dimension of the recordings is suitable for classification of sEMG against the different hand gestures. The scatter plots demonstrate the presence of simple relationships of these features against the four hand gestures. The results indicate that there is small inter-experimental variation but large inter-subject variation. This may be due to differences in the size and shape of muscles for different subjects. The possible applications of this research include use in developing prosthetic hands, controlling machines and computers.

  12. Fractals for Geoengineering

    Science.gov (United States)

    Oleshko, Klaudia; de Jesús Correa López, María; Romero, Alejandro; Ramírez, Victor; Pérez, Olga

    2016-04-01

    The effectiveness of fractal toolbox to capture the scaling or fractal probability distribution, and simply fractal statistics of main hydrocarbon reservoir attributes, was highlighted by Mandelbrot (1995) and confirmed by several researchers (Zhao et al., 2015). Notwithstanding, after more than twenty years, it's still common the opinion that fractals are not useful for the petroleum engineers and especially for Geoengineering (Corbett, 2012). In spite of this negative background, we have successfully applied the fractal and multifractal techniques to our project entitled "Petroleum Reservoir as a Fractal Reactor" (2013 up to now). The distinguishable feature of Fractal Reservoir is the irregular shapes and rough pore/solid distributions (Siler, 2007), observed across a broad range of scales (from SEM to seismic). At the beginning, we have accomplished the detailed analysis of Nelson and Kibler (2003) Catalog of Porosity and Permeability, created for the core plugs of siliciclastic rocks (around ten thousand data were compared). We enriched this Catalog by more than two thousand data extracted from the last ten years publications on PoroPerm (Corbett, 2012) in carbonates deposits, as well as by our own data from one of the PEMEX, Mexico, oil fields. The strong power law scaling behavior was documented for the major part of these data from the geological deposits of contrasting genesis. Based on these results and taking into account the basic principles and models of the Physics of Fractals, introduced by Per Back and Kan Chen (1989), we have developed new software (Muukíl Kaab), useful to process the multiscale geological and geophysical information and to integrate the static geological and petrophysical reservoir models to dynamic ones. The new type of fractal numerical model with dynamical power law relations among the shapes and sizes of mesh' cells was designed and calibrated in the studied area. The statistically sound power law relations were established

  13. Connotations of pixel-based scale effect in remote sensing and the modified fractal-based analysis method

    Science.gov (United States)

    Feng, Guixiang; Ming, Dongping; Wang, Min; Yang, Jianyu

    2017-06-01

    Scale problems are a major source of concern in the field of remote sensing. Since the remote sensing is a complex technology system, there is a lack of enough cognition on the connotation of scale and scale effect in remote sensing. Thus, this paper first introduces the connotations of pixel-based scale and summarizes the general understanding of pixel-based scale effect. Pixel-based scale effect analysis is essentially important for choosing the appropriate remote sensing data and the proper processing parameters. Fractal dimension is a useful measurement to analysis pixel-based scale. However in traditional fractal dimension calculation, the impact of spatial resolution is not considered, which leads that the scale effect change with spatial resolution can't be clearly reflected. Therefore, this paper proposes to use spatial resolution as the modified scale parameter of two fractal methods to further analyze the pixel-based scale effect. To verify the results of two modified methods (MFBM (Modified Windowed Fractal Brownian Motion Based on the Surface Area) and MDBM (Modified Windowed Double Blanket Method)); the existing scale effect analysis method (information entropy method) is used to evaluate. And six sub-regions of building areas and farmland areas were cut out from QuickBird images to be used as the experimental data. The results of the experiment show that both the fractal dimension and information entropy present the same trend with the decrease of spatial resolution, and some inflection points appear at the same feature scales. Further analysis shows that these feature scales (corresponding to the inflection points) are related to the actual sizes of the geo-object, which results in fewer mixed pixels in the image, and these inflection points are significantly indicative of the observed features. Therefore, the experiment results indicate that the modified fractal methods are effective to reflect the pixel-based scale effect existing in remote sensing

  14. On uses, misuses and potential abuses of fractal analysis in zooplankton behavioral studies: A review, a critique and a few recommendations

    Science.gov (United States)

    Seuront, Laurent

    2015-08-01

    Fractal analysis is increasingly used to describe, and provide further understanding to, zooplankton swimming behavior. This may be related to the fact that fractal analysis and the related fractal dimension D have the desirable properties to be independent of measurement scale and to be very sensitive to even subtle behavioral changes that may be undetectable to other behavioral variables. As early claimed by Coughlin et al. (1992), this creates "the need for fractal analysis" in behavioral studies, which has hence the potential to become a valuable tool in zooplankton behavioral ecology. However, this paper stresses that fractal analysis, as well as the more elaborated multifractal analysis, is also a risky business that may lead to irrelevant results, without paying extreme attention to a series of both conceptual and practical steps that are all likely to bias the results of any analysis. These biases are reviewed and exemplified on the basis of the published literature, and remedial procedures are provided not only for geometric and stochastic fractal analyses, but also for the more complicated multifractal analysis. The concept of multifractals is finally introduced as a direct, objective and quantitative tool to identify models of motion behavior, such as Brownian motion, fractional Brownian motion, ballistic motion, Lévy flight/walk and multifractal random walk. I finally briefly review the state of this emerging field in zooplankton behavioral research.

  15. Ga-doped ZnO thin film surface characterization by wavelet and fractal analysis

    Energy Technology Data Exchange (ETDEWEB)

    Jing, Chenlei; Tang, Wu, E-mail: tang@uestc.edu.cn

    2016-02-28

    Graphical abstract: - Highlights: • Multi-resolution signal decomposition of wavelet transform is applied to Ga-doped ZnO thin films with various thicknesses. • Fractal properties of GZO thin films are investigated by box counting method. • Fractal dimension is not in conformity with original RMS roughness. • Fractal dimension mainly depends on the underside diameter (grain size) and distance between adjacent grains. - Abstract: The change in roughness of various thicknesses Ga-doped ZnO (GZO) thin films deposited by magnetron reactive sputtering on glass substrates at room temperature was measured by atomic force microscopy (AFM). Multi-resolution signal decomposition based on wavelet transform and fractal geometry was applied to process surface profiles, to evaluate the roughness trend of relevant frequency resolution. The results give a six-level decomposition and the results change with deposited time and surface morphology. Also, it is found that fractal dimension is closely connected to the underside diameter (grain size) and the distance between adjacent grains that affect the change rate of surface and the increase of the defects such as abrupt changes lead to a larger value of fractal dimension.

  16. Fractal analysis of MRI data for the characterization of patients with schizophrenia and bipolar disorder

    Science.gov (United States)

    Squarcina, Letizia; De Luca, Alberto; Bellani, Marcella; Brambilla, Paolo; Turkheimer, Federico E.; Bertoldo, Alessandra

    2015-02-01

    Fractal geometry can be used to analyze shape and patterns in brain images. With this study we use fractals to analyze T1 data of patients affected by schizophrenia or bipolar disorder, with the aim of distinguishing between healthy and pathological brains using the complexity of brain structure, in particular of grey matter, as a marker of disease. 39 healthy volunteers, 25 subjects affected by schizophrenia and 11 patients affected by bipolar disorder underwent an MRI session. We evaluated fractal dimension of the brain cortex and its substructures, calculated with an algorithm based on the box-count algorithm. We modified this algorithm, with the aim of avoiding the segmentation processing step and using all the information stored in the image grey levels. Moreover, to increase sensitivity to local structural changes, we computed a value of fractal dimension for each slice of the brain or of the particular structure. To have reference values in comparing healthy subjects with patients, we built a template by averaging fractal dimension values of the healthy volunteers data. Standard deviation was evaluated and used to create a confidence interval. We also performed a slice by slice t-test to assess the difference at slice level between the three groups. Consistent average fractal dimension values were found across all the structures in healthy controls, while in the pathological groups we found consistent differences, indicating a change in brain and structures complexity induced by these disorders.

  17. Fractal analysis of MRI data for the characterization of patients with schizophrenia and bipolar disorder

    International Nuclear Information System (INIS)

    Squarcina, Letizia; Bellani, Marcella; De Luca, Alberto; Bertoldo, Alessandra; Brambilla, Paolo; Turkheimer, Federico E

    2015-01-01

    Fractal geometry can be used to analyze shape and patterns in brain images. With this study we use fractals to analyze T1 data of patients affected by schizophrenia or bipolar disorder, with the aim of distinguishing between healthy and pathological brains using the complexity of brain structure, in particular of grey matter, as a marker of disease. 39 healthy volunteers, 25 subjects affected by schizophrenia and 11 patients affected by bipolar disorder underwent an MRI session. We evaluated fractal dimension of the brain cortex and its substructures, calculated with an algorithm based on the box-count algorithm. We modified this algorithm, with the aim of avoiding the segmentation processing step and using all the information stored in the image grey levels. Moreover, to increase sensitivity to local structural changes, we computed a value of fractal dimension for each slice of the brain or of the particular structure. To have reference values in comparing healthy subjects with patients, we built a template by averaging fractal dimension values of the healthy volunteers data. Standard deviation was evaluated and used to create a confidence interval. We also performed a slice by slice t-test to assess the difference at slice level between the three groups. Consistent average fractal dimension values were found across all the structures in healthy controls, while in the pathological groups we found consistent differences, indicating a change in brain and structures complexity induced by these disorders. (paper)

  18. Time Correlations of Lightning Flash Sequences in Thunderstorms Revealed by Fractal Analysis

    Science.gov (United States)

    Gou, Xueqiang; Chen, Mingli; Zhang, Guangshu

    2018-01-01

    By using the data of lightning detection and ranging system at the Kennedy Space Center, the temporal fractal and correlation of interevent time series of lightning flash sequences in thunderstorms have been investigated with Allan factor (AF), Fano factor (FF), and detrended fluctuation analysis (DFA) methods. AF, FF, and DFA methods are powerful tools to detect the time-scaling structures and correlations in point processes. Totally 40 thunderstorms with distinguishing features of a single-cell storm and apparent increase and decrease in the total flash rate were selected for the analysis. It is found that the time-scaling exponents for AF (αAF) and FF (αFF) analyses are 1.62 and 0.95 in average, respectively, indicating a strong time correlation of the lightning flash sequences. DFA analysis shows that there is a crossover phenomenon—a crossover timescale (τc) ranging from 54 to 195 s with an average of 114 s. The occurrence of a lightning flash in a thunderstorm behaves randomly at timescales τc but shows strong time correlation at scales >τc. Physically, these may imply that the establishment of an extensive strong electric field necessary for the occurrence of a lightning flash needs a timescale >τc, which behaves strongly time correlated. But the initiation of a lightning flash within a well-established extensive strong electric field may involve the heterogeneities of the electric field at a timescale τc, which behave randomly.

  19. Detection of neovascularization based on fractal and texture analysis with interaction effects in diabetic retinopathy.

    Science.gov (United States)

    Lee, Jack; Zee, Benny Chung Ying; Li, Qing

    2013-01-01

    Diabetic retinopathy is a major cause of blindness. Proliferative diabetic retinopathy is a result of severe vascular complication and is visible as neovascularization of the retina. Automatic detection of such new vessels would be useful for the severity grading of diabetic retinopathy, and it is an important part of screening process to identify those who may require immediate treatment for their diabetic retinopathy. We proposed a novel new vessels detection method including statistical texture analysis (STA), high order spectrum analysis (HOS), fractal analysis (FA), and most importantly we have shown that by incorporating their associated interactions the accuracy of new vessels detection can be greatly improved. To assess its performance, the sensitivity, specificity and accuracy (AUC) are obtained. They are 96.3%, 99.1% and 98.5% (99.3%), respectively. It is found that the proposed method can improve the accuracy of new vessels detection significantly over previous methods. The algorithm can be automated and is valuable to detect relatively severe cases of diabetic retinopathy among diabetes patients.

  20. Detection of neovascularization based on fractal and texture analysis with interaction effects in diabetic retinopathy.

    Directory of Open Access Journals (Sweden)

    Jack Lee

    Full Text Available Diabetic retinopathy is a major cause of blindness. Proliferative diabetic retinopathy is a result of severe vascular complication and is visible as neovascularization of the retina. Automatic detection of such new vessels would be useful for the severity grading of diabetic retinopathy, and it is an important part of screening process to identify those who may require immediate treatment for their diabetic retinopathy. We proposed a novel new vessels detection method including statistical texture analysis (STA, high order spectrum analysis (HOS, fractal analysis (FA, and most importantly we have shown that by incorporating their associated interactions the accuracy of new vessels detection can be greatly improved. To assess its performance, the sensitivity, specificity and accuracy (AUC are obtained. They are 96.3%, 99.1% and 98.5% (99.3%, respectively. It is found that the proposed method can improve the accuracy of new vessels detection significantly over previous methods. The algorithm can be automated and is valuable to detect relatively severe cases of diabetic retinopathy among diabetes patients.

  1. Pre-Service Teachers' Concept Images on Fractal Dimension

    Science.gov (United States)

    Karakus, Fatih

    2016-01-01

    The analysis of pre-service teachers' concept images can provide information about their mental schema of fractal dimension. There is limited research on students' understanding of fractal and fractal dimension. Therefore, this study aimed to investigate the pre-service teachers' understandings of fractal dimension based on concept image. The…

  2. Nanoscale morphological analysis of soft matter aggregates with fractal dimension ranging from 1 to 3.

    Science.gov (United States)

    Valle, Francesco; Brucale, Marco; Chiodini, Stefano; Bystrenova, Eva; Albonetti, Cristiano

    2017-09-01

    While the widespread emergence of nanoscience and nanotechnology can be dated back to the early eighties, the last decade has witnessed a true coming of age of this research field, with novel nanomaterials constantly finding their way into marketed products. The performance of nanomaterials being dominated by their nanoscale morphology, their quantitative characterization with respect to a number of properties is often crucial. In this context, those imaging techniques able to resolve nanometer scale details are clearly key players. In particular, atomic force microscopy can yield a fully quantitative tridimensional (3D) topography at the nanoscale. Herein, we will review a set of morphological analysis based on the scaling approach, which give access to important quantitative parameters for describing nanomaterial samples. To generalize the use of such morphological analysis on all D-dimensions (1D, 2D and 3D), the review will focus on specific soft matter aggregates with fractal dimension ranging from just above 1 to just below 3. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Effective degrees of freedom of a random walk on a fractal

    Science.gov (United States)

    Balankin, Alexander S.

    2015-12-01

    We argue that a non-Markovian random walk on a fractal can be treated as a Markovian process in a fractional dimensional space with a suitable metric. This allows us to define the fractional dimensional space allied to the fractal as the ν -dimensional space Fν equipped with the metric induced by the fractal topology. The relation between the number of effective spatial degrees of freedom of walkers on the fractal (ν ) and fractal dimensionalities is deduced. The intrinsic time of random walk in Fν is inferred. The Laplacian operator in Fν is constructed. This allows us to map physical problems on fractals into the corresponding problems in Fν. In this way, essential features of physics on fractals are revealed. Particularly, subdiffusion on path-connected fractals is elucidated. The Coulomb potential of a point charge on a fractal embedded in the Euclidean space is derived. Intriguing attributes of some types of fractals are highlighted.

  4. Determination of the fractal dimension surface of the fracture from SEM images with assistance of the computer image quantitative analysis system

    International Nuclear Information System (INIS)

    Wawszczak, J.

    1999-01-01

    This paper presents a procedure for quantitative image analysis for determination of the fractal dimension from SEM surface images of the fracture 0H14N5CuNb steel. Investigated quenched and tempered samples of the steel after impact tests (in room and -85 o C temperatures). This method can be useful for analysing local fractal dimension of any surface parts (not oriented) of the fracture with different topography of this surface. (author)

  5. Fractal tomography and its application in 3D vision

    Science.gov (United States)

    Trubochkina, N.

    2018-01-01

    A three-dimensional artistic fractal tomography method that implements a non-glasses 3D visualization of fractal worlds in layered media is proposed. It is designed for the glasses-free 3D vision of digital art objects and films containing fractal content. Prospects for the development of this method in art galleries and the film industry are considered.

  6. L-system fractals

    CERN Document Server

    Mishra, Jibitesh

    2007-01-01

    The book covers all the fundamental aspects of generating fractals through L-system. Also it provides insight to various researches in this area for generating fractals through L-system approach & estimating dimensions. Also it discusses various applications of L-system fractals. Key Features: - Fractals generated from L-System including hybrid fractals - Dimension calculation for L-system fractals - Images & codes for L-system fractals - Research directions in the area of L-system fractals - Usage of various freely downloadable tools in this area - Fractals generated from L-System including hybrid fractals- Dimension calculation for L-system fractals- Images & codes for L-system fractals- Research directions in the area of L-system fractals- Usage of various freely downloadable tools in this area

  7. Use of digital image analysis combined with fractal theory to determine particle morphology and surface texture of quartz sands

    Directory of Open Access Journals (Sweden)

    Georgia S. Araujo

    2017-12-01

    Full Text Available The particle morphology and surface texture play a major role in influencing mechanical and hydraulic behaviors of sandy soils. This paper presents the use of digital image analysis combined with fractal theory as a tool to quantify the particle morphology and surface texture of two types of quartz sands widely used in the region of Vitória, Espírito Santo, southeast of Brazil. The two investigated sands are sampled from different locations. The purpose of this paper is to present a simple, straightforward, reliable and reproducible methodology that can identify representative sandy soil texture parameters. The test results of the soil samples of the two sands separated by sieving into six size fractions are presented and discussed. The main advantages of the adopted methodology are its simplicity, reliability of the results, and relatively low cost. The results show that sands from the coastal spit (BS have a greater degree of roundness and a smoother surface texture than river sands (RS. The values obtained in the test are statistically analyzed, and again it is confirmed that the BS sand has a slightly greater degree of sphericity than that of the RS sand. Moreover, the RS sand with rough surface texture has larger specific surface area values than the similar BS sand, which agree with the obtained roughness fractal dimensions. The consistent experimental results demonstrate that image analysis combined with fractal theory is an accurate and efficient method to quantify the differences in particle morphology and surface texture of quartz sands.

  8. Fractal Analysis on the Correlation of Coastal Line Geometry and Tsunami Impact in Maumere, Flores, Indonesia

    Directory of Open Access Journals (Sweden)

    SARI BAHAGIARTI KUSUMAYUDHA

    2011-12-01

    Full Text Available Almost all of the Indonesian territories are high potential of geologic disaster, such as earthquake, tsunami, volcanic eruptions and landslides, because the country belongs to tectonically active areas of the world. There are three big lithosperic plates interacting one with one another and influencing the tectonic setting of Indonesia. The plates are Indo-Australia plate, Eurasia plate and Pacific plate. Indo-Australia plate moves relatively northward by about 9 cm/year, Eurasia plate creeps south eastward with approximately 7 cm/year speed, and Pacific plate moves to the west with around 11 cm/year velocity. In the meeting line of the plates, about 300 km to the south of Indonesian islands, there is the subduction zone that become places, where earthquake focuses are generated. Earthquakes from submarine source with more than 6.5 magnitude have the potential to generate tsunami. Areas situated along the south coast of Indonesia islands are vulnerable to tsunami, because directly facing the boundary lines between Eurasia plate and Indo-Australia plate. This study verified that there is positive correlation between coastal line geometry and the tsunami impact, based on fractal analysis. The case study is Maumere, Flores island, East Nusa Tenggara, Indonesia. Result of the study is expected to be used for predicting the tsunami impact intensiveness at other areas.

  9. Effect of vestibular neuritis on postural control using wavelets and fractal analysis.

    Science.gov (United States)

    Lorin, P; Manceau, C; Foubert, F

    2010-01-01

    What is the status of postural control a few months after an attack of vestibular neuritis (VN)? Using dynamic posturography and stabilometric signal treatment with wavelets and fractal analysis, we tried to answer this question by isolating the pathological postural parameters of VN. The study involved a group of 15 patients (GP) who suffered from VN and were compared to a group of control subjects (GC). Both groups underwent videonystagmography (VNG), dynamic posturography (PDY), and assessment using symptomatic scales (ES). GP and GC were comparable in terms of age mean, sex-ratio, average height and weight. The differences between GP and GC were the following videonystagmography criteria: Spontaneous nystagmus (NS) (P= 0.005), head shaking test (HST) (p= 0.001), vibratory test (TVO) (p= 0.009). There were also differences in the symptomatic scales scores for the vertigo symptom scale (VSS) (p= 0.011), the dizziness handicap inventory (DHI) (p= 0.001), and the short form 36 (SF36) (p= 0.01). All the 84 new parameters of both GP and GC differ. This difference was significant (p conditions were found to be non-discriminating. Vestibular neuritis affects new stabilometric parameters. These parameters are more adapted to the present setup compared to previous parameters which are used to analyse non-periodic oscillations of posture. They are important in follow-up and rehabilitation of patients.

  10. Fractal time series analysis of postural stability in elderly and control subjects

    Directory of Open Access Journals (Sweden)

    Doussot Michel

    2007-05-01

    Full Text Available Abstract Background The study of balance using stabilogram analysis is of particular interest in the study of falls. Although simple statistical parameters derived from the stabilogram have been shown to predict risk of falls, such measures offer little insight into the underlying control mechanisms responsible for degradation in balance. In contrast, fractal and non-linear time-series analysis of stabilograms, such as estimations of the Hurst exponent (H, may provide information related to the underlying motor control strategies governing postural stability. In order to be adapted for a home-based follow-up of balance, such methods need to be robust, regardless of the experimental protocol, while producing time-series that are as short as possible. The present study compares two methods of calculating H: Detrended Fluctuation Analysis (DFA and Stabilogram Diffusion Analysis (SDA for elderly and control subjects, as well as evaluating the effect of recording duration. Methods Centre of pressure signals were obtained from 90 young adult subjects and 10 elderly subjects. Data were sampled at 100 Hz for 30 s, including stepping onto and off the force plate. Estimations of H were made using sliding windows of 10, 5, and 2.5 s durations, with windows slid forward in 1-s increments. Multivariate analysis of variance was used to test for the effect of time, age and estimation method on the Hurst exponent, while the intra-class correlation coefficient (ICC was used as a measure of reliability. Results Both SDA and DFA methods were able to identify differences in postural stability between control and elderly subjects for time series as short as 5 s, with ICC values as high as 0.75 for DFA. Conclusion Both methods would be well-suited to non-invasive longitudinal assessment of balance. In addition, reliable estimations of H were obtained from time series as short as 5 s.

  11. Experimental modal analysis of fractal-inspired multi-frequency structures for piezoelectric energy converters

    International Nuclear Information System (INIS)

    Castagnetti, D

    2012-01-01

    An important issue in the field of energy harvesting through piezoelectric materials is the design of simple and efficient structures which are multi-frequency in the ambient vibration range. This paper deals with the experimental assessment of four fractal-inspired multi-frequency structures for piezoelectric energy harvesting. These structures, thin plates of square shape, were proposed in a previous work by the author and their modal response numerically analysed. The present work has two aims. First, to assess the modal response of these structures through an experimental investigation. Second, to evaluate, through computational simulation, the performance of a piezoelectric converter relying on one of these fractal-inspired structures. The four fractal-inspired structures are examined in the range between 0 and 100 Hz, with regard to both eigenfrequencies and eigenmodes. In the same frequency range, the modal response and power output of the piezoelectric converter are investigated. (paper)

  12. Poiseuille equation for steady flow of fractal fluid

    Science.gov (United States)

    Tarasov, Vasily E.

    2016-07-01

    Fractal fluid is considered in the framework of continuous models with noninteger dimensional spaces (NIDS). A recently proposed vector calculus in NIDS is used to get a description of fractal fluid flow in pipes with circular cross-sections. The Navier-Stokes equations of fractal incompressible viscous fluids are used to derive a generalization of the Poiseuille equation of steady flow of fractal media in pipe.

  13. Pore surface fractal analysis of palladium-alumina ceramic membrane using Frenkel-Halsey-Hill (FHH) model.

    Science.gov (United States)

    Ahmad, A L; Mustafa, N N N

    2006-09-15

    The alumina ceramic membrane has been modified by the addition of palladium in order to improve the H(2) permeability and selectivity. Palladium-alumina ceramic membrane was prepared via a sol-gel method and subjected to thermal treatment in the temperature range 500-1100 degrees C. Fractal analysis from nitrogen adsorption isotherm is used to study the pore surface roughness of palladium-alumina ceramic membrane with different chemical composition (nitric acid, PVA and palladium) and calcinations process in terms of surface fractal dimension, D. Frenkel-Halsey-Hill (FHH) model was used to determine the D value of palladium-alumina membrane. Following FHH model, the D value of palladium-alumina membrane increased as the calcinations temperature increased from 500 to 700 degrees C but decreased after calcined at 900 and 1100 degrees C. With increasing palladium concentration from 0.5 g Pd/100 ml H(2)O to 2 g Pd/100 ml H(2)O, D value of membrane decreased, indicating to the smoother surface. Addition of higher amount of PVA and palladium reduced the surface fractal of the membrane due to the heterogeneous distribution of pores. However, the D value increased when nitric acid concentration was increased from 1 to 15 M. The effect of calcinations temperature, PVA ratio, palladium and acid concentration on membrane surface area, pore size and pore distribution also studied.

  14. Cross-Correlations between Energy and Emissions Markets: New Evidence from Fractal and Multifractal Analysis

    Directory of Open Access Journals (Sweden)

    Gang-Jin Wang

    2014-01-01

    Full Text Available We supply a new perspective to describe and understand the behavior of cross-correlations between energy and emissions markets. Namely, we investigate cross-correlations between oil and gas (Oil-Gas, oil and CO2 (Oil-CO2, and gas and CO2 (Gas-CO2 based on fractal and multifractal analysis. We focus our study on returns of the oil, gas, and CO2 during the period of April 22, 2005–April 30, 2013. In the empirical analysis, by using the detrended cross-correlation analysis (DCCA method, we find that cross-correlations for Oil-Gas, Oil-CO2, and Gas-CO2 obey a power-law and are weakly persistent. Then, we adopt the method of DCCA cross-correlation coefficient to quantify cross-correlations between energy and emissions markets. The results show that their cross-correlations are diverse at different time scales. Next, based on the multifractal DCCA method, we find that cross-correlated markets have the nonlinear and multifractal nature and that the multifractality strength for three cross-correlated markets is arranged in the order of Gas-CO2 > Oil-Gas > Oil-CO2. Finally, by employing the rolling windows method, which can be used to investigate time-varying cross-correlation scaling exponents, we analyze short-term and long-term market dynamics and find that the recent global financial crisis has a notable influence on short-term and long-term market dynamics.

  15. Analyzing the photonic band gaps in two-dimensional plasma photonic crystals with fractal Sierpinski gasket structure based on the Monte Carlo method

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hai-Feng, E-mail: hanlor@163.com [College of Optoelectronic Engineering, Nanjing University of Posts and Telecommunications, Nanjing, 210023 ,China (China); Key Laboratory of Radar Imaging and Microwave Photonics (Nanjing Univ. Aeronaut. Astronaut.), Ministry of Education, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016 (China); Liu, Shao-Bin [Key Laboratory of Radar Imaging and Microwave Photonics (Nanjing Univ. Aeronaut. Astronaut.), Ministry of Education, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016 (China)

    2016-08-15

    In this paper, the properties of photonic band gaps (PBGs) in two types of two-dimensional plasma-dielectric photonic crystals (2D PPCs) under a transverse-magnetic (TM) wave are theoretically investigated by a modified plane wave expansion (PWE) method where Monte Carlo method is introduced. The proposed PWE method can be used to calculate the band structures of 2D PPCs which possess arbitrary-shaped filler and any lattice. The efficiency and convergence of the present method are discussed by a numerical example. The configuration of 2D PPCs is the square lattices with fractal Sierpinski gasket structure whose constituents are homogeneous and isotropic. The type-1 PPCs is filled with the dielectric cylinders in the plasma background, while its complementary structure is called type-2 PPCs, in which plasma cylinders behave as the fillers in the dielectric background. The calculated results reveal that the enough accuracy and good convergence can be obtained, if the number of random sampling points of Monte Carlo method is large enough. The band structures of two types of PPCs with different fractal orders of Sierpinski gasket structure also are theoretically computed for a comparison. It is demonstrate that the PBGs in higher frequency region are more easily produced in the type-1 PPCs rather than in the type-2 PPCs. Sierpinski gasket structure introduced in the 2D PPCs leads to a larger cutoff frequency, enhances and induces more PBGs in high frequency region. The effects of configurational parameters of two types of PPCs on the PBGs are also investigated in detail. The results show that the PBGs of the PPCs can be easily manipulated by tuning those parameters. The present type-1 PPCs are more suitable to design the tunable compacted devices.

  16. Random walk through fractal environments

    International Nuclear Information System (INIS)

    Isliker, H.; Vlahos, L.

    2003-01-01

    We analyze random walk through fractal environments, embedded in three-dimensional, permeable space. Particles travel freely and are scattered off into random directions when they hit the fractal. The statistical distribution of the flight increments (i.e., of the displacements between two consecutive hittings) is analytically derived from a common, practical definition of fractal dimension, and it turns out to approximate quite well a power-law in the case where the dimension D F of the fractal is less than 2, there is though, always a finite rate of unaffected escape. Random walks through fractal sets with D F ≤2 can thus be considered as defective Levy walks. The distribution of jump increments for D F >2 is decaying exponentially. The diffusive behavior of the random walk is analyzed in the frame of continuous time random walk, which we generalize to include the case of defective distributions of walk increments. It is shown that the particles undergo anomalous, enhanced diffusion for D F F >2 is normal for large times, enhanced though for small and intermediate times. In particular, it follows that fractals generated by a particular class of self-organized criticality models give rise to enhanced diffusion. The analytical results are illustrated by Monte Carlo simulations

  17. Fractal Nanotechnology

    Directory of Open Access Journals (Sweden)

    Amato P

    2008-01-01

    Full Text Available Abstract Self-similar patterns are frequently observed in Nature. Their reproduction is possible on a length scale 102–105 nm with lithographic methods, but seems impossible on the nanometer length scale. It is shown that this goal may be achieved via a multiplicative variant of the multi-spacer patterning technology, in this way permitting the controlled preparation of fractal surfaces.

  18. Fractals in Power Reactor Noise

    International Nuclear Information System (INIS)

    Aguilar Martinez, O.

    1994-01-01

    In this work the non- lineal dynamic problem of power reactor is analyzed using classic concepts of fractal analysis as: attractors, Hausdorff-Besikovics dimension, phase space, etc. A new non-linear problem is also analyzed: the discrimination of chaotic signals from random neutron noise signals and processing for diagnosis purposes. The advantages of a fractal analysis approach in the power reactor noise are commented in details

  19. Analysis of the fractal dimension of volcano geomorphology through Synthetic Aperture Radar (SAR) amplitude images acquired in C and X band.

    Science.gov (United States)

    Pepe, S.; Di Martino, G.; Iodice, A.; Manzo, M.; Pepe, A.; Riccio, D.; Ruello, G.; Sansosti, E.; Tizzani, P.; Zinno, I.

    2012-04-01

    In the last two decades several aspects relevant to volcanic activity have been analyzed in terms of fractal parameters that effectively describe natural objects geometry. More specifically, these researches have been aimed at the identification of (1) the power laws that governed the magma fragmentation processes, (2) the energy of explosive eruptions, and (3) the distribution of the associated earthquakes. In this paper, the study of volcano morphology via satellite images is dealt with; in particular, we use the complete forward model developed by some of the authors (Di Martino et al., 2012) that links the stochastic characterization of amplitude Synthetic Aperture Radar (SAR) images to the fractal dimension of the imaged surfaces, modelled via fractional Brownian motion (fBm) processes. Based on the inversion of such a model, a SAR image post-processing has been implemented (Di Martino et al., 2010), that allows retrieving the fractal dimension of the observed surfaces, dictating the distribution of the roughness over different spatial scales. The fractal dimension of volcanic structures has been related to the specific nature of materials and to the effects of active geodynamic processes. Hence, the possibility to estimate the fractal dimension from a single amplitude-only SAR image is of fundamental importance for the characterization of volcano structures and, moreover, can be very helpful for monitoring and crisis management activities in case of eruptions and other similar natural hazards. The implemented SAR image processing performs the extraction of the point-by-point fractal dimension of the scene observed by the sensor, providing - as an output product - the map of the fractal dimension of the area of interest. In this work, such an analysis is performed on Cosmo-SkyMed, ERS-1/2 and ENVISAT images relevant to active stratovolcanoes in different geodynamic contexts, such as Mt. Somma-Vesuvio, Mt. Etna, Vulcano and Stromboli in Southern Italy, Shinmoe

  20. SU-D-BRA-04: Fractal Dimension Analysis of Edge-Detected Rectal Cancer CTs for Outcome Prediction

    International Nuclear Information System (INIS)

    Zhong, H; Wang, J; Hu, W; Shen, L; Wan, J; Zhou, Z; Zhang, Z

    2015-01-01

    Purpose: To extract the fractal dimension features from edge-detected rectal cancer CTs, and to examine the predictability of fractal dimensions to outcomes of primary rectal cancer patients. Methods: Ninety-seven rectal cancer patients treated with neo-adjuvant chemoradiation were enrolled in this study. CT images were obtained before chemoradiotherapy. The primary lesions of the rectal cancer were delineated by experienced radiation oncologists. These images were extracted and filtered by six different Laplacian of Gaussian (LoG) filters with different filter values (0.5–3.0: from fine to coarse) to achieve primary lesions in different anatomical scales. Edges of the original images were found at zero-crossings of the filtered images. Three different fractal dimensions (box-counting dimension, Minkowski dimension, mass dimension) were calculated upon the image slice with the largest cross-section of the primary lesion. The significance of these fractal dimensions in survival, recurrence and metastasis were examined by Student’s t-test. Results: For a follow-up time of two years, 18 of 97 patients had experienced recurrence, 24 had metastasis, and 18 were dead. Minkowski dimensions under large filter values (2.0, 2.5, 3.0) were significantly larger (p=0.014, 0.006, 0.015) in patients with recurrence than those without. For metastasis, only box-counting dimensions under a single filter value (2.5) showed differences (p=0.016) between patients with and without. For overall survival, box-counting dimensions (filter values = 0.5, 1.0, 1.5), Minkowski dimensions (filter values = 0.5, 1.5, 2.0, 2,5) and mass dimensions (filter values = 1.5, 2.0) were all significant (p<0.05). Conclusion: It is feasible to extract shape information by edge detection and fractal dimensions analysis in neo-adjuvant rectal cancer patients. This information can be used to prognosis prediction

  1. Mechanical test and fractal analysis on anisotropic fracture of cortical bone

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Dagang [State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044 (China); College of Aerospace Engineering, Chongqing University, Chongqing 400044 (China); Chen, Bin, E-mail: bchen@cqu.edu.cn [State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044 (China); College of Aerospace Engineering, Chongqing University, Chongqing 400044 (China); Ye, Wei [College of Aerospace Engineering, Chongqing University, Chongqing 400044 (China); Gou, Jihua [Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, FL 32816 (United States); Fan, Jinghong [Division of Mechanical Engineering, Alfred University, Alfred, NY 14802 (United States)

    2015-12-01

    Highlights: • The mechanical properties of the cortical bone of fresh bovine femora along three different directions are tested through four-point bending experiments. • SEM observation shows that the roughness of the fracture surfaces of the three different directions of the bone are remarkably different. • The fractal dimensions of the different fracture surfaces of the bone are calculated by box-counting method in MATLAB. • The fracture energies of the different fracture directions are calculated based on their fractal models. - Abstract: The mechanical properties of the cortical bone of fresh bovine femora along three different directions are tested through four-point bending experiments. It is indicated that the fracture energy along the transversal direction of the bone is distinctly larger than those of the longitudinal and radial directions. The fracture surfaces of the three different directions are observed by scanning electron microscope (SEM). It is shown that the roughness of the fracture surface of the transversal direction is obviously larger than those of the fracture surfaces of the longitudinal and radial directions. It is also revealed that the osteons in the bone are perpendicular to the fracture surface of the transversal direction and parallel to the fracture surfaces of the longitudinal and radial directions. Based on these experimental results, the fractal dimensions of the fracture surfaces of different directions are calculated by box-counting method in MATLAB. The calculated results show that the fractal dimension of the fracture surface of the transversal direction is remarkably larger than those of the fracture surfaces of the longitudinal and radial directions. The fracture energies of different directions are also calculated based on their fractal models. It is denoted that the fracture energy of the transversal direction is remarkably larger than those of the longitudinal and radial directions. The calculated results are in

  2. Mechanical test and fractal analysis on anisotropic fracture of cortical bone

    International Nuclear Information System (INIS)

    Yin, Dagang; Chen, Bin; Ye, Wei; Gou, Jihua; Fan, Jinghong

    2015-01-01

    Highlights: • The mechanical properties of the cortical bone of fresh bovine femora along three different directions are tested through four-point bending experiments. • SEM observation shows that the roughness of the fracture surfaces of the three different directions of the bone are remarkably different. • The fractal dimensions of the different fracture surfaces of the bone are calculated by box-counting method in MATLAB. • The fracture energies of the different fracture directions are calculated based on their fractal models. - Abstract: The mechanical properties of the cortical bone of fresh bovine femora along three different directions are tested through four-point bending experiments. It is indicated that the fracture energy along the transversal direction of the bone is distinctly larger than those of the longitudinal and radial directions. The fracture surfaces of the three different directions are observed by scanning electron microscope (SEM). It is shown that the roughness of the fracture surface of the transversal direction is obviously larger than those of the fracture surfaces of the longitudinal and radial directions. It is also revealed that the osteons in the bone are perpendicular to the fracture surface of the transversal direction and parallel to the fracture surfaces of the longitudinal and radial directions. Based on these experimental results, the fractal dimensions of the fracture surfaces of different directions are calculated by box-counting method in MATLAB. The calculated results show that the fractal dimension of the fracture surface of the transversal direction is remarkably larger than those of the fracture surfaces of the longitudinal and radial directions. The fracture energies of different directions are also calculated based on their fractal models. It is denoted that the fracture energy of the transversal direction is remarkably larger than those of the longitudinal and radial directions. The calculated results are in

  3. Efficiency analysis of diffusion on T-fractals in the sense of random walks.

    Science.gov (United States)

    Peng, Junhao; Xu, Guoai

    2014-04-07

    Efficiently controlling the diffusion process is crucial in the study of diffusion problem in complex systems. In the sense of random walks with a single trap, mean trapping time (MTT) and mean diffusing time (MDT) are good measures of trapping efficiency and diffusion efficiency, respectively. They both vary with the location of the node. In this paper, we analyze the effects of node's location on trapping efficiency and diffusion efficiency of T-fractals measured by MTT and MDT. First, we provide methods to calculate the MTT for any target node and the MDT for any source node of T-fractals. The methods can also be used to calculate the mean first-passage time between any pair of nodes. Then, using the MTT and the MDT as the measure of trapping efficiency and diffusion efficiency, respectively, we compare the trapping efficiency and diffusion efficiency among all nodes of T-fractal and find the best (or worst) trapping sites and the best (or worst) diffusing sites. Our results show that the hub node of T-fractal is the best trapping site, but it is also the worst diffusing site; and that the three boundary nodes are the worst trapping sites, but they are also the best diffusing sites. Comparing the maximum of MTT and MDT with their minimums, we find that the maximum of MTT is almost 6 times of the minimum of MTT and the maximum of MDT is almost equal to the minimum for MDT. Thus, the location of target node has large effect on the trapping efficiency, but the location of source node almost has no effect on diffusion efficiency. We also simulate random walks on T-fractals, whose results are consistent with the derived results.

  4. Development and application of 3-D fractal reservoir model based on collage theorem

    Energy Technology Data Exchange (ETDEWEB)

    Kim, I.K.; Kim, K.S.; Sung, W.M. [Hanyang Univ., Seoul (Korea, Republic of)

    1995-04-30

    Reservoir characterization is the essential process to accurately evaluate the reservoir and has been conducted by geostatistical method, SRA algorithm, and etc. The characterized distribution of heterogeneous property by these methods shows randomly distributed phenomena, and does not present anomalous shape of property variation at discontinued space as compared with the observed shape in nature. This study proposed a new algorithm of fractal concept based on collage theorem, which can virtually present not only geometric shape of irregular and anomalous pore structures or coastlines, but also property variation for discontinuously observed data. With a basis of fractal concept, three dimensional fractal reservoir model was developed to more accurately characterize the heterogeneous reservoir. We performed analysis of pre-predictable hypothetically observed permeability data by using the fractal reservoir model. From the results, we can recognize that permeability distributions in the areal view or the cross-sectional view were consistent with the observed data. (author). 8 refs., 1 tab., 6 figs.

  5. Stochastic and infinite dimensional analysis

    CERN Document Server

    Carpio-Bernido, Maria; Grothaus, Martin; Kuna, Tobias; Oliveira, Maria; Silva, José

    2016-01-01

    This volume presents a collection of papers covering applications from a wide range of systems with infinitely many degrees of freedom studied using techniques from stochastic and infinite dimensional analysis, e.g. Feynman path integrals, the statistical mechanics of polymer chains, complex networks, and quantum field theory. Systems of infinitely many degrees of freedom create their particular mathematical challenges which have been addressed by different mathematical theories, namely in the theories of stochastic processes, Malliavin calculus, and especially white noise analysis. These proceedings are inspired by a conference held on the occasion of Prof. Ludwig Streit’s 75th birthday and celebrate his pioneering and ongoing work in these fields.

  6. Fractal universe and quantum gravity.

    Science.gov (United States)

    Calcagni, Gianluca

    2010-06-25

    We propose a field theory which lives in fractal spacetime and is argued to be Lorentz invariant, power-counting renormalizable, ultraviolet finite, and causal. The system flows from an ultraviolet fixed point, where spacetime has Hausdorff dimension 2, to an infrared limit coinciding with a standard four-dimensional field theory. Classically, the fractal world where fields live exchanges energy momentum with the bulk with integer topological dimension. However, the total energy momentum is conserved. We consider the dynamics and the propagator of a scalar field. Implications for quantum gravity, cosmology, and the cosmological constant are discussed.

  7. Using the fractal perspective in the analysis of the urban peripheral fabric. Case study: Pantelimon, Ilfov county

    Directory of Open Access Journals (Sweden)

    Lilian Cîrnu

    2014-05-01

    Full Text Available This article approaches the matter of analysing the urban peripheral fabric from a fractal perspective. The urban peripheral morphology, through its generally discontinuous character, raises great questions signs upon the fairness of using the classical instruments of analysis, especially in what concerns the usage of density gradients. The purpose of this scientific undergoing is that of bringing into spotlight the usage of the Fractalyse program, as a better-adapted tool to the fieldwork, since the accent is set on the elements distribution in space and on the distances between them. We, thus, reach to a multiscalar approach of the urban fabric, from the town scale to the neighborhood scale and that of the building itself, for a more pertinent analysis over the alternation between constructed spaces and empty parcels. In order to represent this undergoing, three types of fractal analysis will be studied (dilation, radial and space correlation analysis to achieve a comparative approach of the urban fabric evolution in Pantelimon, which is situated nearby the Capital city and has been, over the last two decades, deeply marked by the urban sprawl phenomenon.

  8. Conference on Fractals and Related Fields III

    CERN Document Server

    Seuret, Stéphane

    2017-01-01

    This contributed volume provides readers with an overview of the most recent developments in the mathematical fields related to fractals, including both original research contributions, as well as surveys from many of the leading experts on modern fractal theory and applications. It is an outgrowth of the Conference of Fractals and Related Fields III, that was held on September 19-25, 2015 in île de Porquerolles, France. Chapters cover fields related to fractals such as harmonic analysis, multifractal analysis, geometric measure theory, ergodic theory and dynamical systems, probability theory, number theory, wavelets, potential theory, partial differential equations, fractal tilings, combinatorics, and signal and image processing. The book is aimed at pure and applied mathematicians in these areas, as well as other researchers interested in discovering the fractal domain.

  9. Correlation of Defect-Related Optoelectronic Properties in Zn5(OH6(CO32/ZnO Nanostructures with Their Quasi-Fractal Dimensionality

    Directory of Open Access Journals (Sweden)

    J. Antonio Paramo

    2015-01-01

    Full Text Available Hydrozincite (Zn5(OH6(CO32 is, among others, a popular precursor used to synthesize nanoscale ZnO with complex morphologies. For many existing and potential applications utilizing nanostructures, performance is determined by the surface and subsurface properties. Current understanding of the relationship between the morphology and the defect properties of nanocrystalline ZnO and hydrozincite systems is still incomplete. Specifically, for the latter nanomaterial the structure-property correlations are largely unreported in the literature despite the extensive use of hydrozincite in the synthesis applications. In our work, we addressed this issue by studying precipitated nanostructures of Zn5(OH6(CO32 with varying quasi-fractal dimensionalities containing relatively small amounts of a ZnO phase. Crystal morphology of the samples was accurately controlled by the growth time. We observed a strong correlation between the morphology of the samples and their optoelectronic properties. Our results indicate that a substantial increase of the free surface in the nanocrystal samples generates higher relative concentration of defects, consistent with the model of defect-rich surface and subsurface layers.

  10. Fractal vector optical fields.

    Science.gov (United States)

    Pan, Yue; Gao, Xu-Zhen; Cai, Meng-Qiang; Zhang, Guan-Lin; Li, Yongnan; Tu, Chenghou; Wang, Hui-Tian

    2016-07-15

    We introduce the concept of a fractal, which provides an alternative approach for flexibly engineering the optical fields and their focal fields. We propose, design, and create a new family of optical fields-fractal vector optical fields, which build a bridge between the fractal and vector optical fields. The fractal vector optical fields have polarization states exhibiting fractal geometry, and may also involve the phase and/or amplitude simultaneously. The results reveal that the focal fields exhibit self-similarity, and the hierarchy of the fractal has the "weeding" role. The fractal can be used to engineer the focal field.

  11. Correlation of optical properties with the fractal microstructure of black molybdenum coatings

    Energy Technology Data Exchange (ETDEWEB)

    Barrera, Enrique; Gonzalez, Federico [Area de Energia, Division de Ciencias Basicas e Ingenieria, Universidad Autonoma Metropolitana-Iztapalapa, Apartado Postal 55-534, Mexico, D.F. 09340 (Mexico); Rodriguez, Eduardo [Area de Computacion y Sistemas, Division de Ciencias Basicas e Ingenieria, Universidad Autonoma Metropolitana-Iztapalapa, Apartado Postal 55-534, Mexico, D.F. 09340 (Mexico); Alvarez-Ramirez, Jose, E-mail: jjar@xanum.uam.mx [Area de Energia, Division de Ciencias Basicas e Ingenieria, Universidad Autonoma Metropolitana-Iztapalapa, Apartado Postal 55-534, Mexico, D.F. 09340 (Mexico)

    2010-01-01

    Coating is commonly used for improving the optical properties of surfaces for solar collector applications. The coating morphology depends on the deposition conditions, and this determines the final optical characteristics. Coating morphologies are irregular and of fractal nature, so a suitable approach for its characterization should use methods borrowed from fractal analysis. The aim of this work is to study the fractal characteristics of black molybdenum coatings on copper and to relate the fractal parameters to the optical properties. To this end, coating surfaces were prepared via immersion in a solution of ammonium paramolybdate for different deposition periods. The fractal analysis was carried out for SEM and AFM images of the coating surface and the fractal properties were obtained with a recently developed high-dimensional extension of the well-known detrended fluctuation analysis (DFA). The most salient parameter drawn from the application of the DFA is the Hurst index, a parameter related to the roughness of the coating surface, and the multifractality index, which is related to the non-linearity features of the coating morphology. The results showed that optical properties, including absorptance and emittance, are decreasing functions of the Hurst and multifractality indices. This suggests that coating surfaces with high absorptance and emittance values are related to complex coating morphologies conformed within a non-linear structure.

  12. Fractal and probability analysis of creep crack growth behavior in 2.25Cr–1.6W steel incorporating residual stresses

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Mengjia; Xu, Jijin, E-mail: xujijin_1979@sjtu.edu.cn; Lu, Hao; Chen, Jieshi; Chen, Junmei; Wei, Xiao

    2015-12-30

    Graphical abstract: - Highlights: • Statistical and fractal analysis is applied to study the creep fracture surface. • The tensile residual stresses promote the initiation of creep crack. • The fractal dimension of a mixed mode fracture surface shows a wavy variation. • The fractal dimension increases with increasing intergranular fracture percentage. • Height coordinates of intergranular fracture surface fit Gaussian distribution. - Abstract: In order to clarify creep crack growth behavior in 2.25Cr–1.6W steel incorporating residual stresses, creep crack tests were carried out on the tension creep specimens, in which the residual stresses were generated by local remelting and cooling. Residual stresses in the specimens were measured using Synchrotron X-ray diffraction techniques. The fracture surface of the creep specimen was analyzed using statistical methods and fractal analysis. The relation between fractal dimension of the fracture surface and fracture mode of the creep specimen was discussed. Due to different fracture mechanisms, the probability density functions of the height coordinates vary with the intergranular crack percentage. Good fitting was found between Gaussian distribution and the probability function of height coordinates of the high percentage intergranular crack surface.

  13. Fractal and probability analysis of creep crack growth behavior in 2.25Cr–1.6W steel incorporating residual stresses

    International Nuclear Information System (INIS)

    Xu, Mengjia; Xu, Jijin; Lu, Hao; Chen, Jieshi; Chen, Junmei; Wei, Xiao

    2015-01-01

    Graphical abstract: - Highlights: • Statistical and fractal analysis is applied to study the creep fracture surface. • The tensile residual stresses promote the initiation of creep crack. • The fractal dimension of a mixed mode fracture surface shows a wavy variation. • The fractal dimension increases with increasing intergranular fracture percentage. • Height coordinates of intergranular fracture surface fit Gaussian distribution. - Abstract: In order to clarify creep crack growth behavior in 2.25Cr–1.6W steel incorporating residual stresses, creep crack tests were carried out on the tension creep specimens, in which the residual stresses were generated by local remelting and cooling. Residual stresses in the specimens were measured using Synchrotron X-ray diffraction techniques. The fracture surface of the creep specimen was analyzed using statistical methods and fractal analysis. The relation between fractal dimension of the fracture surface and fracture mode of the creep specimen was discussed. Due to different fracture mechanisms, the probability density functions of the height coordinates vary with the intergranular crack percentage. Good fitting was found between Gaussian distribution and the probability function of height coordinates of the high percentage intergranular crack surface.

  14. Fractal-dimension analysis detects cerebral changes in preterm infants with and without intrauterine growth restriction.

    Science.gov (United States)

    Esteban, Francisco J; Padilla, Nelly; Sanz-Cortés, Magdalena; de Miras, Juan Ruiz; Bargalló, Núria; Villoslada, Pablo; Gratacós, Eduard

    2010-12-01

    In the search for a useful parameter to detect and quantify subtle brain abnormalities in infants with intrauterine growth restriction (IUGR), we hypothesised that the analysis of the structural complexity of grey matter (GM) and white matter (WM) using the fractal dimension (FD), a measurement of the topological complexity of an object, could be established as a useful tool for quantitative studies of infant brain morphology. We studied a sample of 18 singleton IUGR premature infants, (12.72 months corrected age (CA), range: 12 months-14 months), 15 preterm infants matched one-to-one for gestational age (GA) at delivery (12.6 months; range: 12 months-14 months), and 15 neonates born at term (12.4 months; range: 11 months-14 months). The neurodevelopmental outcome was assessed in all subjects at 18 months CA according to the Bayley Scale for Infant and Toddler Development - Third edition (BSID-III). For MRI acquisition and processing, the infants were scanned at 12 months CA, in a TIM TRIO 3T scanner, sleeping naturally. Images were pre-processed using the SPM5 toolbox, the GM and WM segmented under the VBM5 toolbox, and the box-counting method was applied for FD calculation of normal and skeletonized segmented images. The results showed a significant decrease of the FD of the brain GM and WM in the IUGR group when compared to the preterm or at-term controls. We also identified a significant linear tendency of both GM and WM FD from IUGR to preterm and term groups. Finally, multiple linear analyses between the FD of the GM or WM and the neurodevelopmental scales showed a significant regression of the language and motor scales with the FD of the GM. In conclusion, a decreased FD of the GM and WM in IUGR infants could be a sensitive indicator for the investigation of structural brain abnormalities in the IUGR population at 12 months of age, which can also be related to functional disorders. Copyright © 2010 Elsevier Inc. All rights reserved.

  15. Fractal analysis of heart rate dynamics as a predictor of mortality in patients with depressed left ventricular function after acute myocardial infarction. TRACE Investigators. TRAndolapril Cardiac Evaluation

    DEFF Research Database (Denmark)

    Mäkikallio, T H; Høiber, S; Køber, L

    1999-01-01

    A number of new methods have been recently developed to quantify complex heart rate (HR) dynamics based on nonlinear and fractal analysis, but their value in risk stratification has not been evaluated. This study was designed to determine whether selected new dynamic analysis methods of HR...... variability predict mortality in patients with depressed left ventricular (LV) function after acute myocardial infarction (AMI). Traditional time- and frequency-domain HR variability indexes along with short-term fractal-like correlation properties of RR intervals (exponent alpha) and power-law scaling...

  16. The Impact of The Fractal Paradigm on Geography

    Science.gov (United States)

    De Cola, L.

    2001-12-01

    Being itself somewhat fractal, Benoit Mandelbrot's magnum opus THE FRACTAL GEOMETRY OF NATURE may be deconstructed in many ways, including geometrically, systematically, and epistemologically. Viewed as a work of geography it may be used to organize the major topics of interest to scientists preoccupied with the understanding of real-world space in astronomy, geology, meteorology, hydrology, and biology. We shall use it to highlight such recent geographic accomplishments as automated feature detection, understanding urban growth, and modeling the spread of disease in space and time. However, several key challenges remain unsolved, among them: 1. It is still not possible to move continuously from one map scale to another so that objects change their dimension smoothly. I.e. as a viewer zooms in on a map the zero-dimensional location of a city should gradually become a 2-dimensional polygon, then a network of 1-dimensional streets, then 3-dimensional buildings, etc. 2. Spatial autocorrelation continues to be regarded more as an econometric challenge than as a problem of scaling. Similarities of values among closely-spaced observation is not so much a problem to be overcome as a source of information about spatial structure. 3. Although the fractal paradigm is a powerful model for data analysis, its ideas and techniques need to be brought to bear on the problems of understanding such hierarchies as ecosystems (the flow networks of energy and matter), taxonomies (biological classification), and knowledge (hierarchies of bureaucratic information, networks of linked data, etc).

  17. Fractal analysis for assessing the level of modulation of IMRT fields

    International Nuclear Information System (INIS)

    Nauta, Marcel; Villarreal-Barajas, J. Eduardo; Tambasco, Mauro

    2011-01-01

    Purpose: To investigate the potential of three fractal dimension (FD) analysis methods (i.e., the variation, power spectrum, and variogram methods) as metrics for quantifying the degree of modulation in planned intensity modulated radiation therapy (IMRT) treatment fields, and compare the most suitable FD method to the number of monitor units (MUs), the average leaf gap, and the 2D modulation index (2D MI) for assessing modulation. Methods: The authors implemented, validated, and compared the variation, power spectrum, and variogram methods for computing the FD. Validation of the methods was done using mathematical fractional Brownian surfaces of known FD that ranged in size from 128 x 128 to 512 x 512. The authors used a test set consisting of seven head and neck carcinoma plans (50 prescribed treatment fields) to choose an FD cut-point that ensures no false positives (100% specificity) in distinguishing between moderate and high degrees of field modulation. The degree of field modulation was controlled by adjusting the fluence smoothing parameters in the Eclipse treatment planning system (Varian Medical Systems, Palo Alto, CA). The moderate modulation fields were representative of the degree of modulation used clinically at the authors' institution. The authors performed IMRT quality assurance (QA) on the 50 test fields using the MapCHECK device. The FD cut-point was applied to a validation set consisting of four head and neck plans (28 fields). The area under the curve (AUC) from receiver operating characteristic (ROC) analysis was used to compare the ability of FD, number of MUs, average leaf gap, and the 2D MI for distinguishing between the moderate and high modulation fields. Results: The authors found the variogram FD method to be the most suitable for assessing the modulation complexity of IMRT fields for head and neck carcinomas. Pass rates as measured by the gamma criterion for the MapCHECK IMRT field measurements were higher for the moderately modulated

  18. Analysis of the geomagnetic activity of the Dst index and self-affine fractals using wavelet transforms

    Directory of Open Access Journals (Sweden)

    H. L. Wei

    2004-01-01

    Full Text Available The geomagnetic activity of the Dst index is analyzed using wavelet transforms and it is shown that the Dst index possesses properties associated with self-affine fractals. For example, the power spectral density obeys a power-law dependence on frequency, and therefore the Dst index can be viewed as a self-affine fractal dynamic process. In fact, the behaviour of the Dst index, with a Hurst exponent H≈0.5 (power-law exponent β≈2 at high frequency, is similar to that of Brownian motion. Therefore, the dynamical invariants of the Dst index may be described by a potential Brownian motion model. Characterization of the geomagnetic activity has been studied by analysing the geomagnetic field using a wavelet covariance technique. The wavelet covariance exponent provides a direct effective measure of the strength of persistence of the Dst index. One of the advantages of wavelet analysis is that many inherent problems encountered in Fourier transform methods, such as windowing and detrending, are not necessary.

  19. Spatial Heterogeneity of the Forest Canopy Scales with the Heterogeneity of an Understory Shrub Based on Fractal Analysis

    Directory of Open Access Journals (Sweden)

    Catherine K. Denny

    2017-04-01

    Full Text Available Spatial heterogeneity of vegetation is an important landscape characteristic, but is difficult to assess due to scale-dependence. Here we examine how spatial patterns in the forest canopy affect those of understory plants, using the shrub Canada buffaloberry (Shepherdia canadensis (L. Nutt. as a focal species. Evergreen and deciduous forest canopy and buffaloberry shrub presence were measured with line-intercept sampling along ten 2-km transects in the Rocky Mountain foothills of west-central Alberta, Canada. Relationships between overstory canopy and understory buffaloberry presence were assessed for scales ranging from 2 m to 502 m. Fractal dimensions of both canopy and buffaloberry were estimated and then related using box-counting methods to evaluate spatial heterogeneity based on patch distribution and abundance. Effects of canopy presence on buffaloberry were scale-dependent, with shrub presence negatively related to evergreen canopy cover and positively related to deciduous cover. The effect of evergreen canopy was significant at a local scale between 2 m and 42 m, while that of deciduous canopy was significant at a meso-scale between 150 m and 358 m. Fractal analysis indicated that buffaloberry heterogeneity positively scaled with evergreen canopy heterogeneity, but was unrelated to that of deciduous canopy. This study demonstrates that evergreen canopy cover is a determinant of buffaloberry heterogeneity, highlighting the importance of spatial scale and canopy composition in understanding canopy-understory relationships.

  20. Quantitative Fractal Evaluation of Herbicide Effects on the Water-Absorbing Capacity of Superabsorbent Polymers

    Directory of Open Access Journals (Sweden)

    Renkuan Liao

    2014-01-01

    Full Text Available The water absorption capacity of superabsorbent polymers (SAPs is important for agricultural drought resistance. However, herbicides may leach into the soil and affect water absorption by damaging the SAP three-dimensional membrane structures. We used 100-mesh sieves, electron microscopy, and fractal theory to study swelling and water absorption in SAPs in the presence of three common herbicides (atrazine, alachlor, and tribenuron-methyl at concentrations of 0.5, 1.0, and 2.0 mg/L. In the sieve experiments it was found that 2.0 mg/L atrazine reduces the capacity by 9.64–23.3% at different swelling points; no significant diminution was observed for the other herbicides or for lower atrazine concentrations. We found that the hydrogel membrane pore distributions have fractal characteristics in both deionized water and atrazine solution. The 2.0 mg/L atrazine destroyed the water-retaining polymer membrane pores and reduced the water-absorbing mass by modifying its three-dimensional membrane structure. A linear correlation was observed between the fractal analysis and the water-absorbing mass. Multifractal analysis characterized the membrane pore distribution by using the range of singularity indexes Δα (relative distinguishing range of 16.54–23.44%, which is superior to single-fractal analysis that uses the fractal dimension D (relative distinguishing range of 2.5–4.0%.

  1. Depth of magnetic basement in Iran based on fractal spectral analysis of aeromagnetic data

    Science.gov (United States)

    Teknik, Vahid; Ghods, Abdolreza

    2017-06-01

    To estimate the shape of sedimentary basins, a critical parameter in hydrocarbon exploration, we calculated the depth of magnetic basement by applying a fractal spectral method to the aeromagnetic map of Iran. The depth of magnetic basement is a close proxy for the shape of sedimentary basins provided that igneous basement is strongly magnetized relative to the overlying sediments and there is no interbedding magnetic layer in the sediments. The shape of the power spectrum of magnetic anomalies is sensitive to the depth of magnetic basement, the thickness of the magnetic layer, the fractal parameter of magnetization and the size of the window used for the calculation of the power spectrum. Using a suite of synthetic tests, we have shown that the estimation of the depth of magnetic basement of up to 20 km is not very sensitive to the often unknown fractal parameter and thus the spectral method is a reliable tool to calculate the depth of magnetic basement. The depth of magnetic basement is in the range of 7-16 km in the Zagros, east Alborz, Tabas, Jazmurian and Makran regions, showing a close correlation with depths estimated from the maximum thickness of stratigraphic columns. We have also found new sedimentary basins in Bostan Abad, Bijar and south of Orumiyeh Lake. The significant depth of the magnetic basement in the Makran, Jazmurain depression, southeast Caspian Sea, Tabas, Great Kavir, south of Orumiyeh Lake, Bostan Abad and Bijar sedimentary basins makes them future prospects for hydrocarbon explorations. The depth of magnetic basement is strongly reduced over the Neyriz and Kermanshah Ophiolites, but it does not show any meaningful correlation with other outcrops of ophiolitic rocks in Iran.

  2. Fractal geometry and number theory complex dimensions of fractal strings and zeros of zeta functions

    CERN Document Server

    Lapidus, Michael L

    1999-01-01

    A fractal drum is a bounded open subset of R. m with a fractal boundary. A difficult problem is to describe the relationship between the shape (geo­ metry) of the drum and its sound (its spectrum). In this book, we restrict ourselves to the one-dimensional case of fractal strings, and their higher dimensional analogues, fractal sprays. We develop a theory of complex di­ mensions of a fractal string, and we study how these complex dimensions relate the geometry with the spectrum of the fractal string. We refer the reader to [Berrl-2, Lapl-4, LapPol-3, LapMal-2, HeLapl-2] and the ref­ erences therein for further physical and mathematical motivations of this work. (Also see, in particular, Sections 7. 1, 10. 3 and 10. 4, along with Ap­ pendix B. ) In Chapter 1, we introduce the basic object of our research, fractal strings (see [Lapl-3, LapPol-3, LapMal-2, HeLapl-2]). A 'standard fractal string' is a bounded open subset of the real line. Such a set is a disjoint union of open intervals, the lengths of which ...

  3. Fractal morphological analysis of Bacteriorhodopsin (bR) layers deposited onto Indium Tin Oxide (ITO) electrodes

    International Nuclear Information System (INIS)

    Vengadesh, P.; Muniandy, S.V.; Majid, W.H. Abd.

    2009-01-01

    Uniform Bacteriorhodopsin layers for the purpose of fabricating Bacteriorhodopsin-based biosensors were prepared by allowing drying of the layers under a constant electric field. To properly observe and understand the 'electric field effect' on the protein Bacteriorhodopsin, the electric and non-electric field influenced Bacteriorhodopsin layers prepared using a manual syringe-deposition method applied onto Indium Tin Oxide electrodes were structurally investigated using Scanning Electron Microscopy and Atomic Force Microscopy. The results yield obvious morphological differences between the electric and non-electric field assisted Bacteriorhodopsin layers and brings to attention the occurrence of the so-called 'coffee-ring' effect in the latter case. We applied stochastic fractal method based on the generalized Cauchy process to describe the morphological features surrounding the void. Fractal dimension is used to characterize the local regularity of the Bacteriorhodopsin clusters and the correlation exponent is used to describe the long-range correlation between the clusters. It is found that the Bacteriorhodopsin protein tends to exhibit with strong spatial correlation in the presence of external electric field compared to in absence of the electric field. Long-range correlation in the morphological feature may be associated to the enhancement of aggregation process of Bacteriorhodopsin protein in the presence of electric field, thereby inhibiting the formation of the so-called 'coffee-ring' effect. As such, the observations discussed in this work suggest some amount of control of surface uniformity when forming layers.

  4. Fractal analysis of crack paths in Al2O3-TiC-4%Co composites

    Institute of Scientific and Technical Information of China (English)

    LI Jing; YIN Yan-sheng; LIU Ying-cai; MA Lai-peng

    2006-01-01

    Al2O3-TiC-4%Co(volume fraction) composites(ATC) with high toughness (7.8±0.8 MPa·m1/2) and strength (782±60 MPa) were fabricated. In comparison with Al2O3-TiC composites(AT), the fracture toughness was significantly improved by 60%. The crack paths, generated by Vickers indentation on the polished surfaces of both composites, were analyzed from a fractal point of view to distinguish the possible toughening mechanisms involved. Quantitative evaluation of indentation cracks indicates that the crack deflection plays a more effective role. Cracks of the ATC composites show higher deflection angles and more deflections along the path. ATC composites present higher fractal dimension (D=1.07) than AT composites (D=1.02), which is directly related to the higher fracture toughness. A significant relationship between crack path and toughness is evident: the more irregular the geometry of the crack, the higher the fracture toughness.

  5. Fractal analysis of en face tomographic images obtained with full field optical coherence tomography

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Wanrong; Zhu, Yue [Department of Optical Engineering, Nanjing University of Science and Technology, Jiangsu (China)

    2017-03-15

    The quantitative modeling of the imaging signal of pathological areas and healthy areas is necessary to improve the specificity of diagnosis with tomographic en face images obtained with full field optical coherence tomography (FFOCT). In this work, we propose to use the depth-resolved change in the fractal parameter as a quantitative specific biomarker of the stages of disease. The idea is based on the fact that tissue is a random medium and only statistical parameters that characterize tissue structure are appropriate. We successfully relate the imaging signal in FFOCT to the tissue structure in terms of the scattering function and the coherent transfer function of the system. The formula is then used to analyze the ratio of the Fourier transforms of the cancerous tissue to the normal tissue. We found that when the tissue changes from the normal to cancerous the ratio of the spectrum of the index inhomogeneities takes the form of an inverse power law and the changes in the fractal parameter can be determined by estimating slopes of the spectra of the ratio plotted on a log-log scale. The fresh normal and cancer liver tissues were imaged to demonstrate the potential diagnostic value of the method at early stages when there are no significant changes in tissue microstructures. (copyright 2016 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  6. Beyond Fractals and 1/f Noise: Multifractal Analysis of Complex Physiological Time Series

    Science.gov (United States)

    Ivanov, Plamen Ch.; Amaral, Luis A. N.; Ashkenazy, Yosef; Stanley, H. Eugene; Goldberger, Ary L.; Hausdorff, Jeffrey M.; Yoneyama, Mitsuru; Arai, Kuniharu

    2001-03-01

    We investigate time series with 1/f-like spectra generated by two physiologic control systems --- the human heartbeat and human gait. We show that physiological fluctuations exhibit unexpected ``hidden'' structures often described by scaling laws. In particular, our studies indicate that when analyzed on different time scales the heartbeat fluctuations exhibit cascades of branching patterns with self-similar (fractal) properties, characterized by long-range power-law anticorrelations. We find that these scaling features change during sleep and wake phases, and with pathological perturbations. Further, by means of a new wavelet-based technique, we find evidence of multifractality in the healthy human heartbeat even under resting conditions, and show that the multifractal character and nonlinear properties of the healthy heart are encoded in the Fourier phases. We uncover a loss of multifractality for a life-threatening condition, congestive heart failure. In contrast to the heartbeat, we find that the interstride interval time series of healthy human gait, a voluntary process under neural regulation, is described by a single fractal dimension (such as classical 1/f noise) indicating monofractal behavior. Thus our approach can help distinguish physiological and physical signals with comparable frequency spectra and two-point correlations, and guide modeling of their control mechanisms.

  7. Analysis on fractal-like behaviour expected for migration of radionuclides in geologic sorbing media

    International Nuclear Information System (INIS)

    Kinoshita, Masahiro; Harada, Makoto; Tsubata, Kyoichi; Sato, Yasuo

    1998-01-01

    In earlier work, we showed that within nonhomogeneous sorbing media the desorption process becomes fractal-like. In migration of radionuclides in geologic media, the adsorption is an essential factor retardating the migration. Moreover, geologic media is inherently nonhomogeneous. It is therefore probable that the migration is significantly influenced by the fractal-like feature. Based on this idea, we have analyzed migration behaviours by employing a new model and compared the results with those obtained using conventional models. The nuclides migrate in the media with the flow of ground water being continually trapped on adsorption sites and released (desorbed) to the flow. The concept of the overall residence-time distribution function for nuclides on the adsorption sites is introduced in the new model. This function obeys the power form, ∼t -1-α (α > 0), for sufficiently large t (t denotes time). The migration behaviours predicted by our theory are qualitatively different from those by conventional theories, and the details of the differences are greatly dependent on the exponent α. In particular, the migration behaviour in cases of 0 < α < 1 is characterized by far larger retardation effects. (author)

  8. Dimensional analysis and group theory in astrophysics

    CERN Document Server

    Kurth, Rudolf

    2013-01-01

    Dimensional Analysis and Group Theory in Astrophysics describes how dimensional analysis, refined by mathematical regularity hypotheses, can be applied to purely qualitative physical assumptions. The book focuses on the continuous spectral of the stars and the mass-luminosity relationship. The text discusses the technique of dimensional analysis, covering both relativistic phenomena and the stellar systems. The book also explains the fundamental conclusion of dimensional analysis, wherein the unknown functions shall be given certain specified forms. The Wien and Stefan-Boltzmann Laws can be si

  9. Heterogeneity of Glucose Metabolism in Esophageal Cancer Measured by Fractal Analysis of Fluorodeoxyglucose Positron Emission Tomography Image: Correlation between Metabolic Heterogeneity and Survival.

    Science.gov (United States)

    Tochigi, Toru; Shuto, Kiyohiko; Kono, Tsuguaki; Ohira, Gaku; Tohma, Takayuki; Gunji, Hisashi; Hayano, Koichi; Narushima, Kazuo; Fujishiro, Takeshi; Hanaoka, Toshiharu; Akutsu, Yasunori; Okazumi, Shinichi; Matsubara, Hisahiro

    2017-01-01

    Intratumoral heterogeneity is a well-recognized characteristic feature of cancer. The purpose of this study is to assess the heterogeneity of the intratumoral glucose metabolism using fractal analysis, and evaluate its prognostic value in patients with esophageal squamous cell carcinoma (ESCC). 18F-fluorodeoxyglucose positron emission tomography (FDG-PET) studies of 79 patients who received curative surgery were evaluated. FDG-PET images were analyzed using fractal analysis software, where differential box-counting method was employed to calculate the fractal dimension (FD) of the tumor lesion. Maximum standardized uptake value (SUVmax) and FD were compared with overall survival (OS). The median SUVmax and FD of ESCCs in this cohort were 13.8 and 1.95, respectively. In univariate analysis performed using Cox's proportional hazard model, T stage and FD showed significant associations with OS (p = 0.04, p heterogeneity measured by fractal analysis can be a novel imaging biomarker for survival in patients with ESCC. © 2016 S. Karger AG, Basel.

  10. Investigation into How 8th Grade Students Define Fractals

    Science.gov (United States)

    Karakus, Fatih

    2015-01-01

    The analysis of 8th grade students' concept definitions and concept images can provide information about their mental schema of fractals. There is limited research on students' understanding and definitions of fractals. Therefore, this study aimed to investigate the elementary students' definitions of fractals based on concept image and concept…

  11. Constructing and applying the fractal pied de poule (houndstooth)

    NARCIS (Netherlands)

    Feijs, L.M.G.; Toeters, M.J.; Hart, G.; Sarhangi, R.

    2013-01-01

    Time is ready for a fractal version of pied de poule; it is almost "in the air". Taking inspiration from the Cantor set, and using the analysis of the classical pattern, we obtain a family of elegant new fractal Pied de Poules. We calculate the fractal dimension and develop an attractive fashion

  12. THE FRACTAL MARKET HYPOTHESIS

    OpenAIRE

    FELICIA RAMONA BIRAU

    2012-01-01

    In this article, the concept of capital market is analysed using Fractal Market Hypothesis which is a modern, complex and unconventional alternative to classical finance methods. Fractal Market Hypothesis is in sharp opposition to Efficient Market Hypothesis and it explores the application of chaos theory and fractal geometry to finance. Fractal Market Hypothesis is based on certain assumption. Thus, it is emphasized that investors did not react immediately to the information they receive and...

  13. [Quantitative analysis method based on fractal theory for medical imaging of normal brain development in infants].

    Science.gov (United States)

    Li, Heheng; Luo, Liangping; Huang, Li

    2011-02-01

    The present paper is aimed to study the fractal spectrum of the cerebral computerized tomography in 158 normal infants of different age groups, based on the calculation of chaotic theory. The distribution range of neonatal period was 1.88-1.90 (mean = 1.8913 +/- 0.0064); It reached a stable condition at the level of 1.89-1.90 during 1-12 months old (mean = 1.8927 +/- 0.0045); The normal range of 1-2 years old infants was 1.86-1.90 (mean = 1.8863 +/- 4 0.0085); It kept the invariance of the quantitative value among 1.88-1.91(mean = 1.8958 +/- 0.0083) during 2-3 years of age. ANOVA indicated there's no significant difference between boys and girls (F = 0.243, P > 0.05), but the difference of age groups was significant (F = 8.947, P development.

  14. Surface morphology analysis of nanostructured (Ba sub x , Sr sub 1 sub - sub x)TiO sub 3 thin films using fractal method

    CERN Document Server

    Hong, K J; Choi, W K; Cho, J C

    2003-01-01

    Based on the fractal theory, this paper uses scanning electron microscopy images to investigate the roughness characteristics of nanostructured (Ba Sr)TiO sub 3 thin films by sol-gel methods. The percentage grain area, surface fractal dimensions and 3D image are evaluated using image analysis methods. The thickness of the (Ba Sr)TiO sub 3 thin films was 260-280 nm. The surface fractal dimensions were increased with strontium doping, and grain area, were decreased with it. The fractal dimension and the grain areas of the (Ba sub 0 sub . sub 7 Sr sub 0 sub . sub 3)TiO sub 3 thin films were 1.81 and 81%. Based on the image analysis, the roughness height of 3D images as 256 levels was about 3 nm and its distribution was about 35-40% for the (Ba sub 0 sub . sub 8 Sr sub 0 sub . sub 2)TiO sub 3 and (Ba sub 0 sub . sub 7 Sr sub 0 sub . sub 3)TiO sub 3 thin films. The roughness height of the BST thin films was distributed from 35% to 40% ranging from 3 nm to 4 nm. By increasing the strontium doping, the roughness hei...

  15. Bone Texture Fractal Dimension Analysis of Ultrasound-Treated Bone around Implant Site: A Double-Blind Clinical Trial

    Directory of Open Access Journals (Sweden)

    Elaf Akram Abdulhameed

    2018-01-01

    Full Text Available Objectives. To evaluate the efficacy of bone texture fractal dimension (FD analysis method in predicting implant stability from intraoral periapical radiographs using two implant protocols. Materials and Methods. A double-blind clinical trial was conducted on 22 subjects who needed dental implants. The participants were randomized into two groups, the control group with standard implant protocol treatment and the intervention group with added low-intensity power ultrasound treatment (LIPUS besides the standard implant protocol. The FD values of bone density were carried out on the mesial and distal sides of the implant on digital intraoral radiographs using the box-counting method. Both resonance frequency (RF and fractal dimension (FD were assessed in three time intervals: after surgery and before and after loading. Results. FD on both the mesial and distal sides serve as very good-to-excellent tests with high validity (ROC area exceeding 0.8 in predicting high implant stability (ISQ ≥ 70. The mesial side measurements were consistently better than the distal side among the intervention groups. The optimum cutoff value for the FD-mesial side that predicts a highly stable implant (ISQ ≥ 70 is ≥1.505. At this optimum cutoff value, the mesial side FD is associated with a perfect sensitivity (100% and fairly high specificity (86.5%. Conclusion. The FD analysis could be recommended as an adjunctive quantitative method in prediction of the implant stability with very high sensitivity and specificity. This trial is registered with ISRCTN72648040.

  16. Fractal description of fractures

    International Nuclear Information System (INIS)

    Lung, C.W.

    1991-06-01

    Recent studies on the fractal description of fractures are reviewed. Some problems on this subject are discussed. It seems hopeful to use the fractal dimension as a parameter for quantitative fractography and to apply fractal structures to the development of high toughness materials. (author). 28 refs, 7 figs

  17. A short history of fractal-Cantorian space-time

    International Nuclear Information System (INIS)

    Marek-Crnjac, L.

    2009-01-01

    The article attempts to give a short historical overview of the discovery of fractal-Cantorian space-time starting from the 17th century up to the present. In the last 25 years a great number of scientists worked on fractal space-time notably Garnet Ord in Canada, Laurent Nottale in France and Mohamed El Naschie in England who gave an exact mathematical procedure for the derivation of the dimensionality and curvature of fractal space-time fuzzy manifold.

  18. Perspective of Dimensional Analysis in Medical Science

    Directory of Open Access Journals (Sweden)

    Kowalewski Wojciech

    2017-09-01

    Full Text Available This paper presents several applications of the dimensional analysis method to problems investigated in medical sciences. The method is used to analyze various complex processes without using formal laws governing the same. It is particularly suitable for a general analysis of fluid transfer (liquids and gases in the human body. This paper mainly serves as an overview of selected applications, mostly those emerging in the recent years, and includes a discussion of the mathematical fundamentals of dimensional analysis together followed by its critical analysis. Containing detailed calculations of two examples, the paper also serves as training material in the area of the computational method of the dimensional analysis algorithm.

  19. Fractal dimension of turbulent black holes

    Science.gov (United States)

    Westernacher-Schneider, John Ryan

    2017-11-01

    We present measurements of the fractal dimension of a turbulent asymptotically anti-de Sitter black brane reconstructed from simulated boundary fluid data at the perfect fluid order using the fluid-gravity duality. We argue that the boundary fluid energy spectrum scaling as E (k )˜k-2 is a more natural setting for the fluid-gravity duality than the Kraichnan-Kolmogorov scaling of E (k )˜k-5 /3, but we obtain fractal dimensions D for spatial sections of the horizon H ∩Σ in both cases: D =2.584 (1 ) and D =2.645 (4 ), respectively. These results are consistent with the upper bound of D =3 , thereby resolving the tension with the recent claim in Adams et al. [Phys. Rev. Lett. 112, 151602 (2014), 10.1103/PhysRevLett.112.151602] that D =3 +1 /3 . We offer a critical examination of the calculation which led to their result, and show that their proposed definition of the fractal dimension performs poorly as a fractal dimension estimator on one-dimensional curves with known fractal dimension. Finally, we describe how to define and in principle calculate the fractal dimension of spatial sections of the horizon H ∩Σ in a covariant manner, and we speculate on assigning a "bootstrapped" value of fractal dimension to the entire horizon H when it is in a statistically quasisteady turbulent state.

  20. Heritability of Retinal Vascular Fractals

    DEFF Research Database (Denmark)

    Vergmann, Anna Stage; Broe, Rebecca; Kessel, Line

    2017-01-01

    Purpose: To determine the genetic contribution to the pattern of retinal vascular branching expressed by its fractal dimension. Methods: This was a cross-sectional study of 50 monozygotic and 49 dizygotic, same-sex twin pairs aged 20 to 46 years. In 50°, disc-centered fundus photographs, the reti...... fractal dimension did not differ statistically significantly between monozygotic and dizygotic twin pairs (1.505 vs. 1.495, P = 0.06), supporting that the study population was suitable for quantitative analysis of heritability. The intrapair correlation was markedly higher (0.505, P = 0.......0002) in monozygotic twins than in dizygotic twins (0.108, P = 0.46), corresponding to a heritability h2 for the fractal dimension of 0.79. In quantitative genetic models, dominant genetic effects explained 54% of the variation and 46% was individually environmentally determined. Conclusions: In young adult twins...

  1. THE FRACTAL MARKET HYPOTHESIS

    Directory of Open Access Journals (Sweden)

    FELICIA RAMONA BIRAU

    2012-05-01

    Full Text Available In this article, the concept of capital market is analysed using Fractal Market Hypothesis which is a modern, complex and unconventional alternative to classical finance methods. Fractal Market Hypothesis is in sharp opposition to Efficient Market Hypothesis and it explores the application of chaos theory and fractal geometry to finance. Fractal Market Hypothesis is based on certain assumption. Thus, it is emphasized that investors did not react immediately to the information they receive and of course, the manner in which they interpret that information may be different. Also, Fractal Market Hypothesis refers to the way that liquidity and investment horizons influence the behaviour of financial investors.

  2. Heritability of Retinal Vascular Fractals

    DEFF Research Database (Denmark)

    Vergmann, Anna Stage; Broe, Rebecca; Kessel, Line

    2017-01-01

    , the retinal vascular fractal dimension was measured using the box-counting method and compared within monozygotic and dizygotic twin pairs using Pearson correlation coefficients. Falconer's formula and quantitative genetic models were used to determine the genetic component of variation. Results: The mean...... fractal dimension did not differ statistically significantly between monozygotic and dizygotic twin pairs (1.505 vs. 1.495, P = 0.06), supporting that the study population was suitable for quantitative analysis of heritability. The intrapair correlation was markedly higher (0.505, P = 0...

  3. Synergetics and fractals in tribology

    CERN Document Server

    Janahmadov, Ahad Kh

    2016-01-01

    This book examines the theoretical and practical aspects of tribological process using synergy, fractal and multifractal methods, and the fractal and multifractal models of self-similar tribosystems developed on their basis. It provides a comprehensive analysis of their effectiveness, and also considers the method of flicker noise spectroscopy with detailed parameterization of surface roughness friction. All models, problems and solutions are taken and tested on the set of real-life examples of oil-gas industry. The book is intended for researchers, graduate students and engineers specialising in the field of tribology, and also for senior students of technical colleges.

  4. Design of LTCC Based Fractal Antenna

    KAUST Repository

    AdbulGhaffar, Farhan

    2010-09-01

    The thesis presents a Sierpinski Carpet fractal antenna array designed at 24 GHz for automotive radar applications. Miniaturized, high performance and low cost antennas are required for this application. To meet these specifications a fractal array has been designed for the first time on Low Temperature Co-fired Ceramic (LTCC) based substrate. LTCC provides a suitable platform for the development of these antennas due to its properties of vertical stack up and embedded passives. The complete antenna concept involves integration of this fractal antenna array with a Fresnel lens antenna providing a total gain of 15dB which is appropriate for medium range radar applications. The thesis also presents a comparison between the designed fractal antenna and a conventional patch antenna outlining the advantages of fractal antenna over the later one. The fractal antenna has a bandwidth of 1.8 GHz which is 7.5% of the centre frequency (24GHz) as compared to 1.9% of the conventional patch antenna. Furthermore the fractal design exhibits a size reduction of 53% as compared to the patch antenna. In the end a sensitivity analysis is carried out for the fractal antenna design depicting the robustness of the proposed design against the typical LTCC fabrication tolerances.

  5. Scale-free crystallization of two-dimensional complex plasmas: Domain analysis using Minkowski tensors

    Science.gov (United States)

    Böbel, A.; Knapek, C. A.; Räth, C.

    2018-05-01

    Experiments of the recrystallization processes in two-dimensional complex plasmas are analyzed to rigorously test a recently developed scale-free phase transition theory. The "fractal-domain-structure" (FDS) theory is based on the kinetic theory of Frenkel. It assumes the formation of homogeneous domains, separated by defect lines, during crystallization and a fractal relationship between domain area and boundary length. For the defect number fraction and system energy a scale-free power-law relation is predicted. The long-range scaling behavior of the bond-order correlation function shows clearly that the complex plasma phase transitions are not of the Kosterlitz, Thouless, Halperin, Nelson, and Young type. Previous preliminary results obtained by counting the number of dislocations and applying a bond-order metric for structural analysis are reproduced. These findings are supplemented by extending the use of the bond-order metric to measure the defect number fraction and furthermore applying state-of-the-art analysis methods, allowing a systematic testing of the FDS theory with unprecedented scrutiny: A morphological analysis of lattice structure is performed via Minkowski tensor methods. Minkowski tensors form a complete family of additive, motion covariant and continuous morphological measures that are sensitive to nonlinear properties. The FDS theory is rigorously confirmed and predictions of the theory are reproduced extremely well. The predicted scale-free power-law relation between defect fraction number and system energy is verified for one more order of magnitude at high energies compared to the inherently discontinuous bond-order metric. It is found that the fractal relation between crystalline domain area and circumference is independent of the experiment, the particular Minkowski tensor method, and the particular choice of parameters. Thus, the fractal relationship seems to be inherent to two-dimensional phase transitions in complex plasmas. Minkowski

  6. Analysis of infinite dimensional diffusions

    NARCIS (Netherlands)

    Maas, J.

    2009-01-01

    Stochastic processes in infinite dimensional state spaces provide a mathematical description of various phenomena in physics, population biology, finance, and other fields of science. Several aspects of these processes have been studied in this thesis by means of new analytic methods. Firstly,

  7. Fractal and variability analysis of simulations in ozone level due to oxides of nitrogen and sulphur

    Science.gov (United States)

    Bhardwaj, Rashmi; Pruthi, Dimple

    2017-10-01

    Air pollution refers to the release of pollutants into the air. These pollutants are detrimental to human the planet as a whole. Apart from causing respiratory infections and pulmonary disorders, rising levels of Nitrogen Dioxide is worsening ozone pollution. Formation of Ground-level ozone involves nitrogen oxides and volatile gases in the sunlight. Volatile gases are emitted from vehicles primarily. Ozone is harmful gas and its exposure can trigger serious health effects as it damages lung tissues. In order to decrease the level of ozone, level of oxides leading to ozone formation has to be dealt with. This paper deals with the simulations in ozone due to oxides of nitrogen and sulphur. The data from Central Pollution Control Board shows positive correlation for ozone with oxides of sulphur and nitrogen for RK Puram, Delhi in India where high concentration of ozone has been found. The correlation between ozone and sulphur, nitrogen oxides is moderate during summer while weak during winters. Ozone with nitrogen and sulphur dioxide follow persistent behavior as Hurst exponent is between 0.5 and 1. The fractal dimension for Sulphur dioxide is 1.4957 indicating the Brownian motion. The behavior of ozone is unpredictable as index of predictability is close to zero.

  8. Visual Analysis of Nonlinear Dynamical Systems: Chaos, Fractals, Self-Similarity and the Limits of Prediction

    Directory of Open Access Journals (Sweden)

    Geoff Boeing

    2016-11-01

    Full Text Available Nearly all nontrivial real-world systems are nonlinear dynamical systems. Chaos describes certain nonlinear dynamical systems that have a very sensitive dependence on initial conditions. Chaotic systems are always deterministic and may be very simple, yet they produce completely unpredictable and divergent behavior. Systems of nonlinear equations are difficult to solve analytically, and scientists have relied heavily on visual and qualitative approaches to discover and analyze the dynamics of nonlinearity. Indeed, few fields have drawn as heavily from visualization methods for their seminal innovations: from strange attractors, to bifurcation diagrams, to cobweb plots, to phase diagrams and embedding. Although the social sciences are increasingly studying these types of systems, seminal concepts remain murky or loosely adopted. This article has three aims. First, it argues for several visualization methods to critically analyze and understand the behavior of nonlinear dynamical systems. Second, it uses these visualizations to introduce the foundations of nonlinear dynamics, chaos, fractals, self-similarity and the limits of prediction. Finally, it presents Pynamical, an open-source Python package to easily visualize and explore nonlinear dynamical systems’ behavior.

  9. Complexity analysis of EEG in patients with schizophrenia using fractal dimension

    International Nuclear Information System (INIS)

    Raghavendra, B S; Dutt, D Narayana; Halahalli, Harsha N; John, John P

    2009-01-01

    We computed Higuchi's fractal dimension (FD) of resting, eyes closed EEG recorded from 30 scalp locations in 18 male neuroleptic-naïve, recent-onset schizophrenia (NRS) subjects and 15 male healthy control (HC) subjects, who were group-matched for age. Schizophrenia patients showed a diffuse reduction of FD except in the bilateral temporal and occipital regions, with the reduction being most prominent bifrontally. The positive symptom (PS) schizophrenia subjects showed FD values similar to or even higher than HC in the bilateral temporo-occipital regions, along with a co-existent bifrontal FD reduction as noted in the overall sample of NRS. In contrast, this increase in FD values in the bilateral temporo-occipital region was absent in the negative symptom (NS) subgroup. The regional differences in complexity suggested by these findings may reflect the aberrant brain dynamics underlying the pathophysiology of schizophrenia and its symptom dimensions. Higuchi's method of measuring FD directly in the time domain provides an alternative for the more computationally intensive nonlinear methods of estimating EEG complexity

  10. Fractal simulation of urbanization for the analysis of vulnerability to natural hazards

    Science.gov (United States)

    Puissant, Anne; Sensier, Antoine; Tannier, Cécile; Malet, Jean-Philippe

    2016-04-01

    Since 50 years, mountain areas are affected by important land cover/use changes characterized by the decrease of pastoral activities, reforestation and urbanization with the development of tourism activities and infrastructures. These natural and anthropogenic transformations have an impact on the socio-economic activities but also on the exposure of the communities to natural hazards. In the context of the ANR Project SAMCO which aims at enhancing the overall resilience of societies on the impacts of mountain risks, the objective of this research was to help to determine where to locate new residential developments for different scenarios of land cover/use (based on the Prelude European Project) for the years 2030 and 2050. The Planning Support System (PSS), called MUP-City, based on a fractal multi-scale modeling approach is used because it allows taking into account local accessibility to some urban and rural amenities (Tannier et al., 2012). For this research, an experiment is performed on a mountain area in the French Alps (Barcelonnette Basin) to generate three scenarios of urban development with MUP-City at the scale of 1:10:000. The results are assessed by comparing the localization of residential developments with urban areas predicted by land cover and land use scenarios generated by cellular automata modelling (LCM and Dyna-clue) (Puissant et al., 2015). Based on these scenarios, the evolution of vulnerability is estimated.

  11. Comparative study on fractal analysis of interferometry images with application to tear film surface quality assessment.

    Science.gov (United States)

    Szyperski, Piotr D

    2018-06-01

    The purpose of this research was to evaluate the applicability of the fractal dimension (FD) estimators to assess lateral shearing interferometric (LSI) measurements of tear film surface quality. Retrospective recordings of tear film measured with LSI were used: 69 from healthy subjects and 41 from patients diagnosed with dry eye syndrome. Five surface quality descriptors were considered, four based on FD and a previously reported descriptor operating in a spatial frequency domain (M 2 ), presenting temporal kinetics of post-blink tear film. A set of 12 regression parameters has been extracted and analyzed for classification purposes. The classifiers are assessed in terms of receiver operating characteristics and areas under their curves (AUC). Also, the computational loads are estimated. The maximum AUC of 82.4% was achieved for M 2 , closely followed by the binary box-counting (BBC) FD estimator with AUC=78.6%. For all descriptors, statistically significant differences between the subject groups were found (pfilm kinetics. They provide a viable alternative to previously used spectral counter parameters, and at the same time allow higher computational efficiency.

  12. Electron spin-lattice relaxation in fractals

    International Nuclear Information System (INIS)

    Shrivastava, K.N.

    1986-08-01

    We have developed the theory of the spin-fracton interaction for paramagnetic ions in fractal structures. The interaction is exponentially damped by the self-similarity length of the fractal and by the range dimensionality d Φ . The relaxation time of the spin due to the absorption and emission of the fracton has been calculated for a general dimensionality called the Raman dimensionality d R , which for the fractons differs from the Hausdorff (fractal) dimensionality, D, as well as from the Euclidean dimensionality, d. The exponent of the energy level separation in the relaxation rate varies with d R d Φ /D. We have calculated the spin relaxation rate due to a new type of Raman process in which one fracton is absorbed to affect a spin transition from one electronic level to another and later another fracton is emitted along with a spin transition such that the difference in the energies of the two fractons is equal to the electronic energy level separation. The temperature and the dimensionality dependence of such a process has been found in several approximations. In one of the approximations where the van Vleck relaxation rate for a spin in a crystal is known to vary with temperature as T 9 , our calculated variation for fractals turns out to be T 6.6 , whereas the experimental value for Fe 3+ in frozen solutions of myoglobin azide is T 6.3 . Since we used d R =4/3 and the fracton range dimensionality d Φ =D/1.8, we expect to measure the dimensionalities of the problem by measuring the temperature dependence of the relaxation times. We have also calculated the shift of the paramagnetic resonance transition for a spin in a fractal for general dimensionalities. (author)

  13. Some fractal properties of the percolating backbone in two dimensions

    International Nuclear Information System (INIS)

    Laidlaw, D.; MacKay, G.; Jan, N.

    1987-01-01

    A new algorithm is presented, based on elements of artificial intelligence theory, to determine the fractal properties of the backbone of the incipient infinite cluster. It is found that fractal dimensionality of the backbone is d/sub f//sup BB/ = 1.61 +/- 0.01, the chemical dimensionality is d/sub t/ = 1.40 +/- 0.01, and the fractal dimension of the minimum path d/sub min/ = 1.15 +/- 0.02 for the two-dimensional triangular lattice

  14. Statistical Fractal Models Based on GND-PCA and Its Application on Classification of Liver Diseases

    Directory of Open Access Journals (Sweden)

    Huiyan Jiang

    2013-01-01

    Full Text Available A new method is proposed to establish the statistical fractal model for liver diseases classification. Firstly, the fractal theory is used to construct the high-order tensor, and then Generalized -dimensional Principal Component Analysis (GND-PCA is used to establish the statistical fractal model and select the feature from the region of liver; at the same time different features have different weights, and finally, Support Vector Machine Optimized Ant Colony (ACO-SVM algorithm is used to establish the classifier for the recognition of liver disease. In order to verify the effectiveness of the proposed method, PCA eigenface method and normal SVM method are chosen as the contrast methods. The experimental results show that the proposed method can reconstruct liver volume better and improve the classification accuracy of liver diseases.

  15. A student's guide to dimensional analysis

    CERN Document Server

    Lemons, Don S

    2017-01-01

    This introduction to dimensional analysis covers the methods, history and formalisation of the field, and provides physics and engineering applications. Covering topics from mechanics, hydro- and electrodynamics to thermal and quantum physics, it illustrates the possibilities and limitations of dimensional analysis. Introducing basic physics and fluid engineering topics through the mathematical methods of dimensional analysis, this book is perfect for students in physics, engineering and mathematics. Explaining potentially unfamiliar concepts such as viscosity and diffusivity, the text includes worked examples and end-of-chapter problems with answers provided in an accompanying appendix, which help make it ideal for self-study. Long-standing methodological problems arising in popular presentations of dimensional analysis are also identified and solved, making the book a useful text for advanced students and professionals.

  16. Fuzzy fractals, chaos, and noise

    Energy Technology Data Exchange (ETDEWEB)

    Zardecki, A.

    1997-05-01

    To distinguish between chaotic and noisy processes, the authors analyze one- and two-dimensional chaotic mappings, supplemented by the additive noise terms. The predictive power of a fuzzy rule-based system allows one to distinguish ergodic and chaotic time series: in an ergodic series the likelihood of finding large numbers is small compared to the likelihood of finding them in a chaotic series. In the case of two dimensions, they consider the fractal fuzzy sets whose {alpha}-cuts are fractals, arising in the context of a quadratic mapping in the extended complex plane. In an example provided by the Julia set, the concept of Hausdorff dimension enables one to decide in favor of chaotic or noisy evolution.

  17. Fractal dimension analysis in digital periapical radiographs: A diagnostic indicator of osteoporosis in post-menopausal women

    Directory of Open Access Journals (Sweden)

    Mathivanan Kavitha

    2017-01-01

    Full Text Available Objectives: To assess the alveolar bone density by fractal dimension (FD analysis in radiovisiograph of postmenopausal women of mandibular posterior region and to correlate FD values with t-scores of quantitative ultrasound of the calcaneus bone. Materials and Methods: This study, approved by the institutional review board, included 40 participants, aged 45–60 years divided into two groups. Twenty postmenopausal women with osteoporosis comprised group 1, and 20 postmenopausal women without osteoporosis comprised group 2 based on bone mineral density assessment of ultrasound of the calcaneus bone. Digital dental radiograph of mandibular first molar were obtained and used for assessing alveolar bone density by FD analysis and were correlated with t-scores of ultrasound of calcaneus bone. Results: The mean FD values were evaluated using SPSS 14 version software, and were found to be 1.738 and 1.867 for group 1 and group 2, respectively, which was statistically significant (P 0.05. Conclusion: FD analysis using direct digital periapical radiographs is a novel method, which can be used for early diagnosis of osteoporosis in the alveolar bone.

  18. On Nonextensive Statistics, Chaos and Fractal Strings

    CERN Document Server

    Castro, C

    2004-01-01

    Motivated by the growing evidence of universality and chaos in QFT and string theory, we study the Tsallis non-extensive statistics ( with a non-additive $ q$-entropy ) of an ensemble of fractal strings and branes of different dimensionalities. Non-equilibrium systems with complex dynamics in stationary states may exhibit large fluctuations of intensive quantities which are described in terms of generalized statistics. Tsallis statistics is a particular representative of such class. The non-extensive entropy and probability distribution of a canonical ensemble of fractal strings and branes is studied in terms of their dimensional spectrum which leads to a natural upper cutoff in energy and establishes a direct correlation among dimensions, energy and temperature. The absolute zero temperature ( Kelvin ) corresponds to zero dimensions (energy ) and an infinite temperature corresponds to infinite dimensions. In the concluding remarks some applications of fractal statistics, quasi-particles, knot theory, quantum...

  19. Discovery of cosmic fractals

    CERN Document Server

    Baryshev, Yuri

    2002-01-01

    This is the first book to present the fascinating new results on the largest fractal structures in the universe. It guides the reader, in a simple way, to the frontiers of astronomy, explaining how fractals appear in cosmic physics, from our solar system to the megafractals in deep space. It also offers a personal view of the history of the idea of self-similarity and of cosmological principles, from Plato's ideal architecture of the heavens to Mandelbrot's fractals in the modern physical cosmos. In addition, this invaluable book presents the great fractal debate in astronomy (after Luciano Pi

  20. Mechanical properties and fractal analysis of the surface texture of sputtered hydroxyapatite coatings

    Energy Technology Data Exchange (ETDEWEB)

    Bramowicz, Miroslaw [University of Warmia and Mazury in Olsztyn, Faculty of Technical Sciences, Oczapowskiego 11, 10-719 Olsztyn (Poland); Braic, Laurentiu [National Institute for Optoelectronics, 409 Atomistilor, 077125, Magurele (Romania); Azem, Funda Ak [Dokuz Eylul University, Engineering Faculty, Metallurgical and Materials Engineering Department, Tinaztepe Campus, 35397, Izmir (Turkey); Kulesza, Slawomir [University of Warmia and Mazury in Olsztyn, Faculty of Mathematics and Computer Science, Sloneczna 54, 10-710 Olsztyn (Poland); Birlik, Isil [Dokuz Eylul University, Engineering Faculty, Metallurgical and Materials Engineering Department, Tinaztepe Campus, 35397, Izmir (Turkey); Vladescu, Alina, E-mail: alinava@inoe.ro [National Institute for Optoelectronics, 409 Atomistilor, 077125, Magurele (Romania)

    2016-08-30

    Highlights: • Hydroxyapatite were prepared at temperatures in the range from 400 to 800 °C. • The coatings prepared at 800 °C is closer to the stoichiometric hydroxyapatite. • Hardness and elastic modulus decreased with increasing deposition temperature. • The surface morphology strongly depends on the deposition temperature. • Mesokurtic height distribution pulled towards larger heights were formed at high temperature. - Abstract: This aim of this work is to establish a relationship between the surface morphology and mechanical properties of hydroxyapatite coatings prepared using RF magnetron sputtering at temperatures in the range from 400 to 800 °C. The topography of the samples was scanned using atomic force microscopy, and the obtained 3D maps were analyzed using fractal methods to derive the spatial characteristics of the surfaces. X-ray photoelectron spectroscopy revealed the strong influence of the deposition temperature on the Ca/P ratio in the growing films. The coatings deposited at 600–800 °C exhibited a Ca/P ratio between 1.63 and 1.69, close to the stoichiometric hydroxyapatite (Ca/P = 1.67), which is crucial for proper osseointegration. Fourier-transform infrared spectroscopy showed that the intensity of phosphate absorption bands increased with increasing substrate temperature. Each sample exhibited well defined and sharp hydroxyapatite band at 566 cm{sup −1}, although more pronounced for the coatings deposited above 500 °C. Both the hardness and elastic modulus of the coated samples decrease with increasing deposition temperature. The surface morphology strongly depends on the deposition temperature. The sample deposited at 400 °C exhibits circular cavities dug in an otherwise flat surface. At higher deposition temperatures, these cavities increase in size and start to overlap each other so that at 500 °C the surface is composed of closely packed peaks and ridges. At that point, the characteristics of the surface turns from the

  1. Mechanical properties and fractal analysis of the surface texture of sputtered hydroxyapatite coatings

    International Nuclear Information System (INIS)

    Bramowicz, Miroslaw; Braic, Laurentiu; Azem, Funda Ak; Kulesza, Slawomir; Birlik, Isil; Vladescu, Alina

    2016-01-01

    Highlights: • Hydroxyapatite were prepared at temperatures in the range from 400 to 800 °C. • The coatings prepared at 800 °C is closer to the stoichiometric hydroxyapatite. • Hardness and elastic modulus decreased with increasing deposition temperature. • The surface morphology strongly depends on the deposition temperature. • Mesokurtic height distribution pulled towards larger heights were formed at high temperature. - Abstract: This aim of this work is to establish a relationship between the surface morphology and mechanical properties of hydroxyapatite coatings prepared using RF magnetron sputtering at temperatures in the range from 400 to 800 °C. The topography of the samples was scanned using atomic force microscopy, and the obtained 3D maps were analyzed using fractal methods to derive the spatial characteristics of the surfaces. X-ray photoelectron spectroscopy revealed the strong influence of the deposition temperature on the Ca/P ratio in the growing films. The coatings deposited at 600–800 °C exhibited a Ca/P ratio between 1.63 and 1.69, close to the stoichiometric hydroxyapatite (Ca/P = 1.67), which is crucial for proper osseointegration. Fourier-transform infrared spectroscopy showed that the intensity of phosphate absorption bands increased with increasing substrate temperature. Each sample exhibited well defined and sharp hydroxyapatite band at 566 cm"−"1, although more pronounced for the coatings deposited above 500 °C. Both the hardness and elastic modulus of the coated samples decrease with increasing deposition temperature. The surface morphology strongly depends on the deposition temperature. The sample deposited at 400 °C exhibits circular cavities dug in an otherwise flat surface. At higher deposition temperatures, these cavities increase in size and start to overlap each other so that at 500 °C the surface is composed of closely packed peaks and ridges. At that point, the characteristics of the surface turns from the

  2. Wear Analysis of a Ti-5Al-3V-2.5Fe Alloy Using a Factorial Design Approach and Fractal Geometry

    Directory of Open Access Journals (Sweden)

    A. W. El-Morsy

    2018-02-01

    Full Text Available This paper describes the application of the full factorial experimental design technique to confirm the significance of the factors affecting the wear behavior of a recycled Ti-5Al-3V-2.5Fe alloy with a minimum number of experiments. The fractal theory has been used to describe the worn surface state and to investigate the relationship between the fractal dimensions and the surface morphology. The experiments of the sliding wear have been performed under stresses in the range of 1-5 MPa and within sliding velocities range of 0.2–2.0 m/s. Morphology of the worn surfaces investigations has been undertaken using a scanning electron microscope. From the analysis of variance and the nonlinear regression model, the results show that the applied stress has a higher contribution to the wear rate than the sliding velocity.

  3. Alpha-spectrometry and fractal analysis of surface micro-images for characterisation of porous materials used in manufacture of targets for laser plasma experiments

    Energy Technology Data Exchange (ETDEWEB)

    Aushev, A A; Barinov, S P; Vasin, M G; Drozdov, Yu M; Ignat' ev, Yu V; Izgorodin, V M; Kovshov, D K; Lakhtikov, A E; Lukovkina, D D; Markelov, V V; Morovov, A P; Shishlov, V V [Russian Federal Nuclear Center ' All-Russian Research Institute of Experimental Physics' , Sarov, Nizhnii Novgorod region (Russian Federation)

    2015-06-30

    We present the results of employing the alpha-spectrometry method to determine the characteristics of porous materials used in targets for laser plasma experiments. It is shown that the energy spectrum of alpha-particles, after their passage through porous samples, allows one to determine the distribution of their path length in the foam skeleton. We describe the procedure of deriving such a distribution, excluding both the distribution broadening due to statistical nature of the alpha-particle interaction with an atomic structure (straggling) and hardware effects. The fractal analysis of micro-images is applied to the same porous surface samples that have been studied by alpha-spectrometry. The fractal dimension and size distribution of the number of the foam skeleton grains are obtained. Using the data obtained, a distribution of the total foam skeleton thickness along a chosen direction is constructed. It roughly coincides with the path length distribution of alpha-particles within a range of larger path lengths. It is concluded that the combined use of the alpha-spectrometry method and fractal analysis of images will make it possible to determine the size distribution of foam skeleton grains (or pores). The results can be used as initial data in theoretical studies on propagation of the laser and X-ray radiation in specific porous samples. (laser plasma)

  4. International Conference on Advances of Fractals and Related Topics

    CERN Document Server

    Lau, Ka-Sing

    2014-01-01

    This volume collects thirteen expository or survey articles on topics including Fractal Geometry, Analysis of Fractals, Multifractal Analysis, Ergodic Theory and Dynamical Systems, Probability and Stochastic Analysis, written by the leading experts in their respective fields. The articles are based on papers presented at the International Conference on Advances on Fractals and Related Topics, held on December 10-14, 2012 at the Chinese University of Hong Kong. The volume offers insights into a number of exciting, cutting-edge developments in the area of fractals, which has close ties to and applications in other areas such as analysis, geometry, number theory, probability and mathematical physics.   

  5. Fractal nature of hydrocarbon deposits. 2. Spatial distribution

    International Nuclear Information System (INIS)

    Barton, C.C.; Schutter, T.A; Herring, P.R.; Thomas, W.J.; Scholz, C.H.

    1991-01-01

    Hydrocarbons are unevenly distributed within reservoirs and are found in patches whose size distribution is a fractal over a wide range of scales. The spatial distribution of the patches is also fractal and this can be used to constrain the design of drilling strategies also defined by a fractal dimension. Fractal distributions are scale independent and are characterized by a power-law scaling exponent termed the fractal dimension. The authors have performed fractal analyses on the spatial distribution of producing and showing wells combined and of dry wells in 1,600-mi 2 portions of the Denver and Powder River basins that were nearly completely drilled on quarter-mile square-grid spacings. They have limited their analyses to wells drilled to single stratigraphic intervals so that the map pattern revealed by drilling is representative of the spatial patchiness of hydrocarbons at depth. The fractal dimensions for the spatial patchiness of hydrocarbons in the two basins are 1.5 and 1.4, respectively. The fractal dimension for the pattern of all wells drilled is 1.8 for both basins, which suggests a drilling strategy with a fractal dimension significantly higher than the dimensions 1.5 and 1.4 sufficient to efficiently and economically explore these reservoirs. In fact, the fractal analysis reveals that the drilling strategy used in these basins approaches a fractal dimension of 2.0, which is equivalent to random drilling with no geologic input. Knowledge of the fractal dimension of a reservoir prior to drilling would provide a basis for selecting and a criterion for halting a drilling strategy for exploration whose fractal dimension closely matches that of the spatial fractal dimension of the reservoir, such a strategy should prove more efficient and economical than current practice

  6. Two-dimensional signal analysis

    CERN Document Server

    Garello, René

    2010-01-01

    This title sets out to show that 2-D signal analysis has its own role to play alongside signal processing and image processing.Concentrating its coverage on those 2-D signals coming from physical sensors (such as radars and sonars), the discussion explores a 2-D spectral approach but develops the modeling of 2-D signals and proposes several data-oriented analysis techniques for dealing with them. Coverage is also given to potential future developments in this area.

  7. Dimensional analysis beyond the Pi theorem

    CERN Document Server

    Zohuri, Bahman

    2017-01-01

    Dimensional Analysis and Physical Similarity are well understood subjects, and the general concepts of dynamical similarity are explained in this book. Our exposition is essentially different from those available in the literature, although it follows the general ideas known as Pi Theorem. There are many excellent books that one can refer to; however, dimensional analysis goes beyond Pi theorem, which is also known as Buckingham’s Pi Theorem. Many techniques via self-similar solutions can bound solutions to problems that seem intractable. A time-developing phenomenon is called self-similar if the spatial distributions of its properties at different points in time can be obtained from one another by a similarity transformation, and identifying one of the independent variables as time. However, this is where Dimensional Analysis goes beyond Pi Theorem into self-similarity, which has represented progress for researchers. In recent years there has been a surge of interest in self-similar solutions of the First ...

  8. Categorization of fractal plants

    International Nuclear Information System (INIS)

    Chandra, Munesh; Rani, Mamta

    2009-01-01

    Fractals in nature are always a result of some growth process. The language of fractals which has been created specifically for the description of natural growth process is called L-systems. Recently, superior iterations (essentially, investigated by Mann [Mann WR. Mean value methods in iteration. Proc Am Math Soc 1953;4:506-10 [MR0054846 (14,988f)

  9. Quantum Fractal Eigenstates

    OpenAIRE

    Casati, Giulio; Maspero, Giulio; Shepelyansky, Dima L.

    1997-01-01

    We study quantum chaos in open dynamical systems and show that it is characterized by quantum fractal eigenstates located on the underlying classical strange repeller. The states with longest life times typically reveal a scars structure on the classical fractal set.

  10. Thermodynamics for Fractal Statistics

    OpenAIRE

    da Cruz, Wellington

    1998-01-01

    We consider for an anyon gas its termodynamics properties taking into account the fractal statistics obtained by us recently. This approach describes the anyonic excitations in terms of equivalence classes labeled by fractal parameter or Hausdorff dimension $h$. An exact equation of state is obtained in the high-temperature and low-temperature limits, for gases with a constant density of states.

  11. Recognition of fractal graphs

    NARCIS (Netherlands)

    Perepelitsa, VA; Sergienko, [No Value; Kochkarov, AM

    1999-01-01

    Definitions of prefractal and fractal graphs are introduced, and they are used to formulate mathematical models in different fields of knowledge. The topicality of fractal-graph recognition from the point of view, of fundamental improvement in the efficiency of the solution of algorithmic problems

  12. Quantum waveguide theory of a fractal structure

    International Nuclear Information System (INIS)

    Lin Zhiping; Hou Zhilin; Liu Youyan

    2007-01-01

    The electronic transport properties of fractal quantum waveguide networks in the presence of a magnetic field are studied. A Generalized Eigen-function Method (GEM) is used to calculate the transmission and reflection coefficients of the studied systems unto the fourth generation Sierpinski fractal network with node number N=123. The relationship among the transmission coefficient T, magnetic flux Φ and wave vector k is investigated in detail. The numerical results are shown by the three-dimensional plots and contour maps. Some resonant-transmission features and the symmetry of the transmission coefficient T to flux Φ are observed and discussed, and compared with the results of the tight-binding model

  13. Speculations on self-avoiding surfaces in fractals. A mean field treatment

    International Nuclear Information System (INIS)

    Pandey, R.B.; Kumar, N.; Stauffer, D.

    1984-08-01

    We estimate the exponents characterizing the self-avoiding surfaces using an approximation in the framework of a Flory-type theory. We find for planar self-avoiding surfaces embedded randomly in a fractal of dimensionality D':theta=3/(4+D'); for random surfaces of fractal dimension D embedded in a Euclidian space of dimensionality d:theta=3/(2D+d-2); and for fractal surfaces embedded in a structure of fractal dimensionality D':theta=3/(2D+D'-2). (author)

  14. The fractal dimension of architecture

    CERN Document Server

    Ostwald, Michael J

    2016-01-01

    Fractal analysis is a method for measuring, analysing and comparing the formal or geometric properties of complex objects. In this book it is used to investigate eighty-five buildings that have been designed by some of the twentieth-century’s most respected and celebrated architects. Including designs by Le Corbusier, Eileen Gray, Frank Lloyd Wright, Robert Venturi, Frank Gehry, Peter Eisenman, Richard Meier and Kazuyo Sejima amongst others, this book uses mathematics to analyse arguments and theories about some of the world’s most famous designs. Starting with 625 reconstructed architectural plans and elevations, and including more than 200 specially prepared views of famous buildings, this book presents the results of the largest mathematical study ever undertaken into architectural design and the largest single application of fractal analysis presented in any field. The data derived from this study is used to test three overarching hypotheses about social, stylistic and personal trends in design, along...

  15. Spectral scalability and optical spectra of fractal multilayer structures: FDTD analysis

    Science.gov (United States)

    Simsek, Sevket; Palaz, Selami; Mamedov, Amirullah M.; Ozbay, Ekmel

    2017-01-01

    An investigation of the optical properties and band structures for the conventional and Fibonacci photonic crystals (PCs) based on SrTiO3 and Sb2Te3 is made in the present research. Here, we use one-dimensional SrTiO3- and Sb2Te3-based layers. We have theoretically calculated the photonic band structure and transmission spectra of SrTiO3- and Sb2Te3-based PC superlattices. The position of minima in the transmission spectrum correlates with the gaps obtained in the calculation. The intensity of the transmission depths is more intense in the case of higher refractive index contrast between the layers.

  16. LINKAGE ANALYSIS BY 2-DIMENSIONAL DNA TYPING

    NARCIS (Netherlands)

    MEERMAN, GJT; MULLAART, E; VANDERMEULEN, MA; DENDAAS, JHG; MOROLLI, B; UITTERLINDEN, AG; VIJG, J

    1993-01-01

    In two-dimensional (2-D) DNA typing, genomic DNA fragments are separated, first according to size by electrophoresis in a neutral polyacrylamide gel and second according to sequence by denaturing gradient gel electrophoresis, followed by hybridization analysis using micro- and minisatellite core

  17. Fractal Dimension and Lacunarity analysis of mammographic patterns in assessing breast cancer risk related to HRT treated population

    DEFF Research Database (Denmark)

    Karemore, Gopal Raghunath; Nielsen, Mads

    2009-01-01

    and 36 HRT treated volunteers for two years. ROIs with same dimension (250*150 pixels) were created behind the nipple region on these radiographs. Box counting method was used to calculate the fractal dimension (FD) and the Lacunarity. Paired t-test and Pearson correlation coefficient were calculated...... significantly (Pcorrelated to Lacunarity (-0.74, P

  18. Fractal characterization of brain lesions in CT images

    International Nuclear Information System (INIS)

    Jauhari, Rajnish K.; Trivedi, Rashmi; Munshi, Prabhat; Sahni, Kamal

    2005-01-01

    Fractal Dimension (FD) is a parameter used widely for classification, analysis, and pattern recognition of images. In this work we explore the quantification of CT (computed tomography) lesions of the brain by using fractal theory. Five brain lesions, which are portions of CT images of diseased brains, are used for the study. These lesions exhibit self-similarity over a chosen range of scales, and are broadly characterized by their fractal dimensions

  19. Lectures on fractal geometry and dynamical systems

    CERN Document Server

    Pesin, Yakov

    2009-01-01

    Both fractal geometry and dynamical systems have a long history of development and have provided fertile ground for many great mathematicians and much deep and important mathematics. These two areas interact with each other and with the theory of chaos in a fundamental way: many dynamical systems (even some very simple ones) produce fractal sets, which are in turn a source of irregular "chaotic" motions in the system. This book is an introduction to these two fields, with an emphasis on the relationship between them. The first half of the book introduces some of the key ideas in fractal geometry and dimension theory--Cantor sets, Hausdorff dimension, box dimension--using dynamical notions whenever possible, particularly one-dimensional Markov maps and symbolic dynamics. Various techniques for computing Hausdorff dimension are shown, leading to a discussion of Bernoulli and Markov measures and of the relationship between dimension, entropy, and Lyapunov exponents. In the second half of the book some examples o...

  20. Multi-fractal analysis and lacunarity spectrum of the dark matter haloes in the SDSS-DR7

    International Nuclear Information System (INIS)

    Chacón-Cardona, C.A.; Casas-Miranda, R.A.; Muñoz-Cuartas, J.C.

    2016-01-01

    Highlights: • We analysed the dark matter in Seventh Data Release of the Sloan Digital Sky Survey. • From the initial sample with 412,468 galaxies, 339,505 dark matter haloes were used. • We found the multifractal and the lacunarity spectrum as radial distance function. • The dark matter set did not achieve at the physical dimension of the space. - Abstract: The dark matter halo distribution of the nearby universe is used to study the fractal behaviour in the proximate universe. The data, which is based on four volume-limited galaxy samples was obtained by Muñoz-Cuartas and Mueller (2012) from the Seventh Data Release of the Sloan Digital Sky Survey (SDSS-DR7). In order to know the fractal behaviour of the observed universe, from the initial sample which contains 412,468 galaxies and 339,505 dark matter haloes were used as input for the fractal calculations. Using this data we use the sliding-window technique for the dark matter distribution and compute the multi-fractal dimension and the lacunarity spectrum and use it to study its dependence on radial distance in every sample. The transition to homogeneity is not observed in the dark matter halo distribution obtained from the SDSS-DR7 volume-limited galaxy samples; in its place the dark matter halo distribution exhibits a persistent multi-fractal behaviour where the measured dimension does not arrive at the value of the physical dimension of the space, for all structure parameter values of the analysed set, at least up to radial distances of the ordered from 165 Mpc/h from the available centres of each sample. Our results and their implications are discussed in the context of the formation of large-scale structures in the universe.

  1. A new numerical approximation of the fractal ordinary differential equation

    Science.gov (United States)

    Atangana, Abdon; Jain, Sonal

    2018-02-01

    The concept of fractal medium is present in several real-world problems, for instance, in the geological formation that constitutes the well-known subsurface water called aquifers. However, attention has not been quite devoted to modeling for instance, the flow of a fluid within these media. We deem it important to remind the reader that the concept of fractal derivative is not to represent the fractal sharps but to describe the movement of the fluid within these media. Since this class of ordinary differential equations is highly complex to solve analytically, we present a novel numerical scheme that allows to solve fractal ordinary differential equations. Error analysis of the method is also presented. Application of the method and numerical approximation are presented for fractal order differential equation. The stability and the convergence of the numerical schemes are investigated in detail. Also some exact solutions of fractal order differential equations are presented and finally some numerical simulations are presented.

  2. Evaluation of 3D Printer Accuracy in Producing Fractal Structure.

    Science.gov (United States)

    Kikegawa, Kana; Takamatsu, Kyuuichirou; Kawakami, Masaru; Furukawa, Hidemitsu; Mayama, Hiroyuki; Nonomura, Yoshimune

    2017-01-01

    Hierarchical structures, also known as fractal structures, exhibit advantageous material properties, such as water- and oil-repellency as well as other useful optical characteristics, owing to its self-similarity. Various methods have been developed for producing hierarchical geometrical structures. Recently, fractal structures have been manufactured using a 3D printing technique that involves computer-aided design data. In this study, we confirmed the accuracy of geometrical structures when Koch curve-like fractal structures with zero to three generations were printed using a 3D printer. The fractal dimension was analyzed using a box-counting method. This analysis indicated that the fractal dimension of the third generation hierarchical structure was approximately the same as that of the ideal Koch curve. These findings demonstrate that the design and production of fractal structures can be controlled using a 3D printer. Although the interior angle deviated from the ideal value, the side length could be precisely controlled.

  3. Fractal structures and fractal functions as disease indicators

    Science.gov (United States)

    Escos, J.M; Alados, C.L.; Emlen, J.M.

    1995-01-01

    Developmental instability is an early indicator of stress, and has been used to monitor the impacts of human disturbance on natural ecosystems. Here we investigate the use of different measures of developmental instability on two species, green peppers (Capsicum annuum), a plant, and Spanish ibex (Capra pyrenaica), an animal. For green peppers we compared the variance in allometric relationship between control plants, and a treatment group infected with the tomato spotted wilt virus. The results show that infected plants have a greater variance about the allometric regression line than the control plants. We also observed a reduction in complexity of branch structure in green pepper with a viral infection. Box-counting fractal dimension of branch architecture declined under stress infection. We also tested the reduction in complexity of behavioral patterns under stress situations in Spanish ibex (Capra pyrenaica). Fractal dimension of head-lift frequency distribution measures predator detection efficiency. This dimension decreased under stressful conditions, such as advanced pregnancy and parasitic infection. Feeding distribution activities reflect food searching efficiency. Power spectral analysis proves to be the most powerful tool for character- izing fractal behavior, revealing a reduction in complexity of time distribution activity under parasitic infection.

  4. A new method based on fractal variance function for analysis and quantification of sympathetic and vagal activity in variability of R-R time series in ECG signals

    Energy Technology Data Exchange (ETDEWEB)

    Conte, Elio [Department of Pharmacology and Human Physiology and Tires, Center for Innovative Technologies for Signal Detection and Processing, University of Bari, Bari (Italy); School of Advanced International Studies on Nuclear, Theoretical and Nonlinear Methodologies-Bari (Italy)], E-mail: fisio2@fisiol.uniba.it; Federici, Antonio [Department of Pharmacology and Human Physiology and Tires, Center for Innovative Technologies for Signal Detection and Processing, University of Bari, Bari (Italy); Zbilut, Joseph P. [Department of Molecular Biophysics and Physiology, Rush University Medical Center, 1653W Congress, Chicago, IL 60612 (United States)

    2009-08-15

    It is known that R-R time series calculated from a recorded ECG, are strongly correlated to sympathetic and vagal regulation of the sinus pacemaker activity. In human physiology it is a crucial question to estimate such components with accuracy. Fourier analysis dominates still to day the data analysis efforts of such data ignoring that FFT is valid under some crucial restrictions that results largely violated in R-R time series data as linearity and stationarity. In order to go over such approach, we introduce a new method, called CZF. It is based on variogram analysis. It is aimed from a profound link with Recurrence Quantification Analysis that is a basic tool for investigation of non linear and non stationary time series. Therefore, a relevant feature of the method is that it finally may be applied also in cases of non linear and non stationary time series analysis. In addition, the method enables also to analyze the fractal variance function, the Generalized Fractal Dimension and, finally, the relative probability density function of the data. The CZF gives very satisfactory results. In the present paper it has been applied to direct experimental cases of normal subjects, patients with hypertension before and after therapy and in children under some different conditions of experimentation.

  5. A new method based on fractal variance function for analysis and quantification of sympathetic and vagal activity in variability of R-R time series in ECG signals

    International Nuclear Information System (INIS)

    Conte, Elio; Federici, Antonio; Zbilut, Joseph P.

    2009-01-01

    It is known that R-R time series calculated from a recorded ECG, are strongly correlated to sympathetic and vagal regulation of the sinus pacemaker activity. In human physiology it is a crucial question to estimate such components with accuracy. Fourier analysis dominates still to day the data analysis efforts of such data ignoring that FFT is valid under some crucial restrictions that results largely violated in R-R time series data as linearity and stationarity. In order to go over such approach, we introduce a new method, called CZF. It is based on variogram analysis. It is aimed from a profound link with Recurrence Quantification Analysis that is a basic tool for investigation of non linear and non stationary time series. Therefore, a relevant feature of the method is that it finally may be applied also in cases of non linear and non stationary time series analysis. In addition, the method enables also to analyze the fractal variance function, the Generalized Fractal Dimension and, finally, the relative probability density function of the data. The CZF gives very satisfactory results. In the present paper it has been applied to direct experimental cases of normal subjects, patients with hypertension before and after therapy and in children under some different conditions of experimentation.

  6. ASPECTS OF USE FRACTAL ANALYSIS IN THE EXCHANGE MARKET OF UKRAINE

    Directory of Open Access Journals (Sweden)

    K. Krytsun

    2014-06-01

    Full Text Available The paper describes testing of monofractal analysis for obtaining Herst's indicator by Mandelbrot's method on example of exchange rates in the financial market of Ukraine. The assessment shows an adequacy of the results generated by calculating the Hurst parameters for the selected data sample. The study highlights the relationship between the crisis in the market and obtained indicators. Argued the feasibility of using R / S analysis to obtain data on the foreign exchange in the financial market of Ukraine using a small sample volume. Grounded perspective of using this method in the study of the dynamics of financial time series.

  7. Teaching about Fractals.

    Science.gov (United States)

    Willson, Stephen J.

    1991-01-01

    Described is a course designed to teach students about fractals using various teaching methods including the computer. Discussed are why the course drew students, prerequisites, clientele, textbook, grading, computer usage, and the syllabus. (KR)

  8. Fractals and foods.

    Science.gov (United States)

    Peleg, M

    1993-01-01

    Fractal geometry and related concepts have had only a very minor impact on food research. The very few reported food applications deal mainly with the characterization of the contours of agglomerated instant coffee particles, the surface morphology of treated starch particles, the microstructure of casein gels viewed as a product limited diffusion aggregation, and the jagged mechanical signatures of crunchy dry foods. Fractal geometry describes objects having morphological features that are scale invariant. A demonstration of the self-similarity of fractal objects can be found in the familiar morphology of cauliflower and broccoli, both foods. Processes regulated by nonlinear dynamics can exhibit a chaotic behavior that has fractal characteristics. Examples are mixing of viscous fluids, turbulence, crystallization, agglomeration, diffusion, and possibly food spoilage.

  9. Fractal analytical approach of urban form based on spatial correlation function

    International Nuclear Information System (INIS)

    Chen, Yanguang

    2013-01-01

    Highlights: ► Many fractal parameter relations of cities can be derived by scaling analysis. ► The area-radius scaling of cities suggests a spatial correlation function. ► Spectral analysis can be used to estimate fractal dimension values of urban form. ► The valid range of fractal dimension of urban form comes between 1.5 and 2. ► The traditional scale concept will be replaced by scaling concept in geography. -- Abstract: Urban form has been empirically demonstrated to be of scaling invariance and can be described with fractal geometry. However, the rational range of fractal dimension value and the relationships between various fractal indicators of cities are not yet revealed in theory. By mathematical deduction and transform (e.g., Fourier transform), I find that scaling analysis, spectral analysis, and spatial correlation analysis are all associated with fractal concepts and can be integrated into a new approach to fractal analysis of cities. This method can be termed ‘3S analyses’ of urban form. Using the 3S analysis, I derived a set of fractal parameter equations, by which different fractal parameters of cities can be linked up with one another. Each fractal parameter has its own reasonable extent of values. According to the fractal parameter equations, the intersection of the rational ranges of different fractal parameters suggests the proper scale of the fractal dimension of urban patterns, which varies from 1.5 to 2. The fractal dimension equations based on the 3S analysis and the numerical relationships between different fractal parameters are useful for geographers to understand urban evolution and potentially helpful for future city planning

  10. Three dimensional analysis of laterally loaded piles

    International Nuclear Information System (INIS)

    Yilmaz, C.

    1987-01-01

    In this study static analysis of laterally loaded pile is studied by the three models. The first model is the beam on discrete elastic springs. This model is analyzed using a flexibility method. The second model is the beam on a two-parameter elastic foundation. This model is analyzed using the linear finite element method. The third model is the finite element model, using the three-dimensional iso-parametric parabolic brick element. Three-dimensional pile group analysis is also performed using elastic constants of single pile obtained by any one of the above analyses. The main objective is to develop computer programs for each model related to single piles and to group analysis. Then, the deflections, rotations, moments, shears, stresses and strains of the single pile are obtained at any arbitrary point. Comparison is made between each model and with other studies such as Poulos 1971, Desai and Appel 1976. In addition, to provide a benchmark of three-dimensional finite element analysis, the Boussinesq problem is analyzed. (orig.)

  11. Experience of fractal analysis of micromammal population in mosaic landscapes of Karelia

    Directory of Open Access Journals (Sweden)

    Korosov Andrey Victorovich

    2015-12-01

    Full Text Available The multifractal analysis of the community structure of small mammals which inhabit the areas with a long history of forest management was carried out on the basis of the investigations of 1996-2015. Scaling showed deterioration of the self-similarity of theriocenozis, while scaling down ( reducing the volume of the sample. In our opinion, this is due to the asymmetric reaction of different types of animals in the secondary anthropogenic mosaic of habitats. To obtain meaningful results it is necessary to possess unattainably great amount of data. The time elapsed to learn technology and calculations of multifractal analysis was not justified by the modesty of conclusions received in this study.

  12. Fractal Geometry and Stochastics V

    CERN Document Server

    Falconer, Kenneth; Zähle, Martina

    2015-01-01

    This book brings together leading contributions from the fifth conference on Fractal Geometry and Stochastics held in Tabarz, Germany, in March 2014. The book is divided into five sections covering different facets of this fast developing area: geometric measure theory, self-similar fractals and recurrent structures, analysis and algebra on fractals, multifractal theory, and random constructions. There are state-of-the-art surveys as well as papers highlighting more specific recent advances. The authors are world-experts who present their topics comprehensibly and attractively. The book provides an accessible gateway to the subject for newcomers as well as a reference for recent developments for specialists. Authors include: Krzysztof Barański, Julien Barral, Kenneth Falconer, De-Jun Feng, Peter J. Grabner, Rostislav Grigorchuk, Michael Hinz, Stéphane Jaffard, Maarit Järvenpää, Antti Käenmäki, Marc Kesseböhmer, Michel Lapidus, Klaus Mecke, Mark Pollicott,  Michał Rams, Pablo Shmerkin, and András Te...

  13. Fractal growth in impurity-controlled solidification in lipid monolayers

    DEFF Research Database (Denmark)

    Fogedby, Hans C.; Sørensen, Erik Schwartz; Mouritsen, Ole G.

    1987-01-01

    A simple two-dimensional microscopic model is proposed to describe solidifcation processes in systems with impurities which are miscible only in the fluid phase. Computer simulation of the model shows that the resulting solids are fractal over a wide range of impurity concentrations and impurity...... diffusional constants. A fractal-forming mechanism is suggested for impurity-controlled solidification which is consistent with recent experimental observations of fractal growth of solid phospholipid domains in monolayers. The Journal of Chemical Physics is copyrighted by The American Institute of Physics....

  14. Histomorphometric, fractal and lacunarity comparative analysis of sheep (Ovis aries), goat (Capra hircus) and roe deer (Capreolus capreolus) compact bone samples.

    Science.gov (United States)

    Gudea, A I; Stefan, A C

    2013-08-01

    Quantitative and qualitative studies dealing with histomorphometry of the bone tissue play a new role in modern legal medicine/forensic medicine and archaeozoology nowadays. This study deals with the differences found in case of humerus and metapodial bones of recent sheep (Ovis aries), goat (Capra hircus) and roedeer (Capreolus capreolus) specimens, both from a qualitative point of view, but mainly from a quantitative perspective. A novel perspective given by the fractal analysis performed on the digital histological images is approached. This study shows that the qualitative assessment may not be a reliable one due to the close resemblance of the structures. From the quantitative perspective (several measurements performed on osteonal units and statistical processing of data),some of the elements measured show significant differences among 3 species(the primary osteonal diameter, etc.). The fractal analysis and the lacunarity of the images show a great deal of potential, proving that this type of analysis can be of great help in the separation of the material from this perspective.

  15. Multirate diversity strategy of fractal modulation

    International Nuclear Information System (INIS)

    Yuan Yong; Shi Si-Hong; Luo Mao-Kang

    2011-01-01

    Previous analyses of fractal modulation were carried out mostly from a signle perspective or a subband, but the analyses from the perspective of multiscale synthesis have not been found yet; while multiscale synthesis is just the essence of the mutlirate diversity which is the most important characteristic of fractal modulation. As for the mutlirate diversity of fractal modulation, previous studies only dealt with the general outspread of its concept, lacked the thorough and intensive quantitative comparison and analysis. In light of the above fact, from the perspective of multiscale synthesis, in this paper we provide a comprehensive analysis of the multirate diversity of fractal modulation and corresponding quantitative analysis. The results show that mutlirate diversity, which is a fusion of frequency diversity and time diversity, pays an acceptable price in spectral efficiency in exchange for a significant improvement in bit error rate. It makes fractal modulation particularly suitable for the channels whose bandwidth and duration parameters are unknown or cannot be predicted to the transmitter. Surely it is clearly of great significance for reliable communications. Moreover, we also attain the ability to flexibly make various rate-bandwidth tradeoffs between the transmitter and the receiver, to freely select the reception time and to expediently control the total bandwidth. Furthermore, the acquisitions or improvements of these fine features could provide support of the technical feasibility for the electromagnetic spectrum control technology in a complex electromagnetic environment. (general)

  16. Three-dimensional (3D) analysis of the temporomandibular joint

    DEFF Research Database (Denmark)

    Kitai, N.; Kreiborg, S.; Murakami, S.

    Symposium Orthodontics 2001: Where are We Now? Where are We Going?, three-dimensional analysis, temporomandibular joint......Symposium Orthodontics 2001: Where are We Now? Where are We Going?, three-dimensional analysis, temporomandibular joint...

  17. Global sensitivity analysis by polynomial dimensional decomposition

    Energy Technology Data Exchange (ETDEWEB)

    Rahman, Sharif, E-mail: rahman@engineering.uiowa.ed [College of Engineering, The University of Iowa, Iowa City, IA 52242 (United States)

    2011-07-15

    This paper presents a polynomial dimensional decomposition (PDD) method for global sensitivity analysis of stochastic systems subject to independent random input following arbitrary probability distributions. The method involves Fourier-polynomial expansions of lower-variate component functions of a stochastic response by measure-consistent orthonormal polynomial bases, analytical formulae for calculating the global sensitivity indices in terms of the expansion coefficients, and dimension-reduction integration for estimating the expansion coefficients. Due to identical dimensional structures of PDD and analysis-of-variance decomposition, the proposed method facilitates simple and direct calculation of the global sensitivity indices. Numerical results of the global sensitivity indices computed for smooth systems reveal significantly higher convergence rates of the PDD approximation than those from existing methods, including polynomial chaos expansion, random balance design, state-dependent parameter, improved Sobol's method, and sampling-based methods. However, for non-smooth functions, the convergence properties of the PDD solution deteriorate to a great extent, warranting further improvements. The computational complexity of the PDD method is polynomial, as opposed to exponential, thereby alleviating the curse of dimensionality to some extent.

  18. An Investigation of Fractal Characteristics of Marine Shales in the Southern China from Nitrogen Adsorption Data

    Directory of Open Access Journals (Sweden)

    Jian Xiong

    2015-01-01

    Full Text Available We mainly focus on the Permian, Lower Cambrian, Lower Silurian, and Upper Ordovician Formation; the fractal dimensions of marine shales in southern China were calculated using the FHH fractal model based on the low-pressure nitrogen adsorption analysis. The results show that the marine shales in southern China have the dual fractal characteristics. The fractal dimension D1 at low relative pressure represents the pore surface fractal characteristics, whereas the fractal dimension D2 at higher relative pressure describes the pore structure fractal characteristics. The fractal dimensions D1 range from 2.0918 to 2.718 with a mean value of 2.4762, and the fractal dimensions D2 range from 2.5842 to 2.9399 with a mean value of 2.8015. There are positive relationships between fractal dimension D1 and specific surface area and total pore volume, whereas the fractal dimensions D2 have negative correlation with average pore size. The larger the value of the fractal dimension D1 is, the rougher the pore surface is, which could provide more adsorption sites, leading to higher adsorption capacity for gas. The larger the value of the fractal dimension D2 is, the more complicated the pore structure is, resulting in the lower flow capacity for gas.

  19. The Extraction of Vegetation Points from LiDAR Using 3D Fractal Dimension Analyses

    Directory of Open Access Journals (Sweden)

    Haiquan Yang

    2015-08-01

    Full Text Available Light Detection and Ranging (LiDAR, a high-precision technique used for acquiring three-dimensional (3D surface information, is widely used to study surface vegetation information. Moreover, the extraction of a vegetation point set from the LiDAR point cloud is a basic starting-point for vegetation information analysis, and an important part of its further processing. To extract the vegetation point set completely and to describe the different spatial morphological characteristics of various features in a LiDAR point cloud, we have used 3D fractal dimensions. We discovered that every feature has its own distinctive 3D fractal dimension interval. Based on the 3D fractal dimensions of tall trees, we propose a new method for the extraction of vegetation using airborne LiDAR. According to this method, target features can be distinguished based on their morphological characteristics. The non-ground points acquired by filtering are processed by region growing segmentation and the morphological characteristics are evaluated by 3D fractal dimensions to determine the features required for the determination of the point set for tall trees. Avon, New York, USA was selected as the study area to test the method and the result proves the method’s efficiency. Thus, this approach is feasible. Additionally, the method uses the 3D coordinate properties of the LiDAR point cloud and does not require additional information, such as return intensity, giving it a larger scope of application.

  20. Factorial-moment and fractal analyses of γ families from atmospheric cascades

    International Nuclear Information System (INIS)

    Kalmakhelidze, M. E.; Roinishvili, N. N.; Svanidze, M. S.; Khizanishvili, L. A.; Chadranyan, L. Kh.

    1997-01-01

    Methods of factorial moments and fractal dimensions are used to analyze γ families from nuclear-electromagnetic cascades in the atmosphere. The analysis aims at estimating the sensitivity of these methods to multiparticle density fluctuations in γ families as considered in spaces of various variables. The mean characteristics of factorial and fractal moments in the azimuthal plane are studied and compared with those of the statistical ensemble of random families. It is shown that fluctuations of the photon distribution in the azimuthal angle Φ are of a dynamic origin. The mean model parameters are analyzed as functions of the radius vector R, an analog of pseudorapidity, and the product ER (E is the energy of an individual photon), an analog of the transverse momentum. Particle densities for two-dimensional partitions into both rings (in the radius R) and sectors (in the azimuthal angle Φ), d 2 N/dΦdR, are also considered. The distributions of various factorial and fractal features of individual γ families are compared with those for the statistical ensemble of random families. Correlations of these features for a γ family treated in terms of different variables (sectors and rings) are studied. Correlations between different factorial-fractal parameters of γ families are analyzed

  1. A fractal-based image encryption system

    KAUST Repository

    Abd-El-Hafiz, S. K.

    2014-12-01

    This study introduces a novel image encryption system based on diffusion and confusion processes in which the image information is hidden inside the complex details of fractal images. A simplified encryption technique is, first, presented using a single-fractal image and statistical analysis is performed. A general encryption system utilising multiple fractal images is, then, introduced to improve the performance and increase the encryption key up to hundreds of bits. This improvement is achieved through several parameters: feedback delay, multiplexing and independent horizontal or vertical shifts. The effect of each parameter is studied separately and, then, they are combined to illustrate their influence on the encryption quality. The encryption quality is evaluated using different analysis techniques such as correlation coefficients, differential attack measures, histogram distributions, key sensitivity analysis and the National Institute of Standards and Technology (NIST) statistical test suite. The obtained results show great potential compared to other techniques.

  2. Growth of fractal structures in flames with silicon admixture

    NARCIS (Netherlands)

    Smirnov, B. M.; Dutka, M.; van Essen, V. M.; Gersen, S.; Visser, P.; Vainchtein, D.; De Hosson, J. Th. M.; Levinsky, H. B.; Mokhov, A. V.

    Transmission electron microscopy (TEM) measurements and theoretical analysis are combined to construct the physical picture of formation of SiO2 fractal aggregates in a methane/hexamethyldisiloxane/air atmospheric pressure flame. The formation of SiO2 fractal aggregates is described as a multistage

  3. Spontaneous imbibition in fractal tortuous micro-nano pores considering dynamic contact angle and slip effect: phase portrait analysis and analytical solutions.

    Science.gov (United States)

    Li, Caoxiong; Shen, Yinghao; Ge, Hongkui; Zhang, Yanjun; Liu, Tao

    2018-03-02

    Shales have abundant micro-nano pores. Meanwhile, a considerable amount of fracturing liquid is imbibed spontaneously in the hydraulic fracturing process. The spontaneous imbibition in tortuous micro-nano pores is special to shale, and dynamic contact angle and slippage are two important characteristics. In this work, we mainly investigate spontaneous imbibition considering dynamic contact angle and slip effect in fractal tortuous capillaries. We introduce phase portrait analysis to analyse the dynamic state and stability of imbibition. Moreover, analytical solutions to the imbibition equation are derived under special situations, and the solutions are verified by published data. Finally, we discuss the influences of slip length, dynamic contact angle and gravity on spontaneous imbibition. The analysis shows that phase portrait is an ideal tool for analysing spontaneous imbibition because it can evaluate the process without solving the complex governing ordinary differential equations. Moreover, dynamic contact angle and slip effect play an important role in fluid imbibition in fractal tortuous capillaries. Neglecting slip effect in micro-nano pores apparently underestimates imbibition capability, and ignoring variations in contact angle causes inaccuracy in predicting imbibition speed at the initial stage of the process. Finally, gravity is one of the factors that control the stabilisation of the imbibition process.

  4. Evaluating two-dimensional skeletal structure parameters using radiological bone morphometric analysis

    International Nuclear Information System (INIS)

    Asa, Kensuke; Sakurai, Takashi; Kashima, Isamu; Kumasaka, Satsuki

    2005-01-01

    The objectives of this study was to investigate the reliability of two-dimensional (2D) skeletal structure parameters obtained using radiological bone morphometric analysis. The 2D skeletal parameters in the regions of interest (ROIs) were measured on computed radiography (CR) images of first phalanges from racehorses, using radiological bone morphometric analysis. Cancellous bone blocks were made from the phalanges in the same position as the ROI determined on CR images. Three-dimensional (3D) trabecular parameters were measured using micro-computed tomography (μCT). The correlations between the 2D skeletal parameters and 3D trabecular parameters were evaluated in relation to the measured bone strength. The following 2D skeletal structure parameters were correlated with bone strength (r=0.61-0.69): skeletal perimeter (Sk.Pm), skeletal number (Sk.N), skeletal separation (Sk.Sp), skeletal spacing (Sk.Spac), fractal dimension (FD), and skeletal pattern factor (SkPf). The 3D trabecular structure parameters were closely correlated with bone strength (r=0.74-0.86). The 2D skeletal parameters Sk.N, Sk.Pm, FD, SkPf, and Sk.Spac were correlated with the 3D trabecular parameters (r=0.61-0.70). The 2D skeletal parameters obtained using radiological bone morphometric analysis may be useful indicators of trabecular strength. (author)

  5. Retinal vascular fractals predict long-term microvascular complications in type 1 diabetes mellitus

    DEFF Research Database (Denmark)

    Broe, Rebecca; Rasmussen, Malin L; Frydkjaer-Olsen, Ulrik

    2014-01-01

    : We included 180 patients with type 1 diabetes in a 16 year follow-up study. In baseline retinal photographs (from 1995), all vessels in a zone 0.5-2.0 disc diameters from the disc margin were traced using Singapore Institute Vessel Assessment-Fractal image analysis software. Artefacts were removed......AIMS/HYPOTHESIS: Fractal analysis of the retinal vasculature provides a global measure of the complexity and density of retinal vessels summarised as a single variable: the fractal dimension. We investigated fractal dimensions as long-term predictors of microvasculopathy in type 1 diabetes. METHODS....... Retinal fractal analysis therefore is a potential tool for risk stratification in type 1 diabetes....

  6. Fractal Electrochemical Microsupercapacitors

    KAUST Repository

    Hota, Mrinal Kanti

    2017-08-17

    The first successful fabrication of microsupercapacitors (μ-SCs) using fractal electrode designs is reported. Using sputtered anhydrous RuO thin-film electrodes as prototypes, μ-SCs are fabricated using Hilbert, Peano, and Moore fractal designs, and their performance is compared to conventional interdigital electrode structures. Microsupercapacitor performance, including energy density, areal and volumetric capacitances, changes with fractal electrode geometry. Specifically, the μ-SCs based on the Moore design show a 32% enhancement in energy density compared to conventional interdigital structures, when compared at the same power density and using the same thin-film RuO electrodes. The energy density of the Moore design is 23.2 mWh cm at a volumetric power density of 769 mW cm. In contrast, the interdigital design shows an energy density of only 17.5 mWh cm at the same power density. We show that active electrode surface area cannot alone explain the increase in capacitance and energy density. We propose that the increase in electrical lines of force, due to edging effects in the fractal electrodes, also contribute to the higher capacitance. This study shows that electrode fractal design is a viable strategy for improving the performance of integrated μ-SCs that use thin-film electrodes at no extra processing or fabrication cost.

  7. Fractal Electrochemical Microsupercapacitors

    KAUST Repository

    Hota, Mrinal Kanti; Jiang, Qiu; Mashraei, Yousof; Salama, Khaled N.; Alshareef, Husam N.

    2017-01-01

    The first successful fabrication of microsupercapacitors (μ-SCs) using fractal electrode designs is reported. Using sputtered anhydrous RuO thin-film electrodes as prototypes, μ-SCs are fabricated using Hilbert, Peano, and Moore fractal designs, and their performance is compared to conventional interdigital electrode structures. Microsupercapacitor performance, including energy density, areal and volumetric capacitances, changes with fractal electrode geometry. Specifically, the μ-SCs based on the Moore design show a 32% enhancement in energy density compared to conventional interdigital structures, when compared at the same power density and using the same thin-film RuO electrodes. The energy density of the Moore design is 23.2 mWh cm at a volumetric power density of 769 mW cm. In contrast, the interdigital design shows an energy density of only 17.5 mWh cm at the same power density. We show that active electrode surface area cannot alone explain the increase in capacitance and energy density. We propose that the increase in electrical lines of force, due to edging effects in the fractal electrodes, also contribute to the higher capacitance. This study shows that electrode fractal design is a viable strategy for improving the performance of integrated μ-SCs that use thin-film electrodes at no extra processing or fabrication cost.

  8. Physical characteristics of conditioned anaerobic digested sludge - A fractal,transient and dynamic rheological viewpoint

    Institute of Scientific and Technical Information of China (English)

    Yili Wang; Emilie Dieude-Fauvel; Steven K Dentel

    2011-01-01

    The changes in the physical characteristics of unconditioned and conditioned anaerobic digested sludge (ADS) biosolids,such as capillary suction time (CST),yield stress,average size and fractal dimensions,were investigated through a CST test,transient and dynamic rheological test and image analysis.The results showed that the optimum polymer dose range was observed when CST or its reciprocal value was employed as an indicator.There were good correlations between the yield stresses determined from both a controlled shear stress test and a strain amplitude sweep test.The yield stress and storage modulus (G') increased as the polymer dose increased in most cases.A frequency sweep test revealed that polymer conditioning could extend the frequency sweep ranges for their elastic behaviors over viscous behaviors as well as the gel-like structure in the linear viscoelastic range.These results implied that more deformation energy was stored in this rigid structure,and that elastic behavior became increasingly dominant with the addition of the polymer in most cases.In addition,both the average sizes and two-dimensional fractal dimensions for conditioned ADS biosolids presented a similar up-climax-down variation trend as the polymer doses increased,whereas the critical polymer doses at the highest average sizes or two-dimensional fractal dimensions,were different.Correlation analysis revealed that the conditioned ADS dewaterability was not correlated with the yield stresses,while the average sizes or the two-dimensional fractal dimensions for conditioned ADS biosolids could be taken as the indication parameters for ADS dewaterability.

  9. Investigation of Regional Fractures and Cu Mineralization Relationships in the Khezrabad and Shahr-e-Babak Area: Using Fry and Fractal analysis

    Directory of Open Access Journals (Sweden)

    Alireza Zarasvandi

    2015-10-01

    Full Text Available Introduction Two main principal aspects for the genesis of porphyry copper deposits have been determined. The first genetic model concerns the petrologic and geochemical processes and the other relates the genesis to crustal deformation and geodynamic conditions (Kesler, 1997. Recent studies (e.g., Padilla Garza et al., 2001 show that the generation and emplacement of porphyry copper deposits may not only be dependent on magmatic and hydrothermal processes, but also that the regional and local tectonic setting plays an important role. Therefore in determining the suitable setting for emplacement of copper and other porphyry intrusions, determination of location of partial melting of the lower crust, generation of batholiths, and their volatile-rich derivative intrusions in the crust seems to be necessary (Carranza and Hale, 2002. Almost all porphyry copper deposits in Iran are located in the Urumieh-Dokhtar magmatic belt. These deposits show distinct spatial and temporal relationship with Miocene granodiorite plutonic rocks emplaced along strike slip faults (Mehrabi et al., 2005. Accordingly, the tectonic setting of ore deposits seem to be the most important factor for regional exploration of porphyry copper systems (Vearncombe and Vearncombe, 1999. There are several methods for analysis of distribution of ore deposits. In this research the role of structural control in the spatial distribution of porphyry deposits has been studied using Fry and Fractal methods. Here, the Fry method is used as a complementary method for Fractal analysis. Materials and methods Fry analysis is a self-adaptive method that is used for point objects. Fry analysis offers a visual approach to quantify the spatial trends in groups of point objects. Fry analysis can also be used to search for anisotropies in the distribution of point objects. More specifically it can be used to investigate whether a distribution of point objects occurs along linear trends, and whether

  10. Improving urban visibility through fractal analysis of street edges: The case of John Evans Atta Mills High Street in Accra, Ghana

    Directory of Open Access Journals (Sweden)

    R.A. Oppong

    2017-06-01

    Full Text Available Streets are a representation of cities, and the image of a city is a reflection of its home country. Although attempts to ensure harmonious spatial and environmental development in Ghanaian settlements date back to the colonial era, these efforts have minimal physical manifestation in the urban fabric of the city of Accra. The Independence Arch of Ghana, an important landmark in the urban fabric and history of Accra, lacks the striking vista and approach it deserves. This paper introduces the use of fractal analysis of street edges to understand the characteristics of the John Evans Atta Mills (JEAM High Street for developing recommendations to improve visibility along its stretch and the overall image of the city. The box-counting method with visual survey was used in research. The pertinent questions this paper seeks to address are as follows: What factors affect the visibility and imageability of JEAM High Street? What design aspects should be considered to improve urban visibility along JEAM High Street? What is the link of fractals to urban design and architecture? The paper recommends various design considerations and qualities to improve the urban visibility and imageability of JEAM High Street.

  11. Fractal dimension evolution and spatial replacement dynamics of urban growth

    International Nuclear Information System (INIS)

    Chen Yanguang

    2012-01-01

    Highlights: ► The fractal dimension growth can be modeled by Boltzmann’s equation. ► Boltzmann’s model suggests urban spatial replacement dynamics. ► If the rate of urban growth is too high, periodic oscillations or chaos will arise. ► Chaos is associated with fractals by the fractal dimension evolution model. ► The fractal dimension of urban form implies the space-filling ratio of a city. - Abstract: This paper presents a new perspective of looking at the relation between fractals and chaos by means of cities. Especially, a principle of space filling and spatial replacement is proposed to interpret the fractal dimension of urban form. The fractal dimension evolution of urban growth can be empirically modeled with Boltzmann’s equation. For the normalized data, Boltzmann’s equation is just equivalent to the logistic function. The logistic equation can be transformed into the well-known 1-dimensional logistic map, which is based on a 2-dimensional map suggesting spatial replacement dynamics of city development. The 2-dimensional recurrence relations can be employed to generate the nonlinear dynamical behaviors such as bifurcation and chaos. A discovery is thus made in this article that, for the fractal dimension growth following the logistic curve, the normalized dimension value is the ratio of space filling. If the rate of spatial replacement (urban growth) is too high, the periodic oscillations and chaos will arise. The spatial replacement dynamics can be extended to general replacement dynamics, and bifurcation and chaos mirror a process of complex replacement.

  12. Positron annihilation near fractal surfaces

    International Nuclear Information System (INIS)

    Lung, C.W.; Deng, K.M.; Xiong, L.Y.

    1991-07-01

    A model for positron annihilation in the sub-surface region near a fractal surface is proposed. It is found that the power law relationship between the mean positron implantation depth and incident positron energy can be used to measure the fractal dimension of the fractal surface in materials. (author). 10 refs, 2 figs

  13. Pore Structure and Fractal Characteristics of Niutitang Shale from China

    Directory of Open Access Journals (Sweden)

    Zhaodong Xi

    2018-04-01

    Full Text Available A suite of shale samples from the Lower Cambrian Niutitang Formation in northwestern Hunan Province, China, were investigated to better understand the pore structure and fractal characteristics of marine shale. Organic geochemistry, mineralogy by X-ray diffraction, porosity, permeability, mercury intrusion and nitrogen adsorption and methane adsorption experiments were conducted for each sample. Fractal dimension D was obtained from the nitrogen adsorption data using the fractal Frenkel-Halsey-Hill (FHH model. The relationships between total organic carbon (TOC content, mineral compositions, pore structure parameters and fractal dimension are discussed, along with the contributions of fractal dimension to shale gas reservoir evaluation. Analysis of the results showed that Niutitang shale samples featured high TOC content (2.51% on average, high thermal maturity (3.0% on average, low permeability and complex pore structures, which are highly fractal. TOC content and mineral compositions are two major factors affecting pore structure but they have different impacts on the fractal dimension. Shale samples with higher TOC content had a larger specific surface area (SSA, pore volume (PV and fractal dimension, which enhanced the heterogeneity of the pore structure. Quartz content had a relatively weak influence on shale pore structure, whereas SSA, PV and fractal dimension decreased with increasing clay mineral content. Shale with a higher clay content weakened pore structure heterogeneity. The permeability and Langmuir volume of methane adsorption were affected by fractal dimension. Shale samples with higher fractal dimension had higher adsorption capacity but lower permeability, which is favorable for shale gas adsorption but adverse to shale gas seepage and diffusion.

  14. Fractals and the Large-Scale Structure in the Universe

    Indian Academy of Sciences (India)

    of fractals. Measuring the Length of a Curve. Consider the problem of measuring the length of a ..... a two dimensional smooth surface embedded in 3 dimen- ... interesting measure of a I-dimensional object is its length and not the volume.

  15. Comparative analysis of seismic persistence of Hindu Kush nests (Afghanistan) and Los Santos (Colombia) using fractal dimension

    Science.gov (United States)

    Prada, D. A.; Sanabria, M. P.; Torres, A. F.; Álvarez, M. A.; Gómez, J.

    2018-04-01

    The study of persistence in time series in seismic events in two of the most important nets such as Hindu Kush in Afghanistan and Los Santos Santander in Colombia generate great interest due to its high presence of telluric activity. The data were taken from the global seismological network. Using the Jarque-Bera test the presence of gaussian distribution was analyzed, and because the distribution in the series was asymmetric, without presence of mesocurtisity, the Hurst coefficient was calculated using the rescaled range method, with which it was found the fractal dimension associated to these time series and under what is possible to determine the persistence, antipersistence and volatility in these phenomena.

  16. Reduced fractal model for quantitative analysis of averaged micromotions in mesoscale: Characterization of blow-like signals

    International Nuclear Information System (INIS)

    Nigmatullin, Raoul R.; Toboev, Vyacheslav A.; Lino, Paolo; Maione, Guido

    2015-01-01

    Highlights: •A new approach describes fractal-branched systems with long-range fluctuations. •A reduced fractal model is proposed. •The approach is used to characterize blow-like signals. •The approach is tested on data from different fields. -- Abstract: It has been shown that many micromotions in the mesoscale region are averaged in accordance with their self-similar (geometrical/dynamical) structure. This distinctive feature helps to reduce a wide set of different micromotions describing relaxation/exchange processes to an averaged collective motion, expressed mathematically in a rather general form. This reduction opens new perspectives in description of different blow-like signals (BLS) in many complex systems. The main characteristic of these signals is a finite duration also when the generalized reduced function is used for their quantitative fitting. As an example, we describe quantitatively available signals that are generated by bronchial asthmatic people, songs by queen bees, and car engine valves operating in the idling regime. We develop a special treatment procedure based on the eigen-coordinates (ECs) method that allows to justify the generalized reduced fractal model (RFM) for description of BLS that can propagate in different complex systems. The obtained describing function is based on the self-similar properties of the different considered micromotions. This kind of cooperative model is proposed here for the first time. In spite of the fact that the nature of the dynamic processes that take place in fractal structure on a mesoscale level is not well understood, the parameters of the RFM fitting function can be used for construction of calibration curves, affected by various external/random factors. Then, the calculated set of the fitting parameters of these calibration curves can characterize BLS of different complex systems affected by those factors. Though the method to construct and analyze the calibration curves goes beyond the scope

  17. Fractal analysis of phasic laser images of the myocardium for the purpose of diagnostics of acute coronary insufficiency

    Science.gov (United States)

    Wanchuliak, O. Y.; Bachinskyi, V. T.

    2011-09-01

    In this work on the base of Mueller-matrix description of optical anisotropy, the possibility of monitoring of time changes of myocardium tissue birefringence, has been considered. The optical model of polycrystalline networks of myocardium is suggested. The results of investigating the interrelation between the values correlation (correlation area, asymmetry coefficient and autocorrelation function excess) and fractal (dispersion of logarithmic dependencies of power spectra) parameters are presented. They characterize the distributions of Mueller matrix elements in the points of laser images of myocardium histological sections. The criteria of differentiation of death coming reasons are determined.

  18. Fractal THz metamaterials

    DEFF Research Database (Denmark)

    Malureanu, Radu; Jepsen, Peter Uhd; Xiao, S.

    2010-01-01

    applications. THz radiation can be employed for various purposes, among them the study of vibrations in biological molecules, motion of electrons in semiconductors and propagation of acoustic shock waves in crystals. We propose here a new THz fractal MTM design that shows very high transmission in the desired...... frequency range as well as a clear differentiation between one polarisation and another. Based on theoretical predictions we fabricated and measured a fractal based THz metamaterial that shows more than 60% field transmission at around 1THz for TE polarized light while the TM waves have almost 80% field...... transmission peak at 0.6THz. One of the main characteristics of this design is its tunability by design: by simply changing the length of the fractal elements one can choose the operating frequency window. The modelling, fabrication and characterisation results will be presented in this paper. Due to the long...

  19. Fractal dimension of cantori

    International Nuclear Information System (INIS)

    Li, W.; Bak, P.

    1986-01-01

    At a critical point the golden-mean Kolmogorov-Arnol'd-Moser trajectory of Chirikov's standard map breaks up into a fractal orbit called a cantorus. The transition describes a pinning of the incommensurate phase of the Frenkel-Kontorowa model. We find that the fractal dimension of the cantorus is D = 0 and that the transition from the Kolmogorov-Arnol'd-Moser trajectory with dimension D = 1 to the cantorus is governed by an exponent ν = 0.98. . . and a universal scaling function. It is argued that the exponent is equal to that of the Lyapunov exponent

  20. Fractal actors and infrastructures

    DEFF Research Database (Denmark)

    Bøge, Ask Risom

    2011-01-01

    -network-theory (ANT) into surveillance studies (Ball 2002, Adey 2004, Gad & Lauritsen 2009). In this paper, I further explore the potential of this connection by experimenting with Marilyn Strathern’s concept of the fractal (1991), which has been discussed in newer ANT literature (Law 2002; Law 2004; Jensen 2007). I...... under surveillance. Based on fieldwork conducted in 2008 and 2011 in relation to my Master’s thesis and PhD respectively, I illustrate fractal concepts by describing the acts, actors and infrastructure that make up the ‘DNA surveillance’ conducted by the Danish police....

  1. Three-dimensional analysis of antenna sheaths

    International Nuclear Information System (INIS)

    Myra, J.R.; D'Ippolito, D.A.; Ho, Y.L.

    1996-01-01

    The present work is motivated by the importance of r.f. sheaths in determining the antenna-plasma interaction and the sensitivity of the sheaths to the complicated three-dimensional structure of modern ion cyclotron range of frequency (ICRF) antennas. To analyze r.f. sheaths on the plasma facing regions of the launcher, we first calculate the contact points of the tokamak magnetic field lines on the surface of the antenna Faraday screen and nearby limiters for realistic three-dimensional magnetic flux surface and antenna geometries. Next, the r.f. voltage that can drive sheaths at the contact points is determined and used to assess the resulting sheath power dissipation, r.f.-driven sputtering, and r.f.-induced convective cells (which produce edge profile modification). The calculations are embodied in a computer code, ANSAT (antenna sheath analysis tool), and sample ANSAT runs are shown to highlight the physics- and geometry-dependent characteristics of the r.f. sheaths and their relationship to the antenna design. One use of ANSAT is therefore as a design tool, to assess the strengths and weaknesses of a given design with respect to critical voltage handling and edge plasma interaction issues. Additionally, examples are presented where ANSAT has been useful in the analysis and interpretation of ICRF experiments (orig.)

  2. Physical model of dimensional regularization

    Energy Technology Data Exchange (ETDEWEB)

    Schonfeld, Jonathan F.

    2016-12-15

    We explicitly construct fractals of dimension 4-ε on which dimensional regularization approximates scalar-field-only quantum-field theory amplitudes. The construction does not require fractals to be Lorentz-invariant in any sense, and we argue that there probably is no Lorentz-invariant fractal of dimension greater than 2. We derive dimensional regularization's power-law screening first for fractals obtained by removing voids from 3-dimensional Euclidean space. The derivation applies techniques from elementary dielectric theory. Surprisingly, fractal geometry by itself does not guarantee the appropriate power-law behavior; boundary conditions at fractal voids also play an important role. We then extend the derivation to 4-dimensional Minkowski space. We comment on generalization to non-scalar fields, and speculate about implications for quantum gravity. (orig.)

  3. Fractal characteristics of an asphaltene deposited heterogeneous surface

    International Nuclear Information System (INIS)

    Amin, J. Sayyad; Ayatollahi, Sh.; Alamdari, A.

    2009-01-01

    Several methods have been employed in recent years to investigate homogeneous surface topography based on image analysis, such as AFM (atomic force microscopy) and SEM (scanning electron microscopy). Fractal analysis of the images provides fractal dimension of the surface which is used as one of the most common surface indices. Surface topography has generally been considered to be mono-fractal. On the other hand, precipitation of organic materials on a rough surface and its irregular growth result in morphology alteration and converts a homogeneous surface to a heterogeneous one. In this case a mono-fractal description of the surface does not completely describe the nature of the altered surface. This work aims to investigate the topography alteration of a glass surface as a result of asphaltene precipitation and its growth at various pressures using a bi-fractal approach. The experimental results of the deposited surfaces were clearly indicating two regions of micro- and macro-asperities namely, surface types I and II, respectively. The fractal plots were indicative of bi-fractal behavior and for each surface type one fractal dimension was calculated. The topography information of the surfaces was obtained by two image analyses, AFM and SEM imaging techniques. Results of the bi-fractal analysis demonstrated that topography alteration in surface type II (macro-asperities) is more evident than that in surface type I (micro-asperities). Compared to surface type II, a better correlation was observed between the fractal dimensions inferred from the AFM images (D A ) and those of the SEM images (D S ) in surface type I.

  4. Biometric feature extraction using local fractal auto-correlation

    International Nuclear Information System (INIS)

    Chen Xi; Zhang Jia-Shu

    2014-01-01

    Image texture feature extraction is a classical means for biometric recognition. To extract effective texture feature for matching, we utilize local fractal auto-correlation to construct an effective image texture descriptor. Three main steps are involved in the proposed scheme: (i) using two-dimensional Gabor filter to extract the texture features of biometric images; (ii) calculating the local fractal dimension of Gabor feature under different orientations and scales using fractal auto-correlation algorithm; and (iii) linking the local fractal dimension of Gabor feature under different orientations and scales into a big vector for matching. Experiments and analyses show our proposed scheme is an efficient biometric feature extraction approach. (condensed matter: structural, mechanical, and thermal properties)

  5. Fractals and chaos

    CERN Document Server

    Earnshow, R; Jones, H

    1991-01-01

    This volume is based upon the presentations made at an international conference in London on the subject of 'Fractals and Chaos'. The objective of the conference was to bring together some of the leading practitioners and exponents in the overlapping fields of fractal geometry and chaos theory, with a view to exploring some of the relationships between the two domains. Based on this initial conference and subsequent exchanges between the editors and the authors, revised and updated papers were produced. These papers are contained in the present volume. We thank all those who contributed to this effort by way of planning and organisation, and also all those who helped in the production of this volume. In particular, we wish to express our appreciation to Gerhard Rossbach, Computer Science Editor, Craig Van Dyck, Production Director, and Nancy A. Rogers, who did the typesetting. A. J. Crilly R. A. Earnshaw H. Jones 1 March 1990 Introduction Fractals and Chaos The word 'fractal' was coined by Benoit Mandelbrot i...

  6. Fractal analysis of the electrical discharges' surface paths in polymeric insulation considering different pollution levels; Analisis fractal de las trayectorias de descargas electricas superficiales en aislamiento polimerico considerando diferentes niveles de contaminacion

    Energy Technology Data Exchange (ETDEWEB)

    Palacios Lopez, Arturo

    2002-07-01

    In this thesis tree patterns of superficial breakdown in polymeric insulator of Silicon Rubber are generated. Experimental arrangement rod-rod was used on the basis of norm ASTM D 2303-85. Pollution levels on the basis of norm IEC 507 were also used. The experimental values of Fractal Dimension for each case of pollution were reported. A self similar method called Box Counting for the fractal dimension calculus and for the self affine methods an R/S and Variogram were used. According to the results, it was concluded that the tree patterns of superficial electric breakdown in Silicon Rubber is self similar and its value does not depend on the degree of pollution, that is equivalent to the concentration of salt for liter of water or to the Equivalent Salt Deposition (ESDD), in the surface of an insulator. [Spanish] En el presente trabajo se inducen descargas electricas superficiales en un aislamiento polimerico de Hule Silicon, el arreglo experimental que se utilice es punta-punta con base en la norma ASTM D 2303-85 y los niveles de contaminacion con base en la norma IEC 507. Se reportan los valores experimentales de la Dimension Fractal para cada caso de contaminacion, se utilice el metodo auto similar de conteo de cuadros, para el calculo de la Dimension Fractal y para metodos auto afines se utilice analisis R/S y variograma. Con los resultados obtenidos se concluye que la trayectoria de la descarga electrica superficial en un polimero de Hule Silicon es auto similar y su valor no depende del grado de contaminacion, el cual es equivalente a la concentracion de gramos de sal por litro de agua o a la densidad de sal depositada (DESD), en la superficie de un aislador.

  7. Geological mapping using fractal technique | Lawal | Nigerian ...

    African Journals Online (AJOL)

    In this work the use of fractal scaling exponents for geological mapping was first investigated using theoretical models, and results from the analysis showed that the scaling exponents mapped isolated bodies but did not properly resolve bodies close to each other. However application on real data (the Mamfe basin, the ...

  8. Entrainment to a real time fractal visual stimulus modulates fractal gait dynamics.

    Science.gov (United States)

    Rhea, Christopher K; Kiefer, Adam W; D'Andrea, Susan E; Warren, William H; Aaron, Roy K

    2014-08-01

    Fractal patterns characterize healthy biological systems and are considered to reflect the ability of the system to adapt to varying environmental conditions. Previous research has shown that fractal patterns in gait are altered following natural aging or disease, and this has potential negative consequences for gait adaptability that can lead to increased risk of injury. However, the flexibility of a healthy neurological system to exhibit different fractal patterns in gait has yet to be explored, and this is a necessary step toward understanding human locomotor control. Fifteen participants walked for 15min on a treadmill, either in the absence of a visual stimulus or while they attempted to couple the timing of their gait with a visual metronome that exhibited a persistent fractal pattern (contained long-range correlations) or a random pattern (contained no long-range correlations). The stride-to-stride intervals of the participants were recorded via analog foot pressure switches and submitted to detrended fluctuation analysis (DFA) to determine if the fractal patterns during the visual metronome conditions differed from the baseline (no metronome) condition. DFA α in the baseline condition was 0.77±0.09. The fractal patterns in the stride-to-stride intervals were significantly altered when walking to the fractal metronome (DFA α=0.87±0.06) and to the random metronome (DFA α=0.61±0.10) (both p<.05 when compared to the baseline condition), indicating that a global change in gait dynamics was observed. A variety of strategies were identified at the local level with a cross-correlation analysis, indicating that local behavior did not account for the consistent global changes. Collectively, the results show that a gait dynamics can be shifted in a prescribed manner using a visual stimulus and the shift appears to be a global phenomenon. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Analysis of the Influence of Complexity and Entropy of Odorant on Fractal Dynamics and Entropy of EEG Signal.

    Science.gov (United States)

    Namazi, Hamidreza; Akrami, Amin; Nazeri, Sina; Kulish, Vladimir V

    2016-01-01

    An important challenge in brain research is to make out the relation between the features of olfactory stimuli and the electroencephalogram (EEG) signal. Yet, no one has discovered any relation between the structures of olfactory stimuli and the EEG signal. This study investigates the relation between the structures of EEG signal and the olfactory stimulus (odorant). We show that the complexity of the EEG signal is coupled with the molecular complexity of the odorant, where more structurally complex odorant causes less fractal EEG signal. Also, odorant having higher entropy causes the EEG signal to have lower approximate entropy. The method discussed here can be applied and investigated in case of patients with brain diseases as the rehabilitation purpose.

  10. Fractal analysis of plaque border, a novel method for the quantification of atherosclerotic plaque contour irregularity, is associated with pro-atherogenic plasma lipid profile in subjects with non-obstructive carotid stenoses.

    Science.gov (United States)

    Moroni, Francesco; Magnoni, Marco; Vergani, Vittoria; Ammirati, Enrico; Camici, Paolo G

    2018-01-01

    Plaque border irregularity is a known imaging characteristic of vulnerable plaques, but its evaluation heavily relies on subjective evaluation and operator expertise. Aim of the present work is to propose a novel fractal-analysis based method for the quantification of atherosclerotic plaque border irregularity and assess its relation with cardiovascular risk factors. Forty-two asymptomatic subjects with carotid stenosis underwent ultrasound evaluation and assessment of cardiovascular risk factors. Total, low-density lipoprotein (LDL), high-density lipoprotein (HDL) plasma cholesterol and triglycerides concentrations were measured for each subject. Fractal analysis was performed in all the carotid segments affected by atherosclerosis, i.e. 147 segments. The resulting fractal dimension (FD) is a measure of irregularity of plaque profile on long axis view of the plaque. FD in the severest stenosis (main plaque FD,mFD) was 1.136±0.039. Average FD per patient (global FD,gFD) was 1.145±0.039. FD was independent of other plaque characteristics. mFD significantly correlated with plasma HDL (r = -0.367,p = 0.02) and triglycerides-to-HDL ratio (r = 0.480,p = 0.002). Fractal analysis is a novel, readily available, reproducible and inexpensive technique for the quantitative measurement of plaque irregularity. The correlation between low HDL levels and plaque FD suggests a role for HDL in the acquisition of morphologic features of plaque instability. Further studies are needed to validate the prognostic value of fractal analysis in carotid plaques evaluation.

  11. Delay Bound: Fractal Traffic Passes through Network Servers

    Directory of Open Access Journals (Sweden)

    Ming Li

    2013-01-01

    Full Text Available Delay analysis plays a role in real-time systems in computer communication networks. This paper gives our results in the aspect of delay analysis of fractal traffic passing through servers. There are three contributions presented in this paper. First, we will explain the reasons why conventional theory of queuing systems ceases in the general sense when arrival traffic is fractal. Then, we will propose a concise method of delay computation for hard real-time systems as shown in this paper. Finally, the delay computation of fractal traffic passing through severs is presented.

  12. FRACTAL IMAGE FEATURE VECTORS WITH APPLICATIONS IN FRACTOGRAPHY

    Directory of Open Access Journals (Sweden)

    Hynek Lauschmann

    2011-05-01

    Full Text Available The morphology of fatigue fracture surface (caused by constant cycle loading is strictly related to crack growth rate. This relation may be expressed, among other methods, by means of fractal analysis. Fractal dimension as a single numerical value is not sufficient. Two types of fractal feature vectors are discussed: multifractal and multiparametric. For analysis of images, the box-counting method for 3D is applied with respect to the non-homogeneity of dimensions (two in space, one in brightness. Examples of application are shown: images of several fracture surfaces are analyzed and related to crack growth rate.

  13. Fractals in several electrode materials

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Chunyong, E-mail: zhangchy@njau.edu.cn [Department of Chemistry, College of Science, Nanjing Agricultural University, Nanjing 210095 (China); Suzhou Key Laboratory of Environment and Biosafety, Suzhou Academy of Southeast University, Dushuhu lake higher education town, Suzhou 215123 (China); Wu, Jingyu [Department of Chemistry, College of Science, Nanjing Agricultural University, Nanjing 210095 (China); Fu, Degang [Suzhou Key Laboratory of Environment and Biosafety, Suzhou Academy of Southeast University, Dushuhu lake higher education town, Suzhou 215123 (China); State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096 (China)

    2014-09-15

    Highlights: • Fractal geometry was employed to characterize three important electrode materials. • The surfaces of all studied electrodes were proved to be very rough. • The fractal dimensions of BDD and ACF were scale dependent. • MMO film was more uniform than BDD and ACF in terms of fractal structures. - Abstract: In the present paper, the fractal properties of boron-doped diamond (BDD), mixed metal oxide (MMO) and activated carbon fiber (ACF) electrode have been studied by SEM imaging at different scales. Three materials are self-similar with mean fractal dimension in the range of 2.6–2.8, confirming that they all exhibit very rough surfaces. Specifically, it is found that MMO film is more uniform in terms of fractal structure than BDD and ACF. As a result, the intriguing characteristics make these electrodes as ideal candidates for high-performance decontamination processes.

  14. Fractals and humor

    Science.gov (United States)

    Martin, Demetri

    2015-03-01

    Demetri Maritn prepared this palindromic poem as his project for Michael Frame's fractal geometry class at Yale. Notice the first, fourth, and seventh words in the second and next-to-second lines are palindromes, the first two and last two lines are palindromes, the middle line, "Be still if I fill its ebb" minus its last letter is a palindrome, and the entire poem is a palindrome...

  15. An investigation of fractal characteristics of mesoporous carbon electrodes with various pore structures

    International Nuclear Information System (INIS)

    Pyun, Su-Il; Rhee, Chang-Kyu

    2004-01-01

    Fractal characteristics of mesoporous carbon electrodes were investigated with various pore structures using the N 2 gas adsorption method and the transmission electron microscopy (TEM) image analysis method. The mesoporous carbons with various pore structures were prepared by imprinting mesophase pitch used as a carbonaceous precursor with different colloidal silica particles. All imprinted mesoporous carbons were composed of two groups of pores produced from the carbonisation of mesophase pitch and from the silica imprinting. The overall surface fractal dimensions of the carbon specimens were determined from the analyses of the N 2 gas adsorption isotherms. In order to distinguish the surface fractal dimension of the carbonisation-induced pore surface from that fractal dimension of the silica-imprinted pore surface, the individual surface fractal dimensions were determined from the image analyses of the TEM images. From the comparison of the overall surface fractal dimension with the individual surface fractal dimensions, it was recognised that the overall surface fractal dimension is crucially influenced by the individual surface fractal dimension of the silica-imprinted pore surface. Moreover, from the fact that the silica-imprinted pore surface with broad relative pore size distribution (PSD) gave lower value of the individual surface fractal dimension than that pore surface with narrow relative PSD, it is concluded that as the silica-imprinted pores comprising the carbon specimen agglomerate, the individual surface fractal dimension of that pore surface decreases

  16. Fractal physiology and the fractional calculus: a perspective.

    Science.gov (United States)

    West, Bruce J

    2010-01-01

    This paper presents a restricted overview of Fractal Physiology focusing on the complexity of the human body and the characterization of that complexity through fractal measures and their dynamics, with fractal dynamics being described by the fractional calculus. Not only are anatomical structures (Grizzi and Chiriva-Internati, 2005), such as the convoluted surface of the brain, the lining of the bowel, neural networks and placenta, fractal, but the output of dynamical physiologic networks are fractal as well (Bassingthwaighte et al., 1994). The time series for the inter-beat intervals of the heart, inter-breath intervals and inter-stride intervals have all been shown to be fractal and/or multifractal statistical phenomena. Consequently, the fractal dimension turns out to be a significantly better indicator of organismic functions in health and disease than the traditional average measures, such as heart rate, breathing rate, and stride rate. The observation that human physiology is primarily fractal was first made in the 1980s, based on the analysis of a limited number of datasets. We review some of these phenomena herein by applying an allometric aggregation approach to the processing of physiologic time series. This straight forward method establishes the scaling behavior of complex physiologic networks and some dynamic models capable of generating such scaling are reviewed. These models include simple and fractional random walks, which describe how the scaling of correlation functions and probability densities are related to time series data. Subsequently, it is suggested that a proper methodology for describing the dynamics of fractal time series may well be the fractional calculus, either through the fractional Langevin equation or the fractional diffusion equation. A fractional operator (derivative or integral) acting on a fractal function, yields another fractal function, allowing us to construct a fractional Langevin equation to describe the evolution of a

  17. Categorization of new fractal carpets

    International Nuclear Information System (INIS)

    Rani, Mamta; Goel, Saurabh

    2009-01-01

    Sierpinski carpet is one of the very beautiful fractals from the historic gallery of classical fractals. Carpet designing is not only a fascinating activity in computer graphics, but it has real applications in carpet industry as well. One may find illusionary delighted carpets designed here, which are useful in real designing of carpets. In this paper, we attempt to systematize their generation and put them into categories. Each next category leads to a more generalized form of the fractal carpet.

  18. Bilipschitz embedding of homogeneous fractals

    OpenAIRE

    Lü, Fan; Lou, Man-Li; Wen, Zhi-Ying; Xi, Li-Feng

    2014-01-01

    In this paper, we introduce a class of fractals named homogeneous sets based on some measure versions of homogeneity, uniform perfectness and doubling. This fractal class includes all Ahlfors-David regular sets, but most of them are irregular in the sense that they may have different Hausdorff dimensions and packing dimensions. Using Moran sets as main tool, we study the dimensions, bilipschitz embedding and quasi-Lipschitz equivalence of homogeneous fractals.

  19. FONT DISCRIMINATIO USING FRACTAL DIMENSIONS

    Directory of Open Access Journals (Sweden)

    S. Mozaffari

    2014-09-01

    Full Text Available One of the related problems of OCR systems is discrimination of fonts in machine printed document images. This task improves performance of general OCR systems. Proposed methods in this paper are based on various fractal dimensions for font discrimination. First, some predefined fractal dimensions were combined with directional methods to enhance font differentiation. Then, a novel fractal dimension was introduced in this paper for the first time. Our feature extraction methods which consider font recognition as texture identification are independent of document content. Experimental results on different pages written by several font types show that fractal geometry can overcome the complexities of font recognition problem.

  20. Bifurcation analysis of a three dimensional system

    Directory of Open Access Journals (Sweden)

    Yongwen WANG

    2018-04-01

    Full Text Available In order to enrich the stability and bifurcation theory of the three dimensional chaotic systems, taking a quadratic truncate unfolding system with the triple singularity equilibrium as the research subject, the existence of the equilibrium, the stability and the bifurcation of the system near the equilibrium under different parametric conditions are studied. Using the method of mathematical analysis, the existence of the real roots of the corresponding characteristic equation under the different parametric conditions is analyzed, and the local manifolds of the equilibrium are gotten, then the possible bifurcations are guessed. The parametric conditions under which the equilibrium is saddle-focus are analyzed carefully by the Cardan formula. Moreover, the conditions of codimension-one Hopf bifucation and the prerequisites of the supercritical and subcritical Hopf bifurcation are found by computation. The results show that the system has abundant stability and bifurcation, and can also supply theorical support for the proof of the existence of the homoclinic or heteroclinic loop connecting saddle-focus and the Silnikov's chaos. This method can be extended to study the other higher nonlinear systems.

  1. Effect of noise on fractal structure

    Energy Technology Data Exchange (ETDEWEB)

    Serletis, Demitre [Division of Neurosurgery, Hospital for Sick Children, 1504-555 University Avenue, Toronto, Ont., M5G 1X8 (Canada)], E-mail: demitre.serletis@utoronto.ca

    2008-11-15

    In this paper, I investigate the effect of dynamical noise on the estimation of the Hurst exponent and the fractal dimension of time series. Recently, Serletis et al. [Serletis, Apostolos, Asghar Shahmoradi, Demitre Serletis. Effect of noise on estimation of Lyapunov exponents from a time series. Chaos, Solitons and Fractals, forthcoming] have shown that dynamical noise can make the detection of chaotic dynamics very difficult, and Serletis et al. [Serletis, Apostolos, Asghar Shahmoradi, Demitre Serletis. Effect of noise on the bifurcation behavior of dynamical systems. Chaos, Solitons and Fractals, forthcoming] have shown that dynamical noise can also shift bifurcation points and produce noise-induced transitions, making the determination of bifurcation boundaries difficult. Here I apply the detrending moving average (DMA) method, recently developed by Alessio et al. [Alessio E, Carbone A, Castelli G, Frappietro V. Second-order moving average and scaling of stochastic time series. The Eur Phys J B 2002;27:197-200] and Carbone et al. [Carbone A, Castelli G, Stanley HE. Time-dependent Hurst exponent in financial time series. Physica A 2004;344:267-71; Carbone A, Castelli G, Stanley HE. Analysis of clusters formed by the moving average of a long-range correlated time series. Phys Rev E 2004;69:026105], to estimate the Hurst exponent of a Brownian walk with a Hurst exponent of 0.5, coupled with low and high intensity noise, and show that dynamical noise has no effect on fractal structure.

  2. Nonparametric trend estimation in the presence of fractal noise: application to fMRI time-series analysis.

    Science.gov (United States)

    Afshinpour, Babak; Hossein-Zadeh, Gholam-Ali; Soltanian-Zadeh, Hamid

    2008-06-30

    Unknown low frequency fluctuations called "trend" are observed in noisy time-series measured for different applications. In some disciplines, they carry primary information while in other fields such as functional magnetic resonance imaging (fMRI) they carry nuisance effects. In all cases, however, it is necessary to estimate them accurately. In this paper, a method for estimating trend in the presence of fractal noise is proposed and applied to fMRI time-series. To this end, a partly linear model (PLM) is fitted to each time-series. The parametric and nonparametric parts of PLM are considered as contributions of hemodynamic response and trend, respectively. Using the whitening property of wavelet transform, the unknown components of the model are estimated in the wavelet domain. The results of the proposed method are compared to those of other parametric trend-removal approaches such as spline and polynomial models. It is shown that the proposed method improves activation detection and decreases variance of the estimated parameters relative to the other methods.

  3. Partially ordered sets, transfinite topology and the dimension of Cantorian-fractal spacetime

    Energy Technology Data Exchange (ETDEWEB)

    Marek-Crnjac, L. [Institute of Mathematics and Physics, University of Maribor (Slovenia)], E-mail: leila.marek@guest.arnes.si

    2009-11-15

    We introduce partially ordered sets and relate them to random Cantor sets of E-infinity theory. Subsequently we derive the dimensionality of Cantorian-fractal spacetime using posets and E-infinity transfinite Cantor sets.

  4. Fractal differential equations and fractal-time dynamical systems

    Indian Academy of Sciences (India)

    like fractal subsets of the real line may be termed as fractal-time dynamical systems. Formulation ... involving scaling and memory effects. But most of ..... begin by recalling the definition of the Riemann integral in ordinary calculus [33]. Let g: [a ...

  5. Fractal Dimension Analysis of MDCT Images for Quantifying the Morphological Changes of the Pulmonary Artery Tree in Patients with Pulmonary Hypertension

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Haitao; Li, Ning; Guo, Lijun; Gao, Fei; Liu, Cheng [Shandong University, Shandong Medical Imaging Research Institute, Shandong (Korea, Republic of)

    2011-06-15

    The aim of this study was to use fractal dimension (FD) analysis on multidetector CT (MDCT) images for quantifying the morphological changes of the pulmonary artery tree in patients with pulmonary hypertension (PH). Fourteen patients with PH and 17 patients without PH as controls were studied. All of the patients underwent contrast-enhanced helical CT and transthoracic echocardiography. The pulmonary artery trees were generated using post-processing software, and the FD and projected image area of the pulmonary artery trees were determined with Image J software in a personal computer. The FD, the projected image area and the pulmonary artery pressure (PAP) were statistically evaluated in the two groups. The FD, the projected image area and the PAP of the patients with PH were higher than those values of the patients without PH (p < 0.05, t-test). There was a high correlation of FD with the PAP (r = 0.82, p < 0.05, partial correlation analysis). There was a moderate correlation of FD with the projected image area (r = 0.49, p < 0.05, partial correlation analysis). There was a correlation of the PAP with the projected image area (r = 0.65, p < 0.05, Pearson correlation analysis). The FD of the pulmonary arteries in the PH patients was significantly higher than that of the controls. There is a high correlation of FD with the PAP.

  6. Fractal Dimension Analysis of MDCT Images for Quantifying the Morphological Changes of the Pulmonary Artery Tree in Patients with Pulmonary Hypertension

    International Nuclear Information System (INIS)

    Sun, Haitao; Li, Ning; Guo, Lijun; Gao, Fei; Liu, Cheng

    2011-01-01

    The aim of this study was to use fractal dimension (FD) analysis on multidetector CT (MDCT) images for quantifying the morphological changes of the pulmonary artery tree in patients with pulmonary hypertension (PH). Fourteen patients with PH and 17 patients without PH as controls were studied. All of the patients underwent contrast-enhanced helical CT and transthoracic echocardiography. The pulmonary artery trees were generated using post-processing software, and the FD and projected image area of the pulmonary artery trees were determined with Image J software in a personal computer. The FD, the projected image area and the pulmonary artery pressure (PAP) were statistically evaluated in the two groups. The FD, the projected image area and the PAP of the patients with PH were higher than those values of the patients without PH (p < 0.05, t-test). There was a high correlation of FD with the PAP (r = 0.82, p < 0.05, partial correlation analysis). There was a moderate correlation of FD with the projected image area (r = 0.49, p < 0.05, partial correlation analysis). There was a correlation of the PAP with the projected image area (r = 0.65, p < 0.05, Pearson correlation analysis). The FD of the pulmonary arteries in the PH patients was significantly higher than that of the controls. There is a high correlation of FD with the PAP.

  7. An event driven algorithm for fractal cluster formation

    NARCIS (Netherlands)

    González, S.; Thornton, Anthony Richard; Luding, Stefan

    2010-01-01

    A new cluster based event-driven algorithm is developed to simulate the formation of clusters in a two dimensional gas: particles move freely until they collide and "stick" together irreversibly. These clusters aggregate into bigger structures in an isotompic way, forming fractal structures whose

  8. An event driven algorithm for fractal cluster formation

    NARCIS (Netherlands)

    González, S.; Gonzalez Briones, Sebastián; Thornton, Anthony Richard; Luding, Stefan

    2011-01-01

    A new cluster based event-driven algorithm is developed to simulate the formation of clusters in a two dimensional gas: particles move freely until they collide and "stick" together irreversibly. These clusters aggregate into bigger structures in an isotompic way, forming fractal structures whose

  9. Analysis of fluid flow and solute transport though a single fracture intersecting a canister: comparison between fractal and Gaussian fractures

    International Nuclear Information System (INIS)

    Liu, L.; Neretnieks, I.

    2005-01-01

    Full text of publication follows: Canisters with spent fuel will be deposited in fractured crystalline rock in the Swedish concept for a final repository. The fractures intersect the canister holes at different angles and they have variable apertures and therefore locally varying flowrates. Our previous model with fractures with a constant aperture and a 90 deg. intersection angle is now extended to arbitrary intersection angles and stochastically variable apertures. It is shown the previous basic model can be simply amended to account for these effects. The mean and the standard deviation of the water flowrate in the fractures are obtained from the statistics of the aperture variations by a simple formula. Likewise, the statistical form of distribution of the so-called 'equivalent flowrate', which describes the mass transfer of solutes between the canister and the flowing water, is also obtained by a simple relation. These simple statistical relations obviate the need to simulate each fracture that intersects a canister in great detail. The water flowrate and the equivalent flowrate of a fracture are instead taken from the simple distributions presented in this work. This allows the use of complex fractures also in very large fracture network models used in performance assessment. The distributions have been obtained by generating a multitude of fractures and by studying their flow and transport properties. Fractal as well as Gaussian aperture distributions have been studied. It has been found that the distributions of the volumetric and the equivalent flow rates are all close to the Normal for both types of fractures, with the mean of the distribution of the volumetric flow rate being determined solely by the hydraulic aperture, and that of the equivalent flow rate being determined by the mechanical aperture. Moreover, the standard deviation of the volumetric flow rates of the many realizations increases with increasing roughness and spatial correlation length of

  10. Fractals and multifractals in physics

    International Nuclear Information System (INIS)

    Arcangelis, L. de.

    1987-01-01

    We present a general introduction to the world of fractals. The attention is mainly devoted to stress how fractals do indeed appear in the real world and to find quantitative methods for characterizing their properties. The idea of multifractality is also introduced and it is presented in more details within the framework of the percolation problem

  11. A Double-Minded Fractal

    Science.gov (United States)

    Simoson, Andrew J.

    2009-01-01

    This article presents a fun activity of generating a double-minded fractal image for a linear algebra class once the idea of rotation and scaling matrices are introduced. In particular the fractal flip-flops between two words, depending on the level at which the image is viewed. (Contains 5 figures.)

  12. Turbulent wakes of fractal objects

    NARCIS (Netherlands)

    Staicu, A.D.; Mazzi, B.; Vassilicos, J.C.; Water, van de W.

    2003-01-01

    Turbulence of a windtunnel flow is stirred using objects that have a fractal structure. The strong turbulent wakes resulting from three such objects which have different fractal dimensions are probed using multiprobe hot-wire anemometry in various configurations. Statistical turbulent quantities are

  13. Ghost quintessence in fractal gravity

    Indian Academy of Sciences (India)

    In this study, using the time-like fractal theory of gravity, we mainly focus on the ghost dark energy model which was recently suggested to explain the present acceleration of the cosmic expansion. Next, we establish a connection between the quintessence scalar field and fractal ghost dark energy density.

  14. Fractal statistics of brittle fragmentation

    Directory of Open Access Journals (Sweden)

    M. Davydova

    2013-04-01

    Full Text Available The study of fragmentation statistics of brittle materials that includes four types of experiments is presented. Data processing of the fragmentation of glass plates under quasi-static loading and the fragmentation of quartz cylindrical rods under dynamic loading shows that the size distribution of fragments (spatial quantity is fractal and can be described by a power law. The original experimental technique allows us to measure, apart from the spatial quantity, the temporal quantity - the size of time interval between the impulses of the light reflected from the newly created surfaces. The analysis of distributions of spatial (fragment size and temporal (time interval quantities provides evidence of obeying scaling laws, which suggests the possibility of self-organized criticality in fragmentation.

  15. Detecting abrupt dynamic change based on changes in the fractal properties of spatial images

    Science.gov (United States)

    Liu, Qunqun; He, Wenping; Gu, Bin; Jiang, Yundi

    2017-10-01

    Many abrupt climate change events often cannot be detected timely by conventional abrupt detection methods until a few years after these events have occurred. The reason for this lag in detection is that abundant and long-term observational data are required for accurate abrupt change detection by these methods, especially for the detection of a regime shift. So, these methods cannot help us understand and forecast the evolution of the climate system in a timely manner. Obviously, spatial images, generated by a coupled spatiotemporal dynamical model, contain more information about a dynamic system than a single time series, and we find that spatial images show the fractal properties. The fractal properties of spatial images can be quantitatively characterized by the Hurst exponent, which can be estimated by two-dimensional detrended fluctuation analysis (TD-DFA). Based on this, TD-DFA is used to detect an abrupt dynamic change of a coupled spatiotemporal model. The results show that the TD-DFA method can effectively detect abrupt parameter changes in the coupled model by monitoring the changing in the fractal properties of spatial images. The present method provides a new way for abrupt dynamic change detection, which can achieve timely and efficient abrupt change detection results.

  16. Fractal-based exponential distribution of urban density and self-affine fractal forms of cities

    International Nuclear Information System (INIS)

    Chen Yanguang; Feng Jian

    2012-01-01

    Highlights: ► The model of urban population density differs from the common exponential function. ► Fractal landscape influences the exponential distribution of urban density. ► The exponential distribution of urban population suggests a self-affine fractal. ► Urban space can be divided into three layers with scaling and non-scaling regions. ► The dimension of urban form with characteristic scale can be treated as 2. - Abstract: Urban population density always follows the exponential distribution and can be described with Clark’s model. Because of this, the spatial distribution of urban population used to be regarded as non-fractal pattern. However, Clark’s model differs from the exponential function in mathematics because that urban population is distributed on the fractal support of landform and land-use form. By using mathematical transform and empirical evidence, we argue that there are self-affine scaling relations and local power laws behind the exponential distribution of urban density. The scale parameter of Clark’s model indicating the characteristic radius of cities is not a real constant, but depends on the urban field we defined. So the exponential model suggests local fractal structure with two kinds of fractal parameters. The parameters can be used to characterize urban space filling, spatial correlation, self-affine properties, and self-organized evolution. The case study of the city of Hangzhou, China, is employed to verify the theoretical inference. Based on the empirical analysis, a three-ring model of cities is presented and a city is conceptually divided into three layers from core to periphery. The scaling region and non-scaling region appear alternately in the city. This model may be helpful for future urban studies and city planning.

  17. Fractal diffusion coefficient from dynamical zeta functions

    Energy Technology Data Exchange (ETDEWEB)

    Cristadoro, Giampaolo [Max Planck Institute for the Physics of Complex Systems, Noethnitzer Str. 38, D 01187 Dresden (Germany)

    2006-03-10

    Dynamical zeta functions provide a powerful method to analyse low-dimensional dynamical systems when the underlying symbolic dynamics is under control. On the other hand, even simple one-dimensional maps can show an intricate structure of the grammar rules that may lead to a non-smooth dependence of global observables on parameters changes. A paradigmatic example is the fractal diffusion coefficient arising in a simple piecewise linear one-dimensional map of the real line. Using the Baladi-Ruelle generalization of the Milnor-Thurnston kneading determinant, we provide the exact dynamical zeta function for such a map and compute the diffusion coefficient from its smallest zero. (letter to the editor)

  18. Fractal diffusion coefficient from dynamical zeta functions

    International Nuclear Information System (INIS)

    Cristadoro, Giampaolo

    2006-01-01

    Dynamical zeta functions provide a powerful method to analyse low-dimensional dynamical systems when the underlying symbolic dynamics is under control. On the other hand, even simple one-dimensional maps can show an intricate structure of the grammar rules that may lead to a non-smooth dependence of global observables on parameters changes. A paradigmatic example is the fractal diffusion coefficient arising in a simple piecewise linear one-dimensional map of the real line. Using the Baladi-Ruelle generalization of the Milnor-Thurnston kneading determinant, we provide the exact dynamical zeta function for such a map and compute the diffusion coefficient from its smallest zero. (letter to the editor)

  19. Rheological and fractal characteristics of unconditioned and conditioned water treatment residuals.

    Science.gov (United States)

    Dong, Y J; Wang, Y L; Feng, J

    2011-07-01

    The rheological and fractal characteristics of raw (unconditioned) and conditioned water treatment residuals (WTRs) were investigated in this study. Variations in morphology, size, and image fractal dimensions of the flocs/aggregates in these WTR systems with increasing polymer doses were analyzed. The results showed that when the raw WTRs were conditioned with the polymer CZ8688, the optimum polymer dosage was observed at 24 kg/ton dry sludge. The average diameter of irregularly shaped flocs/aggregates in the WTR suspensions increased from 42.54 μm to several hundred micrometers with increasing polymer doses. Furthermore, the aggregates in the conditioned WTR system displayed boundary/surface and mass fractals. At the optimum polymer dosage, the aggregates formed had a volumetric average diameter of about 820.7 μm, with a one-dimensional fractal dimension of 1.01 and a mass fractal dimension of 2.74 on the basis of the image analysis. Rheological tests indicated that the conditioned WTRs at the optimum polymer dosage showed higher levels of shear-thinning behavior than the raw WTRs. Variations in the limiting viscosity (η(∞)) of conditioned WTRs with sludge content could be described by a linear equation, which were different from the often-observed empirical exponential relationship for most municipal sludge. With increasing temperature, the η(∞) of the raw WTRs decreased more rapidly than that of the raw WTRs. Good fitting results for the relationships between lgη(∞)∼T using the Arrhenius equation indicate that the WTRs had a much higher activation energy for viscosity of about 17.86-26.91 J/mol compared with that of anaerobic granular sludge (2.51 J/mol) (Mu and Yu, 2006). In addition, the Bingham plastic model adequately described the rheological behavior of the conditioned WTRs, whereas the rheology of the raw WTRs fit the Herschel-Bulkley model well at only certain sludge contents. Considering the good power-law relationships between the

  20. Fractals: Giant impurity nonlinearities in optics of fractal clusters

    International Nuclear Information System (INIS)

    Butenko, A.V.; Shalaev, V.M.; Stockman, M.I.

    1988-01-01

    A theory of nonlinear optical properties of fractals is developed. Giant enhancement of optical susceptibilities is predicted for impurities bound to a fractal. This enhancement occurs if the exciting radiation frequency lies within the absorption band of the fractal. The giant optical nonlinearities are due to existence of high local electric fields in the sites of impurity locations. Such fields are due to the inhomogeneously broadened character of a fractal spectrum, i.e. partial conservation of individuality of fractal-forming particles (monomers). The field enhancement is proportional to the Q-factor of the resonance of a monomer. The effects of coherent anti-Stokes Raman scattering (CARS) and phase conjugation (PC) of light waves are enhanced to a much greater degree than generation of higher harmonics. In a general case the susceptibility of a higher-order is enhanced in the maximum way if the process includes ''subtraction'' of photons (at least one of the strong field frequencies enters the susceptibility with the minus sign). Alternatively, enhancement for the highest-order harmonic generation (when all the photons are ''accumulated'') is minimal. The predicted phenomena bear information on spectral properties of both impurity molecules and a fractal. In particular, in the CARS spectra a narrow (with the natural width) resonant structure, which is proper to an isolated monomer of a fractal, is predicted to be observed. (orig.)

  1. Discretization model for nonlinear dynamic analysis of three dimensional structures

    International Nuclear Information System (INIS)

    Hayashi, Y.

    1982-12-01

    A discretization model for nonlinear dynamic analysis of three dimensional structures is presented. The discretization is achieved through a three dimensional spring-mass system and the dynamic response obtained by direct integration of the equations of motion using central diferences. First the viability of the model is verified through the analysis of homogeneous linear structures and then its performance in the analysis of structures subjected to impulsive or impact loads, taking into account both geometrical and physical nonlinearities is evaluated. (Author) [pt

  2. Self-Similarity of Plasmon Edge Modes on Koch Fractal Antennas.

    Science.gov (United States)

    Bellido, Edson P; Bernasconi, Gabriel D; Rossouw, David; Butet, Jérémy; Martin, Olivier J F; Botton, Gianluigi A

    2017-11-28

    We investigate the plasmonic behavior of Koch snowflake fractal geometries and their possible application as broadband optical antennas. Lithographically defined planar silver Koch fractal antennas were fabricated and characterized with high spatial and spectral resolution using electron energy loss spectroscopy. The experimental data are supported by numerical calculations carried out with a surface integral equation method. Multiple surface plasmon edge modes supported by the fractal structures have been imaged and analyzed. Furthermore, by isolating and reproducing self-similar features in long silver strip antennas, the edge modes present in the Koch snowflake fractals are identified. We demonstrate that the fractal response can be obtained by the sum of basic self-similar segments called characteristic edge units. Interestingly, the plasmon edge modes follow a fractal-scaling rule that depends on these self-similar segments formed in the structure after a fractal iteration. As the size of a fractal structure is reduced, coupling of the modes in the characteristic edge units becomes relevant, and the symmetry of the fractal affects the formation of hybrid modes. This analysis can be utilized not only to understand the edge modes in other planar structures but also in the design and fabrication of fractal structures for nanophotonic applications.

  3. Short-term prediction method of wind speed series based on fractal interpolation

    International Nuclear Information System (INIS)

    Xiu, Chunbo; Wang, Tiantian; Tian, Meng; Li, Yanqing; Cheng, Yi

    2014-01-01

    Highlights: • An improved fractal interpolation prediction method is proposed. • The chaos optimization algorithm is used to obtain the iterated function system. • The fractal extrapolate interpolation prediction of wind speed series is performed. - Abstract: In order to improve the prediction performance of the wind speed series, the rescaled range analysis is used to analyze the fractal characteristics of the wind speed series. An improved fractal interpolation prediction method is proposed to predict the wind speed series whose Hurst exponents are close to 1. An optimization function which is composed of the interpolation error and the constraint items of the vertical scaling factors in the fractal interpolation iterated function system is designed. The chaos optimization algorithm is used to optimize the function to resolve the optimal vertical scaling factors. According to the self-similarity characteristic and the scale invariance, the fractal extrapolate interpolation prediction can be performed by extending the fractal characteristic from internal interval to external interval. Simulation results show that the fractal interpolation prediction method can get better prediction result than others for the wind speed series with the fractal characteristic, and the prediction performance of the proposed method can be improved further because the fractal characteristic of its iterated function system is similar to that of the predicted wind speed series

  4. Discovering Hidden Controlling Parameters using Data Analytics and Dimensional Analysis

    Science.gov (United States)

    Del Rosario, Zachary; Lee, Minyong; Iaccarino, Gianluca

    2017-11-01

    Dimensional Analysis is a powerful tool, one which takes a priori information and produces important simplifications. However, if this a priori information - the list of relevant parameters - is missing a relevant quantity, then the conclusions from Dimensional Analysis will be incorrect. In this work, we present novel conclusions in Dimensional Analysis, which provide a means to detect this failure mode of missing or hidden parameters. These results are based on a restated form of the Buckingham Pi theorem that reveals a ridge function structure underlying all dimensionless physical laws. We leverage this structure by constructing a hypothesis test based on sufficient dimension reduction, allowing for an experimental data-driven detection of hidden parameters. Both theory and examples will be presented, using classical turbulent pipe flow as the working example. Keywords: experimental techniques, dimensional analysis, lurking variables, hidden parameters, buckingham pi, data analysis. First author supported by the NSF GRFP under Grant Number DGE-114747.

  5. Two-dimensional multifractal cross-correlation analysis

    International Nuclear Information System (INIS)

    Xi, Caiping; Zhang, Shuning; Xiong, Gang; Zhao, Huichang; Yang, Yonghong

    2017-01-01

    Highlights: • We study the mathematical models of 2D-MFXPF, 2D-MFXDFA and 2D-MFXDMA. • Present the definition of the two-dimensional N 2 -partitioned multiplicative cascading process. • Do the comparative analysis of 2D-MC by 2D-MFXPF, 2D-MFXDFA and 2D-MFXDMA. • Provide a reference on the choice and parameter settings of these methods in practice. - Abstract: There are a number of situations in which several signals are simultaneously recorded in complex systems, which exhibit long-term power-law cross-correlations. This paper presents two-dimensional multifractal cross-correlation analysis based on the partition function (2D-MFXPF), two-dimensional multifractal cross-correlation analysis based on the detrended fluctuation analysis (2D-MFXDFA) and two-dimensional multifractal cross-correlation analysis based on the detrended moving average analysis (2D-MFXDMA). We apply these methods to pairs of two-dimensional multiplicative cascades (2D-MC) to do a comparative study. Then, we apply the two-dimensional multifractal cross-correlation analysis based on the detrended fluctuation analysis (2D-MFXDFA) to real images and unveil intriguing multifractality in the cross correlations of the material structures. At last, we give the main conclusions and provide a valuable reference on how to choose the multifractal algorithms in the potential applications in the field of SAR image classification and detection.

  6. Applying Fractal Dimensions and Energy-Budget Analysis to Characterize Fracturing Processes During Magma Migration and Eruption: 2011-2012 El Hierro (Canary Islands) Submarine Eruption

    Science.gov (United States)

    López, Carmen; Martí, Joan; Abella, Rafael; Tarraga, Marta

    2014-07-01

    The impossibility of observing magma migration inside the crust obliges us to rely on geophysical data and mathematical modelling to interpret precursors and to forecast volcanic eruptions. Of the geophysical signals that may be recorded before and during an eruption, deformation and seismicity are two of the most relevant as they are directly related to its dynamic. The final phase of the unrest episode that preceded the 2011-2012 eruption on El Hierro (Canary Islands) was characterized by local and accelerated deformation and seismic energy release indicating an increasing fracturing and a migration of the magma. Application of time varying fractal analysis to the seismic data and the characterization of the seismicity pattern and the strain and the stress rates allow us to identify different stages in the source mechanism and to infer the geometry of the path used by the magma and associated fluids to reach the Earth's surface. The results obtained illustrate the relevance of such studies to understanding volcanic unrest and the causes that govern the initiation of volcanic eruptions.

  7. Feasibility of cone beam computed tomography radiomorphometric analysis and fractal dimension in assessment of postmenopausal osteoporosis in correlation with dual X-ray absorptiometry.

    Science.gov (United States)

    Mostafa, Raghdaa A; Arnout, Eman A; Abo El-Fotouh, Mona M

    The aim of the present study was to assess the feasibility of using mandibular CBCT radiomorphometric indices and box-counting fractal dimension (FD) to detect osteoporosis in post-menopausal females, compare them with the healthy control group and to correlate the findings with the bone mineral density measured by dual X-ray absorptiometry (DXA). This study consisted of 50 post-menopausal females, with age ranging from 55 to 70 years. Based on their DXA results, they were classified into osteoporotic and control groups. Mandibular CBCT radiomorphomertic indices and FD analysis were measured. Significant differences were found for the CT cortical index scores (CTCI), CT mental index (CTMI) and CT mandibular index (CTI) between the control and osteoporotic groups. The control group showed higher mean values than the osteoporotic group. For FD values, no significant differences were found between the two groups. CBCT radiomorphometric indices could be used as an adjuvant tool to refer patients at risk of osteoporosis for further assessment.

  8. Dimensional analysis of heart rate variability in heart transplant recipients

    Energy Technology Data Exchange (ETDEWEB)

    Zbilut, J.P.; Mayer-Kress, G.; Geist, K.

    1987-01-01

    We discuss periodicities in the heart rate in normal and transplanted hearts. We then consider the possibility of dimensional analysis of these periodicities in transplanted hearts and problems associated with the record.

  9. Dimensional Analysis with space discrimination applied to Fickian difussion phenomena

    International Nuclear Information System (INIS)

    Diaz Sanchidrian, C.; Castans, M.

    1989-01-01

    Dimensional Analysis with space discrimination is applied to Fickian difussion phenomena in order to transform its partial differen-tial equations into ordinary ones, and also to obtain in a dimensionl-ess fom the Ficks second law. (Author)

  10. Psicodiagnóstico fractal

    OpenAIRE

    Moghilevsky, Débora Estela

    2011-01-01

    A lo largo de los últimos años del siglo veinte se ha desarrollado la teoría de la complejidad. Este modelo relaciona las ciencias duras tales como la matemática, la teoría del caos, la física cuántica y la geometría fractal con las llamadas seudo ciencias. Dentro de este contexto podemos definir la Psicología Fractal como la ciencia que estudia los aspectos psíquicos como dinámicamente fractales.

  11. Temporal fractals in seabird foraging behaviour: diving through the scales of time

    Science.gov (United States)

    Macintosh, Andrew J. J.; Pelletier, Laure; Chiaradia, Andre; Kato, Akiko; Ropert-Coudert, Yan

    2013-05-01

    Animal behaviour exhibits fractal structure in space and time. Fractal properties in animal space-use have been explored extensively under the Lévy flight foraging hypothesis, but studies of behaviour change itself through time are rarer, have typically used shorter sequences generated in the laboratory, and generally lack critical assessment of their results. We thus performed an in-depth analysis of fractal time in binary dive sequences collected via bio-logging from free-ranging little penguins (Eudyptula minor) across full-day foraging trips (216 data points; 4 orders of temporal magnitude). Results from 4 fractal methods show that dive sequences are long-range dependent and persistent across ca. 2 orders of magnitude. This fractal structure correlated with trip length and time spent underwater, but individual traits had little effect. Fractal time is a fundamental characteristic of penguin foraging behaviour, and its investigation is thus a promising avenue for research on interactions between animals and their environments.

  12. Exploring the relationship between fractal features and bacterial essential genes

    International Nuclear Information System (INIS)

    Yu Yong-Ming; Yang Li-Cai; Zhao Lu-Lu; Liu Zhi-Ping; Zhou Qian

    2016-01-01

    Essential genes are indispensable for the survival of an organism in optimal conditions. Rapid and accurate identifications of new essential genes are of great theoretical and practical significance. Exploring features with predictive power is fundamental for this. Here, we calculate six fractal features from primary gene and protein sequences and then explore their relationship with gene essentiality by statistical analysis and machine learning-based methods. The models are applied to all the currently available identified genes in 27 bacteria from the database of essential genes (DEG). It is found that the fractal features of essential genes generally differ from those of non-essential genes. The fractal features are used to ascertain the parameters of two machine learning classifiers: Naïve Bayes and Random Forest. The area under the curve (AUC) of both classifiers show that each fractal feature is satisfactorily discriminative between essential genes and non-essential genes individually. And, although significant correlations exist among fractal features, gene essentiality can also be reliably predicted by various combinations of them. Thus, the fractal features analyzed in our study can be used not only to construct a good essentiality classifier alone, but also to be significant contributors for computational tools identifying essential genes. (paper)

  13. Heterogeneity of cerebral blood flow: a fractal approach

    International Nuclear Information System (INIS)

    Kuikka, J.T.; Hartikainen, P.

    2000-01-01

    Aim: We demonstrate the heterogeneity of regional cerebral blood flow using a fractal approach and single-photon emission computed tomography (SPECT). Method: Tc-99m-labelled ethylcysteine dimer was injected intravenously in 10 healthy controls and in 10 patients with dementia of frontal lobe type. The head was imaged with a gamma camera and transaxial, sagittal and coronal slices were reconstructed. Two hundred fifty-six symmetrical regions of interest (ROIs) were drawn onto each hemisphere of functioning brain matter. Fractal analysis was used to examine the spatial heterogeneity of blood flow as a function of the number of ROIs. Results: Relative dispersion (=coefficient of variation of the regional flows) was fractal-like in healthy subjects and could be characterized by a fractal dimension of 1.17±0.05 (mean±SD) for the left hemisphere and 1.15±0.04 for the right hemisphere, respectively. The fractal dimension of 1.0 reflects completely homogeneous blood flow and 1.5 indicates a random blood flow distribution. Patients with dementia of frontal lobe type had a significantly lower fractal dimension of 1.04±0.03 than in healthy controls. (orig.) [de

  14. Dimensionally constrained energy confinement analysis of W7-AS data

    International Nuclear Information System (INIS)

    Dose, V.; Preuss, R.; Linden, W. von der

    1998-01-01

    A recently assembled W7-AS stellarator database has been subject to dimensionally constrained confinement analysis. The analysis employs Bayesian inference. Dimensional information is taken from the Connor-Taylor (CT) similarity transformation theory, which provides six possible physical scenarios with associated dimensional conditions. Bayesian theory allows the calculations of the probability for each model and it is found that the present W7-AS data are most probably described by the collisionless high-β case. Probabilities for all models and the associated exponents of a power law scaling function are presented. (author)

  15. Generation of fractals from complex logistic map

    Energy Technology Data Exchange (ETDEWEB)

    Rani, Mamta [Galgotias College of Engg. and Technology, Greater Noida (India)], E-mail: mamtarsingh@rediffmail.com; Agarwal, Rashi [IEC College of Engg. and Tech., Greater Noida (India)], E-mail: agarwal_rashi@yahoo.com

    2009-10-15

    Remarkably benign looking logistic transformations x{sub n+1} = r x{sub n}(1 - x{sub n}) for choosing x{sub 0} between 0 and 1 and 0 < r {<=} 4 have found a celebrated place in chaos, fractals and discrete dynamics. The strong physical meaning of Mandelbrot and Julia sets is broadly accepted and nicely connected by Christian Beck [Beck C. Physical meaning for Mandelbrot and Julia sets. Physica D 1999;125(3-4):171-182. Zbl0988.37060] to the complex logistic maps, in the former case, and to the inverse complex logistic map, in the latter case. The purpose of this paper is to study the bounded behavior of the complex logistic map using superior iterates and generate fractals from the same. The analysis in this paper shows that many beautiful properties of the logistic map are extendable for a larger value of r.

  16. Static friction between rigid fractal surfaces.

    Science.gov (United States)

    Alonso-Marroquin, Fernando; Huang, Pengyu; Hanaor, Dorian A H; Flores-Johnson, E A; Proust, Gwénaëlle; Gan, Yixiang; Shen, Luming

    2015-09-01

    Using spheropolygon-based simulations and contact slope analysis, we investigate the effects of surface topography and atomic scale friction on the macroscopically observed friction between rigid blocks with fractal surface structures. From our mathematical derivation, the angle of macroscopic friction is the result of the sum of the angle of atomic friction and the slope angle between the contact surfaces. The latter is obtained from the determination of all possible contact slopes between the two surface profiles through an alternative signature function. Our theory is validated through numerical simulations of spheropolygons with fractal Koch surfaces and is applied to the description of frictional properties of Weierstrass-Mandelbrot surfaces. The agreement between simulations and theory suggests that for interpreting macroscopic frictional behavior, the descriptors of surface morphology should be defined from the signature function rather than from the slopes of the contacting surfaces.

  17. Generation of fractals from complex logistic map

    International Nuclear Information System (INIS)

    Rani, Mamta; Agarwal, Rashi

    2009-01-01

    Remarkably benign looking logistic transformations x n+1 = r x n (1 - x n ) for choosing x 0 between 0 and 1 and 0 < r ≤ 4 have found a celebrated place in chaos, fractals and discrete dynamics. The strong physical meaning of Mandelbrot and Julia sets is broadly accepted and nicely connected by Christian Beck [Beck C. Physical meaning for Mandelbrot and Julia sets. Physica D 1999;125(3-4):171-182. Zbl0988.37060] to the complex logistic maps, in the former case, and to the inverse complex logistic map, in the latter case. The purpose of this paper is to study the bounded behavior of the complex logistic map using superior iterates and generate fractals from the same. The analysis in this paper shows that many beautiful properties of the logistic map are extendable for a larger value of r.

  18. Three-dimensional analysis of craniofacial bones using three-dimensional computer tomography

    International Nuclear Information System (INIS)

    Ono, Ichiro; Ohura, Takehiko; Kimura, Chu

    1989-01-01

    Three-dimensional computer tomography (3DCT) was performed in patients with various diseases to visualize stereoscopically the deformity of the craniofacial bones. The data obtained were analyzed by the 3DCT analyzing system. A new coordinate system was established using the median sagittal plane of the face (a plane passing through sella, nasion and basion) on the three-dimensional image. Three-dimensional profilograms were prepared for detailed analysis of the deformation of craniofacial bones for cleft lip and palate, mandibular prognathia and hemifacial microsomia. For patients, asymmetry in the frontal view and twist-formed complicated deformities were observed, as well as deformity of profiles in the anteroposterior and up-and-down directions. A newly developed technique allows three-dimensional visualization of changes in craniofacial deformity. It would aid in determining surgical strategy, including crani-facial surgery and maxillo-facial surgery, and in evaluating surgical outcome. (N.K.)

  19. Three-dimensional analysis of craniofacial bones using three-dimensional computer tomography

    Energy Technology Data Exchange (ETDEWEB)

    Ono, Ichiro; Ohura, Takehiko; Kimura, Chu (Hokkaido Univ., Sapporo (Japan). School of Medicine) (and others)

    1989-08-01

    Three-dimensional computer tomography (3DCT) was performed in patients with various diseases to visualize stereoscopically the deformity of the craniofacial bones. The data obtained were analyzed by the 3DCT analyzing system. A new coordinate system was established using the median sagittal plane of the face (a plane passing through sella, nasion and basion) on the three-dimensional image. Three-dimensional profilograms were prepared for detailed analysis of the deformation of craniofacial bones for cleft lip and palate, mandibular prognathia and hemifacial microsomia. For patients, asymmetry in the frontal view and twist-formed complicated deformities were observed, as well as deformity of profiles in the anteroposterior and up-and-down directions. A newly developed technique allows three-dimensional visualization of changes in craniofacial deformity. It would aid in determining surgical strategy, including crani-facial surgery and maxillo-facial surgery, and in evaluating surgical outcome. (N.K.).

  20. The Fractal Patterns of Words in a Text: A Method for Automatic Keyword Extraction.

    Science.gov (United States)

    Najafi, Elham; Darooneh, Amir H

    2015-01-01

    A text can be considered as a one dimensional array of words. The locations of each word type in this array form a fractal pattern with certain fractal dimension. We observe that important words responsible for conveying the meaning of a text have dimensions considerably different from one, while the fractal dimensions of unimportant words are close to one. We introduce an index quantifying the importance of the words in a given text using their fractal dimensions and then ranking them according to their importance. This index measures the difference between the fractal pattern of a word in the original text relative to a shuffled version. Because the shuffled text is meaningless (i.e., words have no importance), the difference between the original and shuffled text can be used to ascertain degree of fractality. The degree of fractality may be used for automatic keyword detection. Words with the degree of fractality higher than a threshold value are assumed to be the retrieved keywords of the text. We measure the efficiency of our method for keywords extraction, making a comparison between our proposed method and two other well-known methods of automatic keyword extraction.

  1. The Fractal Patterns of Words in a Text: A Method for Automatic Keyword Extraction

    Science.gov (United States)

    Najafi, Elham; Darooneh, Amir H.

    2015-01-01

    A text can be considered as a one dimensional array of words. The locations of each word type in this array form a fractal pattern with certain fractal dimension. We observe that important words responsible for conveying the meaning of a text have dimensions considerably different from one, while the fractal dimensions of unimportant words are close to one. We introduce an index quantifying the importance of the words in a given text using their fractal dimensions and then ranking them according to their importance. This index measures the difference between the fractal pattern of a word in the original text relative to a shuffled version. Because the shuffled text is meaningless (i.e., words have no importance), the difference between the original and shuffled text can be used to ascertain degree of fractality. The degree of fractality may be used for automatic keyword detection. Words with the degree of fractality higher than a threshold value are assumed to be the retrieved keywords of the text. We measure the efficiency of our method for keywords extraction, making a comparison between our proposed method and two other well-known methods of automatic keyword extraction. PMID:26091207

  2. Map of fluid flow in fractal porous medium into fractal continuum flow.

    Science.gov (United States)

    Balankin, Alexander S; Elizarraraz, Benjamin Espinoza

    2012-05-01

    This paper is devoted to fractal continuum hydrodynamics and its application to model fluid flows in fractally permeable reservoirs. Hydrodynamics of fractal continuum flow is developed on the basis of a self-consistent model of fractal continuum employing vector local fractional differential operators allied with the Hausdorff derivative. The generalized forms of Green-Gauss and Kelvin-Stokes theorems for fractional calculus are proved. The Hausdorff material derivative is defined and the form of Reynolds transport theorem for fractal continuum flow is obtained. The fundamental conservation laws for a fractal continuum flow are established. The Stokes law and the analog of Darcy's law for fractal continuum flow are suggested. The pressure-transient equation accounting the fractal metric of fractal continuum flow is derived. The generalization of the pressure-transient equation accounting the fractal topology of fractal continuum flow is proposed. The mapping of fluid flow in a fractally permeable medium into a fractal continuum flow is discussed. It is stated that the spectral dimension of the fractal continuum flow d(s) is equal to its mass fractal dimension D, even when the spectral dimension of the fractally porous or fissured medium is less than D. A comparison of the fractal continuum flow approach with other models of fluid flow in fractally permeable media and the experimental field data for reservoir tests are provided.

  3. Fractal geometry and computer graphics

    CERN Document Server

    Sakas, Georgios; Peitgen, Heinz-Otto; Englert, Gabriele

    1992-01-01

    Fractal geometry has become popular in the last 15 years, its applications can be found in technology, science, or even arts. Fractal methods and formalism are seen today as a general, abstract, but nevertheless practical instrument for the description of nature in a wide sense. But it was Computer Graphics which made possible the increasing popularity of fractals several years ago, and long after their mathematical formulation. The two disciplines are tightly linked. The book contains the scientificcontributions presented in an international workshop in the "Computer Graphics Center" in Darmstadt, Germany. The target of the workshop was to present the wide spectrum of interrelationships and interactions between Fractal Geometry and Computer Graphics. The topics vary from fundamentals and new theoretical results to various applications and systems development. All contributions are original, unpublished papers.The presentations have been discussed in two working groups; the discussion results, together with a...

  4. Thermal transport in fractal systems

    DEFF Research Database (Denmark)

    Kjems, Jørgen

    1992-01-01

    Recent experiments on the thermal transport in systems with partial fractal geometry, silica aerogels, are reviewed. The individual contributions from phonons, fractons and particle modes, respectively, have been identified and can be described by quantitative models consistent with heat capacity...

  5. A Large Dimensional Analysis of Regularized Discriminant Analysis Classifiers

    KAUST Repository

    Elkhalil, Khalil

    2017-11-01

    This article carries out a large dimensional analysis of standard regularized discriminant analysis classifiers designed on the assumption that data arise from a Gaussian mixture model with different means and covariances. The analysis relies on fundamental results from random matrix theory (RMT) when both the number of features and the cardinality of the training data within each class grow large at the same pace. Under mild assumptions, we show that the asymptotic classification error approaches a deterministic quantity that depends only on the means and covariances associated with each class as well as the problem dimensions. Such a result permits a better understanding of the performance of regularized discriminant analsysis, in practical large but finite dimensions, and can be used to determine and pre-estimate the optimal regularization parameter that minimizes the misclassification error probability. Despite being theoretically valid only for Gaussian data, our findings are shown to yield a high accuracy in predicting the performances achieved with real data sets drawn from the popular USPS data base, thereby making an interesting connection between theory and practice.

  6. Critical exponents in the transition to chaos in one-dimensional

    Indian Academy of Sciences (India)

    We report the numerically evaluated critical exponents associated with the scaling of generalized fractal dimensions during the transition from order to chaos. The analysis is carried out in detail in the context of unimodal and bimodal maps representing typical one-dimensional discrete dynamical systems. The behavior of ...

  7. Forecasting of magnitude and duration of currency crises based on the analysis of distortions of fractal scaling in exchange rate fluctuations

    Science.gov (United States)

    Uritskaya, Olga Y.

    2005-05-01

    Results of fractal stability analysis of daily exchange rate fluctuations of more than 30 floating currencies for a 10-year period are presented. It is shown for the first time that small- and large-scale dynamical instabilities of national monetary systems correlate with deviations of the detrended fluctuation analysis (DFA) exponent from the value 1.5 predicted by the efficient market hypothesis. The observed dependence is used for classification of long-term stability of floating exchange rates as well as for revealing various forms of distortion of stable currency dynamics prior to large-scale crises. A normal range of DFA exponents consistent with crisis-free long-term exchange rate fluctuations is determined, and several typical scenarios of unstable currency dynamics with DFA exponents fluctuating beyond the normal range are identified. It is shown that monetary crashes are usually preceded by prolonged periods of abnormal (decreased or increased) DFA exponent, with the after-crash exponent tending to the value 1.5 indicating a more reliable exchange rate dynamics. Statistically significant regression relations (R=0.99, pcurrency crises and the degree of distortion of monofractal patterns of exchange rate dynamics are found. It is demonstrated that the parameters of these relations characterizing small- and large-scale crises are nearly equal, which implies a common instability mechanism underlying these events. The obtained dependences have been used as a basic ingredient of a forecasting technique which provided correct in-sample predictions of monetary crisis magnitude and duration over various time scales. The developed technique can be recommended for real-time monitoring of dynamical stability of floating exchange rate systems and creating advanced early-warning-system models for currency crisis prevention.

  8. Password Authentication Based on Fractal Coding Scheme

    Directory of Open Access Journals (Sweden)

    Nadia M. G. Al-Saidi

    2012-01-01

    Full Text Available Password authentication is a mechanism used to authenticate user identity over insecure communication channel. In this paper, a new method to improve the security of password authentication is proposed. It is based on the compression capability of the fractal image coding to provide an authorized user a secure access to registration and login process. In the proposed scheme, a hashed password string is generated and encrypted to be captured together with the user identity using text to image mechanisms. The advantage of fractal image coding is to be used to securely send the compressed image data through a nonsecured communication channel to the server. The verification of client information with the database system is achieved in the server to authenticate the legal user. The encrypted hashed password in the decoded fractal image is recognized using optical character recognition. The authentication process is performed after a successful verification of the client identity by comparing the decrypted hashed password with those which was stored in the database system. The system is analyzed and discussed from the attacker’s viewpoint. A security comparison is performed to show that the proposed scheme provides an essential security requirement, while their efficiency makes it easier to be applied alone or in hybrid with other security methods. Computer simulation and statistical analysis are presented.

  9. Fractal characteristics of fracture morphology of steels irradiated with high-energy ions

    Energy Technology Data Exchange (ETDEWEB)

    Xian, Yongqiang; Liu, Juan [Institute of Modern Physics, Chinese Academy of Science, Lanzhou 730000 (China); University of Chinese Academy of Science, Beijing 100049 (China); Zhang, Chonghong, E-mail: c.h.zhang@impcas.ac.cn [Institute of Modern Physics, Chinese Academy of Science, Lanzhou 730000 (China); Chen, Jiachao [Paul Scherrer Institute, Villigen PSI (Switzerland); Yang, Yitao; Zhang, Liqing; Song, Yin [Institute of Modern Physics, Chinese Academy of Science, Lanzhou 730000 (China)

    2015-06-15

    Highlights: • Fractal dimensions of fracture surfaces of steels before and after irradiation were calculated. • Fractal dimension can effectively describe change of fracture surfaces induced by irradiation. • Correlation of change of fractal dimension with embrittlement of irradiated steels is discussed. - Abstract: A fractal analysis of fracture surfaces of steels (a ferritic/martensitic steel and an oxide-dispersion-strengthened ferritic steel) before and after the irradiation with high-energy ions is presented. Fracture surfaces were acquired from a tensile test and a small-ball punch test (SP). Digital images of the fracture surfaces obtained from scanning electron microscopy (SEM) were used to calculate the fractal dimension (FD) by using the pixel covering method. Boundary of binary image and fractal dimension were determined with a MATLAB program. The results indicate that fractal dimension can be an effective parameter to describe the characteristics of fracture surfaces before and after irradiation. The rougher the fracture surface, the larger the fractal dimension. Correlation of the change of fractal dimension with the embrittlement of the irradiated steels is discussed.

  10. High-dimensional data in economics and their (robust) analysis

    Czech Academy of Sciences Publication Activity Database

    Kalina, Jan

    2017-01-01

    Roč. 12, č. 1 (2017), s. 171-183 ISSN 1452-4864 R&D Projects: GA ČR GA17-07384S Institutional support: RVO:67985556 Keywords : econometrics * high-dimensional data * dimensionality reduction * linear regression * classification analysis * robustness Subject RIV: BA - General Mathematics OBOR OECD: Business and management http://library.utia.cas.cz/separaty/2017/SI/kalina-0474076.pdf

  11. High-dimensional Data in Economics and their (Robust) Analysis

    Czech Academy of Sciences Publication Activity Database

    Kalina, Jan

    2017-01-01

    Roč. 12, č. 1 (2017), s. 171-183 ISSN 1452-4864 R&D Projects: GA ČR GA17-07384S Grant - others:GA ČR(CZ) GA13-01930S Institutional support: RVO:67985807 Keywords : econometrics * high-dimensional data * dimensionality reduction * linear regression * classification analysis * robustness Subject RIV: BB - Applied Statistics, Operational Research OBOR OECD: Statistics and probability

  12. Fractal properties and simulation of micro-seismicity for seismic hazard analysis: a comparison of North Anatolian and San Andreas Fault Zones

    Directory of Open Access Journals (Sweden)

    Naside Ozer

    2012-02-01

    Full Text Available We analyzed statistical properties of earthquakes in western Anatolia as well as the North Anatolian Fault Zone (NAFZ in terms of spatio-temporal variations of fractal dimensions, p- and b-values. During statistically homogeneous periods characterized by closer fractal dimension values, we propose that occurrence of relatively larger shocks (M >= 5.0 is unlikely. Decreases in seismic activity in such intervals result in spatial b-value distributions that are primarily stable. Fractal dimensions decrease with time in proportion to increasing seismicity. Conversely, no spatiotemporal patterns were observed for p-value changes. In order to evaluate failure probabilities and simulate earthquake occurrence in the western NAFZ, we applied a modified version of the renormalization group method. Assuming an increase in small earthquakes is indicative of larger shocks, we apply the mentioned model to micro-seismic (M<= 3.0 activity, and test our results using San Andreas Fault Zone (SAFZ data. We propose that fractal dimension is a direct indicator of material heterogeneity and strength. Results from a model suggest simulated and observed earthquake occurrences are coherent, and may be used for seismic hazard estimation on creeping strike-slip fault zones.

  13. Structures, microfabrics, fractal analysis and temperature-pressure estimation of the Mesozoic Xingcheng-Taili ductile shear zone in the North China craton

    Science.gov (United States)

    Liang, Chenyue; Neubauer, Franz; Liu, Yongjiang; Jin, Wei; Zeng, Zuoxun; Bernroider, Manfred; Li, Weimin; Wen, Quanbo; Han, Guoqing; Zhao, Yingli

    2014-05-01

    orientation of quartz determined by electron back scatter diffraction (EBSD) suggest sinistral strike-slip displacement within a temperature at about 400 to 500° C. Quartz mainly shows low-temperature fabrics with dominant {0001}-slip system. As the deformed rocks show obvious deformation overprint, we have estimated flow stresses from dynamically recrystallized grain sizes of quartz separately. But coincident fractal analysis showed that the boundaries of recrystallized grains had statistically self similarities with the numbers of fractal dimension from 1.153 to 1.196 with the range of deformation temperatures from 500 to 600° C, which is corresponding to upper greenschist to lower amphibolite facies conditions. Together with published flow laws to estimated deformation rates between the region of 10-11 - 10-13 S-1depending on the temperature 500 ° C, and the paleo-stress was calculated with grain size of recrystallized quartz to be at 5.0 to 32.3 MPa. Even though the deformation history and kinematics are different, progressive microstructures and texture analysis indicate an overprint by the low-temperature deformation (D3). Typical regional-dynamic metamorphic conditions ere deduced by mineral pair hornblende-plagioclase and phengite barometry identified within the ductile shear zone. The hornblende-plagioclase pair of porphyritic granitic gneiss gives metamorphic conditions of T =450-500 ° C and p=0.39 GPa, which indicate a metamorphic grade of lower-amphibolite facies conditions and a depth of around 13 km estimated following a normal lithostatic pressure. All of the structural characteristics indicate that the Xingcheng-Taili ductile shear zone represents a mainly ENE-striking sinistral ductile strike-slip zone, which formed after intrusion of the Upper Jurassic biotite adamellite and transformed and superimposed previous deformation structures. This deformation event might have occurred in Early Cretaceous times and was related to the lithospheric thinning and

  14. A fractal nature for polymerized laminin.

    Directory of Open Access Journals (Sweden)

    Camila Hochman-Mendez

    Full Text Available Polylaminin (polyLM is a non-covalent acid-induced nano- and micro-structured polymer of the protein laminin displaying distinguished biological properties. Polylaminin stimulates neuritogenesis beyond the levels achieved by ordinary laminin and has been shown to promote axonal regeneration in animal models of spinal cord injury. Here we used confocal fluorescence microscopy (CFM, scanning electron microscopy (SEM and atomic force microscopy (AFM to characterize its three-dimensional structure. Renderization of confocal optical slices of immunostained polyLM revealed the aspect of a loose flocculated meshwork, which was homogeneously stained by the antibody. On the other hand, an ordinary matrix obtained upon adsorption of laminin in neutral pH (LM was constituted of bulky protein aggregates whose interior was not accessible to the same anti-laminin antibody. SEM and AFM analyses revealed that the seed unit of polyLM was a flat polygon formed in solution whereas the seed structure of LM was highly heterogeneous, intercalating rod-like, spherical and thin spread lamellar deposits. As polyLM was visualized at progressively increasing magnifications, we observed that the morphology of the polymer was alike independently of the magnification used for the observation. A search for the Hausdorff dimension in images of the two matrices showed that polyLM, but not LM, presented fractal dimensions of 1.55, 1.62 and 1.70 after 1, 8 and 12 hours of adsorption, respectively. Data in the present work suggest that the intrinsic fractal nature of polymerized laminin can be the structural basis for the fractal-like organization of basement membranes in the neurogenic niches of the central nervous system.

  15. A fractal nature for polymerized laminin.

    Science.gov (United States)

    Hochman-Mendez, Camila; Cantini, Marco; Moratal, David; Salmeron-Sanchez, Manuel; Coelho-Sampaio, Tatiana

    2014-01-01

    Polylaminin (polyLM) is a non-covalent acid-induced nano- and micro-structured polymer of the protein laminin displaying distinguished biological properties. Polylaminin stimulates neuritogenesis beyond the levels achieved by ordinary laminin and has been shown to promote axonal regeneration in animal models of spinal cord injury. Here we used confocal fluorescence microscopy (CFM), scanning electron microscopy (SEM) and atomic force microscopy (AFM) to characterize its three-dimensional structure. Renderization of confocal optical slices of immunostained polyLM revealed the aspect of a loose flocculated meshwork, which was homogeneously stained by the antibody. On the other hand, an ordinary matrix obtained upon adsorption of laminin in neutral pH (LM) was constituted of bulky protein aggregates whose interior was not accessible to the same anti-laminin antibody. SEM and AFM analyses revealed that the seed unit of polyLM was a flat polygon formed in solution whereas the seed structure of LM was highly heterogeneous, intercalating rod-like, spherical and thin spread lamellar deposits. As polyLM was visualized at progressively increasing magnifications, we observed that the morphology of the polymer was alike independently of the magnification used for the observation. A search for the Hausdorff dimension in images of the two matrices showed that polyLM, but not LM, presented fractal dimensions of 1.55, 1.62 and 1.70 after 1, 8 and 12 hours of adsorption, respectively. Data in the present work suggest that the intrinsic fractal nature of polymerized laminin can be the structural basis for the fractal-like organization of basement membranes in the neurogenic niches of the central nervous system.

  16. Balance failure in single limb stance due to ankle sprain injury: an analysis of center of pressure using the fractal dimension method.

    Science.gov (United States)

    Doherty, Cailbhe; Bleakley, Chris; Hertel, Jay; Caulfield, Brian; Ryan, John; Delahunt, Eamonn

    2014-01-01

    Instrumented postural control analysis plays an important role in evaluating the effects of injury on dynamic stability during balance tasks, and is often conveyed with measures based on the displacement of the center-of-pressure (COP) assessed with a force platform. However, the desired outcome of the task is frequently characterized by a loss of dynamic stability, secondary to injury. Typically, these failed trials are discarded during research investigations, with the potential loss of informative data pertaining to task success. The novelty of the present study is that COP characteristics of failed trials in injured participants are compared to successful trial data in another injured group, and a control group of participants, using the fractal dimension (FD) method. Three groups of participants attempted a task of eyes closed single limb stance (SLS): twenty-nine participants with acute ankle sprain successfully completed the task on their non-injured limb (successful injury group); twenty eight participants with acute ankle sprain failed their attempt on their injured limb (failed injury group); sixteen participants with no current injury successfully completed the task on their non-dominant limb (successful non-injured group). Between trial analyses of these groups revealed significant differences in COP trajectory FD (successful injury group: 1.58±0.06; failed injury group: 1.54±0.07; successful non-injured group: 1.64±0.06) with a large effect size (0.27). These findings demonstrate that successful eyes-closed SLS is characterized by a larger FD of the COP path when compared to failed trials, and that injury causes a decrease in COP path FD. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Two-dimensional gel electrophoresis analysis of different parts of ...

    African Journals Online (AJOL)

    Two-dimensional gel electrophoresis analysis of different parts of Panax quinquefolius L. root. ... From these results it was concluded that proteomic analysis method was an effective way to identify the different parts of quinquefolius L. root. These findings may contribute to further understanding of the physiological ...

  18. Three-dimensional model analysis and processing

    CERN Document Server

    Yu, Faxin; Luo, Hao; Wang, Pinghui

    2011-01-01

    This book focuses on five hot research directions in 3D model analysis and processing in computer science:  compression, feature extraction, content-based retrieval, irreversible watermarking and reversible watermarking.

  19. Analysis and validation of carbohydrate three-dimensional structures

    International Nuclear Information System (INIS)

    Lütteke, Thomas

    2009-01-01

    The article summarizes the information that is gained from and the errors that are found in carbohydrate structures in the Protein Data Bank. Validation tools that can locate these errors are described. Knowledge of the three-dimensional structures of the carbohydrate molecules is indispensable for a full understanding of the molecular processes in which carbohydrates are involved, such as protein glycosylation or protein–carbohydrate interactions. The Protein Data Bank (PDB) is a valuable resource for three-dimensional structural information on glycoproteins and protein–carbohydrate complexes. Unfortunately, many carbohydrate moieties in the PDB contain inconsistencies or errors. This article gives an overview of the information that can be obtained from individual PDB entries and from statistical analyses of sets of three-dimensional structures, of typical problems that arise during the analysis of carbohydrate three-dimensional structures and of the validation tools that are currently available to scientists to evaluate the quality of these structures

  20. Methodology for dimensional variation analysis of ITER integrated systems

    International Nuclear Information System (INIS)

    Fuentes, F. Javier; Trouvé, Vincent; Cordier, Jean-Jacques; Reich, Jens

    2016-01-01

    Highlights: • Tokamak dimensional management methodology, based on 3D variation analysis, is presented. • Dimensional Variation Model implementation workflow is described. • Methodology phases are described in detail. The application of this methodology to the tolerance analysis of ITER Vacuum Vessel is presented. • Dimensional studies are a valuable tool for the assessment of Tokamak PCR (Project Change Requests), DR (Deviation Requests) and NCR (Non-Conformance Reports). - Abstract: The ITER machine consists of a large number of complex systems highly integrated, with critical functional requirements and reduced design clearances to minimize the impact in cost and performances. Tolerances and assembly accuracies in critical areas could have a serious impact in the final performances, compromising the machine assembly and plasma operation. The management of tolerances allocated to part manufacture and assembly processes, as well as the control of potential deviations and early mitigation of non-compliances with the technical requirements, is a critical activity on the project life cycle. A 3D tolerance simulation analysis of ITER Tokamak machine has been developed based on 3DCS dedicated software. This integrated dimensional variation model is representative of Tokamak manufacturing functional tolerances and assembly processes, predicting accurate values for the amount of variation on critical areas. This paper describes the detailed methodology to implement and update the Tokamak Dimensional Variation Model. The model is managed at system level. The methodology phases are illustrated by its application to the Vacuum Vessel (VV), considering the status of maturity of VV dimensional variation model. The following topics are described in this paper: • Model description and constraints. • Model implementation workflow. • Management of input and output data. • Statistical analysis and risk assessment. The management of the integration studies based on

  1. Methodology for dimensional variation analysis of ITER integrated systems

    Energy Technology Data Exchange (ETDEWEB)

    Fuentes, F. Javier, E-mail: FranciscoJavier.Fuentes@iter.org [ITER Organization, Route de Vinon-sur-Verdon—CS 90046, 13067 St Paul-lez-Durance (France); Trouvé, Vincent [Assystem Engineering & Operation Services, rue J-M Jacquard CS 60117, 84120 Pertuis (France); Cordier, Jean-Jacques; Reich, Jens [ITER Organization, Route de Vinon-sur-Verdon—CS 90046, 13067 St Paul-lez-Durance (France)

    2016-11-01

    Highlights: • Tokamak dimensional management methodology, based on 3D variation analysis, is presented. • Dimensional Variation Model implementation workflow is described. • Methodology phases are described in detail. The application of this methodology to the tolerance analysis of ITER Vacuum Vessel is presented. • Dimensional studies are a valuable tool for the assessment of Tokamak PCR (Project Change Requests), DR (Deviation Requests) and NCR (Non-Conformance Reports). - Abstract: The ITER machine consists of a large number of complex systems highly integrated, with critical functional requirements and reduced design clearances to minimize the impact in cost and performances. Tolerances and assembly accuracies in critical areas could have a serious impact in the final performances, compromising the machine assembly and plasma operation. The management of tolerances allocated to part manufacture and assembly processes, as well as the control of potential deviations and early mitigation of non-compliances with the technical requirements, is a critical activity on the project life cycle. A 3D tolerance simulation analysis of ITER Tokamak machine has been developed based on 3DCS dedicated software. This integrated dimensional variation model is representative of Tokamak manufacturing functional tolerances and assembly processes, predicting accurate values for the amount of variation on critical areas. This paper describes the detailed methodology to implement and update the Tokamak Dimensional Variation Model. The model is managed at system level. The methodology phases are illustrated by its application to the Vacuum Vessel (VV), considering the status of maturity of VV dimensional variation model. The following topics are described in this paper: • Model description and constraints. • Model implementation workflow. • Management of input and output data. • Statistical analysis and risk assessment. The management of the integration studies based on

  2. Analysis of chaos in high-dimensional wind power system.

    Science.gov (United States)

    Wang, Cong; Zhang, Hongli; Fan, Wenhui; Ma, Ping

    2018-01-01

    A comprehensive analysis on the chaos of a high-dimensional wind power system is performed in this study. A high-dimensional wind power system is more complex than most power systems. An 11-dimensional wind power system proposed by Huang, which has not been analyzed in previous studies, is investigated. When the systems are affected by external disturbances including single parameter and periodic disturbance, or its parameters changed, chaotic dynamics of the wind power system is analyzed and chaotic parameters ranges are obtained. Chaos existence is confirmed by calculation and analysis of all state variables' Lyapunov exponents and the state variable sequence diagram. Theoretical analysis and numerical simulations show that the wind power system chaos will occur when parameter variations and external disturbances change to a certain degree.

  3. Regularized Discriminant Analysis: A Large Dimensional Study

    KAUST Repository

    Yang, Xiaoke

    2018-04-28

    In this thesis, we focus on studying the performance of general regularized discriminant analysis (RDA) classifiers. The data used for analysis is assumed to follow Gaussian mixture model with different means and covariances. RDA offers a rich class of regularization options, covering as special cases the regularized linear discriminant analysis (RLDA) and the regularized quadratic discriminant analysis (RQDA) classi ers. We analyze RDA under the double asymptotic regime where the data dimension and the training size both increase in a proportional way. This double asymptotic regime allows for application of fundamental results from random matrix theory. Under the double asymptotic regime and some mild assumptions, we show that the asymptotic classification error converges to a deterministic quantity that only depends on the data statistical parameters and dimensions. This result not only implicates some mathematical relations between the misclassification error and the class statistics, but also can be leveraged to select the optimal parameters that minimize the classification error, thus yielding the optimal classifier. Validation results on the synthetic data show a good accuracy of our theoretical findings. We also construct a general consistent estimator to approximate the true classification error in consideration of the unknown previous statistics. We benchmark the performance of our proposed consistent estimator against classical estimator on synthetic data. The observations demonstrate that the general estimator outperforms others in terms of mean squared error (MSE).

  4. Fractal profit landscape of the stock market.

    Science.gov (United States)

    Grönlund, Andreas; Yi, Il Gu; Kim, Beom Jun

    2012-01-01

    We investigate the structure of the profit landscape obtained from the most basic, fluctuation based, trading strategy applied for the daily stock price data. The strategy is parameterized by only two variables, p and q Stocks are sold and bought if the log return is bigger than p and less than -q, respectively. Repetition of this simple strategy for a long time gives the profit defined in the underlying two-dimensional parameter space of p and q. It is revealed that the local maxima in the profit landscape are spread in the form of a fractal structure. The fractal structure implies that successful strategies are not localized to any region of the profit landscape and are neither spaced evenly throughout the profit landscape, which makes the optimization notoriously hard and hypersensitive for partial or limited information. The concrete implication of this property is demonstrated by showing that optimization of one stock for future values or other stocks renders worse profit than a strategy that ignores fluctuations, i.e., a long-term buy-and-hold strategy.

  5. Design of LTCC Based Fractal Antenna

    KAUST Repository

    AdbulGhaffar, Farhan

    2010-01-01

    The thesis presents a Sierpinski Carpet fractal antenna array designed at 24 GHz for automotive radar applications. Miniaturized, high performance and low cost antennas are required for this application. To meet these specifications a fractal array

  6. Fractal Structures For Mems Variable Capacitors

    KAUST Repository

    Elshurafa, Amro M.; Radwan, Ahmed Gomaa Ahmed; Emira, Ahmed A.; Salama, Khaled N.

    2014-01-01

    In accordance with the present disclosure, one embodiment of a fractal variable capacitor comprises a capacitor body in a microelectromechanical system (MEMS) structure, wherein the capacitor body has an upper first metal plate with a fractal shape

  7. Dimensional analysis examples of the use of symmetry

    CERN Document Server

    Hornung, Hans G

    2006-01-01

    Derived from a course in fluid mechanics, this text for advanced undergraduates and beginning graduate students employs symmetry arguments to demonstrate the principles of dimensional analysis. The examples provided illustrate the effectiveness of symmetry arguments in obtaining the mathematical form of the functions yielded by dimensional analysis. Students will find these methods applicable to a wide field of interests.After discussing several examples of method, the text examines pipe flow, material properties, gasdynamical examples, body in nonuniform flow, and turbulent flow. Additional t

  8. Multi-Dimensional Customer Data Analysis in Online Auctions

    Institute of Scientific and Technical Information of China (English)

    LAO Guoling; XIONG Kuan; QIN Zheng

    2007-01-01

    In this paper, we designed a customer-centered data warehouse system with five subjects: listing, bidding, transaction,accounts, and customer contact based on the business process of online auction companies. For each subject, we analyzed its fact indexes and dimensions. Then take transaction subject as example,analyzed the data warehouse model in detail, and got the multi-dimensional analysis structure of transaction subject. At last, using data mining to do customer segmentation, we divided customers into four types: impulse customer, prudent customer, potential customer, and ordinary customer. By the result of multi-dimensional customer data analysis, online auction companies can do more target marketing and increase customer loyalty.

  9. Code Coupling for Multi-Dimensional Core Transient Analysis

    International Nuclear Information System (INIS)

    Park, Jin-Woo; Park, Guen-Tae; Park, Min-Ho; Ryu, Seok-Hee; Um, Kil-Sup; Lee Jae-Il

    2015-01-01

    After the CEA ejection, the nuclear power of the reactor dramatically increases in an exponential behavior until the Doppler effect becomes important and turns the reactivity balance and power down to lower levels. Although this happens in a very short period of time, only few seconds, the energy generated can be very significant and cause fuel failures. The current safety analysis methodology which is based on overly conservative assumptions with the point kinetics model results in quite adverse consequences. Thus, KEPCO Nuclear Fuel(KNF) is developing the multi-dimensional safety analysis methodology to mitigate the consequences of the single CEA ejection accident. For this purpose, three-dimensional core neutron kinetics code ASTRA, sub-channel analysis code THALES, and fuel performance analysis code FROST, which have transient calculation performance, were coupled using message passing interface (MPI). This paper presents the methodology used for code coupling and the preliminary simulation results with the coupled code system (CHASER). Multi-dimensional core transient analysis code system, CHASER, has been developed and it was applied to simulate a single CEA ejection accident. CHASER gave a good prediction of multi-dimensional core transient behaviors during transient. In the near future, the multi-dimension CEA ejection analysis methodology using CHASER is planning to be developed. CHASER is expected to be a useful tool to gain safety margin for reactivity initiated accidents (RIAs), such as a single CEA ejection accident

  10. Code Coupling for Multi-Dimensional Core Transient Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jin-Woo; Park, Guen-Tae; Park, Min-Ho; Ryu, Seok-Hee; Um, Kil-Sup; Lee Jae-Il [KEPCO NF, Daejeon (Korea, Republic of)

    2015-05-15

    After the CEA ejection, the nuclear power of the reactor dramatically increases in an exponential behavior until the Doppler effect becomes important and turns the reactivity balance and power down to lower levels. Although this happens in a very short period of time, only few seconds, the energy generated can be very significant and cause fuel failures. The current safety analysis methodology which is based on overly conservative assumptions with the point kinetics model results in quite adverse consequences. Thus, KEPCO Nuclear Fuel(KNF) is developing the multi-dimensional safety analysis methodology to mitigate the consequences of the single CEA ejection accident. For this purpose, three-dimensional core neutron kinetics code ASTRA, sub-channel analysis code THALES, and fuel performance analysis code FROST, which have transient calculation performance, were coupled using message passing interface (MPI). This paper presents the methodology used for code coupling and the preliminary simulation results with the coupled code system (CHASER). Multi-dimensional core transient analysis code system, CHASER, has been developed and it was applied to simulate a single CEA ejection accident. CHASER gave a good prediction of multi-dimensional core transient behaviors during transient. In the near future, the multi-dimension CEA ejection analysis methodology using CHASER is planning to be developed. CHASER is expected to be a useful tool to gain safety margin for reactivity initiated accidents (RIAs), such as a single CEA ejection accident.

  11. Wavelet analysis in two-dimensional tomography

    Science.gov (United States)

    Burkovets, Dimitry N.

    2002-02-01

    The diagnostic possibilities of wavelet-analysis of coherent images of connective tissue in its pathological changes diagnostics. The effectiveness of polarization selection in obtaining wavelet-coefficients' images is also shown. The wavelet structures, characterizing the process of skin psoriasis, bone-tissue osteoporosis have been analyzed. The histological sections of physiological normal and pathologically changed samples of connective tissue of human skin and spongy bone tissue have been analyzed.

  12. An integral time series on simulated labeling using fractal structure

    International Nuclear Information System (INIS)

    Djainal, D.D.

    1997-01-01

    This research deals with the detection of time series of vertical two-phase flow, in attempt to developed an objective indicator of time series flow patterns. One of new method is fractal analysis which can complement conventional methods in the description of highly irregular fluctuations. in the present work, fractal analysis applied to analyze simulated boiling coolant signal. this simulated signals built by sum random elements in small subchannels of the coolant channel. Two modes are defined and both modes are characterized by their void fractions. in the case of unimodal-PDF signals, the difference between these modes is relative small. on other hand, bimodal-PDF signals have relative large range. in this research, fractal dimension can indicate the characters of that signals simulation

  13. Effects of fractal pore on coal devolatilization

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yongli; He, Rong [Tsinghua Univ., Beijing (China). Dept. of Thermal Engineering; Wang, Xiaoliang; Cao, Liyong [Dongfang Electric Corporation, Chengdu (China). Centre New Energy Inst.

    2013-07-01

    Coal devolatilization is numerically investigated by drop tube furnace and a coal pyrolysis model (Fragmentation and Diffusion Model). The fractal characteristics of coal and char pores are investigated. Gas diffusion and secondary reactions in fractal pores are considered in the numerical simulations of coal devolatilization, and the results show that the fractal dimension is increased firstly and then decreased later with increased coal conversions during devolatilization. The mechanisms of effects of fractal pores on coal devolatilization are analyzed.

  14. Fractal Structures For Fixed Mems Capacitors

    KAUST Repository

    Elshurafa, Amro M.

    2014-08-28

    An embodiment of a fractal fixed capacitor comprises a capacitor body in a microelectromechanical system (MEMS) structure. The capacitor body has a first plate with a fractal shape separated by a horizontal distance from a second plate with a fractal shape. The first plate and the second plate are within the same plane. Such a fractal fixed capacitor further comprises a substrate above which the capacitor body is positioned.

  15. Enhanced Graphene Photodetector with Fractal Metasurface

    DEFF Research Database (Denmark)

    Fan, Jieran; Wang, Di; DeVault, Clayton

    2016-01-01

    We designed and fabricated a broadband, polarization-independent photodetector by integrating graphene with a fractal Cayley tree metasurface. Our measurements show an almost uniform, tenfold enhancement in photocurrent generation due to the fractal metasurface structure.......We designed and fabricated a broadband, polarization-independent photodetector by integrating graphene with a fractal Cayley tree metasurface. Our measurements show an almost uniform, tenfold enhancement in photocurrent generation due to the fractal metasurface structure....

  16. Fractal Structures For Fixed Mems Capacitors

    KAUST Repository

    Elshurafa, Amro M.; Radwan, Ahmed Gomaa Ahmed; Emira, Ahmed A.; Salama, Khaled N.

    2014-01-01

    An embodiment of a fractal fixed capacitor comprises a capacitor body in a microelectromechanical system (MEMS) structure. The capacitor body has a first plate with a fractal shape separated by a horizontal distance from a second plate with a fractal shape. The first plate and the second plate are within the same plane. Such a fractal fixed capacitor further comprises a substrate above which the capacitor body is positioned.

  17. Crossover from Nonequilibrium Fractal Growth to Equilibrium Compact Growth

    DEFF Research Database (Denmark)

    Sørensen, Erik Schwartz; Fogedby, Hans C.; Mouritsen, Ole G.

    1988-01-01

    Solidification controlled by vacancy diffusion is studied by Monte Carlo simulations of a two-dimensional Ising model defined by a Hamiltonian which models a thermally driven fluid-solid phase transition. The nonequilibrium morphology of the growing solid is studied as a function of time as the s...... as the system relaxes into equilibrium described by a temperature. At low temperatures the model exhibits fractal growth at early times and crossover to compact solidification as equilibrium is approached....

  18. Fractal Structures For Mems Variable Capacitors

    KAUST Repository

    Elshurafa, Amro M.

    2014-08-28

    In accordance with the present disclosure, one embodiment of a fractal variable capacitor comprises a capacitor body in a microelectromechanical system (MEMS) structure, wherein the capacitor body has an upper first metal plate with a fractal shape separated by a vertical distance from a lower first metal plate with a complementary fractal shape; and a substrate above which the capacitor body is suspended.

  19. An enhanced fractal image denoising algorithm

    International Nuclear Information System (INIS)

    Lu Jian; Ye Zhongxing; Zou Yuru; Ye Ruisong

    2008-01-01

    In recent years, there has been a significant development in image denoising using fractal-based method. This paper presents an enhanced fractal predictive denoising algorithm for denoising the images corrupted by an additive white Gaussian noise (AWGN) by using quadratic gray-level function. Meanwhile, a quantization method for the fractal gray-level coefficients of the quadratic function is proposed to strictly guarantee the contractivity requirement of the enhanced fractal coding, and in terms of the quality of the fractal representation measured by PSNR, the enhanced fractal image coding using quadratic gray-level function generally performs better than the standard fractal coding using linear gray-level function. Based on this enhanced fractal coding, the enhanced fractal image denoising is implemented by estimating the fractal gray-level coefficients of the quadratic function of the noiseless image from its noisy observation. Experimental results show that, compared with other standard fractal-based image denoising schemes using linear gray-level function, the enhanced fractal denoising algorithm can improve the quality of the restored image efficiently

  20. Symmetric intersections of Rauzy fractals | Sellami | Quaestiones ...

    African Journals Online (AJOL)

    In this article we study symmetric subsets of Rauzy fractals of unimodular irreducible Pisot substitutions. The symmetry considered is re ection through the origin. Given an unimodular irreducible Pisot substitution, we consider the intersection of its Rauzy fractal with the Rauzy fractal of the reverse substitution. This set is ...

  1. Towards thermomechanics of fractal media

    Science.gov (United States)

    Ostoja-Starzewski, Martin

    2007-11-01

    Hans Ziegler’s thermomechanics [1,2,3], established half a century ago, is extended to fractal media on the basis of a recently introduced continuum mechanics due to Tarasov [14,15]. Employing the concept of internal (kinematic) variables and internal stresses, as well as the quasiconservative and dissipative stresses, a field form of the second law of thermodynamics is derived. In contradistinction to the conventional Clausius Duhem inequality, it involves generalized rates of strain and internal variables. Upon introducing a dissipation function and postulating the thermodynamic orthogonality on any lengthscale, constitutive laws of elastic-dissipative fractal media naturally involving generalized derivatives of strain and stress can then be derived. This is illustrated on a model viscoelastic material. Also generalized to fractal bodies is the Hill condition necessary for homogenization of their constitutive responses.

  2. The fractal nature materials microstructure influence on electrochemical energy sources

    Directory of Open Access Journals (Sweden)

    Mitić V.V.

    2015-01-01

    Full Text Available With increasing of the world energy crisis, research for new, renewable and alternative energy sources are in growth. The focus is on research areas, sometimes of minor importance and applications, where the different synthesis methods and microstructure properties optimization, performed significant improvement of output materials’ and components’ electro-physical properties, which is important for higher energy efficiency and in the electricity production (batteries and battery systems, fuel cells and hydrogen energy contribution. Also, the storage tanks capacity improvement, for the energy produced on such way, which is one of the most important development issues in the energy sphere, represents a very promising research and application area. Having in mind, the results achieved in the electrochemical energy sources field, especially electrolyte development, these energy sources, materials fractal nature optimization analysis contribution, have been investigated. Based on materials fractal structure research field, particularly electronic materials, we have performed microstructure influence parameters research in electrochemistry area. We have investigated the Ho2O3 concentration influence (from 0.01wt% to 1wt% and sintering temperature (from 1320°C to 1380°C, as consolidation parameters, and thus, also open the electrochemical function fractalization door and in the basic thermodynamic parameters the fractal correction introduced. The fractal dimension dependence on additive concentration is also investigated. [Projekat Ministarstva nauke Republike Srbije, br. 172057: Directed synthesis, structure and properties of multifunctional materials

  3. Fractal Dimension and Maximum Sunspot Number in Solar Cycle

    Directory of Open Access Journals (Sweden)

    R.-S. Kim

    2006-09-01

    Full Text Available The fractal dimension is a quantitative parameter describing the characteristics of irregular time series. In this study, we use this parameter to analyze the irregular aspects of solar activity and to predict the maximum sunspot number in the following solar cycle by examining time series of the sunspot number. For this, we considered the daily sunspot number since 1850 from SIDC (Solar Influences Data analysis Center and then estimated cycle variation of the fractal dimension by using Higuchi's method. We examined the relationship between this fractal dimension and the maximum monthly sunspot number in each solar cycle. As a result, we found that there is a strong inverse relationship between the fractal dimension and the maximum monthly sunspot number. By using this relation we predicted the maximum sunspot number in the solar cycle from the fractal dimension of the sunspot numbers during the solar activity increasing phase. The successful prediction is proven by a good correlation (r=0.89 between the observed and predicted maximum sunspot numbers in the solar cycles.

  4. Towards Video Quality Metrics Based on Colour Fractal Geometry

    Directory of Open Access Journals (Sweden)

    Richard Noël

    2010-01-01

    Full Text Available Vision is a complex process that integrates multiple aspects of an image: spatial frequencies, topology and colour. Unfortunately, so far, all these elements were independently took into consideration for the development of image and video quality metrics, therefore we propose an approach that blends together all of them. Our approach allows for the analysis of the complexity of colour images in the RGB colour space, based on the probabilistic algorithm for calculating the fractal dimension and lacunarity. Given that all the existing fractal approaches are defined only for gray-scale images, we extend them to the colour domain. We show how these two colour fractal features capture the multiple aspects that characterize the degradation of the video signal, based on the hypothesis that the quality degradation perceived by the user is directly proportional to the modification of the fractal complexity. We claim that the two colour fractal measures can objectively assess the quality of the video signal and they can be used as metrics for the user-perceived video quality degradation and we validated them through experimental results obtained for an MPEG-4 video streaming application; finally, the results are compared against the ones given by unanimously-accepted metrics and subjective tests.

  5. An Evaluation of Fractal Surface Measurement Methods for Characterizing Landscape Complexity from Remote-Sensing Imagery

    Science.gov (United States)

    Lam, Nina Siu-Ngan; Qiu, Hong-Lie; Quattrochi, Dale A.; Emerson, Charles W.; Arnold, James E. (Technical Monitor)

    2001-01-01

    The rapid increase in digital data volumes from new and existing sensors necessitates the need for efficient analytical tools for extracting information. We developed an integrated software package called ICAMS (Image Characterization and Modeling System) to provide specialized spatial analytical functions for interpreting remote sensing data. This paper evaluates the three fractal dimension measurement methods: isarithm, variogram, and triangular prism, along with the spatial autocorrelation measurement methods Moran's I and Geary's C, that have been implemented in ICAMS. A modified triangular prism method was proposed and implemented. Results from analyzing 25 simulated surfaces having known fractal dimensions show that both the isarithm and triangular prism methods can accurately measure a range of fractal surfaces. The triangular prism method is most accurate at estimating the fractal dimension of higher spatial complexity, but it is sensitive to contrast stretching. The variogram method is a comparatively poor estimator for all of the surfaces, particularly those with higher fractal dimensions. Similar to the fractal techniques, the spatial autocorrelation techniques are found to be useful to measure complex images but not images with low dimensionality. These fractal measurement methods can be applied directly to unclassified images and could serve as a tool for change detection and data mining.

  6. Linkage analysis by two-dimensional DNA typing

    NARCIS (Netherlands)

    te Meerman, G J; Mullaart, E; Meulen ,van der Martin; den Daas, J H; Morolli, B; Uitterlinden, A G; Vijg, J

    1993-01-01

    In two-dimensional (2-D) DNA typing, genomic DNA fragments are separated, first according to size by electrophoresis in a neutral polyacrylamide gel and second according to sequence by denaturing gradient gel electrophoresis, followed by hybridization analysis using micro- and minisatellite core

  7. Dimensional analysis for the mechanical effects of some underground explosions

    Energy Technology Data Exchange (ETDEWEB)

    Delort, Francis [Commissariat a l' Energie Atomique, Centre d' Etudes de Bruyeres-le-Chatel (France)

    1970-05-15

    The influence of the medium properties upon the effects of underground nuclear and high explosive explosions is studied by dimensional analysis methods. A comparison is made with the experimental data from the Hoggar contained nuclear shots, specially with the particle motion data and the cavity radii. Furthermore, for example, crater data from explosions in Nevada have been examined by statistical methods. (author)

  8. Analysis of Two-Dimensional Electrophoresis Gel Images

    DEFF Research Database (Denmark)

    Pedersen, Lars

    2002-01-01

    This thesis describes and proposes solutions to some of the currently most important problems in pattern recognition and image analysis of two-dimensional gel electrophoresis (2DGE) images. 2DGE is the leading technique to separate individual proteins in biological samples with many biological...

  9. Dimensional analysis of flame angles versus wind speed

    Science.gov (United States)

    Robert E. Martin; Mark A. Finney; Domingo M. Molina; David B. Sapsis; Scott L. Stephens; Joe H. Scott; David R. Weise

    1991-01-01

    Dimensional analysis has potential to help explain and predict physical phenomena, but has been used very little in studies of wildland fire behavior. By combining variables into dimensionless groups, the number of variables to be handled and the experiments to be run is greatly reduced. A low velocity wind tunnel was constructed, and methyl, ethyl, and isopropyl...

  10. Fractals control in particle's velocity

    International Nuclear Information System (INIS)

    Zhang Yongping; Liu Shutang; Shen Shulan

    2009-01-01

    Julia set, a fractal set of the literature of nonlinear physics, has significance for the engineering applications. For example, the fractal structure characteristics of the generalized M-J set could visually reflect the change rule of particle's velocity. According to the real world requirement, the system need show various particle's velocity in some cases. Thus, the control of the nonlinear behavior, i.e., Julia set, has attracted broad attention. In this work, an auxiliary feedback control is introduced to effectively control the Julia set that visually reflects the change rule of particle's velocity. It satisfies the performance requirement of the real world problems.

  11. Taylor dispersion on a fractal

    International Nuclear Information System (INIS)

    Mazo, R.M.

    1998-01-01

    Taylor dispersion is the greatly enhanced diffusion in the direction of a fluid flow caused by ordinary diffusion in directions orthogonal to the flow. It is essential that the system be bounded in space in the directions orthogonal to the flow. We investigate the situation where the medium through which the flow occurs has fractal properties so that diffusion in the orthogonal directions is anomalous and non-Fickian. The effective diffusion in the flow direction remains normal; its width grows proportionally with the time. However, the proportionality constant depends on the fractal dimension of the medium as well as its walk dimension. (author)

  12. Applications of fractals in ecology.

    Science.gov (United States)

    Sugihara, G; M May, R

    1990-03-01

    Fractal models describe the geometry of a wide variety of natural objects such as coastlines, island chains, coral reefs, satellite ocean-color images and patches of vegetation. Cast in the form of modified diffusion models, they can mimic natural and artificial landscapes having different types of complexity of shape. This article provides a brief introduction to fractals and reports on how they can be used by ecologists to answer a variety of basic questions, about scale, measurement and hierarchy in, ecological systems. Copyright © 1990. Published by Elsevier Ltd.

  13. Asymmetric multi-fractality in the U.S. stock indices using index-based model of A-MFDFA

    International Nuclear Information System (INIS)

    Lee, Minhyuk; Song, Jae Wook; Park, Ji Hwan; Chang, Woojin

    2017-01-01

    Highlights: • ‘Index-based A-MFDFA’ model is proposed to assess the asymmetric multi-fractality. • The asymmetric multi-fractality in the U.S. stock indices are investigated using ‘Index-based’ and ‘Return-based’ A-MFDFA. • The asymmetric feature is more significantly identified by ‘Index-based’ model than ‘return-based’ model. • Source of multi-fractality and time-varying features are analyzed. - Abstract: We detect the asymmetric multi-fractality in the U.S. stock indices based on the asymmetric multi-fractal detrended fluctuation analysis (A-MFDFA). Instead using the conventional return-based approach, we propose the index-based model of A-MFDFA where the trend based on the evolution of stock index rather than stock price return plays a role for evaluating the asymmetric scaling behaviors. The results show that the multi-fractal behaviors of the U.S. stock indices are asymmetric and the index-based model detects the asymmetric multi-fractality better than return-based model. We also discuss the source of multi-fractality and its asymmetry and observe that the multi-fractal asymmetry in the U.S. stock indices has a time-varying feature where the degree of multi-fractality and asymmetry increase during the financial crisis.

  14. Dimensional analysis of small-scale steam explosion experiments

    International Nuclear Information System (INIS)

    Huh, K.; Corradini, M.L.

    1986-01-01

    Dimensional analysis applied to Nelson's small-scale steam explosion experiments to determine the qualitative effect of each relevant parameter for triggering a steam explosion. According to experimental results, the liquid entrapment model seems to be a consistent explanation for the steam explosion triggering mechanism. The three-dimensional oscillatory wave motion of the vapor/liquid interface is analyzed to determine the necessary conditions for local condensation and production of a coolant microjet to be entrapped in fuel. It is proposed that different contact modes between fuel and coolant may involve different initiation mechanisms of steam explosions

  15. Fractal dimension of microbead assemblies used for protein detection.

    Science.gov (United States)

    Hecht, Ariel; Commiskey, Patrick; Lazaridis, Filippos; Argyrakis, Panos; Kopelman, Raoul

    2014-11-10

    We use fractal analysis to calculate the protein concentration in a rotating magnetic assembly of microbeads of size 1 μm, which has optimized parameters of sedimentation, binding sites and magnetic volume. We utilize the original Forrest-Witten method, but due to the relatively small number of bead particles, which is of the order of 500, we use a large number of origins and also a large number of algorithm iterations. We find a value of the fractal dimension in the range 1.70-1.90, as a function of the thrombin concentration, which plays the role of binding the microbeads together. This is in good agreement with previous results from magnetorotation studies. The calculation of the fractal dimension using multiple points of reference can be used for any assembly with a relatively small number of particles. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Application of fractal theory to top-coal caving

    International Nuclear Information System (INIS)

    Xie, H.; Zhou, H.W.

    2008-01-01

    The experiences of underground coal mining in China show that coal in a thick hard coal seam with a hard roof, the so-called 'double hard coal seam', is difficult to be excavated by top-coal caving technique. In order to solve the problem, a top-coal weakening technique is proposed in this paper. In the present study, fractal geometry provides a new description of the fracture mechanism for blasting. By means of theoretical analysis of the relationship between the fractal dimension of blasting fragments and the dynamite specific energy, a mechanical model for describing the size distribution of top-coal and the dissipation of blasting energy is proposed. The theoretical results are in agreement with laboratory and in situ test results. Moreover, it is shown that the fractal dimension of coal fragments can be used as an index for optimizing the blasting parameters for a top-coal weakening technique

  17. Fractal characterization of acupuncture-induced spike trains of rat WDR neurons

    International Nuclear Information System (INIS)

    Chen, Yingyuan; Guo, Yi; Wang, Jiang; Hong, Shouhai; Wei, Xile; Yu, Haitao; Deng, Bin

    2015-01-01

    Highlights: •Fractal analysis is a valuable tool for measuring MA-induced neural activities. •In course of the experiments, the spike trains display different fractal properties. •The fractal properties reflect the long-term modulation of MA on WDR neurons. •The results may explain the long-lasting effects induced by acupuncture. -- Abstract: The experimental and the clinical studies have showed manual acupuncture (MA) could evoke multiple responses in various neural regions. Characterising the neuronal activities in these regions may provide more deep insights into acupuncture mechanisms. This paper used fractal analysis to investigate MA-induced spike trains of Wide Dynamic Range (WDR) neurons in rat spinal dorsal horn, an important relay station and integral component in processing acupuncture information. Allan factor and Fano factor were utilized to test whether the spike trains were fractal, and Allan factor were used to evaluate the scaling exponents and Hurst exponents. It was found that these two fractal exponents before and during MA were different significantly. During MA, the scaling exponents of WDR neurons were regulated in a small range, indicating a special fractal pattern. The neuronal activities were long-range correlated over multiple time scales. The scaling exponents during and after MA were similar, suggesting that the long-range correlations not only displayed during MA, but also extended to after withdrawing the needle. Our results showed that fractal analysis is a useful tool for measuring acupuncture effects. MA could modulate neuronal activities of which the fractal properties change as time proceeding. This evolution of fractal dynamics in course of MA experiments may explain at the level of neuron why the effect of MA observed in experiment and in clinic are complex, time-evolutionary, long-range even lasting for some time after stimulation

  18. On two flexible methods of 2-dimensional regression analysis

    Czech Academy of Sciences Publication Activity Database

    Volf, Petr

    2012-01-01

    Roč. 18, č. 4 (2012), s. 154-164 ISSN 1803-9782 Grant - others:GA ČR(CZ) GAP209/10/2045 Institutional support: RVO:67985556 Keywords : regression analysis * Gordon surface * prediction error * projection pursuit Subject RIV: BB - Applied Statistics, Operational Research http://library.utia.cas.cz/separaty/2013/SI/volf-on two flexible methods of 2-dimensional regression analysis.pdf

  19. Nonlinear dynamics, fractals, cardiac physiology and sudden death

    Science.gov (United States)

    Goldberger, Ary L.

    1987-01-01

    The authors propose a diametrically opposite viewpoint to the generally accepted tendency of equating healthy function with order and disease with chaos. With regard to the question of sudden cardiac death and chaos, it is suggested that certain features of dynamical chaos related to fractal structure and fractal dynamics may be important organizing principles in normal physiology and that certain pathologies, including ventricular fibrillation, represent a class of 'pathological periodicities'. Some laboratory work bearing on the relation of nonlinear analysis to physiological and pathophysiological data is briefly reviewed, with tentative theories and models described in reference to the mechanism of ventricular fibrillation.

  20. Theoretical study of fractal growth and stability on surface

    DEFF Research Database (Denmark)

    Dick, Veronika V.; Solov'yov, Ilia; Solov'yov, Andrey V.

    2009-01-01

    We perform a theoretical study of the fractal growing process on surface by using the deposition, diffusion, aggregation method. We present a detailed analysis of the post-growth processes occurring in a nanofractal on surface. For this study we developed a method which describes the internal...... dynamics of particles in a fractal and accounts for their diffusion and detachment. We demonstrate that these kinetic processes are responsible for the formation of the final shape of the islands on surface after the post-growth relaxation....

  1. Heritability of retinal vascular fractals: a twin study

    DEFF Research Database (Denmark)

    Vergmann, Anna Stage; Broe, Rebecca; Kessel, Line

    . The retinal vascular fractal dimension was measured using the box-counting method and compared within monozygotic and dizygotic twin pairs using Pearson correlation coefficents. Falconer´s formula and quantitative genetic models were used to determine the genetic component of variation. Results: The retinal...... for quantitative analysis of heritability. The intrapair correlation was markedly higher (0.505, p=0.0002) in monozygotic twins than in dizygotic twins (0.108, p=0.46), corresponding to a heritability h2 for the fractal dimension of 0.79. In quantitative genetic models, 54% of the variation was explained...

  2. A fractal derivative constitutive model for three stages in granite creep

    Directory of Open Access Journals (Sweden)

    R. Wang

    Full Text Available In this paper, by replacing the Newtonian dashpot with the fractal dashpot and considering damage effect, a new constitutive model is proposed in terms of time fractal derivative to describe the full creep regions of granite. The analytic solutions of the fractal derivative creep constitutive equation are derived via scaling transform. The conventional triaxial compression creep tests are performed on MTS 815 rock mechanics test system to verify the efficiency of the new model. The granite specimen is taken from Beishan site, the most potential area for the China’s high-level radioactive waste repository. It is shown that the proposed fractal model can characterize the creep behavior of granite especially in accelerating stage which the classical models cannot predict. The parametric sensitivity analysis is also conducted to investigate the effects of model parameters on the creep strain of granite. Keywords: Beishan granite, Fractal derivative, Damage evolution, Scaling transformation

  3. The fractal spatial distribution of pancreatic islets in three dimensions: a self-avoiding growth model

    International Nuclear Information System (INIS)

    Jo, Junghyo; Periwal, Vipul; Hörnblad, Andreas; Ahlgren, Ulf; Kilimnik, German; Hara, Manami

    2013-01-01

    The islets of Langerhans, responsible for controlling blood glucose levels, are dispersed within the pancreas. A universal power law governing the fractal spatial distribution of islets in two-dimensional pancreatic sections has been reported. However, the fractal geometry in the actual three-dimensional pancreas volume, and the developmental process that gives rise to such a self-similar structure, has not been investigated. Here, we examined the three-dimensional spatial distribution of islets in intact mouse pancreata using optical projection tomography and found a power law with a fractal dimension of 2.1. Furthermore, based on two-dimensional pancreatic sections of human autopsies, we found that the distribution of human islets also follows a universal power law with a fractal dimension of 1.5 in adult pancreata, which agrees with the value previously reported in smaller mammalian pancreas sections. Finally, we developed a self-avoiding growth model for the development of the islet distribution and found that the fractal nature of the spatial islet distribution may be associated with the self-avoidance in the branching process of vascularization in the pancreas. (paper)

  4. Two-dimensional analysis of motion artifacts, including flow effects

    International Nuclear Information System (INIS)

    Litt, A.M.; Brody, A.S.; Spangler, R.A.; Scott, P.D.

    1990-01-01

    The effects of motion on magnetic resonance images have been theoretically analyzed for the case of a point-like object in simple harmonic motion and for other one-dimensional trajectories. The authors of this paper extend this analysis to a generalized two-dimensional magnetization with an arbitrary motion trajectory. The authors provide specific solutions for the clinically relevant cases of the cross-sections of cylindrical objects in the body, such as the aorta, which has a roughly one-dimensional, simple harmonic motion during respiration. By extending the solution to include inhomogeneous magnetizations, the authors present a model which allows the effects of motion artifacts and flow artifacts to be analyzed simultaneously

  5. Fractal model for estimating fracture toughness of carbon nanotube reinforced aluminum oxide

    International Nuclear Information System (INIS)

    Rishabh, Abhishek; Joshi, Milind R.; Balani, Kantesh

    2010-01-01

    The current work focuses on predicting the fracture toughness of Al 2 O 3 ceramic matrix composites using a modified Mandelbrot's fractal approach. The first step confirms that the experimental fracture toughness values fluctuate within the fracture toughness range predicted as per the modified fractal approach. Additionally, the secondary reinforcements [such as carbon nanotubes (CNTs)] have shown to enhance the fracture toughness of Al 2 O 3 . Conventional fractural toughness evaluation via fractal approach underestimates the fracture toughness by considering the shortest crack path. Hence, the modified Mandelbrot's fractal approach considers the crack propagation along the CNT semicircumferential surface (three-dimensional crack path propagation) for achieving an improved fracture toughness estimation of Al 2 O 3 -CNT composite. The estimations obtained in the current approach range within 4% error regime of the experimentally measured fracture toughness values of the Al 2 O 3 -CNT composite.

  6. Combining Biometric Fractal Pattern and Particle Swarm Optimization-Based Classifier for Fingerprint Recognition

    Directory of Open Access Journals (Sweden)

    Chia-Hung Lin

    2010-01-01

    Full Text Available This paper proposes combining the biometric fractal pattern and particle swarm optimization (PSO-based classifier for fingerprint recognition. Fingerprints have arch, loop, whorl, and accidental morphologies, and embed singular points, resulting in the establishment of fingerprint individuality. An automatic fingerprint identification system consists of two stages: digital image processing (DIP and pattern recognition. DIP is used to convert to binary images, refine out noise, and locate the reference point. For binary images, Katz's algorithm is employed to estimate the fractal dimension (FD from a two-dimensional (2D image. Biometric features are extracted as fractal patterns using different FDs. Probabilistic neural network (PNN as a classifier performs to compare the fractal patterns among the small-scale database. A PSO algorithm is used to tune the optimal parameters and heighten the accuracy. For 30 subjects in the laboratory, the proposed classifier demonstrates greater efficiency and higher accuracy in fingerprint recognition.

  7. Detection and classification of Breast Cancer in Wavelet Sub-bands of Fractal Segmented Cancerous Zones.

    Science.gov (United States)

    Shirazinodeh, Alireza; Noubari, Hossein Ahmadi; Rabbani, Hossein; Dehnavi, Alireza Mehri

    2015-01-01

    Recent studies on wavelet transform and fractal modeling applied on mammograms for the detection of cancerous tissues indicate that microcalcifications and masses can be utilized for the study of the morphology and diagnosis of cancerous cases. It is shown that the use of fractal modeling, as applied to a given image, can clearly discern cancerous zones from noncancerous areas. In this paper, for fractal modeling, the original image is first segmented into appropriate fractal boxes followed by identifying the fractal dimension of each windowed section using a computationally efficient two-dimensional box-counting algorithm. Furthermore, using appropriate wavelet sub-bands and image Reconstruction based on modified wavelet coefficients, it is shown that it is possible to arrive at enhanced features for detection of cancerous zones. In this paper, we have attempted to benefit from the advantages of both fractals and wavelets by introducing a new algorithm. By using a new algorithm named F1W2, the original image is first segmented into appropriate fractal boxes, and the fractal dimension of each windowed section is extracted. Following from that, by applying a maximum level threshold on fractal dimensions matrix, the best-segmented boxes are selected. In the next step, the segmented Cancerous zones which are candidates are then decomposed by utilizing standard orthogonal wavelet transform and db2 wavelet in three different resolution levels, and after nullifying wavelet coefficients of the image at the first scale and low frequency band of the third scale, the modified reconstructed image is successfully utilized for detection of breast cancer regions by applying an appropriate threshold. For detection of cancerous zones, our simulations indicate the accuracy of 90.9% for masses and 88.99% for microcalcifications detection results using the F1W2 method. For classification of detected mictocalcification into benign and malignant cases, eight features are identified and

  8. Fractal dynamics of heartbeat time series of young persons with metabolic syndrome

    Science.gov (United States)

    Muñoz-Diosdado, A.; Alonso-Martínez, A.; Ramírez-Hernández, L.; Martínez-Hernández, G.

    2012-10-01

    Many physiological systems have been in recent years quantitatively characterized using fractal analysis. We applied it to study heart variability of young subjects with metabolic syndrome (MS); we examined the RR time series (time between two R waves in ECG) with the detrended fluctuation analysis (DFA) method, the Higuchi's fractal dimension method and the multifractal analysis to detect the possible presence of heart problems. The results show that although the young persons have MS, the majority do not present alterations in the heart dynamics. However, there were cases where the fractal parameter values differed significantly from the healthy people values.

  9. Fractal characterization for noise signal validation in power reactors

    International Nuclear Information System (INIS)

    Aguilar Martinez, Omar

    2003-01-01

    Up to now, a great variety of methods is used for the dynamical characterization of different components of Nuclear Power Plants (NPPs). With this aim, time and spectral analysis are usually considered, and different tools of non-stationary and non-gaussian analysis are also presented. When applying non-lineal dynamics theory for noise signal validation purposes in power reactors, the extraction of fractal echoes plays a main role. Fractal characterization for noise signal validation purposes can be integrated to the task of processing and acquisition of time signals in noise (fluctuation parameters) analysis systems. The possibility of discrimination between deterministic chaotic signals and pure noise signals has been incorporated, as a complement; to noise signals analysis in normal and anomalous operational conditions in NPPs using a fractal approach. In this work the detailed analysis of a neutronic sensor response is considered and the fractal characterization of its dynamics state (i.e. sensor line) for noise signal classification, it is presented. The experiment from where the time series (signals) were obtained, was carried out at the Research Reactor of the Technical University of Budapest, Hungary, during a model experiment for ageing process study of in-core neutron detectors (author)

  10. Fractal Patterns in Reasoning

    NARCIS (Netherlands)

    Atkinson, D; Peijnenburg, A.J.M.

    2012-01-01

    This paper is the third and final one in a sequence of three. All three papers emphasize that a proposition can be justified by an infinite regress, on condition that epistemic justification is interpreted probabilistically. The first two papers showed this for one-dimensional chains and for

  11. Explorative data analysis of two-dimensional electrophoresis gels

    DEFF Research Database (Denmark)

    Schultz, J.; Gottlieb, D.M.; Petersen, Marianne Kjerstine

    2004-01-01

    of gels is presented. First, an approach is demonstrated in which no prior knowledge of the separated proteins is used. Alignment of the gels followed by a simple transformation of data makes it possible to analyze the gels in an automated explorative manner by principal component analysis, to determine......Methods for classification of two-dimensional (2-DE) electrophoresis gels based on multivariate data analysis are demonstrated. Two-dimensional gels of ten wheat varieties are analyzed and it is demonstrated how to classify the wheat varieties in two qualities and a method for initial screening...... if the gels should be further analyzed. A more detailed approach is done by analyzing spot volume lists by principal components analysis and partial least square regression. The use of spot volume data offers a mean to investigate the spot pattern and link the classified protein patterns to distinct spots...

  12. Canonical and symplectic analysis for three dimensional gravity without dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Escalante, Alberto, E-mail: aescalan@ifuap.buap.mx [Instituto de Física, Benemérita Universidad Autónoma de Puebla, Apartado Postal J-48 72570, Puebla, Pue. (Mexico); Osmart Ochoa-Gutiérrez, H. [Facultad de Ciencias Físico Matemáticas, Benemérita Universidad Autónoma de Puebla, Apartado postal 1152, 72001 Puebla, Pue. (Mexico)

    2017-03-15

    In this paper a detailed Hamiltonian analysis of three-dimensional gravity without dynamics proposed by V. Hussain is performed. We report the complete structure of the constraints and the Dirac brackets are explicitly computed. In addition, the Faddeev–Jackiw symplectic approach is developed; we report the complete set of Faddeev–Jackiw constraints and the generalized brackets, then we show that the Dirac and the generalized Faddeev–Jackiw brackets coincide to each other. Finally, the similarities and advantages between Faddeev–Jackiw and Dirac’s formalism are briefly discussed. - Highlights: • We report the symplectic analysis for three dimensional gravity without dynamics. • We report the Faddeev–Jackiw constraints. • A pure Dirac’s analysis is performed. • The complete structure of Dirac’s constraints is reported. • We show that symplectic and Dirac’s brackets coincide to each other.

  13. Multi-dimensional Code Development for Safety Analysis of LMR

    International Nuclear Information System (INIS)

    Ha, K. S.; Jeong, H. Y.; Kwon, Y. M.; Lee, Y. B.

    2006-08-01

    A liquid metal reactor loaded a metallic fuel has the inherent safety mechanism due to the several negative reactivity feedback. Although this feature demonstrated through experiments in the EBR-II, any of the computer programs until now did not exactly analyze it because of the complexity of the reactivity feedback mechanism. A multi-dimensional detail program was developed through the International Nuclear Energy Research Initiative(INERI) from 2003 to 2005. This report includes the numerical coupling the multi-dimensional program and SSC-K code which is used to the safety analysis of liquid metal reactors in KAERI. The coupled code has been proved by comparing the analysis results using the code with the results using SAS-SASSYS code of ANL for the UTOP, ULOF, and ULOHS applied to the safety analysis for KALIMER-150

  14. Ghost quintessence in fractal gravity

    Indian Academy of Sciences (India)

    In this study, using the time-like fractal theory of gravity, we mainly focus on the ghost ... Here a(t) is the cosmic scale factor and it measures the expansion of the Universe. ..... effectively appear as self-conserved dark energy, with a non-trivial ...

  15. Fractal nature of humic materials

    International Nuclear Information System (INIS)

    Rice, J.A.

    1992-01-01

    Fractals are geometric representatives of strongly disordered systems whose structure is described by nonintegral dimensions. A fundamental tenet of fractal geometry is that disorder persists at any characterization scale-length used to describe the system. The nonintegral nature of these fractal dimensions is the result of the realization that a disordered system must possess more structural detail than an ordered system with classical dimensions of 1, 2, or 3 in order to accommodate this ''disorder within disorder.'' Thus from a fractal perspective, disorder is seen as an inherent characteristic of the system rather than as a perturbative phenomena forced upon it. Humic materials are organic substances that are formed by the profound alteration of organic matter in a natural environment. They can be operationally divided into 3 fractions; humic acid (soluble in base), fulvic acid (soluble in acid or base), and humin (insoluble in acid or base). Each of these fraction has been shown to be an extremely heterogeneous mixture. These mixtures have proven so intractable that they may represent the ultimate in molecular disorder. In fact, based on the characteristics that humic materials must possess in order to perform their functions in natural systems, it has been proposed that the fundamental chemical characteristic of a humic material is not a discrete chemical structure but a pronounced lack of order on a molecular level. If the fundamental chemical characteristic of a humic material is a strongly disordered nature, as has been proposed, then humic materials should be amenable to characterization by fractal geometry. The purpose of this paper is to test this hypothesis

  16. Fractal Theory for Permeability Prediction, Venezuelan and USA Wells

    Science.gov (United States)

    Aldana, Milagrosa; Altamiranda, Dignorah; Cabrera, Ana

    2014-05-01

    Inferring petrophysical parameters such as permeability, porosity, water saturation, capillary pressure, etc, from the analysis of well logs or other available core data has always been of critical importance in the oil industry. Permeability in particular, which is considered to be a complex parameter, has been inferred using both empirical and theoretical techniques. The main goal of this work is to predict permeability values on different wells using Fractal Theory, based on a method proposed by Pape et al. (1999). This approach uses the relationship between permeability and the geometric form of the pore space of the rock. This method is based on the modified equation of Kozeny-Carman and a fractal pattern, which allows determining permeability as a function of the cementation exponent, porosity and the fractal dimension. Data from wells located in Venezuela and the United States of America are analyzed. Employing data of porosity and permeability obtained from core samples, and applying the Fractal Theory method, we calculated the prediction equations for each well. At the beginning, this was achieved by training with 50% of the data available for each well. Afterwards, these equations were tested inferring over 100% of the data to analyze possible trends in their distribution. This procedure gave excellent results in all the wells in spite of their geographic distance, generating permeability models with the potential to accurately predict permeability logs in the remaining parts of the well for which there are no core samples, using even porority logs. Additionally, empirical models were used to determine permeability and the results were compared with those obtained by applying the fractal method. The results indicated that, although there are empirical equations that give a proper adjustment, the prediction results obtained using fractal theory give a better fit to the core reference data.

  17. Data analysis in high-dimensional sparse spaces

    DEFF Research Database (Denmark)

    Clemmensen, Line Katrine Harder

    classification techniques for high-dimensional problems are presented: Sparse discriminant analysis, sparse mixture discriminant analysis and orthogonality constrained support vector machines. The first two introduces sparseness to the well known linear and mixture discriminant analysis and thereby provide low...... are applied to classifications of fish species, ear canal impressions used in the hearing aid industry, microbiological fungi species, and various cancerous tissues and healthy tissues. In addition, novel applications of sparse regressions (also called the elastic net) to the medical, concrete, and food...

  18. Joint unloading implant modifies subchondral bone trabecular structure in medial knee osteoarthritis: 2-year outcomes of a pilot study using fractal signature analysis

    Directory of Open Access Journals (Sweden)

    Miller LE

    2015-01-01

    Full Text Available Larry E Miller,1,2 Miki Sode,3 Thomas Fuerst,3 Jon E Block2 1Miller Scientific Consulting, Inc., Asheville, NC, USA; 2The Jon Block Group, San Francisco, CA, USA; 3Bioclinica, Newark, CA, USA Background: Knee osteoarthritis (OA is largely attributable to chronic excessive and aberrant joint loading. The purpose of this pilot study was to quantify radiographic changes in subchondral bone after treatment with a minimally invasive joint unloading implant (KineSpring® Knee Implant System.Methods: Nine patients with unilateral medial knee OA resistant to nonsurgical therapy were treated with the KineSpring System and followed for 2 years. Main outcomes included Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC pain, function, and stiffness subscores and independent core laboratory determinations of joint space width and fractal signature of the tibial cortex.Results: WOMAC scores, on average, improved by 92% for pain, 91% for function, and 79% for stiffness over the 2-year follow-up period. Joint space width in the medial compartment of the treated knee significantly increased from 0.9 mm at baseline to 3.1 mm at 2 years; joint space width in the medial compartment of the untreated knee was unchanged. Fractal signatures of the vertically oriented trabeculae in the medial compartment decreased by 2.8% in the treated knee and increased by 2.1% in the untreated knee over 2 years. No statistically significant fractal signature changes were observed in the horizontally oriented trabeculae in the medial compartment or in the horizontal or vertical trabeculae of the lateral compartment in the treated knee.Conclusion: Preliminary evidence suggests that the KineSpring System may modify knee OA disease progression by increasing joint space width and improving subchondral bone trabecular integrity, thereby reducing pain and improving joint function. Keywords: disease modification, KineSpring, joint space, pain, trabecular

  19. The stress analysis method for three-dimensional composite materials

    Science.gov (United States)

    Nagai, Kanehiro; Yokoyama, Atsushi; Maekawa, Zen'ichiro; Hamada, Hiroyuki

    1994-05-01

    This study proposes a stress analysis method for three-dimensionally fiber reinforced composite materials. In this method, the rule-of mixture for composites is successfully applied to 3-D space in which material properties would change 3-dimensionally. The fundamental formulas for Young's modulus, shear modulus, and Poisson's ratio are derived. Also, we discuss a strength estimation and an optimum material design technique for 3-D composite materials. The analysis is executed for a triaxial orthogonally woven fabric, and their results are compared to the experimental data in order to verify the accuracy of this method. The present methodology can be easily understood with basic material mechanics and elementary mathematics, so it enables us to write a computer program of this theory without difficulty. Furthermore, this method can be applied to various types of 3-D composites because of its general-purpose characteristics.

  20. Problems associated with dimensional analysis of electroencephalogram data

    Energy Technology Data Exchange (ETDEWEB)

    Layne, S.; Mayer-Kress, G.; Holzfuss, J.

    1985-01-01

    The goal was to evaluate anesthetic depth for a series of 5 to 10 patients by dimensional analysis. It has been very difficult to obtain clean EEG records from the operating room. Noise is prominent due to electrocautery and to movement of the patient's head by operating room personnel. In addition, specialized EEG equipment must be used to reduce noise and to accommodate limited space in the room. This report discusses problems associated with dimensional analysis of the EEG. We choose one EEG record from a single patient, in order to study the method but not to draw general conclusions. For simplicity, we consider only two states: awake but quiet, and medium anesthesia. 14 refs., 8 figs., 1 tab.