WorldWideScience

Sample records for fr28ap10r imidacloprid pesticide

  1. 78 FR 33736 - Imidacloprid; Pesticide Tolerances

    Science.gov (United States)

    2013-06-05

    ... exposure assessments of pesticides found in swimming pools and spas and EPA's Risk Assessment Guidance for... during recreational swimming, or in the case of subsistence fishermen or local Native American tribes... Order 13211, entitled ``Actions Concerning Regulations That Significantly Affect Energy Supply...

  2. Lack of genotoxic potential of pesticides, spinosad, imidacloprid and neem oil in mice (Mus musculus).

    Science.gov (United States)

    Saxena, Ankita; Kesari, V P

    2016-03-01

    Pesticides, spinosad, imidacloprid and neem oil are widely used both in residential and agricultural environments because of its broad spectrum insecticidal activity and effectiveness. The present study was undertaken to estimate genotoxicity of formulations of some pesticides in mice. Three pesticides of diverse group studied were spinosad (45% w/v), imidacloprid (17.8%, w/v) and neem oil. Animals were exposed 37, 4.5 and 50 mg kg⁻¹ b.wt. for spinosad, imidacloprid and neem oil, respectively, through oral gavage for 5 consecutive days. A vehicle control group and one positive control (cyclophosphamide; 20 mg kg⁻¹ b. wt.) were also selected. The results showed that cyclophosphamide produced 1.12% micronuclei in mice, as against 0.18 in vehicle control, 0.30 in spinosad, 0.28 in imidacloprid and 0.22% in neem oil, respectively. The gross percentage of chromosomal aberration in mice were 28.5% in cyclophosphamide against 6.5% in vehicle control, 8.0% in spinosad, 9.5% in imidacloprid and 7.0% in neem oil, respectively. The overall findings of the present study revealed that all the three pesticide formulations, imidacloprid, spinosad and neem oil at tested dose did not show any genotoxic effect in mice.

  3. Effects of Systemic Pesticides Imidacloprid and Metalaxyl on the Phyllosphere of Pepper Plants

    Directory of Open Access Journals (Sweden)

    Constantinos Moulas

    2013-01-01

    Full Text Available Microbes inhabiting the phyllosphere of crops are exposed to pesticides applied either directly onto plant foliage or indirectly through soil. Although, phyllosphere microbiology has been rapidly evolving, little is still known regarding the impact of pesticides on the epiphytic microbial community and especially on fungi. We determined the impact of two systemic pesticides (metalaxyl and imidacloprid, applied either on foliage or through soil, on the epiphytic fungal and bacterial communities via DGGE and cloning. Both pesticides induced mild effects on the fungal and the bacterial communities. The only exception was the foliage application of imidacloprid which showed a more prominent effect on the fungal community. Cloning showed that the fungal community was dominated by putative plant pathogenic ascomycetes (Erysiphaceae and Cladosporium, while a few basidiomycetes were also present. The former ribotypes were not affected by pesticides application, while selected yeasts (Cryptococcus were stimulated by the application of imidacloprid suggesting a potential role in its degradation. A less diverse bacterial community was identified in pepper plants. Metalaxyl stimulated an Enterobacteriaceae clone which is an indication of the involvement of members of this family in fungicide degradation. Further studies will focus on the isolation of epiphytic microbes which appear to be stimulated by pesticides application.

  4. Clearance of ingested neonicotinoid pesticide (imidacloprid) in honey bees (Apis mellifera) and bumblebees (Bombus terrestris).

    Science.gov (United States)

    Cresswell, James E; Robert, François-Xavier L; Florance, Hannah; Smirnoff, Nicholas

    2014-02-01

    Bees in agricultural landscapes are exposed to dietary pesticides such as imidacloprid when they feed from treated mass-flowering crops. Concern about the consequent impact on bees makes it important to understand their resilience. In the laboratory, the authors therefore fed adult worker bees on dosed syrup (125 μg L(-1) of imidacloprid, or 98 μg kg(-1)) either continuously or as a pulsed exposure and measured their behaviour (feeding and locomotory activity) and whole-body residues. On dosed syrup, honey bees maintained much lower bodily levels of imidacloprid than bumblebees (<0.2 ng versus 2.4 ng of imidacloprid per bee). Dietary imidacloprid did not affect the behaviour of honey bees, but it reduced feeding and locomotory activity in bumblebees. After the pulsed exposure, bumblebees cleared bodily imidacloprid after 48 h and recovered behaviourally. The differential behavioural resilience of the two species can be attributed to the observed differential in bodily residues. The ability of bumblebees to recover may be environmentally relevant in wild populations that face transitory exposures from the pulsed blooming of mass-flowering crops. © 2013 Society of Chemical Industry.

  5. Synergistic toxicity and physiological impact of imidacloprid alone and binary mixtures with seven representative pesticides on honey bee (Apis mellifera)

    Science.gov (United States)

    Imidacloprid is the most widely used insecticide in the world. In this study, we used spraying methods to simulate field exposures of bees to formulated imidacloprid (Advise® 2FL) alone and binary mixtures with seven pesticides from different classes. Synergistic toxicity was detected from mixtures ...

  6. Nanoplasmonic biochips for rapid label-free detection of imidacloprid pesticides with a smartphone.

    Science.gov (United States)

    Lee, Kuang-Li; You, Meng-Lin; Tsai, Chia-Hsin; Lin, En-Hung; Hsieh, Shu-Yi; Ho, Ming-Hsun; Hsu, Ju-Chun; Wei, Pei-Kuen

    2016-01-15

    The widespread and intensive use of neonicotinoid insecticides induces negative cascading effects on ecosystems. It is desirable to develop a portable sensitive sensing platform for on-site screening of high-risk pesticides. We combined an indirect competitive immunoassay, highly sensitive surface plasmon resonance (SPR) biochip and a simple portable imaging setup for label-free detection of imidacloprid pesticides. The SPR biochip consists of several capped nanoslit arrays with different periods which form a spectral image on the chip. The qualitative and semiquantitative analyses of pesticides can be directly observed from the spot shift on the chip. The precise semiquantitative analyses can be further completed by using image processing in a smartphone. We demonstrate simultaneous detection of four different concentrations of imidacloprid pesticides. The visual detection limit is about 1ppb, which is well below the maximum residue concentration permitted by law (20ppb). Compared to the one-step strip assay, the proposed chip is capable of performing semiquantitative analyses and multiple detection. Compared to the enzyme-linked immunosorbent assay, our method is label-free and requires simple washing steps and short reaction time. In addition, the label-free chip has a comparable sensitivity but wider working range than those labeling techniques. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Development and Validation of Chronopotentiometric Method for Imidacloprid Determination in Pesticide Formulations and River Water Samples

    Directory of Open Access Journals (Sweden)

    Ana Đurović

    2016-01-01

    Full Text Available A new electrochemical method for determination of imidacloprid using chronopotentiometry on thin film mercury and glassy carbon electrode was presented. The most important experimental parameters of chronopotentiometry were examined and optimized with respect to imidacloprid analytical signal. Imidacloprid provided well-defined reduction peak in Britton-Robinson buffer on thin film mercury electrode at −1.0 V (versus Ag/AgCl (KCl, 3.5 mol/L and on glassy carbon electrode at −1.2 V (versus Ag/AgCl (KCl, 3.5 mol/L. The reduction time was linearly proportional to concentrations from 0.8 to 30.0 mg/L on thin film mercury electrode and from 7.0 to 70.0 mg/L on glassy carbon electrode. The detection limits were 0.17 mg/L and 0.93 mg/L for thin film mercury and glassy carbon electrode, respectively. The estimation of method precision as a function of repeatability and reproducibility showed relative standard deviations values lower than 3.73%. Recovery values from 97.3 to 98.1% confirmed the accuracy of the proposed method, while the constancy of the transition time with deliberated small changes in the experimental parameters indicated a very good robustness. A minor influence of possible interfering compounds proved good selectivity of the method. Developed method was applied for imidacloprid determination in commercial pesticide formulations and river water samples.

  8. Feeding toxicity and impact of imidacloprid formulation and mixtures with six representative pesticides at residue concentrations on honey bee (Apis mellifera)

    Science.gov (United States)

    Imidacloprid is the most widely used insecticide in agricultural. In this study, we used both feeding and spraying methods to simulate in-hive exposures of formulated imidacloprid (Advise® 2FL) alone and mixtures with six representative pesticides for different classes. Advise, fed at 4.3 mg/L (equa...

  9. 77 FR 1684 - Imidacloprid, Oxamyl, and Methomyl; Notice of Receipt of Requests to Voluntarily Amend Pesticide...

    Science.gov (United States)

    2012-01-11

    ... ENVIRONMENTAL PROTECTION AGENCY [EPA-HQ-OPP-2011-0933; FRL-9328-2] Imidacloprid, Oxamyl, and... issuing a notice of receipt of requests by registrants to voluntarily amend certain imidacloprid product... would not terminate the last imidacloprid, oxamyl, or methomyl products registered for use in the United...

  10. Repression and recuperation of brood production in Bombus terrestris bumble bees exposed to a pulse of the neonicotinoid pesticide imidacloprid.

    Directory of Open Access Journals (Sweden)

    Ian Laycock

    Full Text Available Currently, there is concern about declining bee populations and some blame the residues of neonicotinoid pesticides in the nectar and pollen of treated crops. Bumble bees are important wild pollinators that are widely exposed to dietary neonicotinoids by foraging in agricultural environments. In the laboratory, we tested the effect of a pulsed exposure (14 days 'on dose' followed by 14 days 'off dose' to a common neonicotinoid, imidacloprid, on the amount of brood (number of eggs and larvae produced by Bombus terrestris L. bumble bees in small, standardised experimental colonies (a queen and four adult workers. During the initial 'on dose' period we observed a dose-dependent repression of brood production in colonies, with productivity decreasing as dosage increased up to 98 µg kg(-1 dietary imidacloprid. During the following 'off dose' period, colonies showed a dose-dependent recuperation such that total brood production during the 28-day pulsed exposure was not correlated with imidacloprid up to 98 µg kg(-1. Our findings raise further concern about the threat to wild bumble bees from neonicotinoids, but they also indicate some resilience to a pulsed exposure, such as that arising from the transient bloom of a treated mass-flowering crop.

  11. Repression and Recuperation of Brood Production in Bombus terrestris Bumble Bees Exposed to a Pulse of the Neonicotinoid Pesticide Imidacloprid

    Science.gov (United States)

    Laycock, Ian; Cresswell, James E.

    2013-01-01

    Currently, there is concern about declining bee populations and some blame the residues of neonicotinoid pesticides in the nectar and pollen of treated crops. Bumble bees are important wild pollinators that are widely exposed to dietary neonicotinoids by foraging in agricultural environments. In the laboratory, we tested the effect of a pulsed exposure (14 days ‘on dose’ followed by 14 days ‘off dose’) to a common neonicotinoid, imidacloprid, on the amount of brood (number of eggs and larvae) produced by Bombus terrestris L. bumble bees in small, standardised experimental colonies (a queen and four adult workers). During the initial ‘on dose’ period we observed a dose-dependent repression of brood production in colonies, with productivity decreasing as dosage increased up to 98 µg kg−1 dietary imidacloprid. During the following ‘off dose’ period, colonies showed a dose-dependent recuperation such that total brood production during the 28-day pulsed exposure was not correlated with imidacloprid up to 98 µg kg−1. Our findings raise further concern about the threat to wild bumble bees from neonicotinoids, but they also indicate some resilience to a pulsed exposure, such as that arising from the transient bloom of a treated mass-flowering crop. PMID:24224015

  12. Synergistic toxicity and physiological impact of imidacloprid alone and binary mixtures with seven representative pesticides on honey bee (Apis mellifera).

    Science.gov (United States)

    Zhu, Yu Cheng; Yao, Jianxiu; Adamczyk, John; Luttrell, Randall

    2017-01-01

    Imidacloprid is the most widely used insecticide in the world. In this study, we used spraying methods to simulate field exposures of bees to formulated imidacloprid (Advise® 2FL) alone and binary mixtures with seven pesticides from different classes. Synergistic toxicity was detected from mixtures of Advise (58.6 mg a.i./L imidacloprid)+Domark (512.5 mg a.i. /L tetraconazole), Advise+Transform (58.5 mg a.i./L sulfoxaflor), and Advise+Vydate (68 mg a.i./L oxamyl), and mortality was significantly increased by 20%, 15%, and 26% respectively. The mixtures of Advise+Bracket (88.3 mg a.i./L acephate) and Advise+Karate (62.2 mg a.i./L L-cyhalothrin) showed additive interaction, while Advise+Belay (9.4 mg a.i./L clothianidin) and Advise+Roundup (1217.5 mg a.i./L glyphosate) had no additive/synergistic interaction. Spraying bees with the mixture of all eight pesticides increased mortality to 100%, significantly higher than all other treatments. Except Bracket which significantly suppressed esterase and acetylcholinesterase (AChE) activities, other treatments of Advise-only and mixtures with other pesticides did not suppress enzyme activities significantly, including invertase, glutathione S-transferase (GST), and esterase and AChE. Immunity-related phenoloxidase (PO) activities in survivors tended to be more variable among treatments, but mostly still statistically similar to the control. By using specific enzyme inhibitors, we demonstrated that honey bees mainly rely on cytochrome P450 monooxygenases (P450s) for detoxifying Advise, while esterases and GSTs play substantially less roles in the detoxification. This study provided valuable information for guiding pesticide selection in premixing and tank mixing in order to alleviate toxicity risk to honey bees. Our findings indicated mixtures of Advise with detoxification-enzyme-inducing pesticides may help bees to detoxify Advise, while toxicity synergists may pose further risk to bees, such as the Bracket which not only

  13. Synergistic toxicity and physiological impact of imidacloprid alone and binary mixtures with seven representative pesticides on honey bee (Apis mellifera.

    Directory of Open Access Journals (Sweden)

    Yu Cheng Zhu

    Full Text Available Imidacloprid is the most widely used insecticide in the world. In this study, we used spraying methods to simulate field exposures of bees to formulated imidacloprid (Advise® 2FL alone and binary mixtures with seven pesticides from different classes. Synergistic toxicity was detected from mixtures of Advise (58.6 mg a.i./L imidacloprid+Domark (512.5 mg a.i. /L tetraconazole, Advise+Transform (58.5 mg a.i./L sulfoxaflor, and Advise+Vydate (68 mg a.i./L oxamyl, and mortality was significantly increased by 20%, 15%, and 26% respectively. The mixtures of Advise+Bracket (88.3 mg a.i./L acephate and Advise+Karate (62.2 mg a.i./L L-cyhalothrin showed additive interaction, while Advise+Belay (9.4 mg a.i./L clothianidin and Advise+Roundup (1217.5 mg a.i./L glyphosate had no additive/synergistic interaction. Spraying bees with the mixture of all eight pesticides increased mortality to 100%, significantly higher than all other treatments. Except Bracket which significantly suppressed esterase and acetylcholinesterase (AChE activities, other treatments of Advise-only and mixtures with other pesticides did not suppress enzyme activities significantly, including invertase, glutathione S-transferase (GST, and esterase and AChE. Immunity-related phenoloxidase (PO activities in survivors tended to be more variable among treatments, but mostly still statistically similar to the control. By using specific enzyme inhibitors, we demonstrated that honey bees mainly rely on cytochrome P450 monooxygenases (P450s for detoxifying Advise, while esterases and GSTs play substantially less roles in the detoxification. This study provided valuable information for guiding pesticide selection in premixing and tank mixing in order to alleviate toxicity risk to honey bees. Our findings indicated mixtures of Advise with detoxification-enzyme-inducing pesticides may help bees to detoxify Advise, while toxicity synergists may pose further risk to bees, such as the Bracket which not

  14. Fear and loathing in the benthos: Responses of aquatic insect larvae to the pesticide imidacloprid in the presence of chemical signals of predation risk.

    Science.gov (United States)

    Pestana, João L T; Loureiro, Susana; Baird, Donald J; Soares, Amadeu M V M

    2009-06-28

    The influence of interactions between pesticide exposure and perceived predation risk on the lethal and sub-lethal responses of two aquatic insects was investigated using the pesticide imidacloprid, and a combination of predator-release kairomones from trout and alarm substances from conspecifics. Laboratory experiments examined feeding and respiration rates of the caddisfly Sericostoma vittatum as well as the growth, emergence and respiration rates of the midge Chironomus riparius, exposed to sub-lethal concentrations of imidacloprid. The effects of the two stressors on burrowing behaviour of both species were also assessed. The results show significant effects of environmentally relevant concentrations of imidacloprid on all endpoints studied. Perceived predation risk also elicited sub-lethal effects in C. riparius and S. vittatum, the latter species being less responsive to predation cues. The effects of simultaneous exposure to both types of stressors were assessed using two different approaches: analysis of variance and conceptual models [concentration addition (CA) and independent action (IA)] normally used for the evaluation of contaminant mixture exposure. Both statistical approaches showed no significant interactions on responses in simultaneous exposures in the majority of parameters assessed with only a signification deviation from the reference CA and IA models being found for C. riparius respiration data contrary to the ANOVA results. Exposure to imidacloprid also compromised antipredator behavioural responses of both insect species, with potential negative consequences in terms of mortality from predation in the field. The results obtained demonstrate that natural and anthropogenic stressors can be treated within the same framework providing compatible data for modelling. For an improved interpretation of ecological effects it will be important to expand the mechanistic study of effects of combined exposure to pesticides and perceived predation risk

  15. Use of electroencephalography (EEG) to assess CNS changes produced by pesticides with different modes of action: Effects of permethrin, deltamethrin, fipronil, imidacloprid, carbaryl, and triadimefon

    International Nuclear Information System (INIS)

    Freeborn, Danielle L.; McDaniel, Katherine L.; Moser, Virginia C.; Herr, David W.

    2015-01-01

    The electroencephalogram (EEG) is an apical measure, capable of detecting changes in brain neuronal activity produced by internal or external stimuli. We assessed whether pesticides with different modes of action produced different changes in the EEG of adult male Long–Evans rats. The EEG was recorded using two montages (visual cortex referenced to the cerebellum and to the frontal cortex) in unrestrained rats at the time of peak behavioral effects. Pesticides included: permethrin and deltamethrin (Type I and Type II pyrethroids; 2 h), fipronil (single and repeated doses; phenylpyrazole; 6 h), imidacloprid (neonicotinoid; 2 h), carbaryl (carbamate; 0.5 h), and triadimefon (triazole; 1 h), using dosages that produced approximately an ED 30 or an ED 50 –ED 80 change in motor activity. Permethrin (43, 100 mg/kg) increased amplitudes or areas (delta, alpha, or gamma bands) in the EEG. Deltamethrin (2.5, 5.5 mg/kg) reduced the amplitudes or areas of the delta, theta, alpha, beta, and gamma bands, but the changes were not dose-related. A single treatment with fipronil (25, 50 mg/kg, but not 5, 10 mg/kg) decreased gamma band area. Additional changes in the delta, theta, and gamma bands were observed when fipronil (5, 10 mg/kg) was administered for 14 days. Imidacloprid (50, 100 mg/kg) did not alter the EEG. Carbaryl (10, 50 mg/kg) decreased theta area, and decreased delta and increased beta frequency. Triadimefon (75, 150 mg/kg) produced minimal changes in the EEG. The results show that the EEG is affected differently by approximately equipotent doses of pesticides with different modes of action. - Highlights: • Pesticides with different modes of action have different effects on in vivo rodent EEG. • The EEG was also changed differently after single vs. repeated treatment with fipronil. • The data suggest that EEG may be used as an apical measure for detecting chemical effects on the central nervous system

  16. Use of electroencephalography (EEG) to assess CNS changes produced by pesticides with different modes of action: Effects of permethrin, deltamethrin, fipronil, imidacloprid, carbaryl, and triadimefon

    Energy Technology Data Exchange (ETDEWEB)

    Freeborn, Danielle L., E-mail: Freeborn.danielle@epa.gov; McDaniel, Katherine L., E-mail: McDaniel.kathy@epa.gov; Moser, Virginia C., E-mail: Moser.ginger@epa.gov; Herr, David W., E-mail: Herr.david@epa.gov

    2015-01-15

    The electroencephalogram (EEG) is an apical measure, capable of detecting changes in brain neuronal activity produced by internal or external stimuli. We assessed whether pesticides with different modes of action produced different changes in the EEG of adult male Long–Evans rats. The EEG was recorded using two montages (visual cortex referenced to the cerebellum and to the frontal cortex) in unrestrained rats at the time of peak behavioral effects. Pesticides included: permethrin and deltamethrin (Type I and Type II pyrethroids; 2 h), fipronil (single and repeated doses; phenylpyrazole; 6 h), imidacloprid (neonicotinoid; 2 h), carbaryl (carbamate; 0.5 h), and triadimefon (triazole; 1 h), using dosages that produced approximately an ED{sub 30} or an ED{sub 50}–ED{sub 80} change in motor activity. Permethrin (43, 100 mg/kg) increased amplitudes or areas (delta, alpha, or gamma bands) in the EEG. Deltamethrin (2.5, 5.5 mg/kg) reduced the amplitudes or areas of the delta, theta, alpha, beta, and gamma bands, but the changes were not dose-related. A single treatment with fipronil (25, 50 mg/kg, but not 5, 10 mg/kg) decreased gamma band area. Additional changes in the delta, theta, and gamma bands were observed when fipronil (5, 10 mg/kg) was administered for 14 days. Imidacloprid (50, 100 mg/kg) did not alter the EEG. Carbaryl (10, 50 mg/kg) decreased theta area, and decreased delta and increased beta frequency. Triadimefon (75, 150 mg/kg) produced minimal changes in the EEG. The results show that the EEG is affected differently by approximately equipotent doses of pesticides with different modes of action. - Highlights: • Pesticides with different modes of action have different effects on in vivo rodent EEG. • The EEG was also changed differently after single vs. repeated treatment with fipronil. • The data suggest that EEG may be used as an apical measure for detecting chemical effects on the central nervous system.

  17. Metabolomics to explore imidacloprid induced toxicity in the central nervous system of the freshwater snail

    NARCIS (Netherlands)

    Tufi, S.; Stel, J.M.; de Boer, J.; Lamoree, M.H.; Leonards, P.E.G.

    2015-01-01

    Modern toxicology is seeking new testing methods to better understand toxicological effects. One of the most concerning chemicals is the neonicotinoid pesticide imidacloprid. Although imidacloprid is designed to target insects, recent studies have shown adverse effects on nontarget species.

  18. Imidacloprid adsorption by soils treated with humic substances ...

    African Journals Online (AJOL)

    USER

    2010-03-29

    Mar 29, 2010 ... pesticide under appropriate conditions to decrease pesticide pollution diffusion and probably increase effectiveness of pesticides. Key words: Imidacloprid, soil adsorption, humic acid, fulvic acid. INTRODUCTION. Progressive increase of production and application of chemicals for agriculture as well as for ...

  19. Transcriptome analysis and identification of P450 genes relevant to imidacloprid detoxification in Bradysia odoriphaga

    OpenAIRE

    Chen, Chengyu; Wang, Cuicui; Liu, Ying; Shi, Xueyan; Gao, Xiwu

    2018-01-01

    Pesticide tolerance poses many challenges for pest control, particularly for destructive pests such as Bradysia odoriphaga. Imidacloprid has been used to control B. odoriphaga since 2013, however, imidacloprid resistance in B. odoriphaga has developed in recent years. Identifying actual and potential genes involved in detoxification metabolism of imidacloprid could offer solutions for controlling this insect. In this study, RNA-seq was used to explore differentially expressed genes in B. odor...

  20. Thermodynamics of imidacloprid sorption in Croatian soils

    Science.gov (United States)

    Milin, Čedomila; Broznic, Dalibor

    2015-04-01

    Neonicotinoids are increasingly replacing the organophosphate and methylcarbamate acetylcholinesterase inhibitors which are losing their effectiveness because of selection for resistant pest populations. Imidacloprid is the most important neonicotinoid with low soil persistence, high insecticidal potency and relatively low mammalian toxicity. In Croatia, imidacloprid is most commonly used in olive growing areas, including Istria and Kvarner islands, as an effective means of olive fruit fly infestation control. Sorption-desorption behavior of imidacloprid in six soils collected from five coastal regions in Croatia at 20, 30 and 40°C was investigated using batch equilibrium technique. Isothermal data were applied to Freundlich, Langmuir and Temkin equation, and the thermodynamic parameters ΔH°, ΔG°, ΔS° were calculated. The sorption isotherm curves were of non-linear and may be classified as L-type suggesting a relatively high sorption capacity for imidacloprid. Our results showed that the KFsor values decreased for all the tested soils as the temperature increases, indicating that the temperature strongly influence the sorption. Values of ΔG° were negative (-4.65 to -2.00 kJ/mol) indicating that at all experimental temperatures the interactions of imidacloprid with soils were spontaneous process. The negative and small ΔH° values (-19.79 to -8.89 kJ/mol) were in the range of weak forces, such as H-bonds, consistent with interactions and par¬titioning of the imidacloprid molecules into soil organic matter. The ΔS° values followed the range of -57.12 to -14.51 J/molK, suggesting that imidacloprid molecules lose entropy during transition from the solution phase to soil surface. It was found that imidacloprid desorption from soil was concentration and temperature dependent, i.e. at lower imidacloprid concentrations and temperature, lower desorption percentage occurred. Desorption studies revealed that hysteretic behavior under different temperature

  1. Transport of water, bromide ion, nutrients and the pesticides bentazone and imidacloprid in a cracking, tile drained clay soil at Andelst, the Netherlands

    NARCIS (Netherlands)

    Smelt, J.H.; Hendriks, R.F.A.; Pas, van der L.J.T.; Matser, A.M.; Toorn, van den A.; Oostindie, K.; Dijk-Hooijer, van O.M.; Boesten, J.J.T.I.; Scorza Júnior, R.P.

    2003-01-01

    The aim of this study was to perform a field experiment to collect a high quality data set suitable for validating and improving pesticide leaching models and nutrient leaching models for drained and cracking clay soils. The transport of water, bromide, nutrients and the pesticides bentazone and

  2. Imidacloprid decreases honey bee survival but does not affect the gut microbiome.

    Science.gov (United States)

    Raymann, Kasie; Motta, Erick V S; Girard, Catherine; Riddington, Ian M; Dinser, Jordan A; Moran, Nancy A

    2018-04-20

    Accumulating evidence suggests that pesticides have played a role in the increased rate of honeybee colony loss. One of the most commonly used pesticides in the US is the neonicotinoid imidacloprid. Although the primary mode of action of imidacloprid is the insect nervous system, it has also been shown to cause changes insects' digestive physiology, and alter the microbiota of Drosophila melanogaster larvae. The honey bee gut microbiome plays a major role in bee health. Although many studies have shown that imidacloprid affects honey bee behavior, its impact on the microbiome has not been fully elucidated. Here we investigated the impact of imidacloprid on the gut microbiome composition, survivorship of honey bees, and susceptibility to pathogens. Consistent with other studies, we show that imidacloprid exposure results in elevated mortality of honey bees in the hive and increases susceptibility to infection by pathogens. However, we did not find evidence that imidacloprid affects the gut bacterial community of honey bees. Our in vitro experiments demonstrated that honey bee gut bacteria can grow in the presence of imidacloprid, and we found some evidence that imidacloprid can be metabolized in the bee gut environment. However, none of the individual bee gut bacterial species tested could metabolize imidacloprid, suggesting that the observed metabolism of imidacloprid in vitro bee gut cultures is not caused by the gut bacteria. Overall, our results indicate that imidacloprid causes increased mortality in honey bees, but this mortality does not appear to be linked to the microbiome. Importance Growing evidence suggests that the extensive use of pesticides has played a large role in the increased rate of honey bee colony loss. Despite extensive research on the effects of imidacloprid on honey bees, it is still unknown whether it impacts the community structure of the gut microbiome. Here we investigated the impact of imidacloprid on the gut microbiome composition

  3. Differential Micronuclei Induction in Human Lymphocyte Cultures by Imidacloprid in the Presence of Potassium Nitrate

    Directory of Open Access Journals (Sweden)

    Polychronis Stivaktakis

    2010-01-01

    Full Text Available Humans are exposed to pesticides as a consequence of their application in farming or their persistence in a variety of media, including food, water, air, soil, plants, animals, and smoke. The interaction of pesticides with environmental factors may result in the alteration of their physicochemical properties. Square wave cathodic stripping voltammetry (SW-CSV, a technique that simulates electrodynamically the cellular membrane, is used to investigate whether the presence of potassium nitrate (KNO3 in the culture medium interferes with the genotoxic behavior of imidacloprid. The cytokinesis block micronuclei (CBMN method is used to evaluate imidacloprid's genotoxicity in the absence or presence of KNO3 in the culture medium and, as a consequence, its adsorption by lymphocytes. Comparing micronuclei (MN frequencies in control and imidacloprid-treated blood cell cultures, statistically significant differences were not detected. KNO3 did not induce MN frequencies compared to control. Statistically significant differences in MN frequencies were observed when blood cell cultures were treated with imidacloprid in the presence of increasing concentrations of KNO3. SW-CSV revealed that by increasing KNO3 molarity, imidacloprid's concentration in the culture medium decreased in parallel. This finding indicates that imidacloprid is adsorbed by cellular membranes. The present study suggests a novel role of a harmless environmental factor, such as KNO3, on the genotoxic behavior of a pesticide, such as imidacloprid. KNO3 rendered imidacloprid permeable to lymphocytes, resulting in elevated MN frequencies.

  4. Transcriptome analysis and identification of P450 genes relevant to imidacloprid detoxification in Bradysia odoriphaga.

    Science.gov (United States)

    Chen, Chengyu; Wang, Cuicui; Liu, Ying; Shi, Xueyan; Gao, Xiwu

    2018-02-07

    Pesticide tolerance poses many challenges for pest control, particularly for destructive pests such as Bradysia odoriphaga. Imidacloprid has been used to control B. odoriphaga since 2013, however, imidacloprid resistance in B. odoriphaga has developed in recent years. Identifying actual and potential genes involved in detoxification metabolism of imidacloprid could offer solutions for controlling this insect. In this study, RNA-seq was used to explore differentially expressed genes in B. odoriphaga that respond to imidacloprid treatment. Differential expression data between imidacloprid treatment and the control revealed 281 transcripts (176 with annotations) showing upregulation and 394 transcripts (235 with annotations) showing downregulation. Among them, differential expression levels of seven P450 unigenes were associated with imidacloprid detoxification mechanism, with 4 unigenes that were upregulated and 3 unigenes that were downregulated. The qRT-PCR results of the seven differential expression P450 unigenes after imidacloprid treatment were consistent with RNA-Seq data. Furthermore, oral delivery mediated RNA interference of these four upregulated P450 unigenes followed by an insecticide bioassay significantly increased the mortality of imidacloprid-treated B. odoriphaga. This result indicated that the four upregulated P450s are involved in detoxification of imidacloprid. This study provides a genetic basis for further exploring P450 genes for imidacloprid detoxification in B. odoriphaga.

  5. Neonicotinoid Insecticide Imidacloprid Causes Outbreaks of Spider Mites on Elm Trees in Urban Landscapes

    Science.gov (United States)

    Szczepaniec, Adrianna; Creary, Scott F.; Laskowski, Kate L.; Nyrop, Jan P.; Raupp, Michael J.

    2011-01-01

    Background Attempts to eradicate alien arthropods often require pesticide applications. An effort to remove an alien beetle from Central Park in New York City, USA, resulted in widespread treatments of trees with the neonicotinoid insecticide imidacloprid. Imidacloprid's systemic activity and mode of entry via roots or trunk injections reduce risk of environmental contamination and limit exposure of non-target organisms to pesticide residues. However, unexpected outbreaks of a formerly innocuous herbivore, Tetranychus schoenei (Acari: Tetranychidae), followed imidacloprid applications to elms in Central Park. This undesirable outcome necessitated an assessment of imidacloprid's impact on communities of arthropods, its effects on predators, and enhancement of the performance of T. schoenei. Methodology/Principal Findings By sampling arthropods in elm canopies over three years in two locations, we document changes in the structure of communities following applications of imidacloprid. Differences in community structure were mostly attributable to increases in the abundance of T. schoenei on elms treated with imidacloprid. In laboratory experiments, predators of T. schoenei were poisoned through ingestion of prey exposed to imidacloprid. Imidacloprid's proclivity to elevate fecundity of T. schoenei also contributed to their elevated densities on treated elms. Conclusions/Significance This is the first study to report the effects of pesticide applications on the arthropod communities in urban landscapes and demonstrate that imidacloprid increases spider mite fecundity through a plant-mediated mechanism. Laboratory experiments provide evidence that imidacloprid debilitates insect predators of spider mites suggesting that relaxation of top-down regulation combined with enhanced reproduction promoted a non-target herbivore to pest status. With global commerce accelerating the incidence of arthropod invasions, prophylactic applications of pesticides play a major role in

  6. Macro-Invertebrate Decline in Surface Water Polluted with Imidacloprid: A Rebuttal and Some New Analyses

    Science.gov (United States)

    Vijver, Martina G.; van den Brink, Paul J.

    2014-01-01

    Imidacloprid, the largest selling insecticide in the world, has received particular attention from scientists, policymakers and industries due to its potential toxicity to bees and aquatic organisms. The decline of aquatic macro-invertebrates due to imidacloprid concentrations in the Dutch surface waters was hypothesised in a recent paper by Van Dijk, Van Staalduinen and Van der Sluijs (PLOS ONE, May 2013). Although we do not disagree with imidacloprid's inherent toxicity to aquatic organisms, we have fundamental concerns regarding the way the data were analysed and interpreted. Here, we demonstrate that the underlying toxicity of imidacloprid in the field situation cannot be understood except in the context of other co-occurring pesticides. Although we agree with Van Dijk and co-workers that effects of imidacloprid can emerge between 13 and 67 ng/L we use a different line of evidence. We present an alternative approach to link imidacloprid concentrations and biological data. We analysed the national set of chemical monitoring data of the year 2009 to estimate the relative contribution of imidacloprid compared to other pesticides in relation to environmental quality target and chronic ecotoxicity threshold exceedances. Moreover, we assessed the relative impact of imidacloprid on the pesticide-induced potential affected fractions of the aquatic communities. We conclude that by choosing to test a starting hypothesis using insufficient data on chemistry and biology that are difficult to link, and by ignoring potential collinear effects of other pesticides present in Dutch surface waters Van Dijk and co-workers do not provide direct evidence that reduced taxon richness and abundance of macroinvertebrates can be attributed to the presence of imidacloprid only. Using a different line of evidence we expect ecological effects of imidacloprid at some of the exposure profiles measured in 2009 in the surface waters of the Netherlands. PMID:24587069

  7. Macro-invertebrate decline in surface water polluted with imidacloprid: a rebuttal and some new analyses.

    Directory of Open Access Journals (Sweden)

    Martina G Vijver

    Full Text Available Imidacloprid, the largest selling insecticide in the world, has received particular attention from scientists, policymakers and industries due to its potential toxicity to bees and aquatic organisms. The decline of aquatic macro-invertebrates due to imidacloprid concentrations in the Dutch surface waters was hypothesised in a recent paper by Van Dijk, Van Staalduinen and Van der Sluijs (PLOS ONE, May 2013. Although we do not disagree with imidacloprid's inherent toxicity to aquatic organisms, we have fundamental concerns regarding the way the data were analysed and interpreted. Here, we demonstrate that the underlying toxicity of imidacloprid in the field situation cannot be understood except in the context of other co-occurring pesticides. Although we agree with Van Dijk and co-workers that effects of imidacloprid can emerge between 13 and 67 ng/L we use a different line of evidence. We present an alternative approach to link imidacloprid concentrations and biological data. We analysed the national set of chemical monitoring data of the year 2009 to estimate the relative contribution of imidacloprid compared to other pesticides in relation to environmental quality target and chronic ecotoxicity threshold exceedances. Moreover, we assessed the relative impact of imidacloprid on the pesticide-induced potential affected fractions of the aquatic communities. We conclude that by choosing to test a starting hypothesis using insufficient data on chemistry and biology that are difficult to link, and by ignoring potential collinear effects of other pesticides present in Dutch surface waters Van Dijk and co-workers do not provide direct evidence that reduced taxon richness and abundance of macroinvertebrates can be attributed to the presence of imidacloprid only. Using a different line of evidence we expect ecological effects of imidacloprid at some of the exposure profiles measured in 2009 in the surface waters of the Netherlands.

  8. Pesticides

    Science.gov (United States)

    ... stores. Exposure to pesticides can happen in the workplace, through foods that are eaten, and in the ... or place bait in areas where children or pets have access. DO NOT stock up on pesticides, ...

  9. Imidacloprid adsorption by soils treated with humic substances ...

    African Journals Online (AJOL)

    The mobility of a pesticide in soil is determined by the extent and strength of sorption, which is influenced by either the existing soil humus or exogenous humic substances. Exogenous humic acids (HAs) were added to soil to enhance the amount of soil organic carbon (SOC) by 2.5, 5.0 and 10.0 g kg-1. Imidacloprid sorption ...

  10. Use of Electroencephalography (EEG) to Assess CNS Changes Produced by Pesticides with different Modes of Action: Effects of Permethrin, Deltamethrin, Fipronil, Imidacloprid, Carbaryl, and Triadimefon

    Science.gov (United States)

    The electroencephalogram (EEG) is an apical measure, capable of detecting changes in brain neuronal activity produced by internal or external stimuli. We assessed whether pesticides with different modes of action produced different changes in the EEG of adult male Long-Evans rats...

  11. Imidacloprid alters foraging and decreases bee avoidance of predators.

    Directory of Open Access Journals (Sweden)

    Ken Tan

    Full Text Available Concern is growing over the effects of neonicotinoid pesticides, which can impair honey bee cognition. We provide the first demonstration that sublethal concentrations of imidacloprid can harm honey bee decision-making about danger by significantly increasing the probability of a bee visiting a dangerous food source. Apis cerana is a native bee that is an important pollinator of agricultural crops and native plants in Asia. When foraging on nectar containing 40 µg/L (34 ppb imidacloprid, honey bees (Apis cerana showed no aversion to a feeder with a hornet predator, and 1.8 fold more bees chose the dangerous feeder as compared to control bees. Control bees exhibited significant predator avoidance. We also give the first evidence that foraging by A. cerana workers can be inhibited by sublethal concentrations of the pesticide, imidacloprid, which is widely used in Asia. Compared to bees collecting uncontaminated nectar, 23% fewer foragers returned to collect the nectar with 40 µg/L imidacloprid. Bees that did return respectively collected 46% and 63% less nectar containing 20 µg/L and 40 µg/L imidacloprid. These results suggest that the effects of neonicotinoids on honey bee decision-making and other advanced cognitive functions should be explored. Moreover, research should extend beyond the classic model, the European honey bee (A. mellifera, to other important bee species.

  12. Imidacloprid Alters Foraging and Decreases Bee Avoidance of Predators

    Science.gov (United States)

    Tan, Ken; Chen, Weiwen; Dong, Shihao; Liu, Xiwen; Wang, Yuchong; Nieh, James C.

    2014-01-01

    Concern is growing over the effects of neonicotinoid pesticides, which can impair honey bee cognition. We provide the first demonstration that sublethal concentrations of imidacloprid can harm honey bee decision-making about danger by significantly increasing the probability of a bee visiting a dangerous food source. Apis cerana is a native bee that is an important pollinator of agricultural crops and native plants in Asia. When foraging on nectar containing 40 µg/L (34 ppb) imidacloprid, honey bees (Apis cerana) showed no aversion to a feeder with a hornet predator, and 1.8 fold more bees chose the dangerous feeder as compared to control bees. Control bees exhibited significant predator avoidance. We also give the first evidence that foraging by A. cerana workers can be inhibited by sublethal concentrations of the pesticide, imidacloprid, which is widely used in Asia. Compared to bees collecting uncontaminated nectar, 23% fewer foragers returned to collect the nectar with 40 µg/L imidacloprid. Bees that did return respectively collected 46% and 63% less nectar containing 20 µg/L and 40 µg/L imidacloprid. These results suggest that the effects of neonicotinoids on honey bee decision-making and other advanced cognitive functions should be explored. Moreover, research should extend beyond the classic model, the European honey bee (A. mellifera), to other important bee species. PMID:25025334

  13. Imidacloprid poisoning: a modern foe

    OpenAIRE

    Raminderpal Singh Sibia; Amith Kumar S; Sandipkumar Radheshyam Dhoot

    2014-01-01

    Imidacloprid is a relatively new insecticide in the chloronicotinyl nitroguanidine class. Imidacloprid has a wide variety of uses; it is used on cotton and vegetable crops, turf grass and ornamental plant products, in indoor and outdoor cockroach control products and in termite control products. Imidacloprid acts as a competitive inhibitor at nicotinic acetylcholine receptors in the nervous system resulting in impairment of normal nerve function. Scientific literature on human imidacloprid po...

  14. Imidacloprid induced histomorphological changes and expression of TLR-4 and TNFα in lung.

    Science.gov (United States)

    Pandit, Arif Ahmad; Choudhary, Shanti; Ramneek; Singh, Baljit; Sethi, R S

    2016-07-01

    The imidacloprid is used worldwide as a pesticide and has been linked with endocrine disturbances and reduced pulmonary function. However, effects of imidacloprid alone or in combination with microbial molecules on lungs are not fully understood. Because the pulmonary effects of interactions of endotoxins with imidacloprid are unknown, we designed a study to investigate that in a mouse model. Mice (N=14) were given imidacloprid orally @ 1/20(th) of LD50 dissolved in corn oil for 30days. After the treatments, six animals from each group were challenged with E. coli lipopolysaccharide (LPS) @ 80μg/animal via intranasal route and remaining animals were challenged with normal saline solution @ 80μl/animal via same route. Imidacloprid in combination with LPS led to significant increase in total cell and neutrophil counts in BAL and peripheral blood. Semi-quantitative histopathology revealed lung injury in imidacloprid treatment group and injury was more marked in animal receiving both imidacloprid and LPS. There was no change (pimidacloprid alone or in combination with LPS. The data show that imidacloprid alone or in combination with LPS resulted changes in lung morphology without altering the expression of TLR-4 and TNF-α. Furthermore, pre-treatment with imidacloprid didn't affect response to LPS. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Removal of Two Neonicotinoid Insecticides and Mineralization of 14C-Imidacloprid in Biomixtures.

    Science.gov (United States)

    Rodríguez-Castillo, Gabriel; Molina-Rodríguez, Marvin; Pérez-Villanueva, Marta; Masís-Mora, Mario; Rodríguez-Rodríguez, Carlos E

    2018-06-01

    Environmental contamination with neonicotinoid insecticides represents an issue of wide concern due to their negative effects on pollinators. The goal of this work was to evaluate the potential use of biomixtures employed in biopurification systems (BPS) to remove two neonicotinoid pesticides, imidacloprid and thiamethoxam, from wastewater of agricultural origin. The removal was assayed by quantification of the parent compounds and the detection of putative transformation products of imidacloprid by means of LC-MS/MS, and mineralization of radiolabeled imidacloprid. Two biomixtures (B1, B2) were prepared using coconut fiber, compost and two soils pre-exposed to imidacloprid (volumetric composition 50:25:25). After spiking of neonicotinoids and 228 days of treatment, the removal ranged from 22.3%-30.3% and 38.6%-43.7% for imidacloprid and thiamethoxam, respectively. Transformation products imidacloprid-urea, desnitro-imidacloprid and desnitro-olefin-imidacloprid were detected in both biomixtures. The mineralization of 14 C-imidacloprid revealed DT50 (mineralization half-lives) values of 3466 and 7702 days in the biomixtures B1 and B2, respectively, markedly lower than those in the soil used in their preparation (8667 and 9902 days, respectively). As demonstrated by these findings, the high persistence of these compounds in the BPS suggests that additional biological (or physicochemical) approaches should be explored in order to decrease the impact of neonicotinoid-containing wastewater of agricultural origin.

  16. Lethal and sublethal effects of imidacloprid on Osmia lignaria and clothianidin on Megachile rotundata (Hymenoptera: Megachilidae).

    Science.gov (United States)

    Abbott, V A; Nadeau, J L; Higo, H A; Winston, M L

    2008-06-01

    We examined lethal and sublethal effects of imidacloprid on Osmia lignaria (Cresson) and clothianidin on Megachile rotundata (F.) (Hymenoptera: Megachilidae). We also made progress toward developing reliable methodology for testing pesticides on wild bees for use in pesticide registration by using field and laboratory experiments. Bee larvae were exposed to control, low (3 or 6 ppb), intermediate (30 ppb), or high (300 ppb) doses of either imidacloprid or clothianidin in pollen. Field experiments on both bee species involved injecting the pollen provisions with the corresponding pesticide. Only O. lignaria was used for the laboratory experiments, which entailed both injecting the bee's own pollen provisions and replacing the pollen provision with a preblended pollen mixture containing imidacloprid. Larval development, emergence, weight, and mortality were monitored and analyzed. There were no lethal effects found for either imidacloprid or clothianidin on O. lignaria and M. rotundata. Minor sublethal effects were detected on larval development for O. lignaria, with greater developmental time at the intermediate (30 ppb) and high doses (300 ppb) of imidacloprid. No similar sublethal effects were found with clothianidin on M. rotundata. We were successful in creating methodology for pesticide testing on O. lignaria and M. rotundata; however, these methods can be improved upon to create a more robust test. We also identified several parameters and developmental stages for observing sublethal effects. The detection of sublethal effects demonstrates the importance of testing new pesticides on wild pollinators before registration.

  17. Neurobehavioral impairments caused by developmental imidacloprid exposure in zebrafish.

    Science.gov (United States)

    Crosby, Emily B; Bailey, Jordan M; Oliveri, Anthony N; Levin, Edward D

    2015-01-01

    Neonicotinoid insecticides are becoming more widely applied as organophosphate (OP) insecticides are decreasing in use. Because of their relative specificity to insect nicotinic receptors, they are thought to have reduced risk of neurotoxicity in vertebrates. However, there is scant published literature concerning the neurobehavioral effects of developmental exposure of vertebrates to neonicotinoids. Using zebrafish, we investigated the neurobehavioral effects of developmental exposure to imidacloprid, a prototypic neonicotinoid pesticide. Nicotine was also administered for comparison. Zebrafish were exposed via immersion in aqueous solutions containing 45 μM or 60 μM of imidacloprid or nicotine (or vehicle control) from 4h to 5d post fertilization. The functional effects of developmental exposure to both imidacloprid and nicotine were assessed in larvae using an activity assay and during adolescence and adulthood using a battery of neurobehavioral assays, including assessment of sensorimotor response and habituation in a tactile startle test, novel tank swimming, and shoaling behavior. In larvae, developmental imidacloprid exposure at both doses significantly decreased swimming activity. The 5D strains of zebrafish were more sensitive to both nicotine and imidacloprid than the AB* strain. In adolescent and adult fish, developmental exposure to imidacloprid significantly decreased novel tank exploration and increased sensorimotor response to startle stimuli. While nicotine did not affect novel tank swimming, it increased sensorimotor response to startle stimuli at the low dose. No effects of either compound were found on shoaling behavior or habituation to a startling stimulus. Early developmental exposure to imidacloprid has both early-life and persisting effects on neurobehavioral function in zebrafish. Its developmental neurotoxicity should be further investigated. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Excess Imidacloprid Exposure Causes the Heart Tube Malformation of Chick Embryos.

    Science.gov (United States)

    Gao, Lin-Rui; Li, Shuai; Zhang, Jing; Liang, Chang; Chen, En-Ni; Zhang, Shi-Yao; Chuai, Manli; Bao, Yong-Ping; Wang, Guang; Yang, Xuesong

    2016-11-30

    As a neonicotinoid pesticide, imidacloprid is widely used to control sucking insects on agricultural planting and fleas on domestic animals. However, the extent to which imidacloprid exposure has an influence on cardiogensis in early embryogenesis is still poorly understood. In vertebrates, the heart is the first organ to be formed. In this study, to address whether imidacloprid exposure affects early heart development, the early chick embryo has been used as an experimental model because of its accessibility at its early developmental stage. The results demonstrate that exposure of the early chick embryo to imidacloprid caused malformation of heart tube. Furthermore, the data reveal that down-regulation of GATA4, NKX2.5, and BMP4 and up-regulation of Wnt3a led to aberrant cardiomyocyte differentiation. In addition, imidacloprid exposure interfered with basement membrane breakdown, E-cadherin/laminin expression, and mesoderm formation during the epithelial-mesenchymal transition (EMT) in gastrula chick embryos. Finally, the DiI-labeled cell migration trajectory indicated that imidacloprid restricted the cell migration of cardiac progenitors to primary heart field in gastrula chick embryos. A similar observation was also obtained from the cell migration assay of scratch wounds in vitro. Additionally, imidacloprid exposure negatively affected the cytoskeleton structure and expression of corresponding adhesion molecules. Taken together, these results reveal that the improper EMT, cardiac progenitor migration, and differentiation are responsible for imidacloprid exposure-induced malformation of heart tube during chick embryo development.

  19. Imidacloprid Exposure Suppresses Neural Crest Cells Generation during Early Chick Embryo Development.

    Science.gov (United States)

    Wang, Chao-Jie; Wang, Guang; Wang, Xiao-Yu; Liu, Meng; Chuai, Manli; Lee, Kenneth Ka Ho; He, Xiao-Song; Lu, Da-Xiang; Yang, Xuesong

    2016-06-15

    Imidacloprid is a neonicotinoid pesticide that is widely used in the control pests found on crops and fleas on pets. However, it is still unclear whether imidacloprid exposure could affect early embryo development-despite some studies having been conducted on the gametes. In this study, we demonstrated that imidacloprid exposure could lead to abnormal craniofacial osteogenesis in the developing chick embryo. Cranial neural crest cells (NCCs) are the progenitor cells of the chick cranial skull. We found that the imidacloprid exposure retards the development of gastrulating chick embryos. HNK-1, PAX7, and Ap-2α immunohistological stainings indicated that cranial NCCs generation was inhibited after imidacloprid exposure. Double immunofluorescent staining (Ap-2α and PHIS3 or PAX7 and c-Caspase3) revealed that imidacloprid exposure inhibited both NCC proliferation and apoptosis. In addition, it inhibited NCCs production by repressing Msx1 and BMP4 expression in the developing neural tube and by altering expression of EMT-related adhesion molecules (Cad6B, E-Cadherin, and N-cadherin) in the developing neural crests. We also determined that imidacloprid exposure suppressed cranial NCCs migration and their ability to differentiate. In sum, we have provided experimental evidence that imidacloprid exposure during embryogenesis disrupts NCCs development, which in turn causes defective cranial bone development.

  20. Agro-waste biosorbents: Effect of physico-chemical properties on atrazine and imidacloprid sorption.

    Science.gov (United States)

    Mandal, Abhishek; Singh, Neera; Nain, Lata

    2017-09-02

    Low cost agro-waste biosorbents namely eucalyptus bark (EB), corn cob (CC), bamboo chips (BC), rice straw (RS) and rice husk (RH) were characterized and used to study atrazine and imidacloprid sorption. Adsorption studies suggested that biosorbents greatly varied in their pesticide sorption behaviour. The EB was the best biosorbent to sorb both atrazine and imidacloprid with K F values of 169.9 and 85.71, respectively. The adsorption isotherm were nonlinear in nature with slope (1/n) values imidacloprid sorption parameter [K F .(1/n)] with the physicochemical properties of the biosorbents suggested that atrazine adsorption correlated significantly to the aromaticity, polarity, surface area, fractal dimension, lacunarity and relative C-O band intensity parameters of biosorbents. Probably, both physisorption and electrostatic interactions were responsible for the pesticide sorption. The eucalyptus bark can be exploited as low cost adsorbent for the removal of these pesticides as well as a component of on-farm biopurification systems.

  1. Imidacloprid toxicity impairs spatial memory of echolocation bats through neural apoptosis in hippocampal CA1 and medial entorhinal cortex areas.

    Science.gov (United States)

    Hsiao, Chun-Jen; Lin, Ching-Lung; Lin, Tian-Yu; Wang, Sheue-Er; Wu, Chung-Hsin

    2016-04-13

    It has been reported that the decimation of honey bees was because of pesticides of imidacloprid. The imidacloprid is a wildly used neonicotinoid insecticide. However, whether imidacloprid toxicity interferes with the spatial memory of echolocation bats is still unclear. Thus, we compared the spatial memory of Formosan leaf-nosed bats, Hipposideros terasensis, before and after chronic treatment with a low dose of imidacloprid. We observed that stereotyped flight patterns of echolocation bats that received chronic imidacloprid treatment were quite different from their originally learned paths. We further found that neural apoptosis in hippocampal CA1 and medial entorhinal cortex areas of echolocation bats that received imidacloprid treatment was significantly enhanced in comparison with echolocation bats that received sham treatment. Thus, we suggest that imidacloprid toxicity may interfere with the spatial memory of echolocation bats through neural apoptosis in hippocampal CA1 and medial entorhinal cortex areas. The results provide direct evidence that pesticide toxicity causes a spatial memory disorder in echolocation bats. This implies that agricultural pesticides may pose severe threats to the survival of echolocation bats.

  2. Starvation and Imidacloprid Exposure Influence Immune Response by Anoplophora glabripennis (Coleoptera: Cerambycidae) to a Fungal Pathogen.

    Science.gov (United States)

    Fisher, Joanna J; Castrillo, Louela A; Donzelli, Bruno G G; Hajek, Ann E

    2017-08-01

    In several insect systems, fungal entomopathogens synergize with neonicotinoid insecticides which results in accelerated host death. Using the Asian longhorned beetle, Anoplophora glabripennis (Motschulsky), an invasive woodborer inadvertently introduced into North America and Europe, we investigated potential mechanisms in the synergy between the entomopathogenic fungus Metarhizium brunneum Petch and the insecticide imidacloprid. A potential mechanism underlying this synergy could be imidacloprid's ability to prevent feeding shortly after administration. We investigated whether starvation would have an impact similar to imidacloprid exposure on the mortality of fungal-inoculated beetles. Using real-time PCR to quantify fungal load in inoculated beetles, we determined how starvation and pesticide exposure impacted beetles' ability to tolerate or resist a fungal infection. The effect of starvation and pesticide exposure on the encapsulation and melanization immune responses of the beetles was also quantified. Starvation had a similar impact on the survival of M. brunneum-inoculated beetles compared to imidacloprid exposure. The synergy, however, was not completely due to starvation, as imidacloprid reduced the beetles' melanotic encapsulation response and capsule area, while starvation did not significantly reduce these immune responses. Our results suggest that there are multiple interacting mechanisms involved in the synergy between M. brunneum and imidacloprid. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  3. Structural and functional responses of benthic invertebrates to imidacloprid in outdoor stream mesocosms

    International Nuclear Information System (INIS)

    Pestana, J.L.T.; Alexander, A.C.; Culp, J.M.; Baird, D.J.; Cessna, A.J.; Soares, A.M.V.M.

    2009-01-01

    Structural and functional responses of a benthic macroinvertebrate assemblage to pulses of the insecticide imidacloprid were assessed in outdoor stream mesocosms. Imidacloprid pulses reduced invertebrate abundance and community diversity in imidacloprid-dosed streams compared to control streams. These results correlated well with effects of imidacloprid on leaf litter decomposition and feeding rates of Pteronarcys comstocki, a stonefly, in artificial streams. Reductions in oxygen consumption of stoneflies exposed to imidacloprid were also observed in laboratory experiments. Our findings suggest that leaf litter degradation and single species responses can be sensitive ecotoxicological endpoints that can be used as early warning indicators and biomonitoring tools for pesticide contamination. The data generated illustrates the value of mesocosm experiments in environmental assessment and how the consideration of functional and structural endpoints of natural communities together with in situ single species bioassays can improve the evaluation and prediction of pesticide effects on stream ecosystems. - Combining organism-level responses with community-level processes for the evaluation and prediction of pesticide effects on stream ecosystems.

  4. Structural and functional responses of benthic invertebrates to imidacloprid in outdoor stream mesocosms

    Energy Technology Data Exchange (ETDEWEB)

    Pestana, J.L.T., E-mail: jpestana@ua.p [CESAM and Departamento de Biologia, Universidade de Aveiro, Campus Universitario de Santiago, 3810-193 Aveiro (Portugal); Environment Canada at Canadian Rivers Institute, Department of Biology, University of New Brunswick, 10 Bailey Drive, Fredericton, NB (Canada); Alexander, A.C., E-mail: alexa.alexander@unb.c [Environment Canada at Canadian Rivers Institute, Department of Biology, University of New Brunswick, 10 Bailey Drive, Fredericton, NB (Canada); Culp, J.M., E-mail: jculp@unb.c [Environment Canada at Canadian Rivers Institute, Department of Biology, University of New Brunswick, 10 Bailey Drive, Fredericton, NB (Canada); Baird, D.J., E-mail: djbaird@unb.c [Environment Canada at Canadian Rivers Institute, Department of Biology, University of New Brunswick, 10 Bailey Drive, Fredericton, NB (Canada); Cessna, A.J., E-mail: asoares@ua.p [Environment Canada, National Hydrology Research Centre, 11 Innovation Boulevard, Saskatoon, SK (Canada); Soares, A.M.V.M., E-mail: asoares@ua.p [CESAM and Departamento de Biologia, Universidade de Aveiro, Campus Universitario de Santiago, 3810-193 Aveiro (Portugal)

    2009-08-15

    Structural and functional responses of a benthic macroinvertebrate assemblage to pulses of the insecticide imidacloprid were assessed in outdoor stream mesocosms. Imidacloprid pulses reduced invertebrate abundance and community diversity in imidacloprid-dosed streams compared to control streams. These results correlated well with effects of imidacloprid on leaf litter decomposition and feeding rates of Pteronarcys comstocki, a stonefly, in artificial streams. Reductions in oxygen consumption of stoneflies exposed to imidacloprid were also observed in laboratory experiments. Our findings suggest that leaf litter degradation and single species responses can be sensitive ecotoxicological endpoints that can be used as early warning indicators and biomonitoring tools for pesticide contamination. The data generated illustrates the value of mesocosm experiments in environmental assessment and how the consideration of functional and structural endpoints of natural communities together with in situ single species bioassays can improve the evaluation and prediction of pesticide effects on stream ecosystems. - Combining organism-level responses with community-level processes for the evaluation and prediction of pesticide effects on stream ecosystems.

  5. 75 FR 22245 - Imidacloprid; Pesticide Tolerances

    Science.gov (United States)

    2010-04-28

    ... toxicity/carcinogenicity study. Body weight decrements were noted in the rat and/or mouse chronic and... study has indicated the possibility of an effect of concern occurring as a result of a 1-day or single... Data Almonds http://www.epa.gov/oppefed1/models/water/index.htm . Based on the First Index Reservoir...

  6. Evidence for the microbial degradation of imidacloprid in soils of Cameron Highlands

    Directory of Open Access Journals (Sweden)

    Nasrin Sabourmoghaddam

    2015-06-01

    Full Text Available Imidacloprid (1-[(6-chloro-3-pyridinylmethyl]-N-nitro-2-imidazolidinimine, with a novel mode of action is a recent systemic and contact insecticide with high activity against a wide range of pests. Continuous dispersion of this pesticide in the environment and its stability in soil results in environmental pollution which demands remediation. The present research was attempted to isolate and characterize imidacloprid degrading bacteria from vegetable farms of Cameron Highlands in Malaysia. The degradation ability of the isolates was tested in minimal salt medium (MSM for a duration of 25 days and the selected strains were characterized based on their biochemical and molecular characteristics. Levels of imidacloprid in MSM medium were analyzed by high performance liquid chromatography (HPLC. Among 50 soil bacterial isolates Bacillus sp., Brevibacterium sp., Pseudomonas putida F1, Bacillus subtilis and Rhizobium sp. were able to degrade 25.36–45.48% of the initial amount of imidacloprid at the concentration of 25 mg L−1 in C limited media. Brevibacterium sp. was isolated from organic farms that had never been exposed to imidacloprid while the other farms had previously been exposed to different levels of imidacloprid. All bacteria introduced in this study were among the first reports of imidacloprid degrading isolates in C limited media from tropical soil. Therefore, the results of this study demonstrate the effectiveness of using soil bacteria for microbial degradation of imidacloprid. These findings suggest that these strains may be promising candidates for bioremediation of imidacloprid-contaminated soils.

  7. Environmental risk limits for imidacloprid

    NARCIS (Netherlands)

    Posthuma-Doodeman CJAM; SEC

    2008-01-01

    Dit rapport geeft milieurisicogrenzen voor het insecticide imidacloprid in water. Milieurisicogrenzen zijn de technisch-wetenschappelijke advieswaarden voor de uiteindelijke milieukwaliteitsnormen in Nederland. De milieurisicogrenzen zijn afgeleid volgens de methodiek die is voorgeschreven

  8. Programmed Cell Death in the Honey Bee (Apis mellifera) (Hymenoptera: Apidae) Worker Brain Induced by Imidacloprid.

    Science.gov (United States)

    Wu, Yan-Yan; Zhou, Ting; Wang, Qiang; Dai, Ping-Li; Xu, Shu-Fa; Jia, Hui-Ru; Wang, Xing

    2015-08-01

    Honey bees are at an unavoidable risk of exposure to neonicotinoid pesticides, which are used worldwide. Compared with the well-studied roles of these pesticides in nontarget site (including midgut, ovary, or salivary glands), little has been reported in the target sites, the brain. In the current study, laboratory-reared adult worker honey bees (Apis mellifera L.) were treated with sublethal doses of imidacloprid. Neuronal apoptosis was detected using the TUNEL technique for DNA labeling. We observed significantly increased apoptotic markers in dose- and time-dependent manners in brains of bees exposed to imidacloprid. Neuronal activated caspase-3 and mRNA levels of caspase-1, as detected by immunofluorescence and real-time quantitative PCR, respectively, were significantly increased, suggesting that sublethal doses of imidacloprid may induce the caspase-dependent apoptotic pathway. Additionally, the overlap of apoptosis and autophagy in neurons was confirmed by transmission electron microscopy. It further suggests that a relationship exists between neurotoxicity and behavioral changes induced by sublethal doses of imidacloprid, and that there is a need to determine reasonable limits for imidacloprid application in the field to protect pollinators. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. Distributions of imidacloprid, imidacloprid-olefin and imidacloprid-urea in green plant tissues and roots of rapeseed (Brassica napus) from artificially contaminated potting soil.

    Science.gov (United States)

    Seifrtova, Marcela; Halesova, Tatana; Sulcova, Klara; Riddellova, Katerina; Erban, Tomas

    2017-05-01

    Imidacloprid-urea is the primary imidacloprid soil metabolite, whereas imidacloprid-olefin is the main plant-relevant metabolite and is more toxic to insects than imidacloprid. We artificially contaminated potting soil and used quantitative UHPLC-QqQ-MS/MS to determine the imidacloprid, imidacloprid-olefin and imidacloprid-urea distributions in rapeseed green plant tissues and roots after 4 weeks of exposure. In soil, the imidacloprid/imidacloprid-urea molar ratios decreased similarly after the 250 and 2500 µg kg -1 imidacloprid treatments. The imidacloprid/imidacloprid-urea molar ratios in the root and soil were similar, whereas in the green plant tissue, imidacloprid-urea increased more than twofold compared with the root. Although imidacloprid-olefin was prevalent in the green plant tissues, with imidacloprid/imidacloprid-olefin molar ratios of 2.24 and 1.47 for the 250 and 2500 µg kg -1 treatments respectively, it was not detected in the root. However, imidacloprid-olefin was detected in the soil after the 2500 µg kg -1 imidacloprid treatment. Significant proportions of imidacloprid-olefin and imidacloprid-urea in green plant tissues were demonstrated. The greater imidacloprid supply increased the imidacloprid-olefin/imidacloprid molar ratio in the green plant tissues. The absence of imidacloprid-olefin in the root excluded its retransport from leaves. The similar imidacloprid/imidacloprid-urea ratios in the soil and root indicated that the root serves primarily for transporting these substances. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  10. Determination of Pesticides Residues in Cucumbers Grown in Greenhouse and the Effect of Some Procedures on Their Residues.

    Science.gov (United States)

    Leili, Mostafa; Pirmoghani, Amin; Samadi, Mohammad Taghi; Shokoohi, Reza; Roshanaei, Ghodratollah; Poormohammadi, Ali

    2016-11-01

    The objective of this study was to determine the residual concentrations of ethion and imidacloprid in cucumbers grown in greenhouse. The effect of some simple processing procedures on both ethion and imidacloprid residues were also studied. Ten active greenhouses that produce cucumber were randomly selected. Ethion and imidacloprid as the most widely used pesticides were measured in cucumber samples of studied greenhouses. Moreover, the effect of storing, washing, and peeling as simple processing procedures on both ethion and imidacloprid residues were investigated. One hour after pesticide application; the maximum residue levels (MRLs) of ethion and imidacloprid were higher than that of Codex standard level. One day after pesticide application, the levels of pesticides were decreased about 35 and 31% for ethion and imidacloprid, respectively, which still were higher than the MRL. Washing procedure led to about 51 and 42.5% loss in ethion and imidacloprid residues, respectively. Peeling procedure also led to highest loss of 93.4 and 63.7% in ethion and imidacloprid residues, respectively. The recovery for both target analytes was in the range between 88 and 102%. The residue values in collected samples one hour after pesticides application were higher than standard value. The storing, washing, and peeling procedures lead to the decrease of pesticide residues in greenhouse cucumbers. Among them, the peeling procedure has the greatest impact on residual reduction. Therefore, these procedures can be used as simple and effective processing techniques for reducing and removing pesticides from greenhouse products before their consumption.

  11. Controlled release of isoproturon, imidacloprid, and cyromazine from alginate-bentonite-activated carbon formulations.

    Science.gov (United States)

    Garrido-Herrera, F J; Gonzalez-Pradas, E; Fernandez-Pérez, M

    2006-12-27

    Different alginate-based systems of isoproturon, imidacloprid, and cyromazine have been investigated in order to obtain controlled release (CR) properties. The basic formulation [sodium alginate (1.50%), pesticide (0.30%), and water] was modified using different amounts of bentonite and activated carbon. The higher values of encapsulation efficiency corresponded to those formulations prepared with higher percentages of activated carbon, showing higher encapsulation efficiency values for isoproturon and imidacloprid than for cyromazine, which has a higher water solubility. The kinetic experiments of imidacloprid/isoproturon release in water have shown us that the release rate is higher in imidacloprid systems than in those prepared with isoproturon. Moreover, it can be deduced that the use of bentonite and/or activated carbon sorbents reduces the release rate of the isoproturon and imidacloprid in comparison with the technical product and with alginate formulation without modifying agents. The highest decrease in release rate corresponds to the formulations prepared with the highest percentage of activated carbon. The water uptake, permeability, and time taken for 50% of the active ingredient to be released into water, T50, were calculated to compare the formulations. On the basis of a parameter of an empirical equation used to fit the pesticide release data, the release of isoproturon and imidacloprid from the various formulations into water is controlled by a diffusion mechanism. The sorption capacity of the sorbents and the permeability of the formulations were the most important factors modulating pesticide release. Finally, a linear correlation of the T50 values and the content of activated carbon in formulations were obtained.

  12. Effect of paste processing on residue levels of imidacloprid, pyraclostrobin, azoxystrobin and fipronil in winter jujube.

    Science.gov (United States)

    Peng, Wei; Zhao, Liuwei; Liu, Fengmao; Xue, Jiaying; Li, Huichen; Shi, Kaiwei

    2014-01-01

    The changes of imidacloprid, pyraclostrobin, azoxystrobin and fipronil residues were studied to investigate the carryover of pesticide residues in winter jujube during paste processing. A multi-residue analytical method for winter jujube was developed based on the QuEChERS approach. The recoveries for the pesticides were between 87.5% and 116.2%. LODs ranged from 0.002 to 0.1 mg kg(-1). The processing factor (Pf) is defined as the ratio of pesticide residue concentration in the paste to that in winter jujube. Pf was higher than 1 for the removal of extra water, and other steps were generally less than 1, indicating that the whole process resulted in lower pesticide residue levels in paste. Peeling would be the critical step for pesticide removal. Processing factors varied among different pesticides studied. The results are useful to address optimisation of the processing techniques in a manner that leads to considerable pesticide residue reduction.

  13. Cycle affects imidacloprid efficiency by mediating cytochrome P450 expression in the brown planthopper Nilaparvata lugens.

    Science.gov (United States)

    Kang, K; Yang, P; Pang, R; Yue, L; Zhang, W

    2017-10-01

    Circadian clocks influence most behaviours and physiological activities in animals, including daily fluctuations in metabolism. However, how the clock gene cycle influences insects' responses to pesticides has rarely been reported. Here, we provide evidence that cycle affects imidacloprid efficacy by mediating the expression of cytochrome P450 genes in the brown planthopper (BPH) Nilaparvata lugens, a serious insect pest of rice. Survival bioassays showed that the susceptibility of BPH adults to imidacloprid differed significantly between the two time points tested [Zeitgeber Time 8 (ZT8) and ZT4]. After cloning the cycle gene in the BPH (Nlcycle), we found that Nlcycle was expressed at higher levels in the fat body and midgut, and its expression was rhythmic with two peaks. Knockdown of Nlcycle affected the expression levels and rhythms of cytochrome P450 genes as well as susceptibility to imidacloprid. The survival rates of BPH adults after treatment with imidacloprid did not significantly differ between ZT4 and ZT8 after double-stranded Nlcycle treatment. These findings can be used to improve pesticide use and increase pesticide efficiency in the field. © 2017 The Royal Entomological Society.

  14. Imidacloprid intensifies its impact on honeybee and bumblebee cellular immune response when challenged with LPS (lippopolysacharide) of Escherichia coli.

    Science.gov (United States)

    Walderdorff, Louise; Laval-Gilly, Philippe; Bonnefoy, Antoine; Falla-Angel, Jaïro

    2018-05-16

    Insect hemocytes play an important role in insects' defense against environmental stressors as they are entirely dependent on their innate immune system for pathogen defense. In recent years a dramatic decline of pollinators has been reported in many countries. The drivers of this declines appear to be associated with pathogen infections like viruses, bacteria or fungi in combination with pesticide exposure. The aim of this study was thus to investigate the impact of imidacloprid, a neonicotinoid insecticide, on the cellular immune response of two pollinators (Apis mellifera and Bombus terrestris) during simultaneous immune activation with LPS (lipopolysaccharide) of Escherichia coli. For this purpose the phagocytosis capacity as well as the production of H 2 O 2 and NO of larval hemocytes, exposed to five different imidacloprid concentrations in vitro, was measured. All used pesticide concentrations showed a weakening effect on phagocytosis with but also without LPS activation. Imidacloprid decreased H 2 O 2 and increased NO production in honeybees. Immune activation by LPS clearly reinforced the effect of imidacloprid on the immune response of hemocytes in all three immune parameters tested. Bumblebee hemocytes appeared more sensitive to imidacloprid during phagocytosis assays while imidacloprid showed a greater impact on honeybee hemocytes during H 2 O 2 and NO production. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Metabolomics to Explore Imidacloprid-Induced Toxicity in the Central Nervous System of the Freshwater Snail Lymnaea stagnalis.

    Science.gov (United States)

    Tufi, Sara; Stel, Jente M; de Boer, Jacob; Lamoree, Marja H; Leonards, Pim E G

    2015-12-15

    Modern toxicology is seeking new testing methods to better understand toxicological effects. One of the most concerning chemicals is the neonicotinoid pesticide imidacloprid. Although imidacloprid is designed to target insects, recent studies have shown adverse effects on nontarget species. Metabolomics was applied to investigate imidacloprid-induced sublethal toxicity in the central nervous system of the freshwater snail Lymnaea stagnalis. The snails (n = 10 snails) were exposed for 10 days to increasing imidacloprid concentrations (0.1, 1, 10, and 100 μg/L). The comparison between control and exposure groups highlighted the involvement and perturbation of many biological pathways. The levels of several metabolites belonging to different metabolite classes were significantly changed by imidacloprid exposure. A change in the amino acids and nucleotide metabolites like tryptophan, proline, phenylalanine, uridine, and guanosine was found. Many fatty acids were down-regulated, and the levels of the polyamines, spermidine and putrescine, were found to be increased which is an indication of neuron cell injury. A turnover increase between choline and acetylcholine led us to hypothesize an increase in cholinergic gene expression to overcome imidacloprid binding to the nicotinic acetylcholine receptors. Metabolomics revealed imidacloprid induced metabolic changes at low and environmentally relevant concentration in a nontarget species and generated a novel mechanistic hypothesis.

  16. Evaluation of the Toxicity, AChE Activity and DNA Damage Caused by Imidacloprid on Earthworms, Eisenia fetida.

    Science.gov (United States)

    Wang, Kai; Qi, Suzhen; Mu, Xiyan; Chai, Tingting; Yang, Yang; Wang, Dandan; Li, Dongzhi; Che, Wunan; Wang, Chengju

    2015-10-01

    Imidacloprid is a well-known pesticide and it is timely to evaluate its toxicity to earthworms (Eisenia fetida). In the present study, the effect of imidacloprid on reproduction, growth, acetylcholinesterase (AChE) and DNA damage in earthworms was assessed using an artificial soil medium. The median lethal concentration (LC50) and the median number of hatched cocoons (EC50) of imidacloprid to earthworms was 3.05 and 0.92 mg/kg respectively, the lowest observed effect concentration of imidacloprid about hatchability, growth, AChE activity and DNA damage was 0.02, 0.5, 0.1 and 0.5 mg/kg, respectively.

  17. Biodegradation of imidacloprid in liquid media by an isolated wastewater fungus Aspergillus terreus YESM3.

    Science.gov (United States)

    Mohammed, Youssef M M; Badawy, Mohammed E I

    2017-10-03

    In the present study, a new fungal strain capable of imidacloprid degradation was isolated from agricultural wastewater drain. The fungal strain of YESM3 was identified as Aspergillus terreus based on ITS1-5.8S rDNA-ITS2 gene sequence by PCR amplification of a 500 bp sequence. Screening of A. terreus YESM3 to the insecticide imidacloprid tolerance was achieved by growing fungus in Czapek Dox agar for 6 days at 28°C. High values (1.13 and 0.94 cm cm -1 ) of tolerance index (TI) were recorded at 25 and 50 mg L -1 of imidacloprid, respectively in the presence and absence of sucrose. However, at 400 mg L -1 the fungus did not grow. Effects of the imidacloprid concentration, pH, and inoculum size on the biodegradation percentage were tested using Box-Behnken statistical design and the biodegradation was monitored by HPLC analysis at different time intervals. Box-Behnken results indicated that optimal conditions for biodegradation were at pH 4 and two fungal discs (10 mm diameter) in the presence of 61.2 mg L -1 of imidacloprid. A. terreus YESM3 strain was capable of degrading 85% of imidacloprid 25 mg L -1 in Czapek Dox broth medium at pH 4 and 28°C for 6 days under static conditions. In addition, after 20 days of inoculation, biodegradation recorded 96.23% of 25 mg L -1 imidacloprid. Degradation kinetics showed that the imidacloprid followed the first order kinetics with half-life (t 50 ) of 1.532 day. Intermediate product identified as 6-chloronicotinic acid (6CNA) as one of the major metabolites during degradation of imidacloprid by using HPLC. Thus, A. terreus YESM3 showed a potential to reduce pollution by pesticides and toxicity in the effected environment. However, further studies should be conducted to understand the biodegradation mechanism of this pesticide in liquid media.

  18. Effects of imidacloprid on detoxifying enzyme glutathione S-transferase on Folsomia candida (Collembola).

    Science.gov (United States)

    Sillapawattana, Panwad; Schäffer, Andreas

    2017-04-01

    Chemical analyses of the environment can document contamination by various xenobiotics, but it is also important to understand the effect of pollutants on living organisms. Thus, in the present work, we investigated the effect of the pesticide imidacloprid on the detoxifying enzyme glutathione S-transferase (GST) from Folsomia candida (Collembola), a standard test organism for estimating the effects of pesticides and environmental pollutants on non-target soil arthropods. Test animals were treated with different concentrations of imidacloprid for 48 h. Changes in steady-state levels of GST messenger RNA (mRNA) and GST enzyme activity were investigated. Extracted proteins were separated according to their sizes by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and the resolved protein bands were detected by silver staining. The size of the glutathione (GSH) pool in Collembola was also determined. A predicted protein sequence of putative GSTs was identified with animals from control group. A 3-fold up-regulation of GST steady-state mRNA levels was detected in the samples treated with 5.0 mg L -1 imidacloprid compared to the control, while a 2.5- and 2.0- fold up-regulation was found in organisms treated with 2.5 and 7.5 mg L -1 imidacloprid, respectively. GST activity increased with increasing imidacloprid amounts from an initial activity of 0.11 μmol min -1  mg -1 protein in the control group up to 0.25 μmol min -1  mg -1 protein in the sample treated with the 5.0 mg L -1 of pesticide. By contrast, the total amount of GSH decreased with increasing imidacloprid concentration. The results suggest that the alteration of GST activity, steady-state level of GST mRNA, and GSH level may be involved in the response of F. candida to the exposure of imidacloprid and can be used as biomarkers to monitor the toxic effects of imidacloprid and other environmental pollutants on Collembola.

  19. Perinatal exposure to low-dose imidacloprid causes ADHD-like symptoms: Evidences from an invertebrate model study.

    Science.gov (United States)

    Kim, Seoyoung; Lee, Hee-Seok; Park, Yooheon

    2017-12-01

    The fundamental diagnoses of attention deficit hyperactivity disorder (ADHD) and autism consists of inattention, hyperactivity, and impulsivity, which lead to abnormal social interactions and repetitive and restricted behavior. Several food contaminants are suspected of being a possible contributing factor to the present-day increase in diseases, such as obesity and ADHD, and pesticides are also considered as a contributor to the increased prevalence of ADHD. Imidacloprid is a neonicotinoid insecticide with lower toxicity to mammals. Based on recent reports on neurobehavioral studies using an invertebrate model system, we have assessed ADHD-related impairments to test the effects of low-dose exposure to imidacloprid in Drosophila melanogaster through behavior assays, such as abnormal social interaction, repetitive behaviors, and significant deficiency in locomotion in an open field arena, a decision-making process. Drosophila stocks were treated with imidacloprid at the level of 200 pM. Social interaction among the flies was disturbed by imidacloprid. Travelled distance and velocity was also increased by the treatment. The difference in velocity between the treatment group and the control group was significant, revealing that imidacloprid-exposed flies moved faster and longer than control flies. This study illustrated the behavioral deficiency in Drosophila due to the low-dose imidacloprid exposure. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Imidacloprid slows the development of preference for rewarding food sources in bumblebees (Bombus impatiens).

    Science.gov (United States)

    Phelps, Jordan D; Strang, Caroline G; Gbylik-Sikorska, Malgorzata; Sniegocki, Tomasz; Posyniak, Andrzej; Sherry, David F

    2018-03-01

    Bee pollination is economically and ecologically vital and recent declines in bee populations are therefore a concern. One possible cause of bee declines is pesticide use. Bumblebees exposed to imidacloprid, a neonicotinoid pesticide, have been shown to be less efficient foragers and collect less pollen on foraging trips than unexposed bees. We investigated whether bumblebees (Bombus impatiens) chronically exposed to imidacloprid at field-realistic levels of 2.6 and 10 ppb showed learning deficits that could affect foraging. Bumblebees were tested for their ability to associate flower colour with reward value in a simulated foraging environment. Bumblebees completed 10 foraging trips in which they collected sucrose solution from artificial flowers that varied in sucrose concentration. The reward quality of each artificial flower was predicted by corolla colour. Unexposed bumblebees acquired a preference for feeding on the most rewarding flower colour on the second foraging trip, while bumblebees exposed at 2.6 and 10 ppb did not until their third and fifth trip, respectively. The delay in preference acquisition in exposed bumblebees may be due to reduced flower sampling and shorter foraging trips. These results show that bumblebees exposed to imidacloprid are slow to learn the reward value of flowers and this may explain previously observed foraging inefficiencies associated with pesticide exposure.

  1. Imidacloprid-induced impairment of mushroom bodies and behavior of the native stingless bee Melipona quadrifasciata anthidioides.

    Science.gov (United States)

    Tomé, Hudson Vaner V; Martins, Gustavo F; Lima, Maria Augusta P; Campos, Lúcio Antonio O; Guedes, Raul Narciso C

    2012-01-01

    Declines in pollinator colonies represent a worldwide concern. The widespread use of agricultural pesticides is recognized as a potential cause of these declines. Previous studies have examined the effects of neonicotinoid insecticides such as imidacloprid on pollinator colonies, but these investigations have mainly focused on adult honey bees. Native stingless bees (Hymenoptera: Apidae: Meliponinae) are key pollinators in neotropical areas and are threatened with extinction due to deforestation and pesticide use. Few studies have directly investigated the effects of pesticides on these pollinators. Furthermore, the existing impact studies did not address the issue of larval ingestion of contaminated pollen and nectar, which could potentially have dire consequences for the colony. Here, we assessed the effects of imidacloprid ingestion by stingless bee larvae on their survival, development, neuromorphology and adult walking behavior. Increasing doses of imidacloprid were added to the diet provided to individual worker larvae of the stingless bee Melipona quadrifasciata anthidioides throughout their development. Survival rates above 50% were only observed at insecticide doses lower than 0.0056 µg active ingredient (a.i.)/bee. No sublethal effect on body mass or developmental time was observed in the surviving insects, but the pesticide treatment negatively affected the development of mushroom bodies in the brain and impaired the walking behavior of newly emerged adult workers. Therefore, stingless bee larvae are particularly susceptible to imidacloprid, as it caused both high mortality and sublethal effects that impaired brain development and compromised mobility at the young adult stage. These findings demonstrate the lethal effects of imidacloprid on native stingless bees and provide evidence of novel serious sublethal effects that may compromise colony survival. The ecological and economic importance of neotropical stingless bees as pollinators, their

  2. Imidacloprid-induced impairment of mushroom bodies and behavior of the native stingless bee Melipona quadrifasciata anthidioides.

    Directory of Open Access Journals (Sweden)

    Hudson Vaner V Tomé

    Full Text Available Declines in pollinator colonies represent a worldwide concern. The widespread use of agricultural pesticides is recognized as a potential cause of these declines. Previous studies have examined the effects of neonicotinoid insecticides such as imidacloprid on pollinator colonies, but these investigations have mainly focused on adult honey bees. Native stingless bees (Hymenoptera: Apidae: Meliponinae are key pollinators in neotropical areas and are threatened with extinction due to deforestation and pesticide use. Few studies have directly investigated the effects of pesticides on these pollinators. Furthermore, the existing impact studies did not address the issue of larval ingestion of contaminated pollen and nectar, which could potentially have dire consequences for the colony. Here, we assessed the effects of imidacloprid ingestion by stingless bee larvae on their survival, development, neuromorphology and adult walking behavior. Increasing doses of imidacloprid were added to the diet provided to individual worker larvae of the stingless bee Melipona quadrifasciata anthidioides throughout their development. Survival rates above 50% were only observed at insecticide doses lower than 0.0056 µg active ingredient (a.i./bee. No sublethal effect on body mass or developmental time was observed in the surviving insects, but the pesticide treatment negatively affected the development of mushroom bodies in the brain and impaired the walking behavior of newly emerged adult workers. Therefore, stingless bee larvae are particularly susceptible to imidacloprid, as it caused both high mortality and sublethal effects that impaired brain development and compromised mobility at the young adult stage. These findings demonstrate the lethal effects of imidacloprid on native stingless bees and provide evidence of novel serious sublethal effects that may compromise colony survival. The ecological and economic importance of neotropical stingless bees as pollinators

  3. Imidacloprid-Induced Impairment of Mushroom Bodies and Behavior of the Native Stingless Bee Melipona quadrifasciata anthidioides

    Science.gov (United States)

    Tomé, Hudson Vaner V.; Martins, Gustavo F.; Lima, Maria Augusta P.; Campos, Lúcio Antonio O.; Guedes, Raul Narciso C.

    2012-01-01

    Declines in pollinator colonies represent a worldwide concern. The widespread use of agricultural pesticides is recognized as a potential cause of these declines. Previous studies have examined the effects of neonicotinoid insecticides such as imidacloprid on pollinator colonies, but these investigations have mainly focused on adult honey bees. Native stingless bees (Hymenoptera: Apidae: Meliponinae) are key pollinators in neotropical areas and are threatened with extinction due to deforestation and pesticide use. Few studies have directly investigated the effects of pesticides on these pollinators. Furthermore, the existing impact studies did not address the issue of larval ingestion of contaminated pollen and nectar, which could potentially have dire consequences for the colony. Here, we assessed the effects of imidacloprid ingestion by stingless bee larvae on their survival, development, neuromorphology and adult walking behavior. Increasing doses of imidacloprid were added to the diet provided to individual worker larvae of the stingless bee Melipona quadrifasciata anthidioides throughout their development. Survival rates above 50% were only observed at insecticide doses lower than 0.0056 µg active ingredient (a.i.)/bee. No sublethal effect on body mass or developmental time was observed in the surviving insects, but the pesticide treatment negatively affected the development of mushroom bodies in the brain and impaired the walking behavior of newly emerged adult workers. Therefore, stingless bee larvae are particularly susceptible to imidacloprid, as it caused both high mortality and sublethal effects that impaired brain development and compromised mobility at the young adult stage. These findings demonstrate the lethal effects of imidacloprid on native stingless bees and provide evidence of novel serious sublethal effects that may compromise colony survival. The ecological and economic importance of neotropical stingless bees as pollinators, their

  4. Gene expression changes in honey bees induced by sublethal imidacloprid exposure during the larval stage.

    Science.gov (United States)

    Wu, Ming-Cheng; Chang, Yu-Wen; Lu, Kuang-Hui; Yang, En-Cheng

    2017-09-01

    Honey bee larvae exposed to sublethal doses of imidacloprid show behavioural abnormalities as adult insects. Previous studies have demonstrated that this phenomenon originates from abnormal neural development in response to imidacloprid exposure. Here, we further investigated the global gene expression changes in the heads of newly emerged adults and observed that 578 genes showed more than 2-fold changes in gene expression after imidacloprid exposure. This information might aid in understanding the effects of pesticides on the health of pollinators. For example, the genes encoding major royal jelly proteins (MRJPs), a group of multifunctional proteins with significant roles in the sustainable development of bee colonies, were strongly downregulated. These downregulation patterns were further confirmed through analyses using quantitative reverse transcription-polymerase chain reaction on the heads of 6-day-old nurse bees. To our knowledge, this study is the first to demonstrate that sublethal doses of imidacloprid affect mrjp expression and likely weaken bee colonies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Sorption – desorption of imidacloprid insecticide on Indian soils of five different locations

    Directory of Open Access Journals (Sweden)

    Shailendra Singh Chauhan

    2013-07-01

    Full Text Available Sorption-desorption processes govern the movement of all chemicals including pesticides in soils. The present investigation was undertaken to study the sorption-desorption of imidacloprid, using a batch method, on soils of five different location of India. Sorption data were fitted to Freundlich isotherm. The log K value was the highest for loam type soil (1.830 and the lowest for clay type soil (1.661. The value of 1/n was the maximum for silt loam soil (0.909 but minimum for loam soil (0.723. Simple correlation analysis indicated that among soil properties only electrical conductivity showed a higher but marginally non-significant negative correlation with log K (r = -0.826 indicating that higher concentration of solutes solutes are conducive to low sorption capacity of soil. The desorption data conformed to two surfaces Freundlich desorption isotherm. The values of 1/n1' corresponding to easily desorbed fraction of imidacloprid showed significant negative correlation with soil pH (r = -0.886, significant at p ≤0.05 but significant positive correlation with clay content (r = 0.980, significant at p ≤0.01. The desorption index for easily desorbed fraction of imidacloprid (n1’/n also had significant negative correlation with soil pH (r = 0.953, significant at p ≤0.05. From cumulative desorption data, it appeared that bioavailability of imidacloprid would be lower in neutral soil than acidic or alkaline soils.

  6. Sublethal Effects of Imidacloprid on Honey Bee Colony Growth and Activity at Three Sites in the U.S.

    Science.gov (United States)

    Meikle, William G; Adamczyk, John J; Weiss, Milagra; Gregorc, Ales; Johnson, Don R; Stewart, Scott D; Zawislak, Jon; Carroll, Mark J; Lorenz, Gus M

    2016-01-01

    Imidacloprid is a neonicotinoid pesticide heavily used by the agricultural industry and shown to have negative impacts on honey bees above certain concentrations. We evaluated the effects of different imidacloprid concentrations in sugar syrup using cage and field studies, and across different environments. Honey bee colonies fed sublethal concentrations of imidicloprid (0, 5, 20 and 100 ppb) over 6 weeks in field trials at a desert site (Arizona), a site near intensive agriculture (Arkansas) and a site with little nearby agriculture but abundant natural forage (Mississippi) were monitored with respect to colony metrics, such as adult bee and brood population sizes, as well as pesticide residues. Hive weight and internal hive temperature were monitored continuously over two trials in Arizona. Colonies fed 100 ppb imidacloprid in Arizona had significantly lower adult bee populations, brood surface areas and average frame weights, and reduced temperature control, compared to colonies in one or more of the other treatment groups, and consumption rates of those colonies were lower compared to other colonies in Arizona and Arkansas, although no differences in capped brood or average frame weight were observed among treatments in Arkansas. At the Mississippi site, also rich in alternative forage, colonies fed 5 ppb imidacloprid had less capped brood than control colonies, but contamination of control colonies was detected. In contrast, significantly higher daily hive weight variability among colonies fed 5 ppb imidacloprid in Arizona suggested greater foraging activity during a nectar flow post treatment, than any other treatment group. Imidacloprid concentrations in stored honey corresponded well with the respective syrup concentrations fed to the colonies and remained stable within the hive for at least 7 months after the end of treatment.

  7. REMOVAL OF IMIDACLOPRID USING ACTIVATED CARBON ...

    African Journals Online (AJOL)

    known to be in most cases limited, to use a long procedure or to be costly. ..... Figure 4. (A) Isotherm adsorption of imidacloprid onto akpi activated carbon, plots of .... such as wastewater treatment, chemical and pharmaceutical industry.

  8. Use of primary cultures of Kenyon cells from bumblebee brains to assess pesticide side effects.

    Science.gov (United States)

    Wilson, Daniel E; Velarde, Rodrigo A; Fahrbach, Susan E; Mommaerts, Veerle; Smagghe, Guy

    2013-09-01

    Bumblebees are important pollinators in natural and agricultural ecosystems. The latter results in the frequent exposure of bumblebees to pesticides. We report here on a new bioassay that uses primary cultures of neurons derived from adult bumblebee workers to evaluate possible side-effects of the neonicotinoid pesticide imidacloprid. Mushroom bodies (MBs) from the brains of bumblebee workers were dissected and dissociated to produce cultures of Kenyon cells (KCs). Cultured KCs typically extend branched, dendrite-like processes called neurites, with substantial growth evident 24-48 h after culture initiation. Exposure of cultured KCs obtained from newly eclosed adult workers to 2.5 parts per billion (ppb) imidacloprid, an environmentally relevant concentration of pesticide, did not have a detectable effect on neurite outgrowth. By contrast, in cultures prepared from newly eclosed adult bumblebees, inhibitory effects of imidacloprid were evident when the medium contained 25 ppb imidacloprid, and no growth was observed at 2,500 ppb. The KCs of older workers (13-day-old nurses and foragers) appeared to be more sensitive to imidacloprid than newly eclosed adults, as strong effects on KCs obtained from older nurses and foragers were also evident at 2.5 ppb imidacloprid. In conclusion, primary cultures using KCs of bumblebee worker brains offer a tool to assess sublethal effects of neurotoxic pesticides in vitro. Such studies also have the potential to contribute to the understanding of mechanisms of plasticity in the adult bumblebee brain. © 2013 Wiley Periodicals, Inc.

  9. Risico's van imidacloprid in oppervlaktewater voor de mens

    NARCIS (Netherlands)

    Smit CE; Bodar CWM; te Biesebeek JD; Wolterink G; SEC; SIR; mev; vgc

    2011-01-01

    Het RIVM heeft de risico's voor de mens beoordeeld als gevolg van de aanwezigheid van imidacloprid in oppervlaktewater. Imidacloprid is een insecticide dat in Nederlands oppervlaktewater is aangetroffen in concentraties die hoger zijn dan de geldende waterkwaliteitsnormen. Mensen kunnen met

  10. HPLC-DAD determination of imidacloprid in onion

    OpenAIRE

    Mandić Aljoša; Lazić Sanja; Inđić Dušanka

    2003-01-01

    Imidacloprid is an insecticide most commonly used on vegetables, potato sugar beet, fruit, cereal, maize and rice. Imidacloprid residue has been determined in spiked onion and in onion samples. Sample preparation consisted of dichlormethane extraction of imidacloprid from onion, followed by purification of the obtained extract on a LC-Florisil disposable cartridge. The HPLC-DAD method bas been developed on reversed-phase for separation of imidacloprid with a mixture of 0.01 M phosphate buffer...

  11. 21 CFR 524.1146 - Imidacloprid and moxidectin.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Imidacloprid and moxidectin. 524.1146 Section 524... Imidacloprid and moxidectin. (a) Specifications—(1) Each milliliter of solution contains 100 milligrams (mg) imidacloprid and 25 mg moxidectin for use as in paragraph (d)(1) of this section. (2) Each milliliter of...

  12. 21 CFR 524.1140 - Imidacloprid and ivermectin.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Imidacloprid and ivermectin. 524.1140 Section 524... Imidacloprid and ivermectin. (a) Specifications. The product is available in unit applicator tubes containing 0.4, 1.0, 2.5, or 4.0 milliliters (mL). Each mL of solution contains 100 milligrams (mg) imidacloprid...

  13. Systemic Imidacloprid Affects Intraguild Parasitoids Differently

    Science.gov (United States)

    Roe, R. Michael; Bacheler, Jack S.

    2015-01-01

    Toxoneuron nigriceps (Viereck) (Hymenoptera, Braconidae) and Campoletis sonorensis (Cameron) (Hymenoptera, Ichneumonidae) are solitary endoparasitoids of the tobacco budworm, Heliothis virescens (Fabricius) (Lepidoptera, Noctuidae). They provide biological control of H. virescens populations in Southeastern US agricultural production systems. Field and greenhouse experiments conducted from 2011–2014 compared parasitism rates of parasitoids that developed inside H. virescens larvae fed on tobacco plants treated with and without imidacloprid. The parasitoids in our study did not have a similar response. Toxoneuron nigriceps had reduced parasitism rates, but parasitism rates of C. sonorensis were unaffected. Preliminary data indicate that adult female lifespans of T. nigriceps are also reduced. ELISA was used to measure concentrations of neonicotinoids, imidacloprid and imidacloprid metabolites in H. virescens larvae that fed on imidacloprid-treated plants and in the parasitoids that fed on these larvae. Concentrations were detectable in the whole bodies of parasitized H. virescens larvae, T. nigriceps larvae and T. nigriceps adults, but not in C. sonorensis larvae and adults. These findings suggest that there are effects of imidacloprid on multiple trophic levels, and that insecticide use may differentially affect natural enemies with similar feeding niches. PMID:26658677

  14. Systemic Imidacloprid Affects Intraguild Parasitoids Differently.

    Directory of Open Access Journals (Sweden)

    Sally V Taylor

    Full Text Available Toxoneuron nigriceps (Viereck (Hymenoptera, Braconidae and Campoletis sonorensis (Cameron (Hymenoptera, Ichneumonidae are solitary endoparasitoids of the tobacco budworm, Heliothis virescens (Fabricius (Lepidoptera, Noctuidae. They provide biological control of H. virescens populations in Southeastern US agricultural production systems. Field and greenhouse experiments conducted from 2011-2014 compared parasitism rates of parasitoids that developed inside H. virescens larvae fed on tobacco plants treated with and without imidacloprid. The parasitoids in our study did not have a similar response. Toxoneuron nigriceps had reduced parasitism rates, but parasitism rates of C. sonorensis were unaffected. Preliminary data indicate that adult female lifespans of T. nigriceps are also reduced. ELISA was used to measure concentrations of neonicotinoids, imidacloprid and imidacloprid metabolites in H. virescens larvae that fed on imidacloprid-treated plants and in the parasitoids that fed on these larvae. Concentrations were detectable in the whole bodies of parasitized H. virescens larvae, T. nigriceps larvae and T. nigriceps adults, but not in C. sonorensis larvae and adults. These findings suggest that there are effects of imidacloprid on multiple trophic levels, and that insecticide use may differentially affect natural enemies with similar feeding niches.

  15. RNA interference of three up-regulated transcripts associated with insecticide resistance in an imidacloprid resistant population of Leptinotarsa decemlineata.

    Science.gov (United States)

    Clements, Justin; Schoville, Sean; Peterson, Nathan; Huseth, Anders S; Lan, Que; Groves, Russell L

    2017-01-01

    The Colorado potato beetle, Leptinotarsa decemlineata (Say), is a major agricultural pest of potatoes in the Central Sands production region of Wisconsin. Previous studies have shown that populations of L. decemlineata have become resistant to many classes of insecticides, including the neonicotinoid insecticide, imidacloprid. Furthermore, L. decemlineata has multiple mechanisms of resistance to deal with a pesticide insult, including enhanced metabolic detoxification by cytochrome p450s and glutathione S-transferases. With recent advances in the transcriptomic analysis of imidacloprid susceptible and resistant L. decemlineata populations, it is possible to investigate the role of candidate genes involved in imidacloprid resistance. A recently annotated transcriptome analysis of L. decemlineata was obtained from select populations of L. decemlineata collected in the Central Sands potato production region, which revealed a subset of mRNA transcripts constitutively up-regulated in resistant populations. We hypothesize that a portion of the up-regulated transcripts encoding for genes within the resistant populations also encode for pesticide resistance and can be suppressed to re-establish a susceptible phenotype. In this study, a discrete set of three up-regulated targets were selected for RNA interference experiments using a resistant L. decemlineata population. Following the successful suppression of transcripts encoding for a cytochrome p450, a cuticular protein, and a glutathione synthetase protein in a select L. decemlineata population, we observed reductions in measured resistance to imidacloprid that strongly suggest these genes control essential steps in imidacloprid metabolism in these field populations. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  16. Effects of Imidacloprid and Varroa destructor on survival and health of European honey bees, Apis mellifera.

    Science.gov (United States)

    Abbo, Pendo M; Kawasaki, Joshua K; Hamilton, Michele; Cook, Steven C; DeGrandi-Hoffman, Gloria; Li, Wen Feng; Liu, Jie; Chen, Yan Ping

    2017-06-01

    There has been growing concern over declines in populations of honey bees and other pollinators which are a vital part to our food security. It is imperative to identify factors responsible for accelerated declines in bee populations and develop solutions for reversing bee losses. While exact causes of colony losses remain elusive, risk factors thought to play key roles are ectoparasitic mites Varroa destructor and neonicotinoid pesticides. The present study aims to investigate effects of a neonicotinoid pesticide Imidacloprid and Varroa mites individually on survivorship, growth, physiology, virus dynamics and immunity of honey bee workers. Our study provides clear evidence that the exposure to sublethal doses of Imidacloprid could exert a significantly negative effect on health and survival of honey bees. We observed a significant reduction in the titer of vitellogenin (Vg), an egg yolk precursor that regulates the honey bees development and behavior and often are linked to energy homeostasis, in bees exposed to Imidacloprid. This result indicates that sublethal exposure to neonicotinoid could lead to increased energy usage in honey bees as detoxification is a energy-consuming metabolic process and suggests that Vg could be a useful biomarker for measuring levels of energy stress and sublethal effects of pesticides on honey bees. Measurement of the quantitative effects of different levels of Varroa mite infestation on the replication dynamic of Deformed wing virus (DWV), an RNA virus associated with Varroa infestation, and expression level of immune genes yields unique insights into how honey bees respond to stressors under laboratory conditions. © 2016 Institute of Zoology, Chinese Academy of Sciences.

  17. Effect of Abiotic Factors on Degradation of Imidacloprid.

    Science.gov (United States)

    Mahapatra, Bibhab; Adak, Totan; Patil, Naveen K B; Pandi, G Guru P; Gowda, G Basana; Yadav, Manoj Kumar; Mohapatra, S D; Rath, P C; Munda, Sushmita; Jena, Mayabini

    2017-10-01

    The role of soil moisture, light and pH on imidacloprid dissipation was investigated. A high performance liquid chromatography (HPLC) based method was developed to quantify imidacloprid present in soil with a recovery of more than 82%. Rate of dissipation of imidacloprid from soil was faster in submerged condition compared to field capacity and air dried condition. Imidacloprid dissipated non-significantly between sterile and non-sterile soils, but at field capacity, the dissipation was faster in non-sterile soil compared to sterile soil after 60 days of incubation. Similarly, under submergence, the dissipation of imidacloprid was 66.2% and 79.8% of the initial in sterile and non-sterile soils, respectively. Imidacloprid was rather stable in acidic and neutral water but was prone to photo-degradation. Therefore, imidacloprid degradation will be faster under direct sunlight and at higher soil moisture.

  18. Kinetic Evaluation of Imidacloprid Degradation in Mice Organs Treated with Olive Oil Polyphenols Extract

    OpenAIRE

    Broznić, Dalibor; Marinić, Jelena; Tota, Marin; Čanadi Jurešić, Gordana; Milin, Čedomila

    2008-01-01

    Imidacloprid is a highly effective insecticide, acting as agonists at the insect nicotinic acetylcholine receptor. Nevertheless, imidacloprid itself or its metabolites could exhibit toxicity in mammals. Imidacloprid biotransformation involves oxidative cleavage, releasing the 6-chloronicotinic acid. Therefore, the concentration of imidacloprid and 6-chloronicotinic acid was used to characterize degradation kinetics and distribution of imidacloprid in mice liver, kidneys and lungs. Additionall...

  19. Leaching of the Neonicotinoids Thiamethoxam and Imidacloprid from Sugar Beet Seed Dressings to Subsurface Tile Drains.

    Science.gov (United States)

    Wettstein, Felix E; Kasteel, Roy; Garcia Delgado, Maria F; Hanke, Irene; Huntscha, Sebastian; Balmer, Marianne E; Poiger, Thomas; Bucheli, Thomas D

    2016-08-24

    Pesticide transport from seed dressings toward subsurface tile drains is still poorly understood. We monitored the neonicotinoid insecticides imidacloprid and thiamethoxam from sugar beet seed dressings in flow-proportional drainage water samples, together with spray applications of bromide and the herbicide S-metolachlor in spring and the fungicides epoxiconazole and kresoxim-methyl in summer. Event-driven, high first concentration maxima up to 2830 and 1290 ng/L for thiamethoxam and imidacloprid, respectively, were followed by an extended period of tailing and suggested preferential flow. Nevertheless, mass recoveries declined in agreement with the degradation and sorption properties collated in the groundwater ubiquity score, following the order bromide (4.9%), thiamethoxam (1.2%), imidacloprid (0.48%), kresoxim-methyl acid (0.17%), S-metolachlor (0.032%), epoxiconazole (0.013%), and kresoxim-methyl (0.003%), and indicated increased leaching from seed dressings compared to spray applications. Measured concentrations and mass recoveries indicate that subsurface tile drains contribute to surface water contamination with neonicotinoids from seed dressings.

  20. Delayed and time-cumulative toxicity of imidacloprid in bees, ants and termites

    Science.gov (United States)

    Rondeau, Gary; Sánchez-Bayo, Francisco; Tennekes, Henk A.; Decourtye, Axel; Ramírez-Romero, Ricardo; Desneux, Nicolas

    2014-01-01

    Imidacloprid, one of the most commonly used insecticides, is highly toxic to bees and other beneficial insects. The regulatory challenge to determine safe levels of residual pesticides can benefit from information about the time-dependent toxicity of this chemical. Using published toxicity data for imidacloprid for several insect species, we construct time-to-lethal-effect toxicity plots and fit temporal power-law scaling curves to the data. The level of toxic exposure that results in 50% mortality after time t is found to scale as t1.7 for ants, from t1.6 to t5 for honeybees, and from t1.46 to t2.9 for termites. We present a simple toxicological model that can explain t2 scaling. Extrapolating the toxicity scaling for honeybees to the lifespan of winter bees suggests that imidacloprid in honey at 0.25 μg/kg would be lethal to a large proportion of bees nearing the end of their life. PMID:24993452

  1. Movement of soil-applied imidacloprid and thiamethoxam into nectar and pollen of squash (Cucurbita pepo.

    Directory of Open Access Journals (Sweden)

    Kimberly A Stoner

    Full Text Available There has been recent interest in the threat to bees posed by the use of systemic insecticides. One concern is that systemic insecticides may translocate from the soil into pollen and nectar of plants, where they would be ingested by pollinators. This paper reports on the movement of two such systemic neonicotinoid insecticides, imidacloprid and thiamethoxam, into the pollen and nectar of flowers of squash (Cucurbita pepo cultivars "Multipik," "Sunray" and "Bush Delicata" when applied to soil by two methods: (1 sprayed into soil before seeding, or (2 applied through drip irrigation in a single treatment after transplant. All insecticide treatments were within labeled rates for these compounds. Pollen and nectar samples were analyzed using a standard extraction method widely used for pesticides (QuEChERS and liquid chromatography mass spectrometric analysis. The concentrations found in nectar, 10 ± 3 ppb (mean ± s.d for imidacloprid and 11 ± 6 ppb for thiamethoxam, are higher than concentrations of neonicotinoid insecticides in nectar of canola and sunflower grown from treated seed, and similar to those found in a recent study of neonicotinoids applied to pumpkins at transplant and through drip irrigation. The concentrations in pollen, 14 ± 8 ppb for imidacloprid and 12 ± 9 ppb for thiamethoxam, are higher than those found for seed treatments in most studies, but at the low end of the range found in the pumpkin study. Our concentrations fall into the range being investigated for sublethal effects on honey bees and bumble bees.

  2. Dissipation kinetics of beta-cyfluthrin and imidacloprid in tea and their transfer from processed tea to infusion.

    Science.gov (United States)

    Paramasivam, M; Deepa, M; Selvi, C; Chandrasekaran, S

    2017-10-01

    Dissipation kinetics of mixed formulation consisting beta-cyfluthrin and imidacloprid in tea crop under an open field ecosystem was investigated. The mixed formulation was applied on tea plant at recommended (27 + 63) and double the recommended (54 + 126g a.i./ha) dose and residues were determined using gas chromatography-electron capture detector and high performance liquid chromatography-photodiode array detector for beta-cyfluthrin and imidacloprid, respectively. The limit of quantification of analytical method was 0.05µg/g and the average recoveries were ranged from 88.36% to 103.49% with relative standard deviations of less than 6% at three spiked levels. The experimental results showed that in the green tea leaves imidacloprid dissipated faster than beta-cyfluthrin with the half-life ranging between 1.20-1.39 and 2.89-3.15days, respectively. The beta-cyfluthrin residues present in the processed tea not transferred into the tea infusion during the infusion process and imidacloprid transferred in the range 43.12-49.7%. On the basis of the transfer of residues from processed tea to infusion, a waiting period of 17 days for tea plucking after pesticide application at recommended dose may be suggested. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Effects of neonicotinoid imidacloprid exposure on bumble bee (Hymenoptera: Apidae) queen survival and nest initiation.

    Science.gov (United States)

    Wu-Smart, Judy; Spivak, Marla

    2018-02-08

    Neonicotinoids are highly toxic to insects and may systemically translocate to nectar and pollen of plants where foraging bees may become exposed. Exposure to neonicotinoids can induce detrimental sublethal effects on individual and colonies of bees and may have long-term impacts, such as impaired foraging, reduced longevity, and reduced brood care or production. Less well-studied are the potential effects on queen bumble bees that may become exposed while foraging in the spring during colony initiation. This study assessed queen survival and nest founding in caged bumble bees [Bombus impatiens (Cresson) (Hymenoptera: Apidae)] after chronic (18-d) dietary exposure of imidacloprid in syrup (1, 5, 10, and 25 ppb) and pollen (0.3, 1.7, 3.3, and 8.3 ppb), paired respectively. Here we show some mortality in queens exposed at all doses even as low as 1 ppb, and, compared with untreated queens, significantly reduced survival of treated queens at the two highest doses. Queens that survived initial imidacloprid exposure commenced nest initiation; however, they exhibited dose-dependent delay in egg-laying and emergence of worker brood. Furthermore, imidacloprid treatment affected other parameters such as nest and queen weight. This study is the first to show direct impacts of imidacloprid at field-relevant levels on individual B. impatiens queen survival and nest founding, indicating that bumble bee queens are particularly sensitive to neonicotinoids when directly exposed. This study also helps focus pesticide risk mitigation efforts and highlights the importance of reducing exposure rates in the early spring when bumble bee queens, and other wild bees are foraging and initiating nests. © The Author(s) 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. Joint toxic effects of triazophos and imidacloprid on zebrafish (Danio rerio).

    Science.gov (United States)

    Wu, Shenggan; Li, Xinfang; Liu, Xinju; Yang, Guiling; An, Xuehua; Wang, Qiang; Wang, Yanhua

    2018-04-01

    Pesticide contamination is more often found as a mixture of different pesticides in water bodies rather than individual compounds. However, regulatory risk evaluation is mostly based on the effects of individual pesticides. In the present study, we aimed to investigate the individual and joint toxicities of triazophos (TRI) and imidacloprid (IMI) to the zebrafish (Danio rerio) using acute indices and various sublethal endpoints. Results from 96-h semi-static test indicated that the LC 50 values of TRI to D. rerio at multiple life stages (embryonic, larval, juvenile and adult stages) ranged from 0.49 (0.36-0.71) to 4.99 (2.06-6.81) mg a.i. L -1 , which were higher than those of IMI ranging from 26.39 (19.04-38.01) to 128.9 (68.47-173.6) mg a.i. L -1 . Pesticide mixtures of TRI and IMI displayed synergistic response to zebrafish embryos. Activities of carboxylesterase (CarE) and catalase (CAT) were significantly changed in most of the individual and joint exposures of pesticides compared with the control group. The expressions of 26 genes related to oxidative stress, cellular apoptosis, immune system, hypothalamic-pituitary-thyroid and hypothalamic-pituitary-gonadal axis at the mRNA level revealed that zebrafish embryos were affected by the individual or joint pesticides, and greater changes in the expressions of six genes (Mn-sod, CXCL-CIC, Dio1, Dio2, tsh and vtg1) were observed when exposed to joint pesticides compared with their individual pesticides. Taken together, the synergistic effects indicated that it was highly important to incorporate joint toxicity studies, especially at low concentrations, when assessing the risk of pesticides. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Pesticide tolerant and phosphorus solubilizing Pseudomonas sp. strain SGRAJ09 isolated from pesticides treated Achillea clavennae rhizosphere soil.

    Science.gov (United States)

    Rajasankar, R; Manju Gayathry, G; Sathiavelu, A; Ramalingam, C; Saravanan, V S

    2013-05-01

    In this study, an attempt was made to identify an effective phosphate solubilizing bacteria from pesticide polluted field soil. Based on the formation of solubilization halo on Pikovskaya's agar, six isolates were selected and screened for pesticide tolerance and phosphate (P) solubilization ability through liquid assay. The results showed that only one strain (SGRAJ09) obtained from Achillea clavennae was found to tolerate maximum level of the pesticides tested and it was phylogenetically identified as Pseudomonas sp. It possessed a wide range of pesticide tolerance, ranging from 117 μg mL(-1) for alphamethrin to 2,600 μg mL(-1) for endosulfan. The available P concentrations increased with the maximum and double the maximum dose of monocrotophos and imidacloprid, respectively. On subjected to FT-IR and HPLC analysis, the presence of organic acids functional group in the culture broth and the production of gluconic acid as dominant acid aiding the P solubilization were identified. On comparison with control broth, monocrotophos and imidacloprid added culture broth showed quantitatively high organic acids production. In addition to gluconic acid production, citric and acetic acids were also observed in the pesticide amended broth. Furthermore, the Pseudomonas sp. strain SGRAJ09 possessed all the plant growth promoting traits tested. In presence of monocrotophos and imidacloprid, its plant growth promoting activities were lower than that of the pesticides unamended treatment.

  6. Distribution of Heavy Metals in the Soils Associated with the Commonly Used Pesticides in Cotton Fields

    Directory of Open Access Journals (Sweden)

    Saadia Rashid Tariq

    2016-01-01

    Full Text Available Agricultural soils contain both heavy metals and pesticides originating from various agricultural practices. It is quite important to study the relationships between these two classes of compounds. To accomplish this, 52 soil samples were collected from cotton fields and analyzed for their metal contents (Ni, Cu, Co, Pb, Cr, and Cd and levels of most commonly used pesticides (imidacloprid, acetamiprid, and emamectin. FAAS was used for metal estimation and the pesticides were determined by HPLC equipped with UV detector. The results of the study revealed slightly enhanced levels of Ni and Cd in these samples while the rest of the metals were present within tolerable range. Acetamiprid residues in soil were strongly positively correlated with Cu and negatively correlated with Cr. Similarly, imidacloprid in soil was negatively correlated with Ni. Thus it was evidenced that Cu stabilizes acetamiprid while Cr and Ni facilitate the degradation of acetamiprid and imidacloprid in the soil.

  7. Effects of Imidacloprid and Varroa destructor on survival and health of European honey bees, Apis mellifera

    Institute of Scientific and Technical Information of China (English)

    Pendo M.Abbo; Joshua K.Kawasaki; Michele Hamilton; Steven C.Cook; Gloria DeGrandi-Hoffman; Wen Feng Li; Jie Liu; Yan Ping Chen

    2017-01-01

    There has been growing concern over declines in populations of honey bees and other pollinators which are a vital part to our food security.It is imperative to identify factors responsible for accelerated declines in bee populations and develop solutions for reversing bee losses.While exact causes of colony losses remain elusive,risk factors thought to play key roles are ectoparasitic mites Varroa destructor and neonicotinoid pesticides.The present study aims to investigate effects of a neonicotinoid pesticide Imidacloprid and Varroa mites individually on survivorship,growth,physiology,virus dynamics and immunity of honey bee workers.Our study provides clear evidence that the exposure to sublethal doses of Imidacloprid could exert a significantly negative effect on health and survival of honey bees.We observed a significant reduction in the titer ofvitellogenin (Vg),an egg yolk precursor that regulates the honey bees development and behavior and often are linked to energy homeostasis,in bees exposed to Imidacloprid.This result indicates that sublethal exposure to neonicotinoid could lead to increased energy usage in honey bees as detoxification is a energy-consuming metabolic process and suggests that Vg could be a useful biomarker for measuring levels of energy stress and sublethal effects of pesticideson honey bees.Measurement of the quantitative effects of different levels of Varroa mite infestation on the replication dynamic of Deformed wing virus (DWV),an RNA virus associated with Varroa infestation,and expression level of immune genes yields unique insights into how honey bees respond to stressors under laboratory conditions.

  8. Imidacloprid application changes microbial dynamics and enzymes in rice soil.

    Science.gov (United States)

    Mahapatra, Bibhab; Adak, Totan; Patil, Naveen K B; Pandi G, Guru P; Gowda, G Basana; Jambhulkar, N N; Yadav, Manoj Kumar; Panneerselvam, P; Kumar, Upendra; Munda, Sushmita; Jena, Mayabini

    2017-10-01

    Extensive use of imidacloprid in rice ecosystem may alter dynamics of microorganisms and can change soil biochemical properties. The objective of this study was to assess the effect of imidacloprid on growth and activities of microbes in tropical rice soil ecosystem. Four treatments, namely, recommended dose (at 25g a.i. ha -1 , RD), double the recommended dose (at 50g a.i. ha -1 , 2RD), five times the recommended dose (at 125g a.i. ha -1 , 5RD) & ten times the recommended dose (at 250g a.i. ha -1 , 10RD) along with control were imposed under controlled condition. Dissipation half lives of imidacloprid in soil were 19.25, 20.38, 21.65 and 33.00 days for RD, 2RD, 5RD and 10RD, respectively. In general bacteria, actinomycetes, fungi and phosphate solubilising bacteria population were disturbed due to imidacloprid application. Changes in diversity indices within bacterial community confirmed that imidacloprid application significantly affected distribution of bacteria. Total soil microbial biomass carbon content was reduced on imidacloprid application. Except dehydrogenase and alkaline phosphatase activities, all other soil enzymes namely, β-glycosidase, fluorescien diacetate hydrolase, acid phosphatase and urease responded negatively to imidacloprid application. The extent of negative effect of imidacloprid depends on dose and exposure time. This study concludes imidacloprid application had transient negative effects on soil microbes. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Effect of accelerated electron beam on pesticides removal of effluents from flower plantations

    International Nuclear Information System (INIS)

    Ramirez, T.; Armas, M.; Uzcategui, M.

    2006-01-01

    Flower industry in Ecuador uses a great quantity of pesticides for flowers growing; many of them are toxic and no biodegradable, which contaminate the different effluents. The study of this research is focused to the possibility of using electron beam radiation generated by electron accelerator in order to decrease the concentration of pesticides in effluents both from flower cultivation and from treatment of flowers. The research is initiated with a survey to twelve flower plantations located in the provinces of Pichincha and Cotopaxi (Ecuador), with the purpose of knowing the class of used pesticides, its form of utilization before, during and after fumigation process, the class of staff working in flower industry and the methods of effluents treatment that are using. The information on importation of pesticides and exportation of different classes of flowers was carried out, as well as the flowers sales, with the purpose of selecting the pesticides to be studied. The study of electron beam influence was realized with 6 pesticides considered toxic (Diazinon, procloraz, imidacloprid, dimetoato, carbofuran and metiocarb).The studied variables were: irradiation dose, pesticide concentration, irradiation atmosphere and pH effect. Besides, pH changes, formation of nitrites, nitrates, sulphates, sulfides, ammonium ion and cyanides, after irradiation process of pesticides in aqueous solutions were analyzed. In general, the obtained degradation of pesticides was 99 % for pesticides: procloraz, imidacloprid, carbofuran and dimetoato, and 67% for metiocarb pesticide, when the pesticide concentration was 50 ppm and 5 kGy irradiation dose. (The author)

  10. Degradation of imidacloprid using combined advanced oxidation processes based on hydrodynamic cavitation.

    Science.gov (United States)

    Patil, Pankaj N; Bote, Sayli D; Gogate, Parag R

    2014-09-01

    The harmful effects of wastewaters containing pesticides or insecticides on human and aquatic life impart the need of effectively treating the wastewater streams containing these contaminants. In the present work, hydrodynamic cavitation reactors have been applied for the degradation of imidacloprid with process intensification studies based on different additives and combination with other similar processes. Effect of different operating parameters viz. concentration (20-60 ppm), pressure (1-8 bar), temperature (34 °C, 39 °C and 42 °C) and initial pH (2.5-8.3) has been investigated initially using orifice plate as cavitating device. It has been observed that 23.85% degradation of imidacloprid is obtained at optimized set of operating parameters. The efficacy of different process intensifying approaches based on the use of hydrogen peroxide (20-80 ppm), Fenton's reagent (H2O2:FeSO4 ratio as 1:1, 1:2, 2:1, 2:2, 4:1 and 4:2), advanced Fenton process (H2O2:Iron Powder ratio as 1:1, 2:1 and 4:1) and combination of Na2S2O8 and FeSO4 (FeSO4:Na2S2O8 ratio as 1:1, 1:2, 1:3 and 1:4) on the extent of degradation has been investigated. It was observed that near complete degradation of imidacloprid was achieved in all the cases at optimized values of process intensifying parameters. The time required for complete degradation of imidacloprid for approach based on hydrogen peroxide was 120 min where as for the Fenton and advance Fenton process, the required time was only 60 min. To check the effectiveness of hydrodynamic cavitation with different cavitating devices, few experiments were also performed with the help of slit venturi as a cavitating device at already optimized values of parameters. The present work has conclusively established that combined processes based on hydrodynamic cavitation can be effectively used for complete degradation of imidacloprid. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Photolysis of imidacloprid in aqueous solution

    International Nuclear Information System (INIS)

    Moza, P.N.; Hustert, K.; Feicht, E.; Kettrup, A.

    1998-01-01

    The photolysis of the insecticide imidacloprid in aqueous solution has been examined. Irradiation at 290 nm resulted in 90 % substrate transformation in 4 h. The degradation approximately followed first order kinetics; the rate constant is 1.6 × 10 −4 s −1 and half-life 1.2 h. 6-Chloronicotinaldehyde, N-methylnicotinacidamide, 1-(6-chloronicotinyl)imidazolidone and 6-chloro-3-pyridyl-methylethylendiamine were the main photoproducts identified by CG-MS analysis. (author)

  12. Winery vermicomposts to control the leaching of diuron, imidacloprid and their metabolites: role of dissolved organic carbon content.

    Science.gov (United States)

    Fernández-Bayo, Jesús D; Nogales, Rogelio; Romero, Esperanza

    2015-01-01

    Soil organic amendment addition is an effective practice in Mediterranean areas due to its associated high agricultural benefits and its potential to reduce the pesticide impact on water resources. However, their metabolites have received scarce attention, even when they may pose more risk than their parent compounds. Two winery vermicomposts obtained from spent grape marc (V1) and the mixture vine shoot-biosolid vinasses (V2) have been investigated as low cost organic amendments to minimize the leaching of diuron, imidacloprid and their metabolites in columns packed with a sandy loam (S1) and a silty-clay loam soil (S2) under steady state flow conditions. In the unamended soil columns, leached amounts of diuron were 75% and 53% in S1 and S2, respectively. Its metabolites (3-(3,4-dichlorophenyl)-1-methylurea, DPMU; and 3,4-dichlorophenylurea, DPU) percolated less than 35% of the total applied amount. The amount of the metabolite 3,4-dichloroaniline (DCA) was 2% and 30% for S1 and S2, respectively. Leaching of imidacloprid was 79% and 96% for S1 and S2, respectively, while its metabolite 6-chloronicotinic acid (CNA) was entirely leached. In the vermicompost-amended columns, the leaching of diuron was reduced 2 to 3-fold. DPMU and DPU were also significantly reduced (more than 6-fold). DCA did not appear in any of the leachates of the amended soil columns. Imidacloprid leaching was reduced 1 to 2-folds in the amended columns. The amendments did not affect the transport of CNA. The dissolved organic carbon (DOC) from the vermicomposts did not enhance pesticide transport throughout the soil in any case. This qualitative study presents these vermicomposts as an effective potential low-cost tool in reducing pesticide and metabolite leaching. The next step would be to test them under more realistic conditions.

  13. The degradation of the insecticide Imidacloprid in greenhouse tomatoes and an estimation of the level of residues.

    OpenAIRE

    VJOLLCA VLADI; FATOS HARIZAJ; VALDETE VORPSI; MAGDALENA CARA

    2014-01-01

    A liquid chromatographic (LC) method using UV detection was used to study the degradation of imidacloprid in tomatoes grown in greenhouses. A liquid-liquid extraction with acetonitrile/methanol (60/40, v/v) and a cleanup step with Florisil were combined with LC to isolate, recover, and quantities the pesticide. Average recoveries obtained at spike levels of 0.03 and 0.40 mg/kg were 93.2-94.7%. Determination limits were 0.012 mg/kg. The experiment was conducted in the greenhouses located in Du...

  14. Movement of Soil-Applied Imidacloprid and Thiamethoxam into Nectar and Pollen of Squash (Cucurbita pepo)

    Science.gov (United States)

    Stoner, Kimberly A.; Eitzer, Brian D.

    2012-01-01

    There has been recent interest in the threat to bees posed by the use of systemic insecticides. One concern is that systemic insecticides may translocate from the soil into pollen and nectar of plants, where they would be ingested by pollinators. This paper reports on the movement of two such systemic neonicotinoid insecticides, imidacloprid and thiamethoxam, into the pollen and nectar of flowers of squash (Cucurbita pepo cultivars “Multipik,” “Sunray” and “Bush Delicata”) when applied to soil by two methods: (1) sprayed into soil before seeding, or (2) applied through drip irrigation in a single treatment after transplant. All insecticide treatments were within labeled rates for these compounds. Pollen and nectar samples were analyzed using a standard extraction method widely used for pesticides (QuEChERS) and liquid chromatography mass spectrometric analysis. The concentrations found in nectar, 10±3 ppb (mean ± s.d) for imidacloprid and 11±6 ppb for thiamethoxam, are higher than concentrations of neonicotinoid insecticides in nectar of canola and sunflower grown from treated seed, and similar to those found in a recent study of neonicotinoids applied to pumpkins at transplant and through drip irrigation. The concentrations in pollen, 14±8 ppb for imidacloprid and 12±9 ppb for thiamethoxam, are higher than those found for seed treatments in most studies, but at the low end of the range found in the pumpkin study. Our concentrations fall into the range being investigated for sublethal effects on honey bees and bumble bees. PMID:22761727

  15. Differences in susceptibility of five cladoceran species to two systemic insecticides, imidacloprid and fipronil.

    Science.gov (United States)

    Hayasaka, Daisuke; Korenaga, Tomoko; Suzuki, Kazutaka; Sánchez-Bayo, Francisco; Goka, Koichi

    2012-03-01

    Differences in susceptibility of five cladocerans to the neonicotinoid imidacloprid and the phenyl-pyrazole fipronil, which have been dominantly used in rice fields of Japan in recent years, were examined based on short-term (48-h), semi-static acute immobilization exposure tests. Additionally, we compared the species sensitivity distribution (SSD) patterns of both insecticides between two sets of species: the five tested cladocerans and all other aquatic organisms tested so far, using data from the ECOTOX database of U.S. Environmental Protection Agency (USEPA). The sensitivity of the test species to either imidacloprid or fipronil was consistent, spanning similar orders of magnitude (100 times). At the genus level, sensitivities to both insecticides were in the following descending order: Ceriodaphnia > Moina > Daphnia. A positive relationship was found between body lengths of each species and the acute toxicity (EC(50)) of the insecticides, in particular fipronil. Differences in SSD patterns of imidacloprid were found between the species groups compared, indicating that test cladocerans are much less susceptible than other aquatic species including amphibians, crustaceans, fish, insects, mollusks and worms. However, the SSD patterns for fipronil indicate no difference in sensitivity between cladocerans tested and other aquatic organisms despite the greater exposure, which overestimates the results, of our semi-static tests. From these results, Ceriodaphnia sp. should be considered as more sensitive bioindicators (instead of the standard Daphnia magna) for ecotoxicological assessments of aquatic ecosystems. In addition, we propose that ecotoxicity data associated with differences in susceptibility among species should be investigated whenever pesticides have different physicochemical properties and mode of action.

  16. In Vitro Effects of Imidacloprid and Lambda-cyhalothrin on Capoeta capoeta umbla Kidney Glucose 6-Phosphate Dehydrogenase Enzyme

    Directory of Open Access Journals (Sweden)

    Mahinur KIRICI

    2015-03-01

    Full Text Available Pesticide toxicity causes oxidative damage such as DNA damage, enhanced lipid peroxidation, the oxidation of protein sulfydryl groups and enzyme inactivation in the metabolism. In this study, we investigated the in vitro effects on glucose 6-phosphate dehydrogenase (E.C.1.1.49; G6PD from Capoeta capoeta umbla kidney of imidacloprid and lambda-cyhalothrin. For this purpose, the enzymewas purified from kidney of C. c. umbla with a specific activity of 11.26 EU mg-1 proteins and 22.7% yield using hemolysate preparation, ammonium sulfate precipitation and 2',5'-ADP Sepharose 4B affinity gel chromatography methods. In order to control the enzyme purification sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE was done. SDS-PAGE showed a single band for the enzyme. The results of this study suggested that imidacloprid and lambda-cyhalothrin have significant inhibition effect on the activity of G6PD in in vitro. In conclusion, lambda-cyhalothrin inhibits the enzyme activity more than imidacloprid.

  17. The neonicotinoids thiacloprid, imidacloprid, and clothianidin affect the immunocompetence of honey bees (Apis mellifera L.).

    Science.gov (United States)

    Brandt, Annely; Gorenflo, Anna; Siede, Reinhold; Meixner, Marina; Büchler, Ralph

    2016-03-01

    A strong immune defense is vital for honey bee health and colony survival. This defense can be weakened by environmental factors that may render honey bees more vulnerable to parasites and pathogens. Honey bees are frequently exposed to neonicotinoid pesticides, which are being discussed as one of the stress factors that may lead to colony failure. We investigated the sublethal effects of the neonicotinoids thiacloprid, imidacloprid, and clothianidin on individual immunity, by studying three major aspects of immunocompetence in worker bees: total hemocyte number, encapsulation response, and antimicrobial activity of the hemolymph. In laboratory experiments, we found a strong impact of all three neonicotinoids. Thiacloprid (24h oral exposure, 200 μg/l or 2000 μg/l) and imidacloprid (1 μg/l or 10 μg/l) reduced hemocyte density, encapsulation response, and antimicrobial activity even at field realistic concentrations. Clothianidin had an effect on these immune parameters only at higher than field realistic concentrations (50-200 μg/l). These results suggest that neonicotinoids affect the individual immunocompetence of honey bees, possibly leading to an impaired disease resistance capacity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Pesticide Labels

    Science.gov (United States)

    Pesticide labels translate results of our extensive evaluations of pesticide products into conditions, directions and precautions that define parameters for use of a pesticide with the goal of ensuring protection of human health and the environment.

  19. Antimicrobial Pesticides

    Science.gov (United States)

    EPA regulates pesticides under the statutory authority of the Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA). The registration requirements for antimicrobial pesticides differ somewhat from those of other pesticides. Find out more.

  20. Impact of imidacloprid residues on the development of Eisenia fetida during vermicomposting of greenhouse plant waste.

    Science.gov (United States)

    Fernández-Gómez, Manuel J; Romero, Esperanza; Nogales, Rogelio

    2011-09-15

    Pesticide application in agriculture causes residues in post-harvest plant waste at different concentrations. Knowledge concerning how pesticide concentrations in such waste affect earthworms is essential for recycling greenhouse plant debris through vermicomposting. Here, we have evaluated the effects of imidacloprid (IMD) residues on earthworms (Eisenia fetida) during the vermicomposting of plant waste from greenhouse crops in Spain. Before, the effect of different IMD concentrations on earthworms was tested using cattle manure as an optimum waste for worm development. The results after using cattle manure indicate that IMD dose ≥ 5 mg kg(-1) hinders worm growth and even causes death, whereas IMD dose ≤ 2 mg IMD kg(-1) allows worm growth similar to control but impedes reproduction. The results from the vermicomposting of plant waste reveal that IMD inhibits adequate worm growth and increases mortality. Although 89% worms became sexually mature in substrate containing 2 mg IMD kg(-1), they did not produce cocoons. IMD also affected microorganisms harboured in the substrates for vermicomposting, as indicated by the reduction in their dehydrogenase activity. This enzyme activity was restored after vermicomposting. This study provides a sound basis for the vermicomposting of pesticide-contaminated plant waste. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Revealing Pesticide Residues Under High Pesticide Stress in Taiwan's Agricultural Environment Probed by Fresh Honey Bee (Hymenoptera: Apidae) Pollen.

    Science.gov (United States)

    Nai, Yu-Shin; Chen, Tsui-Yao; Chen, Yi-Cheng; Chen, Chun-Ting; Chen, Bor-Yann; Chen, Yue-Wen

    2017-10-01

    Significant pesticide residues are among the most serious problems for sustainable agriculture. In the beekeeping environment, pesticides not only impact a honey bee's survival, but they also contaminate bee products. Taiwan's agricultural environment has suffered from pesticide stress that was higher than that found in Europe and America. This study deciphered problems of pesticide residues in fresh honey bee pollen samples collected from 14 monitoring apiaries in Taiwan, which reflected significant contaminations within the honey bee population. In total, 155 pollen samples were screened for 232 pesticides, and 56 pesticides were detected. Among the residues, fluvalinate and chlorpyrifos showed the highest concentrations, followed by carbendazim, carbaryl, chlorfenapyr, imidacloprid, ethion, and flufenoxuron. The average frequency of pesticide residues detected in pollen samples was ca. 74.8%. The amounts and types of pesticides were higher in winter and in southwestern Taiwan. Moreover, five of these pollen samples were contaminated with 11-15 pesticides, with average levels between 1,560 and 6,390 μg/kg. Compared with the literature, this study emphasized that pollen gathered by honey bee was highly contaminated with more pesticides in Taiwan than in the America, France, and Spain. The ubiquity of pesticides in the pollen samples was likely due to the field applications of common pesticides. Recently, the Taiwanese government began to improve the pesticide policy. According to the resurvey data in 2016, there were reductions in several pesticide contamination parameters in pollen samples from west to southwest Taiwan. A long-term investigation of pollen pesticide residues should be conducted to inspect pesticides usage in Taiwan's agriculture. © The Author 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. 24-Epibrassinolide Restores the Synthesis of Proteins and Amino Acids in Brassica juncea L. Leaves Under Imidacloprid Stress

    Directory of Open Access Journals (Sweden)

    Sharma Anket

    2017-12-01

    Full Text Available Pesticides are applied to protect crops from a variety of insect pests but their application cause toxicity to plants that results, among others, in reduction of protein as well as amino acid contents. The present study is aimed at observing the effect of seed pre-soaking with 24-epibrassinolide (EBL on the protein and amino acid content in the leaves of Brassica juncea L. grown in soil that is amended with pesticide im-idacloprid (IMI. Soil amendment with IMI resulted in a decrease in the contents in leaves of total proteins and 21 amino acids studied. Seed soaking with 100 nM of EBL resulted in the recovery of total protein as well as amino acid contents in leaves, when compared with plants grown in only IMI amended soils.

  3. Role of nano-range amphiphilic polymers in seed quality enhancement of soybean and imidacloprid retention capacity on seed coatings.

    Science.gov (United States)

    Adak, Totan; Kumar, Jitendra; Shakil, Najam A; Pandey, Sushil

    2016-10-01

    Nano-size and wide-range solubility of amphiphilic polymers (having both hydrophilic and hydrophobic blocks) can improve uniformity in seed coatings. An investigation was carried out to assess the positive effect of amphiphilic polymers over hydrophilic or hydrophobic polymers as seed coating agents and pesticide carriers. Amphiphilic polymers with 127.5-354 nm micelle size were synthesized in the laboratory using polyethylene glycols and aliphatic di-acids. After 6 months of storage, germination of uncoated soybean seeds decreased drastically from 97.80 to 81.55%, while polymer-coated seeds showed 89.44-95.92% germination. Similarly, vigour index-1 was reduced from 3841.10 to 2813.06 for control seeds but ranged from 3375.59 to 3844.60 for polymer-coated seeds after 6 months. The developed imidacloprid formulations retained more pesticide on soybean seed coatings than did a commercial formulation (Gaucho(®) 600 FS). The time taken for 50% release of imidacloprid from seed coatings in water was 7.12-9.11 h for the developed formulations and 0.41 h for the commercial formulation. Nano-range amphiphilic polymers can be used to protect soybean seeds from ageing. Formulations as seed treatments may produce improved and sustained efficacy with minimum environmental contamination. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  4. Comparative role of neem seed extract, moringa leaf extract and imidacloprid in the management of wheat aphids in relation to yield losses in Pakistan.

    Science.gov (United States)

    Shah, Farhan Mahmood; Razaq, Muhammad; Ali, Abid; Han, Peng; Chen, Julian

    2017-01-01

    Wheat being staple food of Pakistan is constantly attacked by major wheat aphid species, Schizaphis graminum (R.), Rhopalosiphum padi (L.) and Sitobion avenae (F.). Due to concern on synthetic chemical use in wheat, it is imperative to search for alternative environment- and human- friendly control measures such as botanical pesticides. In the present study, we evaluated the comparative role of neem seed extract (NSE), moringa leaf extract (MLE) and imidacloprid (I) in the management of the aphid as well as the yield losses parameters in late planted wheat fields. Imidacloprid reduced significantly aphids infestation compared to the other treatments, hence resulting in higher yield, particularly when applied with MLE. The percentages of yield increase in I+MLE treated plots over the control were 19.15-81.89% for grains per spike, 5.33-37.62% for thousand grain weight and 27.59-61.12% for yield kg/ha. NSE was the second most effective control measure in suppressing aphid population, but the yield protected by NSE treatment over the control was comparable to that by imidacloprid. Population densities of coccinellids and syrphids in the plots treated with NSE-2 were higher than those treated with imidacloprid in two out of three experiments during 2013-14. Low predator density in imidacloprid-treated plots was attributed to the lower availability of prey aphids. The efficacy of NSE against aphids varied depending on degree of synchronization among the application timing, the activity of aphids, crop variety and environmental conditions. Despite that, we suggested NSE to be a promising alternative botanical insecticide compared to the most commonly recommended imidiacloprid. Further studies should consider the side effects of biopesticides on non-target organisms in order to provide better management practices in the field.

  5. Study of imidaclopride removal from aqueous solution by adsorption onto granular activated carbon using an on-line spectrophotometric analysis system

    International Nuclear Information System (INIS)

    Daneshvar, N.; Aber, S.; Khani, A.; Khataee, A.R.

    2007-01-01

    The removal of imidaclopride as a pesticide by granular activated carbon (GAC) and its adsorption kinetics were studied at different pH values and temperatures. In all experiments, the amount of GAC and initial concentration of imidaclopride were 2 g and 25 ppm, respectively. The adsorption process was followed by an on-line spectrophotometric analysis system, which consisted of UV-spectrophotometer, a designed absorption cell, peristaltic pump and special glassy reactor. The effect of pH and temperature on adsorption was studied over 90 min adsorption periods. The obtained data were treated according to various kinetic models. The results showed that second order model was the most suitable one on the overall. The our results also showed that the adsorption rate constants for first order, second order and intraparticle diffusion models followed decreasing order: pH = 7 > 4 > 10 > 1, T = 25 > 35 > 45 > 55 deg. C

  6. Study of imidaclopride removal from aqueous solution by adsorption onto granular activated carbon using an on-line spectrophotometric analysis system

    Energy Technology Data Exchange (ETDEWEB)

    Daneshvar, N. [Water and Wastewater Treatment Research Laboratory, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz (Iran, Islamic Republic of)]. E-mail: nezam_daneshvar@yahoo.com; Aber, S. [Water and Wastewater Treatment Research Laboratory, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz (Iran, Islamic Republic of)]. E-mail: soheil_aber@yahoo.com; Khani, A. [Water and Wastewater Treatment Research Laboratory, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz (Iran, Islamic Republic of)]. E-mail: alikhani_chemwt@yahoo.com; Khataee, A.R. [Water and Wastewater Treatment Research Laboratory, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz (Iran, Islamic Republic of)]. E-mail: ar_khataee@yahoo.com

    2007-06-01

    The removal of imidaclopride as a pesticide by granular activated carbon (GAC) and its adsorption kinetics were studied at different pH values and temperatures. In all experiments, the amount of GAC and initial concentration of imidaclopride were 2 g and 25 ppm, respectively. The adsorption process was followed by an on-line spectrophotometric analysis system, which consisted of UV-spectrophotometer, a designed absorption cell, peristaltic pump and special glassy reactor. The effect of pH and temperature on adsorption was studied over 90 min adsorption periods. The obtained data were treated according to various kinetic models. The results showed that second order model was the most suitable one on the overall. The our results also showed that the adsorption rate constants for first order, second order and intraparticle diffusion models followed decreasing order: pH = 7 > 4 > 10 > 1, T = 25 > 35 > 45 > 55 deg. C.

  7. REMOVAL OF IMIDACLOPRID USING ACTIVATED CARBON ...

    African Journals Online (AJOL)

    KEY WORDS: Chemical activation, Adsorption, Activated carbon, Pesticide ..... density solvent based dispersive liquid–liquid microextraction for quantitative extraction of ... El-Hamouz, A.; Hilal, H.S.; Nassar, N.; Mardawi, Z. Solid olive waste in ...

  8. Macro-invertebrate decline in surface water polluted with imidacloprid.

    Directory of Open Access Journals (Sweden)

    Tessa C Van Dijk

    Full Text Available Imidacloprid is one of the most widely used insecticides in the world. Its concentration in surface water exceeds the water quality norms in many parts of the Netherlands. Several studies have demonstrated harmful effects of this neonicotinoid to a wide range of non-target species. Therefore we expected that surface water pollution with imidacloprid would negatively impact aquatic ecosystems. Availability of extensive monitoring data on the abundance of aquatic macro-invertebrate species, and on imidacloprid concentrations in surface water in the Netherlands enabled us to test this hypothesis. Our regression analysis showed a significant negative relationship (P<0.001 between macro-invertebrate abundance and imidacloprid concentration for all species pooled. A significant negative relationship was also found for the orders Amphipoda, Basommatophora, Diptera, Ephemeroptera and Isopoda, and for several species separately. The order Odonata had a negative relationship very close to the significance threshold of 0.05 (P = 0.051. However, in accordance with previous research, a positive relationship was found for the order Actinedida. We used the monitoring field data to test whether the existing three water quality norms for imidacloprid in the Netherlands are protective in real conditions. Our data show that macrofauna abundance drops sharply between 13 and 67 ng l(-1. For aquatic ecosystem protection, two of the norms are not protective at all while the strictest norm of 13 ng l(-1 (MTR seems somewhat protective. In addition to the existing experimental evidence on the negative effects of imidacloprid on invertebrate life, our study, based on data from large-scale field monitoring during multiple years, shows that serious concern about the far-reaching consequences of the abundant use of imidacloprid for aquatic ecosystems is justified.

  9. Macro-Invertebrate Decline in Surface Water Polluted with Imidacloprid

    Science.gov (United States)

    Van Dijk, Tessa C.; Van Staalduinen, Marja A.; Van der Sluijs, Jeroen P.

    2013-01-01

    Imidacloprid is one of the most widely used insecticides in the world. Its concentration in surface water exceeds the water quality norms in many parts of the Netherlands. Several studies have demonstrated harmful effects of this neonicotinoid to a wide range of non-target species. Therefore we expected that surface water pollution with imidacloprid would negatively impact aquatic ecosystems. Availability of extensive monitoring data on the abundance of aquatic macro-invertebrate species, and on imidacloprid concentrations in surface water in the Netherlands enabled us to test this hypothesis. Our regression analysis showed a significant negative relationship (Pmacro-invertebrate abundance and imidacloprid concentration for all species pooled. A significant negative relationship was also found for the orders Amphipoda, Basommatophora, Diptera, Ephemeroptera and Isopoda, and for several species separately. The order Odonata had a negative relationship very close to the significance threshold of 0.05 (P = 0.051). However, in accordance with previous research, a positive relationship was found for the order Actinedida. We used the monitoring field data to test whether the existing three water quality norms for imidacloprid in the Netherlands are protective in real conditions. Our data show that macrofauna abundance drops sharply between 13 and 67 ng l−1. For aquatic ecosystem protection, two of the norms are not protective at all while the strictest norm of 13 ng l−1 (MTR) seems somewhat protective. In addition to the existing experimental evidence on the negative effects of imidacloprid on invertebrate life, our study, based on data from large-scale field monitoring during multiple years, shows that serious concern about the far-reaching consequences of the abundant use of imidacloprid for aquatic ecosystems is justified. PMID:23650513

  10. Water quality standards for imidacloprid : Proposal for an update according to the Water Framework Directive

    NARCIS (Netherlands)

    Smit CE; MSP; M&V

    2014-01-01

    Herziening waterkwaliteitsnormen voor imidacloprid
    Het RIVM stelt voor om de waterkwaliteitsnorm voor het bestrijdingsmiddel imidacloprid te verlagen van 67 naar 8,3 nanogram per liter. Uit nieuwe onderzoeken blijkt dat de schadelijke effecten van imidacloprid op waterorganismen zich al bij

  11. Imidacloprid movement in soils and impacts on soil microarthropods in southern Appalachian eastern hemlock stands

    Science.gov (United States)

    Jennifer D. Knoepp; James M. Vose; Jerry L. Michael; Barbara C. Reynolds

    2012-01-01

    Imidacloprid is a systemic insecticide effective in controlling the exotic pest Adelges tsugae (hemlock woolly adelgid) in eastern hemlock (Tsuga canadensis) trees. Concerns over imidacloprid impacts on nontarget species have limited its application in southern Appalachian ecosystems. We quantified the movement and adsorption of imidacloprid in forest soils after soil...

  12. 77 FR 21767 - Imidacloprid, Methomyl, and Oxamyl; Cancellation Order for Amendments To Terminate Uses

    Science.gov (United States)

    2012-04-11

    ... ENVIRONMENTAL PROTECTION AGENCY [EPA-HQ-OPP-2011-0933; FRL-9342-2] Imidacloprid, Methomyl, and... requested by registrants and accepted by the Agency, of products containing imidacloprid, methomyl, and... Requests from the registrants listed in Table 2 of Unit II to voluntarily amend certain imidacloprid...

  13. Imidacloprid in Melon Guttation Fluid: A Mode of Exposure for Pest and Beneficial Organisms

    Science.gov (United States)

    ELISA techniques were used to detect imidacloprid in guttation fluid of young cantaloupe plants in Arizona. Imidacloprid was detected at up to 37 µg / ml (ppm) one d after a label rate soil application. These imidacloprid titers exceed reported median oral toxicities for several insect species by ...

  14. Effects of imidacloprid on the ecology of sub-tropical freshwater microcosms

    NARCIS (Netherlands)

    Sumon, Kizar Ahmed; Ritika, Afifat Khanam; Peeters, Edwin T.H.M.; Rashid, Harunur; Bosma, Roel H.; Rahman, Md Shahidur; Fatema, Mst Kaniz; Brink, Van den Paul J.

    2018-01-01

    The neonicotinoid insecticide imidacloprid is used in Bangladesh for a variety of crop protection purposes. Imidacloprid may contaminate aquatic ecosystems via spray drift, surface runoff and ground water leaching. The present study aimed at assessing the fate and effects of imidacloprid on

  15. Improving Mitochondrial Function Protects Bumblebees from Neonicotinoid Pesticides.

    Directory of Open Access Journals (Sweden)

    Michael B Powner

    Full Text Available Global pollination is threatened by declining insect pollinator populations that may be linked to neonicotinoid pesticide use. Neonicotinoids over stimulate neurons and depolarize their mitochondria, producing immobility and death. However, mitochondrial function can be improved by near infrared light absorbed by cytochrome c oxidase in mitochondrial respiration. In flies, daily exposure to 670nm light throughout life increases average lifespan and aged mobility, and reduces systemic inflammation. Here we treat bumble bees with Imidacloprid a common neonicotinoid. This undermined ATP and rapidly induced immobility and reduced visual function and survival. Bees exposed to insecticide and daily to 670nm light showed corrected ATP levels and significantly improved mobility allowing them to feed. Physiological recordings from eyes revealed that light exposure corrected deficits induced by the pesticide. Overall, death rates in bees exposed to insecticide but also given 670nm light were indistinguishable from controls. When Imidacloprid and light exposure were withdrawn, survival was maintained. Bees and insects generally cannot see deep red light so it does not disturb their behaviour. Hence, we show that deep red light exposure that improves mitochondrial function, reverses the sensory and motor deficits induced by Imidacloprid. These results may have important implications as light delivery is economic and can be placed in hives/colonies.

  16. Transgenerational shifts in reproduction hormesis in green peach aphid exposed to low concentrations of imidacloprid.

    Directory of Open Access Journals (Sweden)

    Murali-Mohan Ayyanath

    Full Text Available Hormesis is a biphasic phenomenon that in toxicology is characterized by low-dose stimulation and high-dose inhibition. It has been observed in a wide range of organisms in response to many chemical stressors, including insects exposed to pesticides, with potential repercussions for agriculture and pest management. To address questions related to the nature of the dose-response and potential consequences on biological fitness, we examined transgenerational hormesis in the green peach aphid, Myzus persicae, when exposed to sublethal concentrations of the insecticide imidacloprid. A hormetic response in the form of increased reproduction was consistently observed and a model previously developed to test for hormesis adequately fit some of our data. However, the nature of the dose-response differed within and across generations depending upon the duration and mode of exposure. Decreased reproduction in intermediate generations confirmed that fitness tradeoffs were a consequence of the hormetic response. However, recovery to levels of reproduction equal to that of controls in subsequent generations and significantly greater total reproduction after four generations suggested that biological fitness was increased by exposure to low concentrations of the insecticide, even when insects were continuously exposed to the stressor. This was especially evident in a greenhouse experiment where the instantaneous rate of population increase almost doubled and total aphid production more than quadrupled when aphids were exposed to potato plants systemically treated with low amounts of imidacloprid. Our results show that although fitness tradeoffs do occur with hormetic responses, this does not necessarily compromise overall biological fitness.

  17. Relative Fitness and Feeding Capacity of Imidacloprid Resistant Nilaparvata lugens

    Directory of Open Access Journals (Sweden)

    Jesayas A. Londingkene

    2016-07-01

    Full Text Available Imidacloprid is a neonicotinoid insecticide that is recommended for controlling Nilaparvata lugens. In Asian countries, such as, China, Vietnam, India, and Thailand, imidacloprid has caused resistance to N. lugens. Imidacloprid has also caused resistance to N. lugens based on some previous studies in Indonesia. The aim of this study was to determine the fitness and feeding capacity of imidacloprid-resistant N. lugens. The population of N. lugens used in this study had a resistance level of 50.64 times compared to the susceptible population. When the resistant and susceptible population of N. lugens did not receive any exposure to imidacloprid, the susceptible population had better fitness than the resistance one. However, the fitness of the resistant population increased when this population was resistance which sublethal cencentration (LC50 & LC20 of imidacloprid. The increase fitness of this resistant population most likely related to the increase in feeding capacity of the resistant population when they were treated which sublethal imidacloprid. These findings suggest that the field population of N. lugens that have developed resistance would increase the probability of outbreak if they were sprayed with imidacloprid.   INTISARI   Imidakloprid adalah insektisida neonicotinoid yang direkomendasikan untuk mengendalikan Nilaparvata lugens. Di negara Asia, seperti, China, Vietnam, India, dan Thailand, imidakloprid telah menyebabkan resistensi terhadap N. lugens. Di Indonesia, berdasarkan beberapa penelitian sebelumnya dilaporkan imidakloprid juga menyebabkan resistensi terhadap N. lugens. Tujuan penelitian ini untuk mengetahui kebugaran relatif dan kemampuan makan N. lugens resisten terhadap imidakloprid. Populasi N. lugens yang digunakan dalam penelitian ini mempunyai tingkat resistensi 50,64 kali dibandingkan dengan populasi peka. N. lugens populasi resisten dan peka apabila tidak dipapar dengan imidakloprid, populasi peka mempunyai kebugaran

  18. Exposure to multiple cholinergic pesticides impairs olfactory learning and memory in honeybees.

    Science.gov (United States)

    Williamson, Sally M; Wright, Geraldine A

    2013-05-15

    Pesticides are important agricultural tools often used in combination to avoid resistance in target pest species, but there is growing concern that their widespread use contributes to the decline of pollinator populations. Pollinators perform sophisticated behaviours while foraging that require them to learn and remember floral traits associated with food, but we know relatively little about the way that combined exposure to multiple pesticides affects neural function and behaviour. The experiments reported here show that prolonged exposure to field-realistic concentrations of the neonicotinoid imidacloprid and the organophosphate acetylcholinesterase inhibitor coumaphos and their combination impairs olfactory learning and memory formation in the honeybee. Using a method for classical conditioning of proboscis extension, honeybees were trained in either a massed or spaced conditioning protocol to examine how these pesticides affected performance during learning and short- and long-term memory tasks. We found that bees exposed to imidacloprid, coumaphos, or a combination of these compounds, were less likely to express conditioned proboscis extension towards an odor associated with reward. Bees exposed to imidacloprid were less likely to form a long-term memory, whereas bees exposed to coumaphos were only less likely to respond during the short-term memory test after massed conditioning. Imidacloprid, coumaphos and a combination of the two compounds impaired the bees' ability to differentiate the conditioned odour from a novel odour during the memory test. Our results demonstrate that exposure to sublethal doses of combined cholinergic pesticides significantly impairs important behaviours involved in foraging, implying that pollinator population decline could be the result of a failure of neural function of bees exposed to pesticides in agricultural landscapes.

  19. Pesticide leaching from two Swedish topsoils of contrasting texture amended with biochar

    Science.gov (United States)

    Larsbo, Mats; Löfstrand, Elisabeth; de Veer, David van Alphen; Ulén, Barbro

    2013-04-01

    The use of biochar as a soil amendment has recently increased because of its potential for long-term soil carbon sequestration and its potential for improving soil fertility. The objective of this study was to quantify the effects of biochar soil incorporation on pesticide adsorption and leaching for two Swedish topsoils, one clay soil and one loam soil. We used the non-reactive tracer bromide and the pesticides sulfosulfuron, isoproturon, imidacloprid, propyzamid and pyraclostrobin, substances with different mobility in soil. Adsorption was studied in batch experiments and leaching was studied in experiments using soil columns (20 cm high, 20 cm diameter) where 0.01 kg kg- 1 dw biochar powder originating from wheat residues had been mixed into the top 10 cm. After solute application the columns were exposed to simulated rain three times with a weekly interval and concentrations were measured in the effluent water. The biochar treatment resulted in significantly larger adsorption distribution coefficients (Kd) for the moderately mobile pesticides isoproturon and imidacloprid for the clay soil and for imidacloprid only for the loam soil. Relative leaching of the pesticides ranged from 0.0035% of the applied mass for pyraclostrobin (average Kd = 360 cm3 g- 1) to 5.9% for sulfosulfuron (average Kd = 5.6 cm3 g- 1). There were no significant effects of the biochar amendment on pesticide concentrations in column effluents for the loam soil. For the clay soil concentrations were significantly reduced for isoproturon, imidacloprid and propyzamid while they were significantly increased for the non-mobile fungicide pyraclostrobin suggesting that the transport was facilitated by material originating from the biochar amendment.

  20. Dissipation rate study and pre-harvest intervals calculation of imidacloprid and oxamyl in exported Egyptian green beans and chili peppers after pestigation treatment.

    Science.gov (United States)

    Hanafi, Ahmad; Dasenaki, Marilena; Bletsou, Anna; Thomaidis, Nikolaos S

    2018-02-01

    Two QuEChERS-based methods were developed and validated, using liquid chromatography-tandem mass spectrometric detection, in order to accurately determine residues of imidacloprid and oxamyl in green beans and chili peppers after treatment via irrigation system under field conditions in Egyptian farms. The validation included experiments for specificity, linearity, trueness, precision, matrix effect and limits of detection and quantification according to European Commission standards. The dissipation rates of both pesticides in green beans and chili peppers were studied and the pre-harvest intervals (PHIs) were calculated. The LOQ values of imidacloprid were 0.47 and 2.6μg/kg in green beans and chili peppers, respectively, while for oxamyl the LOQs were 2.9 and 0.67μg/kg, respectively. No PHI of imidacloprid is required, while for oxamyl it was found that still after 21days, its residues' concentration on both crops was significantly higher than the maximum residue limit. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. LC/DAD/ESI/MS method for the determination of imidacloprid, thiacloprid, and spinosad in olives and olive oil after field treatment.

    Science.gov (United States)

    Angioni, Alberto; Porcu, Luciano; Pirisi, Filippo

    2011-10-26

    The behavior in the field and the transfer from olives to olive oil during the technological process of imidacloprid, thiacloprid, and spinosad were studied. The extraction method used was effective in extracting the analytes of interest, and no interfering peaks were detected in the chromatogram. The residue levels found in olives after treatment were 0.14, 0.04, and 0.30 mg/kg for imidacloprid, thiacloprid, and spinosad, respectively, far below the maximum residue levels (MRLs) set for these insecticides in EU. At the preharvest interval (PHI), no residue was detected for imidacloprid and thiacloprid, while spinosad showed a residue level of 0.04 mg/kg. The study of the effect of the technological process on pesticide transfer in olive oil showed that these insecticides tend to remain in the olive cake. The LC/DAD/ESI/MS method showed good performance with adequate recoveries ranging from 80 to 119% and good method limits of quantitation (LOQs) and of determination (LODs). No matrix effect was detected.

  2. Influence of agrochemicals fipronil and imidacloprid on the learning behavior of Apis mellifera L. honeybees - doi: 10.4025/actascianimsci.v35i4.18683

    Directory of Open Access Journals (Sweden)

    Marcela Pedraza Carrillo

    2013-10-01

    Full Text Available Agrochemicals on crop cultivated areas is a source of contamination for bees and may cause physiological and behavioral disorders and mortality. The LD50 of the pesticides fipronil and imidacloprid was determined and their effect on the learning behavior of Apis mellifera L. honeybee evaluated. LD50 was determined by the ingestion of contaminated food with different concentrations of insecticide concentrations: Fipronil (0, 0.8, 0.4, 0.2, 0.1 and 0.05 µg bee-1 and imidacloprid (0, 0.4, 0.2, 0.1, 0.05 and 0.025 µg bee-1. The method of proboscis extension reflection (PER and learning through citral odor evaluated their responses to food stimulation. LD50 obtained were 0.28 ± 0.11 and 0.10 ± 0.04 µg bee-1 for fipronil and imidacloprid, respectively. The PER test showed no significant difference (p Apis mellifera bees.  

  3. Evolved pesticide tolerance in amphibians: Predicting mechanisms based on pesticide novelty and mode of action

    International Nuclear Information System (INIS)

    Hua, Jessica; Jones, Devin K.; Mattes, Brian M.; Cothran, Rickey D.; Relyea, Rick A.; Hoverman, Jason T.

    2015-01-01

    We examined 10 wood frog populations distributed along an agricultural gradient for their tolerance to six pesticides (carbaryl, malathion, cypermethrin, permethrin, imidacloprid, and thiamethoxam) that differed in date of first registration (pesticide novelty) and mode-of-action (MOA). Our goals were to assess whether: 1) tolerance was correlated with distance to agriculture for each pesticide, 2) pesticide novelty predicted the likelihood of evolved tolerance, and 3) populations display cross-tolerance between pesticides that share and differ in MOA. Wood frog populations located close to agriculture were more tolerant to carbaryl and malathion than populations far from agriculture. Moreover, the strength of the relationship between distance to agriculture and tolerance was stronger for older pesticides compared to newer pesticides. Finally, we found evidence for cross-tolerance between carbaryl and malathion (two pesticides that share MOA). This study provides one of the most comprehensive approaches for understanding patterns of evolved tolerance in non-pest species. - Highlights: • We explored patterns of tolerance to six insecticides across 10 wood frog populations. • We found evidence that wood frogs have evolved tolerance to carbaryl and malathion. • The likelihood of evolved tolerance was stronger for older compared to newer pesticides. • We found evidence for cross-tolerance between carbaryl and malathion. • This is one of the most comprehensive approaches studying evolved tolerance in a non-pest species. - Using 10 wood frog populations, we detected evidence for evolved tolerance, found that the evolved tolerance depends on insecticide novelty, and found evidence for cross-tolerance.

  4. Sperm viability and gene expression in honey bee queens (Apis mellifera) following exposure to the neonicotinoid insecticide imidacloprid and the organophosphate acaricide coumaphos.

    Science.gov (United States)

    Chaimanee, Veeranan; Evans, Jay D; Chen, Yanping; Jackson, Caitlin; Pettis, Jeffery S

    2016-06-01

    Honey bee population declines are of global concern. Numerous factors appear to cause these declines including parasites, pathogens, malnutrition and pesticides. Residues of the organophosphate acaricide coumaphos and the neonicotinoid insecticide imidacloprid, widely used to combat Varroa mites and for crop protection in agriculture, respectively, have been detected in wax, pollen and comb samples. Here, we assess the effects of these compounds at different doses on the viability of sperm stored in the honey bee queens' spermatheca. Our results demonstrate that sub-lethal doses of imidacloprid (0.02ppm) decreased sperm viability by 50%, 7days after treatment. Sperm viability was a downward trend (about 33%) in queens treated with high doses of coumaphos (100ppm), but there was not significant difference. The expression of genes that are involved in development, immune responses and detoxification in honey bee queens and workers exposed to chemicals was measured by qPCR analysis. The data showed that expression levels of specific genes were triggered 1day after treatment. The expression levels of P450 subfamily genes, CYP306A1, CYP4G11 and CYP6AS14 were decreased in honey bee queens treated with low doses of coumaphos (5ppm) and imidacloprid (0.02ppm). Moreover, these two compounds suppressed the expression of genes related to antioxidation, immunity and development in queens at day 1. Up-regulation of antioxidants by these compounds in worker bees was observed at day 1. Coumaphos also caused a repression of CYP306A1 and CYP4G11 in workers. Antioxidants appear to prevent chemical damage to honey bees. We also found that DWV replication increased in workers treated with imidacloprid. This research clearly demonstrates that chemical exposure can affect sperm viability in queen honey bees. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Macro-invertebrate decline in surface water polluted with imidacloprid

    NARCIS (Netherlands)

    van Dijk, T.; van Staalduinen, M.A.; van der Sluijs, J.P.|info:eu-repo/dai/nl/073427489

    Imidacloprid is one of the most widely used insecticides in the world. Its concentration in surface water exceeds the water quality norms in many parts of the Netherlands. Several studies have demonstrated harmful effects of this neonicotinoid to a wide range of non-target species. Therefore we

  6. Multigeneration toxicity of imidacloprid and thiacloprid to Folsomia candida

    NARCIS (Netherlands)

    van Gestel, Cornelis A.M.; de Lima e Silva, Claudia; Lam, Thao; Koekkoek, Jacco C.; Lamoree, Marja H.; Verweij, Rudo A.

    2017-01-01

    In a recent study, we showed that the springtail Folsomia candida was quite sensitive the neonicotinoid insecticides imidacloprid and thiacloprid. This study aimed at determining the toxicity of both compounds to F. candida following exposure over three generations, in natural LUFA 2.2 standard

  7. Complex mixtures of dissolved pesticides show potential aquatic toxicity in a synoptic study of Midwestern U.S. streams

    Science.gov (United States)

    Nowell, Lisa H.; Moran, Patrick W.; Schmidt, Travis S.; Norman, Julia E.; Nakagaki, Naomi; Shoda, Megan E.; Mahler, Barbara J.; Van Metre, Peter C.; Stone, Wesley W.; Sandstrom, Mark W.; Hladik, Michelle L.

    2018-01-01

    Aquatic organisms in streams are exposed to pesticide mixtures that vary in composition over time in response to changes in flow conditions, pesticide inputs to the stream, and pesticide fate and degradation within the stream. To characterize mixtures of dissolved-phase pesticides and degradates in Midwestern streams, a synoptic study was conducted at 100 streams during May–August 2013. In weekly water samples, 94 pesticides and 89 degradates were detected, with a median of 25 compounds detected per sample and 54 detected per site. In a screening-level assessment using aquatic-life benchmarks and the Pesticide Toxicity Index (PTI), potential effects on fish were unlikely in most streams. For invertebrates, potential chronic toxicity was predicted in 53% of streams, punctuated in 12% of streams by acutely toxic exposures. For aquatic plants, acute but likely reversible effects on biomass were predicted in 75% of streams, with potential longer-term effects on plant communities in 9% of streams. Relatively few pesticides in water—atrazine, acetochlor, metolachlor, imidacloprid, fipronil, organophosphate insecticides, and carbendazim—were predicted to be major contributors to potential toxicity. Agricultural streams had the highest potential for effects on plants, especially in May–June, corresponding to high spring-flush herbicide concentrations. Urban streams had higher detection frequencies and concentrations of insecticides and most fungicides than in agricultural streams, and higher potential for invertebrate toxicity, which peaked during July–August. Toxicity-screening predictions for invertebrates were supported by quantile regressions showing significant associations for the Benthic Invertebrate-PTI and imidacloprid concentrations with invertebrate community metrics for MSQA streams, and by mesocosm toxicity testing with imidacloprid showing effects on invertebrate communities at environmentally relevant concentrations. This study documents the most

  8. Ti O{sub 2}-Based Solar Photocatalytic Degradation of Selected pesticides in aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Bernecker, A.; Baune, M.; Malato, S.; Thiemann, W.

    1999-07-01

    The photocatalytic oxidation of the pesticides pirimicarb and imidacloprid, using Ti O{sub 2} suspensions under solar radiation, has been studied at pilot-plant scale at the Plataforma Solar de Almeria. The effect of the added Ti O{sub 2}-concentration (ranging from 0 to 1000 mg.dm''-3) and the pH value of the solution (pH values 3, 7 and 10) on the decomposition rates of pirimicarb and imidacloprid oxidation was examined. Addition of Ti O{sub 2} leads to an increase in the reaction rates of both investigated pollutants. A pH dependence is also obvious, but not similar for both pesticides. (Author) 10 refs.

  9. Influencing factors and kinetic studies of imidacloprid degradation by ozonation.

    Science.gov (United States)

    Chen, Shi; Deng, Jing; Deng, Yang; Gao, Naiyun

    2018-03-02

    Batch kinetic tests in ozonation of imidacloprid from water were performed in this study. The pseudo-first-order rate constant of imidacloprid degradation was increased from 0.079 to 0.326 min -1 with the increasing pH from 6.02 to 8.64 at an average ozone dose of 1.149 mg L -1 . When the alkalinity was increased from 0 to 250 mg L -1 NaHCO 3 , the pseudo-first-order rate constants decreased from 0.121 to 0.034 min -1 . These results suggested that the predominant oxidant gradually switched from ozone to hydroxyl radicals ([Formula: see text]) with the increase in solution pH. The secondary rate constant [Formula: see text] (10.92 ± 0.12 M -1 s -1 ) for the reaction of imidacloprid and molecular ozone was determined at pH 2.0 and in the presence of 50 mM ter-butyl alcohol (p-chlorobenzoic acid, pCBA), respectively. An indirect competition method was used to determine the secondary rate constant for [Formula: see text] oxidation of imidacloprid in the presence of pCBA as the reference compound. The rate constants [Formula: see text] were estimated to range 2.65-3.79 M -1 s -1 at pH 6.02-8.64. Results obtained from this study demonstrate that ozonation appears to be an effective method to remove imidacloprid from water.

  10. Possibility of electron beam irradiation degradation of many pesticides in ginseng oral liquid

    International Nuclear Information System (INIS)

    Chen Qiyong; Liu Yang; Ge Hanguang; Wu Ruoxin

    2013-01-01

    This paper is to explore the technological feasibility in degradation of pesticides in ginseng oral liquid under the irradiation of electron beam. Sixteen residual concentration-restricted pesticides in ginseng oral liquid were experimented under the dose of 0 ∼ 15 kGy. Results showed that, when the dose of the irradiation of electron beam increased, the degradation rates of all the pesticides enhanced, and the electron beam radiation showed the most remarkable effect on the degradation of pesticides such as imidacloprid and fenpropathrinwith degradation rates of more than 90% and 50%, respectively. The degradation rates of fonofos, methidathion, diazinon, phosalone and carbaryl were all higher than 30%. No significant degradation was observed in the other 9 pesticides under the same condition. (authors)

  11. Pesticides from wastewater treatment plant effluents affect invertebrate communities.

    Science.gov (United States)

    Münze, Ronald; Hannemann, Christin; Orlinskiy, Polina; Gunold, Roman; Paschke, Albrecht; Foit, Kaarina; Becker, Jeremias; Kaske, Oliver; Paulsson, Elin; Peterson, Märit; Jernstedt, Henrik; Kreuger, Jenny; Schüürmann, Gerrit; Liess, Matthias

    2017-12-01

    We quantified pesticide contamination and its ecological impact up- and downstream of seven wastewater treatment plants (WWTPs) in rural and suburban areas of central Germany. During two sampling campaigns, time-weighted average pesticide concentrations (c TWA ) were obtained using Chemcatcher® passive samplers; pesticide peak concentrations were quantified with event-driven samplers. At downstream sites, receiving waters were additionally grab sampled for five selected pharmaceuticals. Ecological effects on macroinvertebrate structure and ecosystem function were assessed using the biological indicator system SPEAR pesticides (SPEcies At Risk) and leaf litter breakdown rates, respectively. WWTP effluents substantially increased insecticide and fungicide concentrations in receiving waters; in many cases, treated wastewater was the exclusive source for the neonicotinoid insecticides acetamiprid and imidacloprid in the investigated streams. During the ten weeks of the investigation, five out of the seven WWTPs increased in-stream pesticide toxicity by a factor of three. As a consequence, at downstream sites, SPEAR values and leaf litter degradation rates were reduced by 40% and 53%, respectively. The reduced leaf litter breakdown was related to changes in the macroinvertebrate communities described by SPEAR pesticides and not to altered microbial activity. Neonicotinoids showed the highest ecological relevance for the composition of invertebrate communities, occasionally exceeding the Regulatory Acceptable Concentrations (RACs). In general, considerable ecological effects of insecticides were observed above and below regulatory thresholds. Fungicides, herbicides and pharmaceuticals contributed only marginally to acute toxicity. We conclude that pesticide retention of WWTPs needs to be improved. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Degradation of the Neonicotinoid Pesticides in the Atmospheric Pressure Ionization Source.

    Science.gov (United States)

    Chai, Yunfeng; Chen, Hongping; Liu, Xin; Lu, Chengyin

    2018-02-01

    During the analysis of neonicotinoid pesticide standards (thiamethoxam, clothianidin, imidacloprid, acetamiprid, and thiacloprid) by mass spectrometry, the degradation of these pesticides (M-C=N-R is degraded into M-C=O, M is the skeleton moiety, and R is NO 2 or CN) was observed in the atmospheric pressure ionization interfaces (ESI and APCI). In APCI, the degradation of all the five neonicotinoid pesticides studied took place, and the primary mechanism was in-source ion/molecule reaction, in which a molecule of water (confirmed by use of H 2 18 O) attacked the carbon of the imine group accompanying with loss of NH 2 R (R=NO 2 , CN). For the nitroguanidine neonicotinoid pesticides (R=NO 2 , including thiamethoxam, clothianidin, and imidacloprid), higher auxiliary gas heater temperature also contributed to their degradation in APCI due to in-source pyrolysis. The degradation of the five neonicotinoid pesticides studied in ESI was not significant. In ESI, only the nitroguanidine neonicotinoid pesticides could generate the degradation products through in-source fragmentation mechanism. The degradation of cyanoamidine neonicotinoid pesticides (R=CN, including acetamiprid and thiacloprid) in ESI was not observed. The degradation of neonicotinoid pesticides in the ion source of mass spectrometer renders some adverse consequences, such as difficulty interpreting the full-scan mass spectrum, reducing the sensitivity and accuracy of quantitative analysis, and misleading whether these pesticides have degraded in the real samples. Therefore, a clear understanding of these unusual degradation reactions should facilitate the analysis of neonicotinoid pesticides by atmospheric pressure ionization mass spectrometry. Graphical Abstract.

  13. Degradation of the Neonicotinoid Pesticides in the Atmospheric Pressure Ionization Source

    Science.gov (United States)

    Chai, Yunfeng; Chen, Hongping; Liu, Xin; Lu, Chengyin

    2018-02-01

    During the analysis of neonicotinoid pesticide standards (thiamethoxam, clothianidin, imidacloprid, acetamiprid, and thiacloprid) by mass spectrometry, the degradation of these pesticides (M-C=N-R is degraded into M-C=O, M is the skeleton moiety, and R is NO2 or CN) was observed in the atmospheric pressure ionization interfaces (ESI and APCI). In APCI, the degradation of all the five neonicotinoid pesticides studied took place, and the primary mechanism was in-source ion/molecule reaction, in which a molecule of water (confirmed by use of H2 18O) attacked the carbon of the imine group accompanying with loss of NH2R (R=NO2, CN). For the nitroguanidine neonicotinoid pesticides (R=NO2, including thiamethoxam, clothianidin, and imidacloprid), higher auxiliary gas heater temperature also contributed to their degradation in APCI due to in-source pyrolysis. The degradation of the five neonicotinoid pesticides studied in ESI was not significant. In ESI, only the nitroguanidine neonicotinoid pesticides could generate the degradation products through in-source fragmentation mechanism. The degradation of cyanoamidine neonicotinoid pesticides (R=CN, including acetamiprid and thiacloprid) in ESI was not observed. The degradation of neonicotinoid pesticides in the ion source of mass spectrometer renders some adverse consequences, such as difficulty interpreting the full-scan mass spectrum, reducing the sensitivity and accuracy of quantitative analysis, and misleading whether these pesticides have degraded in the real samples. Therefore, a clear understanding of these unusual degradation reactions should facilitate the analysis of neonicotinoid pesticides by atmospheric pressure ionization mass spectrometry.

  14. [Resistance risk and resistance stability of Frankliniella occidentalis to imidacloprid, emamectin benzoate, and phoxim].

    Science.gov (United States)

    Wang, Sheng-Yin; Yu, Yi; Liu, Yong-Jie; Ma, Jing-Yu

    2012-12-01

    In order to effectively control the damage of Frankliniella occidentalis (Pergande), Phaseolus vuglaris was dipped with imidacloprid, phoxim, and emamectin benzoate, respectively to select the resistance populations of F. occidentalis from its susceptible population, and the resistance inheritance and resistance risk were analyzed with the resistance reality heredity. After 32, 32, and 24 generations' selection, the F. occidentalis populations obtained 13.8-fold, 29.4-fold and 39.0-fold resistance to imidacloprid, phoxim, and emamectin benzoate, respectively. The resistance reality heritability to imidacloprid, phoxim, and emamectin benzoate was 0.112, 0.166, and 0.259, respectively. The resistance development rate to emamectin benzoate was the fastest, followed by to phoxim, and to imidacloprid. The higher the resistance levels of the selected populations, the lower the differences between the larva and adult susceptibility to imidacloprid, phoxim, and emamectin benzoate. Stopping selection for 12 continuous generations, the resistance level of the selected resistance populations to imidacloprid, phoxim, and emamectin benzoate had definite decline, but it was difficult to regain the original susceptibility. F. occidentalis had a greater potential to gain high level resistance to imidacloprid, phoxim, and emamectin benzoate. Compared with the resistance of F. occidentalis to phoxim and emamectin benzoate, the resistance to imidacloprid increased slower and decreased faster, and thus, imidacloprid was more appropriate to control F. occidentalis in practice.

  15. Biodegradation of high doses of commercial pesticide products in pilot-scale biobeds using olive-oil agroindustry wastes.

    Science.gov (United States)

    Delgado-Moreno, L; Nogales, R; Romero, E

    2017-12-15

    Biobeds systems containing soil, peat and straw (SPS) are used worldwide to eliminate pesticide point-source contamination, but implantation is difficult when peat and/or straw are not available. Novel biobeds composed of soil, olive pruning and wet olive mill cake (SCPr) or its vermicompost (SVPr) were assayed at pilot scale for its use in olive grove areas. Their removal efficiency for five pesticides applied at high concentration was compared with the biobed with SPS. The effect of a grass layer on the efficiency of these biobeds was also evaluated. Pesticides were retained mainly in the upper layer. In non-planted biobeds with SCPr and SVPr, pesticides dissipation was higher than in SPS, except for diuron. In the biobed with SVPr, with the highest pesticide dissipation capacity, the removed amount of dimethoate, imidacloprid, tebuconazole, diuron and oxyfluorfen was 100, 80, 73, 75 and 50%, respectively. The grass layer enhanced dehydrogenase and diphenol-oxidase activities, modified the pesticides dissipation kinetics and favored the pesticide downward movement. One metabolite of imidacloprid, 3 of oxyfluorfen and 4 of diuron were identified by GC-MS. These novel biobeds represent an alternative to the traditional one and a contribution to promote a circular economy for the olive-oil production. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Pesticide Reevaluation

    Science.gov (United States)

    Learn about the process for periodically evaluating registered pesticides to ensure they meet current science standards for risk assessment, as required by the Federal Insecticide Fungicide and Rodenticide Act.

  17. Measurement of imidacloprid in xylem fluid from eastern hemlock (Tsuga canadensis) by derivitization/GC/MS and ELISA

    Science.gov (United States)

    Anthony Lagalante; Peter Greenbacker; Jonathan Jones; Richard Turcotte; Bradley Onken

    2007-01-01

    Imidacloprid is a nonvolatile insecticide and its direct quantification is not possible by gas chromatography. In order to ascertain imidacloprid levels in soil and trunk injection treated trees, a sensitive and selective method has been developed using GC/MS to measure the imidacloprid levels in xylem fluid exudates. In May 2005, a stand of hemlock trees in West...

  18. Comparative toxicities and synergism of apple orchard pesticides to Apis mellifera (L. and Osmia cornifrons (Radoszkowski.

    Directory of Open Access Journals (Sweden)

    David J Biddinger

    Full Text Available The topical toxicities of five commercial grade pesticides commonly sprayed in apple orchards were estimated on adult worker honey bees, Apis mellifera (L. (Hymenoptera: Apidae and Japanese orchard bees, Osmia cornifrons (Radoszkowski (Hymenoptera: Megachilidae. The pesticides were acetamiprid (Assail 30SG, λ-cyhalothrin (Warrior II, dimethoate (Dimethoate 4EC, phosmet (Imidan 70W, and imidacloprid (Provado 1.6F. At least 5 doses of each chemical, diluted in distilled water, were applied to freshly-eclosed adult bees. Mortality was assessed after 48 hr. Dose-mortality regressions were analyzed by probit analysis to test the hypotheses of parallelism and equality by likelihood ratio tests. For A. mellifera, the decreasing order of toxicity at LD₅₀ was imidacloprid, λ-cyhalothrin, dimethoate, phosmet, and acetamiprid. For O. cornifrons, the decreasing order of toxicity at LD₅₀ was dimethoate, λ-cyhalothrin, imidacloprid, acetamiprid, and phosmet. Interaction of imidacloprid or acetamiprid with the fungicide fenbuconazole (Indar 2F was also tested in a 1∶1 proportion for each species. Estimates of response parameters for each mixture component applied to each species were compared with dose-response data for each mixture in statistical tests of the hypothesis of independent joint action. For each mixture, the interaction of fenbuconazole (a material non-toxic to both species was significant and positive along the entire line for the pesticide. Our results clearly show that responses of A. mellifera cannot be extrapolated to responses of O.cornifrons, and that synergism of neonicotinoid insecticides and fungicides occurs using formulated product in mixtures as they are commonly applied in apple orchards.

  19. Imidacloprid concentration effects on adult emerald ash borer: a greenhouse study

    Science.gov (United States)

    David Cappaert; Deborah G. McCullough; Therese M. Poland; Phil Lewis; John Molongoski

    2008-01-01

    Imidacloprid is the active ingredient of many widely used products applied to control the emerald ash borer (EAB), Agrilus planipennis Fairmaire, in valuable urban trees. Systemic treatment with imidacloprid is typically made in the spring to reduce the number of larvae that would otherwise be generated by oviposition during the summer. Substantial...

  20. Selection of phage-displayed peptides for the detection of imidacloprid in water and soil.

    Science.gov (United States)

    Liu, Zhiping; Liu, Jianfeng; Wang, Kai; Li, Wenhui; Shelver, Weilin L; Li, Qing X; Li, Ji; Xu, Ting

    2015-09-15

    Imidacloprid is the most widely used neonicotinoid insecticide in the world and shows widespread environment and human exposures. A phage clone designated L7-1 that selectively binds to imidacloprid was selected from a commercial phage display library containing linear 7-mer randomized amino acid residues. Using the clone L7-1, a competitive enzyme-linked immunosorbent assay (ELISA) for imidacloprid was developed. The half-maximum signal inhibition concentration (IC50) and the limit of detection (LOD) of the phage ELISA for imidacloprid were 96 and 2.3 ng ml(-1), respectively. This phage ELISA showed relatively low cross-reactivity with all of the tested compounds structurally similar to imidacloprid, less than 2% with the exception of 6-chloronicotinic acid, a metabolite of imidacloprid that showed 11.5%. The average recoveries of the phage ELISA for imidacloprid in water and soil samples were in the ranges of 74.6 to 86.3% and 72.5 to 93.6%, respectively. The results of the competitive phage ELISA for imidacloprid in the fortified samples agreed well with those of a high-performance liquid chromatography (HPLC) method. The simple phage-displayed peptide technology has been proven to be a convenient and efficient method for the development of an alternative format of ELISA for small molecules. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Impact of Imidacloprid for control of Hemlock Woolly Adelgid on nearby aquatic macroinvertebrate asseblages.

    Science.gov (United States)

    Melissa Churchel; James Hanula; C. Wayne Berisford; James Vose; Mark Dalusky

    2011-01-01

    Imidacloprid, a systemic insecticide that acts on the nervous system, is currently being used to control hemlock woolly adelgid (Adelges tsugae Annand), which is damaging hemlock trees. The objective of this study was to determine whether soil injection with imidacloprid for hemlock woolly adelgid control near streams adversely affects aquatic invertebrates. Eastern...

  2. No cross-resistance between imidacloprid and pymetrozine in the brown planthopper: status and mechanisms.

    Science.gov (United States)

    Yang, Yuanxue; Huang, Lixin; Wang, Yunchao; Zhang, Yixi; Fang, Siqi; Liu, Zewen

    2016-06-01

    Cross-resistance between insecticides, especially from different groups, can be extremely unpredictable, and it has been a serious concern in pest control. Pymetrozine has been widely used to control Nilaparvata lugens with the suspension of imidacloprid for the resistance, and N. lugens has showed obvious pymetrozine resistance in recent years. To investigate the possible cross-resistance between imidacloprid and pymetrozine is very important to avoid the adverse effects on resistance development and pest control. Bioassays of two field populations in five consecutive years showed that imidacloprid resistance decreased greatly, while pymetrozine resistance increased significantly. The synergist piperonyl butoxide (PBO) could synergize both imidacloprid and pymetrozine in all field populations, which indicated the importance of P450s in the resistance to two insecticides. Imidacloprid resistance was reported to be associated with two P450s, CYP6AY1 and CYP6ER1, which could metabolize imidacloprid efficiently. However, the recombinant proteins of these two P450s did not show any enzymatic activity to metabolize pymetrozine. The pymetrozine susceptibility did not change when CYP6AY1 and CYP6ER1 mRNA levels were reduced by RNA interference (RNAi), although which could obviously decrease imidacloprid resistance. In vivo and in vitro studies provided evidences to demonstrate that there was no cross-resistance between imidacloprid and pymetrozine in N. lugens, which was different from the findings in Bemisia tabaci. Copyright © 2015. Published by Elsevier Inc.

  3. Macro-Invertebrate Decline in Surface Water Polluted with Imidacloprid : A Rebuttal and Some New Analyses

    NARCIS (Netherlands)

    Vijver, M.G.; Brink, van den P.J.

    2014-01-01

    Imidacloprid, the largest selling insecticide in the world, has received particular attention from scientists, policymakers and industries due to its potential toxicity to bees and aquatic organisms. The decline of aquatic macro-invertebrates due to imidacloprid concentrations in the Dutch surface

  4. Impaired Olfactory Associative Behavior of Honeybee Workers Due to Contamination of Imidacloprid in the Larval Stage

    Science.gov (United States)

    Yang, En-Cheng; Chang, Hui-Chun; Wu, Wen-Yen; Chen, Yu-Wen

    2012-01-01

    The residue of imidacloprid in the nectar and pollens of the plants is toxic not only to adult honeybees but also the larvae. Our understanding of the risk of imidacloprid to larvae of the honeybees is still in a very early stage. In this study, the capped-brood, pupation and eclosion rates of the honeybee larvae were recorded after treating them directly in the hive with different dosages of imidacloprid. The brood-capped rates of the larvae decreased significantly when the dosages increased from 24 to 8000 ng/larva. However, there were no significant effects of DMSO or 0.4 ng of imidacloprid per larva on the brood-capped, pupation and eclosion rates. Although the sublethal dosage of imidacloprid had no effect on the eclosion rate, we found that the olfactory associative behavior of the adult bees was impaired if they had been treated with 0.04 ng/larva imidacloprid in the larval stage. These results demonstrate that a sublethal dosage of imidacloprid given to the larvae affects the subsequent associative ability of the adult honeybee workers. Thus, a low dose of imidacloprid may affect the survival condition of the entire colony, even though the larvae survive to adulthood. PMID:23166680

  5. Macro-Invertebrate Decline in surface water polluted with Imidacloprid: A rebuttal and soome new analyses

    NARCIS (Netherlands)

    Vijver, M.G.; Brink, van den P.J.

    2014-01-01

    Imidacloprid, the largest selling insecticide in the world, has received particular attention from scientists, policymakers and industries due to its potential toxicity to bees and aquatic organisms. The decline of aquatic macro-invertebrates due to imidacloprid concentrations in the Dutch surface

  6. Assessment of chronic sublethal effects of imidacloprid on honey bee colony health

    Science.gov (United States)

    Here we present results of a three-year study to determine the fate of imidacloprid residues in hive matrices and to assess chronic sublethal effects on whole honey bee colonies fed supplemental pollen diet containing imidacloprid at 5, 20 and 100 µg/kg over multiple brood cycles. Various endpoints ...

  7. On alleviation of atrazine and imidacloprid contamination from single component aqueous systems using rice straw biochars: An Optimization Study

    Science.gov (United States)

    Mandal, Abhishek; Singh, Neera

    2017-04-01

    Contamination of surface and ground water by pesticides from agricultural runoff and industrial discharge is one of the main causes of aqueous contaminations world over. Adsorption of pesticide on adsorbents is considered as the most feasible approach of decontamination. Biochar, agricultural waste derived highly aromatic substance produced after pyrolysis and carbonification of biomass have exhibited good adsorption capacity for pesticides and can be used to develop on-site bio-purification systems for organic contaminant removal from polluted waters. Normal (RSBC) and phosphoric acid treated (T-RSBC) rice straw biochars were characterized for their physico-chemical properties. The yield parameters of biochar suggested higher biomass-biochar conversion ratio for the rice biochar. T-RSBC (pH=6.93) was neutral whereas RSBC was alkaline in nature. The cation exchange capacity (CEC) of the biochars were quite high. Elemental analysis (C, H, N, O) of biochars suggested a higher total carbon content (47.7-49.5%) and degree of aromaticity (H/C 0.62-0.63) indicating increased stability of biochars than the parent feedstocks. Polarity increased when T-RSBC (O/C 0.416) was synthesized from RSBC (O/C 0.410). The surface area, pore volume and micropore volume of the biochars, calculated using BET N2 adsorption method, suggested that RSBC was the most porous biochar (220.2 m2 g-1) amongst the two studied. IR, SEM and XRD analysis of biochars suggested the presence of inorganic minerals, carbonates, aromatic moieties and carboxylic groups. Zeta potential measurement indicated that biochars' surfaces carried negative charges while Boehm titration results suggested abundant presence of surface acidic functional groups on both the biochars. Fairly good atrazine and imidacloprid removal were shown by RSBC (KFads,Atrz = 1363; KFads,Imida =1706) and T-RSBC (KFads,Atrz=2716; KFads,Imida= 3140). Results obtained by fitting the atrazine and imidacloprid adsorption data to the Freundlich

  8. The impacts of modern-use pesticides on shrimp aquaculture: An assessment for north eastern Australia.

    Science.gov (United States)

    Hook, Sharon E; Doan, Hai; Gonzago, Debra; Musson, Dean; Du, Jun; Kookana, Rai; Sellars, Melony J; Kumar, Anu

    2018-02-01

    The use of pyrethroid and neonicotinoid insecticides has increased in Australia over the last decade, and as a consequence, increased concentrations of the neonicotinoid insecticide imidacloprid have been measured in Australian rivers. Previous studies have shown that non-target crustaceans, including commercially important species, can be extremely sensitive to these pesticides. Most shrimp farms in Australia are predominantly located adjacent to estuaries so they can obtain their required saline water, which support multiple land uses upstream (e.g. sugar-cane farming, banana farming, beef cattle and urbanisation). Larval and post-larval shrimp may be most susceptible to the impacts of these pesticides because of their high surface area to volume ratio and rapid growth requirements. However, given the uncertainties in the levels of insecticides in farm intake water and regarding the impacts of insecticide exposure on shrimp larvae, the risks that the increased use of new classes of pesticide pose towards survival of post-larval phase shrimp cannot be adequately predicted. To assess the potential for risk, toxicity in 20day past hatch post-larval Black Tiger shrimp (Penaeus monodon) to modern use insecticides, imidacloprid, bifenthin, and fipronil was measured as decreased survival and feeding inhibition. Post-larval phase shrimp were sensitive to fipronil, bifenthrin, and imidacloprid, in that order, at concentrations that were comparable to those that cause mortality other crustaceans. Bifenthrin and imidacloprid exposure reduced the ability of post-larval shrimp to capture live prey at environmentally realistic concentrations. Concentrations of a broad suite of pesticides were also measured in shrimp farm intake waters. Some pesticides were detected in every sample. Most of the pesticides detected were measured below concentrations that are toxic to post-larval shrimp as used in this study, although pesticides exceed guideline values, suggesting the possibility

  9. [3H]imidacloprid: synthesis of a candidate radioligand for the nicotinic acetylcholine receptor

    International Nuclear Information System (INIS)

    Latli, B.; Casida, J.E.

    1992-01-01

    Imidacloprid is an exceptionally potent insecticide known from physiological studies to act at the nicotinic acetylcholine receptor. To prepare [ 3 H]imidacloprid as a candidate radioligand, 6-chloronicotinoyl chloride was reduced with NaB 2 H 4 (in model studies) or NaB 3 H 4 in absolute ethanol to 2-chloro-5-pyridinylmethanol which was transformed to 2-chloro-5-chloromethylpyridine on refluxing with thionyl chloride. Coupling with 4,5-dihydro-N-nitro-1H-imidazol-2-amine then gave [ 2 H 2 ]imidacloprid incorporating about 95% of the deuterium or [ 3 H 2 ]imidacloprid (25 Ci/mmol) in 80% radiochemical yield. In studies not detailed here [ 3 H] imidacloprid was found to undergo high affinity, specific and saturable binding to a site in insect brain. (author)

  10. Liquid-phase membrane extraction of targeted pesticides from manufacturing wastewaters in a hollow fibre contactor with feed-stream recycle.

    Science.gov (United States)

    Đorđević, Jelena; Vladisavljević, Goran T; Trtić-Petrović, Tatjana

    2017-01-01

    A two-phase membrane extraction in a hollow fibre contactor with feed-stream recycle was applied to remove selected pesticides (tebufenozide, linuron, imidacloprid, acetamiprid and dimethoate) from their mixed aqueous solutions. The contactor consisted of 50 polypropylene hollow fibres impregnated with 5% tri-n-octylphosphine oxide in di-n-hexyl ether. For low-polar pesticides with log P ≥ 2 (tebufenozide and linuron), the maximum removal efficiency increased linearly from 85% to 96% with increasing the feed flow rate. The maximum removal efficiencies of more polar pesticides were significantly higher under feed recirculation (86%) than in a continuous single-pass operation (30%). It was found from the Wilson's plot that the mass transfer resistance of the liquid membrane can be neglected for low-polar pesticides. The pesticide removals from commercial formulations were similar to those from pure pesticide solutions, indicating that built-in adjuvants did not affect the extraction process.

  11. Detection of Pesticides in Active and Depopulated Beehives in Uruguay

    Directory of Open Access Journals (Sweden)

    Horacio Heinzen

    2011-09-01

    Full Text Available The influence of insecticides commonly used for agricultural purposes on beehive depopulation in Uruguay was investigated. Honeycombs, bees, honey and propolis from depopulated hives were analyzed for pesticide residues, whereas from active beehives only honey and propolis were evaluated. A total of 37 samples were analyzed, representing 14,800 beehives. In depopulated beehives only imidacloprid and fipronil were detected and in active beehives endosulfan, coumaphos, cypermethrin, ethion and chlorpyrifos were found. Coumaphos was present in the highest concentrations, around 1,000 µg/kg, in all the propolis samples from active beehives. Regarding depopulated beehives, the mean levels of imidacloprid found in honeycomb (377 µg/kg, Standard Deviation: 118 and propolis (60 µg/kg, Standard Deviation: 57 are higher than those described to produce bee disorientation and fipronil levels detected in bees (150 and 170 µg/kg are toxic per se. The other insecticides found can affect the global fitness of the bees causing weakness and a decrease in their overall productivity. These preliminary results suggest that bees exposed to pesticides or its residues can lead them in different ways to the beehive.

  12. Detection of pesticides in active and depopulated beehives in Uruguay.

    Science.gov (United States)

    Pareja, Lucía; Colazzo, Marcos; Pérez-Parada, Andrés; Niell, Silvina; Carrasco-Letelier, Leonidas; Besil, Natalia; Cesio, María Verónica; Heinzen, Horacio

    2011-10-01

    The influence of insecticides commonly used for agricultural purposes on beehive depopulation in Uruguay was investigated. Honeycombs, bees, honey and propolis from depopulated hives were analyzed for pesticide residues, whereas from active beehives only honey and propolis were evaluated. A total of 37 samples were analyzed, representing 14,800 beehives. In depopulated beehives only imidacloprid and fipronil were detected and in active beehives endosulfan, coumaphos, cypermethrin, ethion and chlorpyrifos were found. Coumaphos was present in the highest concentrations, around 1,000 μg/kg, in all the propolis samples from active beehives. Regarding depopulated beehives, the mean levels of imidacloprid found in honeycomb (377 μg/kg, Standard Deviation: 118) and propolis (60 μg/kg, Standard Deviation: 57) are higher than those described to produce bee disorientation and fipronil levels detected in bees (150 and 170 μg/kg) are toxic per se. The other insecticides found can affect the global fitness of the bees causing weakness and a decrease in their overall productivity. These preliminary results suggest that bees exposed to pesticides or its residues can lead them in different ways to the beehive.

  13. Isolation of imidacloprid degrading bacteria from cotton fields

    International Nuclear Information System (INIS)

    Shahid, M.N.; Jabeen, F.; Hassan, S.W.

    2008-01-01

    Imidacloprid is cyclodiene organochlorine, used as an insecticide all over the world an possess a serious environmental threat. It is mostly used for cotton insects (bollworm, aphid and white fly). For isolation of imidacloprid degrading bacteria three soil samples were collected from cotton fields of district Layyah having five years history of use. Soil samples were analyzed by measuring pH and electric conductivity. The isolation of imidacroprid degrading bacteria was performed by enrichment technique. Fourteen bacterial strains: S/sub i-a/, S/sub i-b/, S/sub i-c/, S/sub i-d/, S/sub i-e/, S/sub a-a/, S/a-b/, S/a-c/, S/a-d/, S/sub b-a/, S/sub b-b/, S/sub b-c/, S/sub b-d/ and S/b-e/ were isolated on the basis of their colony morphologies. The purified colonies were characterized morphologically physiologically and biochemically. Gram staining was done and Gram staining was done and Gram negative strains were confirmed on macConkey agar and Eosin methylene blue. Bacterial strains were also checked for different minimal media in which only carbon source was the imidacloprid. For this purpose FTW, FTW without N/sun 2/, NSM, M/sub 9/ and MM/sub 2/ media were used and their optical densities were taken on spectrophotometer, isolates were checked for resistance to antibiotics and heavy metals. On the basis of these characteristics. S/sub a-c/ and S/sub l-d/ were assigned to Enterobacteriaceae, S/sub a-b/ to Pseudomonadaceae and rest of the bacterial isolates were affiliated. (author)

  14. Sublethal and hormesis effects of imidacloprid on the soybean aphid Aphis glycines.

    Science.gov (United States)

    Qu, Yanyan; Xiao, Da; Li, Jinyu; Chen, Zhou; Biondi, Antonio; Desneux, Nicolas; Gao, Xiwu; Song, Dunlun

    2015-04-01

    The soybean aphid, Aphis glycines Matsumura, is a major pest in soybean crop. Current management of this pest relies mainly on insecticides applications, and the neonicotinoid imidacloprid has been proposed as an effective insecticide to control A. glycines in soybean field. Imidacloprid at lethal concentrations not only exerts acute toxicity to A. glycines, but also cause various biological changes when aphids are chronically exposed to lower concentrations. In this study, we assessed the effects of a low-lethal (0.20 mg L(-1)) and two sublethal (0.05 and 0.10 mg L(-1)) imidacloprid concentrations on various A. glycines life history traits. Aphid exposure to 0.20 mg L(-1) imidacloprid caused slower juvenile development, shorter reproductive period, and reduced adult longevity, fecundity and total lifespan. Stimulatory effects, i.e. hormesis, on reproduction and immature development duration were observed in aphids exposed to the lower sublethal imidacloprid concentrations. Consequently, the net reproduction rate (R 0) was significantly higher than in the control aphids. These findings stress the importance of the actual imidacloprid concentration in its toxicological properties on A. glycines. Therefore, our results would be useful for assessing the overall effects of imidacloprid on A. glycines and for optimizing integrated pest management programs targeting this pest.

  15. Effects of imidacloprid on soil microbial communities in different saline soils.

    Science.gov (United States)

    Zhang, Qingming; Xue, Changhui; Wang, Caixia

    2015-12-01

    The effects of imidacloprid in the soil environment are a worldwide concern. However, the impact of imidacloprid on soil microorganisms under salt stress is almost unknown. Therefore, an indoor incubation test was performed, and the denaturing gradient gel electrophoresis (DGGE) approach was used to determine the response of different saline soil bacterial and fungal community structures to the presence of imidacloprid (0.4, 2, 10 mg kg(-1)). The results showed that the soil bacterial diversity slightly declined with increasing imidacloprid concentration in soils with low salinity. In moderately saline soils, a new band in the DGGE profile suggested that imidacloprid could improve the soil bacterial diversity to some degree. An analysis of variance indicated that the measured soil bacterial diversity parameters were significantly affected by dose and incubation time. Compared with the control, the soil fungal community structure showed no obvious changes in low and moderately saline soils treated with imidacloprid. The results of these observations provide a basic understanding of the potential ecological effects of imidacloprid on different microorganisms in saline soils.

  16. Effects of imidacloprid on the ecology of sub-tropical freshwater microcosms.

    Science.gov (United States)

    Sumon, Kizar Ahmed; Ritika, Afifat Khanam; Peeters, Edwin T H M; Rashid, Harunur; Bosma, Roel H; Rahman, Md Shahidur; Fatema, Mst Kaniz; Van den Brink, Paul J

    2018-05-01

    The neonicotinoid insecticide imidacloprid is used in Bangladesh for a variety of crop protection purposes. Imidacloprid may contaminate aquatic ecosystems via spray drift, surface runoff and ground water leaching. The present study aimed at assessing the fate and effects of imidacloprid on structural (phytoplankton, zooplankton, macroinvertebrates and periphyton) and functional (organic matter decomposition) endpoints of freshwater, sub-tropical ecosystems in Bangladesh. Imidacloprid was applied weekly to 16 freshwater microcosms (PVC tanks containing 400 L de-chlorinated tap water) at nominal concentrations of 0, 30, 300, 3000 ng/L over a period of 4 weeks. Results indicated that imidacloprid concentrations from the microcosm water column declined rapidly. Univariate and multivariate analysis showed significant effects of imidacloprid on the zooplankton and macroinvertebrate community, some individual phytoplankton taxa, and water quality variables (i.e. DO, alkalinity, ammonia and nitrate), with Cloeon sp., Diaptomus sp. and Keratella sp. being the most affected species, i.e. showing lower abundance values in all treatments compared to the control. The observed high sensitivity of Cloeon sp. and Diaptomus sp. was confirmed by the results of single species tests. No significant effects were observed on the species composition of the phytoplankton, periphyton biomass and organic matter decomposition for any of the sampling days. Our study indicates that (sub-)tropical aquatic ecosystems can be much more sensitive to imidacloprid compared to temperate ones. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  17. Cross-resistance, inheritance and biochemical mechanisms of imidacloprid resistance in B-biotype Bemisia tabaci.

    Science.gov (United States)

    Wang, Zhenyu; Yao, Mingde; Wu, Yidong

    2009-11-01

    The B-type Bemisia tabaci (Gennadius) has become established in many regions in China, and neonicotinoids are extensively used to control this pest. Imidacloprid resistance in a laboratory-selected strain of B-type B. tabaci was characterised in order to provide the basis for recommending resistance management tactics. The NJ-Imi strain of B-type B. tabaci was selected from the NJ strain with imidacloprid for 30 generations. The NJ-Imi strain exhibited 490-fold resistance to imidacloprid, high levels of cross-resistance to three other neonicotinoids, low levels of cross-resistance to monosultap, cartap and spinosad, but no cross-resistance to abamectin and cypermethrin. Imidacloprid resistance in the NJ-Imi strain was autosomal and semi-dominant. It is shown that enhanced detoxification mediated by cytochrome-P450-dependent monooxygenases contributes to imidacloprid resistance to some extent in the NJ-Imi strain. Results from synergist bioassays and cross-resistance patterns indicated that target-site insensitivity may be involved in imidacloprid resistance in the NJ-Imi strain of B. tabaci. Although oxidative detoxification mediated by P450 monooxygenases is involved in imidacloprid resistance in the NJ-Imi strain of B-type B. tabaci, target-site modification as an additional resistance mechanism cannot be ruled out. Considering the high risk of cross-resistance, neonicotinoids should be regarded as a single group when implementing an insecticide rotation scheme in B. tabaci control. (c) 2009 Society of Chemical Industry.

  18. The insecticide imidacloprid causes mortality of the freshwater amphipod Gammarus pulex by interfering with feeding behavior.

    Directory of Open Access Journals (Sweden)

    Anna-Maija Nyman

    Full Text Available If an organism does not feed, it dies of starvation. Even though some insecticides which are used to control pests in agriculture can interfere with feeding behavior of insects and other invertebrates, the link from chemical exposure via affected feeding activity to impaired life history traits, such as survival, has not received much attention in ecotoxicology. One of these insecticides is the neonicotinoid imidacloprid, a neurotoxic substance acting specifically on the insect nervous system. We show that imidacloprid has the potential to indirectly cause lethality in aquatic invertebrate populations at low, sublethal concentrations by impairing movements and thus feeding. We investigated feeding activity, lipid content, immobility, and survival of the aquatic arthropod Gammarus pulex under exposure to imidacloprid. We performed experiments with 14 and 21 days duration, both including two treatments with two high, one day pulses of imidacloprid and one treatment with a low, constant concentration. Feeding of G. pulex as well as lipid content were significantly reduced under exposure to the low, constant imidacloprid concentration (15 µg/L. Organisms were not able to move and feed--and this caused high mortality after 14 days of constant exposure. In contrast, feeding and lipid content were not affected by repeated imidacloprid pulses. In these treatments, animals were mostly immobilized during the chemical pulses but did recover relatively fast after transfer to clean water. We also performed a starvation experiment without exposure to imidacloprid which showed that starvation alone does not explain the mortality in the constant imidacloprid exposure. Using a multiple stressor toxicokinetic-toxicodynamic modeling approach, we showed that both starvation and other toxic effects of imidacloprid play a role for determining mortality in constant exposure to the insecticide.

  19. The Insecticide Imidacloprid Causes Mortality of the Freshwater Amphipod Gammarus pulex by Interfering with Feeding Behavior

    Science.gov (United States)

    Nyman, Anna-Maija; Hintermeister, Anita; Schirmer, Kristin; Ashauer, Roman

    2013-01-01

    If an organism does not feed, it dies of starvation. Even though some insecticides which are used to control pests in agriculture can interfere with feeding behavior of insects and other invertebrates, the link from chemical exposure via affected feeding activity to impaired life history traits, such as survival, has not received much attention in ecotoxicology. One of these insecticides is the neonicotinoid imidacloprid, a neurotoxic substance acting specifically on the insect nervous system. We show that imidacloprid has the potential to indirectly cause lethality in aquatic invertebrate populations at low, sublethal concentrations by impairing movements and thus feeding. We investigated feeding activity, lipid content, immobility, and survival of the aquatic arthropod Gammarus pulex under exposure to imidacloprid. We performed experiments with 14 and 21 days duration, both including two treatments with two high, one day pulses of imidacloprid and one treatment with a low, constant concentration. Feeding of G. pulex as well as lipid content were significantly reduced under exposure to the low, constant imidacloprid concentration (15 µg/L). Organisms were not able to move and feed – and this caused high mortality after 14 days of constant exposure. In contrast, feeding and lipid content were not affected by repeated imidacloprid pulses. In these treatments, animals were mostly immobilized during the chemical pulses but did recover relatively fast after transfer to clean water. We also performed a starvation experiment without exposure to imidacloprid which showed that starvation alone does not explain the mortality in the constant imidacloprid exposure. Using a multiple stressor toxicokinetic-toxicodynamic modeling approach, we showed that both starvation and other toxic effects of imidacloprid play a role for determining mortality in constant exposure to the insecticide. PMID:23690941

  20. Biochemical and microbial soil functioning after application of the insecticide imidacloprid.

    Science.gov (United States)

    Cycoń, Mariusz; Piotrowska-Seget, Zofia

    2015-01-01

    Imidacloprid is one of the most commonly used insecticides in agricultural practice, and its application poses a potential risk for soil microorganisms. The objective of this study was to assess whether changes in the structure of the soil microbial community after imidacloprid application at the field rate (FR, 1mg/kg soil) and 10 times the FR (10× FR, 10mg/kg soil) may also have an impact on biochemical and microbial soil functioning. The obtained data showed a negative effect by imidacloprid applied at the FR dosage for substrate-induced respiration (SIR), the number of total bacteria, dehydrogenase (DHA), both phosphatases (PHOS-H and PHOS-OH), and urease (URE) at the beginning of the experiment. In 10× FR treated soil, decreased activity of SIR, DHA, PHOS-OH and PHOS-H was observed over the experimental period. Nitrifying and N2-fixing bacteria were the most sensitive to imidacloprid. The concentration of NO3(-) decreased in both imidacloprid-treated soils, whereas the concentration of NH4(+) in soil with 10× FR was higher than in the control. Analysis of the bacterial growth strategy revealed that imidacloprid affected the r- or K-type bacterial classes as indicated also by the decreased eco-physiological (EP) index. Imidacloprid affected the physiological state of culturable bacteria and caused a reduction in the rate of colony formation as well as a prolonged time for growth. Principal component analysis showed that imidacloprid application significantly shifted the measured parameters, and the application of imidacloprid may pose a potential risk to the biochemical and microbial activity of soils. Copyright © 2014. Published by Elsevier B.V.

  1. Effect of some commonly used pesticides on seed germination, biomass production and photosynthetic pigments in tomato (Lycopersicon esculentum).

    Science.gov (United States)

    Shakir, Shakirullah Khan; Kanwal, Memoona; Murad, Waheed; Zia ur Rehman; Shafiq ur Rehman; Daud, M K; Azizullah, Azizullah

    2016-03-01

    Pesticides are highly toxic substances. Their toxicity may not be absolutely specific to the target organisms but can adversely affect different processes in the non-target host plants. In the present study, the effect of over application of four commonly used pesticides (emamectin benzoate, alpha-cypermethrin, lambda-cyhalothrin and imidacloprid) was evaluated on the germination, seedling vigor and photosynthetic pigments in tomato. The obtained results revealed that seed germination was decreased by the pesticides and this effect was more prominent at early stages of exposure. All the tested pesticides reduced the growth of tomato when applied in higher concentration than the recommended dose, but at lower doses the pesticides had some stimulatory effects on growth as compared to the control. A similar effect of pesticides was observed on the photosynthetic pigments, i.e. a decrease in pigments concentrations was caused at higher doses but an increase was observed at lower doses of pesticides. The calculation of EC50 values for different parameters revealed the lowest EC50 values for emamectin (ranged as 51-181 mg/L) followed by alpha-cypermethrin (191.74-374.39), lambda-cyhalothrin (102.43-354.28) and imidacloprid (430.29-1979.66 mg/L). A comparison of the obtained EC50 values for different parameters of tomato with the recommended doses revealed that over application of these pesticides can be harmful to tomato crop. In a few cases these pesticides were found toxic even at the recommended doses. However, a field based study in this regard should be conducted to further verify these results.

  2. Monitoring of Pesticide Residues in Commonly Used Fruits and Vegetables in Kuwait.

    Science.gov (United States)

    Jallow, Mustapha F A; Awadh, Dawood G; Albaho, Mohammed S; Devi, Vimala Y; Ahmad, Nisar

    2017-07-25

    The presence of pesticide residues in primary and derived agricultural products raises serious health concerns for consumers. The aim of this study was to assess the level of pesticide residues in commonly consumed fruits and vegetables in Kuwait. A total of 150 samples of different fresh vegetables and fruits were analyzed for the presence of 34 pesticides using the quick easy cheap effective rugged and safe (QuEChERS) multi-residue extraction, followed by gas chromatography-mass spectrometry (GC-MS) or liquid chromatography-tandem mass spectrometry (LC - MS / MS). Pesticide residues above the maximum residue limits (MRL) were detected in 21% of the samples and 79% of the samples had no residues of the pesticides surveyed or contained residues below the MRL. Multiple residues were present in 40% of the samples with two to four pesticides, and four samples were contaminated with more than four pesticide residues. Of the pesticides investigated, 16 were detected, of which imidacloprid, deltamethrin, cypermethrin, malathion, acetamiprid, monocrotophos, chlorpyrifos-methyl, and diazinon exceeded their MRLs. Aldrin, an organochlorine pesticide, was detected in one apple sample, with residues below the MRL. The results indicate the occurrence of pesticide residues in commonly consumed fruits and vegetables in Kuwait, and pointed to an urgent need to develop comprehensive intervention measures to reduce the potential health risk to consumers. The need for the regular monitoring of pesticide residues and the sensitization of farmers to better pesticide safety practices, especially the need to adhere to recommended pre-harvest intervals is recommended.

  3. Monitoring of Pesticide Residues in Commonly Used Fruits and Vegetables in Kuwait

    Directory of Open Access Journals (Sweden)

    Mustapha F. A. Jallow

    2017-07-01

    Full Text Available The presence of pesticide residues in primary and derived agricultural products raises serious health concerns for consumers. The aim of this study was to assess the level of pesticide residues in commonly consumed fruits and vegetables in Kuwait. A total of 150 samples of different fresh vegetables and fruits were analyzed for the presence of 34 pesticides using the quick easy cheap effective rugged and safe (QuEChERS multi-residue extraction, followed by gas chromatography-mass spectrometry (GC-MS or liquid chromatography-tandem mass spectrometry (LC-MS/MS. Pesticide residues above the maximum residue limits (MRL were detected in 21% of the samples and 79% of the samples had no residues of the pesticides surveyed or contained residues below the MRL. Multiple residues were present in 40% of the samples with two to four pesticides, and four samples were contaminated with more than four pesticide residues. Of the pesticides investigated, 16 were detected, of which imidacloprid, deltamethrin, cypermethrin, malathion, acetamiprid, monocrotophos, chlorpyrifos-methyl, and diazinon exceeded their MRLs. Aldrin, an organochlorine pesticide, was detected in one apple sample, with residues below the MRL. The results indicate the occurrence of pesticide residues in commonly consumed fruits and vegetables in Kuwait, and pointed to an urgent need to develop comprehensive intervention measures to reduce the potential health risk to consumers. The need for the regular monitoring of pesticide residues and the sensitization of farmers to better pesticide safety practices, especially the need to adhere to recommended pre-harvest intervals is recommended.

  4. Pesticides and the Environment

    Science.gov (United States)

    ; Environment Human Health Animal Health Safe Use Practices Food Safety Environment Air Water Soil Wildlife Home Page Pesticides and the Environment Related Topics: What Happens to Pesticides Released into the Environment? Pesticide Storage Pesticide Disposal Pesticide Products Integrated Pest Management (IPM) How Safe

  5. Effect of new and old pesticides on Orius armatus (Gross) - an Australian predator of western flower thrips, Frankliniella occidentalis (Pergande).

    Science.gov (United States)

    Broughton, Sonya; Harrison, Jessica; Rahman, Touhidur

    2014-03-01

    Orius armatus (Gross) is an important predator of western flower thrips, Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae) in Australian glasshouse grown sweet pepper. The failure of O. armatus to establish in some glasshouses has been attributed to the use of newer, more non-selective pesticides, some of which are regarded to be compatible with integrated pest management. The residual toxicity (via direct and indirect contact) of several older and newer chemistry pesticides were evaluated. In addition, the effect of several systemic insecticides through insecticide-treated food-chain uptake was tested. Older chemistry pesticides (methamidophos, dimethoate) were toxic to Orius armatus, except pirimicarb which was non-toxic. Newer chemistry pesticides differed in their suitability. Abamectin was toxic to adults and nymphs. Chlorantraniliprole, imidacloprid and spirotetramat were non-toxic. Spinosad and spinetoram were moderately toxic to O. armatus. Spinosad also reduced fecundity by 20% compared to the untreated control. Pymetrozine was non-toxic, but females exposed to treated beans produced 30% fewer eggs and 20% fewer nymphs hatched compared to the untreated control. The selective pesticides do not necessarily facilitate the conservation of beneficials, and further assessment of the various developmental stages and other sub-lethal effects of chlorantraniliprole, imidacloprid, pymetrozine, spinetoram, and spirotetramat is recommended. © 2013 Society of Chemical Industry.

  6. The within-season and between-tree distribution of imidacloprid trunk-injected into Acer platanoides (Sapindales: Sapindaceae).

    Science.gov (United States)

    Ugine, Todd A; Gardescu, Sana; Hajek, Ann E

    2013-04-01

    Norway maple trees, Acer platanoides L. (Sapindales: Sapindaceae), that were trunk-injected with imidacloprid as part of an Asian longhorned beetle eradication program, were used to study the temporal and between-tree distribution of imidacloprid in twigs from June through September. The effect of injection time during spring on imidacloprid residues across the summer season and the distribution of imidacloprid in twig bark versus twig xylem were also investigated. Overall, we observed a significant decline in imidacloprid concentrations within each plant part sampled across the study period, although the 19 trees used in the study varied greatly in the pattern of imidacloprid residues over time. The concentration of imidacloprid in twig bark per dry mass was approximately two times higher than that of the twig xylem (means +/- SD of 1.21 +/- 2.16 ppm vs. 0.63 +/- 1.08 ppm imidacloprid, respectively). The majority (> 50%) of whole twig, twig bark and twig xylem samples from injected trees contained 5 ppm imidacloprid, with a maximum of 49 ppm. The concentrations ofimidacloprid in whole twigs, twig bark, and twig xylem were highly correlated, and levels in leaves were correlated with imidacloprid levels in whole twigs.

  7. Constitutive overexpression of cytochrome P450 associated with imidacloprid resistance in Laodelphax striatellus (Fallén).

    Science.gov (United States)

    Elzaki, Mohammed Esmail Abdalla; Zhang, Wanfang; Feng, Ai; Qiou, Xiaoyan; Zhao, Wanxue; Han, Zhaojun

    2016-05-01

    Imidacloprid is a principal insecticide for controlling rice planthoppers worldwide. Resistance to imidacloprid has been reported in a field population of Laodelphax striatellus. The present work was conducted to study the molecular mechanisms of imidacloprid resistance. An imidacloprid-resistant strain was produced by selecting a field population with imidacloprid for 24 generations. Piperonyl butoxide (PBO) showed a 1.70-fold synergistic effect. Enzyme activity assays were conducted, and cytochrome P450 monooxygenase showed 1.88-fold activity. The mRNA expression levels of 57 P450 genes were compared. Four CYP genes were found to be overexpressed and significantly different to the susceptible strain. Four strains were selected with imidacloprid for a short period, and the expression levels of ten identified detoxification genes were then compared. Only CYP353D1v2 overexpressed and was significantly different to the susceptible strain. Strong correlation was found between CYP353D1v2 expression levels and imidacloprid treatments. Additionally, gene-silencing RNAi via dsRNA feeding showed that depressing the expression of CYP353D1v2 could significantly enhance the sensitivity of L. striatellus to imidacloprid. Constitutive overexpression of four CYP genes was associated with imidacloprid resistance in long-term selection, and expression of CYP353D1v2 with imidacloprid resistance in short-term selection in L. striatellus. © 2015 Society of Chemical Industry.

  8. Effect of vermicomposts from wastes of the wine and alcohol industries in the persistence and distribution of imidacloprid and diuron on agricultural soils.

    Science.gov (United States)

    Fernández-Bayo, Jesús D; Nogales, Rogelio; Romero, Esperanza

    2009-06-24

    The persistence and distribution of diuron (D) and imidacloprid (I) in soils amended or not with winery vermicomposts were recorded for several months. Sandy loam (S1) and silty clay loam (S2) soils with organic carbon contents of Diuron was dissipated more rapidly except in the unamended soil S1 with DT(50) values of 259 days. The addition of vermicomposts to S1 soil decreased the persistence of D, and high amounts of DPMU (40%) and DPU (20%) metabolites were found. In unamended and amended S2 soils, the persistence of D was lower than in S1 (DT(50) < 42 days) but only DPMU was determined (up to 5%). Different simulation models from FOCUS guidelines were applied to the experimental data. No relationship between pesticide degradation and soil enzyme activities was found.

  9. The use of pesticides in Belgian illicit indoor cannabis plantations.

    Science.gov (United States)

    Cuypers, Eva; Vanhove, Wouter; Gotink, Joachim; Bonneure, Arne; Van Damme, Patrick; Tytgat, Jan

    2017-08-01

    Cannabis (Cannabis spp.) use and cultivation continue to increase in many (European) countries. The illicit indoor cannabis plantations that supply Belgian and European cannabis markets create problems and concerns about health and safety of intervention staff, dismantling companies, the direct environment of cannabis plantations and, eventually, of cannabis users. Main risks may come from pesticide residues on plants, cultivation infrastructure and materials; left-over plant growth-promoting substances; mycotoxins from fungal pathogens on harvested plants; and/or high levels of cannabinoids in cannabis plant parts for consumption. In the present research, we report on pesticides found in illicit indoor cannabis plantations in Belgium. EN15662 QuEChERS extraction method and LC-MS/MS analysis were used to identify pesticides in indoor cannabis plantations and thus to evaluate the hazards associated with the use, cultivation and removal of cannabis plants in plantations as well as with dismantling activities in the cultivation rooms. We found pesticides in 64.3% of 72 cannabis plant samples and in 65.2% of 46 carbon filter cloth samples. Overall, 19 pesticides belonging to different chemical classes were identified. We found o-phenylphenol, bifenazate, cypermethrin, imidacloprid, propamocarb, propiconazole and tebuconazole, which is consistent with the commonly reported pesticides from literature. In only a few cases, pesticides found in bottles with a commercial label, were also identified in plant or stagnant water samples collected from the growth rooms where the bottles had been collected. We further revealed that, even though most pesticides have a low volatility, they could be detected from the carbon filters hanging at the ceiling of cultivation rooms. As a result, it is likely that pesticides also prevail in the plantation atmosphere during and after cultivation. The risk of inhaling the latter pesticides increases when plants sprayed with pesticides are

  10. Safe Disposal of Pesticides

    Science.gov (United States)

    ... Toxics Environmental Information by Location Greener Living Health Land, Waste, and Cleanup Lead Mold Pesticides Radon Science ... or www.earth911.com . Think before disposing of extra pesticides and containers: Never reuse empty pesticide containers. ...

  11. Endangered Species: Pesticide Restrictions

    Science.gov (United States)

    Our goal is to protect threatened and endangered species and their habitats, without placing unnecessary burden on agriculture and pesticide users. Pesticide limitations are developed to ensure safe use of pesticides in order to meet this goal.

  12. Bees prefer foods containing neonicotinoid pesticides

    Science.gov (United States)

    Kessler, Sébastien C.; Tiedeken, Erin Jo; Simcock, Kerry L.; Derveau, Sophie; Mitchell, Jessica; Softley, Samantha; Stout, Jane C.; Wright, Geraldine A.

    2015-05-01

    The impact of neonicotinoid insecticides on insect pollinators is highly controversial. Sublethal concentrations alter the behaviour of social bees and reduce survival of entire colonies. However, critics argue that the reported negative effects only arise from neonicotinoid concentrations that are greater than those found in the nectar and pollen of pesticide-treated plants. Furthermore, it has been suggested that bees could choose to forage on other available flowers and hence avoid or dilute exposure. Here, using a two-choice feeding assay, we show that the honeybee, Apis mellifera, and the buff-tailed bumblebee, Bombus terrestris, do not avoid nectar-relevant concentrations of three of the most commonly used neonicotinoids, imidacloprid (IMD), thiamethoxam (TMX), and clothianidin (CLO), in food. Moreover, bees of both species prefer to eat more of sucrose solutions laced with IMD or TMX than sucrose alone. Stimulation with IMD, TMX and CLO neither elicited spiking responses from gustatory neurons in the bees' mouthparts, nor inhibited the responses of sucrose-sensitive neurons. Our data indicate that bees cannot taste neonicotinoids and are not repelled by them. Instead, bees preferred solutions containing IMD or TMX, even though the consumption of these pesticides caused them to eat less food overall. This work shows that bees cannot control their exposure to neonicotinoids in food and implies that treating flowering crops with IMD and TMX presents a sizeable hazard to foraging bees.

  13. Bees prefer foods containing neonicotinoid pesticides.

    Science.gov (United States)

    Kessler, Sébastien; Tiedeken, Erin Jo; Simcock, Kerry L; Derveau, Sophie; Mitchell, Jessica; Softley, Samantha; Stout, Jane C; Wright, Geraldine A

    2015-05-07

    The impact of neonicotinoid insecticides on insect pollinators is highly controversial. Sublethal concentrations alter the behaviour of social bees and reduce survival of entire colonies. However, critics argue that the reported negative effects only arise from neonicotinoid concentrations that are greater than those found in the nectar and pollen of pesticide-treated plants. Furthermore, it has been suggested that bees could choose to forage on other available flowers and hence avoid or dilute exposure. Here, using a two-choice feeding assay, we show that the honeybee, Apis mellifera, and the buff-tailed bumblebee, Bombus terrestris, do not avoid nectar-relevant concentrations of three of the most commonly used neonicotinoids, imidacloprid (IMD), thiamethoxam (TMX), and clothianidin (CLO), in food. Moreover, bees of both species prefer to eat more of sucrose solutions laced with IMD or TMX than sucrose alone. Stimulation with IMD, TMX and CLO neither elicited spiking responses from gustatory neurons in the bees' mouthparts, nor inhibited the responses of sucrose-sensitive neurons. Our data indicate that bees cannot taste neonicotinoids and are not repelled by them. Instead, bees preferred solutions containing IMD or TMX, even though the consumption of these pesticides caused them to eat less food overall. This work shows that bees cannot control their exposure to neonicotinoids in food and implies that treating flowering crops with IMD and TMX presents a sizeable hazard to foraging bees.

  14. Investigation of the occurrence of pesticide residues in rural wells and surface water following application to tobacco

    Directory of Open Access Journals (Sweden)

    Edson C. Bortoluzzi

    2007-01-01

    Full Text Available In this work the exposure of wells and surface water to pesticides, commonly used for tobacco cropping, was assessed. Water consumption wells and surface water flows were sampled at different times. After a preconcentration step with solid phase extraction (SPE, the selected pesticides were determined by gas chromatography with electron capture detection (GC-ECD or high performance liquid chromatography with diode array detection (HPLC-DAD. No pesticides were detected in the well water samples and surface water flow in the winter season. However, in the spring and summer higher concentrations of chlorpyrifos and imidacloprid were found in the water source samples. Atrazine, simazine and clomazone were also found. The occurrence of pesticides in collected water samples was related with the application to tobacco.

  15. A bare-eye-based lateral flow immunoassay based on the use of gold nanoparticles for simultaneous detection of three pesticides

    International Nuclear Information System (INIS)

    Wang, Limin; Cai, Jia; Wang, Yulong; Fang, Qingkui; Wang, Suyan; Cheng, Qi; Liu, Fengquan; Du, Dan; Lin, Yuehe

    2014-01-01

    We present a novel lateral flow immunoassay (LFIA) for the simultaneous detection of the pesticides imidacloprid, chlorpyrifos-methyl and isocarbophos based on three competitive immunoreactions. In contrast to previously reported LFIAs, the method is based on the use of four strips. Each has three red channels (three test lines dispensed with different capture reagent) to detect imidacloprid, chlorpyrifos-methyl and isocarbophos respectively. Different channels on each strip are the key to multi-detection, and four strips of LFIA are needed for visual and semi-quantitative read-outs. Under optimized conditions, the LFIA was applied to the determination of three pesticides. The detection time is within 7 min and the detection limits are 50, 100, and 100 μg L −1 , respectively. Furthermore, the LFIA was applied to the analysis of spiked Chinese cabbage and soil samples and results were validated by HPLC. (author)

  16. Sublethal Dosage of Imidacloprid Reduces the Microglomerular Density of Honey Bee Mushroom Bodies

    Science.gov (United States)

    Peng, Yi-Chan; Yang, En-Cheng

    2016-01-01

    The dramatic loss of honey bees is a major concern worldwide. Previous studies have indicated that neonicotinoid insecticides cause behavioural abnormalities and have proven that exposure to sublethal doses of imidacloprid during the larval stage decreases the olfactory learning ability of adults. The present study shows the effect of sublethal doses of imidacloprid on the neural development of the honey bee brain by immunolabelling synaptic units in the calyces of mushroom bodies. We found that the density of the synaptic units in the region of the calyces, which are responsible for olfactory and visual functions, decreased after being exposed to a sublethal dose of imidacloprid. This not only links a decrease in olfactory learning ability to abnormal neural connectivity but also provides evidence that imidacloprid damages the development of the nervous system in regions responsible for both olfaction and vision during the larval stage of the honey bee. PMID:26757950

  17. Exposure of native bees foraging in an agricultural landscape to current-use pesticides

    Science.gov (United States)

    Hladik, Michelle; Vandever, Mark W.; Smalling, Kelly L.

    2016-01-01

    The awareness of insects as pollinators and indicators of environmental quality has grown in recent years, partially in response to declines in honey bee (Apis mellifera) populations. While most pesticide research has focused on honey bees, there has been less work on native bee populations. To determine the exposure of native bees to pesticides, bees were collected from an existing research area in northeastern Colorado from two land cover types: grasslands (2013-2014) and wheat fields (2014). Traps were deployed bi-monthly during the summer at each land cover type and all bees, regardless of species, were composited as whole samples and analyzed for 136 current-use pesticides and degradates. This reconnaissance approach provides a sampling of all species and represents overall pesticide exposure (internal and external). Nineteen pesticides and degradates were detected in 54 composite samples collected. Compounds detected in >10% of the samples included the insecticides thiamethoxam (46%), bifenthrin (28%), clothianidin (24%), chlorpyrifos (17%), and imidacloprid (13%), the fungicides azoxystrobin (17%), and pyraclostrobin (11%), and the herbicide atrazine (19%). Concentrations ranged from 1.1 to 312 ng/g for individual pesticides. Pesticides were detected in samples collected from both grasslands and wheat fields; the location of the sample and the surrounding land cover at the 1000 m buffer influenced the pesticides detected but because of a small number of temporally comparable samples, correlations between pesticide concentration and land cover were not significant. The results show native bees collected in both grasslands and wheat fields are exposed to multiple pesticides, these results can direct future research on routes/timing of pesticide exposure and the design of future conservation efforts for pollinators.

  18. Exposure of native bees foraging in an agricultural landscape to current-use pesticides.

    Science.gov (United States)

    Hladik, Michelle L; Vandever, Mark; Smalling, Kelly L

    2016-01-15

    The awareness of insects as pollinators and indicators of environmental quality has grown in recent years, partially in response to declines in honey bee (Apis mellifera) populations. While most pesticide research has focused on honey bees, there has been less work on native bee populations. To determine the exposure of native bees to pesticides, bees were collected from an existing research area in northeastern Colorado in both grasslands (2013-2014) and wheat fields (2014). Traps were deployed bi-monthly during the summer at each land cover type and all bees, regardless of species, were composited as whole samples and analyzed for 136 current-use pesticides and degradates. This reconnaissance approach provides a sampling of all species and represents overall pesticide exposure (internal and external). Nineteen pesticides and degradates were detected in 54 composite samples collected. Compounds detected in >2% of the samples included: insecticides thiamethoxam (46%), bifenthrin (28%), clothianidin (24%), chlorpyrifos (17%), imidacloprid (13%), fipronil desulfinyl (7%; degradate); fungicides azoxystrobin (17%), pyraclostrobin (11%), fluxapyroxad (9%), and propiconazole (9%); herbicides atrazine (19%) and metolachlor (9%). Concentrations ranged from 1 to 310 ng/g for individual pesticides. Pesticides were detected in samples collected from both grasslands and wheat fields; the location of the sample and the surrounding land cover at the 1000 m radius influenced the pesticides detected but because of a small number of temporally comparable samples, correlations between pesticide concentration and land cover were not significant. The results show native bees collected in an agricultural landscape are exposed to multiple pesticides, these results can direct future research on routes/timing of pesticide exposure and the design of future conservation efforts for pollinators. Published by Elsevier B.V.

  19. Imidacloprid impairs shorter-term and longer-term learning in honey bees (Apis mellifera)

    OpenAIRE

    Zhang, Erica

    2014-01-01

    Even at sublethal doses, neonicotinoids, commonly used insecticides can affect neurons involved in learning and memory, cognitive features that play a key role in colony fitness because they facilitate foraging. The commonly used neonicotinoid, imidacloprid, impairs the ability of bees to associate floral odors with a nectar reward. However, no studies, to date, have examined how if imidacloprid impairs negative associative learning. Sit- and-wait predators like spiders can attack foraging be...

  20. Biochar alleviates the toxicity of imidacloprid and silver nanoparticles (AgNPs) to Enchytraeus albidus (Oligochaeta).

    Science.gov (United States)

    Nyoka, Ngitheni Winnie-Kate; Kanyile, Sthandiwe Nomthandazo; Bredenhand, Emile; Prinsloo, Godfried Jacob; Voua Otomo, Patricks

    2018-04-01

    The present study investigated the use of biochar for the alleviation of the toxic effects of a nanosilver colloidal dispersion and a chloronicotinyl insecticide. The survival and reproduction of the potworm Enchytraeus albidus were assessed after exposure to imidacloprid and silver nanoparticles (AgNPs). E. albidus was exposed to 0, 25, 50, 100, 200, and 400 mg imidacloprid/kg and 0, 5, 25, 125, and 625 mg Ag/kg for 21 days in 10% biochar amended and non-biochar amended OECD artificial soil. In both exposure substrates, the effects of imidacloprid on survival were significant in the two highest treatments (p imidacloprid. In the case of AgNPs, significant mortality was only observed in the highest AgNP treatments in both the amended and non-amended soils (p imidacloprid/kg in the non-amended soil and a higher EC 50  = 46.23 mg imidacloprid/kg in the biochar-amended soil. This indicated a 2-fold decrease in imidacloprid toxicity due to biochar amendment. A similar observation was made in the case of AgNPs where a reproduction EC 50  = 166.70 mg Ag/kg soil in the non-amended soil increased to an EC 50  > 625 mg Ag/kg soil (the highest AgNP treatment) in the amended soil. This indicated at least a 3.7-fold decrease in AgNPs toxicity due to biochar amendment. Although more studies may be needed to optimize the easing effects of biochar on the toxicity of these chemicals, the present results show that biochar could be useful for the alleviation of the toxic effects of imidacloprid and silver nanoparticles in the soil.

  1. Influence of Imidacloprid and Horticultural Oil on Spider Abundance on Eastern Hemlock in the Southern Appalachians.

    Science.gov (United States)

    Hakeem, A; Grant, J F; Lambdin, P L; Hale, F A; Rhea, J R; Wiggins, G J; Coots, C

    2018-05-08

    Hemlock woolly adelgid, Adelges tsugae Annand (Hemiptera: Adelgidae), is an exotic pest of eastern hemlock, Tsuga canadensis (L.) Carrière (Pinales: Pinaceae), in the eastern United States. Two commonly used insecticides to manage adelgid are imidacloprid, a systemic neonicotinoid insecticide, and horticultural oil, a refined petroleum oil foliar spray. We have investigated the influence of imidacloprid and horticultural oil on spider abundance at different canopy strata in eastern hemlock. In total, 2,084 spiders representing 11 families were collected from the canopies of eastern hemlock. In beat-sheet and direct observation samples, the families Theridiidae, Araneidae, Salticidae, and Anyphaenidae were the most abundant. Significantly higher numbers of spiders were recorded on untreated control trees compared with trees treated with imidacloprid using soil drench and soil injection applications. Spider abundance in trees injected with imidacloprid and horticultural oil applications did not significantly differ from control trees. Spider abundance was significantly greater in the top and middle strata of the canopy than in the bottom stratum, where imidacloprid concentrations were the highest. Regression analysis showed that spider abundance was inversely associated with imidacloprid concentration. This research demonstrates that imidacloprid, when applied with selected methods, has the potential to result in reductions of spider densities at different strata. However, slight reductions in spider abundance may be an acceptable short-term ecological impact compared with the loss of an untreated hemlock and all the associated ecological benefits that it provides. Future studies should include investigations of long-term impact of imidacloprid on spiders associated with eastern hemlock.

  2. Risk assessment of imidacloprid use in forest settings on the aquatic macroinvertebrate community.

    Science.gov (United States)

    Benton, Elizabeth P; Grant, Jerome F; Nichols, Rebecca J; Webster, R Jesse; Schwartz, John S; Bailey, Joseph K

    2017-11-01

    The isolated effects of a single insecticide can be difficult to assess in natural settings because of the presence of numerous pollutants in many watersheds. Imidacloprid use for suppressing hemlock woolly adelgid, Adelges tsugae (Annand) (Hemiptera: Adelgidae), in forests offers a rare opportunity to assess potential impacts on aquatic macroinvertebrates in relatively pristine landscapes. Aquatic macroinvertebrate communities were assessed in 9 streams in Great Smoky Mountains National Park (southern Appalachian Mountains, USA). The streams flow through hemlock conservation areas where imidacloprid soil drench treatments were applied for hemlock woolly adelgid suppression. Sites were located upstream and downstream of the imidacloprid treatments. Baseline species presence data (pre-imidacloprid treatment) were available from previous sample collections at downstream sites. Downstream and upstream sites did not vary in numerous community measures. Although comparisons of paired upstream and downstream sites showed differences in diversity in 7 streams, higher diversity was found more often in downstream sites. Macroinvertebrate functional feeding groups and life habits were similar between downstream and upstream sites. Downstream and baseline stream samples were similar. While some functional feeding group and life habit species richness categories varied, variations did not indicate poorer quality downstream communities. Imidacloprid treatments applied according to US Environmental Protection Agency federal restrictions did not result in negative effects to aquatic macroinvertebrate communities, which indicates that risks of imidacloprid use in forest settings are low. Environ Toxicol Chem 2017;36:3108-3119. © 2017 SETAC. © 2017 SETAC.

  3. Concentration Levels of Imidacloprid and Dinotefuran in Five Tissue Types of Black Walnut, Juglans nigra

    Directory of Open Access Journals (Sweden)

    Paul Merten

    2013-11-01

    Full Text Available Black walnut, a valuable economic and environmentally important species, is threatened by thousand cankers disease. Systemic imidacloprid and dinotefuran applications were made to mature black walnut trees to evaluate their translocation and concentration levels in various tissue types including leaf, twig, trunk core, nutmeat, and walnut husk. The metabolism of imidacloprid in plants produces a metabolite, olefin-imidacloprid, which has been documented to have insecticidal properties in other systems. Trunk CoreTect (imidacloprid soil pellets and a trunk spray of dinotefuran were applied to mature black walnuts in spring 2011. Imidacloprid concentrations were detected in both the lower and upper strata in all tissue types tested and progressively increased through month 12 post-treatment in twig and leaf tissue. Olefin-imidacloprid was detected in the nutmeat and walnut husk. Dinotefuran was only detected in the first sampling period and was found in low concentration levels in leaf and twig tissue types, and was not detected in the trunk, nutmeat or the walnut husk.

  4. Application of magnetic molecularly imprinted polymers for extraction of imidacloprid from eggplant and honey.

    Science.gov (United States)

    Kumar, Niranjan; Narayanan, Neethu; Gupta, Suman

    2018-07-30

    A magnetic molecularly imprinted polymer (MMIP) adsorbent for imidacloprid was prepared using non-covalent approach with functionalized nano Fe 3 O 4 particles (magnetic cores), imidacloprid (template), acrylic acid (functional monomer), ethylene glycol dimethacrylate (cross linker) and azobisisobutyronitrile (initiator) and used for selective separation of imidacloprid from honey and vegetable samples. The polymers were characterized using FT-IR spectroscopy, SEM and TEM images. For analysis of imidacloprid LC-MS/MS equipment was used. Adsorption kinetics was best explained by pseudo-second-order kinetic model. Adsorption data fitted well into linearized Freundlich equation (R 2  > 0.98). Scatchard plot analysis indicates the presence of two classes of binding sites in the MMIPs with the C max of 1889.6 µg g -1 and 65448.9 µg g -1 , respectively. MMIPs demonstrated much higher affinity for imidacloprid over structurally similar analogues acetamiprid (α = 23.59) and thiamethoxam (α = 17.15). About 87.1 ± 5.0% and 90.6 ± 5.6% of the added imidacloprid was recovered from MMIPs in case of fortified eggplant and honey samples, respectively. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Does multigenerational exposure to hormetic concentrations of imidacloprid precondition aphids for increased insecticide tolerance?

    Science.gov (United States)

    Rix, Rachel R; Cutler, G Christopher

    2018-02-01

    Hormetic preconditioning, whereby exposure to mild stress primes an organism to better tolerate subsequent stress, is well documented. It is unknown if exposure to hormetic concentrations of insecticide can trans-generationally prime insects to better tolerate insecticide exposure, or whether exposure to hormetic concentrations of insecticide can induce mutations in genes responsible for insecticide resistance. Using the aphid Myzus persicae (Sulzer) and the insecticide imidacloprid as a model, we examined if exposure to mildly toxic and hormetic concentrations of imidacloprid reduced aphid susceptibility to insecticides across four generations, and whether such exposures induced mutations in the imidacloprid binding site in post-synaptic nicotinic acetylcholine receptors. Chronic, multigenerational exposure of aphids to hormetic concentrations of imidacloprid primed offspring to better survive exposure to certain concentrations of imidacloprid, but not exposure to spirotetramat, an insecticide with a different mode of action. Exposure to hormetic and mildly toxic concentrations of imidacloprid did not result in mutations in any of the examined nicotinic acetylcholine receptor subunits. Our findings demonstrate that exposure to hormetic concentrations of insecticide can prime insects to better withstand subsequent chemical stress, but this is dependent upon the insecticide exposure scenario, and may be subtle over generations. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  6. Occurrence of imidacloprid, carbendazim, and other biocides in Italian house dust: Potential relevance for intakes in children and pets.

    Science.gov (United States)

    Salis, Severyn; Testa, Cecilia; Roncada, Paola; Armorini, Sara; Rubattu, Nicola; Ferrari, Angelo; Miniero, Roberto; Brambilla, Gianfranco

    2017-09-02

    The occurrence of pesticides intended for non-agricultural use was investigated in 206 dust samples drawn from vacuum-cleaner bags from residential flats in Italy. The multi-residue analysis targeted on 95 different active principles was performed with UPLC-MS/MS, with a Limit of Quantification (LOQ) of 0.008 μg/g dry weight. The results indicated the presence of imidacloprid (IMI) and carbendazim (CARB) in 30% and 26% of the samples, with a mean and P95 concentration between 1.6 and 39 and between 0.08 and 4.9 μg/g, respectively. Combined presence of two biocides was noted in 19.4% samples, of three biocides in 9.2% samples, of four biocides in 3.4% samples, and of five and six biocides in 0.5% and 1% samples, respectively. According to the estimated dust intake in infants/toddlers aged 6-24 months (16-100 mg d -1 ) and cats (200 mg d -1 ), it was possible to obtain risk characterization with respect to the Acceptable Daily Intake (ADI) for IMI of 0.060 mg/kg body weight (bw) proposed by the European Food Safety Authority (EFSA) and the chronic Population Adjusted Dose (cPAD) of 0.019 mg/kg bw d -1 by US-EPA. Under the worst-case scenario, the presence of IMI in dust indicates potential exceedance of the cPAD in kittens, to be considered as sentinel also accounting for combined exposure. This study highlights the relevance of consumer empowerment about the responsible use of pesticides as biocidal products in indoor environment.

  7. Water and Pesticides

    Science.gov (United States)

    ; Environment Human Health Animal Health Safe Use Practices Food Safety Environment Air Water Soil Wildlife Home Page Pesticides and the Environment Water and Pesticides Related Topics: What Happens to Pesticides Released into the Environment? Water Solubility Drinking Water and Pesticides Fact Sheet

  8. Soil and Pesticides

    Science.gov (United States)

    ; Environment Human Health Animal Health Safe Use Practices Food Safety Environment Air Water Soil Wildlife Home Page Pesticides and the Environment Soil and Pesticides Related Topics: What Happens to Pesticides español Soil and Pesticides Soil can be degraded and the community of organisms living in the soil can

  9. Imidacloprid is hydroxylated by Laodelphax striatellus CYP6AY3v2.

    Science.gov (United States)

    Wang, R; Zhu, Y; Deng, L; Zhang, H; Wang, Q; Yin, M; Song, P; Elzaki, M E A; Han, Z; Wu, M

    2017-10-01

    Laodelphax striatellus (Fallén) is one of the most destructive pests of rice, and has developed high resistance to imidacloprid. Our previous work indicated a strong association between imidacloprid resistance and the overexpression of a cytochrome P450 gene CYP6AY3v2 in a L. striatellus imidacloprid resistant strain (Imid-R). In this study, a transgenic Drosophila melanogaster line that overexpressed the L. striatellus CYP6AY3v2 gene was established and was found to confer increased levels of imidacloprid resistance. Furthermore, CYP6AY3v2 was co-expressed with D. melanogaster cytochrome P450 reductase (CPR) in Spodoptera frugiperda 9 (SF9) cells. A carbon monoxide difference spectra analysis indicated that CYP6AY3v2 was expressed predominately in its cytochrome P450 (P450) form, which is indicative of a good-quality functional enzyme. The recombinant CYP6AY3v2 protein efficiently catalysed the model substrate P-nitroanisole to p-nitrophenol with a maximum velocity (V max ) of 60.78 ± 3.93 optical density (mOD)/min/mg protein. In addition, imidacloprid itself was metabolized by the recombinant CYP6AY3v2/nicotinamide adenine dinucleotide 2'-phosphate reduced tetrasodium salt (NADPH) CPR microsomes in in vitro assays (catalytic constant (K cat ) = 0.34 pmol/min/pmol P450, michaelis constant (K m ) = 41.98 μM), and imidacloprid depletion and metabolite peak formation were with a time dependence. The data provided direct evidence that CYP6AY3v2 is capable of hydroxylation of imidacloprid and conferring metabolic resistance in L. striatellus. © 2017 The Royal Entomological Society.

  10. Imidacloprid enhances liver damage in Wistar rats: Biochemical, oxidative damage and histological assessment

    Directory of Open Access Journals (Sweden)

    Sana Chakroun

    2017-12-01

    Full Text Available Objective: To investigate the potential adverse effects of imidacloprid on biochemical parameters, oxidative stress and liver damage induced in the rat by oral sub-chronic imidaclopride exposure. Methods: Rats received three different doses of imidacloprid (1/45, 1/22 and 1/10 of LD50 given through gavage for 60 days. Two dozen of male Wistar rats were randomly divided into four experimental groups. Liver damage was determined by measuring aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase and lactate dehydrogenase leakages. The prooxidant-antioxydant status in hepatic tissue homogenate was evaluated by measuring the degree of lipid peroxidation, the antioxidant enzymes activities such as catalase, superoxide dismutase and glutathione peroxidase (GPx. Results: The relative liver weight was significantly higher than that of control and other treated groups at the highest dose 1/10 of LD50 of imidacloprid. Additionally, treatment of rats with imidacloprid significantly increased liver lipid peroxidation (P ≤ 0.05 or 0.01 which went together with a significant decrease in the levels of superoxide dismutase and catalase activities. Parallel to these changes, imidacloprid treatment enhanced liver damage as evidence by sharp increase in the liver enzyme activities of aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase and lactate dehydrogenase. These results were also confirmed by histopathology. Conclusions: In light of the available data, it is our thought that after imidacloprid sub-chronic exposure, depletion of antioxidant enzymes is accompanied by induction of potential oxidative stress in the hepatic tissues that might affect the function of the liver which caused biochemical and histopathological alteration.

  11. Dissipation kinetics and effect of processing on imidacloprid and its metabolites in cardamom (Elettaria cardamomum Maton).

    Science.gov (United States)

    Pratheeshkumar, N; Chandran, M; Beevi, S Naseema; Mathew, Thomas Biju; George, Thomas; Paul, Ambily; Xavier, George; Ravi, K Prathibha; Kumar, S Visal; Rajith, R

    2016-01-01

    Dissipation behaviour of the chloronicotinyl insecticide, imidacloprid (Tatamida 17.8 % SL), in fresh and cured cardamom capsules was studied following application at doses 20 and 40 g a.i. ha(-1) in a cardamom plantation of Indian Cardamom Hills (ICH), Idukki, Kerala, India. A single-laboratory ultra performance liquid chromatography mass spectrometry (UPLC-MS/MS) method was developed and validated for the estimation of imidacloprid and its six metabolites (5-hydroxy, olefin, guanidine, urea, 6-chloronicotinic acid and nitrosimine) in fresh and cured cardamom. At the lower dose, the initial deposits of total imidacloprid residues were 1.91 and 7.23 μg g(-1), respectively, in fresh and cured cardamom. At the higher dose, the initial residues were 3.94 and 14.72 μg g(-1), respectively, in fresh and cured capsules. The residues dissipated below the quantitation level of 0.01 μg g(-1) after 21 and 28 days at lower dose and after 28 days for both at higher dose. The half-lives of imidacloprid in fresh and cured cardamom were 4.02 and 3.63 days, respectively, at lower dose and 3.61 days for both at higher dose. The waiting periods of imidacloprid on fresh and cured cardamom at lower and higher doses were 21.40, 27.10, 23.85 and 30.70 days, respectively. The mean processing factor of imidacloprid was 3.96 at 20 g a.i. ha(-1). Amongst metabolites of imidacloprid, urea had maximum residues in fresh and cured cardamom followed by 5-hydroxy and guanidine. Other metabolites such as 6-chloronicotinic acid, olefin and nitrosimine were not detected either in fresh or cured cardamom.

  12. [Determination of eight pesticide residues in tea by liquid chromatography-tandem mass spectrometry and its uncertainty evaluation].

    Science.gov (United States)

    Hu, Beizhen; Cai, Haijiang; Song, Weihua

    2012-09-01

    A method was developed for the determination of eight pesticide residues (fipronil, imidacloprid, acetamiprid, buprofezin, triadimefon, triadimenol, profenofos, pyridaben) in tea by liquid chromatography-tandem mass spectrometry. The sample was extracted by accelerated solvent extraction with acetone-dichloromethane (1:1, v/v) as solvent, and the extract was then cleaned-up with a Carb/NH2 solid phase extraction (SPE) column. The separation was performed on a Hypersil Gold C, column (150 mm x 2. 1 mm, 5 microm) and with the gradient elution of acetonitrile and 0. 1% formic acid. The eight pesticides were determined in the modes of electrospray ionization (ESI) and multiple reaction monitoring (MRM). The analytes were quantified by matrix-matched internal standard method for imidacloprid and acetamiprid, by matrix-matched external standard method for the other pesticides. The calibration curves showed good linearity in 1 - 100 microg/L for fipronil, and in 5 -200 microg/L for the other pesticides. The limits of quantification (LOQs, S/N> 10) were 2 p.g/kg for fipronil and 10 microg/kg for the other pesticides. The average recoveries ranged from 75. 5% to 115.0% with the relative standard deviations of 2.7% - 7.7% at the spiked levels of 2, 5, 50 microg/kg for fipronil and 10, 50, 100 microg/kg for the other pesticides. The uncertainty evaluation for the results was carried out according to JJF 1059-1999 "Evaluation and Expression of Uncertainty in Measurement". Items constituting measurement uncertainty involved standard solution, weighing of sample, sample pre-treatment, and the measurement repeatability of the equipment were evaluated. The results showed that the measurement uncertainty is mainly due to sample pre-treatment, standard curves and measurement repeatability of the equipment. The method developed is suitable for the conformation and quantification of the pesticides in tea.

  13. Wet air oxidation of seedcorn wastes containing pesticides and insecticides

    Energy Technology Data Exchange (ETDEWEB)

    Sievers, M.; Schlaefer, O.; Onyeche, T.I.; Schroeder, C.; Bormann, H.; Schaefer, S. [CUTEC-Inst. GmbH (Clausthal Environment Technology Inst.), Clausthal-Zellerfeld (Germany)

    2003-07-01

    Wet air oxidation as an alternative treatment process to pyrolysis and combustion of seedcorn wastes was investigated in lab-scale experiments. Due to solid condition of the seed corn waste, the process has been adapted by repeated spraying of water on the seed corn bulk to avoid the production of sludge and its subsequent dewatering. Original seed corns from industrial production plants were used for a degradation kinetic study under smooth wet air oxidation conditions. The temperatures were between 80 and 150 C, the pressure from 1 to 4.5 bar and the pH at different values from 3 to 13. Degradation rates for five different compounds of pesticides and insecticides, namely Imidacloprid, Thiram, Hymexazol, Carbofuran and Tefluthrin were conducted. These compounds represent the recently used in agricultural seedcorn applications. The degradation rate depends linearly on temperature between 80 and 150 C. At 120 C the lowest degradation rate was found for Tefluthrin by 25 mg/h per L reaction volume while the highest degradation rate to be conducted was for Imidacloprid at 363 mg/h L. (orig.)

  14. Pressure of non-professional use of pesticides on operators, aquatic organisms and bees in Belgium.

    Science.gov (United States)

    Fevery, Davina; Houbraken, Michael; Spanoghe, Pieter

    2016-04-15

    Various studies focus on professional pesticide use, whereas pressure of non-professional use on human and the environment is often neglected. In this study, an attempt was made to estimate the pressure of non-professional use of pesticides on operators, aquatic organisms and bees in Belgium based on sales figures and by using three exposure models. A classification in non-professional use was made based on type of pesticide, application method and on intensity of non-professional use. Pressure of non-professional use on operators is highest for intensive operators, caused by the use of insecticides in an aerosol spray can. Pressure of non-professional pesticides on aquatic life is mainly generated by the use of herbicides. The aerosol spray induces the highest pressure whereas the trigger application hardly affects operator and environmental exposure. The ordinary non-professional user generates most pressure on aquatic organisms. Pressure of non-professional pesticides on bees is mainly caused by the use of insecticides, especially the active substance imidacloprid in combination with the aerosol spray can application method applied by an intensive operator. In general, both total usage (kg) and pressure of pesticides decreased for the period 2005 to 2012 due to efforts made by the government and industry. The results of this study suggest to pay special attention to aerosol spray applications and the non-professional use of insecticides. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Identification and concentration of selected pesticide residues in Ghanaian cocoa beans

    International Nuclear Information System (INIS)

    Sefakor, Adzo Fialor

    2017-07-01

    Pest and disease have been the major causes of low cocoa production worldwide and the use of chemicals in the form of pesticides is one of the main ways of mitigating their undesirable outcome. However, inappropriate application of pesticides does not only affect the quality of cocoa bean products and the well being of consumers of such products but can also damage the natural flora and fauna in the environment. Hence the reason why evaluating the concentrations of pesticide residues is necessary in establishing the quality of a cocoa. The goal of this study was therefore to determine the concentrations and distribution of specific pesticide residues in cocoa beans from the six cocoa growing regions of Ghana. Three classes of pesticides were tested for in cocoa beans obtained from seventeen (17) districts in the Brong Ahafo, Eastern, Central, Western North, Ashanti and Western South cocoa growing regions of Ghana. These were the neonicotinoids (Thiamethoxam, Clothianidin, Imidacloprid and Acetamiprid); the synthetic pyrethroids (Cypermethrin, Deltamethrin, Fenvalerate, Lambda Cyhalothrin and Permethrin) and the organophosphorous compound Chlorpyrifos. Pesticide residue analyses were done separately on the whole unshelled beans, the nibs and the shells using a GC/ECD for the synthetic pyrethroids and organophosphorous compound and a QqQ-LC/MS for the neonicotinoids. The results obtained showed that the mean concentrations of the neonicotinoids in all the three matrices ranged from <0.001 to 0.018 mg/kg in the shells, <0.001 to 0.0025 mg/kg in the nibs and <0.001 to 0.005 mg/kg in the whole beans with Imidacloprid being the predominant one. Ashanti Region had the highest concentration of Imidacloprid in all the three matrices whilst Eastern Region recorded the least concentration of Imidacloprid in the shells (0.009 mg/kg) and whole unshelled beans (0.002 mg/kg). In relations to the synthetic pyrethroids tested for, the results obtained indicated that out of the

  16. Acoustical tree evaluation of Coptotermes Formosanus (Isoptera: Rhinotermitidae) with imidacloprid and noviflumeron in historic Jackson Square, New Orleans, Louisiana

    Science.gov (United States)

    Nine years of periodic acoustical monitoring of 93 trees active with Formosan subterranean termite, Coptotermes formosanus Shiraki, evaluated imidacloprid tree foam and noviflumuron bait on activity in trees. Long term, imidacloprid suppressed but did not eliminate termite activity in treated trees...

  17. Strip-based immunoassay for the simultaneous detection of the neonicotinoid insecticides imidacloprid and thiamethoxam in agricultural products

    Science.gov (United States)

    A semiquantitative strip immunoassay was developed for the rapid detection of imidacloprid and thiamethoxam in agricultural products using specific nanocolloidal gold-labeled monoclonal antibodies. The conjugates of imidacloprid-BSA and thiamethoxam-BSA and goat anti-mouse IgG were coated on the ni...

  18. Altered gene regulation and potential association with metabolic resistance development to imidacloprid in the tarnished plant bug, Lygus lineolaris

    Science.gov (United States)

    Chemical spray on cotton is almost an exclusive method for control of tarnished plant bug (TPB, Lygus lineolaris). Frequent use of imidacloprid is a concern for neonicotinoid resistance in this key pest. Information of how and why TPB become less susceptible to imidacloprid is essential for effectiv...

  19. Inheritance Mode and Realized Heritability of Resistance to Imidacloprid in the Brown Planthopper, Nilaparvata lugens (Stal) (Homoptera: Delphacidae)

    Science.gov (United States)

    BACKGROUND: The brown planthopper, Nilaparvata lugens (Stål) is a serious pest which causes enormous losses to the rice crop in Asia. The genetic basis of imidacloprid resistance was investigated in N. lugens. RESULTS: The resistant strain, selected for imidacloprid resistance from a laboratory pop...

  20. β-Cyclodextrin polymer functionalized reduced-graphene oxide: Application for electrochemical determination imidacloprid

    International Nuclear Information System (INIS)

    Chen, Ming; Meng, Yang; Zhang, Wang; Zhou, Jun; Xie, Ju; Diao, Guowang

    2013-01-01

    Highlights: • β-CDP/rGO nanocomposites were prepared by a facile strategy. • β-CDP/rGO nanocomposites displayed the excellent water-dispersity and stability. • β-CDP/rGO exhibited high supramolecular recognition and enrichment capability. • β-CDP/rGO electrode showed excellent electrochemical performance for IDP. -- Abstract: Reduced-graphene oxide (rGO) modified with water-soluble β-cyclodextrin polymer (β-CDP) were successfully prepared by using a simple wet chemical strategy. The obtained β-CDP/rGO nanocomposites were characterized by Fourier transform infrared spectroscopy (FTIR), static contact angle measurement, thermogravimetric analysis (TGA), scanning electron microscope (SEM) and electrochemical impedance spectroscopy (EIS), which confirmed that β-CDP molecules had been effectively loaded onto the surface of rGO. β-CDP/rGO nanocomposites displayed the excellent water-dispersity and stability. More significantly, cyclic voltammetry and differential pulse voltammetry measurement showed that the β-CDP/rGO could exhibit high supramolecular recognition and enrichment capability, and consequently display excellent electrochemical response toward a pesticide-imidacloprid (IDP). As compared with various modified electrodes, β-CDP/rGO modified glassy carbon electrode exhibited an excellent electrochemical performance for IDP. Based on the cyclic voltammograms (CV) of different concentration of IDP at pH 6.8, the detection line range of IDP is 1 × 10 −6 to 1.5 × 10 −4 mol L −1 IDP and the detection limit is 1 × 10 −7 mol L −1 . Differential pulse voltammetry (DPV) measurement at β-CDP/rGO/GCE modified electrode revealed that the reduction peak current increased linearly with the concentration of IDP in linear range of 5 × 10 −8 to 1.5 × 10 −5 mol L −1 and 2 × 10 −5 to 1.5 × 10 −4 mol L −1 with detection limit of 2 × 10 −8 mol L −1 at a signal-to-noise ratio of 3

  1. Comparative ecotoxicity of imidacloprid and dinotefuran to aquatic insects in rice mesocosms.

    Science.gov (United States)

    Kobashi, Koji; Harada, Takaaki; Adachi, Yoshihiro; Mori, Miho; Ihara, Makoto; Hayasaka, Daisuke

    2017-04-01

    There are growing concerns about the impacts of neonicotinoid insecticides on ecosystems worldwide, and yet ecotoxicity of many of these chemicals at community or ecosystem levels have not been evaluated under realistic conditions. In this study, effects of two neonicotinoid insecticides, imidacloprid and dinotefuran, on aquatic insect assemblages were evaluated in experimental rice mesocosms. During the 5-month period of the rice-growing season, residual concentrations of imidacloprid were 5-10 times higher than those of dinotefuran in both soil and water. Imidacloprid treatment (10kg/ha) reduced significantly the populations of, Crocothemis servilia mariannae and Lyriothemis pachygastra nymphs, whereas those of Orthetrum albistylum speciosum increased slightly throughout the experimental period. However, Notonecta triguttata, which numbers were high from the start, later declined, indicating possible delayed chronic toxicity, while Guignotus japonicus disappeared. In contrast, dinotefuran (10kg/ha) did not decrease the populations of any species, but rather increased the abundance of some insects, particularly Chironominae spp. larvae and C. servilia mariannae nymphs, with the latter being 1.7x higher than those of controls. This was an indirect effect resulting from increased prey (e.g., chironomid larvae) and lack of competition with other dragonfly species. The susceptibilities of dragonfly nymphs to neonicotinoids, particularly imidacloprid, were consistent with those reported elsewhere. In general, imidacloprid had higher impacts on aquatic insects compared to dinotefuran. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Simultaneous detection of imidacloprid and parathion by the dual-labeled time-resolved fluoroimmunoassay.

    Science.gov (United States)

    Shi, Haiyan; Sheng, Enze; Feng, Lu; Zhou, Liangliang; Hua, Xiude; Wang, Minghua

    2015-10-01

    A highly sensitive direct dual-labeled time-resolved fluoroimmunoassay (TRFIA) to detect parathion and imidacloprid simultaneously in food and environmental matrices was developed. Europium (Eu(3+)) and samarium (Sm(3+)) were used as fluorescent labels by coupling separately with L1-Ab and A1P1-Ab. Under optimal assay conditions, the half-maximal inhibition concentration (IC50) and limit of detection (LOD, IC10) were 10.87 and 0.025 μg/L for parathion and 7.08 and 0.028 μg/L for imidacloprid, respectively. The cross-reactivities (CR) were negligible except for methyl-parathion (42.4 %) and imidaclothiz (103.4 %). The average recoveries of imidacloprid ranged from 78.9 to 104.2 % in water, soil, rice, tomato, and Chinese cabbage with a relative standard deviation (RSD) of 2.4 to 11.6 %, and those of parathion were from 81.5 to 110.9 % with the RSD of 3.2 to 10.5 %. The results of TRFIA for the authentic samples were validated by comparison with gas chromatography (GC) analyses, and satisfactory correlations (parathion: R (2) = 0.9918; imidacloprid: R (2) = 0.9908) were obtained. The results indicate that the dual-labeled TRFIA is convenient and reliable to detect parathion and imidacloprid simultaneously in food and environmental matrices.

  3. Oxidative stress and DNA damage induced by imidacloprid in zebrafish (Danio rerio).

    Science.gov (United States)

    Ge, Weili; Yan, Saihong; Wang, Jinhua; Zhu, Lusheng; Chen, Aimei; Wang, Jun

    2015-02-18

    Imidacloprid is a neonicotinoid insecticide that can have negative effects on nontarget animals. The present study was conducted to assess the toxicity of various imidacloprid doses (0.3, 1.25, and 5 mg/mL) on zebrafish sampled after 7, 14, 21, and 28 days of exposure. The levels of catalase (CAT), superoxide dismutase (SOD), reactive oxygen species (ROS), glutathione-S-transferase (GST), and malondialdehyde (MDA) and the extent of DNA damage were measured to evaluate the toxicity of imidacloprid on zebrafish. SOD and GST activities were noticeably increased during early exposure but were inhibited toward the end of the exposure period. In addition, the CAT levels decreased to the control level following their elevation during early exposure. High concentrations of imidacloprid (1.25 and 5 mg/L) induced excessive ROS production and markedly increased MDA content on the 21st day of exposure. DNA damage was dose- and time-dependent. In conclusion, the present study showed that imidacloprid can induce oxidative stress and DNA damage in zebrafish.

  4. Combined toxicity of chlorantraniliprole, lambda-cyhalothrin, and imidacloprid to the silkworm Bombyx mori (Lepidoptera: Bombycidae).

    Science.gov (United States)

    Liu, Yanmei; Zhang, Hui; He, Fengmei; Li, Xuesheng; Tan, Huihua; Zeng, Dongqiang

    2018-05-29

    Insecticides with different modes of action may act in combination, in ways such as drifting, spray equipment residual, or utilizing concurrently in mulberry orchards or nearby agricultural fields. Silkworms may suffer from a diverse impact on the survival. In this study, the toxicity of chlorantraniliprole, lambda-cyhalothrin, and imidacloprid and their combinations to the second instar of silkworms (Bombyx mori (L.)(Lepidoptera: Bombycidae)) were evaluated after 48 and 72 h treatment by the leaf-dipping method and the combination index (CI)-isobologram equation. After 48 h treatment, results indicated that (1) the increasing order of toxicity was imidacloprid lambda-cyhalothrin, and that (2) synergism was predominated in most combinations excepted for the lambda-cyhalothrin + imidacloprid combination which displayed an additive effect at f a value 0.5. Then, after 72 h treatment, results exhibited that (1) the increasing order of toxicity was imidacloprid lambda-cyhalothrin < chlorantraniliprole, and that (2) only the chlorantraniliprole + imidacloprid mixture yielded antagonism at f a value 0.5; the other combinations performed an additive effect at least. Consequently, combined toxicity of mixtures may pose a worse effect on silkworm than single toxicity of insecticides. Therefore, we suggest that insecticide mixtures should be added into ecotoxicological risk assessment.

  5. Pesticide Environmental Stewardship Program (PESP)

    Science.gov (United States)

    PESP is an EPA partnership program that works with the nation's pesticide-user community to promote IPM practices. Pesticide users can reduce the risks from pests and pesticides. Members include organizations and companies in the pesticide-user community.

  6. Sorption of pesticides in tropical and temperate soils from Australia and the Philippines.

    Science.gov (United States)

    Oliver, Danielle P; Kookana, Rai S; Quintana, Belen

    2005-08-10

    The sorption behavior of diuron, imidacloprid, and thiacloprid was investigated using 22 soils collected in triplicate from temperate environments in Australia and tropical environments in Australia and the Philippines. Within the temperate environment in Australia, the soils were selected from a range of land uses. The average KOC values (L/kg) for imidacloprid were 326, 322, and 336; for thiacloprid, the values were 915, 743, and 842; and for diuron, the values were 579, 536, and 618 for the Ord (tropical), Mt. Lofty (temperate), and Philippines (tropical) soils, respectively. For all soils, the sorption coefficients decreased in the following order: thiacloprid > diuron > imidacloprid. There were no significant differences in sorption behavior between the tropical soils from the Philippines and the temperate soils from Australia. Sorption was also not significantly related with soil characteristics, namely, organic carbon (OC) content, clay content, and pH, for any of the three chemicals studied. When the data were sorted into separate land uses, the sorption of all three chemicals was highly correlated (P soils from the Philippines. Sorption coefficients for all three chemicals were highly correlated with OC in temperate, native soils only when one extreme value was removed. The relationships between sorption of all three chemicals and OC in temperate, pasture soils were best described by a polynomial. Sorption coefficients for imidacloprid and thiacloprid determined in the temperate pasture soils remained fairly consistent as the OC content increased from 3.3 to 5.3%, indicating that, although the total OC in the pasture soils was increasing, the component of OC involved with sorption of these two compounds may have been remaining constant. This study demonstrated that the origin of the soils (i.e., temperate vs tropical) had no significant effect on the sorption behavior, but in some cases, land use significantly affected the sorption behavior of the three

  7. A nicotinic acetylcholine receptor mutation conferring target-site resistance to imidacloprid in Nilaparvata lugens (brown planthopper).

    Science.gov (United States)

    Liu, Zewen; Williamson, Martin S; Lansdell, Stuart J; Denholm, Ian; Han, Zhaojun; Millar, Neil S

    2005-06-14

    Neonicotinoids, such as imidacloprid, are nicotinic acetylcholine receptor (nAChR) agonists with potent insecticidal activity. Since its introduction in the early 1990s, imidacloprid has become one of the most extensively used insecticides for both crop protection and animal health applications. As with other classes of insecticides, resistance to neonicotinoids is a significant threat and has been identified in several pest species, including the brown planthopper, Nilaparvata lugens, a major rice pest in many parts of Asia. In this study, radioligand binding experiments have been conducted with whole-body membranes prepared from imidacloprid-susceptible and imidacloprid-resistant strains of N. lugens. The results reveal a much higher level of [3H]imidacloprid-specific binding to the susceptible strain than to the resistant strain (16.7 +/- 1.0 and 0.34 +/- 0.21 fmol/mg of protein, respectively). With the aim of understanding the molecular basis of imidacloprid resistance, five nAChR subunits (Nlalpha1-Nlalpha4 and Nlbeta1) have been cloned from N. lugens.A comparison of nAChR subunit genes from imidacloprid-sensitive and imidacloprid-resistant populations has identified a single point mutation at a conserved position (Y151S) in two nAChR subunits, Nlalpha1 and Nlalpha3. A strong correlation between the frequency of the Y151S point mutation and the level of resistance to imidacloprid has been demonstrated by allele-specific PCR. By expression of hybrid nAChRs containing N. lugens alpha and rat beta2 subunits, evidence was obtained that demonstrates that mutation Y151S is responsible for a substantial reduction in specific [3H]imidacloprid binding. This study provides direct evidence for the occurrence of target-site resistance to a neonicotinoid insecticide.

  8. Ecotoxicological Effects of Imidacloprid and Lambda-Cyhalothrin (Insecticide on Tadpoles of the African Common Toad, Amietophrynus Regularis (Reuss, 1833 (Amphibia: Bufonidae

    Directory of Open Access Journals (Sweden)

    Daniel Brice Kenko Nkontcheu

    2017-09-01

    Full Text Available Agriculture is the main activity carried out in Cameroon and pesticide use is believed to be a common rule for its success. Most of the farms are situated close to water bodies, thus constituting a potential risk to non-target aquatic organisms. Declines of amphibian populations have been a worldwide issue of concern for the scientific community during the last several decades. The aim of this study was to assess the effects of an insecticide used by local farmers in Buea on amphibians. Parastar 40WP® which is constituted of imidacloprid + lambda-cyhalothrin a commonly used insecticide was applied on tadpoles of the African common toad Amietophrynus regularis (Reuss, 1833 in a static renewal experiment. The acute toxicity test was carried out after a range finding test from which seven test concentrations were selected. These concentrations were 0.0025mg/l, 0.005mg/l, 0.01mg/l, 0.05mg/l, 0.1mg/l, 0.5mg/l and 0.2mg/l. Signs of toxicity such as hyperactive symptoms, loss of balance, motionlessness and death were recorded. A varying degree of mortality (dose-dependent was noticed during the test. On the contrary, no such toxicity signs and mortality occurred in the control, indicating that they were caused by the test substance. The 24h LC50 was 3.66mg/l, which is less than the recommended application dose (125mg/l. Products constituted of imidacloprid and lambda-cyhalothrin should therefore be handled with care and far from water bodies because of their potential to cause harm to non-target aquatic biota.

  9. Isolation of imidacloprid degrading bacteria from industrial sites

    International Nuclear Information System (INIS)

    Shahid, M.N.; Jabeen, F.

    2009-01-01

    Immidacloprid is a cyclodiene organochlorine used as an insecticide all over the world and possessing a serous environmental threat. It is mostly used for cotton insects (bollworm, aphid and white fly). For isolation of imidacloprid degrading bacteria, two soil samples were collected from industrial contaminated sites of Kala Shah Kahu district sheikupura, having ten year history of use. Soil samples were analyzed by measuring pH and electric conductivity. The isolation of imidacroprid degrading bacteria was performed by enrichment technique. Eight bacterial strains, S/sub 1-a/ S/2-2-b/ S/2-c/ S/2-d/ S/2-e/ S/sub 2-f/ and S/sub 2-g/ and S/sub e-a/ were isolated on the basis of their colony morphologies. The purified colonies were characterized morphologically, physiologically and biochemically. Gram staining was done and Gram negative strain were confirmed on MacConkey agar and Eosin Methylene Blue. Bacterial strains were also checked for different minimal media in which only carbon source was the imidcloprid. For this purpose. FTW, FTW without N/sub 2/ NSM, M/sub 9/ and MM/sub 2/ media were used and their optical densities were taken on spectrophotometer isolates were checked for resistance to antibiotics and heavy metals. On these characteristics, S/sub 2-d/ and S/sub c-a/ were assigned to Enterobacteriaceae, S/sub 2-b/ to Pseudomonad and rest of the bacterial isolates were affiliated to bacillaceae. (author)

  10. Toxicity of Imidacloprid to the Stingless Bee Scaptotrigona postica Latreille, 1807 (Hymenoptera: Apidae).

    Science.gov (United States)

    Soares, Hellen Maria; Jacob, Cynthia Renata Oliveira; Carvalho, Stephan Malfitano; Nocelli, Roberta Cornélio Ferreira; Malaspina, Osmar

    2015-06-01

    The stingless bee Scaptotrigona postica is an important pollinator of native and cultivated plants in Brazil. Among the factors affecting the survival of these insects is the indiscriminate use of insecticides, including the neonicotinoid imidacloprid. This work determined the toxicity of imidacloprid as the topical median lethal dose (LD50) and the oral median lethal concentration (LC50) as tools for assessing the effects of this insecticide. The 24 and 48 h LD50 values were 25.2 and 24.5 ng of active ingredient (a.i.)/bee, respectively. The 24 and 48 h LC50 values were 42.5 and 14.3 ng a.i./µL of diet, respectively. Ours results show the hazard of imidacloprid and the vulnerability of stingless bees to it, providing relevant toxicological data that can used in mitigation programs to ensure the conservation of this species.

  11. Imidacloprid does not induce Cyp genes involved in insecticide resistance of a mutant Drosophila melanogaster line.

    Science.gov (United States)

    Kalajdzic, Predrag; Markaki, Maria; Oehler, Stefan; Savakis, Charalambos

    2013-10-01

    Certain xenobiotics have the capacity to induce the expression of genes involved in various biological phenomena, including insecticide resistance. The induction potential of different chemicals, among them different insecticides, has been documented for a number of insect species. In this study, we have analyzed the induction potential of Imidacloprid, a widely used member of the neonicotinoid insecticide family. Genes Cyp6g1 and Cyp6a2, known to be involved in the resistance of mutant Drosophila melanogaster line MiT[W⁻]3R2 to Imidacloprid and DDT were included in the analyzed sample. We find that Imidacloprid does not induce expression of the analyzed genes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Pesticides poisoning

    International Nuclear Information System (INIS)

    Ahmad, I.

    1999-01-01

    Pesticides are chemical toxicants which are used to kill by their toxic actions, the pest organisms, known to incur significant economic losses or threaten human life, his health and that of his domesticated animals. These toxicants are seldom species-specific. The presence of these or their metabolites may scientific be vouched not only in the environment they are used, but in the entire ecosystem, in the subsoil, in the underwater reservoirs and in the food chain of all non-target species including man, his friends i.e. predator and parasite organisms which be uses against the pests, and in his cherished domesticated animals. In the present paper a survey is made of different groups of toxic chemicals generally used to manage pests, in the ecosystem, food chain and tissues and body parts of non-target species including man and the ones dear to him. Toxicology and biochemistry of these toxic materials and their important metabolites are also briefly discussed with special reference to ways and means through which these poison the above non-target species. (author)

  13. Pesticide Product Label System

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Pesticide Product Label System (PPLS) provides a collection of pesticide product labels (Adobe PDF format) that have been approved by EPA under Section 3 of the...

  14. Pesticide Instrumental Analysis

    International Nuclear Information System (INIS)

    Samir, E.; Fonseca, E.; Baldyga, N.; Acosta, A.; Gonzalez, F.; Felicita, F.; Tomasso, M.; Esquivel, D.; Parada, A.; Enriquez, P.; Amilibia, M.

    2012-01-01

    This workshop was the evaluation of the pesticides impact on the vegetable matrix with the purpose to determine the analysis by GC / M S. The working material were lettuce matrix, chard and a mix of green leaves and pesticides.

  15. [[sup 3]H]imidacloprid: synthesis of a candidate radioligand for the nicotinic acetylcholine receptor

    Energy Technology Data Exchange (ETDEWEB)

    Latli, B.; Casida, J.E. (California Univ., Berkeley, CA (United States). Dept. of Entomological Sciences)

    1992-08-01

    Imidacloprid is an exceptionally potent insecticide known from physiological studies to act at the nicotinic acetylcholine receptor. To prepare [[sup 3]H]imidacloprid as a candidate radioligand, 6-chloronicotinoyl chloride was reduced with NaB[sup 2]H[sub 4] (in model studies) or NaB[sup 3]H[sub 4] in absolute ethanol to 2-chloro-5-pyridinylmethanol which was transformed to 2-chloro-5-chloromethylpyridine on refluxing with thionyl chloride. Coupling with 4,5-dihydro-N-nitro-1H-imidazol-2-amine then gave [[sup 2]H[sub 2

  16. Expression induction of P450 genes by imidacloprid in Nilaparvata lugens: A genome-scale analysis.

    Science.gov (United States)

    Zhang, Jianhua; Zhang, Yixi; Wang, Yunchao; Yang, Yuanxue; Cang, Xinzhu; Liu, Zewen

    2016-09-01

    The overexpression of P450 monooxygenase genes is a main mechanism for the resistance to imidacloprid, a representative neonicotinoid insecticide, in Nilaparvata lugens (brown planthopper, BPH). However, only two P450 genes (CYP6AY1 and CYP6ER1), among fifty-four P450 genes identified from BPH genome database, have been reported to play important roles in imidacloprid resistance until now. In this study, after the confirmation of important roles of P450s in imidacloprid resistance by the synergism analysis, the expression induction by imidacloprid was determined for all P450 genes. In the susceptible (Sus) strain, eight P450 genes in Clade4, eight in Clade3 and two in Clade2 were up-regulated by imidacloprid, among which three genes (CYP6CS1, CYP6CW1 and CYP6ER1, all in Clade3) were increased to above 4.0-fold and eight genes to above 2.0-fold. In contrast, no P450 genes were induced in Mito clade. Eight genes induced to above 2.0-fold were selected to determine their expression and induced levels in Huzhou population, in which piperonyl butoxide showed the biggest effects on imidacloprid toxicity among eight field populations. The expression levels of seven P450 genes were higher in Huzhou population than that in Sus strain, with the biggest differences for CYP6CS1 (9.8-fold), CYP6ER1 (7.7-fold) and CYP6AY1 (5.1-fold). The induction levels for all tested genes were bigger in Sus strain than that in Huzhou population except CYP425B1. Screening the induction of P450 genes by imidacloprid in the genome-scale will provide an overall view on the possible metabolic factors in the resistance to neonicotinoid insecticides. The further work, such as the functional study of recombinant proteins, will be performed to validate the roles of these P450s in imidacloprid resistance. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Sublethal doses of neonicotinoid imidacloprid can interact with honey bee chemosensory protein 1 (CSP1) and inhibit its function

    International Nuclear Information System (INIS)

    Li, Hongliang; Tan, Jing; Song, Xinmi; Wu, Fan; Tang, Mingzhu; Hua, Qiyun; Zheng, Huoqing; Hu, Fuliang

    2017-01-01

    As a frequently used neonicotinoid insecticide, imidacloprid can impair the chemoreceptive behavior of honey bees even at sublethal doses, while the physiochemical mechanism has not been further revealed. Here, multiple fluorescence spectra, thermodynamic method, and molecular docking were used to study the interaction and the functional inhibition of imidacloprid to the recombinant CSP1 protein in Asian honey bee, Apis cerana. The results showed that the fluorescence intensity (λ em  = 332 nm) of CSP1 could be significantly quenched by imidacloprid in a dynamic mode. During the quenching process, ΔH > 0, ΔS > 0, indicating that the acting forces of imidacloprid with CSP1 are mainly hydrophobic interactions. Synchronous fluorescence showed that the fluorescence of CSP1 was mainly derived from tryptophan, and the hydrophobicity of tryptophan decreased with the increase of imidacloprid concentration. Molecular docking predicted the optimal pose and the amino acid composition of the binding process. Circular dichroism (CD) spectra showed that imidacloprid reduced the α-helix of CSP1 and caused the extension of the CSP1 peptide chain. In addition, the binding of CSP1 to floral scent β-ionone was inhibited by nearly 50% of the apparent association constant (K A ) in the presence of 0.28–2.53 ng/bee of imidacloprid, and the inhibition rate of nearly 95% at 3.75 ng/bee of imidacloprid at sublethal dose level. This study initially revealed the molecular physiochemical mechanism that sublethal doses of neonicotinoid still interact and inhibit the physiological function of the honey bees' chemoreceptive system. - Highlights: • Sublethal doses of imidacloprid can directly interact with CSP1 in Apis cerana. • Sublethal imidacloprid can inhibit the function of CSP1 binding to semiochemicals. • The fluorescence intensity of CSP1 quenched by imidacloprid in a dynamic mode. • The binding between CSP1 and imidacloprid are driven by hydrophobic interactions.

  18. Pesticide exposure - Indian scene

    International Nuclear Information System (INIS)

    Gupta, P.K.

    2004-01-01

    Use of pesticides in India began in 1948 when DDT was imported for malaria control and BHC for locust control. India started pesticide production with manufacturing plant for DDT and benzene hexachloride (BHC) (HCH) in the year 1952. In 1958, India was producing over 5000 metric tonnes of pesticides. Currently, there are approximately 145 pesticides registered for use, and production has increased to approximately 85,000 metric tonnes. Rampant use of these chemicals has given rise to several short-term and long-term adverse effects of these chemicals. The first report of poisoning due to pesticides in India came from Kerala in 1958 where, over 100 people died after consuming wheat flour contaminated with parathion. Subsequently several cases of pesticide-poisoning including the Bhopal disaster have been reported. Despite the fact that the consumption of pesticides in India is still very low, about 0.5 kg/ha of pesticides against 6.60 and 12.0 kg/ha in Korea and Japan, respectively, there has been a widespread contamination of food commodities with pesticide residues, basically due to non-judicious use of pesticides. In India, 51% of food commodities are contaminated with pesticide residues and out of these, 20% have pesticides residues above the maximum residue level values on a worldwide basis. It has been observed that their long-term, low-dose exposure are increasingly linked to human health effects such as immune-suppression, hormone disruption, diminished intelligence, reproductive abnormalities, and cancer. In this light, problems of pesticide safety, regulation of pesticide use, use of biotechnology, and biopesticides, and use of pesticides obtained from natural plant sources such as neem extracts are some of the future strategies for minimizing human exposure to pesticides

  19. Predation Risk versus Pesticide Exposure: Consequences of Fear and Loathing in the Life of Stream Shredders

    Science.gov (United States)

    Pestana, J. T.; Baird, D. J.; Soares, A. M.

    2005-05-01

    Stream invertebrates are exposed to complex stressor regimes including both biotic and abiotic factors. Species living in streams in agricultural landscapes are often subjected to episodic or continuous exposures to low levels of agrochemicals, which may approach or exceed specific substance guidelines. Sublethal effects of pesticides may result in direct effects on organisms (e.g. reduced physiological performance), which may in turn contribute to indirect effects relating to survival (e.g. increased predation risk). Here, we investigate the possibility that predator-release kairomones can act additively with low-level pesticide exposure to reduce physiological performance and survival of stream invertebrates in previously unforeseen ways. Feeding, metabolic and behavioural responses of two shredder insects, the North American stonefly Pteronarcys comstockii and the European caddisfly Sericostoma vittatum were measured under exposure to the insecticide imidacloprid at different levels of indirect predation stress using predator-release kairomones from Brown Trout (Salmo trutta). Pteronarcys feeding was measured in terms of mass of naturally conditioned alder leaf discs consumed over a 6-day and 10 -day period in animals held in cages in stream mesocosms. Pteronarcys feeding was impaired at 1 ppb in the 6-day trial and at 0,5 ppb in the 10-day trial relatively to unexposed controls. Metabolic rate was measured in the lab in terms of oxygen consumption of Pteronarcys. Animals exposed to 0.5 and 1 ppb imidacloprid showed elevated respiratory rates compared to controls. Laboratory experiments with Sericostoma, currently in progress, are examining the separate and combined effects of imidacloprid and predator kairomone on similar endpoints. These preliminary results are discussed in relation to the development of the Mechanistic Unifying Stressor Effects (MUSE) model which can be used to predict combined ecological effects of multiple stressors at the population level.

  20. Preparation of H3PW12O40/MCM-48 and its photocatalytic degradation of pesticides.

    Science.gov (United States)

    Liu, Xia; Li, Yan-zhou; Gan, Qiang; Feng, Chang-gen

    2014-08-01

    A composite catalyst H3PW12O40/MCM-48 was prepared by loading photocatalyst phosphotungstic acid H3PW12O40 (HPW) to molecular sieve MCM-48 by impregnation method, and its structure was characterized by Fourier transform infrared (FT-IR) spectra, small angle X-ray diffraction (XRD) patterns, nitrogen adsorption analysis and High-resolution transmission electron microscopy (HRTEM) analysis. Photocatalytic degradation activities of HPW/MCM-48 against pesticides imidacloprid and paraquat were evaluated under UV radiation (365 nm). The results show that HPW/MCM-48 maintains the mesoprous molecular sieve structure of MCM-48 and the Keggin structure of HPW, while the BET surface area is 793.35 m2 x g(-1), pore volume is 1.46 cm3 x g(-1), average pore diameter is 2.76 nm, suggesting loading HPW on MCM-48 is a considerable way to improve its surface area. After 14 h UV irradiation (365 nm), 57.38% imidacloprid and 63.79% paraquat were degraded by 20 mg HPW/MCM-48 catalyst, while HPW and blank group degraded the two pesticides at the degradation rate of about 25% and 5%, respectively. Implying loading on MCM-48 could greaterly improve the degradation activity of HPW. The reslut of degradation kinetics show that, the degradation process of HPW/MCM-48 fits first order kinetics equation. The rate constant Ka of HPW/MCM-48 toward imidacloprid and paraquat are 0.089 h and 0.117 h, with the half-life t(1/2) of 7.8 h and 5.9 h, respectively.

  1. Field Assessment and Groundwater Modeling of Pesticide Distribution in the Faga`alu Watershed in Tutuila, American Samoa

    Science.gov (United States)

    Welch, E.; Dulai, H.; El-Kadi, A. I.; Shuler, C. K.

    2017-12-01

    To examine contaminant transport paths, groundwater and surface water interactions were investigated as a vector of pesticide migration on the island Tutuila in American Samoa. During a field campaign in summer 2016, water from wells, springs, and streams was collected across the island to analyze for selected pesticides. In addition, a detailed watershed-study, involving sampling along the mountain to ocean gradient was conducted in Faga`alu, a U.S. Coral Reef Task Force priority watershed that drains into the Pago Pago Harbor. Samples were screened at the University of Hawai`i for multiple agricultural chemicals using the ELISA method. The pesticides analyzed include glyphosate, azoxystrobin, imidacloprid and DDT/DDE. Field data was integrated into a MODFLOW-based groundwater model of the Faga`alu watershed to reconstruct flow paths, solute concentrations, and dispersion of the analytes. In combination with land-use maps, these tools were used to identify potential pesticide sources and their contaminant contributions. Across the island, pesticide concentrations were well below EPA regulated limits and azoxystrobin was absent. Glyphosate had detectable amounts in 56% of collected groundwater and 62% of collected stream samples. Respectively, 72% and 36% had imidacloprid detected and 98% and 97% had DDT/DDE detected. The highest observed concentration of glyphosate was 0.3 ppb, of imidacloprid was 0.17 ppb, and of DDT was 3.7 ppb. The persistence and ubiquity of DDT/DDE in surface and groundwater since its last island-wide application decades ago is notable. Groundwater flow paths modeled by MODFLOW imply that glyphosate sources match documented agricultural land-use areas. Groundwater-derived pesticide fluxes to the reef in Faga`alu are 977 mg/d of glyphosate and 1642 mg/d of DDT/DDE. Our study shows that pesticides are transported not only via surface runoff, but also via groundwater through the stream's base flow and are exiting the aquifer via submarine

  2. Using species sensitivity distribution approach to assess the risks of commonly detected agricultural pesticides to Australia's tropical freshwater ecosystems.

    Science.gov (United States)

    Pathiratne, Asoka; Kroon, Frederieke J

    2016-02-01

    To assess the potential impacts of agricultural pesticides on tropical freshwater ecosystems, the present study developed temperature-specific, freshwater species protection concentrations (i.e., ecotoxicity threshold values) for 8 pesticides commonly detected in Australia's tropical freshwaters. Because relevant toxicity data for native tropical freshwater species to assess the ecological risks were mostly absent, scientifically robust toxicity data obtained at ≥20 °C were used for ecologically relevant taxonomic groups representing primary producers and consumers. Species sensitivity distribution (SSD) curves were subsequently generated for predicted chronic exposure using Burrlioz 2.0 software with mixed chronic and converted acute data relevant to exposure conditions at ≥20 °C. Ecotoxicity threshold values for tropical freshwater ecosystem protection were generated for ametryn, atrazine, diuron, metolachlor, and imidacloprid (all moderate reliability), as well as simazine, hexazinone, and tebuthiuron (all low reliability). Using these SSD curves, the retrospective risk assessments for recently reported pesticide concentrations highlight that the herbicides ametryn, atrazine, and diuron are of major concern for ecological health in Australia's tropical freshwater ecosystems. The insecticide imidacloprid also appears to pose an emerging threat to the most sensitive species in tropical freshwater ecosystems. The exposed temperature-specific approach may be applied to develop water quality guideline values for other environmental contaminants detected in tropical freshwater ecosystems until reliable and relevant toxicity data are generated using representative native species. © 2015 SETAC.

  3. Effect of processing on the disappearance of pesticide residues in fresh-cut lettuce: Bioavailability and dietary risk.

    Science.gov (United States)

    Camara, Miguel A; Barba, Alberto; Cermeño, Sandra; Martinez, Gracia; Oliva, Jose

    2017-12-02

    The aim of this research is to establish the processing factors of six pesticides durong the preparation of fresh-cut lettuce and to assess the risk of ingestion of pesticide residues associated with the consumption of the same. A field study was carried out on the dissipation of three insecticides (imidacloprid, tebufenozide, cypermethrin) and three fungicides (metalaxyl, tebuconazole, azoxystrobin) during treatment conditions simulating those used for commercial fresh-cut lettuce. A simultaneous residue analysis method is validated using QuEChERS extraction with acetonitrile and CG-MS and LC-MS/MS analysis. The residues detected after field application never exceed the established Maximum Residue Limits. The processing factors were generally less than 1 (between 0.34 for tebufenozide and 0.53 for imidacloprid), indicating that the process, as a whole, considerably reduces residue levels in processed lettuce compared to fresh lettuce. It is confirmed that cutting, followed by washing and drying, considerably reduces the residues. A matrix effect in the dialyzation of the pesticides is observed and the in vitro study of bioavailability establishes a low percentage of stomach absorption capacity (lettuce showed no concerns for consumer health.

  4. Identification of Differentially Expressed miRNAs in Colorado Potato Beetles (Leptinotarsa decemlineata (Say Exposed to Imidacloprid

    Directory of Open Access Journals (Sweden)

    Mathieu D. Morin

    2017-12-01

    Full Text Available The Colorado potato beetle (Leptinotarsa decemlineata (Say is a significant pest of potato plants that has been controlled for more than two decades by neonicotinoid imidacloprid. L. decemlineata can develop resistance to this agent even though the molecular mechanisms underlying this resistance are not well characterized. MicroRNAs (miRNAs are short ribonucleic acids that have been linked to response to various insecticides in several insect models. Unfortunately, the information is lacking regarding differentially expressed miRNAs following imidacloprid treatment in L. decemlineata. In this study, next-generation sequencing and quantitative real-time polymerase chain reaction (qRT-PCR were used to identify modulated miRNAs in imidacloprid-treated versus untreated L. decemlineata. This approach identified 33 differentially expressed miRNAs between the two experimental conditions. Of interest, miR-282 and miR-989, miRNAs previously shown to be modulated by imidacloprid in other insects, and miR-100, a miRNA associated with regulation of cytochrome P450 expression, were significantly modulated in imidacloprid-treated beetles. Overall, this work presents the first report of a miRNA signature associated with imidacloprid exposure in L. decemlineata using a high-throughput approach. It also reveals interesting miRNA candidates that potentially underly imidacloprid response in this insect pest.

  5. Sublethal effects of imidacloprid on targeting muscle and ribosomal protein related genes in the honey bee Apis mellifera L.

    Science.gov (United States)

    Wu, Yan-Yan; Luo, Qi-Hua; Hou, Chun-Sheng; Wang, Qiang; Dai, Ping-Li; Gao, Jing; Liu, Yong-Jun; Diao, Qing-Yun

    2017-11-21

    A sublethal concentration of imidacloprid can cause chronic toxicity in bees and can impact the behavior of honey bees. The nectar- and water-collecting, and climbing abilities of bees are crucial to the survival of the bees and the execution of responsibilities in bee colonies. Besides behavioral impact, data on the molecular mechanisms underlying the toxicity of imidacloprid, especially by the way of RNA-seq at the transcriptomic level, are limited. We treated Apis mellifera L. with sublethal concentrations of imidacloprid (0.1, 1 and 10 ppb) and determined the effect on behaviors and the transcriptomic changes. The sublethal concentrations of imidacloprid had a limited impact on the survival and syrup consumption of bees, but caused a significant increase in water consumption. Moreover, the climbing ability was significantly impaired by 10 ppb imidacloprid at 8 d. In the RNA-seq analysis, gene ontology (GO) term enrichment indicated a significant down-regulation of muscle-related genes, which might contribute to the impairment in climbing ability of bees. The enriched GO terms were attributed to the up-regulated ribosomal protein genes. Considering the ribosomal and extra-ribosomal functions of the ribosomal proteins, we hypothesized that imidacloprid also causes cell dysfunction. Our findings further enhance the understanding of imidacloprid sublethal toxicity.

  6. Sex-related effects of imidacloprid modulated by piperonyl butoxide and menadione in rats. Part II: genotoxic and cytotoxic potential.

    Science.gov (United States)

    Arslan, Mehmet; Sevgiler, Yusuf; Buyukleyla, Mehmet; Yardimci, Mustafa; Yilmaz, Mehmet; Rencuzogullari, Eyyup

    2016-01-01

    Despite its intended use, imidacloprid causes genotoxic and cytotoxic effects in mammals, especially in the presence of metabolic activation systems. The aim of this study was to determine to which extent these effects are sex related and how its metabolism modulators piperonyl butoxide and menadione affect its toxicity. Male and female Sprague-Dawley rats were injected with the intraperitoneal LD50 dose of imidacloprid alone (170 mg/kg) or pretreated with piperonyl butoxide (100 mg/kg) and menadione (25 mg/kg) for 12 and 24 h. Structural chromosome aberrations, abnormal cells and mitotic index were determined microscopically in bone marrow cells. Male rats showed susceptibility to the genotoxic effects of imidacloprid. Piperonyl butoxide was effective in countering this effect only at 24 h, whereas menadione exacerbated imidacloprid-induced genotoxicity. Piperonyl butoxide and menadione pretreatments increased the percentage of structural chromosome aberrations and abnormal cells in females. Imidacloprid decreased the mitotic index, whereas pretreatment with piperonyl butoxide and menadione showed improvement in both sexes. We believe that CYP450-mediated metabolism of imidacloprid is under the hormonal control and therefore that its genotoxicity is sex related. Piperonyl butoxide pretreatment also showed sex-related modulation. The hormonal effects on imidacloprid biotransformation require further investigation.

  7. Imidacloprid Promotes High Fat Diet-Induced Adiposity and Insulin Resistance in Male C57BL/6J Mice.

    Science.gov (United States)

    Sun, Quancai; Xiao, Xiao; Kim, Yoo; Kim, Daeyoung; Yoon, Kyoon Sup; Clark, John M; Park, Yeonhwa

    2016-12-14

    Imidacloprid, a neonicotinoid insecticide widely used in agriculture worldwide, has been reported to promote adipogenesis and cause insulin resistance in vitro. The purpose of the current study was to determine the effects of imidacloprid and its interaction with dietary fat in the development of adiposity and insulin resistance using male C57BL/6J mice. Imidacloprid (0.06, 0.6, or 6 mg/kg bw/day) was mixed in a low-fat (4% w/w) or high-fat (20% w/w) diet and given to mice ad libitum for 12 weeks. Imidacloprid significantly promoted high fat diet-induced body weight gain and adiposity. In addition, imidacloprid treatment with the high fat diet resulted in impaired glucose metabolism. Consistently, there were significant effects of imidacloprid on genes regulating lipid and glucose metabolisms, including the AMP-activated protein kinase-α (AMPKα) pathway in white adipose tissue and liver. These results suggest that imidacloprid may potentiate high fat diet-induced adiposity and insulin resistance in male C57BL/6J mice.

  8. Identification of Differentially Expressed miRNAs in Colorado Potato Beetles (Leptinotarsa decemlineata (Say)) Exposed to Imidacloprid.

    Science.gov (United States)

    Morin, Mathieu D; Lyons, Pierre J; Crapoulet, Nicolas; Boquel, Sébastien; Morin, Pier Jr

    2017-12-16

    The Colorado potato beetle ( Leptinotarsa decemlineata (Say)) is a significant pest of potato plants that has been controlled for more than two decades by neonicotinoid imidacloprid. L. decemlineata can develop resistance to this agent even though the molecular mechanisms underlying this resistance are not well characterized. MicroRNAs (miRNAs) are short ribonucleic acids that have been linked to response to various insecticides in several insect models. Unfortunately, the information is lacking regarding differentially expressed miRNAs following imidacloprid treatment in L. decemlineata . In this study, next-generation sequencing and quantitative real-time polymerase chain reaction (qRT-PCR) were used to identify modulated miRNAs in imidacloprid-treated versus untreated L. decemlineata . This approach identified 33 differentially expressed miRNAs between the two experimental conditions. Of interest, miR-282 and miR-989, miRNAs previously shown to be modulated by imidacloprid in other insects, and miR-100, a miRNA associated with regulation of cytochrome P450 expression, were significantly modulated in imidacloprid-treated beetles. Overall, this work presents the first report of a miRNA signature associated with imidacloprid exposure in L. decemlineata using a high-throughput approach. It also reveals interesting miRNA candidates that potentially underly imidacloprid response in this insect pest.

  9. Biochemical mechanisms of imidacloprid resistance in Nilaparvata lugens: over-expression of cytochrome P450 CYP6AY1.

    Science.gov (United States)

    Ding, Zhiping; Wen, Yucong; Yang, Baojun; Zhang, Yixi; Liu, Shuhua; Liu, Zewen; Han, Zhaojun

    2013-11-01

    Imidacloprid is a key insecticide extensively used for control of Nilaparvata lugens, and its resistance had been reported both in the laboratory selected strains and field populations. A target site mutation Y151S in two nicotinic acetylcholine receptor subunits and enhanced oxidative detoxification have been identified in the laboratory resistant strain, contributing importantly to imidacloprid resistance in N. lugens. To date, however, imidacloprid resistance in field population is primarily attributable to enhanced oxidative detoxification by over-expressed P450 monooxygenases. A resistant strain (Res), originally collected from a field population and continuously selected in laboratory with imidacloprid for more than 40 generations, had 180.8-fold resistance to imidacloprid, compared to a susceptible strain (Sus). Expression of different putative P450 genes at mRNA levels was detected and compared between Res and Sus strains, and six genes were found expressed significantly higher in Res strain than in Sus strain. CYP6AY1 was found to be the most different expressed P450 gene and its mRNA level in Res strain was 17.9 times of that in Sus strain. By expressing in E. coli cells, CYP6AY1 was found to metabolize imidacloprid efficiently with initial velocity calculated of 0.851 ± 0.073 pmol/min/pmol P450. When CYP6AY1 mRNA levels in Res strain was reduced by RNA interference, imidacloprid susceptibility was recovered. In four field populations with different resistance levels, high levels of CYP6AY1 transcript were also found. In vitro and in vivo studies provided evidences that the over-expression of CYP6AY1 was one of the key factors contributing to imidacloprid resistance in the laboratory selected strain Res, which might also be the important mechanism for imidacloprid resistance in field populations, when the target site mutation was not prevalent at present. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Nicotine-like effects of the neonicotinoid insecticides acetamiprid and imidacloprid on cerebellar neurons from neonatal rats.

    Directory of Open Access Journals (Sweden)

    Junko Kimura-Kuroda

    Full Text Available Acetamiprid (ACE and imidacloprid (IMI belong to a new, widely used class of pesticide, the neonicotinoids. With similar chemical structures to nicotine, neonicotinoids also share agonist activity at nicotinic acetylcholine receptors (nAChRs. Although their toxicities against insects are well established, their precise effects on mammalian nAChRs remain to be elucidated. Because of the importance of nAChRs for mammalian brain function, especially brain development, detailed investigation of the neonicotinoids is needed to protect the health of human children. We aimed to determine the effects of neonicotinoids on the nAChRs of developing mammalian neurons and compare their effects with nicotine, a neurotoxin of brain development.Primary cultures of cerebellar neurons from neonatal rats allow for examinations of the developmental neurotoxicity of chemicals because the various stages of neurodevelopment-including proliferation, migration, differentiation, and morphological and functional maturation-can be observed in vitro. Using these cultures, an excitatory Ca(2+-influx assay was employed as an indicator of neural physiological activity. Significant excitatory Ca(2+ influxes were evoked by ACE, IMI, and nicotine at concentrations greater than 1 µM in small neurons in cerebellar cultures that expressed the mRNA of the α3, α4, and α7 nAChR subunits. The firing patterns, proportion of excited neurons, and peak excitatory Ca(2+ influxes induced by ACE and IMI showed differences from those induced by nicotine. However, ACE and IMI had greater effects on mammalian neurons than those previously reported in binding assay studies. Furthermore, the effects of the neonicotinoids were significantly inhibited by the nAChR antagonists mecamylamine, α-bungarotoxin, and dihydro-β-erythroidine.This study is the first to show that ACE, IMI, and nicotine exert similar excitatory effects on mammalian nAChRs at concentrations greater than 1 µM. Therefore, the

  11. The effect of two pesticides (Vitavax-300 and Gaucho on rhizobia and on the nodulation of four legumes

    Directory of Open Access Journals (Sweden)

    P. MIETTINEN

    2008-12-01

    Full Text Available The application of seed-protecting pesticides is often a prerequisite for raising legumes in the tropics. However, these chemicals may influence the development of root nodule symbiosis. In the present study, high concentrations of Gaucho insecticide (imidacloprid and Vitavax-300 fungicide (carboxin and captan clearly inhibited the growth of root nodule bacterium under laboratory conditions. However, they did not effect to the nodulation or biomass production of Arachis pintoi, Arachis hypogaea, Mucuna pruriens or Desmodium ovalifolium raised in a green house in eastern Costa Rica. Explanations for these results are discussed.;

  12. The effect of two pesticides (Vitavax-300 and Gaucho on rhizobia and on the nodulation of four legumes

    Directory of Open Access Journals (Sweden)

    Pasi Miettinen

    1996-03-01

    Full Text Available The application of seed-protecting pesticides is often a prerequisite for raising legumes in the tropics. However, these chemicals may influence the development of root nodule symbiosis. In the present study, high concentrations of Gaucho insecticide (imidacloprid and Vitavax-300 fungicide (carboxin and captan clearly inhibited the growth of root nodule bacterium under laboratory conditions. However, they did not effect to the nodulation or biomass production of Arachis pintoi, Arachis hypogaea, Mucuna pruriens or Desmodium ovalifolium raised in a green house in eastern Costa Rica. Explanations for these results are discussed.

  13. Pesticides and children

    International Nuclear Information System (INIS)

    Garry, Vincent F.

    2004-01-01

    Prevention and control of damage to health, crops, and property by insects, fungi, and noxious weeds are the major goals of pesticide applications. As with use of any biologically active agent, pesticides have unwanted side-effects. In this review, we will examine the thesis that adverse pesticide effects are more likely to occur in children who are at special developmental and behavioral risk. Children's exposures to pesticides in the rural and urban settings and differences in their exposure patterns are discussed. The relative frequency of pesticide poisoning in children is examined. In this connection, most reported acute pesticide poisonings occur in children younger than age 5. The possible epidemiological relationships between parental pesticide use or exposure and the risk of adverse reproductive outcomes and childhood cancer are discussed. The level of consensus among these studies is examined. Current concerns regarding neurobehavioral toxicity and endocrine disruption in juxtaposition to the relative paucity of toxicant mechanism-based studies of children are explored

  14. Comparison of exclusion and imidacloprid for reduction of oviposition damage to young trees by periodical cicadas (Hemiptera: Cicadidae).

    Science.gov (United States)

    Ahern, Robert G; Frank, Steven D; Raupp, Michael J

    2005-12-01

    Insecticides are traditionally used to control periodical cicadas (Homoptera: Cicadidae) and to reduce associated injury caused by oviposition. However, research has shown that conventional insecticides have low or variable season-long efficacy in reducing injury caused by cicadas. New systemic neonicotinoid insecticides provide excellent levels of control against a variety of sucking insects. We compared the efficacy of a neonicotinoid insecticide, imidacloprid, and a nonchemical control measure, netting, to reduce cicada injury. Netted trees sustained very little injury, whereas unprotected trees were heavily damaged. Fewer eggnests, scars, and flags were observed on trees treated with imidacloprid compared with unprotected trees; however, the hatching of cicada eggs was unaffected by imidacloprid.

  15. 78 FR 73697 - New Animal Drugs; Hyaluronate Sodium; Hydrogen Peroxide; Imidacloprid and Moxidectin; Change of...

    Science.gov (United States)

    2013-12-09

    ... dogs and the treatment and control of sarcoptic mange caused by Sarcoptes scabiei var. canis... sarcoptic mange caused by Sarcoptes scabiei var. canis. 141-254 Bayer HealthCare ADVANTAGE MULTI for... MULTI for Supplemental 524.1146 yes CE.1 3 LLC, Animal Health Dogs (imidacloprid approval for the...

  16. Toxicity and motor changes in Africanized honey bees (Apis mellifera L.) exposed to fipronil and imidacloprid.

    Science.gov (United States)

    Bovi, Thaís S; Zaluski, Rodrigo; Orsi, Ricardo O

    2018-01-01

    This study evaluated the in vitro toxicity and motor activity changes in African-derived adult honey bees (Apis mellifera L.) exposed to lethal or sublethal doses of the insecticides fipronil and imidacloprid. Mortality of bees was assessed to determine the ingestion and contact lethal dose for 24 h using probit analysis. Motor activities in bees exposed to lethal (LD50) and sublethal doses (1/500th of the lethal dose) of both insecticides were evaluated in a behavioral observation box at 1 and 4 h. Ingestion and contact lethal doses of fipronil were 0.2316 ? 0.0626 and 0.0080 ? 0.0021 μg/bee, respectively. Ingestion and contact lethal doses of imidacloprid were 0.1079 ? 0.0375 and 0.0308 ? 0.0218 μg/bee, respectively. Motor function of bees exposed to lethal doses of fipronil and imidacloprid was impaired; exposure to sublethal doses of fipronil but not imidacloprid impaired motor function. The insecticides evaluated in this study were highly toxic to African-derived A. mellifera and caused impaired motor function in these pollinators.

  17. Lethal and sublethal effects, and incomplete clearance of ingested imidacloprid in honey bees (Apis mellifera).

    Science.gov (United States)

    Sánchez-Bayo, Francisco; Belzunces, Luc; Bonmatin, Jean-Marc

    2017-11-01

    A previous study claimed a differential behavioural resilience between spring or summer honey bees (Apis mellifera) and bumble bees (Bombus terrestris) after exposure to syrup contaminated with 125 µg L -1 imidacloprid for 8 days. The authors of that study based their assertion on the lack of body residues and toxic effects in honey bees, whereas bumble bees showed body residues of imidacloprid and impaired locomotion during the exposure. We have reproduced their experiment using winter honey bees subject to the same protocol. After exposure to syrup contaminated with 125 µg L -1 imidacloprid, honey bees experienced high mortality rates (up to 45%), had body residues of imidacloprid in the range 2.7-5.7 ng g -1 and exhibited abnormal behaviours (restless, apathetic, trembling and falling over) that were significantly different from the controls. There was incomplete clearance of the insecticide during the 10-day exposure period. Our results contrast with the findings reported in the previous study for spring or summer honey bees, but are consistent with the results reported for the other bee species.

  18. Dose-response relationships of clothianidin, imidacloprid, and thiamethoxam to Blissus occiduus (Hemiptera: Blissidae).

    Science.gov (United States)

    Stamm, M D; Baxendale, F P; Heng-Moss, T M; Siegfried, B D; Blankenship, E E; Gaussoin, R E

    2011-02-01

    The western chinch bug, Blissus occiduus Barber (Hemiptera: Blissidae), has emerged as a serious pest of buffalograss, Buchlod dactyloides (Nuttall) Engelmann. In general, neonicotinoid insecticides effectively control a variety of turfgrass insects, particularly phloem-feeding pests. However, because of well documented inconsistencies in control, these compounds are generally not recommended for chinch bugs. This study was designed to document the contact and systemic toxicity of three neonicotinoid insecticides (clothianidin, imidacloprid, and thiamethoxam) to B. occiduus. In contact bioassays, thiamethoxam was approximately 20-fold less toxic than clothianidin or imidacloprid to B. occiduus nymphs and three-fold more toxic to adults. In adult systemic bioassays, thiamethoxam was up to five-fold more toxic than clothianidin or imidacloprid. Interestingly, thiamethoxam was significantly more toxic to adults than to nymphs in both contact and systemic bioassays. This was not observed with clothianidin or imidacloprid. Bifenthrin, used for comparative purposes, exhibited 1844-fold and 122-fold increase in toxicity to nymphs and adults, respectively. These results provide the first documentation of the relative toxicity of these neonicotinoid insecticides to B. occiduus.

  19. Compatibility of Two Systematic Neonicotinoids, Imidacloprid and Thiamethoxam with various Natural Enemies of Agricultural Pests.

    Science.gov (United States)

    Two systemic neonicotinoids, imidacloprid and thiamethoxam, are widely used for residual control of a number of insect pests in cotton, vegetables, and citrus. We evaluated their impact on six species of beneficial arthropods including four parasitoid species, Aphytis melinus Gonatocerus ashmeadi, ...

  20. Toxicokinetics of the neonicotinoid insecticide imidacloprid in rainbow trout (Oncorhynchus mykiss)

    Science.gov (United States)

    Imidacloprid (IMI) is the largest selling insecticide internationally. Little is known about the toxicokinetics of IMI in fish, however. In vivo time-course studies were conducted to study the distribution and elimination of IMI in rainbow trout. Animals confined to respiromet...

  1. Spatial and temporal distribution of trunk-injected 14C-Imidacloprid in Fraxinus trees

    Science.gov (United States)

    Sara R. Tanis; Bert M. Cregg; David Mota-Sanchez; Deborah G. McCullough; Therese M. Poland

    2012-01-01

    BACKGROUND: Since the discovery of Agrilus planipennis Fairmaire (emerald ash borer) in 2002, researchers have tested several methods of chemical control. Soil drench or trunk injection products containing imidacloprid are commonly used to control adults. However, efficacy can be highly variable andmay be due to uneven translocation of systemic...

  2. Survival rate of honeybee (Apis mellifera) workers after exposure to sublethal concentrations of imidacloprid

    NARCIS (Netherlands)

    Blacquiere, T.

    2010-01-01

    Imidacloprid is a commonly used systemic insecticide which can induce several sublethal effects. Previous research has not shown any increased mortality in bees that were fed with sublethal doses. However, there is very little research conducted with the focus on survival rate of honeybees in the

  3. DNA damage and oxidative stress induced by imidacloprid exposure in the earthworm Eisenia fetida.

    Science.gov (United States)

    Wang, Juan; Wang, Jinhua; Wang, Guangchi; Zhu, Lusheng; Wang, Jun

    2016-02-01

    To investigate the soil ecological effect of imidacloprid, earthworm Eisenia fetida was exposed to various concentrations of imidacloprid (0.10, 0.50, and 1.00 mg kg(-1) soil) respectively after 7, 14, 21, and 28 d. The effect of imidacloprid on reactive oxygen species (ROS) generation, antioxidant enzymes activity [superoxide dismutase (SOD) and catalase (CAT), glutathione S-transferase enzyme (GST)], malondialdehyde (MDA) content and DNA damage of the E. fetida was investigated. Significant increase of the ROS level was observed. The SOD and GST activity were significantly induced at most exposure intervals. CAT activity was inhibited and reflected a dose-dependent relationship on days 7, 14 and 21. High MDA levels were observed and the olive tail moment (OTM) as well as the percentage of DNA in the comet tail (tail DNA%) in comet assay declined with increasing concentrations and exposure time after 7 d. Our results suggested that the sub-chronic exposure of imidacloprid caused DNA damage and lipid peroxidation (LPO) leading to antioxidant responses in earthworm E. fetida. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Behavior of beta cyfluthrin and imidacloprid in/on mango (Mangifera indica L.).

    Science.gov (United States)

    Mohapatra, Soudamini; Deepa, M; Jagadish, G K

    2011-08-01

    Residue persistence of beta cyfluthrin and imidacloprid on mango was carried out after giving spray application of the combination formulation, beta cyfluthrin 9% + imidacloprid 21% (Solomon 300 OD) 3 times at the fruit formation stage. The treatments were, untreated control, standard dose of 75 g a.i. ha(-1) and double dose of 150 g a.i. ha(-1). Initial residues of beta cyfluthrin on mango fruits were 0.04 and 0.12 mg kg(-1) from treatments at the standard and double doses, respectively. The residues dissipated with the half-life of 2.4 and 2.6 days and persisted for 5 days only. Initial residues of imidacloprid on mango fruits were 0.14 and 0.18 mg kg(-1) from treatments at the standard and double doses, respectively. Imidacloprid residues degraded with the half-life of 3.06 and 4.16 days, respectively and persisted for 10 days. Mature mango fruits at harvest were free from residues of both insecticides. A safe pre-harvest interval of 8 days is recommended for consumption of mango fruits after treatment of the combination formulation.

  5. Effects of the neonicotinoid pesticide thiamethoxam at field-realistic levels on microcolonies of Bombus terrestris worker bumble bees.

    Science.gov (United States)

    Laycock, Ian; Cotterell, Katie C; O'Shea-Wheller, Thomas A; Cresswell, James E

    2014-02-01

    Neonicotinoid pesticides are currently implicated in the decline of wild bee populations. Bumble bees, Bombus spp., are important wild pollinators that are detrimentally affected by ingestion of neonicotinoid residues. To date, imidacloprid has been the major focus of study into the effects of neonicotinoids on bumble bee health, but wild populations are increasingly exposed to alternative neonicotinoids such as thiamethoxam. To investigate whether environmentally realistic levels of thiamethoxam affect bumble bee performance over a realistic exposure period, we exposed queenless microcolonies of Bombus terrestris L. workers to a wide range of dosages up to 98 μgkg(-1) in dietary syrup for 17 days. Results showed that bumble bee workers survived fewer days when presented with syrup dosed at 98 μg thiamethoxamkg(-1), while production of brood (eggs and larvae) and consumption of syrup and pollen in microcolonies were significantly reduced by thiamethoxam only at the two highest concentrations (39, 98 μgkg(-1)). In contrast, we found no detectable effect of thiamethoxam at levels typically found in the nectars of treated crops (between 1 and 11 μgkg(-1)). By comparison with published data, we demonstrate that during an exposure to field-realistic concentrations lasting approximately two weeks, brood production in worker bumble bees is more sensitive to imidacloprid than thiamethoxam. We speculate that differential sensitivity arises because imidacloprid produces a stronger repression of feeding in bumble bees than thiamethoxam, which imposes a greater nutrient limitation on production of brood. © 2013 Published by Elsevier Inc.

  6. Rapid Elimination of German Cockroach, Blatella germanica, by Fipronil and Imidacloprid Gel Baits

    Directory of Open Access Journals (Sweden)

    H Nasirian

    2008-06-01

    Full Text Available Background: Baits have become popular and effective formulations against urban insect pests. Compared with re­sidual sprays toxic gel baits are used more and more frequently to control urban cockroach populations. The aim of this study was to investigate the usage of two commercially available fipronil and imidacloprid gel bait formulations against Blattella germanica field infested in Iran.Methods:  The study was carried out in an urban area at Tehran from March 2004 to September 2005. The 0.05% fipronil and 2.15% imidacloprid gel baits were placed continuously in 3 residential German cockroach infested units. Pre- and post-treatment cockroach density was assessed by visual count method.Results: Pre- and post-treatment visual count of cockroaches in treatment and control areas, and percentage reduc­tion in cockroach density in treatment areas in comparison to control areas was showed that density reduction was increased with the 0.05% fipronil and 2.15% imidacloprid gel baits in treated areas from 1st to 9th week in compari­son to control area. After 60 days, German cockroaches eliminated completely from these areas.Conclusion: These results show that fipronil and imidacloprid gel baits are highly effective in field German cock­roach infested after insecticide spraying control failure German cockroach infested fields where spraying  of pyrethroid insecticides failed to control the situation and confirm previous  reports stating that avermectin and hydramethylnon are more effective than conventional insecticides in baits against cockroaches. Therefore, fipronil and imidacloprid gel baits are appropriate candidates for controlling German cockroach infested dwellings in Iran where control with other insectices failed because of resistance.

  7. Rapid Elimination of German Cockroach, Blatella germanica, by Fipronil and Imidacloprid Gel Baits

    Directory of Open Access Journals (Sweden)

    H Nasirian

    2008-08-01

    Full Text Available Background: Baits have become popular and effective formulations against urban insect pests. Compared with re­sidual sprays toxic gel baits are used more and more frequently to control urban cockroach populations. The aim of this study was to investigate the usage of two commercially available fipronil and imidacloprid gel bait formulations against Blattella germanica field infested in Iran. Methods:  The study was carried out in an urban area at Tehran from March 2004 to September 2005. The 0.05% fipronil and 2.15% imidacloprid gel baits were placed continuously in 3 residential German cockroach infested units. Pre- and post-treatment cockroach density was assessed by visual count method. Results: Pre- and post-treatment visual count of cockroaches in treatment and control areas, and percentage reduc­tion in cockroach density in treatment areas in comparison to control areas was showed that density reduction was increased with the 0.05% fipronil and 2.15% imidacloprid gel baits in treated areas from 1st to 9th week in compari­son to control area. After 60 days, German cockroaches eliminated completely from these areas. Conclusion: These results show that fipronil and imidacloprid gel baits are highly effective in field German cock­roach infested after insecticide spraying control failure German cockroach infested fields where spraying  of pyrethroid insecticides failed to control the situation and confirm previous  reports stating that avermectin and hydramethylnon are more effective than conventional insecticides in baits against cockroaches. Therefore, fipronil and imidacloprid gel baits are appropriate candidates for controlling German cockroach infested dwellings in Iran where control with other insectices failed because of resistance.

  8. Metabolic imidacloprid resistance in the brown planthopper, Nilaparvata lugens, relies on multiple P450 enzymes.

    Science.gov (United States)

    Zhang, Yixi; Yang, Yuanxue; Sun, Huahua; Liu, Zewen

    2016-12-01

    Target insensitivity contributing to imidacloprid resistance in Nilaparvata lugens has been reported to occur either through point mutations or quantitative change in nicotinic acetylcholine receptors (nAChRs). However, the metabolic resistance, especially the enhanced detoxification by P450 enzymes, is the major mechanism in fields. From one field-originated N. lugens population, an imidacloprid resistant strain G25 and a susceptible counterpart S25 were obtained to analyze putative roles of P450s in imidacloprid resistance. Compared to S25, over-expression of twelve P450 genes was observed in G25, with ratios above 5.0-fold for CYP6AY1, CYP6ER1, CYP6CS1, CYP6CW1, CYP4CE1 and CYP425B1. RNAi against these genes in vivo and recombinant tests on the corresponding proteins in vitro revealed that four P450s, CYP6AY1, CYP6ER1, CYP4CE1 and CYP6CW1, played important roles in imidacloprid resistance. The importance of the four P450s was not equal at different stages of resistance development based on their over-expression levels, among which CYP6ER1 was important at all stages, and that the others might only contribute at certain stages. The results indicated that, to completely reflect roles of P450s in insecticide resistances, their over-expression in resistant individuals, expression changes at the stages of resistance development, and catalytic activities against insecticides should be considered. In this study, multiple P450s, CYP6AY1, CYP6ER1, CYP4CE1 and CYP6CW1, have proven to be important in imidacloprid resistance. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Persistence behavior of imidacloprid and carbosulfan in mango (Mangifera indica L.).

    Science.gov (United States)

    Bhattacherjee, A K

    2013-02-01

    Imidacloprid was sprayed on mango cv. Dashehari at 0.3 mL L(-1) of water during pre-bloom stage with 6-8 cm panicle size (first week of March) to control hopper and carbosulfan was sprayed at 2.0 mL L(-1) of water in the trees of mango hybrid (H-1000) during fruit development stage (first week of May) to control leaf webber. Residues of both the insecticides were analysed in peel, pulp and fruit at different stages of fruit development and maturity. The initial residues of imidacloprid, after 30 days of spraying, were 1.21, 0.56 and 1.77 mg kg(-1) in peel, pulp and whole fruit, respectively. The residues persisted in peel for 60 days and in pulp for 50 days and dissipated with a half-life of 38 days. Mature Dashehari fruits at harvest (after 85 days of spraying) were free from imidacloprid residues. Carbosulfan in mango peel dissipated from 5.30 mg kg(-1) (after 1 h of spraying) to 0.05 mg kg(-1) at the time of harvest (after 45 days of spraying). Carbosulfan residue in pulp was very low (0.08 mg kg(-1)) after 1 h of spraying, which increased gradually to 0.90 mg kg(-1) after 10 days and finally came down to 0.04 mg kg(-1) after 26 days of spraying. The insecticide residue was not detected in the pulp at the time of harvest. The residues persisted in pulp for 26 days and in peel for 45 days and degraded with a half-life of 7 days. The dissipation of both imidacloprid and carbosulfan followed first order rate kinetics in whole fruit (peel + pulp). Therefore, the safe pre-harvest intervals were suggested to be 55 days for imidacloprid and 46 days for carbosulfan before consumption of mango fruits after spraying of these insecticides.

  10. Pesticides: chemicals for survival

    International Nuclear Information System (INIS)

    Lindquist, D.A.

    1981-01-01

    Pesticides are chemicals used to control pests such as insects, weeds, plant diseases, nematodes, and rodents. The increased use of pesticides since 1945 has greatly aided the increase in crop production, protected livestock from diseases such as trypanosomiasis, protected man from diseases such as malaria and filarisis, decreased losses of stored grain, and has generally improved man's welfare. Despite the enormous benefits derived from pesticides these chemicals are not problem-free. Many pesticides are toxic to living organisms and interfere with specific biochemical systems. To measure the very small quantities of a pesticide radiolabelled chemicals are frequently essential, particularly to measure changes in the chemical structure of the pesticide, movement of the pesticide in soil, plants, or animals, amounts of pesticide going through various steps in food processing, etc. The use of radiolabelled pesticides is shortly shown for metabolism of the pesticide in crop species, metabolism in ruminant, in chickens and eggs, in soil, and possibly leaching and sorption in soil, hydrolysis, bio-concentration, microbial and photodegradation, and toxicity studies

  11. Biological assessment of neonicotinoids imidacloprid and its major metabolites for potentially human health using globular proteins as a model.

    Science.gov (United States)

    Ding, Fei; Peng, Wei

    2015-06-01

    The assessment of biological activities of imidacloprid and its two major metabolites, namely 6-chloronicotinic acid and 2-imidazolidone for nontarget organism, by employing essentially functional biomacromolecules, albumin and hemoglobin as a potentially model with the use of circular dichroism (CD), fluorescence, extrinsic 8-anilino-1-naphthalenesulfonic acid (ANS) fluorescence as well as molecular modeling is the theme of this work. By dint of CD spectra and synchronous fluorescence, it was clear that the orderly weak interactions between amino acid residues within globular proteins were disturbed by imidacloprid, and this event led to marginally alterations or self-regulations of protein conformation so as to lodge imidacloprid more tightly. Both steady state and time-resolved fluorescence suggested that the fluorescence of Trp residues in proteins was quenched after the presence of imidacloprid, corresponding to noncovalent protein-imidacloprid complexes formation and, the reaction belongs to moderate association (K=1.888/1.614×10(4)M(-1) for albumin/hemoglobin-imidacloprid, respectively), hydrogen bonds and π stacking performed a vital role in stabilizing the complexes, as derived from thermodynamic analysis and molecular modeling. With the aid of hydrophobic ANS experiments, subdomain IIA and α1β2 interface of albumin and hemoglobin, respectively, were found to be preserved high-affinity for imidacloprid. These results ties in with the subsequently molecular modeling laying imidacloprid in the Sudlow's site I and close to Trp-213 residue on albumin, while settling down B/Trp-37 residue nearby in hemoglobin, and these conclusions further confirmed by site-directed mutagenesis and molecular dynamics simulation. But, at the same time, several crucial noncovalent bonds came from other amino acid residues, e.g. Arg-194 and Arg-198 (albumin) and B/Arg-40, B/Asp-99 and B/Asn-102 (hemoglobin) cannot be ignored completely. Based on the comparative studies of

  12. Pesticide Worker Safety Cooperative Agreements

    Science.gov (United States)

    The worker safety program cooperative agreements fund projects to educate pesticide applicators, handlers, and farmworkers on working safely with, and around, pesticides. Read about pesticide related grant opportunities and reports from previous grants.

  13. Models for Pesticide Risk Assessment

    Science.gov (United States)

    EPA considers the toxicity of the pesticide as well as the amount of pesticide to which a person or the environments may be exposed in risk assessment. Scientists use mathematical models to predict pesticide concentrations in exposure assessment.

  14. Sublethal doses of neonicotinoid imidacloprid can interact with honey bee chemosensory protein 1 (CSP1) and inhibit its function.

    Science.gov (United States)

    Li, Hongliang; Tan, Jing; Song, Xinmi; Wu, Fan; Tang, Mingzhu; Hua, Qiyun; Zheng, Huoqing; Hu, Fuliang

    2017-04-29

    As a frequently used neonicotinoid insecticide, imidacloprid can impair the chemoreceptive behavior of honey bees even at sublethal doses, while the physiochemical mechanism has not been further revealed. Here, multiple fluorescence spectra, thermodynamic method, and molecular docking were used to study the interaction and the functional inhibition of imidacloprid to the recombinant CSP1 protein in Asian honey bee, Apis cerana. The results showed that the fluorescence intensity (λ em  = 332 nm) of CSP1 could be significantly quenched by imidacloprid in a dynamic mode. During the quenching process, ΔH > 0, ΔS > 0, indicating that the acting forces of imidacloprid with CSP1 are mainly hydrophobic interactions. Synchronous fluorescence showed that the fluorescence of CSP1 was mainly derived from tryptophan, and the hydrophobicity of tryptophan decreased with the increase of imidacloprid concentration. Molecular docking predicted the optimal pose and the amino acid composition of the binding process. Circular dichroism (CD) spectra showed that imidacloprid reduced the α-helix of CSP1 and caused the extension of the CSP1 peptide chain. In addition, the binding of CSP1 to floral scent β-ionone was inhibited by nearly 50% of the apparent association constant (K A ) in the presence of 0.28-2.53 ng/bee of imidacloprid, and the inhibition rate of nearly 95% at 3.75 ng/bee of imidacloprid at sublethal dose level. This study initially revealed the molecular physiochemical mechanism that sublethal doses of neonicotinoid still interact and inhibit the physiological function of the honey bees' chemoreceptive system. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Understanding Pesticide Risks: Toxicity and Formulation

    OpenAIRE

    Muntz, Helen; Miller, Rhonda; Alston, Diane

    2016-01-01

    This fact sheet provides information about pesticide risks to human health, primary means of pesticide exposure, standardized measures of pesticide toxicity, pesticide signal words and type of pesticide formulations.

  16. Two cytochrome P450 genes are involved in imidacloprid resistance in field populations of the whitefly, Bemisia tabaci, in China.

    Science.gov (United States)

    Yang, Xin; Xie, Wen; Wang, Shao-li; Wu, Qing-jun; Pan, Hui-peng; Li, Ru-mei; Yang, Ni-na; Liu, Bai-ming; Xu, Bao-yun; Zhou, Xiaomao; Zhang, You-jun

    2013-11-01

    The sweet potato whitefly, Bemisia tabaci (Gennadius) (Hemiptera:Aleyrodidae), is an invasive and damaging pest of field crops worldwide. The neonicotinoid insecticide imidacloprid has been widely used to control this pest. We assessed the species composition (B vs. Q), imidacloprid resistance, and association between imidacloprid resistance and the expression of five P450 genes for 14-17 B. tabaci populations in 12 provinces in China. Fifteen of 17 populations contained only B. tabaci Q, and two populations contained both B and Q. Seven of 17 populations exhibited moderate to high resistance to imidacloprid, and eight populations exhibited low resistance to imidacloprid, compared with the most susceptible field WHHB population. In a study of 14 of the populations, resistance level was correlated with the expression of the P450 genes CYP6CM1 and CYP4C64 but not with the expression of CYP6CX1, CYP6CX4, or CYP6DZ7. This study indicates that B. tabaci Q has a wider distribution in China than previously reported. Resistance to imidacloprid in field populations of B. tabaci is associated with the increased expression of two cytochrome P450 genes (CYP6CM1 and CYP4C64). Crown Copyright © 2013. Published by Elsevier Inc. All rights reserved.

  17. Pesticide Program Dialogue Committee (PPDC)

    Science.gov (United States)

    The Pesticide Program Dialogue Committee, a permanent, broadly representative advisory committee, meets with EPA on a regular basis to discuss pesticide regulatory, policy, and program implementation issues.

  18. Pesticide Product Information System (PPIS)

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Pesticide Product Information System contains information concerning all pesticide products registered in the United States. It includes registrant name and...

  19. Assessment of Chronic Sublethal Effects of Imidacloprid on Honey Bee Colony Health

    Science.gov (United States)

    Dively, Galen P.; Embrey, Michael S.; Kamel, Alaa; Hawthorne, David J.; Pettis, Jeffery S.

    2015-01-01

    Here we present results of a three-year study to determine the fate of imidacloprid residues in hive matrices and to assess chronic sublethal effects on whole honey bee colonies fed supplemental pollen diet containing imidacloprid at 5, 20 and 100 μg/kg over multiple brood cycles. Various endpoints of colony performance and foraging behavior were measured during and after exposure, including winter survival. Imidacloprid residues became diluted or non-detectable within colonies due to the processing of beebread and honey and the rapid metabolism of the chemical. Imidacloprid exposure doses up to 100 μg/kg had no significant effects on foraging activity or other colony performance indicators during and shortly after exposure. Diseases and pest species did not affect colony health but infestations of Varroa mites were significantly higher in exposed colonies. Honey stores indicated that exposed colonies may have avoided the contaminated food. Imidacloprid dose effects was delayed later in the summer, when colonies exposed to 20 and 100 μg/kg experienced higher rates of queen failure and broodless periods, which led to weaker colonies going into the winter. Pooled over two years, winter survival of colonies averaged 85.7, 72.4, 61.2 and 59.2% in the control, 5, 20 and 100 μg/kg treatment groups, respectively. Analysis of colony survival data showed a significant dose effect, and all contrast tests comparing survival between control and treatment groups were significant, except for colonies exposed to 5 μg/kg. Given the weight of evidence, chronic exposure to imidacloprid at the higher range of field doses (20 to 100 μg/kg) in pollen of certain treated crops could cause negative impacts on honey bee colony health and reduced overwintering success, but the most likely encountered high range of field doses relevant for seed-treated crops (5 μg/kg) had negligible effects on colony health and are unlikely a sole cause of colony declines. PMID:25786127

  20. Major Pesticides Are More Toxic to Human Cells Than Their Declared Active Principles

    Directory of Open Access Journals (Sweden)

    Robin Mesnage

    2014-01-01

    Full Text Available Pesticides are used throughout the world as mixtures called formulations. They contain adjuvants, which are often kept confidential and are called inerts by the manufacturing companies, plus a declared active principle, which is usually tested alone. We tested the toxicity of 9 pesticides, comparing active principles and their formulations, on three human cell lines (HepG2, HEK293, and JEG3. Glyphosate, isoproturon, fluroxypyr, pirimicarb, imidacloprid, acetamiprid, tebuconazole, epoxiconazole, and prochloraz constitute, respectively, the active principles of 3 major herbicides, 3 insecticides, and 3 fungicides. We measured mitochondrial activities, membrane degradations, and caspases 3/7 activities. Fungicides were the most toxic from concentrations 300–600 times lower than agricultural dilutions, followed by herbicides and then insecticides, with very similar profiles in all cell types. Despite its relatively benign reputation, Roundup was among the most toxic herbicides and insecticides tested. Most importantly, 8 formulations out of 9 were up to one thousand times more toxic than their active principles. Our results challenge the relevance of the acceptable daily intake for pesticides because this norm is calculated from the toxicity of the active principle alone. Chronic tests on pesticides may not reflect relevant environmental exposures if only one ingredient of these mixtures is tested alone.

  1. Pesticide residue analysis of soil, water, and grain of IPM basmati rice.

    Science.gov (United States)

    Arora, Sumitra; Mukherji, Irani; Kumar, Aman; Tanwar, R K

    2014-12-01

    The main aim of the present investigations was to compare the pesticide load in integrated pest management (IPM) with non-IPM crops of rice fields. The harvest samples of Basmati rice grain, soil, and irrigation water, from IPM and non-IPM field trials, at villages in northern India, were analyzed using multi-pesticide residue method. The field experiments were conducted for three consecutive years (2008-2011) for the successful validation of the modules, synthesized for Basmati rice, at these locations. Residues of tricyclazole, propiconazole, hexconazole, lambda cyhalothrin, pretilachlor chlorpyrifos, DDVP, carbendazim, and imidacloprid were analyzed from two locations, Dudhli village of Dehradun, Uttrakhand and Saboli and Aterna village of Sonepat, Haryana. The pesticide residues were observed below detectable limit (BDL) (water samples (2008-09). Residues of tricyclazole and carbendazim, analyzed from same locations, revealed pesticide residues as BDL (water samples (2009-2010). The residues of tricyclazole, propioconazole, chlorpyrifos, hexaconazole, pretilachlor, and λ-cyhalothrin were also found as BDL (water samples (<0.001-0.05 μg/L) (2010-2011).

  2. Dietary risk assessment of pesticides from vegetables and drinking water in gardening areas in Burkina Faso.

    Science.gov (United States)

    Lehmann, Edouard; Turrero, Nuria; Kolia, Marius; Konaté, Yacouba; de Alencastro, Luiz Felippe

    2017-12-01

    Vegetables and water samples have been collected around the lake of Loumbila in Burkina Faso. Pesticides residues in food commodities were analyzed using a modified QuEChERS extraction method prior analysis on GC-MS and UPLC-MS/MS of 31 pesticides. Maximum Residue Limits (MRLs) were exceeded in 36% of the samples for seven pesticides: acetamiprid, carbofuran, chlorpyrifos, lambda-cyhalothrin, dieldrin, imidacloprid and profenofos. Exceedance of MRLs suggests a risk for the consumers and limits the opportunities of exportation. In order to define estimated daily intake, dietary surveys were conducted on 126 gardeners using a 24hours recall method. Single pesticide and cumulative exposure risks were assessed for children and adults. Risk was identified for: chlorpyrifos and lambda-cyhalothrin in acute and chronic exposure scenarios. Hazardous chronic exposure to the endocrine disruptor and probable carcinogen dieldrin was also detected. In the studied population, cumulative dietary exposure presented a risk (acute and chronic) for children and adults in respectively >17% and 4% of the cases when considering the worst case scenarios. Processing factor largely influenced the risk of occurrence suggesting that simple washing of vegetables with water considerably reduced the risk of hazardous exposure. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Major Pesticides Are More Toxic to Human Cells Than Their Declared Active Principles

    Science.gov (United States)

    Spiroux de Vendômois, Joël; Séralini, Gilles-Eric

    2014-01-01

    Pesticides are used throughout the world as mixtures called formulations. They contain adjuvants, which are often kept confidential and are called inerts by the manufacturing companies, plus a declared active principle, which is usually tested alone. We tested the toxicity of 9 pesticides, comparing active principles and their formulations, on three human cell lines (HepG2, HEK293, and JEG3). Glyphosate, isoproturon, fluroxypyr, pirimicarb, imidacloprid, acetamiprid, tebuconazole, epoxiconazole, and prochloraz constitute, respectively, the active principles of 3 major herbicides, 3 insecticides, and 3 fungicides. We measured mitochondrial activities, membrane degradations, and caspases 3/7 activities. Fungicides were the most toxic from concentrations 300–600 times lower than agricultural dilutions, followed by herbicides and then insecticides, with very similar profiles in all cell types. Despite its relatively benign reputation, Roundup was among the most toxic herbicides and insecticides tested. Most importantly, 8 formulations out of 9 were up to one thousand times more toxic than their active principles. Our results challenge the relevance of the acceptable daily intake for pesticides because this norm is calculated from the toxicity of the active principle alone. Chronic tests on pesticides may not reflect relevant environmental exposures if only one ingredient of these mixtures is tested alone. PMID:24719846

  4. Assessment of Imidacloprid and Its Metabolites in Foliage of Eastern Hemlock Multiple Years Following Treatment for Hemlock Woolly Adelgid, Adelges tsugae (Hemiptera: Adelgidae), in Forested Conditions.

    Science.gov (United States)

    Benton, E P; Grant, J F; Webster, R J; Nichols, R J; Cowles, R S; Lagalante, A F; Coots, C I

    2015-12-01

    Widespread decline and mortality of eastern hemlock, Tsuga canadensis (L.) Carrière, have been caused by hemlock woolly adelgid, Adelges tsugae (Annand) (HWA) (Hemiptera: Adelgidae). The current study is a retrospective analysis conducted in collaboration with Great Smoky Mountains National Park (GRSM) to determine longevity of imidacloprid and its insecticidal metabolites (imidacloprid olefin, 5-hydroxy, and dihydroxy) in GRSM's HWA integrated pest management (IPM) program. Foliage samples were collected from three canopy strata of hemlocks that were given imidacloprid basal drench treatments 4-7 yr prior to sampling. Foliage was analyzed to assess concentrations in parts per billion (ppb) of imidacloprid and its metabolites. Imidacloprid and its olefin metabolite were present in most, 95 and 65%, respectively, branchlets 4-7 yr post-treatment, but the 5-hydroxy and dihydroxy metabolites were present in only 1.3 and 11.7%, respectively, of the branchlets. Imidacloprid and olefin concentrations significantly decreased between 4 and 7 yr post-treatment. Concentrations of both imidacloprid and olefin were below the LC50 for HWA 5-7 yr post-treatment. Knowledge of the longevity of imidacloprid treatments and its metabolite olefin can help maximize the use of imidacloprid in HWA IPM programs. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. Pesticides and nitrate in groundwater underlying citrus croplands, Lake Wales Ridge, central Florida, 1999-2005.

    Science.gov (United States)

    Choquette, Anne F.

    2014-01-01

    This report summarizes pesticide and nitrate (as nitrogen) results from quarterly sampling of 31 surficial-aquifer wells in the Lake Wales Ridge Monitoring Network during April 1999 through January 2005. The wells, located adjacent to citrus orchards and used for monitoring only, were generally screened (sampled) within 5 to 40 feet of the water table. Of the 44 citrus pesticides and pesticide degradates analyzed, 17 were detected in groundwater samples. Parent pesticides and degradates detected in quarterly groundwater samples, ordered by frequency of detection, included norflurazon, demethyl norflurazon, simazine, diuron, bromacil, aldicarb sulfone, aldicarb sulfoxide, deisopropylatrazine (DIA), imidacloprid, metalaxyl, thiazopyr monoacid, oxamyl, and aldicarb. Reconnaissance sampling of five Network wells yielded detection of four additional pesticide degradates (hydroxysimazine, didealkylatrazine, deisopropylhydroxyatrazine, and hydroxyatrazine). The highest median concentration values per well, based on samples collected during the 1999–2005 period (n=14 to 24 samples per well), included 3.05 µg/L (micrograms per liter) (simazine), 3.90 µg/L (diuron), 6.30 µg/L (aldicarb sulfone), 6.85 µg/L (aldicarb sulfoxide), 22.0 µg/L (demethyl norflurazon), 25.0 µg/ (norflurazon), 89 µg/ (bromacil), and 25.5 mg/L (milligrams per liter) (nitrate). Nitrate concentrations exceeded the 10 mg/L (as nitrogen) drinking water standard in one or more groundwater samples from 28 of the wells, and the median nitrate concentration among these wells was 14 mg/L. Sampled groundwater pesticide concentrations exceeded Florida’s health-guidance benchmarks for aldicarb sulfoxide and aldicarb sulfone (4 wells), the sum of aldicarb and its degradates (6 wells), simazine (2 wells), the sum of simazine and DIA (3 wells), diuron (2 wells), bromacil (1 well), and the sum of norflurazon and demethyl norflurazon (1 well). The magnitude of fluctuations in groundwater pesticide

  6. Efficacy of imidacloprid + moxidectin and selamectin topical solutions against the KS1 Ctenocephalides felis flea strain infesting cats

    Directory of Open Access Journals (Sweden)

    Dryden Michael W

    2011-09-01

    Full Text Available Abstract Background Two studies were conducted to evaluate and compare the efficacy of imidacloprid + moxidectin and selamectin topical solutions against the KS1 flea strain infesting cats. In both studies the treatment groups were comprised of non-treated controls, 6% w/v selamectin (Revolution®; Pfizer Animal Health topical solution and 10% w/v imidacloprid + 1% w/v moxidectin (Advantage Multi® for Cats, Bayer Animal Health topical solution. All cats were infested with 100 fleas on Days -2, 7, 14, 21, and 28. The difference in the studies was that in study #1 efficacy evaluations were conducted at 24 and 48 hours post-treatment or post-infestation, and in study #2 evaluations were conducted at 12 and 24 hours. Results In study #1 imidacloprid + moxidectin and the selamectin formulation provided 99.8% and 99.0% efficacy at 24 hours post-treatment. On day 28, the 24 hour efficacy of the selamectin formulation dropped to 87.1%, whereas the imidacloprid + moxidectin formulation provided 98.9% efficacy. At the 48 hour assessments following the 28 day infestations, efficacy of the imidacloprid + moxidectin and selamectin formulations was 96.8% and 98.3% respectively. In study # 2 the efficacy of the imidacloprid + moxidectin and selamectin formulations 12 hours after treatment was 100% and 69.4%, respectively. On day 28, efficacy of the imidacloprid + moxidectin and selamectin formulations 12 hours after infestation was 90.2% and 57.3%, respectively. In study #2 both formulations provided high levels of efficacy at the 24 hour post-infestation assessments, with selamectin and imidacloprid + moxidectin providing 95.3% and 97.5% efficacy, following infestations on day 28. Conclusions At the 24 and 48 hour residual efficacy assessments, the imidacloprid + moxidectin and selamectin formulations were similarly highly efficacious. However, the imidacloprid + moxidectin formulation provided a significantly higher rate of flea kill against the KS1 flea

  7. Control of Pesticides 2001

    DEFF Research Database (Denmark)

    Krongaard, T.; Petersen, K. K.; Christoffersen, C.

    comply with the label-claimed content. The tolerance of deviation from the label-claimed content of active ingredient is set by the Danish pesticide regulation. Three different groups of products covered by the pesticide regulation have been included in the 2001 analytical chemical authority control: 1...

  8. Pesticides in Ground Water

    DEFF Research Database (Denmark)

    Bjerg, Poul Løgstrup

    1996-01-01

    Review af: Jack E. Barbash & Elizabeth A. Resek (1996). Pesticides in Ground Water. Distribution trends and governing factors. Ann Arbor Press, Inc. Chelsea, Michigan. pp 588.......Review af: Jack E. Barbash & Elizabeth A. Resek (1996). Pesticides in Ground Water. Distribution trends and governing factors. Ann Arbor Press, Inc. Chelsea, Michigan. pp 588....

  9. National Pesticide Information Center

    Science.gov (United States)

    ... How can I protect my pets when using pesticides around them? More FAQs FAQ Comics Video FAQs From NPIC: Fact Sheets Videos Web Apps Podcasts Outreach Materials NPIC Professional Resources Social Media: National Pesticide Information Center Tweets by NPICatOSU Please read our ...

  10. Food and Pesticides

    Science.gov (United States)

    EPA sets limits on how much of a pesticide may be used on food during growing and processing, and how much can remain on the food you buy. Learn about regulation of pesticides on food and how you can limit exposure.

  11. PESTICIDES: BENEFITS AND HAZARDS

    Directory of Open Access Journals (Sweden)

    Ivan Maksymiv

    2015-05-01

    Full Text Available Pesticides are an integral part of modern life used to prevent growth of unwanted living  organisms. Despite the fact that scientific statements coming from many toxicological works provide indication on the low risk of the pesticides and their residues, the community especially last years is deeply concerned about massive application of pesticides in diverse fields. Therefore evaluation of hazard risks particularly in long term perspective is very important. In the fact there are at least two clearly different approaches for evaluation of pesticide using: the first one is defined as an objective or probabilistic risk assessment, while the second one is the potential economic and agriculture benefits. Therefore, in this review the author has considered scientifically based assessment of positive and negative effects of pesticide application and discusses possible approaches to find balance between them.

  12. Rapid modified QuEChERS method for pesticides detection in honey by high-performance liquid chromatography UV-visible

    Directory of Open Access Journals (Sweden)

    Elisabetta Bonerba

    2014-05-01

    Full Text Available The extensive use of pesticides in agriculture plays an important role in bees die-off and allows the presence of residues in hive products, particularly in honey. An accurate and reliable analytical method, based on QuEChERS extractive technique, has been developed for the quantitative determination by high-performance liquid chromatography UV-visible detector of 5 pesticides (Deltamethrin, Dimethoate, Imidacloprid, Acetamiprid, Chlorfenvinphos in honey. The method, according to Commission Directive 2002/63/EC and Regulation 882/2004/EC, provided excellent results with respect to linearity (correlation coefficient up to 0.993, limits of detection and quantification (0.005 and 0.01 μg/mL for Dimethoate, Deltamethrin and Chlorfenvinphos; 0.02 and 0.05 μg/mL for Acetamiprid and Imidacloprid, recovery values (86.4 to 96.3%, precision and relative expanded uncertainty of a measurement, demonstrating the conformity of the this method with the European directives. The proposed method was applied to 23 samples of Apulian honey. None of the investigated pesticides was detected in these samples.

  13. Spatially resolved investigation of systemic and contact pesticides in plant material by desorption electrospray ionization mass spectrometry imaging (DESI-MSI).

    Science.gov (United States)

    Gerbig, Stefanie; Brunn, Hubertus E; Spengler, Bernhard; Schulz, Sabine

    2015-09-01

    Distribution of pesticides both on the surface of leaves and in cross sections of plant stem and leaves was investigated using desorption electrospray ionization mass spectrometry imaging (DESI-MSI) with a spatial resolution of 50-100 μm. Two commercially available insecticide sprays containing different contact pesticides were applied onto leaves of Cotoneaster horizontalis, and the distributions of all active ingredients were directly analyzed. The first spray contained pyrethrins and rapeseed oil, both known as natural insecticides. Each component showed an inhomogeneous spreading throughout the leaf, based on substance polarity and solubility. The second spray contained the synthetic insecticides imidacloprid and methiocarb. Imidacloprid accumulated on the border of the leaf, while methiocarb was distributed more homogenously. In order to investigate the incorporation of a systemically acting pesticide into Kalanchoe blossfeldiana, a commercially available insecticide tablet containing dimethoate was spiked to the soil of the plant. Cross sections of the stem and leaf were obtained 25 and 60 days after application. Dimethoate was mainly detected in the transport system of the plant after 25 days, while it was found to be homogenously distributed in a leaf section after 60 days.

  14. Pesticide Exposure in Children

    Science.gov (United States)

    Roberts, James R.; Karr, Catherine J.

    2018-01-01

    Pesticides are a collective term for a wide array of chemicals intended to kill unwanted insects, plants, molds, and rodents. Food, water, and treatment in the home, yard, and school are all potential sources of children’s exposure. Exposures to pesticides may be overt or subacute, and effects range from acute to chronic toxicity. In 2008, pesticides were the ninth most common substance reported to poison control centers, and approximately 45% of all reports of pesticide poisoning were for children. Organophosphate and carbamate poisoning are perhaps the most widely known acute poisoning syndromes, can be diagnosed by depressed red blood cell cholinesterase levels, and have available antidotal therapy. However, numerous other pesticides that may cause acute toxicity, such as pyrethroid and neonicotinoid insecticides, herbicides, fungicides, and rodenticides, also have specific toxic effects; recognition of these effects may help identify acute exposures. Evidence is increasingly emerging about chronic health implications from both acute and chronic exposure. A growing body of epidemiological evidence demonstrates associations between parental use of pesticides, particularly insecticides, with acute lymphocytic leukemia and brain tumors. Prenatal, household, and occupational exposures (maternal and paternal) appear to be the largest risks. Prospective cohort studies link early-life exposure to organophosphates and organochlorine pesticides (primarily DDT) with adverse effects on neurodevelopment and behavior. Among the findings associated with increased pesticide levels are poorer mental development by using the Bayley index and increased scores on measures assessing pervasive developmental disorder, inattention, and attention-deficit/hyperactivity disorder. Related animal toxicology studies provide supportive biological plausibility for these findings. Additional data suggest that there may also be an association between parental pesticide use and adverse birth

  15. Assessment of human exposure to pesticides by hair analysis: The case of vegetable-producing areas in Burkina Faso.

    Science.gov (United States)

    Lehmann, Edouard; Oltramare, Christelle; Nfon Dibié, Jean-Jacques; Konaté, Yacouba; de Alencastro, Luiz Felippe

    2018-02-01

    The present work assesses human exposure to pesticides in vegetable-producing areas in Burkina Faso, using hair as an indicator. The study design includes a comparison between operators who are occupationally exposed while working in the fields and a reference population (i.e. not occupationally exposed) to evaluate both occupational and indirect exposures. Hair samples from volunteers (n=101) were positive for 17 pesticides (38 analyzed). Acetamiprid, desethylatrazine, carbofuran, and deltamethrin were detected for the first time in field samples. With a maximum of 9 residues per sample, pesticide exposure was ubiquitous in both populations. Contamination by acetamiprid, cypermethrin, and lambda-cyhalothrin (used in vegetable production) prevailed in operator samples. For other pesticides, such as imidacloprid and deltamethrin, no significant difference was found. This indicates a potentially large environmental exposure (dietary intake or atmospheric contamination) or the prevalence of other contamination sources. The present findings are concerning, as detected levels are globally higher than those previously reported, and indicate exposure to endocrine disrupting chemicals and probable carcinogens. Hair was found to be a suitable matrix for biomonitoring human exposure to pesticides and assessing dominant factors (i.e. sex, age, and protective equipment) in subgroups, as well as identifying geographical contamination patterns. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Comparative toxicity of imidacloprid and thiacloprid to different species of soil invertebrates.

    Science.gov (United States)

    de Lima E Silva, Cláudia; Brennan, Nicola; Brouwer, Jitske M; Commandeur, Daniël; Verweij, Rudo A; van Gestel, Cornelis A M

    2017-05-01

    Neonicotinoid insecticides have come under increasing scrutiny for their impact on non-target organisms, especially pollinators. The current scientific literature is mainly focused on the impact of these insecticides on pollinators and some aquatic insects, leaving a knowledge gap concerning soil invertebrates. This study aimed at filling this gap, by determining the toxicity of imidacloprid and thiacloprid to five species of soil invertebrates: earthworms (Eisenia andrei), enchytraeids (Enchytraeus crypticus), Collembola (Folsomia candida), oribatid mites (Oppia nitens) and isopods (Porcellio scaber). Tests focused on survival and reproduction or growth, after 3-5 weeks exposure in natural LUFA 2.2 standard soil. Imidacloprid was more toxic than thiacloprid for all species tested. F. candida and E. andrei were the most sensitive species, with LC 50 s of 0.20-0.62 and 0.77 mg/kg dry soil for imidacloprid and 2.7-3.9 and 7.1 mg/kg dry soil for thiacloprid. EC 50 s for effects on the reproduction of F. candida and E. andrei were 0.097-0.30 and 0.39 mg/kg dry soil for imidacloprid and 1.7-2.4 and 0.44 mg/kg dry soil for thiacloprid. The least sensitive species were O. nitens and P. scaber. Enchytraeids were a factor of 5-40 less sensitive than the taxonomically related earthworm, depending on the endpoint considered. Although not all the species showed high sensitivity to the neonicotinoids tested, these results raise awareness about the effects these insecticides can have on non-target soil invertebrates.

  17. Improved retention of imidacloprid (Confidor) in soils by adding vermicompost from spent grape marc.

    Science.gov (United States)

    Fernández-Bayo, Jesús D; Nogales, Rogelio; Romero, Esperanza

    2007-05-25

    Batch sorption experiments of the insecticide imidacloprid by ten widely different Spanish soils were carried out. The sorption was studied for the active ingredient and its registered formulation Confidor. The temperature effect was studied at 15 degrees C and 25 degrees C. The addition of a vermicompost from spent grape marc (natural and ground), containing 344 g kg(-1) organic carbon, on the sorption of imidacloprid by two selected soils, a sandy loam and a silty clay loam, having organic carbon content of 3.6 g kg(-1) and 9.3 g kg(-1), respectively, was evaluated. Prior to the addition of this vermicompost, desorption isotherms with both selected soils, were also performed. The apparent hysteresis index (AHI) parameter was used to quantify sorption-desorption hysteresis. Sorption coefficients, K(d) and K(f), for the active ingredient and Confidor(R) in the different soils were similar. Sorption decreased with increasing temperature, this fact has special interest in greenhouse systems. A significant correlation (R(2)=0.965; Pcharacteristics of soils could contribute to the retention capacity as well. The spent grape marc vermicompost was an effective sorbent of this insecticide (K(f)=149). The sorption of imidacloprid increased significantly in soils amended with this vermicompost. The most pronounced effect was found in the sandy loam soil with low OC content, where the addition of 5% and 10% of vermicompost increased K(f) values by 8- and 15-fold, respectively. Soil desorption of imidacloprid was slower for the soil with the higher OC and clay content.

  18. Pesticide residues and bees--a risk assessment.

    Directory of Open Access Journals (Sweden)

    Francisco Sanchez-Bayo

    Full Text Available Bees are essential pollinators of many plants in natural ecosystems and agricultural crops alike. In recent years the decline and disappearance of bee species in the wild and the collapse of honey bee colonies have concerned ecologists and apiculturalists, who search for causes and solutions to this problem. Whilst biological factors such as viral diseases, mite and parasite infections are undoubtedly involved, it is also evident that pesticides applied to agricultural crops have a negative impact on bees. Most risk assessments have focused on direct acute exposure of bees to agrochemicals from spray drift. However, the large number of pesticide residues found in pollen and honey demand a thorough evaluation of all residual compounds so as to identify those of highest risk to bees. Using data from recent residue surveys and toxicity of pesticides to honey and bumble bees, a comprehensive evaluation of risks under current exposure conditions is presented here. Standard risk assessments are complemented with new approaches that take into account time-cumulative effects over time, especially with dietary exposures. Whilst overall risks appear to be low, our analysis indicates that residues of pyrethroid and neonicotinoid insecticides pose the highest risk by contact exposure of bees with contaminated pollen. However, the synergism of ergosterol inhibiting fungicides with those two classes of insecticides results in much higher risks in spite of the low prevalence of their combined residues. Risks by ingestion of contaminated pollen and honey are of some concern for systemic insecticides, particularly imidacloprid and thiamethoxam, chlorpyrifos and the mixtures of cyhalothrin and ergosterol inhibiting fungicides. More attention should be paid to specific residue mixtures that may result in synergistic toxicity to bees.

  19. Pesticide Residues and Bees – A Risk Assessment

    Science.gov (United States)

    Sanchez-Bayo, Francisco; Goka, Koichi

    2014-01-01

    Bees are essential pollinators of many plants in natural ecosystems and agricultural crops alike. In recent years the decline and disappearance of bee species in the wild and the collapse of honey bee colonies have concerned ecologists and apiculturalists, who search for causes and solutions to this problem. Whilst biological factors such as viral diseases, mite and parasite infections are undoubtedly involved, it is also evident that pesticides applied to agricultural crops have a negative impact on bees. Most risk assessments have focused on direct acute exposure of bees to agrochemicals from spray drift. However, the large number of pesticide residues found in pollen and honey demand a thorough evaluation of all residual compounds so as to identify those of highest risk to bees. Using data from recent residue surveys and toxicity of pesticides to honey and bumble bees, a comprehensive evaluation of risks under current exposure conditions is presented here. Standard risk assessments are complemented with new approaches that take into account time-cumulative effects over time, especially with dietary exposures. Whilst overall risks appear to be low, our analysis indicates that residues of pyrethroid and neonicotinoid insecticides pose the highest risk by contact exposure of bees with contaminated pollen. However, the synergism of ergosterol inhibiting fungicides with those two classes of insecticides results in much higher risks in spite of the low prevalence of their combined residues. Risks by ingestion of contaminated pollen and honey are of some concern for systemic insecticides, particularly imidacloprid and thiamethoxam, chlorpyrifos and the mixtures of cyhalothrin and ergosterol inhibiting fungicides. More attention should be paid to specific residue mixtures that may result in synergistic toxicity to bees. PMID:24718419

  20. Sex-, tissue-, and exposure duration-dependent effects of imidacloprid modulated by piperonyl butoxide and menadione in rats. Part I: oxidative and neurotoxic potentials.

    Science.gov (United States)

    Yardimci, Mustafa; Sevgiler, Yusuf; Rencuzogullari, Eyyup; Arslan, Mehmet; Buyukleyla, Mehmet; Yilmaz, Mehmet

    2014-12-01

    Earlier research has evidenced the oxidative and neurotoxic potential of imidacloprid, a neonicotinoid insecticide, in different animal species. The primary aim of this study was to determine how metabolic modulators piperonyl butoxide and menadione affect imidacloprid's adverse action in the liver and kidney of Sprague-Dawley rats of both sexes. The animals were exposed to imidacloprid alone (170 mg kg⁻¹) or in combination with piperonyl butoxide (100 mg kg⁻¹) or menadione (25 mg kg⁻¹) for 12 and 24 h. Their liver and kidney homogenates were analysed spectrophotometrically for glutathione peroxidase, glutathione S-transferase, catalase, total cholinesterase specific activities, total glutathione, total protein content, and lipid peroxidation levels. Imidacloprid displayed its prooxidative and neurotoxic effects predominantly in the kidney of male rats after 24 h of exposure. Our findings suggest that the observed differences in prooxidative and neurotoxic potential of imidacloprid could be related to differences in its metabolism between the sexes. Co-exposure (90-min pre-treatment) with piperonyl butoxide or menadione revealed tissue-specific effect of imidacloprid on total cholinesterase activity. Increased cholinesterase activity in the kidney could be an adaptive response to imidacloprid-induced oxidative stress. In the male rat liver, co-exposure with piperonyl butoxide or menadione exacerbated imidacloprid toxicity. In female rats, imidacloprid+menadione co-exposure caused prooxidative effects, while no such effects were observed with imidacloprid alone or menadione alone. In conclusion, sex-, tissue-, and duration-specific effects of imidacloprid are remarkable points in its toxicity.

  1. The neonicotinoid insecticide imidacloprid repels pollinating flies and beetles at field-realistic concentrations.

    Directory of Open Access Journals (Sweden)

    Amy H Easton

    Full Text Available Neonicotinoids are widely used systemic insecticides which, when applied to flowering crops, are translocated to the nectar and pollen where they may impact upon pollinators. Given global concerns over pollinator declines, this potential impact has recently received much attention. Field exposure of pollinators to neonicotinoids depends on the concentrations present in flowering crops and the degree to which pollinators choose to feed upon them. Here we describe a simple experiment using paired yellow pan traps with or without insecticide to assess whether the commonly used neonicotinoid imidacloprid repels or attracts flying insects. Both Diptera and Coleoptera exhibited marked avoidance of traps containing imidacloprid at a field-realistic dose of 1 µg L(-1, with Diptera avoiding concentrations as low as 0.01 µg L(-1. This is to our knowledge the first evidence for any biological activity at such low concentrations, which are below the limits of laboratory detection using most commonly available techniques. Catch of spiders in pan traps was also slightly reduced by the highest concentrations of imidacloprid used (1 µg L(-1, but catch was increased by lower concentrations. It remains to be seen if the repellent effect on insects occurs when neonicotinoids are present in real flowers, but if so then this could have implications for exposure of pollinators to neonicotinoids and for crop pollination.

  2. Interaction between Varroa destructor and imidacloprid reduces flight capacity of honeybees

    Science.gov (United States)

    Blanken, Lisa J.; van Dooremalen, Coby

    2015-01-01

    Current high losses of honeybees seriously threaten crop pollination. Whereas parasite exposure is acknowledged as an important cause of these losses, the role of insecticides is controversial. Parasites and neonicotinoid insecticides reduce homing success of foragers (e.g. by reduced orientation), but it is unknown whether they negatively affect flight capacity. We investigated how exposing colonies to the parasitic mite Varroa destructor and the neonicotinoid insecticide imidacloprid affect flight capacity of foragers. Flight distance, time and speed of foragers were measured in flight mills to assess the relative and interactive effects of high V. destructor load and a field-realistic, chronic sub-lethal dose of imidacloprid. Foragers from colonies exposed to high levels of V. destructor flew shorter distances, with a larger effect when also exposed to imidacloprid. Bee body mass partly explained our results as bees were heavier when exposed to these stressors, possibly due to an earlier onset of foraging. Our findings contribute to understanding of interacting stressors that can explain colony losses. Reduced flight capacity decreases the food-collecting ability of honeybees and may hamper the use of precocious foraging as a coping mechanism during colony (nutritional) stress. Ineffective coping mechanisms may lead to destructive cascading effects and subsequent colony collapse. PMID:26631559

  3. Imidacloprid impairs the post-embryonic development of the midgut in the yellow fever mosquito Stegomyia aegypti (=Aedes aegypti).

    Science.gov (United States)

    Fernandes, K M; Gonzaga, W G; Pascini, T V; Miranda, F R; Tomé, H V V; Serrão, J E; Martins, G F

    2015-09-01

    The mosquito Stegomyia aegypti (=Aedes aegypti) (Diptera: Culicidae) is a vector for the dengue and yellow fever viruses. As blood digestion occurs in the midgut, this organ constitutes the route of entry of many pathogens. The effects of the insecticide imidacloprid on the survival of St. aegypti were investigated and the sub-lethal effects of the insecticide on midgut development were determined. Third instar larvae were exposed to different concentrations of imidacloprid (0.15, 1.5, 3.0, 6.0 and 15.0 p.p.m.) and survival was monitored every 24 h for 10 days. Midguts from imidacloprid-treated insects at different stages of development were dissected and processed for analyses by transmission electron microscopy, immunofluorescence microscopy and terminal deoxynucleotidyl transferase dUTP nick-end labelling (TUNEL) assays. Imidacloprid concentrations of 3.0 and 15.0 p.p.m. were found to affect midgut development similarly. Digestive cells of the fourth instar larvae (L4) midgut exposed to imidacloprid had more multilamellar bodies, abundantly found in the cell apex, and more electron-lucent vacuoles in the basal region compared with those from untreated insects. Moreover, imidacloprid interfered with the differentiation of regenerative cells, dramatically reducing the number of digestive and endocrine cells and leading to malformation of the midgut epithelium in adults. The data demonstrate that imidacloprid can reduce the survival of mosquitoes and thus indicate its potentially high efficacy in the control of St. aegypti populations. © 2015 The Royal Entomological Society.

  4. Residue behavior and risk assessment of mixed formulation of imidacloprid and chlorfenapyr in chieh-qua under field conditions.

    Science.gov (United States)

    Huang, Jian Xiang; Liu, Cong Yun; Lu, Da Hai; Chen, Jia Jia; Deng, Yi Cai; Wang, Fu Hua

    2015-10-01

    A simple and rapid method based on high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) was developed for the simultaneous determination of imidacloprid and chlorfenapyr residues in chieh-qua. Field trials were designed to investigate the dissipation and terminal residue behavior of the mixed formulation of imidacloprid and chlorfenapyr in chieh-qua in Guangzhou and Nanning areas. Risk assessment was performed by calculating the risk quotient (RQ) values. The developed analytical method exhibited recoveries of 89.9-110.3% with relative standard deviations (RSDs) of 2.8-12.5% at the spiked levels of 0.01, 0.10, and 1.00 mg/kg. The limit of detection (LOD) was 0.003 mg/kg, and the limit of quantification (LOQ) was 0.01 mg/kg for both imidacloprid and chlorfenapyr. It was found that the half-lives of imidacloprid in chieh-qua under field conditions were 3.3 and 3.5 days in Guangzhou and Nanning at a dose of 180 g ai/ha, while the half-lives of chlorfenapyr were 3.3 and 2.6 days, respectively. The terminal residues of imidacloprid and chlorfenapyr were from 0.01 to 0.21 mg/kg and from 0.01 to 0.46 mg/kg, respectively. Results of dietary exposure assessment showed that the RQ values were much lower than 1, indicating that the risk of imidacloprid and chlorfenapyr applied in chieh-qua was negligible to human health under recommended dosage and good agricultural practices. The proposed study would provide guidance for safe and reasonable use of imidacloprid and chlorfenapyr in chieh-qua cultivation in China.

  5. Two distinctive β subunits are separately involved in two binding sites of imidacloprid with different affinities in Locusta migratoria manilensis.

    Science.gov (United States)

    Bao, Haibo; Liu, Yang; Zhang, Yixi; Liu, Zewen

    2017-08-01

    Due to great diversity of nicotinic acetylcholine receptor (nAChR) subtypes in insects, one β subunit may be contained in numerous nAChR subtypes. In the locust Locusta migratoria, a model insect species with agricultural importance, the third β subunits (Locβ3) was identified in this study, which reveals at least three β subunits in this insect species. Imidacloprid was found to bind nAChRs in L. migratoria central nervous system at two sites with different affinities, with K d values of 0.16 and 10.31nM. The specific antisera (L1-1, L2-1 and L3-1) were raised against fusion proteins at the large cytoplasmic loop of Locβ1, Locβ2 and Locβ3 respectively. Specific immunodepletion of Locβ1 with antiserum L1-1 resulted in the selective loss of the low affinity binding site for imidacloprid, whereas the immunodepletion of Locβ3 with L3-1 caused the selective loss of the high affinity site. Dual immunodepletion with L1-1 and L3-1 could completely abolish imidacloprid binding. In contrast, the immunodepletion of Locβ2 had no significant effect on the specific [ 3 H]imidacloprid binding. Taken together, these data indicated that Locβ1 and Locβ3 were respectively contained in the low- and high-affinity binding sites for imidacloprid in L. migratoria, which is different to the previous finding in Nilaparvata lugens that Nlβ1 was in two binding sites for imidacloprid. The involvement of two β subunits separately in two binding sites may decrease the risk of imidacloprid resistance due to putative point mutations in β subunits in L. migratoria. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Determination of pesticide residue transfer rates (percent) from dried tea leaves to brewed tea.

    Science.gov (United States)

    Wang, Jian; Cheung, Wendy; Leung, Daniel

    2014-01-29

    This paper presents a study on pesticide residue transfer rates (%) from dried tea leaves to brewed tea. In the study, a brewing procedure simulated the preparation of a hot tea drink as in routine. After brewing, pesticide residues were extracted from brewed tea using a method known as QuEChERS (quick, easy, cheap, effective, rugged, and safe). An UHPLC/ESI-MS/MS method was developed and validated to identify and quantify up to 172 pesticides in both tea leaves and brewed tea samples. Quantification was achieved using matrix-matched standard calibration curves with isotopically labeled standards or a chemical analogue as internal standards, and the calibration curves consisted of six points (0.4, 2.0, 8.0, 16.0, 24.0, and 40.0 μg/L equivalent in sample). The method was validated at four concentration levels (4.0, 12, 20.0, and 32.0 μg/L equivalent in sample) using five different brewed tea matrices on two separate days per matrix. Method performance parameters included overall recovery, intermediate precision, and measurement uncertainty, which were evaluated according to a nested experimental design. Approximately, 95% of the pesticides studied had recoveries between 81 and 110%, intermediate precision ≤20%, and measurement uncertainty ≤40%. From a pilot study of 44 incurred tea samples, pesticide residues were examined for their ability to transfer from dried tea leaves to brewed tea. Each sample, both tea leaves and brewed tea, was analyzed in duplicate. Pesticides were found to have different transfer rates (%). For example, imidacloprid, methomyl, and carbendazim had transfer rates of 84.9, 83.4, and 92.4%, respectively.

  7. Analysis of imidacloprid residues in fruits, vegetables, cereals, fruit juices, and baby foods, and daily intake estimation in and around Lucknow, India.

    Science.gov (United States)

    Kapoor, Upasana; Srivastava, M K; Srivastava, Ashutosh Kumar; Patel, D K; Garg, Veena; Srivastava, L P

    2013-03-01

    A total of 250 samples-including fruits, fruit juices, and baby foods (50 samples each), vegetables (70 samples), and cereals (30 samples)-were collected from Lucknow, India, and analyzed for the presence of imidacloprid residues. The QuEChERS (quick, easy, cheap, effective, rugged, and safe) method of extraction coupled with high-performance liquid chromatographic analysis were carried out, and imidacloprid residues were qualitatively confirmed by liquid chromatography-mass spectrometry. Imidacloprid was not detected in samples of fruit juices and baby foods. It was, however, detected in 38 samples of fruits, vegetables, and cereals, which is about 15.20% of the total samples. Of samples of fruits, 22% showed the presence of imidacloprid, and 2% of samples showed residues above the maximal residue limit. Although imidacloprid was detected in 24% of vegetable samples, only 5.71% showed the presence of imidacloprid above the maximal residue limit. However, 33% of cereal samples showed the presence of imidacloprid, and about 3% of samples were above the maximal residue limit. The calculated estimated daily intake ranged between 0.004 and 0.131 µg/kg body weight, and the hazard indices ranged from 0.007 to 0.218 for these food commodities. It is therefore indicated that lifetime consumption of vegetables, fruits, fruit juices, baby foods, wheat, rice, and pulses may not pose a health hazard for the population of Lucknow because the hazard indices for imidacloprid residues were below one. Copyright © 2012 SETAC.

  8. Functional analysis of CYP6ER1, a P450 gene associated with imidacloprid resistance in Nilaparvata lugens.

    Science.gov (United States)

    Pang, Rui; Chen, Meng; Liang, Zhikun; Yue, Xiangzhao; Ge, Hu; Zhang, Wenqing

    2016-10-10

    The cytochrome P450 CYP6ER1 has been reported to play an important role in imidacloprid resistance of the brown planthopper (BPH), Nilaparvata lugens, and is overexpressed in most resistant populations. In the present study, we confirmed that CYP6ER1 expression can be induced by certain levels of imidacloprid. Developmental expression analysis revealed that CYP6ER1 was expressed highly in the adult stage, and tissue distribution analysis showed that CYP6ER1 was expressed mainly in the fat body and midgut. RNA interference (RNAi) of CYP6ER1 and transgenic expression of CYP6ER1 in Drosophila melanogaster both suggested that the expression of CYP6ER1 is sufficient to confer imidacloprid resistance. Furthermore, we analyzed the interaction of imidacloprid and CYP6ER1 monooxygenase by using dynamic simulations and molecular docking. We found that Nitrogen atoms in the heterocycle of the imidacloprid molecule may bind to iron atoms in the center of the homology model of CYP6ER1 via 4,5-dihedro-1H-imidazole. This finding contributes to a better understanding of how CYP6ER1 takes part in the insecticide metabolism.

  9. Effects of imidacloprid and clothianidin seed treatments on wheat aphids and their natural enemies on winter wheat.

    Science.gov (United States)

    Zhang, Peng; Zhang, Xuefeng; Zhao, Yunhe; Wei, Yan; Mu, Wei; Liu, Feng

    2016-06-01

    Wheat aphid (Hemiptera: Aphididae) is one of the major pests of winter wheat and has posed a significant threat to winter wheat production in China. Although neonicotinoid insecticidal seed treatments have been suggested to be a control method, the season-long efficacy on pests and the impact on their natural enemies are still uncertain. Experiments were conducted to determine the efficacy of imidacloprid and clothianidin on the control of aphids, the number of their natural enemies and the emergence rate and yield of wheat during 2011-2014. Imidacloprid and clothianidin seed treatments had no effect on the emergence rate of winter wheat and could prevent yield losses and wheat aphid infestations throughout the winter wheat growing season. Furthermore, their active ingredients were detected in winter wheat leaves up to 200 days after sowing. Imidacloprid and clothianidin seed treatments had no adverse effects on ladybirds, hoverflies or parasitoids, and instead increased the spider-aphid ratios. Wheat seeds treated with imidacloprid and clothianidin were effective against wheat aphids throughout the winter wheat growing season and reduced the yield loss under field conditions. Imidacloprid and clothianidin seed treatments may be an important component of the integrated management of wheat aphids on winter wheat. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  10. Efficacy of imidacloprid, trunk-injected into Acer platanoides, for control of adult Asian longhorned beetles (Coleoptera: Cerambycidae).

    Science.gov (United States)

    Ugine, Todd A; Gardescu, Sana; Lewis, Phillip A; Hajek, Ann E

    2012-12-01

    Feeding experiments with Asian longhorned beetles (Anoplophora glabripennis (Motschulsky)) in a quarantine laboratory were used to assess the effectiveness of imidacloprid in reducing adult fecundity and survival. The beetles were fed twigs and leaves cut between June-September 2010 from Norway maples (Acer platanoides L.) in the beetle-infested area of Worcester, MA. Treated trees had been trunk-injected once with imidacloprid in spring 2010 under the U.S. Department of Agriculture-Animal and Plant Health Inspection Service operational eradication program. The 21 d LC50 value for adult beetles feeding on twig bark from imidacloprid-injected trees was 1.3 ppm. Adult reproductive output and survival were significantly reduced when beetles fed on twig bark or leaves from treated trees. However, results varied widely, with many twig samples having no detectable imidacloprid and little effect on the beetles. When twigs with > 1 ppm imidacloprid in the bark were fed to mated beetles, the number of larvae produced was reduced by 94% and median adult survival was reduced to 14 d. For twigs with 1 ppm). When given a choice of control twigs and twigs from injected trees, beetles did not show a strong preference.

  11. Altered gene regulation and potential association with metabolic resistance development to imidacloprid in the tarnished plant bug, Lygus lineolaris.

    Science.gov (United States)

    Zhu, Yu Cheng; Luttrell, Randall

    2015-01-01

    Chemical spray on cotton is almost an exclusive method for controlling tarnished plant bug (TPB), Lygus lineolaris. Frequent use of imidacloprid is a concern for neonicotinoid resistance in this key pest. Information of how and why TPB becomes less susceptible to imidacloprid is essential for effective monitoring and managing resistance. Microarray analysis of 6688 genes in imidacloprid-selected TPB (Im1500FF) revealed 955 upregulated and 1277 downregulated (≥twofold) genes in Im1500FF, with 369 and 485 of them annotated. Five P450 and nine esterase genes were significantly upregulated, and only one esterase gene and no P450 genes were downregulated. Other upregulated genes include helicases, phosphodiesterases, ATPases and kinases. Pathway analyses identified 65 upregulated cDNAs that encode 51 different enzymes involved in 62 different pathways, including P450 and esterase genes for drug and xenobiotic metabolisms. Sixty-four downregulated cDNAs code only 17 enzymes that are associated with only 23 pathways mostly related to food digestion. This study demonstrated a significant change in gene expression related to metabolic processes in imidacloprid-selected TPB, resulting in overexpression of P450 and esterase genes for potential excess detoxification and cross/multiple resistance development. The identification of these and other enzyme genes establishes a foundation to explore the complicity of potential imidacloprid resistance in TPB. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.

  12. Reducing Pesticide Drift

    Science.gov (United States)

    Provides information about pesticide spray drift, including problems associated with drift, managing risks from drift and the voluntary Drift Reduction Technology program that seeks to reduce spray drift through improved spray equipment design.

  13. Types of Pesticide Ingredients

    Science.gov (United States)

    Pesticide active ingredients are described by the types of pests they control or how they work. For example, algicides kill algae, biopesticides are derived from natural materials, and insecticides kill insects.

  14. Pesticides and Pregnancy

    Science.gov (United States)

    ... It is unlikely that having your home or workplace treated by a professional exterminator will result in a high enough exposure to increase the risk to a pregnancy. To reduce exposure to pesticides found on food, ...

  15. What are Antimicrobial Pesticides?

    Science.gov (United States)

    Antimicrobial pesticides are substances or mixtures of substances used to destroy or suppress the growth of harmful microorganisms such as bacteria, viruses, or fungi on inanimate objects and surfaces.

  16. What Is a Pesticide?

    Science.gov (United States)

    ... Directory Planning, Budget and Results Jobs and Internships Headquarters Offices Regional Offices Labs and Research Centers Related ... pesticide's distribution, sale, and use only after the company meets the scientific and regulatory requirements. In evaluating ...

  17. Control of Pesticides 2004

    DEFF Research Database (Denmark)

    Krongaard, T.; Petersen, K. K.; Christoffersen, C.

    Four different groups of products covered by the pesticide regulation were included in the 2004 analytical chemical authority control: 1) Herbicides containing bentazone, dicamba, dichlorprop-P, mecoprop-P, MCPA, foramsulfuron, iodosulfuron-methylsodium, rimsulfuron and triasulfuron. 2) Fungicides...

  18. Pesticide Registration Information System

    Data.gov (United States)

    U.S. Environmental Protection Agency — PRISM provides an integrated, web portal for all pesticide related data, communications, registrations and transactions for OPP and its stakeholders, partners and...

  19. Control of Pesticides 2000

    DEFF Research Database (Denmark)

    Krongaard, T.; Petersen, K. K.; Christoffersen, C.

    , fluazinam, and kresoximmethyl. 3) Insecticides containing buprofezin and fenazaquin. All products were examined for content of active ingredient. Satisfactory results were found among herbicides containing aclonifen, dicamba, quinoclamine, bromoxynil, and simazine, among fungicides containing fenpropidin......, fluazinam, and kresoxim-methyl, and among insecticides containing fenazaquin. Thus, all the eighteen analysed samples of these pesticides complied with the accepted tolerances with respect to content of active ingredients set by the Danish regulation of pesticides. The only product containing buprofezin...

  20. The roles of CYP6AY1 and CYP6ER1 in imidacloprid resistance in the brown planthopper: Expression levels and detoxification efficiency.

    Science.gov (United States)

    Bao, Haibo; Gao, Hongli; Zhang, Yixi; Fan, Dongzhe; Fang, Jichao; Liu, Zewen

    2016-05-01

    Two P450 monooxygenase genes, CYP6AY1 and CYP6ER1, were reported to contribute importantly to imidacloprid resistance in the brown planthopper, Nilaparvata lugens. Although recombinant CYP6AY1 could metabolize imidacloprid efficiently, the expression levels of CYP6ER1 gene were higher in most resistant populations. In the present study, three field populations were collected from different countries, and the bioassay, RNAi and imidacloprid metabolism were performed to evaluate the importance of two P450s in imidacloprid resistance. All three populations, DOT (Dongtai) from China, CNA (Chainat) from Thailand and HCM (Ho Chi Minh) from Vietnam, showed high resistance to imidacloprid (57.0-, 102.9- and 89.0-fold). CYP6AY1 and CYP6ER1 were both over expressed in three populations, with highest ratio of 13.2-fold for CYP6ER1 in HCM population. Synergism test and RNAi analysis confirmed the roles of both P450 genes in imidacloprid resistance. However, CYP6AY1 was indicated more important in CNA population, and CYP6AY1 and CYP6ER1 were equal in HCM population, although the expression level of CYP6ER1 (13.2-fold) was much higher than that of CYP6AY1 (4.11-fold) in HCM population. Although the recombinant proteins of both P450 genes could metabolize imidacloprid efficiently, the catalytic activity of CYP6AY1 (Kcat=3.627 pmol/min/pmol P450) was significantly higher than that of CYP6ER1 (Kcat=2.785 pmol/min/pmol P450). It was supposed that both P450 proteins were important for imidacloprid resistance, in which CYP6AY1 metabolized imidacloprid more efficiently and CYP6ER1 gene could be regulated by imidacloprid to a higher level. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Acute exposure to a sublethal dose of imidacloprid and coumaphos enhances olfactory learning and memory in the honeybee Apis mellifera.

    Science.gov (United States)

    Williamson, Sally M; Baker, Daniel D; Wright, Geraldine A

    2013-06-01

    The decline of honeybees and other pollinating insects is a current cause for concern. A major factor implicated in their decline is exposure to agricultural chemicals, in particular the neonicotinoid insecticides such as imidacloprid. Honeybees are also subjected to additional chemical exposure when beekeepers treat hives with acaricides to combat the mite Varroa destructor. Here, we assess the effects of acute sublethal doses of the neonicotinoid imidacloprid, and the organophosphate acaricide coumaphos, on honey bee learning and memory. Imidacloprid had little effect on performance in a six-trial olfactory conditioning assay, while coumaphos caused a modest impairment. We report a surprising lack of additive adverse effects when both compounds were administered simultaneously, which instead produced a modest improvement in learning and memory.

  2. Determination of Imidacloprid and metabolites by liquid chromatography with an electrochemical detector and post column photochemical reactor

    Energy Technology Data Exchange (ETDEWEB)

    Rancan, M. [Consiglio per la Ricerca e la Sperimentazione in Agricoltura (CRA), Istituto Nazionale di Apicoltura, Via di Saliceto 80, I-40128 Bologna (Italy)]. E-mail: mrancan@inapicoltura.org; Sabatini, A.G. [Consiglio per la Ricerca e la Sperimentazione in Agricoltura (CRA), Istituto Nazionale di Apicoltura, Via di Saliceto 80, I-40128 Bologna (Italy); Achilli, G. [Euroservice s.r.l., Piazza Maggiolini 3A, I-20015 Parabiago, Milan (Italy); Galletti, G.C. [Dipartimento di Chimica ' G.Ciamician' , University of Bologna, Via F. Selmi 2, I-40126 Bologna (Italy)

    2006-01-05

    A procedure for the determination of Imidacloprid and its main metabolites was set up by means of liquid chromatography with an electrochemical detector and post-column photochemical reactor (LC-h{nu}-ED). Sample clean-up was developed for bees, filter paper and maize leaves. Chromatographic conditions were based on a reversed-phase C-18 column operated by phosphate buffer 50 mM/CH{sub 3}CN (80/20, v/v) at pH 2.9. Detection of Imidacloprid and its metabolites was performed at a potential of 800 mV after photoactivation at 254 nm. Compared to conventional techniques such as gas chromatography/mass spectrometry (GC/MS) or LC coupled to other detectors, the present method allows simultaneous trace-level determination of both Imidacloprid (0.6 ng ml{sup -1}) and its main metabolites (2.4 ng ml{sup -1})

  3. Determination of Imidacloprid and metabolites by liquid chromatography with an electrochemical detector and post column photochemical reactor

    International Nuclear Information System (INIS)

    Rancan, M.; Sabatini, A.G.; Achilli, G.; Galletti, G.C.

    2006-01-01

    A procedure for the determination of Imidacloprid and its main metabolites was set up by means of liquid chromatography with an electrochemical detector and post-column photochemical reactor (LC-hν-ED). Sample clean-up was developed for bees, filter paper and maize leaves. Chromatographic conditions were based on a reversed-phase C-18 column operated by phosphate buffer 50 mM/CH 3 CN (80/20, v/v) at pH 2.9. Detection of Imidacloprid and its metabolites was performed at a potential of 800 mV after photoactivation at 254 nm. Compared to conventional techniques such as gas chromatography/mass spectrometry (GC/MS) or LC coupled to other detectors, the present method allows simultaneous trace-level determination of both Imidacloprid (0.6 ng ml -1 ) and its main metabolites (2.4 ng ml -1 )

  4. Residue behavior and risk assessment of imidacloprid applied on greenhouse-cultivated strawberries under different application conditions.

    Science.gov (United States)

    Cang, Tao; Sun, Caixia; Zhao, Hua; Tang, Tao; Zhang, Changpeng; Yu, Ruixian; Wang, Xinquan; Wang, Qiang; Dai, Fen; Zhao, Xueping

    2018-02-01

    A risk assessment for imidacloprid applied on strawberries under different conditions was performed after residue determination using the quick, cheap, effective, rugged, and safe (QuEChERS) method. The application conditions were varied according to the applied dosage, addition of a plant oil or organosilicon surfactant, water volume, and sprayer type. The degradation dynamics of imidacloprid on strawberries followed first-order kinetics. At applied doses of 30-60 g a.i. ha -1 , the half-lives of imidacloprid were 2.89-3.46, 1.98-3.65, and 2.57-2.77 days after application without a surfactant or with a plant oil or organosilicon surfactant, respectively. For water volumes of 112.5, 225, 450, 675, and 900 L ha -1 , the half-lives of imidacloprid applied in the presence of the plant oil surfactant were 3.30, 7.70, 5.33, 7.70, and 6.30 days, respectively. The half-lives after application with a knapsack mist duster, electric sprayer, and manual sprayer were 2.16, 5.77, and 7.70 days, respectively. The health risk assessment revealed risk quotients less than 1 in all cases, indicating that the application of imidacloprid poses a low health risk to humans after a pre-harvest interval of 10 days under our application conditions. The risk assessment results can provide reference data for setting a reasonable maximum residue limit for imidacloprid on strawberries in China.

  5. Assessment of serum biomarkers in rats after exposure to pesticides of different chemical classes

    International Nuclear Information System (INIS)

    Moser, Virginia C.; Stewart, Nicholas; Freeborn, Danielle L.; Crooks, James; MacMillan, Denise K.; Hedge, Joan M.; Wood, Charles E.; McMahen, Rebecca L.; Strynar, Mark J.; Herr, David W.

    2015-01-01

    There is increasing emphasis on the use of biomarkers of adverse outcomes in safety assessment and translational research. We evaluated serum biomarkers and targeted metabolite profiles after exposure to pesticides (permethrin, deltamethrin, imidacloprid, carbaryl, triadimefon, fipronil) with different neurotoxic actions. Adult male Long–Evans rats were evaluated after single exposure to vehicle or one of two doses of each pesticide at the time of peak effect. The doses were selected to produce similar magnitude of behavioral effects across chemicals. Serum or plasma was analyzed using commercial cytokine/protein panels and targeted metabolomics. Additional studies of fipronil used lower doses (lacking behavioral effects), singly or for 14 days, and included additional markers of exposure and biological activity. Biomarker profiles varied in the number of altered analytes and patterns of change across pesticide classes, and discriminant analysis could separate treatment groups from control. Low doses of fipronil produced greater effects when given for 14 days compared to a single dose. Changes in thyroid hormones and relative amounts of fipronil and its sulfone metabolite also differed between the dosing regimens. Most cytokine changes reflected alterations in inflammatory responses, hormone levels, and products of phospholipid, fatty acid, and amino acid metabolism. These findings demonstrate distinct blood-based analyte profiles across pesticide classes, dose levels, and exposure duration. These results show promise for detailed analyses of these biomarkers and their linkages to biological pathways. - Highlights: • Pesticides typical of different classes produced distinct patterns of change in biomarker panels. • Based on the panels used, alterations suggest impacts on immune, metabolism, and homeostasis functions. • Some changes may reflect actions on neurotransmitter systems involved in immune modulation. • Fipronil effects on thyroid and kinetics

  6. Assessment of serum biomarkers in rats after exposure to pesticides of different chemical classes

    Energy Technology Data Exchange (ETDEWEB)

    Moser, Virginia C., E-mail: Moser.ginger@epa.gov [Neurotoxicology Branch/Toxicity Assessment Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, NC 27711 (United States); Stewart, Nicholas; Freeborn, Danielle L. [Neurotoxicology Branch/Toxicity Assessment Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, NC 27711 (United States); Crooks, James; MacMillan, Denise K. [Analytical Chemistry Research Core/Research Cores Unit, National Health and Environmental Effects Research Laboratory, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, NC 27711 (United States); Hedge, Joan M.; Wood, Charles E. [Integrated Systems Toxicology Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, NC 27711 (United States); McMahen, Rebecca L. [ORISE fellow, Human Exposure and Atmospheric Sciences Division, National Exposure Research Laboratory, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, NC 27711 (United States); Strynar, Mark J. [Human Exposure and Atmospheric Sciences Division, National Exposure Research Laboratory, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, NC 27711 (United States); Herr, David W. [Neurotoxicology Branch/Toxicity Assessment Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, NC 27711 (United States)

    2015-01-15

    There is increasing emphasis on the use of biomarkers of adverse outcomes in safety assessment and translational research. We evaluated serum biomarkers and targeted metabolite profiles after exposure to pesticides (permethrin, deltamethrin, imidacloprid, carbaryl, triadimefon, fipronil) with different neurotoxic actions. Adult male Long–Evans rats were evaluated after single exposure to vehicle or one of two doses of each pesticide at the time of peak effect. The doses were selected to produce similar magnitude of behavioral effects across chemicals. Serum or plasma was analyzed using commercial cytokine/protein panels and targeted metabolomics. Additional studies of fipronil used lower doses (lacking behavioral effects), singly or for 14 days, and included additional markers of exposure and biological activity. Biomarker profiles varied in the number of altered analytes and patterns of change across pesticide classes, and discriminant analysis could separate treatment groups from control. Low doses of fipronil produced greater effects when given for 14 days compared to a single dose. Changes in thyroid hormones and relative amounts of fipronil and its sulfone metabolite also differed between the dosing regimens. Most cytokine changes reflected alterations in inflammatory responses, hormone levels, and products of phospholipid, fatty acid, and amino acid metabolism. These findings demonstrate distinct blood-based analyte profiles across pesticide classes, dose levels, and exposure duration. These results show promise for detailed analyses of these biomarkers and their linkages to biological pathways. - Highlights: • Pesticides typical of different classes produced distinct patterns of change in biomarker panels. • Based on the panels used, alterations suggest impacts on immune, metabolism, and homeostasis functions. • Some changes may reflect actions on neurotransmitter systems involved in immune modulation. • Fipronil effects on thyroid and kinetics

  7. Direct and Indirect Effects of Pesticides on the Insidious Flower Bug (Hemiptera: Anthocoridae) Under Laboratory Conditions.

    Science.gov (United States)

    Herrick, Nathan J; Cloyd, Raymond A

    2017-06-01

    Greenhouse producers are interested in integrating natural enemies along with pesticides to suppress western flower thrips, Frankliniella occidentalis (Pergande), populations. The insidious flower bug, Orius insidiosus (Say), is a commercially available natural enemy of western flower thrips. We conducted a series of laboratory experiments to determine the direct and indirect effects of 28 pesticides (insecticides, miticides, and fungicides), 4 pesticide mixtures, and 4 surfactants (36 total treatments plus a water control) on the adult O. insidiosus survival and predation on western flower thrips adults under laboratory conditions. The number of live and dead O. insidiosus adults was recorded after 24, 48, 72, and 96 h. The results of the study indicate that the fungicides (aluminum tris, azoxystrobin, fenhexamid, and kresoxim-methyl), insect growth regulators (azadirachtin, buprofezin, kinoprene, and pyriproxyfen), botanicals (Capsicum oleoresin extract, garlic oil, soybean oil; and rosemary, rosemary oil, peppermint oil, and cottonseed oil), and entomopathogenic fungi (Beauveria bassiana and Metarhizium anisopliae) were minimally directly harmful to adult O. insidiosus, with 80% to 100% adult survival. However, abamectin, spinosad, pyridalyl, chlorfenapyr, tau-fluvalinate, imidacloprid, dinotefuran, acetamiprid, and thiamethoxam directly affected O. insidiosus survival after 96 h (0-60% adult survival). The pesticide mixtures of abamectin + spinosad and chlorfenapyr + dinotefuran reduced adult survival (20% and 0%, respectively, after 48 h). Furthermore, the surfactants were not directly harmful to O. insidiosus adults. All western flower thrips adults were killed by the surviving adult O. insidiosus after 48 h, indicating no indirect effects of the pesticides on predation. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  8. Functional analysis of CYP6ER1, a P450 gene associated with imidacloprid resistance in Nilaparvata lugens

    OpenAIRE

    Pang, Rui; Chen, Meng; Liang, Zhikun; Yue, Xiangzhao; Ge, Hu; Zhang, Wenqing

    2016-01-01

    The cytochrome P450 CYP6ER1 has been reported to play an important role in imidacloprid resistance of the brown planthopper (BPH), Nilaparvata lugens, and is overexpressed in most resistant populations. In the present study, we confirmed that CYP6ER1 expression can be induced by certain levels of imidacloprid. Developmental expression analysis revealed that CYP6ER1 was expressed highly in the adult stage, and tissue distribution analysis showed that CYP6ER1 was expressed mainly in the fat bod...

  9. Degradation of non-biodegradable pesticides in water by coupling photo catalysis and bio treatment; Eliminacion de plaguicidas no biodegrabables en aguas mediante acoplamiento de fotocatalisis solar y oxidacion biologica

    Energy Technology Data Exchange (ETDEWEB)

    Ballesteros Martin, M. M.; Sanchez Perez, J. A.; Malato Rodriguez, S.

    2008-07-01

    The influence of pesticide concentration, expressed as dissolved organic carbon (DOC), on combined solar photo-Fenton and biological oxidation treatment was studied using wastewater containing different pure and commercial pesticides (dimethoate, oxydemeton-methyl, carbaryl, oxamyl, methomyl, imidacloprid, dimethoate and pyrimethanil). Different initial concentrations were assayed. Variation in biodegradability with photo catalytic treatment intensity was tested using Pseudomonas putida. Biodegradation efficiencies after the photoreaction were found to be lower for the pesticide solution with the higher concentration, showing that to achieve sufficient biodegradability, the photo-Fenton treatment time must be increased with pesticide concentration. Bio treatment was carried out in different reactor including sequencing batch reactor (SBR) mode. As revealed by the biodegradation kinetics, intermediates generated at the higher pesticide concentration caused lower carbon removal rates in spite of the longer photo-Fenton treatment time applied. One strategy for treating water with high concentrations of pesticides and overcoming the low biodegradability of photo-Fenton intermediates is to mix it with a biodegradable carbon source (wastewater containing an easily biodegradable substrate, such as urban wastewater) before biological oxidation. This combination of photo-Fenton and acclimatized activated sludge in several SBR cycles led to complete biodegradation of a pesticide solutions up to of 500 mg/L of DOC. (Author)

  10. Current Pesticide Risk Assessment Protocols Do Not Adequately Address Differences Between Honey Bees (Apis mellifera and Bumble Bees (Bombus spp.

    Directory of Open Access Journals (Sweden)

    Kimberly Stoner

    2016-12-01

    Full Text Available Recent research has demonstrated colony-level sublethal effects of imidacloprid on bumble bees, affecting foraging and food consumption, and thus colony growth and reproduction, at lower pesticide concentrations than for honey bee colonies. However, these studies may not reflect the full effects of neonicotinoids on bumble bees because bumble bee life cycles are different from those of honey bees. Unlike honey bees, bumble bees live in colonies for only a few months each year. Assessing the sublethal effects of systemic insecticides only on the colony level is appropriate for honey bees, but for bumble bees, this approach addresses just part of their annual life cycle. Queens are solitary from the time they leave their home colonies in fall until they produce their first workers the following year. Queens forage for pollen and nectar, and are thus exposed to more risk of direct pesticide exposure than honey bee queens. Almost no research has been done on pesticide exposure to and effects on bumble bee queens. Additional research should focus on critical periods in a bumble bee queen’s life which have the greatest nutritional demands, foraging requirements, and potential for exposure to pesticides, particularly the period during and after nest establishment in the spring when the queen must forage for the nutritional needs of her brood and for her own needs while she maintains an elevated body temperature in order to incubate the brood.

  11. Experiments in water-macrophyte systems to uncover the dynamics of pesticide mitigation processes in vegetated surface waters/streams.

    Science.gov (United States)

    Stang, Christoph; Bakanov, Nikita; Schulz, Ralf

    2016-01-01

    Knowledge on the dynamics and the durability of the processes governing the mitigation of pesticide loads by aquatic vegetation in vegetated streams, which are characterized by dynamic discharge regimes and short chemical residence times, is scarce. In a static long-term experiment (48 h), the dissipation of five pesticides from the aqueous phase followed a biphasic pattern in the presence of aquatic macrophytes. A dynamic concentration decrease driven by sorption to the macrophytes ranged from 8.3 to 60.4% for isoproturon and bifenox, respectively, within the first 2 h of exposure. While the aqueous concentrations of imidacloprid, isoproturon, and tebufenozide remained constant thereafter, the continuous but decelerated concentration decrease of difenoconazole and bifenox in the water-macrophyte systems used here was assumed to be attributed to macrophyte-induced degradation processes. In addition, a semi-static short-term experiment was conducted, where macrophytes were transferred to uncontaminated medium after 2 h of exposure to simulate a transient pesticide peak. In the first part of the experiment, adsorption to macrophytes resulted in partitioning coefficients (logK D_Adsorp) ranging from 0.2 for imidacloprid to 2.2 for bifenox. One hour after the macrophytes were transferred to the uncontaminated medium, desorption of the compounds from the macrophytes resulted in a new phase equilibrium and K D_Desorp values of 1.46 for difenoconazole and 1.95 for bifenox were determined. A correlation analysis revealed the best match between the compound affinity to adsorb to macrophytes (expressed as K D_Adsorp) and their soil organic carbon-water partitioning coefficient (K OC) compared to their octanol-water partitioning coefficient (K OW) or a mathematically derived partitioning coefficient.

  12. EFFICACY OF IMIDACLOPRID (CONFIDOR 200 SL AGAINST APHIDS INFESTING WHEAT CROP

    Directory of Open Access Journals (Sweden)

    N Joshi

    2010-02-01

    Full Text Available Imidacloprid (Confidor 200 SL was evaluated either alone or with a fungicide (Tilt 0.01% against wheat aphids. There were seven different treatments, including an untreated control. All the treatments were replicated three times in a similar field environment. Population of wheat aphids was recorded on randomly selected five plants in each plot at different intervals, both before and after the spraying. Confidor 200 SL @ 400 ml/ha treatment was found most effective against wheat aphids. However, mixing of Confidor 200 SL @ 100 ml/ha with Tilt @ 0.01 %, was found significantly least effective for wheat aphids control.

  13. Azobenzene Modified Imidacloprid Derivatives as Photoswitchable Insecticides: Steering Molecular Activity in a Controllable Manner

    Science.gov (United States)

    Xu, Zhiping; Shi, Lina; Jiang, Danping; Cheng, Jiagao; Shao, Xusheng; Li, Zhong

    2015-10-01

    Incorporating the photoisomerizable azobenzene into imidacloprid produced a photoswitchable insecticidal molecule as the first neonicotinoid example of remote control insecticide performance with spatiotemporal resolution. The designed photoswitchable insecticides showed distinguishable activity against Musca both in vivo and in vitro upon irradiation. Molecular docking study further suggested the binding difference of the two photoisomers. The generation of these photomediated insecticides provides novel insight into the insecticidal activity facilitating further investigation on the functions of insect nicotinic acetylcholine receptors and opens a novel way to control and study insect behavior on insecticide poisoning using light.

  14. Antimicrobial Pesticide Use Site Index

    Science.gov (United States)

    This Use Site Index provides guidance to assist applicants for antimicrobial pesticide registration by helping them identify the data requirements necessary to register a pesticide or support their product registrations.

  15. Human Health Benchmarks for Pesticides

    Data.gov (United States)

    U.S. Environmental Protection Agency — Advanced testing methods now allow pesticides to be detected in water at very low levels. These small amounts of pesticides detected in drinking water or source...

  16. Recovery by N-acetylcysteine from subchronic exposure to Imidacloprid-induced hypothalamic-pituitary-adrenal (HPA) axis tissues injury in male rats.

    Science.gov (United States)

    Annabi, Alya; Dhouib, Ines Bini; Lamine, Aicha Jrad; El Golli, Nargès; Gharbi, Najoua; El Fazâa, Saloua; Lasram, Mohamed Montassar

    2015-01-01

    Imidacloprid is the most important example of the neonicotinoid insecticides known to target the nicotinic acetylcholine receptor in insects, and potentially in mammals. N-Acetyl-l-cysteine (NAC) has been shown to possess curative effects in experimental and clinical investigations. The present study was designed to evaluate the recovery effect of NAC against Imidacloprid-induced oxidative stress and cholinergic transmission alteration in hypothalamic-pituitary-adrenal (HPA) axis of male rats following subchronic exposure. About 40 mg/kg of Imidacloprid was administered daily by intragastric intubation and 28 days later, the rats were sacrificed and HPA axis tissues were removed for different analyses. Imidacloprid increased adrenal relative weight and cholesterol level indicating an adaptive stage of the general alarm reaction to stress. Moreover, Imidacloprid caused a significant increase in malondialdehyde level, the antioxidants catalase, superoxide dismutase and glutathione-S-transferase showed various alterations following administration and significant depleted thiols content was only recorded in hypothalamic tissue. Furthermore, the hypothalamic and pituitary acetylcholinesterase activity and calcium level were significantly increased highlighting the alteration of cholinergic activity. The present findings revealed that HPA axis is a sensitive target to Imidacloprid (IMI). Interestingly, the use of NAC for only 7 days post-exposure to IMI showed a partial therapeutic effect against Imidacloprid toxicity.

  17. Imidacloprid soil movement under micro-sprinkler irrigation and soil-drench applications to control Asian citrus psyllid (ACP) and citrus leafminer (CLM).

    Science.gov (United States)

    Fletcher, Evelyn; Morgan, Kelly T; Qureshi, Jawwad A; Leiva, Jorge A; Nkedi-Kizza, Peter

    2018-01-01

    Imidacloprid (IM) is used to control the Asian Citrus Psyllid (ACP) and citrus leafminer (CLM), which are related to the spread of huanglongbing (HLB or citrus greening) and citrus canker diseases, respectively. In Florida citrus, imidacloprid is mainly soil-drenched around the trees for proper root uptake and translocation into plant canopy to impact ACP and CLM. The objective of this study was to determine the effect of imidacloprid rate, and irrigate amount on concentration of imidacloprid in the soil following drench application to citrus trees in three age classes. The plots were established at the Southwest Florida Research and Education Center, Immokalee, using a randomized complete-block design for three age classes of trees: one-year-old trees (B1), three to five-year-old trees (B2), and eight-year-old trees (B3). The treatments were a combination of two rates each of imidacloprid (1D, 2D) and micro-sprinkling irrigation (1I, 2I). Imidacloprid and bromide (Br-) used as tracer were applied simultaneously. Soil moisture and concentrations of imidacloprid and Br were monitored using soil cores from hand held augers. Soil moisture content (θV) did not differ under two irrigation rates at any given observation day or depth, except following heavy rainfall events. Br- was lost from the observation depths (0-45 cm) about two weeks after soil-drench. Contrarily, imidacloprid persisted for a much longer time (4-8 weeks) at all soil depths, regardless of treatment combinations. The higher retardation of imidacloprid was related to the predominantly unsaturated conditions of the soil (which in turn reduced soil hydraulic conductivities by orders of magnitude), the imidacloprid sorption on soil organic matter, and the citrus root uptake. Findings of this study are important for citrus growers coping with the citrus greening and citrus canker diseases because they suggest that imidacloprid soil drenches can still be an effective control measure of ACP and CLM, and the

  18. Residue and bio-efficacy evaluation of controlled release formulations of imidacloprid against pests in soybean (Glycine max).

    Science.gov (United States)

    Adak, Totan; Kumar, Jitendra; Dey, Debjani; Shakil, N A; Walia, S

    2012-01-01

    Controlled release (CR) formulations of imidacloprid (1-(6 chloro-3-pyridinyl methyl)-N- nitro imidazolidin-2- ylideneamine) were prepared using novel amphiphilic polymers synthesized from polyethylene glycol and aliphatic diacids employing encapsulation technique. The bioefficacy of the prepared CR formulations was evaluated against major pests of soybean, namely stem fly, Melanagromyza sojae Zehntmer and white fly, Bemisia tabaci Gennadius along with a commercial formulation at the experimental farm of Indian Agricultural Research Institute (IARI), New Delhi during kharif 2009 and 2010. Most of the CR formulations of imidacloprid gave significantly better control of the pests compare to its commercial formulations, however the CR formulations, Poly [poly (oxyethylene-1000)-oxy suberoyl] amphiphilic polymer based formulation performed better over others for controlling of both stem fly incidence and Yellow Mosaic Virus (YMV) infestation transmitted by white fly. Some of the developed CR formulations recorded higher yield over commercial formulation and control. Nodulation pattern of soybean was not affected due to treatment of CR and commercial formulations of imidacloprid. Also the residues of imidacloprid in seed and soil at harvest were not detectable for both CR and commercial formulations.

  19. Control of slug damage to oilseed rape and wheat with imidacloprid seed dressings in laboratory and field experiments

    NARCIS (Netherlands)

    Simms, L.C.; Ester, A.; Wilson, M.J.

    2006-01-01

    Slugs are common pests of oilseed and cereal crops in Europe and are currently controlled using bait pellets that often fail to give adequate protection: Here we investigate the potential of the broad-spectrum insecticide imidacloprid, previously suggested to have activity against slugs, to control

  20. Control of immature stages of the flea Ctenocephalides felis(Bouché in carpets exposed to cats treated with imidacloprid

    Directory of Open Access Journals (Sweden)

    L.J. Fourie

    2000-07-01

    Full Text Available Fleas cause allergic dermatitis in cats and dogs and therefore warrant control. It has been demonstrated previously that there is marked inhibition of the development of the immature stages of the cat flea Ctenocephalides felis on fleece blankets exposed to cats treated with imidacloprid. This study reports on the efficacy of imidacloprid in suppressing adult flea emergence in carpet exposed to treated cats. Circular discs of carpet pre-seeded with flea eggs and larvae were exposed to 6 untreated control and 6 topically treated (imidacloprid 10 % m/v cats 1 to 2 days after treatment and subsequently fortnightly for 6 weeks. Exposure times on alternate days were either 1 or 6 hours. Adult flea yield from carpets was determined 35 days after exposure. Differences between flea yield on control carpets and those exposed for 1 hour were significant only for days +1 and +14. For the 6-hour exposure, differences were significant at all times except on Day +43. The ability of imidacloprid to suppress the yield of adult fleas on carpets (6-hour exposure steadily declined from 82 % (Day +2 to 12 %(Day +43. For the 1-hour exposure it varied inconsistently between 0 and 83 % over the 6-week study period.

  1. Community Structure of Ammonia-Oxidizing Archaea and Ammonia-Oxidizing Bacteria in Soil Treated with the Insecticide Imidacloprid

    Directory of Open Access Journals (Sweden)

    Mariusz Cycoń

    2015-01-01

    Full Text Available The purpose of this experiment was to assess the effect of imidacloprid on the community structure of ammonia-oxidizing archaea (AOA and ammonia-oxidizing bacteria (AOB in soil using the denaturing gradient gel electrophoresis (DGGE approach. Analysis showed that AOA and AOB community members were affected by the insecticide treatment. However, the calculation of the richness (S and the Shannon-Wiener index (H values for soil treated with the field rate (FR dosage of imidacloprid (1 mg/kg soil showed no changes in measured indices for the AOA and AOB community members. In turn, the 10*FR dosage of insecticide (10 mg/kg soil negatively affected the AOA community, which was confirmed by the decrease of the S and H values in comparison with the values obtained for the control soil. In the case of AOB community, an initial decline followed by the increase of the S and H values was obtained. Imidacloprid decreased the nitrification rate while the ammonification process was stimulated by the addition of imidacloprid. Changes in the community structure of AOA and AOB could be due to an increase in the concentration of N-NH4+, known as the most important factor which determines the contribution of these microorganisms to soil nitrification.

  2. Characterisation of imidacloprid resistance in the bird cherry-oat aphid, Rhopalosiphum padi, a serious pest on wheat crops.

    Science.gov (United States)

    Wang, Kang; Zhang, Meng; Huang, Yanna; Yang, Zhuolin; Su, Sha; Chen, Maohua

    2018-06-01

    Rhopalosiphum padi is a destructive insect pest of wheat worldwide. Studies have shown that R. padi has developed resistance to different insecticides, including imidacloprid. We studied the mechanisms conferring resistance to imidacloprid at the biochemical and molecular levels. An R. padi imidacloprid-resistant (IM-R) strain and a susceptible (SS) strain were established. Fitness analysis using life-tables showed that the IM-R strain had obvious disadvantages in several parameters, indicating reduced fitness. Profiles of cross-resistance of IM-R and SS to seven insecticides were detected. Both synergistic and enzyme activity data suggested that P450 plays a role in resistance. Furthermore, the mRNA expression levels of cytochrome P450 (CYP) genes CYP6CY3-1 and CYP6CY3-2 were significantly increased in the IM-R strain. No target-site mutation within the nicotinic acetylcholine receptor (nAChR) subunits was detected in the IM-R strain. Interestingly, the expression levels of the nAChR α1, α2, α3, α7-2, and β1 subunit genes were significantly decreased, suggesting that down-regulation of these subunits may be involved in resistance. Multiple mechanisms confer imidacloprid resistance in R. padi. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  3. The efficacy of an imidacloprid/moxidectin combination against naturally acquired Sarcoptes scabiei infestations on dogs.

    Science.gov (United States)

    Fourie, L J; Heine, J; Horak, I G

    2006-01-01

    The study was undertaken to evaluate and compare the efficacy of an imidacloprid (10% w/v)/moxidectin (2.5% w/v) combination (Advocate Bayer HealthCare, Animal Health) with that of selamectin for the treatment of Sarcoptes scabiei on dogs. Thirty naturally infested dogs, of which one was later withdrawn because of distemper, were allocated to two equal groups and individually housed. The dogs in each group were treated twice, four weeks apart, with either the combination product (0.1 mL/kg body weight) or with selamectin (0.05 mL/kg body weight) administered topically. Skin scrapings were made every 14 days over a period of 50 to 64 days after the first treatment to quantify mite numbers. Clinical signs and the extent of sarcoptic lesions were assessed on each dog when skin scrapings were made. Efficacy was based on the presence or absence of mites, supported by clinical signs associated with canine sarcoptic mange. From Day 22 and onwards no Sarcoptes mites were found in the skin scrapings of any of the treated dogs. Treatment with the imidacloprid/moxidectin formulation or with selamectin was highly effective against Sarcoptes scabiei and resulted in an almost complete resolution of clinical signs within 50 to 64 days after the initial treatment.

  4. Uptake and translocation of imidacloprid, clothianidin and flupyradifurone in seed-treated soybeans.

    Science.gov (United States)

    Stamm, Mitchell D; Heng-Moss, Tiffany M; Baxendale, Frederick P; Siegfried, Blair D; Blankenship, Erin E; Nauen, Ralf

    2016-06-01

    Seed treatment insecticides have become a popular management option for early-season insect control. This study investigated the total uptake and translocation of seed-applied [(14) C]imidacloprid, [(14) C]clothianidin and [(14) C]flupyradifurone into different plant parts in three soybean vegetative stages (VC, V1 and V2). The effects of soil moisture stress on insecticide uptake and translocation were also assessed among treatments. We hypothesized that (1) uptake and translocation would be different among the insecticides owing to differences in water solubility, and (2) moisture stress would increase insecticide uptake and translocation. Uptake and translocation did not follow a clear trend in the three vegetative stages. Initially, flupyradifurone uptake was greater than clothianidin uptake in VC soybeans. In V1 soybeans, differences in uptake among the three insecticides were not apparent and unaffected by soil moisture stress. Clothianidin was negatively affected by soil moisture stress in V2 soybeans, while imidacloprid and flupyradifurone were unaffected. Specifically, soil moisture stress had a positive effect on the distribution of flupyradifurone in leaves. This was not observed with the neonicotinoids. This study enhances our understanding of the uptake and distribution of insecticides used as seed treatments in soybean. The uptake and translocation of these insecticides differed in response to soil moisture stress. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  5. Imidacloprid-susceptible Nilaparvata lugens individuals exceeded resistant individuals in a mixture population with density pressure.

    Science.gov (United States)

    Yu, Na; Tian, Jiahua; Zhang, Yixi; Li, Zhong; Liu, Zewen

    2018-01-01

    Fitness costs associated with insecticide resistance in pest insects have mainly been studied under optimal laboratory conditions. However, resistant insects face more stressors than just insecticides in the field, and how the resistant population reacts to these stressors is of practical importance for the control of pest insects such as the brown planthopper Nilaparvata lugens. The aim of the present study was to explore the impact of population density on the competitiveness of resistant and susceptible individuals. Two isogenic N. lugens populations, a highly imidacloprid-resistant population (HZ-R) with a resistance ratio (RR) of 227.10 and a relatively susceptible population (HZ-S) with an RR of 2.99, were created from a field-resistant population (HZ; RR 62.51). The high resistance levels of HZ-R and HZ were mainly attributable to the overexpression of multiple cytochrome P450 (CYP) genes such as CYP6ER1, CYP6AY1, CYP6CW1 and CYP4CE1 compared with HZ-S, this being supported by piperonyl butoxide synergism. HZ-R was observed to be more resistant to thiacloprid and etofenprox compared with HZ and HZ-S. Most interestingly, in high population density treatments, HZ-S individuals were much more competitive than HZ-R individuals. Imidacloprid-resistant individuals of N. lugens are less competitive than their susceptible counterparts under density pressure. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  6. Effect of agitation speed on adsorption of imidacloprid on activated carbon

    International Nuclear Information System (INIS)

    Zahoor, M.

    2011-01-01

    The adsorptive characteristics of imidacloprid on powdered activated carbon were described. The adsorption experiments were carried out as function of time, initial concentration and agitation speed. The equilibrium data fits well to Langmuir adsorption isotherm, while the kinetic data fits well to Pseudo second order kinetic model. The kinetic experiments were carried out at 200, 250, 300 and 350 rpm and it was found that the equilibrium time increases with increase in initial concentration and decreases with increase in agitation speed. This is due to the increased turbulence and as a consequence, the decrease boundary layer thickness around the adsorbent particles as a result of increasing the degree of mixing. At 300 rpm the adsorption capacity was maximum and beyond this there was no significant increase in adsorption capacity. Weber intra particle diffusion model was used to describe the adsorption mechanism. It was found that both the boundary layer and intra particle diffusion for both adsorbents played important role in the adsorption mechanisms of the adsorbate. The effects of temperature and pH on adsorption were also studied. It was found that the adsorption capacity of the adsorbent decreases with increase in temperature. There was no significant change in adsorption from pH 2 to 8, however at high pH a decrease in adsorption of imidacloprid on activated carbon was observed. (author)

  7. Spatial and temporal trends and flow dynamics of glyphosate and other pesticides within an agricultural watershed in Argentina.

    Science.gov (United States)

    Pérez, Débora J; Okada, Elena; De Gerónimo, Eduardo; Menone, Mirta L; Aparicio, Virginia C; Costa, José L

    2017-12-01

    In the present study, we evaluated the spatial and temporal trends of current-use pesticides in surface water and sediments as well as their relationship with hydrological stream dynamics within the agricultural watershed of El Crespo stream (Buenos Aires Province, Argentina). We sampled 2 contrasting sites: site 1 (upstream), surrounded by agricultural lands, and site 2 (downstream), surrounded by natural grasslands. Most of the applied pesticides (glyphosate, 2,4-D, atrazine, tebuconazole, and imidacloprid) were detected at high frequencies in surface water samples at both sites. However, only glyphosate and aminomethylphosphonic acid (AMPA) were present at high concentrations and had a significant spatial-temporal trend. The highest concentrations were found during spring 2014 at site 1, in association with the intense rains that occurred in that season. The fact that glyphosate and AMPA concentrations were higher than the rest of the studied compounds is closely related to the land use within the watershed, as glyphosate was the most applied herbicide during the fallow period of glyphosate-resistant crops (soybean, maize). The pesticide mixture had a significant spatial-temporal trend, reaching the highest levels during storm flow events in spring 2014. The intensive rains in spring 2014 could be the main factor influencing stream hydrology and pesticide behavior at El Crespo watershed. The estimated annual pesticide losses were 3.11 g/ha at site 1 and 0.72 g/ha at site 2. This result indicates that an attenuation process could be decreasing pesticide loads during downstream transport from site 1 to site 2. Environ Toxicol Chem 2017;36:3206-3216. © 2017 SETAC. © 2017 SETAC.

  8. Fate and effect of imidacloprid on vermicompost-amended soils under dissimilar conditions: Risk for soil functions, structure, and bacterial abundance.

    Science.gov (United States)

    Castillo Diaz, Jean Manuel; Martin-Laurent, Fabrice; Beguet, Jérèmie; Nogales, Rogelio; Romero, Esperanza

    2017-02-01

    The fate and impact of pesticide on soil depend partly on the agricultural practices, such as prior treatment with pesticide and/or organic amendments. As a means of determining how the previous soil conditions can affect the fate of imidacloprid (IMI) and its effect on soil functions, experiments were made with soil samples, double-amended or not with either vine-shoot (W) or olive cake (O) vermicompost or contaminated or not with IMI. These soil samples, incubated for 3months, were placed in two microcosms (M1 with the pre-amended soils and M2 with the pre-exposed soils), treated with IMI and amended with vermicomposts and then incubated for 3months. The IMI distribution on soil fractions, sorption processes, dissipation kinetics, and biochemical as well as genetic structure and bacterial abundance were determined to assess the fate and impact of IMI on the soil. The addition of W vermicompost to the soil reduced the IMI availability. The dissipation kinetic in soils from M1 and M2 followed, respectively, a single first-order and a double first-order in parallel models. The lowest IMI persistence corresponded to the soil from M2 amended with O-vermicompost with DT50 and DT90 values of 67d and 265d, while in the other soils 90% dissipation required >512d. The vermicomposts-amended contaminated soils increased the dehydrogenase activity by 2- and 4-fold respect the control soils. However, the urease activity decreased due to the IMI influence. The changes in the bacterial community in the contaminated soil amended with O-vermicompost during incubation were correlated with the dissipation rate constant of IMI, suggesting a better tolerance of microorganisms to IMI. Thus, in the soil contaminated with IMI, the amendment with the vermicompost from olive cake can mitigate the impact of this insecticide on soil functions and promote its depuration capability while minimizing environmental risks. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Sorption-desorption of imidacloprid onto a lacustrine Egyptian soil and its clay and humic acid fractions.

    Science.gov (United States)

    Kandil, Mahrous M; El-Aswad, Ahmed F; Koskinen, William C

    2015-01-01

    Sorption-desorption of the insecticide imidacloprid 1-[(6-chloro-3-pyridinyl)-methyl]-N-nitro-2-imidazolidinimine onto a lacustrine sandy clay loam Egyptian soil and its clay and humic acid (HA) fractions was investigated in 24-h batch equilibrium experiments. Imidacloprid (IMDA) sorption-desorption isotherms onto the three sorbents were found to belong to a non-linear L-type and were best described by the Freundlich model. The value of the IMDA adsorption distribution coefficient, Kd(ads), varied according to its initial concentration and was ranged 40-84 for HA, 14-58 for clay and 1.85-4.15 for bulk soil. Freundlich sorption coefficient, Kf(ads), values were 63.0, 39.7 and 4.0 for HA, clay and bulk soil, respectively. The normalized soil Koc value for imidacloprid sorption was ∼800 indicating its slight mobility in soils. Nonlinear sorption isotherms were indicated by 1/n(ads) values imidacloprid sorption process with all tested sorbents. Gibbs free energy (ΔG) values indicated a spontaneous and physicosorption process for IMDA and a more favorable sorption to HA than clay and soil. In conclusion, although the humic acid fraction showed the highest capacity and affinity for imidacloprid sorption, the clay fraction contributed to approximately 95% of soil-sorbed insecticide. Clay and humic acid fractions were found to be the major two factors controlling IMDA sorption in soils. The slight mobility of IMDA in soils and the hysteresis phenomenon associated with the irreversibility of its sorption onto, mainly, clay and organic matter of soils make its leachability unlikely to occur.

  10. Residue evaluation of imidacloprid, spirotetramat, and spirotetramat-enol in/on grapes (Vitis vinifera L.) and soil.

    Science.gov (United States)

    Mohapatra, Soudamini; Kumar, Sampath; Prakash, G S

    2015-10-01

    A combination of imidacloprid and spirotetramat effectively controls sucking pests on grapevines. Residues of these insecticides on grapes were evaluated after treatment with spirotetramat 12% + imidacloprid 12% (240 SC) three times at 90 and 180 g a.i. ha(-1). The samples were extracted and purified by QuEChERS method and analyzed by high-performance liquid chromatography with a photodiode array detector (imidacloprid) and gas chromatography mass spectrometry (spirotetramat and its metabolite spirotetramat-enol). Satisfactory results were obtained with ranges of 80.6-98.6% for the recovery, 3.1-10% for the relative standard deviation range, and 9.8-15.6% for the uncertainty. The limits of detection and quantification were 0.015 μg mL(-1) and 0.05 mg kg(-1), respectively. Initial residue concentrations of imidacloprid after the 90 and 180 g a.i. ha(-1) treatments were 0.912 (half-life 11 days) and 1.681 mg kg(-1) (half-life 12.4 days), respectively. For spirotetramat + spirotetramat-enol, the residue concentrations were 1.337 (half-life 5.6 days) and 2.0 mg kg(-1) (half-life 7.6 days) for the 90 and 180 g a.i. ha(-1) treatments, respectively. Spirotetramat degraded faster than spirotetramat-enol. After treatment at 90 g a.i. ha(-1), the initial residues of both insecticides were within European Union maximum residue limits and a 1-day pre-harvest interval (PHI) was adequate for safe consumption of grapes. After treatment at 180 g a.i. ha(-1), the required PHI was 7 day. Therefore, a PHI of 7 day should be used after treatment with imidacloprid and spirotetramat.

  11. Control of Pesticides 2006

    DEFF Research Database (Denmark)

    Krongaard, Teddy; Petersen, Kitty Kastalag; Christoffersen, Christel

    in the products comply with the labelled content. The tolerance of deviation from the labelled content of active ingredient is set by the Danish Statutory Order on pesticides. In addition to the examination of the content of active ingredients, all collected samples are examined for the content of octylphenol...

  12. Citizen's Guide to Pesticides.

    Science.gov (United States)

    Environmental Protection Agency, Washington, DC. Office of Pesticide Programs.

    This guide provides suggestions on pest control and safety rules for pesticide use at home. Pest prevention may be possible by modification of pest habitat: removal of food and water sources, removal or destruction of pest shelter and breeding sites, and good horticultural practices that reduce plant stress. Nonchemical alternatives to pesticides…

  13. The Danish Pesticide Tax

    DEFF Research Database (Denmark)

    Pedersen, Anders Branth; Nielsen, Helle Ørsted; Andersen, Mikael Skou

    2015-01-01

    pesticide taxes on agriculture, which makes it interesting to analyze how effective they have been. Here the effects of the ad valorem tax (1996-2013) are analyzed. The case study demonstrates the challenges of choosing an optimal tax design in a complex political setting where, additionally, not all...

  14. Validation of QuEChERS method for the determination of some pesticide residues in two apple varieties.

    Science.gov (United States)

    Tiryaki, Osman

    2016-10-02

    This study was undertaken to validate the "quick, easy, cheap, effective, rugged and safe" (QuEChERS) method using Golden Delicious and Starking Delicious apple matrices spiked at 0.1 maximum residue limit (MRL), 1.0 MRL and 10 MRL levels of the four pesticides (chlorpyrifos, dimethoate, indoxacarb and imidacloprid). For the extraction and cleanup, original QuEChERS method was followed, then the samples were subjected to liquid chromatography-triple quadrupole mass spectrometry (LC-MS/MS) for chromatographic analyses. According to t test, matrix effect was not significant for chlorpyrifos in both sample matrices, but it was significant for dimethoate, indoxacarb and imidacloprid in both sample matrices. Thus, matrix-matched calibration (MC) was used to compensate matrix effect and quantifications were carried out by using MC. The overall recovery of the method was 90.15% with a relative standard deviation of 13.27% (n = 330). Estimated method detection limit of analytes blew the MRLs. Some other parameters of the method validation, such as recovery, precision, accuracy and linearity were found to be within the required ranges.

  15. Assessment of human health risk associated with the presence of pesticides in chicken eggs

    Directory of Open Access Journals (Sweden)

    Almas HAMID

    Full Text Available Abstract The presence of pesticides in the environment is highly toxic to environment and human health. Aim of the study was determination, quantification and assessment of associated health risk due to presence of pesticide residues in chicken eggs using high pressure liquid chromatography. HPLC method was successfully employed and validated. From collected samples pesticides were extracted in presence of petroleum ether and acetonitrile. Bifenthrin and Difenoconazole residues were found in all samples with different concentration exceeding maximum residue limits (MRL of Codex Alimentarius Commission. However imidacloprid was not detected in any sample. Concentration of bifenthrin in house egg samples ranged from 0.256206 to 4.112387 mg/kg while in poultry farm samples it varied from 1.5862 to 5.80796 mg/kg. Difenoconazole was found in concentration of 0.02835 mg/kg, 1.7668 mg/kg, 3.7205 mg/kg, 21.8937 mg/kg 21.9835 mg/kg, 19.26407 mg/kg in samples collected from houses while and in poultry farm samples its detected concentration was 10.939 mg/kg, 12.3296 mg/kg, 29.3617 mg/kg, 18.6116 mg/kg, 40.0523 mg/kg and 19.2335 mg/kg. Concentrations of both pesticides Bifenthrin and Difenoconazole exceeded the MRLs (0.05 mg/kg. Health risk index surpassed 1 (the cut off value for Difenoconazole in seven samples while for Bifenthrin values were less than 1, indicating the possibility of potential medium to long term health risk associated with ingestion of contaminated eggs.

  16. Developmental neurotoxicity of different pesticides in PC-12 cells in vitro.

    Science.gov (United States)

    Christen, Verena; Rusconi, Manuel; Crettaz, Pierre; Fent, Karl

    2017-06-15

    The detection of developmental neurotoxicity (DNT) of chemicals has high relevance for protection of human health. However, DNT of many pesticides is only little known. Furthermore, validated in vitro systems for assessment of DNT are not well established. Here we employed the rat phaeochromocytoma cell line PC-12 to evaluate DNT of 18 frequently used pesticides of different classes, including neonicotinoids, pyrethroids, organophosphates, organochlorines, as well as quaternary ammonium compounds, the organic compound used in pesticides, piperonyl butoxide, as well as the insect repellent diethyltoluamide (DEET). We determined the outgrowth of neurites in PC-12 cells co-treated with nerve growth factor and different concentrations of biocides for 5days. Furthermore, we determined transcriptional alterations of selected genes that may be associated with DNT, such as camk2α and camk2β, gap-43, neurofilament-h, tubulin-α and tubulin-β. Strong and dose- dependent inhibition of neurite outgrowth was induced by azamethiphos and chlorpyrifos, and dieldrin and heptachlor, which was correlated with up-regulation of gap-43. No or only weak effects on neurite outgrowth and transcriptional alterations occurred for neonicotinoids acetamiprid, clothianidin, imidacloprid and thiamethoxam, the pyrethroids λ-cyhalothrin, cyfluthrin, deltamethrin, and permethrin, the biocidal disinfectants C12-C14-alkyl(ethylbenzyl)dimethylammonium (BAC), benzalkonium chloride and barquat (dimethyl benzyl ammonium chloride), and piperonyl butoxide and DEET. Our study confirms potential developmental neurotoxicity of some pesticides and provides first evidence that azamethiphos has the potential to act as a developmental neurotoxic compound. We also demonstrate that inhibition of neurite outgrowth and transcriptional alterations of gap-43 expression correlate, which suggests the employment of gap-43 expression as a biomarker for detection and initial evaluation of potential DNT of chemicals

  17. UV-irradiation and leaching in water reduce the toxicity of imidacloprid-contaminated leaves to the aquatic leaf-shredding amphipod Gammarus fossarum.

    Science.gov (United States)

    Englert, Dominic; Zubrod, Jochen P; Neubauer, Christoph; Schulz, Ralf; Bundschuh, Mirco

    2018-05-01

    Systemic neonicotinoid insecticides such as imidacloprid are increasingly applied against insect pest infestations on forest trees. However, leaves falling from treated trees may reach nearby surface waters and potentially represent a neonicotinoid exposure source for aquatic invertebrates. Given imidacloprid's susceptibility towards photolysis and high water solubility, it was hypothesized that the leaves' toxicity might be modulated by UV-irradiation during decay on the forest floor, or by leaching and re-mobilization of the insecticide from leaves within the aquatic ecosystem. To test these hypotheses, the amphipod shredder Gammarus fossarum was fed (over 7 d; n = 30) with imidacloprid-contaminated black alder (Alnus glutinosa) leaves that had either been pre-treated (i.e., leached) in water for up to 7 d or UV-irradiated for 1 d (at intensities relevant during autumn in Central Europe) followed by a leaching duration of 1 d. Gammarids' feeding rate, serving as sublethal response variable, was reduced by up to 80% when consuming non-pretreated imidacloprid-contaminated leaves compared to imidacloprid-free leaves. Moreover, both leaching of imidacloprid from leaves (for 7 d) as well as UV-irradiation reduced the leaves' imidacloprid load (by 46 and 90%) thereby mitigating the effects on gammarids' feeding rate to levels comparable to the respective imidacloprid-free controls. Therefore, natural processes, such as UV-irradiation and re-mobilization of foliar insecticide residues in water, might be considered when evaluating the risks systemic insecticide applications in forests might pose for aquatic organisms in nearby streams. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Imidacloprid is degraded by CYP353D1v2, a cytochrome P450 overexpressed in a resistant strain of Laodelphax striatellus.

    Science.gov (United States)

    Elzaki, Mohammed Esmail Abdalla; Miah, Mohammad Asaduzzaman; Wu, Min; Zhang, Haomiao; Pu, Jian; Jiang, Ling; Han, Zhaojun

    2017-07-01

    Cytochrome P450s are associated with the metabolising of a wide range of compounds, including insecticides. CYP353D1v2 has been found to be overexpressed in an imidacloprid-resistant strain of Laodelphax striatellus. Thus, this study was conducted to express CYP353D1v2 in Sf9 cells as a recombinant protein, to assess its ability to metabolise imidacloprid. Western blot and carbon monoxide difference spectrum analysis indicated that the intact CYP353D1v2 protein had been successfully expressed in Sf9 insect cells. Catalytic activity tests with four traditional P450-activity-probing substrates found that the expressed CYP353D1v2 preferentially metabolised p-nitroanisole, ethoxycoumarin and ethoxyresorufin with specific activities of 32.70, 0.317 and 1.22 pmol min -1 pmol -1 protein respectively, but no activity to luciferin-H EGE. The enzyme activity for degrading imidacloprid was tested by measuring substrate depletion and formation of the metabolite. Kinetic parameters for imidacloprid were K m 5.99 ± 0.95 µm and k cat 0.03 ± 0.0004 min -1 . The chromatogram analysis showed clearly the NADPH-dependent depletion of imidacloprid and the formation of an unknown metabolite. The UPLC-MS mass spectrum demonstrated that the metabolite was an oxidative product of imidacloprid, 5-hydroxy-imidacloprid. These results suggest that CYP353D1v2 in L. striatellus is capable of degrading imidacloprid, and that enzyme activity can be evaluated well only by some traditional probing substrates. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  19. CONTROLE ASSOCIADO DE Cornitermes cumulans (KOLLAR, 1832 (ISOPTERA: TERMITIDAE COM Metarhizium anisopliae, Beauveria bassiana E IMIDACLOPRID ASSOCIATED CONTROL OF Cornitermes cumulans (KOLLAR, 1832 (ISOPTERA: TERMITIDAE WITH Metarhizium anisopliae, Beauveria bassiana AND IMIDACLOPRID

    Directory of Open Access Journals (Sweden)

    Pedro Janeiro Neves

    1999-01-01

    Full Text Available O objetivo desta pesquisa foi o de verificar em condições de campo a eficiência do controle associado de colônias de Cornitermes cumulans utilizando imidacloprid juntamente com fungos entomopatogênicos (Metarhizium anisopliae e Beauveria bassiana. Foram realizados experimentos de campo para determinar quais as concentrações mínimas de conídios e de imidacloprid que quando aplicadas em associação controlaram os ninhos de cupins, mas quando aplicadas em separado não foram eficientes. Isto ocorreu quando 500 mg de conídios do patógeno (M. anisopliae ou B. bassiana foram misturados a 1,9 mg do produto comercial Gaucho 70 PM (imidacloprid e 6 gramas do inerte calcene. Foi possível diminuir a concentração de conídios em até 4 vezes e a do inseticida imidacloprid em até 157 vezes em relação às concentrações usualmente recomendadas. Estas concentrações possibilitaram elevados níveis de controle dos ninhos grandes (>80%, com uma diminuição considerável no custo do controle. Além disso, é importante considerar os benefícios ecológicos advindos deste controle associado pela diminuição na quantidade de inseticida a ser utilizada. Deste modo, esta estratégia deve ser explorada como uma alternativa importante na eliminação das colônias grandes de C. cumulans.The objective of this study was to investigate, under field conditions, the control efficiency against nests of Cornitermes cumulans using imidacoprid associated with entomopathogenic fungi (Metarhizium anisopliae and Beauveria bassiana. Field experiments were conducted to determine the minimal conidia and imidacloprid concentration jointly applied, necessary to control termite nest, but when applied separately was not efficient. This occurred when 500 mg of conidia of the pathogen (M. anisopliae or B. bassiana were mixed with 1.9 mg of imidacloprid (Gaucho 70 PM and 6 g of the inert calcene. It was possible to reduce the conidial concentration 4 times and the

  20. Are leaves that fall from imidacloprid-treated maple trees to control Asian longhorned beetles toxic to non-target decomposer organisms?

    Science.gov (United States)

    Kreutzweiser, David P; Good, Kevin P; Chartrand, Derek T; Scarr, Taylor A; Thompson, Dean G

    2008-01-01

    The systemic insecticide imidacloprid may be applied to deciduous trees for control of the Asian longhorned beetle, an invasive wood-boring insect. Senescent leaves falling from systemically treated trees contain imidacloprid concentrations that could pose a risk to natural decomposer organisms. We examined the effects of foliar imidacloprid concentrations on decomposer organisms by adding leaves from imidacloprid-treated sugar maple trees to aquatic and terrestrial microcosms under controlled laboratory conditions. Imidacloprid in maple leaves at realistic field concentrations (3-11 mg kg(-1)) did not affect survival of aquatic leaf-shredding insects or litter-dwelling earthworms. However, adverse sublethal effects at these concentrations were detected. Feeding rates by aquatic insects and earthworms were reduced, leaf decomposition (mass loss) was decreased, measurable weight losses occurred among earthworms, and aquatic and terrestrial microbial decomposition activity was significantly inhibited. Results of this study suggest that sugar maple trees systemically treated with imidacloprid to control Asian longhorned beetles may yield senescent leaves with residue levels sufficient to reduce natural decomposition processes in aquatic and terrestrial environments through adverse effects on non-target decomposer organisms.

  1. Assessing the risk to green sturgeon from application of imidacloprid to control burrowing shrimp in Willapa Bay, Washington-Part I: exposure characterization.

    Science.gov (United States)

    Frew, John A; Sadilek, Martin; Grue, Christian E

    2015-11-01

    Willapa Bay and Grays Harbor (WA, USA) comprise the largest region of commercial oyster cultivation on the Pacific Coast. The activities of 2 species of burrowing shrimp impair growth and survival of oysters reared on the intertidal mudflats. To maintain viable harvests, the oyster growers have proposed controlling the shrimp by applying the insecticide imidacloprid onto harvested beds. Green sturgeon (listed in the Endangered Species Act) forage on burrowing shrimp and could be exposed to imidacloprid in the sediment porewater and through consumed prey. Studies were conducted to evaluate the likelihood that green sturgeon would be exposed to imidacloprid and to characterize the subsequent environmental exposure. Comparisons between treated and untreated control beds following test application of the insecticide suggested that green sturgeon fed opportunistically on imidacloprid-impaired shrimp. The highest interpolated imidacloprid residue concentrations in field samples following chemical application were 27.8 µg kg(-1) and 31.4 µg kg(-1) in porewater and shrimp, respectively. Results from modeled branchial and dietary uptake, based on conservative assumptions, indicated that the porewater exposure route had the greatest contribution to systemic absorption of imidacloprid. The highest average daily uptake from porewater (177.9 µg kg(-1) body wt) was 9.5-fold greater than total dietary uptake (18.8 µg kg(-1) body wt). Concentrations and durations of exposure would be lower than the levels expected to elicit direct acute or chronic toxic effects. © 2015 SETAC.

  2. Field-evolved resistance to imidacloprid and ethiprole in populations of brown planthopper Nilaparvata lugens collected from across South and East Asia.

    Science.gov (United States)

    Garrood, William T; Zimmer, Christoph T; Gorman, Kevin J; Nauen, Ralf; Bass, Chris; Davies, Thomas G E

    2016-01-01

    We report on the status of imidacloprid and ethiprole resistance in Nilaparvata lugens Stål collected from across South and East Asia over the period 2005-2012. A resistance survey found that field populations had developed up to 220-fold resistance to imidacloprid and 223-fold resistance to ethiprole, and that many of the strains collected showed high levels of resistance to both insecticides. We also found that the cytochrome P450 CYP6ER1 was significantly overexpressed in 12 imidacloprid-resistant populations tested when compared with a laboratory susceptible strain, with fold changes ranging from ten- to 90-fold. In contrast, another cytochrome P450 CYP6AY1, also implicated in imidacloprid resistance, was underexpressed in ten of the populations and only significantly overexpressed (3.5-fold) in a single population from India compared with the same susceptible strain. Further selection of two of the imidacloprid-resistant field strains correlated with an approximate threefold increase in expression of CYP6ER1. We conclude that overexpression of CYP6ER1 is associated with field-evolved resistance to imidacloprid in brown planthopper populations in five countries in South and East Asia. © 2015 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

  3. Is imidacloprid an effective alternative for controlling pyrethroid-resistant populations of Triatoma infestans (Hemiptera: Reduviidae in the Gran Chaco ecoregion?

    Directory of Open Access Journals (Sweden)

    Guillermo Carvajal

    2014-09-01

    Full Text Available The prevention of Chagas disease is based primarily on the chemical control of Triatoma infestans (Klug using pyrethroid insecticides. However, high resistance levels, correlated with control failures, have been detected in Argentina and Bolivia. A previous study at our laboratory found that imidacloprid could serve as an alternative to pyrethroid insecticides. We studied the delayed toxicity of imidacloprid and the influence of the blood feeding condition of the insect on the toxicity of this insecticide; we also studied the effectiveness of various commercial imidacloprid formulations against a pyrethroid-resistant T. infestans population from the Gran Chaco ecoregion. Variations in the toxic effects of imidacloprid were not observed up to 72 h after exposure and were not found to depend on the blood feeding condition of susceptible and resistant individuals. Of the three different studied formulations of imidacloprid on glass and filter paper, only the spot-on formulation was effective. This formulation was applied to pigeons at doses of 1, 5, 20 and 40 mg/bird. The nymphs that fed on pigeons treated with 20 mg or 40 mg of the formulation showed a higher mortality rate than the control group one day and seven days post-treatment (p < 0.01. A spot-on formulation of imidacloprid was effective against pyrethroid-resistant T. infestans populations at the laboratory level.

  4. Tips for Reducing Pesticide Impacts on Wildlife

    Science.gov (United States)

    This Web page provides tips for pesticide users in residential and agricultural settings, as well as tips for certified pesticide applicators for ways to protect wildlife from potentially harmful effects of pesticides.

  5. 2011 EPA Pesticide General Permit (PGP)

    Data.gov (United States)

    U.S. Environmental Protection Agency — The 2011 EPA Pesticide General Permit (PGP) covers discharges of biological pesticides, and chemical pesticides that leave a residue, in areas where EPA is the NPDES...

  6. Radiation induced microbial pesticide

    International Nuclear Information System (INIS)

    Kim, Ki Yup; Lee, Young Keun; Kim, Jae Sung; Kim, Jin Kyu; Lee, Sang Jae

    2000-01-01

    To control plant pathogenic fungi, 4 strains of bacteria (K1, K3, K4, YS1) were isolated from mushroom compost and hot spring. K4, K1, K3, YS1 strain showed wide antifungal spectrum and high antifungal activities against 13 kinds of fungi. Mutants of K1 and YS1 strains were induced by gamma-ray radiation and showed promising antifungal activities. These wild type and mutants showed resistant against more than 27 kinds of commercial pesticides among 30 kinds of commercial pesticides test particularly, YS1-1006 mutant strain showed resistant against hydrogen oxide. And mutants had increased antifungal activity against Botryoshaeria dothidea. These results suggested that radiation could be an useful method for the induction of functional mutants. (author)

  7. Comparative chronic toxicity of imidacloprid, clothianidin, and thiamethoxam to Chironomus dilutus and estimation of toxic equivalency factors.

    Science.gov (United States)

    Cavallaro, Michael C; Morrissey, Christy A; Headley, John V; Peru, Kerry M; Liber, Karsten

    2017-02-01

    Nontarget aquatic insects are susceptible to chronic neonicotinoid insecticide exposure during the early stages of development from repeated runoff events and prolonged persistence of these chemicals. Investigations on the chronic toxicity of neonicotinoids to aquatic invertebrates have been limited to a few species and under different laboratory conditions that often preclude direct comparisons of the relative toxicity of different compounds. In the present study, full life-cycle toxicity tests using Chironomus dilutus were performed to compare the toxicity of 3 commonly used neonicotinoids: imidacloprid, clothianidin, and thiamethoxam. Test conditions followed a static-renewal exposure protocol in which lethal and sublethal endpoints were assessed on days 14 and 40. Reduced emergence success, advanced emergence timing, and male-biased sex ratios were sensitive responses to low-level neonicotinoid exposure. The 14-d median lethal concentrations for imidacloprid, clothianidin, and thiamethoxam were 1.52 μg/L, 2.41 μg/L, and 23.60 μg/L, respectively. The 40-d median effect concentrations (emergence) for imidacloprid, clothianidin, and thiamethoxam were 0.39 μg/L, 0.28 μg/L, and 4.13 μg/L, respectively. Toxic equivalence relative to imidacloprid was estimated through a 3-point response average of equivalencies calculated at 20%, 50%, and 90% lethal and effect concentrations. Relative to imidacloprid (toxic equivalency factor [TEF] = 1.0), chronic (lethality) 14-d TEFs for clothianidin and thiamethoxam were 1.05 and 0.14, respectively, and chronic (emergence inhibition) 40-d TEFs were 1.62 and 0.11, respectively. These population-relevant endpoints and TEFs suggest that imidacloprid and clothianidin exert comparable chronic toxicity to C. dilutus, whereas thiamethoxam induced comparable effects only at concentrations an order of magnitude higher. However, the authors caution that under field conditions, thiamethoxam readily degrades to

  8. Cholinesterase activity in the cup oyster Saccostrea sp. exposed to chlorpyrifos, imidacloprid, cadmium and copper.

    Science.gov (United States)

    Moncaleano-Niño, Angela M; Luna-Acosta, Andrea; Gómez-Cubillos, Maria Camila; Villamil, Luisa; Ahrens, Michael J

    2018-04-30

    In the present study, the sensitivity and concentration dependence of three functionally-defined components of cholinesterase activity (total: T-ChE; eserine-sensitive: Es-ChE; and eserine-resistant: Er-ChE) were quantified in the gill, digestive gland and adductor muscle of the tropical cup oyster Saccostrea sp., following acute (96h) aqueous exposure to commercial formulations of the organophosphate (OP) insecticide chlorpyrifos and the neonicotinoid (NN) imidacloprid (concentration range: 0.1-100mg/L), as well as to dissolved cadmium and copper (concentration range: 1-1000μg/L). Oysters (1.5-5.0cm shell length), field-collected from a boating marina in Santa Marta, Colombia (Caribbean Sea) were exposed in the laboratory to each substance at five concentrations. T-ChE, Es-ChE, and Er-ChE activity were quantified in the three tissues in pools of 5 individuals (3 replicates per concentration), before and after inhibition with the total cholinesterase inhibitor eserine (physostigmine, 100µM). Oysters exposed to chlorpyrifos, imidacloprid and Cd showed reduced T-ChE and Es-ChE activity in gills at highest exposure concentrations, with Es-ChE activity being inhibited proportionally more so than T-ChE, whereas Er-ChE activity showed no significant concentration-response. Digestive gland also showed diminished T-ChE, Es-ChE and Er-ChE activity for highest chlorpyrifos and Cd concentrations relative to controls, but an increase of T-ChE and Er-ChE activity at the highest imidacloprid concentration (100mg/L). For Cu, T-ChE, Es-ChE and Er-ChE activities in gills and digestive gland were elevated relative to controls in oysters exposed to Cu concentrations > 100µg/L. In adductor muscle, T-ChE, Es-ChE and Er-ChE activity showed no apparent pattern for any of the four xenobiotics and concentration levels tested. Although this study confirms acute (96h) concentration-dependent reduction of tissue T-ChE and Es-ChE activity in gills and digestive glands of Saccostrea sp

  9. The geochemistry of pesticides

    Science.gov (United States)

    Barbash, Jack E.

    2007-01-01

    The mid-1970s marked a major turning point in human history, for it was at that moment that the ability of the Earth’s ecosystems to absorb most of the biological impacts of human activities appears to have been exceeded by the magnitude of those impacts. This conclusion is based partly upon estimates of the rate of carbon dioxide emission during the combustion of fossil fuels, relative to the rate of its uptake by terrestrial ecosystems (Loh, 2002). A very different threshold, however, had already been crossed several decades earlier with the birth of the modern chemical industry, which produced novel substances for which no such natural assimilative capacity existed. Among these new chemical compounds, none has posed a greater challenge to the planet’s ecosystems than synthetic pesticides, compounds that have been intentionally released into the hydrologic system in vast quantities—several hundred million pounds of active ingredient (a.i.) per year in the United States alone (Donaldson et al., 2002)—for many decades. To gauge the extent to which we are currently able to assess the environmental implications of this new development in the Earth’s history, this chapter presents an overview of current understanding regarding the sources, transport, fate, and biological effects of pesticides, their transformation products, and selected adjuvants in the hydrologic system. (Adjuvants are the so-called inert ingredients included in commercial pesticide formulations to enhance the effectiveness of the active ingredients.)

  10. Electronic Submissions of Pesticide Applications

    Science.gov (United States)

    Applications for pesticide registration can be submitted electronically, including forms, studies, and draft product labeling. Applicants need not submit multiple electronic copies of any pieces of their applications.

  11. Occurrence of commonly used pesticides in personal air samples and their associated health risk among paddy farmers.

    Science.gov (United States)

    Hamsan, Hazwanee; Ho, Yu Bin; Zaidon, Siti Zulfa; Hashim, Zailina; Saari, Nazamid; Karami, Ali

    2017-12-15

    Tanjung Karang, Selangor, is widely known for its paddy cultivation activity and hosts the third largest paddy field in Malaysia. Pesticides contamination in agriculture fields has become an unavoidable problem, as pesticides are used to increase paddy productivity and reduce plant disease. Human exposure to agrichemicals is common and could results in both acute and chronic health effects, such as acute and chronic neurotoxicity. This study aims to determine the concentrations of commonly used pesticides (azoxystrobin, buprofezin, chlorantraniliprole, difenoconazole, fipronil, imidacloprid, isoprothiolane, pretilachlor, propiconazole, pymetrozine, tebuconazole, tricyclazole, and trifloxystrobin) in personal air samples and their associated health risks among paddy farmers. Eighty-three farmers from Tangjung Karang, Selangor were involved in this study. A solid sorbent tube was attached to the farmer's breathing zone with a clip, and an air pump was fastened to the belt to collect personal air samples. Pesticides collected in the XAD-2 resin were extracted with acetone, centrifuged, concentrated via nitrogen blowdown and reconstituted with 1mL of 3:1 ultrapure water/HPLC-grade methanol solution. The extract was analyzed using ultra-high-performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS). The target compounds were detected with a maximum concentration reaching up to 462.5ngm -3 (fipronil). The hazard quotient (HQ) was less than 1 and the hazard index (HI) value was 3.86×10 -3 , indicating that the risk of pesticides related diseases was not significant. The lifetime cancer risk (LCR) for pymetrozine was at an acceptable level (LCR<10 -6 ) with 4.10×10 -8 . The results reported in this study can be beneficial in terms of risk management within the agricultural community. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Agricultural expansion as risk to endangered wildlife: Pesticide exposure in wild chimpanzees and baboons displaying facial dysplasia.

    Science.gov (United States)

    Krief, Sabrina; Berny, Philippe; Gumisiriza, Francis; Gross, Régine; Demeneix, Barbara; Fini, Jean Baptiste; Chapman, Colin A; Chapman, Lauren J; Seguya, Andrew; Wasswa, John

    2017-11-15

    Prenatal exposure to environmental endocrine disruptors can affect development and induce irreversible abnormalities in both humans and wildlife. The northern part of Kibale National Park, a mid-altitude rainforest in western Uganda, is largely surrounded by industrial tea plantations and wildlife using this area (Sebitoli) must cope with proximity to human populations and their activities. The chimpanzees and baboons in this area raid crops (primarily maize) in neighboring gardens. Sixteen young individuals of the 66 chimpanzees monitored (25%) exhibit abnormalities including reduced nostrils, cleft lip, limb deformities, reproductive problems and hypopigmentation. Each pathology could have a congenital component, potentially exacerbated by environmental factors. In addition, at least six of 35 photographed baboons from a Sebitoli troop (17%) have similar severe nasal deformities. Our inquiries in villages and tea factories near Sebitoli revealed use of eight pesticides (glyphosate, cypermethrin, profenofos, mancozeb, metalaxyl, dimethoate, chlorpyrifos and 2,4-D amine). Chemical analysis of samples collected from 2014 to 2016 showed that mean levels of pesticides in fresh maize stems and seeds, soils, and river sediments in the vicinity of the chimpanzee territory exceed recommended limits. Notably, excess levels were found for total DDT and its metabolite pp'-DDE and for chlorpyrifos in fresh maize seeds and in fish from Sebitoli. Imidacloprid was detected in coated maize seeds planted at the edge the forest and in fish samples from the Sebitoli area, while no pesticides were detected in fish from central park areas. Since some of these pesticides are thyroid hormone disruptors, we postulate that excessive pesticide use in the Sebitoli area may contribute to facial dysplasia in chimpanzees and baboons through this endocrine pathway. Chimpanzees are considered as endangered by IUCN and besides their intrinsic value and status as closely related to humans, they

  13. Can’t take the heat: Temperature-enhanced toxicity in the mayfly Isonychia bicolor exposed to the neonicotinoid insecticide imidacloprid

    International Nuclear Information System (INIS)

    Camp, A.A.; Buchwalter, D.B.

    2016-01-01

    Highlights: • Temperature has a strong modulating influence on toxicity in aquatic insects. • Increasing temperature decreased the time to onset of imidacloprid toxicity. • Increasing temperature increased the uptake rates of imidacloprid in different taxa. • Sublethal behavioral effects of contaminants are important to assess in toxicology. - Abstract: Neonicotinoid insecticide usage has increased globally in recent decades. Neonicotinoids, such as imidacloprid, are potent insect neurotoxicants that may pose a threat to non-target aquatic organisms, such as aquatic insects. In nature, insects typically live in thermally fluctuating conditions, which may significantly alter both contaminant exposures and affects. Here we investigate the relationship between temperature and time-to-effect for imidacloprid toxicity with the aquatic insect Isonychia bicolor, a lotic mayfly. Additionally, we examined the mechanisms driving temperature-enhanced toxicity including metabolic rate, imidacloprid uptake rate, and tissue bioconcentration. Experiments included acute toxicity tests utilizing sublethal endpoints and mortality, as well as respirometry and radiotracer assays with ["1"4C] imidacloprid. Further, we conducted additional uptake experiments with a suite of aquatic invertebrates (including I. bicolor, Neocloeon triangulifer, Macaffertium modestum, Pteronarcys proteus, Acroneuria carolinensis, and Pleuroceridae sp) to confirm and contextualize our findings from initial experiments. The 96 h EC_5_0 (immobility) for I. bicolor at 15 °C was 5.81 μg/L which was approximately 3.2 fold lower than concentrations associated with 50% mortality. Assays examining the impact of temperature were conducted at 15, 18, 21, and 24 °C and demonstrated that time-to-effect for sublethal impairment and immobility was significantly decreased with increasing temperature. Uptake experiments with ["1"4C] imidacloprid revealed that initial uptake rates were significantly increased with

  14. Can’t take the heat: Temperature-enhanced toxicity in the mayfly Isonychia bicolor exposed to the neonicotinoid insecticide imidacloprid

    Energy Technology Data Exchange (ETDEWEB)

    Camp, A.A., E-mail: aacamp@ncsu.edu; Buchwalter, D.B., E-mail: dbbuchwa@ncsu.edu

    2016-09-15

    Highlights: • Temperature has a strong modulating influence on toxicity in aquatic insects. • Increasing temperature decreased the time to onset of imidacloprid toxicity. • Increasing temperature increased the uptake rates of imidacloprid in different taxa. • Sublethal behavioral effects of contaminants are important to assess in toxicology. - Abstract: Neonicotinoid insecticide usage has increased globally in recent decades. Neonicotinoids, such as imidacloprid, are potent insect neurotoxicants that may pose a threat to non-target aquatic organisms, such as aquatic insects. In nature, insects typically live in thermally fluctuating conditions, which may significantly alter both contaminant exposures and affects. Here we investigate the relationship between temperature and time-to-effect for imidacloprid toxicity with the aquatic insect Isonychia bicolor, a lotic mayfly. Additionally, we examined the mechanisms driving temperature-enhanced toxicity including metabolic rate, imidacloprid uptake rate, and tissue bioconcentration. Experiments included acute toxicity tests utilizing sublethal endpoints and mortality, as well as respirometry and radiotracer assays with [{sup 14}C] imidacloprid. Further, we conducted additional uptake experiments with a suite of aquatic invertebrates (including I. bicolor, Neocloeon triangulifer, Macaffertium modestum, Pteronarcys proteus, Acroneuria carolinensis, and Pleuroceridae sp) to confirm and contextualize our findings from initial experiments. The 96 h EC{sub 50} (immobility) for I. bicolor at 15 °C was 5.81 μg/L which was approximately 3.2 fold lower than concentrations associated with 50% mortality. Assays examining the impact of temperature were conducted at 15, 18, 21, and 24 °C and demonstrated that time-to-effect for sublethal impairment and immobility was significantly decreased with increasing temperature. Uptake experiments with [{sup 14}C] imidacloprid revealed that initial uptake rates were significantly

  15. Trace analysis of pesticides in paddy field water by direct injection using liquid chromatography-quadrupole-linear ion trap-mass spectrometry.

    Science.gov (United States)

    Pareja, Lucía; Martínez-Bueno, M J; Cesio, Verónica; Heinzen, Horacio; Fernández-Alba, A R

    2011-07-29

    A multiresidue method was developed for the quantification and confirmation of 70 pesticides in paddy field water. After its filtration, water was injected directly in a liquid chromatograph coupled to a hybrid triple quadrupole-linear ion trap-mass spectrometer (QqLIT). The list of target analytes included organophosphates, phenylureas, sulfonylureas, carbamates, conazoles, imidazolinones and others compounds widely used in different countries where rice is cropped. Detection and quantification limits achieved were in the range from 0.4 to 80 ng L(-1) and from 2 to 150 ng L(-1), respectively. Correlation coefficients for the calibration curves in the range 0.1-50 μg L(-1) were higher than 0.99 except for diazinon (0.1-25 μg L(-1)). Only 9 pesticides presented more than 20% of signal suppression/enhancement, no matrix effect was observed in the studied conditions for the rest of the target pesticides. The method developed was used to investigate the occurrence of pesticides in 59 water samples collected in paddy fields located in Spain and Uruguay. The study shows the presence of bensulfuron methyl, tricyclazole, carbendazim, imidacloprid, tebuconazole and quinclorac in a concentration range from 0.08 to 7.20 μg L(-1). Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Pesticide Program Dialogue Committee and Pesticide Regulatory Reform Meetings

    Science.gov (United States)

    EPA’s Office of Pesticide Programs will hold a public meeting of the Pesticide Program Dialogue Committee (PPDC) on Wednesday, May 3, from 9:00 a.m. to 4:45 p.m., and on Thursday, May 4, from 8:30 a.m. to noon.

  17. Evaluation System for Pesticides (ESPE). 1. Agricultural pesticides

    NARCIS (Netherlands)

    Emans HJB; Beek MA; Linders JBHJ

    1992-01-01

    In this report a risk assessment or evaluation system for agricultural pesticides is presented, which estimates the hazards for man and environment resulting from the use of these pesticides. The evaluation system has also been placed within the context of the Uniform System for the Evaluation of

  18. Tracer work in pesticide research

    International Nuclear Information System (INIS)

    Gonzales, B.P.

    1989-01-01

    Innumerable studies on the large number of pesticides being used throughout the world led to some adverse findings on the properties and behavior of these chemicals and their degradation products in revelation to potential toxicity and environmental pollution. However, it is also a fact (difficult to accept as it may) that the use of pesticides as an indirect means of increasing food production cannot yet be dispensed with despite the potential dangers attributed to it. What can be done is to insure its judicious application which means minimizing its effectiveness in controlling pest infestations. To be able to do this it is necessary to know not only what pesticide is to be used against a given pest but also the fate of pesticide after application to a particular environment under prevailing conditions. Knowledge of the distribution and persistence of the parent compounds under metabolites will also help either, to confirm or to dispel the alleged dangers posed by them. Radiotracer methodology is particularly effective for this type of work because it permits highly sensitive analysis with minimum clean-up and permits one to determine even the bound residues which defies ordinary extraction procedures. Some studies made are studies on fate of pesticides in plant after foliar application to plant needs, uptake and translocation of systemic pesticides, fate of pesticides in soil, bioaccumulation of pesticide by aquatic organisms, etc. This particular study is on distribution of pesticide among the components of a rice/fish ecosystem. This project aims to generate data from experiments conducted in a model ecosystem using radiolabelled lindane and carbo-furan. In both cases, results show a decline in extractable species from the recommended dosage of pesticide application although they tend to imbibe a considerable amount of pesticide. It is hoped that depuration in additional experiments will bring useful results. (Auth.)

  19. Can chronic exposure to imidacloprid, clothianidin, and thiamethoxam mixtures exert greater than additive toxicity in Chironomus dilutus?

    Science.gov (United States)

    Maloney, E M; Morrissey, C A; Headley, J V; Peru, K M; Liber, K

    2018-07-30

    Widespread agricultural use of neonicotinoid insecticides has resulted in frequent detection of mixtures of these compounds in global surface waters. Recent evidence suggests that neonicotinoid mixtures can elicit synergistic toxicity in aquatic insects under acute exposure conditions, however this has not been validated for longer exposures more commonly encountered in the environment. Therefore, we aimed to characterize the chronic (28-day) toxicity of imidacloprid, clothianidin, and thiamethoxam mixtures under different doses and mixture ratios to determine if the assumption of synergistic toxicity would hold under more environmentally realistic exposure settings. The sensitive aquatic insect Chironomus dilutus was used as a representative test species, and successful emergence was used as a chronic endpoint. Applying the MIXTOX modeling approach, predictive parametric models were fitted using single-compound toxicity data and statistically compared to observed toxicity in subsequent mixture tests. Imidacloprid-clothianidin, clothianidin-thiamethoxam and imidacloprid-clothianidin-thiamethoxam mixtures did not significantly deviate from concentration-additive toxicity. However, the cumulative toxicity of the imidacloprid-thiamethoxam mixture deviated from the concentration-additive reference model, displaying dose-ratio dependent synergism and resulting in up to a 10% greater reduction in emergence from that predicted by concentration addition. Furthermore, exposure to select neonicotinoid mixtures above 1.0 toxic unit tended to shift sex-ratios toward more male-dominated populations. Results indicate that, similar to acute exposures, the general assumption of joint additivity cannot adequately describe chronic cumulative toxicity of all neonicotinoid mixtures. Indeed, our observations of weak synergism and sex-ratio shifts elicited by some mixture combinations should be considered in water quality guideline development and environmental risk assessment practices

  20. Choice of pesticide fate models

    International Nuclear Information System (INIS)

    Balderacchi, Matteo; Trevisan, Marco; Vischetti, Costantino

    2006-01-01

    The choice of a pesticide fate model at field scale is linked to the available input data. The article describes the available pesticide fate models at a field scale and the guidelines for the choice of the suitable model as function of the data input requested [it

  1. Pesticide Health and Safety Information

    Science.gov (United States)

    Animal Health Safe Use Practices Pest Control Food Safety Low Risk Pesticides Integrated Pest Management directed by the product label. Pesticides may be ingested if stored improperly in food or beverage ; Environment Human Health Animal Health Safe Use Practices Food Safety Environment Air Water Soil Wildlife

  2. Behavior of pesticides in plants.

    Science.gov (United States)

    Logan A. Norris

    1974-01-01

    A number of chemicals of diverse characteristics have arbitrarily been classed together on the basis of their use and given the descriptive name "pesticides." An unfortunate aura of mystery has developed about these chemicals. However, there is nothing unique or mysterious about the chemicals we refer to as "pesticides." Like other chemicals, they...

  3. Susceptibility of Bemisia tabaci MEAM1 (Hemiptera: Aleyrodidae to Imidacloprid, Thiamethoxam, Dinotefuran and Flupyradifurone in South Florida

    Directory of Open Access Journals (Sweden)

    Hugh A. Smith

    2016-10-01

    Full Text Available Populations of Bemisa tabaci MEAM1 were established from nineteen locations in south Florida, primarily from commercial tomato fields, and were tested using a cotton leaf petiole systemic uptake method for susceptibility to the nicotinic acetylcholine agonist insecticides imidacloprid, thiamethoxam, dinotefuran and flupyradifurone. Eleven populations produced LC50s for one or more chemicals that were not significantly different from the susceptible laboratory colony based on overlapping fiducial limits, indicating some degree of susceptibility. LC50s more than a 100-fold the laboratory colony were measured in at least one population for each material tested, indicating tolerance. LC50s (ppm from field populations ranged from 0.901–24.952 for imidacloprid, 0.965–24.430 for thiamethoxam, 0.043–3.350 for dinotefuran and 0.011–1.471 for flupyradifurone. Based on overlapping fiducial limits, there were no significant differences in relative mean potency estimates for flupyradifurone and dinotefuran in relation to imidacloprid and thiamethoxam.

  4. Imidacloprid seed treatments affect individual ant behavior and community structure but not egg predation, pest abundance or soybean yield.

    Science.gov (United States)

    Penn, Hannah J; Dale, Andrew M

    2017-08-01

    Neonicotinoid seed treatments are under scrutiny because of their variable efficacy against crop pests and for their potential negative impacts on non-target organisms. Ants provide important biocontrol services in agroecosystems and can be indicators of ecosystem health. This study tested for effects of exposure to imidacloprid plus fungicide or fungicide-treated seeds on individual ant survival, locomotion and foraging capabilities and on field ant community structure, pest abundance, ant predation and yield. Cohorts of ants exposed to either type of treated seed had impaired locomotion and a higher incidence of morbidity and mortality but no loss of foraging capacity. In the field, we saw no difference in ant species richness, regardless of seed treatment. Blocks with imidacloprid did have higher species evenness and diversity, probably owing to variable effects of the insecticide on different ant species, particularly Tetramorium caespitum. Ant predation on sentinel eggs, pest abundance and soybean growth and yield were similar in the two treatments. Both seed treatments had lethal and sublethal effects on ant individuals, and the influence of imidacloprid seed coating in the field was manifested in altered ant community composition. Those effects, however, were not strong enough to affect egg predation, pest abundance or soybean yield in field blocks. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  5. Photocatalytic degradation with immobilised TiO(2) of three selected neonicotinoid insecticides: imidacloprid, thiamethoxam and clothianidin.

    Science.gov (United States)

    Zabar, Romina; Komel, Tilen; Fabjan, Jure; Kralj, Mojca Bavcon; Trebše, Polonca

    2012-09-01

    This research focused on photocatalytic degradation of imidacloprid, thiamethoxam and clothianidin employing a tailor-made photoreactor with six polychromatic fluorescent UVA (broad maximum at 355 nm) lamps and immobilised titanium dioxide (TiO(2)) on glass slides. The disappearance was followed by high pressure liquid chromatography (HPLC-DAD) analyses, wherein the efficiency of mineralization was monitored by measurements of total organic carbon (TOC). Within 2h of photocatalysis, all three neonicotinoids were degraded following first order kinetics with rate constants k=0.035 ± 0.001 min(-1) for imidacloprid, k=0.019 ± 0.001 min(-1) for thiamethoxam and k=0.021 ± 0.000 min(-1) for clothianidin. However, the rate of mineralization was low, i.e. 19.1 ± 0.2% for imidacloprid, 14.4 ± 2.9% for thiamethoxam and 14.1 ± 0.4% for clothianidin. This indicates that several transformation products were formed instead. Some of them were observed within HPLC-DAD analyses and structures were proposed according to the liquid chromatography-electro spray ionization tandem mass spectrometry analyses (LC-ESI-MS/MS). The formation of clothianidin, as thiamethoxam transformation product, was reported for the first time. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Sexual Success after Stress? Imidacloprid-Induced Hormesis in Males of the Neotropical Stink Bug Euschistus heros

    Science.gov (United States)

    Haddi, Khalid; Mendes, Marcos V.; Lino-Neto, José; Freitas, Hemerson L.; Guedes, Raul Narciso C.; Oliveira, Eugênio E.

    2016-01-01

    Environmental stress in newly-emerged adult insects can have dramatic consequences on their life traits (e.g., dispersion, survival and reproduction) as adults. For instance, insects sublethally exposed to environmental stressors (e.g., insecticides) can gain fitness benefits as a result of hormesis (i.e., benefits of low doses of compounds that would be toxic at higher doses). Here, we experimentally tested whether sublethal exposure to the insecticide imidacloprid would hormetically affect the sexual fitness of newly-emerged adults of the Neotropical brown stink bug Euschistus heros (Hemiptera: Heteroptera: Pentatomidae), which is the most abundant and prevalent insect pest in Neotropical soybean fields. We evaluated the sexual fitness of four couple combinations: unexposed couples, exposed females, exposed males, and exposed couples. Sublethal exposure to dry residues (i.e., contact) of imidacloprid (at 1% of recommended field rate) did not affect insect survival, but led to higher mating frequencies when at least one member of the couple was exposed. However, the average mating duration was shortened when only females were exposed to imidacloprid. Moreover, exposed males showed higher locomotory (walking) activity, lower respiration rates and induced higher fecundity rates when mated to unexposed females. Although the reproductive tracts of exposed males did not differ morphometrically from unexposed males, their accessory glands exhibited positive reactions for acidic and basic contents. Our findings suggest that males of the Neotropical brown stink bug hormetically increase their sexual fitness when cued by impending insecticidal stress in early adulthood. PMID:27284906

  7. Sexual Success after Stress? Imidacloprid-Induced Hormesis in Males of the Neotropical Stink Bug Euschistus heros.

    Directory of Open Access Journals (Sweden)

    Khalid Haddi

    Full Text Available Environmental stress in newly-emerged adult insects can have dramatic consequences on their life traits (e.g., dispersion, survival and reproduction as adults. For instance, insects sublethally exposed to environmental stressors (e.g., insecticides can gain fitness benefits as a result of hormesis (i.e., benefits of low doses of compounds that would be toxic at higher doses. Here, we experimentally tested whether sublethal exposure to the insecticide imidacloprid would hormetically affect the sexual fitness of newly-emerged adults of the Neotropical brown stink bug Euschistus heros (Hemiptera: Heteroptera: Pentatomidae, which is the most abundant and prevalent insect pest in Neotropical soybean fields. We evaluated the sexual fitness of four couple combinations: unexposed couples, exposed females, exposed males, and exposed couples. Sublethal exposure to dry residues (i.e., contact of imidacloprid (at 1% of recommended field rate did not affect insect survival, but led to higher mating frequencies when at least one member of the couple was exposed. However, the average mating duration was shortened when only females were exposed to imidacloprid. Moreover, exposed males showed higher locomotory (walking activity, lower respiration rates and induced higher fecundity rates when mated to unexposed females. Although the reproductive tracts of exposed males did not differ morphometrically from unexposed males, their accessory glands exhibited positive reactions for acidic and basic contents. Our findings suggest that males of the Neotropical brown stink bug hormetically increase their sexual fitness when cued by impending insecticidal stress in early adulthood.

  8. In vivo and in vitro effects of imidacloprid on sheep keds (Melophagus ovinus): a light and electron microscopic study.

    Science.gov (United States)

    Mehlhorn, H; D'Haese, J; Mencke, N; Hansen, O

    2001-04-01

    The effects of imidacloprid (Advantage) on sheep keds (Melophagus ovinus Linne 1758) were studied in vivo and in vitro by means of direct observation (monitored on video tape) and by light and electron microscopy. It was found that: 1. Imidacloprid acted rapidly on all motile stages of the sheep keds. Within 3-4 min after exposure they became immobile and their legs and the abdomen started tetanic trembling movements for 15-30 min, leading to death. 2. The compound is apparently taken up by the body, since it also acted on those sheep keds that had been exclusively exposed to imidacloprid-contaminated filter papers. 3. The compound is available and active for more than 1 month in the wool of sheep; even rainfall does not reduce its efficacy. Body contact between treated mother sheep and their lambs protects them from infestation with these ectoparasites. 4. The compound initiates an ultimately lethal destruction of the ganglia, nerve chords and related muscle fibers, as can be seen in electron micrographs.

  9. Differential Expression of P450 Genes and nAChR Subunits Associated With Imidacloprid Resistance in Laodelphax striatellus (Hemiptera: Delphacidae).

    Science.gov (United States)

    Zhang, Yueliang; Liu, Baosheng; Zhang, Zhichun; Wang, Lihua; Guo, Huifang; Li, Zhong; He, Peng; Liu, Zewen; Fang, Jichao

    2018-05-28

    Imidacloprid is a key insecticide used for controlling sucking insect pests, including the small brown planthopper (Laodelphax striatellus, Fallén) (Hemiptera: Delphacidae), an important agricultural pest of rice. A strain of L. striatellus (YN-ILR) developed 21-fold resistance when selected with imidacloprid on a susceptible YN strain. An in vitro study on piperonyl butoxide synergism indicated that enhanced detoxification mediated by cytochrome P450s contributed to imidacloprid resistance to some extent, and multiple P450 genes showed altered expression in the imidacloprid-resistant YN-ILR strain compared with the susceptible YN strain (CYP425B1-CYP6BD10 had 1.51- to 11.45-fold higher expression, CYP4CE2-CYP4DD1V2 had 0.12- to 0.57-fold lower expression). While there were no mutations in target nicotinic acetylcholine receptor (nAChR) genes, subunits of Lsα1, Lsβ1, and Lsβ3 in the YN-ILR strain showed 3.86-, 4.39-, and 2.59-fold higher expression and Lsa8 displayed 0.38-fold lower expression than the YN strain. Moreover, 21-fold moderate imidacloprid resistance in individuals of L. striatellus did not produce a fitness cost. The findings suggest that L. striatellus has the capacity to develop resistance to imidacloprid through P450 detoxification and potential target nAChR expression changes, and moderate imidacloprid resistance was not associated with a fitness cost.

  10. Development, validation and application of a sensitive analytical method for residue determination and dissipation of imidacloprid in sugarcane under tropical field condition.

    Science.gov (United States)

    Ramasubramanian, T; Paramasivam, M; Nirmala, R

    2016-06-01

    A simple and sensitive analytical method has been developed and validated for the determination of trace amounts of imidacloprid in/on sugarcane sett, stalk and leaf. The method optimized in the present study requires less volume of organic solvent and time. Hence, this method is suitable for high-throughput analyses involving large number of samples. The limit of detection (LOD) and limit of quantification (LOQ) of the method were 0.003 and 0.01 mg/kg, respectively. The recovery and relative standard deviation were more than 93 % and less than 4 %, respectively. Thus, it is obvious that the analytical method standardized in this study is more precise and accurate enough to determine the residues of imidacloprid in sugarcane sett, stalk and leaf. The dissipation and translocation of imidacloprid residues from treated cane setts to leaf and stalk were studied by adopting this method. In sugarcane setts, the residues of imidacloprid persisted up to 120 days with half-life of 15.4 days at its recommended dose (70 g a.i./ha). The residues of imidacloprid were found to be translocated from setts to stalk and leaf. The imidacloprid residues were detected up to 105 days in both leaf and stalk. Dipping of sugarcane setts in imidacloprid at its recommended dose may result in better protection of cane setts and established crop because of higher initial deposit (>100 mg/kg) and longer persistence (>120 days).

  11. Quality control of pesticide products

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-15

    In light of an established need for more efficient analytical procedures, this publication, which documents the findings of an IAEA coordinated research project (CRP) on “Quality Control of Pesticide Products”, simplifies the existing protocol for pesticide analysis while simultaneously upholding existing standards of quality. This publication includes both a report on the development work done in the CRP and a training manual for use by pesticide analysis laboratories. Based on peer reviewed and internationally recognized methods published by the Association of Analytical Communities (AOAC) and the Collaborative International Pesticides Analytical Council (CIPAC), this report provides laboratories with versatile tools to enhance the analysis of pesticide chemicals and to extend the scope of available analytical repertoires. Adoption of the proposed analytical methodologies promises to reduce laboratories’ use of solvents and the time spent on reconfiguration and set-up of analytical equipment.

  12. Quality control of pesticide products

    International Nuclear Information System (INIS)

    2009-07-01

    In light of an established need for more efficient analytical procedures, this publication, which documents the findings of an IAEA coordinated research project (CRP) on “Quality Control of Pesticide Products”, simplifies the existing protocol for pesticide analysis while simultaneously upholding existing standards of quality. This publication includes both a report on the development work done in the CRP and a training manual for use by pesticide analysis laboratories. Based on peer reviewed and internationally recognized methods published by the Association of Analytical Communities (AOAC) and the Collaborative International Pesticides Analytical Council (CIPAC), this report provides laboratories with versatile tools to enhance the analysis of pesticide chemicals and to extend the scope of available analytical repertoires. Adoption of the proposed analytical methodologies promises to reduce laboratories’ use of solvents and the time spent on reconfiguration and set-up of analytical equipment

  13. Pesticide reducing instruments

    DEFF Research Database (Denmark)

    Jacobsen, Lars-Bo; Jensen, Jørgen Dejgård; Andersen, Martin

    2005-01-01

    -mentioned models and tools. All three scenarios are constructed such that they result in the same welfare implication (measured by national consumption in the CGE model). The scenarios are: 1) pesticide taxes resulting in a 25 percent overall reduction; 2) use of unsprayed field margins, resulting in the same...... for improving bio-diversity and securing drinking water. That is, combining economic modeling with physical biological modeling and geological evaluation allows us to select unsprayed field margins as the most effective instrument. Sensitivity analysis conducted on bio-diversity suggest that this result...

  14. Determination of neonicotinoid pesticides residues in agricultural samples by solid-phase extraction combined with liquid chromatography-tandem mass spectrometry.

    Science.gov (United States)

    Xie, Wen; Han, Chao; Qian, Yan; Ding, Huiying; Chen, Xiaomei; Xi, Junyang

    2011-07-15

    This work reports a new sensitive multi-residue liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for detection, confirmation and quantification of six neonicotinoid pesticides (dinotefuran, thiamethoxam, clothiandin, imidacloprid, acetamiprid and thiacloprid) in agricultural samples (chestnut, shallot, ginger and tea). Activated carbon and HLB solid-phase extraction cartridges were used for cleaning up the extracts. Analysis is performed by LC-MS/MS operated in the multiple reaction monitoring (MRM) mode, acquiring two specific precursor-product ion transitions per target compound. Quantification was carried by the internal standard method with D(4)-labeled imidacloprid. The method showed excellent linearity (R(2)≥0.9991) and precision (relative standard deviation, RSD≤8.6%) for all compounds. Limits of quantification (LOQs) were 0.01 mg kg(-1) for chestnut, shallot, ginger sample and 0.02 mg kg(-1) for tea sample. The average recoveries, measured at three concentrations levels (0.01 mg kg(-1), 0.02 mg kg(-1) and 0.1 mg kg(-1) for chestnut, shallot, ginger sample, 0.02 mg kg(-1), 0.04 mg kg(-1) and 0.2 mg kg(-1) for tea sample), were in the range 82.1-108.5%. The method was satisfactorily validated for the analysis of 150 agricultural samples (chestnut, shallot, ginger and tea). Imidacloprid and acetamiprid were detected at concentration levels ranging from 0.05 to 3.6 mg kg(-1). Copyright © 2011 Elsevier B.V. All rights reserved.

  15. 75 FR 66095 - Pesticide Products; Registration Applications

    Science.gov (United States)

    2010-10-27

    ... manufacturer. Potentially affected entities may include, but are not limited to: Crop production (NAICS code... ingredients: Warfarin and Imidacloprid. Proposed use(s): Rangeland and non-crop areas to control black-tailed.... Proposed use(s): Bacterial disease control by suppression of citrus canker. Contact: Rita Kumar, (703) 308...

  16. 75 FR 62323 - Pesticide Management and Disposal; Standards for Pesticide Containers and Containment; Change to...

    Science.gov (United States)

    2010-10-08

    ... Pesticide Management and Disposal; Standards for Pesticide Containers and Containment; Change to Labeling... the pesticide container and containment regulations to provide an 8-month extension of the labeling... titled ``Pesticide Management and Disposal; Standards for Pesticide Containers and Containment'' (71 FR...

  17. Training Manual Occupational Pesticide Exposure & Health and Safe & Responsible Handling of Pesticides

    NARCIS (Netherlands)

    Maden, van der E.C.L.J.; Koomen, I.

    2016-01-01

    Pesticides are commonly used in the horticulture sector. While emphasis is often on the correct and efficient application of pesticides, the risk associated with application of pesticides receives less attention. Those working with pesticides need to know about occupational pesticide exposure and

  18. Management of stem borer (Chilo partellus Swinhoe in maize using conventional pesticides in Chitwan, Nepal

    Directory of Open Access Journals (Sweden)

    Saraswati Neupane

    2016-12-01

    Full Text Available The stem borer (Chilo partellus Swinhoe is one of the most destructive pests of maize crop. Research experimentations were carried out on maize to control stem borer using conventional pesticides under field condition during summer season of two consecutive years from 2015 to 2016 at Rampur, Chitwan. All used pesticides had significant effect (P≤0.05 on percent damage and crop yield over control. In 2015, the lower percent damage (5.3% with higher crop yield (4.52 t ha-1 and lowest insect score (1.00 was observed in plot sprayed with spinosad 45% EC at 0.5 ml L-1 of water followed by plot treated with chloropyriphos 50% EC+cypermethrin 5%EC @1.5ml L-1 of water with percent damage of 6.60%, crop yield (4.23 t ha-1 and insect score of 1.60. Almost similar trend of insect incidence along with damage percentage and yield data were observed in 2016. The higher percent damage control (79.06% was observed at the plot sprayed after spinosad 45% EC at 0.5 ml L-1 of water with higher crop yield (4.58 t ha-1 and lowest insect score (1.00 followed by the plot treated with imidacloprid 17.8% @ 0.5 ml L-1 of water with percent damage control of 73.10 %, crop yield (3.38 t/ha and insect sore 1.50. The highest percent damage (20.63% was observed in the control plot with lower yield (0.95 t ha-1 and highest insect score (6.00. Over the years, spinosad 45% EC at 0.5 ml L-1 of water was effective bio-pesticide to control maize stem borer damage and also increase the yield.

  19. Promising pesticide results

    International Nuclear Information System (INIS)

    Wallace, Paula

    2012-01-01

    Full text: Virotec Global Solutions has announced what it believes is the first successful destruction of intractable organochlorine pesticide contamination in industrial wastewater. Dichlorodiphenyltrichloroethane, otherwise known as DDT, is one of the most intractable and persistent chemical compounds known to man. In February remediation specialist Virotec reported it had been successful in reducing DDT contaminant levels. In addition to destroying DDT in wastewater, Virotec showed its ViroFlow Technology can reduce levels of two DDT metabolites (or breakdown products), DDD and DDE, along with an organo-phosphate insecticide called chlorpyrifos. Virotec was commissioned by a large pesticide and fertiliser company to find a way of using its ViroFlow suite of products to reliably reduce high levels of pesticides and heavy metals from wastewater and stormwater at an industrial site. “Along with our strategic partner Green Shadows Commercial from Tasmania, we were able to successfully reduce DDT from 108 parts per billion to under two parts per billion in industrial wastewater using a combination of ozofractionation and ElectroBind reagent,” said business development manager Gisela Barros. “In addition, we were successful in demonstrating similar reductions in Dichlorodiphenyldichloroethane (DDD) from 15.2 parts per billion to under 0.5 parts per billion, and Dichlorodiphenyldichloroethylene (DDE) from one part per billion to under accurate to around 0.5 parts per billion.” The level of detection for pesticides was 0.5 parts per billion (ppb). In addition, ViroFlow reduced chlorpyrifos from 7,972 ppb to 6.4 ppb, arsenic (a key ingredient in pesticide composition) from 0.13 parts per million (ppm) to 0.002 ppm, and zinc from 0.35 ppm to less than 0.005 ppm. “The significance of these findings cannot be overstated,” Barros said. “DDT and its metabolites are among the most persistent and toxic contaminants to be found in soil and groundwater and

  20. Responses of the cabbage seedpod weevil, Ceutorhynchus obstrictus (Marsham) (Coleoptera: Curculionidae), to seed treatments of canola (Brassica napus L.) with the neonicotinoid compounds clothianidin and imidacloprid.

    Science.gov (United States)

    Dosdall, Lloyd M

    2009-12-01

    The cabbage seedpod weevil, Ceutorhynchus obstrictus (Marsham), is a major pest in the production of canola (Brassica napus L.) in North America and Europe, and effective population control is often essential for economical crop production. In North America, neonicotinoid insecticides have been used for several years in canola as seed treatments for reducing herbivory by flea beetles. The neonicotinoids clothianidin and imidacloprid were investigated to determine their effects on preimaginal development and on emergence of new-generation adults of C. obstrictus in comparison with effects of lindane, a chlorinated hydrocarbon seed treatment. Mean numbers of second- and third-instar larvae were significantly higher in plants seed-treated with lindane than in plants treated with the neonicotinoid compounds, even though weevil oviposition was similar for all treatments. Emergence of new-generation adults was reduced by 52 and 39% for plants seed-treated with clothianidin and imidacloprid, respectively, compared with emergence from plants treated with lindane. Seed treatment with both clothianidin and imidacloprid produced systemic insecticidal effects on larvae of C. obstrictus, with clothianidin slightly more effective than imidacloprid. Use of clothianidin or imidacloprid as seed treatments can comprise an important component in the integrated management of cabbage seedpod weevil in canola. (c) 2009 Society of Chemical Industry.

  1. Inheritance mode and realized heritability of resistance to imidacloprid in the brown planthopper, Nilaparvata lugens (Stål) (Homoptera: Delphacidae).

    Science.gov (United States)

    Wang, Yan Hua; Liu, Xu Gan; Zhu, Yu Cheng; Wu, Sheng Gan; Li, Shu Yong; Chen, Wen Ming; Shen, Jin Liang

    2009-06-01

    The brown planthopper, Nilaparvata lugens (Stål), is a serious pest that causes enormous losses to the rice crop in Asia. The genetic basis of imidacloprid resistance was investigated in N. lugens. The resistant strain, selected for imidacloprid resistance from a field population of N. lugens collected from Nanjing, Jiangsu Province, China, showed a 964-fold resistance compared with the laboratory strain. Progenies of reciprocal crosses (F(1) and F(1)') showed similar dose-mortality responses (LC(50)) to imidacloprid, and also exhibited a similar degree of dominance (D), 0.58 for F(1) and 0.63 for F(1)'. Chi-square analyses of self-bred and backcross progenies (F(2), F(2)' and BC respectively) rejected the hypothesis for a single gene control of the resistance. The estimated realized heritability (h(2)) of imidacloprid resistance was 0.1141 in the resistant strain of N. lugens. The results showed that imidacloprid resistance in N. lugens was autosomal and was expressed as an incompletely dominant trait, probably controlled by multiple genes.

  2. Assessing the risk to green sturgeon from application of imidacloprid to control burrowing shrimp in Willapa Bay, Washington--Part II: controlled exposure studies.

    Science.gov (United States)

    Frew, John A; Grue, Christian E

    2015-11-01

    The activities of 2 species of burrowing shrimp have a negative impact on the growth and survival of oysters reared on intertidal mudflats in Willapa Bay and Grays Harbor, Washington (USA). To maintain viable harvests, oyster growers proposed the application of the neonicotinoid insecticide imidacloprid onto harvested beds for the control of burrowing shrimp. In test applications, water column concentrations of imidacloprid were relatively low and dissipated rapidly. The foraging activities of the green sturgeon (listed in the US Endangered Species Act) could result in exposure to higher, more sustained imidacloprid concentrations within sediment porewater and from the consumption of contaminated shrimp. Controlled experiments were conducted using surrogate white sturgeon to determine acute and chronic effect concentrations, to examine overt effects at more environmentally realistic concentrations and durations of exposure, and to assess chemical depuration. The 96-h median lethal concentration was 124 mg L(-1) , and the predicted 35-d no-observed-adverse-effect concentration was 0.7 mg L(-1) . No overt effects were observed following environmentally relevant exposures. Imidacloprid half-life in plasma was greater than 32 h. Measured concentrations of imidacloprid in porewater were significantly lower than the derived acute and chronic effect concentrations for white sturgeon. Exposure risk quotients were calculated using the effect concentrations and estimated environmental exposure. The resulting values were considerably below the level of concern for direct effects from either acute or chronic exposure to an endangered species. © 2015 SETAC.

  3. Evaluation of inhaled and cutaneous doses of imidacloprid during stapling ornamental plants in tunnels or greenhouses.

    Science.gov (United States)

    Aprea, Cristina; Lunghini, Liana; Banchi, Bruno; Peruzzi, Antonio; Centi, Letizia; Coppi, Luana; Bogi, Mirella; Marianelli, Enrico; Fantacci, Mariella; Catalano, Pietro; Benvenuti, Alessandra; Miligi, Lucia; Sciarra, Gianfranco

    2009-09-01

    The aim of this research was to assess dermal and respiratory exposure of workers to imidacloprid during manual operations with ornamental plants previously treated in greenhouses or tunnels. A total of 10 female workers, 5 in greenhouses and 5 in tunnels, were monitored for 3 or 5 consecutive days. Actual skin contamination, excluding hands, was evaluated using nine filter paper pads placed directly on the skin. To evaluate the efficacy of protective clothing in reducing occupational exposure we also placed four pads on top of the outer clothing. Hand contamination was evaluated by washing with 95% ethanol. Respiratory exposure was evaluated by personal air sampling. Respiratory dose was calculated on the basis of a lung ventilation of 15 l/min. Absorbed doses were calculated assuming a skin penetration of 10% and a respiratory retention of 100%. Dislodgeable foliar residues (DFRs) were determined during the days of re-entry in order to determine the dermal transfer factor. From the dependence of dermal exposure of hands from DFRs, a mean transfer factor was estimated to be 36.4 cm(2)/h. Imidacloprid was determined by liquid chromatography with selective mass detection and electrospray interface in all matrices analysed. Respiratory dose was 4.1+/-4.0 (0.1-14.3)% and 3.0+/-2.0 (0.6-6.9)% (mean+/-SD (range)) of the total real dose during work in tunnels and greenhouses, respectively. The estimated absorbed doses, 0.29+/-0.45 microg/kg (0.06-2.25 microg/kg) body weight and 0.32+/-0.18 microg/kg (0.07-0.66 microg/kg) body weight (mean+/-SD (range)) in tunnels and in greenhouses, respectively, were less than the acceptable operator exposure level of 0.15 mg/kg body weight and than the acceptable daily intake of 0.05 mg/kg body weight. The hands and exposed skin of all workers were found to be contaminated, indicating that greater precautions, such as daily changing of gloves and clothing, are necessary to reduce skin exposure.

  4. Long-term lessons on pesticide leaching obtained via the Danish Pesticide Leaching Assessment Programme

    DEFF Research Database (Denmark)

    Rosenbom, Anette E.; Olsen, Preben; Plauborg, Finn

    To avoid any unacceptable influence on the environment posed by pesticides and their degradation products, all pesticides used in the European Union needs authorization. The authorization procedure includes assessing the leaching risk of both pesticides and their degradation products...

  5. Better ways of using pesticides

    International Nuclear Information System (INIS)

    Hussain, M.

    1992-01-01

    The primary role of agriculture is to produce a reliable supply of wholesome food to feed the world's population, safely and without adverse effects on the environment. Pesticides have a crucial part to play in reducing the loss of food during production and after harvesting, and this article discusses how the use of pesticides can be made more efficient. Two particular examples of safer and more effective pesticide delivery systems are described, relating to tsetse fly control in Africa and to the control of weeds in a rice paddy or rice-fish mixed ecosystem. 45 refs, 6 figs

  6. Pesticide use and application: An Indian scenario

    International Nuclear Information System (INIS)

    Abhilash, P.C.; Singh, Nandita

    2009-01-01

    Agricultural development continues to remain the most important objective of Indian planning and policy. In the process of development of agriculture, pesticides have become an important tool as a plant protection agent for boosting food production. Further, pesticides play a significant role by keeping many dreadful diseases. However, exposure to pesticides both occupationally and environmentally causes a range of human health problems. It has been observed that the pesticides exposures are increasingly linked to immune suppression, hormone disruption, diminished intelligence, reproductive abnormalities and cancer. Currently, India is the largest producer of pesticides in Asia and ranks twelfth in the world for the use of pesticides. A vast majority of the population in India is engaged in agriculture and is therefore exposed to the pesticides used in agriculture. Although Indian average consumption of pesticide is far lower than many other developed economies, the problem of pesticide residue is very high in India. Pesticide residue in several crops has also affected the export of agricultural commodities in the last few years. In this context, pesticide safety, regulation of pesticide use, proper application technologies, and integrated pest management are some of the key strategies for minimizing human exposure to pesticides. There is a dearth of studies related to these issues in India. Therefore, the thrust of this paper was to review the technology of application of pesticides in India and recommend future strategies for the rational use of pesticides and minimizing the problems related to health and environment.

  7. Acute pesticide poisoning and pesticide registration in Central America

    International Nuclear Information System (INIS)

    Wesseling, Catharina; Corriols, Marianela; Bravo, Viria

    2005-01-01

    The International Code of Conduct on the Distribution and Use of Pesticides of the Food and Agriculture Organization (FAO) of the United Nations has been for 20 years the most acknowledged international initiative for reducing negative impact from pesticide use in developing countries. We analyzed pesticide use and poisoning in Central America, particularly in Costa Rica and Nicaragua, and evaluated whether registration decisions are based on such data, in accordance with the FAO Code. Extensive use of very hazardous pesticides continues in Central America and so do poisonings with organophosphates, carbamates, endosulfan and paraquat as the main causative agents. Central American governments do not carry out or commission scientific risk assessments. Instead, guidelines from international agencies are followed for risk management through the registration process. Documentation of pesticide poisonings during several decades never induced any decision to ban or restrict a pesticide. However, based on the official surveillance systems, in 2000, the ministers of health of the seven Central American countries agreed to ban or restrict twelve of these pesticides. Now, almost 4 years later, restrictions have been implemented in El Salvador and in Nicaragua public debate is ongoing. Chemical and agricultural industries do not withdraw problematic pesticides voluntarily. In conclusion, the registration processes in Central America do not comply satisfactorily with the FAO Code. However, international regulatory guidelines are important in developing countries, and international agencies should strongly extend its scope and influence, limiting industry involvement. Profound changes in international and national agricultural policies, steering towards sustainable agriculture based on non-chemical pest management, are the only way to reduce poisonings

  8. Imidacloprid Promotes High Fat Diet-Induced Adiposity in Female C57BL/6J Mice and Enhances Adipogenesis in 3T3-L1 Adipocytes via the AMPKα-Mediated Pathway.

    Science.gov (United States)

    Sun, Quancai; Qi, Weipeng; Xiao, Xiao; Yang, Szu-Hao; Kim, Daeyoung; Yoon, Kyong Sup; Clark, John M; Park, Yeonhwa

    2017-08-09

    Imidacloprid, a neonicotinoid insecticide, was previously reported to enhance adipogenesis and resulted in insulin resistance in cell culture models. It was also reported to promote high fat diet-induced obesity and insulin resistance in male C57BL/6J mice. Thus, the goal of the present study was to determine the effects of imidacloprid and dietary fat interaction on the development of adiposity and insulin resistance in female C57BL/6J mice. Mice were fed with a low (4% w/w) or high fat (20% w/w) diet containing imidacloprid (0.06, 0.6, or 6 mg/kg bw/day) for 12 weeks. Mice fed with imidacloprid (0.6 mg/kg bw/day) significantly enhanced high fat diet-induced weight gain and adiposity. Treatment with imidacloprid significantly increased serum insulin levels with high fat diet without effects on other markers of glucose homeostasis. AMPKα activation was significantly inhibited by 0.6 and 6 mg imidacloprid/kg bw/day in white adipose tissue. Moreover, AMPKα activation with 5-aminoimidazole-4-carboxamide ribonucleotide abolished the effects of imidacloprid (10 μM) on enhanced adipogenesis in 3T3-L1 adipocytes. N-Acetyl cysteine also partially reversed the effects of imidacloprid on reduced phosphorylation of protein kinase B (AKT) in C2C12 myotubes. These results indicate that imidacloprid may potentiate high fat diet-induced adiposity in female C57BL/6J mice and enhance adipogenesis in 3T3-L1 adipocytes via the AMPKα-mediated pathway. Imidacloprid might also influence glucose homeostasis partially by inducing cellular oxidative stress in C2C12 myotubes.

  9. Radiation induced pesticidal microbes

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ki Yup; Lee, Y. K.; Kim, J. S.; Kim, J. K.; Lee, S. J.; Lim, D. S

    2001-01-01

    To isolate pesticidal microbes against plant pathogenic fungi, 4 strains of bacteria(K1. K3, K4, YS1) were isolated from mushroom compost and hot spring. K4, K1, K3, YS1 strain showed wide antifungal spectrum and high antifungal activities against 12 kinds of fungi. Specific proteins and the specific transcribed genes were found from the YS1 and its radiation-induced mutants. And knock-out mutants of antifungal activity were derived by transposon mutagenesis. From these knock-out mutants, the antifungal activity related genes and its modification by gamma-ray radiation are going to be studied. These results suggested that radiation could be an useful tool for the induction of functional mutants.

  10. Radiation induced pesticidal microbes

    International Nuclear Information System (INIS)

    Kim, Ki Yup; Lee, Y. K.; Kim, J. S.; Kim, J. K.; Lee, S. J.; Lim, D. S.

    2001-01-01

    To isolate pesticidal microbes against plant pathogenic fungi, 4 strains of bacteria(K1. K3, K4, YS1) were isolated from mushroom compost and hot spring. K4, K1, K3, YS1 strain showed wide antifungal spectrum and high antifungal activities against 12 kinds of fungi. Specific proteins and the specific transcribed genes were found from the YS1 and its radiation-induced mutants. And knock-out mutants of antifungal activity were derived by transposon mutagenesis. From these knock-out mutants, the antifungal activity related genes and its modification by gamma-ray radiation are going to be studied. These results suggested that radiation could be an useful tool for the induction of functional mutants

  11. Control of pesticides 2003

    DEFF Research Database (Denmark)

    Krongaard, T.; Petersen, K. K.; Christoffersen, C.

    . 3) Insecticides containing cypermethrin, deltamethrin, lambda-cyhalothrin, methoprene and cyromazine. 4) Plant growth regulators containing 1-napthylacetic acid. All products were examined for the content of the respective active ingredients and for the content of OPEO and NPEO. All samples but one...... containing methoprene complied with the accepted tolerance limits with respect to the content of the active ingredient as specified in Danish Statutory Order on pesticides. None of the 44 examined samples contained OPEO, but 5 of the samples contained NPEO. Three of these five samples were produced before...... the agreement. On three products, the content of active ingredient was declared only in g/L, but not in % (w/w). One product was declared as the ester and not as the acid...

  12. Crystal structures of Lymnaea stagnalis AChBP in complex with neonicotinoid insecticides imidacloprid and clothianidin.

    Science.gov (United States)

    Ihara, Makoto; Okajima, Toshihide; Yamashita, Atsuko; Oda, Takuma; Hirata, Koichi; Nishiwaki, Hisashi; Morimoto, Takako; Akamatsu, Miki; Ashikawa, Yuji; Kuroda, Shun'ichi; Mega, Ryosuke; Kuramitsu, Seiki; Sattelle, David B; Matsuda, Kazuhiko

    2008-06-01

    Neonicotinoid insecticides, which act on nicotinic acetylcholine receptors (nAChRs) in a variety of ways, have extremely low mammalian toxicity, yet the molecular basis of such actions is poorly understood. To elucidate the molecular basis for nAChR-neonicotinoid interactions, a surrogate protein, acetylcholine binding protein from Lymnaea stagnalis (Ls-AChBP) was crystallized in complex with neonicotinoid insecticides imidacloprid (IMI) or clothianidin (CTD). The crystal structures suggested that the guanidine moiety of IMI and CTD stacks with Tyr185, while the nitro group of IMI but not of CTD makes a hydrogen bond with Gln55. IMI showed higher binding affinity for Ls-AChBP than that of CTD, consistent with weaker CH-pi interactions in the Ls-AChBP-CTD complex than in the Ls-AChBP-IMI complex and the lack of the nitro group-Gln55 hydrogen bond in CTD. Yet, the NH at position 1 of CTD makes a hydrogen bond with the backbone carbonyl of Trp143, offering an explanation for the diverse actions of neonicotinoids on nAChRs.

  13. Efficacy and safety of imidacloprid/moxidectin spot-on solution and fenbendazole in the treatment of dogs naturally infected with Angiostrongylus vasorum (Baillet, 1866)

    DEFF Research Database (Denmark)

    Willesen, Jakob Lundgren; Kristensen, Annemarie Thuri; Jensen, Asger Lundorff

    2007-01-01

    A randomized, blinded, controlled multicentre field trial study was conducted to evaluate the efficacy and safety of imidacloprid 10%/moxidectin 2.5% spot-on solution and fenbendazole in treating dogs naturally infected with Angiostrongylus vasorum. Dogs were randomly treated either with a single...... dose of 0.1 ml/kg bodyweight of imidacloprid 10%/moxidectin 2.5% spot-on solution or with 25 mg/kg bodyweight fenbendazole per os for 20 days. The study period was 42 days with dogs being examined on days 0, 7 and 42. The primary efficacy parameter was the presence of L1 larvae in faecal samples...... evaluated by a Baermann test from three consecutive days. Thoracic radiographs performed on each visit were being taken as a paraclinical parameter to support the results of the Baermann test. Twenty-seven dogs in the imidacloprid/moxidectin group and 23 dogs in the fenbendazole group completed the study...

  14. Dissecting the insect metabolic machinery using twin ion mass spectrometry: a single P450 enzyme metabolizing the insecticide imidacloprid in vivo.

    Science.gov (United States)

    Hoi, Kin Kuan; Daborn, Phillip J; Battlay, Paul; Robin, Charles; Batterham, Philip; O'Hair, Richard A J; Donald, William A

    2014-04-01

    Insecticide resistance is one of the most prevalent examples of anthropogenic genetic change, yet our understanding of metabolic-based resistance remains limited by the analytical challenges associated with rapidly tracking the in vivo metabolites of insecticides at nonlethal doses. Here, using twin ion mass spectrometry analysis of the extracts of whole Drosophila larvae and excreta, we show that (i) eight metabolites of the neonicotinoid insecticide, imidacloprid, can be detected when formed by susceptible larval genotypes and (ii) the specific overtranscription of a single gene product, Cyp6g1, associated with the metabolic resistance to neonicotinoids, results in a significant increase in the formation of three imidacloprid metabolites that are formed in C-H bond activation reactions; that is, Cyp6g1 is directly linked to the enhanced metabolism of imidacloprid in vivo. These results establish a rapid and sensitive method for dissecting the metabolic machinery of insects by directly linking single gene products to insecticide metabolism.

  15. Selection for Resistance to Imidacloprid in the House Fly (Diptera: Muscidae)

    Science.gov (United States)

    House flies, Musca domestica L., continue to be a primary pest of livestock facilities worldwide. This pest also has shown a propensity for pesticide resistance development when under high selection pressures. In this study a house fly strain, FDm was created by a 20% contribution from each of fiv...

  16. Individual Pesticides in Registration Review

    Science.gov (United States)

    You can used the Chemical Search database to search pesticides by chemical name and find their registration review dockets, along with Work Plans, risk assessments, interim and final decisions, tolerance rules, and cancellation actions.

  17. Pesticide Product Information System (PPIS)

    Science.gov (United States)

    PPIS includes registrant name and address, chemical ingredients, toxicity category, product names, distributor brand names, site/pest uses, pesticidal type, formulation code, and registration status for all products registered in the U.S.

  18. Toxicity of Bifenthrin and Mixtures of Bifenthrin Plus Acephate, Imidacloprid, Thiamethoxam, or Dicrotophos to Adults of Tarnished Plant Bug (Hemiptera: Miridae).

    Science.gov (United States)

    Jones, Moneen M; Duckworth, Jessica L; Robertson, Jacqueline

    2018-04-02

    To assess the toxicity of bifenthrin and four mixtures of insecticides to tarnished plant bug, we used an insecticide dip method of green bean to treat adults of a laboratory colony; mortality was assessed after 48 h. LC50s for imidacloprid, bifenthrin, acephate, thiamethoxam, and dicrotophos were 0.12, 0.39, 0.62, 0.67, and 3.96 ppm, respectively. LC75s for imidacloprid, bifenthrin, acephate, thiamethoxam, and dicrotophos were 0.61, 4.22, 5.10, 2.65, and 7.86 ppm, respectively. Based on the LC50s and LC75s, dicrotophos was much less toxic than the other chemicals tested. PoloMix software was used to determine syngerism, antagonism, or addition effects of the mixtures. Three out of four analyses of the joint action of bifenthrin plus imidacloprid or acephate or dicrotophos showed that toxicity was not independent and not correlated. For bifenthrin plus dicrotophos, observed mortality was greater than expected mortality at most concentrations suggesting synergism. Mixtures of bifenthrin plus imidacloprid and bifenthrin plus acephate showed observed mortality significantly less than expected, suggesting antagonism. LC50s for bifenthrin plus dicrotophos, acephate, imidacloprid, and thiamethoxam were 0.38, 1.06, 0.17, and 0.26 ppm, respectively. LC75s for bifenthrin plus dicrotophos, acephate, imidacloprid, and thiamethoxam were 13.61, 13.18, 0.67, and 0.80 ppm, respectively. Based on the LC50s and LC75s, bifenthrin plus acephate was 3- to 10-fold less toxic than the other chemicals tested. Bifenthrin plus acephate is frequently used in tank mixes to control tarnished plant bug and other cotton pests, and the effectiveness of each individual chemical appears to be reduced in one to one ratio mixtures.

  19. Reduction in mRNA and protein expression of a nicotinic acetylcholine receptor α8 subunit is associated with resistance to imidacloprid in the brown planthopper, Nilaparvata lugens.

    Science.gov (United States)

    Zhang, Yixi; Wang, Xin; Yang, Baojun; Hu, Yuanyuan; Huang, Lixin; Bass, Chris; Liu, Zewen

    2015-11-01

    Target-site resistance is commonly caused by qualitative changes in insecticide target-receptors and few studies have implicated quantitative changes in insecticide targets in resistance. Here we show that resistance to imidacloprid in a selected strain of Nilaparvata lugens is associated with a reduction in expression levels of the nicotinic acetylcholine receptor (nAChR) subunit Nlα8. Synergism bioassays of the selected strain suggested resistance was conferred, in part, by a target-site mechanism. Sequencing of N. lugens nAChR subunit genes identified no mutations associated with resistance, however, a decrease in mRNA and protein levels of Nlα8 was observed during selection. RNA interference knockdown of Nlα8 decreased the sensitivity of N. lugens to imidacloprid, demonstrating that a decrease in Nlα8 expression is sufficient to confer resistance in vivo. Radioligand binding assays revealed that the affinity of the high-affinity imidacloprid-binding site of native nAChRs was reduced by selection, and reducing the amount of Nlα8 cRNA injected into Xenopus oocytes significantly decreased imidacloprid potency on recombinant receptors. Taken together, these results provide strong evidence that a decrease in Nlα8 levels confers resistance to imidacloprid in N. lugens, and thus provides a rare example of target-site resistance associated with a quantitative rather than qualitative change. In insects, target-site mutations often cause high resistance to insecticides, such as neonicotinoids acting on nicotinic acetylcholine receptors (nAChRs). Here we found that a quantitative change in target-protein level, decrease in mRNA and protein levels of Nlα8, contributed importantly to imidacloprid resistance in Nilaparvata lugens. This finding provides a new target-site mechanism of insecticide resistance. © 2015 International Society for Neurochemistry.

  20. 77 FR 74003 - Pesticides; Draft Guidance for Pesticide Registrants on Antimicrobial Pesticide Products With...

    Science.gov (United States)

    2012-12-12

    ... Insecticide, Fungicide, and Rodenticide Act (FIFRA) or are required to register pesticides. The following list... remediation, on nonporous and porous surfaces, for residual activity, for mold prevention, and in heating...

  1. Household pesticide usage in the United States.

    Science.gov (United States)

    Savage, E P; Keefe, T J; Wheeler, H W; Mounce, L; Helwic, L; Applehans, F; Goes, E; Goes, T; Mihlan, G; Rench, J; Taylor, D K

    1981-01-01

    A total of 10,000 U.S. households in 25 standard metropolitan statistical areas and 25 counties were included in the United States. More than 8,200 households granted an interview. Nine of every ten households in the United States used some types of pesticide in their house, garden, or yard. Households in the southeastern United States used the most pesticides. Although more than 500 different pesticide formulations were used by the sampled households, 15 pesticides accounted for 65.5% of all pesticides reported in this study. Thirteen of these 15 pesticides were insecticides, one was a herbicide, and one was a rodenticide.

  2. Residential Agricultural Pesticide Exposures and Risk of Neural Tube Defects and Orofacial Clefts Among Offspring in the San Joaquin Valley of California

    Science.gov (United States)

    Yang, Wei; Carmichael, Suzan L.; Roberts, Eric M.; Kegley, Susan E.; Padula, Amy M.; English, Paul B.; Shaw, Gary M.

    2014-01-01

    We examined whether early gestational exposures to pesticides were associated with an increased risk of anencephaly, spina bifida, cleft lip with or without cleft palate (CLP), or cleft palate only. We used population-based data along with detailed information from maternal interviews. Exposure estimates were based on residential proximity to agricultural pesticide applications during early pregnancy. The study population derived from the San Joaquin Valley, California (1997–2006). Analyses included 73 cases with anencephaly, 123 with spina bifida, 277 with CLP, and 117 with cleft palate only in addition to 785 controls. A total of 38% of the subjects were exposed to 52 chemical groups and 257 specific chemicals. There were relatively few elevated odds ratios with 95% confidence intervals that excluded 1 after adjustment for relevant covariates. Those chemical groups included petroleum derivatives for anencephaly, hydroxybenzonitrile herbicides for spina bifida, and 2,6-dinitroaniline herbicides and dithiocarbamates-methyl isothiocyanate for CLP. The specific chemicals included 2,4-D dimethylamine salt, methomyl, imidacloprid, and α-(para-nonylphenyl)-ω-hydroxypoly(oxyethylene) phosphate ester for anencephaly; the herbicide bromoxynil octanoate for spina bifida; and trifluralin and maneb for CLP. Adjusted odds ratios ranged from 1.6 to 5.1. Given that such odds ratios might have arisen by chance because of the number of comparisons, our study showed a general lack of association between a range of agricultural pesticide exposures and risks of selected birth defects. PMID:24553680

  3. Clothianidin and Imidacloprid Residues in Poa annua (Poales: Poaceae) and Their Effects on Listronotus maculicollis (Coleoptera: Curculionidae).

    Science.gov (United States)

    Clavet, Christopher; Requintina, Matthew; Hampton, Emily; Cowles, Richard S; Byrne, Frank J; Alm, Steven R

    2014-12-01

    Competitive enzyme-linked immunosorbent assay was used to quantify the amounts of the neonicotinoids clothianidin and imidacloprid in Poa annua L. clippings from treated golf course fairways. Average clothianidin residues 7 d after application ranged from 674 to 1,550 ng/g tissue in 2012 and 455-2,220 ng/g tissue in 2013. Average clothianidin residues the day of application ranged from 17,100-38,800 ng/g tissue in 2014. Average imidacloprid residues 7 d after treatment ranged from 1,950-3,030 ng/g tissue in 2012 and 7,780-9,230 ng/g tissue in 2013. Average imidacloprid residues the day of application ranged from 31,500-40,400 ng/g tissue in 2014. Neonicotinoid or bifenthrin-neonicotinoid combination products applied in field plots in 2012 did not significantly reduce the numbers of larvae relative to the untreated control. However, in 2013, statistically significant reductions in the numbers of larvae recovered from treated field plots were associated with the presence of bifenthrin alone or when used in combination with neonicotinoid active ingredients. Listronotus maculicollis (Kirby) adults caged on neonicotinoid-, bifenthrin-, and bifenthrin-neonicotinoid-treated P. annua turf plugs fed on P. annua leaves, but mortality was only highly significantly different between treated and untreated foliage when weevils were placed on treated foliage the day after treatment and allowed to feed for 7 d. The modest degree of population suppression with bifenthrin in these experiments may not be adequate to justify the continued use of these products due to the increased risk of insecticide resistance and disruption of biological control. © 2014 Entomological Society of America.

  4. Chronic exposure of imidacloprid and clothianidin reduce queen survival, foraging, and nectar storing in colonies of Bombus impatiens.

    Directory of Open Access Journals (Sweden)

    Jamison Scholer

    Full Text Available In an 11-week greenhouse study, caged queenright colonies of Bombus impatiens Cresson, were fed treatments of 0 (0 ppb actual residue I, imidacloprid; C, clothianidin, 10 (14 I, 9 C, 20 (16 I, 17C, 50 (71 I, 39 C and 100 (127 I, 76 C ppb imidacloprid or clothianidin in sugar syrup (50%. These treatments overlapped the residue levels found in pollen and nectar of many crops and landscape plants, which have higher residue levels than seed-treated crops (less than 10 ppb, corn, canola and sunflower. At 6 weeks, queen mortality was significantly higher in 50 ppb and 100 ppb and by 11 weeks in 20 ppb-100 ppb neonicotinyl-treated colonies. The largest impact for both neonicotinyls starting at 20 (16 I, 17 C ppb was the statistically significant reduction in queen survival (37% I, 56% C ppb, worker movement, colony consumption, and colony weight compared to 0 ppb treatments. Bees at feeders flew back to the nest box so it appears that only a few workers were collecting syrup in the flight box and returning the syrup to the nest. The majority of the workers sat immobilized for weeks on the floor of the flight box without moving to fed at sugar syrup feeders. Neonicotinyl residues were lower in wax pots in the nest than in the sugar syrup that was provided. At 10 (14 ppb I and 50 (39 ppb C, fewer males were produced by the workers, but queens continued to invest in queen production which was similar among treatments. Feeding on imidacloprid and clothianidin can cause changes in behavior (reduced worker movement, consumption, wax pot production, and nectar storage that result in detrimental effects on colonies (queen survival and colony weight. Wild bumblebees depending on foraging workers can be negatively impacted by chronic neonicotinyl exposure at 20 ppb.

  5. Chronic exposure of imidacloprid and clothianidin reduce queen survival, foraging, and nectar storing in colonies of Bombus impatiens.

    Science.gov (United States)

    Scholer, Jamison; Krischik, Vera

    2014-01-01

    In an 11-week greenhouse study, caged queenright colonies of Bombus impatiens Cresson, were fed treatments of 0 (0 ppb actual residue I, imidacloprid; C, clothianidin), 10 (14 I, 9 C), 20 (16 I, 17C), 50 (71 I, 39 C) and 100 (127 I, 76 C) ppb imidacloprid or clothianidin in sugar syrup (50%). These treatments overlapped the residue levels found in pollen and nectar of many crops and landscape plants, which have higher residue levels than seed-treated crops (less than 10 ppb, corn, canola and sunflower). At 6 weeks, queen mortality was significantly higher in 50 ppb and 100 ppb and by 11 weeks in 20 ppb-100 ppb neonicotinyl-treated colonies. The largest impact for both neonicotinyls starting at 20 (16 I, 17 C) ppb was the statistically significant reduction in queen survival (37% I, 56% C) ppb, worker movement, colony consumption, and colony weight compared to 0 ppb treatments. Bees at feeders flew back to the nest box so it appears that only a few workers were collecting syrup in the flight box and returning the syrup to the nest. The majority of the workers sat immobilized for weeks on the floor of the flight box without moving to fed at sugar syrup feeders. Neonicotinyl residues were lower in wax pots in the nest than in the sugar syrup that was provided. At 10 (14) ppb I and 50 (39) ppb C, fewer males were produced by the workers, but queens continued to invest in queen production which was similar among treatments. Feeding on imidacloprid and clothianidin can cause changes in behavior (reduced worker movement, consumption, wax pot production, and nectar storage) that result in detrimental effects on colonies (queen survival and colony weight). Wild bumblebees depending on foraging workers can be negatively impacted by chronic neonicotinyl exposure at 20 ppb.

  6. Chronic Exposure of Imidacloprid and Clothianidin Reduce Queen Survival, Foraging, and Nectar Storing in Colonies of Bombus impatiens

    Science.gov (United States)

    Scholer, Jamison; Krischik, Vera

    2014-01-01

    In an 11-week greenhouse study, caged queenright colonies of Bombus impatiens Cresson, were fed treatments of 0 (0 ppb actual residue I, imidacloprid; C, clothianidin), 10 (14 I, 9 C), 20 (16 I, 17C), 50 (71 I, 39 C) and 100 (127 I, 76 C) ppb imidacloprid or clothianidin in sugar syrup (50%). These treatments overlapped the residue levels found in pollen and nectar of many crops and landscape plants, which have higher residue levels than seed-treated crops (less than 10 ppb, corn, canola and sunflower). At 6 weeks, queen mortality was significantly higher in 50 ppb and 100 ppb and by 11 weeks in 20 ppb–100 ppb neonicotinyl-treated colonies. The largest impact for both neonicotinyls starting at 20 (16 I, 17 C) ppb was the statistically significant reduction in queen survival (37% I, 56% C) ppb, worker movement, colony consumption, and colony weight compared to 0 ppb treatments. Bees at feeders flew back to the nest box so it appears that only a few workers were collecting syrup in the flight box and returning the syrup to the nest. The majority of the workers sat immobilized for weeks on the floor of the flight box without moving to fed at sugar syrup feeders. Neonicotinyl residues were lower in wax pots in the nest than in the sugar syrup that was provided. At 10 (14) ppb I and 50 (39) ppb C, fewer males were produced by the workers, but queens continued to invest in queen production which was similar among treatments. Feeding on imidacloprid and clothianidin can cause changes in behavior (reduced worker movement, consumption, wax pot production, and nectar storage) that result in detrimental effects on colonies (queen survival and colony weight). Wild bumblebees depending on foraging workers can be negatively impacted by chronic neonicotinyl exposure at 20 ppb. PMID:24643057

  7. Prevention of canine leishmaniosis in a hyper-endemic area using a combination of 10% imidacloprid/4.5% flumethrin.

    Directory of Open Access Journals (Sweden)

    Domenico Otranto

    Full Text Available Dogs are the main reservoir hosts of Leishmania infantum, the agent of human zoonotic visceral leishmaniosis. This study investigated the efficacy of a polymer matrix collar containing a combination of 10% imidacloprid and 4.5% flumethrin as a novel prophylactic measure to prevent L. infantum infections in young dogs from a hyper-endemic area of southern Italy, with a view towards enhancing current control strategies against both human and canine leishmaniosis.The study was carried out on 124 young dogs, of which 63 were collared (Group A while 61 were left untreated (Group B, from March-April 2011 until March 2012. Blood and skin samples were collected at baseline (April 2011 and at the first, second, third and fourth follow-up time points (July, September 2011 and November 2011, and March 2012, respectively. Bone marrow and conjunctiva were sampled at baseline and at the fourth follow-up. Serological, cytological and molecular tests were performed to detect the presence of L. infantum in the different tissues collected. At the end of the trial, no dog from Group A proved positive for L. infantum at any follow-up, whereas 22 dogs from Group B were infected (incidence density rate = 45.1%; therefore, the combination of 10% imidacloprid and 4.5% flumethrin was 100% efficacious for the prevention of L. infantum infection in young dogs prior to their first exposure to the parasite in a hyper-endemic area for CanL.The use of collars containing 10% imidacloprid and 4.5% flumethrin conferred long-term protection against infection by L. infantum to dogs located in a hyper-endemic area, thus representing a reliable and sustainable strategy to decrease the frequency and spread of this disease among the canine population which will ultimately result in the reduction of associated risks to human health.

  8. Efficacy of a combination of 10% imidacloprid and 1% moxidectin against Caparinia tripilis in African pygmy hedgehog (Atelerix albiventris

    Directory of Open Access Journals (Sweden)

    Kim Kyu-Rim

    2012-08-01

    Full Text Available Abstract Background The efficacy and safety of a combination formulation of 10% imidacloprid + 1.0% moxidectin spot-on (Advocate® for Cats, Bayer Animal Health GmbH, Leverkusen, Germany was tested in 40 African pygmy hedgehogs (Atelerix albiventris naturally infested with Caparinia tripilis. Methods The optimal dosage level of the combination for hedgehogs was determined by assigning 20 hedgehogs into three treatment groups (0.1, 0.4 and 1.6 ml/Kg b.w., and one untreated control group of 5 hedgehogs each. Twenty naturally infested hedgehogs were then randomly assigned to either treatment or control group with 10 animals each, and the number of live mites was counted from 13 body regions on day 0, 3, 9, 16, and 30 after single treatment at the dosage level of 0.1 ml/Kg. Results Before the chemotherapy, the highest density of mite was observed in external ear canals followed by the dorsal and the lowest in the ventral regions of the body surface. The dosage level of 0.1 ml/Kg, which corresponded to the recommended dosage level for cats, containing 10 mg imidacloprid and 1 mg moxidectin was also the optimal dosage level for hedgehogs. No hedgehogs in the treatment group showed live mites from day 3 post treatment. Side effects such as ataxia, depression, nausea, and weight fluctuation were not observed during the whole period of study. Conclusions This report suggests that a combination formulation of 0.1 ml/Kg of 10% imidacloprid + 1% moxidectin spot-on for cats is also useful for the control of Caparinia tripilis infestation in hedgehogs.

  9. Alteration of carbohydrates metabolism and midgut glucose absorption in Gromphadorhina portentosa after subchronic exposure to imidacloprid and fenitrothion.

    Science.gov (United States)

    Sawczyn, Tomasz; Dolezych, Bogdan; Klosok, Marcin; Augustyniak, Maria; Stygar, Dominika; Buldak, Rafal J; Kukla, Michal; Michalczyk, Katarzyna; Karcz-Socha, Iwona; Zwirska-Korczala, Krystyna

    2012-01-01

    This study was undertaken to test the hypothesis that following exposure to insecticides, changes take place in the metabolism of carbohydrates and absorption in the midgut of insects. The Madagascar hissing cockroach (Gromphadorhina portentosa) was chosen for the experiment as a model organism, due to it being easy to breed and its relatively large alimentary tract, which was important when preparing the microperfusion midgut bioassay. In each group of cockroaches treated with imidacloprid and fenitrothion, absorption of glucose, expressed as the area under the curve (AUC), was elevated compared to the control group. Glucose in the hemolymph of the examined insects was present in a vestigial amount, often below the threshold of determination, so the determinable carbohydrate indices were: hemolymph trehalose concentration and fat body glycogen content. The level of trehalose found in the hemolymph of insects when exposed to fenitrothion, and irrespective of the level of concentration mixed into food, were significantly lower when comparing to the control samples. Imidacloprid acted analogically with one exception at the concentration of 10 mg·kg(-1) dry food where trehalose concentration did not differ from the control values. Coupling with fat body glycogen concentration was less visible and appeared only at the concentrations of 5 and 10 mg imidacloprid·kg(-1) dry food. As described in this study changes in the sugar distribution and midgut glucose absorption indicate that insects cover the increased energy needs induced by insecticides; also at the gastrointestinal tract level. The result indicates that the midgut glucose absorption parameters could be considered as a non-specific biomarker of insecticide toxicity.

  10. Modeling photodegradation kinetics of three systemic neonicotinoids-dinotefuran, imidacloprid, and thiamethoxam-in aqueous and soil environment.

    Science.gov (United States)

    Kurwadkar, Sudarshan; Evans, Amanda; DeWinne, Dustan; White, Peter; Mitchell, Forrest

    2016-07-01

    Environmental presence and retention of commonly used neonicotinoid insecticides such as dinotefuran (DNT), imidacloprid (IMD), and thiamethoxam (THM) are a cause for concern and prevention because of their potential toxicity to nontarget species. In the present study the kinetics of the photodegradation of these insecticides were investigated in water and soil compartments under natural light conditions. The results suggest that these insecticides are fairly unstable in both aqueous and soil environments when exposed to natural sunlight. All 3 insecticides exhibit strong first-order degradation rate kinetics in the aqueous phase, with rate constants kDNT , kIMD , and kTHM of 0.20 h(-1) , 0.30 h(-1) , and 0.18 h(-1) , respectively. However, in the soil phase, the modeled photodegradation kinetics appear to be biphasic, with optimal rate constants k1DNT and k2DNT of 0.0198 h(-1) and 0.0022 h(-1) and k1THM and k2THM of 0.0053 h(-1) and 0.0014 h(-1) , respectively. Differentially, in the soil phase, imidacloprid appears to follow the first-order rate kinetics with a kIMD of 0.0013 h(-1) . These results indicate that all 3 neonicotinoids are photodegradable, with higher degradation rates in aqueous environments relative to soil environments. In addition, soil-encapsulated imidacloprid appears to degrade slowly compared with dinotefuran and thiamethoxam and does not emulate the faster degradation rates observed in the aqueous phase. Environ Toxicol Chem 2016;35:1718-1726. © 2015 SETAC. © 2015 SETAC.

  11. 75 FR 33705 - Pesticide Management and Disposal; Standards for Pesticide Containers and Containment; Change to...

    Science.gov (United States)

    2010-06-15

    ... Pesticide Management and Disposal; Standards for Pesticide Containers and Containment; Change to Labeling... the pesticide container and containment regulations to provide a 4-month extension of the 40 CFR 156... pesticide labels to comply with the label requirements in the container and containment regulations. DATES...

  12. Human intestinal absorption of imidacloprid with Caco-2 cells as enterocyte model

    International Nuclear Information System (INIS)

    Brunet, Jean-Luc; Maresca, Marc; Fantini, Jacques; Belzunces, Luc P.

    2004-01-01

    In order to assess the risk to mammals of a chronic exposure to imidacloprid (IMI), we investigated its absorption with the human intestinal Caco-2 cell line. Measurements of transepithelial transport revealed an apparent permeability coefficient of 21.6 x 10 -6 ± 3.2 x 10 -6 cm/s reflecting a 100% absorption. The comparison of apical to basal (A-B) and basal to apical (B-A) transports showed that the monolayer presents a basal to apical polarized transport. Studies of apical uptake demonstrated that the transport was concentration-dependent and not saturable from 5 to 200 μM. Arrhenius plot analysis revealed two apparent activation energies, E a(4-12deg . C) = 63.8 kJ/mol and E a(12-37deg. C) 18.2 kJ/mol, suggesting two temperature-dependent processes. IMI uptake was equivalent when it was performed at pH 6.0 or 7.4. Depletion of Na + from the transport buffer did not affect the uptake, indicating that a sodium-dependent transporter was not involved. Decrease of uptake with sodium-azide or after cell surface trypsin (Ti) treatment suggested the involvement of a trypsin-sensitive ATP-dependent transporter. Investigations on apical efflux demonstrated that initial velocities paralleled the increase of loading concentrations. A cell surface trypsin treatment did not affect the apical efflux. The lack of effect when the efflux was performed against an IMI concentration gradient suggested that an energy-dependent transporter was involved. However, the inhibition of P-glycoproteins (P-gp) and multidrug resistance-associated proteins (MRP) by taxol, vincristine, and daunorubicine had no effect on IMI intracellular accumulation suggesting the involvement of transporters distinct from classical ATP binding cassette transport (ABC-transport) systems. All results suggest that IMI is strongly absorbed in vivo by inward and outward active transporters

  13. Imidacloprid sorption and transport in cropland, grass buffer and riparian buffer soils

    Science.gov (United States)

    Satkowski, Laura E.; Goyne, Keith W.; Anderson, Stephen H.; Lerch, Robert N.; Allen, Craig R.; Snow, Daniel D.

    2018-01-01

    An understanding of neonicotinoid sorption and transport in soil is critical for determining and mitigating environmental risk associated with the most widely used class of insecticides. The objective of this study was to evaluate mobility and transport of the neonicotinoid imidacloprid (ICD) in soils collected from cropland, grass vegetative buffer strip (VBS), and riparian VBS soils. Soils were collected at six randomly chosen sites within grids that encompassed all three land uses. Single-point equilibrium batch sorption experiments were conducted using radio-labeled (14C) ICD to determine solid–solution partition coefficients (Kd). Column experiments were conducted using soils collected from the three vegetation treatments at one site by packing soil into glass columns. Water flow was characterized by applying Br− as a nonreactive tracer. A single pulse of 14C-ICD was then applied, and ICD leaching was monitored for up to 45 d. Bromide and ICD breakthrough curves for each column were simulated using CXTFIT and HYDRUS-1D models. Sorption results indicated that ICD sorbs more strongly to riparian VBS (Kd = 22.6 L kg−1) than crop (Kd = 11.3 L kg−1) soils. Soil organic C was the strongest predictor of ICD sorption (p < 0.0001). The column transport study found mean peak concentrations of ICD at 5.83, 10.84, and 23.8 pore volumes for crop, grass VBS, and riparian VBS soils, respectively. HYDRUS-1D results indicated that the two-site, one-rate linear reversible model best described results of the breakthrough curves, indicating the complexity of ICD sorption and demonstrating its mobility in soil. Greater sorption and longer retention by the grass and riparian VBS soils than the cropland soil suggests that VBS may be a viable means to mitigate ICD loss from agroecosystems, thereby preventing ICD transport into surface water, groundwater, or drinking water resources.

  14. Pesticide risks around the home (image)

    Science.gov (United States)

    Pesticides are substances which kill or deter unwanted pests, such as insects or rodents. These substances can ... avoid an accidental ingestion is to keep all pesticides out of the reach of children.

  15. Neurobehavioral and neurodevelopmental effects of pesticide exposures

    DEFF Research Database (Denmark)

    London, Leslie; Beseler, Cheryl; Bouchard, Maryse F

    2012-01-01

    The association between pesticide exposure and neurobehavioral and neurodevelopmental effects is an area of increasing concern. This symposium brought together participants to explore the neurotoxic effects of pesticides across the lifespan. Endpoints examined included neurobehavioral, affective ...

  16. Secondary Containers and Service Containers for Pesticides

    Science.gov (United States)

    Secondary containers and service containers are used by pesticide applicators in the process of applying a pesticide. EPA does not require secondary containers or service containers to be labeled or to meet particular construction standards. Learn more.

  17. Chiral Pesticides: Identification, Description and Environmental Implications

    Science.gov (United States)

    Anthropogenic chemicals, including pesticides, are a major source of contamination and pollution in the environment. Pesticides have many positive uses: increased food production, decreased damage to crops and structures, reduced disease vector populations, and more. Nevertheless...

  18. How We Engage Our Pesticide Stakeholders

    Science.gov (United States)

    The success of EPA's pesticide program is directly connected to our efforts to engage all stakeholders. In addition to meetings on pesticide-specific actions, we sponsor advisory committees that include diverse, independent stakeholders.

  19. 75 FR 4383 - Pesticide Products: Registration Applications

    Science.gov (United States)

    2010-01-27

    ..., Biopesticides and Pollution Prevention Division (7511P), Office of Pesticide Programs, Environmental Protection..., Biopesticides and Pollution Prevention Division, Office of Pesticide Programs. [FR Doc. 2010-1582 Filed 1-26-10...

  20. Organochlorine Pesticides in the Environment

    Science.gov (United States)

    Stickel, L.F.

    1968-01-01

    Each year for nearly 20 years, thousands of pounds of persistent organochlorine pesticides have been applied to outdoor areas in many countries. These compounds may last for a very long time in the environment, and be carried by wind, water, and animals to places far distant from where they are used. As a result, most living organisms now contain organochlorine residues. This paper constitutes a selective review of the literature concerning the occurrence, distribution, and effects of organochlorines in the environment. Highest concentrations generally occur in carnivorous species. Thus predatory and fish-eating birds ordinarily have higher residues than do herbivores; quantities are similar in birds of similar habits in different countries. Any segment of the ecosystem - marshland, pond, forest, or field - receives various amounts and kinds of pesticides at irregular intervals. The different animals absorb, detoxify, store, and excrete pesticides at different rates. Different degrees of magnification of pesticide residues by living organisms in an environment are the practical result of many interactions that are far more complex than implied by the statement of magnification up the food chain. These magnifications may be millions of times from water to mud or only a few times from food to first consumer. Direct mortality of wild animals as an aftermath of recommended pesticide treatments has been recorded in the literature of numerous countries. However, accidents and carelessness also accompany pesticide use on a percentage basis and are a part of the problem. More subtle effects on the size and species composition of populations are more difficult to perceive in time to effect remedies. The possibility of ecological effects being mediated through changes in physiology and behavior has received some attention and has resulted in some disquieting findings. These include discovery of the activity of organochlorines in stimulating the breakdown of hormones or in

  1. Neonicotinoid pesticides in drinking water in agricultural regions of southern Ontario, Canada.

    Science.gov (United States)

    Sultana, Tamanna; Murray, Craig; Kleywegt, Sonya; Metcalfe, Chris D

    2018-07-01

    Because of the persistence and solubility of neonicotinoid insecticides (NNIs), there is concern that these compounds may contaminate sources of drinking water. The objective of this project was to evaluate the distribution of NNIs in raw and treated drinking water from selected municipalities that draw their water from the lower Great Lakes in areas of southern Ontario, Canada where there is high intensity agriculture. Sites were monitored using Polar Organic Chemical Integrative Samplers (POCIS) and by collecting grab samples at six drinking water treatment plants. Thiamethoxam, clothianidin and imidacloprid were detected in both POCIS and grab samples of raw water. The frequency of detection of NNIs was much lower in treated drinking water, but some compounds were still detected at estimated concentrations in the low ng L -1 range. Thiamethoxam was detected in one grab sample of raw drinking water at a mean concentration of 0.28 μg L -1 , which is above the guidelines for drinking water recommended in some jurisdictions, including the European Union directive on pesticide levels water intended for human consumption. Further work is required to determine whether contamination of sources of drinking water with this class of insecticides is a global problem in agricultural regions. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Seasonal and spatial dynamic of current-use pesticides (CUPs) in an Argentinian watershed.

    Science.gov (United States)

    Perez, Debora; Okada, Elena; Menone, Mirta; Aparicio, Virginia; Costa, Jose Luis

    2017-04-01

    The Argentinian Pampa region is the major agricultural zone, in which, the agricultural lands are strongly linked to surface waters. However, Argentina has not regulation for most of the current -used pesticides (CUPs) in surface water to protect the aquatic life. The objective of this work was to study the seasonal and spatial variations of CUPs in surface waters of "El Crespo" stream, and to determine the maximum levels reached to evaluate the possible impact on aquatic life. "El Crespo" stream is only influenced by farming activities, with intensive crop systems upstream (US) and extensive livestock production downstream (DS). It is an optimal site for pesticide monitoring studies since there are no urban or industrial inputs into the system. Water samples were collected monthly from October 2014 to October 2015 in the US and DS sites by triplicate using 1 L polypropylene bottles and stored at -20°C until analysis. The samples were analyzed using liquid chromatography coupled to a tandem mass spectrometer (UPLC-MS/MS). The most frequently detected residues (>40%) were glyphosate (GLY) and its metabolite amino methylphosphonic acid (AMPA), atrazine, acetochlor, metolachlor, 2,4-D, metsulfuron methyl, fluorocloridone, imidacloprid, tebuconazole and epoxiconazole, which are used in the crops cultivated in the area (i.e. soybean, potato, maize and wheat). Individual analysis showed that the herbicide GLY and its metabolite AMPA presented seasonal and spatial variations. The highest concentrations of GLY and AMPA were detected in US site during spring 2014 (2.09 ± 0.39 and 1.13 ± 0.56 µg/L, respectively) and in DS during summer 2015 (1.06 ± 1.02 and 0.20 ± 0.23 µg/L). Comparing total CUPs concentration between sites, a significant increase in UP site during spring 2014 (4.03 ± 0.43 µg/L) in relation to DS (1.54 ± 1.17 µg/L) was observed, may be due to pesticide applications during fallow and transport via surface runoff. Data generated in the present

  3. Developmental neurotoxicity of different pesticides in PC-12 cells in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Christen, Verena [University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Gründenstrasse 40, CH-4132, Muttenz (Switzerland); Rusconi, Manuel; Crettaz, Pierre [Federal Office of Public Health, Division Chemical Products, 3003 Bern (Switzerland); Fent, Karl, E-mail: karl.fent@bluewin.ch [University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Gründenstrasse 40, CH-4132, Muttenz (Switzerland); Swiss Federal Institute of Technology Zürich (ETH Zürich), Department of Environmental Systems Sciences, Institute of Biogeochemistry and Pollution Dynamics, CH-8092 Zürich (Switzerland)

    2017-06-15

    The detection of developmental neurotoxicity (DNT) of chemicals has high relevance for protection of human health. However, DNT of many pesticides is only little known. Furthermore, validated in vitro systems for assessment of DNT are not well established. Here we employed the rat phaeochromocytoma cell line PC-12 to evaluate DNT of 18 frequently used pesticides of different classes, including neonicotinoids, pyrethroids, organophosphates, organochlorines, as well as quaternary ammonium compounds, the organic compound used in pesticides, piperonyl butoxide, as well as the insect repellent diethyltoluamide (DEET). We determined the outgrowth of neurites in PC-12 cells co-treated with nerve growth factor and different concentrations of biocides for 5 days. Furthermore, we determined transcriptional alterations of selected genes that may be associated with DNT, such as camk2α and camk2β, gap-43, neurofilament-h, tubulin-α and tubulin-β. Strong and dose- dependent inhibition of neurite outgrowth was induced by azamethiphos and chlorpyrifos, and dieldrin and heptachlor, which was correlated with up-regulation of gap-43. No or only weak effects on neurite outgrowth and transcriptional alterations occurred for neonicotinoids acetamiprid, clothianidin, imidacloprid and thiamethoxam, the pyrethroids λ-cyhalothrin, cyfluthrin, deltamethrin, and permethrin, the biocidal disinfectants C12-C14-alkyl(ethylbenzyl)dimethylammonium (BAC), benzalkonium chloride and barquat (dimethyl benzyl ammonium chloride), and piperonyl butoxide and DEET. Our study confirms potential developmental neurotoxicity of some pesticides and provides first evidence that azamethiphos has the potential to act as a developmental neurotoxic compound. We also demonstrate that inhibition of neurite outgrowth and transcriptional alterations of gap-43 expression correlate, which suggests the employment of gap-43 expression as a biomarker for detection and initial evaluation of potential DNT of chemicals

  4. Developmental neurotoxicity of different pesticides in PC-12 cells in vitro

    International Nuclear Information System (INIS)

    Christen, Verena; Rusconi, Manuel; Crettaz, Pierre; Fent, Karl

    2017-01-01

    The detection of developmental neurotoxicity (DNT) of chemicals has high relevance for protection of human health. However, DNT of many pesticides is only little known. Furthermore, validated in vitro systems for assessment of DNT are not well established. Here we employed the rat phaeochromocytoma cell line PC-12 to evaluate DNT of 18 frequently used pesticides of different classes, including neonicotinoids, pyrethroids, organophosphates, organochlorines, as well as quaternary ammonium compounds, the organic compound used in pesticides, piperonyl butoxide, as well as the insect repellent diethyltoluamide (DEET). We determined the outgrowth of neurites in PC-12 cells co-treated with nerve growth factor and different concentrations of biocides for 5 days. Furthermore, we determined transcriptional alterations of selected genes that may be associated with DNT, such as camk2α and camk2β, gap-43, neurofilament-h, tubulin-α and tubulin-β. Strong and dose- dependent inhibition of neurite outgrowth was induced by azamethiphos and chlorpyrifos, and dieldrin and heptachlor, which was correlated with up-regulation of gap-43. No or only weak effects on neurite outgrowth and transcriptional alterations occurred for neonicotinoids acetamiprid, clothianidin, imidacloprid and thiamethoxam, the pyrethroids λ-cyhalothrin, cyfluthrin, deltamethrin, and permethrin, the biocidal disinfectants C12-C14-alkyl(ethylbenzyl)dimethylammonium (BAC), benzalkonium chloride and barquat (dimethyl benzyl ammonium chloride), and piperonyl butoxide and DEET. Our study confirms potential developmental neurotoxicity of some pesticides and provides first evidence that azamethiphos has the potential to act as a developmental neurotoxic compound. We also demonstrate that inhibition of neurite outgrowth and transcriptional alterations of gap-43 expression correlate, which suggests the employment of gap-43 expression as a biomarker for detection and initial evaluation of potential DNT of chemicals

  5. 77 FR 38285 - Pesticide Products; Registration Applications

    Science.gov (United States)

    2012-06-27

    ... ENVIRONMENTAL PROTECTION AGENCY [EPA-HQ-OPP-2012-0101; FRL-9348-5] Pesticide Products... announces receipt of applications to register pesticide products containing new active ingredients not... Pollution Prevention Division (7511P) or the Registration Division (7505P), Office of Pesticide Programs...

  6. Fact Sheets on Pesticides in Schools.

    Science.gov (United States)

    National Coalition against the Misuse of Pesticides, Washington, DC.

    This document consists of a collection of fact sheets about the use of pesticides in schools and how to reduce it. The sheets are: (1) "Alternatives to Using Pesticides in Schools: What Is Integrated Pest Management?"; (2) "Health Effects of 48 Commonly Used Pesticides in Schools"; (3) "The Schooling of State Pesticide…

  7. Earthworm tolerance to residual agricultural pesticide contamination

    DEFF Research Database (Denmark)

    Givaudan, Nicolas; Binet, Françoise; Le Bot, Barbara

    2014-01-01

    of soluble glutathione-S-transferases (sGST) and catalase increased with soil pesticide contamination in A. caliginosa. Pesticide stress was reflected in depletion of energy reserves in A. chlorotica. Acute exposure of pre-adapted and naïve A. caliginosa to pesticides (fungicide Opus ®, 0.1 μg active...

  8. Efficacy of a combination of beta-cyfluthrin and imidacloprid and beta-cyfluthrin alone for control of stored-product insects on concrete

    Science.gov (United States)

    The insecticidal effect of Temprid®, a formulation that contains beta-cyfluthrin and imidacloprid, was tested on concrete for control of seven stored-product insect species: the rusty grain beetle, Cryptolestes ferrugineus (Stephens); the sawtoothed grain beetle, Oryzaephilus surinamensis (L.); the ...

  9. Distribution of trunk-injected 14C-imidacloprid in ash trees and effects on emerald ash borer (Coleoptera: Buprestidae) adults

    Science.gov (United States)

    David Mota-Sánchez; Bert M. Cregg; Deborah G. McCullough; Therese M. Poland; Robert M. Hollingworth

    2009-01-01

    The emerald ash borer (EAB), Agrilus planipennis (Coleoptera: Buprestidae) is a destructive exotic pest of North American ash (Fraxinus sp.) trees. Trunk injection of imidacloprid is commonly used to protect landscape ash trees from A. planipennis damage. Efficacy can vary and little is known about the...

  10. A survey of imidacloprid levels in water sources potentially frequented by honey bees (Apis mellifera) in the Eastern U.S.

    Science.gov (United States)

    This study was undertaken to examine contamination levels of imidacloprid (IMI), a water soluble neonicotinoid insecticide, in still or slow moving water sources of the sort often frequented by honey bees, Apis mellifera. Honey bees frequent open water to transport water into the hive for consumpti...

  11. Pesticides: Food and environmental implications

    International Nuclear Information System (INIS)

    1988-01-01

    Pesticides are an integral part of modern agriculture, also in most developing countries. Although the annual average consumption of active ingredients in agriculture may be below 0.1 kg a.i./ha, most countries now consume more than 2 kg a.i./ha; some of the intensively cropped regions in South-East Asia are exposed to even higher amounts. Inherent contamination of the environment follows if rules and regulations are not strictly adhered to. The search for safer, less persistent and more specific pesticides and examination of the fate of applied pesticides in various regions of the world were the main themes of the symposium. Special emphasis was placed on the use of nuclear techniques, especially on labelled compounds in research. The Proceedings include all the papers and posters that were presented. Refs, figs and tabs

  12. Subchronic exposure to sublethal dose of imidacloprid changes electrophysiological properties and expression pattern of nicotinic acetylcholine receptor subtypes in insect neurosecretory cells.

    Science.gov (United States)

    Benzidane, Yassine; Goven, Delphine; Abd-Ella, Aly Ahmed; Deshayes, Caroline; Lapied, Bruno; Raymond, Valérie

    2017-09-01

    Neonicotinoids are the most important class of insecticides used in agriculture over the last decade. They act as selective agonists of insect nicotinic acetylcholine receptors (nAChRs). The emergence of insect resistance to these insecticides is one of the major problems, which limit the use of neonicotinoids. The aim of our study is to better understand physiological changes appearing after subchronic exposure to sublethal doses of insecticide using complementary approaches that include toxicology, electrophysiology, molecular biology and calcium imaging. We used cockroach neurosecretory cells identified as dorsal unpaired median (DUM) neurons, known to express two α-bungarotoxin-insensitive (α-bgt-insensitive) nAChR subtypes, nAChR1 and nAChR2, which differ in their sensitivity to imidacloprid. Although nAChR1 is sensitive to imidacloprid, nAChR2 is insensitive to this insecticide. In this study, we demonstrate that subchronic exposure to sublethal dose of imidacloprid differentially changes physiological and molecular properties of nAChR1 and nAChR2. Our findings reported that this treatment decreased the sensitivity of nAChR1 to imidacloprid, reduced current density flowing through this nAChR subtype but did not affect its subunit composition (α3, α8 and β1). Subchronic exposure to sublethal dose of imidacloprid also affected nAChR2 functions. However, these effects were different from those reported on nAChR1. We observed changes in nAChR2 conformational state, which could be related to modification of the subunit composition (α1, α2 and β1). Finally, the subchronic exposure affecting both nAChR1 and nAChR2 seemed to be linked to the elevation of the steady-state resting intracellular calcium level. In conclusion, under subchronic exposure to sublethal dose of imidacloprid, cockroaches are capable of triggering adaptive mechanisms by reducing the participation of imidacloprid-sensitive nAChR1 and by optimizing functional properties of nAChR2, which is

  13. Imidacloprid affects the functional response of predator Podisus nigrispinus (Dallas) (Heteroptera: Pentatomidae) to strains of Spodoptera frugiperda (J.E. Smith) on Bt cotton.

    Science.gov (United States)

    Malaquias, J B; Ramalho, F S; Omoto, C; Godoy, W A C; Silveira, R F

    2014-03-01

    Podisus nigrispinus (Dallas) (Heteroptera: Pentatomidae) is one of the most common asopine species in the neotropical region and its occurrence was reported in several countries of South and Central America, as an important biological control agent for many crops. This study was carried out to identify the imidacloprid impacts on the functional response of predator P. nigrispinus fed on Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) strain resistant to lambda-cyhalothrin, on Bt cotton expressing Cry1Ac (Bollgard(®)). Spodoptera frugiperda larvae were used in the following conditions: resistant (1) and susceptible (2) strains to lambda-cyhalothrin fed on Bollgard(®) cotton leaves (DP 404 BG); and resistant (3) and susceptible (4) strains to lambda-cyhalothrin fed on non-genetically modified cotton leaves (cultivar DP4049). The predatory behavior of P. nigrispinus was affected by imidacloprid and the type II asymptotic curve was the one that best described the functional response data. Handling time (T h ) of predator females did not differ among treatments in the presence of imidacloprid. The attack rate did decrease, however, due to an increase in the density of larvae offered. Regardless of the treatment (S. frugiperda strain or cotton cultivar), the predation of P. nigrispinus females on S. frugiperda larvae was significantly lower when exposed to imidacloprid, especially at a density of 16 larvae/predator. The predation behavior of P. nigrispinus on S. frugiperda larvae is affected by the insecticide imidacloprid showing that its applications should be used in cotton crop with caution.

  14. Pesticide bioconcentration modelling for fruit trees.

    Science.gov (United States)

    Paraíba, Lourival Costa

    2007-01-01

    The model presented allows simulating the pesticide concentration evolution in fruit trees and estimating the pesticide bioconcentration factor in fruits. Pesticides are non-ionic organic compounds that are degraded in soils cropped with woody species, fruit trees and other perennials. The model allows estimating the pesticide uptake by plants through the water transpiration stream and also the time in which maximum pesticide concentration occur in the fruits. The equation proposed presents the relationships between bioconcentration factor (BCF) and the following variables: plant water transpiration volume (Q), pesticide transpiration stream concentration factor (TSCF), pesticide stem-water partition coefficient (K(Wood,W)), stem dry biomass (M) and pesticide dissipation rate in the soil-plant system (k(EGS)). The modeling started and was developed from a previous model "Fruit Tree Model" (FTM), reported by Trapp and collaborators in 2003, to which was added the hypothesis that the pesticide degradation in the soil follows a first order kinetic equation. The FTM model for pesticides (FTM-p) was applied to a hypothetic mango plant cropping (Mangifera indica) treated with paclobutrazol (growth regulator) added to the soil. The model fitness was evaluated through the sensitivity analysis of the pesticide BCF values in fruits with respect to the model entry data variability.

  15. The Danish Pesticide Leaching Assessment Programme

    DEFF Research Database (Denmark)

    Rosenbom, Annette Elisabeth; Brüsch, Walter Michael; Juhler, Rene K.

    In 1998, the Danish Parliament initiated the Pesticide Leaching Assessment Programme (PLAP), an intensive monitoring programme aimed at evaluating the leaching risk of pesticides under field conditions. The objective of the PLAP is to improve the scientific foundation for decision......-making in the Danish regulation of pesticides. The specific aim is to analyse whether pesticides applied in accordance with current regulations leach to groundwater in unacceptable concentrations. The programme currently evaluates the leaching risk of 41 pesticides and 40 degradation products at five agricultural......, thiamethoxam, tribenuronmethyl, and triasulfuron) did not leach during the 1999-2009 monitoring period. 13 of the applied pesticides exhibited pronounced leaching of the pesticide and/or their degradation product(-s) 1 m b.g.s. in yearly average concentrations exceeding 0.1 μg/l (maximum allowable...

  16. Chiral Synthons in Pesticide Syntheses

    NARCIS (Netherlands)

    Feringa, Bernard

    1988-01-01

    The use of chiral synthons in the preparation of enantiomerically pure pesticides is described in this chapter. Several routes to chiral synthons based on asymmetric synthesis or on natural products are illustrated. Important sources of chiral building blocks are reviewed. Furthermore the

  17. New insights into pesticide photoprotection.

    Science.gov (United States)

    Trivella, Aurélien; Richard, Claire

    2014-04-01

    Photolysis may be a significant route of pesticide dissipation on crops, leading to an increase of pesticide use. Spraying strong absorbing compounds (photoprotector) along with pesticide is an attractive strategy to prevent the photodegradation phenomenon. The aim of this study is to get a better understanding of the parameters governing the photoprotection efficiency. Experiments were conducted using formulated sulcotrione as a pesticide and a grape wine extract as a photoprotector. These compounds were irradiated using simulated solar light as dried deposits on carnauba wax films or on disks of tobacco leaves and analyzed by ultra performance liquid chromatography ultraviolet (UV), spectroscopy, and microscopy. It is shown that photolysis is faster on leaves than on carnauba wax and that the photoprotection effect of grape wine extract is more efficient on leaves than on wax. Images recorded by microscopy bring evidence that deposits are very different on the two supports both in the absence and in the presence of the photoprotector. The grape wine extract plays a double role; it is antioxidant and UV screen. Photoprotection by the grape wine extract is a complex mixing of UV screen and antioxidant effects. The UV screen effect can be rationalized by considering the rate of light absorption by sulcotrione. Our results demonstrate that the rates of sulcotrione phototransformation are mainly governed by the repartition of the deposit on the solid support.

  18. Protocol for an electrospray ionization tandem mass spectral product ion library: development and application for identification of 240 pesticides in foods.

    Science.gov (United States)

    Zhang, Kai; Wong, Jon W; Yang, Paul; Hayward, Douglas G; Sakuma, Takeo; Zou, Yunyun; Schreiber, André; Borton, Christopher; Nguyen, Tung-Vi; Kaushik, Banerjee; Oulkar, Dasharath

    2012-07-03

    Modern determination techniques for pesticides must yield identification quickly with high confidence for timely enforcement of tolerances. A protocol for the collection of liquid chromatography (LC) electrospray ionization (ESI)-quadruple linear ion trap (Q-LIT) mass spectrometry (MS) library spectra was developed. Following the protocol, an enhanced product ion (EPI) library of 240 pesticides was developed by use of spectra collected from two laboratories. A LC-Q-LIT-MS workflow using scheduled multiple reaction monitoring (sMRM) survey scan, information-dependent acquisition (IDA) triggered collection of EPI spectra, and library search was developed and tested to identify the 240 target pesticides in one single LC-Q-LIT MS analysis. By use of LC retention time, one sMRM survey scan transition, and a library search, 75-87% of the 240 pesticides were identified in a single LC/MS analysis at fortified concentrations of 10 ng/g in 18 different foods. A conventional approach with LC-MS/MS using two MRM transitions produced the same identifications and comparable quantitative results with the same incurred foods as the LC-Q-LIT using EPI library search, finding 1.2-49 ng/g of either carbaryl, carbendazim, fenbuconazole, propiconazole, or pyridaben in peaches; carbendazim, imazalil, terbutryn, and thiabendazole in oranges; terbutryn in salmon; and azoxystrobin in ginseng. Incurred broccoli, cabbage, and kale were screened with the same EPI library using three LC-Q-LIT and a LC-quadruple time-of-flight (Q-TOF) instruments. The library search identified azoxystrobin, cyprodinil, fludioxinil, imidacloprid, metalaxyl, spinosyn A, D, and J, amd spirotetramat with each instrument. The approach has a broad application in LC-MS/MS type targeted screening in food analysis.

  19. Pesticides and their effects on wildlife

    Energy Technology Data Exchange (ETDEWEB)

    Driver, C.J.

    1994-07-01

    About 560 active ingredients are currently used as pesticides. Applications of these pesticides are made to agricultural lands and other areas inhabited by wildlife. Unfortunately, many agricultural-use pesticides also entail some measure of risk to organisms other than the pest species. Because testing of pesticides prior to registration cannot evaluate all the potential environmental-pesticide-wildlife/fish interactions, current methods of risk assessment do not always provide sufficient safety to nontarget organisms. This is evidenced by die-offs of fish and wildlife from applications of pesticides at environmentally {open_quotes}safe{close_quotes} rates, the linking of population declines of some species with agrochemical use, and observations of survival-threatening behavioral changes in laboratory and field animals exposed to typical field levels of pesticides. It is important to note, however, that the majority of pesticides, when properly applied, have not caused significant injury to wildlife. A brief summary of pesticide effects on wildlife and fish are presented for the common classes of pesticides in use today.

  20. The use and disposal of household pesticides

    International Nuclear Information System (INIS)

    Grey, Charlotte N.B.; Nieuwenhuijsen, Mark J.; Golding, Jean

    2005-01-01

    Most pesticides are synthetic chemicals manufactured specifically for their toxic properties to the target species, and widely used globally. Several epidemiological studies in the United States have suggested health concerns arising from the chronic exposure of young children to pesticides in the domestic environment. In the UK very little is currently known about how nonoccupational pesticides are being used or disposed of. Any use of pesticides is a potential risk factor for children's exposure, and any potential exposure is likely to be reduced by the parents' adopting precautionary behaviour when using these pesticide products. This was investigated using a sample of 147 parents from the Avon Longitudinal Study of Parents and Children cohort in and around Bristol, through an in-depth interview between August and November 2001. The results of this study add to the understanding of the underlying behaviour of parents applying pesticide products in the home environment in the UK. Pesticides are readily available, and are normally purchased in do-it-yourself shops and supermarkets and mostly disposed of in domestic waste. Safety was stated by 45% of parents to be the most important factor to consider when buying a pesticide. When buying pesticide products, labels were stated to be the most important source of information about pesticides. However, a third of parents stated they would not follow the product label exactly when using a product, just under half felt labels were both inadequate and hard to understand, and about 10% of parents would not take notice of warnings on the pesticide label. Less than half of parents would use gloves when applying a pesticide, although the use of protective equipment such as gloves during the application of pesticides could greatly reduce the exposure. It is a public health concern that the instructions on the labels of products may not always be understood or followed, and further understanding of user behaviour is needed

  1. Pesticide Environmental Accounting: a method for assessing the external costs of individual pesticide applications.

    Science.gov (United States)

    Leach, A W; Mumford, J D

    2008-01-01

    The Pesticide Environmental Accounting (PEA) tool provides a monetary estimate of environmental and health impacts per hectare-application for any pesticide. The model combines the Environmental Impact Quotient method and a methodology for absolute estimates of external pesticide costs in UK, USA and Germany. For many countries resources are not available for intensive assessments of external pesticide costs. The model converts external costs of a pesticide in the UK, USA and Germany to Mediterranean countries. Economic and policy applications include estimating impacts of pesticide reduction policies or benefits from technologies replacing pesticides, such as sterile insect technique. The system integrates disparate data and approaches into a single logical method. The assumptions in the system provide transparency and consistency but at the cost of some specificity and precision, a reasonable trade-off for a method that provides both comparative estimates of pesticide impacts and area-based assessments of absolute impacts.

  2. Citizen's Guide to Pest Control and Pesticide Safety

    Science.gov (United States)

    ... contain pesticide residues. In addition, birds such as ducks and geese may absorb pesticide residues if they ... Where do you store your pesticides? A nationwide study conducted by EPA revealed that almost half (approximately ...

  3. A mobile App for military operational entomology pesticide applications

    Science.gov (United States)

    Multiple field studies conducted for the Deployed War Fighter Protection (DWFP) research program have generated over 80 specific guidance points for innovative combinations of pesticide application equipment, pesticide formulations, and application techniques for aerosol and residual pesticide treat...

  4. How to Report a Pesticide Incident Involving Exposures to People

    Science.gov (United States)

    Pesticides incidents must be reported by pesticide registrants. Others, such as members of the public and environmental professionals, would like to report pesticide incidents. This website will facilitate such incident reporting.

  5. Pesticide registration, distribution and use practices in Ghana

    NARCIS (Netherlands)

    Onwona Kwakye, Michael; Mengistie, Belay; Ofosu-Anim, John; Nuer, Alexander Tetteh K.; Den Brink, van Paul J.

    2018-01-01

    Ghana has implemented regulation on the registration, distribution and usage of pesticides in order to evaluate their environmental and human health effects. However, environmental monitoring and certified laboratories for pesticide analysis are lacking. Pesticide misuse, misapplication,

  6. Multiresidue pesticide analysis of tuber and root commodities by QuEchERS extraction and ultra-performance liquid chromatography coupled to tandem mass spectrometry.

    Science.gov (United States)

    Garrido Frenich, Antonia; Martín Fernández, María del Mar; Díaz Moreno, Laura; Martínez Vidal, Jose Lúis; López-Gutiérrez, Noelia

    2012-01-01

    A simple, rapid, and reliable multiresidue method to determine 84 pesticides in potato and carrot samples by ultra-performance liquid chromatography coupled to MS/MS has been developed and fully validated for routine analysis according to ISO/IEC 17025:2005. The method makes use of a buffered Quick, Easy, Cheap, Effective, Rugged, and Safe (QuEChERS) sample preparation procedure based on a single extraction with acidified acetonitrile, followed by partitioning with salts. Chromatographic conditions were optimized in order to achieve a rapid separation in the multiple reaction monitoring mode. Performance characteristics of the method, including an estimation of measurement uncertainty using validation data, are reported for both matrixes. Calibration curves were linear from 0.010 to 0.150 mg/kg for most compounds. The LOD and LOQ were 0.006 and 0.010 mg/kg, respectively, except for fluorocloridone, fluquinconazol, and hexitiazox, which were 0.030 and 0.050 mg/kg, respectively. Recoveries obtained were in the range 70-116%, with intraday precision values < or = 20% RSD and interday precision values < or = 25% RSD at two different concentration levels. The overall uncertainty of the method was estimated at two concentrations as being lower than 34% in all cases. The method has been applied to the analysis of 70 vegetable samples, and imidacloprid and linuron were the pesticides most frequently found in potato and carrot commodities, respectively.

  7. Removal of Pesticides From Water by Nanofiltration

    OpenAIRE

    RIUNGU, N J; HESAMPOUR, M; PIHLAJAMAKI, A; MANTTARI, M; home, P G; NDEGWA, G M

    2012-01-01

    Agricultural activities form the backborne of Kenyas economy. Inorder to control crop losses, pesticides are used and in the recent past, more of the pesticides have been used to increase production. However, the effect of pesticides on the environment is very complex as undesirable transfers occur continually among different environmental sections. This eventually leads to contamination of drinking water source especially for rivers and lakes located near active agriculture practices especia...

  8. Determination of Pesticide Residues in Cannabis Smoke

    OpenAIRE

    Nicholas Sullivan; Sytze Elzinga; Jeffrey C. Raber

    2013-01-01

    The present study was conducted in order to quantify to what extent cannabis consumers may be exposed to pesticide and other chemical residues through inhaled mainstream cannabis smoke. Three different smoking devices were evaluated in order to provide a generalized data set representative of pesticide exposures possible for medical cannabis users. Three different pesticides, bifenthrin, diazinon, and permethrin, along with the plant growth regulator paclobutrazol, which are readily available...

  9. Reduction of substituted benzonitrile pesticides

    Czech Academy of Sciences Publication Activity Database

    Sokolová, Romana; Hromadová, Magdaléna; Fiedler, Jan; Pospíšil, Lubomír; Giannarelli, S.; Valášek, Michal

    2008-01-01

    Roč. 622, č. 2 (2008), s. 211-218 ISSN 1572-6657 R&D Projects: GA AV ČR IAA400400505; GA MŠk OC 140; GA MŠk LC510 Institutional research plan: CEZ:AV0Z40400503; CEZ:AV0Z40550506 Keywords : benzonitrile pesticides * polarography * voltammetry Subject RIV: CG - Electrochemistry Impact factor: 2.484, year: 2008

  10. 76 FR 41246 - Pesticide Program Dialogue Committee, Pesticide Registration Improvement Act Process Improvement...

    Science.gov (United States)

    2011-07-13

    ... Committee, Pesticide Registration Improvement Act Process Improvement Workgroup; Notice of Public Meeting...) Process Improvement Work Group. EPA plans to meet its ESA consultation obligations through the pesticide... a pesticide during the registration review process. This meeting of the PRIA Process Improvement...

  11. Pesticides: Benefaction or Pandora's Box? A synopsis of the environmental aspects of 243 pesticides

    NARCIS (Netherlands)

    Linders JBHJ; Jansma JW; Mensink BJWG; Otermann K; ACT

    1994-01-01

    The report provides an overview of physical, chemical and environmental data of 243 pesticides. The data mentioned are based on confidential information supplied by the manufacturers of the pesticides. For all pesticides mentioned a Final Environmental File, which is public, is derived. Tables with

  12. Occupational Pesticide Exposures and Respiratory Health

    Science.gov (United States)

    Ye, Ming; Beach, Jeremy; Martin, Jonathan W.; Senthilselvan, Ambikaipakan

    2013-01-01

    Pesticides have been widely used to control pest and pest-related diseases in agriculture, fishery, forestry and the food industry. In this review, we identify a number of respiratory symptoms and diseases that have been associated with occupational pesticide exposures. Impaired lung function has also been observed among people occupationally exposed to pesticides. There was strong evidence for an association between occupational pesticide exposure and asthma, especially in agricultural occupations. In addition, we found suggestive evidence for a link between occupational pesticide exposure and chronic bronchitis or COPD. There was inconclusive evidence for the association between occupational pesticide exposure and lung cancer. Better control of pesticide uses and enforcement of safety behaviors, such as using personal protection equipment (PPE) in the workplace, are critical for reducing the risk of developing pesticide-related symptoms and diseases. Educational training programs focusing on basic safety precautions and proper uses of personal protection equipment (PPE) are possible interventions that could be used to control the respiratory diseases associated with pesticide exposure in occupational setting. PMID:24287863

  13. Sorption of pesticides to aquifer minerals

    DEFF Research Database (Denmark)

    Clausen, Liselotte; Fabricius, Ida Lykke

    2000-01-01

    This paper summarizes results from a work were the sorption of five pesticides on seven minerals were studied in order to quantify the adsorption to different mineral surfaces. Investigated mineral phases are: quartz, calcite, kaolinite, a-alumina, and three iron oxides (2-line ferrihydrite......, goethite, lepidocrocite). Selected pesticides are: atrazine, isoproturon, mecoprop, 2,4-D, and bentazone. The results demonstrate that pesticides adsorb to pure mineral surfaces. However, the size of the adsorption depends on the type of pesticide and the type of mineral....

  14. Effect of Endocrine Disruptor Pesticides: A Review

    Directory of Open Access Journals (Sweden)

    Benoit Roig

    2011-06-01

    Full Text Available Endocrine disrupting chemicals (EDC are compounds that alter the normal functioning of the endocrine system of both wildlife and humans. A huge number of chemicals have been identified as endocrine disruptors, among them several pesticides. Pesticides are used to kill unwanted organisms in crops, public areas, homes and gardens, and parasites in medicine. Human are exposed to pesticides due to their occupations or through dietary and environmental exposure (water, soil, air. For several years, there have been enquiries about the impact of environmental factors on the occurrence of human pathologies. This paper reviews the current knowledge of the potential impacts of endocrine disruptor pesticides on human health.

  15. 76 FR 63298 - Pesticide Products; Registration Applications

    Science.gov (United States)

    2011-10-12

    ... each contact person is: Biopesticides and Pollution Prevention Division, Office of Pesticide Programs...: October 3, 2011. Keith A Matthews, Director, Biopesticides and Pollution Prevention Division, Office of...

  16. 75 FR 6656 - Pesticide Product; Registration Application

    Science.gov (United States)

    2010-02-10

    ... (703) 305-5805. FOR FURTHER INFORMATION CONTACT: Shanaz Bacchus, Biopesticides and Pollution Prevention... protection, Pesticides and pests. Dated: January 29, 2010. Keith A. Matthews, Acting Director, Biopesticides...

  17. Efficacy and safety of imidacloprid/moxidectin spot-on solution and fenbendazole in the treatment of dogs naturally infected with Angiostrongylus vasorum (Baillet, 1866).

    Science.gov (United States)

    Willesen, J L; Kristensen, A T; Jensen, A L; Heine, J; Koch, J

    2007-07-20

    A randomized, blinded, controlled multicentre field trial study was conducted to evaluate the efficacy and safety of imidacloprid 10%/moxidectin 2.5% spot-on solution and fenbendazole in treating dogs naturally infected with Angiostrongylus vasorum. Dogs were randomly treated either with a single dose of 0.1 ml/kg bodyweight of imidacloprid 10%/moxidectin 2.5% spot-on solution or with 25 mg/kg bodyweight fenbendazole per os for 20 days. The study period was 42 days with dogs being examined on days 0, 7 and 42. The primary efficacy parameter was the presence of L1 larvae in faecal samples evaluated by a Baermann test from three consecutive days. Thoracic radiographs performed on each visit were being taken as a paraclinical parameter to support the results of the Baermann test. Twenty-seven dogs in the imidacloprid/moxidectin group and 23 dogs in the fenbendazole group completed the study according to protocol. The efficacies of the two treatment protocols were 85.2% (imidacloprid/moxidectin) and 91.3% (fenbendazole) with no significant difference between treatment groups. On radiographic evaluation pulmonary parenchyma showed similar improvement in each group. No serious adverse effects to treatment were recorded: most of the minor adverse effects were gastrointestinal such as diarrhea (nine dogs), vomitus (eight dogs) and salivation (three dogs). In general, these adverse effects were of short duration (1-2 days) within the first few days after treatment start and required little or no treatment. This prospective study demonstrates that both treatment protocols used are efficacious under field conditions, that treatment of mildly to moderately infected dogs with either of these protocols is safe and yields an excellent prognosis for recovering from the infection.

  18. Concentrations of imidacloprid and thiamethoxam in pollen, nectar and leaves from seed-dressed cotton crops and their potential risk to honeybees (Apis mellifera L.).

    Science.gov (United States)

    Jiang, Jiangong; Ma, Dicheng; Zou, Nan; Yu, Xin; Zhang, Zhengqun; Liu, Feng; Mu, Wei

    2018-06-01

    Neonicotinoid insecticides (NIs) have recently been recognized as co-factors in the decline of honeybee colonies because most neonicotinoids are systemic and can transfer into the pollen and nectar of many pollinated crops. In this study, we collected pollen, nectar and leaves from a cotton crop treated with imidacloprid and thiamethoxam to measure the residue levels of these two NIs at different application doses during the flowering period. Then, the residual data were used to assess the risk posed by the systemic insecticides to honeybees following mandated methods published by the European Food Safety Authority (EFSA), and a highly toxic risk to honeybees was highlighted. Imidacloprid was found in both pollen and nectar samples, whereas thiamethoxam was found in 90% of pollen samples and over 60% of nectar samples. Analysis of the pollen and nectar revealed residual amounts of imidacloprid ranging from 1.61 to 64.58 ng g -1 in the pollen and from not detected (ND) to 1.769 ng g -1 in the nectar. By comparison, the thiamethoxam concentrations in pollen and nectar ranged from ND to 14.521 ng g -1 and from ND to 4.285 ng g -1 , respectively. The results of this study provide information on the transfer of two NIs from seed treatment to areas of the plant and provides an understanding of the potential exposure of the bee and other pollinators to systemic insecticides. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Assessment of imidacloprid and acetamiprid residues in okra and eggplant grown in peri-urban areas and their dietary intake in humans

    International Nuclear Information System (INIS)

    Amjad, A.; Akhtar, S.; Randhawa, M.; Binyameen, M.

    2018-01-01

    This research work was designed to estimate the gradually increasing use of insecticides on vegetables to create awareness among the consumers regarding their insecticide residues. The main aim of this study is to highlight the harmful effects of insecticides in comparison with dietary intake assessment of vegetables. In this regard, total 180 (n = 60×3) samples of okra (Abelmoschus esculentus) and eggplant (Solanum melongena) comprising of 30 samples vegetable were collected from the peri-urban farming system of Multan, Faisalabad and Gujranwala to assess insecticide residues along with their dietary intake assessment. The selected samples were quantified for the insecticide residues by using High Performance Liquid Chromatography (HPLC) technique equipped with UV/Visible detector. Results revealed that imidacloprid residues found in eggplant (0.226 mg Kg-1) and okra (0.176 mg Kg-1) from Multan region were greater than the residues reported from Gujranwala and Faisalabad. Out of all analyzed samples for imidacloprid and acetamaprid residues, 58% and 65% samples contained detectable residues respectively. Whereas 10% and 15% samples exceeded their maximum residue limits (MRLs) established by European Commission. Dietary intake assessment for imidacloprid and acetamiprid was calculated as per their maximum permissible intake (MPI) values i.e. 3.84 and 4.48 mg person-1day-1, respectively, which revealed that although a reasonable proportion of samples exceeded MRLs but their consumption was found within safe limit. (author)

  20. Overexpression of a cytochrome P450 monooxygenase, CYP6ER1, is associated with resistance to imidacloprid in the brown planthopper, Nilaparvata lugens.

    Science.gov (United States)

    Bass, C; Carvalho, R A; Oliphant, L; Puinean, A M; Field, L M; Nauen, R; Williamson, M S; Moores, G; Gorman, K

    2011-12-01

    The brown planthopper, Nilaparvata lugens, is an economically significant pest of rice throughout Asia and has evolved resistance to many insecticides including the neonicotinoid imidacloprid. The resistance of field populations of N. lugens to imidacloprid has been attributed to enhanced detoxification by cytochrome P450 monooxygenases (P450s), although, to date, the causative P450(s) has (have) not been identified. In the present study, biochemical assays using the model substrate 7-ethoxycoumarin showed enhanced P450 activity in several resistant N. lugens field strains when compared with a susceptible reference strain. Thirty three cDNA sequences encoding tentative unique P450s were identified from two recent sequencing projects and by degenerate PCR. The mRNA expression level of 32 of these was examined in susceptible, moderately resistant and highly resistant N. lugens strains using quantitative real-time PCR. A single P450 gene (CYP6ER1) was highly overexpressed in all resistant strains (up to 40-fold) and the level of expression observed in the different N. lugens strains was significantly correlated with the resistance phenotype. These results provide strong evidence for a role of CYP6ER1 in the resistance of N. lugens to imidacloprid. © 2011 The Authors. Insect Molecular Biology © 2011 The Royal Entomological Society.

  1. Both point mutations and low expression levels of the nicotinic acetylcholine receptor β1 subunit are associated with imidacloprid resistance in an Aphis gossypii (Glover) population from a Bt cotton field in China.

    Science.gov (United States)

    Chen, Xuewei; Li, Fen; Chen, Anqi; Ma, Kangsheng; Liang, Pingzhuo; Liu, Ying; Song, Dunlun; Gao, Xiwu

    2017-09-01

    Aphis gossypii Glover is a destructive pest of numerous crops throughout the world. Although the expansion of Bt cotton cultivation has helped to control some insect pests, the damage from cotton aphids has not been mitigated. The evolution of aphid resistance to imidacloprid has made its chemical control more difficult since its introduction in 1991. Field populations of A. gossypii that were collected from different transgenic (Bt) cotton planting areas of China in 2014 developed different levels of resistance to imidacloprid. The IMI_R strain has developed high resistance to imidacloprid with the resistance ratio >1200-fold. Compared with the susceptible IMI_S strain, the IMI_R strain also developed a high level cross resistance to sulfoxaflor and acetamiprid. The limited synergism with either PBO or DEF suggests that resistance may be due to the site mutation of molecular target rather than to enhanced detoxification. Three target-site mutations within the nicotinic acetylcholine receptor (nAChR) β1 subunit were detected in the IMI_R strain. The R81T mutation has been reported to be responsible for imidacloprid resistance in A. gossypii and M. persicae. Both V62I and K264E were first detected in A. gossypii. These point mutations are also present in field populations, suggesting that they play a role in the resistance to imidacloprid. Furthermore, the expression level of transcripts encoding β1 subunit was decreased significantly in the IMI_R strain compared with the IMI_S strain, suggesting that both point mutations and the down-regulation of nAChR β1 subunit expression may be involved in the resistance mechanism for imidacloprid in A. gossypii. These results should be useful for the management of imidacloprid-resistant cotton aphids in Bt cotton fields in China. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Pesticide regulations and farm worker safety: the need to improve pesticide regulations in Viet Nam.

    Science.gov (United States)

    Phung, Dung Tri; Connell, Des; Miller, Greg; Rutherford, Shannon; Chu, Cordia

    2012-06-01

    Agricultural pesticide use in Viet Nam has more than tripled since 1990. However, pesticide legislation and regulations have not been developed in response to this large increase in usage, as a result of which pesticides pose a serious threat to human health and the environment. This paper identifies the need to improve pesticide regulations in Viet Nam through a comparative analysis of pesticide regulations in Viet Nam and the United States of America, where the rate of acute poisoning among agricultural workers is much lower than in Viet Nam and where information pertaining to pesticide regulations is made accessible to the public. The analysis identified several measures that would help to improve Viet Nam's pesticide regulations. These include enhancing pesticide legislation, clarifying the specific roles and active involvement of both the environmental and health sectors; performing a comprehensive risk-benefit evaluation of pesticide registration and management practices; improving regulations on pesticide suspension and cancellation, transport, storage and disposal; developing import and export policies and enhancing pesticide-related occupational safety programmes.

  3. Pattern of pesticide storage before pesticide self-poisoning in rural Sri Lanka

    DEFF Research Database (Denmark)

    Mohamed, Fahim; Manuweera, Gamini; Gunnell, David

    2009-01-01

    BACKGROUND: Deliberate self-poisoning with agricultural pesticides is the commonest means of suicide in rural Asia. It is mostly impulsive and facilitated by easy access to pesticides. The aim of this large observational study was to investigate the immediate source of pesticides used for self......-harm to help inform suicide prevention strategies such as reducing domestic access to pesticides. METHODS: The study was conducted in a district hospital serving an agricultural region of Sri Lanka. Patients who had self-poisoned with pesticides and were admitted to the adult medical wards were interviewed...... the particular pesticide for self-harm were its easy accessibility (n = 311, 46%) or its popularity as a suicide agent in their village (n = 290, 43%). CONCLUSION: Three quarters of people who ingested pesticides in acts of self-harm used products that were available within the home or in close proximity...

  4. Low doses of neonicotinoid pesticides in food rewards impair short-term olfactory memory in foraging-age honeybees.

    Science.gov (United States)

    Wright, Geraldine A; Softley, Samantha; Earnshaw, Helen

    2015-10-19

    Neonicotinoids are often applied as systemic seed treatments to crops and have reported negative impact on pollinators when they appear in floral nectar and pollen. Recently, we found that bees in a two-choice assay prefer to consume solutions containing field-relevant doses of the neonicotinoid pesticides, imidacloprid (IMD) and thiamethoxam (TMX), to sucrose alone. This suggests that neonicotinoids enhance the rewarding properties of sucrose and that low, acute doses could improve learning and memory in bees. To test this, we trained foraging-age honeybees to learn to associate floral scent with a reward containing nectar-relevant concentrations of IMD and TMX and tested their short (STM) and long-term (LTM) olfactory memories. Contrary to our predictions, we found that none of the solutions enhanced the rate of olfactory learning and some of them impaired it. In particular, the effect of 10 nM IMD was observed by the second conditioning trial and persisted 24 h later. In most other groups, exposure to IMD and TMX affected STM but not LTM. Our data show that negative impacts of low doses of IMD and TMX do not require long-term exposure and suggest that impacts of neonicotinoids on olfaction are greater than their effects on rewarding memories.

  5. Dissolved pesticide concentrations entering the Sacramento-San Joaquin Delta from the Sacramento and San Joaquin Rivers, California, 2012-13

    Science.gov (United States)

    Orlando, James L.; McWayne, Megan; Sanders, Corey; Hladik, Michelle

    2014-01-01

    rice agriculture. In addition to the twice monthly sampling, surface-water samples were collected from the Sacramento River on 5 consecutive days following a rainfall event in the Sacramento urban area. Samples collected following this event contained an average of 11 pesticides. The insecticides carbaryl, fipronil, and imidacloprid; the herbicide DCPA; and the fungicide imazalil were only detected in the Sacramento River during this storm-runoff event, and two detections of fipronil during this period exceeded the U.S. Environmental Protection Agency Aquatic Life Benchmark (11 ng/L) for chronic toxicity to invertebrates in freshwater. In San Joaquin River samples, 26 pesticides and (or) degradates were detected, and the average number detected per sample was 9. The most frequently detected compounds in these samples were hexazinone and metolachlor (detected in 100 percent of samples); diuron (96 percent); the fungicide boscalid (96 percent); the degradates 3,4-dicloroaniline (92 percent) and NN-(3,4-Dichlorophenyl)-N’-methylurea (DCPMU; 83 percent); simazine (83 percent); and azoxystrobin (75 percent). The pesticides with the highest detected maximum concentrations were hexazinone (984 ng/L), diuron (695 ng/L), simazine (524 ng/L), the herbicide prometryn (155 ng/L), metolachlor (127 ng/L), boscalid (112 ng/L), DCPMU (111 ng/L), and the herbicide pendimethalin (108 ng/L).

  6. Pattern of pesticide storage before pesticide self-poisoning in rural Sri Lanka

    Science.gov (United States)

    Mohamed, Fahim; Manuweera, Gamini; Gunnell, David; Azher, Shifa; Eddleston, Michael; Dawson, Andrew; Konradsen, Flemming

    2009-01-01

    Background Deliberate self-poisoning with agricultural pesticides is the commonest means of suicide in rural Asia. It is mostly impulsive and facilitated by easy access to pesticides. The aim of this large observational study was to investigate the immediate source of pesticides used for self-harm to help inform suicide prevention strategies such as reducing domestic access to pesticides. Methods The study was conducted in a district hospital serving an agricultural region of Sri Lanka. Patients who had self-poisoned with pesticides and were admitted to the adult medical wards were interviewed by study doctors following initial resuscitation to identify the source of pesticides they have ingested. Results Of the 669 patients included in the analysis, 425 (63.5%) were male; the median age was 26 (IQR 20-36). In 511 (76%) cases, the pesticides had been stored either inside or immediately outside the house; among this group only eight patients obtained pesticides that were kept in a locked container. Ten percent (n = 67) of the patients used pesticides stored in the field while 14% (n = 91) purchased pesticides from shops within a few hours of the episode. The most common reasons for choosing the particular pesticide for self-harm were its easy accessibility (n = 311, 46%) or its popularity as a suicide agent in their village (n = 290, 43%). Conclusion Three quarters of people who ingested pesticides in acts of self-harm used products that were available within the home or in close proximity; relatively few patients purchased the pesticide for the act. The study highlights the importance of reducing the accessibility of toxic pesticides in the domestic environment. PMID:19889236

  7. 33 CFR 274.4 - Pesticide management.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Pesticide management. 274.4... DEFENSE PEST CONTROL PROGRAM FOR CIVIL WORKS PROJECTS Project Operation § 274.4 Pesticide management. (a... control management personnel prior to advertisement of the contract and procurement of services. The...

  8. Modeling pesticide risk to California gnatcatchers

    Science.gov (United States)

    Pesticides are used widely in US agriculture and may affect non-target organisms, including birds. Recently, USEPA has worked with other federal agencies, including USFWS and NMFS, to revise and strengthen methods for conducting pesticide risk assessments under section 7 of the U...

  9. Reproductive disorders associated with pesticide exposure.

    Science.gov (United States)

    Frazier, Linda M

    2007-01-01

    Exposure of men or women to certain pesticides at sufficient doses may increase the risk for sperm abnormalities, decreased fertility, a deficit of male children, spontaneous abortion, birth defects or fetal growth retardation. Pesticides from workplace or environmental exposures enter breast milk. Certain pesticides have been linked to developmental neurobehavioral problems, altered function of immune cells and possibly childhood leukemia. In well-designed epidemiologic studies, adverse reproductive or developmental effects have been associated with mixed pesticide exposure in occupational settings, particularly when personal protective equipment is not used. Every class of pesticides has at least one agent capable of affecting a reproductive or developmental endpoint in laboratory animals or people, including organophosphates, carbamates, pyrethroids, herbicides, fungicides, fumigants and especially organochlorines. Many of the most toxic pesticides have been banned or restricted in developed nations, but high exposures to these agents are still occurring in the most impoverished countries around the globe. Protective clothing, masks and gloves are more difficult to tolerate in hot, humid weather, or may be unavailable or unaffordable. Counseling patients who are concerned about reproductive and developmental effects of pesticides often involves helping them assess their exposure levels, weigh risks and benefits, and adopt practices to reduce or eliminate their absorbed dose. Patients may not realize that by the first prenatal care visit, most disruptions of organogenesis have already occurred. Planning ahead provides the best chance of lowering risk from pesticides and remediating other risk factors before conception.

  10. Toxicity of Pesticides. Agrichemical Fact Sheet 2.

    Science.gov (United States)

    Hock, Winand K.

    This fact sheet gives the acute oral and dermal toxicity (LD 50) of over 250 pesticides in lab animals. The chemicals are categorized as fungicides, herbicides, insecticides, or miscellaneous compounds. One or more trade names are given for each pesticide. In addition, a brief explanation of toxicity determination is given. (BB)

  11. Aquatic Macrophyte Risk Assessment for Pesticides

    NARCIS (Netherlands)

    Maltby, L.; Arnold, D.; Arts, G.H.P.; Davies, J.; Heimbach, F.; Pickl, C.; Poulsen, V.

    2009-01-01

    Given the essential role that primary producers play in aquatic ecosystems, it is imperative that the potential risk of pesticides to the structure and functioning of aquatic plants is adequately assessed. This book discusses the assessment of the risk of pesticides with herbicidal activity to

  12. 75 FR 56105 - Pesticide Products; Registration Applications

    Science.gov (United States)

    2010-09-15

    ... Products, Inc., 2625 South 158th Plaza, Omaha, NE 68130. Active ingredient: Bifenthrin. Proposed uses: Dogs... ENVIRONMENTAL PROTECTION AGENCY [EPA-HQ-OPP-2010-0008; FRL-8843-5] Pesticide Products... announces receipt of applications to register new uses for pesticide products containing currently...

  13. Atmospheric Concentrations of Organochlorine Pesticides in the ...

    African Journals Online (AJOL)

    Organochlorine pesticides may still be in use in the Eastern African region for agricultural purposes and for the control of mosquitoes. Atmospheric concentrations of organochlorine pesticides are expected to be higher in the tropics compared to temperate regions due to prevailing high temperatures. However, no study has ...

  14. EPA Regulation of Bed Bug Pesticides

    Science.gov (United States)

    All pesticides must be registered by EPA before being sold and used in the U.S., other than those that rely on a limited set of active ingredients (so-called minimum risk pesticides). EPA reviews for safety and effectiveness.

  15. Chlorinated pesticide residues in marine sediments

    Digital Repository Service at National Institute of Oceanography (India)

    Sarkar, A.; SenGupta, R.

    of pesticide in contaminated river water into the Bay of Bengal. Con centration ranges of all these pesticide residues detected were, aldrine: 0.02-0.53, gamma BHC: 0.01-0.21, dieldrine: 0.05-0.51, and total DDT: 0.02-0.78, all in mu g g sup(-1) (wet wt)....

  16. Pesticide biotransformation and fate in heterogeneous environments

    NARCIS (Netherlands)

    Vink, J.P.M.

    1997-01-01

    The effects and relative impacts of environmental variables on the behaviour of pesticides, through the effect on pesticide-degrading microorganisms, was studied in a broad spectrum and covered the most relevant emission routes. It is shown that the effect of landscape geochemistry, which

  17. QA/QC in pesticide residue analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ambrus, A [Agrochemicals Unit, Agency' s Laboratories, Seibersdorf (Austria)

    2002-07-01

    This paper outlines problems related to pesticide residue analysis in a regulatory laboratory that are related to: availability of reference materials, as over 1000 pesticide active ingredients are currently in use and over 400 crops represent a large part of a healthy diet; analysis time; availability of samples in sufficient numbers; uncertainties of the procedures.

  18. QA/QC in pesticide residue analysis

    International Nuclear Information System (INIS)

    Ambrus, A.

    2002-01-01

    This paper outlines problems related to pesticide residue analysis in a regulatory laboratory that are related to: availability of reference materials, as over 1000 pesticide active ingredients are currently in use and over 400 crops represent a large part of a healthy diet; analysis time; availability of samples in sufficient numbers; uncertainties of the procedures

  19. Residential exposures to pesticides and childhood leukaemia

    International Nuclear Information System (INIS)

    Metayer, C.; Buffler, P. A.

    2008-01-01

    Like many chemicals, carcinogenicity of pesticides is poorly characterised in humans, especially in children, so that the present knowledge about childhood leukaemia risk derives primarily from epidemiological studies. Overall, case-control studies published in the last decade have reported positive associations with home use of insecticides, mostly before the child's birth, while findings for herbicides are mixed. Previous studies relied solely on self-reports, therefore lacking information on active ingredients and effects of potential recall bias. Few series to date have examined the influence of children's genetic susceptibility related to transport and metabolism of pesticides. To overcome these limitations, investigators of the Northern California Childhood Leukaemia Study (NCCLS) have undertaken, in collaboration with a multidisciplinary team, a comprehensive assessment of residential pesticide exposure, including: (1) quality control of self-reports; (2) home pesticide inventory and linkage to the Environmental Protection Agency to obtain data on active ingredients; (3) collection and laboratory analyses of ∼600 home dust samples for over 60 pesticides and (4) geographic information studies using California environmental databases to assess exposure to agricultural pesticides. The NCCLS is also conducting large-scale geno-typing to evaluate the role of genes in xenobiotic pathways relevant to the transport and metabolism of pesticides. A better quantification of children's exposures to pesticides at home is critical to the evaluation of childhood leukaemia risk, especially for future gene-environment interaction studies. (authors)

  20. PESTICIDE CONTAMINATION OF THE DRIDJI COTTON ...

    African Journals Online (AJOL)

    ruud

    pesticide contamination in the Dridji cotton production area poses a risk to public ... the Kiti River as well as bean leaves grown near the river were sampled and ... Sediments were analysed at the Institute of Environmental Studies of the VU .... Empty bottles of pesticides were recycled to buy oil from the market and to bring.

  1. Clinical evaluation of the safety and efficacy of 10% imidacloprid + 2.5% moxidectin topical solution for the treatment of ear mite (Otodectes cynotis) infestations in dogs.

    Science.gov (United States)

    Arther, R G; Davis, W L; Jacobsen, J A; Lewis, V A; Settje, T L

    2015-05-30

    A clinical field investigation was conducted to evaluate the safety and efficacy of 10% imidacloprid/2.5% moxidectin for the treatment of ear mites (Otodectes cynotis) in dogs. The study was a multi-centered, blinded, positive controlled, randomized clinical trial conducted under field conditions with privately owned pets. A total of 17 veterinary clinics enrolled cases for the study. An otoscopic examination was performed to confirm the presence of O. cynotis residing in the ear of the dog prior to enrollment. A single-dog household was enrolled in the study if the dog had 5 or more ear mites and an acceptable physical examination. A multi-dog household was eligible if at least one dog in the household had 5 or more mites and all dogs in the household had acceptable physical exams and met the inclusion criteria. Qualified households were randomly assigned to treatments to receive either 10% imidacloprid+2.5% moxidectin topical solution or topical selamectin solution (positive control product) according to a pre-designated enrollment ratio of 2:1, respectively. If more than one dog in a multiple dog household had adequate numbers of ear mites, one dog was randomly selected to represent the household for efficacy evaluation prior to treatment. Treatments were administered twice per label and dose banding directions for each product approximately 28 days apart (Days 0 and 28), by the dog's owner at the study site. All dogs in a household were treated on the same day and with the same product. The owners completed a post-treatment observation form one day after each treatment. Post-treatment otoscopic examinations were performed by the investigators or attending veterinarian on Days 28 and 56. Physical examinations were performed on Days 0 and 56. One hundred and four (104) households were evaluated for efficacy on SD 28, and 102 households were evaluated for efficacy on SD 56. The dogs' ages ranged from 2 months to 16 years. A total of 247 dogs were evaluated for

  2. Predictive acute toxicity tests with pesticides.

    Science.gov (United States)

    Brown, V K

    1983-01-01

    By definition pesticides are biocidal products and this implies a probability that pesticides may be acutely toxic to species other than the designated target species. The ways in which pesticides are manufactured, formulated, packaged, distributed and used necessitates a potential for the exposure of non-target species although the technology exists to minimize adventitious exposure. The occurrence of deliberate exposure of non-target species due to the misuse of pesticides is known to happen. The array of predictive acute toxicity tests carried out on pesticides and involving the use of laboratory animals can be justified as providing data on which hazard assessment can be based. This paper addresses the justification and rationale of this statement.

  3. Soil-applied imidacloprid translocates to ornamental flowers and reduces survival of adult Coleomegilla maculata, Harmonia axyridis, and Hippodamia convergens lady beetles, and larval Danaus plexippus and Vanessa cardui butterflies.

    Directory of Open Access Journals (Sweden)

    Vera Krischik

    Full Text Available Integrated Pest Management (IPM is a decision making process used to manage pests that relies on many tactics, including cultural and biological control, which are practices that conserve beneficial insects and mites, and when needed, the use of conventional insecticides. However, systemic, soil-applied neonicotinoid insecticides are translocated to pollen and nectar of flowers, often for months, and may reduce survival of flower-feeding beneficial insects. Imidacloprid seed-treated crops (0.05 mg AI (active ingredient /canola seed and 1.2 mg AI/corn seed translocate less than 10 ppb to pollen and nectar. However, higher rates of soil-applied imidacloprid are used in nurseries and urban landscapes, such as 300 mg AI/10 L (3 gallon pot and 69 g AI applied to the soil under a 61 (24 in cm diam. tree. Translocation of imidacloprid from soil (300 mg AI to flowers of Asclepias curassavica resulted in 6,030 ppb in 1X and 10,400 ppb in 2X treatments, which are similar to imidacloprid residues found in another plant species we studied. A second imidacloprid soil application 7 months later resulted in 21,000 ppb in 1X and 45,000 ppb in 2X treatments. Consequently, greenhouse/nursery use of imidacloprid applied to flowering plants can result in 793 to 1,368 times higher concentration compared to an imidacloprid seed treatment (7.6 ppb pollen in seed- treated canola, where most research has focused. These higher imidacloprid levels caused significant mortality in both 1X and 2X treatments in 3 lady beetle species, Coleomegilla maculata, Harmonia axyridis, and Hippodamia convergens, but not a fourth species, Coccinella septempunctata. Adult survival were not reduced for monarch, Danaus plexippus and painted lady, Vanessa cardui, butterflies, but larval survival was significantly reduced. The use of the neonicotinoid imidacloprid at greenhouse/nursery rates reduced survival of beneficial insects feeding on pollen and nectar and is incompatible with the

  4. Soil-applied imidacloprid translocates to ornamental flowers and reduces survival of adult Coleomegilla maculata, Harmonia axyridis, and Hippodamia convergens lady beetles, and larval Danaus plexippus and Vanessa cardui butterflies.

    Science.gov (United States)

    Krischik, Vera; Rogers, Mary; Gupta, Garima; Varshney, Aruna

    2015-01-01

    Integrated Pest Management (IPM) is a decision making process used to manage pests that relies on many tactics, including cultural and biological control, which are practices that conserve beneficial insects and mites, and when needed, the use of conventional insecticides. However, systemic, soil-applied neonicotinoid insecticides are translocated to pollen and nectar of flowers, often for months, and may reduce survival of flower-feeding beneficial insects. Imidacloprid seed-treated crops (0.05 mg AI (active ingredient) /canola seed and 1.2 mg AI/corn seed) translocate less than 10 ppb to pollen and nectar. However, higher rates of soil-applied imidacloprid are used in nurseries and urban landscapes, such as 300 mg AI/10 L (3 gallon) pot and 69 g AI applied to the soil under a 61 (24 in) cm diam. tree. Translocation of imidacloprid from soil (300 mg AI) to flowers of Asclepias curassavica resulted in 6,030 ppb in 1X and 10,400 ppb in 2X treatments, which are similar to imidacloprid residues found in another plant species we studied. A second imidacloprid soil application 7 months later resulted in 21,000 ppb in 1X and 45,000 ppb in 2X treatments. Consequently, greenhouse/nursery use of imidacloprid applied to flowering plants can result in 793 to 1,368 times higher concentration compared to an imidacloprid seed treatment (7.6 ppb pollen in seed- treated canola), where most research has focused. These higher imidacloprid levels caused significant mortality in both 1X and 2X treatments in 3 lady beetle species, Coleomegilla maculata, Harmonia axyridis, and Hippodamia convergens, but not a fourth species, Coccinella septempunctata. Adult survival were not reduced for monarch, Danaus plexippus and painted lady, Vanessa cardui, butterflies, but larval survival was significantly reduced. The use of the neonicotinoid imidacloprid at greenhouse/nursery rates reduced survival of beneficial insects feeding on pollen and nectar and is incompatible with the principles of IPM.

  5. Soil-Applied Imidacloprid Translocates to Ornamental Flowers and Reduces Survival of Adult Coleomegilla maculata, Harmonia axyridis, and Hippodamia convergens Lady Beetles, and Larval Danaus plexippus and Vanessa cardui Butterflies

    Science.gov (United States)

    Krischik, Vera; Rogers, Mary; Gupta, Garima; Varshney, Aruna

    2015-01-01

    Integrated Pest Management (IPM) is a decision making process used to manage pests that relies on many tactics, including cultural and biological control, which are practices that conserve beneficial insects and mites, and when needed, the use of conventional insecticides. However, systemic, soil-applied neonicotinoid insecticides are translocated to pollen and nectar of flowers, often for months, and may reduce survival of flower-feeding beneficial insects. Imidacloprid seed-treated crops (0.05 mg AI (active ingredient) /canola seed and 1.2 mg AI/corn seed) translocate less than 10 ppb to pollen and nectar. However, higher rates of soil-applied imidacloprid are used in nurseries and urban landscapes, such as 300 mg AI/10 L (3 gallon) pot and 69 g AI applied to the soil under a 61 (24 in) cm diam. tree. Translocation of imidacloprid from soil (300 mg AI) to flowers of Asclepias curassavica resulted in 6,030 ppb in 1X and 10,400 ppb in 2X treatments, which are similar to imidacloprid residues found in another plant species we studied. A second imidacloprid soil application 7 months later resulted in 21,000 ppb in 1X and 45,000 ppb in 2X treatments. Consequently, greenhouse/nursery use of imidacloprid applied to flowering plants can result in 793 to 1,368 times higher concentration compared to an imidacloprid seed treatment (7.6 ppb pollen in seed- treated canola), where most research has focused. These higher imidacloprid levels caused significant mortality in both 1X and 2X treatments in 3 lady beetle species, Coleomegilla maculata, Harmonia axyridis, and Hippodamia convergens, but not a fourth species, Coccinella septempunctata. Adult survival were not reduced for monarch, Danaus plexippus and painted lady, Vanessa cardui, butterflies, but larval survival was significantly reduced. The use of the neonicotinoid imidacloprid at greenhouse/nursery rates reduced survival of beneficial insects feeding on pollen and nectar and is incompatible with the principles of IPM

  6. Pesticide Toxicity Index: a tool for assessing potential toxicity of pesticide mixtures to freshwater aquatic organisms

    Science.gov (United States)

    Nowell, Lisa H.; Norman, Julia E.; Moran, Patrick W.; Martin, Jeffrey D.; Stone, Wesley W.

    2014-01-01

    Pesticide mixtures are common in streams with agricultural or urban influence in the watershed. The Pesticide Toxicity Index (PTI) is a screening tool to assess potential aquatic toxicity of complex pesticide mixtures by combining measures of pesticide exposure and acute toxicity in an additive toxic-unit model. The PTI is determined separately for fish, cladocerans, and benthic invertebrates. This study expands the number of pesticides and degradates included in previous editions of the PTI from 124 to 492 pesticides and degradates, and includes two types of PTI for use in different applications, depending on study objectives. The Median-PTI was calculated from median toxicity values for individual pesticides, so is robust to outliers and is appropriate for comparing relative potential toxicity among samples, sites, or pesticides. The Sensitive-PTI uses the 5th percentile of available toxicity values, so is a more sensitive screening-level indicator of potential toxicity. PTI predictions of toxicity in environmental samples were tested using data aggregated from published field studies that measured pesticide concentrations and toxicity to Ceriodaphnia dubia in ambient stream water. C. dubia survival was reduced to ≤ 50% of controls in 44% of samples with Median-PTI values of 0.1–1, and to 0% in 96% of samples with Median-PTI values > 1. The PTI is a relative, but quantitative, indicator of potential toxicity that can be used to evaluate relationships between pesticide exposure and biological condition.

  7. Utilization of Boxes for Pesticide Storage in Sri Lanka

    DEFF Research Database (Denmark)

    Pieris, Ravi; Weerasinghe, Manjula; Abeywickrama, Tharaka

    2017-01-01

    Pesticide self-poisoning is now considered one of the two most common methods of suicide worldwide. Encouraging safe storage of pesticides is one particular approach aimed at reducing pesticide self-poisoning. CropLife Sri Lanka (the local association of pesticide manufacturers), with the aid of ...

  8. 33 CFR 274.7 - Authorization of pesticide use.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Authorization of pesticide use... of pesticide use. (a) Programs approved in § 274.6(b) must be those as described on the pesticide label. Pesticide uses which are different from the registered use, require amendment of the label...

  9. Spreading the Word about Pesticide Hazards and Alternatives.

    Science.gov (United States)

    Grier, Norma

    1993-01-01

    Presents a pamphlet and four brochures about pesticide hazards, pesticide use and alternatives, special impacts on children, lawn and garden pest management, and pesticides in food. Discusses the whys and ways of using these materials to inform people about pesticide issues. (MDH)

  10. Simulating Effects of Forest Management Practices on Pesticide.

    Science.gov (United States)

    M.C. Smith; W.G. Knisel; J.L. Michael; D.G. Neary

    1993-01-01

    The GLEAMS model pesticide component was modified to simulate up to 245 pesticides simultaneously, and the revised model was used to pesticide pesticide application windows for forest site preparation and pine release. Five herbicides were made for soils representing four hydrologic soil groups in four climatic regions of the southeastern United States. Five herbicides...

  11. Apply Pesticides Correctly: A Guide for Commercial Applicators.

    Science.gov (United States)

    Environmental Protection Agency, Washington, DC.

    This document provides practical information needed by commercial pesticide applicators to meet the minimum Federal regulation requirements for the use of various pesticides. The text and accompanying illustrations cover the seven major topics of pests, pest control, pesticides, labels and labeling, using pesticides safely, application equipment,…

  12. 40 CFR 273.3 - Applicability-pesticides.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 26 2010-07-01 2010-07-01 false Applicability-pesticides. 273.3... (CONTINUED) STANDARDS FOR UNIVERSAL WASTE MANAGEMENT General § 273.3 Applicability—pesticides. (a) Pesticides covered under this part 273. The requirements of this part apply to persons managing pesticides, as...

  13. [Ecotoxicological study of chlorinated pesticides].

    Science.gov (United States)

    Rosival, L; Szokolay, A; Uhnák, J

    1980-01-01

    The authors describe a model for the ecotoxicological investigation of pesticide residues guided by the analysis of various links of the food chain and of human materials. It is pointed to the possibility of studying the dynamics of the exposure to human beings by analyzing gynaecological material (prenatal stage) and samples obtained at necropsy from human beings of varying age (different durations of exposure). The observations of the relative accumulation of hexachlorobenzene, beta-BHC and DDT in butter, human milk and human fat in a region with intensive cultivation revealed a considerble accumulation of hexachlorobenzene which reaches the level of DDT. The conclusion drawn from ecotoxicological studies indicates that a reduction of the tolerances of pesticide residues in raw materials for baby foods is imperative. The analyses of gynaecological material (202 samples of the available content of the uterus and 24 placental and embryonic specimens) permitted to evidence a significant difference between two regions and a specific relationship of the observed substances and their metabolites to the fat-dissolving power of the analyzed materials.

  14. Pesticides in Brazilian freshwaters: a critical review.

    Science.gov (United States)

    Albuquerque, A F; Ribeiro, J S; Kummrow, F; Nogueira, A J A; Montagner, C C; Umbuzeiro, G A

    2016-07-13

    The widespread use of pesticides in agriculture can lead to water contamination and cause adverse effects on non-target organisms. Brazil has been the world's top pesticide market consumer since 2008, with 381 approved pesticides for crop use. This study provides a comprehensive literature review on the occurrence of pesticide residues in Brazilian freshwaters. We searched for information in official agency records and peer-reviewed scientific literature. Risk quotients were calculated to assess the potential risk posed to aquatic life by the individual pesticides based on their levels of water contamination. Studies about the occurrence of pesticides in freshwaters in Brazil are scarce and concentrated in few sampling sites in 5 of the 27 states. Herbicides (21) accounted for the majority of the substances investigated, followed by fungicides (11), insecticides (10) and plant growth regulators (1). Insecticides are the class of major concern. Brazil would benefit from the implementation of a nationwide pesticide freshwater monitoring program to support preventive, remediation and enforcement actions.

  15. Characterizing pesticide dissipation in food crops

    DEFF Research Database (Denmark)

    Fantke, Peter; Juraske, R.; Jolliet, O.

    2013-01-01

    Ingestion of residues via consumption of food crops is the predominant exposure route of the general population toward pesticides. However, pesticide dissipation in crops constitutes a main source of uncertainty in estimating residues in harvested crop parts and subsequent human exposure. Neverth......Ingestion of residues via consumption of food crops is the predominant exposure route of the general population toward pesticides. However, pesticide dissipation in crops constitutes a main source of uncertainty in estimating residues in harvested crop parts and subsequent human exposure....... Nevertheless, dissipation is a key mechanism in models assessing pesticide distribution in the cropenvironment and the magnitude of residues in harvest. We provide a consistent framework for characterizing pesticide dissipation in food crops for use in modeling approaches applied in health risk and impact...... degradation is dominating. We are currently testing the regression to predict degradation half-lives in crops. By providing mean degradation half-lives at 20°C for more than 300 pesticides, we reduce uncertainty and improve assumptions in current practice of health risk and impact assessments....

  16. 78 FR 36778 - Pesticide Program Dialogue Committee; Notice of Public Meeting

    Science.gov (United States)

    2013-06-19

    ... associations; environmental, consumer, and farm worker groups; pesticide users and growers; animal rights... animal rights groups; farm worker organizations; pesticide industry and trade associations; pesticide...

  17. Activation and modulation of human α4β2 nicotinic acetylcholine receptors by the neonicotinoids clothianidin and imidacloprid.

    Science.gov (United States)

    Li, Ping; Ann, Jason; Akk, Gustav

    2011-08-01

    Neonicotinoids are synthetic, nicotine-derived insecticides used for agricultural and household pest control. Though highly effective at activating insect nicotinic receptors, many neonicotinoids are also capable of directly activating and/or modulating the activation of vertebrate nicotinic receptors. In this study, we have investigated the actions of the neonicotinoids clothianidin (CTD) and imidacloprid (IMI) on human neuronal α4β2 nicotinic acetylcholine receptors. The data demonstrate that the compounds are weak agonists of the human receptors with relative peak currents of 1-4% of the response to 1 mM acetylcholine (ACh). Coapplication of IMI strongly inhibited currents elicited by ACh. From Schild plot analysis, we estimate that the affinity of IMI for the human α4β2 receptor is 18 μM. The application of low concentrations of CTD potentiated responses to low concentrations of ACh, suggesting that receptors occupied by one ACh and one CTD molecule have a higher gating efficacy than receptors with one ACh bound. Interestingly, subunit stoichiometry affected inhibition by CTD, with (α4)(2) (β2)(3) receptors significantly more strongly inhibited than the (α4)(3) (β2)(2) receptors. Copyright © 2011 Wiley-Liss, Inc.

  18. Mechanisms of Imidacloprid-Induced Alteration of Hypothalamic-Pituitary-Adrenal (HPA Axis after Subchronic Exposure in Male Rats

    Directory of Open Access Journals (Sweden)

    Alya Annabi

    2015-11-01

    Full Text Available Imidacloprid (IMI is known to target the nicotinic acetylcholine receptors (nAChRs in insects, and potentially in mammals. However, IMI toxicity on mammalian tissues has not been adequately evaluated. The aim of the present study was to examine whether IMI induced functional impairment in hypthalamic-pituitary-adrenal (HPA axis tissues. An oral exposure of 40 mg IMI/kg for 28 days in male rats caused a significant increase in malondialdehyde (MDA level. The antioxidant catalase, superoxide dismutase, and glutathione S-transferase showed various alterations following administration, but a significantly depleted thiol (SH groups was only recorded in hypothalamic tissues. The increase in the relative weight of adrenal glands and the increased adrenal cholesterol and plasma adrenocorticotropic hormone (ACTH levels are indicative of general adaptation syndrome. The hypothalamic and pituitary acetylcholinesterase activity and calcium level were significantly increased, highlighting the alteration of cholinergic transmission. In conclusion, the findings obtained show that chronic exposure to IMI may alter biochemical processes of HPA axis.

  19. RNA-Seq and molecular docking reveal multi-level pesticide resistance in the bed bug

    Directory of Open Access Journals (Sweden)

    Mamidala Praveen

    2012-01-01

    Full Text Available Abstract Background Bed bugs (Cimex lectularius are hematophagous nocturnal parasites of humans that have attained high impact status due to their worldwide resurgence. The sudden and rampant resurgence of C. lectularius has been attributed to numerous factors including frequent international travel, narrower pest management practices, and insecticide resistance. Results We performed a next-generation RNA sequencing (RNA-Seq experiment to find differentially expressed genes between pesticide-resistant (PR and pesticide-susceptible (PS strains of C. lectularius. A reference transcriptome database of 51,492 expressed sequence tags (ESTs was created by combining the databases derived from de novo assembled mRNA-Seq tags (30,404 ESTs and our previous 454 pyrosequenced database (21,088 ESTs. The two-way GLMseq analysis revealed ~15,000 highly significant differentially expressed ESTs between the PR and PS strains. Among the top 5,000 differentially expressed ESTs, 109 putative defense genes (cuticular proteins, cytochrome P450s, antioxidant genes, ABC transporters, glutathione S-transferases, carboxylesterases and acetyl cholinesterase involved in penetration resistance and metabolic resistance were identified. Tissue and development-specific expression of P450 CYP3 clan members showed high mRNA levels in the cuticle, Malpighian tubules, and midgut; and in early instar nymphs, respectively. Lastly, molecular modeling and docking of a candidate cytochrome P450 (CYP397A1V2 revealed the flexibility of the deduced protein to metabolize a broad range of insecticide substrates including DDT, deltamethrin, permethrin, and imidacloprid. Conclusions We developed significant molecular resources for C. lectularius putatively involved in metabolic resistance as well as those participating in other modes of insecticide resistance. RNA-Seq profiles of PR strains combined with tissue-specific profiles and molecular docking revealed multi-level insecticide

  20. Status of pesticides pollution in Tanzania - A review.

    Science.gov (United States)

    Elibariki, Raheli; Maguta, Mihayo Musabila

    2017-07-01

    Various studies have been conducted in Tanzania to assess the magnitude of pesticides pollution associated with pesticides application, storage, disposal as well as knowledge of farmers on pesticides handling. The studies analysed samples from different matrices covering vegetation, biota, water, sediments and soil. The objective of this review was to summarise the results of pesticides residues reported in different components of the environment to give a clear picture of pesticides pollution status in the country for law enforcement as well as for taking precaution measures. Gaps which need to be filled in order to establish a comprehensive understanding on pesticides pollution in the country have also been highlighted. Reviewed studies revealed that, most of the samples contained pesticides below permissible limits (WHO, FAO, US-EPA) except for few samples such as water from Kikavu river, Kilimanjaro region and Kilolo district, Iringa region which were detected with some Organochlorine pesticides (OCPs) above WHO permissible limits. Some soil samples from the former storage sites also contained pesticides above FAO permissible limits. Pesticides and their metabolites were also detected both in vegetation, food and biota samples. The prevalent pesticides in the reviewed studies were the organochlorines such as Dichlorodiphenyltrichloroethane (DDT), endosulfan and Hexachlorocyclohexane (HCH). Surveys to assess farmer's knowledge on pesticides handling observed poor understanding of farmers on pesticides storage, application and disposal. Decontamination of former storage areas, continuous monitoring of pesticide applications and training of farmers on proper handling of pesticides are highly recommended. Copyright © 2017 Elsevier Ltd. All rights reserved.