WorldWideScience

Sample records for fr07my10r light-duty vehicle

  1. Light-Duty Vehicle Thermal Management | Transportation Research | NREL

    Science.gov (United States)

    Light-Duty Vehicle Thermal Management Light-Duty Vehicle Thermal Management Image of a semi improving the thermal efficiency of light-duty vehicles (LDVs) while maintaining the thermal comfort that utility vehicles, vans, and light trucks in use on U.S. roads, and the average American drives 11,300

  2. Light-Duty Vehicle CO2 and Fuel Economy Trends

    Science.gov (United States)

    This report provides data on the fuel economy, carbon dioxide (CO2) emissions, and technology trends of new light-duty vehicles (cars, minivans, sport utility vehicles, and pickup trucks) for model years 1975 to present in the United States.

  3. AMMONIA EMISSIONS FROM THE EPA'S LIGHT DUTY TEST VEHICLE

    Science.gov (United States)

    The paper discusses measurements of ammonia (NH3) emissions from EPA's light duty test vehicle while operated on a dynamometer. The vehicle's (1993 Chevrolet equipped with a three-way catalyst) emissions were measured for three transient (urban driving, highway fuel economy, and ...

  4. 75 FR 7426 - Tier 2 Light-Duty Vehicle and Light-Duty Truck Emission Standards and Gasoline Sulfur Control...

    Science.gov (United States)

    2010-02-19

    ... 2060-AI23; 2060-AQ12 Tier 2 Light-Duty Vehicle and Light-Duty Truck Emission Standards and Gasoline.... The rulemaking also required oil refiners to limit the sulfur content of the gasoline they produce. Sulfur in gasoline has a detrimental impact on catalyst performance and the sulfur requirements have...

  5. ADOPT: A Historically Validated Light Duty Vehicle Consumer Choice Model

    Energy Technology Data Exchange (ETDEWEB)

    Brooker, A.; Gonder, J.; Lopp, S.; Ward, J.

    2015-05-04

    The Automotive Deployment Option Projection Tool (ADOPT) is a light-duty vehicle consumer choice and stock model supported by the U.S. Department of Energy’s Vehicle Technologies Office. It estimates technology improvement impacts on U.S. light-duty vehicles sales, petroleum use, and greenhouse gas emissions. ADOPT uses techniques from the multinomial logit method and the mixed logit method estimate sales. Specifically, it estimates sales based on the weighted value of key attributes including vehicle price, fuel cost, acceleration, range and usable volume. The average importance of several attributes changes nonlinearly across its range and changes with income. For several attributes, a distribution of importance around the average value is used to represent consumer heterogeneity. The majority of existing vehicle makes, models, and trims are included to fully represent the market. The Corporate Average Fuel Economy regulations are enforced. The sales feed into the ADOPT stock model. It captures key aspects for summing petroleum use and greenhouse gas emissions This includes capturing the change in vehicle miles traveled by vehicle age, the creation of new model options based on the success of existing vehicles, new vehicle option introduction rate limits, and survival rates by vehicle age. ADOPT has been extensively validated with historical sales data. It matches in key dimensions including sales by fuel economy, acceleration, price, vehicle size class, and powertrain across multiple years. A graphical user interface provides easy and efficient use. It manages the inputs, simulation, and results.

  6. Reduce growth rate of light-duty vehicle travel to meet 2050 global climate goals

    Energy Technology Data Exchange (ETDEWEB)

    Sager, Jalel; Apte, Joshua S; Lemoine, Derek M; Kammen, Daniel M, E-mail: jalel.sager@berkeley.edu, E-mail: japte@berkeley.edu, E-mail: dlemoine@berkeley.edu, E-mail: daniel.kammen@gmail.com [Energy and Resources Group, University of California, Berkeley, CA (United States)

    2011-04-15

    Strong policies to constrain increasing global use of light-duty vehicles (cars and light trucks) should complement fuel efficiency and carbon intensity improvements in order to meet international greenhouse gas emission and climate targets for the year 2050.

  7. Light-duty vehicle greenhouse gas emission standards and corporate average fuel economy standards : final rule

    Science.gov (United States)

    2010-05-07

    Final Rule to establish a National Program consisting of new standards for light-duty vehicles that will reduce greenhouse gas emissions and improve fuel economy. This joint : Final Rule is consistent with the National Fuel Efficiency Policy announce...

  8. Effects of cold temperature and ethanol content on VOC emissions from light-duty gasoline vehicles

    Science.gov (United States)

    Emissions of speciated volatile organic compounds (VOCs), including mobile source air toxics (MSATs), were measured in vehicle exhaust from three light-duty spark ignition vehicles operating on summer and winter grade gasoline (E0) and ethanol blended (E10 and E85) fuels. Vehicle...

  9. On-road emissions of light-duty vehicles in europe.

    Science.gov (United States)

    Weiss, Martin; Bonnel, Pierre; Hummel, Rudolf; Provenza, Alessio; Manfredi, Urbano

    2011-10-01

    For obtaining type approval in the European Union, light-duty vehicles have to comply with emission limits during standardized laboratory emissions testing. Although emission limits have become more stringent in past decades, light-duty vehicles remain an important source of nitrogen oxides and carbon monoxide emissions in Europe. Furthermore, persisting air quality problems in many urban areas suggest that laboratory emissions testing may not accurately capture the on-road emissions of light-duty vehicles. To address this issue, we conduct the first comprehensive on-road emissions test of light-duty vehicles with state-of-the-art Portable Emission Measurement Systems. We find that nitrogen oxides emissions of gasoline vehicles as well as carbon monoxide and total hydrocarbon emissions of both diesel and gasoline vehicles generally remain below the respective emission limits. By contrast, nitrogen oxides emissions of diesel vehicles (0.93 ± 0.39 grams per kilometer [g/km]), including modern Euro 5 diesel vehicles (0.62 ± 0.19 g/km), exceed emission limits by 320 ± 90%. On-road carbon dioxide emissions surpass laboratory emission levels by 21 ± 9%, suggesting that the current laboratory emissions testing fails to accurately capture the on-road emissions of light-duty vehicles. Our findings provide the empirical foundation for the European Commission to establish a complementary emissions test procedure for light-duty vehicles. This procedure could be implemented together with more stringent Euro 6 emission limits in 2014. The envisaged measures should improve urban air quality and provide incentive for innovation in the automotive industry.

  10. Cold Temperature Effects on Speciated VOC Emissions from Modern GDI Light-Duty Vehicles 1

    Science.gov (United States)

    In this study, speciated VOC emissions were characterized from three modern GDI light-duty vehicles. The vehicles were tested on a chassis dynamometer housed in a climate-controlled chamber at two temperatures (20 and 72 °F) using the EPA Federal Test Procedure (FTP) and a portio...

  11. 40 CFR 86.1708-99 - Exhaust emission standards for 1999 and later light-duty vehicles.

    Science.gov (United States)

    2010-07-01

    ... for Light-Duty Vehicles and Light-Duty Trucks § 86.1708-99 Exhaust emission standards for 1999 and... are incorporated by reference (see § 86.1). (v) Hybrid electric vehicle requirements. Deterioration factors for hybrid electric vehicles shall be based on the emissions and mileage accumulation of the...

  12. 40 CFR 86.1818-12 - Greenhouse gas emission standards for light-duty vehicles, light-duty trucks, and medium-duty...

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 19 2010-07-01 2010-07-01 false Greenhouse gas emission standards for... Complete Otto-Cycle Heavy-Duty Vehicles § 86.1818-12 Greenhouse gas emission standards for light-duty... group of six greenhouse gases: Carbon dioxide, nitrous oxide, methane, hydrofluorocarbons...

  13. Fleet average NOx emission performance of 2004 model year light-duty vehicles, light-duty trucks and medium-duty passenger vehicles

    International Nuclear Information System (INIS)

    2006-05-01

    The On-Road Vehicle and Engine Emission Regulations came into effect on January 1, 2004. The regulations introduced more stringent national emission standards for on-road vehicles and engines, and also required that companies submit reports containing information concerning the company's fleets. This report presented a summary of the regulatory requirements relating to nitric oxide (NO x ) fleet average emissions for light-duty vehicles, light-duty trucks, and medium-duty passenger vehicles under the new regulations. The effectiveness of the Canadian fleet average NO x emission program at achieving environmental performance objectives was also evaluated. A summary of the fleet average NO x emission performance of individual companies was presented, as well as the overall Canadian fleet average of the 2004 model year based on data submitted by companies in their end of model year reports. A total of 21 companies submitted reports covering 2004 model year vehicles in 10 test groups, comprising 1,350,719 vehicles of the 2004 model year manufactured or imported for the purpose of sale in Canada. The average NO x value for the entire Canadian LDV/LDT fleet was 0.2016463 grams per mile. The average NO x values for the entire Canadian HLDT/MDPV fleet was 0.321976 grams per mile. It was concluded that the NO x values for both fleets were consistent with the environmental performance objectives of the regulations for the 2004 model year. 9 tabs

  14. 10 CFR 490.203 - Light Duty Alternative Fueled Vehicle Plan.

    Science.gov (United States)

    2010-01-01

    ... Efficiency and Renewable Energy, EE-33, 1000 Independence Ave., SW., Washington, DC 20585, or to such other... 10 Energy 3 2010-01-01 2010-01-01 false Light Duty Alternative Fueled Vehicle Plan. 490.203 Section 490.203 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM...

  15. 10 CFR 490.304 - Which new light duty motor vehicles are covered.

    Science.gov (United States)

    2010-01-01

    ... Section 490.304 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM...) Exception. If a covered person has more than one affiliate, division, or other business unit, then section 490.302 of this part only applies to light duty motor vehicles newly acquired by an affiliate...

  16. 40 CFR Appendix Xi to Part 86 - Sampling Plans for Selective Enforcement Auditing of Light-Duty Vehicles

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 19 2010-07-01 2010-07-01 false Sampling Plans for Selective Enforcement Auditing of Light-Duty Vehicles XI Appendix XI to Part 86 Protection of Environment ENVIRONMENTAL... Enforcement Auditing of Light-Duty Vehicles 40% AQL Table 1—Sampling Plan Code Letter Annual sales of...

  17. 75 FR 38168 - Federal Motor Vehicle Theft Prevention Standard; Final Listing of 2011 Light Duty Truck Lines...

    Science.gov (United States)

    2010-07-01

    ... Theft Prevention Standard; Final Listing of 2011 Light Duty Truck Lines Subject to the Requirements of... light-duty truck lines subject to the requirements of the Federal motor vehicle theft prevention... exemption from the parts marking requirements of the Theft Prevention Standard for the Jaguar XJ vehicle...

  18. Particulate emission rates from light-duty vehicles in the South Coast Air Quality Management District

    International Nuclear Information System (INIS)

    Durbin, T.D.; Norbeck, J.M.; Smith, M.R.; Truex, T.J.

    1999-01-01

    This paper presents the results of a particulate emission rate study conducted on 129 light-duty gasoline and 19 light-duty diesel vehicles for the Coordinating Research Council's (CRC's) Project E-24-2. Total particulate emission rates for newer gasoline vehicles were low with modest increases with vehicle age and older technology. Average FTP particulate emission rates as a function of model year for gasoline vehicles were found to be 2.5 mg/mi for 1991 and newer models, 14.4 mg/mi for 1986--1990 models, 49.0 mg/mi for 1981--1985 models, and 33.8 mg/mi for 1980 and older models. High gaseous emitters were found to have approximately 5--10 times the particulate emission rates of normal emitters. The diesel vehicles had an average particulate emission rate of 561 mg/mi. It should be noted that the light-duty diesel vehicles were predominantly older, pre-1985 vehicles; the 1985 and newer diesel vehicles had substantially lower particulate emissions, i.e., less than 100 mg/mi. Emission inventory estimates in the South Coast Air Basin based on the fleet emission rates were higher than those obtained using the default values in EMFAC7G, due primarily to the contribution of high emitters

  19. Electrification Beyond Light Duty: Class 2b-3 Commercial Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Birky, Alicia [Energetics Incorporated; Laughlin, Michael [Energetics Incorporated; Tartaglia, Katie [Energetics Incorporated; Price, Rebecca [Energetics Incorporated; Lim, Brandon [Energetics Incorporated; Lin, Zhenhong [ORNL

    2018-01-01

    The class 2b-3 truck market covers a wide range of commercial truck applications across a half-million vehicle sales annually. This report collected public information and stakeholder input to assess the opportunity for electrification in this market. Although class 2b-3 pickup truck and van bodies are very similar to personal light vehicles, their functional requirements are quite different due to the demands of the commercial market. These demands vary by application and often vary from day to day for a single application. Fleet customers purchase these vehicles to perform a particular job for their business and are concerned about the overall cost of doing that job. Therefore, the vehicles must meet the job requirements cost effectively. Customers also are sensitive to initial cost. Electrification offers the potential to reduce vehicle operating costs and possibly improve vehicle functionality. However, the current market for class 2b-3 electrified trucks is very small, and the trucks are costly. Increased production volumes are key to cost reductions and may be assisted by sharing components with larger or smaller truck classes. Expanding demand is also crucial and stakeholders identified several niche markets with duty cycles that are likely well-suited to electrified class 2b-3 trucks. To expand beyond these niches, class 2b-3 electric solutions must be robust, flexible, and adaptable in order to cover a wide range of vocations, applications, and duty cycles.

  20. Light duty vehicle transportation and global climate policy: The importance of electric drive vehicles

    International Nuclear Information System (INIS)

    Bosetti, Valentina; Longden, Thomas

    2013-01-01

    With a focus on the interaction between long-term climate targets and personal transport we review the electrification of light duty vehicles (LDVs) within a model that utilizes a learning-by-researching structure. By modeling the demand of vehicles, the use of fuels and emissions implied, the model solves for the optimum RD and D investments that decrease the cost of hybrid, plug-in hybrid and electric vehicles. A range of technology and climate policy scenarios provide long term projections of vehicle use that highlight the potential synergies between innovation in the transportation sector and the energy sector. We find that even when the capital cost of electric drive vehicles (EDVs) remains higher than that of traditional combustion engine alternatives, EDVs are likely to play a key role in the decarbonisation implied by stringent climate policy. Limited innovation in batteries results in notable increases in policy costs consistent with a two degree climate policy target. - Highlights: • Significant increase in vehicles across regions in the medium to long term future. • Climate policy costs are sensitive to a lack of electric drive vehicles (EDVs). • Achieving 450ppm with no change in battery costs has a policy cost that is 2.86 percentage points higher than the base 450ppm scenario. • Climate policy hastens the introduction of electrified vehicles, however EDVs do not become the dominant vehicle of choice before the middle of the century

  1. Real-time black carbon emission factor measurements from light duty vehicles.

    Science.gov (United States)

    Forestieri, Sara D; Collier, Sonya; Kuwayama, Toshihiro; Zhang, Qi; Kleeman, Michael J; Cappa, Christopher D

    2013-11-19

    Eight light-duty gasoline low emission vehicles (LEV I) were tested on a Chassis dynamometer using the California Unified Cycle (UC) at the Haagen-Smit vehicle test facility at the California Air Resources Board in El Monte, CA during September 2011. The UC includes a cold start phase followed by a hot stabilized running phase. In addition, a light-duty gasoline LEV vehicle and ultralow emission vehicle (ULEV), and a light-duty diesel passenger vehicle and gasoline direct injection (GDI) vehicle were tested on a constant velocity driving cycle. A variety of instruments with response times ≥0.1 Hz were used to characterize how the emissions of the major particulate matter components varied for the LEVs during a typical driving cycle. This study focuses primarily on emissions of black carbon (BC). These measurements allowed for the determination of BC emission factors throughout the driving cycle, providing insights into the temporal variability of BC emission factors during different phases of a typical driving cycle.

  2. Analyzing Real-World Light Duty Vehicle Efficiency Benefits

    Energy Technology Data Exchange (ETDEWEB)

    Gonder, Jeffrey; Wood, Eric; Chaney, Larry; Holden, Jacob; Jeffers, Matthew; Wang, Lijuan

    2016-06-08

    Off-cycle technologies represent an important pathway to achieve real-world fuel savings, through which OEMs can potentially receive credit toward CAFE compliance. DOE national labs such as NREL are well positioned to provide objective input on these technologies using large, national data sets in conjunction with OEM- and technology-specific testing. This project demonstrates an approach that combines vehicle testing (dynamometer and on-road) with powertrain modeling and simulation over large, representative datasets to quantify real-world fuel economy. The approach can be applied to specific off-cycle technologies (engine encapsulation, start/stop, connected vehicle, etc.) in A/B comparisons to support calculation of realistic real-world impacts. Future work will focus on testing-based A/B technology comparisons that demonstrate the significance of this approach.

  3. [Investigation of emission characteristics for light duty vehicles with a portable emission measurement system].

    Science.gov (United States)

    Wang, Hai-Kun; Fu, Li-Xin; Zhou, Yu; Lin, Xin; Chen, Ai-Zhong; Ge, Wei-hu; Du, Xuan

    2008-10-01

    Emission from 7 typical light-duty vehicles under actual driving conditions was monitored using a portable emission measurement system to gather data for characterization of the real world vehicle emission in Shenzhen, including the effects of driving modes on vehicle emission, comparison of fuel consumption based emission factors (g x L(-1) with mileage based emission factors (g x km(-1)), and the average emission factors of the monitored vehicles. The acceleration and deceleration modes accounted for 66.7% of total travel time, 80.3% of traveling distance and 74.6%-79.2% of vehicle emission; the acceleration mode contributed more than other driving modes. The fuel based emission factors were less dependent on the driving speed; they may be utilized in building macro-scale vehicle emission inventory with smaller sensitivity to the vehicle driving conditions. The effect of vehicle technology on vehicle emission was significant; the emission factors of CO, HC and NO(x) of carbureted vehicles were 19.9-20.5, 5.6-26.1 and 1.8-2.0 times the more advanced vehicles of Euro II, respectively. Using the ECE + EUDC driving cycle would not produce the desired real-world emission rates of light duty vehicles in a typical Chinese city.

  4. Evaluation of particulate filtration efficiency of retrofit particulate filters for light duty vehicles

    International Nuclear Information System (INIS)

    Van Asch, R.; Verbeek, R.

    2009-10-01

    In the light of the currently running subsidy programme for particulate filters in the Netherlands, the Dutch ministry of spatial planning and environment (VROM) asked TNO to execute a desk study to evaluate the particulates filtration efficiency of retrofit particulate filters for light duty vehicles (passenger cars and vans). The typical retrofit particulate filters for light duty vehicles are also called 'open' or 'half-open' filters, because a part of the exhaust gas can pass through the particulate filter unfiltered. From design point they are very different from the majority of the factory installed particulate filters, which are also called wall-flow or 'closed' particulate filters. Due to these differences there is a large difference in filtration efficiency. Whereas the 'dosed' particulate filters show a filtration efficiency of larger than 90%, the filtration efficiency of 'open' particulate filters is generally lower (type approval minimum 30%), and strongly dependent on the conditions of use. The objective of the current project was to assess the average filtration efficiency of retrofit (open) particulate fillters on light duty vehicles in real world day to day driving, based on available literature data. Also, the reasons of a possible deviation with the type approval test results (minimum filtration efficiency of 30%) was investigated.

  5. Clean Cities Strategic Planning White Paper: Light Duty Vehicle Fuel Economy

    Energy Technology Data Exchange (ETDEWEB)

    Saulsbury, Bo [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hopson, Dr Janet L [Univ. of Tennessee, Knoxville, TN (United States); Greene, David [Univ. of Tennessee, Knoxville, TN (United States); Gibson, Robert [Univ. of Tennessee, Knoxville, TN (United States)

    2015-04-01

    Increasing the energy efficiency of motor vehicles is critical to achieving national energy goals of reduced petroleum dependence, protecting the global climate, and promoting continued economic prosperity. Even with fuel economy and greenhouse gas emissions standards and various economic incentives for clean and efficient vehicles, providing reliable and accurate fuel economy information to the public is important to achieving these goals. This white paper reviews the current status of light-duty vehicle fuel economy in the United States and the role of the Department of Energy (DOE) Clean Cities Program in disseminating fuel economy information to the public.

  6. Catalyzed Diesel Particulate Filter Performance in a Light-Duty Vehicle

    International Nuclear Information System (INIS)

    Sluder, C.S.

    2001-01-01

    Light-duty chassis dynamometer driving cycle tests were conducted on a Mercedes A170 diesel vehicle with various sulfur-level fuels and exhaust emission control systems. Triplicate runs of a modified light-duty federal test procedure (FTP), US06 cycle, and SCO3 cycle were conducted with each exhaust configuration and fuel. Ultra-low sulfur (3-ppm) diesel fuel was doped to 30- and 150-ppm sulfur so that all other fuel properties remained the same. The fuels used in these experiments met the specifications of the fuels from the DECSE (Diesel Emission Control Sulfur Effects) program. Although the Mercedes A170 vehicle is not available in the US, its emissions in the as tested condition fell within the U.S. Tier 1 full useful life standards with the OEM catalysts installed. Tests with the OEM catalysts removed showed that the OEM catalysts reduced PM emissions from the engine-out condition by 30-40% but had negligible effects on NOx emissions. Fuel sulfur level had very little effect on th e OEM catalyst performance. A prototype catalyzed diesel particulate filter (CDPF) mounted in an underfloor configuration reduced particulate matter emissions by more than 90% compared to the factory emissions control system. The results show that the CDPF did not promote any significant amounts of SO(sub 2)-to-sulfate conversion during these light-duty drive cycles

  7. Transportation Energy Futures Series. Potential for Energy Efficiency Improvement Beyond the Light-Duty-Vehicle Sector

    Energy Technology Data Exchange (ETDEWEB)

    Vyas, A. D. [Argonne National Lab. (ANL), Argonne, IL (United States); Patel, D. M. [Argonne National Lab. (ANL), Argonne, IL (United States); Bertram, K. M. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2013-02-01

    Considerable research has focused on energy efficiency and fuel substitution options for light-duty vehicles, while much less attention has been given to medium- and heavy-duty trucks, buses, aircraft, marine vessels, trains, pipeline, and off-road equipment. This report brings together the salient findings from an extensive review of literature on future energy efficiency options for these non-light-duty modes. Projected activity increases to 2050 are combined with forecasts of overall fuel efficiency improvement potential to estimate the future total petroleum and greenhouse gas (GHG) emissions relative to current levels. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

  8. Transportation Energy Futures Series: Potential for Energy Efficiency Improvement Beyond the Light-Duty-Vehicle Sector

    Energy Technology Data Exchange (ETDEWEB)

    Vyas, A. D.; Patel, D. M.; Bertram, K. M.

    2013-03-01

    Considerable research has focused on energy efficiency and fuel substitution options for light-duty vehicles, while much less attention has been given to medium- and heavy-duty trucks, buses, aircraft, marine vessels, trains, pipeline, and off-road equipment. This report brings together the salient findings from an extensive review of literature on future energy efficiency options for these non-light-duty modes. Projected activity increases to 2050 are combined with forecasts of overall fuel efficiency improvement potential to estimate the future total petroleum and greenhouse gas (GHG) emissions relative to current levels. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

  9. Particulate matter speciation profiles for light-duty gasoline vehicles in the United States.

    Science.gov (United States)

    Sonntag, Darrell B; Baldauf, Richard W; Yanca, Catherine A; Fulper, Carl R

    2014-05-01

    Representative profiles for particulate matter particles less than or equal to 2.5 microm (PM2.5) are developed from the Kansas City Light-Duty Vehicle Emissions Study for use in the US. Environmental Protection Agency (EPA) vehicle emission model, the Motor Vehicle Emission Simulator (MOVES), and for inclusion in the EPA SPECIATE database for speciation profiles. The profiles are compatible with the inputs of current photochemical air quality models, including the Community Multiscale Air Quality Aerosol Module Version 6 (AE6). The composition of light-duty gasoline PM2.5 emissions differs significantly between cold start and hot stabilized running emissions, and between older and newer vehicles, reflecting both impacts of aging/deterioration and changes in vehicle technology. Fleet-average PM2.5 profiles are estimated for cold start and hot stabilized running emission processes. Fleet-average profiles are calculated to include emissions from deteriorated high-emitting vehicles that are expected to continue to contribute disproportionately to the fleet-wide PM2.5 emissions into the future. The profiles are calculated using a weighted average of the PM2.5 composition according to the contribution of PM2.5 emissions from each class of vehicles in the on-road gasoline fleet in the Kansas City Metropolitan Statistical Area. The paper introduces methods to exclude insignificant measurements, correct for organic carbon positive artifact, and control for contamination from the testing infrastructure in developing speciation profiles. The uncertainty of the PM2.5 species fraction in each profile is quantified using sampling survey analysis methods. The primary use of the profiles is to develop PM2.5 emissions inventories for the United States, but the profiles may also be used in source apportionment, atmospheric modeling, and exposure assessment, and as a basis for light-duty gasoline emission profiles for countries with limited data. PM2.5 speciation profiles were

  10. Efficiency Improvement Opportunities for Light-Duty Natural-Gas-Fueled Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Staunton, R.H.; Thomas, J.F.

    1998-12-01

    The purpose of this report is to evaluate and make recommendations concerning technologies that promise to improve the efilciency of compressed natural gas (CNG) light-duty vehicles. Technical targets for CNG automotive technology given in the March 1998 OffIce of Advanced Automotive Technologies research and development plan were used as guidance for this effort. The technical target that necessitates this current study is to validate technologies that enable CNG light vehicles to have at least 10% greater - fuel economy (on a miles per gallon equivalent basis) than equivalent gasoline vehicles by 2006. Other tar- gets important to natural gas (NG) automotive technology and this study are to: (1) increase CNG vehicle range to 380 miles, (2) reduce the incremental vehicle cost (CNG vs gasoline) to $1500, and (3) meet the California ultra low-emission vehicle (ULEV) and Federal Tier 2 emission standards expected to be in effect in 2004.

  11. Real-time emission factor measurements of isocyanic acid from light duty gasoline vehicles.

    Science.gov (United States)

    Brady, James M; Crisp, Timia A; Collier, Sonya; Kuwayama, Toshihiro; Forestieri, Sara D; Perraud, Véronique; Zhang, Qi; Kleeman, Michael J; Cappa, Christopher D; Bertram, Timothy H

    2014-10-07

    Exposure to gas-phase isocyanic acid (HNCO) has been previously shown to be associated with the development of atherosclerosis, cataracts and rheumatoid arthritis. As such, accurate emission inventories for HNCO are critical for modeling the spatial and temporal distribution of HNCO on a regional and global scale. To date, HNCO emission rates from light duty gasoline vehicles, operated under driving conditions, have not been determined. Here, we present the first measurements of real-time emission factors of isocyanic acid from a fleet of eight light duty gasoline-powered vehicles (LDGVs) tested on a chassis dynamometer using the Unified Driving Cycle (UC) at the California Air Resources Board (CARB) Haagen-Smit test facility, all of which were equipped with three-way catalytic converters. HNCO emissions were observed from all vehicles, in contrast to the idealized laboratory measurements. We report the tested fleet averaged HNCO emission factors, which depend strongly on the phase of the drive cycle; ranging from 0.46 ± 0.13 mg kg fuel(-1) during engine start to 1.70 ± 1.77 mg kg fuel(-1) during hard acceleration after the engine and catalytic converter were warm. The tested eight-car fleet average fuel based HNCO emission factor was 0.91 ± 0.58 mg kg fuel(-1), within the range previously estimated for light duty diesel-powered vehicles (0.21-3.96 mg kg fuel(-1)). Our results suggest that HNCO emissions from LDGVs represent a significant emission source in urban areas that should be accounted for in global and regional models.

  12. Parametric analysis of technology and policy tradeoffs for conventional and electric light-duty vehicles

    International Nuclear Information System (INIS)

    Barter, Garrett E.; Reichmuth, David; Westbrook, Jessica; Malczynski, Leonard A.; West, Todd H.; Manley, Dawn K.; Guzman, Katherine D.; Edwards, Donna M.

    2012-01-01

    A parametric analysis is used to examine the supply demand interactions between the US light-duty vehicle (LDV) fleet, its fuels, and the corresponding primary energy sources through 2050. The analysis emphasizes competition between conventional internal combustion engine (ICE) vehicles, including hybrids, and electric vehicles (EVs), represented by both plug-in hybrid and battery electric vehicles. We find that EV market penetration could double relative to our baseline case with policies to extend consumers' effective payback period to 7 years. EVs can also reduce per vehicle petroleum consumption by up to 5% with opportunities to increase that fraction at higher adoption rates. However, EVs have limited ability to reduce LDV greenhouse gas (GHG) emissions with the current energy source mix. Alone, EVs cannot drive compliance with the most aggressive GHG emission reduction targets, even if the electricity grid shifts towards natural gas powered sources. Since ICEs will dominate the LDV fleet for up to 40 years, conventional vehicle efficiency improvements have the greatest potential for reductions in LDV GHG emissions and petroleum consumption over this time. Specifically, achieving fleet average efficiencies of 72 mpg or greater can reduce average GHG emissions by 70% and average petroleum consumption by 81%. - Highlights: ► Parametric analysis of the light duty vehicle fleet, its fuels, and energy sources. ► Conventional vehicles will dominate the fleet for up to 40 years. ► Improving gasoline powertrain efficiency is essential for GHG and oil use reduction. ► Electric vehicles have limited leverage over GHG emissions with the current grid mix. ► Consumer payback period extensions can double electric vehicle market share.

  13. [Real world instantaneous emission simulation for light-duty diesel vehicle].

    Science.gov (United States)

    Huang, Cheng; Chen, Chang-Hong; Dai, Pu; Li, Li; Huang, Hai-Ying; Cheng, Zhen; Jia, Ji-Hong

    2008-10-01

    Core architecture and input parameters of CMEM model were introduced to simulation the second by second vehicle emission rate on real world by taking a light-duty diesel car as a case. On-board test data by a portable emission measurement system were then used to validate the simulation results. Test emission factors of CO, THC, NO(x) and CO2 were respectively 0.81, 0.61, 2.09, and 193 g x km(-1), while calculated emission factors were 0.75, 0.47, 2.47, and 212 g x km(-1). The correlation coefficients reached 0.69, 0.69, 0.75, and 0.72. Simulated instantaneous emissions of the light duty diesel vehicle by CMEM model were strongly coherent with the transient driving cycle. By analysis, CO, THC, NO(x), and CO2 emissions would be reduced by 50%, 47%, 45%, and 44% after improving the traffic situation at the intersection. The result indicated that it is necessary and feasible to simulate the instantaneous emissions of mixed vehicle fleet in some typical traffic areas by the micro-scale vehicle emission model.

  14. Evaluating Alternative Fuel Vehicles from Technical, Environmental and Economic Perspectives: Case of Light-Duty Vehicles in Iran

    OpenAIRE

    Vahid Aryanpur; Ehsan Shafiei

    2012-01-01

    This paper presents an environmental and technoeconomic evaluation of light duty vehicles in Iran. A comprehensive well-to-wheel (WTW) analysis is applied to compare different automotive fuel chains, conventional internal combustion engines and innovative vehicle powertrains. The study examines the competitiveness of 15 various pathways in terms of energy efficiencies, GHG emissions, and levelized cost of different energy carriers. The results indicate that electric vehic...

  15. 76 FR 48758 - 2017-2025 Model Year Light-Duty Vehicle GHG Emissions and CAFE Standards: Supplemental Notice of...

    Science.gov (United States)

    2011-08-09

    ... definitions of mild and strong HEV pickup trucks, but expect to include stop/start, regenerative braking... (light-duty vehicles) built in those model years. Together, these vehicle categories, which include... provides the opportunity to begin to transform the most challenging category of vehicles in terms of the...

  16. Comparison of real-world and certification emission rates for light duty gasoline vehicles.

    Science.gov (United States)

    Khan, Tanzila; Frey, H Christopher

    2018-05-01

    U.S. light duty vehicles are subject to the U.S. Environmental Protection Agency (EPA) emission standards. Emission compliance is determined by certification testing of selected emissions from representative vehicles on standard driving cycles using chassis dynamometers. Test results are also used in many emission inventories. The dynamometer based emission rates are adjusted to provide the certification levels (CL), which must be lower than the standards for compliance. Although standard driving cycles are based on specific observations of real-world driving, they are not necessarily real-world representative. A systematic comparison of the real-world emission rates of U.S. light duty gasoline vehicles (LDGVs) versus CL, and emission standards has not been previously reported. The purpose of this work is to compare regulatory limits (both CLs and emission standards) and the real-world emissions of LDGVs. The sensitivity of the comparisons to cold start emission was assessed. Portable Emission Measurement Systems (PEMS) were used to measure hot stabilized exhaust emissions of 122 LDGVs on a specified 110 mile test route. Cold start emissions were measured with PEMS for a selected vehicle sample of 32 vehicles. Emissions were measured for carbon dioxide (CO 2 ), carbon monoxide (CO), hydrocarbons (HC) and nitrogen oxides (NO x ). For each vehicle, a Vehicle Specific Power (VSP) modal emission rate model was developed. The VSP modal rates were weighted by the standard driving cycles and real-world driving cycles to estimate the respective cycle average emission rates (CAERs). Measured vehicles were matched with certification test vehicles for comparison. For systematic trends in comparison, vehicles were classified into four groups based on the Tier 1 and Tier 2 emission regulation, and the vehicle type such as passenger car and passenger truck. Depending on the cycle-pollutant and the vehicle groups, hot stabilized CAERs are on average either statistically

  17. Modeling light-duty plug-in electric vehicles for national energy and transportation planning

    International Nuclear Information System (INIS)

    Wu, Di; Aliprantis, Dionysios C.

    2013-01-01

    This paper sets forth a family of models of light-duty plug-in electric vehicle (PEV) fleets, appropriate for conducting long-term national-level planning studies of the energy and transportation sectors in an integrated manner. Using one of the proposed models, three case studies on the evolution of the U.S. energy and transportation infrastructures are performed, where portfolios of optimum investments over a 40-year horizon are identified, and interdependencies between the two sectors are highlighted. The results indicate that with a gradual but aggressive introduction of PEVs coupled with investments in renewable energy, the total cost from the energy and transportation systems can be reduced by 5%, and that overall emissions from electricity generation and light-duty vehicle (LDV) tailpipes can be reduced by 10% over the 40-year horizon. The annual gasoline consumption from LDVs can be reduced by 66% by the end of the planning horizon, but an additional 800 TWh of annual electricity demand will be introduced. In addition, various scenarios of greenhouse gas (GHG) emissions reductions are investigated. It is found that GHG emissions can be significantly reduced with only a marginal cost increment, by shifting electricity generation from coal to renewable sources. - Highlights: • We model plug-in electric vehicles (PEVs) for long-term national planning studies. • Realistic travel patterns are used to estimate the vehicles' energy consumption. • National energy and transportation system interdependencies are considered. • Case studies illustrate optimum investments in energy and transportation sectors. • PEVs synergistically with renewable energy can aggressively reduce GHG emissions

  18. Predicting Light-Duty Vehicle Fuel Economy as a Function of Highway Speed

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, John [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hwang, Ho-Ling [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); West, Brian [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Huff, Shean [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2013-04-08

    The www.fueleconomy.gov website offers information such as window label fuel economy for city, highway, and combined driving for all U.S.-legal light-duty vehicles from 1984 to the present. The site is jointly maintained by the U.S. Department of Energy and the U.S. Environmental Protection Agency (EPA), and also offers a considerable amount of consumer information and advice pertaining to vehicle fuel economy and energy related issues. Included with advice pertaining to driving styles and habits is information concerning the trend that as highway cruising speed is increased, fuel economy will degrade. An effort was undertaken to quantify this conventional wisdom through analysis of dynamometer testing results for 74 vehicles at steady state speeds from 50 to 80 mph. Using this experimental data, several simple models were developed to predict individual vehicle fuel economy and its rate of change over the 50-80 mph speed range interval. The models presented require a minimal number of vehicle attributes. The simplest model requires only the EPA window label highway mpg value (based on the EPA specified estimation method for 2008 and beyond). The most complex of these simple model uses vehicle coast-down test coefficients (from testing prescribed by SAE Standard J2263) known as the vehicle Target Coefficients, and the raw fuel economy result from the federal highway test. Statistical comparisons of these models and discussions of their expected usefulness and limitations are offered.

  19. Recent evidence concerning higher NO x emissions from passenger cars and light duty vehicles

    Science.gov (United States)

    Carslaw, David C.; Beevers, Sean D.; Tate, James E.; Westmoreland, Emily J.; Williams, Martin L.

    2011-12-01

    Ambient trends in nitrogen oxides (NO x) and nitrogen dioxide (NO 2) for many air pollution monitoring sites in European cities have stabilised in recent years. The lack of a decrease in the concentration of NO x and in particular NO 2 is of concern given European air quality standards are set in law. The lack of decrease in the concentration of NO x and NO 2 is also in clear disagreement with emission inventory estimates and projections. This work undertakes a comprehensive analysis of recent vehicle emissions remote sensing data from seven urban locations across the UK. The large sample size of 84,269 vehicles was carefully cross-referenced to a detailed and comprehensive database of vehicle information. We find that there are significant discrepancies between current UK/European estimates of NO x emissions and those derived from the remote sensing data for several important classes of vehicle. In the case of light duty diesel vehicles it is found that NO x emissions have changed little over 20 years or so over a period when the proportion of directly emitted NO 2 has increased substantially. For diesel cars it is found that absolute emissions of NO x are higher across all legislative classes than suggested by UK and other European emission inventories. Moreover, the analysis shows that more recent technology diesel cars (Euro 3-5) have clear increasing NO x emissions as a function of Vehicle Specific Power, which is absent for older technology vehicles. Under higher engine loads, these newer model diesel cars have a NO x/CO 2 ratio twice that of older model cars, which may be related to the increased use of turbo-charging. Current emissions of NO x from early technology catalyst-equipped petrol cars (Euro 1/2) were also found to be higher than emission inventory estimates - and comparable with NO x emissions from diesel cars. For heavy duty vehicles, it is found that NO x emissions were relatively stable until the introduction of Euro IV technology when

  20. On-board emission measurement of high-loaded light-duty vehicles in Algeria.

    Science.gov (United States)

    Boughedaoui, Ménouèr; Kerbachi, Rabah; Joumard, Robert

    2008-01-01

    A sample of eight private gasoline and diesel conventional light-duty vehicles (LDVs) in use with various ages, carrying a load of 460 kg, were tested on a representative trip in the traffic flow of the city of Blida to obtain emission factors representing the actual use conditions of Algerian LDVs. The gas sampling system (mini-constant volume sampling) as well as the analyzers are carried on-board the vehicle. Around 55 tests were conducted during 3 months covering more than 480 km under various real driving conditions. The mean speed downtown is about 16.1 km/hr with a rather low acceleration, an average of 0.60 m/sec2. For each test, kinematics are recorded as well as the analysis of the four emitted pollutants carbon dioxide, carbon monoxide, oxides of nitrogen, and total hydrocarbons. Emission factors were evaluated according to speed for each category of gasoline and diesel engines. The influence of some parameters such as cold/hot start, age of vehicle and its state of maintenance are discussed. Results are compared with the European database ARTEMIS for comparable vehicles. These measurements contribute to the development of unit emission of the vehicles used in Algeria, which are necessary for the calculation of emission inventory of pollutants and greenhouse gases from the road transportation sector. The unit emissions constitute a tool of decisionmaking aid regarding the conception of new regulations of vehicle control and inspection in Algeria and even in similar developing countries.

  1. Comments on the Joint Proposed Rulemaking to Establish Light-Duty Vehicle Greenhouse Gas Emission Standards and Corporate Average Fuel Economy Standards

    Energy Technology Data Exchange (ETDEWEB)

    Wenzel, Tom [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2009-10-27

    Tom Wenzel of Lawrence Berkeley National Laboratory comments on the joint rulemaking to establish greenhouse gas emission and fuel economy standards for light-duty vehicle, specifically on the relationship between vehicle weight and vehicle safety.

  2. 75 FR 62739 - 2017 and Later Model Year Light Duty Vehicle GHG Emissions and CAFE Standards; Notice of Intent

    Science.gov (United States)

    2010-10-13

    ... Model Year Light Duty Vehicle GHG Emissions and CAFE Standards; Notice of Intent AGENCIES: Environmental... fuel economy (CAFE) standards in accordance with the Energy Policy and Conservation Act (EPCA), as... FR 49454, 49460 (September 28, 2009). The NHTSA CAFE standards are only based on technologies that...

  3. Design Tool for Estimating Chemical Hydrogen Storage System Characteristics for Light-Duty Fuel Cell Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Thornton, Matthew J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Sprik, Samuel [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Brooks, Kriston P. [Pacific Northwest National Laboratory; Tamburello, David A. [Savannah River National Laboratory

    2018-04-07

    The U.S. Department of Energy (DOE) developed a vehicle Framework model to simulate fuel cell-based light-duty vehicle operation for various hydrogen storage systems. This transient model simulates the performance of the storage system, fuel cell, and vehicle for comparison to Technical Targets established by DOE for four drive cycles/profiles. Chemical hydrogen storage models have been developed for the Framework for both exothermic and endothermic materials. Despite the utility of such models, they require that material researchers input system design specifications that cannot be estimated easily. To address this challenge, a design tool has been developed that allows researchers to directly enter kinetic and thermodynamic chemical hydrogen storage material properties into a simple sizing module that then estimates system parameters required to run the storage system model. Additionally, the design tool can be used as a standalone executable file to estimate the storage system mass and volume outside of the Framework model. These models will be explained and exercised with the representative hydrogen storage materials exothermic ammonia borane (NH3BH3) and endothermic alane (AlH3).

  4. Design Tool for Estimating Chemical Hydrogen Storage System Characteristics for Light-Duty Fuel Cell Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Brooks, Kriston P.; Sprik, Sam; Tamburello, David; Thornton, Matthew

    2018-05-03

    The U.S. Department of Energy (DOE) has developed a vehicle framework model to simulate fuel cell-based light-duty vehicle operation for various hydrogen storage systems. This transient model simulates the performance of the storage system, fuel cell, and vehicle for comparison to DOE’s Technical Targets using four drive cycles/profiles. Chemical hydrogen storage models have been developed for the Framework model for both exothermic and endothermic materials. Despite the utility of such models, they require that material researchers input system design specifications that cannot be easily estimated. To address this challenge, a design tool has been developed that allows researchers to directly enter kinetic and thermodynamic chemical hydrogen storage material properties into a simple sizing module that then estimates the systems parameters required to run the storage system model. Additionally, this design tool can be used as a standalone executable file to estimate the storage system mass and volume outside of the framework model and compare it to the DOE Technical Targets. These models will be explained and exercised with existing hydrogen storage materials.

  5. Reduction of particle emissions from light duty vehicles and from taxies; Reduktion af partikelelemissioner fra varebiler og taxier

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, Johan; Henriques, M.; Weibel, T.G. [TetraPlan A/S (Denmark)

    2006-11-03

    This project, 'Reduction of particle emissions from light duty vehicles and from taxies', analyses different strategies to reduce the particle emission, their effect for particle emissions, and the resulting cost for the society and for the companies. The project describes the EU regulation of emissions, the possibilities of reducing the emissions via special requirements in environmental zones and the Danish taxation of light duty vehicles. Further, the project includes interviews with owners of light duty vehicles and taxies and also with Danish producers of particle filters. The strategies analysed in the scenarios include: 1) Promotion of particle filters; 2) Shift from diesel to gasoline and; 3) Downsizing. The effects for particle emissions and for mortality are described. Further, the costs and benefits for the society and the cost for the companies are evaluated. The effects of the scenarios are analysed, both for initiatives implemented at a national level and for implementation in an environmental zone in the municipality of Copenhagen. The main results are that the socioeconomic benefits in the year 2012 are greater than the costs, if taxis and light duty vehicles have filters installed and if they are driving in the Copenhagen area. For light duty vehicles it is only profitable, if the prices of the filters fall to the price level that is expected in the future in the study. Further, the analysis shows that for light duty vehicles and taxies driving all over the country, the socioeconomic benefits achieved by installing particle filters are too small to cover the costs. The analysis shows that it is also profitable socio-economically to change from diesel to petrol for light duty vehicles and for taxies (except taxies driving nationally). The analysis is based on the producer prices including the general net tax level, while the specific taxes are not included. From the point of view of the companies it is not profitable to change to petrol

  6. Elements and polycyclic aromatic hydrocarbons in exhaust particles emitted by light-duty vehicles.

    Science.gov (United States)

    Alves, Célia A; Barbosa, Cátia; Rocha, Sónia; Calvo, Ana; Nunes, Teresa; Cerqueira, Mário; Pio, Casimiro; Karanasiou, Angeliki; Querol, Xavier

    2015-08-01

    The main purpose of this work was to evaluate the chemical composition of particulate matter (PM) emitted by eight different light-duty vehicles. Exhaust samples from petrol and diesel cars (Euro 3 to Euro 5) were collected in a chassis dynamometer facility. To simulate the real-world driving conditions, three ARTEMIS cycles were followed: road, to simulate a fluid traffic flow and urban with hot and cold starts, to simulate driving conditions in cities. Samples were analysed for the water-soluble ions, for the elemental composition and for polycyclic aromatic hydrocarbons (PAHs), respectively, by ion chromatography, inductively coupled plasma atomic emission spectroscopy (ICP-AES), inductively coupled plasma mass spectrometry (ICP-MS) and gas chromatography-mass spectrometry (GC-MS). Nitrate and phosphate were the major water-soluble ions in the exhaust particles emitted from diesel and petrol vehicles, respectively. The amount of material emitted is affected by the vehicle age. For vehicles ≥Euro 4, most elements were below the detection limits. Sodium, with emission factors in the ranges 23.5-62.4 and 78.2-227μg km(-1), for petrol and diesel Euro 3 vehicles, respectively, was the major element. The emission factors of metallic elements indicated that diesel vehicles release three to five times more than petrol automobiles. Element emissions under urban cycles are higher than those found for on-road driving, being three or four times higher, for petrol vehicles, and two or three times, for diesel vehicles. The difference between cycles is mainly due to the high emissions for the urban cycle with hot start-up. As registered for elements, most of the PAH emissions for vehicles ≥Euro 4 were also below the detection limits. Regardless of the vehicle models or driving cycles, the two- to four-ring PAHs were always dominant. Naphthalene, with emission factors up to 925 μg km(-1), was always the most abundant PAH. The relative cancer risk associated with

  7. PM₂.₅ emissions from light-duty gasoline vehicles in Beijing, China.

    Science.gov (United States)

    Shen, Xianbao; Yao, Zhiliang; Huo, Hong; He, Kebin; Zhang, Yingzhi; Liu, Huan; Ye, Yu

    2014-07-15

    As stricter standards for diesel vehicles are implemented in China, and the use of diesel trucks is forbidden in urban areas, determining the contribution of light-duty gasoline vehicles (LDGVs) to on-road PM2.5 emissions in cities is important. Additionally, in terms of particle number and size, particulates emitted from LDGVs have a greater health impact than particulates emitted from diesel vehicles. In this work, we measured PM2.5 emissions from 20 LDGVs in Beijing, using an improved combined on-board emission measurement system. We compared these measurements with those reported in previous studies, and estimated the contribution of LDGVs to on-road PM2.5 emissions in Beijing. The results show that the PM2.5 emission factors for LDGVs, complying with European Emission Standards Euro-0 through Euro-4 were: 117.4 ± 142, 24.1 ± 20.4, 4.85 ± 7.86, 0.99 ± 1.32, 0.17 ± 0.15 mg/km, respectively. Our results show a significant decline in emissions with improving vehicle technology. However, this trend is not reflected in recent emission inventory studies. The daytime contributions of LDGVs to PM2.5 emissions on highways, arterials, residential roads, and within urban areas of Beijing were 44%, 62%, 57%, and 57%, respectively. The contribution of LDGVs to PM2.5 emissions varied both for different road types and for different times. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. On-board measurements of emissions from light-duty gasoline vehicles in three mega-cities of China

    Science.gov (United States)

    Huo, Hong; Yao, Zhiliang; Zhang, Yingzhi; Shen, Xianbao; Zhang, Qiang; Ding, Yan; He, Kebin

    2012-03-01

    This paper is the second in a series of three papers aimed at understanding the emissions of vehicles in China by conducting on-board emission measurements. This paper focuses on light-duty gasoline vehicles. In this study, we measured 57 light-duty gasoline vehicles (LDGVs) in three Chinese mega-cites (Beijing, Guangzhou, and Shenzhen), covering Euro 0 through Euro IV technologies, and generated CO, HC, and NOx emission factors and deterioration rates for each vehicle technology. The results show that the vehicle emission standards have played a significant role in reducing vehicle emission levels in China. The vehicle emission factors are reduced by 47-81%, 53-64%, 46-71%, and 78-82% for each phase from Euro I to Euro IV. Euro 0 vehicles have a considerably high emission level, which is hundreds of times larger than that of Euro IV vehicles. Three old taxis and four other Euro I and Euro II LDGVs are also identified as super emitters with equivalent emission levels to Euro 0 vehicles. Of the measured fleet, 23% super emitters were estimated to contribute 50-80% to total emissions. Besides vehicle emission standards, measures for restricting super emitters are equally important to reduce vehicle emissions. This study is intended to improve the understanding of the vehicle emission levels in China, but some key issues such as emission deterioration rates are yet to be addressed with the presence of a sufficient amount of vehicle emission measurements.

  9. Compact methanol reformer test for fuel-cell powered light-duty vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Emonts, B; Hoehlein, B; Peters, R [Forschungszentrum Juelich GmbH (Germany). Inst. fuer Energieverfahrenstechnik (IEV); Hansen, J B; Joergensen, S L [Haldor Topsoe A/S, Lyngby (Denmark)

    1998-03-15

    On-board production of hydrogen from methanol based on a steam reformer in connection with the use of low-temperature fuel-cells (PEMFC) is an attractive option as energy conversion unit for light-duty vehicles. A steam reforming process at higher pressures with an external burner offers advantages in comparison to a steam reformer with integrated partial oxidation in terms of total efficiency for electricity production. The main aim of a common project carried out by the Forschungszentrum Juelich (FZJ), Haldor Topsoee A/S (HTAS) and Siemens AG is to design, to construct and to test a steam reformer reactor concept (HTAS) with external catalytic burner (FZJ) as heat source as well as catalysts for heterogeneously catalyzed hydrogen production (HTAS), concepts for gas treatment (HTAS, FZJ) and a low-temperature fuel cell (Siemens). Based on the experimental results obtained so far concerning methanol reformers, catalytic burners and gas conditioning units, our report describes the total system, a test unit and preliminary test results related to a hydrogen production capacity of 50 kW (LHV) and dynamic operating conditions. This hydrogen production system is aimed at reducing the specific weight (<2 kg/kW{sub th} or 4 kg/kW{sub el}) combined with high efficiency for net electricity generation from methanol (about 50%) and low specific emissions. The application of Pd-membranes as gas cleaning unit fulfill the requirements with high hydrogen permeability and low cost of the noble metal. (orig.)

  10. Sizing Dynamic Wireless Charging for Light-Duty Electric Vehicles in Roadway Applications

    Energy Technology Data Exchange (ETDEWEB)

    Foote, Andrew P [ORNL; Ozpineci, Burak [ORNL; Chinthavali, Madhu Sudhan [ORNL; Li, Jan-Mou [ORNL

    2016-01-01

    Dynamic wireless charging is a possible cure for the range limitations seen in electric vehicles (EVs) once implemented in highways or city streets. The contribution of this paper is the use of experimental data to show that the expected energy gain from a dynamic wireless power transfer (WPT) system is largely a function of average speed, which allows the power level and number of coils per mile of a dynamic WPT system to be sized for the sustained operation of an EV. First, data from dynamometer testing is used to determine the instantaneous energy requirements of a light-duty EV. Then, experimental data is applied to determine the theoretical energy gained by passing over a coil as a function of velocity and power level. Related simulations are performed to explore possible methods of placing WPT coils within roadways with comparisons to the constant velocity case. Analyses with these cases demonstrate what system ratings are needed to meet the energy requirements of the EV. The simulations are also used to determine onboard energy storage requirements for each driving cycle.

  11. Future Potential of Hybrid and Diesel Powertrains in the U.S. Light-duty Vehicle Market

    Energy Technology Data Exchange (ETDEWEB)

    Greene, D.L.

    2004-08-23

    Diesel and hybrid technologies each have the potential to increase light-duty vehicle fuel economy by a third or more without loss of performance, yet these technologies have typically been excluded from technical assessments of fuel economy potential on the grounds that hybrids are too expensive and diesels cannot meet Tier 2 emissions standards. Recently, hybrid costs have come down and the few hybrid makes available are selling well. Diesels have made great strides in reducing particulate and nitrogen oxide emissions, and are likely though not certain to meet future standards. In light of these developments, this study takes a detailed look at the market potential of these two powertrain technologies and their possible impacts on light-duty vehicle fuel economy. A nested multinomial logit model of vehicle choice was calibrated to 2002 model year sales of 930 makes, models and engine-transmission configurations. Based on an assessment of the status and outlook for the two technologies, market shares were predicted for 2008, 2012 and beyond, assuming no additional increase in fuel economy standards or other new policy initiatives. Current tax incentives for hybrids are assumed to be phased out by 2008. Given announced and likely introductions by 2008, hybrids could capture 4-7% and diesels 2-4% of the light-duty market. Based on our best guesses for further introductions, these shares could increase to 10-15% for hybrids and 4-7% for diesels by 2012. The resulting impacts on fleet average fuel economy would be about +2% in 2008 and +4% in 2012. If diesels and hybrids were widely available across vehicle classes, makes, and models, they could capture 40% or more of the light-duty vehicle market.

  12. Plasma Catalysis for NOx Reduction from Light-Duty Diesel Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    None

    2005-12-15

    On behalf of the Department of Energy's Office of FreedomCAR and Vehicle Technologies, we are pleased to introduce the Fiscal Year (FY) 2004 Annual Progress Report for the Advanced Combustion Engine R&D Sub-Program. The mission of the FreedomCAR and Vehicle Technologies Program is to develop more energy efficient and environmentally friendly highway transportation technologies that enable Americans to use less petroleum for their vehicles. The Advanced Combustion Engine R&D Sub-Program supports this mission by removing the critical technical barriers to commercialization of advanced internal combustion engines for light-, medium-, and heavy-duty highway vehicles that meet future Federal and state emissions regulations. The primary objective of the Advanced Combustion Engine R&D Sub-Program is to improve the brake thermal efficiency of internal combustion engines from 30 to 45 percent for light-duty applications by 2010; and 40 to 55 percent for heavy-duty applications by 2012; while meeting cost, durability, and emissions constraints. R&D activities include work on combustion technologies that increase efficiency and minimize in-cylinder formation of emissions, as well as aftertreatment technologies that further reduce exhaust emissions. Work is also being conducted on ways to reduce parasitic and heat transfer losses through the development and application of thermoelectrics and turbochargers that include electricity generating capability, and conversion of mechanically driven engine components to be driven via electric motors. This introduction serves to outline the nature, current progress, and future directions of the Advanced Combustion Engine R&D Sub-Program. The research activities of this Sub-Program are planned in conjunction with the FreedomCAR Partnership and the 21st Century Truck Partnership and are carried out in collaboration with industry, national laboratories, and universities. Because of the importance of clean fuels in achieving low

  13. Characteristics of black carbon emissions from in-use light-duty passenger vehicles.

    Science.gov (United States)

    Zheng, Xuan; Zhang, Shaojun; Wu, Ye; Zhang, K Max; Wu, Xian; Li, Zhenhua; Hao, Jiming

    2017-12-01

    Mitigating black carbon (BC) emissions from various combustion sources has been considered an urgent policy issue to address the challenges of climate change, air pollution and health risks. Vehicles contribute considerably to total anthropogenic BC emissions and urban BC concentrations. Compared with heavy-duty diesel vehicles, there is much larger uncertainty in BC emission factors for light-duty passenger vehicles (LDPVs), in particular for gasoline LDPVs, which warrants further studies. In this study, we employed the dynamometer and the Aethalometer (AE-51) to measure second-by-second BC emissions from eight LDPVs by engine technology and driving cycle. The average BC emission factors under transient cycles (e.g., ECE-15, New European Driving Cycle, NEDC, Worldwide Harmonized Light Vehicles Test Cycle, WLTC) are 3.6-91.5 mg/km, 7.6 mg/km and 0.13-0.58 mg/km, respectively, for diesel (N = 3), gasoline direct injection (GDI) (N = 1) and gasoline port-fuel injection (PFI) engine categories (N = 4). For gasoline PFI LDPVs, the instantaneous emission profiles show a strong association of peak BC emissions with cold-start and high-speed aggressive driving. Such impacts lead to considerable BC emission contributions in cold-start periods (e.g., the first 47 s-94 s) over the entire cycle (e.g., 18-76% of the NEDC and 13-36% of the WLTC) and increased BC emission factors by 80-440% under the WLTC compared to the NEDC. For diesel BC emissions, the size distribution exhibits a typical unimodal pattern with one single peak appearing approximately from 120 to 150 nm, which is largely consistent with previous studies. Nevertheless, the average mass ratios of BC to particle mass (PM) range from 0.38 to 0.54 for three diesel samples, representing substantial impacts from both driving and engine conditions. The significant discrepancy between gasoline BC emission factors obtained from tailpipe exhaust versus ambient conditions suggest that more comparative

  14. Membrane-Based Air Composition Control for Light-Duty Diesel Vehicles: A Benefit and Cost Assessment; FINAL

    International Nuclear Information System (INIS)

    K. Stork; R. Poola

    1998-01-01

    This report presents the methodologies and results of a study conducted by Argonne National Laboratory (Argonne) to assess the benefits and costs of several membrane-based technologies. The technologies evaluated will be used in automotive emissions-control and performance-enhancement systems incorporated into light-duty diesel vehicle engines. Such engines are among the technologies that are being considered to power vehicles developed under the government-industry Partnership for a New Generation of Vehicles (PNGV). Emissions of nitrogen oxides (NO(sub x)) from diesel engines have long been considered a barrier to use of diesels in urban areas. Recently, particulate matter (PM) emissions have also become an area of increased concern because of new regulations regarding emissions of particulate matter measuring 2.5 micrometers or less (PM(sub 2.5)). Particulates are of special concern for diesel engines in the PNGV program; the program has a research goal of 0.01 gram per mile (g/mi) of particulate matter emissions under the Federal Test Procedure (FTP) cycle. This extremely low level (one-fourth the level of the Tier II standard) could threaten the viability of using diesel engines as stand-alone powerplants or in hybrid-electric vehicles. The techniques analyzed in this study can reduce NO(sub x) and particulate emissions and even increase the power density of the diesel engines used in light-duty diesel vehicles

  15. The influence of battery degradation level on the selected traction parameters of a light-duty electric vehicle

    Science.gov (United States)

    Juda, Z.; Noga, M.

    2016-09-01

    The article describes results of an analysis of the impact of degradation level of battery made in lead-acid technology on selected traction parameters of an electric light duty vehicle. Lead-acid batteries are still used in these types of vehicles. They do not require complex systems of performance management and monitoring and are easy to maintaining. Despite the basic disadvantage, which is the low value of energy density, low price is a decisive factor for their use in low-speed electric vehicles. The process of aging of the battery related with an increase in internal resistance of the cells and the loss of electric capacity of the battery was considered. A simplified model of cooperation of the DC electric motor with the battery assuming increased internal resistance was presented. In the paper the results of comparative traction research of the light-duty vehicle equipped with a set of new batteries and set of batteries having a significant degradation level were showed. The analysis of obtained results showed that the correct exploitation of the battery can slow down the processes of degradation and, thus, extend battery life cycle.

  16. Long-term implications of alternative light-duty vehicle technologies for global greenhouse gas emissions and primary energy demands

    International Nuclear Information System (INIS)

    Kyle, Page; Kim, Son H.

    2011-01-01

    This study assesses global light-duty vehicle (LDV) transport in the upcoming century, and the implications of vehicle technology advancement and fuel-switching on greenhouse gas emissions and primary energy demands. Five different vehicle technology scenarios are analyzed with and without a CO 2 emissions mitigation policy using the GCAM integrated assessment model: a reference internal combustion engine vehicle scenario, an advanced internal combustion engine vehicle scenario, and three alternative fuel vehicle scenarios in which all LDVs are switched to natural gas, electricity, or hydrogen by 2050. The emissions mitigation policy is a global CO 2 emissions price pathway that achieves 450 ppmv CO 2 at the end of the century with reference vehicle technologies. The scenarios demonstrate considerable emissions mitigation potential from LDV technology; with and without emissions pricing, global CO 2 concentrations in 2095 are reduced about 10 ppmv by advanced ICEV technologies and natural gas vehicles, and 25 ppmv by electric or hydrogen vehicles. All technological advances in vehicles are important for reducing the oil demands of LDV transport and their corresponding CO 2 emissions. Among advanced and alternative vehicle technologies, electricity- and hydrogen-powered vehicles are especially valuable for reducing whole-system emissions and total primary energy. - Highlights: → Alternative-fuel LDVs reduce whole-system CO 2 emissions, even without carbon pricing. → Alternative-fuel LDVs enhance the CO 2 mitigation capacity of the transportation sector. → Electric and hydrogen vehicles reduce whole-system primary energy supporting LDV transport.

  17. Long-term greenhouse gas emission and petroleum reduction goals: Evolutionary pathways for the light-duty vehicle sector

    International Nuclear Information System (INIS)

    Kromer, Matthew A.; Bandivadekar, Anup; Evans, Christopher

    2010-01-01

    To meet long-term environmental and energy security goals, the United States must reduce petroleum use in the light-duty vehicle fleet by 70% and greenhouse gas emissions by a factor of ten compared to business-as-usual growth projections for the year 2050. A wedge-based approach was used to quantify the scope of the problem in real terms, and to develop options for meeting mid-century targets. Four mitigation mechanisms were considered: (1) improvements in near-term vehicle technologies; (2) emphasis on low-carbon biofuels; (3) de-carbonization of the electric grid; and (4) demand-side travel-reduction initiatives. Projections from previous studies were used to characterize the potential of individual mitigation mechanisms, which were then integrated into a light-duty vehicle fleet model; particular emphasis was given to systemic constraints on scale and rates of change. Based on these projections, two different greenhouse gas (GHG) mitigation implementation plans were considered ('evolutionary' and 'aggressive'). Fleet model projections indicate that both the evolutionary and aggressive approaches can effectively end US dependence on foreign oil, but achieving an 80% GHG reduction requires changes that extend significantly beyond even the aggressive case, which was projected to achieve a 65% reduction.

  18. Near-roadway monitoring of vehicle emissions as a function of mode of operation for light-duty vehicles.

    Science.gov (United States)

    Wen, Dongqi; Zhai, Wenjuan; Xiang, Sheng; Hu, Zhice; Wei, Tongchuan; Noll, Kenneth E

    2017-11-01

    Determination of the effect of vehicle emissions on air quality near roadways is important because vehicles are a major source of air pollution. A near-roadway monitoring program was undertaken in Chicago between August 4 and October 30, 2014, to measure ultrafine particles, carbon dioxide, carbon monoxide, traffic volume and speed, and wind direction and speed. The objective of this study was to develop a method to relate short-term changes in traffic mode of operation to air quality near roadways using data averaged over 5-min intervals to provide a better understanding of the processes controlling air pollution concentrations near roadways. Three different types of data analysis are provided to demonstrate the type of results that can be obtained from a near-roadway sampling program based on 5-min measurements: (1) development of vehicle emission factors (EFs) for ultrafine particles as a function of vehicle mode of operation, (2) comparison of measured and modeled CO 2 concentrations, and (3) application of dispersion models to determine concentrations near roadways. EFs for ultrafine particles are developed that are a function of traffic volume and mode of operation (free flow and congestion) for light-duty vehicles (LDVs) under real-world conditions. Two air quality models-CALINE4 (California Line Source Dispersion Model, version 4) and AERMOD (American Meteorological Society/U.S. Environmental Protection Agency Regulatory Model)-are used to predict the ultrafine particulate concentrations near roadways for comparison with measured concentrations. When using CALINE4 to predict air quality levels in the mixing cell, changes in surface roughness and stability class have no effect on the predicted concentrations. However, when using AERMOD to predict air quality in the mixing cell, changes in surface roughness have a significant impact on the predicted concentrations. The paper provides emission factors (EFs) that are a function of traffic volume and mode of

  19. Evaluation of emission factors for light-duty gasoline vehicles based on chassis dynamometer and tunnel studies in Shanghai, China

    Science.gov (United States)

    Huang, Cheng; Tao, Shikang; Lou, Shengrong; Hu, Qingyao; Wang, Hongli; Wang, Qian; Li, Li; Wang, Hongyu; Liu, Jian'gang; Quan, Yifeng; Zhou, Lanlan

    2017-11-01

    CO, THC, NOx, and PM emission factors of 51 light-duty gasoline vehicles (LDGVs) spanning the emission standards from Euro 2 to Euro 5 were measured by a chassis dynamometer. High frequencies of high-emitting vehicles were observed in Euro 2 and Euro 3 LDGV fleet. 56% and 33% of high-emitting vehicles contributed 81%-92% and 82%-85% of the emissions in Euro 2 and Euro 3 test fleet, respectively. Malfunctions of catalytic convertors after high strength use are the main cause of the high emissions. Continuous monitoring of a gasoline vehicle dominated tunnel in Shanghai, China was conducted to evaluate the average emission factors of vehicles in real-world. The results indicated that the emission factors of LDGVs were considerably underestimated in EI guidebook in China. The overlook of high-emitting vehicles in older vehicle fleet is the main reason for this underestimation. Enhancing the supervision of high emission vehicles and strengthening the compliance tests of in-use vehicles are essential measures to control the emissions of in-use gasoline vehicles at the present stage in China.

  20. Evaluation of solid particle number and black carbon for very low particulate matter emissions standards in light-duty vehicles.

    Science.gov (United States)

    Chang, M-C Oliver; Shields, J Erin

    2017-06-01

    To reliably measure at the low particulate matter (PM) levels needed to meet California's Low Emission Vehicle (LEV III) 3- and 1-mg/mile particulate matter (PM) standards, various approaches other than gravimetric measurement have been suggested for testing purposes. In this work, a feasibility study of solid particle number (SPN, d50 = 23 nm) and black carbon (BC) as alternatives to gravimetric PM mass was conducted, based on the relationship of these two metrics to gravimetric PM mass, as well as the variability of each of these metrics. More than 150 Federal Test Procedure (FTP-75) or Supplemental Federal Test Procedure (US06) tests were conducted on 46 light-duty vehicles, including port-fuel-injected and direct-injected gasoline vehicles, as well as several light-duty diesel vehicles equipped with diesel particle filters (LDD/DPF). For FTP tests, emission variability of gravimetric PM mass was found to be slightly less than that of either SPN or BC, whereas the opposite was observed for US06 tests. Emission variability of PM mass for LDD/DPF was higher than that of both SPN and BC, primarily because of higher PM mass measurement uncertainties (background and precision) near or below 0.1 mg/mile. While strong correlations were observed from both SPN and BC to PM mass, the slopes are dependent on engine technologies and driving cycles, and the proportionality between the metrics can vary over the course of the test. Replacement of the LEV III PM mass emission standard with one other measurement metric may imperil the effectiveness of emission reduction, as a correlation-based relationship may evolve over future technologies for meeting stringent greenhouse standards. Solid particle number and black carbon were suggested in place of PM mass for the California LEV III 1-mg/mile FTP standard. Their equivalence, proportionality, and emission variability in comparison to PM mass, based on a large light-duty vehicle fleet examined, are dependent on engine

  1. A hybrid life cycle assessment of the vehicle-to-grid application in light duty commercial fleet

    International Nuclear Information System (INIS)

    Zhao, Yang; Tatari, Omer

    2015-01-01

    The vehicle-to-grid system is an approach utilizing the idle battery capacity of electric vehicles while they are parked to provide supplementary energy to the power grid. As electrification continues in light duty vehicle fleets, the application of vehicle-to-grid systems for commercial delivery truck fleets can provide extra revenue for fleet owners, and also has significant potential for reducing greenhouse gas emissions from the electricity generation sector. In this study, an economic input–output based hybrid life cycle assessment is conducted to analyze the potential greenhouse gas emissions emission savings from the use of the vehicle-to-grid system, as well as the possible emission impacts caused by battery degradation. A Monte Carlo simulation was performed to address the uncertainties that lie in the electricity exchange amount of the vehicle-to-grid service as well as the battery life of the electric vehicles. The results of this study showed that extended range electric vehicles and battery electric vehicles are both viable regulation service providers for saving greenhouse gas emissions from electricity generation if the battery wear-out from regulation services is assumed to be minimal, but the vehicle-to-grid system becomes less attractive at higher battery degradation levels. - Highlights: • The commercial delivery trucks are studied as vehicle-to-grid service providers. • Hybrid life cycle assessment is conducted to evaluate emission mitigation. • Battery degradation level and corresponding emissions and cost are evaluated. • Vehicle-to-grid service is shown to have significant emission saving effect.

  2. RDE-based assessment of a factory bi-fuel CNG/gasoline light-duty vehicle

    Science.gov (United States)

    Rašić, Davor; Rodman Oprešnik, Samuel; Seljak, Tine; Vihar, Rok; Baškovič, Urban Žvar; Wechtersbach, Tomaž; Katrašnik, Tomaž

    2017-10-01

    On-road exhaust emissions of a Euro 5 factory bi-fuel CNG/gasoline light-duty vehicle equipped with the TWC were assessed considering the Real Driving Emissions (RDE) guidelines. The vehicle was equipped with a Portable Emission Measurement System (PEMS) that enabled the measurement of THC, CO, NOx, CO2, and CH4. With respect to the characteristics of the vehicle, the appropriate Worldwide Harmonized Light-Duty Vehicle Test Cycles (WLTC) were selected and based on the requirements of the RDE legislation a suitable route was conceived. In addition to the moderate RDE-based route, an extended RDE-based route was also determined. The vehicle was driven along each defined route twice, once with each individual fuel option and with a fully warm vehicle. RDE routes feature a multitude of new driving patterns that are significantly different to those encountered in the NEDC. However, as these driving patterns can greatly influence the cumulative emissions an insight in to local time trace phenomena is crucial to understand, reason and to possibly reduce the cumulative emissions. Original contributions of this paper comprise analyses of the RDE-LDV local time resolved driving emissions phenomena of a CNG-powered vehicle that are benchmarked against the ones measured under the use of gasoline in the same vehicle and under similar operating conditions to reason emission trends through driving patterns and powertrain parameters and exposing the strong cold-start independent interference of CO and N2O infrared absorption bands in the non-dispersive infrared (NDIR) analyzer. The paper provides experimental evidence on this interference, which significantly influences on the readings of CO emissions. The paper further provides hypotheses why CO and N2O interference is more pronounced when using CNG in LDVs and supports these hypotheses by PEMS tests. The study reveals that the vehicle's NOx real-world emission values of both conceived RDE-based routes when using both fuels are

  3. Energy Impacts of Wide Band Gap Semiconductors in U.S. Light-Duty Electric Vehicle Fleet.

    Science.gov (United States)

    Warren, Joshua A; Riddle, Matthew E; Graziano, Diane J; Das, Sujit; Upadhyayula, Venkata K K; Masanet, Eric; Cresko, Joe

    2015-09-01

    Silicon carbide and gallium nitride, two leading wide band gap semiconductors with significant potential in electric vehicle power electronics, are examined from a life cycle energy perspective and compared with incumbent silicon in U.S. light-duty electric vehicle fleet. Cradle-to-gate, silicon carbide is estimated to require more than twice the energy as silicon. However, the magnitude of vehicle use phase fuel savings potential is comparatively several orders of magnitude higher than the marginal increase in cradle-to-gate energy. Gallium nitride cradle-to-gate energy requirements are estimated to be similar to silicon, with use phase savings potential similar to or exceeding that of silicon carbide. Potential energy reductions in the United States vehicle fleet are examined through several scenarios that consider the market adoption potential of electric vehicles themselves, as well as the market adoption potential of wide band gap semiconductors in electric vehicles. For the 2015-2050 time frame, cumulative energy savings associated with the deployment of wide band gap semiconductors are estimated to range from 2-20 billion GJ depending on market adoption dynamics.

  4. Multi-year remote-sensing measurements of gasoline light-duty vehicle emissions on a freeway ramp

    International Nuclear Information System (INIS)

    Sjoedin, A.; Andreasson, K.

    2000-01-01

    On-road optical remote-sensing measurements of gasoline light-duty vehicle (LDV) emissions - CO, HC, NO - were conducted on a freeway ramp in Gothenburg, Sweden, in 1991, 1995 and 1998. Based on almost 30,000 emission measurements, the results show that both catalyst cars and non-catalyst cars emissions deteriorate over time, but also that the emission performance of new TWC-cars has improved significantly in recent years. Furthermore, it was found that fleet age rather than model year determines the rate of emission deterioration for TWC-cars for both CO and NO. The study demonstrates that remote sensing may constitute a powerful tool to evaluate real-world LDV emissions; however, daily field calibration procedures need to be developed in order to assure that the evolution in fleet average emissions can be accurately measured. (author)

  5. Impact of organic Rankine cycle system installation on light duty vehicle considering both positive and negative aspects

    International Nuclear Information System (INIS)

    Usman, Muhammad; Imran, Muhammad; Yang, Youngmin; Park, Byung-Sik

    2016-01-01

    Highlights: • Positive and negative effects of waste heat recovery unit on vehicle were studied. • Organic Rankine cycle based power system for waste heat recovery. • Relationship of ORC unit weight and power was developed. • Impact of added weight, Part load operation and back pressure are presented. • Power enhancement of 5.82% of engine when positive & negative effects considered. - Abstract: This paper presents the analysis of organic Rankine cycle (ORC) based waste heat recovery system. Both the positive and negative effects of ORC system installation on a light duty vehicle were evaluated. Engine exhaust data for a light duty vehicle was used to design an ORC based system. Optimum cycle design suggests that ORC system installation is feasible. Results presented that for the vehicle operation at 100 km/h, engine power can be enhanced by 10.88% which is 5.92 kW of additional power and at the lower speed of 23.5 km/h, the engine power enhancement was 2.34%. ORC component weight data from manufacturers were used to estimate the weight of the designed system. The performance decline due to added weight is calculated. Effects of added back pressure and performance decline due to the part-load operation of ORC unit were also calculated and an overall effect of waste heat recovery system was evaluated. The results then suggested that maximum power enhancement is 5.82% at the vehicle speed of 100 km/h instead of previously mentioned 10.88% can be achieved if negative effects are also considered. Furthermore, it was concluded that at speeds lower than 48 km/h the waste heat recovery system was not beneficial at all and low-speed operation was in fact not preferable as it results in additional power demand from the engine by 6.39% at 23.5 km/h. The vehicles for city driving cycles are not recommended for ORC installation. Another finding revealed that if exhaust heat recovery heat exchanger is designed for maximum heat recovery, at part load operation, the

  6. 40 CFR 86.099-17 - Emission control diagnostic system for 1999 and later light-duty vehicles and light-duty trucks.

    Science.gov (United States)

    2010-07-01

    ... Model Year New Gasoline Fueled, Natural Gas-Fueled, Liquefied Petroleum Gas-Fueled and Methanol-Fueled... alternate fueled vehicles. For alternate fueled vehicles (e.g., natural gas, liquefied petroleum gas.... On vehicles with fuel tank capacity greater than 25 gallons, the Administrator may, following a...

  7. The benefits and costs of new fuels and engines for light-duty vehicles in the United States.

    Science.gov (United States)

    Keefe, Ryan; Griffin, James P; Graham, John D

    2008-10-01

    Rising oil prices and concerns about energy security and climate change are spurring reconsideration of both automobile propulsion systems and the fuels that supply energy to them. In addition to the gasoline internal combustion engine, recent years have seen alternatives develop in the automotive marketplace. Currently, hybrid-electric vehicles, advanced diesels, and flex-fuel vehicles running on a high percentage mixture of ethanol and gasoline (E85) are appearing at auto shows and in driveways. We conduct a rigorous benefit-cost analysis from both the private and societal perspective of the marginal benefits and costs of each technology--using the conventional gasoline engine as a baseline. The private perspective considers only those factors that influence the decisions of individual consumers, while the societal perspective accounts for environmental, energy, and congestion externalities as well. Our analysis illustrates that both hybrids and diesels show promise for particular light-duty applications (sport utility vehicles and pickup trucks), but that vehicles running continuously on E85 consistently have greater costs than benefits. The results for diesels were particularly robust over a wide range of sensitivity analyses. The results from the societal analysis are qualitatively similar to the private analysis, demonstrating that the most relevant factors to the benefit-cost calculations are the factors that drive the individual consumer's decision. We conclude with a brief discussion of marketplace and public policy trends that will both illustrate and influence the relative adoption of these alternative technologies in the United States in the coming decade.

  8. A parametric study of light-duty natural gas vehicle competitiveness in the United States through 2050

    International Nuclear Information System (INIS)

    Peterson, Meghan B.; Barter, Garrett E.; West, Todd H.; Manley, Dawn K.

    2014-01-01

    Highlights: • NGVs are economical, but limited by infrastructure and OEM model availability. • NGVs compete more with EVs than conventional vehicles. • By displacing EVs, NGVs offer little or negative GHG reduction benefits. • Public refueling infrastructure is a better investment than home CNG compressors. • Bi-fuel vehicles can be a bridge technology until infrastructure build-out. - Abstract: We modeled and conducted a parametric analysis of the US light-duty vehicle (LDV) stock to examine the impact of natural gas vehicles (NGVs) as they compete with electric vehicles, hybrids, and conventional powertrains. We find that low natural gas prices and sufficient public refueling infrastructure are the key drivers to NGV adoption when matched with availability of compressed natural gas powertrains from automakers. Due to the time and investment required for the build out of infrastructure and the introduction of vehicles by original equipment manufacturers, home natural gas compressor sales and bi-fuel NGVs serve as bridge technologies through 2030. By 2050, however, NGVs could comprise as much as 20% of annual vehicle sales and 10% of the LDV stock fraction. We also find that NGVs may displace electric vehicles, rather than conventional powertrains, as they both compete for consumers that drive enough miles such that fuel cost savings offset higher purchase costs. Due to this dynamic, NGVs in our LDV stock model offer little to no greenhouse gas emissions reduction as they displace lower emission powertrains. This finding is subject to the uncertainty in efficiency technology progression and the set of powertains and fuels considered

  9. Increasing the Fuel Economy and Safety of New Light-DutyVehicles

    Energy Technology Data Exchange (ETDEWEB)

    Wenzel, Tom; Ross, Marc

    2006-09-18

    One impediment to increasing the fuel economy standards forlight-duty vehicles is the long-standing argument that reducing vehiclemass to improve fuel economy will inherently make vehicles less safe.This technical paper summarizes and examines the research that is citedin support of this argument, and presents more recent research thatchallenges it. We conclude that the research claiming that lightervehicles are inherently less safe than heavier vehicles is flawed, andthat other aspects of vehicle design are more important to the on-roadsafety record of vehicles. This paper was prepared for a workshop onexperts in vehicle safety and fuel economy, organized by the William andFlora Hewlett Foundation, to discuss technologies and designs that can betaken to simultaneously improve vehicle safety and fuel economy; theworkshop was held in Washington DC on October 3, 2006.

  10. NRC committee on assessment of technologies for improving fuel economy of light-duty vehicles: Meeting with DOT Volpe Center staff - February 27, 2013

    Science.gov (United States)

    2013-02-27

    On February 27, 2013 National Research Council's Committee on Fuel Economy of Light-Duty Vehicles, Phase 2 held a meeting at the John A. Volpe National Transportation Systems Center on the Volpe Model and Other CAFE Issues. The meeting objectives wer...

  11. On-road assessment of light duty vehicles in Delhi city: Emission factors of CO, CO2 and NOX

    Science.gov (United States)

    Jaiprakash; Habib, Gazala

    2018-02-01

    This study presents the technology based emission factors of gaseous pollutants (CO, CO2, and NOX) measured during on-road operation of nine passenger cars of diesel, gasoline, and compressed natural gas (CNG). The emissions from two 3-wheelers, and three 2-wheelers were measured by putting the vehicles on jacks and operating them according to Modified Indian Driving Cycle (MIDC) at no load condition. The emission factors observed in the present work were significantly higher than values reported from dynamometer study by Automotive Research Association of India (ARAI). Low CO (0.34 ± 0.08 g km-1) and high NOX (1.0 ± 0.4 g km-1) emission factors were observed for diesel passenger cars, oppositely high CO (2.2 ± 2.6 g km-1) and low NOX (1.0 ± 1.6 g km-1) emission factors were seen for gasoline powered cars. The after-treatment technology in diesel vehicles was effective in CO reduction. While the use of turbocharger in diesel vehicles to generate high combustion temperature and pressure produces more NOx, probably which may not be effectively controlled by after-treatment device. The after-treatment devices in gasoline powered Post-2010, Post-2005 vehicles can be acclaimed for reduced CO emissions compared to Post-2000 vehicles. This work presents a limited data set of emission factors from on-road operations of light duty vehicles, this limitation can be improved by further measurements of emissions from similar vehicles.

  12. Estimation of light duty vehicle emissions in Islamabad and climate co-benefits of improved emission standards implementation

    Science.gov (United States)

    Shah, Izhar Hussain; Zeeshan, Muhammad

    2016-02-01

    Light Duty Vehicles (LDVs) hold a major share in Islamabad's vehicle fleet and their contribution towards air pollution has not been analyzed previously. Emissions for the base year (2014) and two optimistic 'what-if' scenarios were estimated by using the International Vehicle Emissions (IVE) model. Considering the recent implementation of Euro II as emission standard in Pakistan, scenario 1 assumed entire LDV fleet meeting at least Euro II standards while scenario 2 assumed all LDVs meeting Euro IV standards except motorcycles which would be meeting Euro III emission standards. Higher average age for all vehicles and lower share of Euro compliant vehicles was found in the base case. Low engine stress mode (lower speeds with frequent decelerations) was observed for all vehicles especially on arterials and residential roads. Highest overall emissions (59%) were observed on arterials, followed by residential roads (24%) and highways (17%) with higher emissions observed during morning (8-10 am) and evening (4-6 pm) rush hours. Composite emission factors were also calculated. Results reveal that 1094, 147, 11.1, 0.2 and 0.4 kt of CO2, CO, NOx, SO2 and PM10 respectively were emitted in 2014 by LDVs. Compared with the base year, scenario 1 showed a reduction of 9%, 69%, 73%, 13% and 31%, while scenario 2 exhibited a reduction of 5%, 92%, 90%, 92% and 81% for CO2, CO, NOx, SO2 and PM10 respectively. As compared to the base year, a 20 year CO2-equivalent Global Warming Potential (GWP) reduced by 55% and 64% under scenario 1 and 2 respectively, while a 100 year GWP reduced by 40% and 44% under scenario 1 and 2 respectively. Our results demonstrated significant co-benefits that could be achieved in emission reduction and air quality improvement in the city by vehicle technology implementation.

  13. An Analysis of the Relationship between Casualty Risk Per Crash and Vehicle Mass and Footprint for Model Year 2000-2007 Light-Duty Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Wenzel, Tom [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Environmental Energy Technologies Division. Building Technology and Urban Systems Dept.

    2012-08-01

    NHTSA recently completed a logistic regression analysis (Kahane 2012) updating its 2003 and 2010 studies of the relationship between vehicle mass and US fatality risk per vehicle mile traveled (VMT). The new study updates the previous analyses in several ways: updated FARS data for 2002 to 2008 involving MY00 to MY07 vehicles are used; induced exposure data from police reported crashes in several additional states are added; a new vehicle category for car-based crossover utility vehicles (CUVs) and minivans is created; crashes with other light-duty vehicles are divided into two groups based on the crash partner vehicle’s weight, and a category for all other fatal crashes is added; and new control variables for new safety technologies and designs, such as electronic stability controls (ESC), side airbags, and methods to meet voluntary agreement to improve light truck compatibility with cars, are included.

  14. Final report for measurement of primary particulate matter emissions from light-duty motor vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Norbeck, J. M.; Durbin, T. D.; Truex, T. J.

    1998-12-31

    This report describes the results of a particulate emissions study conducted at the University of California, Riverside, College of Engineering-Center for Environmental Research and Technology (CE-CERT) from September of 1996 to August of 1997. The goal of this program was to expand the database of particulate emissions measurements from motor vehicles to include larger numbers of representative in-use vehicles. This work was co-sponsored by the Coordinating Research Council (CRC), the South Coast Air Quality Management District (SCAQMD), and the National Renewable Energy Laboratory (NREL) and was part of a larger study of particulate emissions being conducted in several states under sponsorship by CRC. For this work, FTP particulate mass emission rates were determined for gasoline and diesel vehicles, along with the fractions of particulates below 2.5 and 10 microns aerodynamic diameter. A total of 129 gasoline-fueled vehicles and 19 diesel-fueled vehicles were tested as part of the program.

  15. Impacts of Electrification of Light-Duty Vehicles in the United States, 2010 - 2017

    Energy Technology Data Exchange (ETDEWEB)

    Gohlke, David [Argonne National Lab. (ANL), Argonne, IL (United States). Energy Systems Division; Zhou, Yan [Argonne National Lab. (ANL), Argonne, IL (United States). Energy Systems Division

    2018-01-25

    This report examines the sales of plug-in electric vehicles (PEVs) in the United States from 2010 to 2017, exploring vehicle sales, electricity consumption, petroleum reduction, and battery production, among other factors. Over 750,000 PEVs have been sold, driving nearly 16 billion miles on electricity, thereby reducing gasoline consumption by 0.1% in 2016 and 600 million gallons cumulatively through 2017, while using over 5 terawatt-hours of electricity. Over 23 gigawatt-hours of battery capacity has been placed in vehicles, and 98% of this is still on the road, assuming typical scrappage rates.

  16. Effects of Cold Temperature and Ethanol Content on VOC Emissions from Light-Duty Gasoline Vehicles

    Data.gov (United States)

    U.S. Environmental Protection Agency — Supporting information Table S6 provides emission rates in g/km of volatile organic compounds measured from gasoline vehicle exhaust during chassis dynamometer...

  17. Exhaust gas emissions from various automotive fuels for light-duty vehicles. Effects on health, environment and energy utilization

    International Nuclear Information System (INIS)

    Ahlvik, P.; Brandberg, Aa.

    1999-12-01

    The main aim of the investigation has been to assess the effects on health and environment from various alternative fuels for light-duty vehicles. Effects that can be identified and quantified, such as acidification, ozone formation, cancer risk and climate change, have been of primary interest but other effects, such as respiratory diseases, have also been investigated. Data have been collected through literature surveys for subsequent calculation of the mentioned effects in different time-frames. Corrections have been used to take into consideration the influence of climate, ageing and driving pattern. Emissions generated in fuel production have also been accounted for. The most significant and important differences between the fuels have been found for effects as ozone formation cancer risk and particulate emissions. Alternative fuels, such as methanol and methane (natural gas and biogas), significantly decrease the ozone formation in comparison to petrol, while ethanol, methanol and methane are advantageous concerning cancer risk. The particulate emissions are considerably higher for diesel engines fuelled by diesel oil and RME in comparison to the other fuels. In the future, the importance of acid emissions in the fuel production will increase since the NO x and SO x emissions will decrease from the vehicles. The emissions of climate gases could be significantly reduced by using non-fossil fuels but the efficiency of the drive train is also of importance. The technical development potential for further emission reductions is considerable for all fuels but the advantage for the best fuel options will remain in the future

  18. Development of Hot Exhaust Emission Factors for Iranian-Made Euro-2 Certified Light-Duty Vehicles.

    Science.gov (United States)

    Banitalebi, Ehsan; Hosseini, Vahid

    2016-01-05

    Emission factors (EFs) are fundamental, necessary data for air pollution research and scenario implementation. With the vision of generating national EFs of the Iranian transportation system, a portable emission measurement system (PEMS) was used to develop the basic EFs for a statistically significant sample of Iranian gasoline-fueled privately owned light duty vehicles (LDVs) operated in Tehran. A smaller sample size of the same fleet was examined by chassis dynamometer (CD) bag emission measurement tests to quantify the systematic differences between the PEMS and CD methods. The selected fleet was tested over four different routes of uphill highways, flat highways, uphill urban streets, and flat urban streets. Real driving emissions (RDEs) and fuel consumption (FC) rates were calculated by weighted averaging of the results from each route. The activity of the fleet over each route type was assumed as a weighting factor. The activity data were obtained from a Tehran traffic model. The RDEs of the selected fleet were considerably higher than the certified emission levels of all vehicles. Differences between Tehran real driving cycles and the New European Driving Cycle (NEDC) was attributed to the lower loading of NEDC. A table of EFs based on RDEs was developed for the sample fleet.

  19. Global Assessment of Hydrogen Technologies - Task 1 Report Technology Evaluation of Hydrogen Light Duty Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Fouad, Fouad H.; Peters, Robert W.; Sisiopiku, Virginia P.; Sullivan Andrew J.; Rousseau, Aymeric

    2007-12-01

    This task analyzes the candidate hydrogen-fueled vehicles for near-term use in the Southeastern U.S. The purpose of this work is to assess their potential in terms of efficiency and performance. This report compares conventional, hybrid electric vehicles (HEV) with gasoline and hydrogen-fueled internal combustion engines (ICEs) as well as fuel cell and fuel cell hybrids from a technology as well as fuel economy point of view. All the vehicles have been simulated using the Powertrain System Analysis Toolkit (PSAT). First, some background information is provided on recent American automotive market trends and consequences. Moreover, available options are presented for introducing cleaner and more economical vehicles in the market in the future. In this study, analysis of various candidate hydrogen-fueled vehicles is performed using PSAT and, thus, a brief description of PSAT features and capabilities are provided. Detailed information on the simulation analysis performed is also offered, including methodology assumptions, fuel economic results, and conclusions from the findings.

  20. Effect of Gasoline Properties on Exhaust Emissions from Tier 2 Light-Duty Vehicles -- Final Report: Phase 3; July 28, 2008 - July 27, 2013

    Energy Technology Data Exchange (ETDEWEB)

    Whitney, K.

    2014-05-01

    This report covers work the Southwest Research Institute (SwRI) Office of Automotive Engineering has conducted for the U.S. Environmental Protection Agency (EPA), the National Renewable Energy Laboratory (NREL), and the Coordinating Research Council (CRC) in support of the Energy Policy Act of 2005 (EPAct). Section 1506 of EPAct requires EPA to produce an updated fuel effects model representing the 2007 light - duty gasoline fleet, including determination of the emissions impacts of increased renewable fuel use. This report covers the exhaust emissions testing of 15 light-duty vehicles with 27 E0 through E20 test fuels, and 4 light-duty flexible fuel vehicles (FFVs) on an E85 fuel, as part of the EPAct Gasoline Light-Duty Exhaust Fuel Effects Test Program. This program will also be referred to as the EPAct/V2/E-89 Program based on the designations used for it by the EPA, NREL, and CRC, respectively. It is expected that this report will be an attachment or a chapter in the overall EPAct/V2/E-89 Program report prepared by EPA and NREL.

  1. Carbonaceous Aerosols Emitted from Light-Duty Vehicles Operating on Ethanol Fuel Blends

    Science.gov (United States)

    Air pollution is among the many environmental and public health concerns associated with increased ethanol use in vehicles. Jacobson [2007] showed for the U.S. market that full conversion to e85 ([85% ethanol, 15% gasoline]—the maximum standard blend used in modern dual fuel veh...

  2. Light-Duty Vehicle Fuel Consumption Displacement Potential up to 2045

    Energy Technology Data Exchange (ETDEWEB)

    Moawad, Ayman [Argonne National Lab. (ANL), Argonne, IL (United States); Rousseau, Aymeric [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-04-01

    The U.S. Department of Energy (DOE) Vehicle Technologies Program (VTP) is developing more energy-efficient and environmentally friendly highway transportation technologies that will enable America to use less petroleum. The long-term aim is to develop "leapfrog" technologies that will provide Americans with greater freedom of mobility and energy security, while lowering costs and reducing impacts on the environment.

  3. Modeling real-world fuel consumption and carbon dioxide emissions with high resolution for light-duty passenger vehicles in a traffic populated city

    International Nuclear Information System (INIS)

    Zhang, Shaojun; Wu, Ye; Un, Puikei; Fu, Lixin; Hao, Jiming

    2016-01-01

    Modeling fuel consumption of light-duty passenger vehicles has created substantial concerns due to the uncertainty from real-world operating conditions. Macao is world-renowned for its tourism industry and high population density. An empirical model is developed to estimate real-world fuel consumption and carbon dioxide emissions for gasoline-powered light-duty passenger vehicles in Macao by considering local fleet configuration and operating conditions. Thanks to increasingly stringent fuel consumption limits in vehicle manufacturing countries, estimated type-approval fuel consumption for light-duty passenger vehicles in Macao by model year was reduced from 7.4 L/100 km in 1995 to 5.9 L/100 km in 2012, although a significant upsizing trend has considerably offset potential energy-saving benefit. However, lower driving speed and the air-conditioning usage tend to raise fleet-average fuel consumption and carbon dioxide emission factors, which are estimated to be 10.1 L/100 km and 240 g/km in 2010. Fleet-total fuel consumption and carbon dioxide emissions are modeled through registered vehicle population-based and link-level traffic demand approaches and the results satisfactorily coincide with the historical record of fuel sales in Macao. Temporal and spatial variations in fuel consumption and carbon dioxide emissions from light-duty passenger vehicles further highlight the importance of effective traffic management in congested areas of Macao. - Highlights: • A fuel consumption model is developed for Macao's light-duty passenger cars. • Increased vehicle size partially offset energy benefit from tightened fuel consumption standard. • Lower speed and use of air-conditioning greatly increase fuel use of Macao light-duty passenger cars. • A high resolution inventory of fuel use and carbon dioxide emissions is built with link-level traffic data. • Policy suggestions are provided to mitigate fuel use in a traffic populated city.

  4. Impact of freeway weaving segment design on light-duty vehicle exhaust emissions.

    Science.gov (United States)

    Li, Qing; Qiao, Fengxiang; Yu, Lei; Chen, Shuyan; Li, Tiezhu

    2018-06-01

    In the United States, 26% of greenhouse gas emissions is emitted from the transportation sector; these emisssions meanwhile are accompanied by enormous toxic emissions to humans, such as carbon monoxide (CO), nitrogen oxides (NO x ), and hydrocarbon (HC), approximately 2.5% and 2.44% of a total exhaust emissions for a petrol and a diesel engine, respectively. These exhaust emissions are typically subject to vehicles' intermittent operations, such as hard acceleration and hard braking. In practice, drivers are inclined to operate intermittently while driving through a weaving segment, due to complex vehicle maneuvering for weaving. As a result, the exhaust emissions within a weaving segment ought to vary from those on a basic segment. However, existing emission models usually rely on vehicle operation information, and compute a generalized emission result, regardless of road configuration. This research proposes to explore the impacts of weaving segment configuration on vehicle emissions, identify important predictors for emission estimations, and develop a nonlinear normalized emission factor (NEF) model for weaving segments. An on-board emission test was conducted on 12 subjects on State Highway 288 in Houston, Texas. Vehicles' activity information, road conditions, and real-time exhaust emissions were collected by on-board diagnosis (OBD), a smartphone-based roughness app, and a portable emission measurement system (PEMS), respectively. Five feature selection algorithms were used to identify the important predictors for the response of NEF and the modeling algorithm. The predictive power of four algorithm-based emission models was tested by 10-fold cross-validation. Results showed that emissions are also susceptible to the type and length of a weaving segment. Bagged decision tree algorithm was chosen to develop a 50-grown-tree NEF model, which provided a validation error of 0.0051. The estimated NEFs are highly correlated with the observed NEFs in the training

  5. Reduction in global warming due to fuel economy improvements and emissions control of criteria pollutants: New US light-duty vehicles (1968--1991)

    International Nuclear Information System (INIS)

    Pitstick, M.E.; Santini, D.J.; Chauhan, H.

    1992-01-01

    This paper explores the impact of US emission controls and fuel economy improvements on the global warming potential (GWP) of new light-duty vehicles. Fuel economy improvements have reduced the GWP of both passenger cars and light-duty trucks by lowering the per mile emissions of carbon dioxide (CO 2 ). Further GWP reductions have been achieved by emission standards for criteria pollutants: carbon monoxide (CO), hydrocarbons (HC), and nitrogen oxides (NO x ). The GWP of a criteria pollutant was calculated by multiplying the emission rate by a relative global warming factor to obtain a CO 2 equivalent emission rate. Both CO 2 and criteria pollutant emission rates per vehicle have decreased substantially for new light-duty vehicles over the period from 1968 to 1991. Over that period, the GWP from CO 2 was reduced by almost 50% in new vehicles by improving fuel economy. In that same time period, the GWP from criteria pollutants from new vehicles was reduced with emission controls by from 80% to 90% depending on the global warming time frame of interest. Consequently, total reductions in the GWP of new passenger cars and light-duty trucks have been on the order of 55 to 75 percent compared to precontrol (before 1968) new vehicles. However, the reduction in GWP caused by emission control of criteria pollutants has been larger than the reduction caused by improved fuel economy (i.e., reduced CO 2 ). The contribution of criteria pollutants to the GWP of precontrol new vehicles was substantial, but their contribution has been reduced significantly due to US emission controls. As a result, the contribution of criteria pollutants to global warming is now much less than the contribution of CO 2 from fuel consumption

  6. Reduction in global warming due to fuel economy improvements and emissions control of criteria pollutants: New US light-duty vehicles (1968--1991)

    Energy Technology Data Exchange (ETDEWEB)

    Pitstick, M.E.; Santini, D.J. [Argonne National Lab., IL (United States); Chauhan, H. [Delaware Univ., Newark, DE (United States). Dept. of Civil Engineering

    1992-08-01

    This paper explores the impact of US emission controls and fuel economy improvements on the global warming potential (GWP) of new light-duty vehicles. Fuel economy improvements have reduced the GWP of both passenger cars and light-duty trucks by lowering the per mile emissions of carbon dioxide (CO{sub 2}). Further GWP reductions have been achieved by emission standards for criteria pollutants: carbon monoxide (CO), hydrocarbons (HC), and nitrogen oxides (NO{sub x}). The GWP of a criteria pollutant was calculated by multiplying the emission rate by a relative global warming factor to obtain a CO{sub 2} equivalent emission rate. Both CO{sub 2} and criteria pollutant emission rates per vehicle have decreased substantially for new light-duty vehicles over the period from 1968 to 1991. Over that period, the GWP from CO{sub 2} was reduced by almost 50% in new vehicles by improving fuel economy. In that same time period, the GWP from criteria pollutants from new vehicles was reduced with emission controls by from 80% to 90% depending on the global warming time frame of interest. Consequently, total reductions in the GWP of new passenger cars and light-duty trucks have been on the order of 55 to 75 percent compared to precontrol (before 1968) new vehicles. However, the reduction in GWP caused by emission control of criteria pollutants has been larger than the reduction caused by improved fuel economy (i.e., reduced CO{sub 2}). The contribution of criteria pollutants to the GWP of precontrol new vehicles was substantial, but their contribution has been reduced significantly due to US emission controls. As a result, the contribution of criteria pollutants to global warming is now much less than the contribution of CO{sub 2} from fuel consumption.

  7. Reduction in global warming due to fuel economy improvements and emissions control of criteria pollutants: New US light-duty vehicles (1968--1991)

    Energy Technology Data Exchange (ETDEWEB)

    Pitstick, M.E.; Santini, D.J. (Argonne National Lab., IL (United States)); Chauhan, H. (Delaware Univ., Newark, DE (United States). Dept. of Civil Engineering)

    1992-01-01

    This paper explores the impact of US emission controls and fuel economy improvements on the global warming potential (GWP) of new light-duty vehicles. Fuel economy improvements have reduced the GWP of both passenger cars and light-duty trucks by lowering the per mile emissions of carbon dioxide (CO{sub 2}). Further GWP reductions have been achieved by emission standards for criteria pollutants: carbon monoxide (CO), hydrocarbons (HC), and nitrogen oxides (NO{sub x}). The GWP of a criteria pollutant was calculated by multiplying the emission rate by a relative global warming factor to obtain a CO{sub 2} equivalent emission rate. Both CO{sub 2} and criteria pollutant emission rates per vehicle have decreased substantially for new light-duty vehicles over the period from 1968 to 1991. Over that period, the GWP from CO{sub 2} was reduced by almost 50% in new vehicles by improving fuel economy. In that same time period, the GWP from criteria pollutants from new vehicles was reduced with emission controls by from 80% to 90% depending on the global warming time frame of interest. Consequently, total reductions in the GWP of new passenger cars and light-duty trucks have been on the order of 55 to 75 percent compared to precontrol (before 1968) new vehicles. However, the reduction in GWP caused by emission control of criteria pollutants has been larger than the reduction caused by improved fuel economy (i.e., reduced CO{sub 2}). The contribution of criteria pollutants to the GWP of precontrol new vehicles was substantial, but their contribution has been reduced significantly due to US emission controls. As a result, the contribution of criteria pollutants to global warming is now much less than the contribution of CO{sub 2} from fuel consumption.

  8. Modeling transitions in the California light-duty vehicles sector to achieve deep reductions in transportation greenhouse gas emissions

    International Nuclear Information System (INIS)

    Leighty, Wayne; Ogden, Joan M.; Yang, Christopher

    2012-01-01

    California’s target for reducing economy-wide greenhouse gas (GHG) emissions is 80% below 1990 levels by 2050. We develop transition scenarios for meeting this goal in California’s transportation sector, with focus on light-duty vehicles (LDVs). We explore four questions: (1) what options are available to reduce transportation sector GHG emissions 80% below 1990 levels by 2050; (2) how rapidly would transitions in LDV markets, fuels, and travel behaviors need to occur over the next 40 years; (3) how do intermediate policy goals relate to different transition pathways; (4) how would rates of technological change and market adoption between 2010 and 2050 impact cumulative GHG emissions? We develop four LDV transition scenarios to meet the 80in50 target through a combination of travel demand reduction, fuel economy improvements, and low-carbon fuel supply, subject to restrictions on trajectories of technological change, potential market adoption of new vehicles and fuels, and resource availability. These scenarios exhibit several common themes: electrification of LDVs, rapid improvements in vehicle efficiency, and future fuels with less than half the carbon intensity of current gasoline and diesel. Availability of low-carbon biofuels and the level of travel demand reduction are “swing factors” that influence the degree of LDV electrification required. - Highlights: ► We model change in California LDVs for deep reduction in transportation GHG emissions. ► Reduced travel demand, improved fuel economy, and low-carbon fuels are all needed. ► Transitions must begin soon and occur quickly in order to achieve the 80in50 goal. ► Low-C biofuel supply and travel demand influence the need for rapid LDV electrification. ► Cumulative GHG emissions from LDVs can differ between strategies by up to 40%.

  9. Modelling of NO{sub x} emission factors from heavy and light-duty vehicles equipped with advanced aftertreatment systems

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, M.L.M., E-mail: monalisa@unifor.br [IDMEC - Institute of Mechanical Engineering, Instituto Superior Tecnico, Technical University of Lisbon, Av. Rovisco Pais, 1049-001 Lisbon (Portugal); Silva, C.M. [IDMEC - Institute of Mechanical Engineering, Instituto Superior Tecnico, Technical University of Lisbon, Av. Rovisco Pais, 1049-001 Lisbon (Portugal); Moreno-Tost, R. [Departamento de Quimica Inorganica, Cristalografia y Mineralogia, Unidad Asociada al Instituto de Catalisis, CSIC, Universidad de Malaga, Campus de Teatinos, 29071 Malaga (Spain); Farias, T.L. [IDMEC - Institute of Mechanical Engineering, Instituto Superior Tecnico, Technical University of Lisbon, Av. Rovisco Pais, 1049-001 Lisbon (Portugal); Jimenez-Lopez, Antonio [IDMEC - Institute of Mechanical Engineering, Instituto Superior Tecnico, Technical University of Lisbon, Av. Rovisco Pais, 1049-001 Lisbon (Portugal); Departamento de Quimica Inorganica, Cristalografia y Mineralogia, Unidad Asociada al Instituto de Catalisis, CSIC, Universidad de Malaga, Campus de Teatinos, 29071 Malaga (Spain); Rodriguez-Castellon, E. [Departamento de Quimica Inorganica, Cristalografia y Mineralogia, Unidad Asociada al Instituto de Catalisis, CSIC, Universidad de Malaga, Campus de Teatinos, 29071 Malaga (Spain)

    2011-08-15

    Highlights: {yields} Alternative SCR materials. {yields} Catalysts used in heavy-duty vehicles are based on V{sub 2}O{sub 5}-WO{sub 3}-TiO{sub 2}. {yields}Zeolites containing transition metal ions as catalysts for urea SCR has increased. {yields} FeZSM5 catalyst can be a possible candidate as far as pollutants regulation is considered. {yields} Regarding N{sub 2}O emissions mordenite based SCR do not emit this pollutant. - Abstract: NO{sub x} emission standards are becoming stringiest over the world especially for heavy-duty vehicles. To comply with current and future regulations some vehicle manufacturers are adopting exhaust aftertreatment systems known as Selective Catalytic Reduction (SCR). The catalysts are based on Vanadium (Va) and the reductant agent based on ammonia. However, Va is listed on the California Proposition 65 List as potentially causing cancer and alternatives are being studied. This paper presents a model based on neural networks that integrated with a road vehicle simulator allows to estimate NO{sub x} emission factors for different powertrain configurations, along different driving conditions, and covering commercial, zeolite and mordenite alternatives as the base monolith for SCR. The research included the experimental study of copper based and iron based zeolites (ZSM5 and Cuban natural mordenite). The response of NO{sub x} conversion efficiency was monitored in a laboratory for varying space velocity, oxygen, sulfur, water, NO{sub x} and SO{sub 2} emulating the conditions of a Diesel engine exhaust along a trip. The experimental data was used for training neural networks and obtaining a mathematical correlation between the outputs and inputs of the SCR system. The developed correlation was integrated with ADVISOR road vehicle simulator to obtain NO{sub x} emission factors and to test each SCR system installed on light-duty and heavy-duty vehicles for standardized driving cycles and real measured driving cycles. Despite having lower NO

  10. Development strategies to satisfy corporate average CO_2 emission regulations of light duty vehicles (LDVs) in Korea

    International Nuclear Information System (INIS)

    Oh, Yunjung; Park, Junhong; Lee, Jong Tae; Seo, Jigu; Park, Sungwook

    2016-01-01

    In the present study, we generated vehicle dynamic based light-duty vehicle (LDV) models and investigated some technical strategies in order to meet the corporate average CO_2 emission (CACE) regulations of Korea, which will be applied from 2016 to 2020. Seven types of LDV simulation models (including gasoline, diesel, and hybrid cars) were generated based on the AVL CRUISE program and the LDV sales ratio was used to estimate the CACE value of five companies in Korea. The prediction accuracy of the LDV models was validated using chassis dynamometer test data. Then, the effectiveness of the CACE reduction strategies was investigated based on the developed LDV simulation models. From the results of this study, it was revealed that all of the companies cannot satisfy the 2020 CACE regulation by just adopting a single strategy. In order to solve this problem, two types of CACE plans that combined several strategies (reducing the mass drag and fuel consumption rate, and adding a hybrid module, etc.) were proposed. After implementing the two types of CACE plan, it was predicted that five companies will be able to satisfy the 2020 CACE regulation. - Highlights: • Seven types of LDV models were generated to predict CO_2 emission. • Five companies were selected as the major car makers in Korea. • Diverse of strategies were considered to meet the future CO_2 standards in Korea. • All of the companies cannot satisfy the 2020 regulation by adopting a single item. • Two types of plans that combined several strategies were proposed.

  11. Unregulated gaseous exhaust emission from modern ethanol fuelled light duty vehicles in cold ambient condition

    Science.gov (United States)

    Clairotte, M.; Adam, T. W.; Zardini, A. A.; Astorga, C.

    2011-12-01

    According to Directive 2003/30/EC and 2009/28/EC of the European Parliament and the Council, Member States should promote the use of biofuel. Consequently, all petrol and diesel used for transport purpose available on the market since the 1st of January 2011 must contain a reference value of 5.75% of renewable energy. Ethanol in gasoline could be a promising alternative to comply with this objective, and is actually available in higher proportion in Sweden and Brazil. In addition to a lower dependence on fossil fuel, it is well established that ethanol contributes to reduce air pollutant emissions during combustion (CO, THC), and presents a beneficial effect on the greenhouse gas emissions. However, these statements rely on numerous chassis dynamometer emission studies performed in warm condition (22°C), and very few emission data are available at cold ambient condition encountered in winter, particularly in the north of Europe. In this present study, the effects of ethanol (E75-E85) versus gasoline (E5) have been investigated at cold ambient temperature (-7°C). Experiments have been carried out in a chassis dynamometer at the Vehicle Emission Laboratory (VELA) of the European Commission's Joint Research Centre (JRC - Ispra, Italy). Emissions of modern passenger cars complying with the latest European standard (Euro4 and Euro5a) were tracked over the New European Driving Cycle (NEDC). Unregulated gaseous compounds like greenhouse gases (carbon dioxide, methane, nitrous oxide), and air quality related compounds (ammonia, formaldehyde, acetaldehyde) were monitored by an online Fourier Transformed Infra-Red spectrometer with 1 Hz acquisition frequency. In addition, a number of ozone precursors (carbonyls and volatile organic hydrocarbons) were collected in order to assess the ozone formation potential (OFP) of the exhaust. Results showed higher unregulated emissions at -7°C, regardless of the ethanol content in the fuel blend. Most of the emissions occurred during

  12. Emissions of CO2, CO, NOx, HC, PM, HFC-134a, N2O and CH4 from the global light duty vehicle fleet

    Directory of Open Access Journals (Sweden)

    Timothy J. Wallington

    2008-04-01

    Full Text Available Vehicles emit carbon dioxide (CO2, carbon monoxide (CO, nitrogen oxides (NOx, hydrocarbons (HC, particulate matter (PM, hydrofluorocarbon 134a (HFC-134a, methane (CH4, and nitrous oxide (N2O. An understanding of these emissions is needed in discussions of climate change and local air pollution issues. To facilitate such discussions an overview of past, present, and likely future emissions from light duty vehicles is presented. Emission control technologies have reduced the emissions of CO, VOCs, PM, HFC-134a, CH4, and N2O from modern vehicles to very low levels.

  13. Characterization of in-use light-duty gasoline vehicle emissions by remote sensing in Beijing: impact of recent control measures.

    Science.gov (United States)

    Zhou, Yu; Fu, Lixin; Cheng, Linglin

    2007-09-01

    China's national government and Beijing city authorities have adopted additional control measures to reduce the negative impact of vehicle emissions on Beijing's air quality. An evaluation of the effectiveness of these measures may provide guidance for future vehicle emission control strategy development. In-use emissions from light-duty gasoline vehicles (LDGVs) were investigated at five sites in Beijing with remote sensing instrumentation. Distance-based mass emission factors were derived with fuel consumption modeled on real world data. The results show that the recently implemented aggressive control strategies are significantly reducing the emissions of on-road vehicles. Older vehicles are contributing substantially to the total fleet emissions. An earlier program to retrofit pre-Euro cars with three-way catalysts produced little emission reduction. The impact of model year and driving conditions on the average mass emission factors indicates that the durability of vehicles emission controls may be inadequate in Beijing.

  14. Life cycle air emissions impacts and ownership costs of light-duty vehicles using natural gas as a primary energy source.

    Science.gov (United States)

    Luk, Jason M; Saville, Bradley A; MacLean, Heather L

    2015-04-21

    This paper aims to comprehensively distinguish among the merits of different vehicles using a common primary energy source. In this study, we consider compressed natural gas (CNG) use directly in conventional vehicles (CV) and hybrid electric vehicles (HEV), and natural gas-derived electricity (NG-e) use in plug-in battery electric vehicles (BEV). This study evaluates the incremental life cycle air emissions (climate change and human health) impacts and life cycle ownership costs of non-plug-in (CV and HEV) and plug-in light-duty vehicles. Replacing a gasoline CV with a CNG CV, or a CNG CV with a CNG HEV, can provide life cycle air emissions impact benefits without increasing ownership costs; however, the NG-e BEV will likely increase costs (90% confidence interval: $1000 to $31 000 incremental cost per vehicle lifetime). Furthermore, eliminating HEV tailpipe emissions via plug-in vehicles has an insignificant incremental benefit, due to high uncertainties, with emissions cost benefits between -$1000 and $2000. Vehicle criteria air contaminants are a relatively minor contributor to life cycle air emissions impacts because of strict vehicle emissions standards. Therefore, policies should focus on adoption of plug-in vehicles in nonattainment regions, because CNG vehicles are likely more cost-effective at providing overall life cycle air emissions impact benefits.

  15. Assessing Rates of Global Warming Emissions from Port- Fuel Injection and Gasoline Direct Injection Engines in Light-Duty Passenger Vehicles

    Science.gov (United States)

    Short, D.; , D., Vi; Durbin, T.; Karavalakis, G.; Asa-Awuku, A. A.

    2013-12-01

    Passenger vehicles are known emitters of climate warming pollutants. CO2 from automobile emissions are an anthropogenic greenhouse gas (GHG) and a large contributor to global warming. Worldwide, CO2 emissions from passenger vehicles are responsible for 11% of the total CO2 emissions inventory. Black Carbon (BC), another common vehicular emission, may be the second largest contributor to global warming (after CO2). Currently, 52% of BC emissions in the U.S are from the transportation sector, with ~10% originating from passenger vehicles. The share of pollutants from passenger gasoline vehicles is becoming larger due to the reduction of BC from diesel vehicles. Currently, the majority of gasoline passenger vehicles in the United States have port- fuel injection (PFI) engines. Gasoline direct injection (GDI) engines have increased fuel economy compared to the PFI engine. GDI vehicles are predicted to dominate the U.S. passenger vehicle market in the coming years. The method of gasoline injection into the combustion chamber is the primary difference between these two technologies, which can significantly impact primary emissions from light-duty vehicles (LDV). Our study will measure LDV climate warming emissions and assess the impact on climate due to the change in U.S vehicle technologies. Vehicles were tested on a light- duty chassis dynamometer for emissions of CO2, methane (CH4), and BC. These emissions were measured on F3ederal and California transient test cycles and at steady-state speeds. Vehicles used a gasoline blend of 10% by volume ethanol (E10). E10 fuel is now found in 95% of gasoline stations in the U.S. Data is presented from one GDI and one PFI vehicle. The 2012 Kia Optima utilizes GDI technology and has a large market share of the total GDI vehicles produced in the U.S. In addition, The 2012 Toyota Camry, equipped with a PFI engine, was the most popular vehicle model sold in the U.S. in 2012. Methane emissions were ~50% lower for the GDI technology

  16. U.S. Light-duty Vehicle Air Conditioning Fuel Use and the Impact of Four Solar/Thermal Control Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Rugh, John P [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Kekelia, Bidzina [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Kreutzer, Cory J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Titov, Eugene V [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-28

    The U.S. uses 7.6 billion gallons of fuel per year for vehicle air conditioning (A/C), equivalent to 5.7 percent of the total national light-duty vehicle (LDV) fuel use. This equates to 30 gallons/year per vehicle, or 23.5 grams (g) of carbon dioxide (CO2) per mile, for an average U.S. vehicle. A/C is a significant contribution to national fuel use; therefore, technologies that reduce A/C loads may reduce operational costs, A/C fuel use, and CO2 emissions. Since A/C is not operated during standard EPA fuel economy testing protocols, EPA provides off-cycle credits to encourage OEMs to implement advanced A/C technologies that reduce fuel use in the real world. NREL researchers assessed thermal/solar off-cycle credits available in the U.S. Environmental Protection Agency's (EPA's) Final Rule for Model Year 2017 and Later Light-Duty Vehicle Greenhouse Gas Emissions and Corporate Average Fuel Economy. Credits include glazings, solar reflective paint, and passive and active cabin ventilation. Implementing solar control glass reduced CO2 emissions by 2.0 g/mi, and solar reflective paint resulted in a reduction of 0.8 g/mi. Active and passive ventilation strategies only reduced emissions by 0.1 and 0.2 g/mi, respectively. The national-level analysis process is powerful and general; it can be used to determine the impact of a wide range of new vehicle thermal technologies on fuel use, EV range, and CO2 emissions.

  17. The estimated effect of mass or footprint reduction in recent light-duty vehicles on U.S. societal fatality risk per vehicle mile traveled.

    Science.gov (United States)

    Wenzel, Tom

    2013-10-01

    The National Highway Traffic Safety Administration (NHTSA) recently updated its 2003 and 2010 logistic regression analyses of the effect of a reduction in light-duty vehicle mass on US societal fatality risk per vehicle mile traveled (VMT; Kahane, 2012). Societal fatality risk includes the risk to both the occupants of the case vehicle as well as any crash partner or pedestrians. The current analysis is the most thorough investigation of this issue to date. This paper replicates the Kahane analysis and extends it by testing the sensitivity of his results to changes in the definition of risk, and the data and control variables used in the regression models. An assessment by Lawrence Berkeley National Laboratory (LBNL) indicates that the estimated effect of mass reduction on risk is smaller than in Kahane's previous studies, and is statistically non-significant for all but the lightest cars (Wenzel, 2012a). The estimated effects of a reduction in mass or footprint (i.e. wheelbase times track width) are small relative to other vehicle, driver, and crash variables used in the regression models. The recent historical correlation between mass and footprint is not so large to prohibit including both variables in the same regression model; excluding footprint from the model, i.e. allowing footprint to decrease with mass, increases the estimated detrimental effect of mass reduction on risk in cars and crossover utility vehicles (CUVs)/minivans, but has virtually no effect on light trucks. Analysis by footprint deciles indicates that risk does not consistently increase with reduced mass for vehicles of similar footprint. Finally, the estimated effects of mass and footprint reduction are sensitive to the measure of exposure used (fatalities per induced exposure crash, rather than per VMT), as well as other changes in the data or control variables used. It appears that the safety penalty from lower mass can be mitigated with careful vehicle design, and that manufacturers can

  18. Current and Future United States Light-Duty Vehicle Pathways: Cradle-to-Grave Lifecycle Greenhouse Gas Emissions and Economic Assessment.

    Science.gov (United States)

    Elgowainy, Amgad; Han, Jeongwoo; Ward, Jacob; Joseck, Fred; Gohlke, David; Lindauer, Alicia; Ramsden, Todd; Biddy, Mary; Alexander, Mark; Barnhart, Steven; Sutherland, Ian; Verduzco, Laura; Wallington, Timothy J

    2018-02-20

    This article presents a cradle-to-grave (C2G) assessment of greenhouse gas (GHG) emissions and costs for current (2015) and future (2025-2030) light-duty vehicles. The analysis addressed both fuel cycle and vehicle manufacturing cycle for the following vehicle types: gasoline and diesel internal combustion engine vehicles (ICEVs), flex fuel vehicles, compressed natural gas (CNG) vehicles, hybrid electric vehicles (HEVs), hydrogen fuel cell electric vehicles (FCEVs), battery electric vehicles (BEVs), and plug-in hybrid electric vehicles (PHEVs). Gasoline ICEVs using current technology have C2G emissions of ∼450 gCO 2 e/mi (grams of carbon dioxide equivalents per mile), while C2G emissions from HEVs, PHEVs, H 2 FCEVs, and BEVs range from 300-350 gCO 2 e/mi. Future vehicle efficiency gains are expected to reduce emissions to ∼350 gCO 2 /mi for ICEVs and ∼250 gCO 2e /mi for HEVs, PHEVs, FCEVs, and BEVs. Utilizing low-carbon fuel pathways yields GHG reductions more than double those achieved by vehicle efficiency gains alone. Levelized costs of driving (LCDs) are in the range $0.25-$1.00/mi depending on time frame and vehicle-fuel technology. In all cases, vehicle cost represents the major (60-90%) contribution to LCDs. Currently, HEV and PHEV petroleum-fueled vehicles provide the most attractive cost in terms of avoided carbon emissions, although they offer lower potential GHG reductions. The ranges of LCD and cost of avoided carbon are narrower for the future technology pathways, reflecting the expected economic competitiveness of these alternative vehicles and fuels.

  19. Current and Future United States Light-Duty Vehicle Pathways: Cradle-to-Grave Lifecycle Greenhouse Gas Emissions and Economic Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Elgowainy, Amgad [Argonne National Laboratory, Argonne, Illinois 60439, United States; Han, Jeongwoo [Argonne National Laboratory, Argonne, Illinois 60439, United States; Ward, Jacob [United States Department of Energy, Washington, D.C. 20585, United States; Joseck, Fred [United States Department of Energy, Washington, D.C. 20585, United States; Gohlke, David [Argonne National Laboratory, Argonne, Illinois 60439, United States; Lindauer, Alicia [United States Department of Energy, Washington, D.C. 20585, United States; Ramsden, Todd [National Renewable Energy Laboratory, Golden, Colorado 80401, United States; Biddy, Mary [National Renewable Energy Laboratory, Golden, Colorado 80401, United States; Alexander, Mark [Electric Power Research Institute, Palo; Barnhart, Steven [FCA US LLC, Auburn Hills, Michigan 48326, United States; Sutherland, Ian [General Motors, Pontiac, Michigan 48340, United States; Verduzco, Laura [Chevron Corporation, Richmond, California 94802, United States; Wallington, Timothy J. [Ford Motor Company, Dearborn, Michigan 48121, United States

    2018-01-30

    This article presents a cradle-to-grave (C2G) assessment of greenhouse gas (GHG) emissions and costs for current (2015) and future (2025-2030) light-duty vehicles. The analysis addressed both fuel cycle and vehicle manufacturing cycle for the following vehicle types: gasoline and diesel internal combustion engine vehicles (ICEVs), flex fuel vehicles, compressed natural gas (CNG) vehicles, hybrid electric vehicles (HEVs), hydrogen fuel cell electric vehicles (FCEVs), battery electric vehicles (BEVs), and plug-in hybrid electric vehicles (PHEVs). Gasoline ICEVs using current technology have C2G emissions of ~450 gCO2e/mi (grams of carbon dioxide equivalents per mile), while C2G emissions from HEVs, PHEVs, H2 FCEVs, and BEVs range from 300-350 gCO2e/mi. Future vehicle efficiency gains are expected to reduce emissions to ~350 gCO2/mi for ICEVs and ~250 gCO2e/mi for HEVs, PHEVs, FCEVs, and BEVs. Utilizing low-carbon fuel pathways yields GHG reductions more than double those achieved by vehicle efficiency gains alone. Levelized costs of driving (LCDs) are in the range $0.25-$1.00/mi depending on time frame and vehicle-fuel technology. In all cases, vehicle cost represents the major (60-90%) contribution to LCDs. Currently, HEV and PHEV petroleum-fueled vehicles provide the most attractive cost in terms of avoided carbon emissions, although they offer lower potential GHG reductions. The ranges of LCD and cost of avoided carbon are narrower for the future technology pathways, reflecting the expected economic competitiveness of these alternative vehicles and fuels.

  20. Current and Future United States Light-Duty Vehicle Pathways: Cradle-to-Grave Lifecycle Greenhouse Gas Emissions and Economic Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Elgowainy, Amgad [Argonne National Laboratory, Argonne, Illinois 60439, United States; Han, Jeongwoo [Argonne National Laboratory, Argonne, Illinois 60439, United States; Ward, Jacob [United States Department of Energy, Washington, D.C. 20585, United States; Joseck, Fred [United States Department of Energy, Washington, D.C. 20585, United States; Gohlke, David [Argonne National Laboratory, Argonne, Illinois 60439, United States; Lindauer, Alicia [United States Department of Energy, Washington, D.C. 20585, United States; Ramsden, Todd [National Renewable Energy Laboratory, Golden, Colorado 80401, United States; Biddy, Mary [National Renewable Energy Laboratory, Golden, Colorado 80401, United States; Alexander, Mark [Electric Power Research Institute, Palo; Barnhart, Steven [FCA US LLC, Auburn Hills, Michigan 48326, United States; Sutherland, Ian [General Motors, Pontiac, Michigan 48340, United States; Verduzco, Laura [Chevron Corporation, Richmond, California 94802, United States; Wallington, Timothy J. [Ford Motor Company, Dearborn, Michigan 48121, United States

    2018-01-30

    This article presents a cradle-to-grave (C2G) assessment of greenhouse gas (GHG) emissions and costs for current (2015) and future (2025–2030) light-duty vehicles. The analysis addressed both fuel cycle and vehicle manufacturing cycle for the following vehicle types: gasoline and diesel internal combustion engine vehicles (ICEVs), flex fuel vehicles, compressed natural gas (CNG) vehicles, hybrid electric vehicles (HEVs), hydrogen fuel cell electric vehicles (FCEVs), battery electric vehicles (BEVs), and plug-in hybrid electric vehicles (PHEVs). Gasoline ICEVs using current technology have C2G emissions of ~450 gCO2e/mi (grams of carbon dioxide equivalents per mile), while C2G emissions from HEVs, PHEVs, H2 FCEVs, and BEVs range from 300–350 gCO2e/mi. Future vehicle efficiency gains are expected to reduce emissions to ~350 gCO2/mi for ICEVs and ~250 gCO2e/mi for HEVs, PHEVs, FCEVs and BEVs. Utilizing low-carbon fuel pathways yields GHG reductions more than double those achieved by vehicle efficiency gains alone. Levelized costs of driving (LCDs) are in the range $0.25–$1.00/mi depending on timeframe and vehicle-fuel technology. In all cases, vehicle cost represents the major (60–90%) contribution to LCDs. Currently, HEV and PHEV petroleum-fueled vehicles provide the most attractive cost in terms of avoided carbon emissions, although they offer lower potential GHG reductions The ranges of LCD and cost of avoided carbon are narrower for the future technology pathways, reflecting the expected economic competitiveness of these alternative vehicles and fuels.

  1. Development of real-world driving cycles and estimation of emission factors for in-use light-duty gasoline vehicles in urban areas.

    Science.gov (United States)

    Hwa, Mei-Yin; Yu, Tai-Yi

    2014-07-01

    This investigation adopts vehicle tracking manner to establish real-world driving patterns and estimates emission factors with dynamometers with 23 traffic-driving variables for 384 in-use light-duty passenger vehicles during non-rush hour. Adequate numbers of driving variables were decided with factor analysis and cluster analysis. The dynamometer tests were performed on FTP75 cycle and five local driving cycles derived from real-world speed profiles. Results presented that local driving cycles and FTP75 cycle were completely different in driving characteristic parameters of typical driving cycles and emission factors. The highest values of emission factor ratios of local driving cycle and FTP75 cycle for CO, NMHC, NO x , CH4, and CO2 were 1.38, 1.65, 1.58, 1.39, and 1.14, respectively.

  2. On-board measurement of particle numbers and their size distribution from a light-duty diesel vehicle: Influences of VSP and altitude.

    Science.gov (United States)

    Liu, Jia; Ge, Yunshan; Wang, Xin; Hao, Lijun; Tan, Jianwei; Peng, Zihang; Zhang, Chuanzhen; Gong, Huiming; Huang, Ying

    2017-07-01

    In this study, the particle size-resolved distribution from a China-3 certificated light-duty diesel vehicle was measured by using a portable emission measurement system (PEMS). In order to examine the influences of vehicle specific power (VSP) and high-altitude operation, measurements were conducted at 8 constant speeds, which ranged from 10 to 80km/hr at 10km/hr intervals, and two different high altitudes, namely 2200 and 3200m. The results demonstrated that the numbers of particles in all size ranges decreased significantly as VSP increased when the test vehicle was running at lower speeds (vehicle resulted in increased particle number emissions at low and high driving speeds; however, particle numbers obtained at moderate speeds decreased as altitude rose. When the test vehicle was running at moderate speeds, particle numbers measured at the two altitudes were very close, except for comparatively higher number concentrations of nanoparticles measured at 2200m. Copyright © 2017. Published by Elsevier B.V.

  3. Comparisons of system benefits and thermo-economics for exhaust energy recovery applied on a heavy-duty diesel engine and a light-duty vehicle gasoline engine

    International Nuclear Information System (INIS)

    Wang, Tianyou; Zhang, Yajun; Zhang, Jie; Peng, Zhijun; Shu, Gequn

    2014-01-01

    Highlights: • Comparisons of exhaust energy recovery are launched between two types of engine. • System performances are analyzed in terms of benefits and thermo-economics. • Diesel engine system presents superior to gasoline type in economic applicability. • Only diesel engine system using water under full load meets the economic demand. - Abstract: Exhaust energy recovery system (EERS) based on Rankine cycle (RC) in internal combustion engines have been studied mainly on heavy-duty diesel engines (D) and light-duty vehicle gasoline engines (G), however, little information available on systematical comparisons and evaluations between the two applications, which is a particularly necessary summary for clarifying the differences. In this paper, the two particular systems are compared quantitatively using water, R141b, R123 and R245fa as working fluids. The influences of evaporating pressure, engine type and load on the system performances are analyzed with multi-objectives, including the thermal efficiency improvement, the reduced CO 2 emission, the total heat transfer area per net power output (APP), the electricity production cost (EPC) and the payback period (PBP). The results reveal that higher pressure and engine load would be attractive for better performances. R141b shows the best performances in system benefits for the D-EERS, while water exhibits the largest contributions in the G-EERS. Besides, water performs the best thermo-economics, and R245fa serves as the most uneconomical fluid. The D-EERS presents superior to the G-EERS in the economic applicability as well as much more CO 2 emission reductions, although with slightly lower thermal efficiency improvement, and only the D-EERS with water under the full load meets the economic demand. Therefore the EERS based on RC serve more applicable on the heavy-duty diesel engine, while it might be feasible for the light-duty vehicle gasoline engine as the state-of-the art technologies are developed in the

  4. Comparison of Carbonyls and BTEX Emissions from a Light Duty Vehicle Fuelled with Gasoline and Ethanol-Gasoline Blend, and Operated without 3-Way Catalytic Converter

    Directory of Open Access Journals (Sweden)

    Asad Naeem Shah

    2011-10-01

    Full Text Available This paper presents the comparison of unregulated emissions such as carbonyls and BTEX (Benzene, Toluene, Ethyl Benzene, and Xylenes species emanated from a light duty SI (Spark Ignition vehicle E-0 (fuelled on gasoline and E-10 (ethanol-gasoline blend. Meanwhile, the ozone forming potential of these pollutants based on their ozone SR (Specific Reactivity has also been addressed in this study. The experiments were performed on transient as well as steady-state modes in accordance with the standard protocols recommended for light duty vehicle emissions. Carbonyls and BTEX were analyzed by HPLC (High Performance Liquid Chromatography with UV detector and GC/MS (Gas Chromatography/Mass Spectroscopy, respectively. Formaldehyde and acetaldehyde were the predominant components of the carbonyls for E-0 and E-10, respectively. During transient mode, formaldehyde, acrolein + acetone, and tolualdehyde pollutants were decreased but, acetaldehyde emissions increased with E-10 as compared to E-0. The BTEX emissions were also decreased with E-10, relative to E-0. During the steady-state modes, formaldehyde, acrolein + acetone and propionaldehyde were lower, aromatic aldehydes were absent, but acetaldehyde pollutants were higher with E-10 compared to E-0. The BTEX emissions were decreased at medium and higher speed modes however, increased at lower speed mode with E-10 as compared to E-0. Total BTEX emissions were maximal at lower speed mode but, least at medium speed mode for both the fuels. SR of the pollutants was higher over transient cycle of operation, compared with steady-state mode. Relative to E-0, E-10 displayed lower SR during both transient as well as steady-state mode.

  5. 76 FR 20251 - Federal Motor Vehicle Theft Prevention Standard; Final Listing of 2012 Light Duty Truck Lines...

    Science.gov (United States)

    2011-04-12

    ... the incidence of motor vehicle theft by facilitating the tracing and recovery of parts from stolen vehicles. The standard seeks to facilitate such tracing by requiring that vehicle identification numbers... all exemptions on our Web site. However, we believe that re-publishing a list containing vehicle lines...

  6. 77 FR 32903 - Federal Motor Vehicle Theft Prevention Standard; Final Listing of 2013 Light Duty Truck Lines...

    Science.gov (United States)

    2012-06-04

    ... the incidence of motor vehicle theft by facilitating the tracing and recovery of parts from stolen vehicles. The standard seeks to facilitate such tracing by requiring that vehicle identification numbers... exemptions on our Web site. However, we believe that republishing a list containing vehicle lines that have...

  7. Comments on the Joint Proposed Rulemaking to Establish Light-Duty Vehicle Greenhouse Gas Emission Standards and Corporate Average Fuel Economy Standards

    Energy Technology Data Exchange (ETDEWEB)

    Wenzel, Thomas P

    2009-10-27

    I appreciate the opportunity to provide comments on the joint rulemaking to establish greenhouse gas emission and fuel economy standards for light-duty vehicles. My comments are directed at the choice of vehicle footprint as the attribute by which to vary fuel economy and greenhouse gas emission standards, in the interest of protecting vehicle occupants from death or serious injury. I have made several of these points before when commenting on previous NHTSA rulemakings regarding CAFE standards and safety. The comments today are mine alone, and do not necessarily represent the views of the US Department of Energy, Lawrence Berkeley National Laboratory, or the University of California. My comments can be summarized as follows: (1) My updated analysis of casualty risk finds that, after accounting for drivers and crash location, there is a wide range in casualty risk for vehicles with the same weight or footprint. This suggests that reducing vehicle weight or footprint will not necessarily result in increased fatalities or serious injuries. (2) Indeed, the recent safety record of crossover SUVs indicates that weight reduction in this class of vehicles resulted in a reduction in fatality risks. (3) Computer crash simulations can pinpoint the effect of specific design changes on vehicle safety; these analyses are preferable to regression analyses, which rely on historical vehicle designs, and cannot fully isolate the effect of specific design changes, such as weight reduction, on crash outcomes. (4) There is evidence that automakers planned to build more large light trucks in response to the footprint-based light truck CAFE standards. Such an increase in the number of large light trucks on the road may decrease, rather than increase, overall safety.

  8. 78 FR 44030 - Federal Motor Vehicle Theft Prevention Standard; Final Listing of 2014 Light Duty Truck Lines...

    Science.gov (United States)

    2013-07-23

    ... vehicle theft by facilitating the tracing and recovery of parts from stolen vehicles. The standard seeks to facilitate such tracing by requiring that vehicle identification numbers (VINs), VIN derivative... continue to maintain a comprehensive database of all exemptions on our Web site. However, we believe that...

  9. 75 FR 34946 - Federal Motor Vehicle Theft Prevention Standard; Final Listing of 2011 Light Duty Truck Lines...

    Science.gov (United States)

    2010-06-21

    ... the incidence of motor vehicle theft by facilitating the tracing and recovery of parts from stolen vehicles. The standard seeks to facilitate such tracing by requiring that vehicle identification numbers... continue to maintain a comprehensive database of all exemptions on our Web site. However, we believe that...

  10. Development and analysis of a variable position thermostat for smart cooling system of a light duty diesel vehicles and engine emissions assessment during NEDC

    International Nuclear Information System (INIS)

    Mohamed, Eid S.

    2016-01-01

    Highlights: • A new concept of the variable position electromagnetic thermostat in MCS is proposed. • A series of experiments were conducted on a light duty diesel vehicle operated over the NEDC test. • A comparative study was done on emission characteristics of the MCS and the conventional cooling system. • Engine cold start and steady-state coolant flow rate and emissions are presented. • The effect of MCS on engine accumulation FC and emissions over NEDC are evaluated. - Graphical Abstract: Display Omitted - Abstract: Smart cooling control systems for IC engines can better regulate the combustion process and heat, a variable position thermostat and electric coolant pumps (EWP) for IC engines are under development by a number of researchers. However, the aim of this study is to assess the performance of a variable position electromagnetic thermostat (VPEMT) to provide more flexible control of the engine temperature and coolant mass flow rate of modification cooling system (MCS). The measurement procedure was applied to two phases under new European drive cycle (NEDC) on a chassis dynamometer, with conventional cooling system (baseline engine) and MCS of a light duty diesel engine. The experimental results revealed that MCS using a VPEMT and EWP contributed to a reduction of engine warm-up period. As a consequence, important reduces in coolant flow rate and most exhaust emission compounds (THC, CO_2, CO and smoke opacity) were obtained. In contrast, NOx emission was observed to increase in these conditions. Comparative results are given for various engine speeds during a cold start and engine fully warm-up tests when the engine was equipped by conventional cooling system and MCS operation under NEDC, revealing the effect of MCS on engine fuel consumption and exhaust emissions.

  11. An assessment of the real-world driving gaseous emissions from a Euro 6 light-duty diesel vehicle using a portable emissions measurement system (PEMS)

    Science.gov (United States)

    Luján, José M.; Bermúdez, Vicente; Dolz, Vicente; Monsalve-Serrano, Javier

    2018-02-01

    Recent investigations demonstrated that real-world emissions usually exceed the levels achieved in the laboratory based type approval processes. By means of on-board emissions measurements, it has been shown that nitrogen oxides emitted by diesel engines substantially exceed the limit imposed by the Euro 6 regulation. Thus, with the aim of complementing the worldwide harmonized light vehicles test cycle, the real driving emissions cycle will be introduced after 1 September 2017 to regulate the vehicle emissions in real-world driving situations. This paper presents on-board gaseous emissions measurements from a Euro 6 light-duty diesel vehicle in a real-world driving route using a portable emissions measurement system. The test route characteristics follow the requirements imposed by the RDE regulation. The analysis of the raw emissions results suggests that the greatest amount of nitrogen oxides and nitrogen dioxide are emitted during the urban section of the test route, confirming that lower speeds with more accelerations and decelerations lead to higher nitrogen oxides emissions levels than constant high speeds. Moreover, the comparison of the two calculation methods proposed by the real driving emissions regulation has revealed emissions rates differences ranging from 10% to 45% depending on the pollutant emission and the trip section considered (urban or total). Thus, the nitrogen oxides emissions conformity factor slightly varies from one method to the other.

  12. Electrifying Australian transport: Hybrid life cycle analysis of a transition to electric light-duty vehicles and renewable electricity

    International Nuclear Information System (INIS)

    Wolfram, Paul; Wiedmann, Thomas

    2017-01-01

    Highlights: •This research assesses life-cycle carbon impacts of different powertrains. •We illustrate a transition to low-carbon vehicles in a hybrid IO-LCA model. •Different electricity and transport scenarios are integrated in the model. •With Australia’s current grid-mix, electric vehicles offer no mitigation potential. •Using renewable energy, electric vehicle carbon footprints can be cut by 66%. -- Abstract: Recent life cycle assessments confirmed the greenhouse gas emission reduction potential of renewable electricity and electric vehicle technologies. However, each technology is usually assessed separately and not within a consistent macro-economic, multi-sectoral framework. Here we present a multi-regional input-output based hybrid approach with integrated scenarios to facilitate the carbon footprint assessment of all direct and indirect effects of a transition to low-emission transportation and electricity generation technologies in Australia. The work takes into account on-road energy consumption values that are more realistic than official drive-cycle energy consumption figures used in previous work. Accounting for these factors as well as for Australia’s grid electricity, which heavily relies on coal power, electric vehicles are found to have a higher carbon footprint than conventional vehicles, whereas hybrid electric vehicles have the lowest. This means that – from a carbon footprint perspective – powertrain electrification is beneficial only to a certain degree at the current stage. This situation can be changed by increasing shares of renewable electricity in the grid. In our best-case scenario, where renewable energy accounts for 96% of the electricity mix in 2050, electric vehicle carbon footprints can be cut by 66% by 2050 relative to 2009. In the business-as-usual scenario (36% renewable electricity share by 2050), electric vehicles can reach a 56% reduction if fossil fuel power plants significantly increase their efficiencies

  13. On-board measurements of gaseous pollutant emission characteristics under real driving conditions from light-duty diesel vehicles in Chinese cities.

    Science.gov (United States)

    Wang, Gang; Cheng, Shuiyuan; Lang, Jianlei; Li, Song; Tian, Liang

    2016-08-01

    A total of 15 light-duty diesel vehicles (LDDVs) were tested with the goal of understanding the emission factors of real-world vehicles by conducting on-board emission measurements. The emission characteristics of hydrocarbons (HC) and nitrogen oxides (NOx) at different speeds, chemical species profiles and ozone formation potential (OFP) of volatile organic compounds (VOCs) emitted from diesel vehicles with different emission standards were analyzed. The results demonstrated that emission reductions of HC and NOx had been achieved as the control technology became more rigorous from Stage I to Stage IV. It was also found that the HC and NOx emissions and percentage of O2 dropped with the increase of speed, while the percentage of CO2 increased. The abundance of alkanes was significantly higher in diesel vehicle emissions, approximately accounting for 41.1%-45.2%, followed by aromatics and alkenes. The most abundant species were propene, ethane, n-decane, n-undecane, and n-dodecane. The maximum incremental reactivity (MIR) method was adopted to evaluate the contributions of individual VOCs to OFP. The results indicated that the largest contributors to O3 production were alkenes and aromatics, which accounted for 87.7%-91.5%. Propene, ethene, 1,2,4-trimethylbenzene, 1-butene, and 1,2,3-trimethylbenzene were the top five VOC species based on their OFP, and accounted for 54.0%-64.8% of the total OFP. The threshold dilution factor was applied to analyze the possibility of VOC stench pollution. The majority of stench components emitted from vehicle exhaust were aromatics, especially p-diethylbenzene, propylbenzene, m-ethyltoluene, and p-ethyltoluene. Copyright © 2016. Published by Elsevier B.V.

  14. Variability in Light-Duty Gasoline Vehicle Emission Factors from Trip-Based Real-World Measurements.

    Science.gov (United States)

    Liu, Bin; Frey, H Christopher

    2015-10-20

    Using data obtained with portable emissions measurements systems (PEMS) on multiple routes for 100 gasoline vehicles, including passenger cars (PCs), passenger trucks (PTs), and hybrid electric vehicles (HEVs), variability in tailpipe emission rates was evaluated. Tier 2 emission standards are shown to be effective in lowering NOx, CO, and HC emission rates. Although PTs are larger, heavier vehicles that consume more fuel and produce more CO2 emissions, they do not necessarily produce more emissions of regulated pollutants compared to PCs. HEVs have very low emission rates compared to tier 2 vehicles under real-world driving. Emission factors vary with cycle average speed and road type, reflecting the combined impact of traffic control and traffic congestion. Compared to the slowest average speed and most congested cycles, optimal emission rates could be 50% lower for CO2, as much as 70% lower for NOx, 40% lower for CO, and 50% lower for HC. There is very high correlation among vehicles when comparing driving cycles. This has implications for how many cycles are needed to conduct comparisons between vehicles, such as when comparing fuels or technologies. Concordance between empirical and predicted emission rates using the U.S. Environmental Protection Agency's MOVES model was also assessed.

  15. Quantifying the Effects of Idle-Stop Systems on Fuel Economy in Light-Duty Passenger Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Jeff Wishart; Matthew Shirk

    2012-12-01

    Vehicles equipped with idle-stop (IS) systems are capable of engine shut down when the vehicle is stopped and rapid engine re-start for the vehicle launch. This capability reduces fuel consumption and emissions during periods when the engine is not being utilized to provide propulsion or to power accessories. IS systems are a low-cost and fast-growing technology in the industry-wide pursuit of increased vehicle efficiency, possibly becoming standard features in European vehicles in the near future. In contrast, currently there are only three non-hybrid vehicle models for sale in North America with IS systems and these models are distinctly low-volume models. As part of the United States Department of Energy’s Advanced Vehicle Testing Activity, ECOtality North America has tested the real-world effect of IS systems on fuel consumption in three vehicle models imported from Europe. These vehicles were chosen to represent three types of systems: (1) spark ignition with 12-V belt alternator starter; (2) compression ignition with 12-V belt alternator starter; and (3) direct-injection spark ignition, with 12-V belt alternator starter/combustion restart. The vehicles have undergone both dynamometer and on-road testing; the test results show somewhat conflicting data. The laboratory data and the portion of the on-road data in which driving is conducted on a prescribed route with trained drivers produced significant fuel economy improvement. However, the fleet data do not corroborate improvement, even though the data show significant engine-off time. It is possible that the effects of the varying driving styles and routes in the fleet testing overshadowed the fuel economy improvements. More testing with the same driver over routes that are similar with the IS system-enabled and disabled is recommended. There is anecdotal evidence that current Environmental Protection Agency fuel economy test procedures do not capture the fuel economy gains that IS systems produce in real

  16. 77 FR 62623 - 2017 and Later Model Year Light-Duty Vehicle Greenhouse Gas Emissions and Corporate Average Fuel...

    Science.gov (United States)

    2012-10-15

    ... changes to the regulations applicable to model years 2012-2016, with respect to air conditioner... standards for emissions of pollutants from new motor vehicles which emissions cause or contribute to air... same improvements in air conditioner efficiency. \\5\\ This is further broken down by 5.0 and 7.2 g/mi...

  17. Light-Duty GDI Vehicle PM and VOC Speciated Emissions at Differing Ambient Temperatures with Ethanol Blend Gasoline

    Science.gov (United States)

    With the rise in the use of ethanol-blend gasoline in the US and more manufacturers implementing gasoline direct injection (GDI) technologies, interest is increasing in how these fuel blends affect PM and VOC emissions in GDI technology vehicles. EPA conducted a study characteri...

  18. 76 FR 74853 - 2017 and Later Model Year Light-Duty Vehicle Greenhouse Gas Emissions and Corporate Average Fuel...

    Science.gov (United States)

    2011-12-01

    ... agency decision- making process, given both the long time frame and NHTSA's obligation to conduct a... and agency decision-making process. NHTSA has a statutory obligation to conduct a separate de novo... those consumers who purchase their new MY 2025 vehicle with cash, the discounted fuel savings will...

  19. 77 FR 2028 - 2017 and Later Model Year Light-Duty Vehicle Greenhouse Gas Emissions and Corporate Average Fuel...

    Science.gov (United States)

    2012-01-13

    .../otaq/climate/regulations.htm or by searching the public dockets (NHTSA-2010-0131 (for the proposed rule... EPA's Web site at http://www.epa.gov/otaq/climate/regulations.htm . NHTSA and EPA will consider all... vehicles for model years 2017-2025. On May 21, 2010, President Obama issued a Presidential Memorandum...

  20. 75 FR 76337 - 2017 and Later Model Year Light-Duty Vehicle GHG Emissions and CAFE Standards: Supplemental...

    Science.gov (United States)

    2010-12-08

    ... of Intent by other interested persons) at any time by going to http://www.regulations.gov . Follow... agencies were unable to complete several additional pieces of technical research in time for inclusion in... single fleet of vehicles that can be sold nationwide. OEMs were also supportive of the on-going...

  1. Transportation Energy Futures Series: Non-Cost Barriers to Consumer Adoption of New Light-Duty Vehicle Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Stephens, T.

    2013-03-01

    Consumer preferences are key to the adoption of new vehicle technologies. Barriers to consumer adoption include price and other obstacles, such as limited driving range and charging infrastructure; unfamiliarity with the technology and uncertainty about direct benefits; limited makes and models with the technology; reputation or perception of the technology; standardization issues; and regulations. For each of these non-cost barriers, this report estimates an effective cost and summarizes underlying influences on consumer preferences, approximate magnitude and relative severity, and assesses potential actions, based on a comprehensive literature review. While the report concludes that non-cost barriers are significant, effective cost and potential market share are very uncertain. Policies and programs including opportunities for drivers to test drive advanced vehicles, general public outreach and information programs, incentives for providing charging and fueling infrastructure, and development of technology standards were examined for their ability to address barriers, but little quantitative data exists on the effectiveness of these measures. This is one in a series of reports produced as a result of the Transportation Energy Futures project, a Department of Energy-sponsored multi-agency effort to pinpoint underexplored strategies for reducing GHGs and petroleum dependence related to transportation.

  2. Transportation Energy Futures Series. Non-Cost Barriers to Consumer Adoption of New Light-Duty Vehicle Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Stephens, Thomas [Argonne National Lab. (ANL), Argonne, IL (United States)

    2013-03-01

    Consumer preferences are key to the adoption of new vehicle technologies. Barriers to consumer adoption include price and other obstacles, such as limited driving range and charging infrastructure; unfamiliarity with the technology and uncertainty about direct benefits; limited makes and models with the technology; reputation or perception of the technology; standardization issues; and regulations. For each of these non-cost barriers, this report estimates an effective cost and summarizes underlying influences on consumer preferences, approximate magnitude and relative severity, and assesses potential actions, based on a comprehensive literature review. While the report concludes that non-cost barriers are significant, effective cost and potential market share are very uncertain. Policies and programs including opportunities for drivers to test drive advanced vehicles, general public outreach and information programs, incentives for providing charging and fueling infrastructure, and development of technology standards were examined for their ability to address barriers, but little quantitative data exists on the effectiveness of these measures. This is one in a series of reports produced as a result of the Transportation Energy Futures project, a Department of Energy-sponsored multi-agency effort to pinpoint underexplored strategies for reducing GHGs and petroleum dependence related to transportation. View all reports on the TEF Web page, http://www.eere.energy.gov/analysis/transportationenergyfutures/index.html.

  3. 40 CFR 86.096-8 - Emission standards for 1996 and later model year light-duty vehicles.

    Science.gov (United States)

    2010-07-01

    ... 0.08 Natural Gas 0.25 3.4 0.4 0.08 LPG 0.41 0.25 3.4 0.4 0.08 Table A96-2—Full Useful Life Standards....31 4.2 1.25 0.10 Methanol 0.31 4.2 0.6 0.10 Natural Gas 0.31 4.2 0.6 0.10 LPG 0.31 4.2 0.6 0.10 (ii... Fueled, Natural Gas-Fueled, Liquefied Petroleum Gas-Fueled and Methanol-Fueled Heavy-Duty Vehicles § 86...

  4. Performance, combustion timing and emissions from a light duty vehicle at different altitudes fueled with animal fat biodiesel, GTL and diesel fuels

    International Nuclear Information System (INIS)

    Ramos, Ángel; García-Contreras, Reyes; Armas, Octavio

    2016-01-01

    Highlights: • Effects of altitude, alternative fuels and driving conditions on emissions have been studied. • Combustion timing was studied by means of on-line thermodynamic diagnosis. • Altitude particularly increases the combustion duration of paraffinic fuels. • Altitude increases NOx emissions more than ten times compared to the sea level. • Effect of fuels on particulate matter is masked when diesel particle filters work efficiently. - Abstract: The altitude effect on performance, emissions and thermodynamic diagnosis under real world driving conditions has been evaluated using two alternative fuels and a diesel fuel. Three places, at different altitudes, were selected for the tests, from 0 to 2500 m above the sea level. Besides, two type of circuits (Urban and Extra-urban) have been selected in order to evaluate these two driving pattern conditions. A light duty diesel vehicle equipped with the same after-treatment system as Euro 5 engines was used as test vehicle. Thermodynamic diagnosis shows that, when the engine works with two pre-injection events (mainly at high altitude and without EGR) the ignition delay agrees of the cetane number of fuels. At urban conditions, altitude increases the combustion duration of all fuels and particularly with paraffinic fuels. The effect of altitude on THC and CO emissions is not noticeable, but at high altitude, NOx emissions during extra-urban tests were around three times higher than those from testing along the urban circuit. Besides, compared to circuits next to the sea level, these emissions at both circuits (urban and extra-urban) were around ten times higher, respectively, than the limits established by the Euro standards. The effect of fuels on pollutant emissions was masked by the variability associated to real driving conditions.

  5. Exhaust gas emissions from various automotive fuels for light-duty vehicles. Effects on health, environment and energy utilization; Avgasemissioner fraan laetta fordon drivna med olika drivmedel

    Energy Technology Data Exchange (ETDEWEB)

    Ahlvik, P.; Brandberg, Aa. [Ecotraffic RandD AB, Stockholm (Sweden)

    1999-12-01

    The main aim of the investigation has been to assess the effects on health and environment from various alternative fuels for light-duty vehicles. Effects that can be identified and quantified, such as acidification, ozone formation, cancer risk and climate change, have been of primary interest but other effects, such as respiratory diseases, have also been investigated. Data have been collected through literature surveys for subsequent calculation of the mentioned effects in different time-frames. Corrections have been used to take into consideration the influence of climate, ageing and driving pattern. Emissions generated in fuel production have also been accounted for. The most significant and important differences between the fuels have been found for effects as ozone formation cancer risk and particulate emissions. Alternative fuels, such as methanol and methane (natural gas and biogas), significantly decrease the ozone formation in comparison to petrol, while ethanol, methanol and methane are advantageous concerning cancer risk. The particulate emissions are considerably higher for diesel engines fuelled by diesel oil and RME in comparison to the other fuels. In the future, the importance of acid emissions in the fuel production will increase since the NO{sub x} and SO{sub x} emissions will decrease from the vehicles. The emissions of climate gases could be significantly reduced by using non-fossil fuels but the efficiency of the drive train is also of importance. The technical development potential for further emission reductions is considerable for all fuels but the advantage for the best fuel options will remain in the future.

  6. Developing Computational Fluid Dynamics (CFD Models to Evaluate Available Energy in Exhaust Systems of Diesel Light-Duty Vehicles

    Directory of Open Access Journals (Sweden)

    Pablo Fernández-Yáñez

    2017-06-01

    Full Text Available Around a third of the energy input in an automotive engine is wasted through the exhaust system. Since numerous technologies to harvest energy from exhaust gases are accessible, it is of great interest to find time- and cost-efficient methods to evaluate available thermal energy under different engine conditions. Computational fluid dynamics (CFD is becoming a very valuable tool for numerical predictions of exhaust flows. In this work, a methodology to build a simple three-dimensional (3D model of the exhaust system of automotive internal combustion engines (ICE was developed. Experimental data of exhaust gas in the most used part of the engine map in passenger diesel vehicles were employed as input for calculations. Sensitivity analyses of different numeric schemes have been conducted in order to attain accurate results. The model built allows for obtaining details on temperature and pressure fields along the exhaust system, and for complementing the experimental results for a better understanding of the flow phenomena and heat transfer through the system for further energy recovery devices.

  7. Effects of low temperature on the cold start gaseous emissions from light duty vehicles fuelled by ethanol-blended gasoline

    International Nuclear Information System (INIS)

    Clairotte, M.; Adam, T.W.; Zardini, A.A.; Manfredi, U.; Martini, G.; Krasenbrink, A.; Vicet, A.; Tournié, E.; Astorga, C.

    2013-01-01

    Highlights: ► Most of the pollutants studied were emitted during the cold start of the vehicle. ► More carbonyls were associated with oxygenated fuel (E85–E75) than with E5. ► Acetaldehyde emissions were found particularly enhanced at −7 °C with E75. ► Elevated methane and ozone precursor emissions were measured at −7 °C with E75. ► Ammonia and toluene emissions associated to E75–E85 were lower than with E5. -- Abstract: According to directives 2003/30/EC and 2009/28/EC of the European Parliament and the Council, Member States should promote the use of biofuel. Consequently, since 2011 all fuels on the market used for transport purpose must contain a fraction of 5.75% renewable energy sources. Ethanol in gasoline is a promising solution to reach this objective. In addition to decrease the dependence on fossil fuel, ethanol contributes to reducing air pollutant emissions during combustion (carbon monoxide and total hydrocarbons), and has a positive effect on greenhouse gas emissions. These considerations rely on numerous emission studies performed in standard conditions (20–30 °C), however, very few emission data are available for cold ambient temperatures, as they prevail in winter times in e.g., Northern Europe. This paper presents a chassis dynamometer study examining the effect of ethanol (E75–E85) versus gasoline (E5) at standard and low ambient temperatures (22 °C and −7 °C, respectively). Emissions of modern passenger cars complying with the latest European standards (Euro4 and Euro5a) were recorded over the New European Driving Cycle (NEDC) and the Common Artemis Driving Cycle (CADC). Unregulated compounds such as methane, ammonia, and small chain hydrocarbons were monitored by an online Fourier Transformed Infra-Red spectrometer. In addition, a number of ozone precursors (carbonyls and volatile organic hydrocarbons) were collected and analyzed offline by liquid and gas chromatography in order to evaluate the ozone formation

  8. Effect of Gasoline Properties on Exhaust Emissions from Tier 2 Light-Duty Vehicles -- Final Report: Phases 4, 5, & 6; July 28, 2008 - July 27, 2013

    Energy Technology Data Exchange (ETDEWEB)

    Whitney, K.; Shoffner, B.

    2014-06-01

    This report covers work the Southwest Research Institute (SwRI) Office of Automotive Engineering has conducted for the National Renewable Energy Laboratory (NREL) in support of the Energy Policy Act of 2005 (EPAct). Section 1506 of EPAct requires the EPA to produce an updated fuel effects model representing the 2007 light-duty gasoline fleet, including determination of the emissions impacts of increased renewable fuel use.

  9. An Analysis of the Relationship between Casualty Risk Per Crash and Vehicle Mass and Footprint for Model Year 2003-2010 Light-Duty Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Wenzel, Tom P. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2018-01-05

    The Department of Energy’s (DOE) Vehicle Technologies Office funds research on development of technologies to improve the fuel economy of both light- and heavy-duty vehicles, including advanced combustion systems, improved batteries and electric drive systems, and new lightweight materials. Of these approaches to increase fuel economy and reduce fuel consumption, reducing vehicle mass through more extensive use of strong lightweight materials is perhaps the easiest and least expensive method; however, there is a concern that reducing vehicle mass may lead to more fatalities. Lawrence Berkeley National Laboratory (LBNL) has conducted several analyses to better understand the relationship between vehicle mass, size and safety, in order to ameliorate concerns that down-weighting vehicles will inherently lead to more fatalities. These analyses include recreating the regression analyses conducted by the National Highway Traffic Safety Administration (NHTSA) that estimate the relationship between mass reduction and U.S. societal fatality risk per vehicle mile of travel (VMT), while holding vehicle size (i.e. footprint, wheelbase times track width) constant; these analyses are referred to as LBNL Phase 1 analysis. In addition, LBNL has conducted additional analysis of the relationship between mass and the two components of risk per VMT, crash frequency (crashes per VMT) and risk once a crash has occurred (risk per crash); these analyses are referred to as LBNL Phase 2 analysis.

  10. Cost Analysis of a Transition to Green Vehicle Technology for Light Duty Fleet Vehicles in Public Works Department Naval Support Activity Monterey (PWD Monterey)

    Science.gov (United States)

    2015-12-01

    price of the hybrid vehicle. Many consumers will view the idea of paying more initially to save on gasoline costs down the road as not worthwhile...braking and electricity generation from an ICE. Similar to the HEV, upon purchase of a PHEV, the consumer may take advantage of the green vehicle tax ... electric cards and Hybrids? (2015, November 3). Retrieved from Plug’n Drive website: https://www.plugndrive.ca/whats- the-difference-between- electric - cars

  11. Cradle-to-Grave Lifecycle Analysis of U.S. Light-Duty Vehicle-Fuel Pathways: A Greenhouse Gas Emissions and Economic Assessment of Current (2015) and Future (2025-2030) Technologies

    International Nuclear Information System (INIS)

    Elgowainy, Amgad; Han, Jeongwoo; Ward, Jacob; Joseck, Fred; Gohlke, David; Lindauer, Alicia; Ramsden, Todd; Biddy, Mary; Alexander, Marcus; Barnhart, Steven; Sutherland, Ian; Verduzco, Laura; Wallington, Timothy J.

    2016-01-01

    This study provides a comprehensive life-cycle analysis (LCA), or cradle-to-grave (C2G) analysis, of the cost and greenhouse gas (GHG) emissions of a variety of vehicle-fuel pathways, as well as the levelized cost of driving (LCD) and cost of avoided GHG emissions. This study also estimates the technology readiness levels (TRLs) of key fuel and vehicle technologies along the pathways. The C2G analysis spans a full portfolio of midsize light-duty vehicles (LDVs), including conventional internal combustion engine vehicles (ICEVs), flexible fuel vehicles (FFVs), hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), battery electric vehicles (BEVs), and fuel cell electric vehicles (FCEVs). In evaluating the vehicle-fuel combinations, this study considers both low-volume and high-volume ''CURRENT TECHNOLOGY'' cases (nominally 2015) and a high-volume ''FUTURE TECHNOLOGY'' lower-carbon case (nominally 2025-2030). For the CURRENT TECHNOLOGY case, low-volume vehicle and fuel production pathways are examined to determine costs in the near term.

  12. Cradle-to-Grave Lifecycle Analysis of U.S. Light Duty Vehicle-Fuel Pathways: A Greenhouse Gas Emissions and Economic Assessment of Current (2015) and Future (2025-2030) Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Elgowainy, Amgad; Han, Jeongwoo; Ward, Jacob; Joseck, Fred; Gohlke, David; Lindauer, Alicia; Ramsden, Todd; Biddy, Mary; Alexander, Marcus; Barnhart, Steven; Sutherland, Ian; Verduzco, Laura; Wallington, Timothy

    2016-06-01

    This study provides a comprehensive lifecycle analysis (LCA), or cradle-to-grave (C2G) analysis, of the cost and greenhouse gas (GHG) emissions of a variety of vehicle-fuel pathways, as well as the levelized cost of driving (LCD) and cost of avoided GHG emissions. This study also estimates the technology readiness levels (TRLs) of key fuel and vehicle technologies along the pathways. The C2G analysis spans a full portfolio of midsize light-duty vehicles (LDVs), including conventional internal combustion engine vehicles (ICEVs), flexible fuel vehicles (FFVs), hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), battery electric vehicles (BEVs), and fuel cell electric vehicles (FCEVs). In evaluating the vehicle-fuel combinations, this study considers both low-volume and high-volume “CURRENT TECHNOLOGY” cases (nominally 2015) and a high-volume “FUTURE TECHNOLOGY” lower-carbon case (nominally 2025–2030). For the CURRENT TECHNOLOGY case, low-volume vehicle and fuel production pathways are examined to determine costs in the near term.

  13. Cradle-to-Grave Lifecycle Analysis of U.S. Light-Duty Vehicle-Fuel Pathways: A Greenhouse Gas Emissions and Economic Assessment of Current (2015) and Future (2025–2030) Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Elgowainy, Amgad [Argonne National Lab. (ANL), Argonne, IL (United States); Han, Jeongwoo [Argonne National Lab. (ANL), Argonne, IL (United States); Ward, Jacob [Dept. of Energy (DOE), Washington DC (United States); Joseck, Fred [Dept. of Energy (DOE), Washington DC (United States); Gohlke, David [Dept. of Energy (DOE), Washington DC (United States); Lindauer, Alicia [Dept. of Energy (DOE), Washington DC (United States); Ramsden, Todd [National Renewable Energy Lab. (NREL), Golden, CO (United States); Biddy, Mary [National Renewable Energy Lab. (NREL), Golden, CO (United States); Alexander, Marcus [Electric Power Research Inst. (EPRI), Palo Alto, CA (United States); Barnhart, Steven [Fiat Chrysler Automobiles (FCA) US LLC, Auburn Hills, MI (United States); Sutherland, Ian [General Motors, Warren, MI (United States); Verduzco, Laura [Chevron Corporation, San Ramon, CA (United States); Wallington, Timothy J. [Ford Motor Company, Dearborn, MI (United States)

    2016-09-01

    This study provides a comprehensive life-cycle analysis (LCA), or cradle-to-grave (C2G) analysis, of the cost and greenhouse gas (GHG) emissions of a variety of vehicle-fuel pathways, as well as the levelized cost of driving (LCD) and cost of avoided GHG emissions. This study also estimates the technology readiness levels (TRLs) of key fuel and vehicle technologies along the pathways. The C2G analysis spans a full portfolio of midsize light-duty vehicles (LDVs), including conventional internal combustion engine vehicles (ICEVs), flexible fuel vehicles (FFVs), hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), battery electric vehicles (BEVs), and fuel cell electric vehicles (FCEVs). In evaluating the vehicle-fuel combinations, this study considers both low-volume and high-volume “CURRENT TECHNOLOGY” cases (nominally 2015) and a high-volume “FUTURE TECHNOLOGY” lower-carbon case (nominally 2025–2030). For the CURRENT TECHNOLOGY case, low-volume vehicle and fuel production pathways are examined to determine costs in the near term.

  14. Assessment of costs and benefits of flexible and alternative fuel use in the U.S. transportation sector. Technical report fourteen: Market potential and impacts of alternative fuel use in light-duty vehicles -- A 2000/2010 analysis

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-01-01

    In this report, estimates are provided of the potential, by 2010, to displace conventional light-duty vehicle motor fuels with alternative fuels--compressed natural gas (CNG), liquefied petroleum gas (LPG), methanol from natural gas, ethanol from grain and from cellulosic feedstocks, and electricity--and with replacement fuels such as oxygenates added to gasoline. The 2010 estimates include the motor fuel displacement resulting both from government programs (including the Clean Air Act and EPACT) and from potential market forces. This report also provides an estimate of motor fuel displacement by replacement and alterative fuels in the year 2000. However, in contrast to the 2010 estimates, the year 2000 estimate is restricted to an accounting of the effects of existing programs and regulations. 27 figs., 108 tabs.

  15. How can the Brazilian emissions legislation influence the size of NG (Natural Gas) light duty vehicles fleet; Como o programa de controle de emissoes veiculares no Brasil pode influenciar a frota de veiculos leves a GNV (Gas Natural Veicular)?

    Energy Technology Data Exchange (ETDEWEB)

    Melo, Tadeu C.C.; Machado, Guilherme B. [PETROBRAS, Rio de Janeiro, RJ (Brazil). Centro de Pesquisas (CENPES); Siqueira, Amanda Albani [Universidade do Estado do Rio de Janeiro (UERJ), Nova Friburgo, RJ (Brazil). Inst. Politecnico

    2004-07-01

    In the last years, a high growth of Brazilian converted Natural Gas (NG) light duty vehicles fleet was observed. It can be related mainly to tax license reduction of NG vehicles; the increase of the NG distribution around the country; attractive price difference between NG and other fuels, mainly gasoline, and an increase on the infrastructure for NG conversion in many places of Brazil. The IBAMA, worried about this uncontrolled increase, published, in 2002, the CONAMA resolution, number 291, that defines ways for the environmental certification of the NG conversion kits and establishes that gas emission from the converted vehicle must be equal or lower than those of the original vehicles, before the conversion. The new PROCONVE phases, which will start in 2007 and 2009, including the requirement for OBD technology (On Board Diagnosis) use and the emission limits reduction, will make the attendance of the legislature difficult to be achieved by the NG conversion companies. This new context can impact on a reduction in the number of converted vehicles and, on the other hand, can stimulate the increase of the OEM participation in this market. (author)

  16. Light-duty diesel engine development status and engine needs

    Energy Technology Data Exchange (ETDEWEB)

    1980-08-01

    This report reviews, assesses, and summarizes the research and development status of diesel engine technology applicable to light-duty vehicles. In addition, it identifies specific basic and applied research and development needs in light-duty diesel technology and related health areas where initial or increased participation by the US Government would be desirable. The material presented in this report updates information provided in the first diesel engine status report prepared by the Aerospace Corporation for the Department of Energy in September, 1978.

  17. Light Duty Utility Arm computer software configuration management plan

    International Nuclear Information System (INIS)

    Philipp, B.L.

    1998-01-01

    This plan describes the configuration management for the Light Duty Utility Arm robotic manipulation arm control software. It identifies the requirement, associated documents, and the software control methodology. The Light Duty Utility Ann (LDUA) System is a multi-axis robotic manipulator arm and deployment vehicle, used to perform surveillance and characterization operations in support of remediation of defense nuclear wastes currently stored in the Hanford Underground Storage Tanks (USTs) through the available 30.5 cm (12 in.) risers. This plan describes the configuration management of the LDUA software

  18. Components of Particle Emissions from Light-Duty Spark-Ignition Vehicles with Varying Aromatic Content and Octane Rating in Gasoline.

    Science.gov (United States)

    Short, Daniel Z; Vu, Diep; Durbin, Thomas D; Karavalakis, Georgios; Asa-Awuku, Akua

    2015-09-01

    Typical gasoline consists of varying concentrations of aromatic hydrocarbons and octane ratings. However, their impacts on particulate matter (PM) such as black carbon (BC) and water-soluble and insoluble particle compositions are not well-defined. This study tests seven 2012 model year vehicles, which include one port fuel injection (PFI) configured hybrid vehicle, one PFI vehicle, and six gasoline direct injection (GDI) vehicles. Each vehicle was driven on the Unified transient testing cycle (UC) using four different fuels. Three fuels had a constant octane rating of 87 with varied aromatic concentrations at 15%, 25%, and 35%. A fourth fuel with higher octane rating, 91, contained 35% aromatics. BC, PM mass, surface tension, and water-soluble organic mass (WSOM) fractions were measured. The water-insoluble mass (WIM) fraction of the vehicle emissions was estimated. Increasing fuel aromatic content increases BC emission factors (EFs) of transient cycles. BC concentrations were higher for the GDI vehicles than the PFI and hybrid vehicles, suggesting a potential climate impact for increased GDI vehicle production. Vehicle steady-state testing showed that the hygroscopicity of PM emissions at high speeds (70 mph; κ > 1) are much larger than emissions at low speeds (30 mph; κ < 0.1). Iso-paraffin content in the fuels was correlated to the decrease in WSOM emissions. Both aromatic content and vehicle speed increase the amount of hygroscopic material found in particle emissions.

  19. Final Rule for Control of Air Pollution From New Motor Vehicles and New Motor Vehicle Engines: Evaporative and Refueling Emission Regulations for Gasolineand Methanol-Fueled Light-Duty Vehicles and Light-Duty Trucks and Heavy-Duty Vehicles; Technical Amen

    Science.gov (United States)

    On March 24, 1993 EPA finalized a new test procedure to measure evaporative emissions from motor vehicles. The amendments modify several of the test procedure’s tolerances, equipment specifications, and procedural steps.

  20. Variability of Battery Wear in Light Duty Plug-In Electric Vehicles Subject to Ambient Temperature, Battery Size, and Consumer Usage: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Wood, E.; Neubauer, J.; Brooker, A. D.; Gonder, J.; Smith, K. A.

    2012-08-01

    Battery wear in plug-in electric vehicles (PEVs) is a complex function of ambient temperature, battery size, and disparate usage. Simulations capturing varying ambient temperature profiles, battery sizes, and driving patterns are of great value to battery and vehicle manufacturers. A predictive battery wear model developed by the National Renewable Energy Laboratory captures the effects of multiple cycling and storage conditions in a representative lithium chemistry. The sensitivity of battery wear rates to ambient conditions, maximum allowable depth-of-discharge, and vehicle miles travelled is explored for two midsize vehicles: a battery electric vehicle (BEV) with a nominal range of 75 mi (121 km) and a plug-in hybrid electric vehicle (PHEV) with a nominal charge-depleting range of 40 mi (64 km). Driving distance distributions represent the variability of vehicle use, both vehicle-to-vehicle and day-to-day. Battery wear over an 8-year period was dominated by ambient conditions for the BEV with capacity fade ranging from 19% to 32% while the PHEV was most sensitive to maximum allowable depth-of-discharge with capacity fade ranging from 16% to 24%. The BEV and PHEV were comparable in terms of petroleum displacement potential after 8 years of service, due to the BEV?s limited utility for accomplishing long trips.

  1. Analysis and simulation of 'low-cost' strategies to reduce fuel consumption and emissions in conventional gasoline light-duty vehicles

    International Nuclear Information System (INIS)

    Silva, Carla; Ross, Marc; Farias, Tiago

    2009-01-01

    This paper focuses on technology analysis and simulation to mitigate the transportation impacts on energy and environment, with the major goal of estimating the technology contribution towards the 125 g/km CO 2 target in Europe. The authors analyse cheap- and low-complexity measures, while keeping the same power/weight ratio, for several vehicle categories. The measures are: regenerative braking; fuel cut while coasting; engine stop/start; and engine downsizing and turbocharging. Simulation of these mechanisms for several road vehicles categories and driving cycles, allow us to conclude that with the last three mechanisms fuel consumption and CO 2 emissions can be reduced by 15-49%, compared to the original vehicle. HC, CO and NO x emissions can be reduced by similar percentages. Regenerative braking is valuable only if the additional weight is compensated by diminishing the body weight. The simulations confirm that the use of 'slightly' modified conventional vehicles can reduce fuel consumption and carbon dioxide emissions, without the complexity and high cost of full-hybrid powertrains

  2. Mobility chains analysis of technologies for passenger cars and light duty vehicles fueled with biofuels : application of the Greet model to project the role of biomass in America's energy future (RBAEF) project.

    Energy Technology Data Exchange (ETDEWEB)

    Wu, M.; Wu, Y.; Wang, M; Energy Systems

    2008-01-31

    The Role of Biomass in America's Energy Future (RBAEF) is a multi-institution, multiple-sponsor research project. The primary focus of the project is to analyze and assess the potential of transportation fuels derived from cellulosic biomass in the years 2015 to 2030. For this project, researchers at Dartmouth College and Princeton University designed and simulated an advanced fermentation process to produce fuel ethanol/protein, a thermochemical process to produce Fischer-Tropsch diesel (FTD) and dimethyl ether (DME), and a combined heat and power plant to co-produce steam and electricity using the ASPEN Plus{trademark} model. With support from the U.S. Department of Energy (DOE), Argonne National Laboratory (ANL) conducted, for the RBAEF project, a mobility chains or well-to-wheels (WTW) analysis using the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model developed at ANL. The mobility chains analysis was intended to estimate the energy consumption and emissions associated with the use of different production biofuels in light-duty vehicle technologies.

  3. Caracterização das emissões de aldeídos de veículos do ciclo diesel Emission of aldehydes from light duty diesel vehicles

    Directory of Open Access Journals (Sweden)

    Rui de Abrantes

    2005-06-01

    Full Text Available OBJETIVO: Caracterizar as emissões de acetaldeído e formaldeído, substâncias nocivas para a saúde das pessoas e cujas emissões dos veículos a diesel ainda não estão regulamentadas. MÉTODOS: Testes padronizados foram realizados em quatro veículos leves comerciais do ciclo diesel, testados num dinamômetro de chassis, usando o procedimento de teste FTP-75. Os poluentes foram analisados por cromatografia líquida de alta eficiência. RESULTADOS: Os resultados mostraram que a emissão de acetaldeído variou de 5,9 a 45,4 mg/km e a de formaldeído variou de 16,5 a 115,2 mg/km. A emissão média para a soma dos aldeídos foi de 58,7 mg/km, variando de 22,5 mg/km a 160 mg/km. A proporção entre os dois se manteve constante, próximo de 74% de formaldeído e 26% de acetaldeído. CONCLUSÕES: A emissão de aldeídos provenientes de veículos movidos a diesel foi significativa quando comparada com as emissões reais dos veículos de ignição por centelha ou com o limite previsto para os veículos do ciclo Otto na legislação brasileira. O estabelecimento de limites de emissão para essas substâncias para veículos a diesel mostra-se importante, considerando o crescimento da frota de veículos a diesel, a toxicidade desses compostos e sua participação como precursores nas reações de formação de gás ozônio na baixa troposfera.OBJECTIVE: To characterize acetaldehyde and formaldehyde emissions, which are harmful gases to human health and not yet regulated for diesel engines. METHODS: Standardized tests were performed in four diesel light duty commercial vehicles, using a frame dynamometer and test procedure FTP-75. The pollutants were analyzed by high performance liquid chromatography. RESULTS: Results have shown acetaldehyde emission ranged from 5.9 to 45.4 mg/km, and formaldehyde emission from 16.5 to 115.2 mg/km. The average emission for aldehyde sum was 58.7 mg/km, ranging from 22.4 to 160.6 mg/km. The proportion between the two

  4. Screw expander for light duty diesel engines

    Science.gov (United States)

    1983-01-01

    Preliminary selection and sizing of a positive displacement screw compressor-expander subsystem for a light-duty adiabatic diesel engine; development of a mathematical model to describe overall efficiencies for the screw compressor and expander; simulation of operation to establish overall efficiency for a range of design parameters and at given engine operating points; simulation to establish potential net power output at light-duty diesel operating points; analytical determination of mass moments of inertia for the rotors and inertia of the compressor-expander subsystem; and preparation of engineering layout drawings of the compressor and expander are discussed. As a result of this work, it was concluded that the screw compressor and expander designed for light-duty diesel engine applications are viable alternatives to turbo-compound systems, with acceptable efficiencies for both units, and only a moderate effect on the transient response.

  5. Light Duty Truck Characteristics, Historical Data Base

    Science.gov (United States)

    1979-12-01

    The report is a collection of data concerning physical, operating, performance, and market characteristics of light duty trucks for the model years 1972 and 1975 thru 1977. The data is stored on tape in DOT/TSC DEC System 10 computer system. Informat...

  6. Light duty utility arm software requirements specification

    International Nuclear Information System (INIS)

    Kiebel, G.R.

    1995-01-01

    This document defines the software requirements for the integrated control and data acquisition system of the Light Duty Utility Arm (LDUA) System. It is intended to be used to guide the design of the application software, to be a basis for assessing the application software design, and to establish what is to be tested in the finished application software product

  7. Light Duty Utility Arm Software Test Plan

    International Nuclear Information System (INIS)

    Kiebel, G.R.

    1995-01-01

    This plan describes how validation testing of the software will be implemented for the integrated control and data acquisition system of the Light Duty Utility Arm System (LDUA). The purpose of LDUA software validation testing is to demonstrate and document that the LDUA software meets its software requirements specification

  8. Light duty utility arm startup plan

    International Nuclear Information System (INIS)

    Barnes, G.A.

    1998-01-01

    This plan details the methods and procedures necessary to ensure a safe transition in the operation of the Light Duty Utility Arm (LDUA) System. The steps identified here outline the work scope and identify responsibilities to complete startup, and turnover of the LDUA to Characterization Project Operations (CPO)

  9. Design criteria for the light duty utility arm system end effectors

    International Nuclear Information System (INIS)

    Pardini, A.F.

    1995-01-01

    This document provides the criteria for the design of end effectors that will be used as part of the Light Duty Utility Arm (LDUA) System. The LDUA System consists of a deployment vehicle, a vertical positioning mast, a light duty multi-axis robotic arm, a tank riser interface and confinement, a tool interface plate, a control system, and an operations control trailer. The criteria specified in this document will apply to all end effector systems being developed for use on or with the LDUA system at the Hanford site. The requirement stipulated in this document are mandatory

  10. Modelling and control of a light-duty hybrid electric truck

    OpenAIRE

    Park, Jong-Kyu

    2006-01-01

    This study is concentrated on modelling and developing the controller for the light-duty hybrid electric truck. The hybrid electric vehicle has advantages in fuel economy. However, there have been relatively few studies on commercial HEVs, whilst a considerable number of studies on the hybrid electric system have been conducted in the field of passenger cars. So the current status and the methodologies to develop the LD hybrid electric truck model have been studied through the ...

  11. Light duty utility arm walkdown report

    Energy Technology Data Exchange (ETDEWEB)

    Smalley, J.L.

    1998-09-25

    This document is a report of the Light Duty Utility Arm (LDUA) drawing walkdown. The purpose of this walkdown was to validate the essential configuration of the LDUA in preparation of deploying the equipment in a Hanford waste tank. The LDUA system has, over the course of its development, caused the generation of a considerable number of design drawings. The number of drawings is estimated to be well over 1,000. A large number consist of vendor type drawings, furnished by both Pacific Northwest National Laboratory (PNNL) and SPAR Aerospace Limited (SPAR). A smaller number, approximately 200, are H-6 type drawing sheets in the Project Hanford Management Contract (PHMC) document control system. A preliminary inspection of the drawings showed that the physical configuration of the LDUA did not match the documented configuration. As a result of these findings, a scoping walkdown of 20 critical drawing sheets was performed to determine if a problem existed in configuration management of the LDUA system. The results of this activity showed that 18 of the 20 drawing sheets were found to contain errors or omissions of varying concern. Given this, Characterization Engineering determined that a walkdown of the drawings necessary and sufficient to enable safe operation and maintenance of the LDUA should be performed. A review team was assembled to perform a review of all of the drawings and determine the set which would need to be verified through an engineering walkdown. The team determined that approximately 150 H-6 type drawing sheets would need to be verified, 12 SPAR/PNNL drawing sheets would need to be verified and converted to H-6 drawings, and three to six new drawings would be created (see Appendix A). This report documents the results of that walkdown.

  12. Light duty utility arm walkdown report

    International Nuclear Information System (INIS)

    Smalley, J.L.

    1998-01-01

    This document is a report of the Light Duty Utility Arm (LDUA) drawing walkdown. The purpose of this walkdown was to validate the essential configuration of the LDUA in preparation of deploying the equipment in a Hanford waste tank. The LDUA system has, over the course of its development, caused the generation of a considerable number of design drawings. The number of drawings is estimated to be well over 1,000. A large number consist of vendor type drawings, furnished by both Pacific Northwest National Laboratory (PNNL) and SPAR Aerospace Limited (SPAR). A smaller number, approximately 200, are H-6 type drawing sheets in the Project Hanford Management Contract (PHMC) document control system. A preliminary inspection of the drawings showed that the physical configuration of the LDUA did not match the documented configuration. As a result of these findings, a scoping walkdown of 20 critical drawing sheets was performed to determine if a problem existed in configuration management of the LDUA system. The results of this activity showed that 18 of the 20 drawing sheets were found to contain errors or omissions of varying concern. Given this, Characterization Engineering determined that a walkdown of the drawings necessary and sufficient to enable safe operation and maintenance of the LDUA should be performed. A review team was assembled to perform a review of all of the drawings and determine the set which would need to be verified through an engineering walkdown. The team determined that approximately 150 H-6 type drawing sheets would need to be verified, 12 SPAR/PNNL drawing sheets would need to be verified and converted to H-6 drawings, and three to six new drawings would be created (see Appendix A). This report documents the results of that walkdown

  13. Test report light duty utility arm power distribution system (PDS)

    International Nuclear Information System (INIS)

    Clark, D.A.

    1996-01-01

    The Light Duty Utility Arm (LDUA) Power Distribution System has completed vendor and post-delivery acceptance testing. The Power Distribution System has been found to be acceptable and is now ready for integration with the overall LDUA system

  14. Decontamination trade study for the Light Duty Utility Arm

    International Nuclear Information System (INIS)

    Rieck, R.H.

    1994-01-01

    Various methods were evaluated for decontaminating the Light Duty Utility Arm (LDUA). Physical capabilities of each method were compared with the constraints and requirements for the LDUA Decontamination System. Costs were compared and a referred alternative was chosen

  15. 49 CFR Appendix C to Part 541 - Criteria for Selecting Light Duty Truck Lines Likely To Have High Theft Rates

    Science.gov (United States)

    2010-10-01

    ... Likely To Have High Theft Rates C Appendix C to Part 541 Transportation Other Regulations Relating to... MOTOR VEHICLE THEFT PREVENTION STANDARD Pt. 541, App. C Appendix C to Part 541—Criteria for Selecting Light Duty Truck Lines Likely To Have High Theft Rates Scope These criteria specify the factors the...

  16. Comparisons of MOVES Light-duty Gasoline NOx Emission Rates with Real-world Measurements

    Science.gov (United States)

    Choi, D.; Sonntag, D.; Warila, J.

    2017-12-01

    Recent studies have shown differences between air quality model estimates and monitored values for nitrogen oxides. Several studies have suggested that the discrepancy between monitored and modeled values is due to an overestimation of NOx from mobile sources in EPA's emission inventory, particularly for light-duty gasoline vehicles. EPA's MOtor Vehicle Emission Simulator (MOVES) is an emission modeling system that estimates emissions for cars, trucks and other mobile sources at the national, county, and project level for criteria pollutants, greenhouse gases, and air toxics. Studies that directly measure vehicle emissions provide useful data for evaluating MOVES when the measurement conditions are properly accounted for in modeling. In this presentation, we show comparisons of MOVES2014 to thousands of real-world NOx emissions measurements from individual light-duty gasoline vehicles. The comparison studies include in-use vehicle emissions tests conducted on chassis dynamometer tests in support of Denver, Colorado's Vehicle Inspection & Maintenance Program and remote sensing data collected using road-side instruments in multiple locations and calendar years in the United States. In addition, we conduct comparisons of MOVES predictions to fleet-wide emissions measured from tunnels. We also present details on the methodology used to conduct the MOVES model runs in comparing to the independent data.

  17. Development of the New Light-Duty Hybrid Truck

    OpenAIRE

    Yamaguchi, Koichi

    2008-01-01

    Hino Motors, Ltd., developed the new light-duty hybrid truck whose traction motor, inverter, and traction battery were completely redesigned for maximizing output and efficiency. It also succeeds in balancing low fuel economy and low exhaust emissions by utilizing a combination of a new hybrid system control with a specially developed diesel engine.

  18. 49 CFR 542.1 - Procedures for selecting new light duty truck lines that are likely to have high or low theft rates.

    Science.gov (United States)

    2010-10-01

    ... lines that are likely to have high or low theft rates. 542.1 Section 542.1 Transportation Other... OF TRANSPORTATION PROCEDURES FOR SELECTING LIGHT DUTY TRUCK LINES TO BE COVERED BY THE THEFT... or low theft rates. (a) Scope. This section sets forth the procedures for motor vehicle manufacturers...

  19. 49 CFR Appendix B to Part 541 - Light Duty Truck Lines With Theft Rates Below the 1990/91 Median Theft Rate, Subject to the...

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 6 2010-10-01 2010-10-01 false Light Duty Truck Lines With Theft Rates Below the 1990/91 Median Theft Rate, Subject to the Requirements of This Standard B Appendix B to Part 541... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION FEDERAL MOTOR VEHICLE THEFT PREVENTION STANDARD Pt. 541, App. B...

  20. Innovative technology summary report: Light duty utility arm

    International Nuclear Information System (INIS)

    1998-01-01

    The Light-Duty Utility Arm (LDUA) System is a mobile, multi-axis positioning system capable of deploying tools and sensors (end effecters) inside radioactive waste tanks for tank wall inspection, waste characterization, and waste retrieval. The LDUA robotic manipulator enters a tank through existing openings (risers) in the tank dome of the underground tanks. Using various end effecters, the LDUA System is a versatile system for high-level waste tank remediation. The LDUA System provides a means to deploy tools, while increasing the technology resources available to the U.S. Department of Energy (DOE). Ongoing end effecter development will provide additional capabilities to remediate the waste tanks

  1. Light duty utility arm deployment in Hanford tank T-106

    Energy Technology Data Exchange (ETDEWEB)

    Kiebel, G.R.

    1997-07-01

    An existing gap in the technology for the remediation of underground waste storage tanks filled by the Light Duty Utility Arm (LDUA) System. On September 27 and 30, 1996, the LDUA System was deployed in underground storage tank T-106 at Hanford. The system performed successfully, satisfying all objectives of the in-tank operational test (hot test); performing close-up video inspection of features of tank dome, risers, and wall; and grasping and repositioning in-tank debris. The successful completion of hot testing at Hanford means that areas of tank structure and waste surface that were previously inaccessible are now within reach of remote tools for inspection, waste analysis, and small-scale retrieval. The LDUA System has become a new addition to the arsenal of technologies being applied to solve tank waste remediation challenges.

  2. Light duty utility arm deployment in Hanford tank T-106

    International Nuclear Information System (INIS)

    Kiebel, G.R.

    1997-07-01

    An existing gap in the technology for the remediation of underground waste storage tanks filled by the Light Duty Utility Arm (LDUA) System. On September 27 and 30, 1996, the LDUA System was deployed in underground storage tank T-106 at Hanford. The system performed successfully, satisfying all objectives of the in-tank operational test (hot test); performing close-up video inspection of features of tank dome, risers, and wall; and grasping and repositioning in-tank debris. The successful completion of hot testing at Hanford means that areas of tank structure and waste surface that were previously inaccessible are now within reach of remote tools for inspection, waste analysis, and small-scale retrieval. The LDUA System has become a new addition to the arsenal of technologies being applied to solve tank waste remediation challenges

  3. 78 FR 34375 - Proposed Information Collection Request; Comment Request; Exhaust Emissions of Light-Duty...

    Science.gov (United States)

    2013-06-07

    ... respond, including through the use of appropriate automated electronic, mechanical, or other technological... be voluntary. The target population for the project will include light-duty cars and trucks certified... Numbers: 2363.02. Respondents/affected entities: private owners of light-duty cars and trucks. Respondent...

  4. Reduced energy consumption by massive thermoelectric waste heat recovery in light duty trucks

    Science.gov (United States)

    Magnetto, D.; Vidiella, G.

    2012-06-01

    The main objective of the EC funded HEATRECAR project is to reduce the energy consumption and curb CO2 emissions of vehicles by massively harvesting electrical energy from the exhaust system and re-use this energy to supply electrical components within the vehicle or to feed the power train of hybrid electrical vehicles. HEATRECAR is targeting light duty trucks and focuses on the development and the optimization of a Thermo Electric Generator (TEG) including heat exchanger, thermoelectric modules and DC/DC converter. The main objective of the project is to design, optimize and produce a prototype system to be tested on a 2.3l diesel truck. The base case is a Thermo Electric Generator (TEG) producing 1 KWel at 130 km/h. We present the system design and estimated output power from benchmark Bi2Te3 modules. We discuss key drivers for the optimization of the thermal-to-electric efficiency, such as materials, thermo-mechanical aspects and integration.

  5. 40 CFR 86.1432 - Vehicle preparation.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 19 2010-07-01 2010-07-01 false Vehicle preparation. 86.1432 Section...) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) Emission Regulations for New Gasoline-Fueled Otto-Cycle Light-Duty Vehicles and New Gasoline-Fueled Otto-Cycle Light-Duty...

  6. 40 CFR 51.356 - Vehicle coverage.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 2 2010-07-01 2010-07-01 false Vehicle coverage. 51.356 Section 51.356....356 Vehicle coverage. The performance standard for enhanced I/M programs assumes coverage of all 1968 and later model year light duty vehicles and light duty trucks up to 8,500 pounds GVWR, and includes...

  7. Light Duty Utility Arm System applications for tank waste remediation

    International Nuclear Information System (INIS)

    Carteret, B.A.

    1994-10-01

    The Light Duty Utility Arm (LDUA) System is being developed by the US Department of Energy's (DOE's) Office of Technology Development (OTD, EM-50) to obtain information about the conditions and contents of the DOE's underground storage tanks. Many of these tanks are deteriorating and contain hazardous, radioactive waste generated over the past 50 years as a result of defense materials production at a member of DOE sites. Stabilization and remediation of these waste tanks is a high priority for the DOE's environmental restoration program. The LDUA System will provide the capability to obtain vital data needed to develop safe and cost-effective tank remediation plans, to respond to ongoing questions about tank integrity and leakage, and to quickly investigate tank events that raise safety concerns. In-tank demonstrations of the LDUA System are planned for three DOE sites in 1996 and 1997: Hanford, Idaho National Engineering Laboratory (INEL), and Oak Ridge National Laboratory (ORNL). This paper provides a general description of the system design and discusses a number of planned applications of this technology to support the DOE's environmental restoration program, as well as potential applications in other areas. Supporting papers by other authors provide additional in-depth technical information on specific areas of the system design

  8. Light Duty Utility Arm interface control document plan

    International Nuclear Information System (INIS)

    Engstrom, J.W.

    1994-01-01

    This document describes the interface control documents that will be used to identify and control interface features throughout all phases of the Light Duty Utility Arm (LDUA) development and design. After the system is built, delivered and installed in the Cold Test Facility and later at the tank farm, the Interface Control Documents can be used in maintaining the configuration control process. The Interface Control Document will consist of Interface Control Drawings and a data base directly tied to the Interface Control Drawings. The data base can be used as an index to conveniently find interface information. Design drawings and other text documents that contain interface information will appear in the database. The Interface Control Drawings will be used to document and control the data and information that define the interface boundaries between systems, subsystems and equipment. Also, the interface boundaries will define the areas of responsibility for systems and subsystems. The drawing will delineate and identify all the physical and functional interfaces that required coordination to establish and maintain compatibility between the co-functioning equipment, computer software, and the tank farm facilities. An appendix contains the Engineering interface control database system riser manual

  9. Light Duty Utility Arm deployment in Tank WM-188

    International Nuclear Information System (INIS)

    Patterson, M.

    1999-01-01

    The Light Duty Utility Arm (LDUA) was successfully deployed in Tank WM-188 during February and March of 1999 at the Idaho Nuclear Technology and Engineering Center (INTEC) tank farm at the Idaho National Engineering and Environmental Laboratory. Some equipment problems were identified, but most were indicative of any first time activity. Deployment during cold weather imposed additional equipment risks, but in general, equipment response to the winter conditions was better than expected. Three end effectors were demonstrated during the deployment. All performed as expected, although the limited resolution of the Alternating Current Field Measurement end effector cannot absolutely confirm tank integrity, which is necessary for future tank inspections. Four heel samples were taken with the sampler end effector and a broad spectrum of analyses were performed. A detailed inspection of the tank interior was performed with the High Resolution Stereo Video System end effector. The sample information is proving invaluable to the development of new treatment flowsheets and waste forms. It is expected that the LDUA will be deployed for tank inspections through the next several years to support other Notice of Non-Compliance (NON) Consent Order requirements and several other ongoing initiatives

  10. Light Duty Utility Arm interface control document plan

    Energy Technology Data Exchange (ETDEWEB)

    Engstrom, J.W.

    1994-12-27

    This document describes the interface control documents that will be used to identify and control interface features throughout all phases of the Light Duty Utility Arm (LDUA) development and design. After the system is built, delivered and installed in the Cold Test Facility and later at the tank farm, the Interface Control Documents can be used in maintaining the configuration control process. The Interface Control Document will consist of Interface Control Drawings and a data base directly tied to the Interface Control Drawings. The data base can be used as an index to conveniently find interface information. Design drawings and other text documents that contain interface information will appear in the database. The Interface Control Drawings will be used to document and control the data and information that define the interface boundaries between systems, subsystems and equipment. Also, the interface boundaries will define the areas of responsibility for systems and subsystems. The drawing will delineate and identify all the physical and functional interfaces that required coordination to establish and maintain compatibility between the co-functioning equipment, computer software, and the tank farm facilities. An appendix contains the Engineering interface control database system riser manual.

  11. Light Duty Utility Arm deployment in Tank WM-188

    Energy Technology Data Exchange (ETDEWEB)

    Patterson, M.W.

    1999-12-01

    The Light Duty Utility Arm (LDUA) was successfully deployed in Tank WM-188 during February and March of 1999 at the Idaho Nuclear Technology and Engineering Center (INTEC) tank farm at the Idaho National Engineering and Environmental Laboratory. Some equipment problems were identified, but most were indicative of any first time activity. Deployment during cold weather imposed additional equipment risks, but in general, equipment response to the winter conditions was better than expected. Three end effectors were demonstrated during the deployment. All performed as expected, although the limited resolution of the Alternating Current Field Measurement end effector cannot absolutely confirm tank integrity, which is necessary for future tank inspections. Four heel samples were taken with the sampler end effector and a broad spectrum of analyses were performed. A detailed inspection of the tank interior was performed with the High Resolution Stereo Video System end effector. The sample information is proving invaluable to the development of new treatment flowsheets and waste forms. It is expected that the LDUA will be deployed for tank inspections through the next several years to support other Notice of Non-Compliance (NON) Consent Order requirements and several other ongoing initiatives.

  12. Light Duty Utility Arm Deployment in Tank WM-188

    Energy Technology Data Exchange (ETDEWEB)

    Patterson, Michael W

    2000-01-01

    The Light Duty Utility Arm (LDUA) was successfully deployed in Tank WM-188 during February and March of 1999 at the Idaho Nuclear Technology and Engineering Center (INTEC) tank farm at the Idaho National Engineering and Environmental Laboratory. Some equipment problems were identified, but most were indicative of any first time activity. Deployment during cold weather imposed additional equipment risks, but in general, equipment response to the winter conditions was better than expected. Three end effectors were demonstrated during the deployment. All performed as expected, although the limited resolution of the Alternating Current Field Measurement end effector cannot absolutely confirm tank integrity, which is necessary for future tank inspections. Four heel samples were taken with the sampler end effector and a broad spectrum of analyses were performed. A detailed inspection of the tank interior was performed with the High Resolution Stereo Video System end effector. The sample information is proving invaluable to the development of new treatment flowsheets and waste forms. It is expected that the LDUA will be deployed for tank inspections through the next several years to support other Notice of NonCompliance (NON) Consent Order requirements and several other ongoing initiatives.

  13. Riser configuration, Tank 241-A-105, light duty utility arm

    International Nuclear Information System (INIS)

    Boucher, T.D.

    1994-01-01

    The light-duty utility arm (LDUA) is a seven-joint stainless steel robotic arm with a payload capacity of 75 lb. The robotic arm is deployed vertically with a maximum vertical reach of 63 ft. and a maximum horizontal reach of 13.5 ft. The functional requirements of the LDUA system are mapping and characterization of waste in Hanford single-shell tanks (SST) before and during waste retrieval. The LDUA system consists of a mobile deployment system (MDS), a vertical positioning mast (VPM), a tank riser interface confinement (TRIC), the LDUA, and a controller subsystem or support trailer. Currently, the system is in design and is subject to change; however, the LDUA or robotic arm will be deployed through a 12-in. riser above the tank dome. Field trips were performed to gather specifics for future deployment of the LDUA in Tank 241-A-105. The purpose of this report is to support two previous reports for the investigation of SSTs for deployment of the LDUA system. The first report identified the availability of risers while the second report identified the availability of Tanks 241-A-105, 241-A-S-109, 241-A-T-101, and 241-A-T-109 for deployment of the LDUA system. The second report also identified those 4- and 12-in. risers that could be used for deployment of the LDUA and camera system. This report addresses accessibility to the 241-A Tank Farm and the usability of the Tank 241-A-105 risers. The following information for assisting in the design and deployment of the LDUA will be discussed in this report: radiation survey; flange identification; high resolution video; computer simulated model; and field survey

  14. Hydrogen in Vans and Light Duty Trucks in Denmark

    DEFF Research Database (Denmark)

    Jørgensen, Kaj

    1996-01-01

    The potential for application of hydrogen in light goods vehicles(i.e. freight vehicles with a gross vehicle weight of less than 6 tonnes) for local goods distribution, and the resulting energy and environmental consequences are evaluated. Local distribution of goods by road transport is characte...... carrier for renewable energy is evaluated against bio-fuels and electric propulsion....

  15. Light-Duty Automotive Technology, Carbon Dioxide Emissions, and Fuel Economy Trends Data

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Light-Duty Automotive Technology, Carbon Dioxide Emissions, and Fuel Economy Trends report is the authoritative reference for carbon dioxide (CO2) emissions,...

  16. Safety equipment list for the light duty utility arm system

    International Nuclear Information System (INIS)

    Barnes, G.A.

    1998-01-01

    The initial issue (Revision 0) of this Safety Equipment List (SEL) for the Light Duty Utility Arm (LDUA) requires an explanation for both its existence and its being what it is. All LDUA documentation leading up to creation of this SEL, and the SEL itself, is predicated on the LDUA only being approved for use in waste tanks designated as Facility Group 3, i.e., it is not approved for use in Facility Group 1 or 2 waste tanks. Facility Group 3 tanks are those in which a spontaneous or induced hydrogen gas release would be small, localized, and would not exceed 25% of the LFL when mixed with the remaining air volume in the dome space; exceeding these parameters is considered unlikely. Thus, from a NFPA flammable gas environment perspective the waste tank interior is not classified as a hazardous location. Furthermore, a hazards identification and evaluation (HNF-SD-WM-HIE-010, REV 0) performed for the LDUA system concluded that the consequences of actual LDUA system postulated accidents in Flammable Gas Facility Group 3 waste tanks would have either NO IMPACT or LOW IMPACT on the offsite public and onsite worker. Therefore, from a flammable gas perspective, there is not a rationale for classifying any of SSCs associated with the LDUA as either Safety Class (SC) or Safety Significant (SS) SSCs, which, by default, categorizes them as General Service (GS) SSCs. It follows then, based on current PHMC procedures (HNF-PRO-704 and HNF-IP-0842, Vol IV, Section 5.2) for SEL creation and content, and from a flammable gas perspective, that an SEL is NOT REQ at sign D HOWEVER exclamation point exclamation point exclamation point There is both a precedent and a prudency to capture all SSCS, which although GS, contribute to a Defense-In-Depth (DID) approach to the design and use of equipment in potentially flammable gas environments. This Revision 0 of the LDUA SEL has been created to capture these SSCs and they are designated as GS-DID in this document. The specific reasons for

  17. 40 CFR 86.152-98 - Vehicle preparation; refueling test.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Vehicle preparation; refueling test... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations for 1977 and Later Model Year New Light-Duty Vehicles and New Light-Duty Trucks and New Otto-Cycle...

  18. 40 CFR 86.1807-01 - Vehicle labeling.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 19 2010-07-01 2010-07-01 false Vehicle labeling. 86.1807-01 Section... (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) General Compliance Provisions for Control of Air Pollution From New and In-Use Light-Duty Vehicles, Light-Duty Trucks...

  19. 40 CFR 86.131-00 - Vehicle preparation.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Vehicle preparation. 86.131-00 Section... (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations for 1977 and Later Model Year New Light-Duty Vehicles and New Light-Duty Trucks and New Otto-Cycle Complete...

  20. 40 CFR 86.131-96 - Vehicle preparation.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Vehicle preparation. 86.131-96 Section... (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations for 1977 and Later Model Year New Light-Duty Vehicles and New Light-Duty Trucks and New Otto-Cycle Complete...

  1. 40 CFR 86.132-00 - Vehicle preconditioning.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Vehicle preconditioning. 86.132-00... (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations for 1977 and Later Model Year New Light-Duty Vehicles and New Light-Duty Trucks and New Otto-Cycle Complete...

  2. 40 CFR 86.231-94 - Vehicle preparation.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Vehicle preparation. 86.231-94 Section... (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations for 1994 and Later Model Year Gasoline-Fueled New Light-Duty Vehicles, New Light-Duty Trucks and New Medium...

  3. 40 CFR 86.1807-07 - Vehicle labeling.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 19 2010-07-01 2010-07-01 false Vehicle labeling. 86.1807-07 Section... (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) General Compliance Provisions for Control of Air Pollution From New and In-Use Light-Duty Vehicles, Light-Duty Trucks...

  4. 40 CFR 86.232-94 - Vehicle preconditioning.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Vehicle preconditioning. 86.232-94... (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations for 1994 and Later Model Year Gasoline-Fueled New Light-Duty Vehicles, New Light-Duty Trucks and New Medium...

  5. Transportation Electrification Beyond Light Duty: Technology and Market Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Tartaglia, Katie [Energetics Inc., Columbia, MD (United States); Birky, Alicia [Energetics Inc., Columbia, MD (United States); Laughlin, Michael [Energetics Inc., Columbia, MD (United States); Price, Rebecca [Energetics Inc., Columbia, MD (United States); Lin, Zhenhong [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-07-01

    Commercial fleets form the backbone of the nation’s economy, getting people and the things they need to the places they need to go and performing services necessary to keep public and private physical infrastructure in working order. Commercial fleets include a wide range of vehicle and equipment types, typical uses, and sizes, and involve millions of on-road and offroad vehicles. This diversity means there is no single solution to the challenges these vehicles pose for reducing petroleum dependence, impact on air quality, and emission of greenhouse gases. This document focuses on electrification of government, commercial, and industrial fleets. These fleets have been divided into three market segments based on equipment use: service fleets, goods movement, and people movement. In particular, it addresses highway vehicles not used for personal transport; non-highway modes, including air, rail, and water; and non-road equipment used directly or in support of these uses.

  6. Development of a Real-Time Virtual Nitric Oxide Sensor for Light-Duty Diesel Engines

    Directory of Open Access Journals (Sweden)

    Seungha Lee

    2017-03-01

    Full Text Available This study describes the development of a semi-physical, real-time nitric oxide (NO prediction model that is capable of cycle-by-cycle prediction in a light-duty diesel engine. The model utilizes the measured in-cylinder pressure and information obtained from the engine control unit (ECU. From the inputs, the model takes into account the pilot injection burning and mixing, which affects the in-cylinder mixture formation. The representative in-cylinder temperature for NO formation was determined from the mixture composition calculation. The selected temperature and mixture composition was substituted using a simplified form of the NO formation rate equation for the cycle-by-cycle estimation. The reactive area and the duration of NO formation were assumed to be limited by the fuel quantity. The model predictability was verified not only using various steady-state conditions, including the variation of the EGR rate, the boost pressure, the rail pressure, and the injection timing, but also using transient conditions, which represent the worldwide harmonized light vehicles test procedure (WLTC. The WLTC NO prediction results produced less than 3% error with the measured value. In addition, the proposed model maintained its reliability in terms of hardware aging, the changing and artificial perturbations during steady-state and transient engine operations. The model has been shown to require low computational effort because of the cycle-by-cycle, engine-out NO emission prediction and control were performed simultaneously in an embedded system for the automotive application. We expect that the developed NO prediction model can be helpful in emission calibration during the engine design stage or in the real-time controlling of the exhaust NO emission for improving fuel consumption while satisfying NO emission legislation.

  7. Estimating Texas motor vehicle operating costs.

    Science.gov (United States)

    2009-10-01

    A specific Vcost model was developed for Texas conditions based on a sophisticated fuel model for light : duty vehicles, several excellent sources of secondary vehicle cost data, and the ability to measure heavy truck fuel : consumption through both ...

  8. Design criteria for the light duty utility arm system end effectors

    International Nuclear Information System (INIS)

    Pardini, A.F.; Kiebel, G.R.

    1995-12-01

    The purpose of this document is to provide criteria for the design of end effectors that will be used as part of the Light Duty Utility Arm (LDUA) System. Actual component design, fabrication, testing, and inspection will be performed by various DOE laboratories, industry, and academia. This document augments WHC-SD-TD-FRD-003, 'Functions and Requirements for the Light Duty Utility Arm Integrated System' (F). All requirements dictated in the F shall also be applicable in this document. Whenever conflicts arise between this document and the F, this document shall take precedence

  9. Life cycle air quality impacts of conventional and alternative light-duty transportation in the United States.

    Science.gov (United States)

    Tessum, Christopher W; Hill, Jason D; Marshall, Julian D

    2014-12-30

    Commonly considered strategies for reducing the environmental impact of light-duty transportation include using alternative fuels and improving vehicle fuel economy. We evaluate the air quality-related human health impacts of 10 such options, including the use of liquid biofuels, diesel, and compressed natural gas (CNG) in internal combustion engines; the use of electricity from a range of conventional and renewable sources to power electric vehicles (EVs); and the use of hybrid EV technology. Our approach combines spatially, temporally, and chemically detailed life cycle emission inventories; comprehensive, fine-scale state-of-the-science chemical transport modeling; and exposure, concentration-response, and economic health impact modeling for ozone (O3) and fine particulate matter (PM2.5). We find that powering vehicles with corn ethanol or with coal-based or "grid average" electricity increases monetized environmental health impacts by 80% or more relative to using conventional gasoline. Conversely, EVs powered by low-emitting electricity from natural gas, wind, water, or solar power reduce environmental health impacts by 50% or more. Consideration of potential climate change impacts alongside the human health outcomes described here further reinforces the environmental preferability of EVs powered by low-emitting electricity relative to gasoline vehicles.

  10. Batu Pahat Driving Cycle for Light Duty Gasoline Engine

    Science.gov (United States)

    Zainul Abidin, Zainul Ameerul Ikhsan B.; Faisal Hushim, Mohd; Ahmad, Osman Bin

    2017-08-01

    Driving cycle is a series of data points that represents the vehicle speed versus time. Transient driving cycles involve many changes such as frequent speed changes during typical on-road driving condition [2]. Model driving cycles involve protracted periods at constant speeds. The Batu Pahat Driving Cycle (BPDC) developed to represent the driving pattern of people in a district of Batu Pahat. Based on this driving cycle, it will be a reference to other researchers to study about the gases emission release and fuel consumption by the vehicle on the dynamometer or automotive simulation based on this driving cycle. Existing driving cycles used such as the New European Driving Cycle (NEDC), the Federal Test Procedure (FTP-72/75, and Japan 10-15 Mode Cycle is not appropriate for Batu Pahat district because of different road conditions, driving habits and environmental of developed driving cycle countries are not same [2][14]. Batu Pahat drive cycle was developed for low-capacity gasoline engine under 150 cc and operating on urban roads, rural roads and road around Universiti Tun Hussein Onn. The importance of these driving cycle as the reference for other research to measure and do automotive simulation regarding fuel consumption and gas emission release from the motorcycle for these three type of driving cycle area. Another use for driving cycles is in vehicle simulations [3]. More specifically, they are used in propulsion system simulations to predict the performance of internal combustion engines, transmissions, electric drive systems, batteries, fuel cell systems, and similar components [18]. Data collection methods used in this study is the use of Global Positioning System (GPS). The results obtained are not similar to each other due to differences in congestion on data taken. From the driving cycle graph obtained, such as the average velocity, maximum velocity, the duration and Positive Acceleration Kinetic Energy (PKE) can be determined. In addition, the best

  11. Detroit Diesel Engine Technology for Light Duty Truck Applications - DELTA Engine Update

    Energy Technology Data Exchange (ETDEWEB)

    Freese, Charlie

    2000-08-20

    The early generation of the DELTA engine has been thoroughly tested and characterized in the virtual lab, during engine dynamometer testing, and on light duty trucks for personal transportation. This paper provides an up-to-date account of program findings. Further, the next generation engine design and future program plans will be briefly presented.

  12. Modeling and Validation of Power-split and P2 Parallel Hybrid Electric Vehicles SAE 2013-01-1470)

    Science.gov (United States)

    The Advanced Light-Duty Powertrain and Hybrid Analysis tool was created by EPA to evaluate the Greenhouse Gas (GHG) emissions of Light-Duty (LD) vehicles. It is a physics-based, forward-looking, full vehicle computer simulator capable of analyzing various vehicle types combined ...

  13. Post delivery test report for light duty utility arm optical alignment system (OAS)

    Energy Technology Data Exchange (ETDEWEB)

    Pardini, A.F.

    1996-04-18

    This report documents the post delivery testing of the Optical Alignment System (OAS) LDUA system, designed for use by the Light Duty Utility Arm (LDUA) project. The post delivery test shows by demonstration that the optical alignment system is fully operational to perform the task of aligning the LDUA arm and mast with the entry riser during deployment operations within a Hanford Site waste tank.

  14. Functions and requirements for the light duty utility arm integrated system

    International Nuclear Information System (INIS)

    Kiebel, G.R.

    1996-01-01

    The Light Duty Utility Arm (LDUA) Integrated System is a mobile robotic system designed to remotely deploy and operate a variety of tools in uninhabitable underground radiological and hazardous waste storage tanks. The system primarily provides a means to inspect, survey, monitor, map and/or obtain specific waste and waste tank data in support of the Tank Waste Remediation System (TWRS) mission at Hanford and remediation programs at other U.S. Department of Energy (DOE) sites

  15. Functions and requirements for the Light-Duty Utility Arm Integrated System. Revision 1

    International Nuclear Information System (INIS)

    Kiebel, G.R.

    1996-01-01

    The Light Duty Utility Arm (LDUA) Integrated System is a mobile robotic system designed to remotely deploy and operate a variety of tools in uninhabitable underground radiological and hazardous waste storage tanks. The system primarily provides a means to inspect, survey, monitor, map and/or obtain specific waste and waste tank data in support of the Tank Waste Remediation System (TWRS) mission at Hanford and remediation programs at other U.S. Department of Energy (DOE) sites

  16. Post delivery test report for light duty utility arm optical alignment system (OAS)

    International Nuclear Information System (INIS)

    Pardini, A.F.

    1996-01-01

    This report documents the post delivery testing of the Optical Alignment System (OAS) LDUA system, designed for use by the Light Duty Utility Arm (LDUA) project. The post delivery test shows by demonstration that the optical alignment system is fully operational to perform the task of aligning the LDUA arm and mast with the entry riser during deployment operations within a Hanford Site waste tank

  17. Critical factors affecting life cycle assessments of material choice for vehicle mass reduction

    Science.gov (United States)

    This review examines the use of life-cycle assessments (LCAs) to compare different lightweight materials being developed to improve light-duty vehicle fuel economy. Vehicle manufacturers are designing passenger cars and light-duty trucks using lighter weight materials and design ...

  18. Clean Cities 2015 Vehicle Buyer's Guide

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-02-11

    Drivers and fleets are increasingly turning to the hundreds of light-duty, alternative fuel, and advanced technology vehicle models that reduce petroleum use, save on fuel costs, and cut emissions. This guide provides a comprehensive list of the 2015 light-duty models that use alternative fuels or advanced fuel-saving technologies.

  19. 2015 Vehicle Buyer's Guide (Brochure)

    Energy Technology Data Exchange (ETDEWEB)

    2015-02-01

    Drivers and fleets are increasingly turning to the hundreds of light-duty, alternative fuel, and advanced technology vehicle models that reduce petroleum use, save on fuel costs, and cut emissions. This guide provides a comprehensive list of the 2015 light-duty models that use alternative fuels or advanced fuel-saving technologies.

  20. Clean Cities 2016 Vehicle Buyer's Guide

    Energy Technology Data Exchange (ETDEWEB)

    2016-02-01

    Drivers and fleets are increasingly turning to the hundreds of light-duty, alternative fuel, and advanced technology vehicle models that reduce petroleum use, save on fuel costs, and cut emissions. This guide provides a comprehensive list of the 2016 light-duty models that use alternative fuels or advanced fuel-saving technologies.

  1. 40 CFR 86.005-10 - Emission standards for 2005 and later model year Otto-cycle heavy-duty engines and vehicles.

    Science.gov (United States)

    2010-07-01

    ... model year Otto-cycle heavy-duty engines and vehicles. 86.005-10 Section 86.005-10 Protection of... AND IN-USE HIGHWAY VEHICLES AND ENGINES General Provisions for Emission Regulations for 1977 and Later Model Year New Light-Duty Vehicles, Light-Duty Trucks and Heavy-Duty Engines, and for 1985 and Later...

  2. Vehicle Component Benchmarking Using a Chassis Dynamometer: Using a 2013 Chevrolet Malibu and a 2013 Mercedes E350 (SAE Paper 2015-01-0589)

    Science.gov (United States)

    Light-duty vehicle greenhouse gas (GHG) and fuel economy (FE) standards for MYs 2012 -2025 are requiring vehicle powertrains to become much more efficient. The EPA is using a full vehicle simulation model, called the Advanced Light-duty Powertrain and Hybrid Analysis (ALPHA), to ...

  3. Development and Implementation of a Battery-Electric Light-Duty Class 2a Truck including Hybrid Energy Storage

    Science.gov (United States)

    Kollmeyer, Phillip J.

    This dissertation addresses two major related research topics: 1) the design, fabrication, modeling, and experimental testing of a battery-electric light-duty Class 2a truck; and 2) the design and evaluation of a hybrid energy storage system (HESS) for this and other vehicles. The work begins with the determination of the truck's peak power and wheel torque requirements (135kW/4900Nm). An electric traction system is then designed that consists of an interior permanent magnet synchronous machine, two-speed gearbox, three-phase motor drive, and LiFePO4 battery pack. The battery pack capacity is selected to achieve a driving range similar to the 2011 Nissan Leaf electric vehicle (73 miles). Next, the demonstrator electric traction system is built and installed in the vehicle, a Ford F150 pickup truck, and an extensive set of sensors and data acquisition equipment is installed. Detailed loss models of the battery pack, electric traction machine, and motor drive are developed and experimentally verified using the driving data. Many aspects of the truck's performance are investigated, including efficiency differences between the two-gear configuration and the optimal gear selection. The remainder focuses on the application of battery/ultracapacitor hybrid energy storage systems (HESS) to electric vehicles. First, the electric truck is modeled with the addition of an ultracapacitor pack and a dc/dc converter. Rule-based and optimal battery/ultracapacitor power-split control algorithms are then developed, and the performance improvements achieved for both algorithms are evaluated for operation at 25°C. The HESS modeling is then extended to low temperatures, where battery resistance increases substantially. To verify the accuracy of the model-predicted results, a scaled hybrid energy storage system is built and the system is tested for several drive cycles and for two temperatures. The HESS performance is then modeled for three variants of the vehicle design, including the

  4. Development of a multi-criteria evaluation framework for alternative light-duty vehicles technologies

    Energy Technology Data Exchange (ETDEWEB)

    Fazeli, R.; Leal, V.; Sousa, J.P.

    2011-07-15

    Multi-Attribute Utility Theory (MAUT) is very popular in the context of multi-criteria decision making because it easily incorporates the decision maker's preferences. The basic goal of MAUT is to replace available information by ''utility values'' allowing the comparison of alternatives. For the basic MCDA problem of choosing the best alternative, it is useful for a DM to start by eliminating those alternatives that do not seem to be interesting. This procedure is often called ''screening''. Screening helps by allowing the DM to concentrate on a smaller set that (very likely) contains the best alternative. In this work we have applied a sequential screening process, starting with a Pareto Optimal (PO) approach, followed by a Data Envelopment Analysis (DEA) based screening and Trade-off Weights (TW) procedure. To illustrate the approach, Portugal was chosen as a case study. Besides, at this preliminary stage of the research, we just considered alternatives with 100% of one specific fuel/technology combination (alternatives with fleets combining different shares of fuels/technologies will be analyzed in the next phase of the research). MAUT was applied to identify the utility values of each alternative for each group of attributes. Then the sequential screening approach was applied. The final screening set includes DICI-DME, Fuel Cell using Hydrogen, the Fuel Cell with reformer using Methanol, and Hybrid Gasoline. As a conclusion, preliminary results clearly show the potential of the developed approach in setting a framework for supporting better and sounder decision-making on which AFV technologies should be supported. (Author)

  5. Transport Pathways for Light Duty Vehicles: Towards a 2° Scenario

    Directory of Open Access Journals (Sweden)

    François Cuenot

    2013-04-01

    Full Text Available The transport sector is the second largest and one of the fastest growing energy end-use sectors, representing 24% of global energy-related greenhouse gas emissions. The International Energy Agency has developed scenarios for the transport sector within the overall concept of mitigation pathways that would be required to limit global warming to 2 °C. This paper builds on these scenarios and illustrates various passenger travel-related strategies for achieving a 2° transport scenario, in particular looking at how much technology improvement is needed in the light of different changes in travel and modal shares in OECD and non-OECD countries. It finds that an integrated approach using all feasible policy options is likely to deliver the required emission reductions at least cost, and that stronger travel-related measures result in significantly lower technological requirements.

  6. Cloud Forming Potential of Aerosol from Light-duty Gasoline Direct Injection Vehicles

    Science.gov (United States)

    2017-12-01

    In this study, we evaluate the hygroscopicity and droplet kinetics of fresh and aged emissions from new generation gasoline direct injector engines retrofitted with a gasoline particulate filter (GPF). Furthermore, ageing and subsequent secondary aer...

  7. Tank selection for Light Duty Utility Arm (LDUA) system hot testing in a single shell tank

    Energy Technology Data Exchange (ETDEWEB)

    Bhatia, P.K.

    1995-01-31

    The purpose of this report is to recommend a single shell tank in which to hot test the Light Duty Utility Arm (LDUA) for the Tank Waste Remediation System (TWRS) in Fiscal Year 1996. The LDUA is designed to utilize a 12 inch riser. During hot testing, the LDUA will deploy two end effectors (a High Resolution Stereoscopic Video Camera System and a Still/Stereo Photography System mounted on the end of the arm`s tool interface plate). In addition, three other systems (an Overview Video System, an Overview Stereo Video System, and a Topographic Mapping System) will be independently deployed and tested through 4 inch risers.

  8. Light Duty Utility Arm system pre-operational (cold test) test plan

    International Nuclear Information System (INIS)

    Bennett, K.L.

    1995-01-01

    The Light Duty Utility (LDUA) Cold Test Facility, located in the Hanford 400 Area, will be used to support cold testing (pre- operational tests) of LDUA subsystems. Pre-operational testing is composed of subsystem development testing and rework activities, and integrated system qualification testing. Qualification testing will be conducted once development work is complete and documentation is under configuration control. Operational (hot) testing of the LDUA system will follow the testing covered in this plan and will be covered in a separate test plan

  9. Tank selection for Light Duty Utility Arm (LDUA) system hot testing in a single shell tank

    International Nuclear Information System (INIS)

    Bhatia, P.K.

    1995-01-01

    The purpose of this report is to recommend a single shell tank in which to hot test the Light Duty Utility Arm (LDUA) for the Tank Waste Remediation System (TWRS) in Fiscal Year 1996. The LDUA is designed to utilize a 12 inch riser. During hot testing, the LDUA will deploy two end effectors (a High Resolution Stereoscopic Video Camera System and a Still/Stereo Photography System mounted on the end of the arm's tool interface plate). In addition, three other systems (an Overview Video System, an Overview Stereo Video System, and a Topographic Mapping System) will be independently deployed and tested through 4 inch risers

  10. Eco-driving : strategic, tactical, and operational decisions of the driver that improve vehicle fuel economy.

    Science.gov (United States)

    2011-08-01

    "This report presents information about the effects of decisions that a driver can make to : influence on-road fuel economy of light-duty vehicles. These include strategic decisions : (vehicle selection and maintenance), tactical decisions (route sel...

  11. Telepresence and virtual environment applications on the light duty utility arm system

    International Nuclear Information System (INIS)

    Pardini, A.F.; Rod, S.R.

    1995-01-01

    The Tri-Party Agreement was initiated in 1989 to provide a thirty-year clean-up plan for the United States Department of Energy's (DOE) Hanford Site. This plan addresses the remediation of hazardous chemical and radioactive wastes with a major emphasis on the characterization of Hanford's underground waste storage tanks. To assist in this task the DOE is funding the development of a light duty robotic arm capable of deploying various tools which can inspect and characterize the interior of DOE waste tanks. Current development includes two new technologies -- stereoscopic telepresence, which will allow three-dimensional viewing of the waste tank interior; and open-quotes virtual environmentsclose quotes (or open-quotes virtual realityclose quotes), which will provide computer-simulated world wherein operators can practice inspections and other activities prior to performing actual operations in real waste tanks

  12. Low cetane number renewable oxy-fuels for premixed combustion concept application : experimental investigation on a light duty diesel engine

    NARCIS (Netherlands)

    Di Blasio, G.; Beatrice, C.; Dijkstra, R.; Boot, M.D.

    2012-01-01

    This paper illustrates the results of an experimental study on the impact of a low cetane number (CN) oxygenated fuel on the combustion process and emissions of a light-duty (LD) single-cylinder research engine. In an earlier study, it was concluded that cyclic oxygenates consistently outperformed

  13. 49 CFR 542.2 - Procedures for selecting low theft light duty truck lines with a majority of major parts...

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 6 2010-10-01 2010-10-01 false Procedures for selecting low theft light duty... TRUCK LINES TO BE COVERED BY THE THEFT PREVENTION STANDARD § 542.2 Procedures for selecting low theft... a low theft rate have major parts interchangeable with a majority of the covered major parts of a...

  14. 40 CFR Appendix X to Part 86 - Sampling Plans for Selective Enforcement Auditing of Heavy-Duty Engines and Light-Duty Trucks

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 19 2010-07-01 2010-07-01 false Sampling Plans for Selective Enforcement Auditing of Heavy-Duty Engines and Light-Duty Trucks X Appendix X to Part 86 Protection of... Plans for Selective Enforcement Auditing of Heavy-Duty Engines and Light-Duty Trucks Table 1—Sampling...

  15. Oxygenated palm biodiesel: Ignition, combustion and emissions quantification in a light-duty diesel engine

    International Nuclear Information System (INIS)

    Chong, Cheng Tung; Ng, Jo-Han; Ahmad, Solehin; Rajoo, Srithar

    2015-01-01

    Highlights: • Diesel engine test using palm biodiesel and diesel at varying speed and load. • Palm biodiesel shows better performance at late stage of cycle evolution. • Oxygen in palm biodiesel fuel improves local combustion at late stage of combustion. • Emissions of NO are lower at low and medium operating speed for palm biodiesel. • Formulation of trend guide for performance and emissions characteristics for light-duty diesel engines. - Abstract: This paper presents an investigation of oxygenated neat palm biodiesel in a direct injection single cylinder diesel engine in terms of ignition, combustion and emissions characteristics. Conventional non-oxygenated diesel fuel is compared as baseline. The engine testing is performed between the operating speed of 2000–3000 rpm and load of up to 3 bar of brake mean effective pressure. From it, a total of 50 experiment cases are tested to form a comprehensive operational speed-load contour map for ignition and combustion; while various engine-out emissions such as NO, CO, UHCs and CO 2 are compared based on fuel type-speed combinations. The ignition and combustion evolution contour maps quantify the absolute ignition delay period and elucidate the difference between that of palm biodiesel and fossil diesel. Although diesel has shorter ignition delay period by up to 0.6 CAD at 3000 rpm and burns more rapidly at the start of combustion, combustion of palm biodiesel accelerates during the mid-combustion phase and overtakes diesel in the cumulative heat release rates (HRR) prior to the 90% cumulative HRR. This can be attributed to the oxygen contained in palm biodiesel assisting in localized regions of combustion. In terms of performance, the oxygenated nature of palm biodiesel provided mixed performances with improved thermal efficiency and increased brake specific fuel consumption, due to the improved combustion and lower calorific values, respectively. Emission measurements show that NO for palm biodiesel is

  16. Usability testing of the human-machine interface for the Light Duty Utility Arm System

    International Nuclear Information System (INIS)

    Kiebel, G.R.; Ellis, J.E.; Masliah, M.R.

    1994-01-01

    This report describes the usability testing that has been done for the control and data acquisition system for the Light Duty Utility Arm (LDUA) System. A program of usability testing has been established as a part of a process for making the LDUA as easy to use as possible. The LDUA System is being designed to deploy a family of tools, called End Effectors, into underground storage tanks by means of a robotic arm on the end of a telescoping mast, and to collect and manage the data that they generate. The LDUA System uses a vertical positioning mast, to lower the arm into a tank through an existing 30.5 cm access riser. A Mobile Deployment Subsystem is used to position the mast and arm over a tank riser for deployment, and to transport them from tank to tank. The LDUA System has many ancillary subsystems including the Operations Control Trailer, the Tank Riser Interface and Confinement Subsystem, the Decontamination Subsystem, and the End Effector Exchange Subsystem. This work resulted in the identification of several important improvements to the LDUA control and data acquisition system before the design was frozen. The most important of these were color coding of joints in motion, simultaneous operator control of multiple joints, and changes to the field-of-views of the camera lenses for the robot and other camera systems

  17. 10 CFR 490.302 - Vehicle acquisition mandate schedule.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Vehicle acquisition mandate schedule. 490.302 Section 490... Alternative Fuel Provider Vehicle Acquisition Mandate § 490.302 Vehicle acquisition mandate schedule. (a) Except as provided in section 490.304 of this part, of the light duty motor vehicles newly acquired by a...

  18. 40 CFR 86.1724-01 - Emission data vehicle selection.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 19 2010-07-01 2010-07-01 false Emission data vehicle selection. 86... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) General Provisions for the Voluntary National Low Emission Vehicle Program for Light-Duty Vehicles and...

  19. Evaluation of Knock Behavior for Natural Gas - Gasoline Blends in a Light Duty Spark Ignited Engine

    Energy Technology Data Exchange (ETDEWEB)

    Pamminger, Michael [Argonne National Lab. (ANL), Argonne, IL (United States); Sevik, James [Argonne National Lab. (ANL), Argonne, IL (United States); Scarcelli, Riccardo [Argonne National Lab. (ANL), Argonne, IL (United States); Wallner, Thomas [Argonne National Lab. (ANL), Argonne, IL (United States); Wooldridge, Steven [Ford Motor Co., Detroit, MI (United States); Boyer, Brad [Ford Motor Co., Detroit, MI (United States); Hall, Carrie M. [Illinois Inst. of Technology, Chicago, IL (United States)

    2016-10-17

    The compression ratio is a strong lever to increase the efficiency of an internal combustion engine. However, among others, it is limited by the knock resistance of the fuel used. Natural gas shows a higher knock resistance compared to gasoline, which makes it very attractive for use in internal combustion engines. The current paper describes the knock behavior of two gasoline fuels, and specific incylinder blend ratios with one of the gasoline fuels and natural gas. The engine used for these investigations is a single cylinder research engine for light duty application which is equipped with two separate fuel systems. Both fuels can be used simultaneously which allows for gasoline to be injected into the intake port and natural gas to be injected directly into the cylinder to overcome the power density loss usually connected with port fuel injection of natural gas. Adding natural gas at wide open throttle helps to reduce knock mitigating measures and increases the efficiency and power density compared to the other gasoline type fuels with lower knock resistance. The used methods, knock intensity and number of pressure waves, do not show significant differences in knock behavior for the natural gas - gasoline blends compared to the gasoline type fuels. A knock integral was used to describe the knock onset location of the fuels tested. Two different approaches were used to determine the experimental knock onset and were compared to the knock onset delivered by the knock integral (chemical knock onset). The gasoline type fuels show good agreement between chemical and experimental knock onset. However, the natural gas -gasoline blends show higher discrepancies comparing chemical and experimental knock onset.

  20. A parametric analysis of future ethanol use in the light-duty transportation sector: Can the US meet its Renewable Fuel Standard goals without an enforcement mechanism?

    International Nuclear Information System (INIS)

    Westbrook, Jessica; Barter, Garrett E.; Manley, Dawn K.; West, Todd H.

    2014-01-01

    The modified Renewable Fuel Standard (RFS2) prescribes a volume of biofuels to be used in the United States transportation sector each year through 2022. As the dominant component of the transportation sector, we consider the feasibility of the light-duty vehicle (LDV) parc to provide enough demand for biofuels to satisfy RFS2. Sensitivity studies show that the fuel price differential between gasoline and ethanol blendstocks, such as E85, is the principal factor in LDV biofuel consumption. The numbers of flex fuel vehicles and biofuel refueling stations will grow given a favorable price differential. However, unless the feedstock price differential becomes extreme (biomass prices below $100 per dry ton and oil prices above $215 per barrel), which deviates from historical price trends, LDV parc biofuel consumption will fall short of the RFS2 mandate without an enforcement mechanism. Additionally, such commodity prices might increase biofuel consumption in the short-term, but discourage use of biofuels in the long-term as other technologies that do not rely on any gasoline blendstock may be preferable. Finally, the RFS2 program goals of reducing fossil fuel consumption and transportation greenhouse gas emissions could be achieved through other pathways, such as notable improvements in conventional vehicle efficiency. - Author-Highlights: • At current commodity prices, the LDV fleet will not use enough biofuel to meet RFS2. • RFS2 can be met through the promotion of flex-fuel vehicles and their use of E85 fuel. • The gasoline-E85 price premium is the key factor in encouraging biofuel consumption. • RFS2 is satisfied at extreme oil prices (at least $215/barrel). • This oil price encourages biofuel use in the RFS2 timeframe, but not in the long run

  1. 40 CFR Appendix II to Subpart S of... - As-Received Testing Vehicle Rejection Criteria

    Science.gov (United States)

    2010-07-01

    ... (CONTINUED) General Compliance Provisions for Control of Air Pollution From New and In-Use Light-Duty... vehicle has been used for severe duty (trailer towing for passenger cars, snow plowing, racing) 4. The...

  2. Final Rule for Control of Air Pollution From Motor Vehicles and New Motor Vehicle Engines; Modification of Federal Onboard Diagnostic Regulations for Light-Duty Vehicles and Light-Duty Trucks; Extension of Acceptance of California OBD

    Science.gov (United States)

    This action finalizes modifications to the federal on-board diagnostics regulations, including: harmonizing the emission levels above which a component or system is considered malfunctioning with those of the California Air Resources Board (CARB).

  3. Tailpipe emissions and engine performance of a light-duty diesel engine operating on petro- and bio-diesel fuel blends.

    Science.gov (United States)

    2014-06-01

    This report summarizes the experimental apparatus developed in the Transportation Air Quality Laboratory (TAQ Lab) at the University of Vermont to compare light-duty diesel engine performance and exhaust emissions when operating on petroleum diesel (...

  4. Comparative study of regulated and unregulated gaseous emissions during NEDC in a light-duty diesel engine fuelled with Fischer Tropsch and biodiesel fuels

    Energy Technology Data Exchange (ETDEWEB)

    Bermudez, Vicente; Lujan, Jose M.; Pla, Benjamin; Linares, Waldemar G. [CMT-Motores Termicos, Universidad Politecnica de Valencia, Camino de Vera s/n, 46022 Valencia (Spain)

    2011-02-15

    In this study, regulated and unregulated gaseous emissions and fuel consumption with five different fuels were tested in a 4-cylinder, light-duty diesel EURO IV typically used for the automotive vehicles in Europe. Three different biodiesel fuels obtained from soybean oil, rapeseed oil and palm oil, a Fischer Tropsch fuel and an ultra low sulphur diesel were studied. The test used was the New European Driving Cycle (NEDC), this allowed tests to be carried out on an engine warmed up beforehand to avoid the effect of cold starts and several tests a day. Regulated emissions of NO{sub X}, CO, HC and CO{sub 2} were measured for each fuel. Unburned Hydrocarbon Speciation and formaldehyde were also measured in order to determine the maximum incremental reactivity (MIR) of the gaseous emissions. Pollutants were measured without the diesel oxidation catalyst (DOC) to gather data about raw emissions. When biodiesel was used, increases in regulated and unregulated emissions were observed and also significant increases in engine fuel consumption. The use of Fischer Tropsch fuel, however, caused lower regulated and unregulated emissions and fuel consumption than diesel. (author)

  5. Ohio's First Ethanol-Fueled Light-Duty Fleet: Final Study Results

    Energy Technology Data Exchange (ETDEWEB)

    Battelle

    1998-10-01

    In 1996, the State of Ohio established a project to demonstrate the use of an ethanol blend (E85, which is 85% transportation-grade ethanol and 15% gasoline) as a transportation fuel in flexible-fuel vehicles (FFVs). The study included ten FFVs and three gasoline vehicles (used as control vehicles) operated by five state agencies. The project included 24 months of data collection on vehicle operations. This report presents the data collection and analysis from the study, with a focus on the last year.

  6. 40 CFR 86.1822-01 - Durability data vehicle selection.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 19 2010-07-01 2010-07-01 false Durability data vehicle selection. 86... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) General Compliance Provisions for Control of Air Pollution From New and In-Use Light-Duty Vehicles, Light...

  7. 40 CFR 86.1828-01 - Emission data vehicle selection.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 19 2010-07-01 2010-07-01 false Emission data vehicle selection. 86... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) General Compliance Provisions for Control of Air Pollution From New and In-Use Light-Duty Vehicles, Light...

  8. 40 CFR 86.1828-10 - Emission data vehicle selection.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 19 2010-07-01 2010-07-01 false Emission data vehicle selection. 86... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) General Compliance Provisions for Control of Air Pollution From New and In-Use Light-Duty Vehicles, Light...

  9. Clean Cities 2011 Vehicle Buyer's Guide

    Energy Technology Data Exchange (ETDEWEB)

    2011-01-01

    The 2011 Clean Cities Light-Duty Vehicle Buyer's Guide is a consumer publication that provides a comprehensive list of commercially available alternative fuel and advanced vehicles in model year 2011. The guide allows for side-by-side comparisons of fuel economy, price, emissions, and vehicle specifications.

  10. Clean Cities 2014 Vehicle Buyer's Guide (Brochure)

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2013-12-01

    This annual guide features a comprehensive list of 2014 light-duty alternative fuel and advanced vehicles, grouped by fuel and technology. The guide provides model-specific information on vehicle specifications, manufacturer suggested retail price, fuel economy, energy impact, and emissions. The information can be used to identify options, compare vehicles, and help inform purchase decisions.

  11. Experimental investigation of gasoline compression ignition combustion in a light-duty diesel engine

    Science.gov (United States)

    Loeper, C. Paul

    Due to increased ignition delay and volatility, low temperature combustion (LTC) research utilizing gasoline fuel has experienced recent interest [1-3]. These characteristics improve air-fuel mixing prior to ignition allowing for reduced emissions of nitrogen oxides (NOx) and soot (or particulate matter, PM). Computational fluid dynamics (CFD) results at the University of Wisconsin-Madison's Engine Research Center (Ra et al. [4, 5]) have validated these attributes and established baseline operating parameters for a gasoline compression ignition (GCI) concept in a light-duty diesel engine over a large load range (3-16 bar net IMEP). In addition to validating these computational results, subsequent experiments at the Engine Research Center utilizing a single cylinder research engine based on a GM 1.9-liter diesel engine have progressed fundamental understanding of gasoline autoignition processes, and established the capability of critical controlling input parameters to better control GCI operation. The focus of this thesis can be divided into three segments: 1) establishment of operating requirements in the low-load operating limit, including operation sensitivities with respect to inlet temperature, and the capabilities of injection strategy to minimize NOx emissions while maintaining good cycle-to-cycle combustion stability; 2) development of novel three-injection strategies to extend the high load limit; and 3) having developed fundamental understanding of gasoline autoignition kinetics, and how changes in physical processes (e.g. engine speed effects, inlet pressure variation, and air-fuel mixture processes) affects operation, develop operating strategies to maintain robust engine operation. Collectively, experimental results have demonstrated the ability of GCI strategies to operate over a large load-speed range (3 bar to 17.8 bar net IMEP and 1300-2500 RPM, respectively) with low emissions (NOx and PM less than 1 g/kg-FI and 0.2 g/kg-FI, respectively), and low

  12. 2015 Vehicle Technologies Market Report

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Stacy C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Williams, Susan E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Boundy, Robert G. [Roltek, Inc., Clinton, TN (United States); Moore, Sheila [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-04-01

    This is the seventh edition of the Vehicle Technologies Market Report, which details the major trends in U.S. light-duty vehicle and medium/heavy truck markets as well as the underlying trends that caused them. This report is supported by the U.S. Department of Energy s (DOE) Vehicle Technologies Office (VTO), and, in accord with its mission, pays special attention to the progress of high-efficiency and alternative-fuel technologies. After opening with a discussion of energy and economics, this report features a section each on the light-duty vehicle and heavy/medium truck markets, and concluding with a section each on technology and policy. The first section on Energy and Economics discusses the role of transportation energy and vehicle markets on a national (and even international) scale. For example, Figures 12 through 14 discuss the connections between global oil prices and U.S. GDP, and Figures 22 and 23 show U.S. employment in the automotive sector. The following section examines Light-Duty Vehicle use, markets, manufacture, and supply chains. Figures 27 through 63 offer snapshots of major light-duty vehicle brands in the United States and Figures 70 through 81 examine the performance and efficiency characteristics of vehicles sold. The discussion of Medium and Heavy Trucks offers information on truck sales (Figures 90 through 94) and fuel use (Figures 97 through 100). The Technology section offers information on alternative fuel vehicles and infrastructure (Figures 105 through 118), and the Policy section concludes with information on recent, current, and near-future Federal policies like the Corporate Average Fuel Economy standard (Figures 130 through 137). In total, the information contained in this report is intended to communicate a fairly complete understanding of U.S. highway transportation energy through a series of easily digestible nuggets. Suggestions for future expansion, additional information, or other improvements are most welcome.

  13. 2016 Vehicle Technologies Market Report

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Stacy Cagle [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Williams, Susan E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Boundy, Robert Gary [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Moore, Sheila A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-05-01

    This is the seventh edition of this report, which details the major trends in U.S. light-duty vehicle and medium/heavy truck markets. This report is supported by the U.S. Department of Energy s (DOE) Vehicle Technologies Office (VTO), and, in accord with its mission, pays special attention to the progress of high-efficiency and alternative-fuel technologies. After opening with a discussion of energy and economics, this report features a section each on the light-duty vehicle and heavy/medium truck markets, and concluding with a section each on technology and policy. The first section on Energy and Economics discusses the role of transportation energy and vehicle markets on a national (and even international) scale. For example, Figures 12 through 14 discuss the connections between global oil prices and U.S. GDP, and Figures 21 and 22 show U.S. employment in the automotive sector. The following section examines Light-Duty Vehicle use, markets, manufacture, and supply chains. Figures 27 through 69 offer snapshots of major light-duty vehicle brands in the United States and Figures 73 through 85 examine the performance and efficiency characteristics of vehicles sold. The discussion of Medium and Heavy Trucks offers information on truck sales (Figures 94 through 98) and fuel use (Figures 101 through 104). The Technology section offers information on alternative fuel vehicles and infrastructure (Figures 109 through 123), and the Policy section concludes with information on recent, current, and near-future Federal policies like the Corporate Average Fuel Economy standard (Figures 135 through 142). In total, the information contained in this report is intended to communicate a fairly complete understanding of U.S. highway transportation energy through a series of easily digestible nuggets. Suggestions for future expansion, additional information, or other improvements are most welcome.

  14. 2013 Vehicle Technologies Market Report

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Stacy Cagle [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Williams, Susan E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Boundy, Robert Gary [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Moore, Sheila A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2014-03-01

    This is the fifth edition of this report, which details the major trends in U.S. light-duty vehicle and medium/heavy truck markets as well as the underlying trends that caused them. This report is supported by the U.S. Department of Energy s (DOE) Vehicle Technologies Office (VTO), and, in accord with its mission, pays special attention to the progress of high-efficiency and alternative-fuel technologies. After opening with a discussion of energy and economics, this report features a section each on the light-duty vehicle and heavy/medium truck markets, and concluding with a section each on technology and policy. The first section on Energy and Economics discusses the role of transportation energy and vehicle markets on a national (and even international) scale. For example, Figures 12 through 14 discuss the connections between global oil prices and U.S. GDP, and Figures 21 and 22 show U.S. employment in the automotive sector. The following section examines Light-Duty Vehicle use, markets, manufacture, and supply chains. Figures 24 through 51 offer snapshots of major light-duty vehicle brands in the U.S. and Figures 56 through 64 examine the performance and efficiency characteristics of vehicles sold. The discussion of Medium and Heavy Trucks offers information on truck sales (Figures 73 through 75) and fuel use (Figures 78 through 81). The Technology section offers information on alternative fuel vehicles and infrastructure (Figures 84 through 95), and the Policy section concludes with information on recent, current, and near-future Federal policies like the Corporate Average Fuel Economy standard (Figures 106 through 110). In total, the information contained in this report is intended to communicate a fairly complete understanding of U.S. highway transportation energy through a series of easily digestible nuggets.

  15. 40 CFR 86.000-8 - Emission standards for 2000 and later model year light-duty vehicles.

    Science.gov (United States)

    2010-07-01

    ..., the manufacturer must establish to the satisfaction of the Administrator that actual production volume... high altitude. (4) The air to fuel ratio shall not be richer at any time than the leanest air to fuel mixture required to obtain maximum torque (lean best torque), plus a tolerance of six (6) percent. The...

  16. 77 FR 64051 - 2017 and Later Model Year Light-Duty Vehicle Greenhouse Gas Emissions and Corporate Average Fuel...

    Science.gov (United States)

    2012-10-18

    ... and address global climate change. Need for Correction As published, the final regulations... 2014 2015 2016 2017-2025 Passenger Cars 150,922 177,238 177,366 178,652 180,497 182,134 195,264 Light...

  17. 76 FR 76932 - Public Hearings for 2017 and Later Model Year Light-Duty Vehicle Greenhouse Gas Emissions and...

    Science.gov (United States)

    2011-12-09

    ... Web site at http://www.nhtsa.gov/fuel-economy . Three hearings will be held, on January 17, January 19... you require accommodations such as a sign language interpreter or translator. Questions concerning the... proposal by visiting NHTSA's or EPA's web pages at http://www.nhtsa.gov/fuel-economy or http://www.epa.gov...

  18. 78 FR 5347 - Denial of Reconsideration Petition on Model Year 2012-2016 Light Duty Vehicle Greenhouse Gas...

    Science.gov (United States)

    2013-01-25

    ....'' PLF argues that this case falls under the first asserted principle, as the procedural requirement... New Jersey v. EPA, 626 F. 2d 1038, 1049-50 (D.C. Cir. 1980) and Sugar Cane Growers Coop. of Fla. v... general rule petitioners claim, and are not on point. Both State of New Jersey and Sugar Cane Growers...

  19. 75 FR 25323 - Light-Duty Vehicle Greenhouse Gas Emission Standards and Corporate Average Fuel Economy Standards...

    Science.gov (United States)

    2010-05-07

    ... Greenhouse Gas Emission Standards and Corporate Average Fuel Economy Standards; Final Rule #0;#0;Federal... Fuel Economy Standards; Final Rule AGENCY: Environmental Protection Agency (EPA) and National Highway... reduce greenhouse gas emissions and improve fuel economy. This joint Final Rule is consistent with the...

  20. 2014 Vehicle Technologies Market Report

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Stacy Cagle [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Diegel, Susan W [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Boundy, Robert Gary [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Moore, Sheila A [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-03-01

    This is the sixth edition of this report, which details the major trends in U.S. light-duty vehicle and medium/heavy truck markets as well as the underlying trends that caused them. This report is supported by the U.S. Department of Energy s (DOE) Vehicle Technologies Office (VTO), and, in accord with its mission, pays special attention to the progress of high-efficiency and alternative-fuel technologies. After opening with a discussion of energy and economics, this report features a section each on the light-duty vehicle and heavy/medium truck markets, and concluding with a section each on technology and policy. The first section on Energy and Economics discusses the role of transportation energy and vehicle markets on a national (and even international) scale. The following section examines Light-Duty Vehicle use, markets, manufacture, and supply chains. The discussion of Medium and Heavy Trucks offers information on truck sales and technologies specific to heavy trucks. The Technology section offers information on alternative fuel vehicles and infrastructure, and the Policy section concludes with information on recent, current, and near-future Federal policies like the Corporate Average Fuel Economy standards. In total, the information contained in this report is intended to communicate a fairly complete understanding of U.S. highway transportation energy through a series of easily digestible tables and figures.

  1. 76 FR 19829 - Clean Alternative Fuel Vehicle and Engine Conversions

    Science.gov (United States)

    2011-04-08

    ... INFORMATION CONTACT: Amy Bunker, Compliance and Innovative Strategies Division, U.S. Environmental Protection... Vehicle/Engine Selection D. Mixed-Fuel and Dual-Fuel Conversions E. Vehicle/Engine Labels, Packaging Labels, and Marketing F. Compliance 1. Emission Standards a. Light-Duty and Heavy-Duty Chassis Certified...

  2. Simulation of biodiesel combustion in a light-duty diesel engine using integrated compact biodiesel–diesel reaction mechanism

    DEFF Research Database (Denmark)

    Ng, Hoon Kiat; Gan, Suyin; Ng, Jo-Han

    2013-01-01

    This computational fluid dynamics (CFD) study is performed to investigate the combustion characteristics and emissions formation processes of biodiesel fuels in a light-duty diesel engine. A compact reaction mechanism with 80 species and 303 reactions is used to account for the effects of chemical...... kinetics. Here, the mechanism is capable of emulating biodiesel–diesel mixture of different blending levels and biodiesel produced from different feedstock. The integrated CFD-kinetic model was validated against a test matrix which covers the entire saturated–unsaturated methyl ester range typical...... of biodiesel fuels, as well as the biodiesel–diesel blending levels. The simulated cases were then validated for in-cylinder pressure profiles and peak pressure values/timings. Errors in the peak pressure values did not exceed 1%, while the variations in peak pressure timings were kept within 1.5 crank angle...

  3. Annual Report: DOE Advanced Combustion Systems & Fuels R&D; Light-Duty Diesel Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Busch, Stephen [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2017-11-01

    Despite compliance issues in previous years, automakers have demonstrated that the newest generation of diesel power trains are capable of meeting all federal and state regulations (EPA, 2016). Diesels continue to be a cost-effective, efficient, powerful propulsion source for many light- and medium-duty vehicle applications (Martec, 2016). Even modest reductions in the fuel consumption of light- and medium duty diesel vehicles in the U.S. will eliminate millions of tons of CO2 emissions per year. Continued improvement of diesel combustion systems will play an important role in reducing fleet fuel consumption, but these improvements will require an unprecedented scientific understanding of how changes in engine design and calibration affect the mixture preparation, combustion, and pollutant formation processes that take place inside the cylinder. The focus of this year’s research is to provide insight into the physical mechanisms responsible for improved thermal efficiency observed with a stepped-lip piston. Understanding how piston design can influence efficiency will help engineers develop and optimize new diesel combustion systems.

  4. Final Rule for Control of Air Pollution From New Motor Vehicles and New Motor Vehicle Engines: Voluntary Standards for Light-Duty Vehicles

    Science.gov (United States)

    The National LEV program demonstrates how cooperative, partnership efforts can produce a smarter, cheaper program that reduces regulatory burden while increasing protection of the environment and public health.

  5. Clean Cities 2014 Vehicle Buyer's Guide

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-12-01

    The Clean Cities 2014 Vehicle Buyer's Guide is an annual guide which features a comprehensive list of 2014 light-duty alternative fuel and advanced vehicles, grouped by fuel and technology. The guide provides model-specific information on vehicle specifications, manufacturer suggested retail price, fuel economy, energy impact, and emissions. The information can be used to identify options, compare vehicles, and help inform purchase decisions.

  6. A computational investigation of diesel and biodiesel combustion and NOx formation in a light-duty compression ignition engine

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zihan [Mississippi State Univ., Mississippi State, MS (United States). Dept. of Mechanical Engineering; Srinivasan, Kalyan K. [Mississippi State Univ., Mississippi State, MS (United States). Dept. of Mechanical Engineering; Krishnan, Sundar R. [Mississippi State Univ., Mississippi State, MS (United States). Dept. of Mechanical Engineering; Som, Sibendu [Argonne National Lab. (ANL), Argonne, IL (United States). Center for Transportation Research

    2012-04-24

    Diesel and biodiesel combustion in a multi-cylinder light duty diesel engine were simulated during a closed cycle (from IVC to EVO), using a commercial computational fluid dynamics (CFD) code, CONVERGE, coupled with detailed chemical kinetics. The computational domain was constructed based on engine geometry and compression ratio measurements. A skeletal n-heptane-based diesel mechanism developed by researchers at Chalmers University of Technology and a reduced biodiesel mechanism derived and validated by Luo and co-workers were applied to model the combustion chemistry. The biodiesel mechanism contains 89 species and 364 reactions and uses methyl decanoate, methyl-9- decenoate, and n-heptane as the surrogate fuel mixture. The Kelvin-Helmholtz and Rayleigh-Taylor (KH-RT) spray breakup model for diesel and biodiesel was calibrated to account for the differences in physical properties of the fuels which result in variations in atomization and spray development characteristics. The simulations were able to capture the experimentally observed pressure and apparent heat release rate trends for both the fuels over a range of engine loads (BMEPs from 2.5 to 10 bar) and fuel injection timings (from 0° BTDC to 10° BTDC), thus validating the overall modeling approach as well as the chemical kinetic models of diesel and biodiesel surrogates. Moreover, quantitative NOx predictions for diesel combustion and qualitative NOx predictions for biodiesel combustion were obtained with the CFD simulations and the in-cylinder temperature trends were correlated to the NOx trends.

  7. The influence of charge stratification on the spectral signature of partially premixed combustion in a light-duty optical engine

    KAUST Repository

    Najafabadi, M. Izadi

    2017-03-25

    The origin of light emission during low-temperature combustion in a light-duty IC engine is investigated by high-speed spectroscopy in both HCCI and PPC regimes. Chemiluminescence and thermal radiation are expected to be the dominant sources of light emission during combustion. A method has been developed to distinguish chemiluminescence from thermal radiation, and different chemiluminescing species could be identified. Different combustion modes and global equivalence ratios are analyzed in this manner. The results indicate that the spectral signature (270–540 nm range) of the combustion is highly dependent on the stratification level. A significant broadband chemiluminescence signal is detected and superimposed on all spectra. This broadband chemiluminescence signal can reach up to 100 percent of the total signal in HCCI combustion, while it drops to around 80 percent for stratified combustion (PPC). We show that this broadband signal can be used as a measure for the heat release rate. The broadband chemiluminescence did also correlate with the equivalence ratio quite well in both HCCI and PPC regimes, suggesting that the total emission in the spectral region of 330–400 nm can serve as a proxy of equivalence ratio and the rate of heat release. Regarding C2* chemiluminescence, we see two different chemical mechanisms for formation of C2* in the PPC regime: first during the early stage of combustion by the breakup of bigger molecules and the second during the late stage of combustion when soot particles are forming.

  8. The effects of biodiesels on semivolatile and nonvolatile particulate matter emissions from a light-duty diesel engine.

    Science.gov (United States)

    Cheng, Yuan; Li, Shao-Meng; Liggio, John; Hayden, Katherine; Han, Yuemei; Stroud, Craig; Chan, Tak; Poitras, Marie-Josée

    2017-11-01

    Semivolatile organic compounds (SVOCs) represent a dominant category of secondary organic aerosol precursors that are increasingly included in air quality models. In the present study, an experimental system was developed and applied to a light-duty diesel engine to determine the emission factors of particulate SVOCs (pSVOCs) and nonvolatile particulate matter (PM) components at dilution ratios representative of ambient conditions. The engine was tested under three steady-state operation modes, using ultra-low-sulfur diesel (ULSD), three types of pure biodiesels and their blends with ULSD. For ULSD, the contribution of pSVOCs to total particulate organic matter (POM) mass in the engine exhaust ranged between 21 and 85%. Evaporation of pSVOCs from the diesel particles during dilution led to decreases in the hydrogen to carbon ratio of POM and the PM number emission factor of the particles. Substituting biodiesels for ULSD could increase pSVOCs emissions but brought on large reductions in black carbon (BC) emissions. Among the biodiesels tested, tallow/used cooking oil (UCO) biodiesel showed advantages over soybean and canola biodiesels in terms of both pSVOCs and nonvolatile PM emissions. It is noteworthy that PM properties, such as particle size and BC mass fraction, differed substantially between emissions from conventional diesel and biodiesels. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Assessment of risks for elevated NOx emissions of diesel vehicles outside the boundaries of RDE. Identifying relevant driving and vehicle conditions and possible abatement measures

    NARCIS (Netherlands)

    Mensch, P. van; Cuelenaere, R.F.A.; Ligterink, N.E.

    2017-01-01

    With RDE (Real Driving Emissions) legislation a new chapter in emission testing has started for light-duty vehicles. RDE legislation poses new and more complex engineering targets for manufacturers. The expectation is that RDE will bring major improvements in the emission performance of LD vehicles

  10. A Review of Electric Vehicle Lifecycle Emissions and Policy Recommendations to Increase EV Penetration in India

    OpenAIRE

    Rachana Vidhi; Prasanna Shrivastava

    2018-01-01

    Electric vehicles reduce pollution only if a high percentage of the electricity mix comes from renewable sources and if the battery manufacturing takes place at a site far from the vehicle use region. Industries developed due to increased electric vehicle adoption may also cause additional air pollution. The Indian government has committed to solving New Delhi’s air pollution issues through an ambitious policy of switching 100% of the light duty consumer vehicles to electric vehicles by 2030....

  11. 40 CFR Appendix A to Subpart IIIi... - Determination of Capture Efficiency of Automobile and Light-Duty Truck Spray Booth Emissions From...

    Science.gov (United States)

    2010-07-01

    ... captured and delivered to the control device by the fraction of coating sprayed in the spray booth that is... Emission Rate of Automobile and Light-Duty Truck Topcoat Operations,” EPA-450/3-88-018 (Docket ID No. OAR...-Duty Truck Topcoat Operations,” EPA-450/3-88-018 (Docket ID No. OAR-2002-0093 and Docket ID No. A-2001...

  12. 77 FR 53199 - California State Motor Vehicle Pollution Control Standards; Advanced Clean Car Program; Request...

    Science.gov (United States)

    2012-08-31

    ... cars, light-duty trucks and medium-duty passenger vehicles (and limited requirements related to heavy... ENVIRONMENTAL PROTECTION AGENCY [AMS-FRL-9724-4] California State Motor Vehicle Pollution Control Standards; Advanced Clean Car Program; Request for Waiver of Preemption; Opportunity for Public Hearing and...

  13. Safety and Cost Assessment of Connected and Automated Vehicles

    Science.gov (United States)

    2018-03-29

    Many light-duty vehicle crashes occur due to human error and distracted driving. The National Highway Traffic Safety Administration (NHTSA) reports that ten percent of all fatal crashes and seventeen percent of injury crashes in 2011 were a result of...

  14. Benefits of recent improvements in vehicle fuel economy.

    Science.gov (United States)

    2014-10-01

    For the past several years, we have calculated (on a monthly basis) the average, sales-weighted fuel economy of all light-duty vehicles (cars, pickup trucks, vans, and SUVs) sold in : the U.S. The results indicate that, from October 2007 to September...

  15. 40 CFR 86.096-24 - Test vehicles and engines.

    Science.gov (United States)

    2010-07-01

    ... in the Production AMA Durability Program, the engine families covered by an application for...) Method of carburetor sealing. (iii) Method of air cleaner sealing. (iv) Vapor storage working capacity... and light-duty trucks, but does not apply to the production vehicles selected under paragraph (h) of...

  16. Comparison of Vehicle Choice Models

    Energy Technology Data Exchange (ETDEWEB)

    Stephens, Thomas S. [Argonne National Lab. (ANL), Argonne, IL (United States); Levinson, Rebecca S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Brooker, Aaron [National Renewable Energy Lab. (NREL), Golden, CO (United States); Liu, Changzheng [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Lin, Zhenhong [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Birky, Alicia [Energetics Incorporated, Columbia, MD (United States); Kontou, Eleftheria [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-10-01

    Five consumer vehicle choice models that give projections of future sales shares of light-duty vehicles were compared by running each model using the same inputs, where possible, for two scenarios. The five models compared — LVCFlex, MA3T, LAVE-Trans, ParaChoice, and ADOPT — have been used in support of the Energy Efficiency and Renewable Energy (EERE) Vehicle Technologies Office in analyses of future light-duty vehicle markets under different assumptions about future vehicle technologies and market conditions. The models give projections of sales shares by powertrain technology. Projections made using common, but not identical, inputs showed qualitative agreement, with the exception of ADOPT. ADOPT estimated somewhat lower advanced vehicle shares, mostly composed of hybrid electric vehicles. Other models projected large shares of multiple advanced vehicle powertrains. Projections of models differed in significant ways, including how different technologies penetrated cars and light trucks. Since the models are constructed differently and take different inputs, not all inputs were identical, but were the same or very similar where possible.

  17. Analysis of Emission Effects Related to Drivers’ Compliance Rates for Cooperative Vehicle-Infrastructure System at Signalized Intersections

    Directory of Open Access Journals (Sweden)

    Ruohua Liao

    2018-01-01

    Full Text Available Unknown remaining time of signal phase at a signalized intersection generally results in extra accelerations and decelerations that increase variations of operating conditions and thus emissions. A cooperative vehicle-infrastructure system can reduce unnecessary speed changes by establishing communications between vehicles and the signal infrastructure. However, the environmental benefits largely depend on drivers’ compliance behaviors. To quantify the effects of drivers’ compliance rates on emissions, this study applied VISSIM 5.20 (Planung Transport Verkehr AG, Karlsruhe, Germany to develop a simulation model for a signalized intersection, in which light duty vehicles were equipped with a cooperative vehicle-infrastructure system. A vehicle-specific power (VSP-based model was used to estimate emissions. Based on simulation data, the effects of different compliance rates on VSP distributions, emission factors, and total emissions were analyzed. The results show the higher compliance rate decreases the proportion of VSP bin = 0, which means that the frequencies of braking and idling were lower and light duty vehicles ran more smoothly at the intersection if more light duty vehicles complied with the cooperative vehicle-infrastructure system, and emission factors for light duty vehicles decreased significantly as the compliance rate increased. The case study shows higher total emission reductions were observed with higher compliance rate for all of CO2, NOx, HC, and CO emissions. CO2 was reduced most significantly, decreased by 16% and 22% with compliance rates of 0.3 and 0.7, respectively.

  18. Analysis of Emission Effects Related to Drivers' Compliance Rates for Cooperative Vehicle-Infrastructure System at Signalized Intersections.

    Science.gov (United States)

    Liao, Ruohua; Chen, Xumei; Yu, Lei; Sun, Xiaofei

    2018-01-12

    Unknown remaining time of signal phase at a signalized intersection generally results in extra accelerations and decelerations that increase variations of operating conditions and thus emissions. A cooperative vehicle-infrastructure system can reduce unnecessary speed changes by establishing communications between vehicles and the signal infrastructure. However, the environmental benefits largely depend on drivers' compliance behaviors. To quantify the effects of drivers' compliance rates on emissions, this study applied VISSIM 5.20 (Planung Transport Verkehr AG, Karlsruhe, Germany) to develop a simulation model for a signalized intersection, in which light duty vehicles were equipped with a cooperative vehicle-infrastructure system. A vehicle-specific power (VSP)-based model was used to estimate emissions. Based on simulation data, the effects of different compliance rates on VSP distributions, emission factors, and total emissions were analyzed. The results show the higher compliance rate decreases the proportion of VSP bin = 0, which means that the frequencies of braking and idling were lower and light duty vehicles ran more smoothly at the intersection if more light duty vehicles complied with the cooperative vehicle-infrastructure system, and emission factors for light duty vehicles decreased significantly as the compliance rate increased. The case study shows higher total emission reductions were observed with higher compliance rate for all of CO₂, NO x , HC, and CO emissions. CO₂ was reduced most significantly, decreased by 16% and 22% with compliance rates of 0.3 and 0.7, respectively.

  19. Analysis of Emission Effects Related to Drivers’ Compliance Rates for Cooperative Vehicle-Infrastructure System at Signalized Intersections

    Science.gov (United States)

    Liao, Ruohua; Yu, Lei; Sun, Xiaofei

    2018-01-01

    Unknown remaining time of signal phase at a signalized intersection generally results in extra accelerations and decelerations that increase variations of operating conditions and thus emissions. A cooperative vehicle-infrastructure system can reduce unnecessary speed changes by establishing communications between vehicles and the signal infrastructure. However, the environmental benefits largely depend on drivers’ compliance behaviors. To quantify the effects of drivers’ compliance rates on emissions, this study applied VISSIM 5.20 (Planung Transport Verkehr AG, Karlsruhe, Germany) to develop a simulation model for a signalized intersection, in which light duty vehicles were equipped with a cooperative vehicle-infrastructure system. A vehicle-specific power (VSP)-based model was used to estimate emissions. Based on simulation data, the effects of different compliance rates on VSP distributions, emission factors, and total emissions were analyzed. The results show the higher compliance rate decreases the proportion of VSP bin = 0, which means that the frequencies of braking and idling were lower and light duty vehicles ran more smoothly at the intersection if more light duty vehicles complied with the cooperative vehicle-infrastructure system, and emission factors for light duty vehicles decreased significantly as the compliance rate increased. The case study shows higher total emission reductions were observed with higher compliance rate for all of CO2, NOx, HC, and CO emissions. CO2 was reduced most significantly, decreased by 16% and 22% with compliance rates of 0.3 and 0.7, respectively. PMID:29329214

  20. 2011 Vehicle Technologies Market Report

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Stacy Cagle [ORNL; Boundy, Robert Gary [ORNL; Diegel, Susan W [ORNL

    2012-02-01

    This report details the major trends in U.S. light-duty vehicle and medium/heavy truck markets as well as the underlying trends that caused them. This report is supported by the U.S. Department of Energy s (DOE) Vehicle Technologies Program (VTP), and, in accord with its mission, pays special attention to the progress of high-efficiency and alternative-fuel technologies. This third edition since this report was started in 2008 offers several marked improvements relative to its predecessors. Most significantly, where earlier editions of this report focused on supplying information through an examination of market drivers, new vehicle trends, and supplier data, this edition uses a different structure. After opening with a discussion of energy and economics, this report features a section each on the light-duty vehicle and heavy/medium truck markets, and concluding with a section each on technology and policy. In addition to making this sectional re-alignment, this year s edition of the report also takes a different approach to communicating information. While previous editions relied heavily on text accompanied by auxiliary figures, this third edition relies primarily on charts and graphs to communicate trends. Any accompanying text serves to introduce the trends communication by the graphic and highlight any particularly salient observations. The opening section on Energy and Economics discusses the role of transportation energy and vehicle markets on a national (and even international) scale. For example, Figures 11 through 13 discuss the connections between global oil prices and U.S. GDP, and Figures 20 and 21 show U.S. employment in the automotive sector. The following section examines Light-Duty Vehicle use, markets, manufacture, and supply chains. Figures 26 through 33 offer snapshots of major light-duty vehicle brands in the U.S. and Figures 38 through 43 examine the performance and efficiency characteristics of vehicles sold. The discussion of Medium and

  1. Electric vehicle demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Ouellet, M. [National Centre for Advanced Transportation, Saint-Jerome, PQ (Canada)

    2010-07-01

    The desirable characteristics of Canadian projects that demonstrate vehicle use in real-world operation and the appropriate mechanism to collect and disseminate the monitoring data were discussed in this presentation. The scope of the project was on passenger cars and light duty trucks operating in plug-in electric vehicle (PHEV) or battery electric vehicle modes. The presentation also discussed the funding, stakeholders involved, Canadian travel pattern analysis, regulatory framework, current and recent electric vehicle demonstration projects, and project guidelines. It was concluded that some demonstration project activities may have been duplicated as communication between the proponents was insufficient. It was recommended that data monitoring using automatic data logging with minimum reliance on logbooks and other user entry should be emphasized. figs.

  2. Co-Optimization of Fuels & Engines (Co-Optima) Initiative: Recent Progress on Light-Duty Boosted Spark-Ignition Fuels/Engines

    Energy Technology Data Exchange (ETDEWEB)

    Farrell, John

    2017-07-03

    This presentation reports recent progress on light-duty boosted spark-ignition fuels/engines being developed under the Co-Optimization of Fuels and Engines initiative (Co-Optima). Co-Optima is focused on identifying fuel properties that optimize engine performance, independent of composition, allowing the market to define the best means to blend and provide these fuels. However, in support of this, we are pursuing a systematic study of blendstocks to identify a broad range of feasible options, with the objective of identifying blendstocks that can provide target ranges of key fuel properties, identifying trade-offs on consistent and comprehensive basis, and sharing information with stakeholders.

  3. TAFV Alternative Fuels and Vehicles Choice Model Documentation; TOPICAL

    International Nuclear Information System (INIS)

    Greene, D.L.

    2001-01-01

    A model for predicting choice of alternative fuel and among alternative vehicle technologies for light-duty motor vehicles is derived. The nested multinomial logit (NML) mathematical framework is used. Calibration of the model is based on information in the existing literature and deduction based on assuming a small number of key parameters, such as the value of time and discount rates. A spreadsheet model has been developed for calibration and preliminary testing of the model

  4. Estimated Bounds and Important Factors for Fuel Use and Consumer Costs of Connected and Automated Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Stephens, T. S. [Argonne National Lab. (ANL), Argonne, IL (United States); Gonder, Jeff [National Renewable Energy Lab. (NREL), Golden, CO (United States); Chen, Yuche [National Renewable Energy Lab. (NREL), Golden, CO (United States); Lin, Z. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Liu, C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Gohlke, D. [US Dept. of Energy, Washington, DC (United States)

    2016-11-01

    This report details a study of the potential effects of connected and automated vehicle (CAV) technologies on vehicle miles traveled (VMT), vehicle fuel efficiency, and consumer costs. Related analyses focused on a range of light-duty CAV technologies in conventional powertrain vehicles -- from partial automation to full automation, with and without ridesharing -- compared to today's base-case scenario. Analysis results revealed widely disparate upper- and lower-bound estimates for fuel use and VMT, ranging from a tripling of fuel use to decreasing light-duty fuel use to below 40% of today's level. This wide range reflects uncertainties in the ways that CAV technologies can influence vehicle efficiency and use through changes in vehicle designs, driving habits, and travel behavior. The report further identifies the most significant potential impacting factors, the largest areas of uncertainty, and where further research is particularly needed.

  5. Thermoelectric Waste Heat Recovery Program for Passenger Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Jovovic, Vladimir [Gentherm Incorporated, Azusa, CA (United States)

    2015-12-31

    Gentherm began work in October 2011 to develop a Thermoelectric Waste Energy Recovery System for passenger vehicle applications. Partners in this program were BMW and Tenneco. Tenneco, in the role of TIER 1 supplier, developed the system-level packaging of the thermoelectric power generator. As the OEM, BMW Group demonstrated the TEG system in their vehicle in the final program phase. Gentherm demonstrated the performance of the TEG in medium duty and heavy duty vehicles. Technology developed and demonstrated in this program showed potential to reduce fuel consumption in medium and heavy duty vehicles. In light duty vehicles it showed more modest potential.

  6. 2012 Vehicle Technologies Market Report

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Stacy Cagle [ORNL; Diegel, Susan W [ORNL; Boundy, Robert Gary [ORNL

    2013-03-01

    The Oak Ridge National Laboratory s Center for Transportation Analysis developed and published the first Vehicle Technologies Market Report in 2008. Three editions of the report have been published since that time. This 2012 report details the major trends in U.S. light vehicle and medium/heavy truck markets as well as the underlying trends that caused them. The opening section on Energy and Economics discusses the role of transportation energy and vehicle markets on a national scale. The following section examines light-duty vehicle use, markets, manufacture, and supply chains. The discussion of medium and heavy trucks offers information on truck sales and fuel use. The technology section offers information on alternative fuel vehicles and infrastructure, and the policy section concludes with information on recent, current, and near-future Federal policies like the Corporate Average Fuel Economy standards.

  7. Euro VI technologies and costs for Heavy Duty vehicles: the expert panels summary of stakeholders responses

    NARCIS (Netherlands)

    Gense, N.L.J.; Riemersma, I.J.; Such, C.l; Ntziachristos, L.

    2006-01-01

    This report is the result of the work carried out under on the Europeans Commission’s call for tender regarding “Technical support for the Commission DG Environment on the development of Euro 5 standards for light-duty vehicles and Euro VI standards for heavy-duty vehicles” (Reference:

  8. Comparison of Vehicle Choice Models

    Energy Technology Data Exchange (ETDEWEB)

    Stephens, Thomas S. [Argonne National Lab. (ANL), Argonne, IL (United States); Levinson, Rebecca S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Brooker, Aaron [National Renewable Energy Lab. (NREL), Golden, CO (United States); Liu, Changzheng [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Lin, Zhenhong [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Birky, Alicia [Energetics Incorporated, Columbia, MD (United States); Kontou, Eleftheria [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-10-31

    Five consumer vehicle choice models that give projections of future sales shares of light-duty vehicles were compared by running each model using the same inputs, where possible, for two scenarios. The five models compared — LVCFlex, MA3T, LAVE-Trans, ParaChoice, and ADOPT — have been used in support of the Energy Efficiency and Renewable Energy (EERE) Vehicle Technologies Office in analyses of future light-duty vehicle markets under different assumptions about future vehicle technologies and market conditions. The models give projections of sales shares by powertrain technology. Projections made using common, but not identical, inputs showed qualitative agreement, with the exception of ADOPT. ADOPT estimated somewhat lower advanced vehicle shares, mostly composed of hybrid electric vehicles. Other models projected large shares of multiple advanced vehicle powertrains. Projections of models differed in significant ways, including how different technologies penetrated cars and light trucks. Since the models are constructed differently and take different inputs, not all inputs were identical, but were the same or very similar where possible. Projections by all models were in close agreement only in the first few years. Although the projections from LVCFlex, MA3T, LAVE-Trans, and ParaChoice were in qualitative agreement, there were significant differences in sales shares given by the different models for individual powertrain types, particularly in later years (2030 and later). For example, projected sales shares of conventional spark-ignition vehicles in 2030 for a given scenario ranged from 35% to 74%. Reasons for such differences are discussed, recognizing that these models were not developed to give quantitatively accurate predictions of future sales shares, but to represent vehicles markets realistically and capture the connections between sales and important influences. Model features were also compared at a high level, and suggestions for further comparison

  9. 78 FR 60275 - Alternative Method for Calculating Off-Cycle Credits for Mercedes-Benz Vehicles Under the Light...

    Science.gov (United States)

    2013-10-01

    ...., small/mid-size/large cars and light-duty trucks) (See Section II-III of Mercedes-Benz Application...-start effectiveness unless the vehicle possesses an electric heater circulation pump, or equivalent...-start system includes an electric [[Page 60278

  10. Development of step for light duty truck by using injection molding of long-fiber reinforced thermoplastics; Chosen`i kyoka jushi no shashutsu keisei ni yoru truck yo step no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Togo, A; Yamamura, H; Yamaguchi, M [Mitsubishi Motor Corp., Tokyo (Japan); Yoshino, K [Kawasaki Steel Corp. Tokyo (Japan)

    1997-10-01

    The new step for light duty truck was developed by injection molding of glass long-fiber reinforced polypropylene. Feature of the step is good surface appearance and no post processings, compared with the conventional one press molded with a glass fiber reinforced polypropylene sheet (Stampable sheet). 3 refs., 14 figs., 6 tabs.

  11. 40 CFR 86.708-94 - In-use emission standards for 1994 and later model year light-duty vehicles.

    Science.gov (United States)

    2010-07-01

    ... Methanol Tier 1 0.41 0.25 3.4 0.4 Natural Gas Tier 0 0.34 3.4 1.0 Natural Gas Tier 1I 0.32 3.4 0.4 Natural Gas Tier 1 0.25 3.4 0.4 LPG Tier 0 0.41 3.4 1.0 LPG Tier 1I 0.41 0.32 3.4 0.4 LPG Tier 1 0.41 0.25 3.4....25 Methanol Tier 0 Methanol Tier 1 0.31 4.2 0.60 Natural Gas Tier 0 Natural Gas Tier 1 0.31 4.2 0.60...

  12. Experimental Investigation of Performance and Emission Characteristics of Blends of Jatropha Oil Methyl Ester and Ethanol in Light Duty Diesel Vehicle

    OpenAIRE

    Mr. S.K.Sinha,; Vipul Vibhanshu

    2014-01-01

    Diesel engine are most versatile engine which are mostly use as main prime movers in transportation , decentralized electric generation and agricultures sector. The current growth in environmental degradation and limited availability of fossil fuels has been a matter of concern throughout the world. In view of this fact it has become necessary to explore renewable alternative fuel from resources available locally, such as vegetable oils alcohol, animal fats etc. whose properti...

  13. Light-duty vehicle fuel economy improvements, 1979--1998: A consumer purchase model of corporate average fuel economy, fuel price, and income effects

    Science.gov (United States)

    Chien, David Michael

    2000-10-01

    The Energy Policy and Conservation Act of 1975, which created fuel economy standards for automobiles and light trucks, was passed by Congress in response to the rapid rise in world oil prices as a result of the 1973 oil crisis. The standards were first implemented in 1978 for automobiles and 1979 for light trucks, and began with initial standards of 18 MPG for automobiles and 17.2 MPG for light trucks. The current fuel economy standards for 1998 have been held constant at 27.5 MPG for automobiles and 20.5 MPG for light trucks since 1990--1991. While actual new automobile fuel economy has almost doubled from 14 MPG in 1974 to 27.2 MPG in 1994, it is reasonable to ask if the CAFE standards are still needed. Each year Congress attempts to pass another increase in the Corporate Average Fuel Economy (CAFE) standard and fails. Many have called for the abolition of CAFE standards citing the ineffectiveness of the standards in the past. In order to determine whether CAFE standards should be increased, held constant, or repealed, an evaluation of the effectiveness of the CAFE standards to date must be established. Because fuel prices were rising concurrently with the CAFE standards, many authors have attributed the rapid rise in new car fuel economy solely to fuel prices. The purpose of this dissertation is to re-examine the determinants of new car fuel economy via three effects: CAFE regulations, fuel price, and income effects. By measuring the marginal effects of the three fuel economy determinants upon consumers and manufacturers choices, for fuel economy, an estimate was made of the influence of each upon new fuel economy. The conclusions of this dissertation present some clear signals to policymakers: CAFE standards have been very effective in increasing fuel economy from 1979 to 1998. Furthermore, they have been the main cause of fuel economy improvement, with income being a much smaller component. Furthermore, this dissertation has suggested that fuel prices have very limited effects upon fuel economy, ranging from no primary effect on certain size classes to a minimal secondary effect through higher performance or horsepower demanded.

  14. Household vehicles energy consumption 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-08-01

    Household Vehicles Energy Consumption 1994 reports on the results of the 1994 Residential Transportation Energy Consumption Survey (RTECS). The RTECS is a national sample survey that has been conducted every 3 years since 1985. For the 1994 survey, more than 3,000 households that own or use some 6,000 vehicles provided information to describe vehicle stock, vehicle-miles traveled, energy end-use consumption, and energy expenditures for personal vehicles. The survey results represent the characteristics of the 84.9 million households that used or had access to vehicles in 1994 nationwide. (An additional 12 million households neither owned or had access to vehicles during the survey year.) To be included in then RTECS survey, vehicles must be either owned or used by household members on a regular basis for personal transportation, or owned by a company rather than a household, but kept at home, regularly available for the use of household members. Most vehicles included in the RTECS are classified as {open_quotes}light-duty vehicles{close_quotes} (weighing less than 8,500 pounds). However, the RTECS also includes a very small number of {open_quotes}other{close_quotes} vehicles, such as motor homes and larger trucks that are available for personal use.

  15. Fleet Purchase Behavior: Decision Processes and Implications for New Vehicle Technologies and Fuels

    OpenAIRE

    Nesbitt, Kevin; Sperling, Daniel

    2001-01-01

    Vehicle fleets are a poorly understood part of the economy. They are important, though, in that they purchase a large share of light-duty vehicles and are often targeted by governments as agents of change. We investigate fleet purchase behavior, using focus groups, interviews, and mail and telephone surveys. We categorize fleets into four different decision-making structures (autocratic, bureaucratic, hierarchic, and democratic), determine what share of the market sector each represents, d...

  16. Heavy Duty Vehicle Futures Analysis.

    Energy Technology Data Exchange (ETDEWEB)

    Askin, Amanda Christine; Barter, Garrett.; West, Todd H.; Manley, Dawn Kataoka

    2014-05-01

    This report describes work performed for an Early Career Research and Development project. This project developed a heavy-duty vehicle (HDV) sector model to assess the factors influencing alternative fuel and efficiency technology adoption. This model builds on a Sandia light duty vehicle sector model and provides a platform for assessing potential impacts of technological advancements developed at the Combustion Research Facility. Alternative fuel and technology adoption modeling is typically developed around a small set of scenarios. This HDV sector model segments the HDV sector and parameterizes input values, such as fuel prices, efficiencies, and vehicle costs. This parameterization enables sensitivity and trade space analyses to identify the inputs that are most associated with outputs of interest, such as diesel consumption and greenhouse gas emissions. Thus this analysis tool enables identification of the most significant HDV sector drivers that can be used to support energy security and climate change goals.

  17. Vehicle technologies, fuel-economy policies, and fuel-consumption rates of Chinese vehicles

    International Nuclear Information System (INIS)

    Huo Hong; He Kebin; Wang, Michael; Yao Zhiliang

    2012-01-01

    One of the principal ways to reduce transport-related energy use is to reduce fuel-consumption rates of motor vehicles (usually measured in liters of fuel per 100 km). Since 2004, China has implemented policies to improve vehicle technologies and lower the fuel-consumption rates of individual vehicles. Policy evaluation requires accurate and adequate information on vehicle fuel-consumption rates. However, such information, especially for Chinese vehicles under real-world operating conditions, is rarely available from official sources in China. For each vehicle type we first review the vehicle technologies and fuel-economy policies currently in place in China and their impacts. We then derive real-world (or on-road) fuel-consumption rates on the basis of information collected from various sources. We estimate that the real-world fuel-consumption rates of vehicles in China sold in 2009 are 9 L/100 km for light-duty passenger vehicles, 11.4 L/100 km for light-duty trucks, 22 L/100 km for inter-city transport buses, 40 L/100 km for urban transit buses, and 24.9 L/100 km for heavy-duty trucks. These results aid in understanding the levels of fuel consumption of existing Chinese vehicle fleets and the effectiveness of policies in reducing on-road fuel consumption, which can help in designing and evaluating future vehicle energy-efficiency policies. - Highlights: ► Vehicle fuel-consumption rate (VFCR) data are rarely available in China. ► We review the fuel-economy policies currently in place in China and their impacts. ► We derive real-world VFCRs on the basis of information collected from various sources. ► Results aid in understanding the fuel consumption levels of Chinese vehicle fleets. ► Results help in designing and evaluating future vehicle energy-efficiency policies.

  18. 40 CFR Appendix Xii to Part 86 - Tables for Production Compliance Auditing of Heavy-Duty Engines and Heavy-Duty Vehicles...

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 19 2010-07-01 2010-07-01 false Tables for Production Compliance Auditing of Heavy-Duty Engines and Heavy-Duty Vehicles, Including Light-Duty Trucks XII Appendix XII to... Appendix XII to Part 86—Tables for Production Compliance Auditing of Heavy-Duty Engines and Heavy-Duty...

  19. Hydrogen-Enhanced Natural Gas Vehicle Program

    Energy Technology Data Exchange (ETDEWEB)

    Hyde, Dan; Collier, Kirk

    2009-01-22

    The project objective is to demonstrate the viability of HCNG fuel (30 to 50% hydrogen by volume and the remainder natural gas) to reduce emissions from light-duty on-road vehicles with no loss in performance or efficiency. The City of Las Vegas has an interest in alternative fuels and already has an existing hydrogen refueling station. Collier Technologies Inc (CT) supplied the latest design retrofit kits capable of converting nine compressed natural gas (CNG) fueled, light-duty vehicles powered by the Ford 5.4L Triton engine. CT installed the kits on the first two vehicles in Las Vegas, trained personnel at the City of Las Vegas (the City) to perform the additional seven retrofits, and developed materials for allowing other entities to perform these retrofits as well. These vehicles were used in normal service by the City while driver impressions, reliability, fuel efficiency and emissions were documented for a minimum of one year after conversion. This project has shown the efficacy of operating vehicles originally designed to operate on compressed natural gas with HCNG fuel incorporating large quantities of exhaust gas recirculation (EGR). There were no safety issues experienced with these vehicles. The only maintenance issue in the project was some rough idling due to problems with the EGR valve and piping parts. Once the rough idling was corrected no further maintenance issues with these vehicles were experienced. Fuel economy data showed no significant changes after conversion even with the added power provided by the superchargers that were part of the conversions. Driver feedback for the conversions was very favorable. The additional power provided by the HCNG vehicles was greatly appreciated, especially in traffic. The drivability of the HCNG vehicles was considered to be superior by the drivers. Most of the converted vehicles showed zero oxides of nitrogen throughout the life of the project using the State of Nevada emissions station.

  20. Use of the Modified Light Duty Utility Arm to Perform Nuclear Waste Cleanup of Underground Waste Storage Tanks at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Blank, J.A.; Burks, B.L.; DePew, R.E.; Falter, D.D.; Glassell, R.L.; Glover, W.H.; Killough, S.M.; Lloyd, P.D.; Love, L.J.; Randolph, J.D.; Van Hoesen, S.D.; Vesco, D.P.

    1999-01-01

    The Modified Light Duty Utility Arm (MLDUA) is a selectable seven or eight degree-of-freedom robot arm with a 16.5 ft (5.03 m) reach and a payload capacity of 200 lb. (90.72 kg). The utility arm is controlled in either joystick-based telerobotic mode or auto sequence robotics mode. The MLDUA deployment system deploys the utility arm vertically into underground radioactive waste storage tanks located at Oak Ridge National Laboratory. These tanks are constructed of gunite material and consist of two 25 ft (7.62 m) diameter tanks in the North Tank Farm and six 50 ft (15.24 m) diameter tanks in the South Tank Farm. After deployment inside a tank, the utility arm reaches and grasps the confined sluicing end effecter (CSEE) which is attached to the hose management arm (HMA). The utility arm positions the CSEE within the tank to allow the HMA to sluice the tank's liquid and solid waste from the tank. The MLDUA is used to deploy the characterization end effecter (CEE) and gunite scarifying end effecter (GSEE) into the tank. The CEE is used to survey the tank wall's radiation levels and the physical condition of the walls. The GSEE is used to scarify the tank walls with high-pressure water to remove the wall scale buildup and a thin layer of gunite which reduces the radioactive contamination that is embedded into the gunite walls. The MLDUA is also used to support waste sampling and wall core-sampling operations. Other tools that have been developed for use by the MLDUA include a pipe-plugging end effecter, pipe-cutting end effecter, and pipe-cleaning end effecter. Washington University developed advance robotics path control algorithms for use in the tanks. The MLDUA was first deployed in June 1997 and has operated continuously since then. Operational experience in the first four tanks remediated is presented in this paper

  1. Hybrid vehicles - an alternative for the Swedish market; Hybridfordon - ett alternativ foer den svenska bilparken

    Energy Technology Data Exchange (ETDEWEB)

    Egebaeck, Karl-Erik; Bucksch, S

    2000-06-01

    The object of this report is to assemble information on and describe the situation for the development of hybrid vehicles and various alternatives within this field of development. In the report the description is concentrated mainly on the combination of combustion engine and electric battery, which is the most common combination in present day hybrid vehicles. In order to take a glimpse into the future even the combination of fuel cells and electric battery is described. The light duty electric hybrid vehicles which have been developed up to now are mainly parallel hybrids. If the development of hybrid systems takes place it will most certainly concern light duty vehicles which will come to be parallel hybrids equipped with an Otto or a diesel engine, depending on what the manufacturers wish to back. In the report the use of series hybrid vehicles is estimated to be limited to heavy-duty hybrid vehicles. Hybrids will not be likely to be relevant for heavy-duty vehicles, with the exception of those lorries which operate in city centres, i.e. lorries which are used to distribute goods to shops, garbage vehicles and certain types of working vehicle for service purposes. Continued development of the hybrid system for buses seems uncertain for various reasons. If there is a technical breakthrough in the manufacture of batteries and simultaneously the manufacturers increase their efforts to develop hybrid vehicles, the situation can be changed so that there is a speedier introduction of hybrid vehicles for heavy-duty vehicles.

  2. Biological inflammatory and metabolic effects of petro- and bio-diesel exhaust particulate matter emissions from a light-duty diesel engine.

    Science.gov (United States)

    2015-06-01

    Sustainability of our transportation system depends on making well-informed choices on : vehicle energy sources for human and goods mobility. Motor vehicles operating on fossil : fuels are a significant source of air pollution risk and challenge the ...

  3. A Thermoelectric Generator Replacing Radiator for Internal Combustion Engine Vehicles

    Directory of Open Access Journals (Sweden)

    Shiho Kim

    2011-12-01

    Full Text Available We have proposed and developed a low temperature thermoelectric generator (TEG using engine water coolant of light-duty vehicles. Experimental results from test vehicle, of which engine size is about 2.0 liters, show that fabricated prototype Thermoelectric Generator generates more than 75W for driving condition of 80 km/hour, and output power is about 28W during idle condition. The proposed TEG can replace conventional radiator without additional water pumps or mechanical devices except for basic components of legacy water cooling system of radiator.

  4. Reducing CO2 emissions of conventional fuel cars by vehicle photovoltaic roofs

    OpenAIRE

    LODI CHIARA; SEITSONEN ANTTI; PAFFUMI ELENA; DE GENNARO MICHELE; HULD THOMAS; MALFETTANI STEFANO

    2017-01-01

    The European Union has adopted a range of policies aiming at reducing greenhouse gas emissions from road transport, including setting binding targets for tailpipe CO2 emissions for new light-duty fleets. The legislative framework for implementing such targets allows taking into account the CO2 savings from innovative technologies that cannot be adequately quantified by the standard test cycle CO2 measurement. This paper presents a methodology to define the average productivity of vehicle-moun...

  5. Onboard Hydrogen/Helium Sensors in Support of the Global Technical Regulation: An Assessment of Performance in Fuel Cell Electric Vehicle Crash Tests

    Energy Technology Data Exchange (ETDEWEB)

    Post, M. B.; Burgess, R.; Rivkin, C.; Buttner, W.; O' Malley, K.; Ruiz, A.

    2012-09-01

    Automobile manufacturers in North America, Europe, and Asia project a 2015 release of commercial hydrogen fuel cell powered light-duty road vehicles. These vehicles will be for general consumer applications, albeit initially in select markets but with much broader market penetration expected by 2025. To assure international harmony, North American, European, and Asian regulatory representatives are striving to base respective national regulations on an international safety standard, the Global Technical Regulation (GTR), Hydrogen Fueled Vehicle, which is part of an international agreement pertaining to wheeled vehicles and equipment for wheeled vehicles.

  6. Advancing Transportation through Vehicle Electrification - PHEV

    Energy Technology Data Exchange (ETDEWEB)

    Bazzi, Abdullah [Chrysler Group LLC, Auburn Hills, MI (United States); Barnhart, Steven [Chrysler Group LLC, Auburn Hills, MI (United States)

    2014-12-31

    FCA US LLC viewed the American Recovery and Reinvestment Act (ARRA) as an historic opportunity to learn about and develop PHEV technologies and create the FCA US LLC engineering center for Electrified Powertrains. The ARRA funding supported FCA US LLC’s light-duty electric drive vehicle and charging infrastructure-testing activities and enabled FCA US LLC to utilize the funding on advancing Plug-in Hybrid Electric Vehicle (PHEV) technologies for production on future programs. FCA US LLC intended to develop the next-generations of electric drive and energy batteries through a properly paced convergence of standards, technology, components and common modules. To support the development of a strong, commercially viable supplier base, FCA US LLC also utilized this opportunity to evaluate various designated component and sub-system suppliers. The original proposal of this project was submitted in May 2009 and selected in August 2009. The project ended in December 2014.

  7. Cost and benefit estimates of partially-automated vehicle collision avoidance technologies.

    Science.gov (United States)

    Harper, Corey D; Hendrickson, Chris T; Samaras, Constantine

    2016-10-01

    Many light-duty vehicle crashes occur due to human error and distracted driving. Partially-automated crash avoidance features offer the potential to reduce the frequency and severity of vehicle crashes that occur due to distracted driving and/or human error by assisting in maintaining control of the vehicle or issuing alerts if a potentially dangerous situation is detected. This paper evaluates the benefits and costs of fleet-wide deployment of blind spot monitoring, lane departure warning, and forward collision warning crash avoidance systems within the US light-duty vehicle fleet. The three crash avoidance technologies could collectively prevent or reduce the severity of as many as 1.3 million U.S. crashes a year including 133,000 injury crashes and 10,100 fatal crashes. For this paper we made two estimates of potential benefits in the United States: (1) the upper bound fleet-wide technology diffusion benefits by assuming all relevant crashes are avoided and (2) the lower bound fleet-wide benefits of the three technologies based on observed insurance data. The latter represents a lower bound as technology is improved over time and cost reduced with scale economies and technology improvement. All three technologies could collectively provide a lower bound annual benefit of about $18 billion if equipped on all light-duty vehicles. With 2015 pricing of safety options, the total annual costs to equip all light-duty vehicles with the three technologies would be about $13 billion, resulting in an annual net benefit of about $4 billion or a $20 per vehicle net benefit. By assuming all relevant crashes are avoided, the total upper bound annual net benefit from all three technologies combined is about $202 billion or an $861 per vehicle net benefit, at current technology costs. The technologies we are exploring in this paper represent an early form of vehicle automation and a positive net benefit suggests the fleet-wide adoption of these technologies would be beneficial

  8. Emissions impacts and benefits of plug-in hybrid electric vehicles and vehicle-to-grid services.

    Science.gov (United States)

    Sioshansi, Ramteen; Denholm, Paul

    2009-02-15

    Plug-in hybrid electric vehicles (PHEVs) have been promoted as a potential technology to reduce emissions of greenhouse gases and other pollutants by using electricity instead of petroleum, and byimproving electric system efficiency by providing vehicle-to-grid (V2G) services. We use an electric power system model to explicitly evaluate the change in generator dispatches resulting from PHEV deployment in the Texas grid, and apply fixed and non-parametric estimates of generator emissions rates, to estimate the resulting changes in generation emissions. We find that by using the flexibility of when vehicles may be charged, generator efficiency can be increased substantially. By changing generator dispatch, a PHEVfleet of up to 15% of light-duty vehicles can actually decrease net generator NOx emissions during the ozone season, despite the additional charging load. By adding V2G services, such as spinning reserves and energy storage, CO2, SO2, and NOx emissions can be reduced even further.

  9. Impact of non-petroleum vehicle fuel economy on GHG mitigation potential

    International Nuclear Information System (INIS)

    Luk, Jason M; Saville, Bradley A; MacLean, Heather L

    2016-01-01

    The fuel economy of gasoline vehicles will increase to meet 2025 corporate average fuel economy standards (CAFE). However, dedicated compressed natural gas (CNG) and battery electric vehicles (BEV) already exceed future CAFE fuel economy targets because only 15% of non-petroleum energy use is accounted for when determining compliance. This study aims to inform stakeholders about the potential impact of CAFE on life cycle greenhouse gas (GHG) emissions, should non-petroleum fuel vehicles displace increasingly fuel efficient petroleum vehicles. The well-to-wheel GHG emissions of a set of hypothetical model year 2025 light-duty vehicles are estimated. A reference gasoline vehicle is designed to meet the 2025 fuel economy target within CAFE, and is compared to a set of dedicated CNG vehicles and BEVs with different fuel economy ratings, but all vehicles meet or exceed the fuel economy target due to the policy’s dedicated non-petroleum fuel vehicle incentives. Ownership costs and BEV driving ranges are estimated to provide context, as these can influence automaker and consumer decisions. The results show that CNG vehicles that have lower ownership costs than gasoline vehicles and BEVs with long distance driving ranges can exceed the 2025 CAFE fuel economy target. However, this could lead to lower efficiency CNG vehicles and heavier BEVs that have higher well-to-wheel GHG emissions than gasoline vehicles on a per km basis, even if the non-petroleum energy source is less carbon intensive on an energy equivalent basis. These changes could influence the effectiveness of low carbon fuel standards and are not precluded by the light-duty vehicle GHG emissions standards, which regulate tailpipe but not fuel production emissions. (letter)

  10. Impact of dedicated E85 vehicle use on ozone and particulate matter in the US

    Science.gov (United States)

    Nopmongcol, Uarporn; Griffin, W. Michael; Yarwood, Greg; Dunker, Alan M.; MacLean, Heather L.; Mansell, Gerard; Grant, John

    2011-12-01

    Increased use of ethanol as a vehicle fuel worldwide warrants the need to understand air quality impacts of replacing gasoline with ethanol. This study evaluates the impacts of dedicated E85 (85% ethanol/15% gasoline) light-duty vehicles on emissions, ozone and particulate matter (PM) concentrations in the United States for a future year (2022) using a 3-D photochemical model, detailed emissions inventories that account for changes in all sectors studied, and winter and summer meteorology that occurred in 2002. Use of E85 introduces new emissions from ethanol production and distribution, reduces petrochemical industry emissions due to lower gasoline consumption, changes on-road vehicle emissions and alters biogenic emissions due to land use changes. Three scenarios with increased ethanol production for dedicated E85 light-duty vehicles were compared to a base case without increased ethanol production. Increased use of E85 caused both increases and decreases in ozone and PM, driven mainly by changes in NO x emissions related to biogenic and upstream petrochemical industry sources. In all states modeled, adoption of dedicated E85 vehicles caused negligible change in average higher ozone and PM concentrations of importance for air quality management strategies. Ozone and PM changes are relatively insensitive to how land area is allocated for switchgrass production. The findings are subject to various uncertainties, especially those in vehicle technology and emissions from cellulosic ethanol production.

  11. Travel intensity and climate policy: The influence of different mobility futures on the diffusion of battery integrated vehicles

    International Nuclear Information System (INIS)

    Longden, Thomas

    2014-01-01

    The importance of a focus on mobility and the kilometres travelled using light duty vehicles is reflected in the persistence of strong demand for personal mobility and emissions that tend to be linked with population and economic growth. Simulation results using the WITCH model show that changes in the kilometres driven per year using light duty vehicles have a notable impact on investments related to the development of battery related technologies. As a result, different mobility futures have notably different optimal vehicle fleet compositions. As climate policy becomes more stringent, achieving abatement with increased mobility implies large investments in battery related technologies in comparison to the 2010 level. The model results also show that the Electric Vehicles Initiative goal of a 2% share of vehicles in 2020 could be achieved with climate policy in place. However, notable cost reductions and the removal of barriers to diffusion will need to continue for the EVI goal to be achieved. - Highlights: • Travel intensity of GDP at the national level shows signs of stability over an extended period. • Different mobility futures imply notably different optimal vehicle fleet compositions. • As climate policy becomes more stringent, investments in battery related technologies increase substantially. • The model results show that the Electric Vehicles Initiative goal of a 2% share of vehicles in 2020 could be achieved. • Cost reductions and the removal of barriers to diffusion will need to continue for the EVI goal to be achieved

  12. Assessment of Vehicle Sizing, Energy Consumption and Cost Through Large Scale Simulation of Advanced Vehicle Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Moawad, Ayman [Argonne National Lab. (ANL), Argonne, IL (United States); Kim, Namdoo [Argonne National Lab. (ANL), Argonne, IL (United States); Shidore, Neeraj [Argonne National Lab. (ANL), Argonne, IL (United States); Rousseau, Aymeric [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-01-01

    The U.S. Department of Energy (DOE) Vehicle Technologies Office (VTO) has been developing more energy-efficient and environmentally friendly highway transportation technologies that will enable America to use less petroleum. The long-term aim is to develop "leapfrog" technologies that will provide Americans with greater freedom of mobility and energy security, while lowering costs and reducing impacts on the environment. This report reviews the results of the DOE VTO. It gives an assessment of the fuel and light-duty vehicle technologies that are most likely to be established, developed, and eventually commercialized during the next 30 years (up to 2045). Because of the rapid evolution of component technologies, this study is performed every two years to continuously update the results based on the latest state-of-the-art technologies.

  13. Reducing the fuel use and greenhouse gas emissions of the US vehicle fleet

    International Nuclear Information System (INIS)

    Bandivadekar, Anup; Cheah, Lynette; Evans, Christopher; Groode, Tiffany; Heywood, John; Kasseris, Emmanuel; Kromer, Matthew; Weiss, Malcolm

    2008-01-01

    The unrelenting increase in the consumption of oil in the US light-duty vehicle fleet (cars and light trucks) presents an extremely challenging energy and environmental problem. A variety of propulsion technologies and fuels have the promise to reduce petroleum use and greenhouse gas emissions from motor vehicles. Even so, achieving a noticeable reduction on both fronts in the near term will require rapid penetration of these technologies into the vehicle fleet, and not all alternatives can meet both objectives simultaneously. Placing a much greater emphasis on reducing fuel consumption rather than improving vehicle performance can greatly reduce the required market penetration rates. Addressing the vehicle performance-size-fuel consumption trade-off should be the priority for policymakers rather than promoting specific vehicle technologies and fuels

  14. Diffusion of new automotive technologies for improving energy efficiency in Brazil's light vehicle fleet

    International Nuclear Information System (INIS)

    Bastin, Cristina; Szklo, Alexandre; Rosa, Luiz Pinguelli

    2010-01-01

    Historically, Brazil has promoted the development and sales of light duty vehicles running on ethanol (firstly, ethanol-dedicated cars, and recently flexfuel cars). In the 1990s, the country also favored the sales of compact cars to middle and low-income classes. However, in the last years, the profile of vehicles sold in Brazil has converged towards larger and less-efficient vehicles. In 2008, Brazil launched the vehicle labeling program. Based on the outcomes of the historical programs oriented towards the development of automotive innovations, and on a survey conducted with the country's main auto makers, this article evaluates whether the vehicle labeling program will both improve the energy efficiency of light vehicles, and introduce new technologies. Our results indicate that, despite its virtuous intentions, the program will not control the tendency of rising fuel consumption of passenger cars sold in Brazil. Therefore, other policies are needed to boost innovations in Brazil's automotive industry. (author)

  15. [Dynamic road vehicle emission inventory simulation study based on real time traffic information].

    Science.gov (United States)

    Huang, Cheng; Liu, Juan; Chen, Chang-Hong; Zhang, Jian; Liu, Deng-Guo; Zhu, Jing-Yu; Huang, Wei-Ming; Chao, Yuan

    2012-11-01

    The vehicle activity survey, including traffic flow distribution, driving condition, and vehicle technologies, were conducted in Shanghai. The databases of vehicle flow, VSP distribution and vehicle categories were established according to the surveyed data. Based on this, a dynamic vehicle emission inventory simulation method was designed by using the real time traffic information data, such as traffic flow and average speed. Some roads in Shanghai city were selected to conduct the hourly vehicle emission simulation as a case study. The survey results show that light duty passenger car and taxi are major vehicles on the roads of Shanghai city, accounting for 48% - 72% and 15% - 43% of the total flow in each hour, respectively. VSP distribution has a good relationship with the average speed. The peak of VSP distribution tends to move to high load section and become lower with the increase of average speed. Vehicles achieved Euro 2 and Euro 3 standards are majorities of current vehicle population in Shanghai. Based on the calibration of vehicle travel mileage data, the proportions of Euro 2 and Euro 3 standard vehicles take up 11% - 70% and 17% - 51% in the real-world situation, respectively. The emission simulation results indicate that the ratios of emission peak and valley for the pollutants of CO, VOC, NO(x) and PM are 3.7, 4.6, 9.6 and 19.8, respectively. CO and VOC emissions mainly come from light-duty passenger car and taxi, which has a good relationship with the traffic flow. NO(x) and PM emissions are mainly from heavy-duty bus and public buses and mainly concentrate in the morning and evening peak hours. The established dynamic vehicle emission simulation method can reflect the change of actual road emission and output high emission road sectors and hours in real time. The method can provide an important technical means and decision-making basis for transportation environment management.

  16. Diesel vehicles and sustainable mobility in the U.S

    International Nuclear Information System (INIS)

    Wallington, T.J.; Lambert, C.K.; Ruona, W.C.

    2013-01-01

    Concerns regarding global warming and energy security have increased the importance of decreasing emissions of CO 2 from vehicles. Diesel vehicles have higher fuel economy and lower CO 2 emissions than their gasoline counterparts. On a well-to-wheels per vehicle per km basis it has been estimated that diesel light-duty vehicles in 2015 will emit 14–27% less CO 2 than their gasoline counterparts. We estimate here that on a gCO 2 /kWh at peak torque, diesel medium-duty vehicles currently have an approximately 10% CO 2 advantage over their gasoline counterparts. At light and moderate loads the CO 2 advantage for medium-duty diesels with SCR after-treatment will be greater than 10% (reflecting pumping losses when gasoline engines are operated at low and moderate loads). Emission of NO x , HCs, and PM from diesel (and gasoline) vehicles has decreased substantially over the past decade and further reductions are anticipated in the future. In addition to the heavy-duty segment, which diesels currently dominate, modern diesel engines are likely to continue to play an important role in the medium-duty segment, and perhaps also in the light-duty segment in a transition to more sustainable mobility. - Highlights: ► This paper is part of a special issue on diesels organized by Lee Schipper. ► The paper provides an overview of advanced diesel technology from a U.S. perspective. ► Modern diesel engines are likely to contribute to a transition to more sustainable mobility

  17. Development of a dedicated ethanol ultra-low-emissions vehicle (ULEV): Phase 3 report

    Energy Technology Data Exchange (ETDEWEB)

    Dodge, L; Callahan, T; Leone, D; Naegeli, D; Shouse, K; Smith, L; Whitney, K [Southwest Research Inst., San Antonio, TX (United States)

    1998-04-01

    The objective of the 3.5 year project discussed in this report was to develop a commercially competitive vehicle powered by ethanol (or an ethanol blend) that can meet California`s Ultra Low Emissions Vehicle (ULEV) standards and equivalent Corporate Average Fuel Economy (CAFE) energy efficiency for a light duty passenger car application. This particular report summarizes the third phase of the project, which lasted 12 months. Emissions tests were conducted with advanced after-treatment devices on one of the two, almost identical, test vehicles, a 1993 Ford Taurus flexible fuel vehicle. The report also covers tests on the engine removed from the second Taurus vehicle. This engine was modified for an increased compression ratio, fitted with air assist injectors, and included an advanced engine control system with model-based control.

  18. Impacts of fleet types and charging modes for electric vehicles on emissions under different penetrations of wind power

    Science.gov (United States)

    Chen, Xinyu; Zhang, Hongcai; Xu, Zhiwei; Nielsen, Chris P.; McElroy, Michael B.; Lv, Jiajun

    2018-05-01

    Current Chinese policy promotes the development of both electricity-propelled vehicles and carbon-free sources of power. Concern has been expressed that electric vehicles on average may emit more CO2 and conventional pollutants in China. Here, we explore the environmental implications of investments in different types of electric vehicle (public buses, taxis and private light-duty vehicles) and different modes (fast or slow) for charging under a range of different wind penetration levels. To do this, we take Beijing in 2020 as a case study and employ hourly simulation of vehicle charging behaviour and power system operation. Assuming the slow-charging option, we find that investments in electric private light-duty vehicles can result in an effective reduction in the emission of CO2 at several levels of wind penetration. The fast-charging option, however, is counter-productive. Electrifying buses and taxis offers the most effective option to reduce emissions of NOx, a major precursor for air pollution.

  19. Emissions Associated with Electric Vehicle Charging: Impact of Electricity Generation Mix, Charging Infrastructure Availability, and Vehicle Type

    Energy Technology Data Exchange (ETDEWEB)

    McLaren, Joyce [National Renewable Energy Lab. (NREL), Golden, CO (United States); Miller, John [National Renewable Energy Lab. (NREL), Golden, CO (United States); O' Shaughnessy, Eric [National Renewable Energy Lab. (NREL), Golden, CO (United States); Wood, Eric [National Renewable Energy Lab. (NREL), Golden, CO (United States); Shapiro, Evan [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-04-11

    With the aim of reducing greenhouse gas emissions associated with the transportation sector, policy-makers are supporting a multitude of measures to increase electric vehicle adoption. The actual level of emission reduction associated with the electrification of the transport sector is dependent on the contexts that determine when and where drivers charge electric vehicles. This analysis contributes to our understanding of the degree to which a particular electricity grid profile, vehicle type, and charging patterns impact CO2 emissions from light-duty, plug-in electric vehicles. We present an analysis of emissions resulting from both battery electric and plug-in hybrid electric vehicles for four charging scenarios and five electricity grid profiles. A scenario that allows drivers to charge electric vehicles at the workplace yields the lowest level of emissions for the majority of electricity grid profiles. However, vehicle emissions are shown to be highly dependent on the percentage of fossil fuels in the grid mix, with different vehicle types and charging scenarios resulting in fewer emissions when the carbon intensity of the grid is above a defined level. Restricting charging to off-peak hours results in higher total emissions for all vehicle types, as compared to other charging scenarios.

  20. 40 CFR 86.090-2 - Definitions.

    Science.gov (United States)

    2010-07-01

    ... methanol-fueled diesel light-duty vehicle production for those engine families being included in the... 1977 and Later Model Year New Light-Duty Vehicles, Light-Duty Trucks and Heavy-Duty Engines, and for... standard, for a manufacturer which elects to average light-duty vehicles and light-duty trucks together in...

  1. Elasticity of Vehicle Miles of Travel to Changes in the Price of Gasoline and the Cost of Driving in Texas

    Energy Technology Data Exchange (ETDEWEB)

    Wenzel, Tom P.; Fujita, K. Sydny

    2018-03-28

    This report examines the sensitivity of annual vehicle miles of travel (VMT) of light-duty vehicles to the price of gasoline, commonly referred to as the elasticity of demand for VMT to the price of gasoline; the fuel-economy-related rebound effect is generally assumed to be of the same magnitude as the VMT elasticity of gas price or driving cost. We use detailed odometer readings from over 30 million vehicles in four urban areas of Texas, over a six-year period. We account for economic conditions over this period, as well as vehicle age. Following the literature we include fixed effects by vehicle make and individual vehicle, as well as the effect of adding an instrument to predict monthly gasoline price independent of any influences of demand for gasoline on its price.

  2. Assessing the stationary energy storage equivalency of vehicle-to-grid charging battery electric vehicles

    International Nuclear Information System (INIS)

    Tarroja, Brian; Zhang, Li; Wifvat, Van; Shaffer, Brendan; Samuelsen, Scott

    2016-01-01

    A study has been performed to understand the quantitative impact of key differences between vehicle-to-grid and stationary energy storage systems on renewable utilization, greenhouse gas emissions, and balancing fleet operation, using California as the example. To simulate the combined electricity and light-duty transportation system, a detailed electric grid dispatch model (including stationary energy storage systems) was combined with an electric vehicle charging dispatch model that incorporates conventional smart and vehicle-to-grid capabilities. By subjecting smaller amounts of renewable energy to round-trip efficiency losses and thereby increasing the efficiency of renewable utilization, it was found that vehicle-to-grid energy storage can achieve higher renewable utilization levels and reduced greenhouse gas emissions compared to stationary energy storage systems. Vehicle-to-grid energy storage, however, is not as capable of balancing the power plant fleet compared to stationary energy storage systems due to the constraints of consumer travel patterns. The potential benefits of vehicle-to-grid are strongly dependent on the availability of charging infrastructure at both home and workplaces, with potential benefits being compromised with residential charging availability only. Overall, vehicle-to-grid energy storage can provide benefits over stationary energy storage depending on the system attribute selected for improvement, a finding amenable to managing through policy. - Highlights: • Using vehicle-to-grid-based storage increases the efficiency of renewable energy utilization. • Vehicle-to-grid-based energy storage has less overall flexibility compared to stationary energy storage. • The discharge ability of vehicle-to-grid-based provides a significant benefit over one-way smart charging. • Both workplace and home charging are critical for providing vehicle-to-grid-related benefits. • Increasing charging intelligence reduces stationary energy

  3. Comparative economics of natural gas vehicles and other vehicles

    International Nuclear Information System (INIS)

    Biederman, R.T.; Blazek, C.F.

    1992-01-01

    The utilization of alternative fuels for transportation applications is now a certainty. The only real questions that remain to be answered involve the type of fuel (or fuels) to be adopted most extensively. While some alternative fuel advocates suggest that a niche will exist for all alternative fuels, the most likely scenario will involve widespread use of only a few major fuel types. Undoubtedly, reformulated gasoline will be a major force as an interim fuel, due to inertia and a predominant bias toward liquid fuels. The prospects for utilization of ethanol, methanol, MTBE, and ETBE appear to be most promising in the area of blending with gasoline to meet the needs of reformulated gasoline and flexible fueled vehicles (FFV's). Propane fueled vehicles will continue to grow in popularity, especially with fleets, but will never become a major force in the transportation market in the U.S. due to unresolvable supply limitations. The clear winner in the alternative fuels transportation market appears to be natural gas. Either in compressed or liquefied form, natural gas enjoys low costs, tremendous availability, and impressive environmental benefits. As shown in this analysis, natural gas competes favorably with gasoline in terms of economics. Natural gas is also preferential to other alternative fuels in terms of safety and heath issues as well as operational issues. Adoption of natural gas as a standard transportation fuel will probably require market segmentation characterized by compressed natural gas utilization in light-duty vehicles and liquefied natural gas utilization in heavy-duty vehicles. The most significant barrier to natural gas utilization will continue to be the creation of a refueling infrastructure. As these problems are resolved, however, natural gas will emerge as the transportation fuel of the future

  4. The Relationship between Vehicle Weight/Size and Safety

    Science.gov (United States)

    Wenzel, Tom; Ross, Marc

    2008-09-01

    Light-duty vehicles account for about 20% of US CO2 emissions. However, new vehicle fuel economy standards have not been significantly tightened since they were first enacted three decades ago. A historical impediment to imposing tougher fuel economy standards has been the long-standing perception that reducing the mass of a car or truck would make it more dangerous to its occupants in a crash. One often hears that this perception is dictated by "simple physics:" that, all else being equal, you are at greater risk in a lighter vehicle than in a heavier one. Our research on driver fatality risk has found that, when it comes to vehicle safety, all else is never equal. Vehicle mass is not the most important variable in determining occupant safety, not even in frontal crashes between two vehicles. You are at no greater risk driving an average car than you are driving a much heavier (and less fuel efficient) truck-based SUV. And larger and heavier truck-based SUVs and pickups impose enormous risks on car occupants. We summarize the most recent research on the interplay between vehicle weight, size and safety, and what the implications are for new state and federal standards to reduce vehicle CO2 emissions.

  5. The impact of electric vehicles on CO2 emissions

    International Nuclear Information System (INIS)

    Bentley, J.M.; Teagan, P.; Walls, D.; Balles, E.; Parish, T.

    1992-05-01

    A number of recent studies have examined the greenhouse gas emissions of various light duty vehicle alternatives in some detail. These studies have highlighted the extreme range of predicted net greenhouse gas emissions depending on scenarios for fuel types, vehicle and power generation efficiencies, the relative greenhouse contributions of emitted gases and a number of uncertainties in fuel chain efficiencies. Despite the potential range of results, most studies have confirmed that electric vehicles generally have significant potential for reducing greenhouse gas emissions relative to gasoline and most alternative fuels under consideration. This report summarizes the results of a study which builds on previous efforts with a particular emphasis on: (1) A detailed analysis of ICEV, FCV, and EV vehicle technology and electric power generation technology. Most previous transportation greenhouse studies have focused on characterization of fuel chains that have relatively high efficiency (65--85%) when compared with power generation (30--40%) and vehicle driveline (13--16%) efficiencies. (2) A direct comparison of EVs, FCVs with gasoline and dedicated alternative fuel, ICEVs using equivalent vehicle technology assumptions with careful attention to likely technology improvements in both types of vehicles. (3) Consideration of fuel cell vehicles and associated hydrogen infrastructure. (4) Extension of analyses for several decades to assess the prospects for EVs with a longer term prospective

  6. Effects of improved spatial and temporal modeling of on-road vehicle emissions.

    Science.gov (United States)

    Lindhjem, Christian E; Pollack, Alison K; DenBleyker, Allison; Shaw, Stephanie L

    2012-04-01

    Numerous emission and air quality modeling studies have suggested the need to accurately characterize the spatial and temporal variations in on-road vehicle emissions. The purpose of this study was to quantify the impact that using detailed traffic activity data has on emission estimates used to model air quality impacts. The on-road vehicle emissions are estimated by multiplying the vehicle miles traveled (VMT) by the fleet-average emission factors determined by road link and hour of day. Changes in the fraction of VMT from heavy-duty diesel vehicles (HDDVs) can have a significant impact on estimated fleet-average emissions because the emission factors for HDDV nitrogen oxides (NOx) and particulate matter (PM) are much higher than those for light-duty gas vehicles (LDGVs). Through detailed road link-level on-road vehicle emission modeling, this work investigated two scenarios for better characterizing mobile source emissions: (1) improved spatial and temporal variation of vehicle type fractions, and (2) use of Motor Vehicle Emission Simulator (MOVES2010) instead of MOBILE6 exhaust emission factors. Emissions were estimated for the Detroit and Atlanta metropolitan areas for summer and winter episodes. The VMT mix scenario demonstrated the importance of better characterizing HDDV activity by time of day, day of week, and road type. More HDDV activity occurs on restricted access road types on weekdays and at nonpeak times, compared to light-duty vehicles, resulting in 5-15% higher NOx and PM emission rates during the weekdays and 15-40% lower rates on weekend days. Use of MOVES2010 exhaust emission factors resulted in increases of more than 50% in NOx and PM for both HDDVs and LDGVs, relative to MOBILE6. Because LDGV PM emissions have been shown to increase with lower temperatures, the most dramatic increase from MOBILE6 to MOVES2010 emission rates occurred for PM2.5 from LDGVs that increased 500% during colder wintertime conditions found in Detroit, the northernmost

  7. TEST/QA PLAN FOR THE VERIFICATION TESTING OF ALTERNATIVES OR REFORMULATED LIQUID FUELS, FUEL ADDITIVES, FUEL EMULSONS, AND LUBRICANTS FOR HIGHWAY AND NONROAD USE HEAVY DUTY DIESEL ENGINES AND LIGHT DUTY GASOLINE ENGINES AND VEHICLES

    Science.gov (United States)

    The U.S. Environmental Protection Agency established the Environmental Technology Verification Program to accelerate the development and commercialization of improved environmental technology through third party verification and reporting of product performance. Research Triangl...

  8. Biofuels, vehicle emissions, and urban air quality.

    Science.gov (United States)

    Wallington, Timothy J; Anderson, James E; Kurtz, Eric M; Tennison, Paul J

    2016-07-18

    Increased biofuel content in automotive fuels impacts vehicle tailpipe emissions via two mechanisms: fuel chemistry and engine calibration. Fuel chemistry effects are generally well recognized, while engine calibration effects are not. It is important that investigations of the impact of biofuels on vehicle emissions consider the impact of engine calibration effects and are conducted using vehicles designed to operate using such fuels. We report the results of emission measurements from a Ford F-350 fueled with either fossil diesel or a biodiesel surrogate (butyl nonanoate) and demonstrate the critical influence of engine calibration on NOx emissions. Using the production calibration the emissions of NOx were higher with the biodiesel fuel. Using an adjusted calibration (maintaining equivalent exhaust oxygen concentration to that of the fossil diesel at the same conditions by adjusting injected fuel quantities) the emissions of NOx were unchanged, or lower, with biodiesel fuel. For ethanol, a review of the literature data addressing the impact of ethanol blend levels (E0-E85) on emissions from gasoline light-duty vehicles in the U.S. is presented. The available data suggest that emissions of NOx, non-methane hydrocarbons, particulate matter (PM), and mobile source air toxics (compounds known, or suspected, to cause serious health impacts) from modern gasoline and diesel vehicles are not adversely affected by increased biofuel content over the range for which the vehicles are designed to operate. Future increases in biofuel content when accomplished in concert with changes in engine design and calibration for new vehicles should not result in problematic increases in emissions impacting urban air quality and may in fact facilitate future required emissions reductions. A systems perspective (fuel and vehicle) is needed to fully understand, and optimize, the benefits of biofuels when blended into gasoline and diesel.

  9. Potential impacts of electric vehicles on air quality in Taiwan.

    Science.gov (United States)

    Li, Nan; Chen, Jen-Ping; Tsai, I-Chun; He, Qingyang; Chi, Szu-Yu; Lin, Yi-Chiu; Fu, Tzung-May

    2016-10-01

    The prospective impacts of electric vehicle (EV) penetration on the air quality in Taiwan were evaluated using an air quality model with the assumption of an ambitious replacement of current light-duty vehicles under different power generation scenarios. With full EV penetration (i.e., the replacement of all light-duty vehicles), CO, VOCs, NOx and PM2.5 emissions in Taiwan from a fleet of 20.6 million vehicles would be reduced by 1500, 165, 33.9 and 7.2Ggyr(-1), respectively, while electric sector NOx and SO2 emissions would be increased by up to 20.3 and 12.9Ggyr(-1), respectively, if the electricity to power EVs were provided by thermal power plants. The net impacts of these emission changes would be to reduce the annual mean surface concentrations of CO, VOCs, NOx and PM2.5 by about 260, 11.3, 3.3ppb and 2.1μgm(-3), respectively, but to increase SO2 by 0.1ppb. Larger reductions tend to occur at time and place of higher ambient concentrations and during high pollution events. Greater benefits would clearly be attained if clean energy sources were fully encouraged. EV penetration would also reduce the mean peak-time surface O3 concentrations by up to 7ppb across Taiwan with the exception of the center of metropolitan Taipei where the concentration increased by <2ppb. Furthermore, full EV penetration would reduce annual days of O3 pollution episodes by ~40% and PM2.5 pollution episodes by 6-10%. Our findings offer important insights into the air quality impacts of EV and can provide useful information for potential mitigation actions. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. 76 FR 39477 - Revisions and Additions to Motor Vehicle Fuel Economy Label

    Science.gov (United States)

    2011-07-06

    ...The Environmental Protection Agency (EPA) and the National Highway Traffic Safety Administration (NHTSA) are issuing a joint final rule establishing new requirements for the fuel economy and environment label that will be posted on the window sticker of all new automobiles sold in the U.S. The labeling requirements apply for model year 2013 and later vehicles with a voluntary manufacturer option for model year 2012. The labeling requirements apply to passenger cars, light-duty trucks, and medium duty passenger vehicles such as larger sport-utility vehicles and vans. The redesigned label provides expanded information to American consumers about new vehicle fuel economy and fuel consumption, greenhouse gas and smog-forming emissions, and projected fuel costs and savings, and also includes a smartphone interactive code that permits direct access to additional Web resources. Specific label designs are provided for gasoline, diesel, ethanol flexible fuel, compressed natural gas, electric, plug-in hybrid electric, and hydrogen fuel cell vehicles. This rulemaking is in response to provisions in the Energy Independence and Security Act of 2007 that imposed several new labeling requirements and new advanced-technology vehicles entering the market. NHTSA and EPA believe that these changes will help consumers to make more informed vehicle purchase decisions, particularly as the future automotive marketplace provides more diverse vehicle technologies from which consumers may choose. These new label requirements do not affect the methodologies that EPA uses to generate consumer fuel economy estimates, or the automaker compliance values for NHTSA's corporate average fuel economy and EPA's greenhouse gas emissions standards. This action also finalizes a number of technical corrections to EPA's light-duty greenhouse gas emission standards program.

  11. A Review of Electric Vehicle Lifecycle Emissions and Policy Recommendations to Increase EV Penetration in India

    Directory of Open Access Journals (Sweden)

    Rachana Vidhi

    2018-02-01

    Full Text Available Electric vehicles reduce pollution only if a high percentage of the electricity mix comes from renewable sources and if the battery manufacturing takes place at a site far from the vehicle use region. Industries developed due to increased electric vehicle adoption may also cause additional air pollution. The Indian government has committed to solving New Delhi’s air pollution issues through an ambitious policy of switching 100% of the light duty consumer vehicles to electric vehicles by 2030. This policy is based on vehicle grid interaction and relies on shared mobility through the electric vehicle fleet. There are several human behavioral changes necessary to achieve 100% adoption of electric vehicles. This paper reviews different steps in the lifecycle of an electric vehicle (EV, their impact on environmental emissions, and recommends policies suitable for different socio-economic group that are relevant to the Indian market. To reduce air pollution through adoption of electric vehicles, the Indian government needs to adopt policies that increase sale of electric vehicles, increase percentage of renewable energy in the electricity mix, and prevent air pollution caused from battery manufacturing. The recommended policies can be customized for any market globally for reducing air pollution through increased adoption of electric vehicles.

  12. Light duty utility arm startup plan

    International Nuclear Information System (INIS)

    Barnes, G.A.

    1998-01-01

    This Startup Plan encompasses activities necessary to perform startup and operation of the LDUA in Facility Group 3 tanks and complete turnover to CPO. The activities discussed in this plan will occur prior to, and following the US Department Energy, Richland Operations Office Operational Readiness Review. This startup plan does not authorize or direct any specific field activities or authorize a change of configuration. As such, this startup plan need not be Unresolved Safety Question (USQ) screened

  13. Idaho National Laboratory’s Analysis of ARRA-Funded Plug-in Electric Vehicle and Charging Infrastructure Projects: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Francfort, Jim [Idaho National Laboratory (INL), Idaho Falls, ID (United States); Bennett, Brion [Idaho National Laboratory (INL), Idaho Falls, ID (United States); Carlson, Richard [Idaho National Laboratory (INL), Idaho Falls, ID (United States); Garretson, Thomas [Electric Applications Incorporated, Phoenix, AZ (United States); Gourley, LauraLee [Idaho National Laboratory (INL), Idaho Falls, ID (United States); Karner, Donal [Electric Applications Incorporated, Phoenix, AZ (United States); McGuire, Patti [Idaho National Laboratory (INL), Idaho Falls, ID (United States); Scoffield, Don [Idaho National Laboratory (INL), Idaho Falls, ID (United States); Kirkpatrick, Mindy [Idaho National Laboratory (INL), Idaho Falls, ID (United States); Shrik, Matthew [Idaho National Laboratory (INL), Idaho Falls, ID (United States); Salisbury, Shawn [Idaho National Laboratory (INL), Idaho Falls, ID (United States); Schey, Stephen [Electric Applications Incorporated, Phoenix, AZ (United States); Smart, John [Idaho National Laboratory (INL), Idaho Falls, ID (United States); White, Sera [Idaho National Laboratory (INL), Idaho Falls, ID (United States); Wishard, Jeffery [Intertek Center for the Evaluation of Clean Energy Technology, Phoenix, AZ (United States)

    2015-09-01

    Battelle Energy Alliance, LLC, managing and operating contractor for the U.S. Department of Energy’s (DOE) Idaho National Laboratory (INL), is the lead laboratory for U.S. Department of Energy’s Advanced Vehicle Testing Activity (AVTA). INL’s conduct of the AVTA resulted in a significant base of knowledge and experience in the area of testing light-duty vehicles that reduced transportation-related petroleum consumption. Due to this experience, INL was tasked by DOE to develop agreements with companies that were the recipients of The American Recovery and Reinvestment Act of 2009 (ARRA) grants, that would allow INL to collect raw data from light-duty vehicles and charging infrastructure. INL developed non-disclosure agreements (NDAs) with several companies and their partners that resulted in INL being able to receive raw data via server-to-server connections from the partner companies. This raw data allowed INL to independently conduct data quality checks, perform analysis, and report publicly to DOE, partners, and stakeholders, how drivers used both new vehicle technologies and the deployed charging infrastructure. The ultimate goal was not the deployment of vehicles and charging infrastructure, cut rather to create real-world laboratories of vehicles, charging infrastructure and drivers that would aid in the design of future electric drive transportation systems. The five projects that INL collected data from and their partners are: • ChargePoint America - Plug-in Electric Vehicle Charging Infrastructure Demonstration • Chrysler Ram PHEV Pickup - Vehicle Demonstration • General Motors Chevrolet Volt - Vehicle Demonstration • The EV Project - Plug-in Electric Vehicle Charging Infrastructure Demonstration • EPRI / Via Motors PHEVs – Vehicle Demonstration The document serves to benchmark the performance science involved the execution, analysis and reporting for the five above projects that provided lessons learned based on driver’s use of the

  14. Regional on-road vehicle running emissions modeling and evaluation for conventional and alternative vehicle technologies.

    Science.gov (United States)

    Frey, H Christopher; Zhai, Haibo; Rouphail, Nagui M

    2009-11-01

    This study presents a methodology for estimating high-resolution, regional on-road vehicle emissions and the associated reductions in air pollutant emissions from vehicles that utilize alternative fuels or propulsion technologies. The fuels considered are gasoline, diesel, ethanol, biodiesel, compressed natural gas, hydrogen, and electricity. The technologies considered are internal combustion or compression engines, hybrids, fuel cell, and electric. Road link-based emission models are developed using modal fuel use and emission rates applied to facility- and speed-specific driving cycles. For an urban case study, passenger cars were found to be the largest sources of HC, CO, and CO(2) emissions, whereas trucks contributed the largest share of NO(x) emissions. When alternative fuel and propulsion technologies were introduced in the fleet at a modest market penetration level of 27%, their emission reductions were found to be 3-14%. Emissions for all pollutants generally decreased with an increase in the market share of alternative vehicle technologies. Turnover of the light duty fleet to newer Tier 2 vehicles reduced emissions of HC, CO, and NO(x) substantially. However, modest improvements in fuel economy may be offset by VMT growth and reductions in overall average speed.

  15. World-wide developments in motor vehicle inspection/maintenance (I/M) programs

    Energy Technology Data Exchange (ETDEWEB)

    Klausmeier, R. [Consulting Inc., Austin, TX (United States); Kishan, S. [Radian Corporation, Austin, TX (United States)

    1995-12-31

    Motor vehicles contribute much to urban air pollution. As a result, most governments have enacted emission standards that significantly lower pollutant emission levels from new motor vehicles. For example, vehicles built in the United States emit 95 % fewer pollutants than uncontrolled vehicles when they are new. However, studies indicate that proper maintenance is needed to obtain the full benefit of vehicle emission controls. Furthermore, there is evidence that a significant percentage of the vehicle fleet is not properly maintained. This has led to the creation of motor vehicle Inspection/Maintenance (I/M) Programs. I/M programs inspect vehicles for indications that they are emitting excessive quantities of pollutants. Vehicles that fail the inspection must be repaired in order to comply with program requirements. The first I/M programs were implemented in the United States in the early 1970s. With substantial urging from the federal government, most of the U.S. states with severe air pollution problems have implemented I/M programs. Recently, with the passage of the U.S. Clean Air Act Amendments of 1990, many states have been required to significantly upgrade the performance and coverage of their I/M programs. I/M programs also have been implemented in Europe and recently in Asia. This presentation reviews developments in I/M programs for light-duty gasoline powered vehicles. Developments in I/M programs for diesel powered vehicles are briefly described. (author)

  16. World-wide developments in motor vehicle inspection/maintenance (I/M) programs

    Energy Technology Data Exchange (ETDEWEB)

    Klausmeier, R [Consulting Inc., Austin, TX (United States); Kishan, S [Radian Corporation, Austin, TX (United States)

    1996-12-31

    Motor vehicles contribute much to urban air pollution. As a result, most governments have enacted emission standards that significantly lower pollutant emission levels from new motor vehicles. For example, vehicles built in the United States emit 95 % fewer pollutants than uncontrolled vehicles when they are new. However, studies indicate that proper maintenance is needed to obtain the full benefit of vehicle emission controls. Furthermore, there is evidence that a significant percentage of the vehicle fleet is not properly maintained. This has led to the creation of motor vehicle Inspection/Maintenance (I/M) Programs. I/M programs inspect vehicles for indications that they are emitting excessive quantities of pollutants. Vehicles that fail the inspection must be repaired in order to comply with program requirements. The first I/M programs were implemented in the United States in the early 1970s. With substantial urging from the federal government, most of the U.S. states with severe air pollution problems have implemented I/M programs. Recently, with the passage of the U.S. Clean Air Act Amendments of 1990, many states have been required to significantly upgrade the performance and coverage of their I/M programs. I/M programs also have been implemented in Europe and recently in Asia. This presentation reviews developments in I/M programs for light-duty gasoline powered vehicles. Developments in I/M programs for diesel powered vehicles are briefly described. (author)

  17. Impact of reformulated fuels on motor vehicle emissions

    Science.gov (United States)

    Kirchstetter, Thomas

    Motor vehicles continue to be an important source of air pollution. Increased vehicle travel and degradation of emission control systems have offset some of the effects of increasingly stringent emission standards and use of control technologies. A relatively new air pollution control strategy is the reformulation of motor vehicle fuels, both gasoline and diesel, to make them cleaner- burning. Field experiments in a heavily traveled northern California roadway tunnel revealed that use of oxygenated gasoline reduced on-road emissions of carbon monoxide (CO) and volatile organic compounds (VOC) by 23 +/- 6% and 19 +/- 8%, respectively, while oxides of nitrogen (NOx) emissions were not significantly affected. The introduction of reformulated gasoline (RFG) in California led to large changes in gasoline composition including decreases in alkene, aromatic, benzene, and sulfur contents, and an increase in oxygen content. The combined effects of RFG and fleet turnover between summers 1994 and 1997 were decreases in on-road vehicle exhaust emissions of CO, non-methane VOC, and NOx by 31 +/- 5, 43 +/- 8, and 18 +/- 4%, respectively. Although it was difficult to separate the fleet turnover and RFG contributions to these changes, it was clear that the effect of RFG was greater for VOC than for NOx. The RFG effect on exhaust emissions of benzene was a 30-40% reduction. Use of RFG reduced the reactivity of liquid gasoline and gasoline headspace vapors by 23 and 19%, respectively. Increased use of methyl tert-butyl ether in gasoline led to increased concentrations of highly reactive formaldehyde and isobutene in vehicle exhaust. As a result, RFG reduced the reactivity of exhaust emissions by only about 5%. Per unit mass of fuel burned, heavy-duty diesel trucks emit about 25 times more fine particle mass and 15-20 times the number of fine particles compared to light-duty vehicles. Exhaust fine particle emissions from heavy-duty diesels contain more black carbon than particulate

  18. Type approval and real-world CO_2 and NO_x emissions from EU light commercial vehicles

    International Nuclear Information System (INIS)

    Zacharof, Nikiforos; Tietge, Uwe; Franco, Vicente; Mock, Peter

    2016-01-01

    In the European Union, light duty vehicles (LDVs) are subject to emission targets for carbon dioxide (CO_2) and limits for pollutants such as nitrogen oxides (NO_x). CO_2 emissions are regulated for both passenger vehicles (PV) and light commercial vehicles (LCV), as individual manufacturers are required to reach fleet averages of 130 g/km by 2015 and 175 g/km by 2017, respectively. In the case of PVs, it has been found that there is a significant divergence between real-world and type-approval CO_2 emissions, which has been increasing annually, reaching 40% in 2014. On-road exceedances of regulated NO_x emission limits for diesel passenger cars have also been documented. The current study investigated the LCV characteristics and CO_2 and NO_x emissions in the European Union. A vehicle market analysis found that LCVs comprise 17% of the diesel LDV market and while there were some data for CO_2 emissions, there were hardly any data publicly available for NO_x emissions. Monitoring the divergence in CO_2 emissions revealed that it increased from 14% in 2006 to 33% in 2014, posing an additional annual fuel cost from 120€ in 2006 to 305€ in 2014, while a significant percentage of Euro 5 vehicles exceeded NO_x emission standards. - Highlights: • Light commercial vehicles comprise 17% of diesel light duty vehicle market. • On-road CO_2 emissions were found to be on average 33% higher than compared to type approval measurements. • The annual additional fuel cost due to the on-road and type approval divergence is estimated at 400€. • Data indicates exceedances in on-road NO_x emissions. • Little attention has been given to light commercial vehicles compared to passenger vehicles.

  19. An economic assessment of low carbon vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Summerton, P. [Cambridge Econometrics CE, Cambridge (United Kingdom); Harrison, P. [European Climate Foundation ECF, Brussels (Belgium)] (eds.)

    2013-03-15

    The study aimed to analyse the economic impacts of decarbonizing light duty vehicles. As part of the study, the impacts of the European Commissions proposed 2020 CO2 regulation for cars and vans have been assessed. The analysis showed that a shift to low-carbon vehicles would increase spending on vehicle technology, therefore generating positive direct employment impacts, but potentially adding 1,000-1,100 euro to the capital cost of the average new car in 2020. However, these additional technology costs would be offset by fuel savings of around 400 euro per year, indicating an effective break-even point for drivers of approximately three years. At the EU level, the cost of running and maintaining the European car fleet would become 33-35 billion euro lower each year than in a 'do nothing scenario' by 2030, leading to positive economic impacts including indirect employment gains. Data on the cost of low carbon vehicle technologies has largely been sourced from the auto industry itself, with the study supported by a core working group including Nissan, GE, the European Association of Automotive Suppliers (CLEPA), and the European Storage Battery Manufacturers Association (Eurobat). Fuel price projections for the study were based on the IEA's World Energy Outlook, while technical modelling was carried out using the transport policy scoping tool SULTAN (developed by Ricardo-AEA for the European Commission) and the Road Vehicle Cost and Efficiency Calculation Framework, also developed by Ricardo-AEA. Macro-economic modelling was done using the E3ME model, which has previously been used for several European Commission and EU government impact assessments. This report focuses on efficient use of fossil fuels in internal combustion- and hybrid electric vehicles. It will be followed by a second report, which will focus on further reducing the use of fossil fuels by also substituting them with domestically produced energy carriers, such as electricity and

  20. Microscopic Driving Parameters-Based Energy-Saving Effect Analysis under Different Electric Vehicle Penetration

    Directory of Open Access Journals (Sweden)

    Enjian Yao

    2013-01-01

    Full Text Available Due to the rapid motorization over the recent years, China's transportation sector has been facing an increasing environmental pressure. Compared with gasoline vehicle (GV, electric vehicle (EV is expected to play an important role in the mitigation of CO2 and other pollution emissions, and urban air quality improvement, for its zero emission during use and higher energy efficiency. This paper aims to estimate the energy saving efficiency of EV, especially under different EV penetration and road traffic conditions. First, based on the emission and electricity consumption data collected by a light-duty EV and a light duty GV, a set of electricity consumption rate models and gasoline consumption rate models are established. Then, according to the conversion formula of coal equivalent, these models are transformed into coal equivalent consumption models, which make gasoline consumption and electricity consumption comparable. Finally, the relationship between the EV penetration and the reduction of energy consumption is explored based on the simulation undertaken on the North Second Ring Road in Beijing. The results show that the coal equivalent consumption will decrease by about 5% with the increases of EV penetration by 10% and the maximum energy-saving effect can be achieved when the traffic volume is about 4000 pcu/h.

  1. Vehicle emission factors of solid nanoparticles in the laboratory and on the road using Portable Emission Measurement Systems (PEMS

    Directory of Open Access Journals (Sweden)

    Barouch eGiechaskiel

    2015-12-01

    Full Text Available Emission inventories are used to quantify sources and identify trends in the emissions of air pollutants. They use vehicle-specific emission factors that are typically determined in the laboratory, through remote-sensing, vehicle chasing experiments and, more recently, on-board Portable Emission Measurement Systems (PEMS. Although PEMS is widely applied to measure gaseous pollutants, their application to Solid Particle Number (SPN emissions is new. In this paper, we discuss the current status of determining SPN emission factors both on the chassis dynamometer and on-road using PEMS-SPN. First, we determine the influence of the measurement equipment, ambient temperature, driving style and cycle characteristics, and the extra mass of the PEMS equipment on the SPN emissions. Afterward, we present the SPN emissions under type-approval conditions as well as on the road of two heavy-duty diesel vehicles equipped with Diesel Particulate Filter (DPF (one Euro VI, two light-duty diesel vehicles equipped with DPF, one light-duty vehicle equipped with a Port Fuel Injection engine (PFI, and seven Gasoline Direct Injection (GDI passenger cars (two Euro 6. We find that cold-start and strong accelerations tend to substantially increase SPN emissions. The two heavy-duty vehicles showed emissions around 2×10^13 p/km (Euro V truck and 6×10^10 p/km (Euro VI truck, respectively. One of the DPF-equipped light-duty vehicles showed emissions of 8×10^11 p/km, while the other one had one order of magnitude lower emissions. The PFI car had SPN emissions slightly higher than 1×10^12 p/km. The emissions of GDI cars spanned approximately from 8×10^11 p/km to 8×10^12 p/km. For the cars without DPF, the SPN emissions remained within a factor of two of the laboratory results. This factor was on average around 0.8 for the Euro 6 and 1.6 for the Euro 5 GDIs. The DPF equipped vehicles showed a difference of almost one order of magnitude between laboratory and on-road tests

  2. Impact of Workplace and Other Convenient Vehicle Charging

    Energy Technology Data Exchange (ETDEWEB)

    Levinson, Rebecca Sobel [Sandia National Lab. (SNL-CA), Livermore, CA (United States); West, Todd H. [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2017-07-01

    This work uses market analysis and simulation to explore the potential impact of workplace and similarly convenient away-from-home charging infrastructure (AFHCI) in reducing US light duty vehicle (LDV) petroleum use and greenhouse gas emissions. The ParaChoice model simulates the evolution of LDV sales, fuel use, and emissions through 2050, considering consumer responses to different options of electric range extension made available through AFHCI, fraction of the population with access, and delay in infrastructure implementation. Results indicate that providing a greater fraction of the population access to level 1 AFHCI for a full workday may provide more benefit than providing level 2 charging to a lesser fraction. This result holds even considering the fraction of the population without at-home charging. Moreover, delays in infrastructure implementation have no substantial drawbacks for long term petroleum use reduction and EV adoption, though delays will impact short term gains.

  3. 40 CFR 86.1801-01 - Applicability.

    Science.gov (United States)

    2010-07-01

    ... Provisions for Control of Air Pollution From New and In-Use Light-Duty Vehicles, Light-Duty Trucks, and... light-duty vehicles, light-duty trucks, medium-duty passenger vehicles, and 2005 and later model year... electric, and zero emission vehicles. These provisions also apply to 2001 model year and later new...

  4. Sustainable Mobility: Using a Global Energy Model to Inform Vehicle Technology Choices in a Decarbonized Economy

    Directory of Open Access Journals (Sweden)

    Timothy Wallington

    2013-04-01

    Full Text Available The reduction of CO2 emissions associated with vehicle use is an important element of a global transition to sustainable mobility and is a major long-term challenge for society. Vehicle and fuel technologies are part of a global energy system, and assessing the impact of the availability of clean energy technologies and advanced vehicle technologies on sustainable mobility is a complex task. The global energy transition (GET model accounts for interactions between the different energy sectors, and we illustrate its use to inform vehicle technology choices in a decarbonizing economy. The aim of this study is to assess how uncertainties in future vehicle technology cost, as well as how developments in other energy sectors, affect cost-effective fuel and vehicle technology choices. Given the uncertainties in future costs and efficiencies for light-duty vehicle and fuel technologies, there is no clear fuel/vehicle technology winner that can be discerned at the present time. We conclude that a portfolio approach with research and development of multiple fuel and vehicle technology pathways is the best way forward to achieve the desired result of affordable and sustainable personal mobility. The practical ramifications of this analysis are illustrated in the portfolio approach to providing sustainable mobility adopted by the Ford Motor Company.

  5. AN ASSESSMENT OF FLYWHEEL HIGH POWER ENERGY STORAGE TECHNOLOGY FOR HYBRID VEHICLES

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, James Gerald [ORNL

    2012-02-01

    An assessment has been conducted for the DOE Vehicle Technologies Program to determine the state of the art of advanced flywheel high power energy storage systems to meet hybrid vehicle needs for high power energy storage and energy/power management. Flywheel systems can be implemented with either an electrical or a mechanical powertrain. The assessment elaborates upon flywheel rotor design issues of stress, materials and aspect ratio. Twelve organizations that produce flywheel systems submitted specifications for flywheel energy storage systems to meet minimum energy and power requirements for both light-duty and heavy-duty hybrid applications of interest to DOE. The most extensive experience operating flywheel high power energy storage systems in heavy-duty and light-duty hybrid vehicles is in Europe. Recent advances in Europe in a number of vehicle racing venues and also in road car advanced evaluations are discussed. As a frame of reference, nominal weight and specific power for non-energy storage components of Toyota hybrid electric vehicles are summarized. The most effective utilization of flywheels is in providing high power while providing just enough energy storage to accomplish the power assist mission effectively. Flywheels are shown to meet or exceed the USABC power related goals (discharge power, regenerative power, specific power, power density, weight and volume) for HEV and EV batteries and ultracapacitors. The greatest technical challenge facing the developer of vehicular flywheel systems remains the issue of safety and containment. Flywheel safety issues must be addressed during the design and testing phases to ensure that production flywheel systems can be operated with adequately low risk.

  6. Vehicle Ancillary Load Reduction Project Close-Out Report: An Overview of the Task and a Compilation of the Research Results

    Energy Technology Data Exchange (ETDEWEB)

    Rugh, J.; Farrington, R.

    2008-01-01

    The amount of fuel used for climate control in U.S. vehicles reduces the fuel economy of more than 200 million light-duty conventional vehicles and thus affects U.S. energy security. Researchers at the DOE National Renewable Energy Laboratory estimated that the United States consumes about 7 billion gallons of fuel per year for air-conditioning (A/C) light-duty vehicles. Using a variety of tools, NREL researchers developed innovative techniques and technologies to reduce the amount of fuel needed for these vehicles' ancillary loads. For example, they found that the A/C cooling capacity of 5.7 kW in a Cadillac STS could be reduced by 30% while maintaining a cooldown performance of 30 minutes. A simulation showed that reducing the A/C load by 30% decreased A/C fuel consumption by 26%. Other simulations supported the great potential for improving fuel economy by using new technologies and techniques developed to reduce ancillary loads.

  7. Incorporating time-corrected life cycle greenhouse gas emissions in vehicle regulations.

    Science.gov (United States)

    Kendall, Alissa; Price, Lindsay

    2012-03-06

    Beginning with model year 2012, light-duty vehicles sold in the U.S. are subject to new rules that regulate tailpipe greenhouse gas (GHG) emissions based on grams of CO(2)-equivalent per mile (gCO(2)e/mi). However, improvements in vehicle technology, lower-carbon fuels, and improvements in GHG accounting practices which account for distortions related to emissions timing all contribute to shifting a greater portion of life cycle emissions away from the vehicle use phase and toward the vehicle production phase. This article proposes methods for calculating time-corrected life cycle emissions intensity on a gCO(2)e/mi basis and explores whether regulating only tailpipe CO(2) could lead to an undesirable regulatory outcome, where technologies and vehicle architectures with higher life cycle GHGs are favored over technologies with lower life cycle emissions but with higher tailpipe GHG emissions. Two life cycle GHG assessments for future vehicles are presented in addition to time correction factors for production and end-of-life GHG emissions. Results demonstrate that, based on the vehicle designs considered here, there is a potential for favoring vehicles with higher life cycle emissions if only tailpipe emissions are regulated; moreover, the application of time correction factors amplifies the importance of production emissions and the potential for a perverse outcome.

  8. Impact of driving cycle and climate on electrical consumption and range of a fully electric passenger vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, N; Belzile, M [Transport Canada, Ottawa, ON (Canada); Christenson, M; Edgar, J [Environment Canada, Gatineau, PQ (Canada)

    2010-07-01

    Transport Canada's ecotechnology for vehicles (eTV) program is a $15 million program, operated over 4 years (2007-2011) that strives to encourage the introduction of advanced clean vehicle technologies in Canada. The objectives of eTV's are to reduce barriers to the introduction of clean technologies into light-duty vehicles sold in Canada. The presentation discussed the mandate of the emissions research and measurement section of Environment Canada. The dynamometer test facility, a state-of-the-art emissions testing laboratory capable of conducting comprehensive emissions measurements from a variety of sources was also discussed. Several electric mobility projects were presented. The testing rationale and testing outline were explained. It was concluded that the repeatability of cold tests appeared to be similar to the repeatability of ambient tests. tabs., figs.

  9. Impact of driving cycle and climate on electrical consumption and range of a fully electric passenger vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, N.; Belzile, M. [Transport Canada, Ottawa, ON (Canada); Christenson, M.; Edgar, J. [Environment Canada, Gatineau, PQ (Canada)

    2010-07-01

    Transport Canada's ecotechnology for vehicles (eTV) program is a $15 million program, operated over 4 years (2007-2011) that strives to encourage the introduction of advanced clean vehicle technologies in Canada. The objectives of eTV's are to reduce barriers to the introduction of clean technologies into light-duty vehicles sold in Canada. The presentation discussed the mandate of the emissions research and measurement section of Environment Canada. The dynamometer test facility, a state-of-the-art emissions testing laboratory capable of conducting comprehensive emissions measurements from a variety of sources was also discussed. Several electric mobility projects were presented. The testing rationale and testing outline were explained. It was concluded that the repeatability of cold tests appeared to be similar to the repeatability of ambient tests. tabs., figs.

  10. Impacts of plug-in electric vehicles in a balancing area

    International Nuclear Information System (INIS)

    Razeghi, Ghazal; Samuelsen, Scott

    2016-01-01

    Highlights: • Unit commitment methodology is used to determine BEV impact on electricity market. • Roles of charging profile, dispatch strategy and interconnecting area are assessed. • Results show that impact of BEV on cost of electricity generation is small. • Controlled BEV charging can lower emissions intensity of the grid and MCP. • BEV deployment helps reduce overall criteria pollutant emissions. - Abstract: High contributions of the electricity generation and transportation sectors to criteria pollutant and greenhouse gas emissions have resulted in an increased interest and shift towards low to non-carbon generation options such as renewable wind and solar, and alternative transportation options including plug-in electric vehicles. Since plug-in electric vehicles transfer the tailpipe emissions to the electric grid, it is important to study the interaction between the two sectors. In this paper, a previously developed spatially and temporally resolved unit commitment model is used to determine the dispatch schedule of resources with and without battery electric vehicles for 2050 in a fictitious balancing area located within the South Coast Air Basin of California. Cases studied include various charging profiles, penetration in light-duty fleet, imports mix, and grid dispatch strategies. Results of the analysis include average cost of electricity production, market clearing price, temporal production of individual generators, and emissions from electricity generation and the transportation sectors. The results show that deploying battery electric vehicles (1) has little impact on the average cost of electricity generation-maximum of $2.5 per MW h for the cases studied with 40% penetration in the light-duty fleet, (2) reduces the overall criteria pollutant emissions except for one case, and (3) results in a smoother load profile, reduces the use of peaking units, and reduces the average emission intensity of the grid through controlled off

  11. Emission factor of ammonia (NH3) from on-road vehicles in China: tunnel tests in urban Guangzhou

    International Nuclear Information System (INIS)

    Liu, Tengyu; Wang, Xinming; Ding, Xiang; Deng, Wei; Lü, Sujun; Zhang, Yanli; Wang, Boguang

    2014-01-01

    Ammonia (NH 3 ) is the primary alkaline gas in the atmosphere that contributes to formation of secondary particles. Emission of NH 3 from vehicles, particularly gasoline powered light duty vehicles equipped with three-way catalysts, is regarded as an important source apart from emissions from animal wastes and soils, yet measured emission factors for motor vehicles are still not available in China, where traffic-related emission has become an increasingly important source of air pollutants in urban areas. Here we present our tunnel tests for NH 3 from motor vehicles under ‘real world conditions’ in an urban roadway tunnel in Guangzhou, a central city in the Pearl River Delta (PRD) region in south China. By attributing all NH 3 emissions in the tunnel to light-duty gasoline vehicles, we obtained a fuel-based emission rate of 2.92 ± 0.18 g L −1 and a mileage-based emission factor of 229.5 ± 14.1 mg km −1 . These emission factors were much higher than those measured in the United States while measured NO x emission factors (7.17 ± 0.60 g L −1 or 0.56 ± 0.05 g km −1 ) were contrastingly near or lower than those previously estimated by MOBILE/PART5 or COPERT IV models. Based on the NH 3 emission factors from this study, on-road vehicles accounted for 8.1% of NH 3 emissions in the PRD region in 2006 instead of 2.5% as estimated in a previous study using emission factors taken from the Emission Inventory Improvement Program (EIIP) in the United States. (letter)

  12. Emission factor of ammonia (NH3) from on-road vehicles in China: tunnel tests in urban Guangzhou

    Science.gov (United States)

    Liu, Tengyu; Wang, Xinming; Wang, Boguang; Ding, Xiang; Deng, Wei; Lü, Sujun; Zhang, Yanli

    2014-05-01

    Ammonia (NH3) is the primary alkaline gas in the atmosphere that contributes to formation of secondary particles. Emission of NH3 from vehicles, particularly gasoline powered light duty vehicles equipped with three-way catalysts, is regarded as an important source apart from emissions from animal wastes and soils, yet measured emission factors for motor vehicles are still not available in China, where traffic-related emission has become an increasingly important source of air pollutants in urban areas. Here we present our tunnel tests for NH3 from motor vehicles under ‘real world conditions’ in an urban roadway tunnel in Guangzhou, a central city in the Pearl River Delta (PRD) region in south China. By attributing all NH3 emissions in the tunnel to light-duty gasoline vehicles, we obtained a fuel-based emission rate of 2.92 ± 0.18 g L-1 and a mileage-based emission factor of 229.5 ± 14.1 mg km-1. These emission factors were much higher than those measured in the United States while measured NO x emission factors (7.17 ± 0.60 g L-1 or 0.56 ± 0.05 g km-1) were contrastingly near or lower than those previously estimated by MOBILE/PART5 or COPERT IV models. Based on the NH3 emission factors from this study, on-road vehicles accounted for 8.1% of NH3 emissions in the PRD region in 2006 instead of 2.5% as estimated in a previous study using emission factors taken from the Emission Inventory Improvement Program (EIIP) in the United States.

  13. Vehicle to Vehicle Services

    DEFF Research Database (Denmark)

    Brønsted, Jeppe Rørbæk

    2008-01-01

    location aware infotainment, increase safety, and lessen environmental strain. This dissertation is about service oriented architecture for pervasive computing with an emphasis on vehicle to vehicle applications. If devices are exposed as services, applications can be created by composing a set of services...... be evaluated. Service composition mechanisms for pervasive computing are categorized and we discuss how the characteristics of pervasive computing can be supported by service composition mechanisms. Finally, we investigate how to make pervasive computing systems capable of being noticed and understood...

  14. Guidelines for the Establishment of a Model Neighborhood Electric Vehicle (NEV) Fleet

    Energy Technology Data Exchange (ETDEWEB)

    Roberta Brayer; Donald Karner; Kevin Morrow; James Francfort

    2006-06-01

    The U.S. Department of Energy’s Advanced Vehicle Testing Activity tests neighborhood electric vehicles (NEVs) in both track and fleet testing environments. NEVs, which are also known as low speed vehicles, are light-duty vehicles with top speeds of between 20 and 25 mph, and total gross vehicle weights of approximately 2,000 pounds or less. NEVs have been found to be very viable alternatives to internal combustion engine vehicles based on their low operating costs. However, special charging infrastructure is usually necessary for successful NEV fleet deployment. Maintenance requirements are also unique to NEVs, especially if flooded lead acid batteries are used as they have watering requirements that require training, personnel protection equipment, and adherence to maintenance schedules. This report provides guidelines for fleet managers to follow in order to successfully introduce and operate NEVs in fleet environments. This report is based on the NEV testing and operational experience of personnel from the Advanced Vehicle Testing Activity, Electric Transportation Applications, and the Idaho National Laboratory.

  15. 75 FR 58077 - Revisions and Additions to Motor Vehicle Fuel Economy Label

    Science.gov (United States)

    2010-09-23

    ...The Environmental Protection Agency (EPA) and the National Highway Traffic Safety Administration (NHTSA) are conducting a joint rulemaking to redesign and add information to the current fuel economy label that is posted on the window sticker of all new cars and light- duty trucks sold in the U.S. The redesigned label will provide new information to American consumers about the fuel economy and consumption, fuel costs, and environmental impacts associated with purchasing new vehicles beginning with model year 2012 cars and trucks. This action will also develop new labels for certain advanced technology vehicles, which are poised to enter the U.S. market, in particular plug-in hybrid electric vehicles and electric vehicles. NHTSA and EPA are proposing these changes because the Energy Independence and Security Act (EISA) of 2007 imposes several new labeling requirements, because the agencies believe that the current labels can be improved to help consumers make more informed vehicle purchase decisions, and because the time is right to develop new labels for advanced technology vehicles that are being commercialized. This proposal is also consistent with the recent joint rulemaking by EPA and NHTSA that established harmonized federal greenhouse gas (GHG) emissions and corporate average fuel economy (CAFE) standards for new cars, sport utility vehicles, minivans, and pickup trucks for model years 2012-2016.

  16. Fuel and vehicle technology choices for passenger vehicles in achieving stringent CO2 targets: connections between transportation and other energy sectors.

    Science.gov (United States)

    Grahn, M; Azar, C; Williander, M I; Anderson, J E; Mueller, S A; Wallington, T J

    2009-05-01

    The regionalized Global Energy Transition (GET-R 6.0) model has been modified to include a detailed description of light-duty vehicle options and used to investigate the potential impact of carbon capture and storage (CCS) and concentrating solar power (CSP) on cost-effective fuel/vehicle technologies in a carbon-constrained world. Total CO2 emissions were constrained to achieve stabilization at 400-550 ppm, by 2100, at lowesttotal system cost The dominantfuel/vehicle technologies varied significantly depending on CO2 constraint future cost of vehicle technologies, and availability of CCS and CSP. For many cases, no one technology dominated on a global scale. CCS provides relatively inexpensive low-CO2 electricity and heatwhich prolongs the use of traditional ICEVs. CSP displaces fossil fuel derived electricity, prolongs the use of traditional ICEVs, and promotes electrification of passenger vehicles. In all cases considered, CCS and CSP availability had a major impact on the lowest cost fuel/vehicle technologies, and alternative fuels are needed in response to expected dwindling oil and natural gas supply potential by the end of the century.

  17. GASOLINE VEHICLE EXHAUST PARTICLE SAMPLING STUDY

    Energy Technology Data Exchange (ETDEWEB)

    Kittelson, D; Watts, W; Johnson, J; Zarling, D Schauer,J Kasper, K; Baltensperger, U; Burtscher, H

    2003-08-24

    The University of Minnesota collaborated with the Paul Scherrer Institute, the University of Wisconsin (UWI) and Ricardo, Inc to physically and chemically characterize the exhaust plume from recruited gasoline spark ignition (SI) vehicles. The project objectives were: (1) Measure representative particle size distributions from a set of on-road SI vehicles and compare these data to similar data collected on a small subset of light-duty gasoline vehicles tested on a chassis dynamometer with a dilution tunnel using the Unified Drive Cycle, at both room temperature (cold start) and 0 C (cold-cold start). (2) Compare data collected from SI vehicles to similar data collected from Diesel engines during the Coordinating Research Council E-43 project. (3) Characterize on-road aerosol during mixed midweek traffic and Sunday midday periods and determine fleet-specific emission rates. (4) Characterize bulk- and size-segregated chemical composition of the particulate matter (PM) emitted in the exhaust from the gasoline vehicles. Particle number concentrations and size distributions are strongly influenced by dilution and sampling conditions. Laboratory methods were evaluated to dilute SI exhaust in a way that would produce size distributions that were similar to those measured during laboratory experiments. Size fractionated samples were collected for chemical analysis using a nano-microorifice uniform deposit impactor (nano-MOUDI). In addition, bulk samples were collected and analyzed. A mixture of low, mid and high mileage vehicles were recruited for testing during the study. Under steady highway cruise conditions a significant particle signature above background was not measured, but during hard accelerations number size distributions for the test fleet were similar to modern heavy-duty Diesel vehicles. Number emissions were much higher at high speed and during cold-cold starts. Fuel specific number emissions range from 1012 to 3 x 1016 particles/kg fuel. A simple

  18. Comparison of Vehicle Efficiency Technology Attributes and Synergy Estimates

    Energy Technology Data Exchange (ETDEWEB)

    Duleep, G. [ICF Incorporated, LLC., Fairfax, VA (United States)

    2011-02-01

    Analyzing the future fuel economy of light-duty vehicles (LDVs) requires detailed knowledge of the vehicle technologies available to improve LDV fuel economy. The National Highway Transportation Safety Administration (NHTSA) has been relying on technology data from a 2001 National Academy of Sciences (NAS) study (NAS 2001) on corporate average fuel economy (CAFE) standards, but the technology parameters were updated in the new proposed rulemaking (EPA and NHTSA 2009) to set CAFE and greenhouse gas standards for the 2011 to 2016 period. The update is based largely on an Environmental Protection Agency (EPA) analysis of technology attributes augmented by NHTSA data and contractor staff assessments. These technology cost and performance data were documented in the Draft Joint Technical Support Document (TSD) issued by EPA and NHTSA in September 2009 (EPA/NHTSA 2009). For these tasks, the Energy and Environmental Analysis (EEA) division of ICF International (ICF) examined each technology and technology package in the Draft TSD and assessed their costs and performance potential based on U.S. Department of Energy (DOE) program assessments. ICF also assessed the technologies, other relevant attributes based on data from actual production vehicles, and recently published technical articles in engineering journals. ICF examined technology synergy issues through an ICF in-house model that uses a discrete parameter approach.

  19. Comparison of Vehicle Efficiency Technology Attributes and Synergy Estimates

    Energy Technology Data Exchange (ETDEWEB)

    Duleep, G.

    2011-02-01

    Analyzing the future fuel economy of light-duty vehicles (LDVs) requires detailed knowledge of the vehicle technologies available to improve LDV fuel economy. The National Highway Transportation Safety Administration (NHTSA) has been relying on technology data from a 2001 National Academy of Sciences (NAS) study (NAS 2001) on corporate average fuel economy (CAFE) standards, but the technology parameters were updated in the new proposed rulemaking (EPA and NHTSA 2009) to set CAFE and greenhouse gas standards for the 2011 to 2016 period. The update is based largely on an Environmental Protection Agency (EPA) analysis of technology attributes augmented by NHTSA data and contractor staff assessments. These technology cost and performance data were documented in the Draft Joint Technical Support Document (TSD) issued by EPA and NHTSA in September 2009 (EPA/NHTSA 2009). For these tasks, the Energy and Environmental Analysis (EEA) division of ICF International (ICF) examined each technology and technology package in the Draft TSD and assessed their costs and performance potential based on U.S. Department of Energy (DOE) program assessments. ICF also assessed the technologies? other relevant attributes based on data from actual production vehicles and from recently published technical articles in engineering journals. ICF examined technology synergy issues through an ICF in-house model that uses a discrete parameter approach.

  20. Fuel Cell Electric Vehicles: Drivers and Impacts of Adoption.

    Energy Technology Data Exchange (ETDEWEB)

    Levinson, Rebecca Sobel [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); West, Todd H. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Manley, Dawn K. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-11-01

    We present scenario and parametric analyses of the US light duty vehicle (LDV) stock, sim- ulating the evolution of the stock in order to assess the potential role and impacts of fuel cell electric vehicles (FCEVs). The analysis probes the competition of FCEVs with other LDVs and the effects of FCEV adoption on LDV fuel use and emissions. We parameterize commodity and technology prices in order to explore the sensitivities of FCEV sales and emissions to oil, natural gas, battery technology, fuel cell technology, and hydrogen produc- tion prices. We additionally explore the effects of vehicle purchasing incentives for FCEVs, identifying potential impacts and tipping points. Our analyses lead to the following conclu- sions: (1) In the business as usual scenario, FCEVs comprise 7% of all new LDV sales by 2050. (2) FCEV adoption will not substantially impact green house gas emissions without either policy intervention, significant increases in natural gas prices, or technology improve- ments that motivate low carbon hydrogen production. (3) FCEV technology cost reductions have a much greater potential for impact on FCEV sales than hydrogen fuel cost reductions. (4) FCEV purchasing incentives must be both substantial and sustained in order to motivate lasting changes to FCEV adoption.

  1. 40 CFR 86.1703-99 - Abbreviations.

    Science.gov (United States)

    2010-07-01

    ... the Voluntary National Low Emission Vehicle Program for Light-Duty Vehicles and Light-Duty Trucks § 86...—hybrid electric vehicle. LEV—low emission vehicle. NMOG—non-methane organic gases. NTR—Northeast Trading...

  2. Comparative field evaluation of vehicle cruise speed and acceleration level impacts on hot stabilized emissions

    International Nuclear Information System (INIS)

    El-Shawarby, Ihab; Ahn, Kyoungho; Rakha, Hesham

    2005-01-01

    The main objectives of this paper are two fold. First, the paper evaluates the impact of vehicle cruise speed and acceleration levels on vehicle fuel-consumption and emission rates using field data gathered under real-world driving conditions. Second, it validates the VT-Micro model for the modeling of real-world conditions. Specifically, an on-board emission-measurement device was used to collect emissions of oxides of nitrogen, hydrocarbons, carbon monoxide, and carbon dioxide using a light-duty test vehicle. The analysis demonstrates that vehicle fuel-consumption and emission rates per-unit distance are optimum in the range of 60-90 km/h, with considerable increase outside this optimum range. The study demonstrates that as the level of aggressiveness for acceleration maneuvers increases, the fuel-consumption and emission rates per maneuver decrease because the vehicle spends less time accelerating. However, when emissions are gathered over a sufficiently long fixed distance, fuel-consumption and mobile-source emission rates per-unit distance increase as the level of acceleration increases because of the history effects that accompany rich-mode engine operations. In addition, the paper demonstrates the validity of the VT-Micro framework for modeling steady-state vehicle fuel-consumption and emission behavior. Finally, the research demonstrates that the VT-Micro framework requires further refinement to capture non-steady-state history behavior when the engine operates in rich mode. (Author)

  3. A High-Power Wireless Charging System Development and Integration for a Toyota RAV4 Electric Vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Onar, Omer C [ORNL; Seiber, Larry Eugene [ORNL; White, Cliff P [ORNL; Chinthavali, Madhu Sudhan [ORNL; Campbell, Steven L [ORNL

    2016-01-01

    Several wireless charging methods are underdevelopment or available as an aftermarket option in the light-duty automotive market. However, there are not many studies detailing the vehicle integrations, particularly a complete vehicle integration with higher power levels. This paper presents the development, implementation, and vehicle integration of a high-power (>10 kW) wireless power transfer (WPT)-based electric vehicle (EV) charging system for a Toyota RAV4 vehicle. The power stages of the system are introduced with the design specifications and control systems including the active front-end rectifier with power factor correction (PFC), high frequency power inverter, high frequency isolation transformer, coupling coils, vehicle side full-bridge rectifier and filter, and the vehicle battery. The operating principles of the control, communications, and protection systems are also presented in addition to the alignment and the driver interface system. The physical limitations of the system are also defined that would prevent the system operating at higher levels. The experiments are carried out using the integrated vehicle and the results obtained to demonstrate the system performance including the stage-by-stage efficiencies with matched and interoperable primary and secondary coils.

  4. Opportunities of the new technological model of light vehicle fuels in South America; Oportunidades futuras no novo modelo tecnologico de combustiveis para veiculos leves na America do Sul

    Energy Technology Data Exchange (ETDEWEB)

    Dourado, Jose Diamantino de A. [Centro Federal de Educacao Tecnologica Celso Sukow da Fonseca (CEFET-RJ), Rio de Janeiro, RJ (Brazil); Chaves, Hernani Aquini F.; Jones, Cleveland Maximino [Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ (Brazil). Dept. de Estratigrafia e Paleontologia (DEPA)

    2008-07-01

    The purpose of this work is to show which solutions the South American market is putting forth for the new technological model of the automotive fuel for light duty vehicles. A strong and irreversible trend is underway, which is seeking more environmentally friendly and economically attractive alternatives for the conventional automotive technology, based on the consumption of gasoline and diesel fuel. This trend is evident not only in Latin America, but also in many other countries and regions, and has resulted in a great number of vehicle conversions, so as to operate with vehicular natural gas. Another important way in which this trend has expressed itself is the commercial acceptance and success of the tetra fuel technology vehicles. (author)

  5. Inspection vehicle

    International Nuclear Information System (INIS)

    Takahashi, Masaki; Omote, Tatsuyuki; Yoneya, Yutaka; Tanaka, Keiji; Waki, Tetsuro; Yoshida, Tomiji; Kido, Tsuyoshi.

    1993-01-01

    An inspection vehicle comprises a small-sized battery directly connected with a power motor or a direct power source from trolly lines and a switching circuit operated by external signals. The switch judges advance or retreat by two kinds of signals and the inspection vehicle is recovered by self-running. In order to recover the abnormally stopped inspection vehicle to the targeted place, the inspection vehicle is made in a free-running state by using a clutch mechanism and is pushed by an other vehicle. (T.M.)

  6. Diversification in the driveway: mean-variance optimization for greenhouse gas emissions reduction from the next generation of vehicles

    International Nuclear Information System (INIS)

    Oliver Gao, H.; Stasko, Timon H.

    2009-01-01

    Modern portfolio theory is applied to the problem of selecting which vehicle technologies and fuels to use in the next generation of vehicles. Selecting vehicles with the lowest lifetime cost is complicated by the fact that future prices are uncertain, just as selecting securities for an investment portfolio is complicated by the fact that future returns are uncertain. A quadratic program is developed based on modern portfolio theory, with the objective of minimizing the expected lifetime cost of the 'vehicle portfolio'. Constraints limit greenhouse gas emissions, as well as the variance of the cost. A case study is performed for light-duty passenger vehicles in the United States, drawing emissions and usage data from the US Environmental Protection Agency's MOVES and Department of Energy's GREET models, among other sources. Four vehicle technologies are considered: conventional gasoline, conventional diesel, grid-independent (non-plug-in) gasoline-electric hybrid, and flex fuel using E85. Results indicate that much of the uncertainty surrounding cost stems from fuel price fluctuations, and that fuel efficient vehicles can lower cost variance. Hybrids exhibit the lowest cost variances of the technologies considered, making them an arguably financially conservative choice.

  7. Methodology for Calculating Cost-per-Mile for Current and Future Vehicle Powertrain Technologies, with Projections to 2024: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Ruth, M.; Timbario, T. A.; Timbario, T. J.; Laffen, M.

    2011-01-01

    Currently, several cost-per-mile calculators exist that can provide estimates of acquisition and operating costs for consumers and fleets. However, these calculators are limited in their ability to determine the difference in cost per mile for consumer versus fleet ownership, to calculate the costs beyond one ownership period, to show the sensitivity of the cost per mile to the annual vehicle miles traveled (VMT), and to estimate future increases in operating and ownership costs. Oftentimes, these tools apply a constant percentage increase over the time period of vehicle operation, or in some cases, no increase in direct costs at all over time. A more accurate cost-per-mile calculator has been developed that allows the user to analyze these costs for both consumers and fleets. The calculator was developed to allow simultaneous comparisons of conventional light-duty internal combustion engine (ICE) vehicles, mild and full hybrid electric vehicles (HEVs), and fuel cell vehicles (FCVs). This paper is a summary of the development by the authors of a more accurate cost-per-mile calculator that allows the user to analyze vehicle acquisition and operating costs for both consumer and fleets. Cost-per-mile results are reported for consumer-operated vehicles travelling 15,000 miles per year and for fleets travelling 25,000 miles per year.

  8. Diversification in the driveway: mean-variance optimization for greenhouse gas emissions reduction from the next generation of vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Oliver Gao, H.; Stasko, Timon H. [School of Civil and Environmental Engineering, Cornell University, Ithaca, NY 14853 (United States)

    2009-12-15

    Modern portfolio theory is applied to the problem of selecting which vehicle technologies and fuels to use in the next generation of vehicles. Selecting vehicles with the lowest lifetime cost is complicated by the fact that future prices are uncertain, just as selecting securities for an investment portfolio is complicated by the fact that future returns are uncertain. A quadratic program is developed based on modern portfolio theory, with the objective of minimizing the expected lifetime cost of the 'vehicle portfolio'. Constraints limit greenhouse gas emissions, as well as the variance of the cost. A case study is performed for light-duty passenger vehicles in the United States, drawing emissions and usage data from the US Environmental Protection Agency's MOVES and Department of Energy's GREET models, among other sources. Four vehicle technologies are considered: conventional gasoline, conventional diesel, grid-independent (non-plug-in) gasoline-electric hybrid, and flex fuel using E85. Results indicate that much of the uncertainty surrounding cost stems from fuel price fluctuations, and that fuel efficient vehicles can lower cost variance. Hybrids exhibit the lowest cost variances of the technologies considered, making them an arguably financially conservative choice. (author)

  9. Spatial distribution of vehicle emission inventories in the Federal District, Brazil

    Science.gov (United States)

    Réquia, Weeberb João; Koutrakis, Petros; Roig, Henrique Llacer

    2015-07-01

    Air pollution poses an important public health risk, especially in large urban areas. Information about the spatial distribution of air pollutants can be used as a tool for developing public policies to reduce source emissions. Air pollution monitoring networks provide information about pollutant concentrations; however, they are not available in every urban area. Among the 5570 cities in Brazil, for example, only 1.7% of them have air pollution monitoring networks. In this study we assess vehicle emissions for main traffic routes of the Federal District (state of Brazil) and characterize their spatial patterns. Toward this end, we used a bottom-up method to predict emissions and to characterize their spatial patterns using Global Moran's (Spatial autocorrelation analysis) and Getis-Ord General G (High/Low cluster analysis). Our findings suggested that light duty vehicles are primarily responsible for the vehicular emissions of CO (68.9%), CH4 (93.6%), and CO2 (57.9%), whereas heavy duty vehicles are primarily responsible for the vehicular emissions of NMHC (92.9%), NOx (90.7%), and PM (97.4%). Furthermore, CO2 is the pollutant with the highest emissions, over 30 million tons/year. In the spatial autocorrelation analysis was identified cluster (p < 0.01) for all types of vehicles and for all pollutants. However, we identified high cluster only for the light vehicles.

  10. How much do electric drive vehicles matter to future U.S. emissions?

    Science.gov (United States)

    Babaee, Samaneh; Nagpure, Ajay S; DeCarolis, Joseph F

    2014-01-01

    Hybrid, plug-in hybrid, and battery electric vehicles--known collectively as electric drive vehicles (EDVs)--may represent a clean and affordable option to meet growing U.S. light duty vehicle (LDV) demand. The goal of this study is 2-fold: identify the conditions under which EDVs achieve high LDV market penetration in the U.S. and quantify the associated change in CO2, SO2, and NOX emissions through midcentury. We employ the Integrated MARKAL-EFOM System (TIMES), a bottom-up energy system model, along with a U.S. data set developed for this analysis. To characterize EDV deployment through 2050, varying assumptions related to crude oil and natural gas prices, a CO2 policy, a federal renewable portfolio standard, and vehicle battery cost were combined to form 108 different scenarios. Across these scenarios, oil prices and battery cost have the biggest effect on EDV deployment. The model results do not demonstrate a clear and consistent trend toward lower system-wide emissions as EDV deployment increases. In addition to the trade-off between lower tailpipe and higher electric sector emissions associated with plug-in vehicles, the scenarios produce system-wide emissions effects that often mask the effect of EDV deployment.

  11. A Modelling Framework for estimating Road Segment Based On-Board Vehicle Emissions

    International Nuclear Information System (INIS)

    Lin-Jun, Yu; Ya-Lan, Liu; Yu-Huan, Ren; Zhong-Ren, Peng; Meng, Liu Meng

    2014-01-01

    Traditional traffic emission inventory models aim to provide overall emissions at regional level which cannot meet planners' demand for detailed and accurate traffic emissions information at the road segment level. Therefore, a road segment-based emission model for estimating light duty vehicle emissions is proposed, where floating car technology is used to collect information of traffic condition of roads. The employed analysis framework consists of three major modules: the Average Speed and the Average Acceleration Module (ASAAM), the Traffic Flow Estimation Module (TFEM) and the Traffic Emission Module (TEM). The ASAAM is used to obtain the average speed and the average acceleration of the fleet on each road segment using FCD. The TFEM is designed to estimate the traffic flow of each road segment in a given period, based on the speed-flow relationship and traffic flow spatial distribution. Finally, the TEM estimates emissions from each road segment, based on the results of previous two modules. Hourly on-road light-duty vehicle emissions for each road segment in Shenzhen's traffic network are obtained using this analysis framework. The temporal-spatial distribution patterns of the pollutant emissions of road segments are also summarized. The results show high emission road segments cluster in several important regions in Shenzhen. Also, road segments emit more emissions during rush hours than other periods. The presented case study demonstrates that the proposed approach is feasible and easy-to-use to help planners make informed decisions by providing detailed road segment-based emission information

  12. Carbonyl Emissions from Gasoline and Diesel Motor Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Destaillats, Hugo; Jakober, Chris A.; Robert, Michael A.; Riddle, Sarah G.; Destaillats, Hugo; Charles, M. Judith; Green, Peter G.; Kleeman, Michael J.

    2007-12-01

    Carbonyls from gasoline powered light-duty vehicles (LDVs) and heavy-duty diesel powered vehicles (HDDVs) operated on chassis dynamometers were measured using an annular denuder-quartz filter-polyurethane foam sampler with O-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine derivatization and chromatography-mass spectrometry analyses. Two internal standards were utilized based on carbonyl recovery, 4-fluorobenzaldehyde for_C8 compounds. Gas- and particle-phase emissions for 39 aliphatic and 20 aromatic carbonyls ranged from 0.1 ? 2000 ?g/L fuel for LDVs and 1.8 - 27000 mu g/L fuel for HDDVs. Gas-phase species accounted for 81-95percent of the total carbonyls from LDVs and 86-88percent from HDDVs. Particulate carbonyls emitted from a HDDV under realistic driving conditions were similar to concentrations measured in a diesel particulate matter (PM) standard reference material. Carbonyls accounted for 19percent of particulate organic carbon (POC) emissions from low-emission LDVs and 37percent of POC emissions from three-way catalyst equipped LDVs. This identifies carbonyls as one of the largest classes of compounds in LDV PM emissions. The carbonyl fraction of HDDV POC was lower, 3.3-3.9percent depending upon operational conditions. Partitioning analysis indicates the carbonyls had not achieved equilibrium between the gas- and particle-phase under the dilution factors of 126-584 used in the current study.

  13. Effect of regional grid mix, driving patterns and climate on the comparative carbon footprint of gasoline and plug-in electric vehicles in the United States

    Science.gov (United States)

    Yuksel, Tugce; Tamayao, Mili-Ann M.; Hendrickson, Chris; Azevedo, Inês M. L.; Michalek, Jeremy J.

    2016-04-01

    We compare life cycle greenhouse gas (GHG) emissions from several light-duty passenger gasoline and plug-in electric vehicles (PEVs) across US counties by accounting for regional differences due to marginal grid mix, ambient temperature, patterns of vehicle miles traveled (VMT), and driving conditions (city versus highway). We find that PEVs can have larger or smaller carbon footprints than gasoline vehicles, depending on these regional factors and the specific vehicle models being compared. The Nissan Leaf battery electric vehicle has a smaller carbon footprint than the most efficient gasoline vehicle (the Toyota Prius) in the urban counties of California, Texas and Florida, whereas the Prius has a smaller carbon footprint in the Midwest and the South. The Leaf is lower emitting than the Mazda 3 conventional gasoline vehicle in most urban counties, but the Mazda 3 is lower emitting in rural Midwest counties. The Chevrolet Volt plug-in hybrid electric vehicle has a larger carbon footprint than the Prius throughout the continental US, though the Volt has a smaller carbon footprint than the Mazda 3 in many urban counties. Regional grid mix, temperature, driving conditions, and vehicle model all have substantial implications for identifying which technology has the lowest carbon footprint, whereas regional patterns of VMT have a much smaller effect. Given the variation in relative GHG implications, it is unlikely that blunt policy instruments that favor specific technology categories can ensure emission reductions universally.

  14. Effect of regional grid mix, driving patterns and climate on the comparative carbon footprint of gasoline and plug-in electric vehicles in the United States

    International Nuclear Information System (INIS)

    Yuksel, Tugce; Michalek, Jeremy J; Tamayao, Mili-Ann M; Hendrickson, Chris; Azevedo, Inês M L

    2016-01-01

    We compare life cycle greenhouse gas (GHG) emissions from several light-duty passenger gasoline and plug-in electric vehicles (PEVs) across US counties by accounting for regional differences due to marginal grid mix, ambient temperature, patterns of vehicle miles traveled (VMT), and driving conditions (city versus highway). We find that PEVs can have larger or smaller carbon footprints than gasoline vehicles, depending on these regional factors and the specific vehicle models being compared. The Nissan Leaf battery electric vehicle has a smaller carbon footprint than the most efficient gasoline vehicle (the Toyota Prius) in the urban counties of California, Texas and Florida, whereas the Prius has a smaller carbon footprint in the Midwest and the South. The Leaf is lower emitting than the Mazda 3 conventional gasoline vehicle in most urban counties, but the Mazda 3 is lower emitting in rural Midwest counties. The Chevrolet Volt plug-in hybrid electric vehicle has a larger carbon footprint than the Prius throughout the continental US, though the Volt has a smaller carbon footprint than the Mazda 3 in many urban counties. Regional grid mix, temperature, driving conditions, and vehicle model all have substantial implications for identifying which technology has the lowest carbon footprint, whereas regional patterns of VMT have a much smaller effect. Given the variation in relative GHG implications, it is unlikely that blunt policy instruments that favor specific technology categories can ensure emission reductions universally. (letter)

  15. 40 CFR 86.607-84 - Sample selection.

    Science.gov (United States)

    2010-07-01

    ... Auditing of New Light-Duty Vehicles, Light-Duty Trucks, and Heavy-Duty Vehicles § 86.607-84 Sample..., once a manufacturer ships any vehicle from the test sample, it relinquishes the prerogative to conduct...

  16. Climate and environmental effects of electric vehicles versus compressed natural gas vehicles in China: a life-cycle analysis at provincial level.

    Science.gov (United States)

    Huo, Hong; Zhang, Qiang; Liu, Fei; He, Kebin

    2013-02-05

    Electric vehicles (EVs) and compressed natural gas vehicles (CNGVs), which are mainly coal-based and natural gas-based, are the two most widely proposed replacements of gasoline internal combustion engine vehicles (ICEVs) in P.R. China. We examine fuel-cycle emissions of greenhouse gases (GHGs), PM(2.5), PM(10), NO(x), and SO(2) of CNGVs and EVs relative to gasoline ICEVs and hybrids, by Chinese province. CNGVs can currently reduce emissions of GHGs, PM(10), PM(2,5), NO(x), and SO(2) by approximately 6%, 7%, 20%, 18% and 22%, respectively. EVs can reduce GHG emissions by 20%, but increase PM(10), PM(2.5), NO(x), and SO(2) emissions by approximately 360%, 250%, 120%, and 370%, respectively. Nevertheless, results vary significantly by province. Regarding their contribution to national emissions, PM increases from EVs are unimportant, because light-duty passenger vehicles contribute very little to overall PM emissions nationwide (≤0.05%); however, their NO(x) and SO(2) increases are important. Since China is striving to reduce power plant emissions, EVs are expected to have equivalent or even lower SO(2) and NO(x) emissions relative to ICEVs in the future (2030). Before then, however, EVs should be developed according to the cleanness of regional power mixes. This would lower their SO(2) and NO(x) emissions and earn more GHG reduction credits.

  17. Electric vehicles

    Science.gov (United States)

    1990-03-01

    Quiet, clean, and efficient, electric vehicles (EVs) may someday become a practical mode of transportation for the general public. Electric vehicles can provide many advantages for the nation's environment and energy supply because they run on electricity, which can be produced from many sources of energy such as coal, natural gas, uranium, and hydropower. These vehicles offer fuel versatility to the transportation sector, which depends almost solely on oil for its energy needs. Electric vehicles are any mode of transportation operated by a motor that receives electricity from a battery or fuel cell. EVs come in all shapes and sizes and may be used for different tasks. Some EVs are small and simple, such as golf carts and electric wheel chairs. Others are larger and more complex, such as automobile and vans. Some EVs, such as fork lifts, are used in industries. In this fact sheet, we will discuss mostly automobiles and vans. There are also variations on electric vehicles, such as hybrid vehicles and solar-powered vehicles. Hybrid vehicles use electricity as their primary source of energy, however, they also use a backup source of energy, such as gasoline, methanol or ethanol. Solar-powered vehicles are electric vehicles that use photovoltaic cells (cells that convert solar energy to electricity) rather than utility-supplied electricity to recharge the batteries. These concepts are discussed.

  18. Vehicle Technologies and Fuel Cell Technologies Office Research and Development Programs: Prospective Benefits Assessment Report for Fiscal Year 2018

    Energy Technology Data Exchange (ETDEWEB)

    Stephens, T. S. [Argonne National Lab. (ANL), Argonne, IL (United States); Birky, A. [Argonne National Lab. (ANL), Argonne, IL (United States); Gohlke, David [Argonne National Lab. (ANL), Argonne, IL (United States)

    2017-11-01

    Under a diverse set of programs, the Vehicle Technologies and Fuel Cell Technologies Offices of the U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy invest in early-stage research of advanced batteries and electrification, engines and fuels, materials, and energy-efficient mobility systems; hydrogen production, delivery, and storage; and fuel cell technologies. This report documents the estimated benefits of successful development and implementation of advanced vehicle technologies. It presents a comparison of a scenario with completely successful implementation of Vehicle Technologies Office (VTO) and Fuel Cell Technologies Office (FCTO) technologies (the Program Success case) to a future in which there is no contribution after Fiscal Year 2017 by the VTO or FCTO to these technologies (the No Program case). Benefits were attributed to individual program technology areas, which included FCTO research and development and the VTO programs of electrification, advanced combustion engines and fuels, and materials technology. Projections for the Program Success case indicate that by 2035, the average fuel economy of on-road, light-duty vehicle stock could be 24% to 30% higher than in the No Program case, while fuel economy for on-road medium- and heavy-duty vehicle stock could be as much as 13% higher. The resulting petroleum savings in 2035 were estimated to be as high as 1.9 million barrels of oil per day, and reductions in greenhouse gas emissions were estimated to be as high as 320 million metric tons of carbon dioxide equivalent per year. Projections of light-duty vehicle adoption indicate that although advanced-technology vehicles may be somewhat more expensive to purchase, the fuel savings result in a net reduction of consumer cost. In 2035, reductions in annual fuel expenditures for vehicles (both light- and heavy-duty) are projected to range from $86 billion to $109 billion (2015$), while the projected increase in new vehicle

  19. Tailpipe, resuspended road dust, and brake-wear emission factors from on-road vehicles

    Science.gov (United States)

    Abu-Allaban, Mahmoud; Gillies, John A.; Gertler, Alan W.; Clayton, Russ; Proffitt, David

    Intensive mass and chemical measurements were performed at roadside locations in Reno, Nevada, and Durham/Research Triangle Park), North Carolina to derive tailpipe, resuspended road dust, and brake-wear emission factors from in-use vehicles. Continuous particulate matter (PM) data were utilized to derive total emission factors while integrated PM data were used to attribute the calculated emission factors to different mechanisms using chemical mass balance receptor modeling and scanning electron microscopy techniques. Resuspended road dust and tailpipe emissions were found to be the dominant mechanisms that contribute significantly to the total PM 10 and PM 2.5 emission factors, respectively. Small contributions from brake-wear were observed at locations where strong braking occurs, but no tire-wear was seen at any sampling location. PM 10 emission rates from light-duty spark ignition (LDSI) vehicles ranged from 40 to 780 mg/km, 10 to 70 mg/km, and 0 to 80 mg/km per vehicle for road dust, tailpipe, and brake-wear, respectively. PM 10 emission rates from heavy-duty vehicles ranged from 230 to 7800 mg/km, 60 to 570 mg/km, and 0 to 610 mg/km per vehicle for road dust, tailpipe, and brake-wear, respectively. PM 2.5 emission rates from LDSI vehicles ranged from 2 to 25 mg/km, 10 to 50 mg/km, and 0 to 5 mg/km per vehicle for road dust, tailpipe, and brake-wear, respectively. PM 2.5 emission rates from heavy-duty vehicles ranged from 15 to 300 mg/km, 60 to 480 mg/km, and 0 to 15 mg/km per vehicle for road dust, tailpipe, and brake-wear, respectively.

  20. How will greenhouse gas emissions from motor vehicles be constrained in China around 2030?

    International Nuclear Information System (INIS)

    Zheng, Bo; Zhang, Qiang; Borken-Kleefeld, Jens; Huo, Hong; Guan, Dabo; Klimont, Zbigniew; Peters, Glen P.; He, Kebin

    2015-01-01

    Highlights: • We build a projection model to predict vehicular GHG emissions on provincial basis. • Fuel efficiency gains cannot constrain vehicle GHGs in major southern provinces. • We propose an integrated policy set through sensitivity analysis of policy options. • The policy set will peak GHG emissions of 90% provinces and whole China by 2030. - Abstract: Increasing emissions from road transportation endanger China’s objective to reduce national greenhouse gas (GHG) emissions. The unconstrained growth of vehicle GHG emissions are mainly caused by the insufficient improvement of energy efficiency (kilometers traveled per unit energy use) under current policies, which cannot offset the explosion of vehicle activity in China, especially the major southern provinces. More stringent polices are required to decline GHG emissions in these provinces, and thereby help to constrain national total emissions. In this work, we make a provincial-level projection for vehicle growth, energy demand and GHG emissions to evaluate vehicle GHG emission trends under various policy options in China and determine the way to constrain national emissions. Through sensitivity analysis of various single policies, we propose an integrated policy set to assure the objective of peak national vehicle GHG emissions be achieved around 2030. The integrated policy involves decreasing the use of urban light-duty vehicles by 25%, improving fuel economy by 25% by 2035 comparing 2020, and promoting electric vehicles and biofuels. The stringent new policies would allow China to constrain GHG emissions from road transport sector around 2030. This work provides a perspective to understand vehicle GHG emission growth patterns in China’s provinces, and proposes a strong policy combination to constrain national GHG emissions, which can support the achievement of peak GHG emissions by 2030 promised by the Chinese government

  1. On-road vehicle emissions and their control in China: A review and outlook.

    Science.gov (United States)

    Wu, Ye; Zhang, Shaojun; Hao, Jiming; Liu, Huan; Wu, Xiaomeng; Hu, Jingnan; Walsh, Michael P; Wallington, Timothy J; Zhang, K Max; Stevanovic, Svetlana

    2017-01-01

    to control the future light-duty passenger vehicle population growth and use, and introduce alternative fuels and new energy vehicles, the China total vehicle emissions of HC, CO, NO X and PM 2.5 in 2030 could be reduced by approximately 57%, 71%, 67% and 84%, respectively, (the PC[2] scenario) relative to 2013. This paper provides detailed policy roadmaps and technical options related to these future emission reductions for governmental stakeholders. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Vehicle regulations.

    NARCIS (Netherlands)

    2006-01-01

    In the Netherlands, all vehicles using public roads must meet so-called permanent requirements. This is enforced by the police and, for some categories, also during the MOT. In the Netherlands, most types of motor vehicle1 can only be introduced to the market if they meet the entry requirements. For

  3. Electric and Hybrid Vehicles Program 18th annual report to Congress for Fiscal Year 1994

    Science.gov (United States)

    1995-04-01

    The Department remains focused on the technologies that are critical to making electric and hybrid vehicles commercially viable and competitive with current production gasoline-fueled vehicles in performance, reliability, and affordability. During Fiscal Year 1994, significant progress was made toward fulfilling the intent of Congress. The Department and the United States Advanced Battery Consortium (a partnership of the three major domestic automobile manufacturers) continued to work together and to focus the efforts of battery developers on the battery technologies that are most likely to be commercialized in the near term. Progress was made in industry cost-shared contracts toward demonstrating the technical feasibility of fuel cells for passenger bus and light duty vehicle applications. Two industry teams which will develop hybrid vehicle propulsion technologies have been selected through competitive procurement and have initiated work, in Fiscal Year 1994. In addition, technical studies and program planning continue, as required by the Energy Policy Act of 1992, to achieve the goals of reducing the transportation sector dependence on imported oil, reducing the level of environmentally harmful emissions, and enhancing industrial productivity and competitiveness.

  4. Effects of plug-in hybrid electric vehicles on ozone concentrations in Colorado.

    Science.gov (United States)

    Brinkman, Gregory L; Denholm, Paul; Hannigan, Michael P; Milford, Jana B

    2010-08-15

    This study explores how ozone concentrations in the Denver, CO area might have been different if plug-in hybrid electric vehicles (PHEVs) had replaced light duty gasoline vehicles in summer 2006. A unit commitment and dispatch model was used to estimate the charging patterns of PHEVs and dispatch power plants to meet electricity demand. Emission changes were estimated based on gasoline displacement and the emission characteristics of the power plants providing additional electricity. The Comprehensive Air Quality Model with extensions (CAMx) was used to simulate the effects of these emissions changes on ozone concentrations. Natural gas units provided most of the electricity used for charging PHEVs in the scenarios considered. With 100% PHEV penetration, nitrogen oxide (NO(x)) emissions were reduced by 27 tons per day (tpd) from a fleet of 1.7 million vehicles and were increased by 3 tpd from power plants; VOC emissions were reduced by 57 tpd. These emission changes reduced modeled peak 8-h average ozone concentrations by approximately 2-3 ppb on most days. Ozone concentration increases were modeled for small areas near central Denver. Future research is needed to forecast when significant PHEV penetration may occur and to anticipate characteristics of the corresponding power plant and vehicle fleets.

  5. Emission Impacts of Electric Vehicles in the US Transportation Sector Following Optimistic Cost and Efficiency Projections.

    Science.gov (United States)

    Keshavarzmohammadian, Azadeh; Henze, Daven K; Milford, Jana B

    2017-06-20

    This study investigates emission impacts of introducing inexpensive and efficient electric vehicles into the US light duty vehicle (LDV) sector. Scenarios are explored using the ANSWER-MARKAL model with a modified version of the Environmental Protection Agency's (EPA) 9-region database. Modified cost and performance projections for LDV technologies are adapted from the National Research Council (2013) optimistic case. Under our optimistic scenario (OPT) we find 15% and 47% adoption of battery electric vehicles (BEVs) in 2030 and 2050, respectively. In contrast, gasoline vehicles (ICEVs) remain dominant through 2050 in the EPA reference case (BAU). Compared to BAU, OPT gives 16% and 36% reductions in LDV greenhouse gas (GHG) emissions for 2030 and 2050, respectively, corresponding to 5% and 9% reductions in economy-wide emissions. Total nitrogen oxides, volatile organic compounds, and SO 2 emissions are similar in the two scenarios due to intersectoral shifts. Moderate, economy-wide GHG fees have little effect on GHG emissions from the LDV sector but are more effective in the electricity sector. In the OPT scenario, estimated well-to-wheels GHG emissions from full-size BEVs with 100-mile range are 62 gCO 2 -e mi -1 in 2050, while those from full-size ICEVs are 121 gCO 2 -e mi -1 .

  6. The Story of Ever Diminishing Vehicle Tailpipe Emissions as Observed in the Chicago, Illinois Area.

    Science.gov (United States)

    Bishop, Gary A; Haugen, Molly J

    2018-05-15

    The University of Denver has collected on-road fuel specific vehicle emissions measurements in the Chicago area since 1989. This nearly 30 year record illustrates the large reductions in light-duty vehicle tailpipe emissions and the remarkable improvements in emissions control durability to maintain low emissions over increasing periods of time. Since 1989 fuel specific carbon monoxide (CO) emissions have been reduced by an order of magnitude and hydrocarbon (HC) emissions by more than a factor of 20. Nitric oxide (NO) emissions have only been collected since 1997 but have seen reductions of 79%. This has increased the skewness of the emissions distribution where the 2016 fleet's 99th percentile contributes ∼3 times more of the 1990 total for CO and HC emissions. There are signs that these reductions may be leveling out as the emissions durability of Tier 2 vehicles in use today has almost eliminated the emissions reduction benefit of fleet turnover. Since 1997, the average age of the Chicago on-road fleet has increased 2 model years and the percentage of passenger vehicles has dropped from 71 to 52% of the fleet. Emissions are now so well controlled that the influence of driving mode has been completely eliminated as a factor for fuel specific CO and NO emissions.

  7. China's fuel economy standards for passenger vehicles. Rationale, policy process, and impacts

    International Nuclear Information System (INIS)

    Oliver, Hongyan H.; Gallagher, Kelly Sims; Tian, Donglian; Zhang, Jinhua

    2009-01-01

    China issued its first Fuel Economy Standards (FES) for light-duty passenger vehicles (LDPV) in September 2004, and the first and second phases of the FES took effective in July 2005 and January 2008, respectively. The stringency of the Chinese FES ranks third globally, following the Japanese and European standards. In this paper, we first review the policy-making background, including the motivations, key players, and the process; and then explain the content and the features of the FES and why there was no compliance flexibility built into it. Next, we assess the various aspects of the standard's impact, including fuel economy improvement, technology changes, shift of market composition, and overall fuel savings. Lastly, we comment on the prospect of tightening the existing FES and summarize the complementary policies that have been adopted or may be considered by the Chinese government for further promoting efficient vehicles and reducing transport energy consumption. The Chinese experience is highly relevant for countries that are also experiencing or anticipating rapid growth in personal vehicles, those wishing to moderate an increase in oil demand, or those desirous of vehicle technology upgrades. (author)

  8. Impacts and mitigation of excess diesel-related NOx emissions in 11 major vehicle markets

    Science.gov (United States)

    Anenberg, Susan C.; Miller, Joshua; Minjares, Ray; Du, Li; Henze, Daven K.; Lacey, Forrest; Malley, Christopher S.; Emberson, Lisa; Franco, Vicente; Klimont, Zbigniew; Heyes, Chris

    2017-05-01

    Vehicle emissions contribute to fine particulate matter (PM2.5) and tropospheric ozone air pollution, affecting human health, crop yields and climate worldwide. On-road diesel vehicles produce approximately 20 per cent of global anthropogenic emissions of nitrogen oxides (NOx), which are key PM2.5 and ozone precursors. Regulated NOx emission limits in leading markets have been progressively tightened, but current diesel vehicles emit far more NOx under real-world operating conditions than during laboratory certification testing. Here we show that across 11 markets, representing approximately 80 per cent of global diesel vehicle sales, nearly one-third of on-road heavy-duty diesel vehicle emissions and over half of on-road light-duty diesel vehicle emissions are in excess of certification limits. These excess emissions (totalling 4.6 million tons) are associated with about 38,000 PM2.5- and ozone-related premature deaths globally in 2015, including about 10 per cent of all ozone-related premature deaths in the 28 European Union member states. Heavy-duty vehicles are the dominant contributor to excess diesel NOx emissions and associated health impacts in almost all regions. Adopting and enforcing next-generation standards (more stringent than Euro 6/VI) could nearly eliminate real-world diesel-related NOx emissions in these markets, avoiding approximately 174,000 global PM2.5- and ozone-related premature deaths in 2040. Most of these benefits can be achieved by implementing Euro VI standards where they have not yet been adopted for heavy-duty vehicles.

  9. Impacts and mitigation of excess diesel-related NOx emissions in 11 major vehicle markets.

    Science.gov (United States)

    Anenberg, Susan C; Miller, Joshua; Minjares, Ray; Du, Li; Henze, Daven K; Lacey, Forrest; Malley, Christopher S; Emberson, Lisa; Franco, Vicente; Klimont, Zbigniew; Heyes, Chris

    2017-05-25

    Vehicle emissions contribute to fine particulate matter (PM 2.5 ) and tropospheric ozone air pollution, affecting human health, crop yields and climate worldwide. On-road diesel vehicles produce approximately 20 per cent of global anthropogenic emissions of nitrogen oxides (NO x ), which are key PM 2.5 and ozone precursors. Regulated NO x emission limits in leading markets have been progressively tightened, but current diesel vehicles emit far more NO x under real-world operating conditions than during laboratory certification testing. Here we show that across 11 markets, representing approximately 80 per cent of global diesel vehicle sales, nearly one-third of on-road heavy-duty diesel vehicle emissions and over half of on-road light-duty diesel vehicle emissions are in excess of certification limits. These excess emissions (totalling 4.6 million tons) are associated with about 38,000 PM 2.5 - and ozone-related premature deaths globally in 2015, including about 10 per cent of all ozone-related premature deaths in the 28 European Union member states. Heavy-duty vehicles are the dominant contributor to excess diesel NO x emissions and associated health impacts in almost all regions. Adopting and enforcing next-generation standards (more stringent than Euro 6/VI) could nearly eliminate real-world diesel-related NO x emissions in these markets, avoiding approximately 174,000 global PM 2.5 - and ozone-related premature deaths in 2040. Most of these benefits can be achieved by implementing Euro VI standards where they have not yet been adopted for heavy-duty vehicles.

  10. Abandoned vehicles

    CERN Multimedia

    Relations with the Host States Service

    2004-01-01

    The services in charge of managing the CERN site have recently noted an increase in the number of abandoned vehicles. This poses a risk from the point of view of safety and security and, on the eve of several important events in honour of CERN's fiftieth anniversary, is detrimental to the Organization's image. Owners of vehicles that have been left immobile for some time on the CERN site, including on the external car park by the flags, are therefore invited to contact the Reception and Access Control Service (service-parking-longterm@cern.ch) before 1st October 2004 and, where appropriate, move their vehicle to a designated long-term parking area. After this date, any vehicle whose owner has failed to respond to this request and which is without a number plate, has been stationary for several weeks or is out of service, may be impounded at the owner's risk and expense. Relations with the Host States Service Tel. 72848

  11. Potential for Electrified Vehicles to Contribute to U.S. Petroleum and Climate Goals and Implications for Advanced Biofuels.

    Science.gov (United States)

    Meier, Paul J; Cronin, Keith R; Frost, Ethan A; Runge, Troy M; Dale, Bruce E; Reinemann, Douglas J; Detlor, Jennifer

    2015-07-21

    To examine the national fuel and emissions impacts from increasingly electrified light-duty transportation, we reconstructed the vehicle technology portfolios from two national vehicle studies. Using these vehicle portfolios, we normalized assumptions and examined sensitivity around the rates of electrified vehicle penetration, travel demand growth, and electricity decarbonization. We further examined the impact of substituting low-carbon advanced cellulosic biofuels in place of petroleum. Twenty-seven scenarios were benchmarked against a 50% petroleum-reduction target and an 80% GHG-reduction target. We found that with high rates of electrification (40% of miles traveled) the petroleum-reduction benchmark could be satisfied, even with high travel demand growth. The same highly electrified scenarios, however, could not satisfy 80% GHG-reduction targets, even assuming 80% decarbonized electricity and no growth in travel demand. Regardless of precise consumer vehicle preferences, emissions are a function of the total reliance on electricity versus liquid fuels and the corresponding greenhouse gas intensities of both. We found that at a relatively high rate of electrification (40% of miles and 26% by fuel), an 80% GHG reduction could only be achieved with significant quantities of low-carbon liquid fuel in cases with low or moderate travel demand growth.

  12. A Hybrid Tabu Search Algorithm for a Real-World Open Vehicle Routing Problem Involving Fuel Consumption Constraints

    Directory of Open Access Journals (Sweden)

    Yunyun Niu

    2018-01-01

    Full Text Available Outsourcing logistics operation to third-party logistics has attracted more attention in the past several years. However, very few papers analyzed fuel consumption model in the context of outsourcing logistics. This problem involves more complexity than traditional open vehicle routing problem (OVRP, because the calculation of fuel emissions depends on many factors, such as the speed of vehicles, the road angle, the total load, the engine friction, and the engine displacement. Our paper proposed a green open vehicle routing problem (GOVRP model with fuel consumption constraints for outsourcing logistics operations. Moreover, a hybrid tabu search algorithm was presented to deal with this problem. Experiments were conducted on instances based on realistic road data of Beijing, China, considering that outsourcing logistics plays an increasingly important role in China’s freight transportation. Open routes were compared with closed routes through statistical analysis of the cost components. Compared with closed routes, open routes reduce the total cost by 18.5% with the fuel emissions cost down by nearly 29.1% and the diver cost down by 13.8%. The effect of different vehicle types was also studied. Over all the 60- and 120-node instances, the mean total cost by using the light-duty vehicles is the lowest.

  13. Gaseous and particulate emissions from rural vehicles in China

    Science.gov (United States)

    Yao, Zhiliang; Huo, Hong; Zhang, Qiang; Streets, David G.; He, Kebin

    2011-06-01

    Rural vehicles (RVs) could contribute significantly to air pollutant emissions throughout Asia due to their considerable population, extensive usage, and high emission rates, but their emissions have not been measured before and have become a major concern for the accuracy of regional and global emission inventories. In this study, we measured CO, HC, NO x and PM emissions of RVs using a combined on-board emission measurement system on real roads in China. We also compared the emission levels of the twenty RVs to those of nineteen Euro II light-duty diesel trucks (LDDTs) that we measured for previous studies. The results show that one-cylinder RVs have lower distance-based emission factors compared to LDDTs because of their smaller weight and engine power, but they have significantly higher fuel-based PM emission factors than LDDTs. Four-cylinder RVs have equivalent emission levels to LDDTs. Based on the emission factors and the activity data obtained, we estimate that the total emissions of RVs in China in 2006 were 1049 Gg of CO, 332 Gg of HC, 933 Gg of NO x, and 54 Gg of PM, contributing over 40% to national on-road diesel CO, NO x, and PM emissions. As RVs are a significant contributor to national emissions, further research work is needed to improve the accuracy of inventories at all levels, and the government should strengthen the management of RVs to facilitate both policy making and research work.

  14. 40 CFR 86.601-84 - Applicability.

    Science.gov (United States)

    2010-07-01

    ... Auditing of New Light-Duty Vehicles, Light-Duty Trucks, and Heavy-Duty Vehicles § 86.601-84 Applicability... of the section number. A section remains in effect for subsequent model years until it is superseded...

  15. 40 CFR 86.615-84 - Treatment of confidential information.

    Science.gov (United States)

    2010-07-01

    ...) Selective Enforcement Auditing of New Light-Duty Vehicles, Light-Duty Trucks, and Heavy-Duty Vehicles § 86... part 2, subpart B. (b) Any claim of confidentiality must accompany the information at the time it is...

  16. Transportation Energy Futures Project | Energy Analysis | NREL

    Science.gov (United States)

    context of the marketplace, consumer behavior, industry capabilities, and infrastructure. More information reports. Light-Duty Vehicles Non-Cost Barriers to Consumer Adoption of New Light-Duty Vehicle Technologies

  17. Connected vehicle applications : safety.

    Science.gov (United States)

    2016-01-01

    Connected vehicle safety applications are designed to increase situational awareness : and reduce or eliminate crashes through vehicle-to-infrastructure, vehicle-to-vehicle, : and vehicle-to-pedestrian data transmissions. Applications support advisor...

  18. Life cycle analysis of energy supply infrastructure for conventional and electric vehicles

    International Nuclear Information System (INIS)

    Lucas, Alexandre; Alexandra Silva, Carla; Costa Neto, Rui

    2012-01-01

    Electric drive vehicle technologies are being considered as possible solutions to mitigate environmental problems and fossil fuels dependence. Several studies have used life cycle analysis technique, to assess energy use and CO 2 emissions, addressing fuels Well-to-Wheel life cycle or vehicle's materials Cradle-to-Grave. However, none has considered the required infrastructures for fuel supply. This study presents a methodology to evaluate energy use and CO 2 emissions from construction, maintenance and decommissioning of support infrastructures for electricity and fossil fuel supply of vehicles applied to Portugal case study. Using Global Warming Potential and Cumulative Energy Demand, three light-duty vehicle technologies were considered: Gasoline, Diesel and Electric. For fossil fuels, the extraction well, platform, refinery and refuelling stations were considered. For the Electric Vehicle, the Portuguese 2010 electric mix, grid and the foreseen charging point's network were studied. Obtained values were 0.6–1.5 gCO 2eq /km and 0.03–0.07 MJ eq /km for gasoline, 0.6–1.6 gCO 2eq /km and 0.02–0.06 MJ eq /km for diesel, 3.7–8.5 gCO 2eq /km and 0.06–0.17 MJ eq /km for EV. Monte Carlo technique was used for uncertainty analysis. We concluded that EV supply infrastructures are more carbon and energetic intensive. Contribution in overall vehicle LCA does not exceed 8%. - Highlights: ► ISO 14040 was applied to evaluate fuel supply infrastructures of ICE and EV. ► CED and GWP are used to assess the impact on WTW and CTG stages. ► EV chargers rate and ICE stations' lifetime influence uncertainty the most. ► EV facilities are more carbon and energetic intense than conventional fuels. ► Contribution of infrastructures in overall vehicle LCA does not exceed 8%.

  19. Emission factors of air pollutants from CNG-gasoline bi-fuel vehicles: Part II. CO, HC and NOx.

    Science.gov (United States)

    Huang, Xiaoyan; Wang, Yang; Xing, Zhenyu; Du, Ke

    2016-09-15

    The estimation of emission factors (EFs) is the basis of accurate emission inventory. However, the EFs of air pollutants for motor vehicles vary under different operating conditions, which will cause uncertainty in developing emission inventory. Natural gas (NG), considered as a "cleaner" fuel than gasoline, is increasingly being used to reduce combustion emissions. However, information is scarce about how much emission reduction can be achieved by motor vehicles burning NG (NGVs) under real road driving conditions, which is necessary for evaluating the environmental benefits for NGVs. Here, online, in situ measurements of the emissions from nine bi-fuel vehicles were conducted under different operating conditions on the real road. A comparative study was performed for the EFs of black carbon (BC), carbon monoxide (CO), hydrocarbons (HCs) and nitrogen oxides (NOx) for each operating condition when the vehicles using gasoline and compressed NG (CNG) as fuel. BC EFs were reported in part I. The part II in this paper series reports the influence of operating conditions and fuel types on the EFs of CO, HC and NOx. Fuel-based EFs of CO showed good correlations with speed when burning CNG and gasoline. The correlation between fuel-based HC EFs and speed was relatively weak whether burning CNG or gasoline. The fuel-based NOx EFs moderately correlated with speed when burning CNG, but weakly correlated with gasoline. As for HC, the mileage-based EFs of gasoline vehicles are 2.39-12.59 times higher than those of CNG vehicles. The mileage-based NOx EFs of CNG vehicles are slightly higher than those of gasoline vehicles. These results would facilitate a detailed analysis of the environmental benefits for replacing gasoline with CNG in light duty vehicles. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. electric vehicle

    Directory of Open Access Journals (Sweden)

    W. R. Lee

    1999-01-01

    Full Text Available A major problem facing battery-powered electric vehicles is in their batteries: weight and charge capacity. Thus, a battery-powered electric vehicle only has a short driving range. To travel for a longer distance, the batteries are required to be recharged frequently. In this paper, we construct a model for a battery-powered electric vehicle, in which driving strategy is to be obtained such that the total travelling time between two locations is minimized. The problem is formulated as an optimization problem with switching times and speed as decision variables. This is an unconventional optimization problem. However, by using the control parametrization enhancing technique (CPET, it is shown that this unconventional optimization is equivalent to a conventional optimal parameter selection problem. Numerical examples are solved using the proposed method.

  1. Vehicle Technologies and Fuel Cell Technologies Program: Prospective Benefits Assessment Report for Fiscal Year 2016

    Energy Technology Data Exchange (ETDEWEB)

    Stephens, T. S. [Argonne National Lab. (ANL), Argonne, IL (United States); Taylor, C. H. [TA Engineering, Inc., Catonsville, MD (United States); Moore, J. S. [TA Engineering, Inc., Catonsville, MD (United States); Ward, J. [United States Department of Energy, Washington, DC (United States). Office of Energy Efficiency and Renewable Energy

    2016-02-23

    Under a diverse set of programs, the Vehicle Technologies and Fuel Cell Technologies offices of DOE’s Office of Energy Efficiency and Renewable Energy invest in research, development, demonstration, and deployment of advanced vehicle, hydrogen production, delivery and storage, and fuel cell technologies. This report estimates the benefits of successfully developing and deploying these technologies (a “Program Success” case) relative to a base case (the “No Program” case). The Program Success case represents the future with completely successful deployment of Vehicle Technologies Office (VTO) and Fuel Cell Technologies Office (FCTO) technologies. The No Program case represents a future in which there is no contribution after FY 2016 by the VTO or FCTO to these technologies. The benefits of advanced vehicle, hydrogen production, delivery and storage, and fuel cell technologies were estimated on the basis of differences in fuel use, primary energy use, and greenhouse gas (GHG) emissions from light-, medium- and heavy-duty vehicles, including energy and emissions from fuel production, between the base case and the Program Success case. Improvements in fuel economy of various vehicle types, growth in the stock of fuel cell vehicles and other advanced technology vehicles, and decreased GHG intensity of hydrogen production and delivery in the Program Success case over the No Program case were projected to result in savings in petroleum use and GHG emissions. Benefits were disaggregated by individual program technology areas, which included the FCTO program and the VTO subprograms of batteries and electric drives; advanced combustion engines; fuels and lubricants; materials (for reduction in vehicle mass, or “lightweighting”); and, for medium- and heavy-duty vehicles, reduction in rolling and aerodynamic resistance. Projections for the Program Success case indicate that by 2035, the average fuel economy of on-road, light-duty vehicle stock could be 47% to 76

  2. Reducing supply chain energy use in next-generation vehicle lightweighting

    Energy Technology Data Exchange (ETDEWEB)

    Hanes, Rebecca J.; Das, Sujit; Carpenter, Alberta

    2016-09-29

    equipment is upgraded to the most efficient available. Preliminary analyses indicate that producing CF from lignin instead of polyacrylonitrile, the most commonly used feedstock, reduces energy consumption in the CFRP supply chain by 7.5%, and that implementing energy efficient process equipment produces an additional 8% reduction. Final results will show if these potential reductions are sufficient to make the CFV energy savings comparable with AIV energy savings. [1] Das, S., Graziano, D., Upadhyayula, V. K., Masanet, E., Riddle, M., & Cresko, J. (2016). Vehicle lightweighting energy use impacts in US light-duty vehicle fleet. Sustainable Materials and Technologies, 8, 5-13.

  3. A Comparative study on VOCs and aldehyde-ketone emissions from a spark Ignition vehicle fuelled on compressed natural gas and gasoline

    International Nuclear Information System (INIS)

    Shah, A.N.

    2012-01-01

    In this work, an experimental study was conducted on a spark ignition (SI) vehicle fuelled on compressed natural gas (CNG), and gasoline to compare the unregulated emissions such as volatile organic compounds (VOCs) and aldehyde-ketones or carbonyls. In the meantime, ozone forming potential (OFP) of pollutants was also calculated on the basis of their specific reactivity (SR). The vehicle was run on a chassis dynamometer following the Chinese National Standards test scheduled for light duty vehicle (LDV) emissions. According to the results, total aldehyde-ketones were increased by 39.4% due to the substantial increase in formaldehyde and acrolein + acetone emissions, while VOCs and BTEX (benzene, toluene, ethyl benzene, and xylene) reduced by 85.2 and 86% respectively, in case of CNG fuelled vehicle as compared to gasoline vehicle. Although total aldehyde-ketones were higher with CNG relative to gasoline, their SR was lower due decrease in acetaldehyde, propionaldehyde, crotonaldehyde, and methacrolein species having higher maximum incremental reactivity (MIR) values. The SR of VOCs and aldehyde-ketones emitted from CNG fuelled vehicle was decreased by above 10% and 32% respectively, owing to better physicochemical properties and more complete burning of CNG as compared to gasoline. (author)

  4. Electric-Drive Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Septon, Kendall K [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-09-11

    Electric-drive vehicles use electricity as their primary fuel or to improve the efficiency of conventional vehicle designs. These vehicles can be divided into three categories: Hybrid electric vehicles (HEVs), Plug-in hybrid electric vehicles (PHEVs), All-electric vehicles (EVs). Together, PHEVs and EVs can also be referred to as plug-in electric vehicles (PEVs).

  5. Electric-Drive Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    None

    2017-09-01

    Electric-drive vehicles use electricity as their primary fuel or to improve the efficiency of conventional vehicle designs. These vehicles can be divided into three categories: Hybrid electric vehicles (HEVs), Plug-in hybrid electric vehicles (PHEVs), All-electric vehicles (EVs). Together, PHEVs and EVs can also be referred to as plug-in electric vehicles (PEVs).

  6. Technology Roadmaps - Electric and plug-in hybrid electric vehicles (EV/PHEV)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-06-15

    The mass deployment of electric and plug-in hybrid electric vehicles (EVs and PHEVs) that rely on low greenhouse gas (GHG) emission electricity generation has great potential to significantly reduce the consumption of petroleum and other high CO2-emitting transportation fuels. The vision of the Electric and Plug-in Hybrid (EV/PHEV) Vehicles Roadmap is to achieve by 2050 the widespread adoption and use of EVs and PHEVs, which together represent more than 50% of annual LDV (light duty vehicle) sales worldwide. In addition to establishing a vision, this roadmap sets strategic goals to achieve it, and identifies the steps that need to be taken to accomplish these goals. This roadmap also outlines the roles and collaboration opportunities for different stakeholders and shows how government policy can support the overall achievement of the vision. The strategic goals for attaining the widespread adoption and use of EVs and PHEVs worldwide by 2050 cover the development of the EV/PHEV market worldwide through 2030 and involve targets that align with global targets to stabilise GHG concentrations. These technology-specific goals include the following: Set targets for electric-drive vehicle sales; Develop coordinated strategies to support the market introduction of electric-drive vehicles; Improve industry understanding of consumer needs and behaviours; Develop performance metrics for characterising vehicles; Foster energy storage RD and D initiatives to reduce costs and address resource-related issues; and, Develop and implement recharging infrastructure. The roadmap outlines additional recommendations that must be considered in order to successfully meet the technology milestones and strategic goals. These recommendations include the following: Use a comprehensive mix of policies that provide a clear framework and balance stakeholder interests; Engage in international collaboration efforts; and, Address policy and industry needs at a national level. The IEA will work in an

  7. Vehicle technologies program Government Performance and Results Act (GPA) report for fiscal year 2012

    Energy Technology Data Exchange (ETDEWEB)

    Ward, J.; Stephens, T. S.; Birky, A. K. (Energy Systems); (DOE-EERE); (TA Engineering)

    2012-08-10

    The U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy has defined milestones for its Vehicle Technologies Program (VTP). This report provides estimates of the benefits that would accrue from achieving these milestones relative to a base case that represents a future in which there is no VTP-supported vehicle technology development. Improvements in the fuel economy and reductions in the cost of light- and heavy-duty vehicles were estimated by using Argonne National Laboratory's Autonomie powertrain simulation software and doing some additional analysis. Argonne also estimated the fraction of the fuel economy improvements that were attributable to VTP-supported development in four 'subsystem' technology areas: batteries and electric drives, advanced combustion engines, fuels and lubricants, and materials (i.e., reducing vehicle mass, called 'lightweighting'). Oak Ridge National Laboratory's MA{sup 3}T (Market Acceptance of Advanced Automotive Technologies) tool was used to project the market penetration of light-duty vehicles, and TA Engineering's TRUCK tool was used to project the penetrations of medium- and heavy-duty trucks. Argonne's VISION transportation energy accounting model was used to estimate total fuel savings, reductions in primary energy consumption, and reductions in greenhouse gas emissions that would result from achieving VTP milestones. These projections indicate that by 2030, the on-road fuel economy of both light- and heavy-duty vehicles would improve by more than 20%, and that this positive impact would be accompanied by a reduction in oil consumption of nearly 2 million barrels per day and a reduction in greenhouse gas emissions of more than 300 million metric tons of CO{sub 2} equivalent per year. These benefits would have a significant economic value in the U.S. transportation sector and reduce its dependency on oil and its vulnerability to oil price shocks.

  8. Natural gas application in light- and heavy-duty vehicles in Brazil: panorama, technological routes and perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Machado, Guilherme Bastos, Cordeiro de Melo, Tadeu Cavalcante; Leao, Raphael Riemke de Campos Cesar; Iaccarino, Fernando Aniello; Figueiredo Moreira, Marcia

    2007-07-01

    The Brazilian CNG light-duty vehicle fleet has currently reached more than 1,300,000 units. This growth increased in the late 1990's, when CNG was approved for use in passenger cars. In 2001, the IBAMA (Brazilian Institute for Environment and Natural Renewable Resources), concerned with this uncontrolled growth, published CONAMA (National Environmental Council, controlled by IBAMA) resolution 291, which establishes rules for CNG conversion kit environmental certification.This paper discusses the technological challenges for CNG-converted vehicles to comply with PROCONVE (Brazilian Program for Automotive Air Pollution Control) emission limits. In the 1980's, because of the oil crisis, Natural Gas (NG) emerged as a fuel with great potential to replace Diesel in heavy-duty vehicles. Some experiences were conducted for partial conversions from Diesel to NG (Diesel-gas). Other experiences using NG Otto Cycle buses were conducted in some cities, but have not expanded. Another technological route called 'Ottolization' (Diesel to Otto cycle convertion) appeared recently. Population increase and the great growth in vehicle fleet promote a constant concern with automotive emissions. More restrictive emission limits, high international oil prices, and the strategic interest in replacing Diesel imports, altogether form an interesting scenario for CNG propagation to public transportation in the main Brazilian metropolises.

  9. Fire hazards evaluation for light duty utility arm system

    International Nuclear Information System (INIS)

    HUCKFELDT, R.A.

    1999-01-01

    In accordance with DOE Order 5480.7A, Fire Protection, a Fire Hazards Analysis must be performed for all new facilities. LMHC Fire Protection has reviewed and approved the significant documentation leading up to the LDUA operation. This includes, but is not limited to, development criteria and drawings, Engineering Task Plan, Quality Assurance Program Plan, and Safety Program Plan. LMHC has provided an appropriate level of fire protection for this activity as documented

  10. Light duty utility arm (LDUA) operability test report (OTR)

    International Nuclear Information System (INIS)

    Conrad, R.B.

    1997-01-01

    The objective of the test was to demonstrate that the LDUA and subsystems that are applicable to the T-106 deployment could be safely deployed in the field and operated as designed per the operating procedures

  11. Economical and environmental assessments of compressed natural gas for diesel vehicle in Thailand

    Directory of Open Access Journals (Sweden)

    Prateep Chouykerd

    2008-08-01

    Full Text Available The economic assessments for the use of compressed natural gas as fuel for several types of diesel vehicles, rarely pick up, non-fixed route truck and private truck, were studied. It is noted that two main technologies of diesel natural gas vehicle (NGV, i.e. dedicated retrofit and diesel dual fuel (DDF, were considered in this work. It was found that the dedicated retrofit needs higher investment costs than dual fuel, but can achieve higher diesel saving than dual fuel. In detail, the payback period of dual fuel non-fixed route truck was found to be identical to dual fuel private truck both in the cases of6 wheel and 10 wheel, while dedicated retrofit non-fixed route truck and private truck are also identical and have longerpay back period than dual fuel due to its higher conversion costs.This work also presents the emissions released from all types of engines especially green house gas CO2. It was found that, in the case of light duty diesel i.e. pickup truck, dedicated retrofit emitted high level of CO2 than both dual fuel and conventional diesel engines. For heavy duty i.e. non-fixed route truck and private truck vehicles, dedicated retrofit emitted a lower level of CO2 than normal diesel engine. Other pollutants from engine emission, i.e. hydrocarbon (HC,nitric oxide (NOx, carbon monoxide (CO and particulate matter, (PM were also observed. The results indicated that, inthe case of light duty diesel, dedicated retrofit engine emits higher levels of HC and CO than diesel engine; in contrast, it emits lower level of NOx and PM than diesel and dual fuel. Dual fuel emits HC and CO higher than diesel and dedicated retrofit but emits lower level of NOx and PM than diesel. Lastly, for heavy duty diesel, it was demonstrated that non-fixed route truck and private truck heavy duty dedicated retrofit have potential to reduce emissions of HC, NOx, CO and PM when compared to normal heavy duty diesel. Engine efficiencies under dual fuel and dedicated

  12. Vehicle Controller

    Science.gov (United States)

    1985-01-01

    UNISTICK is an airplane-like joystick being developed by Johnson Engineering under NASA and VA sponsorship. It allows a driver to control a vehicle with one hand, and is based upon technology developed for the Apollo Lunar Landings of the 1970's. It allows severely handicapped drivers to operate an automobile or van easily. The system is expected to be in production by March 1986.

  13. Improving the accuracy of vehicle emissions profiles for urban transportation greenhouse gas and air pollution inventories.

    Science.gov (United States)

    Reyna, Janet L; Chester, Mikhail V; Ahn, Soyoung; Fraser, Andrew M

    2015-01-06

    Metropolitan greenhouse gas and air emissions inventories can better account for the variability in vehicle movement, fleet composition, and infrastructure that exists within and between regions, to develop more accurate information for environmental goals. With emerging access to high quality data, new methods are needed for informing transportation emissions assessment practitioners of the relevant vehicle and infrastructure characteristics that should be prioritized in modeling to improve the accuracy of inventories. The sensitivity of light and heavy-duty vehicle greenhouse gas (GHG) and conventional air pollutant (CAP) emissions to speed, weight, age, and roadway gradient are examined with second-by-second velocity profiles on freeway and arterial roads under free-flow and congestion scenarios. By creating upper and lower bounds for each factor, the potential variability which could exist in transportation emissions assessments is estimated. When comparing the effects of changes in these characteristics across U.S. cities against average characteristics of the U.S. fleet and infrastructure, significant variability in emissions is found to exist. GHGs from light-duty vehicles could vary by -2%-11% and CAP by -47%-228% when compared to the baseline. For heavy-duty vehicles, the variability is -21%-55% and -32%-174%, respectively. The results show that cities should more aggressively pursue the integration of emerging big data into regional transportation emissions modeling, and the integration of these data is likely to impact GHG and CAP inventories and how aggressively policies should be implemented to meet reductions. A web-tool is developed to aide cities in improving emissions uncertainty.

  14. A driving cycle for vehicle emissions estimation in the metropolitan area of Mexico City.

    Science.gov (United States)

    Schifter, I; Díaz, L; Rodríguez, R; López-Salinas, E

    2005-02-01

    A driving cycle derived from driving behavior and real traffic conditions in Mexico City (MC) is proposed. Data acquisition was carried out over diverse MC routes, representing travel under congested and uncongested conditions, using the chase-car approach. Thirteen different on-road patterns, including the four main access roads to MC, trips in both directions and different timetables, a total of 108 trips spanning 1044 km were evaluated in this study. The MC cycle lasts 1360 seconds with a distance of 8.8 km and average speed of 23.4 km h(-1). Both maximum speed (73.6 km h(-1)) and maximum acceleration (2.22 km h(-1)s(-1)) are lower than those of the new vehicles certification employed in Mexico ,FTP-75 cycle., that is, the MC cycle exhibits less cruising time and more transient events than the FTP cycle. A total of 30 light duty gasoline vehicles were classified into different technological groups and tested in an FTP-75 and MC driving cycles in order to compare their emission factors A potential concern is that in Mexico manufacturers design vehicles to meet the emission standards in the FTP, but emission levels increase significantly in a more representative cycle of present driving patterns in the Metropolitan Area of Mexico City (MAMC). The use of a more representative cycle during certification testing, would provide an incentive for vehicle manufacturers to design emissions control systems to remain effective during operation modes that are not currently represented in the official test procedures used in the certification process. Based on the results of the study, the use of MC cycle, which better represents current day driving patterns during testing of vehicle fleets in emissions laboratories, would improve the accuracy of emissions factors used in the MAMC emissions inventories.

  15. Charging Electric Vehicles in Smart Cities: An EVI-Pro Analysis of Columbus, Ohio

    Energy Technology Data Exchange (ETDEWEB)

    Wood, Eric W. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Rames, Clement L. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Muratori, Matteo [National Renewable Energy Lab. (NREL), Golden, CO (United States); Srinivasa Raghavan, Sesha [National Renewable Energy Lab. (NREL), Golden, CO (United States); Young, Stanley E. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2018-02-09

    With the support of the U.S. Department of Energy's Vehicle Technologies Office, the National Renewable Energy Laboratory (NREL) worked with the City of Columbus, Ohio, to develop a plan for the expansion of the region's network of charging stations to support increased adoption of plug-in electric vehicles (PEVs) in the local market. NREL's Electric Vehicle Infrastructure Projection (EVI-Pro) model was used to generate scenarios of regional charging infrastructure to support consumer PEV adoption. Results indicate that approximately 400 Level 2 plugs at multi-unit dwellings and 350 Level 2 plugs at non-residential locations are required to support Columbus' primary PEV goal of 5,300 PEVs on the road by the end of 2019. This analysis finds that while consumer demand for fast charging is expected to remain low (due to modest anticipated adoption of short-range battery electric vehicles), a minimum level of fast charging coverage across the city is required to ease consumer range anxiety concerns by providing a safety net for unexpected charging events. Sensitivity analyses around some key assumptions have also been performed; of these, consumer preference for PHEV versus BEV and for their electric driving range, ambient conditions, and availability of residential charging at multi-unit dwellings were identified as key determinants of the non-residential PEV charging infrastructure required to support PEV adoption. The results discussed in this report can be leveraged by similar U.S. cities as part of a strategy to accelerate PEV adoption in the light-duty vehicle market.

  16. 40 CFR 86.085-2 - Definitions.

    Science.gov (United States)

    2010-07-01

    ... 1977 and Later Model Year New Light-Duty Vehicles, Light-Duty Trucks and Heavy-Duty Engines, and for... standard. PRODLDT represents the manufacturer's total diesel light-duty truck production for those engine... special purpose vehicles such as small dump trucks, and trash compactor trucks. Typical applications would...

  17. 40 CFR 86.095-14 - Small-volume manufacturers certification procedures.

    Science.gov (United States)

    2010-07-01

    ... General Provisions for Emission Regulations for 1977 and Later Model Year New Light-Duty Vehicles, Light... light-duty vehicles and light-duty trucks covered by a certificate of conformity conform to the regulations while being operated at any altitude locations, and a statement of the altitude at which the...

  18. 40 CFR 86.118-00 - Dynamometer calibrations.

    Science.gov (United States)

    2010-07-01

    ... 1977 and Later Model Year New Light-Duty Vehicles and New Light-Duty Trucks and New Otto-Cycle Complete... required. (b) For large single roll electric dynamometers or equivalent dynamometer configurations, the...

  19. 40 CFR 86.079-39 - Submission of maintenance instructions.

    Science.gov (United States)

    2010-07-01

    ... Provisions for Emission Regulations for 1977 and Later Model Year New Light-Duty Vehicles, Light-Duty Trucks... shall be supplied to the Administrator at least 30 days before being supplied to the ultimate purchaser...

  20. Connected vehicle application : safety.

    Science.gov (United States)

    2015-01-01

    Connected vehicle safety applications are designed to increase situational awareness : and reduce or eliminate crashes through vehicle-to-infrastructure (V2I), vehicle-to-vehicle (V2V), and vehicle-to-pedestrian (V2P) data transmissions. Applications...

  1. Alignment of policies to maximize the climate benefits of diesel vehicles through control of particulate matter and black carbon emissions

    International Nuclear Information System (INIS)

    Minjares, Ray; Blumberg, Kate; Posada Sanchez, Francisco

    2013-01-01

    Diesel vehicles offer greater fuel-efficiency and lower greenhouse gas emissions at a time when national governments seek to reduce the energy and climate impacts of the vehicle fleet. Policies that promote diesels like preferential fuel taxes, fuel economy standards and greenhouse gas emission standards can produce higher emissions of diesel particulate matter if diesel particulate filters or equivalent emission control technology is not in place. This can undermine the expected climate benefits of dieselization and increase impacts on public health. This paper takes a historical look at Europe to illustrate the degree to which dieselization and lax controls on particulate matter can undermine the potential benefits sought from diesel vehicles. We show that countries on the dieselization pathway can fully capture the value of diesels with the adoption of tailpipe emission standards equivalent to Euro 6 or Tier 2 for passenger cars, and fuel quality standards that limit the sulfur content of diesel fuel to no greater than 15 ppm. Adoption of these policies before or in parallel with adoption of fuel consumption and greenhouse gas standards can avert the negative impacts of dieselization. - Highlights: ► Preferential tax policies have increased the dieselization of some light-duty vehicle fleets. ► Dieselization paired with lax emission standards produces large black carbon emissions. ► Diesel black carbon undermines the perceived climate benefits of diesel vehicles. ► Stringent controls on diesel particulate emissions will also reduce black carbon. ► Euro 6/VI equivalent emission standards can preserve the climate benefits of diesel vehicles

  2. Connected vehicles and cybersecurity.

    Science.gov (United States)

    2016-01-01

    Connected vehicles are a next-generation technology in vehicles and in infrastructure that will make travel safer, cleaner, and more efficient. The advanced wireless technology enables vehicles to share and communicate information with each other and...

  3. Vehicle Development Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Supports the development of prototype deployment platform vehicles for offboard countermeasure systems.DESCRIPTION: The Vehicle Development Laboratory is...

  4. Analysis of the Relationship Between Vehicle Weight/Size and Safety, and Implications for Federal Fuel Economy Regulation

    Energy Technology Data Exchange (ETDEWEB)

    Wenzel, Thomas P.

    2010-03-02

    preferable unit of exposure to a serious crash than the number of registered vehicles. However, because there are relatively few fatalities in the states providing crash data, we calculate casualty risks, which are the sum of fatalities and serious or incapacitating injuries, per vehicle involved in a crash reported to the police. We can account for driver age/gender and driving location effects by excluding from analysis crashes (and casualties) involving young males and the elderly, and occurring in very rural or very urban counties. Using state data on all police-reported crashes in five states, we find that excluding crashes involving young male and elderly drivers has little effect on casualty risk; however, excluding crashes that occurred in the most rural and most urban counties (based on population density) increases casualty risk for all vehicle types except pickups. This suggests that risks for pickups are overstated unless they account for the population density of the county in which the crashes occur. After removing crashes involving young males and elderly drivers, and those occurring in the most rural and most urban counties, we find that casualty risk in all light-duty vehicles tends to increase with increasing weight or footprint; however, the correlation (R{sup 2}) between casualty risk and vehicle weight is 0.31, while the correlation with footprint is 0.23. These relationships are stronger for cars than for light trucks. The correlation between casualty risk in frontal crashes and light-duty vehicle wheelbase is 0.12, while the correlation between casualty risk in left side crashes and track width is 0.36. We calculated separately the casualty risks vehicles impose on drivers of the other vehicles with which they crash. The correlation between casualty risk imposed by light trucks on drivers of other vehicles and light truck footprint is 0.15, while the correlation with light truck footprint is 0.33; risk imposed on others increases as light truck weight

  5. Characterization of on-road vehicle emissions in the Mexico City Metropolitan Area using a mobile laboratory in chase and fleet average measurement modes during the MCMA-2003 field campaign

    Directory of Open Access Journals (Sweden)

    M. Zavala

    2006-01-01

    Full Text Available A mobile laboratory was used to measure on-road vehicle emission ratios during the MCMA-2003 field campaign held during the spring of 2003 in the Mexico City Metropolitan Area (MCMA. The measured emission ratios represent a sample of emissions of in-use vehicles under real world driving conditions for the MCMA. From the relative amounts of NOx and selected VOC's sampled, the results indicate that the technique is capable of differentiating among vehicle categories and fuel type in real world driving conditions. Emission ratios for NOx, NOy, NH3, H2CO, CH3CHO, and other selected volatile organic compounds (VOCs are presented for chase sampled vehicles in the form of frequency distributions as well as estimates for the fleet averaged emissions. Our measurements of emission ratios for both CNG and gasoline powered "colectivos" (public transportation buses that are intensively used in the MCMA indicate that – in a mole per mole basis – have significantly larger NOx and aldehydes emissions ratios as compared to other sampled vehicles in the MCMA. Similarly, ratios of selected VOCs and NOy showed a strong dependence on traffic mode. These results are compared with the vehicle emissions inventory for the MCMA, other vehicle emissions measurements in the MCMA, and measurements of on-road emissions in U.S. cities. We estimate NOx emissions as 100 600±29 200 metric tons per year for light duty gasoline vehicles in the MCMA for 2003. According to these results, annual NOx emissions estimated in the emissions inventory for this category are within the range of our estimated NOx annual emissions. Our estimates for motor vehicle emissions of benzene, toluene, formaldehyde, and acetaldehyde in the MCMA indicate these species are present in concentrations higher than previously reported. The high motor vehicle aldehyde emissions may have an impact on the photochemistry of urban areas.

  6. Electric and hybrid vehicles

    Science.gov (United States)

    1979-01-01

    Report characterizes state-of-the-art electric and hybrid (combined electric and heat engine) vehicles. Performance data for representative number of these vehicles were obtained from track and dynamometer tests. User experience information was obtained from fleet operators and individual owners of electric vehicles. Data on performance and physical characteristics of large number of vehicles were obtained from manufacturers and available literature.

  7. Assessing the Future Vehicle Fleet Electrification: The Impacts on Regional and Urban Air Quality.

    Science.gov (United States)

    Ke, Wenwei; Zhang, Shaojun; Wu, Ye; Zhao, Bin; Wang, Shuxiao; Hao, Jiming

    2017-01-17

    There have been significant advancements in electric vehicles (EVs) in recent years. However, the different changing patterns in emissions at upstream and on-road stages and complex atmospheric chemistry of pollutants lead to uncertainty in the air quality benefits from fleet electrification. This study considers the Yangtze River Delta (YRD) region in China to investigate whether EVs can improve future air quality. The Community Multiscale Air Quality model enhanced by the two-dimensional volatility basis set module is applied to simulate the temporally, spatially, and chemically resolved changes in PM 2.5 concentrations and the changes of other pollutants from fleet electrification. A probable scenario (Scenario EV1) with 20% of private light-duty passenger vehicles and 80% of commercial passenger vehicles (e.g., taxis and buses) electrified can reduce average PM 2.5 concentrations by 0.4 to 1.1 μg m -3 during four representative months for all urban areas of YRD in 2030. The seasonal distinctions of the air quality impacts with respect to concentration reductions in key aerosol components are also identified. For example, the PM 2.5 reduction in January is mainly attributed to the nitrate reduction, whereas the secondary organic aerosol reduction is another essential contributor in August. EVs can also effectively assist in mitigating NO 2 concentrations, which would gain greater reductions for traffic-dense urban areas (e.g., Shanghai). This paper reveals that the fleet electrification in the YRD region could generally play a positive role in improving regional and urban air quality.

  8. Vehicle Based Vector Sensor

    Science.gov (United States)

    2015-09-28

    buoyant underwater vehicle with an interior space in which a length of said underwater vehicle is equal to one tenth of the acoustic wavelength...underwater vehicle with an interior space in which a length of said underwater vehicle is equal to one tenth of the acoustic wavelength; an...unmanned underwater vehicle that can function as an acoustic vector sensor. (2) Description of the Prior Art [0004] It is known that a propagating

  9. Air quality impacts of plug-in hybrid electric vehicles in Texas: evaluating three battery charging scenarios

    International Nuclear Information System (INIS)

    Thompson, Tammy M; King, Carey W; Webber, Michael E; Allen, David T

    2011-01-01

    The air quality impacts of replacing approximately 20% of the gasoline-powered light duty vehicle miles traveled (VMT) with electric VMT by the year 2018 were examined for four major cities in Texas: Dallas/Ft Worth, Houston, Austin, and San Antonio. Plug-in hybrid electric vehicle (PHEV) charging was assumed to occur on the electric grid controlled by the Electricity Reliability Council of Texas (ERCOT), and three charging scenarios were examined: nighttime charging, charging to maximize battery life, and charging to maximize driver convenience. A subset of electricity generating units (EGUs) in Texas that were found to contribute the majority of the electricity generation needed to charge PHEVs at the times of day associated with each scenario was modeled using a regional photochemical model (CAMx). The net impacts of the PHEVs on the emissions of precursors to the formation of ozone included an increase in NO x emissions from EGUs during times of day when the vehicle is charging, and a decrease in NO x from mobile emissions. The changes in maximum daily 8 h ozone concentrations and average exposure potential at twelve air quality monitors in Texas were predicted on the basis of these changes in NO x emissions. For all scenarios, at all monitors, the impact of changes in vehicular emissions, rather than EGU emissions, dominated the ozone impact. In general, PHEVs lead to an increase in ozone during nighttime hours (due to decreased scavenging from both vehicles and EGU stacks) and a decrease in ozone during daytime hours. A few monitors showed a larger increase in ozone for the convenience charging scenario versus the other two scenarios. Additionally, cumulative ozone exposure results indicate that nighttime charging is most likely to reduce a measure of ozone exposure potential versus the other two scenarios.

  10. Bridge vehicle impact assessment.

    Science.gov (United States)

    2011-12-01

    Bridges in New York State have been experiencing close to 200 bridge hits a year. These : accidents are attributed to numerous factors including: improperly stored equipment on trucks; : violation of vehicle posting signs; illegal commercial vehicles...

  11. The Electric Vehicle Development

    DEFF Research Database (Denmark)

    Wang, Jingyu; Liu, Yingqi; Kokko, Ari

    2014-01-01

    In order to respond to the energy crisis and environment problem, countries carry out their research and promotion about electric vehicles. As the ten cities one thousand new energy buses started in 2009, the new energy vehicles have been greatly developed in China, while the development...... in three aspects-city environment, government and stakeholders. Then the paper discusses the promotion ways and role of government and consumer. Finally, the paper offers some suggestions to promote electric vehicles in China: focusing on feasibility and adaptability of electric vehicles, playing...... of electric vehicles is not that good. This paper selects four cities-Los Angeles, Kanagawa, Hamburg, Amsterdam-that promote electric vehicles successfully and deeply analyzes the development of electric vehicles in these four cities and analyzes the factors that affect the development of electric vehicles...

  12. Energy harvesting water vehicle

    KAUST Repository

    Singh, Devendra

    2018-01-01

    An efficient energy harvesting (EEH) water vehicle is disclosed. The base of the EEH water vehicle is fabricated with rolling cylindrical drums that can rotate freely in the same direction of the water medium. The drums reduce the drag

  13. Black carbon emissions in gasoline vehicle exhaust: a measurement and instrument comparison.

    Science.gov (United States)

    Kamboures, Michael A; Hu, Shishan; Yu, Yong; Sandoval, Julia; Rieger, Paul; Huang, Shiou-Mei; Zhang, Sherry; Dzhema, Inna; Huo, Darey; Ayala, Alberto; Chang, M C Oliver

    2013-08-01

    A pilot study was conducted to evaluate the performance and agreement of several commercially available black carbon (BC) measurement instruments, when applied to the quantification of BC in light-duty vehicle (LDV) exhaust. Samples from six vehicles, three fuels, and three driving cycles were used. The pilot study included determinations of the method detection limit (MDL) and repeatability. With respect to the MDL, the real-time instruments outperformed the time-integrated instruments, with MDL = 0.12 mg/mi for the AE51 Aethalometer, and 0.15 mg/mi for the Micro Soot Sensor (MSS), versus 0.38 mg/mi for the IMPROVE_A thermal/ optical method, and 0.35 mg/mi for the OT21_T Optical Transmissometer. The real-time instruments had repeatability values ranging from 30% to 35%, which are somewhat better than those of the time-integrated instruments (40-41%). These results suggest that, despite being less resource intensive, real-time methods can be equivalent or superior to time-integrated methods in terms of sensitivity and repeatability. BC mass data, from the photoacoustic and light attenuation instruments, were compared against same-test EC data, determined using the IMPROVE_A method. The MSS BC data was well correlated with EC, with R2 = 0.85 for the composite results and R2 = 0.86 for the phase-by-phase (PBP) results. The correlation of BC, by the AE51, AE22, and OT21_T with EC was moderate to weak. The weaker correlation was driven by the inclusion of US06 test data in the linear regression analysis. We hypothesize that test-cycle-dependent BC:EC ratios are due to the different physicochemical properties of particulate matter (PM) in US06 and Federal Test Procedure (FTP) tests. Correlation amongst the real-time MSS, PASS-1, AE51, and AE22 instruments was excellent (R2 = 0.83-0.95), below 1 mg/mi levels. In the process of investigating these BC instruments, we learned that BC emissions at sub-1 mg/mi levels can be measured and are achievable by current

  14. Electric Vehicle Technician

    Science.gov (United States)

    Moore, Pam

    2011-01-01

    With President Obama's goal to have one million electric vehicles (EV) on the road by 2015, the electric vehicle technician should have a promising and busy future. "The job force in the car industry is ramping up for a revitalized green car industry," according to Greencareersguide.com. An electric vehicle technician will safely troubleshoot and…

  15. Supercavitating Vehicle Control

    Science.gov (United States)

    2008-10-10

    401) 832-1511. DISTRIBUTION STATEMENT Approved for Public Release Distribution is unlimited 20081027289 Attorney Docket No. 96674 SUPERCAVITATING ...methods and more specifically to systems and methods for controlling a trajectory of a supercavitating vehicle. (2) Description of the Prior Art [0004...1 [0005) Some investigations into reducing the drag of high-speed, underwater vehicles have focused attention on supercavitating underwater vehicles

  16. MRV - Modular Robotic Vehicle

    Science.gov (United States)

    Ridley, Justin; Bluethmann, Bill

    2015-01-01

    The Modular Robotic Vehicle, or MRV, completed in 2013, was developed at the Johnson Space Center in order to advance technologies which have applications for future vehicles both in space and on Earth. With seating for two people, MRV is a fully electric vehicle modeled as a "city car", suited for busy urban environments.

  17. Procurement Policy for Armored Vehicles

    National Research Council Canada - National Science Library

    Jolliffe, Richard B; Burton, Bruce A; Carros, Deborah L; Schaefer, Beth K; Truong, Linh; Palmer, Kevin A; Chun, Judy M; Smith, Jessica M; Abraham, Amanda M; Peters, Anthony R

    2007-01-01

    ...., and Armor Holdings, Inc., for armored vehicles. This report addresses armored vehicles, specifically the Buffalo Mine Protected Clearance Vehicle, the Cougar, the Joint Explosive Ordnance Disposal Rapid Response Vehicle (JERRV...

  18. Space vehicle chassis

    Science.gov (United States)

    Judd, Stephen; Dallmann, Nicholas; Seitz, Daniel; Martinez, John; Storms, Steven; Kestell, Gayle

    2017-07-18

    A modular space vehicle chassis may facilitate convenient access to internal components of the space vehicle. Each module may be removable from the others such that each module may be worked on individually. Multiple panels of at least one of the modules may swing open or otherwise be removable, exposing large portions of the internal components of the space vehicle. Such chassis architectures may reduce the time required for and difficulty of performing maintenance or modifications, may allow multiple space vehicles to take advantage of a common chassis design, and may further allow for highly customizable space vehicles.

  19. Ariane transfer vehicle scenario

    Science.gov (United States)

    Deutscher, Norbert; Cougnet, Claude

    1990-10-01

    ESA's Ariane Transfer Vehicle (ATV) is a vehicle design concept for the transfer of payloads from Ariane 5 launch vehicle orbit insertion to a space station, on the basis of the Ariane 5 program-developed Upper Stage Propulsion Module and Vehicle Equipment Bay. The ATV is conceived as a complement to the Hermes manned vehicle for lower cost unmanned carriage of logistics modules and other large structural elements, as well as waste disposal. It is also anticipated that the ATV will have an essential role in the building block transportation logistics of any prospective European space station.

  20. Variability in operation-based NO(x) emission factors with different test routes, and its effects on the real-driving emissions of light diesel vehicles.

    Science.gov (United States)

    Lee, Taewoo; Park, Junhong; Kwon, Sangil; Lee, Jongtae; Kim, Jeongsoo

    2013-09-01

    The objective of this study is to quantify the differences in NO(x) emissions between standard and non-standard driving and vehicle operating conditions, and to estimate by how much NO(x) emissions exceed the legislative emission limits under typical Korean road traffic conditions. Twelve Euro 3-5 light-duty diesel vehicles (LDDVs) manufactured in Korea were driven on a chassis dynamometer over the standard New European Driving Cycle (NEDC) and a representative Korean on-road driving cycle (KDC). NO(x) emissions, average speeds and accelerations were calculated for each 1-km trip segment, so called averaging windows. The results suggest that the NO(x) emissions of the tested vehicles are more susceptible to variations in the driving cycles than to those in the operating conditions. Even under comparable operating conditions, the NO(x) control capabilities of vehicles differ from each other, i.e., NO(x) control is weaker for the KDC than for the NEDC. The NO(x) emissions over the KDC for given vehicle operating conditions exceed those over the NEDC by more than a factor of 8. Consequently, on-road NO(x) emission factors are estimated here to exceed the Euro 5 emission limit by up to a factor of 8, 4 and 3 for typical Korean urban, rural, and motorway road traffic conditions, respectively. Our findings support the development of technical regulations for supplementary real-world emission tests for emission certification and the corresponding research actions taken by automotive industries. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Efficient determination of vehicle emission factors by fuel use category using on-road measurements: downward trends on Los Angeles freight corridor I-710

    Directory of Open Access Journals (Sweden)

    N. Hudda

    2013-01-01

    Full Text Available To evaluate the success of vehicle emissions regulations, trends in both fleet-wide average emissions as well as high-emitter emissions are needed, but it is challenging to capture the full spread of vehicle emission factors (EFs with chassis dynamometer or tunnel studies, and remote sensing studies cannot evaluate particulate compounds. We developed an alternative method that links real-time on-road pollutant measurements from a mobile platform with real-time traffic data, and allows efficient calculation of both the average and the spread of EFs for light-duty gasoline-powered vehicles (LDG and heavy-duty diesel-powered vehicles (HDD. This is the first study in California to report EFs under a full range of real-world driving conditions on multiple freeways. Fleet average LDG EFs were in agreement with most recent studies and an order of magnitude lower than observed HDD EFs. HDD EFs reflected the relatively rapid decreases in diesel emissions that have recently occurred in Los Angeles/California, and on I-710, a primary route used for goods movement and a focus of additional truck fleet turnover incentives, HDD EFs were often lower than on other freeways. When freeway emission rates (ER were quantified as the product of EF and vehicle miles traveled (VMT per time per mile of freeway, despite a two- to three-fold difference in HDD fractions between freeways, ERs were found to be generally similar in magnitude. Higher LDG VMT on low HDD fraction freeways largely offset the difference. Therefore, the conventional assumption that freeways with the highest HDD fractions are significantly worse sources of total emissions in Los Angeles may no longer be~true.

  2. Efficient determination of vehicle emission factors by fuel use category using on-road measurements: downward trends on Los Angeles freight corridor I-710.

    Science.gov (United States)

    Hudda, N; Fruin, S; Delfino, R J; Sioutas, C

    2013-01-11

    To evaluate the success of vehicle emissions regulations, trends in both fleet-wide average emissions as well as high-emitter emissions are needed, but it is challenging to capture the full spread of vehicle emission factors (EFs) with chassis dynamometer or tunnel studies, and remote sensing studies cannot evaluate particulate compounds. We developed an alternative method that links real-time on-road pollutant measurements from a mobile platform with real-time traffic data, and allows efficient calculation of both the average and the spread of EFs for light-duty gasoline-powered vehicles (LDG) and heavy-duty diesel-powered vehicles (HDD). This is the first study in California to report EFs under a full range of real-world driving conditions on multiple freeways. Fleet average LDG EFs were in agreement with most recent studies and an order of magnitude lower than observed HDD EFs. HDD EFs reflected the relatively rapid decreases in diesel emissions that have recently occurred in Los Angeles/California, and on I-710, a primary route used for goods movement and a focus of additional truck fleet turnover incentives, HDD EFs were often lower than on other freeways. When freeway emission rates (ER) were quantified as the product of EF and vehicle miles traveled (VMT) per time per mile of freeway, despite a twoto three-fold difference in HDD fractions between freeways, ERs were found to be generally similar in magnitude. Higher LDG VMT on low HDD fraction freeways largely offset the difference. Therefore, the conventional assumption that free ways with the highest HDD fractions are significantly worse sources of total emissions in Los Angeles may no longer be true.

  3. Hydrocarbon emission fingerprints from contemporary vehicle/engine technologies with conventional and new fuels

    Science.gov (United States)

    Montero, Larisse; Duane, Matthew; Manfredi, Urbano; Astorga, Covadonga; Martini, Giorgio; Carriero, Massimo; Krasenbrink, Alois; Larsen, B. R.

    2010-06-01

    The present paper presents results from the analysis of 29 individual C 2-C 9 hydrocarbons (HCs) specified in the European Commission Ozone Directive. The 29 HCs are measured in exhaust from common, contemporary vehicle/engine/fuel technologies for which very little or no data is available in the literature. The obtained HC emission fingerprints are compared with fingerprints deriving from technologies that are being phased out in Europe. Based on the total of 138 emission tests, thirteen type-specific fingerprints are extracted (Mean ± SD percentage contributions from individual HCs to the total mass of the 29 HCs), essential for receptor modelling source apportionment. The different types represent exhaust from Euro3 and Euro4 light-duty (LD) diesel and petrol-vehicles, Euro3 heavy-duty (HD) diesel exhaust, and exhaust from 2-stroke preEuro, Euro1 and Euro2 mopeds. The fuels comprise liquefied petroleum gas, petrol/ethanol blends (0-85% ethanol), and mineral diesel in various blends (0-100%) with fatty acid methyl esters, rapeseed methyl esters palm oil methyl esters, soybean oil methyl or sunflower oil methyl esters. Type-specific tracer compounds (markers) are identified for the various vehicle/engine/fuel technologies. An important finding is an insignificant effect on the HC fingerprints of varying the test driving cycle, indicating that combining HC fingerprints from different emission studies for receptor modelling purposes would be a robust approach. The obtained results are discussed in the context of atmospheric ozone formation and health implications from emissions (mg km -1 for LD and mopeds and mg kW h -1 for HD, all normalised to fuel consumption: mg dm -3 fuel) of the harmful HCs, benzene and 1,3-butadiene. Another important finding is a strong linear correlation of the regulated "total" hydrocarbon emissions (tot-HC) with the ozone formation potential of the 29 HCs (ΣPO 3 = (1.66 ± 0.04) × tot-RH; r2 = 0.93). Tot-HC is routinely monitored in

  4. Criteria and air-toxic emissions from in-use automobiles in the National Low-Emission Vehicle program.

    Science.gov (United States)

    Baldauf, Rich W; Gabele, Pete; Crews, William; Snow, Richard; Cook, J Rich

    2005-09-01

    The U.S. Environmental Protection Agency (EPA) implemented a program to identify tailpipe emissions of criteria and air-toxic contaminants from in-use, light-duty low-emission vehicles (LEVs). EPA recruited 25 LEVs in 2002 and measured emissions on a chassis dynamometer using the cold-start urban dynamometer driving schedule of the Federal Test Procedure. The emissions measured included regulated pollutants, particulate matter, speciated hydrocarbon compounds, and carbonyl compounds. The results provided a comparison of emissions from real-world LEVs with emission standards for criteria and air-toxic compounds. Emission measurements indicated that a portion of the in-use fleet tested exceeded standards for the criteria gases. Real-time regulated and speciated hydrocarbon measurements demonstrated that the majority of emissions occurred during the initial phases of the cold-start portion of the urban dynamometer driving schedule. Overall, the study provided updated emission factor data for real-world, in-use operation of LEVs for improved emissions modeling and mobile source inventory development.

  5. Secondary organic aerosol formation from in-use motor vehicle emissions using a potential aerosol mass reactor.

    Science.gov (United States)

    Tkacik, Daniel S; Lambe, Andrew T; Jathar, Shantanu; Li, Xiang; Presto, Albert A; Zhao, Yunliang; Blake, Donald; Meinardi, Simone; Jayne, John T; Croteau, Philip L; Robinson, Allen L

    2014-10-07

    Secondary organic aerosol (SOA) formation from in-use vehicle emissions was investigated using a potential aerosol mass (PAM) flow reactor deployed in a highway tunnel in Pittsburgh, Pennsylvania. Experiments consisted of passing exhaust-dominated tunnel air through a PAM reactor over integrated hydroxyl radical (OH) exposures ranging from ∼ 0.3 to 9.3 days of equivalent atmospheric oxidation. Experiments were performed during heavy traffic periods when the fleet was at least 80% light-duty gasoline vehicles on a fuel-consumption basis. The peak SOA production occurred after 2-3 days of equivalent atmospheric oxidation. Additional OH exposure decreased the SOA production presumably due to a shift from functionalization to fragmentation dominated reaction mechanisms. Photo-oxidation also produced substantial ammonium nitrate, often exceeding the mass of SOA. Analysis with an SOA model highlight that unspeciated organics (i.e., unresolved complex mixture) are a very important class of precursors and that multigenerational processing of both gases and particles is important at longer time scales. The chemical evolution of the organic aerosol inside the PAM reactor appears to be similar to that observed in the atmosphere. The mass spectrum of the unoxidized primary organic aerosol closely resembles ambient hydrocarbon-like organic aerosol (HOA). After aging the exhaust equivalent to a few hours of atmospheric oxidation, the organic aerosol most closely resembles semivolatile oxygenated organic aerosol (SV-OOA) and then low-volatility organic aerosol (LV-OOA) at higher OH exposures. Scaling the data suggests that mobile sources contribute ∼ 2.9 ± 1.6 Tg SOA yr(-1) in the United States, which is a factor of 6 greater than all mobile source particulate matter emissions reported by the National Emissions Inventory. This highlights the important contribution of SOA formation from vehicle exhaust to ambient particulate matter concentrations in urban areas.

  6. Optimizing battery sizes of plug-in hybrid and extended range electric vehicles for different user types

    International Nuclear Information System (INIS)

    Redelbach, Martin; Özdemir, Enver Doruk; Friedrich, Horst E.

    2014-01-01

    There are ambitious greenhouse gas emission (GHG) targets for the manufacturers of light duty vehicles. To reduce the GHG emissions, plug-in hybrid electric vehicle (PHEV) and extended range electric vehicle (EREV) are promising powertrain technologies. However, the battery is still a very critical component due to the high production cost and heavy weight. This paper introduces a holistic approach for the optimization of the battery size of PHEVs and EREVs under German market conditions. The assessment focuses on the heterogeneity across drivers, by analyzing the impact of different driving profiles on the optimal battery setup from total cost of ownership (TCO) perspective. The results show that the battery size has a significant effect on the TCO. For an average German driver (15,000 km/a), battery capacities of 4 kWh (PHEV) and 6 kWh (EREV) would be cost optimal by 2020. However, these values vary strongly with the driving profile of the user. Moreover, the optimal battery size is also affected by external factors, e.g. electricity and fuel prices or battery production cost. Therefore, car manufacturers should develop a modular design for their batteries, which allows adapting the storage capacity to meet the individual customer requirements instead of “one size fits all”. - Highlights: • Optimization of the battery size of PHEVs and EREVs under German market conditions. • Focus on heterogeneity across drivers (e.g. mileage, trip distribution, speed). • Optimal battery size strongly depends on the driving profile and energy prices. • OEMs require a modular design for their batteries to meet individual requirements

  7. 40 CFR 86.1725-99 - Maintenance.

    Science.gov (United States)

    2010-07-01

    ... the Voluntary National Low Emission Vehicle Program for Light-Duty Vehicles and Light-Duty Trucks § 86... subpart, with the following additions: (a) Hybrid electric vehicles that use Otto-cycle or diesel engines...) through (e) and subsequent model year provisions. (b) Manufacturers of series hybrid electric vehicles and...

  8. Vehicle underbody fairing

    Science.gov (United States)

    Ortega, Jason M.; Salari, Kambiz; McCallen, Rose

    2010-11-09

    A vehicle underbody fairing apparatus for reducing aerodynamic drag caused by a vehicle wheel assembly, by reducing the size of a recirculation zone formed under the vehicle body immediately downstream of the vehicle wheel assembly. The fairing body has a tapered aerodynamic surface that extends from a front end to a rear end of the fairing body with a substantially U-shaped cross-section that tapers in both height and width. Fasteners or other mounting devices secure the fairing body to an underside surface of the vehicle body, so that the front end is immediately downstream of the vehicle wheel assembly and a bottom section of the tapered aerodynamic surface rises towards the underside surface as it extends in a downstream direction.

  9. Control of Electric Vehicle

    OpenAIRE

    Huang, Qi; Chen, Yong; Li, Jian

    2010-01-01

    In this chapter, the modeling of electric vehicle is discussed in detail. Then, the control of electric vehicle driven by different motors is discussed. Both brushed and brushless DC (Direct Current) motors are discussed. And for AC (Alternative Current) motors, the discussion is focused on induction motor and permanent magnet synchronous motor. The design of controllers for different motor-driven electric vehicle is discussed in-depth, and the tested high-performance control strategies for d...

  10. Trust in vehicle technology

    OpenAIRE

    Walker, Guy, H.; Stanton, Neville, A.; Salmon, Paul

    2016-01-01

    Driver trust has potentially important implications for how vehicle technology is used and interacted with. In this paper it will be seen how driver trust functions and how it can be understood and manipulated by insightful vehicle design. It will review the theoretical literature to define steps that can be taken establish trust in vehicle technology in the first place, maintain trust in the long term, and even re-establish trust that has been lost along the way. The implication throughout i...

  11. On Autonomous Articulated Vehicles

    OpenAIRE

    Nayl, Thaker

    2015-01-01

    The objective of this thesis is to address the problems of modeling, path planning and path following for an articulated vehicle in a realistic environment and in the presence of multiple obstacles.In greater detail, the problem of the kinematic modeling of an articulated vehicle is revisited through the proposal of a proper model in which the dimensions and properties of the vehicle can be fully described, rather than considering it as a unit point. Based on this approach, nonlinear and line...

  12. Electric vehicle propulsion alternatives

    Science.gov (United States)

    Secunde, R. R.; Schuh, R. M.; Beach, R. F.

    1983-01-01

    Propulsion technology development for electric vehicles is summarized. Analytical studies, technology evaluation, and the development of technology for motors, controllers, transmissions, and complete propulsion systems are included.

  13. Road vehicle emissions of molecular hydrogen (H 2) from a tunnel study

    Science.gov (United States)

    Vollmer, Martin K.; Juergens, Niklas; Steinbacher, Martin; Reimann, Stefan; Weilenmann, Martin; Buchmann, Brigitte

    Motor vehicle combustion emissions of molecular hydrogen (H 2), carbon monoxide (CO), and carbon dioxide (CO 2) were measured during a 6-week period from November 2004 to January 2005 in Gubrist Tunnel, Switzerland, to determine vehicle emission factors for these trace gases and the ratios of the concentration growths ΔH2/ΔCO and ΔH2/ΔCO2 in the tunnel under real-world highway driving conditions. For H 2, molar mixing ratios at the tunnel exit were found to be 7-10 ppm (parts-per-million, 10-6) during rush hours. Mean emission factors of E=49.7(±16.5)mgkm-1, ECO=1.46(±0.54)gkm-1, and E=266(±69)gkm-1 were calculated. E was largest during weekday rush-hour traffic, a consequence of the more frequent accelerations in congested traffic when fuel combustion is not optimal. E was smaller for heavy-duty vehicles (HDV) compared to light-duty vehicles (LDV), a finding which was attributed to the diesel vs. gasoline engine technology. The mean ΔH2/ΔCO molecular ratio was 0.48±0.12. This ratio increased to ˜0.6 during rush hours, suggesting that H 2 yield is favored relative to CO under fuel-rich conditions, presumably a consequence of an increasing contribution of the water-gas-shift reaction. The mean ΔH2/ΔCO2 molecular ratio was 4.4×10-3 but reduced to 2.5×10-3 when the relative HDV abundance was at maximum. Using three different approaches, road traffic H 2 emissions were estimated for 2004 for Switzerland at 5.0-6.6 Gg and globally at 4.2-8.1 Tg. Despite projections of increasing traffic, Swiss H 2 emissions are not expected to change significantly in the near future, and global emissions are likely to decrease due to improved exhaust gas clean-up technologies.

  14. Vehicle electrification. Quo vadis?

    Energy Technology Data Exchange (ETDEWEB)

    Brinkman, N. [GM Global Research and Development, Warren, MI (United States); Eberle, U.; Formanski, V.; Grebe, U.D.; Matthe, R. [General Motors Europe, Ruesselsheim (Germany)

    2012-11-01

    This publication describes the development of electrified propulsion systems from the invention of the automobile to the present and then provides an outlook on expected technology progress. Vehicle application areas for the various systems are identified based on a range of energy supply chains and the technological limits of electric powertrain components. GM anticipates that vehicle electrification will increase in the future. Battery-electric vehicles will become competitive for some applications, especially intra-urban, short-distance driving. Range-extended electric vehicles provide longer driving range and offer full capability; with this technology, electric vehicles can serve as the prime vehicle for many customers. Hydrogen-powered fuel cell-electric powertrains have potential for application across most of the vehicle segments. They produce zero emissions during all phases of operation, offer short refueling times, but have powertrain cooling and hydrogen storage packaging constraints. While the market share of electrified vehicles is expected to increase significantly, GM expects conventional powertrains with internal combustion engines to also have a long future - however, a lot of them will be supported by various levels of electrification. (orig.)

  15. Vehicle usage verification system

    NARCIS (Netherlands)

    Scanlon, W.G.; McQuiston, Jonathan; Cotton, Simon L.

    2012-01-01

    EN)A computer-implemented system for verifying vehicle usage comprising a server capable of communication with a plurality of clients across a communications network. Each client is provided in a respective vehicle and with a respective global positioning system (GPS) by which the client can

  16. Vehicle barrier systems

    International Nuclear Information System (INIS)

    Sena, P.A.

    1986-01-01

    The ground vehicle is one of the most effective tools available to an adversary force. Vehicles can be used to penetrate many types of perimeter barriers, transport equipment and personnel rapidly over long distances, and deliver large amounts of explosives directly to facilities in suicide missions. The function of a vehicle barrier system is to detain or disable a defined threat vehicle at a selected distance from a protected facility. Numerous facilities are installing, or planning to install, vehicle barrier systems and many of these facilities are requesting guidance to do so adequately. Therefore, vehicle barriers are being evaluated to determine their stopping capabilities so that systems can be designed that are both balanced and capable of providing a desired degree of protection. Equally important, many of the considerations that should be taken into account when establishing a vehicle barrier system have been identified. These considerations which pertain to site preparation, barrier selection, system integration and operation, and vehicle/barrier interaction, are discussed in this paper

  17. Optimal vehicle control

    NARCIS (Netherlands)

    Alirezaei, M.; Kanarachos, S.A.; Scheepers, B.T.M.; Maurice, J.P.

    2013-01-01

    The Integrated Vehicle Safety Department of TNO (Dutch Organization for Applied Scientific Research) investigates the application of modern control methods in the Integrated Vehicle Dynamics Control (IVDC) field, as a strategic research topic of the Beyond Safe framework. The aim of IVDC is to

  18. Electric Vehicle Battery Challenge

    Science.gov (United States)

    Roman, Harry T.

    2014-01-01

    A serious drawback to electric vehicles [batteries only] is the idle time needed to recharge their batteries. In this challenge, students can develop ideas and concepts for battery change-out at automotive service stations. Such a capability would extend the range of electric vehicles.

  19. Fuel Economy Label and CAFE Data

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Engine and Vehicle Compliance Certification and Fuel Economy Inventory contains measured emissions and fuel economy compliance information for light duty...

  20. Intelligent Vehicle Health Management

    Science.gov (United States)

    Paris, Deidre E.; Trevino, Luis; Watson, Michael D.

    2005-01-01

    As a part of the overall goal of developing Integrated Vehicle Health Management systems for aerospace vehicles, the NASA Faculty Fellowship Program (NFFP) at Marshall Space Flight Center has performed a pilot study on IVHM principals which integrates researched IVHM technologies in support of Integrated Intelligent Vehicle Management (IIVM). IVHM is the process of assessing, preserving, and restoring system functionality across flight and ground systems (NASA NGLT 2004). The framework presented in this paper integrates advanced computational techniques with sensor and communication technologies for spacecraft that can generate responses through detection, diagnosis, reasoning, and adapt to system faults in support of INM. These real-time responses allow the IIVM to modify the affected vehicle subsystem(s) prior to a catastrophic event. Furthermore, the objective of this pilot program is to develop and integrate technologies which can provide a continuous, intelligent, and adaptive health state of a vehicle and use this information to improve safety and reduce costs of operations. Recent investments in avionics, health management, and controls have been directed towards IIVM. As this concept has matured, it has become clear the INM requires the same sensors and processing capabilities as the real-time avionics functions to support diagnosis of subsystem problems. New sensors have been proposed, in addition, to augment the avionics sensors to support better system monitoring and diagnostics. As the designs have been considered, a synergy has been realized where the real-time avionics can utilize sensors proposed for diagnostics and prognostics to make better real-time decisions in response to detected failures. IIVM provides for a single system allowing modularity of functions and hardware across the vehicle. The framework that supports IIVM consists of 11 major on-board functions necessary to fully manage a space vehicle maintaining crew safety and mission

  1. Vehicle Emissions Risk Management

    International Nuclear Information System (INIS)

    Ibrahem, L.G.

    2004-01-01

    Vehicle emissions are considered as a main source for air pollution. Emissions regulation is now well developed in most countries to meet cleaner air quality. Reducing emissions by using cleaner fuels, which meet certain specification, is not enough to get cleaner air, yet the vehicle technology is not improved. Here we will outline the following: - development in fuel specification and emissions regulation. main facts linking vehicle emissions, fuel properties and air quality. catalytic converter technology. Emissions sources: In modem cities, vehicle traffic is potentially a major source of emissions. However sometimes other sources of emissions from industry and other stationary sources can be equally important and include emissions that are of greater toxicity than those from vehicles

  2. Automated Vehicles Symposium 2015

    CERN Document Server

    Beiker, Sven

    2016-01-01

    This edited book comprises papers about the impacts, benefits and challenges of connected and automated cars. It is the third volume of the LNMOB series dealing with Road Vehicle Automation. The book comprises contributions from researchers, industry practitioners and policy makers, covering perspectives from the U.S., Europe and Japan. It is based on the Automated Vehicles Symposium 2015 which was jointly organized by the Association of Unmanned Vehicle Systems International (AUVSI) and the Transportation Research Board (TRB) in Ann Arbor, Michigan, in July 2015. The topical spectrum includes, but is not limited to, public sector activities, human factors, ethical and business aspects, energy and technological perspectives, vehicle systems and transportation infrastructure. This book is an indispensable source of information for academic researchers, industrial engineers and policy makers interested in the topic of road vehicle automation.

  3. Ground Vehicle Convoying

    Science.gov (United States)

    Gage, Douglas W.; Pletta, J. Bryan

    1987-01-01

    Initial investigations into two different approaches for applying autonomous ground vehicle technology to the vehicle convoying application are described. A minimal capability system that would maintain desired speed and vehicle spacing while a human driver provided steering control could improve convoy performance and provide positive control at night and in inclement weather, but would not reduce driver manpower requirements. Such a system could be implemented in a modular and relatively low cost manner. A more capable system would eliminate the human driver in following vehicles and reduce manpower requirements for the transportation of supplies. This technology could also be used to aid in the deployment of teleoperated vehicles in a battlefield environment. The needs, requirements, and several proposed solutions for such an Attachable Robotic Convoy Capability (ARCC) system will be discussed. Included are discussions of sensors, communications, computers, control systems and safety issues. This advanced robotic convoy system will provide a much greater capability, but will be more difficult and expensive to implement.

  4. Automated Vehicles Symposium 2014

    CERN Document Server

    Beiker, Sven; Road Vehicle Automation 2

    2015-01-01

    This paper collection is the second volume of the LNMOB series on Road Vehicle Automation. The book contains a comprehensive review of current technical, socio-economic, and legal perspectives written by experts coming from public authorities, companies and universities in the U.S., Europe and Japan. It originates from the Automated Vehicle Symposium 2014, which was jointly organized by the Association for Unmanned Vehicle Systems International (AUVSI) and the Transportation Research Board (TRB) in Burlingame, CA, in July 2014. The contributions discuss the challenges arising from the integration of highly automated and self-driving vehicles into the transportation system, with a focus on human factors and different deployment scenarios. This book is an indispensable source of information for academic researchers, industrial engineers, and policy makers interested in the topic of road vehicle automation.

  5. Energy harvesting water vehicle

    KAUST Repository

    Singh, Devendra

    2018-01-04

    An efficient energy harvesting (EEH) water vehicle is disclosed. The base of the EEH water vehicle is fabricated with rolling cylindrical drums that can rotate freely in the same direction of the water medium. The drums reduce the drag at the vehicle-water interface. This reduction in drag corresponds to an increase in speed and/or greater fuel efficiency. The mechanical energy of the rolling cylindrical drums is also transformed into electrical energy using an electricity producing device, such as a dynamo or an alternator. Thus, the efficiency of the vehicle is enhanced in two parallel modes: from the reduction in drag at the vehicle-water interface, and from capturing power from the rotational motion of the drums.

  6. Hydrogen vehicle fueling station

    Energy Technology Data Exchange (ETDEWEB)

    Daney, D.E.; Edeskuty, F.J.; Daugherty, M.A. [Los Alamos National Lab., NM (United States)] [and others

    1995-09-01

    Hydrogen fueling stations are an essential element in the practical application of hydrogen as a vehicle fuel, and a number of issues such as safety, efficiency, design, and operating procedures can only be accurately addressed by a practical demonstration. Regardless of whether the vehicle is powered by an internal combustion engine or fuel cell, or whether the vehicle has a liquid or gaseous fuel tank, the fueling station is a critical technology which is the link between the local storage facility and the vehicle. Because most merchant hydrogen delivered in the US today (and in the near future) is in liquid form due to the overall economics of production and delivery, we believe a practical refueling station should be designed to receive liquid. Systems studies confirm this assumption for stations fueling up to about 300 vehicles. Our fueling station, aimed at refueling fleet vehicles, will receive hydrogen as a liquid and dispense it as either liquid, high pressure gas, or low pressure gas. Thus, it can refuel any of the three types of tanks proposed for hydrogen-powered vehicles -- liquid, gaseous, or hydride. The paper discusses the fueling station design. Results of a numerical model of liquid hydrogen vehicle tank filling, with emphasis on no vent filling, are presented to illustrate the usefulness of the model as a design tool. Results of our vehicle performance model illustrate our thesis that it is too early to judge what the preferred method of on-board vehicle fuel storage will be in practice -- thus our decision to accommodate all three methods.

  7. Blast resistant vehicle seat

    Science.gov (United States)

    Ripley, Edward B

    2013-02-12

    Disclosed are various seats for vehicles particularly military vehicles that are susceptible to attack by road-bed explosive devices such as land mines or improvised explosive devices. The seats often have rigid seat shells and may include rigid bracing for rigidly securing the seat to the chassis of the vehicle. Typically embodiments include channels and particulate media such as sand disposed in the channels. A gas distribution system is generally employed to pump a gas through the channels and in some embodiments the gas is provided at a pressure sufficient to fluidize the particulate media when an occupant is sitting on the seat.

  8. Natural gas for vehicles

    International Nuclear Information System (INIS)

    Tissot-Favre, V.; Sudour, D.; Binutti, M.; Zanetta, P.; Rieussec, J.L.

    2005-01-01

    As a true alternative to oil products, and environment friendly fuel, Natural Gas for Vehicles complies with requirements for sustainable development. In addition, it is part of the European Union policy which underlines the importance of energy diversification through alternative fuels. This workshop will look into the current offer to the public transport segment, waste collection vehicles, and commercial vehicle fleets. Actions taken to spread the use of natural gas to all types of cars will also be covered. This article gathers 5 presentations about this topic given at the gas conference

  9. Benchmarking and Modeling of a Conventional Mid-Size Car Using ALPHA (SAE Paper 2015-01-1140)

    Science.gov (United States)

    The Advanced Light-Duty Powertrain and Hybrid Analysis (ALPHA) modeling tool was created by EPA to estimate greenhouse gas (GHG) emissions of light-duty vehicles. ALPHA is a physics-based, forward-looking, full vehicle computer simulation capable of analyzing various vehicle type...

  10. Effect of Drive Cycle and Gasoline Particulate Filter on the Size and Morphology of Soot Particles Emitted from a Gasoline-Direct-Injection Vehicle.

    Science.gov (United States)

    Saffaripour, Meghdad; Chan, Tak W; Liu, Fengshan; Thomson, Kevin A; Smallwood, Gregory J; Kubsh, Joseph; Brezny, Rasto

    2015-10-06

    The size and morphology of particulate matter emitted from a light-duty gasoline-direct-injection (GDI) vehicle, over the FTP-75 and US06 transient drive cycles, have been characterized by transmission-electron-microscope (TEM) image analysis. To investigate the impact of gasoline particulate filters on particulate-matter emission, the results for the stock-GDI vehicle, that is, the vehicle in its original configuration, have been compared to the results for the same vehicle equipped with a catalyzed gasoline particulate filter (GPF). The stock-GDI vehicle emits graphitized fractal-like aggregates over all driving conditions. The mean projected area-equivalent diameter of these aggregates is in the 78.4-88.4 nm range and the mean diameter of primary particles varies between 24.6 and 26.6 nm. Post-GPF particles emitted over the US06 cycle appear to have an amorphous structure, and a large number of nucleation-mode particles, depicted as low-contrast ultrafine droplets, are observed in TEM images. This indicates the emission of a substantial amount of semivolatile material during the US06 cycle, most likely generated by the incomplete combustion of accumulated soot in the GPF during regeneration. The size of primary particles and soot aggregates does not vary significantly by implementing the GPF over the FTP-75 cycle; however, particles emitted by the GPF-equipped vehicle over the US06 cycle are about 20% larger than those emitted by the stock-GDI vehicle. This may be attributed to condensation of large amounts of organic material on soot aggregates. High-contrast spots, most likely solid nonvolatile cores, are observed within many of the nucleation-mode particles emitted over the US06 cycle by the GPF-equipped vehicle. These cores are either generated inside the engine or depict incipient soot particles which are partially carbonized in the exhaust line. The effect of drive cycle and the GPF on the fractal parameters of particles, such as fractal dimension and

  11. Vehicle with inclinable caterpillars

    International Nuclear Information System (INIS)

    Carra, O.; Delevallee, A.

    1991-01-01

    Vehicle has a body with propulsion assemblies that drive caterpillar tracks. When a propulsion unit inclines about its articulation axis it is aided by an advance movement of the caterpillar track in the opposite direction of rotation [fr

  12. Abandonned vehicles - REMINDER

    CERN Multimedia

    Relations with the Host States Service

    2004-01-01

    The services in charge of managing the CERN site have recently noted an increase in the number of abandoned vehicles. This poses a risk from the point of view of safety and security and, on the eve of several important events in honour of CERN's fiftieth anniversary, is detrimental to the Organization's image. Owners of vehicles that have been left immobile for some time on the CERN site, including on the external car park by the flags, are therefore invited to contact the Reception and Access Control Service (service-parking-longterm@cern.ch) before 1st October 2004 and, where appropriate, move their vehicle to a designated long-term parking area. After this date, any vehicle whose owner has failed to respond to this request and which is without a number plate, has been stationary for several weeks or is out of service, may be impounded at the owner's risk and expense. Relations with the Host States Service Tel. 72848

  13. Abandoned vehicles REMINDER

    CERN Multimedia

    Relations with the Host States Service

    2004-01-01

    The services in charge of managing the CERN site have recently noted an increase in the number of abandoned vehicles. This poses a risk from the point of view of safety and security and, on the eve of several important events in honour of CERN's fiftieth anniversary, is detrimental to the Organization's image. Owners of vehicles that have been left immobile for some time on the CERN site, including on the external car park by the flags, are therefore invited to contact the Reception and Access Control Service (service-parking-longterm@cern.ch) before 1st October 2004 and, where appropriate, move their vehicle to a designated long-term parking area. After this date, any vehicle whose owner has failed to respond to this request and which is without a number plate, has been stationary for several weeks or is out of service, may be impounded at the owner's risk and expense. Relations with the Host States Service Tel. 72848

  14. Motor Vehicle Safety

    Science.gov (United States)

    ... these crashes is one part of motor vehicle safety. Here are some things you can do to ... speed or drive aggressively Don't drive impaired Safety also involves being aware of others. Share the ...

  15. Hydraulic Hybrid Vehicles

    Science.gov (United States)

    EPA and the United Parcel Service (UPS) have developed a hydraulic hybrid delivery vehicle to explore and demonstrate the environmental benefits of the hydraulic hybrid for urban pick-up and delivery fleets.

  16. Hybrid vehicle control

    Science.gov (United States)

    Shallvari, Iva; Velnati, Sashidhar; DeGroot, Kenneth P.

    2015-07-28

    A method and apparatus for heating a catalytic converter's catalyst to an efficient operating temperature in a hybrid electric vehicle when the vehicle is in a charge limited mode such as e.g., the charge depleting mode or when the vehicle's high voltage battery is otherwise charge limited. The method and apparatus determine whether a high voltage battery of the vehicle is incapable of accepting a first amount of charge associated with a first procedure to warm-up the catalyst. If it is determined that the high voltage battery is incapable of accepting the first amount of charge, a second procedure with an acceptable amount of charge is performed to warm-up the catalyst.

  17. Vehicle Technologies Program Overview

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2006-09-05

    Overview of the Vehicle Technologies Program including external assessment and market view; internal assessment, program history and progress; program justification and federal role; program vision, mission, approach, strategic goals, outputs, and outcomes; and performance goals.

  18. Connected vehicle applications : environment.

    Science.gov (United States)

    2016-01-01

    The U.S. Department of Transportation has developed a number of connected vehicle environmental applications, including the Applications for the Environment Real-Time Information Synthesis (AERIS) research program applications and road weather applic...

  19. Connected vehicle standards.

    Science.gov (United States)

    2016-01-01

    Connected vehicles have the potential to transform the way Americans travel by : allowing cars, buses, trucks, trains, traffic signals, smart phones, and other devices to : communicate through a safe, interoperable wireless network. A connected vehic...

  20. Electric vehicle energy impacts.

    Science.gov (United States)

    2017-05-01

    The objective of this research project was to evaluate the impacts of electric vehicles (EVs) and : renewable wind and solar photovoltaic (PV) power generation on reducing petroleum imports : and greenhouse gas emissions to Hawaii. In 2015, the state...

  1. Abandoned vehicles - Reminder

    CERN Multimedia

    Relations with the Host States Service

    2004-01-01

    The services in charge of managing the CERN site have recently noted an increase in the number of abandoned vehicles. This poses a risk from the point of view of safety and security and, on the eve of several important events in honour of CERN's fiftieth anniversary, is detrimental to the Organization's image. Owners of vehicles that have been left immobile for some time on the CERN site, including on the external car park by the flags, are therefore invited to contact the Reception and Access Control Service (service-parking-longterm@cern.ch) before 1st October 2004 and, where appropriate, move their vehicle to a designated long-term parking area. After this date, any vehicle whose owner has failed to respond to this request and which is without a number plate, has been stationary for several weeks or is out of service, may be impounded at the owner's risk and expense. Relations with the Host States Service Tel. 72848

  2. Experimental Semiautonomous Vehicle

    Science.gov (United States)

    Wilcox, Brian H.; Mishkin, Andrew H.; Litwin, Todd E.; Matthies, Larry H.; Cooper, Brian K.; Nguyen, Tam T.; Gat, Erann; Gennery, Donald B.; Firby, Robert J.; Miller, David P.; hide

    1993-01-01

    Semiautonomous rover vehicle serves as testbed for evaluation of navigation and obstacle-avoidance techniques. Designed to traverse variety of terrains. Concepts developed applicable to robots for service in dangerous environments as well as to robots for exploration of remote planets. Called Robby, vehicle 4 m long and 2 m wide, with six 1-m-diameter wheels. Mass of 1,200 kg and surmounts obstacles as large as 1 1/2 m. Optimized for development of machine-vision-based strategies and equipped with complement of vision and direction sensors and image-processing computers. Front and rear cabs steer and roll with respect to centerline of vehicle. Vehicle also pivots about central axle, so wheels comply with almost any terrain.

  3. Vehicle Dynamics and Control

    CERN Document Server

    Rajamani, Rajesh

    2012-01-01

    Vehicle Dynamics and Control provides a comprehensive coverage of vehicle control systems and the dynamic models used in the development of these control systems. The control system applications covered in the book include cruise control, adaptive cruise control, ABS, automated lane keeping, automated highway systems, yaw stability control, engine control, passive, active and semi-active suspensions, tire-road friction coefficient estimation, rollover prevention, and hybrid electric vehicle. In developing the dynamic model for each application, an effort is made to both keep the model simple enough for control system design but at the same time rich enough to capture the essential features of the dynamics. A special effort has been made to explain the several different tire models commonly used in literature and to interpret them physically. In the second edition of the book, chapters on roll dynamics, rollover prevention and hybrid electric vehicles have been added, and the chapter on electronic stability co...

  4. Handbook of Intelligent Vehicles

    CERN Document Server

    2012-01-01

    The Handbook of Intelligent Vehicles provides a complete coverage of the fundamentals, new technologies, and sub-areas essential to the development of intelligent vehicles; it also includes advances made to date, challenges, and future trends. Significant strides in the field have been made to date; however, so far there has been no single book or volume which captures these advances in a comprehensive format, addressing all essential components and subspecialties of intelligent vehicles, as this book does. Since the intended users are engineering practitioners, as well as researchers and graduate students, the book chapters do not only cover fundamentals, methods, and algorithms but also include how software/hardware are implemented, and demonstrate the advances along with their present challenges. Research at both component and systems levels are required to advance the functionality of intelligent vehicles. This volume covers both of these aspects in addition to the fundamentals listed above.

  5. Space Vehicle Valve System

    Science.gov (United States)

    Kelley, Anthony R. (Inventor); Lindner, Jeffrey L. (Inventor)

    2014-01-01

    The present invention is a space vehicle valve system which controls the internal pressure of a space vehicle and the flow rate of purged gases at a given internal pressure and aperture site. A plurality of quasi-unique variable dimension peaked valve structures cover the purge apertures on a space vehicle. Interchangeable sheet guards configured to cover valve apertures on the peaked valve structure contain a pressure-activated surface on the inner surface. Sheet guards move outwardly from the peaked valve structure when in structural contact with a purge gas stream flowing through the apertures on the space vehicle. Changing the properties of the sheet guards changes the response of the sheet guards at a given internal pressure, providing control of the flow rate at a given aperture site.

  6. Green Vehicle Guide

    Science.gov (United States)

    ... label Buy green. Save green. Learn about MPG math Discover fuel-saving tips Promote green ... U.S. consumers who have already purchased new vehicles under the fuel economy & greenhouse gas standard! More about the standards » Check ...

  7. Characterization of metal and trace element contents of particulate matter (PM10) emitted by vehicles running on Brazilian fuels-hydrated ethanol and gasoline with 22% of anhydrous ethanol.

    Science.gov (United States)

    Ferreira da Silva, Moacir; Vicente de Assunção, João; de Fátima Andrade, Maria; Pesquero, Célia R

    2010-01-01

    Emission of fine particles by mobile sources has been a matter of great concern due to its potential risk both to human health and the environment. Although there is no evidence that one sole component may be responsible for the adverse health outcomes, it is postulated that the metal particle content is one of the most important factors, mainly in relation to oxidative stress. Data concerning the amount and type of metal particles emitted by automotive vehicles using Brazilian fuels are limited. The aim of this study was to identify inhalable particles (PM(10)) and their trace metal content in two light-duty vehicles where one was fueled with ethanol while the other was fueled with gasoline mixed with 22% of anhydrous ethanol (gasohol); these engines were tested on a chassis dynamometer. The elementary composition of the samples was evaluated by the particle-induced x-ray emission technique. The experiment showed that total emission factors ranged from 2.5 to 11.8 mg/km in the gasohol vehicle, and from 1.2 to 3 mg/km in the ethanol vehicle. The majority of particles emitted were in the fine fraction (PM(2.5)), in which Al, Si, Ca, and Fe corresponded to 80% of the total weight. PM(10) emissions from the ethanol vehicle were about threefold lower than those of gasohol. The elevated amount of fine particulate matter is an aggravating factor, considering that these particles, and consequently associated metals, readily penetrate deeply into the respiratory tract, producing damage to lungs and other tissues.

  8. HYBRID VEHICLE CONTROL SYSTEM

    Directory of Open Access Journals (Sweden)

    V. Dvadnenko

    2016-06-01

    Full Text Available The hybrid vehicle control system includes a start–stop system for an internal combustion engine. The system works in a hybrid mode and normal vehicle operation. To simplify the start–stop system, there were user new possibilities of a hybrid car, which appeared after the conversion. Results of the circuit design of the proposed system of basic blocks are analyzed.

  9. Highly Skilled Autonomous Vehicles

    OpenAIRE

    Manuel Acosta Reche; Stratis Kanarachos; Mike V Blundell

    2017-01-01

    Recent research suggests that collision mitigation on low grip surfaces might require autonomous vehicles to execute maneuvers such as drift, trail braking or Scandinavian flick. In order to achieve this it is necessary to perceive the vehicle states and their interaction with the environment, and use this information to determine the chassis limits. A first look at the virtual automotive sensing problem is provided, followed by a description of Rally driving modeling approaches. Finally, a c...

  10. Space robot simulator vehicle

    Science.gov (United States)

    Cannon, R. H., Jr.; Alexander, H.

    1985-01-01

    A Space Robot Simulator Vehicle (SRSV) was constructed to model a free-flying robot capable of doing construction, manipulation and repair work in space. The SRSV is intended as a test bed for development of dynamic and static control methods for space robots. The vehicle is built around a two-foot-diameter air-cushion vehicle that carries batteries, power supplies, gas tanks, computer, reaction jets and radio equipment. It is fitted with one or two two-link manipulators, which may be of many possible designs, including flexible-link versions. Both the vehicle body and its first arm are nearly complete. Inverse dynamic control of the robot's manipulator has been successfully simulated using equations generated by the dynamic simulation package SDEXACT. In this mode, the position of the manipulator tip is controlled not by fixing the vehicle base through thruster operation, but by controlling the manipulator joint torques to achieve the desired tip motion, while allowing for the free motion of the vehicle base. One of the primary goals is to minimize use of the thrusters in favor of intelligent control of the manipulator. Ways to reduce the computational burden of control are described.

  11. Electric/Hybrid Vehicle Simulation

    Science.gov (United States)

    Slusser, R. A.; Chapman, C. P.; Brennand, J. P.

    1985-01-01

    ELVEC computer program provides vehicle designer with simulation tool for detailed studies of electric and hybrid vehicle performance and cost. ELVEC simulates performance of user-specified electric or hybrid vehicle under user specified driving schedule profile or operating schedule. ELVEC performs vehicle design and life cycle cost analysis.

  12. Emergency Brake for Tracked Vehicles

    Science.gov (United States)

    Green, G. L.; Hooper, S. L.

    1986-01-01

    Caliper brake automatically stops tracked vehicle as vehicle nears end of travel. Bar on vehicle, traveling to right, dislodges block between brake pads. Pads then press against bar, slowing vehicle by friction. Emergencybraking system suitable for elevators, amusement rides and machine tools.

  13. Impact of Different Driving Cycles and Operating Conditions on CO2 Emissions and Energy Management Strategies of a Euro-6 Hybrid Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Claudio Cubito

    2017-10-01

    Full Text Available Although Hybrid Electric Vehicles (HEVs represent one of the key technologies to reduce CO2 emissions, their effective potential in real world driving conditions strongly depends on the performance of their Energy Management System (EMS and on its capability to maximize the efficiency of the powertrain in real life as well as during Type Approval (TA tests. Attempting to close the gap between TA and real world CO2 emissions, the European Commission has decided to introduce from September 2017 the Worldwide Harmonized Light duty Test Procedure (WLTP, replacing the previous procedure based on the New European Driving Cycle (NEDC. The aim of this work is the analysis of the impact of different driving cycles and operating conditions on CO2 emissions and on energy management strategies of a Euro-6 HEV through the limited number of information available from the chassis dyno tests. The vehicle was tested considering different initial battery State of Charge (SOC, ranging from 40% to 65%, and engine coolant temperatures, from −7 °C to 70 °C. The change of test conditions from NEDC to WLTP was shown to lead to a significant reduction of the electric drive and to about a 30% increase of CO2 emissions. However, since the specific energy demand of WLTP is about 50% higher than that of NEDC, these results demonstrate that the EMS strategies of the tested vehicle can achieve, in test conditions closer to real life, even higher efficiency levels than those that are currently evaluated on the NEDC, and prove the effectiveness of HEV technology to reduce CO2 emissions.

  14. Shifting primary energy source and NOx emission location with plug-in hybrid vehicles

    Science.gov (United States)

    Karman, Deniz

    2011-06-01

    Plug-in hybrid vehicles (PHEVs) present an interesting technological opportunity for using non-fossil primary energy in light duty passenger vehicles, with the associated potential for reducing air pollutant and greenhouse gas emissions, to the extent that the electric power grid is fed by non-fossil sources. This perspective, accompanying the article by Thompson et al (2011) in this issue, will touch on two other studies that are directly related: the Argonne study (Elgowainy et al 2010) and a PhD thesis from Utrecht (van Vliet 2010). Thompson et al (2011) have examined air quality effects in a case where the grid is predominantly fossil fed. They estimate a reduction of 7.42 tons/day of NOx from motor vehicles as a result of substituting electric VMTs for 20% of the light duty gasoline vehicle miles traveled. To estimate the impact of this reduction on air quality they also consider the increases in NOx emissions due to the increased load on electricity generating units. The NOx emission increases are estimated as 4.0, 5.5 and 6.3 tons for the Convenience, Battery and Night charging scenarios respectively. The net reductions are thus in the 1.1-3.4 tons/day range. The air quality modelling results presented show that the air quality impact from a ground-level ozone perspective is favorable overall, and while the effect is stronger in some localities, the difference between the three scenarios is small. This is quite significant and suggests that localization of the NOx emissions to point sources has a more pronounced effect than the absolute reductions achieved. Furthermore it demonstrates that localization of NOx emissions to electricity generating units by using PHEVs in vehicle traffic has beneficial effects for air quality not only by minimizing direct human exposure to motor vehicle emissions, but also due to reduced exposure to secondary pollutants (i.e. ozone). In an electric power grid with a smaller share of fossil fired generating units, the beneficial

  15. Traffic Information Unit, Traffic Information System, Vehicle Management System, Vehicle, and Method of Controlling a Vehicle

    NARCIS (Netherlands)

    Papp, Z.; Doodeman, G.J.N.; Nelisse, M.W.; Sijs, J.; Theeuwes, J.A.C.; Driessen, B.J.F.

    2010-01-01

    A traffic information unit (MD1, MD2, MD3) according to the invention comprises a facility (MI) for tracking vehicle state information of individual vehicles present at a traffic infrastructure and a facility (T) for transmitting said vehicle state information to a vehicle (70B, 70E). A traffic

  16. ELECTROMAGNETIC BIOSPHERE POLLUTION BY MOTOR TRANSPORT (VEHICLES, ELECTRIC VEHICLES, HYBRID VEHICLES

    Directory of Open Access Journals (Sweden)

    S. Selivanov

    2009-01-01

    Full Text Available The physics of the electromagnetic field is considered. The analysis of electromagnetic radiation on the human-being, the origin of which is the vehicle the electric vehicle, the hybrid vehicle is being considered. The monitoring of electromagnetic radiation of vehicles is carried out.

  17. Distributed Propulsion Vehicles

    Science.gov (United States)

    Kim, Hyun Dae

    2010-01-01

    Since the introduction of large jet-powered transport aircraft, the majority of these vehicles have been designed by placing thrust-generating engines either under the wings or on the fuselage to minimize aerodynamic interactions on the vehicle operation. However, advances in computational and experimental tools along with new technologies in materials, structures, and aircraft controls, etc. are enabling a high degree of integration of the airframe and propulsion system in aircraft design. The National Aeronautics and Space Administration (NASA) has been investigating a number of revolutionary distributed propulsion vehicle concepts to increase aircraft performance. The concept of distributed propulsion is to fully integrate a propulsion system within an airframe such that the aircraft takes full synergistic benefits of coupling of airframe aerodynamics and the propulsion thrust stream by distributing thrust using many propulsors on the airframe. Some of the concepts are based on the use of distributed jet flaps, distributed small multiple engines, gas-driven multi-fans, mechanically driven multifans, cross-flow fans, and electric fans driven by turboelectric generators. This paper describes some early concepts of the distributed propulsion vehicles and the current turboelectric distributed propulsion (TeDP) vehicle concepts being studied under the NASA s Subsonic Fixed Wing (SFW) Project to drastically reduce aircraft-related fuel burn, emissions, and noise by the year 2030 to 2035.

  18. VEHICLES LICENSED IN SWITZERLAND

    CERN Multimedia

    Service des Relations avec les Pays-Hôtes

    2000-01-01

    1.\tVehicle licensinga)\tTime limitsVehicles must have a Swiss registration document and Swiss number plates: -\tif the owner has been residing in Switzerland for more than one year without a break of more than three consecutive months and has been using it for more than one month on Swiss territory, or -\tif the vehicle itself has been on Swiss territory for more than one year without a break of more than three consecutive months. b)\tTechnical details Vehicles belonging to non-Swiss members of the personnel who hold a carte de légitimation issued by the Swiss Federal Department of Foreign Affairs (hereinafter referred to as 'DFAE') and who were not permanently resident in Switzerland before taking up their appointment may be licensed in Switzerland with virtually no restrictions provided that their owner produces: -\tthe vehicle registration document and number plates of the country in which the car was previously registered, or -\ta manufacturer's certi...

  19. The electric vehicle

    International Nuclear Information System (INIS)

    Sanchez duran, R.

    2010-01-01

    The decarbonization of transport is a key element in both energy and environmental European policies as well as one of the levers that will help us achieve the goals of improving energy efficiency, reducing CO 2 emissions and energy dependence. The use of electricity compared to other low-carbon fuels such as bio fuels and hydrogen has the advantage of its existing infrastructure (power generation plants, transmission and distribution networks), being only necessary to developed recharging infrastructures. We emphasize the role of electricity networks and their evolution, which will enable to manage demand and maximise the potential of renewable energies. The idea of an electric vehicle is not a recent one but dates back to the beginning of the last century, when first units appeared. Unfortunately, technological barriers were too high at the time to let them succeed. Namely those barriers limited the range of the electric vehicle due to problems with battery recharges. Nowadays, those difficulties have almost been solved and we can state that institutional support and coordination among all actors involved have made the electric vehicle a plausible reality. While the technological improvements needed for the electric vehicle to become cost competitive are carried out, the plug-in hybrid vehicle represents the intermediate step to reach a total decarbonization of transport. Endesa is committed to this revolution in transport mobility and believes that now is the right time to focus our efforts on it. Our goal is to contribute to a more balanced and sustainable world in the near future. (Author)

  20. Electric vehicle station equipment for grid-integrated vehicles

    Science.gov (United States)

    Kempton, Willett; Kiamilev, Fouad; McGee, Rodney; Waite, Nick

    2017-09-05

    Methods, systems, and apparatus transferring power between the grid and an electric vehicle are disclosed. The apparatus may include at least one vehicle communication port for interfacing with electric vehicle equipment (EVE) and a processor coupled to the at least one vehicle communication port to establish communication with the EVE, receive EVE attributes from the EVE, and transmit electric vehicle station equipment (EVSE) attributes to the EVE. Power may be transferred between the grid and the electric vehicle by maintaining EVSE attributes, establishing communication with the EVE, and transmitting the EVSE maintained attributes to the EVE.

  1. Rail vehicle dynamics

    CERN Document Server

    Knothe, Klaus

    2017-01-01

    This book on the dynamics of rail vehicles is developed from the manuscripts for a class with the same name at TU Berlin. It is directed mainly to master students with pre-knowledge in mathematics and mechanics and engineers that want to learn more. The important phenomena of the running behaviour of rail vehicles are derived and explained. Also recent research results and experience from the operation of rail vehicles are included. One focus is the description of the complex wheel-rail contact phenomena that are essential to understand the concept of running stability and curving. A reader should in the end be able to understand the background of simulation tools that are used by the railway industry and universities today.

  2. Remote vehicle survey tool

    International Nuclear Information System (INIS)

    Armstrong, G.A.; Burks, B.L.; Kress, R.L.; Wagner, D.G.; Ward, C.R.

    1993-01-01

    The Remote Vehicle Survey Tool (RVS7) is a color graphical display tool for viewing remotely acquired scientific data. The RVST displays the data in the form of a color two-dimensional world model map. The world model map allows movement of the remote vehicle to be tracked by the operator and the data from sensors to be graphically depicted in the interface. Linear and logarithmic meters, dual channel oscilloscopes, and directional compasses are used to display sensor information. The RVST is user-configurable by the use of ASCII text files. The operator can configure the RVST to work with any remote data acquisition system and teleoperated or autonomous vehicle. The modular design of the RVST and its ability to be quickly configured for varying system requirements make the RVST ideal for remote scientific data display in all environmental restoration and waste management programs

  3. Natural gas for vehicles

    International Nuclear Information System (INIS)

    Chauveron, S. de

    1996-01-01

    This article presents compressed natural gas for vehicles (CNG), which can provide considerable advantages both as an alternative fuel and as a clean fuel. These assets are not only economic but also technical. The first part deals with what is at stake in developing natural gas as a motor fuel. The first countries to use CNG were those with natural gas resources in their subsoil. Today, with a large number of countries having to cope with growing concern about increasing urban pollution, natural gas is also seen as a clean fuel that can help cut vehicle pollutant emissions dramatically. In the second part a brief technical descriptions is given of CNG stations and vehicles, with the aim of acquainting the reader with some of CNG's specific technical features as compared to gasoline and diesel oil. Here CNG technologies are seen to be very close to the more conventional ones. (author)

  4. Hybrid electric vehicles TOPTEC

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-06-21

    This one-day TOPTEC session began with an overview of hybrid electric vehicle technology. Updates were given on alternative types of energy storage, APU control for low emissions, simulation programs, and industry and government activities. The keynote speech was about battery technology, a key element to the success of hybrids. The TOPEC concluded with a panel discussion on the mission of hybrid electric vehicles, with a perspective from industry and government experts from United States and Canada on their view of the role of this technology.

  5. Trends in Hydrogen Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Hoevenaars, A.J.; Weeda, M. [ECN Hydrogen and Clean Fossil Fuels, Petten (Netherlands)

    2009-09-15

    This report intends to provide an update of the latest developments that have recently occurred within car industry within the field of Hydrogen powered fuel cell vehicles (FCVs) to date, October 2009. In attempts to provide a clear and logical overview, the report starts with an overview of the OEMs (Original Equipment Manufacturers) that are actually active within the Hydrogen vehicle business, and provides an overview of the intensity of FCV activity per OEM. This overview shows that there is a pool of distinctively most active OEMs, and that others have tried to create exposure for themselves, but have not seriously been involved in in-house technology development in support of FCV manufacturing. Furthermore, some manufacturers chose a different path when it comes to using hydrogen for vehicle propulsion and use Hydrogen gas as a fuel for a conventional Internal Combustion Engine (ICE). In the field of FCVs, Most FCV activities are displayed by Honda, Daimler, Opel/GM, Hyundai/Kia, Toyota, Nissan and Ford. Volkswagen has given less priority to FCV development and has not been profiling itself as a very Hydrogen-prone OEM. Mazda and BMW chose to put their efforts in the development of Hydrogen fuelled ICE vehicles. Also Ford has put efforts in Hydrogen fuelled ICE vehicles. After the active OEMs are mapped, an overview is given on how active they have been in terms of cars produced. It appeared difficult to come up with reliable estimations on the basis of numbers available for public. The sum of vehicles produced by all OEMs together was estimated on about 515 vehicles. This estimation however was much lower than the figures published by Fuel Cell Today (FCT). FCT projects accumulated vehicles shipped in 2009 around 1100 units, the double of the numbers found for this study. Communication with FCT learned us that FCT has access to confidential information from the OEMs. Especially the Asian OEMs do not provide transparency when it comes to FCVs shipped, however

  6. Vehicle brake testing system

    Science.gov (United States)

    Stevens, Samuel S [Harriman, TN; Hodgson, Jeffrey W [Lenoir City, TN

    2002-11-19

    This invention relates to a force measuring system capable of measuring forces associated with vehicle braking and of evaluating braking performance. The disclosure concerns an invention which comprises a first row of linearly aligned plates, a force bearing surface extending beneath and beside the plates, vertically oriented links and horizontally oriented links connecting each plate to a force bearing surface, a force measuring device in each link, a transducer coupled to each force measuring device, and a computing device coupled to receive an output signal from the transducer indicative of measured force in each force measuring device. The present invention may be used for testing vehicle brake systems.

  7. Trends in Hydrogen Vehicles

    International Nuclear Information System (INIS)

    Hoevenaars, A.J.; Weeda, M.

    2009-09-01

    This report intends to provide an update of the latest developments that have recently occurred within car industry within the field of Hydrogen powered fuel cell vehicles (FCVs) to date, October 2009. In attempts to provide a clear and logical overview, the report starts with an overview of the OEMs (Original Equipment Manufacturers) that are actually active within the Hydrogen vehicle business, and provides an overview of the intensity of FCV activity per OEM. This overview shows that there is a pool of distinctively most active OEMs, and that others have tried to create exposure for themselves, but have not seriously been involved in in-house technology development in support of FCV manufacturing. Furthermore, some manufacturers chose a different path when it comes to using hydrogen for vehicle propulsion and use Hydrogen gas as a fuel for a conventional Internal Combustion Engine (ICE). In the field of FCVs, Most FCV activities are displayed by Honda, Daimler, Opel/GM, Hyundai/Kia, Toyota, Nissan and Ford. Volkswagen has given less priority to FCV development and has not been profiling itself as a very Hydrogen-prone OEM. Mazda and BMW chose to put their efforts in the development of Hydrogen fuelled ICE vehicles. Also Ford has put efforts in Hydrogen fuelled ICE vehicles. After the active OEMs are mapped, an overview is given on how active they have been in terms of cars produced. It appeared difficult to come up with reliable estimations on the basis of numbers available for public. The sum of vehicles produced by all OEMs together was estimated on about 515 vehicles. This estimation however was much lower than the figures published by Fuel Cell Today (FCT). FCT projects accumulated vehicles shipped in 2009 around 1100 units, the double of the numbers found for this study. Communication with FCT learned us that FCT has access to confidential information from the OEMs. Especially the Asian OEMs do not provide transparency when it comes to FCVs shipped, however

  8. Does Driving Range of Electric Vehicles Influence Electric Vehicle Adoption?

    Directory of Open Access Journals (Sweden)

    Seiho Kim

    2017-10-01

    Full Text Available This study aims to determine the influential factors on the market share of electric vehicles through panel data analysis based on time series data from 2011 to 2015 in 31 countries. We selected five significant independent variables that are expected to affect electric vehicle adoption based on literature review. The econometric model in this study suggests that the relative price of electric vehicle compared to internal combustion engine vehicle, driving range, and number of models available in markets are correlated to the market share of electric vehicles. On the other hand, relationship between recharging infrastructure—an important factor for electric vehicle adoption in many studies—and market share of electric vehicles turned out to be insignificant in this study. From a political point of view, we argue that policy makers need to allocate more resources to research and development in order to extend driving range at the early stage of electric vehicle deployment in the markets.

  9. Environmental Evaluation of New Generation Vehicles and Vehicle Components

    Energy Technology Data Exchange (ETDEWEB)

    Schexnayder, S.M.

    2002-02-06

    This report documents assessments that address waste issues and life cycle impacts associated with the vehicle materials and vehicle technologies being developed under the Partnership for a New Generation of Vehicles (PNGV) program. We refer to these vehicles as 3XVs, referring to the PNGV goal that their fuel mileage be three times better than the baseline vehicle. To meet the program's fuel consumption goals, these vehicles substitute lightweight materials for heavier materials such as steel and iron that currently dominate the composition of vehicles, and use engineering and power system changes. Alternative power systems being developed through the PNGV program include batteries for hybrid electric vehicles and fuel cells. With respect to all these developments, it is imperative to learn what effects they will have on the environment before adopting these designs and technologies on a large-scale basis.

  10. Hybrid FSAE Vehicle Realization

    Science.gov (United States)

    2010-12-01

    The goal of this multi-year project is to create a fully functional University of Idaho entry in the hybrid FSAE competition. Vehicle integration is underway as part of a variety of 2010-11 senior design projects. This leverages a variety of analytic...

  11. Hybrid Turbine Electric Vehicle

    Science.gov (United States)

    Viterna, Larry A.

    1997-01-01

    Hybrid electric power trains may revolutionize today's ground passenger vehicles by significantly improving fuel economy and decreasing emissions. The NASA Lewis Research Center is working with industry, universities, and Government to develop and demonstrate a hybrid electric vehicle. Our partners include Bowling Green State University, the Cleveland Regional Transit Authority, Lincoln Electric Motor Division, the State of Ohio's Department of Development, and Teledyne Ryan Aeronautical. The vehicle will be a heavy class urban transit bus offering double the fuel economy of today's buses and emissions that are reduced to 1/10th of the Environmental Protection Agency's standards. At the heart of the vehicle's drive train is a natural-gas-fueled engine. Initially, a small automotive engine will be tested as a baseline. This will be followed by the introduction of an advanced gas turbine developed from an aircraft jet engine. The engine turns a high-speed generator, producing electricity. Power from both the generator and an onboard energy storage system is then provided to a variable-speed electric motor attached to the rear drive axle. An intelligent power-control system determines the most efficient operation of the engine and energy storage system.

  12. 2006 Combat Vehicles Conference

    Science.gov (United States)

    2006-10-25

    stressed or worn out beyond economic repair due to combat operations by repairing, rebuilding, or procuring replacement equipment. These...lives Vehicle Hardening Logistics Solutions for the Warfighter • Unique and economical surge capability • Support in coordination with op tempo...Speed, • Diagnostics Indicators – DECU Health Check Indicator, Utility Bus Comm Failure, 1553 Bus Comm Failure; MPU Critical Failure, Cautions and

  13. Automated Vehicle Monitoring System

    OpenAIRE

    Wibowo, Agustinus Deddy Arief; Heriansyah, Rudi

    2014-01-01

    An automated vehicle monitoring system is proposed in this paper. The surveillance system is based on image processing techniques such as background subtraction, colour balancing, chain code based shape detection, and blob. The proposed system will detect any human's head as appeared at the side mirrors. The detected head will be tracked and recorded for further action.

  14. Vehicle recycling regulations

    DEFF Research Database (Denmark)

    Smink, Carla

    2007-01-01

    The number of end-of-life vehicles (ELVs) in the EU is increasing continously. Around 75 percent of an ELV are recyclable metals. The forecast growth in the number of ELVs calls for regulation that aims to minimise the environmental impact of a car. Using Denmark as an example, this article...

  15. The Electric Vehicle Challenge

    Science.gov (United States)

    Roman, Harry T.

    2010-01-01

    This article describes a design activity that provides students with a solid understanding of the many issues involved with alternate energy system design. In this activity, students will be able to learn about electric vehicles and have the opportunity to design a way to recharge the batteries while the cars are parked in a commuter garage. The…

  16. Experimental Autonomous Vehicle Systems

    DEFF Research Database (Denmark)

    Ravn, Ole; Andersen, Nils Axel

    1998-01-01

    The paper describes the requirements for and a prototype configuration of a software architecture for control of an experimental autonomous vehicle. The test bed nature of the system is emphasised in the choice of architecture making re-configurability, data logging and extendability simple...

  17. The Special Purpose Vehicle

    DEFF Research Database (Denmark)

    Fomcenco, Alex

    2013-01-01

    The purpose of this article is to investigate whether the situation where two companies appear as originators or sponsors behind a Special Purpose Vehicle (SPV) can be described as a merger, although on micro scale. Are the underlying grounds behind the creation of an SPV much different than those...

  18. Green vehicle : slippery turn

    International Nuclear Information System (INIS)

    Rousseau, C.

    2002-01-01

    This presentation describes the many challenges facing the development and commercialization of environmentally friendly vehicles in Canada from scooters, to bicycles to motorcycles, as experienced by Zapworld, a leader in the design, manufacture and marketing of electric bicycles and power-assist kits. There are many environmental advantages to small electric vehicles, however, the distribution network for this new product is virtually non-existent. Zap-Quebec, a subsidiary of Zapworld, has made efforts to bring notoriety to the product by targeting aging cycle enthusiasts and promoting the electric bicycle as viable transportation means for short commutes, for camping, to get around factories, and for security guards. Since September 2000 independent dealers in Montreal have participated in a pilot project in which more than 15,000 electric bikes have been made available for rent as a pleasure vehicle for tourists. No accidents have ever been reported and the feedback has been positive. It was emphasized that legislators must understand the value behind small electric vehicles and draft legislation accordingly. tabs., figs

  19. Towards autonomous vehicles.

    Science.gov (United States)

    2013-11-01

    We are moving towards an age of autonomous vehicles. Cycles of innovation initiated in the public and private sectors : have led one into another since the 1990s; and out of these efforts have sprung a variety of Advanced Driver Assistance : Systems ...

  20. Advanced Tracking of Vehicles

    DEFF Research Database (Denmark)

    Jensen, Christian Søndergaard; Li, K.-J.; Pakalnis, Stardas

    2005-01-01

    efficient tracking techniques. More specifically, while almost all commercially available tracking solutions simply offer time-based sampling of positions, this paper's techniques aim to offer a guaranteed tracking accuracy for each vehicle at the lowest possible costs, in terms of network traffic...