f(R) gravity and chameleon theories
International Nuclear Information System (INIS)
Brax, Philippe; Bruck, Carsten van de; Davis, Anne-Christine; Shaw, Douglas J.
2008-01-01
We analyze f(R) modifications of Einstein's gravity as dark energy models in the light of their connection with chameleon theories. Formulated as scalar-tensor theories, the f(R) theories imply the existence of a strong coupling of the scalar field to matter. This would violate all experimental gravitational tests on deviations from Newton's law. Fortunately, the existence of a matter dependent mass and a thin-shell effect allows one to alleviate these constraints. The thin-shell condition also implies strong restrictions on the cosmological dynamics of the f(R) theories. As a consequence, we find that the equation of state of dark energy is constrained to be extremely close to -1 in the recent past. We also examine the potential effects of f(R) theories in the context of the Eoet-wash experiments. We show that the requirement of a thin shell for the test bodies is not enough to guarantee a null result on deviations from Newton's law. As long as dark energy accounts for a sizeable fraction of the total energy density of the Universe, the constraints that we deduce also forbid any measurable deviation of the dark energy equation of state from -1. All in all, we find that both cosmological and laboratory tests imply that f(R) models are almost coincident with a ΛCDM model at the background level.
Extension of loop quantum gravity to f(R) theories.
Zhang, Xiangdong; Ma, Yongge
2011-04-29
The four-dimensional metric f(R) theories of gravity are cast into connection-dynamical formalism with real su(2) connections as configuration variables. Through this formalism, the classical metric f(R) theories are quantized by extending the loop quantization scheme of general relativity. Our results imply that the nonperturbative quantization procedure of loop quantum gravity is valid not only for general relativity but also for a rather general class of four-dimensional metric theories of gravity.
Stellar configurations in f(R) theories of gravity
International Nuclear Information System (INIS)
Henttunen, K.; Multamaeki, T.; Vilja, I.
2008-01-01
We study stellar configurations and the space-time around them in metric f(R) theories of gravity. In particular, we focus on the polytropic model of the Sun in two specific cases: the f(R)=R-μ 4 /R model and a model with a stabilizing higher order term f(R)=R-μ 4 /R+βR 3 /(3μ 4 ). We show how the stellar configuration in the f(R) theory can, by appropriate initial conditions, be selected to be equal to that described by the Lane-Emden equation and how a simple scaling relation exists between the solutions. We also derive the correct solution analytically near the center of the star in f(R) theory. Previous analytical and numerical results are confirmed, indicating that the space-time around the Sun is incompatible with solar system constraints in the f(R)=R-μ 4 /R model. Numerical work shows that stellar configurations, with a regular metric at the center, lead to γ PPN ≅1/2 outside the star for both models, i.e., the Schwarzschild-de Sitter space-time is not the correct vacuum solution for such configurations. This shows that even when one fine-tunes the initial conditions inside a star such that the mass of the effective scalar in the equivalent scalar-tensor theory is large, γ PPN is still 1/2 outside the star. Conversely, by selecting the Schwarzschild-de Sitter metric as the outside solution, or equivalently setting the mass of the effective scalar to be large outside the star, we find that the stellar configuration is unchanged but the metric is irregular at the center. The possibility of constructing a f(R) theory compatible with the solar system experiments and possible new constraints arising from the radius-mass relation of stellar objects is discussed
Cosmological bound from the neutron star merger GW170817 in scalar–tensor and F(R gravity theories
Directory of Open Access Journals (Sweden)
Shin'ichi Nojiri
2018-04-01
Full Text Available We consider the evolution of cosmological gravitational waves in scalar–tensor theory and F(R gravity theory as typical models of the modified gravity. Although the propagation speed is not changed from the speed of light, the propagation phase changes when we compare the propagation in these modified gravity theories with the propagation in the ΛCDM model. The phase change might be detected in future observations. Keywords: Gravitational waves, Alternative theories of gravity, Cosmology
Unified cosmic history in modified gravity: From F(R) theory to Lorentz non-invariant models
Nojiri, Shin'Ichi; Odintsov, Sergei D.
2011-08-01
The classical generalization of general relativity is considered as the gravitational alternative for a unified description of the early-time inflation with late-time cosmic acceleration. The structure and cosmological properties of a number of modified theories, including traditional F(R) and Hořava-Lifshitz F(R) gravity, scalar-tensor theory, string-inspired and Gauss-Bonnet theory, non-local gravity, non-minimally coupled models, and power-counting renormalizable covariant gravity are discussed. Different representations of and relations between such theories are investigated. It is shown that some versions of the above theories may be consistent with local tests and may provide a qualitatively reasonable unified description of inflation with the dark energy epoch. The cosmological reconstruction of different modified gravities is provided in great detail. It is demonstrated that eventually any given universe evolution may be reconstructed for the theories under consideration, and the explicit reconstruction is applied to an accelerating spatially flat Friedmann-Robertson-Walker (FRW) universe. Special attention is paid to Lagrange multiplier constrained and conventional F(R) gravities, for latter F(R) theory, the effective ΛCDM era and phantom divide crossing acceleration are obtained. The occurrences of the Big Rip and other finite-time future singularities in modified gravity are reviewed along with their solutions via the addition of higher-derivative gravitational invariants.
Wormholes in viable f(R) modified theories of gravity and weak energy condition
Energy Technology Data Exchange (ETDEWEB)
Pavlovic, Petar [Universitaet Hamburg, II. Institut fuer Theoretische Physik, Hamburg (Germany); Sossich, Marko [University of Zagreb, Department of Physics, Faculty of Electrical Engineering and Computing, Zagreb (Croatia)
2015-03-01
In this work wormholes in viable f(R) gravity models are analyzed. We are interested in exact solutions for stress-energy tensor components depending on different shape and redshift functions. Several solutions of gravitational equations for different f(R) models are examined. The solutions found imply no need for exotic material, while this need is implied in the standard general theory of relativity. A simple expression for weak energy condition (WEC) violation near the throat is derived and analyzed. High curvature regime is also discussed, as well as the question of the highest possible values of the Ricci scalar for which the WEC is not violated near the throat, and corresponding functions are calculated for several models. The approach here differs from the one that has been common since no additional assumptions to simplify the equations have been made, and the functions in f(R) models are not considered to be arbitrary functions, but rather a feature of the theory that has to be evaluated on the basis of consistency with observations for the Solar System and cosmological evolution. Therefore in this work we show that the existence of wormholes without exotic matter is not only possible in simple arbitrary f(R) models, but also in models that are in accordance with empirical data. (orig.)
Stability of the Einstein static universe in modified theories of gravity
Boehmer, Christian G.; Hollenstein, Lukas; Lobo, Francisco S. N.; Seahra, Sanjeev S.
2010-01-01
We present a brief overview of the stability analysis of the Einstein static universe in various modified theories of gravity, like f(R) gravity, Gauss-Bonnet or f(G) gravity, and Horava-Lifshitz gravity.
International Nuclear Information System (INIS)
Capozziello, Salvatore; De Laurentis, Mariafelicia
2011-01-01
Extended Theories of Gravity can be considered as a new paradigm to cure shortcomings of General Relativity at infrared and ultraviolet scales. They are an approach that, by preserving the undoubtedly positive results of Einstein’s theory, is aimed to address conceptual and experimental problems recently emerged in astrophysics, cosmology and High Energy Physics. In particular, the goal is to encompass, in a self-consistent scheme, problems like inflation, dark energy, dark matter, large scale structure and, first of all, to give at least an effective description of Quantum Gravity. We review the basic principles that any gravitational theory has to follow. The geometrical interpretation is discussed in a broad perspective in order to highlight the basic assumptions of General Relativity and its possible extensions in the general framework of gauge theories. Principles of such modifications are presented, focusing on specific classes of theories like f(R)-gravity and scalar–tensor gravity in the metric and Palatini approaches. The special role of torsion is also discussed. The conceptual features of these theories are fully explored and attention is paid to the issues of dynamical and conformal equivalence between them considering also the initial value problem. A number of viability criteria are presented considering the post-Newtonian and the post-Minkowskian limits. In particular, we discuss the problems of neutrino oscillations and gravitational waves in extended gravity. Finally, future perspectives of extended gravity are considered with possibility to go beyond a trial and error approach.
Modifications of Einstein's theory of gravity at large distances
2015-01-01
In the last few years modified gravity theories have been proposed as extensions of Einstein's theory of gravity. Their main motivation is to explain the latest cosmological and astrophysical data on dark energy and dark matter. The study of general relativity at small scales has already produced important results (cf e.g. LNP 863 Quantum Gravity and Quantum Cosmology) while its study at large scales is challenging because recent and upcoming observational results will provide important information on the validity of these modified theories. In this volume, various aspects of modified gravity at large scales will be discussed: high-curvature gravity theories; general scalar-tensor theories; Galileon theories and their cosmological applications; F(R) gravity theories; massive, new massive and topologically massive gravity; Chern-Simons modifications of general relativity (including holographic variants) and higher-spin gravity theories, to name but a few of the most important recent developments. Edite...
International Nuclear Information System (INIS)
Francaviglia, M.
1990-01-01
Although general relativity is a well-established discipline the theory deserves efforts aimed at producing alternative or more general frameworks for investigating the classical properties of gravity. These are either devoted to producing alternative viewpoints or interpretations of standard general relativity, or at constructing, discussing and proposing experimental tests for alternative descriptions of the dynamics of the gravitational field and its interaction (or unification) with external matter fields. Classical alternative theories of gravitation can roughly classified as follows; theories based on a still 4-dimensional picture, under the assumption that the dynamics of the gravitational field is more complicated than Einstein's and theories based on higher-dimensional pictures. This leads to supergravity and strings which are not included here. Theories based on higher-dimensional pictures on the assumption that space-time is replaced by a higher-dimensional manifold. Papers on these classifications are reviewed. (author)
On Analytical Solutions of f(R) Modified Gravity Theories in FLRW Cosmologies
Domazet, Silvije; Radovanović, Voja; Simonović, Marko; Štefančić, Hrvoje
2013-02-01
A novel analytical method for f(R) modified theories without matter in Friedmann-Lemaitre-Robertson-Walker (FLRW) spacetimes is introduced. The equation of motion for the scale factor in terms of cosmic time is reduced to the equation for the evolution of the Ricci scalar R with the Hubble parameter H. The solution of equation of motion for actions of the form of power law in Ricci scalar R is presented with a detailed elaboration of the action quadratic in R. The reverse use of the introduced method is exemplified in finding functional forms f(R), which leads to specified scale factor functions. The analytical solutions are corroborated by numerical calculations with excellent agreement. Possible further applications to the phases of inflationary expansion and late-time acceleration as well as f(R) theories with radiation are outlined.
Models of collapsing and expanding anisotropic gravitating source in f(R, T) theory of gravity
Energy Technology Data Exchange (ETDEWEB)
Abbas, G. [The Islamia University of Bahawalpur, Department of Mathematics, Bahawalpur (Pakistan); Ahmed, Riaz [The Islamia University of Bahawalpur, Department of Mathematics, Bahawalpur (Pakistan); University of the Central Punjab, Department of Mathematics, Lahore (Pakistan)
2017-07-15
In this paper, we have formulated the exact solutions of the non-static anisotropic gravitating source in f(R, T) gravity which may lead to expansion and collapse. By assuming there to be no thermal conduction in gravitating source, we have determined parametric solutions in f(R, T) gravity with a non-static spherical geometry filled using an anisotropic fluid. We have examined the ranges of the parameters for which the expansion scalar becomes negative and positive, leading to collapse and expansion, respectively. Further, using the definition of the mass function, the conditions for the trapped surface have been explored, and it has been investigated that there exists a single horizon in this case. The impact of the coupling parameter λ has been discussed in detail in both cases. For the various values of the coupling parameter λ, we have plotted the energy density, anisotropic pressure and anisotropy parameter in the cases of collapse and expansion. The physical significance of the graphs has been explained in detail. (orig.)
Exploring plane-symmetric solutions in f(R) gravity
Energy Technology Data Exchange (ETDEWEB)
Shamir, M. F., E-mail: farasat.shamir@nu.edu.pk [National University of Computer and Emerging Sciences, Department of Sciences and Humanities (Pakistan)
2016-02-15
The modified theories of gravity, especially the f(R) gravity, have attracted much attention in the last decade. This paper is devoted to exploring plane-symmetric solutions in the context of metric f(R) gravity. We extend the work on static plane-symmetric vacuum solutions in f(R) gravity already available in the literature [1, 2]. The modified field equations are solved using the assumptions of both constant and nonconstant scalar curvature. Some well-known solutions are recovered with power-law and logarithmic forms of f(R) models.
International Nuclear Information System (INIS)
Ne'eman, Y.
1998-01-01
The relatively simple Fibre-Bundle geometry of a Yang-Mills gauge theory - mainly the clear distinction between base and fibre - made it possible, between 1953 and 1971, to construct a fully quantized version and prove that theory's renormalizability; moreover, nonperturbative (topological) solutions were subsequently found in both the fully symmetric and the spontaneously broken modes (instantons, monopoles). Though originally constructed as a model formalism, it became in 1974 the mathematical mold holding the entire Standard Model (i.e. QCD and the Electroweak theory). On the other hand, between 1974 and 1984, Einstein's theory was shown to be perturbatively nonrenormalizable. Since 1974, the search for Quantum Gravity has therefore provided the main motivation for the construction of Gauge Theories of Gravity. Earlier, however, in 1958-76 several such attempts were initiated, for aesthetic or heuristic reasons, to provide a better understanding of the algebraic structure of GR. A third motivation has come from the interest in Unification, making it necessary to bring GR into a form compatible with an enlargement of the Standard Model. Models can be classified according to the relevant structure group in the fibre. Within the Poincare group, this has been either the R 4 translations, or the Lorentz group SL(2, C) - or the entire Poincare SL(2, C) x R 4 . Enlarging the group has involved the use of the Conformal SU(2, 2), the special Affine SA(4, R) = SL(4, R) x R 4 or Affine A(4, R) groups. Supergroups have included supersymmetry, i.e. the graded-Poincare group (n =1...8 m its extensions) or the superconformal SU(2, 2/n). These supergravity theories have exploited the lessons of the aesthetic-heuristic models - Einstein-Cartan etc. - and also achieved the Unification target. Although perturbative renormalizability has been achieved in some models, whether they satisfy unitarity is not known. The nonperturbative Ashtekar program has exploited the understanding of
f(Lovelock) theories of gravity
International Nuclear Information System (INIS)
Bueno, Pablo; Cano, Pablo A.; Óscar, Lasso A.; Ramírez, Pedro F.
2016-01-01
f(Lovelock) gravities are simple generalizations of the usual f(R) and Lovelock theories in which the gravitational action depends on some arbitrary function of the corresponding dimensionally-extended Euler densities. In this paper we study several aspects of these theories in general dimensions. We start by identifying the generalized boundary term which makes the gravitational variational problem well-posed. Then, we show that these theories are equivalent to certain scalar-tensor theories and how this relation is characterized by the Hessian of f. We also study the linearized equations of the theory on general maximally symmetric backgrounds. Remarkably, we find that these theories do not propagate the usual ghost-like massive gravitons characteristic of higher-derivative gravities on such backgrounds. In some non-trivial cases, the additional scalar associated to the trace of the metric perturbation is also absent, being the usual graviton the only dynamical field. In those cases, the linearized equations are exactly the same as in Einstein gravity up to an overall factor, making them appealing as holographic toy models. We also find constraints on the couplings of a broad family of five-dimensional f(Lovelock) theories using holographic entanglement entropy. Finally, we construct new analytic asymptotically flat and AdS/dS black hole solutions for some classes of f(Lovelock) gravities in various dimensions.
Relativistic theory of gravity
International Nuclear Information System (INIS)
Logunov, A.A.; Mestvirishvili, M.A.
1985-01-01
This work presents an unambiguous construction of the relativistic theory of gravity (RTG) in the framework of relativity and the geometrization principle. The gauge principle has been formulated, and the Lagrangian density of the gravitational field has thus been constructed. This theory explains the totality of the available experimental data on the solar system and predicts the existence of gravitational waves of the Faraday-Maxwell type. According to the RTG, the Universe is infinite and ''flat'', hence it follows that its matter density should be equal to its critical density. Therefore, an appreciable ''hidden mass'' exceeding the presently observed mass of the matter almost 40-fold should exist in the Universe in some form of the matter or other. In accordance with the RTG, a massive body having a finite density ceases to contract under gravitational forces within a finite interval of proper time. From the viewpoint of an external reference frame, the brightness of the body decreases exponentially (it is getting darker), but nothing extraordinary happens in this case because its density always remains finite and, for example, for a body with the mass of about 10 8 M 0 it is equal to 2 g/cm 3 . That is why it follows from the RTG that there could be no object whatsoever (black holes) in which gravitational collapse of matter develops to an infinite density. As has been shown, the presence of a cosmological term necessarily requires the introduction of a term with an explicit dependence on the Minkowski metrics. For the long-range gravitational forces the cosmological constant vanishes
The generalized second law of thermodynamics in generalized gravity theories
International Nuclear Information System (INIS)
Wu Shaofeng; Yang Guohong; Wang Bin; Zhang Pengming
2008-01-01
We investigate the generalized second law of thermodynamics (GSL) in generalized theories of gravity. We examine the total entropy evolution with time including the horizon entropy, the non-equilibrium entropy production, and the entropy of all matter, field and energy components. We derive a universal condition to protect the generalized second law and study its validity in different gravity theories. In Einstein gravity (even in the phantom-dominated universe with a Schwarzschild black hole), Lovelock gravity and braneworld gravity, we show that the condition to keep the GSL can always be satisfied. In f(R) gravity and scalar-tensor gravity, the condition to protect the GSL can also hold because the temperature should be positive, gravity is always attractive and the effective Newton constant should be an approximate constant satisfying the experimental bounds
Cosmological bound from the neutron star merger GW170817 in scalar-tensor and F(R) gravity theories
Nojiri, Shin'ichi; Odintsov, Sergei D.
2018-04-01
We consider the evolution of cosmological gravitational waves in scalar-tensor theory and F (R) gravity theory as typical models of the modified gravity. Although the propagation speed is not changed from the speed of light, the propagation phase changes when we compare the propagation in these modified gravity theories with the propagation in the ΛCDM model. The phase change might be detected in future observations.
Odintsov, S. D.; Oikonomou, V. K.; Saridakis, Emmanuel N.
2015-12-01
We investigate the realization of two bouncing paradigms, namely of the superbounce and the loop quantum cosmological ekpyrosis, in the framework of various modified gravities. In particular, we focus on the F(R) , F(G) and F(T) gravities, and we reconstruct their specific subclasses which lead to such universe evolutions. These subclasses constitute from power laws, polynomials, or hypergeometric ansatzes, which can be approximated by power laws. The qualitative similarity of the different effective gravities which realize the above two bouncing cosmologies, indicates that a universality might be lying behind the bounce. Finally, performing a linear perturbation analysis, we show that the obtained solutions are conditionally or fully stable.
International Nuclear Information System (INIS)
Novello, M.; Pinto Neto, N.
1987-01-01
A theory of gravity wich considers the topological invariant I = R* α βμυ R αβμυ as one of the basic quantities to be present in the description of the dynamics of gravitational interactions is presented. A cosmical scenario induced by this theory is sketched. (Author) [pt
Stochastic Gravity: Theory and Applications
Directory of Open Access Journals (Sweden)
Hu Bei Lok
2008-05-01
Full Text Available Whereas semiclassical gravity is based on the semiclassical Einstein equation with sources given by the expectation value of the stress-energy tensor of quantum fields, stochastic semiclassical gravity is based on the Einstein–Langevin equation, which has, in addition, sources due to the noise kernel. The noise kernel is the vacuum expectation value of the (operator-valued stress-energy bitensor, which describes the fluctuations of quantum-matter fields in curved spacetimes. A new improved criterion for the validity of semiclassical gravity may also be formulated from the viewpoint of this theory. In the first part of this review we describe the fundamentals of this new theory via two approaches: the axiomatic and the functional. The axiomatic approach is useful to see the structure of the theory from the framework of semiclassical gravity, showing the link from the mean value of the stress-energy tensor to the correlation functions. The functional approach uses the Feynman–Vernon influence functional and the Schwinger–Keldysh closed-time-path effective action methods. In the second part, we describe three applications of stochastic gravity. First, we consider metric perturbations in a Minkowski spacetime, compute the two-point correlation functions of these perturbations and prove that Minkowski spacetime is a stable solution of semiclassical gravity. Second, we discuss structure formation from the stochastic-gravity viewpoint, which can go beyond the standard treatment by incorporating the full quantum effect of the inflaton fluctuations. Third, using the Einstein–Langevin equation, we discuss the backreaction of Hawking radiation and the behavior of metric fluctuations for both the quasi-equilibrium condition of a black-hole in a box and the fully nonequilibrium condition of an evaporating black hole spacetime. Finally, we briefly discuss the theoretical structure of stochastic gravity in relation to quantum gravity and point out
Gravity, general relativity theory and alternative theories
International Nuclear Information System (INIS)
Zel'dovich, Ya.B.; Grishchuk, L.P.; Moskovskij Gosudarstvennyj Univ.
1986-01-01
The main steps in plotting the current gravitation theory and some prospects of its subsequent development are reviewed. The attention is concentrated on a comparison of the relativistic gravitational field with other physical fields. Two equivalent formulations of the general relativity (GR) - geometrical and field-theoretical - are considered in detail. It is shown that some theories of gravity constructed as the field theories at a flat background space-time are in fact just different formulations of GR and not alternative theories
Is there a quantum theory of gravity
International Nuclear Information System (INIS)
Strominger, A.
1984-01-01
The paper concerns attempts to construct a unitary, renormalizable quantum field theory of gravity. Renormalizability and unitarity in quantum gravity; the 1/N expansion; 1/D expansions; and quantum gravity and particle physics; are all discussed. (U.K.)
Minimal theory of massive gravity
International Nuclear Information System (INIS)
De Felice, Antonio; Mukohyama, Shinji
2016-01-01
We propose a new theory of massive gravity with only two propagating degrees of freedom. While the homogeneous and isotropic background cosmology and the tensor linear perturbations around it are described by exactly the same equations as those in the de Rham–Gabadadze–Tolley (dRGT) massive gravity, the scalar and vector gravitational degrees of freedom are absent in the new theory at the fully nonlinear level. Hence the new theory provides a stable nonlinear completion of the self-accelerating cosmological solution that was originally found in the dRGT theory. The cosmological solution in the other branch, often called the normal branch, is also rendered stable in the new theory and, for the first time, makes it possible to realize an effective equation-of-state parameter different from (either larger or smaller than) −1 without introducing any extra degrees of freedom.
Minimal theory of massive gravity
Directory of Open Access Journals (Sweden)
Antonio De Felice
2016-01-01
Full Text Available We propose a new theory of massive gravity with only two propagating degrees of freedom. While the homogeneous and isotropic background cosmology and the tensor linear perturbations around it are described by exactly the same equations as those in the de Rham–Gabadadze–Tolley (dRGT massive gravity, the scalar and vector gravitational degrees of freedom are absent in the new theory at the fully nonlinear level. Hence the new theory provides a stable nonlinear completion of the self-accelerating cosmological solution that was originally found in the dRGT theory. The cosmological solution in the other branch, often called the normal branch, is also rendered stable in the new theory and, for the first time, makes it possible to realize an effective equation-of-state parameter different from (either larger or smaller than −1 without introducing any extra degrees of freedom.
f(R) gravity solutions for evolving wormholes
Energy Technology Data Exchange (ETDEWEB)
Bhattacharya, Subhra [Presidency University, Department of Mathematics, Kolkata (India); Chakraborty, Subenoy [Jadavpur University, Department of Mathematics, Kolkata (India)
2017-08-15
The scalar-tensor f(R) theory of gravity is considered in the framework of a simple inhomogeneous space-time model. In this research we use the reconstruction technique to look for possible evolving wormhole solutions within viable f(R) gravity formalism. These f(R) models are then constrained so that they are consistent with existing experimental data. Energy conditions related to the matter threading the wormhole are analyzed graphically and are in general found to obey the null energy conditions (NEC) in regions around the throat, while in the limit f(R) = R, NEC can be violated at large in regions around the throat. (orig.)
Gravity theories in more than four dimensions
International Nuclear Information System (INIS)
Zumino, B.
1985-03-01
String theories suggest particular forms for gravity interactions in higher dimensions. We consider an interesting class of gravity theories in more than four dimensions, clarify their geometric meaning and discuss their special properties. 9 refs
Robust approach to f(R) gravity
International Nuclear Information System (INIS)
Jaime, Luisa G.; Patino, Leonardo; Salgado, Marcelo
2011-01-01
We consider metric f(R) theories of gravity without mapping them to their scalar-tensor counterpart, but using the Ricci scalar itself as an ''extra'' degree of freedom. This approach avoids then the introduction of a scalar-field potential that might be ill defined (not single valued). In order to explicitly show the usefulness of this method, we focus on static and spherically symmetric spacetimes and deal with the recent controversy about the existence of extended relativistic objects in certain class of f(R) models.
International Nuclear Information System (INIS)
Gribbin, John.
1990-01-01
This paper looks at Einstein's Theory of General Relativity and lists its accomplishments in explaining many problems in gravitation and astrophysics. It was Einstin's genius that led to our present comprehensive theory of gravity. Various ideas central to the theory are explained, such as the bending of space and time by massive objects, geodesics, the origin of the universe. In astrophysics, recent discoveries such as black holes, quasars, gravitational lenses, gravitational radiation, such as that coming from pulsars, can all be explained and understood using Einstein's ideas. (UK)
2-Dim. gravity and string theory
International Nuclear Information System (INIS)
Narain, K.S.
1991-01-01
The role of 2-dim. gravity in string theory is discussed. In particular d=25 string theory coupled to 2-d. gravity is described and shown to give rise to the physics of the usual 26-dim. string theory (where one does not quantise 2-d. gravity. (orig.)
Neutron Star Models in Alternative Theories of Gravity
Manolidis, Dimitrios
We study the structure of neutron stars in a broad class of alternative theories of gravity. In particular, we focus on Scalar-Tensor theories and f(R) theories of gravity. We construct static and slowly rotating numerical star models for a set of equations of state, including a polytropic model and more realistic equations of state motivated by nuclear physics. Observable quantities such as masses, radii, etc are calculated for a set of parameters of the theories. Specifically for Scalar-Tensor theories, we also calculate the sensitivities of the mass and moment of inertia of the models to variations in the asymptotic value of the scalar field at infinity. These quantities enter post-Newtonian equations of motion and gravitational waveforms of two body systems that are used for gravitational-wave parameter estimation, in order to test these theories against observations. The construction of numerical models of neutron stars in f(R) theories of gravity has been difficult in the past. Using a new formalism by Jaime, Patino and Salgado we were able to construct models with high interior pressure, namely pc > rho c/3, both for constant density models and models with a polytropic equation of state. Thus, we have shown that earlier objections to f(R) theories on the basis of the inability to construct viable neutron star models are unfounded.
The holographic bound in the scalar-tensor and f(R) gravities
International Nuclear Information System (INIS)
Firouzjaee, J.T.
2013-01-01
The holographic bound has been extended to the different theory of gravities such as scalar-tensor gravity and f(R) gravity according to the Noether charge definition of the entropy for a black hole surface. We have introduced some popular examples of the flat FRW cosmology in order to investigate holographic bound in scalar-tensor and f(R) gravity. Using the holographic bound, we put an additional constraint on scalar-tensor gravity and the f(R) gravity parameters. We also discuss the transformation from Jordan frame to Einstein frame. (orig.)
Stochastic Gravity: Theory and Applications
Directory of Open Access Journals (Sweden)
Hu Bei Lok
2004-01-01
Full Text Available Whereas semiclassical gravity is based on the semiclassical Einstein equation with sources given by the expectation value of the stress-energy tensor of quantum fields, stochastic semiclassical gravity is based on the Einstein-Langevin equation, which has in addition sources due to the noise kernel. The noise kernel is the vacuum expectation value of the (operator-valued stress-energy bi-tensor which describes the fluctuations of quantum matter fields in curved spacetimes. In the first part, we describe the fundamentals of this new theory via two approaches: the axiomatic and the functional. The axiomatic approach is useful to see the structure of the theory from the framework of semiclassical gravity, showing the link from the mean value of the stress-energy tensor to their correlation functions. The functional approach uses the Feynman-Vernon influence functional and the Schwinger-Keldysh closed-time-path effective action methods which are convenient for computations. It also brings out the open systems concepts and the statistical and stochastic contents of the theory such as dissipation, fluctuations, noise, and decoherence. We then focus on the properties of the stress-energy bi-tensor. We obtain a general expression for the noise kernel of a quantum field defined at two distinct points in an arbitrary curved spacetime as products of covariant derivatives of the quantum field's Green function. In the second part, we describe three applications of stochastic gravity theory. First, we consider metric perturbations in a Minkowski spacetime. We offer an analytical solution of the Einstein-Langevin equation and compute the two-point correlation functions for the linearized Einstein tensor and for the metric perturbations. Second, we discuss structure formation from the stochastic gravity viewpoint, which can go beyond the standard treatment by incorporating the full quantum effect of the inflaton fluctuations. Third, we discuss the backreaction
Future dynamics in f(R) theories
International Nuclear Information System (INIS)
Mueller, D.; Andrade, V.C. de; Maia, C.; Reboucas, M.J.; Teixeira, A.F.F.
2015-01-01
The f(R) gravity theories provide an alternative way to explain the current cosmic acceleration without invoking a dark energy matter component used in the cosmological modeling in the framework of general relativity. However, the freedom in the choice of the functional forms of f(R) gives rise to the problem of the degeneracy among these gravity theories on theoretical and (or) observational grounds. In this paper we examine the question as to whether the future dynamics can be used to break the degeneracy between f(R) gravity theories by investigating the dynamics of spatially homogeneous and isotropic dust flat models in two f(R) gravity theories, namely the well known f(R) = R+αR n gravity and another byAviles et al., whose motivation comes from the cosmographic approach to f(R) gravity. We perform a detailed numerical study of the dynamics of these theories taking into account the recent constraints on the cosmological parameters made by the Planck Collaboration. We demonstrate that besides being useful for discriminating between these two f(R) gravity theories, the future dynamics technique can also be used to determine the finite-time behavior as well as the fate of the Universe in the framework of these f(R) gravity theories. There also emerges from our analysis the result that one still can have a dust flat FLRWsolution with a big rip, if gravity is governed by f(R) = R+αR n . We also show that FLRW dust solutions with f'' < 0 do not necessarily lead to singularities. (orig.)
Time machines and traversable wormholes in modified theories of gravity
Directory of Open Access Journals (Sweden)
Lobo Francisco S.N.
2013-09-01
Full Text Available We review recent work on wormhole geometries in the context of modified theories of gravity, in particular, in f(R gravity and with a nonminimal curvature-matter coupling, and in the recently proposed hybrid metric-Palatini theory. In principle, the normal matter threading the throat can be shown to satisfy the energy conditions and it is the higher order curvatures terms that sustain these wormhole geometries. We also briefly review the conversion of wormholes into time-machines, explore several of the time travel paradoxes and possible remedies to these intriguing side-effects in wormhole physics.
Cosmology of Horava-Lifshitz f(R) gravity
International Nuclear Information System (INIS)
Chakrabarti, Sayan K.; Sen, Anjan A.
2011-08-01
We discuss the cosmology of recently proposed Horava-Lifshitz f(R) gravity. In particular, we derive the modified Hubble equation that reduces to the standard HL gravity case in appropriate limit. We show how the bounce solutions in this theory are modified due to nonlinear effect of f(R) gravity. In addition we find that the solutions exist when the Universe can make turn around for large scale-factor. Therefore, in principle, the Universe in this set-up can show cyclic behavior. (orig.)
Cosmology of Horava-Lifshitz f(R) gravity
Energy Technology Data Exchange (ETDEWEB)
Chakrabarti, Sayan K. [Univ. Tecnica de Lisboa (Portugal). Inst. Superior Tecnico; Dutta, Koushik [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Sen, Anjan A. [Centre of Theoretical Physics, Jamia Millia Islamia, New Dehli (India)
2011-08-15
We discuss the cosmology of recently proposed Horava-Lifshitz f(R) gravity. In particular, we derive the modified Hubble equation that reduces to the standard HL gravity case in appropriate limit. We show how the bounce solutions in this theory are modified due to nonlinear effect of f(R) gravity. In addition we find that the solutions exist when the Universe can make turn around for large scale-factor. Therefore, in principle, the Universe in this set-up can show cyclic behavior. (orig.)
From thermodynamics to the solutions in gravity theory
International Nuclear Information System (INIS)
Zhang, Hongsheng; Li, Xin-Zhou
2014-01-01
In a recent work, we present a new point of view to the relation of gravity and thermodynamics, in which we derive the Schwarzschild solution through thermodynamic considerations by the aid of the Misner–Sharp mass in an adiabatic system. In this Letter we continue to investigate the relation between gravity and thermodynamics for obtaining solutions via thermodynamics. We generalize our studies on gravi-thermodynamics in Einstein gravity to modified gravity theories. By using the first law with the assumption that the Misner–Sharp mass is the mass for an adiabatic system, we reproduce the Boulware–Deser–Cai solution in Gauss–Bonnet gravity. Using this gravi-thermodynamic thought, we obtain a NEW class of solution in F(R) gravity in an n-dimensional (n≥3) spacetime which permits three-type (n−2)-dimensional maximally symmetric subspace, as an extension of our recent three-dimensional black hole solution, and four-dimensional Clifton–Barrow solution in F(R) gravity
From thermodynamics to the solutions in gravity theory
Directory of Open Access Journals (Sweden)
Hongsheng Zhang
2014-10-01
Full Text Available In a recent work, we present a new point of view to the relation of gravity and thermodynamics, in which we derive the Schwarzschild solution through thermodynamic considerations by the aid of the Misner–Sharp mass in an adiabatic system. In this Letter we continue to investigate the relation between gravity and thermodynamics for obtaining solutions via thermodynamics. We generalize our studies on gravi-thermodynamics in Einstein gravity to modified gravity theories. By using the first law with the assumption that the Misner–Sharp mass is the mass for an adiabatic system, we reproduce the Boulware–Deser–Cai solution in Gauss–Bonnet gravity. Using this gravi-thermodynamic thought, we obtain a NEW class of solution in F(R gravity in an n-dimensional (n≥3 spacetime which permits three-type (n−2-dimensional maximally symmetric subspace, as an extension of our recent three-dimensional black hole solution, and four-dimensional Clifton–Barrow solution in F(R gravity.
Solar System constraints to general f(R) gravity
International Nuclear Information System (INIS)
Chiba, Takeshi; Smith, Tristan L.; Erickcek, Adrienne L.
2007-01-01
It has been proposed that cosmic acceleration or inflation can be driven by replacing the Einstein-Hilbert action of general relativity with a function f(R) of the Ricci scalar R. Such f(R) gravity theories have been shown to be equivalent to scalar-tensor theories of gravity that are incompatible with Solar System tests of general relativity, as long as the scalar field propagates over Solar System scales. Specifically, the parameterized post-Newtonian (PPN) parameter in the equivalent scalar-tensor theory is γ=1/2, which is far outside the range allowed by observations. In response to a flurry of papers that questioned the equivalence of f(R) theory to scalar-tensor theories, it was recently shown explicitly, without resorting to the scalar-tensor equivalence, that the vacuum field equations for 1/R gravity around a spherically symmetric mass also yield γ=1/2. Here we generalize this analysis to f(R) gravity and enumerate the conditions that, when satisfied by the function f(R), lead to the prediction that γ=1/2
Lovelock gravities from Born–Infeld gravity theory
Directory of Open Access Journals (Sweden)
P.K. Concha
2017-02-01
Full Text Available We present a Born–Infeld gravity theory based on generalizations of Maxwell symmetries denoted as Cm. We analyze different configuration limits allowing to recover diverse Lovelock gravity actions in six dimensions. Further, the generalization to higher even dimensions is also considered.
Lovelock gravities from Born-Infeld gravity theory
Concha, P. K.; Merino, N.; Rodríguez, E. K.
2017-02-01
We present a Born-Infeld gravity theory based on generalizations of Maxwell symmetries denoted as Cm. We analyze different configuration limits allowing to recover diverse Lovelock gravity actions in six dimensions. Further, the generalization to higher even dimensions is also considered.
Constraint propagation equations of the 3+1 decomposition of f(R) gravity
International Nuclear Information System (INIS)
Paschalidis, Vasileios; Shapiro, Stuart L; Halataei, Seyyed M H; Sawicki, Ignacy
2011-01-01
Theories of gravity other than general relativity (GR) can explain the observed cosmic acceleration without a cosmological constant. One such class of theories of gravity is f(R). Metric f(R) theories have been proven to be equivalent to Brans-Dicke (BD) scalar-tensor gravity without a kinetic term (ω = 0). Using this equivalence and a 3+1 decomposition of the theory, it has been shown that metric f(R) gravity admits a well-posed initial value problem. However, it has not been proven that the 3+1 evolution equations of metric f(R) gravity preserve the (Hamiltonian and momentum) constraints. In this paper, we show that this is indeed the case. In addition, we show that the mathematical form of the constraint propagation equations in BD-equilavent f(R) gravity and in f(R) gravity in both the Jordan and Einstein frames is exactly the same as in the standard ADM 3+1 decomposition of GR. Finally, we point out that current numerical relativity codes can incorporate the 3+1 evolution equations of metric f(R) gravity by modifying the stress-energy tensor and adding an additional scalar field evolution equation. We hope that this work will serve as a starting point for relativists to develop fully dynamical codes for valid f(R) models.
String theory as a quantum theory of gravity
International Nuclear Information System (INIS)
Horowitz, G.T.
1990-01-01
First, the connection between string theory and gravity is discussed - at first sight the theory of strings seem to have nothing to do with gravity but an intimate connection is shown. Then the quantum perturbation expansion is discussed. Thirdly, string theory is considered as a classical theory of gravity and finally recent speculation about a phase of string theory which is independent of a spacetime metric is discussed. (author)
Topics in string theory and quantum gravity
Alvarez-Gaume, Luis
1992-01-01
These are the lecture notes for the Les Houches Summer School on Quantum Gravity held in July 1992. The notes present some general critical assessment of other (non-string) approaches to quantum gravity, and a selected set of topics concerning what we have learned so far about the subject from string theory. Since these lectures are long (133 A4 pages), we include in this abstract the table of contents, which should help the user of the bulletin board in deciding whether to latex and print the full file. 1-FIELD THEORETICAL APPROACH TO QUANTUM GRAVITY: Linearized gravity; Supergravity; Kaluza-Klein theories; Quantum field theory and classical gravity; Euclidean approach to Quantum Gravity; Canonical quantization of gravity; Gravitational Instantons. 2-CONSISTENCY CONDITIONS: ANOMALIES: Generalities about anomalies; Spinors in 2n dimensions; When can we expect to find anomalies?; The Atiyah-Singer Index Theorem and the computation of anomalies; Examples: Green-Schwarz cancellation mechanism and Witten's SU(2) ...
Toward a gauge field theory of gravity.
Yilmaz, H.
Joint use of two differential identities (Bianchi and Freud) permits a gauge field theory of gravity in which the gravitational energy is localizable. The theory is compatible with quantum mechanics and is experimentally viable.
Theories of quantum gravity: Pt. 1
International Nuclear Information System (INIS)
Aragone, C.
1990-01-01
Superstrings continue to be a source of inspiration for the basic understanding of quantum gravity. They seem to provide a more fundamental arena than quantum field theory. Even though we still do not have a theory of everything, string concepts bring a new theoretical richness to research in quantum and classical gravity. Papers presented at the session on this subject are reviewed. (author)
f(R) gravity, torsion and non-metricity
International Nuclear Information System (INIS)
Sotiriou, Thomas P
2009-01-01
For both f(R) theories of gravity with an independent symmetric connection (no torsion), usually referred to as Palatini f(R) gravity theories, and for f(R) theories of gravity with torsion but no non-metricity, called U4 theories, it has been shown that the independent connection can actually be eliminated algebraically, as long as this connection does not couple to matter. Remarkably, the outcome in both cases is the same theory, which is dynamically equivalent with an ω 0 = -3/2 Brans-Dicke theory. It is shown here that even for the most general case of an independent connection with both non-metricity and torsion, one arrives at exactly the same theory as in the more restricted cases. This generalizes the previous results and explains why assuming that either the torsion or the non-metricity vanishing ultimately leads to the same theory. It also demonstrates that f(R) actions cannot support an independent connection which carries dynamical degrees of freedom, irrespective of how general this connection is, at least as long as there is no connection-matter coupling. (fast track communication)
Group field theory and simplicial quantum gravity
International Nuclear Information System (INIS)
Oriti, D
2010-01-01
We present a new group field theory for 4D quantum gravity. It incorporates the constraints that give gravity from BF theory and has quantum amplitudes with the explicit form of simplicial path integrals for first-order gravity. The geometric interpretation of the variables and of the contributions to the quantum amplitudes is manifest. This allows a direct link with other simplicial gravity approaches, like quantum Regge calculus, in the form of the amplitudes of the model, and dynamical triangulations, which we show to correspond to a simple restriction of the same.
A class of minimally modified gravity theories
Energy Technology Data Exchange (ETDEWEB)
Lin, Chunshan; Mukohyama, Shinji, E-mail: chunshan.lin@yukawa.kyoto-u.ac.jp, E-mail: shinji.mukohyama@yukawa.kyoto-u.ac.jp [Center for Gravitational Physics, Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502 (Japan)
2017-10-01
We investigate the Hamiltonian structure of a class of gravitational theories whose actions are linear in the lapse function. We derive the necessary and sufficient condition for a theory in this class to have two or less local physical degrees of freedom. As an application we then find several concrete examples of modified gravity theories in which the total number of local physical degrees of freedom in the gravity sector is two.
Extreme neutron stars from Extended Theories of Gravity
Energy Technology Data Exchange (ETDEWEB)
Astashenok, Artyom V. [I. Kant Baltic Federal University, Institute of Physics and Technology, Nevskogo st. 14, Kaliningrad, 236041 (Russian Federation); Capozziello, Salvatore [Dipartimento di Fisica, Università di Napoli ' ' Federico II' ' , Via Cinthia, 9, Napoli, I-80126 Italy (Italy); Odintsov, Sergei D., E-mail: artyom.art@gmail.com, E-mail: capozziello@na.infn.it, E-mail: odintsov@ieec.uab.es [Instituciò Catalana de Recerca i Estudis Avançats (ICREA), Barcelona (Spain)
2015-01-01
We discuss neutron stars with strong magnetic mean fields in the framework of Extended Theories of Gravity. In particular, we take into account models derived from f(R) and f(G) extensions of General Relativity where functions of the Ricci curvature invariant R and the Gauss-Bonnet invariant G are respectively considered. Dense matter in magnetic mean field, generated by magnetic properties of particles, is described by assuming a model with three meson fields and baryons octet. As result, the considerable increasing of maximal mass of neutron stars can be achieved by cubic corrections in f(R) gravity. In principle, massive stars with M > 4M{sub ☉} can be obtained. On the other hand, stable stars with high strangeness fraction (with central densities ρ{sub c} ∼ 1.5–2.0 GeV/fm{sup 3}) are possible considering quadratic corrections of f(G) gravity. The magnetic field strength in the star center is of order 6–8 × 10{sup 18} G. In general, we can say that other branches of massive neutron stars are possible considering the extra pressure contributions coming from gravity extensions. Such a feature can constitute both a probe for alternative theories and a way out to address anomalous self-gravitating compact systems.
Generalized string theory mapping relations between gravity and gauge theory
International Nuclear Information System (INIS)
Bjerrum-Bohr, N.E.J.
2003-01-01
A previous study of the Kawai, Lewellen and Tye (KLT) relations between gravity and gauge theories, imposed by the relationship of closed and open strings, are here extended in the light of general relativity and Yang-Mills theory as effective field theories. We discuss the possibility of generalizing the traditional KLT mapping in this effective setting. A generalized mapping between the effective Lagrangians of gravity and Yang-Mills theory is presented, and the corresponding operator relations between gauge and gravity theories at the tree level are further explored. From this generalized mapping remarkable diagrammatic relations are found, linking diagrams in gravity and Yang-Mills theory, as well as diagrams in pure effective Yang-Mills theory. Also the possibility of a gravitational coupling to an antisymmetric field in the gravity scattering amplitude is considered, and shown to allow for mixed open-closed string solutions, i.e., closed heterotic strings
Massive gravity and Fierz-Pauli theory
International Nuclear Information System (INIS)
Blasi, Alberto; Maggiore, Nicola
2017-01-01
Linearized gravity is considered as an ordinary gauge field theory. This implies the need for gauge fixing in order to have well-defined propagators. Only after having achieved this, the most general mass term is added. The aim of this paper is to study of the degrees of freedom of the gauge fixed theory of linearized gravity with mass term. The main result is that, even outside the usual Fierz-Pauli constraint on the mass term, it is possible to choose a gauge fixing belonging to the Landau class, which leads to a massive theory of gravity with the five degrees of freedom of a spin-2 massive particle. (orig.)
Massive gravity and Fierz-Pauli theory
Energy Technology Data Exchange (ETDEWEB)
Blasi, Alberto [Universita di Genova, Dipartimento di Fisica, Genova (Italy); Maggiore, Nicola [I.N.F.N.-Sezione di Genova, Genoa (Italy)
2017-09-15
Linearized gravity is considered as an ordinary gauge field theory. This implies the need for gauge fixing in order to have well-defined propagators. Only after having achieved this, the most general mass term is added. The aim of this paper is to study of the degrees of freedom of the gauge fixed theory of linearized gravity with mass term. The main result is that, even outside the usual Fierz-Pauli constraint on the mass term, it is possible to choose a gauge fixing belonging to the Landau class, which leads to a massive theory of gravity with the five degrees of freedom of a spin-2 massive particle. (orig.)
General proof of the entropy principle for self-gravitating fluid in f(R) gravity
Energy Technology Data Exchange (ETDEWEB)
Fang, Xiongjun [Department of Physics and Key Laboratory of Low Dimensional Quantum Structures andQuantum Control of Ministry of Education, Hunan Normal University,Changsha, Hunan 410081 (China); Guo, Minyong [Department of Physics, Beijing Normal University,Beijing 100875 (China); Jing, Jiliang [Department of Physics and Key Laboratory of Low Dimensional Quantum Structures andQuantum Control of Ministry of Education, Hunan Normal University,Changsha, Hunan 410081 (China)
2016-08-29
The discussions on the connection between gravity and thermodynamics attract much attention recently. We consider a static self-gravitating perfect fluid system in f(R) gravity, which is an important theory could explain the accelerated expansion of the universe. We first show that the Tolman-Oppenheimer-Volkoff equation of f(R) theories can be obtained by thermodynamical method in spherical symmetric spacetime. Then we prove that the maximum entropy principle is also valid for f(R) gravity in general static spacetimes beyond spherical symmetry. The result shows that if the constraint equation is satisfied and the temperature of fluid obeys Tolmans law, the extrema of total entropy implies other components of gravitational equations. Conversely, if f(R) gravitational equation hold, the total entropy of the fluid should be extremum. Our work suggests a general and solid connection between f(R) gravity and thermodynamics.
Soft collinear effective theory for gravity
Okui, Takemichi; Yunesi, Arash
2018-03-01
We present how to construct a soft collinear effective theory (SCET) for gravity at the leading and next-to-leading powers from the ground up. The soft graviton theorem and decoupling of collinear gravitons at the leading power are manifest from the outset in the effective symmetries of the theory. At the next-to-leading power, certain simple structures of amplitudes, which are completely obscure in Feynman diagrams of the full theory, are also revealed, which greatly simplifies calculations. The effective Lagrangian is highly constrained by effectively multiple copies of diffeomorphism invariance that are inevitably present in gravity SCET due to mode separation, an essential ingredient of any SCET. Further explorations of effective theories of gravity with mode separation may shed light on Lagrangian-level understandings of some of the surprising properties of gravitational scattering amplitudes. A gravity SCET with an appropriate inclusion of Glauber modes may serve as a powerful tool for studying gravitational scattering in the Regge limit.
Beyond Lovelock gravity: Higher derivative metric theories
Crisostomi, M.; Noui, K.; Charmousis, C.; Langlois, D.
2018-02-01
We consider theories describing the dynamics of a four-dimensional metric, whose Lagrangian is diffeomorphism invariant and depends at most on second derivatives of the metric. Imposing degeneracy conditions we find a set of Lagrangians that, apart form the Einstein-Hilbert one, are either trivial or contain more than 2 degrees of freedom. Among the partially degenerate theories, we recover Chern-Simons gravity, endowed with constraints whose structure suggests the presence of instabilities. Then, we enlarge the class of parity violating theories of gravity by introducing new "chiral scalar-tensor theories." Although they all raise the same concern as Chern-Simons gravity, they can nevertheless make sense as low energy effective field theories or, by restricting them to the unitary gauge (where the scalar field is uniform), as Lorentz breaking theories with a parity violating sector.
Cosmological perturbation theory and quantum gravity
Energy Technology Data Exchange (ETDEWEB)
Brunetti, Romeo [Dipartimento di Matematica, Università di Trento,Via Sommarive 14, 38123 Povo TN (Italy); Fredenhagen, Klaus [II Institute für Theoretische Physik, Universität Hamburg,Luruper Chaussee 149, 22761 Hamburg (Germany); Hack, Thomas-Paul [Institute für Theoretische Physik, Universität Leipzig,Brüderstr. 16, 04103 Leipzig (Germany); Pinamonti, Nicola [Dipartimento di Matematica, Università di Genova,Via Dodecaneso 35, 16146 Genova (Italy); INFN, Sezione di Genova,Via Dodecaneso 33, 16146 Genova (Italy); Rejzner, Katarzyna [Department of Mathematics, University of York,Heslington, York YO10 5DD (United Kingdom)
2016-08-04
It is shown how cosmological perturbation theory arises from a fully quantized perturbative theory of quantum gravity. Central for the derivation is a non-perturbative concept of gauge-invariant local observables by means of which perturbative invariant expressions of arbitrary order are generated. In particular, in the linearised theory, first order gauge-invariant observables familiar from cosmological perturbation theory are recovered. Explicit expressions of second order quantities are presented as well.
Solar system constraints on disformal gravity theories
International Nuclear Information System (INIS)
Ip, Hiu Yan; Schmidt, Fabian; Sakstein, Jeremy
2015-01-01
Disformal theories of gravity are scalar-tensor theories where the scalar couples derivatively to matter via the Jordan frame metric. These models have recently attracted interest in the cosmological context since they admit accelerating solutions. We derive the solution for a static isolated mass in generic disformal gravity theories and transform it into the parameterised post-Newtonian form. This allows us to investigate constraints placed on such theories by local tests of gravity. The tightest constraints come from preferred-frame effects due to the motion of the Solar System with respect to the evolving cosmological background field. The constraints we obtain improve upon the previous solar system constraints by two orders of magnitude, and constrain the scale of the disformal coupling for generic models to ℳ ∼> 100 eV. These constraints render all disformal effects irrelevant for cosmology
On a broken - symmetric theory of gravity
International Nuclear Information System (INIS)
Fleming, H.
1979-09-01
A theory of gravity recently proposed by Zee is examined. The propagation of the special scalar field introduced by this theory is studied in cosmological models, and some problems are pointed out, connected with the possibility of a time-dependent vacuum expectation value for this scalar field. (Author) [pt
Cosmological reconstruction of realistic modified F(R) gravities
International Nuclear Information System (INIS)
Nojiri, Shin'ichi; Odintsov, Sergei D.; Saez-Gomez, Diego
2009-01-01
The cosmological reconstruction scheme for modified F(R) gravity is developed in terms of e-folding (or, redshift). It is demonstrated how any FRW cosmology may emerge from specific F(R) theory. The specific examples of well-known cosmological evolution are reconstructed, including ΛCDM cosmology, deceleration with transition to phantom superacceleration era which may develop singularity or be transient. The application of this scheme to viable F(R) gravities unifying inflation with dark energy era is proposed. The additional reconstruction of such models leads to non-leading gravitational correction mainly relevant at the early/late universe and helping to pass the cosmological bounds (if necessary). It is also shown how cosmological reconstruction scheme may be generalized in the presence of scalar field.
Compact stars in alternative theories of gravity: Einstein-Dilaton-Gauss-Bonnet gravity
International Nuclear Information System (INIS)
Pani, Paolo; Berti, Emanuele; Cardoso, Vitor; Read, Jocelyn
2011-01-01
We develop a theoretical framework to study slowly rotating compact stars in a rather general class of alternative theories of gravity, with the ultimate goal of investigating constraints on alternative theories from electromagnetic and gravitational-wave observations of compact stars. Our Lagrangian includes as special cases scalar-tensor theories (and indirectly f(R) theories) as well as models with a scalar field coupled to quadratic curvature invariants. As a first application of the formalism, we discuss (for the first time in the literature) compact stars in Einstein-Dilaton-Gauss-Bonnet gravity. We show that compact objects with central densities typical of neutron stars cannot exist for certain values of the coupling constants of the theory. In fact, the existence and stability of compact stars sets more stringent constraints on the theory than the existence of black hole solutions. This work is a first step in a program to systematically rule out (possibly using Bayesian model selection) theories that are incompatible with astrophysical observations of compact stars.
Strings - Links between conformal field theory, gauge theory and gravity
International Nuclear Information System (INIS)
Troost, J.
2009-05-01
String theory is a candidate framework for unifying the gauge theories of interacting elementary particles with a quantum theory of gravity. The last years we have made considerable progress in understanding non-perturbative aspects of string theory, and in bringing string theory closer to experiment, via the search for the Standard Model within string theory, but also via phenomenological models inspired by the physics of strings. Despite these advances, many deep problems remain, amongst which a non-perturbative definition of string theory, a better understanding of holography, and the cosmological constant problem. My research has concentrated on various theoretical aspects of quantum theories of gravity, including holography, black holes physics and cosmology. In this Habilitation thesis I have laid bare many more links between conformal field theory, gauge theory and gravity. Most contributions were motivated by string theory, like the analysis of supersymmetry preserving states in compactified gauge theories and their relation to affine algebras, time-dependent aspects of the holographic map between quantum gravity in anti-de-Sitter space and conformal field theories in the bulk, the direct quantization of strings on black hole backgrounds, the embedding of the no-boundary proposal for a wave-function of the universe in string theory, a non-rational Verlinde formula and the construction of non-geometric solutions to supergravity
Possible antigravity regions in F(R) theory?
Energy Technology Data Exchange (ETDEWEB)
Bamba, Kazuharu, E-mail: bamba@kmi.nagoya-u.ac.jp [Kobayashi-Maskawa Institute for the Origin of Particles and the Universe, Nagoya University, Nagoya 464-8602 (Japan); Nojiri, Shin' ichi, E-mail: nojiri@phys.nagoya-u.ac.jp [Kobayashi-Maskawa Institute for the Origin of Particles and the Universe, Nagoya University, Nagoya 464-8602 (Japan); Department of Physics, Nagoya University, Nagoya 464-8602 (Japan); Odintsov, Sergei D., E-mail: odintsov@ieec.uab.es [Department of Physics, Nagoya University, Nagoya 464-8602 (Japan); Instituciò Catalana de Recerca i Estudis Avançats (ICREA), Barcelona (Spain); Institut de Ciencies de l' Espai (CSIC-IEEC), Campus UAB, Facultat de Ciencies, Torre C5-Par-2a pl, E-08193 Bellaterra (Barcelona) (Spain); Tomsk State Pedagogical University, Kievskaya Avenue, 60, 634061, Tomsk (Russian Federation); Sáez-Gómez, Diego, E-mail: diego.saezgomez@uct.ac.za [Astrophysics, Cosmology and Gravity Centre (ACGC) and Department of Mathematics and Applied Mathematics, University of Cape Town, Rondebosch 7701, Cape Town (South Africa); Fisika Teorikoaren eta Zientziaren Historia Saila, Zientzia eta Teknologia Fakultatea, Euskal Herriko Unibertsitatea, 644 Posta Kutxatila, 48080 Bilbao (Spain)
2014-03-07
We construct an F(R) gravity theory corresponding to the Weyl invariant two scalar field theory. We investigate whether such F(R) gravity can have the antigravity regions where the Weyl curvature invariant does not diverge at the Big Bang and Big Crunch singularities. It is revealed that the divergence cannot be evaded completely but can be much milder than that in the original Weyl invariant two scalar field theory.
Possible antigravity regions in F(R) theory?
Bamba, Kazuharu; Nojiri, Shin'ichi; Odintsov, Sergei D.; Sáez-Gómez, Diego
2014-03-01
We construct an F(R) gravity theory corresponding to the Weyl invariant two scalar field theory. We investigate whether such F(R) gravity can have the antigravity regions where the Weyl curvature invariant does not diverge at the Big Bang and Big Crunch singularities. It is revealed that the divergence cannot be evaded completely but can be much milder than that in the original Weyl invariant two scalar field theory.
Possible antigravity regions in F(R) theory?
International Nuclear Information System (INIS)
Bamba, Kazuharu; Nojiri, Shin'ichi; Odintsov, Sergei D.; Sáez-Gómez, Diego
2014-01-01
We construct an F(R) gravity theory corresponding to the Weyl invariant two scalar field theory. We investigate whether such F(R) gravity can have the antigravity regions where the Weyl curvature invariant does not diverge at the Big Bang and Big Crunch singularities. It is revealed that the divergence cannot be evaded completely but can be much milder than that in the original Weyl invariant two scalar field theory.
f(Lovelock) theories of gravity
Bueno, Pablo; Cano, Pablo A.; Óscar Lasso, A.; Ramírez, Pedro F.
2016-04-01
f(Lovelock) gravities are simple generalizations of the usual f( R) and Lovelock theories in which the gravitational action depends on some arbitrary function of the corresponding dimensionally-extended Euler densities. In this paper we study several aspects of these theories in general dimensions. We start by identifying the generalized boundary term which makes the gravitational variational problem well-posed. Then, we show that these theories are equivalent to certain scalar-tensor theories and how this relation is characterized by the Hessian of f. We also study the linearized equations of the theory on general maximally symmetric backgrounds. Remarkably, we find that these theories do not propagate the usual ghost-like massive gravitons characteristic of higher-derivative gravities on such backgrounds. In some non-trivial cases, the additional scalar associated to the trace of the metric perturbation is also absent, being the usual graviton the only dynamical field. In those cases, the linearized equations are exactly the same as in Einstein gravity up to an overall factor, making them appealing as holographic toy models. We also find constraints on the couplings of a broad family of five-dimensional f(Lovelock) theories using holographic entanglement entropy. Finally, we construct new analytic asymptotically flat and AdS/dS black hole solutions for some classes of f(Lovelock) gravities in various dimensions.
Restricted gravity: Abelian projection of Einstein's theory
International Nuclear Information System (INIS)
Cho, Y.M.
2013-01-01
Treating Einstein's theory as a gauge theory of Lorentz group, we decompose the gravitational connection Γμ into the restricted connection made of the potential of the maximal Abelian subgroup H of Lorentz group G and the valence connection made of G/H part of the potential which transforms covariantly under Lorentz gauge transformation. With this we show that Einstein's theory can be decomposed into the restricted gravity made of the restricted connection which has the full Lorentz gauge invariance which has the valence connection as gravitational source. The decomposition shows the existence of a restricted theory of gravitation which has the full general invariance but is much simpler than Einstein's theory. Moreover, it tells that the restricted gravity can be written as an Abelian gauge theory,
Topics in Theories of Quantum Gravity
International Nuclear Information System (INIS)
Perelstein, M.
2005-01-01
In this thesis, the author addresses several issues involving gravity. The first half of the thesis is devoted to studying quantum properties of Einstein gravity and its supersymmetric extensions in the perturbative regime. String theory suggests that perturbative scattering amplitudes in the theories of gravity are related to the amplitudes in gauge theories. This connection has been studied at classical (tree) level by Kawai, Lewellen and Tye. Here, they will explore the relationship between gravity and gauge theory at quantum (loop) level. This relationship, together with the cut-based approach to computing loop amplitudes, allow us to obtain new non-trivial results for quantum gravity. IN particular, they present two infinite sequences of one-loop n-graviton scattering amplitudes: the maximally helicity violating amplitudes in N = 8 supergravity, and the ''all-plus'' helicity amplitudes in Einstein gravity with any minimally coupled massless matter content. The results for n (le) 6 will be obtained by an explicit calculation, while those for n > 6 is inferred from the soft and collinear properties of the amplitudes. They also present an explicit expression for the two-loop contribution to the four-particle scattering amplitude in N = 8 supergravity, and observe a simple relation between this result and its counterpart in N = 4 super-Yang-Mills theory. Furthermore, the simple structure of the two-particle unitarity cuts in these theories suggests that similar relations exist to all loop orders. If this is the case, the first ultraviolet divergence in N = 8 supergravity should appear at five loops, contrary to the earlier expectation of a three-loop counterterm
Topics in Theories of Quantum Gravity
Energy Technology Data Exchange (ETDEWEB)
Perelstein, M.
2005-04-05
In this thesis, the author addresses several issues involving gravity. The first half of the thesis is devoted to studying quantum properties of Einstein gravity and its supersymmetric extensions in the perturbative regime. String theory suggests that perturbative scattering amplitudes in the theories of gravity are related to the amplitudes in gauge theories. This connection has been studied at classical (tree) level by Kawai, Lewellen and Tye. Here, they will explore the relationship between gravity and gauge theory at quantum (loop) level. This relationship, together with the cut-based approach to computing loop amplitudes, allow us to obtain new non-trivial results for quantum gravity. IN particular, they present two infinite sequences of one-loop n-graviton scattering amplitudes: the maximally helicity violating amplitudes in N = 8 supergravity, and the ''all-plus'' helicity amplitudes in Einstein gravity with any minimally coupled massless matter content. The results for n {le} 6 will be obtained by an explicit calculation, while those for n > 6 is inferred from the soft and collinear properties of the amplitudes. They also present an explicit expression for the two-loop contribution to the four-particle scattering amplitude in N = 8 supergravity, and observe a simple relation between this result and its counterpart in N = 4 super-Yang-Mills theory. Furthermore, the simple structure of the two-particle unitarity cuts in these theories suggests that similar relations exist to all loop orders. If this is the case, the first ultraviolet divergence in N = 8 supergravity should appear at five loops, contrary to the earlier expectation of a three-loop counterterm.
Eddington's theory of gravity and its progeny.
Bañados, Máximo; Ferreira, Pedro G
2010-07-02
We resurrect Eddington's proposal for the gravitational action in the presence of a cosmological constant and extend it to include matter fields. We show that the Newton-Poisson equation is modified in the presence of sources and that charged black holes show great similarities with those arising in Born-Infeld electrodynamics coupled to gravity. When we consider homogeneous and isotropic space-times, we find that there is a minimum length (and maximum density) at early times, clearly pointing to an alternative theory of the big bang. We thus argue that the modern formulation of Eddington's theory, Born-Infeld gravity, presents us with a novel, nonsingular description of the Universe.
Power-law cosmic expansion in f(R) gravity models
International Nuclear Information System (INIS)
Goheer, Naureen; Larena, Julien; Dunsby, Peter K. S.
2009-01-01
We show that within the class of f(R) gravity theories, Friedmann-Lemaitre-Robertson-Walker power-law perfect fluid solutions only exist for R n gravity. This significantly restricts the set of exact cosmological solutions which have similar properties to what is found in standard general relativity.
Static spherically symmetric wormholes in f(R, T) gravity
Energy Technology Data Exchange (ETDEWEB)
Zubair, M.; Ahmad, Yasir [Institute Of Information Technology, Department of Mathematics, COMSATS, Lahore (Pakistan); Waheed, Saira [Prince Mohammad Bin Fahd University, Al Khobar (Saudi Arabia)
2016-08-15
In this work, we explore wormhole solutions in f(R, T) theory of gravity, where R is the scalar curvature and T is the trace of stress-energy tensor of matter. To investigate this, we consider a static spherically symmetric geometry with matter contents as anisotropic, isotropic, and barotropic fluids in three separate cases. By taking into account the Starobinsky f(R) model, we analyze the behavior of energy conditions for these different kinds of fluids. It is shown that the wormhole solutions can be constructed without exotic matter in few regions of space-time. We also give the graphical illustration of the results obtained and discuss the equilibrium picture for the anisotropic case only. It is concluded that the wormhole solutions with anisotropic matter are realistic and stable in this theory of gravity. (orig.)
Unitarity problems in 3D gravity theories
Alkac, Gokhan; Basanisi, Luca; Kilicarslan, Ercan; Tekin, Bayram
2017-07-01
We revisit the problem of the bulk-boundary unitarity clash in 2 +1 -dimensional gravity theories, which has been an obstacle in providing a viable dual two-dimensional conformal field theory for bulk gravity in anti-de Sitter (AdS) spacetime. Chiral gravity, which is a particular limit of cosmological topologically massive gravity (TMG), suffers from perturbative log-modes with negative energies inducing a nonunitary logarithmic boundary field theory. We show here that any f (R ) extension of TMG does not improve the situation. We also study the perturbative modes in the metric formulation of minimal massive gravity—originally constructed in a first-order formulation—and find that the massive mode has again negative energy except in the chiral limit. We comment on this issue and also discuss a possible solution to the problem of negative-energy modes. In any of these theories, the infinitesimal dangerous deformations might not be integrable to full solutions; this suggests a linearization instability of AdS spacetime in the direction of the perturbative log-modes.
Relativistic astrophysics and theory of gravity
International Nuclear Information System (INIS)
Zel'dovich, Ya.B.
1982-01-01
A brief historical review of the development of astrophysical science in the State Astrophysical Institute named after Shternberg (SAISh) has been given in a popular form. The main directions of the SAISh astrophysical investigations have been presented: relativistic theory of gravity, relativistic astrophysics of interplanetary medium and cosmology
Gravitational lensing in metric theories of gravity
International Nuclear Information System (INIS)
Sereno, Mauro
2003-01-01
Gravitational lensing in metric theories of gravity is discussed. I introduce a generalized approximate metric element, inclusive of both post-post-Newtonian contributions and a gravitomagnetic field. Following Fermat's principle and standard hypotheses, I derive the time delay function and deflection angle caused by an isolated mass distribution. Several astrophysical systems are considered. In most of the cases, the gravitomagnetic correction offers the best perspectives for an observational detection. Actual measurements distinguish only marginally different metric theories from each other
Perturbative Quantum Gravity from Gauge Theory
Carrasco, John Joseph
In this dissertation we present the graphical techniques recently developed in the construction of multi-loop scattering amplitudes using the method of generalized unitarity. We construct the three-loop and four-loop four-point amplitudes of N = 8 supergravity using these methods and the Kawaii, Lewellen and Tye tree-level relations which map tree-level gauge theory amplitudes to tree-level gravity theory amplitudes. We conclude by extending a tree-level duality between color and kinematics, generic to gauge theories, to a loop level conjecture, allowing the easy relation between loop-level gauge and gravity kinematics. We provide non-trivial evidence for this conjecture at three-loops in the particular case of maximal supersymmetry.
Gravitational radiation in quadratic f(R) gravity
International Nuclear Information System (INIS)
Naef, Joachim; Jetzer, Philippe
2011-01-01
We investigate the gravitational radiation emitted by an isolated system for gravity theories with Lagrange density f(R)=R+aR 2 . As a formal result, we obtain leading order corrections to the quadrupole formula in general relativity. We make use of the analogy of f(R) theories with scalar-tensor theories, which in contrast to general relativity feature an additional scalar degree of freedom. Unlike general relativity, where the leading order gravitational radiation is produced by quadrupole moments, the additional degree of freedom predicts gravitational radiation of all multipoles, in particular, monopoles and dipoles, as this is the case for the most alternative gravity theories known today. An application to a hypothetical binary pulsar moving in a circular orbit yields the rough limit a 17 m 2 by constraining the dipole power to account at most for 1% of the quadrupole power as predicted by general relativity.
Large N field theories, string theory and gravity
Energy Technology Data Exchange (ETDEWEB)
Maldacena, J [Lyman Laboratory of Physics, Harvard University, Cambridge (United States)
2002-05-15
We describe the holographic correspondence between field theories and string/M theory, focusing on the relation between compactifications of string/ M theory on Anti-de Sitter spaces and conformal field theories. We review the background for this correspondence and discuss its motivations and the evidence for its correctness. We describe the main results that have been derived from the correspondence in the regime that the field theory is approximated by classical or semiclassical gravity. We focus on the case of the N = 4 supersymmetric gauge theory in four dimensions. These lecture notes are based on the Review written by O. Aharony, S. Gubser, J. Maldacena, H. Ooguri and Y. Oz. (author)
Cosmology in general massive gravity theories
International Nuclear Information System (INIS)
Comelli, D.; Nesti, F.; Pilo, L.
2014-01-01
We study the cosmological FRW flat solutions generated in general massive gravity theories. Such a model are obtained adding to the Einstein General Relativity action a peculiar non derivative potentials, function of the metric components, that induce the propagation of five gravitational degrees of freedom. This large class of theories includes both the case with a residual Lorentz invariance as well as the case with rotational invariance only. It turns out that the Lorentz-breaking case is selected as the only possibility. Moreover it turns out that that perturbations around strict Minkowski or dS space are strongly coupled. The upshot is that even though dark energy can be simply accounted by massive gravity modifications, its equation of state w eff has to deviate from -1. Indeed, there is an explicit relation between the strong coupling scale of perturbations and the deviation of w eff from -1. Taking into account current limits on w eff and submillimiter tests of the Newton's law as a limit on the possible strong coupling scale, we find that it is still possible to have a weakly coupled theory in a quasi dS background. Future experimental improvements on short distance tests of the Newton's law may be used to tighten the deviation of w eff form -1 in a weakly coupled massive gravity theory
Geodesic congruences in the Palatini f(R) theory
International Nuclear Information System (INIS)
Shojai, Fatimah; Shojai, Ali
2008-01-01
We shall investigate the properties of a congruence of geodesics in the framework of Palatini f(R) theories. We shall evaluate the modified geodesic deviation equation and the Raychaudhuri's equation and show that f(R) Palatini theories do not necessarily lead to attractive forces. Also, we shall study energy condition for f(R) Palatini gravity via a perturbative analysis of the Raychaudhuri's equation.
String theory and quantum gravity '92
International Nuclear Information System (INIS)
Harvey, J.; Iengo, R.; Narain, K.S.; Randjbar Daemi, S.; Verlinde, H.
1993-01-01
These proceedings of the 1992 Trieste Spring School and Workshop on String Theory and Quantum Gravity contains introductions and overviews of recent work on the use of two-dimensional string inspired models in the study of black holes, a lecture on gravitational scattering at planckian energies, another on the physical properties of higher-dimensional black holes and black strings in string theory, a discussion on N=2 superconformal field theories, a lecture about the application of matrix model techniques to the study of string theory in two dimensions, and an overview of the current status and developments in string field theory. Connections with models in statistical mechanics are also discussed. These proceedings contain seven lectures and ten contributions. Refs and figs
Quantum gravity from descriptive set theory
International Nuclear Information System (INIS)
El Naschie, M.S.
2004-01-01
We start from Hilbert's criticism of the axioms of classical geometry and the possibility of abandoning the Archimedean axiom. Subsequently we proceed to the physical possibility of a fundamental limitation on the smallest length connected to certain singular points in spacetime and below which measurements become meaningless, Finally we arrive at the conclusion that maximising the Hawking-Bekenstein informational content of spacetime makes the existence of a transfinite geometry for physical 'spacetime' not only plausible but probably inevitable. The main part of the paper is then concerned with a proposal for a mathematical description of a transfinite, non-Archimedean geometry using descriptive set theory. Nevertheless, and despite all abstract mathematics, we remain quite close to similar lines of investigation initiated by physicists like A. Wheeler, D. Finkelstein and G. 'tHooft. In particular we introduce a logarithmic gauge transformation linking classical gravity with the electro weak via a version of informational entropy. That way we may claim to have accomplished an important step towards a general theory of quantum gravity using ε (∞) and complexity theory and finding that α G =(2) α-bar ew -1 congruent with (1.7)(10) 38 where α G is the dimensionless Newton gravity constant, and α ew ≅128 is the fine structure constant at the electro weak scale
Finding Horndeski theories with Einstein gravity limits
Energy Technology Data Exchange (ETDEWEB)
McManus, Ryan; Lombriser, Lucas; Peñarrubia, Jorge, E-mail: ryanm@roe.ac.uk, E-mail: llo@roe.ac.uk, E-mail: jorpega@roe.ac.uk [Institute for Astronomy, University of Edinburgh, Royal Observatory, Blackford Hill, Edinburgh, EH9 3HJ (United Kingdom)
2016-11-01
The Horndeski action is the most general scalar-tensor theory with at most second-order derivatives in the equations of motion, thus evading Ostrogradsky instabilities and making it of interest when modifying gravity at large scales. To pass local tests of gravity, these modifications predominantly rely on nonlinear screening mechanisms that recover Einstein's Theory of General Relativity in regions of high density. We derive a set of conditions on the four free functions of the Horndeski action that examine whether a specific model embedded in the action possesses an Einstein gravity limit or not. For this purpose, we develop a new and surprisingly simple scaling method that identifies dominant terms in the equations of motion by considering formal limits of the couplings that enter through the new terms in the modified action. This enables us to find regimes where nonlinear terms dominate and Einstein's field equations are recovered to leading order. Together with an efficient approximation of the scalar field profile, one can then further evaluate whether these limits can be attributed to a genuine screening effect. For illustration, we apply the analysis to both a cubic galileon and a chameleon model as well as to Brans-Dicke theory. Finally, we emphasise that the scaling method also provides a natural approach for performing post-Newtonian expansions in screened regimes.
Beyond Einstein Gravity A Survey of Gravitational Theories for Cosmology and Astrophysics
Faraoni, Valerio
2011-01-01
Beyond Einstein’s Gravity is a graduate level introduction to extended theories of gravity and cosmology, including variational principles, the weak-field limit, gravitational waves, mathematical tools, exact solutions, as well as cosmological and astrophysical applications. The book provides a critical overview of the research in this area and unifies the existing literature using a consistent notation. Although the results apply in principle to all alternative gravities, a special emphasis is on scalar-tensor and f(R) theories. They were studied by theoretical physicists from early on, and in the 1980s they appeared in attempts to renormalize General Relativity and in models of the early universe. Recently, these theories have seen a new lease of life, in both their metric and metric-affine versions, as models of the present acceleration of the universe without introducing the mysterious and exotic dark energy. The dark matter problem can also be addressed in extended gravity. These applications are contr...
Loop amplitudes in an extended gravity theory
Dunbar, David C.; Godwin, John H.; Jehu, Guy R.; Perkins, Warren B.
2018-05-01
We extend the S-matrix of gravity by the addition of the minimal three-point amplitude or equivalently adding R3 terms to the Lagrangian. We demonstrate how Unitarity can be used to simply examine the renormalisability of this theory and determine the R4 counter-terms that arise at one-loop. We find that the combination of R4 terms that arise in the extended theory is complementary to the R4 counter-term associated with supersymmetric Lagrangians.
Information theory, spectral geometry, and quantum gravity.
Kempf, Achim; Martin, Robert
2008-01-18
We show that there exists a deep link between the two disciplines of information theory and spectral geometry. This allows us to obtain new results on a well-known quantum gravity motivated natural ultraviolet cutoff which describes an upper bound on the spatial density of information. Concretely, we show that, together with an infrared cutoff, this natural ultraviolet cutoff beautifully reduces the path integral of quantum field theory on curved space to a finite number of ordinary integrations. We then show, in particular, that the subsequent removal of the infrared cutoff is safe.
Constraint on reconstructed f(R) gravity models from gravitational waves
Lee, Seokcheon
2018-06-01
The gravitational wave (GW) detection of a binary neutron star inspiral made by the Advanced LIGO and Advanced Virgo paves the unprecedented way for multi-messenger observations. The propagation speed of this GW can be scrutinized by comparing the arrival times between GW and neutrinos or photons. It provides the constraint on the mass of the graviton. f(R) gravity theories have the habitual non-zero mass gravitons in addition to usual massless ones. Previously, we show that the model independent f(R) gravity theories can be constructed from the both background evolution and the matter growth with one undetermined parameter. We show that this parameter can be constrained from the graviton mass bound obtained from GW detection. Thus, the GW detection provides the invaluable constraint on the validity of f(R) gravity theories.
Extension of Loop Quantum Gravity to Metric Theories beyond General Relativity
International Nuclear Information System (INIS)
Ma Yongge
2012-01-01
The successful background-independent quantization of Loop Quantum Gravity relies on the key observation that classical General Relativity can be cast into the connection-dynamical formalism with the structure group of SU(2). Due to this particular formalism, Loop Quantum Gravity was generally considered as a quantization scheme that applies only to General Relativity. However, we will show that the nonperturbative quantization procedure of Loop Quantum Gravity can be extended to a rather general class of metric theories of gravity, which have received increased attention recently due to motivations coming form cosmology and astrophysics. In particular, we will first introduce how to reformulate the 4-dimensional metric f(R) theories of gravity, as well as Brans-Dicke theory, into connection-dynamical formalism with real SU(2) connections as configuration variables. Through these formalisms, we then outline the nonpertubative canonical quantization of the f(R) theories and Brans-Dicke theory by extending the loop quantization scheme of General Relativity.
f(R) gravity cosmology in scalar degree of freedom
International Nuclear Information System (INIS)
Goswami, Umananda Dev; Deka, Kabita
2014-01-01
The models of f(R) gravity belong to an important class of modified gravity models where the late time cosmic accelerated expansion is considered as the manifestation of the large scale modification of the force of gravity. f(R) gravity models can be expressed in terms of a scalar degree of freedom by explicit redefinition of model's variable. Here we report about the study of the features of cosmological parameters and hence the cosmological evolution using the scalar degree of freedom of the f(R) = ξR n gravity model in the Friedmann-Lemaître-Robertson-Walker (FLRW) background
Stellar pulsations in beyond Horndeski gravity theories
Energy Technology Data Exchange (ETDEWEB)
Sakstein, Jeremy [Center for Particle Cosmology, Department of Physics and Astronomy, University of Pennsylvania, 209 S. 33rd St., Philadelphia, PA 19104 (United States); Kenna-Allison, Michael; Koyama, Kazuya, E-mail: sakstein@physics.upenn.edu, E-mail: mka1g13@soton.ac.uk, E-mail: kazuya.koyama@port.ac.uk [Institute of Cosmology and Gravitation, University of Portsmouth, Portsmouth PO1 3FX (United Kingdom)
2017-03-01
Theories of gravity in the beyond Horndeski class recover the predictions of general relativity in the solar system whilst admitting novel cosmologies, including late-time de Sitter solutions in the absence of a cosmological constant. Deviations from Newton's law are predicted inside astrophysical bodies, which allow for falsifiable, smoking-gun tests of the theory. In this work we study the pulsations of stars by deriving and solving the wave equation governing linear adiabatic oscillations to find the modified period of pulsation. Using both semi-analytic and numerical models, we perform a preliminary survey of the stellar zoo in an attempt to identify the best candidate objects for testing the theory. Brown dwarfs and Cepheid stars are found to be particularly sensitive objects and we discuss the possibility of using both to test the theory.
Stellar pulsations in beyond Horndeski gravity theories
Sakstein, Jeremy; Kenna-Allison, Michael; Koyama, Kazuya
2017-03-01
Theories of gravity in the beyond Horndeski class recover the predictions of general relativity in the solar system whilst admitting novel cosmologies, including late-time de Sitter solutions in the absence of a cosmological constant. Deviations from Newton's law are predicted inside astrophysical bodies, which allow for falsifiable, smoking-gun tests of the theory. In this work we study the pulsations of stars by deriving and solving the wave equation governing linear adiabatic oscillations to find the modified period of pulsation. Using both semi-analytic and numerical models, we perform a preliminary survey of the stellar zoo in an attempt to identify the best candidate objects for testing the theory. Brown dwarfs and Cepheid stars are found to be particularly sensitive objects and we discuss the possibility of using both to test the theory.
Weak lensing in generalized gravity theories
International Nuclear Information System (INIS)
Acquaviva, Viviana; Baccigalupi, Carlo; Perrotta, Francesca
2004-01-01
We extend the theory of weak gravitational lensing to cosmologies with generalized gravity, described in the Lagrangian by a generic function depending on the Ricci scalar and a nonminimal coupled scalar field. We work out the generalized Poisson equations relating the dynamics of the fluctuating components to the two gauge-invariant scalar gravitational potentials, fixing the contributions from the modified background expansion and fluctuations. We show how the lensing equation gets modified by the cosmic expansion as well as by the presence of anisotropic stress, which is non-null at the linear level both in scalar-tensor gravity and in theories where the gravitational Lagrangian term features a nonminimal dependence on the Ricci scalar. Starting from the geodesic deviation, we derive the generalized expressions for the shear tensor and projected lensing potential, encoding the spacetime variation of the effective gravitational constant and isolating the contribution of the anisotropic stress, which introduces a correction due to the spatial correlation between the gravitational potentials. Finally, we work out the expressions of the lensing convergence power spectrum as well as the correlation between the lensing potential and the integrated Sachs-Wolfe effect affecting cosmic microwave background total intensity and polarization anisotropies. To illustrate phenomenologically the effects, we work out approximate expressions for the quantities above in extended quintessence scenarios where the scalar field coupled to gravity plays the role of the dark energy
Compact objects in relativistic theories of gravity
Okada da Silva, Hector
2017-05-01
In this dissertation we discuss several aspects of compact objects, i.e. neutron stars and black holes, in relativistic theories of gravity. We start by studying the role of nuclear physics (encoded in the so-called equation of state) in determining the properties of neutron stars in general relativity. We show that low-mass neutron stars are potentially useful astrophysical laboratories that can be used to constrain the properties of the equation of state. More specifically, we show that various bulk properties of these objects, such as their quadrupole moment and tidal deformability, are tightly correlated. Next, we develop a formalism that aims to capture how generic modifications from general relativity affect the structure of neutron stars, as predicted by a broad class of gravity theories, in the spirit of the parametrized post-Newtonian formalism (PPN). Our "post-Tolman-Oppenheimer-Volkoff" formalism provides a toolbox to study both stellar structure and the interior/exterior geometries of static, spherically symmetric relativistic stars. We also apply the formalism to parametrize deviations from general relativity in various astrophysical observables related with neutron stars, including surface redshift, apparent radius, Eddington luminosity. We then turn our attention to what is arguably the most well-motivated and well-investigated generalization of general relativity: scalar-tensor theory. We start by considering theories where gravity is mediated by a single extra scalar degree of freedom (in addition to the metric tensor). An interesting class of scalar-tensor theories passes all experimental tests in the weak-field regime of gravity, yet considerably deviates from general relativity in the strong-field regime in the presence of matter. A common assumption in modeling neutron stars is that the pressure within these object is spatially isotropic. We relax this assumption and examine how pressure anisotropy affects the mass, radius and moment of inertia
Constraining f(R gravity in solar system, cosmology and binary pulsar systems
Directory of Open Access Journals (Sweden)
Tan Liu
2018-02-01
Full Text Available The f(R gravity can be cast into the form of a scalar–tensor theory, and scalar degree of freedom can be suppressed in high-density regions by the chameleon mechanism. In this article, for the general f(R gravity, using a scalar–tensor representation with the chameleon mechanism, we calculate the parametrized post-Newtonian parameters γ and β, the effective gravitational constant Geff, and the effective cosmological constant Λeff. In addition, for the general f(R gravity, we also calculate the rate of orbital period decay of the binary system due to gravitational radiation. Then we apply these results to specific f(R models (Hu–Sawicki model, Tsujikawa model and Starobinsky model and derive the constraints on the model parameters by combining the observations in solar system, cosmological scales and the binary systems.
Is Quantum Gravity a Super-Quantum Theory?
Chang, Lay Nam; Lewis, Zachary; Minic, Djordje; Takeuchi, Tatsu
2013-01-01
We argue that quantum gravity should be a super-quantum theory, that is, a theory whose non-local correlations are stronger than those of canonical quantum theory. As a super-quantum theory, quantum gravity should display distinct experimentally observable super-correlations of entangled stringy states.
Electrodynamics in scale-covariant gravity theory
International Nuclear Information System (INIS)
Mansfield, V.N.; Malin, S.
1980-01-01
Utilizing the inherent scale-invariance of Maxwell's Equations, classical electrodynamics is incorporated into the theory of scale-invariant gravity. In this incorporation the gravitational constant G is shown to transform like β -2 (β is the gauge function), the generalized Lorentz Force Law is derived, the electric charge is shown to be invariant under gauge transformation, and matter creation is shown to be a necessity. In all nontrivial gauges a modified version of QED is obtained. The deviation from standard QED, however, is shown to be beyond the range of experimental detection when G α β -2 . (orig.)
Superconducting gravity gradiometer for sensitive gravity measurements. I. Theory
International Nuclear Information System (INIS)
Chan, H.A.; Paik, H.J.
1987-01-01
Because of the equivalence principle, a global measurement is necessary to distinguish gravity from acceleration of the reference frame. A gravity gradiometer is therefore an essential instrument needed for precision tests of gravity laws and for applications in gravity survey and inertial navigation. Superconductivity and SQUID (superconducting quantum interference device) technology can be used to obtain a gravity gradiometer with very high sensitivity and stability. A superconducting gravity gradiometer has been developed for a null test of the gravitational inverse-square law and space-borne geodesy. Here we present a complete theoretical model of this instrument. Starting from dynamical equations for the device, we derive transfer functions, a common mode rejection characteristic, and an error model of the superconducting instrument. Since a gradiometer must detect a very weak differential gravity signal in the midst of large platform accelerations and other environmental disturbances, the scale factor and common mode rejection stability of the instrument are extremely important in addition to its immunity to temperature and electromagnetic fluctuations. We show how flux quantization, the Meissner effect, and properties of liquid helium can be utilized to meet these challenges
International Nuclear Information System (INIS)
Klusoň, Josef; Nojiri, Shin'ichi; Odintsov, Sergei D.
2013-01-01
We propose new version of massive F(R) gravity which is natural generalization of convenient massive ghost-free gravity. Its Hamiltonian formulation in scalar-tensor frame is developed. We show that such F(R) theory is ghost-free. The cosmological evolution of such theory is investigated. Despite the strong Bianchi identity constraint the possibility of cosmic acceleration (especially, in the presence of cold dark matter) is established. Ghost-free massive F(R,T) gravity is also proposed
String duality transformations in f(R) gravity from Noether symmetry approach
Energy Technology Data Exchange (ETDEWEB)
Capozziello, Salvatore [Dipartimento di Fisica, Università di Napoli ' ' Federico II' ' , Compl. Univ. di Monte S. Angelo, Edificio G, Via Cinthia, I-80126, Napoli (Italy); Gionti, Gabriele S.J. [Specola Vaticana, Vatican City, V-00120, Vatican City State (Vatican City State, Holy See); Vernieri, Daniele, E-mail: capozziello@na.inf.it, E-mail: ggionti@as.arizona.edu, E-mail: vernieri@iap.fr [Sorbonne Universités, UPMC Univ Paris 6 et CNRS, UMR 7095, Institut d' Astrophysique de Paris, GReCO, 98bis Bd Arago, 75014 Paris (France)
2016-01-01
We select f(R) gravity models that undergo scale factor duality transformations. As a starting point, we consider the tree-level effective gravitational action of bosonic String Theory coupled with the dilaton field. This theory inherits the Busher's duality of its parent String Theory. Using conformal transformations of the metric tensor, it is possible to map the tree-level dilaton-graviton string effective action into f(R) gravity, relating the dilaton field to the Ricci scalar curvature. Furthermore, the duality can be framed under the standard of Noether symmetries and exact cosmological solutions are derived. Using suitable changes of variables, the string-based f(R) Lagrangians are shown in cases where the duality transformation becomes a parity inversion.
String duality transformations in f(R) gravity from Noether symmetry approach
International Nuclear Information System (INIS)
Capozziello, Salvatore; Gionti, Gabriele S.J.; Vernieri, Daniele
2016-01-01
We select f(R) gravity models that undergo scale factor duality transformations. As a starting point, we consider the tree-level effective gravitational action of bosonic String Theory coupled with the dilaton field. This theory inherits the Busher's duality of its parent String Theory. Using conformal transformations of the metric tensor, it is possible to map the tree-level dilaton-graviton string effective action into f(R) gravity, relating the dilaton field to the Ricci scalar curvature. Furthermore, the duality can be framed under the standard of Noether symmetries and exact cosmological solutions are derived. Using suitable changes of variables, the string-based f(R) Lagrangians are shown in cases where the duality transformation becomes a parity inversion
Physical attributes of anisotropic compact stars in f(R, G) gravity
Energy Technology Data Exchange (ETDEWEB)
Shamir, M.F.; Zia, Saeeda [National University of Computer and Emerging Sciences, Department of Sciences and Humanities, Lahore (Pakistan)
2017-07-15
Modified gravity is one of the potential candidates to explain the accelerated expansion of the universe. Current study highlights the materialization of anisotropic compact stars in the context of f(R, G) theory of gravity. In particular, to gain insight in the physical behavior of three stars namely, Her X1, SAX J 1808-3658 and 4U 1820-30, energy density, and radial and tangential pressures are calculated. The f(R, G) gravity model is split into a Starobinsky like f(R) model and a power law f(G) model. The main feature of the work is a 3-dimensional graphical analysis in which, anisotropic measurements, energy conditions and stability attributes of these stars are discussed. It is shown that all three stars behave as usual for positive values of the f(G) model parameter n. (orig.)
General relativity and gauge gravity theories of higher order
International Nuclear Information System (INIS)
Konopleva, N.P.
1998-01-01
It is a short review of today's gauge gravity theories and their relations with Einstein General Relativity. The conceptions of construction of the gauge gravity theories with higher derivatives are analyzed. GR is regarded as the gauge gravity theory corresponding to the choice of G ∞4 as the local gauge symmetry group and the symmetrical tensor of rank two g μν as the field variable. Using the mathematical technique, single for all fundamental interactions (namely variational formalism for infinite Lie groups), we can obtain Einstein's theory as the gauge theory without any changes. All other gauge approaches lead to non-Einstein theories of gravity. But above-mentioned mathematical technique permits us to construct the gauge gravity theory of higher order (for instance SO (3,1)-gravity) so that all vacuum solutions of Einstein equations are the solutions of the SO (3,1)-gravity theory. The structure of equations of SO(3,1)-gravity becomes analogous to Weeler-Misner geometrodynamics one
Steps towards a quantum theory of gravity
International Nuclear Information System (INIS)
Unruh, W.G.
1984-01-01
The paper concerns simple experiments in quantum gravity. 'Schroedinger's Cat' experiment to test semiclassical quantum gravity, and the gravitational single slit experiment to demonstrate the wave-particle duality for photons, are both described and discussed. (U.K.)
Evolution of curvature perturbation in generalized gravity theories
International Nuclear Information System (INIS)
Matsuda, Tomohiro
2009-01-01
Using the cosmological perturbation theory in terms of the δN formalism, we find the simple formulation of the evolution of the curvature perturbation in generalized gravity theories. Compared with the standard gravity theory, a crucial difference appears in the end-boundary of the inflationary stage, which is due to the non-ideal form of the energy-momentum tensor that depends explicitly on the curvature scalar. Recent study shows that ultraviolet-complete quantum theory of gravity (Horava-Lifshitz gravity) can be approximated by using a generalized gravity action. Our paper may give an important step in understanding the evolution of the curvature perturbation during inflation, where the energy-momentum tensor may not be given by the ideal form due to the corrections from the fundamental theory.
Statistical mechanics, gravity, and Euclidean theory
International Nuclear Information System (INIS)
Fursaev, Dmitri V.
2002-01-01
A review of computations of free energy for Gibbs states on stationary but not static gravitational and gauge backgrounds is given. On these backgrounds wave equations for free fields are reduced to eigenvalue problems which depend non-linearly on the spectral parameter. We present a method to deal with such problems. In particular, we demonstrate how some results of the spectral theory of second-order elliptic operators, such as heat kernel asymptotics, can be extended to a class of non-linear spectral problems. The method is used to trace down the relation between the canonical definition of the free energy based on summation over the modes and the covariant definition given in Euclidean quantum gravity. As an application, high-temperature asymptotics of the free energy and of the thermal part of the stress-energy tensor in the presence of rotation are derived. We also discuss statistical mechanics in the presence of Killing horizons where canonical and Euclidean theories are related in a non-trivial way
Lectures on 2D gravity and 2D string theory
International Nuclear Information System (INIS)
Ginsparg, P.; Moore, G.
1992-01-01
This report the following topics: loops and states in conformal field theory; brief review of the Liouville theory; 2D Euclidean quantum gravity I: path integral approach; 2D Euclidean quantum gravity II: canonical approach; states in 2D string theory; matrix model technology I: method of orthogonal polynomials; matrix model technology II: loops on the lattice; matrix model technology III: free fermions from the lattice; loops and states in matrix model quantum gravity; loops and states in the C=1 matrix model; 6V model fermi sea dynamics and collective field theory; and string scattering in two spacetime dimensions
Generalised boundary terms for higher derivative theories of gravity
Energy Technology Data Exchange (ETDEWEB)
Teimouri, Ali; Talaganis, Spyridon; Edholm, James [Consortium for Fundamental Physics, Lancaster University,North West Drive, Lancaster, LA1 4YB (United Kingdom); Mazumdar, Anupam [Consortium for Fundamental Physics, Lancaster University,North West Drive, Lancaster, LA1 4YB (United Kingdom); Kapteyn Astronomical Institute, University of Groningen,9700 AV Groningen (Netherlands)
2016-08-24
In this paper we wish to find the corresponding Gibbons-Hawking-York term for the most general quadratic in curvature gravity by using Coframe slicing within the Arnowitt-Deser-Misner (ADM) decomposition of spacetime in four dimensions. In order to make sure that the higher derivative gravity is ghost and tachyon free at a perturbative level, one requires infinite covariant derivatives, which yields a generalised covariant infinite derivative theory of gravity. We will be exploring the boundary term for such a covariant infinite derivative theory of gravity.
A no-hair theorem for black holes in f(R) gravity
Cañate, Pedro
2018-01-01
In this work we present a no-hair theorem which discards the existence of four-dimensional asymptotically flat, static and spherically symmetric or stationary axisymmetric, non-trivial black holes in the frame of f(R) gravity under metric formalism. Here we show that our no-hair theorem also can discard asymptotic de Sitter stationary and axisymmetric non-trivial black holes. The novelty is that this no-hair theorem is built without resorting to known mapping between f(R) gravity and scalar–tensor theory. Thus, an advantage will be that our no-hair theorem applies as well to metric f(R) models that cannot be mapped to scalar–tensor theory.
Perturbative Gravity and Gauge Theory Relations: A Review
Directory of Open Access Journals (Sweden)
Thomas Søndergaard
2012-01-01
Full Text Available This paper is dedicated to the amazing Kawai-Lewellen-Tye relations, connecting perturbative gravity and gauge theories at tree level. The main focus is on n-point derivations and general properties both from a string theory and pure field theory point of view. In particular, the field theory part is based on some very recent developments.
New special operators in W-gravity theories
International Nuclear Information System (INIS)
Rama, S.K.
1991-01-01
This paper reports on special physical operators of W 3 -gravity having non-trivial ghost sectors. Some of these operators may be viewed as the Liouville dressings of the energy operator of the Ising model coupled to two-dimensional (2D) gravity and this fills in the gap in the connection between pure W 3 -gravity and Ising model coupled to 2D gravity found in the authors' previous work. The authors formulate a selection rule required for the calculation of correlators in W-gravity theories. Using this rule, the authors construct the non-ghost part of the new operators of W N -gravity and find that they represent the (N,N + 1) minimal model operators from both inside and outside the minimal table. Along the way the authors obtain the canonical spectrum of W N -gravity for all N
Topological gravity from a transgression gauge field theory
International Nuclear Information System (INIS)
Merino, N.; Perez, A.; Salgado, P.; Valdivia, O.
2010-01-01
It is shown that a topological action for gravity in even dimensions can be obtained from a gravity theory whose Lagrangian is given by a transgression form invariant under the Poincare group. The field φ a , which is necessary to construct this type of topological gravity in even dimensions, is identified with the coset field associated with the non-linear realizations of the Poincare group ISO(d-1,1).
Radar time delays in the dynamic theory of gravity
Directory of Open Access Journals (Sweden)
Haranas I.I.
2004-01-01
Full Text Available There is a new theory gravity called the dynamic theory, which is derived from thermodynamic principles in a five dimensional space, radar signals traveling times and delays are calculated for the major planets in the solar system, and compared to those of general relativity. This is done by using the usual four dimensional spherically symmetric space-time element of classical general relativistic gravity which has now been slightly modified by a negative inverse radial exponential term due to the dynamic theory of gravity potential.
Compact stars in f(R, T) gravity
Energy Technology Data Exchange (ETDEWEB)
Das, Amit; Guha, B.K. [Indian Institute of Engineering Science and Technology, Department of Physics, Howrah, West Bengal (India); Rahaman, Farook [Jadavpur University, Department of Mathematics, Kolkata, West Bengal (India); Ray, Saibal [Government College of Engineering and Ceramic Technology, Department of Physics, Kolkata, West Bengal (India)
2016-12-15
In the present paper we generate a set of solutions describing the interior of a compact star under f(R, T) theory of gravity which admits conformal motion. An extension of general relativity, the f(R, T) gravity is associated to Ricci scalar R and the trace of the energy-momentum tensor T. To handle the Einstein field equations in the form of differential equations of second order, first of all we adopt the Lie algebra with conformal Killing vectors (CKV) which enable one to get a solvable form of such equations and second we consider the equation of state (EOS) p = ωρ with 0 < ω < 1 for the fluid distribution consisting of normal matter, ω being the EOS parameter. We therefore analytically explore several physical aspects of the model to represent behavior of the compact stars such as - energy conditions, TOV equation, stability of the system, Buchdahl condition, compactness and redshift. It is checked that the physical validity and the acceptability of the present model within the specified observational constraint in connection to a dozen of the compact star candidates are quite satisfactory. (orig.)
Matter coupled to quantum gravity in group field theory
International Nuclear Information System (INIS)
Ryan, James
2006-01-01
We present an account of a new model incorporating 3d Riemannian quantum gravity and matter at the group field theory level. We outline how the Feynman diagram amplitudes of this model are spin foam amplitudes for gravity coupled to matter fields and discuss some features of the model. To conclude, we describe some related future work
Cosmological large-scale structures beyond linear theory in modified gravity
Energy Technology Data Exchange (ETDEWEB)
Bernardeau, Francis; Brax, Philippe, E-mail: francis.bernardeau@cea.fr, E-mail: philippe.brax@cea.fr [CEA, Institut de Physique Théorique, 91191 Gif-sur-Yvette Cédex (France)
2011-06-01
We consider the effect of modified gravity on the growth of large-scale structures at second order in perturbation theory. We show that modified gravity models changing the linear growth rate of fluctuations are also bound to change, although mildly, the mode coupling amplitude in the density and reduced velocity fields. We present explicit formulae which describe this effect. We then focus on models of modified gravity involving a scalar field coupled to matter, in particular chameleons and dilatons, where it is shown that there exists a transition scale around which the existence of an extra scalar degree of freedom induces significant changes in the coupling properties of the cosmic fields. We obtain the amplitude of this effect for realistic dilaton models at the tree-order level for the bispectrum, finding them to be comparable in amplitude to those obtained in the DGP and f(R) models.
Generation of spherically symmetric metrics in f(R) gravity
Energy Technology Data Exchange (ETDEWEB)
Amirabi, Z.; Halilsoy, M.; Mazharimousavi, S.H. [Eastern Mediterranean University, Department of Physics, Gazimagusa (Turkey)
2016-06-15
In D-dimensional spherically symmetric f(R) gravity there are three unknown functions to be determined from the fourth order differential equations. It is shown that the system remarkably may be integrated to relate two functions through the third one to provide a reduction to second order equations accompanied with a large class of potential solutions. The third function, which acts as the generator of the process, is F(R) = (df(R))/(dR). We recall that our generating function has been employed as a scalar field with an accompanying self-interacting potential previously, which is entirely different from our approach. Reduction of f(R) theory into a system of equations seems to be efficient enough to generate a solution corresponding to each generating function. As particular examples, besides the known ones, we obtain new black hole solutions in any dimension D. We further extend our analysis to cover non-zero energy-momentum tensors. Global monopole and Maxwell sources are given as examples. (orig.)
On the stability of the cosmological solutions in f(R, G) gravity
International Nuclear Information System (INIS)
De la Cruz-Dombriz, Álvaro; Sáez-Gómez, Diego
2012-01-01
Modified gravity is one of the most promising candidates for explaining the current accelerating expansion of the Universe, and even its unification with the inflationary epoch. Nevertheless, the wide range of models capable of explaining the phenomena of dark energy imposes that current research focuses on a more precise study of the possible effects of modified gravity on both cosmological and local levels. In this paper, we focus on the analysis of a type of modified gravity, the so-called f(R, G) gravity, and we perform a deep analysis on the stability of important cosmological solutions. This not only can help to constrain the form of the gravitational action, but also facilitate a better understanding of the behavior of the perturbations in this class of higher order theories of gravity, which will lead to a more precise analysis of the full spectrum of cosmological perturbations in future. (paper)
On a Lie-isotopic theory of gravity
International Nuclear Information System (INIS)
Gasperini, M.
1984-01-01
Starting from the isotopic lifting of the Poincare algebra, a Lie-isotopic theory of gravity is formulated, its physical interpretation is given in terms of a generalized principle of equivalence, and it is shown that a local Lorentz-isotopic symmetry motivates the introduction of a generalized metric-affine geometrical structure. Finally, possible applications of a Lie-isotopic theory to the problem of unifying gravity with internal symmetries, in four and more than four dimensions, are discussed
From quantum gravity to quantum field theory via noncommutative geometry
International Nuclear Information System (INIS)
Aastrup, Johannes; Grimstrup, Jesper Møller
2014-01-01
A link between canonical quantum gravity and fermionic quantum field theory is established in this paper. From a spectral triple construction, which encodes the kinematics of quantum gravity, we construct semi-classical states which, in a semi-classical limit, give a system of interacting fermions in an ambient gravitational field. The emergent interaction involves flux tubes of the gravitational field. In the additional limit, where all gravitational degrees of freedom are turned off, a free fermionic quantum field theory emerges. (paper)
Thermal instability in a gravity-like scalar theory
International Nuclear Information System (INIS)
Brandt, F. T.; Frenkel, J.; Das, Ashok
2008-01-01
We study the question of stability of the ground state of a scalar theory which is a generalization of the φ 3 theory and has some similarity to gravity with a cosmological constant. We show that the ground state of the theory at zero temperature becomes unstable above a certain critical temperature, which is evaluated in closed form at high temperature.
Stellar equilibrium configurations of white dwarfs in the f(R, T) gravity
Energy Technology Data Exchange (ETDEWEB)
Carvalho, G.A.; Moraes, P.H.R.S.; Marinho, R.M.; Malheiro, M. [Instituto Tecnologico de Aeronautica, Departamento de Fisica, Sao Jose dos Campos, SP (Brazil); Lobato, R.V. [Instituto Tecnologico de Aeronautica, Departamento de Fisica, Sao Jose dos Campos, SP (Brazil); Sapienza Universita di Roma, Dipartimento di Fisica, Rome (Italy); ICRANet, Pescara (Italy); Arbanil, Jose D.V. [Universidad Privada del Norte, Departamento de Ciencias, Lima (Peru); Otoniel, E. [Universidade Federal do Cariri, Instituto de Formacao de Professores, Brejo Santo, CE (Brazil)
2017-12-15
In this work we investigate the equilibrium configurations of white dwarfs in a modified gravity theory, namely, f(R, T) gravity, for which R and T stand for the Ricci scalar and trace of the energy-momentum tensor, respectively. Considering the functional form f(R, T) = R+2λT, with λ being a constant, we obtain the hydrostatic equilibrium equation for the theory. Some physical properties of white dwarfs, such as: mass, radius, pressure and energy density, as well as their dependence on the parameter λ are derived. More massive and larger white dwarfs are found for negative values of λ when it decreases. The equilibrium configurations predict a maximum mass limit for white dwarfs slightly above the Chandrasekhar limit, with larger radii and lower central densities when compared to standard gravity outcomes. The most important effect of f(R, T) theory for massive white dwarfs is the increase of the radius in comparison with GR and also f(R) results. By comparing our results with some observational data of massive white dwarfs we also find a lower limit for λ, namely, λ > -3 x 10{sup -4}. (orig.)
Clustering of galaxies with f(R) gravity
Capozziello, Salvatore; Faizal, Mir; Hameeda, Mir; Pourhassan, Behnam; Salzano, Vincenzo; Upadhyay, Sudhaker
2018-02-01
Based on thermodynamics, we discuss the galactic clustering of expanding Universe by assuming the gravitational interaction through the modified Newton's potential given by f(R) gravity. We compute the corrected N-particle partition function analytically. The corrected partition function leads to more exact equations of state of the system. By assuming that the system follows quasi-equilibrium, we derive the exact distribution function that exhibits the f(R) correction. Moreover, we evaluate the critical temperature and discuss the stability of the system. We observe the effects of correction of f(R) gravity on the power-law behaviour of particle-particle correlation function also. In order to check the feasibility of an f(R) gravity approach to the clustering of galaxies, we compare our results with an observational galaxy cluster catalogue.
Existence of relativistic stars in f(R) gravity
International Nuclear Information System (INIS)
Upadhye, Amol; Hu, Wayne
2009-01-01
We refute recent claims in the literature that stars with relativistically deep potentials cannot exist in f(R) gravity. Numerical examples of stable stars, including relativistic (GM * /r * ∼0.1), constant density stars, are studied. As a star is made larger, nonlinear 'chameleon' effects screen much of the star's mass, stabilizing gravity at the stellar center. Furthermore, we show that the onset of this chameleon screening is unrelated to strong gravity. At large central pressures P>ρ/3, f(R) gravity, like general relativity, does have a maximum gravitational potential, but at a slightly smaller value: GM * /r * | max =0.345<4/9 for constant density and one choice of parameters. This difference is associated with negative central curvature R under general relativity not being accessed in the f(R) model, but does not apply to any known astrophysical object.
Perturbative quantum gravity as a double copy of gauge theory.
Bern, Zvi; Carrasco, John Joseph M; Johansson, Henrik
2010-08-06
In a previous paper we observed that (classical) tree-level gauge-theory amplitudes can be rearranged to display a duality between color and kinematics. Once this is imposed, gravity amplitudes are obtained using two copies of gauge-theory diagram numerators. Here we conjecture that this duality persists to all quantum loop orders and can thus be used to obtain multiloop gravity amplitudes easily from gauge-theory ones. As a nontrivial test, we show that the three-loop four-point amplitude of N=4 super-Yang-Mills theory can be arranged into a form satisfying the duality, and by taking double copies of the diagram numerators we obtain the corresponding amplitude of N=8 supergravity. We also remark on a nonsupersymmetric two-loop test based on pure Yang-Mills theory resulting in gravity coupled to an antisymmetric tensor and dilaton.
Perturbative Quantum Gravity and its Relation to Gauge Theory
Directory of Open Access Journals (Sweden)
Bern Zvi
2002-01-01
Full Text Available In this review we describe a non-trivial relationship between perturbative gauge theory and gravity scattering amplitudes. At the semi-classical or tree-level, the scattering amplitudes of gravity theories in flat space can be expressed as a sum of products of well defined pieces of gauge theory amplitudes. These relationships were first discovered by Kawai, Lewellen, and Tye in the context of string theory, but hold more generally. In particular, they hold for standard Einstein gravity. A method based on $D$-dimensional unitarity can then be used to systematically construct all quantum loop corrections order-by-order in perturbation theory using as input thegravity tree amplitudes expressed in terms of gauge theory ones. More generally, the unitarity method provides a means for perturbatively quantizing massless gravity theories without the usual formal apparatus associated with the quantization of constrained systems. As one application, this method was used to demonstrate that maximally supersymmetric gravity is less divergent in the ultraviolet than previously thought.
Using Noether symmetries to specify f(R) gravity
International Nuclear Information System (INIS)
Paliathanasis, Andronikos
2013-01-01
A detailed study of the modified gravity, f(R) models is performed, using the fact that the Noether point symmetries of these models are geometric symmetries of the mini su-perspace of the theory. It is shown that the requirement that the field equations admit Noether point symmetries selects definite models in a self-consistent way. As an application in Cosmology we consider the Friedman -Robertson-Walker spacetime and show that the only cosmological model which is integrable via Noether point symmetries is the (R b − 2Λ) c model, which generalizes the Lambda Cosmology. Furthermore using the corresponding Noether integrals we compute the analytic form of the main cosmological functions
International Nuclear Information System (INIS)
Chakraborty, Sumanta
2015-01-01
The hydrodynamic behavior of perfect fluid orbiting around black holes in spherically symmetric spacetime for various alternative gravity theories has been investigated. For this purpose we have assumed a uniform distribution for the angular momentum density of the rotating perfect fluid. The contours of equipotential surfaces are illustrated in order to obtain the nature of inflow and outflow of matter. It has been noticed that the marginally stable circular orbits originating from decreasing angular momentum density lead to closed equipotential surfaces along with cusps, allowing the existence of accretion disks. On the other hand, the growing part of the angular momentum density exhibits central rings for which stable configurations are possible. However, inflow of matter is prohibited. Among the solutions discussed in this work, the charged F(R) gravity and Einstein–Maxwell–Gauss–Bonnet solutions exhibit inflow and outflow of matter with central rings present. These varied accretion disk structures of perfect fluid attribute astrophysical importance to these spacetimes. The effect of higher curvature terms predominantly arises from the region near the black hole horizon. Hence the structural difference of the accretion disk in modified gravity theories in comparison to general relativity may act as an experimental probe for these alternative gravity theories. (paper)
String duality and novel theories without gravity
International Nuclear Information System (INIS)
Kachru, Shamit
1998-01-01
We describe some of the novel 6d quantum field theories which have been discovered in studies of string duality. The role these theories (and their 4d descendants) may play in alleviating the vacuum degeneracy problem in string theory is reviewed. The DLCQ of these field theories is presented as one concrete way of formulating them, independent of string theory
Scalar-tetrad theories of gravity
International Nuclear Information System (INIS)
Hayward, J.
1981-01-01
A general theory of gravitation is constructed using a tetrad and a scalar field. The resulting theory, called a scalar-tetrad theory, does not contain Einstein's or the Brans-Dicke theories as special cases. However, there is a range of scalar-tetrad theories with the same post-Newtonian limit as Einstein's theory. Two particular models are interesting because of their simplicity. (author)
How far are we from the quantum theory of gravity?
International Nuclear Information System (INIS)
Woodard, R P
2009-01-01
I give a pedagogical explanation of what it is about quantization that makes general relativity go from being a nearly perfect classical theory to a very problematic quantum one. I also explain why some quantization of gravity is unavoidable, why quantum field theories have divergences, why the divergences of quantum general relativity are worse than those of the other forces, what physicists think this means and what they might do with a consistent theory of quantum gravity if they had one. Finally, I discuss the quantum gravitational data that have recently become available from cosmology.
Applications of quantum information theory to quantum gravity
International Nuclear Information System (INIS)
Smolin, L.
2005-01-01
Full text: I describe work by and with Fotini Markopoulou and Olaf Dreyeron the application of quantum information theory to quantum gravity. A particular application to black hole physics is described, which treats the black hole horizon as an open system, in interaction with an environment, which are the degrees of freedom in the bulk spacetime. This allows us to elucidate which quantum states of a general horizon contribute to the entropy of a Schwarzchild black hole. This case serves as an example of how methods from quantum information theory may help to elucidate how the classical limit emerges from a background independent quantum theory of gravity. (author)
Higher Curvature Gravity from Entanglement in Conformal Field Theories
Haehl, Felix M.; Hijano, Eliot; Parrikar, Onkar; Rabideau, Charles
2018-05-01
By generalizing different recent works to the context of higher curvature gravity, we provide a unifying framework for three related results: (i) If an asymptotically anti-de Sitter (AdS) spacetime computes the entanglement entropies of ball-shaped regions in a conformal field theory using a generalized Ryu-Takayanagi formula up to second order in state deformations around the vacuum, then the spacetime satisfies the correct gravitational equations of motion up to second order around the AdS background. (ii) The holographic dual of entanglement entropy in higher curvature theories of gravity is given by the Wald entropy plus a particular correction term involving extrinsic curvatures. (iii) Conformal field theory relative entropy is dual to gravitational canonical energy (also in higher curvature theories of gravity). Especially for the second point, our novel derivation of this previously known statement does not involve the Euclidean replica trick.
Unity from duality: gravity, gauge theory and strings
International Nuclear Information System (INIS)
Bachas, C.; Bilal, A.; Douglas, M.; Nekrasov, N.; David, F.
2002-01-01
The 76. session of the summer school in theoretical physics was devoted to recent developments in string theory, gauge theories and quantum gravity. Superstring theory is the leading candidate for a unified theory of all fundamental physical forces and elementary particles. The discovery of dualities and of important tools such as D-branes, has greatly reinforced this point of view. This document gathers the papers of 9 lectures: 1) supergravity, 2) supersymmetric gauge theories, 3) an introduction to duality symmetries, 4) large N field theories and gravity, 5) D-branes on the conifold and N = 1 gauge/gravity dualities, 6) de Sitter space, 7) string compactification with N = 1 supersymmetry, 8) open strings and non-commutative gauge theories, and 9) condensates near the Argyres-Douglas point in SU(2) gauge theory with broken N = 2 supersymmetry, and of 8 seminars: 1) quantum field theory with extra dimensions, 2) special holonomy spaces and M-theory, 3) four dimensional non-critical strings, 4) U-opportunities: why ten equal to ten?, 5) exact answers to approximate questions - non-commutative dipoles, open Wilson lines and UV-IR duality, 6) open-string models with broken supersymmetry, 7) on a field theory of open strings, tachyon condensation and closed strings, and 8) exceptional magic. (A.C.)
Wormholes in R{sup 2}-gravity within the f(R, T) formalism
Energy Technology Data Exchange (ETDEWEB)
Sahoo, P.K.; Sahoo, Parbati [Birla Institute of Technology and Science-Pilani, Department of Mathematics, Hyderabad (India); Moraes, P.H.R.S. [ITA-Instituto Tecnologico de Aeronautica, Departamento de Fisica, Sao Jose dos Campos, Sao Paulo (Brazil)
2018-01-15
We propose, as a novelty in the literature, the modeling of wormholes within a particular case of f(R, T) gravity, namely f(R, T) = R + αR{sup 2} + λT, with R and T being the Ricci scalar and trace of the energy-momentum tensor, respectively, while α and λ are constants. Although such a functional form application can be found in the literature, those concern compact astrophysical objects, such that no wormhole analysis has been done so far. The quadratic geometric and linear material corrections of this theory render the matter content of the wormhole remarkably able to obey the energy conditions. (orig.)
f(R)-theories of gravity and gravitational baryogenesis
Energy Technology Data Exchange (ETDEWEB)
Lambiase, G; Scarpetta, G [Dipartimento di Fisica ' E.R. Caianiello' Universita di Salerno, 84081 Baronissi (Italy); INFN - Gruppo Collegato di Salerno (Italy)
2007-05-15
The mechanism for generating the baryon asymmetry in the Universe is discussed in the framework of f(R)-theories of gravity. The gravitational baryogenesis, based on the coupling between the Ricci scalar curvature R and the baryon current, allows to determine the form of gravity Lagrangian, i.e. L(R) {approx} R{sup n}. The current bound on the observed matter-antimatter asymmetry and Big Bang Nucleosynthesis data lead to n = 0.97.
Thin-shell wormholes with charge in F(R) gravity
Energy Technology Data Exchange (ETDEWEB)
Eiroa, Ernesto F. [Instituto de Astronomia y Fisica del Espacio (IAFE, CONICET-UBA), Buenos Aires (Argentina); Universidad de Buenos Aires, Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Buenos Aires (Argentina); Figueroa Aguirre, Griselda [Instituto de Astronomia y Fisica del Espacio (IAFE, CONICET-UBA), Buenos Aires (Argentina)
2016-03-15
In this article, we construct a class of constant curvature and spherically symmetric thin-shell Lorentzian wormholes in F(R) theories of gravity and we analyze their stability under perturbations preserving the symmetry. We find that the junction conditions determine the equation of state of the matter at the throat. As a particular case, we consider configurations with mass and charge. We obtain that stable static solutions are possible for suitable values of the parameters of the model. (orig.)
Thin-shell wormholes with charge in F(R) gravity
International Nuclear Information System (INIS)
Eiroa, Ernesto F.; Figueroa Aguirre, Griselda
2016-01-01
In this article, we construct a class of constant curvature and spherically symmetric thin-shell Lorentzian wormholes in F(R) theories of gravity and we analyze their stability under perturbations preserving the symmetry. We find that the junction conditions determine the equation of state of the matter at the throat. As a particular case, we consider configurations with mass and charge. We obtain that stable static solutions are possible for suitable values of the parameters of the model. (orig.)
Les Houches lectures on large N field theories and gravity
International Nuclear Information System (INIS)
Maldacena, J.
2002-01-01
We describe the holographic correspondence between field theories and string/M theory, focusing on the relation between compactifications of string/M theory on Anti-de Sitter spaces and conformal field theories. We review the background for this correspondence and discuss its motivations and the evidence for its correctness. We describe the main results that have been derived from the correspondence in the regime that the field theory is approximated by classical or semiclassical gravity. We focus on the case of the N = 4 supersymmetric gauge theory in four dimensions. (authors)
Unifying inflation with dark energy in modified F(R) Horava-Lifshitz gravity
International Nuclear Information System (INIS)
Elizalde, E.; Saez-Gomez, D.; Nojiri, S.; Odintsov, S.D.
2010-01-01
We study FRW cosmology for a non-linear modified F(R) Horava-Lifshitz gravity which has a viable convenient counterpart. A unified description of early-time inflation and late-time acceleration is possible in this theory, but the cosmological dynamic details are generically different from the ones of the convenient viable F(R) model. Remarkably, for some specific choice of parameters they do coincide. The emergence of finite-time future singularities is investigated in detail. It is shown that these singularities can be cured by adding an extra, higher-derivative term, which turns out to be qualitatively different when compared with the corresponding one of the convenient F(R) theory. (orig.)
Gravity duals of supersymmetric gauge theories on three-manifolds
International Nuclear Information System (INIS)
Farquet, Daniel; Lorenzen, Jakob; Martelli, Dario; Sparks, James
2016-01-01
We study gravity duals to a broad class of N=2 supersymmetric gauge theories defined on a general class of three-manifold geometries. The gravity backgrounds are based on Euclidean self-dual solutions to four-dimensional gauged supergravity. As well as constructing new examples, we prove in general that for solutions defined on the four-ball the gravitational free energy depends only on the supersymmetric Killing vector, finding a simple closed formula when the solution has U(1)×U(1) symmetry. Our result agrees with the large N limit of the free energy of the dual gauge theory, computed using localization. This constitutes an exact check of the gauge/gravity correspondence for a very broad class of gauge theories with a large N limit, defined on a general class of background three-manifold geometries.
Compact stars in vector-tensor-Horndeski theory of gravity
Energy Technology Data Exchange (ETDEWEB)
Momeni, Davood; Myrzakulov, Kairat; Myrzakulov, Ratbay [Eurasian National University, Department of General and Theoretical Physics, Eurasian International Center for Theoretical Physics, Astana (Kazakhstan); Faizal, Mir [University of British Columbia-Okanagan, Irving K. Barber School of Arts and Sciences, Kelowna, BC (Canada); University of Lethbridge, Department of Physics and Astronomy, Lethbridge, AB (Canada)
2017-01-15
In this paper, we will analyze a theory of modified gravity, in which the field content of general relativity will be increased to include a vector field. We will use the Horndeski formalism to non-minimally couple this vector field to the metric. As we will be using the Horndeski formalism, this theory will not contain Ostrogradsky ghost degree of freedom. We will analyze compact stars using this vector-tensor-Horndeski theory. (orig.)
Frameworks for analyzing and testing theories of gravity
International Nuclear Information System (INIS)
Lee, D.L.
1974-01-01
Theoretical frameworks are presented for the analysis and testing of gravitation theories--both metric and nonmetric. For nonmetric theories, the high precision Eotvos--Dicke--Braginskii (EBD) experiments are demonstrated to be powerful tests of their gravitational coupling to electromagnetic interactions. All known nonmetric theories are ruled out to within the precision of the EDB experiments. A new metric theory of gravity is presented that cannot be distinguished from general relativity in all current and planned solar system experiments. However, this theory has very different gravitational-wave properties. Hence, the need for further tests of metric theories beyond the Parametrized Post--Newtonian formalism is pointed out and the importance of the observation of gravitational waves as a tool for testing relativistic gravity in the future is emphasized. A theory-independent formalism delineating the properties of weak, plane gravitational waves in metric theories is set up. General conservation laws that follow from variational principles in metric theories of gravity are investigated. (U.S.)
Effective Dark Matter Halo Catalog in f(R) Gravity.
He, Jian-Hua; Hawken, Adam J; Li, Baojiu; Guzzo, Luigi
2015-08-14
We introduce the idea of an effective dark matter halo catalog in f(R) gravity, which is built using the effective density field. Using a suite of high resolution N-body simulations, we find that the dynamical properties of halos, such as the distribution of density, velocity dispersion, specific angular momentum and spin, in the effective catalog of f(R) gravity closely mimic those in the cold dark matter model with a cosmological constant (ΛCDM). Thus, when using effective halos, an f(R) model can be viewed as a ΛCDM model. This effective catalog therefore provides a convenient way for studying the baryonic physics, the galaxy halo occupation distribution and even semianalytical galaxy formation in f(R) cosmologies.
Induced gravity in quantum theory in a curved space
International Nuclear Information System (INIS)
Etim, E.
1983-01-01
The reason for interest in the unorthodox view of first order (about R(x)) gravity as a matter-induced quantum effect is really to find an argument not to quantise it. According to this view quantum gravity should be constructed with an action which is, at least, quadratic in the scalar curvature R(x). Such a theory will not contain a dimensional parameter, like Newton's constant, and would probably be renormalisable. This lecture is intended to acquaint the non-expert with the phenomenon of induction of the scalar curvature term in the matter Lagrangian in a curved space in both relativistic and non-relativistic quantum theories
General scalar-tensor theories for induced gravity inflation
International Nuclear Information System (INIS)
Boutaleb J, H.; Marrakchi, A.L.
1992-07-01
Some cosmological implications of a general scalar-tensor theory for induced gravity are discussed. The model exhibits a slow-rolling phase provided that the coupling function ε(φ) varies slowly enough such that φ dlnε(φ)/dφ much less than 2 during almost the inflationary epoch. It is then shown that, as in the ordinary induced gravity inflation, the chaotic scenario is more natural than the new scenario which proves to be even not self-consistent. The results are applied, for illustration, to a scalar-tensor theory of the Barker type. (author). 25 refs
Geometric scalar theory of gravity beyond spherical symmetry
Moschella, U.; Novello, M.
2017-04-01
We construct several exact solutions for a recently proposed geometric scalar theory of gravity. We focus on a class of axisymmetric geometries and a big-bang-like geometry and discuss their Lorentzian character. The axisymmetric solutions are parametrized by an integer angular momentum l . The l =0 (spherical) case gives rise to the Schwarzschild geometry. The other solutions have naked singular surfaces. While not a priori obvious, all the solutions that we present here are globally Lorentzian. The Lorentzian signature appears to be a robust property of the disformal geometries solving the vacuum geometric scalar theory of gravity equations.
Holographic dark energy and f(R) gravity
Energy Technology Data Exchange (ETDEWEB)
Aghamohammadi, A [Faculty of Science, Islamic Azad University of Sanandaj, Sanandaj (Iran, Islamic Republic of); Saaidi, Kh, E-mail: ksaaidi@uok.ac.ir, E-mail: agha35484@yahoo.com [Department of Physics, Faculty of Science, University of Kurdistan, Sanandaj (Iran, Islamic Republic of)
2011-02-15
We investigate the corresponding relation between f(R) gravity and holographic dark energy. We introduce a type of energy density from f(R) that has the same role as holographic dark energy. We obtain the differential equation that specifies the evolution of the introduced energy density parameter based on a varying gravitational constant. We discover the relation for the equation of state parameter for low redshifts that contains varying G correction.
The coincidence problem in holographic f(R) gravity
Energy Technology Data Exchange (ETDEWEB)
Bisabr, Yousef, E-mail: y-bisabr@srttu.edu [Department of Physics, Shahid Rajaee Teacher Training University, Lavizan, Tehran 16788 (Iran, Islamic Republic of)
2011-09-15
It is well known that f(R) gravity models formulated in the Einstein conformal frame are equivalent to Einstein gravity together with a minimally coupled scalar field. In this case, the scalar field couples with the matter sector and the coupling term is given by the conformal factor. We apply the holographic principle to such interacting models. In a spatially flat universe, we show that the Einstein frame representation of f(R) models leads to a constant ratio of energy densities of dark matter to dark energy.
Propagating Degrees of Freedom in f(R Gravity
Directory of Open Access Journals (Sweden)
Yun Soo Myung
2016-01-01
Full Text Available We have computed the number of polarization modes of gravitational waves propagating in the Minkowski background in f(R gravity. These are three of two from transverse-traceless tensor modes and one from a massive trace mode, which confirms the results found in the literature. There is no massless breathing mode and the massive trace mode corresponds to the Ricci scalar. A newly defined metric tensor in f(R gravity satisfies the transverse-traceless (TT condition as well as the TT wave equation.
Nonperturbative loop quantization of scalar-tensor theories of gravity
International Nuclear Information System (INIS)
Zhang Xiangdong; Ma Yongge
2011-01-01
The Hamiltonian formulation of scalar-tensor theories of gravity is derived from their Lagrangian formulation by Hamiltonian analysis. The Hamiltonian formalism marks off two sectors of the theories by the coupling parameter ω(φ). In the sector of ω(φ)=-(3/2), the feasible theories are restricted and a new primary constraint generating conformal transformations of spacetime is obtained, while in the other sector of ω(φ)≠-(3/2), the canonical structure and constraint algebra of the theories are similar to those of general relativity coupled with a scalar field. By canonical transformations, we further obtain the connection-dynamical formalism of the scalar-tensor theories with real su(2) connections as configuration variables in both sectors. This formalism enables us to extend the scheme of nonperturbative loop quantum gravity to the scalar-tensor theories. The quantum kinematical framework for the scalar-tensor theories is rigorously constructed. Both the Hamiltonian constraint operator and master constraint operator are well defined and proposed to represent quantum dynamics. Thus the loop quantum gravity method is also valid for general scalar-tensor theories.
Knot theory and a physical state of quantum gravity
International Nuclear Information System (INIS)
Liko, Tomas; Kauffman, Louis H
2006-01-01
We discuss the theory of knots, and describe how knot invariants arise naturally in gravitational physics. The focus of this review is to delineate the relationship between knot theory and the loop representation of non-perturbative canonical quantum general relativity (loop quantum gravity). This leads naturally to a discussion of the Kodama wavefunction, a state which is conjectured to be the ground state of the gravitational field with positive cosmological constant. This review can serve as a self-contained introduction to loop quantum gravity and related areas. Our intent is to make the paper accessible to a wider audience that may include topologists, knot theorists, and other persons innocent of the physical background to this approach to quantum gravity. (topical review)
Noncommutative gravity and quantum field theory on noncummutative curved spacetimes
Energy Technology Data Exchange (ETDEWEB)
Schenkel, Alexander
2011-10-24
The purpose of the first part of this thesis is to understand symmetry reduction in noncommutative gravity, which then allows us to find exact solutions of the noncommutative Einstein equations. We propose an extension of the usual symmetry reduction procedure, which is frequently applied to the construction of exact solutions of Einstein's field equations, to noncommutative gravity and show that this leads to preferred choices of noncommutative deformations of a given symmetric system. We classify in the case of abelian Drinfel'd twists all consistent deformations of spatially flat Friedmann-Robertson-Walker cosmologies and of the Schwarzschild black hole. The deformed symmetry structure allows us to obtain exact solutions of the noncommutative Einstein equations in many of our models, for which the noncommutative metric field coincides with the classical one. In the second part we focus on quantum field theory on noncommutative curved spacetimes. We develop a new formalism by combining methods from the algebraic approach to quantum field theory with noncommutative differential geometry. The result is an algebra of observables for scalar quantum field theories on a large class of noncommutative curved spacetimes. A precise relation to the algebra of observables of the corresponding undeformed quantum field theory is established. We focus on explicit examples of deformed wave operators and find that there can be noncommutative corrections even on the level of free field theories, which is not the case in the simplest example of the Moyal-Weyl deformed Minkowski spacetime. The convergent deformation of simple toy-models is investigated and it is shown that these quantum field theories have many new features compared to formal deformation quantization. In addition to the expected nonlocality, we obtain that the relation between the deformed and the undeformed quantum field theory is affected in a nontrivial way, leading to an improved behavior of the
Noncommutative gravity and quantum field theory on noncummutative curved spacetimes
International Nuclear Information System (INIS)
Schenkel, Alexander
2011-01-01
The purpose of the first part of this thesis is to understand symmetry reduction in noncommutative gravity, which then allows us to find exact solutions of the noncommutative Einstein equations. We propose an extension of the usual symmetry reduction procedure, which is frequently applied to the construction of exact solutions of Einstein's field equations, to noncommutative gravity and show that this leads to preferred choices of noncommutative deformations of a given symmetric system. We classify in the case of abelian Drinfel'd twists all consistent deformations of spatially flat Friedmann-Robertson-Walker cosmologies and of the Schwarzschild black hole. The deformed symmetry structure allows us to obtain exact solutions of the noncommutative Einstein equations in many of our models, for which the noncommutative metric field coincides with the classical one. In the second part we focus on quantum field theory on noncommutative curved spacetimes. We develop a new formalism by combining methods from the algebraic approach to quantum field theory with noncommutative differential geometry. The result is an algebra of observables for scalar quantum field theories on a large class of noncommutative curved spacetimes. A precise relation to the algebra of observables of the corresponding undeformed quantum field theory is established. We focus on explicit examples of deformed wave operators and find that there can be noncommutative corrections even on the level of free field theories, which is not the case in the simplest example of the Moyal-Weyl deformed Minkowski spacetime. The convergent deformation of simple toy-models is investigated and it is shown that these quantum field theories have many new features compared to formal deformation quantization. In addition to the expected nonlocality, we obtain that the relation between the deformed and the undeformed quantum field theory is affected in a nontrivial way, leading to an improved behavior of the noncommutative
Dynamical affine symmetry and covariant perturbation theory for gravity
International Nuclear Information System (INIS)
Pervushin, V.N.
1975-01-01
The covariant perturbation theory for gravity with the simplest reduction properties is formulated. The main points are as follows: fundamental fields are the normal coordinates of ten-dimensional space of the gravitational field, and the fields are separated into the classical (background) and quantum ones in the generating functional along geodesics of this space
3D quantum gravity and effective noncommutative quantum field theory.
Freidel, Laurent; Livine, Etera R
2006-06-09
We show that the effective dynamics of matter fields coupled to 3D quantum gravity is described after integration over the gravitational degrees of freedom by a braided noncommutative quantum field theory symmetric under a kappa deformation of the Poincaré group.
Astrophysical tests of scale-covariant gravity theories
International Nuclear Information System (INIS)
Mansfield, V.N.; Malin, S.
1980-01-01
Starting from the most general form of the conservation laws in scale-covariant gravitation theory, a conservation of energy equation appropriate for stars is derived. Applications to white dwarfs and neutron stars reveal serious difficulties for some choices of gauge that have been frequently employed in the literature on scale-covariant gravity. We also show how to restrict some of the possible gauges that result from theories which are independent of the Large Numbers Hypothesis
Indian Academy of Sciences (India)
We study the cosmological dynamics for R p exp( λ R ) gravity theory in the metric formalism, using dynamical systems approach. Considering higher-dimensional FRW geometries in case of an imperfect fluid which has two different scale factors in the normal and extra dimensions, we find the exact solutions, and study its ...
Gravity and matter in causal set theory
International Nuclear Information System (INIS)
Sverdlov, Roman; Bombelli, Luca
2009-01-01
The goal of this paper is to propose an approach to the formulation of dynamics for causal sets and coupled matter fields. We start from the continuum version of the action for a Klein-Gordon field coupled to gravity, and rewrite it first using quantities that have a direct correspondent in the case of a causal set, namely volumes, causal relations and timelike lengths, as variables to describe the geometry. In this step, the local Lagrangian density L(f;x) for a set of fields f is recast into a quasilocal expression L 0 (f;p,q) that depends on pairs of causally related points pprq and is a function of the values of f in the Alexandrov set defined by those points, and whose limit as p and q approach a common point x is L(f;x). We then describe how to discretize L 0 (f;p,q) and use it to define a causal-set-based action.
Stability of the Einstein static universe in f(R, T) gravity
International Nuclear Information System (INIS)
Shabani, Hamid; Ziaie, Amir Hadi
2017-01-01
The Einstein static (ES) universe has played a major role in various emergent scenarios recently proposed in order to cure the problem of the initial singularity of the standard model of cosmology. In the model we address, we study the existence and stability of an ES universe in the context of f(R, T) modified theories of gravity. Considering specific forms of the f(R, T) function, we seek for the existence of solutions representing ES state. Using dynamical system techniques along with numerical analysis, we find two classes of solutions: the first one is always unstable of the saddle type, while the second is always stable so that its dynamical behavior corresponds to a center equilibrium point. The importance of the second class of solutions is due to the significant role they play in constructing non-singular emergent models in which the universe could have experienced past-eternally a series of infinite oscillations about such an initial static state after which it enters, through a suitable physical mechanism, to an inflationary era. Considering specific forms for the functionality of f(R, T), we show that this theory is capable of providing cosmological solutions which admit emergent universe (EU) scenarios. We also investigate homogeneous scalar perturbations for the mentioned models. The stability regions of the solutions are parametrized by a linear equation of state (EoS) parameter and other free parameters that will be introduced for the models. Our results suggest that modifications in f(R, T) gravity would lead to stable solutions which are unstable in f(R) gravity model. (orig.)
Stability of the Einstein static universe in f(R, T) gravity
Energy Technology Data Exchange (ETDEWEB)
Shabani, Hamid [University of Sistan and Baluchestan, Physics Department, Faculty of Sciences, Zahedan (Iran, Islamic Republic of); Ziaie, Amir Hadi [Kahnooj Branch, Islamic Azad University, Department of Physics, Kerman (Iran, Islamic Republic of)
2017-01-15
The Einstein static (ES) universe has played a major role in various emergent scenarios recently proposed in order to cure the problem of the initial singularity of the standard model of cosmology. In the model we address, we study the existence and stability of an ES universe in the context of f(R, T) modified theories of gravity. Considering specific forms of the f(R, T) function, we seek for the existence of solutions representing ES state. Using dynamical system techniques along with numerical analysis, we find two classes of solutions: the first one is always unstable of the saddle type, while the second is always stable so that its dynamical behavior corresponds to a center equilibrium point. The importance of the second class of solutions is due to the significant role they play in constructing non-singular emergent models in which the universe could have experienced past-eternally a series of infinite oscillations about such an initial static state after which it enters, through a suitable physical mechanism, to an inflationary era. Considering specific forms for the functionality of f(R, T), we show that this theory is capable of providing cosmological solutions which admit emergent universe (EU) scenarios. We also investigate homogeneous scalar perturbations for the mentioned models. The stability regions of the solutions are parametrized by a linear equation of state (EoS) parameter and other free parameters that will be introduced for the models. Our results suggest that modifications in f(R, T) gravity would lead to stable solutions which are unstable in f(R) gravity model. (orig.)
f(R) gravity: scalar perturbations in the late Universe
Czech Academy of Sciences Publication Activity Database
Eingorn, M.; Novák, Jan; Zhuk, A.
2014-01-01
Roč. 74, č. 8 (2014), s. 3005 ISSN 1434-6044 Institutional support: RVO:67985840 Keywords : nonlinear f(R) gravity * scalar cosmological perturbations * scalaron Subject RIV: BA - General Mathematics Impact factor: 5.084, year: 2014 http://link.springer.com/article/10.1140/epjc/s10052-014-3005-1
Testing gravity with EG: mapping theory onto observations
Leonard, C. Danielle; Ferreira, Pedro G.; Heymans, Catherine
2015-12-01
We present a complete derivation of the observationally motivated definition of the modified gravity statistic EG. Using this expression, we investigate how variations to theory and survey parameters may introduce uncertainty in the general relativistic prediction of EG. We forecast errors on EG for measurements using two combinations of upcoming surveys, and find that theoretical uncertainties may dominate for a futuristic measurement. Finally, we compute predictions of EG under modifications to general relativity in the quasistatic regime, and comment on the pros and cons of using EG to test gravity with future surveys.
Towards quantum gravity via quantum field theory. Problems and perspectives
Energy Technology Data Exchange (ETDEWEB)
Fredenhagen, Klaus [II. Institut fuer Theoretische Physik, Universitaet Hamburg (Germany)
2016-07-01
General Relativity is a classical field theory; the standard methods for constructing a corresponding quantum field theory, however, meet severe difficulties, in particular perturbative non-renormalizability and the problem of background independence. Nevertheless, modern approaches to quantum field theory have significantly lowered these obstacles. On the side of non-renormalizability, this is the concept of effective theories, together with indications for better non-perturbative features of the renormalization group flow. On the side of background independence the main progress comes from an improved understanding of quantum field theories on generic curved spacetimes. Combining these informations, a promising approach to quantum gravity is an expansion around a classical solution which then is a quantum field theory on a given background, augmented by an identity which expresses independence against infinitesimal shifts of the background. The arising theory is expected to describe small corrections to classical general relativity. Inflationary cosmology is expected to arise as a lowest order approximation.
A Fröhlich effect and representational gravity in memory for auditory pitch.
Hubbard, Timothy L; Ruppel, Susan E
2013-08-01
Memory for the initial pitch of an auditory target that increased or decreased in auditory frequency was examined. Memory was displaced forward in the direction of pitch motion, and this is consistent with the Fröhlich effect previously observed for visual targets moving in visual physical space. The Fröhlich effect for pitch increased with faster target velocity and decreased if an auditory cue with the same pitch as the initial pitch of the target was presented before the target was presented. The Fröhlich effect was larger for descending pitch motion than for ascending pitch motion, and this is consistent with an influence of representational gravity. The data suggest that representation of auditory frequency space exhibits some of the same biases as representation of visual physical space, and implications for theories of attention in displacement and for crossmodal and multisensory representation of space are discussed. 2013 APA, all rights reserved
Generalisation for regular black holes on general relativity to f(R) gravity
Energy Technology Data Exchange (ETDEWEB)
Rodrigues, Manuel E. [Universidade Federal do Para Campus Universitario de Abaetetuba, Faculdade de Ciencias Exatas e Tecnologia, Abaetetuba, Para (Brazil); Universidade Federal do Para, Faculdade de Fisica, PPGF, Belem, Para (Brazil); Fabris, Julio C. [Universidade Federal do Espirito Santo, Vitoria, ES (Brazil); National Research Nuclear University MEPhI, Moscow (Russian Federation); Junior, Ednaldo L.B. [Universidade Federal do Para, Faculdade de Fisica, PPGF, Belem, Para (Brazil); Universidade Federal do Para, Campus Universitario de Tucurui, Faculdade de Engenharia da Computacao, Tucurui, Para (Brazil); Marques, Glauber T. [Universidade Federal Rural da Amazonia ICIBE - LASIC, Belem, PA (Brazil)
2016-05-15
IIn this paper, we determine regular black hole solutions using a very general f(R) theory, coupled to a nonlinear electromagnetic field given by a Lagrangian L{sub NED}. The functions f(R) and L{sub NED} are in principle left unspecified. Instead, the model is constructed through a choice of the mass function M(r) presented in the metric coefficients. Solutions which have a regular behaviour of the geometric invariants are found. These solutions have two horizons, the event horizon and the Cauchy horizon. All energy conditions are satisfied in the whole space-time, except the strong energy condition (SEC), which is violated near the Cauchy horizon.We present also a new theorem related to the energy conditions in f(R) gravity, re-obtaining the well-known conditions in the context of general relativity when the geometry of the solution is the same. (orig.)
The theory of spherically symmetric thin shells in conformal gravity
Berezin, Victor; Dokuchaev, Vyacheslav; Eroshenko, Yury
The spherically symmetric thin shells are the nearest generalizations of the point-like particles. Moreover, they serve as the simple sources of the gravitational fields both in General Relativity and much more complex quadratic gravity theories. We are interested in the special and physically important case when all the quadratic in curvature tensor (Riemann tensor) and its contractions (Ricci tensor and scalar curvature) terms are present in the form of the square of Weyl tensor. By definition, the energy-momentum tensor of the thin shell is proportional to Diracs delta-function. We constructed the theory of the spherically symmetric thin shells for three types of gravitational theories with the shell: (1) General Relativity; (2) Pure conformal (Weyl) gravity where the gravitational part of the total Lagrangian is just the square of the Weyl tensor; (3) Weyl-Einstein gravity. The results are compared with these in General Relativity (Israel equations). We considered in detail the shells immersed in the vacuum. Some peculiar properties of such shells are found. In particular, for the traceless ( = massless) shell, it is shown that their dynamics cannot be derived from the matching conditions and, thus, is completely arbitrary. On the contrary, in the case of the Weyl-Einstein gravity, the trajectory of the same type of shell is completely restored even without knowledge of the outside solution.
Stealth configurations in vector-tensor theories of gravity
Chagoya, Javier; Tasinato, Gianmassimo
2018-01-01
Studying the physics of compact objects in modified theories of gravity is important for understanding how future observations can test alternatives to General Relativity. We consider a subset of vector-tensor Galileon theories of gravity characterized by new symmetries, which can prevent the propagation of the vector longitudinal polarization, even in absence of Abelian gauge invariance. We investigate new spherically symmetric and slowly rotating solutions for these systems, including an arbitrary matter Lagrangian. We show that, under certain conditions, there always exist stealth configurations whose geometry coincides with solutions of Einstein gravity coupled with the additional matter. Such solutions have a non-trivial profile for the vector field, characterized by independent integration constants, which extends to asymptotic infinity. We interpret our findings in terms of the symmetries and features of the original vector-tensor action, and on the number of degrees of freedom that it propagates. These results are important to eventually describe gravitationally bound configurations in modified theories of gravity, such as black holes and neutron stars, including realistic matter fields forming or surrounding the object.
Weyl gravity as a gauge theory
Trujillo, Juan Teancum
In 1920, Rudolf Bach proposed an action based on the square of the Weyl tensor or CabcdCabcd where the Weyl tensor is an invariant under a scaling of the metric. A variation of the metric leads to the field equation known as the Bach equation. In this dissertation, the same action is analyzed, but as a conformal gauge theory. It is shown that this action is a result of a particular gauging of this group. By treating it as a gauge theory, it is natural to vary all of the gauge fields independently, rather than performing the usual fourth-order metric variation only. We show that solutions of the resulting vacuum field equations are all solutions to the vacuum Einstein equation, up to a conformal factor---a result consistent with local scale freedom. We also show how solutions for the gauge fields imply there is no gravitational self energy.
Towards a theory of nonassociative gravity
International Nuclear Information System (INIS)
Blumenhagen, Ralph; Fuchs, Michael
2016-01-01
Violating the strong constraint of double field theory, non-geometric fluxes were argued to give rise to noncommutative/nonassociative structures. We derive in a rather pedestrian physicist way a differential geometry on the simplest nonassociative (phase-)space arising for a constant non-geometric R-flux. This provides a complementary presentation to the quasi-Hopf representation categorial one delivered by Barnes, Schenkel, Szabo in http://arxiv.org/abs/1409.6331 + http://arxiv.org/abs/1507.02792. As there, the notions of tensors, covariant derivative, torsion and curvature find a star-generalization. We continue the construction with the introduction of a star-metric and its star-inverse where, due to the nonassociativity, we encounter major deviations from the familiar structure. Comments on the Levi-Civita connection, a star-Einstein-Hilbert action and the relation to string theory are included, as well.
Quantum field theory II introductions to quantum gravity, supersymmetry and string theory
Manoukian, Edouard B
2016-01-01
This book takes a pedagogical approach to explaining quantum gravity, supersymmetry and string theory in a coherent way. It is aimed at graduate students and researchers in quantum field theory and high-energy physics. The first part of the book introduces quantum gravity, without requiring previous knowledge of general relativity (GR). The necessary geometrical aspects are derived afresh leading to explicit general Lagrangians for gravity, including that of general relativity. The quantum aspect of gravitation, as described by the graviton, is introduced and perturbative quantum GR is discussed. The Schwinger-DeWitt formalism is developed to compute the one-loop contribution to the theory and renormalizability aspects of the perturbative theory are also discussed. This follows by introducing only the very basics of a non-perturbative, background-independent, formulation of quantum gravity, referred to as “loop quantum gravity”, which gives rise to a quantization of space. In the second part the author in...
On pseudoparticle solutions in the Poincare gauge theory of gravity
International Nuclear Information System (INIS)
Mielke, E.W.
1983-12-01
The dynamical structure of the Poincare gauge field theory coupled to matter fields and some of its implications for a quantum theory of gravity are investigated. Essentially, the method of Belavin et al. for generating instanton solutions in Yang-Mills theory is transferred to the gravitational gauge model. The results are as follows: For configurations obeying a modified double duality Ansatz for the curvature the metrical background is determined by Einstein-type field equations coupled almost canonically to the stress-energy content of external fields. Exact electrovac solutions with non-trivial torsion are derived from the duality Ansatz. In a Euclidean space-time the corresponding pseudoparticle solutions are expected to play a dominant role in the quantization of gravity via Feynman's method of path integrals. (author)
How Zwicky already ruled out modified gravity theories without dark matter
International Nuclear Information System (INIS)
Nieuwenhuizen, Theodorus Maria
2017-01-01
Various theories, such as MOND, MOG, Emergent Gravity and f(R) theories avoid dark matter by assuming a change in General Relativity and/or in Newton's law. Galactic rotation curves are typically described well. Here the application to galaxy clusters is considered, focussed on the good lensing and X-ray data for A1689. As a start, the no-dark-matter case is confirmed to work badly: the need for dark matter starts near the cluster centre, where Newton's law is still supposed to be valid. This leads to the conundrum discovered by Zwicky, which is likely only solvable in his way, namely by assuming additional (dark) matter. Neutrinos with eV masses serve well without altering the successes in (dwarf) galaxies. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
How Zwicky already ruled out modified gravity theories without dark matter
Energy Technology Data Exchange (ETDEWEB)
Nieuwenhuizen, Theodorus Maria [Institute for Theoretical Physics, University of Amsterdam (Netherlands); International Institute of Physics, UFRG, Natal (Brazil)
2017-06-15
Various theories, such as MOND, MOG, Emergent Gravity and f(R) theories avoid dark matter by assuming a change in General Relativity and/or in Newton's law. Galactic rotation curves are typically described well. Here the application to galaxy clusters is considered, focussed on the good lensing and X-ray data for A1689. As a start, the no-dark-matter case is confirmed to work badly: the need for dark matter starts near the cluster centre, where Newton's law is still supposed to be valid. This leads to the conundrum discovered by Zwicky, which is likely only solvable in his way, namely by assuming additional (dark) matter. Neutrinos with eV masses serve well without altering the successes in (dwarf) galaxies. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Modular Theory, Non-Commutative Geometry and Quantum Gravity
Directory of Open Access Journals (Sweden)
Wicharn Lewkeeratiyutkul
2010-08-01
Full Text Available This paper contains the first written exposition of some ideas (announced in a previous survey on an approach to quantum gravity based on Tomita-Takesaki modular theory and A. Connes non-commutative geometry aiming at the reconstruction of spectral geometries from an operational formalism of states and categories of observables in a covariant theory. Care has been taken to provide a coverage of the relevant background on modular theory, its applications in non-commutative geometry and physics and to the detailed discussion of the main foundational issues raised by the proposal.
Spin Gauge Theory of Gravity in Clifford Space
International Nuclear Information System (INIS)
Pavsic, Matej
2006-01-01
A theory in which 16-dimensional curved Clifford space (C-space) provides a realization of Kaluza-Klein theory is investigated. No extra dimensions of spacetime are needed: 'extra dimensions' are in C-space. We explore the spin gauge theory in C-space and show that the generalized spin connection contains the usual 4-dimensional gravity and Yang-Mills fields of the U(1) x SU(2) x SU(3) gauge group. The representation space for the latter group is provided by 16-component generalized spinors composed of four usual 4-component spinors, defined geometrically as the members of four independent minimal left ideals of Clifford algebra
Conformal field theory and 2D quantum gravity
International Nuclear Information System (INIS)
Distler, J.; Kawai, Hikaru
1989-01-01
Inspired by the recent work of Knizhnik, Polyakov and Zamolodchikov on the solution of 2D quantum gravity in the 'light cone' gauge, we present a proposal for solving the theory in the usual conformal gauge. Our results for the critical exponents of the theory agree with the genus-zero results of KPZ. Since our formalism naturally generalizes to higher-genus Riemann surfaces, we obtain the critical exponents for all genera. The corresponding results for the supersymmetric case are presented. We also show how to calculate correlation functions in these theories. (orig.)
Canonical transformation path to gauge theories of gravity
Struckmeier, J.; Muench, J.; Vasak, D.; Kirsch, J.; Hanauske, M.; Stoecker, H.
2017-06-01
In this paper, the generic part of the gauge theory of gravity is derived, based merely on the action principle and on the general principle of relativity. We apply the canonical transformation framework to formulate geometrodynamics as a gauge theory. The starting point of our paper is constituted by the general De Donder-Weyl Hamiltonian of a system of scalar and vector fields, which is supposed to be form-invariant under (global) Lorentz transformations. Following the reasoning of gauge theories, the corresponding locally form-invariant system is worked out by means of canonical transformations. The canonical transformation approach ensures by construction that the form of the action functional is maintained. We thus encounter amended Hamiltonian systems which are form-invariant under arbitrary spacetime transformations. This amended system complies with the general principle of relativity and describes both, the dynamics of the given physical system's fields and their coupling to those quantities which describe the dynamics of the spacetime geometry. In this way, it is unambiguously determined how spin-0 and spin-1 fields couple to the dynamics of spacetime. A term that describes the dynamics of the "free" gauge fields must finally be added to the amended Hamiltonian, as common to all gauge theories, to allow for a dynamic spacetime geometry. The choice of this "dynamics" Hamiltonian is outside of the scope of gauge theory as presented in this paper. It accounts for the remaining indefiniteness of any gauge theory of gravity and must be chosen "by hand" on the basis of physical reasoning. The final Hamiltonian of the gauge theory of gravity is shown to be at least quadratic in the conjugate momenta of the gauge fields—this is beyond the Einstein-Hilbert theory of general relativity.
Rotating gravity currents. Part 1. Energy loss theory
Martin, J. R.; Lane-Serff, G. F.
2005-01-01
A comprehensive energy loss theory for gravity currents in rotating rectangular channels is presented. The model is an extension of the non-rotating energy loss theory of Benjamin (J. Fluid Mech. vol. 31, 1968, p. 209) and the steady-state dissipationless theory of rotating gravity currents of Hacker (PhD thesis, 1996). The theory assumes the fluid is inviscid, there is no shear within the current, and the Boussinesq approximation is made. Dissipation is introduced using a simple method. A head loss term is introduced into the Bernoulli equation and it is assumed that the energy loss is uniform across the stream. Conservation of momentum, volume flux and potential vorticity between upstream and downstream locations is then considered. By allowing for energy dissipation, results are obtained for channels of arbitrary depth and width (relative to the current). The results match those from earlier workers in the two limits of (i) zero rotation (but including dissipation) and (ii) zero dissipation (but including rotation). Three types of flow are identified as the effect of rotation increases, characterized in terms of the location of the outcropping interface between the gravity current and the ambient fluid on the channel boundaries. The parameters for transitions between these cases are quantified, as is the detailed behaviour of the flow in all cases. In particular, the speed of the current can be predicted for any given channel depth and width. As the channel depth increases, the predicted Froude number tends to surd 2, as for non-rotating flows.
Testing Modified Gravity Theories via Wide Binaries and GAIA
Pittordis, Charalambos; Sutherland, Will
2018-06-01
The standard ΛCDM model based on General Relativity (GR) including cold dark matter (CDM) is very successful at fitting cosmological observations, but recent non-detections of candidate dark matter (DM) particles mean that various modified-gravity theories remain of significant interest. The latter generally involve modifications to GR below a critical acceleration scale ˜10-10 m s-2. Wide-binary (WB) star systems with separations ≳ 5 kAU provide an interesting test for modified gravity, due to being in or near the low-acceleration regime and presumably containing negligible DM. Here, we explore the prospects for new observations pending from the GAIA spacecraft to provide tests of GR against MOND or TeVes-like theories in a regime only partially explored to date. In particular, we find that a histogram of (3D) binary relative velocities, relative to equilibrium circular velocity predicted from the (2D) projected separation predicts a rather sharp feature in this distribution for standard gravity, with an 80th (90th) percentile value close to 1.025 (1.14) with rather weak dependence on the eccentricity distribution. However, MOND/TeVeS theories produce a shifted distribution, with a significant increase in these upper percentiles. In MOND-like theories without an external field effect, there are large shifts of order unity. With the external field effect included, the shifts are considerably reduced to ˜0.04 - 0.08, but are still potentially detectable statistically given reasonably large samples and good control of contaminants. In principle, followup of GAIA-selected wide binaries with ground-based radial velocities accurate to ≲ 0.03 { km s^{-1}} should be able to produce an interesting new constraint on modified-gravity theories.
Quantum Gravity, Information Theory and the CMB
Kempf, Achim
2018-04-01
We review connections between the metric of spacetime and the quantum fluctuations of fields. We start with the finding that the spacetime metric can be expressed entirely in terms of the 2-point correlator of the fluctuations of quantum fields. We then discuss the open question whether the knowledge of only the spectra of the quantum fluctuations of fields also suffices to determine the spacetime metric. This question is of interest because spectra are geometric invariants and their quantization would, therefore, have the benefit of not requiring the modding out of diffeomorphisms. Further, we discuss the fact that spacetime at the Planck scale need not necessarily be either discrete or continuous. Instead, results from information theory show that spacetime may be simultaneously discrete and continuous in the same way that information can. Finally, we review the recent finding that a covariant natural ultraviolet cutoff at the Planck scale implies a signature in the cosmic microwave background (CMB) that may become observable.
Warped conformal field theory as lower spin gravity
Hofman, Diego M.; Rollier, Blaise
2015-08-01
Two dimensional Warped Conformal Field Theories (WCFTs) may represent the simplest examples of field theories without Lorentz invariance that can be described holographically. As such they constitute a natural window into holography in non-AdS space-times, including the near horizon geometry of generic extremal black holes. It is shown in this paper that WCFTs posses a type of boost symmetry. Using this insight, we discuss how to couple these theories to background geometry. This geometry is not Riemannian. We call it Warped Geometry and it turns out to be a variant of a Newton-Cartan structure with additional scaling symmetries. With this formalism the equivalent of Weyl invariance in these theories is presented and we write two explicit examples of WCFTs. These are free fermionic theories. Lastly we present a systematic description of the holographic duals of WCFTs. It is argued that the minimal setup is not Einstein gravity but an SL (2, R) × U (1) Chern-Simons Theory, which we call Lower Spin Gravity. This point of view makes manifest the definition of boundary for these non-AdS geometries. This case represents the first step towards understanding a fully invariant formalism for WN field theories and their holographic duals.
Group manifold approach to gravity and supergravity theories
International Nuclear Information System (INIS)
d'Auria, R.; Fre, P.; Regge, T.
1981-05-01
Gravity theories are presented from the point of view of group manifold formulation. The differential geometry of groups and supergroups is discussed first; the notion of connection and related Yang-Mills potentials is introduced. Then ordinary Einstein gravity is discussed in the Cartan formulation. This discussion provides a first example which will then be generalized to more complicated theories, in particular supergravity. The distinction between ''pure'' and ''impure' theories is also set forth. Next, the authors develop an axiomatic approach to rheonomic theories related to the concept of Chevalley cohomology on group manifolds, and apply these principles to N = 1 supergravity. Then the panorama of so far constructed pure and impure group manifold supergravities is presented. The pure d = 5 N = 2 case is discussed in some detail, and N = 2 and N = 3 in d = 4 are considered as examples of the impure theories. The way a pure theory becomes impure after dimensional reduction is illustrated. Next, the role of kinematical superspace constraints as a subset of the group-manifold equations of motion is discussed, and the use of this approach to obtain the auxiliary fields is demonstrated. Finally, the application of the group manifold method to supersymmetric Super Yang-Mills theories is addressed
Warped conformal field theory as lower spin gravity
Directory of Open Access Journals (Sweden)
Diego M. Hofman
2015-08-01
Full Text Available Two dimensional Warped Conformal Field Theories (WCFTs may represent the simplest examples of field theories without Lorentz invariance that can be described holographically. As such they constitute a natural window into holography in non-AdS space–times, including the near horizon geometry of generic extremal black holes. It is shown in this paper that WCFTs posses a type of boost symmetry. Using this insight, we discuss how to couple these theories to background geometry. This geometry is not Riemannian. We call it Warped Geometry and it turns out to be a variant of a Newton–Cartan structure with additional scaling symmetries. With this formalism the equivalent of Weyl invariance in these theories is presented and we write two explicit examples of WCFTs. These are free fermionic theories. Lastly we present a systematic description of the holographic duals of WCFTs. It is argued that the minimal setup is not Einstein gravity but an SL(2,R×U(1 Chern–Simons Theory, which we call Lower Spin Gravity. This point of view makes manifest the definition of boundary for these non-AdS geometries. This case represents the first step towards understanding a fully invariant formalism for WN field theories and their holographic duals.
Kaluza-Klein gravity and scalar-tensor theories
International Nuclear Information System (INIS)
Chauvineau, Bertrand
2007-01-01
In this paper, we propose a Kaluza-Klein approach to gravity in Δ=4+n 1 +n 2 +... dimensions, where n 1 ,n 2 ,... are the dimensions of independent internal spaces. One is interested in the case where each internal metric depends on the four-dimensional coordinates by a conformal factor. If all these conformal factors depend on the four-dimensional coordinates through a common scalar function Ψ, the induced effective four-dimensional gravity theory turns out to be of general scalar-tensor type. One shows that, if there are at least two internal spaces, the theory is not ruled out by experimental tests on gravitation, even if there is no massive scalar-potential term in the effective four-dimensional Lagrangian (contrary to what happens if there is only one internal space, in which case ω is of order unity, whatever the dimension of this internal space)
Nonmetric theories of gravity and the gravitational frequency shift
International Nuclear Information System (INIS)
Coley, A.A.; Sarmiento G, A.F.; Universidad Nacional Autonoma de Mexico, Mexico City)
1988-01-01
A class of nonmetric theories of gravity called metric-affine theories is investigated, emphasizing a subclass of theories called Weyl-affine theories. An experimental configuration is modeled in which the gravitational redshift of light signals conecting an artificial satellite to the earth is measured. A situation in which both bodies are forced to follow circular orbits around the sun with angular speeds determined by the solar gravitational field is considered along with the more realistic situation in which the artificial satellite and the earth are both allowed to follow general coplanar orbits. The latter is found to give rise to more severe constraints. It is found that theories under investigation must coincide with their metric counterparts up to first order in the Newtonian gravitational potential U and that any nonmetric effects within the solar neighborhood can only manifest themselves at most through small contributions at the U-squared level or at the U-cubed level. 34 references
Light bending in F [ g (□) R ] extended gravity theories
Giacchini, Breno L.; Shapiro, Ilya L.
2018-05-01
We show that in the weak field limit the light deflection alone cannot distinguish between different R + F [ g (□) R ] models of gravity, where F and g are arbitrary functions. This does not imply, however, that in all these theories an observer will see the same deflection angle. Owed to the need to calibrate the Newton constant, the deflection angle may be model-dependent after all necessary types of measurements are taken into account.
Cosmological consistency tests of gravity theory and cosmic acceleration
Ishak-Boushaki, Mustapha B.
2017-01-01
Testing general relativity at cosmological scales and probing the cause of cosmic acceleration are among the important objectives targeted by incoming and future astronomical surveys and experiments. I present our recent results on consistency tests that can provide insights about the underlying gravity theory and cosmic acceleration using cosmological data sets. We use statistical measures, the rate of cosmic expansion, the growth rate of large scale structure, and the physical consistency of these probes with one another.
Scalar-tensor theory of fourth-order gravity
International Nuclear Information System (INIS)
Accioly, A.J.; Goncalves, A.T.
1986-04-01
A scalar-tensor theory of fourth-order gravity is considered. Some cosmological consequences, due to the presence of the scalar field, as well as of metric derivatives higher than second order, are analysed. In particular, upperbpunds are obtained for the coupling constant α and for the scale factor of the universe, respectively. The discussion is restricted to Robertson-Walker universes. (Author) [pt
A 2D Inspired 4D Theory of Gravity
Rodgers, V. G. J.
1994-01-01
Coadjoint orbits of the Virasoro and Kac-Moody algebras provide geometric actions for matter coupled to gravity and gauge fields in two dimensions. However, the Gauss' law constraints that arise from these actions are not necessarily endemic to two-dimensional topologies. Indeed the constraints associated with Yang-Mills naturally arise from the coadjoint orbit construction of the WZW model. One may in fact use a Yang-Mills theory to provide dynamics to the otherwise fixed coadjoint vectors t...
Group field theories for all loop quantum gravity
Oriti, Daniele; Ryan, James P.; Thürigen, Johannes
2015-02-01
Group field theories represent a second quantized reformulation of the loop quantum gravity state space and a completion of the spin foam formalism. States of the canonical theory, in the traditional continuum setting, have support on graphs of arbitrary valence. On the other hand, group field theories have usually been defined in a simplicial context, thus dealing with a restricted set of graphs. In this paper, we generalize the combinatorics of group field theories to cover all the loop quantum gravity state space. As an explicit example, we describe the group field theory formulation of the KKL spin foam model, as well as a particular modified version. We show that the use of tensor model tools allows for the most effective construction. In order to clarify the mathematical basis of our construction and of the formalisms with which we deal, we also give an exhaustive description of the combinatorial structures entering spin foam models and group field theories, both at the level of the boundary states and of the quantum amplitudes.
Quasi-local conserved charges in Lorenz-diffeomorphism covariant theory of gravity
Energy Technology Data Exchange (ETDEWEB)
Adami, H.; Setare, M.R. [University of Kurdistan, Department of Science, Sanandaj (Iran, Islamic Republic of)
2016-04-15
In this paper, using the combined Lorenz-diffeomorphism symmetry, we find a general formula for the quasi-local conserved charge of the covariant gravity theories in a first order formalism of gravity. We simplify the general formula for the Lovelock theory of gravity. Afterwards, we apply the obtained formula on BHT gravity to obtain the energy and angular momentum of the rotating OTT black hole solution in the context of this theory. (orig.)
Quasi-local conserved charges in Lorenz-diffeomorphism covariant theory of gravity
Adami, H.; Setare, M. R.
2016-04-01
In this paper, using the combined Lorenz-diffeomorphism symmetry, we find a general formula for the quasi-local conserved charge of the covariant gravity theories in a first order formalism of gravity. We simplify the general formula for the Lovelock theory of gravity. Afterwards, we apply the obtained formula on BHT gravity to obtain the energy and angular momentum of the rotating OTT black hole solution in the context of this theory.
Disformal theories of gravity: from the solar system to cosmology
Energy Technology Data Exchange (ETDEWEB)
Sakstein, Jeremy, E-mail: j.a.sakstein@damtp.cam.ac.uk [DAMTP, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA (United Kingdom)
2014-12-01
This paper is concerned with theories of gravity that contain a scalar coupled both conformally and disformally to matter through the metric. By systematically deriving the non-relativistic limit, it is shown that no new non-linear screening mechanisms are present beyond the Vainshtein mechanism and chameleon-like screening. If one includes the cosmological expansion of the universe, disformal effects that are usually taken to be absent can be present in the solar system. When the conformal factor is absent, fifth-forces can be screened on all scales when the cosmological field is slowly-rolling. We investigate the cosmology of these models and use local tests of gravity to place new constraints on the disformal coupling and find M ∼> O(eV), which is not competitive with laboratory tests. Finally, we discuss the future prospects for testing these theories and the implications for other theories of modified gravity. In particular, the Vainshtein radius of solar system objects can be altered from the static prediction when cosmological time-derivatives are non-negligible.
Disformal theories of gravity: from the solar system to cosmology
International Nuclear Information System (INIS)
Sakstein, Jeremy
2014-01-01
This paper is concerned with theories of gravity that contain a scalar coupled both conformally and disformally to matter through the metric. By systematically deriving the non-relativistic limit, it is shown that no new non-linear screening mechanisms are present beyond the Vainshtein mechanism and chameleon-like screening. If one includes the cosmological expansion of the universe, disformal effects that are usually taken to be absent can be present in the solar system. When the conformal factor is absent, fifth-forces can be screened on all scales when the cosmological field is slowly-rolling. We investigate the cosmology of these models and use local tests of gravity to place new constraints on the disformal coupling and find M ∼> O(eV), which is not competitive with laboratory tests. Finally, we discuss the future prospects for testing these theories and the implications for other theories of modified gravity. In particular, the Vainshtein radius of solar system objects can be altered from the static prediction when cosmological time-derivatives are non-negligible
Cosmology of f(R) gravity in the metric variational approach
Li, Baojiu; Barrow, John D.
2007-04-01
We consider the cosmologies that arise in a subclass of f(R) gravity with f(R)=R+μ2n+2/(-R)n and n∈(-1,0) in the metric (as opposed to the Palatini) variational approach to deriving the gravitational field equations. The calculations of the isotropic and homogeneous cosmological models are undertaken in the Jordan frame and at both the background and the perturbation levels. For the former, we also discuss the connection to the Einstein frame in which the extra degree of freedom in the theory is associated with a scalar field sharing some of the properties of a “chameleon” field. For the latter, we derive the cosmological perturbation equations in general theories of f(R) gravity in covariant form and implement them numerically to calculate the cosmic microwave background (CMB) temperature and matter power spectra of the cosmological model. The CMB power is shown to reduce at low l’s, and the matter power spectrum is almost scale independent at small scales, thus having a similar shape to that in standard general relativity. These are in stark contrast with what was found in the Palatini f(R) gravity, where the CMB power is largely amplified at low l’s and the matter spectrum is strongly scale dependent at small scales. These features make the present model more adaptable than that arising from the Palatini f(R) field equations, and none of the data on background evolution, CMB power spectrum, or matter power spectrum currently rule it out.
International Nuclear Information System (INIS)
Zhitnikov, V.V.; Ponomarev, V.N.
1986-01-01
An attempt is made to compare the solution of field equations, corresponding to quadratic equations for the fields (g μν , Γ μν α ) in gauge gravitation theory (GGT) with general relativity theory solutions. Without restrictions for a concrete type of metrics only solutions of equations, for which torsion turns to zero, are considered. Equivalence of vacuum equations of gauge quadratic theory of gravity and general relativity theory is proved using the Newman-Penrose formalism
Black holes in Lorentz-violating gravity theories
International Nuclear Information System (INIS)
Barausse, Enrico; Sotiriou, Thomas P
2013-01-01
Lorentz symmetry and the notion of light cones play a central role in the definition of horizons and the existence of black holes. Current observations provide strong indications that astrophysical black holes do exist in Nature. Here we explore what happens to the notion of a black hole in gravity theories where local Lorentz symmetry is violated, and discuss the relevant astrophysical implications. Einstein-aether theory and Hořava gravity are used as the theoretical background for addressing this question. We review earlier results about static, spherically symmetric black holes, which demonstrate that in Lorentz-violating theories there can be a new type of horizon and, hence, a new notion of black hole. We also present both known and new results on slowly rotating black holes in these theories, which provide insights on how generic these new horizons are. Finally, we discuss the differences between black holes in Lorentz-violating theories and in General Relativity, and assess to what extent they can be probed with present and future observations. (paper)
Generic f(R) theories and classicality of their scalarons
Energy Technology Data Exchange (ETDEWEB)
Gannouji, Radouane [Department of Physics, Faculty of Science, Tokyo University of Science, 1-3, Kagurazaka, Shinjuku-ku, Tokyo 162-8601 (Japan); Sami, M., E-mail: samijamia@gmail.com [Kobayashi-Maskawa Institute for the Origin of Particles and the Universe, Nagoya University, Nagoya 464-8602 (Japan); Thongkool, I. [Harish-Chandra Research Institute, Chhatnag Road, Jhusi, Allahabad-211019 (India)
2012-09-19
We study quantum stability bound on the mass of scalaron in generic theories of f(R) gravity. We show that in these scenarios, the scalaron mass increases faster with local density of the environment than one-loop quantum correction to it thereby leading to violation of quantum bound on the chameleon mass. The introduction of quadratic curvature corrections in the action are shown to stabilize the model.
A new class of group field theories for 1st order discrete quantum gravity
Oriti, D.; Tlas, T.
2008-01-01
Group Field Theories, a generalization of matrix models for 2d gravity, represent a 2nd quantization of both loop quantum gravity and simplicial quantum gravity. In this paper, we construct a new class of Group Field Theory models, for any choice of spacetime dimension and signature, whose Feynman
Quantum gravity with matter and group field theory
International Nuclear Information System (INIS)
Krasnov, Kirill
2007-01-01
A generalization of the matrix model idea to quantum gravity in three and higher dimensions is known as group field theory (GFT). In this paper we study generalized GFT models that can be used to describe 3D quantum gravity coupled to point particles. The generalization considered is that of replacing the group leading to pure quantum gravity by the twisted product of the group with its dual-the so-called Drinfeld double of the group. The Drinfeld double is a quantum group in that it is an algebra that is both non-commutative and non-cocommutative, and special care is needed to define group field theory for it. We show how this is done, and study the resulting GFT models. Of special interest is a new topological model that is the 'Ponzano-Regge' model for the Drinfeld double. However, as we show, this model does not describe point particles. Motivated by the GFT considerations, we consider a more general class of models that are defined not using GFT, but the so-called chain mail techniques. A general model of this class does not produce 3-manifold invariants, but has an interpretation in terms of point particle Feynman diagrams
Topics in field theory-higher spins, CFT, and gravity
International Nuclear Information System (INIS)
Yang, Z.
1990-01-01
Several topics in field theory are investigated. (1) Massive higher spin actions are obtained as gauge theories from the dimensional reduction of the corresponding massless ones. (2) The author considers a model of spin4 and spin2 interaction through the Bel-Robinson tensor of spin2 field, which in conserved at free level. The coupling is inconsistent, yet there are indications that adding still higher spin couplings would be a promising direction to achieve consistency. (3) Energy and Stability of Einstein-Gauss-Bonnet models of gravity are studied. It is shown that flat space is stable while AdS is not. (4) Gauged Wess-Zumino-Witten models are studied in detail. The equivalence to GKO construction of conformal field theory is considered. BRST quantization of the models is given. (5) Nonrenormalizability of quantum gravity is, in the binomial first order metric formulation, traced to a mismatch between the symmetries of its quadratic and cubic term. (6) The possibility that the gravitational model defined in D = 3 by an action which is the sum of Einstein and Chern-Simons terms is a viable quantum theory is investigated. It is shown that it is compatible with power-counting renormalizability. Gauge invariant regularizations, however, have not been found to exist. Detailed BRS analysis shows that there are possible anomalies
Warm inflation in f(G) theory of gravity
Energy Technology Data Exchange (ETDEWEB)
Sharif, M., E-mail: msharif.math@pu.edu.pk; Ikram, A., E-mail: ayeshamaths91@gmail.com [University of the Punjab, Quaid-e-Azam Campus, Department of Mathematics (Pakistan)
2016-07-15
The aim of this paper is to explore warm inflation in the background of f(G) theory of gravity using scalar fields for the FRW universe model. We construct the field equations under slow-roll approximations and evaluate the slow-roll parameters, scalar and tensor power spectra and their corresponding spectral indices using viable power-law model. These parameters are evaluated for a constant as well as variable dissipation factor during intermediate and logamediate inflationary epochs. We also find the number of e-folds and tensor- scalar ratio for each case. The graphical behavior of these parameters proves that the isotropic model in f(G) gravity is compatible with observational Planck data.
Dynamical 3-Space Gravity Theory: Effects on Polytropic Solar Models
Directory of Open Access Journals (Sweden)
May R. D.
2011-01-01
Full Text Available Numerous experiments and observations have confirmed the existence of a dynamical 3-space, detectable directly by light-speed anisotropy experiments, and indirectly by means of novel gravitational effects, such as bore hole g anomalies, predictable black hole masses, flat spiral-galaxy rotation curves, and the expansion of the universe, all without dark matter and dark energy. The dynamics for this 3-space follows from a unique generalisation of Newtonian gravity, once that is cast into a velocity formalism. This new theory of gravity is applied to the solar model of the sun to compute new density, pressure and temperature profiles, using polytrope modelling of the equation of state for the matter. These results should be applied to a re-analysis of solar neutrino production, and to stellar evolution in general.
Chameleon halo modeling in f(R) gravity
International Nuclear Information System (INIS)
Li Yin; Hu, Wayne
2011-01-01
We model the chameleon effect on cosmological statistics for the modified gravity f(R) model of cosmic acceleration. The chameleon effect, required to make the model compatible with local tests of gravity, reduces force enhancement as a function of the depth of the gravitational potential wells of collapsed structure and so is readily incorporated into a halo model by including parameters for the chameleon mass threshold and rapidity of transition. We show that the abundance of halos around the chameleon mass threshold is enhanced by both the merging from below and the lack of merging to larger masses. This property also controls the power spectrum in the nonlinear regime and we provide a description of the transition to the linear regime that is valid for a wide range of f(R) models.
Fusion basis for lattice gauge theory and loop quantum gravity
Energy Technology Data Exchange (ETDEWEB)
Delcamp, Clement [Perimeter Institute for Theoretical Physics,31 Caroline Street North, Waterloo, Ontario N2L 2Y5 (Canada); Department of Physics Astronomy and Guelph-Waterloo Physics Institute, University of Waterloo,Waterloo, Ontario N2L 3G1 (Canada); Dittrich, Bianca; Riello, Aldo [Perimeter Institute for Theoretical Physics,31 Caroline Street North, Waterloo, Ontario N2L 2Y5 (Canada)
2017-02-10
We introduce a new basis for the gauge-invariant Hilbert space of lattice gauge theory and loop quantum gravity in (2+1) dimensions, the fusion basis. In doing so, we shift the focus from the original lattice (or spin-network) structure directly to that of the magnetic (curvature) and electric (torsion) excitations themselves. These excitations are classified by the irreducible representations of the Drinfel’d double of the gauge group, and can be readily “fused” together by studying the tensor product of such representations. We will also describe in detail the ribbon operators that create and measure these excitations and make the quasi-local structure of the observable algebra explicit. Since the fusion basis allows for both magnetic and electric excitations from the onset, it turns out to be a precious tool for studying the large scale structure and coarse-graining flow of lattice gauge theories and loop quantum gravity. This is in neat contrast with the widely used spin-network basis, in which it is much more complicated to account for electric excitations, i.e. for Gauß constraint violations, emerging at larger scales. Moreover, since the fusion basis comes equipped with a hierarchical structure, it readily provides the language to design states with sophisticated multi-scale structures. Another way to employ this hierarchical structure is to encode a notion of subsystems for lattice gauge theories and (2+1) gravity coupled to point particles. In a follow-up work, we have exploited this notion to provide a new definition of entanglement entropy for these theories.
Fusion basis for lattice gauge theory and loop quantum gravity
International Nuclear Information System (INIS)
Delcamp, Clement; Dittrich, Bianca; Riello, Aldo
2017-01-01
We introduce a new basis for the gauge-invariant Hilbert space of lattice gauge theory and loop quantum gravity in (2+1) dimensions, the fusion basis. In doing so, we shift the focus from the original lattice (or spin-network) structure directly to that of the magnetic (curvature) and electric (torsion) excitations themselves. These excitations are classified by the irreducible representations of the Drinfel’d double of the gauge group, and can be readily “fused” together by studying the tensor product of such representations. We will also describe in detail the ribbon operators that create and measure these excitations and make the quasi-local structure of the observable algebra explicit. Since the fusion basis allows for both magnetic and electric excitations from the onset, it turns out to be a precious tool for studying the large scale structure and coarse-graining flow of lattice gauge theories and loop quantum gravity. This is in neat contrast with the widely used spin-network basis, in which it is much more complicated to account for electric excitations, i.e. for Gauß constraint violations, emerging at larger scales. Moreover, since the fusion basis comes equipped with a hierarchical structure, it readily provides the language to design states with sophisticated multi-scale structures. Another way to employ this hierarchical structure is to encode a notion of subsystems for lattice gauge theories and (2+1) gravity coupled to point particles. In a follow-up work, we have exploited this notion to provide a new definition of entanglement entropy for these theories.
Group theory approach to unification of gravity with internal symmetry gauge interactions. Part 1
International Nuclear Information System (INIS)
Samokhvalov, S.E.; Vanyashin, V.S.
1990-12-01
The infinite group of deformed diffeomorphisms of space-time continuum is put into the basis of the Gauge Theory of Gravity. This gives rise to some new ways for unification of gravity with other gauge interactions. (author). 7 refs
Millicharged dark matter in quantum gravity and string theory.
Shiu, Gary; Soler, Pablo; Ye, Fang
2013-06-14
We examine the millicharged dark matter scenario from a string theory perspective. In this scenario, kinetic and mass mixings of the photon with extra U(1) bosons are claimed to give rise to small electric charges, carried by dark matter particles, whose values are determined by continuous parameters of the theory. This seems to contradict folk theorems of quantum gravity that forbid the existence of irrational charges in theories with a single massless gauge field. By considering the underlying structure of the U(1) mass matrix that appears in type II string compactifications, we show that millicharges arise exclusively through kinetic mixing, and require the existence of at least two exactly massless gauge bosons.
Unifying Einstein and Palatini gravities
International Nuclear Information System (INIS)
Amendola, Luca; Enqvist, Kari; Koivisto, Tomi
2011-01-01
We consider a novel class of f(R) gravity theories where the connection is related to the conformally scaled metric g μν =C(R)g μν with a scaling that depends on the scalar curvature R only. We call them C theories and show that the Einstein and Palatini gravities can be obtained as special limits. In addition, C theories include completely new physically distinct gravity theories even when f(R)=R. With nonlinear f(R), C theories interpolate and extrapolate the Einstein and Palatini cases and may avoid some of their conceptual and observational problems. We further show that C theories have a scalar-tensor formulation, which in some special cases reduces to simple Brans-Dicke-type gravity. If matter fields couple to the connection, the conservation laws in C theories are modified. The stability of perturbations about flat space is determined by a simple condition on the Lagrangian.
Einstein gravity 3-point functions from conformal field theory
Afkhami-Jeddi, Nima; Hartman, Thomas; Kundu, Sandipan; Tajdini, Amirhossein
2017-12-01
We study stress tensor correlation functions in four-dimensional conformal field theories with large N and a sparse spectrum. Theories in this class are expected to have local holographic duals, so effective field theory in anti-de Sitter suggests that the stress tensor sector should exhibit universal, gravity-like behavior. At the linearized level, the hallmark of locality in the emergent geometry is that stress tensor three-point functions 〈 T T T 〉, normally specified by three constants, should approach a universal structure controlled by a single parameter as the gap to higher spin operators is increased. We demonstrate this phenomenon by a direct CFT calculation. Stress tensor exchange, by itself, violates causality and unitarity unless the three-point functions are carefully tuned, and the unique consistent choice exactly matches the prediction of Einstein gravity. Under some assumptions about the other potential contributions, we conclude that this structure is universal, and in particular, that the anomaly coefficients satisfy a ≈ c as conjectured by Camanho et al. The argument is based on causality of a four-point function, with kinematics designed to probe bulk locality, and invokes the chaos bound of Maldacena, Shenker, and Stanford.
On the cosmology of scalar-tensor-vector gravity theory
Jamali, Sara; Roshan, Mahmood; Amendola, Luca
2018-01-01
We consider the cosmological consequences of a special scalar-tensor-vector theory of gravity, known as MOG (for MOdified Gravity), proposed to address the dark matter problem. This theory introduces two scalar fields G(x) and μ(x), and one vector field phiα(x), in addition to the metric tensor. We set the corresponding self-interaction potentials to zero, as in the standard form of MOG. Then using the phase space analysis in the flat Friedmann-Robertson-Walker background, we show that the theory possesses a viable sequence of cosmological epochs with acceptable time dependency for the cosmic scale factor. We also investigate MOG's potential as a dark energy model and show that extra fields in MOG cannot provide a late time accelerated expansion. Furthermore, using a dynamical system approach to solve the non-linear field equations numerically, we calculate the angular size of the sound horizon, i.e. θs, in MOG. We find that 8× 10‑3rad<θs<8.2× 10‑3 rad which is way outside the current observational bounds. Finally, we generalize MOG to a modified form called mMOG, and we find that mMOG passes the sound-horizon constraint. However, mMOG also cannot be considered as a dark energy model unless one adds a cosmological constant, and more importantly, the matter dominated era is still slightly different from the standard case.
Cosmology and a general scalar-tensor theory of gravity
International Nuclear Information System (INIS)
Bishop, N.T.
1976-01-01
The cosmological models resulting from a general scalar-tensor theory of gravity are discussed. Those models for which the scalar field varies as a power of the cosmological expansion factor (i.e. phi varies as Rsup(n)) are considered in detail, leading to a set of such models compatible with observation. This set includes models in which the scalar coupling parameter ω is negative. The models described here are similar to those of Newtonian cosmology obtained from an impotence principle. (author)
Remarks on doubly special relativity theories and gravity
International Nuclear Information System (INIS)
Hinterleitner, F
2008-01-01
Modifications of special relativity by the introduction of an invariant energy and/or momentum level (so-called doubly special relativity theories, DSR) or by an energy-momentum dependence of the Planck constant (generalized uncertainty principle, GUP) are compared with classical gravitational effects in an interaction process. For the low-energy limit of the usual formulations of DSR to be equivalent to Newtonian gravity, a restrictive condition is found. GUP yields an effective repulsion, in analogy to gravitational repulsion in loop quantum cosmology
Effective Einsteinian gravity from Poincare gauge field theory
International Nuclear Information System (INIS)
Baekler, P.; Mielke, E.W.
1985-10-01
The Poincare gauge theory of gravity should apply in the microphysical domain. Here we investigate its implications for macrophysics. Weakly self double dual Riemann-Cartan curvature is assumed throughout. It is shown that the metrical background is then determined by Einstein's field equations with the Belinfante-Rosenfeld symmetrized energy-momentum current amended by spin squared terms. Moreover, the effective cosmological constant can be reconciled with the empirical data by absorbing the corresponding constant curvature part into the dynamical torsion of recently found exact solutions. Macroscopically this extra torsion remains undetectable. (author)
Further stable neutron star models from f(R) gravity
Energy Technology Data Exchange (ETDEWEB)
Astashenok, Artyom V. [I. Kant Baltic Federal University, Institute of Physics and Technology, Nevskogo st. 14, Kaliningrad, 236041 (Russian Federation); Capozziello, Salvatore [Dipartimento di Fisica, Università di Napoli ' ' Federico II' ' , Via Cinthia, 9, Napoli, I–80126 (Italy); Odintsov, Sergei D., E-mail: artyom.art@gmail.com, E-mail: capozziello@na.infn.it, E-mail: odintsov@ieec.uab.es [Instituciò Catalana de Recerca i Estudis Avançats (ICREA), Barcelona (Spain)
2013-12-01
Neutron star models in perturbative f(R) gravity are considered with realistic equations of state. In particular, we consider the FPS, SLy and other equations of state and a case of piecewise equation of state for stars with quark cores. The mass-radius relations for f(R) = R+R(e{sup −R/R{sub 0}}−1) model and for R{sup 2} models with logarithmic and cubic corrections are obtained. In the case of R{sup 2} gravity with cubic corrections, we obtain that at high central densities (ρ > 10ρ{sub ns}, where ρ{sub ns} = 2.7 × 10{sup 14} g/cm{sup 3} is the nuclear saturation density), stable star configurations exist. The minimal radius of such stars is close to 9 km with maximal mass ∼ 1.9M{sub ⊙} (SLy equation). A similar situation takes place for AP4 and BSK20 EoS. Such an effect can give rise to more compact stars than in General Relativity. If observationally identified, such objects could constitute a formidable signature for modified gravity at astrophysical level. Another interesting result can be achieved in modified gravity with only a cubic correction. For some EoS, the upper limit of neutron star mass increases and therefore these EoS can describe realistic star configurations (although, in General Relativity, these EoS are excluded by observational constraints)
Further stable neutron star models from f(R) gravity
International Nuclear Information System (INIS)
Astashenok, Artyom V.; Capozziello, Salvatore; Odintsov, Sergei D.
2013-01-01
Neutron star models in perturbative f(R) gravity are considered with realistic equations of state. In particular, we consider the FPS, SLy and other equations of state and a case of piecewise equation of state for stars with quark cores. The mass-radius relations for f(R) = R+R(e −R/R 0 −1) model and for R 2 models with logarithmic and cubic corrections are obtained. In the case of R 2 gravity with cubic corrections, we obtain that at high central densities (ρ > 10ρ ns , where ρ ns = 2.7 × 10 14 g/cm 3 is the nuclear saturation density), stable star configurations exist. The minimal radius of such stars is close to 9 km with maximal mass ∼ 1.9M ⊙ (SLy equation). A similar situation takes place for AP4 and BSK20 EoS. Such an effect can give rise to more compact stars than in General Relativity. If observationally identified, such objects could constitute a formidable signature for modified gravity at astrophysical level. Another interesting result can be achieved in modified gravity with only a cubic correction. For some EoS, the upper limit of neutron star mass increases and therefore these EoS can describe realistic star configurations (although, in General Relativity, these EoS are excluded by observational constraints)
Constraints on perturbative f(R) gravity via neutron stars
Energy Technology Data Exchange (ETDEWEB)
Arapoğlu, Savaş; Ekşi, K. Yavuz [İstanbul Technical University, Faculty of Science and Letters, Physics Engineering Department, Maslak 34469, İstanbul (Turkey); Deliduman, Cemsinan, E-mail: arapoglu@itu.edu.tr, E-mail: cemsinan@msgsu.edu.tr, E-mail: eksi@itu.edu.tr [Mimar Sinan Fine Arts University, Department of Physics, Beşiktaş 34349, İstanbul (Turkey)
2011-07-01
We study the structure of neutron stars in perturbative f(R) gravity models with realistic equations of state. We obtain mass-radius relations in a gravity model of the form f(R) = R+αR{sup 2}. We find that deviations from the results of general relativity, comparable to the variations due to using different equations of state (EoS'), are induced for |α| ∼ 10{sup 9} cm{sup 2}. Some of the soft EoS' that are excluded within the framework of general relativity can be reconciled with the 2 solar mass neutron star recently observed for certain values of α within this range. For some of the EoS' we find that a new solution branch, which allows highly massive neutron stars, exists for values of α greater than a few 10{sup 9} cm{sup 2}. We find constraints on α for a variety of EoS' using the recent observational constraints on the mass-radius relation. These are all 5 orders of magnitude smaller than the recent constraint obtained via Gravity Probe B for this gravity model. The associated length scale √(alpha)approx 10{sup 5} cm is only an order of magnitude smaller than the typical radius of a neutron star, the probe used in this test. This implies that real deviations from general relativity can be even smaller.
Dynamical analysis of cylindrically symmetric anisotropic sources in f(R, T) gravity
Energy Technology Data Exchange (ETDEWEB)
Zubair, M.; Azmat, Hina [COMSATS Institute of Information Technology, Department of Mathematics, Lahore (Pakistan); Noureen, Ifra [University of Management and Technology, Department of Mathematics, Lahore (Pakistan)
2017-03-15
In this paper, we have analyzed the stability of cylindrically symmetric collapsing object filled with locally anisotropic fluid in f(R, T) theory, where R is the scalar curvature and T is the trace of stress-energy tensor of matter. Modified field equations and dynamical equations are constructed in f(R, T) gravity. The evolution or collapse equation is derived from dynamical equations by performing a linear perturbation on them. The instability range is explored in both the Newtonian and the post-Newtonian regimes with the help of an adiabatic index, which defines the impact of the physical parameters on the instability range. Some conditions are imposed on the physical quantities to secure the stability of the gravitating sources. (orig.)
Anisotropic deformations of spatially open cosmology in massive gravity theory
Energy Technology Data Exchange (ETDEWEB)
Mazuet, Charles; Volkov, Mikhail S. [Laboratoire de Mathématiques et Physique Théorique CNRS-UMR 7350, Université de Tours, Parc de Grandmont, 37200 Tours (France); Mukohyama, Shinji, E-mail: charles.mazuet@lmpt.univ-tours.fr, E-mail: shinji.mukohyama@yukawa.kyoto-u.ac.jp, E-mail: volkov@lmpt.univ-tours.fr [Center for Gravitational Physics, Yukawa Institute for Theoretical Physics, Kyoto University, 606-8502, Kyoto (Japan)
2017-04-01
We combine analytical and numerical methods to study anisotropic deformations of the spatially open homogeneous and isotropic cosmology in the ghost free massive gravity theory with flat reference metric. We find that if the initial perturbations are not too strong then the physical metric relaxes back to the isotropic de Sitter state. However, the dumping of the anisotropies is achieved at the expense of exciting the Stueckelberg fields in such a way that the reference metric changes and does not share anymore with the physical metric the same rotational and translational symmetries. As a result, the universe evolves towards a fixed point which does not coincide with the original solution, but for which the physical metric is still de Sitter. If the initial perturbation is strong, then its evolution generically leads to a singular anisotropic state or, for some parameter values, to a decay into flat spacetime. We also present an infinite dimensional family of new homogeneous and isotropic cosmologies in the theory.
Cosmology from group field theory formalism for quantum gravity.
Gielen, Steffen; Oriti, Daniele; Sindoni, Lorenzo
2013-07-19
We identify a class of condensate states in the group field theory (GFT) formulation of quantum gravity that can be interpreted as macroscopic homogeneous spatial geometries. We then extract the dynamics of such condensate states directly from the fundamental quantum GFT dynamics, following the procedure used in ordinary quantum fluids. The effective dynamics is a nonlinear and nonlocal extension of quantum cosmology. We also show that any GFT model with a kinetic term of Laplacian type gives rise, in a semiclassical (WKB) approximation and in the isotropic case, to a modified Friedmann equation. This is the first concrete, general procedure for extracting an effective cosmological dynamics directly from a fundamental theory of quantum geometry.
Gauge theory of gravity and supergravity on a group manifold
International Nuclear Information System (INIS)
Ne'eman, Y.; Regge, T.
1977-12-01
The natural arena for the physics of gravity, supergravity and their enlargements appears to be the group manifold of the Poincare group P, the graded Poincare group GP of supersymmetry, and the corresponding enlargements. The dynamics of these theories correspond to geometrical algorithms in P and GP. Differential geometry on Lie groups is reviewed and results applied to P and GP. Curvature, gauge transformations and factorization are introduced. Also reviewed is the general coordinate transformation group and a hybrid gauge transformation, the anholonomized G.C.T. gauge. A study is made of the construction of an action, including the introduction of a set of special 2 forms, the ''pseudo curvatures.'' The possibilities of factorization in supersymmetry are analyzed. The version of supergravity is present which has now become a completely geometrical theory
Gravity, quantum theory and the evaporation of black holes. [Review
Energy Technology Data Exchange (ETDEWEB)
Wilkins, D C [Tata Inst. of Fundamental Research, Bombay (India)
1977-06-01
Recent developments in blackhole physics are reviewed. It is pointed out that black hole thermodynamics is a theory of exceptional unity and elegance. Starting from the discovery of thermal emission from black holes (evaporation process) by Hawking, the four thermodynamic laws they obey, the nonzero temperature and entropy, angular momentum and charge of the black holes are dealt with. The influence of this thermodynamics on quantum theory and gravitation is discussed in relation to particle creation and quantum gravity. The formation and basic properties of black holes are described in terms of significant milestones. The decade-long development of black hole thermodynamics from 1963-73 is highlighted. The fundamental issues arising in particle physics as a result of these discoveries are discussed.
Cosmological evolution in vector-tensor theories of gravity
International Nuclear Information System (INIS)
Beltran Jimenez, Jose; Maroto, Antonio L.
2009-01-01
We present a detailed study of the cosmological evolution in general vector-tensor theories of gravity without potential terms. We consider the evolution of the vector field throughout the expansion history of the Universe and carry out a classification of models according to the behavior of the vector field in each cosmological epoch. We also analyze the case in which the Universe is dominated by the vector field, performing a complete analysis of the system phase map and identifying those attracting solutions which give rise to accelerated expansion. Moreover, we consider the evolution in a universe filled with a pressureless fluid in addition to the vector field and study the existence of attractors in which we can have a transition from matter domination to vector domination with accelerated expansion so that the vector field may play the role of dark energy. We find that the existence of solutions with late-time accelerated expansion is a generic prediction of vector-tensor theories and that such solutions typically lead to the presence of future singularities. Finally, limits from local gravity tests are used to get constraints on the value of the vector field at small (Solar System) scales.
Towards strong field tests of beyond Horndeski gravity theories
Sakstein, Jeremy; Babichev, Eugeny; Koyama, Kazuya; Langlois, David; Saito, Ryo
2017-03-01
Theories of gravity in the beyond Horndeski class encompass a wide range of scalar-tensor theories that will be tested on cosmological scales over the coming decade. In this work, we investigate the possibility of testing them in the strong field regime by looking at the properties of compact objects—neutron, hyperon, and quark stars—embedded in an asymptotically de Sitter space-time, for a specific subclass of theories. We extend previous works to include slow rotation and find a relation between the dimensionless moment of inertia (I ¯ =I c2/GNM3 ) and the compactness C =GNM /R c2 (an I ¯-C relation), independent of the equation of state, that is reminiscent of but distinct from the general relativity prediction. Several of our equations of state contain hyperons and free quarks, allowing us to revisit the hyperon puzzle. We find that the maximum mass of hyperon stars can be larger than 2 M⊙ for small values of the beyond Horndeski parameter, thus providing a resolution of the hyperon puzzle based on modified gravity. Moreover, stable quark stars exist when hyperonic stars are unstable, which means that the phase transition from hyperon to quark stars is predicted just as in general relativity (GR), albeit with larger quark star masses. Two important and potentially observable consequences of some of the theories we consider are the existence of neutron stars in a range of masses significantly higher than in GR and I ¯-C relations that differ from their GR counterparts. In the former case, we find objects that, if observed, could not be accounted for in GR because they violate the usual GR causality condition. We end by discussing several difficult technical issues that remain to be addressed in order to reach more realistic predictions that may be tested using gravitational wave searches or neutron star observations.
Scalar-tensor Theories of Gravity: Some personal history
Brans, Carl H.
2008-12-01
From a perspective of some 50 years or more, this paper reviews my recall of the early days of scalar-tensor alternatives to standard Einstein general relativistic theory of gravity. Of course, the story begins long before my involvement, going back to the proposals of Nordström in 1914, and that of Kaluza, Klein, et al., a few years later, sol include reviews of these seminal ideas and those that followed in the 1920's through the 1940's. This early work concerned the search for a Unified Field Theory, unifying gravity and Electromagnetism, using five dimensional manifolds. This formalism included not only the electromagnetic spacetime vector potential within the five-metric, but also a spacetime scalar as the five-five metric component. Although this was at first regarded more as a nuisance, to be set to a constant, it turned out later that Fierz, Jordan, Einstein and Bergmann noticed that this scalar could be a field, possibly related to the Newtonian gravitational constant. Relatively little theoretical and experimental attention was given to these ideas until after the second world war when Bob Dicke, motivated by the ideas of Mach, Dirac, and others, suggested that this additional scalar, coupled only to the metric and matter, could provide a reasonable and viable alternative to standard Einstein theory. This is the point of my direct involvement with these topics. However, it was Dicke's prominence and expertise in experimental work, together with the blossoming of NASA's experimental tools, that caused the explosion of interest, experimental and theoretical, in this possible alternative to standard Einstein theory. This interest has waxed and waned over the last 50 years, and we summarize some of this work.
3-Space In-Flow Theory of Gravity: Boreholes, Blackholes and the Fine Structure Constant
Directory of Open Access Journals (Sweden)
Cahill R. T.
2006-04-01
Full Text Available A theory of 3-space explains the phenomenon of gravity as arising from the time-dependence and inhomogeneity of the differential flow of this 3-space. The emergent theory of gravity has two gravitational constants: G - Newton's constant, and a dimensionless constant alpha. Various experiments and astronomical observations have shown that alpha is the fine structure constant ~1/137. Here we analyse the Greenland Ice Shelf and Nevada Test Site borehole g anomalies, and confirm with increased precision this value of alpha. This and other successful tests of this theory of gravity, including the supermassive black holes in globular clusters and galaxies, and the "dark-matter" effect in spiral galaxies, shows the validity of this theory of gravity. This success implies that the non-relativistic Newtonian gravity was fundamentally flawed from the beginning, and that this flaw was inherited by the relativistic General Relativity theory of gravity.
3-Space In-Flow Theory of Gravity: Boreholes, Blackholes and the Fine Structure Constant
Directory of Open Access Journals (Sweden)
Cahill R. T.
2006-04-01
Full Text Available A theory of 3-space explains the phenomenon of gravity as arising from the time-dependence and inhomogeneity of the differential flow of this 3-space. The emergent theory of gravity has two gravitational constants: GN — Newton’s constant, and a dimensionless constant α. Various experiments and astronomical observations have shown that α is the fine structure constant ≈ 1/137. Here we analyse the Greenland Ice Shelf and Nevada Test Site borehole g anomalies, and confirm with increased precision this value of α. This and other successful tests of this theory of gravity, including the supermassive black holes in globular clusters and galaxies, and the “dark-matter” effect in spiral galaxies, shows the validity of this theory of gravity. This success implies that the non-relativistic Newtonian gravity was fundamentally flawed from the beginning, and that this flaw was inherited by the relativistic General Relativity theory of gravity.
Galaxy clustering in 3D and modified gravity theories
Munshi, D.; Pratten, G.; Valageas, P.; Coles, P.; Brax, P.
2016-02-01
We study Modified Gravity (MG) theories by modelling the redshifted matter power spectrum in a spherical Fourier-Bessel basis. We use a fully non-linear description of the real-space matter power spectrum and include the lowest order redshift-space correction (Kaiser effect), taking into account some additional non-linear contributions. Ignoring relativistic corrections, which are not expected to play an important role for a shallow survey, we analyse two different MG scenarios, namely the generalized Dilaton scalar-tensor theories and the f (R) models in the large curvature regime. We compute the 3D power spectrum C^s_{ℓ}(k_1,k_2) for various such MG theories with and without redshift-space distortions, assuming precise knowledge of background cosmological parameters. Using an all-sky spectroscopic survey with Gaussian selection function \\varphi (r)∝ exp (-{r^2/r^2_0}), r_0=150h^{-1} Mpc, and number density of galaxies bar{N} =10^{-4}Mpc^{-3}, we use a χ2 analysis, and find that the lower order (ℓ ≤ 25) multipoles of C^s_ℓ (k,k^' }) (with radial modes restricted to k 25 modes can further reduce the error bars and thus in principle make cosmological gravity constraints competitive with Solar system tests. However this will require an accurate modelling of non-linear redshift-space distortions. Using a tomographic β(a)-m(a) parametrization we also derive constraints on specific parameters describing the Dilaton models of MG.
Early universe with modified scalar-tensor theory of gravity
Mandal, Ranajit; Sarkar, Chandramouli; Sanyal, Abhik Kumar
2018-05-01
Scalar-tensor theory of gravity with non-minimal coupling is a fairly good candidate for dark energy, required to explain late-time cosmic evolution. Here we study the very early stage of evolution of the universe with a modified version of the theory, which includes scalar curvature squared term. One of the key aspects of the present study is that, the quantum dynamics of the action under consideration ends up generically with de-Sitter expansion under semiclassical approximation, rather than power-law. This justifies the analysis of inflationary regime with de-Sitter expansion. The other key aspect is that, while studying gravitational perturbation, the perturbed generalized scalar field equation obtained from the perturbed action, when matched with the perturbed form of the background scalar field equation, relates the coupling parameter and the potential exactly in the same manner as the solution of classical field equations does, assuming de-Sitter expansion. The study also reveals that the quantum theory is well behaved, inflationary parameters fall well within the observational limit and quantum perturbation analysis shows that the power-spectrum does not deviate considerably from the standard one obtained from minimally coupled theory.
Spherical perturbations of hairy black holes in designer gravity theories
International Nuclear Information System (INIS)
Battarra, Lorenzo
2012-01-01
We study the spectrum of the scalar l = 0 quasi-normal frequencies of anti-de Sitter hairy black holes in four- and five-dimensional designer gravity theories of the Einstein-scalar type, arising as consistent truncations of N= 8 gauged supergravity. In the dual field theory, such hairy black holes represent thermal states in which the operator corresponding to the bulk scalar field is condensed, due to the multi-trace deformation associated with non-standard boundary conditions. We show that, in a particular class of models, the effective potential describing the vacua of the deformed dual theory can be identified, at large values of the condensate, with the deformation plus the conformal coupling of the condensate to the curvature of the boundary geometry. In this limit, we show that the least damped quasi-normal frequency of the corresponding hairy black holes can be accurately predicted by the curvature of the effective potential describing the field theory at finite entropy. (paper)
On Born's deformed reciprocal complex gravitational theory and noncommutative gravity
International Nuclear Information System (INIS)
Castro, Carlos
2008-01-01
Born's reciprocal relativity in flat spacetimes is based on the principle of a maximal speed limit (speed of light) and a maximal proper force (which is also compatible with a maximal and minimal length duality) and where coordinates and momenta are unified on a single footing. We extend Born's theory to the case of curved spacetimes and construct a deformed Born reciprocal general relativity theory in curved spacetimes (without the need to introduce star products) as a local gauge theory of the deformed Quaplectic group that is given by the semi-direct product of U(1,3) with the deformed (noncommutative) Weyl-Heisenberg group corresponding to noncommutative generators [Z a ,Z b ]≠0. The Hermitian metric is complex-valued with symmetric and nonsymmetric components and there are two different complex-valued Hermitian Ricci tensors R μν ,S μν . The deformed Born's reciprocal gravitational action linear in the Ricci scalars R,S with Torsion-squared terms and BF terms is presented. The plausible interpretation of Z μ =E μ a Z a as noncommuting p-brane background complex spacetime coordinates is discussed in the conclusion, where E μ a is the complex vielbein associated with the Hermitian metric G μν =g (μν) +ig [μν] =E μ a E-bar ν b η ab . This could be one of the underlying reasons why string-theory involves gravity
Holographic renormalization group and cosmology in theories with quasilocalized gravity
International Nuclear Information System (INIS)
Csaki, Csaba; Erlich, Joshua; Hollowood, Timothy J.; Terning, John
2001-01-01
We study the long distance behavior of brane theories with quasilocalized gravity. The five-dimensional (5D) effective theory at large scales follows from a holographic renormalization group flow. As intuitively expected, the graviton is effectively four dimensional at intermediate scales and becomes five dimensional at large scales. However, in the holographic effective theory the essentially 4D radion dominates at long distances and gives rise to scalar antigravity. The holographic description shows that at large distances the Gregory-Rubakov-Sibiryakov (GRS) model is equivalent to the model recently proposed by Dvali, Gabadadze, and Porrati (DGP), where a tensionless brane is embedded into 5D Minkowski space, with an additional induced 4D Einstein-Hilbert term on the brane. In the holographic description the radion of the GRS model is automatically localized on the tensionless brane, and provides the ghostlike field necessary to cancel the extra graviton polarization of the DGP model. Thus, there is a holographic duality between these theories. This analysis provides physical insight into how the GRS model works at intermediate scales; in particular it sheds light on the size of the width of the graviton resonance, and also demonstrates how the holographic renormalization group can be used as a practical tool for calculations
Theory and experiments in general relativity and other metric theories of gravity
International Nuclear Information System (INIS)
Ciufolini, I.
1984-01-01
In Chapter I, after an introduction to theories of gravity alternative to general relativity, metric theories, and the post-Newtonian parameterized (PNN) formalism, a new class of metric theories of gravity is defined. As a result the post-Newtonian approximation of the new theories is not described by the PPN formalism. In fact under the weak field and slow motion hypothesis, the post-Newtonian expression of the metric tensor contains an infinite set of new terms and correspondingly an infinite set of new PPN parameters. Chapter II, III, and IV are devoted to new experiments to test general relativity and other metric theories of gravity. In particular, in chapter IV, it is shown that two general relativistics effects, the Lense-Thirring and De Sitter-Fokker precessions of the nodal lines of an Earth artificial satellite are today detectable using high altitude laser ranged artificial satellites such as Lageos. The orbit of this satellite is known with unprecedented accuracy. The author then describes a method of measuring these relativistic precessions using Lageos together with another high altitude laser ranged similar satellite with appropriately chosen orbital parameters
Topics in Nonsupersymmetric Scattering Amplitudes in Gauge and Gravity Theories
Nohle, Joshua David
In Chapters 1 and 2, we introduce and review the duality between color and kinematics in Yang-Mills theory uncovered by Bern, Carrasco and Johansson (BCJ). In Chapter 3, we provide evidence in favor of the conjectured duality between color and kinematics for the case of nonsupersymmetric pure Yang-Mills amplitudes by constructing a form of the one-loop four-point amplitude of this theory that makes the duality manifest. Our construction is valid in any dimension. We also describe a duality-satisfying representation for the two-loop four-point amplitude with identical four-dimensional external helicities. We use these results to obtain corresponding gravity integrands for a theory containing a graviton, dilaton, and antisymmetric tensor, simply by replacing color factors with specified diagram numerators. Using this, we give explicit forms of ultraviolet divergences at one loop in four, six, and eight dimensions, and at two loops in four dimensions. In Chapter 4, we extend the four-point one-loop nonsupersymmetric pure Yang-Mills discussion of Chapter 3 to include fermions and scalars circulating in the loop with all external gluons. This gives another nontrivial loop-level example showing that the duality between color and kinematics holds in nonsupersymmetric gauge theory. The construction is valid in any spacetime dimension and written in terms of formal polarization vectors. We also convert these expressions into a four-dimensional form with explicit external helicity states. Using this, we compare our results to one-loop duality-satisfying amplitudes that are already present in literature. In Chapter 5, we switch from the topic of color-kinematics duality to discuss the recently renewed interest in the soft behavior of gravitons and gluons. Specifically, we discuss the subleading low-energy behavior. Cachazo and Strominger recently proposed an extension of the soft-graviton theorem found by Weinberg. In addition, they proved the validity of their extension at
Spin foam models of Yang-Mills theory coupled to gravity
International Nuclear Information System (INIS)
Mikovic, A
2003-01-01
We construct a spin foam model of Yang-Mills theory coupled to gravity by using a discretized path integral of the BF theory with polynomial interactions and the Barrett-Crane ansatz. In the Euclidean gravity case, we obtain a vertex amplitude which is determined by a vertex operator acting on a simple spin network function. The Euclidean gravity results can be straightforwardly extended to the Lorentzian case, so that we propose a Lorentzian spin foam model of Yang-Mills theory coupled to gravity
Unified cosmology with scalar-tensor theory of gravity
Energy Technology Data Exchange (ETDEWEB)
Tajahmad, Behzad [Faculty of Physics, University of Tabriz, Tabriz (Iran, Islamic Republic of); Sanyal, Abhik Kumar [Jangipur College, Department of Physics, Murshidabad (India)
2017-04-15
Unlike the Noether symmetry, a metric independent general conserved current exists for non-minimally coupled scalar-tensor theory of gravity if the trace of the energy-momentum tensor vanishes. Thus, in the context of cosmology, a symmetry exists both in the early vacuum and radiation dominated era. For slow roll, symmetry is sacrificed, but at the end of early inflation, such a symmetry leads to a Friedmann-like radiation era. Late-time cosmic acceleration in the matter dominated era is realized in the absence of symmetry, in view of the same decayed and redshifted scalar field. Thus, unification of early inflation with late-time cosmic acceleration with a single scalar field may be realized. (orig.)
Unified cosmology with scalar-tensor theory of gravity
International Nuclear Information System (INIS)
Tajahmad, Behzad; Sanyal, Abhik Kumar
2017-01-01
Unlike the Noether symmetry, a metric independent general conserved current exists for non-minimally coupled scalar-tensor theory of gravity if the trace of the energy-momentum tensor vanishes. Thus, in the context of cosmology, a symmetry exists both in the early vacuum and radiation dominated era. For slow roll, symmetry is sacrificed, but at the end of early inflation, such a symmetry leads to a Friedmann-like radiation era. Late-time cosmic acceleration in the matter dominated era is realized in the absence of symmetry, in view of the same decayed and redshifted scalar field. Thus, unification of early inflation with late-time cosmic acceleration with a single scalar field may be realized. (orig.)
Thick brane in f(R) gravity with Palatini dynamics
Energy Technology Data Exchange (ETDEWEB)
Bazeia, D.; Losano, L. [Universidade Federal da Paraiba, Departamento de Fisica, Joao Pessoa, PB (Brazil); Menezes, R. [Universidade Federal da Paraiba, Departamento de Ciencias Exatas, Rio Tinto, PB (Brazil); Universidade Federal de Campina Grande, Departamento de Fisica, Campina Grande, PB (Brazil); Olmo, Gonzalo J. [Universidade Federal da Paraiba, Departamento de Fisica, Joao Pessoa, PB (Brazil); Universidad de Valencia, Departamento de Fisica Teorica, IFIC, Centro Mixto Universidad de Valencia-CSIC, Burjassot, Valencia (Spain); Rubiera-Garcia, D. [Universidade Federal da Paraiba, Departamento de Fisica, Joao Pessoa, PB (Brazil); Universidade de Lisboa, Faculdade de Ciencias, Instituto de Astrofisica e Ciencias do Espaco, Lisbon (Portugal); Fudan University, Department of Physics, Center for Field Theory and Particle Physics, Shanghai (China)
2015-12-15
This work deals with modified gravity in five-dimensional space-time. We study a thick Palatini f(R) brane, that is, a braneworld scenario described by an anti-de Sitter warped geometry with a single extra dimension of infinite extent, sourced by a real scalar field under the Palatini approach, where the metric and the connection are regarded as independent degrees of freedom. We consider a first-order framework which we use to provide exact solutions for the scalar field and warp factor. We also investigate a perturbative scenario such that the Palatini approach is implemented through a Lagrangian f(R) = R + εR{sup n}, where the small parameter ε controls the deviation from the standard thick brane case. In both cases it is found that the warp factor tends to localize the extra dimension due to the nonlinear corrections. (orig.)
Adiabaticity and gravity theory independent conservation laws for cosmological perturbations
Romano, Antonio Enea; Mooij, Sander; Sasaki, Misao
2016-04-01
We carefully study the implications of adiabaticity for the behavior of cosmological perturbations. There are essentially three similar but different definitions of non-adiabaticity: one is appropriate for a thermodynamic fluid δPnad, another is for a general matter field δPc,nad, and the last one is valid only on superhorizon scales. The first two definitions coincide if cs2 = cw2 where cs is the propagation speed of the perturbation, while cw2 = P ˙ / ρ ˙ . Assuming the adiabaticity in the general sense, δPc,nad = 0, we derive a relation between the lapse function in the comoving slicing Ac and δPnad valid for arbitrary matter field in any theory of gravity, by using only momentum conservation. The relation implies that as long as cs ≠cw, the uniform density, comoving and the proper-time slicings coincide approximately for any gravity theory and for any matter field if δPnad = 0 approximately. In the case of general relativity this gives the equivalence between the comoving curvature perturbation Rc and the uniform density curvature perturbation ζ on superhorizon scales, and their conservation. This is realized on superhorizon scales in standard slow-roll inflation. We then consider an example in which cw =cs, where δPnad = δPc,nad = 0 exactly, but the equivalence between Rc and ζ no longer holds. Namely we consider the so-called ultra slow-roll inflation. In this case both Rc and ζ are not conserved. In particular, as for ζ, we find that it is crucial to take into account the next-to-leading order term in ζ's spatial gradient expansion to show its non-conservation, even on superhorizon scales. This is an example of the fact that adiabaticity (in the thermodynamic sense) is not always enough to ensure the conservation of Rc or ζ.
Evolution of universes in quadratic theories of gravity
International Nuclear Information System (INIS)
Barrow, John D.; Hervik, Sigbjoern
2006-01-01
We use a dynamical systems approach to investigate Bianchi type I and II universes in quadratic theories of gravity. Because of the complicated nature of the equations of motion we focus on the stability of exact solutions and find that there exists an isotropic Friedmann-Robertson-Walker (FRW) universe acting as a past attractor. This may indicate that there is an isotropization mechanism at early times for these kind of theories. We also discuss the Kasner universes, elucidate the associated center manifold structure, and show that there exists a set of nonzero measure which has the Kasner solutions as a past attractor. Regarding the late-time behavior, the stability shows a dependence of the parameters of the theory. We give the conditions under which the de Sitter solution is stable and also show that for certain values of the parameters there is a possible late-time behavior with phantomlike behavior. New types of anisotropic inflationary behavior are found which do not have counterparts in general relativity
International Nuclear Information System (INIS)
Thierry-Mieg, J.
1985-01-01
This paper discusses the reinterpretation of the BRS equations of Quantum Field Theory as the Maurer Cartan equation of a classical principal fiber bundle leads to a simple gauge invariant classification of the anomalies in Yang Mills theory and gravity
International Nuclear Information System (INIS)
Thierry-Mieg, J.
1985-01-01
The reinterpretation of the BRS equations of Quantum Field Theory as the Maurer Cartan equation of a classical principal fiber bundle leads to a simple gauge invariant classification of the anomalies in Yang Mills theory and gravity
Computing black hole entropy in loop quantum gravity from a conformal field theory perspective
International Nuclear Information System (INIS)
Agulló, Iván; Borja, Enrique F.; Díaz-Polo, Jacobo
2009-01-01
Motivated by the analogy proposed by Witten between Chern-Simons and conformal field theories, we explore an alternative way of computing the entropy of a black hole starting from the isolated horizon framework in loop quantum gravity. The consistency of the result opens a window for the interplay between conformal field theory and the description of black holes in loop quantum gravity
Nonlinear evolution of the matter power spectrum in modified theories of gravity
International Nuclear Information System (INIS)
Koyama, Kazuya; Taruya, Atsushi; Hiramatsu, Takashi
2009-01-01
We present a formalism to calculate the nonlinear matter power spectrum in modified gravity models that explain the late-time acceleration of the Universe without dark energy. Any successful modified gravity models should contain a mechanism to recover general relativity (GR) on small scales in order to avoid the stringent constrains on deviations from GR at solar system scales. Based on our formalism, the quasi-nonlinear power spectrum in the Dvali-Gabadadze-Porratti braneworld models and f(R) gravity models are derived by taking into account the mechanism to recover GR properly. We also extrapolate our predictions to fully nonlinear scales using the parametrized post-Friedmann framework. In the Dvali-Gabadadze-Porratti and f(R) gravity models, the predicted nonlinear power spectrum is shown to reproduce N-body results. We find that the mechanism to recover GR suppresses the difference between the modified gravity models and dark energy models with the same expansion history, but the difference remains large at the weakly nonlinear regime in these models. Our formalism is applicable to a wide variety of modified gravity models and it is ready to use once consistent models for modified gravity are developed.
Renormalization group scale-setting from the action—a road to modified gravity theories
International Nuclear Information System (INIS)
Domazet, Silvije; Štefančić, Hrvoje
2012-01-01
The renormalization group (RG) corrected gravitational action in Einstein–Hilbert and other truncations is considered. The running scale of the RG is treated as a scalar field at the level of the action and determined in a scale-setting procedure recently introduced by Koch and Ramirez for the Einstein–Hilbert truncation. The scale-setting procedure is elaborated for other truncations of the gravitational action and applied to several phenomenologically interesting cases. It is shown how the logarithmic dependence of the Newton's coupling on the RG scale leads to exponentially suppressed effective cosmological constant and how the scale-setting in particular RG-corrected gravitational theories yields the effective f(R) modified gravity theories with negative powers of the Ricci scalar R. The scale-setting at the level of the action at the non-Gaussian fixed point in Einstein–Hilbert and more general truncations is shown to lead to universal effective action quadratic in the Ricci tensor. (paper)
Renormalization group scale-setting from the action—a road to modified gravity theories
Domazet, Silvije; Štefančić, Hrvoje
2012-12-01
The renormalization group (RG) corrected gravitational action in Einstein-Hilbert and other truncations is considered. The running scale of the RG is treated as a scalar field at the level of the action and determined in a scale-setting procedure recently introduced by Koch and Ramirez for the Einstein-Hilbert truncation. The scale-setting procedure is elaborated for other truncations of the gravitational action and applied to several phenomenologically interesting cases. It is shown how the logarithmic dependence of the Newton's coupling on the RG scale leads to exponentially suppressed effective cosmological constant and how the scale-setting in particular RG-corrected gravitational theories yields the effective f(R) modified gravity theories with negative powers of the Ricci scalar R. The scale-setting at the level of the action at the non-Gaussian fixed point in Einstein-Hilbert and more general truncations is shown to lead to universal effective action quadratic in the Ricci tensor.
Constraining models of f(R) gravity with Planck and WiggleZ power spectrum data
International Nuclear Information System (INIS)
Dossett, Jason; Parkinson, David; Hu, Bin
2014-01-01
In order to explain cosmic acceleration without invoking ''dark'' physics, we consider f(R) modified gravity models, which replace the standard Einstein-Hilbert action in General Relativity with a higher derivative theory. We use data from the WiggleZ Dark Energy survey to probe the formation of structure on large scales which can place tight constraints on these models. We combine the large-scale structure data with measurements of the cosmic microwave background from the Planck surveyor. After parameterizing the modification of the action using the Compton wavelength parameter B 0 , we constrain this parameter using ISiTGR, assuming an initial non-informative log prior probability distribution of this cross-over scale. We find that the addition of the WiggleZ power spectrum provides the tightest constraints to date on B 0 by an order of magnitude, giving log 10 (B 0 ) < −4.07 at 95% confidence limit. Finally, we test whether the effect of adding the lensing amplitude A Lens and the sum of the neutrino mass ∑m ν is able to reconcile current tensions present in these parameters, but find f(R) gravity an inadequate explanation
Cosmological Observations in a Modified Theory of Gravity (MOG
Directory of Open Access Journals (Sweden)
John. W. Moffat
2013-06-01
Full Text Available Our Modified Gravity Theory (MOG is a gravitational theory without exotic dark matter, based on an action principle. MOG has been used successfully tomodel astrophysical phenomena, such as galaxy rotation curves, galaxy cluster masses and lensing. MOG may also be able to account for cosmological observations. We assume that the MOG point source solution can be used to describe extended distributions of matter via an appropriately modified Poisson equation. We use this result to model perturbation growth in MOG and find that it agrees well with the observed matter power spectrum at present. As the resolution of the power spectrum improves with increasing survey size, however, significant differences emerge between the predictions of MOG and the standard Λ-cold dark matter (Λ-CDM model, as in the absence of exotic darkmatter, oscillations of the power spectrum in MOG are not suppressed. We can also use MOG to model the acoustic power spectrum of the cosmic microwave background. A suitably adapted semi-analytical model offers a first indication that MOG may pass this test and correctly model the peak of the acoustic spectrum.
Ni, W.-T.
1972-01-01
Metric theories of gravity are compiled and classified according to the types of gravitational fields they contain, and the modes of interaction among those fields. The gravitation theories considered are classified as (1) general relativity, (2) scalar-tensor theories, (3) conformally flat theories, and (4) stratified theories with conformally flat space slices. The post-Newtonian limit of each theory is constructed and its Parametrized Post-Newtonian (PPN) values are obtained by comparing it with Will's version of the formalism. Results obtained here, when combined with experimental data and with recent work by Nordtvedt and Will and by Ni, show that, of all theories thus far examined by our group, the only currently viable ones are general relativity, the Bergmann-Wagoner scalar-tensor theory and its special cases (Nordtvedt; Brans-Dicke-Jordan), and a recent, new vector-tensor theory by Nordtvedt, Hellings, and Will.
Complexity growth rates for AdS black holes in massive gravity and f(R) gravity
Energy Technology Data Exchange (ETDEWEB)
Guo, Wen-Di; Wei, Shao-Wen; Li, Yan-Yan; Liu, Yu-Xiao [Lanzhou University, Institute of Theoretical Physics, Lanzhou (China)
2017-12-15
The ''complexity = action'' duality states that the quantum complexity is equal to the action of the stationary AdS black hole within the Wheeler-DeWitt patch at late time approximation. We compute the action growth rates of the neutral and charged black holes in massive gravity and the neutral, charged and Kerr-Newman black holes in f(R) gravity to test this conjecture. Besides, we investigate the effects of the massive graviton terms, higher derivative terms and the topology of the black hole horizon on the complexity growth rate. (orig.)
International Nuclear Information System (INIS)
Guendelman, E.
2004-01-01
Full Text:The Volume Element of Space Time can be considered as a geometrical object which can be independent of the metric. The use in the action of a volume element which is metric independent leads to the appearance of a measure of integration which is metric independent. This can be applied to all known generally coordinate invariant theories, we will discuss three very important cases: 1. 4-D theories describing gravity and matter fields, 2. Parametrization invariant theories of extended objects and 3. Higher dimensional theories including gravity and matter fields. In case 1, a large number of new effects appear: (i) spontaneous breaking of scale invariance associated to integration of degrees of freedom related to the measure, (ii) under normal particle physics laboratory conditions fermions split into three families, but when matter is highly diluted, neutrinos increase their mass and become suitable candidates for dark matter, (iii) cosmic coincidence between dark energy and dark matter is natural, (iv) quintessence scenarios with automatic decoupling of the quintessence scalar to ordinary matter, but not dark matter are obtained (2) For theories or extended objects, the use of a measure of integration independent of the metric leads to (i) dynamical tension, (ii) string models of non abelian confinement (iii) The possibility of new Weyl invariant light-like branes (WTT.L branes). These Will branes dynamically adjust themselves to sit at black hole horizons and in the context of higher dimensional theories can provide examples of massless 4-D particles with nontrivial Kaluza Klein quantum numbers, (3) In Bronx and Kaluza Klein scenarios, the use of a measure independent of the metric makes it possible to construct naturally models where only the extra dimensions get curved and the 4-D observable space-time remain flat
Constraining models of f(R) gravity with Planck and WiggleZ power spectrum data
Dossett, Jason; Hu, Bin; Parkinson, David
2014-03-01
In order to explain cosmic acceleration without invoking ``dark'' physics, we consider f(R) modified gravity models, which replace the standard Einstein-Hilbert action in General Relativity with a higher derivative theory. We use data from the WiggleZ Dark Energy survey to probe the formation of structure on large scales which can place tight constraints on these models. We combine the large-scale structure data with measurements of the cosmic microwave background from the Planck surveyor. After parameterizing the modification of the action using the Compton wavelength parameter B0, we constrain this parameter using ISiTGR, assuming an initial non-informative log prior probability distribution of this cross-over scale. We find that the addition of the WiggleZ power spectrum provides the tightest constraints to date on B0 by an order of magnitude, giving log10(B0) explanation.
Cosmic string solution in a Born-Infeld type theory of gravity
International Nuclear Information System (INIS)
Rocha, W.J. da; Guimaraes, M.E.X.
2009-01-01
Full text. Advances in the formal structure of string theory point to the emergence, and necessity, of a scalar-tensorial theory of gravity. It seems that, at least at high energy scales, the Einstein's theory is not enough to explain the gravitational phenomena. In other words, the existence of a scalar (gravitational) field acting as a mediator of the gravitational interaction together with the usual purely rank-2 tensorial field is, indeed, a natural prediction of unification models as supergravity, superstrings and M-theory. This type of modified gravitation was first introduced in a different context in the 60's in order to incorporate the Mach's principle into relativity, but nowadays it acquired different sense in cosmology and gravity theories. Although such unification theories are the most acceptable, they all exist in higher dimensional spaces. The compactification from these higher dimensions to the 4-dimensional physics is not unique and there exist many effective theories of gravity which come from the unification process. Each of them must, of course, satisfy some predictions. Here, in this paper, we will deal with one of them. The so-called NDL theory. One important assumption in General Relativity is that all field interact in the same way with gravity. This is the so called Strong Equivalence Principle (SEP). It is well known, with good accuracy, that this is true when we concern with matter to matter interaction, i.e, the Weak Equivalence Principle(WEP) is tested. But, until now, there is no direct observational confirmation of this affirmation to the gravity to gravity interaction. In an extension of the field theoretical description of General Relativity constructed by is used to propose an alternative field theory of gravity. In this theory gravitons propagate in a different spacetime. The velocity of propagation of the gravitational waves in this theory does not coincide with the General Relativity predictions. (author)
Spin foam model for pure gauge theory coupled to quantum gravity
International Nuclear Information System (INIS)
Oriti, Daniele; Pfeiffer, Hendryk
2002-01-01
We propose a spin foam model for pure gauge fields coupled to Riemannian quantum gravity in four dimensions. The model is formulated for the triangulation of a four-manifold which is given merely combinatorially. The Riemannian Barrett-Crane model provides the gravity sector of our model and dynamically assigns geometric data to the given combinatorial triangulation. The gauge theory sector is a lattice gauge theory living on the same triangulation and obtains from the gravity sector the geometric information which is required to calculate the Yang-Mills action. The model is designed so that one obtains a continuum approximation of the gauge theory sector at an effective level, similarly to the continuum limit of lattice gauge theory, when the typical length scale of gravity is much smaller than the Yang-Mills scale
International Nuclear Information System (INIS)
Hwang, Jai-chan; Noh, Hyerim
2005-01-01
We present cosmological perturbation theory based on generalized gravity theories including string theory correction terms and a tachyonic complication. The classical evolution as well as the quantum generation processes in these varieties of gravity theories are presented in unified forms. These apply both to the scalar- and tensor-type perturbations. Analyses are made based on the curvature variable in two different gauge conditions often used in the literature in Einstein's gravity; these are the curvature variables in the comoving (or uniform-field) gauge and the zero-shear gauge. Applications to generalized slow-roll inflation and its consequent power spectra are derived in unified forms which include a wide range of inflationary scenarios based on Einstein's gravity and others
Test of gauge invariance and unitarity of the quantized Einstein theory of gravity
International Nuclear Information System (INIS)
Hsu, J.P.; Underwood, J.A.
1975-01-01
Explicit calculations at the 1-loop level verify that the usual quantized Einstein theory of gravity is indeed gauge independent and unitary for all values of the gauge parameter α. This lends nontrivial support to a general formal proof
Thermodynamic geometry of black holes in f(R) gravity
International Nuclear Information System (INIS)
Soroushfar, Saheb; Saffari, Reza; Kamvar, Negin
2016-01-01
In this paper, we consider three types (static, static charged, and rotating charged) of black holes in f(R) gravity. We study the thermodynamical behavior, stability conditions, and phase transition of these black holes. It is shown that the number and type of phase transition points are related to different parameters, which shows the dependency of the stability conditions to these parameters. Also, we extend our study to different thermodynamic geometry methods (Ruppeiner, Weinhold, and GTD). Next, we investigate the compatibility of curvature scalar of geothermodynamic methods with phase transition points of the above black holes. In addition, we point out the effect of different values of the spacetime parameters on the stability conditions of mentioned black holes. (orig.)
Dynamics of linear perturbations in f(R) gravity
International Nuclear Information System (INIS)
Bean, Rachel; Bernat, David; Pogosian, Levon; Silvestri, Alessandra; Trodden, Mark
2007-01-01
We consider predictions for structure formation from modifications to general relativity in which the Einstein-Hilbert action is replaced by a general function of the Ricci scalar. We work without fixing a gauge, as well as in explicit popular coordinate choices, appropriate for the modification of existing cosmological code. We present the framework in a comprehensive and practical form that can be directly compared to standard perturbation analyses. By considering the full evolution equations, we resolve perceived instabilities previously suggested, and instead find a suppression of perturbations. This result presents significant challenges for agreement with current cosmological structure formation observations. The findings apply to a broad range of forms of f(R) for which the modification becomes important at low curvatures, disfavoring them in comparison with the ΛCDM scenario. As such, these results provide a powerful method to rule out a wide class of modified gravity models aimed at providing an alternative explanation to the dark energy problem
Thick brane in f(R) gravity with Palatini dynamics
International Nuclear Information System (INIS)
Bazeia, D.; Losano, L.; Menezes, R.; Olmo, Gonzalo J.; Rubiera-Garcia, D.
2015-01-01
This work deals with modified gravity in five-dimensional space-time. We study a thick Palatini f(R) brane, that is, a braneworld scenario described by an anti-de Sitter warped geometry with a single extra dimension of infinite extent, sourced by a real scalar field under the Palatini approach, where the metric and the connection are regarded as independent degrees of freedom. We consider a first-order framework which we use to provide exact solutions for the scalar field and warp factor. We also investigate a perturbative scenario such that the Palatini approach is implemented through a Lagrangian f(R)=R+ϵR n , where the small parameter ϵ controls the deviation from the standard thick brane case. In both cases it is found that the warp factor tends to localize the extra dimension due to the nonlinear corrections
Cusp singularities in f(R) gravity: pros and cons
International Nuclear Information System (INIS)
Chen, Pisin; Yeom, Dong-han
2015-01-01
We investigate cusp singularities in f(R) gravity, especially for Starobinsky and Hu-Sawicki dark energy models. We illustrate that, by using double-null numerical simulations, a cusp singularity can be triggered by gravitational collapses. This singularity can be cured by adding a quadratic term, but this causes a Ricci scalar bump that can be observed by an observer outside the event horizon. Comparing with cosmological parameters, it seems that it would be difficult to see super-Planckian effects by astrophysical experiments. On the other hand, at once there exists a cusp singularity, it can be a mechanism to realize a horizon scale curvature singularity that can be interpreted by a firewall
Thick brane in f(R) gravity with Palatini dynamics
Energy Technology Data Exchange (ETDEWEB)
Bazeia, D., E-mail: bazeia@fisica.ufpb.br; Losano, L., E-mail: losano@fisica.ufpb.br [Departamento de Física, Universidade Federal da Paraíba, 58051-900, João Pessoa, PB (Brazil); Menezes, R., E-mail: rmenezes@dce.ufpb.br [Departamento de Ciências Exatas, Universidade Federal da Paraíba, 58297-000, Rio Tinto, PB (Brazil); Departamento de Física, Universidade Federal de Campina Grande, 58109-970, Campina Grande, PB (Brazil); Olmo, Gonzalo J., E-mail: gonzalo.olmo@csic.es [Departamento de Física, Universidade Federal da Paraíba, 58051-900, João Pessoa, PB (Brazil); Departamento de Física Teórica, IFIC, Centro Mixto Universidad de Valencia-CSIC, Universidad de Valencia, 46100, Burjassot, Valencia (Spain); Rubiera-Garcia, D., E-mail: drgarcia@fc.ul.pt [Departamento de Física, Universidade Federal da Paraíba, 58051-900, João Pessoa, PB (Brazil); Faculdade de Ciências, Instituto de Astrofísica e Ciências do Espaço, Universidade de Lisboa, Campo Grande, 1749-016, Lisbon (Portugal); Department of Physics, Center for Field Theory and Particle Physics, Fudan University, 220 Handan Road, 200433, Shanghai (China)
2015-11-30
This work deals with modified gravity in five-dimensional space-time. We study a thick Palatini f(R) brane, that is, a braneworld scenario described by an anti-de Sitter warped geometry with a single extra dimension of infinite extent, sourced by a real scalar field under the Palatini approach, where the metric and the connection are regarded as independent degrees of freedom. We consider a first-order framework which we use to provide exact solutions for the scalar field and warp factor. We also investigate a perturbative scenario such that the Palatini approach is implemented through a Lagrangian f(R)=R+ϵR{sup n}, where the small parameter ϵ controls the deviation from the standard thick brane case. In both cases it is found that the warp factor tends to localize the extra dimension due to the nonlinear corrections.
Equilibrium and stability of relativistic stars in extended theories of gravity
Energy Technology Data Exchange (ETDEWEB)
Wojnar, Aneta [Maria Curie-Sklodowska University, Institute of Physics, Lublin (Poland); Univ. di Monte S. Angelo, Napoli (Italy); Universita' di Napoli Federico II, Complesso Universitario di Monte S. Angelo, Dipartimento di Fisica ' ' E. Pancini' ' , Naples (Italy); INFN, Napoli (Italy); Velten, Hermano [Universidade Federal do Espirito Santo (UFES), Vitoria (Brazil)
2016-12-15
We study static, spherically symmetric equilibrium configurations in extended theories of gravity (ETG) following the notation introduced by Capozziello et al. We calculate the differential equations for the stellar structure in such theories in a very generic form i.e., the Tolman-Oppenheimer-Volkoff generalization for any ETG is introduced. Stability analysis is also investigated with special focus on the particular example of scalar-tensor gravity. (orig.)
Clear evidence of a continuum theory of 4D Euclidean simplicial quantum gravity
International Nuclear Information System (INIS)
Egawa, H.S.; Horata, S.; Yukawa, T.
2002-01-01
Four-dimensional (4D) simplicial quantum gravity coupled to both scalar fields (N X ) and gauge fields (N A ) has been studied using Monte-Carlo simulations. The matter dependence of the string susceptibility exponent γ (4) is estimated. Furthermore, we compare our numerical results with Background-Metric-Independent (BMI) formulation conjectured to describe the quantum field theory of gravity in 4D. The numerical results suggest that the 4D simplicial quantum gravity is related to the conformal gravity in 4D. Therefore, we propose a phase structure in detail with adding both scalar and gauge fields and discuss the possibility and the property of a continuum theory of 4D Euclidean simplicial quantum gravity
Gamow, George
2003-01-01
A distinguished physicist and teacher, George Gamow also possessed a special gift for making the intricacies of science accessible to a wide audience. In Gravity, he takes an enlightening look at three of the towering figures of science who unlocked many of the mysteries behind the laws of physics: Galileo, the first to take a close look at the process of free and restricted fall; Newton, originator of the concept of gravity as a universal force; and Einstein, who proposed that gravity is no more than the curvature of the four-dimensional space-time continuum.Graced with the author's own draw
Galaxy-galaxy weak gravitational lensing in f(R) gravity
Li, Baojiu; Shirasaki, Masato
2018-03-01
We present an analysis of galaxy-galaxy weak gravitational lensing (GGL) in chameleon f(R) gravity - a leading candidate of non-standard gravity models. For the analysis, we have created mock galaxy catalogues based on dark matter haloes from two sets of numerical simulations, using a halo occupation distribution (HOD) prescription which allows a redshift dependence of galaxy number density. To make a fairer comparison between the f(R) and Λ cold dark matter (ΛCDM) models, their HOD parameters are tuned so that the galaxy two-point correlation functions in real space (and therefore the projected two-point correlation functions) match. While the f(R) model predicts an enhancement of the convergence power spectrum by up to ˜ 30 per cent compared to the standard ΛCDM model with the same parameters, the maximum enhancement of GGL is only half as large and less than 5 per cent on separations above ˜1-2 h-1 Mpc, because the latter is a cross-correlation of shear (or matter, which is more strongly affected by modified gravity) and galaxy (which is weakly affected given the good match between galaxy autocorrelations in the two models) fields. We also study the possibility of reconstructing the matter power spectrum by combination of GGL and galaxy clustering in f(R) gravity. We find that the galaxy-matter cross-correlation coefficient remains at unity down to ˜2-3 h-1 Mpc at relevant redshifts even in f(R) gravity, indicating joint analysis of GGL and galaxy clustering can be a powerful probe of matter density fluctuations in chameleon gravity. The scale dependence of the model differences in their predictions of GGL can potentially allows us to break the degeneracy between f(R) gravity and other cosmological parameters such as Ωm and σ8.
Newtonian semiclassical gravity in the Ghirardi–Rimini–Weber theory with matter density ontology
International Nuclear Information System (INIS)
Derakhshani, Maaneli
2014-01-01
We propose a Newtonian semiclassical gravity theory based on the GRW collapse theory with matter density ontology (GRWm), which we term GRWmN. The theory is proposed because, as we show from previous arguments in the literature, the standard Newtonian semiclassical gravity theory based on the Schroedinger–Newton equations does not have a consistent Born rule probability interpretation for gravitationally self-interacting particles and implies gravitational cat states for macroscopic mass superpositions. By contrast, we show that GRWmN has a consistent statistical description of gravitationally self-interacting particles and adequately suppresses the cat states for macroscopic superpositions. Two possible routes to experimentally testing GRWmN are also considered. We conclude with a discussion of possible variants of GRWmN, what a general relativistic extension would involve, and various objections that might be raised against semiclassical gravity theories like GRWmN.
Newtonian semiclassical gravity in the Ghirardi–Rimini–Weber theory with matter density ontology
Energy Technology Data Exchange (ETDEWEB)
Derakhshani, Maaneli, E-mail: maanelid@yahoo.com
2014-03-01
We propose a Newtonian semiclassical gravity theory based on the GRW collapse theory with matter density ontology (GRWm), which we term GRWmN. The theory is proposed because, as we show from previous arguments in the literature, the standard Newtonian semiclassical gravity theory based on the Schroedinger–Newton equations does not have a consistent Born rule probability interpretation for gravitationally self-interacting particles and implies gravitational cat states for macroscopic mass superpositions. By contrast, we show that GRWmN has a consistent statistical description of gravitationally self-interacting particles and adequately suppresses the cat states for macroscopic superpositions. Two possible routes to experimentally testing GRWmN are also considered. We conclude with a discussion of possible variants of GRWmN, what a general relativistic extension would involve, and various objections that might be raised against semiclassical gravity theories like GRWmN.
Multi-leg one-loop gravity amplitudes from gauge theory
International Nuclear Information System (INIS)
Bern, Z.; Dixon, L.; Perelstein, M.; Rozowsky, J.S.
1999-01-01
By exploiting relations between gravity and gauge theories, we present two infinite sequences of one-loop n-graviton scattering amplitudes: the 'maximally helicity-violating' amplitudes in N = 8 supergravity, and the 'all-plus' helicity amplitudes in gravity with any minimally coupled massless matter content. The all-plus amplitudes correspond to self-dual field configurations and vanish in supersymmetric theories. We make use of the tree-level Kawai-Lewellen-Tye (KLT) relations between open and closed string theory amplitudes, which in the low-energy limit imply relations between gravity and gauge theory tree amplitudes. For n ≤ 6, we determine the all-plus amplitudes explicitly from their unitarity cuts. The KLT relations, applied to the cuts, allow us to extend to gravity a previously found 'dimension-shifting' relation between (the cuts of) the all-plus amplitudes in gauge theory and the maximally helicity-violating amplitudes in N = 4 super-Yang-Mills theory. The gravitational version of the relation lets us determine the n ≤ 6N = 8 supergravity amplitudes from the all-plus gravity amplitudes. We infer the two series of amplitudes for all n from their soft and collinear properties, which can also be derived from gauge theory using the KLT relations
Q ‑ Φ criticality and microstructure of charged AdS black holes in f(R) gravity
Deng, Gao-Ming; Huang, Yong-Chang
2017-12-01
The phase transition and critical behaviors of charged AdS black holes in f(R) gravity with a conformally invariant Maxwell (CIM) source and constant curvature are further investigated. As a highlight, this research is carried out by employing new state parameters (T,Q, Φ) and contributes to deeper understanding of the thermodynamics and phase structure of black holes. Our analyses manifest that the charged f(R)-CIM AdS black hole undergoes a first-order small-large black hole phase transition, and the critical behaviors qualitatively behave like a Van der Waals liquid-vapor system. However, differing from the case in Einstein’s gravity, phase structures of the black holes in f(R) theory exhibit an interesting dependence on gravity modification parameters. Moreover, we adopt the thermodynamic geometry to probe the black hole microscopic properties. The results show that, on the one hand, both the Ruppeiner curvature and heat capacity diverge exactly at the critical point, on the other hand, the f(R)-CIM AdS black hole possesses the property as ideal Fermi gases. Of special interest, we discover a microscopic similarity between the black holes and a Van der Waals liquid-vapor system.
Testing universal relations of neutron stars with a nonlinear matter-gravity coupling theory
International Nuclear Information System (INIS)
Sham, Y.-H.; Lin, L.-M.; Leung, P. T.
2014-01-01
Due to our ignorance of the equation of state (EOS) beyond nuclear density, there is still no unique theoretical model for neutron stars (NSs). It is therefore surprising that universal EOS-independent relations connecting different physical quantities of NSs can exist. Lau et al. found that the frequency of the f-mode oscillation, the mass, and the moment of inertia are connected by universal relations. More recently, Yagi and Yunes discovered the I-Love-Q universal relations among the mass, the moment of inertia, the Love number, and the quadrupole moment. In this paper, we study these universal relations in the Eddington-inspired Born-Infeld (EiBI) gravity. This theory differs from general relativity (GR) significantly only at high densities due to the nonlinear coupling between matter and gravity. It thus provides us an ideal case to test how robust the universal relations of NSs are with respect to the change of the gravity theory. Due to the apparent EOS formulation of EiBI gravity developed recently by Delsate and Steinhoff, we are able to study the universal relations in EiBI gravity using the same techniques as those in GR. We find that the universal relations in EiBI gravity are essentially the same as those in GR. Our work shows that, within the currently viable coupling constant, there exists at least one modified gravity theory that is indistinguishable from GR in view of the unexpected universal relations.
Testing Universal Relations of Neutron Stars with a Nonlinear Matter-Gravity Coupling Theory
Sham, Y.-H.; Lin, L.-M.; Leung, P. T.
2014-02-01
Due to our ignorance of the equation of state (EOS) beyond nuclear density, there is still no unique theoretical model for neutron stars (NSs). It is therefore surprising that universal EOS-independent relations connecting different physical quantities of NSs can exist. Lau et al. found that the frequency of the f-mode oscillation, the mass, and the moment of inertia are connected by universal relations. More recently, Yagi and Yunes discovered the I-Love-Q universal relations among the mass, the moment of inertia, the Love number, and the quadrupole moment. In this paper, we study these universal relations in the Eddington-inspired Born-Infeld (EiBI) gravity. This theory differs from general relativity (GR) significantly only at high densities due to the nonlinear coupling between matter and gravity. It thus provides us an ideal case to test how robust the universal relations of NSs are with respect to the change of the gravity theory. Due to the apparent EOS formulation of EiBI gravity developed recently by Delsate and Steinhoff, we are able to study the universal relations in EiBI gravity using the same techniques as those in GR. We find that the universal relations in EiBI gravity are essentially the same as those in GR. Our work shows that, within the currently viable coupling constant, there exists at least one modified gravity theory that is indistinguishable from GR in view of the unexpected universal relations.
Canonical formulation of supergravity and the quantization of the ultralocal theory of gravity
International Nuclear Information System (INIS)
Pilati, M.L.
1980-01-01
This thesis consists of two parts whose only common feature is that they are Hamiltonian field theories of geometric interest. The first part is concerned with the canonical formulation of supergravity and other geometrical, supersymmetric theories. The Hamiltonian for supergravity and the spinning membrane are computed, and the possible usefulness of the Hamiltonian formalism for finding the underlying geometry described. The second part attempts to give the quantization of the ultralocal theory of gravity. Classically the ultralocal theory corresponds to dropping g/sup 1/2//sup (3)/R from the Hamiltonian. The speed of light in this theory is zero; there is no propagation of information. It is desired to have the quantum version of this theory play the role that Fock space plays in ordinary quantum field theory, i.e., to the theory about which perturbations are made to obtain the full quantum theory of gravity. The quantum theory is begun by choosing variables consistent with the three-dimensional metric's having positive-definite spectrum. The representation of these operators is then given; it is an exponential representation. The operators script-H/sub perpendicular/ and script-H/sub i/ are constructed in this representation, the properties of script-H/sub i/ implying that the theory is coordinate invariant. It is found that script-H/sub perpendicular/ cannot be realized as a constraint in this theory in the way that one expects of a quantum theory of gravity
Vector theory of gravity: Universe without black holes and solution of dark energy problem
Svidzinsky, Anatoly A.
2017-12-01
We propose an alternative theory of gravity which assumes that background geometry of the Universe is fixed four dimensional Euclidean space and gravity is a vector field A k in this space which breaks the Euclidean symmetry. Direction of A k gives the time coordinate, while perpendicular directions are spatial coordinates. Vector gravitational field is coupled to matter universally and minimally through the equivalent metric f ik which is a functional of A k . We show that such assumptions yield a unique theory of gravity, it is free of black holes and, to the best of our knowledge, passes all available tests. For cosmology our theory predicts the same evolution of the Universe as general relativity with cosmological constant and zero spatial curvature. However, the present theory provides explanation of the dark energy as energy of longitudinal gravitational field induced by the Universe expansion and yields, with no free parameters, the value of {{{Ω }}}{{Λ }}=2/3≈ 0.67 which is consistent with the recent Planck result {{{Ω }}}{{Λ }}=0.686+/- 0.02. Such close agreement with cosmological data indicates that gravity has a vector, rather than tensor, origin. We demonstrate that gravitational wave signals measured by LIGO are compatible with vector gravity. They are produced by orbital inspiral of massive neutron stars which can exist in the present theory. We also quantize gravitational field and show that quantum vector gravity is equivalent to QED. Vector gravity can be tested by making more accurate measurement of the time delay of radar signal traveling near the Sun; by improving accuracy of the light deflection experiments; or by measuring propagation direction of gravitational waves relative to laser interferometer arms. Resolving the supermassive object at the center of our Galaxy with VLBA could provide another test of gravity and also shed light on the nature of dark matter.
Testing the master constraint programme for loop quantum gravity: V. Interacting field theories
International Nuclear Information System (INIS)
Dittrich, B; Thiemann, T
2006-01-01
This is the fifth and final paper in our series of five in which we test the master constraint programme for solving the Hamiltonian constraint in loop quantum gravity. Here we consider interacting quantum field theories, specifically we consider the non-Abelian Gauss constraints of Einstein-Yang-Mills theory and 2 + 1 gravity. Interestingly, while Yang-Mills theory in 4D is not yet rigorously defined as an ordinary (Wightman) quantum field theory on Minkowski space, in background-independent quantum field theories such as loop quantum gravity (LQG) this might become possible by working in a new, background-independent representation. While for the Gauss constraint the master constraint can be solved explicitly, for the 2 + 1 theory we are only able to rigorously define the master constraint operator. We show that the, by other methods known, physical Hilbert is contained in the kernel of the master constraint, however, to systematically derive it by only using spectral methods is as complicated as for 3 + 1 gravity and we therefore leave the complete analysis for 3 + 1 gravity
BIonic system: Extraction of Lovelock gravity from a Born-Infeld-type theory
Naimi, Yaghoob; Sepehri, Alireza; Ghaffary, Tooraj; Ghaforyan, Hossein; Ebrahimzadeh, Majid
It was shown that both Lovelock gravity and Born-Infeld (BI) electrodynamics can be obtained from low effective limit of string theory. Motivated by the mentioned unique origin of the gauge-gravity theories, we are going to find a close relation between them. In this research, we start from the Lagrangian of a BI-type nonlinear electrodynamics with an exponential form to extract the action of Lovelock gravity. We investigate the origin of Lovelock gravity in a system of branes which are connected with each other by different wormholes through a BIonic system. These wormholes are produced as due to the nonlinear electrodynamics which are emerged on the interacting branes. By approaching branes, wormholes dissolve into branes and Lovelock gravity is generated. Also, throats of some wormholes become smaller than their horizons and they transit to black holes. Generalizing calculations to M-theory, it is found that by compacting Mp-branes, Lovelock gravity changes to nonlinear electrodynamics and thus both of them have the same origin. This result is consistent with the prediction of BIonic model in string theory.
On the embedding of quantum field theory on curved spacetimes into loop quantum gravity
International Nuclear Information System (INIS)
Stottmeister, Alexander
2015-01-01
The main theme of this thesis is an investigation into possible connections between loop quantum gravity and quantum field theory on curved spacetimes: On the one hand, we aim for the formulation of a general framework that allows for a derivation of quantum field theory on curved spacetimes in a semi-classical limit. On the other hand, we discuss representation-theoretical aspects of loop quantum gravity and quantum field theory on curved spacetimes as both of the latter presumably influence each other in the aforesaid semi-classical limit. Regarding the first point, we investigate the possible implementation of the Born-Oppenheimer approximation in the sense of space-adiabatic perturbation theory in models of loop quantum gravity-type. In the course of this, we argue for the need of a Weyl quantisation and an associated symbolic calculus for loop quantum gravity, which we then successfully define, at least to a certain extent. The compactness of the Lie groups, which models a la loop quantum gravity are based on, turns out to be a main obstacle to a fully satisfactory definition of a Weyl quantisation. Finally, we apply our findings to some toy models of linear scalar quantum fields on quantum cosmological spacetimes and discuss the implementation of space-adiabatic perturbation theory therein. In view of the second point, we start with a discussion of the microlocal spectrum condition for quantum fields on curved spacetimes and how it might be translated to a background-independent Hamiltonian quantum theory of gravity, like loop quantum gravity. The relevance of this lies in the fact that the microlocal spectrum condition selects a class of physically relevant states of the quantum matter fields and is, therefore, expected to play an important role in the aforesaid semi-classical limit of gravity-matter systems. Following this, we switch our perspective and analyse the representation theory of loop quantum gravity. We find some intriguing relations between the
Gravitational Wave Polarizations in f (R Gravity and Scalar-Tensor Theory
Directory of Open Access Journals (Sweden)
Gong Yungui
2018-01-01
Full Text Available The detection of gravitational waves by the Laser Interferometer Gravitational-Wave Observatory opens a new era to use gravitational waves to test alternative theories of gravity. We investigate the polarizations of gravitational waves in f (R gravity and Horndeski theory, both containing scalar modes. These theories predict that in addition to the familiar + and × polarizations, there are transverse breathing and longitudinal polarizations excited by the massive scalar mode and the new polarization is a single mixed state. It would be very difficult to detect the longitudinal polarization by interferometers, while pulsar timing array may be the better tool to detect the longitudinal polarization.
Late time acceleration of the universe in f(R) gravity model
International Nuclear Information System (INIS)
Mukherjee, Ankan
2014-01-01
In this work, a new way to look at the nature of late time dynamics of the universe for f(R) gravity models using the contracted Bianchi Identity has been proposed. As the Einstein field equations contain derivatives of the curvature scalar R, the contracted Bianchi identity yields a second order nonlinear differential equation in H, the Hubble parameter. This equation is studied for two particular forms of f(R), and the late time behaviour of the model is discussed. (author)
Study of some chaotic inflationary models in f(R) gravity
Sharif, M.; Nawazish, Iqra
2018-04-01
In this paper, we discuss an inflationary scenario via scalar field and fluid cosmology for an anisotropic homogeneous universe model in f(R) gravity. We consider an equation of state which corresponds to a quasi-de Sitter expansion and investigate the effect of the anisotropy parameter for different values of the deviation parameter. We evaluate potential models like linear, quadratic and quartic models which correspond to chaotic inflation. We construct the observational parameters for a power-law model of f(R) gravity and construct the graphical analysis of tensor-scalar ratio and spectral index which indicates the consistency of these parameters with Planck 2015 data.
Non-trivial frames for f(T) theories of gravity and beyond
International Nuclear Information System (INIS)
Ferraro, Rafael; Fiorini, Franco
2011-01-01
Some conceptual issues concerning f(T) theories - a family of modified gravity theories based on absolute parallelism - are analyzed. Due to the lack of local Lorentz invariance, the autoparallel frames satisfying the field equations are evasive to an a priori physical understanding. We exemplify this point by working out the vierbein (tetrad) fields for closed and open Friedmann-Robertson-Walker cosmologies.
2 + 1 quantum gravity as a toy model for the 3 + 1 theory
International Nuclear Information System (INIS)
Ashtekar, A.; Husain, V.; Smolin, L.; Samuel, J.; Utah Univ., Salt Lake City, UT
1989-01-01
2 + 1 Einstein gravity is used as a toy model for testing a program for non-perturbative canonical quantisation of the 3 + 1 theory. The program can be successfully implemented in the model and leads to a surprisingly rich quantum theory. (author)
Non-trivial frames for f(T) theories of gravity and beyond
Energy Technology Data Exchange (ETDEWEB)
Ferraro, Rafael, E-mail: ferraro@iafe.uba.ar [Instituto de Astronomia y Fisica del Espacio, Casilla de Correo 67, Sucursal 28, 1428 Buenos Aires (Argentina); Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellon I, 1428 Buenos Aires (Argentina); Fiorini, Franco, E-mail: franco@iafe.uba.ar [Instituto de Astronomia y Fisica del Espacio, Casilla de Correo 67, Sucursal 28, 1428 Buenos Aires (Argentina)
2011-08-03
Some conceptual issues concerning f(T) theories - a family of modified gravity theories based on absolute parallelism - are analyzed. Due to the lack of local Lorentz invariance, the autoparallel frames satisfying the field equations are evasive to an a priori physical understanding. We exemplify this point by working out the vierbein (tetrad) fields for closed and open Friedmann-Robertson-Walker cosmologies.
Radiation perturbation theory in gravity and quantum universe as a hydrogen atom
International Nuclear Information System (INIS)
Pervushin, V.N.
1992-01-01
In quantum theory of gravity of the (n+1)-dimensional space-time the Faddeev-Popov functional integral is constructed for radiation perturbation theory. In this version the Universe expansion looks as the collective superfluid motion of quantum space, and the vacuum energy density plays the role of the hidden mass. 6 refs
Recent progress in the theory of random surfaces and simplicial quantum gravity
International Nuclear Information System (INIS)
Ambjoern, J.
1995-01-01
Some of the recent developments in the theory of random surfaces and simplicial quantum gravity is reviewed. For 2d quantum gravity this includes the failure of Regge calculus, our improved understanding of the c>1 regime, some surprises for q-state Potts models with q>4, attempts to use renormalization group techniques, new critical behavior of random surface models with extrinsic curvature and improved algorithms. For simplicial quantum gravity in higher dimensions it includes a discussion of the exponential entropy bound needed for the models to be well defined, the question of ''computational ergodicity'' and the question of how to extract continuum behavior from the lattice simulations. ((orig.))
Group field theory formulation of 3D quantum gravity coupled to matter fields
International Nuclear Information System (INIS)
Oriti, Daniele; Ryan, James
2006-01-01
We present a new group field theory describing 3D Riemannian quantum gravity coupled to matter fields for any choice of spin and mass. The perturbative expansion of the partition function produces fat graphs coloured with SU(2) algebraic data, from which one can reconstruct at once a three-dimensional simplicial complex representing spacetime and its geometry, like in the Ponzano-Regge formulation of pure 3D quantum gravity, and the Feynman graphs for the matter fields. The model then assigns quantum amplitudes to these fat graphs given by spin foam models for gravity coupled to interacting massive spinning point particles, whose properties we discuss
Effective spacetime understanding emergence in effective field theory and quantum gravity
Crowther, Karen
2016-01-01
This book discusses the notion that quantum gravity may represent the "breakdown" of spacetime at extremely high energy scales. If spacetime does not exist at the fundamental level, then it has to be considered "emergent", in other words an effective structure, valid at low energy scales. The author develops a conception of emergence appropriate to effective theories in physics, and shows how it applies (or could apply) in various approaches to quantum gravity, including condensed matter approaches, discrete approaches, and loop quantum gravity.
International Nuclear Information System (INIS)
Tamaki, Takashi; Torii, Takashi; Maeda, Kei-ichi
2003-01-01
We perform a linear perturbation analysis for black hole solutions with a 'massive' Yang-Mills field (the Proca field) in Brans-Dicke theory and find that the results are quite consistent with those via catastrophe theory where thermodynamic variables play an intrinsic role. Based on this observation, we show the general relation between these two methods in generalized theories of gravity which are conformally related to the Einstein-Hilbert action
International Nuclear Information System (INIS)
Vlasov, A.A.
1988-01-01
The necessity of covariant connection of plane space metrics in the gravity theory ''on a plane background'' is underlined. It is shown that this connection in the relativistic gravity theory results in its difference from the general relativity theory ''on a plane background''
Pure Lovelock gravity and Chern-Simons theory
Concha, P. K.; Durka, R.; Inostroza, C.; Merino, N.; Rodríguez, E. K.
2016-07-01
We explore the possibility of finding pure Lovelock gravity as a particular limit of a Chern-Simons action for a specific expansion of the AdS algebra in odd dimensions. We derive in detail this relation at the level of the action in five and seven dimensions. We provide a general result for higher dimensions and discuss some issues arising from the obtained dynamics.
Distinguishing f(R) theories from general relativity by gravitational lensing effect
Energy Technology Data Exchange (ETDEWEB)
Liu, Hongguang [Beijing Normal University, Department of Physics, Beijing (China); Aix Marseille Universite et Universite de Toulon, Centre de Physique Theorique (UMR 7332), Marseille (France); Wang, Xin; Li, Haida; Ma, Yongge [Beijing Normal University, Department of Physics, Beijing (China)
2017-11-15
The post-Newtonian formulation of a general class of f(R) theories is set up in a third-order approximation. It turns out that the information of a specific form of f(R) gravity is encoded in the Yukawa potential, which is contained in the perturbative expansion of the metric components. Although the Yukawa potential is canceled in the second-order expression of the effective refraction index of light, detailed analysis shows that the difference of the lensing effect between the f(R) gravity and general relativity does appear at the third order when √(f''(0)/f{sup '}(0)) is larger than the distance d{sub 0} to the gravitational source. However, the difference between these two kinds of theories will disappear in the axially symmetric spacetime region. Therefore only in very rare case the f(R) theories are distinguishable from general relativity by gravitational lensing effect in a third-order post-Newtonian approximation. (orig.)
Directory of Open Access Journals (Sweden)
Suhendro I.
2008-01-01
Full Text Available In this work, we attempt at constructing a comprehensive four-dimensional unified field theory of gravity, electromagnetism, and the non-Abelian Yang-Mills gauge field in which the gravitational, electromagnetic, and material spin fields are unified as intrinsic geometric objects of the space-time manifold $S_4$ via the connection, with the generalized non-Abelian Yang-Mills gauge field appearing in particular as a sub-field of the geometrized electromagnetic interaction.
Reconstruction from scalar-tensor theory and the inhomogeneous equation of state in f(T) gravity
Energy Technology Data Exchange (ETDEWEB)
Said, Jackson Levi [University of Malta, Institute of Space Sciences and Astronomy, Msida (Malta); University of Malta, Department of Physics, Msida (Malta)
2017-12-15
General relativity (GR) characterizes gravity as a geometric properly exhibited as curvature on spacetime. Teleparallelism describes gravity through torsional properties, and can reproduce GR at the level of equations. Similar to f(R) gravity, on taking a generalization, f(T) gravity can produce various modifications its gravitational mechanism. The resulting field equations are inherently distinct to f(R) gravity in that they are second order. In the present work, f(T) gravity is examined in the cosmological context with a number of solutions reconstructed by means of an auxiliary scalar field. To do this, various forms of the Hubble parameter are considered with an f(T) Lagrangian emerging for each instance. In addition, the inhomogeneous equation of state (EoS) is investigated with a particular Hubble parameter model used to show how this can be used to reconstruct the f(T) Lagrangian. Observationally, the auxiliary scalar field and the exotic terms in the FRW field equations give the same results, meaning that the variation in the Hubble parameter may be interpreted as the need to reformulate gravity in some way, as in f(T) gravity. (orig.)
Reconstruction from scalar-tensor theory and the inhomogeneous equation of state in f(T) gravity
International Nuclear Information System (INIS)
Said, Jackson Levi
2017-01-01
General relativity (GR) characterizes gravity as a geometric properly exhibited as curvature on spacetime. Teleparallelism describes gravity through torsional properties, and can reproduce GR at the level of equations. Similar to f(R) gravity, on taking a generalization, f(T) gravity can produce various modifications its gravitational mechanism. The resulting field equations are inherently distinct to f(R) gravity in that they are second order. In the present work, f(T) gravity is examined in the cosmological context with a number of solutions reconstructed by means of an auxiliary scalar field. To do this, various forms of the Hubble parameter are considered with an f(T) Lagrangian emerging for each instance. In addition, the inhomogeneous equation of state (EoS) is investigated with a particular Hubble parameter model used to show how this can be used to reconstruct the f(T) Lagrangian. Observationally, the auxiliary scalar field and the exotic terms in the FRW field equations give the same results, meaning that the variation in the Hubble parameter may be interpreted as the need to reformulate gravity in some way, as in f(T) gravity. (orig.)
Unification of gauge and gravity Chern-Simons theories in 3-D space-time
Energy Technology Data Exchange (ETDEWEB)
Saghir, Chireen A.; Shamseddine, Laurence W. [American University of Beirut, Physics Department, Beirut (Lebanon)
2017-11-15
Chamseddine and Mukhanov showed that gravity and gauge theories could be unified in one geometric construction provided that a metricity condition is imposed on the vielbein. In this paper we are going to show that by enlarging the gauge group we are able to unify Chern-Simons gauge theory and Chern-Simons gravity in 3-D space-time. Such a unification leads to the quantization of the coefficients for both Chern-Simons terms for compact groups but not for non-compact groups. Moreover, it leads to a topological invariant quantity of the 3-dimensional space-time manifold on which they are defined. (orig.)
Late inspiral and merger of binary black holes in scalar–tensor theories of gravity
International Nuclear Information System (INIS)
Healy, James; Bode, Tanja; Laguna, Pablo; Shoemaker, Deirdre M; Haas, Roland; Pazos, Enrique; Yunes, Nicolás
2012-01-01
Gravitational wave observations will probe nonlinear gravitational interactions and thus enable strong tests of Einstein’s theory of general relativity. We present a numerical relativity study of the late inspiral and merger of binary black holes in scalar–tensor theories of gravity. We consider binaries inside a scalar field bubble, including in some cases a potential. We demonstrate how an evolving scalar field is able to trigger detectable differences between gravitational waves in scalar–tensor gravity and the corresponding waves in general relativity. (fast track communication)
Cosmology based on f(R) gravity admits 1 eV sterile neutrinos.
Motohashi, Hayato; Starobinsky, Alexei A; Yokoyama, Jun'ichi
2013-03-22
It is shown that the tension between recent neutrino oscillation experiments, favoring sterile neutrinos with masses of the order of 1 eV, and cosmological data which impose stringent constraints on neutrino masses from the free streaming suppression of density fluctuations, can be resolved in models of the present accelerated expansion of the Universe based on f(R) gravity.
Thermodynamic laws for generalized f(R) gravity with curvature-matter coupling
International Nuclear Information System (INIS)
Wu Yabo; Zhao Yueyue; Cai Ronggen; Lu Jianbo; Lu Junwang; Gao Xiaojing
2012-01-01
The first law and the generalized second law (GSL) of thermodynamics for the generalized f(R) gravity with curvature-matter coupling are studied in the spatially homogeneous, isotropic FRW universe. The research results show that the field equations of the generalized f(R) gravity with curvature-matter coupling can be cast to the form of the first law of thermodynamics with the so-called the entropy production terms dS ¯ and the GSL can be given by considering the FRW universe filled only with ordinary matter enclosed by the dynamical apparent horizon with the Hawking temperature. Furthermore, as a concrete example, by utilizing the GSL the constraints on the gravitational model with f 1 (R)=R+αR l and f 2 (R)=R m are also discussed. It is worth noting these results given by us are quite general and can degenerate to the ones in Einstein's general relativity and pure f(R) gravity with non-coupling and non-minimal coupling as special cases. Comparing with the case of Einstein's general relativity, the appearance of the entropy production term dS ¯ in the first law of thermodynamics demonstrates that the horizon thermodynamics is non-equilibrium one for generalized f(R) gravity with curvature-matter coupling, which is consistent with the arguments given in Akbar and Cai (2007) [13] and Eling et al. (2006) [18].
Physics on all scales. Scalar-tensor theories of quantum gravity in particle physics and cosmology
Energy Technology Data Exchange (ETDEWEB)
Henz, Tobias
2016-05-10
In this thesis, we investigate dilaton quantum gravity using a functional renormalization group approach. We derive and discuss flow equations both in the background field approximation and using a vertex expansion as well as solve the fixed point equations globally to show how realistic gravity, connecting ultraviolet and infrared physics, can be realized on a pure fixed point trajectory by virtue of spontaneous breaking of scale invariance. The emerging physical system features a dynamically generated moving Planck scale resembling the Newton coupling as well as slow roll inflation with an exponentially decreasing effective cosmological constant that vanishes completely in the infrared. The moving Planck scale might make quantum gravity experimentally accessible at a different energy scale than previously believed. We therefore not only provide further evidence for the existence of a consistent quantum theory of gravity based on general relativity, but also offer potential solutions towards the hierarchy and cosmological constant problems, thereby opening up exciting opportunities for further research.
New formulation of Horava-Lifshitz quantum gravity as a master constraint theory
Energy Technology Data Exchange (ETDEWEB)
Soo, Chopin, E-mail: cpsoo@mail.ncku.edu.tw [Department of Physics, National Cheng Kung University, Tainan 70101, Taiwan (China); Yang Jinsong, E-mail: Yangksong@gmail.com [Department of Physics, National Cheng Kung University, Tainan 70101, Taiwan (China); Yu, Hoi-Lai, E-mail: hlyu@phys.sinica.edu.tw [Institute of Physics, Academia Sinica, Nankang, Taipei 11529, Taiwan (China)
2011-07-04
Both projectable and non-projectable versions of Horava-Lifshitz gravity face serious challenges. In the non-projectable version, the constraint algebra is seemingly inconsistent. The projectable version lacks a local Hamiltonian constraint, thus allowing for an extra scalar mode which can be problematic. A new formulation of non-projectable Horava-Lifshitz gravity, naturally realized as a representation of the master constraint algebra studied by loop quantum gravity researchers, is presented. This yields a consistent canonical theory with first class constraints. It captures the essence of Horava-Lifshitz gravity in retaining only spatial diffeomorphisms (instead of full space-time covariance) as the physically relevant non-trivial gauge symmetry; at the same time the local Hamiltonian constraint needed to eliminate the extra mode is equivalently enforced by the master constraint.
Scattering of fermions in the Yukawa theory coupled to unimodular gravity
International Nuclear Information System (INIS)
Gonzalez-Martin, S.; Martin, C.P.
2018-01-01
We compute the lowest order gravitational UV divergent radiative corrections to the S matrix element of the fermion + fermion → fermion + fermion scattering process in the massive Yukawa theory, coupled either to Unimodular Gravity or to General Relativity. We show that both Unimodular Gravity and General Relativity give rise to the same UV divergent contribution in Dimensional Regularization. This is a nontrivial result, since in the classical action of Unimodular Gravity coupled to the Yukawa theory, the graviton field does not couple neither to the mass operator nor to the Yukawa operator. This is unlike the General Relativity case. The agreement found points in the direction that Unimodular Gravity and General Relativity give rise to the same quantum theory when coupled to matter, as long as the Cosmological Constant vanishes. Along the way we have come across another unexpected cancellation of UV divergences for both Unimodular Gravity and General Relativity, resulting in the UV finiteness of the one-loop and κy 2 order of the vertex involving two fermions and one graviton only. (orig.)
CDT-a entropic theory of quantum gravity
DEFF Research Database (Denmark)
Ambjørn, Jan; Görlich, A.; Jurkiewicz, J.
2010-01-01
High Energy Physics - Theory (hep-th); General Relativity and Quantum Cosmology (gr-qc); High Energy Physics - Lattice (hep-lat)......High Energy Physics - Theory (hep-th); General Relativity and Quantum Cosmology (gr-qc); High Energy Physics - Lattice (hep-lat)...
Hidden gravity in open-string field theory
International Nuclear Information System (INIS)
Siegel, W.
1994-01-01
We clarify the nature of the graviton as a bound state in open-string field theory: The flat metric in the action appears as the vacuum value of an open string field. The bound state appears as a composite field in the free field theory
Cosmological Solutions of Tensor–Vector Theories of Gravity by ...
Indian Academy of Sciences (India)
We consider tensor–vector theories by varying the space- time–matter coupling ... solutions by considering the character of critical points of the theory and their stability .... light (Magueijo 2003) that has arisen from the possibility of varying fine structure constant. ... Vector-like dark energy displays a series of properties that.
Quantum theory of nonrelativistic particles interacting with gravity
International Nuclear Information System (INIS)
Anastopoulos, C.
1996-01-01
We investigate the effects of the gravitational field on the quantum dynamics of nonrelativistic particles. We consider N nonrelativistic particles, interacting with the linearized gravitational field. Using the Feynman-Vernon influence functional technique, we trace out the graviton field to obtain a master equation for the system of particles to first order in G. The effective interaction between the particles as well as the self-interaction is in general non-Markovian. We show that the gravitational self-interaction cannot be held responsible for decoherence of microscopic particles due to the fast vanishing of the diffusion function. For macroscopic particles though, it leads to diagonalization to the energy eigenstate basis, a desirable feature in gravity-induced collapse models. We finally comment on possible applications. copyright 1996 The American Physical Society
Thermodynamics in f(R,T) theory of gravity
International Nuclear Information System (INIS)
Sharif, M.; Zubair, M.
2012-01-01
A non-equilibrium picture of thermodynamics is discussed at the apparent horizon of FRW universe in f(R,T) gravity, where R is the Ricci scalar and T is the trace of the energy-momentum tensor. We take two forms of the energy-momentum tensor of dark components and demonstrate that equilibrium description of thermodynamics is not achievable in both cases. We check the validity of the first and second law of thermodynamics in this scenario. It is shown that the Friedmann equations can be expressed in the form of first law of thermodynamics T h dS' h +T h d jmath S' = −dE'+W'dV, where d jmath S' is the entropy production term. Finally, we conclude that the second law of thermodynamics holds both in phantom and non-phantom phases
Vacaru, Sergiu I
2014-01-01
The fundamental field equations in modified gravity (including general relativity; massive and bimetric theories; Ho\\vrava-Lifshits, HL; Einstein--Finsler gravity extensions etc) posses an important decoupling property with respect to nonholonomic frames with 2 (or 3) +2+2+... spacetime decompositions. This allows us to construct exact solutions with generic off--diagonal metrics depending on all spacetime coordinates via generating and integration functions containing (un-) broken symmetry parameters. Such nonholonomic configurations/ models have a nice ultraviolet behavior and seem to be ghost free and (super) renormalizable in a sense of covariant and/or massive modifications of HL gravity. The apparent noncommutativity and breaking of Lorentz invariance by quantum effects can be encoded into fibers of noncommutative tangent Lorentz bundles for corresponding "partner" anisotropically induced theories. We show how the constructions can be extended to include conjectured covariant reonormalizable models with...
Gravity Cutoff in Theories with Large Discrete Symmetries
International Nuclear Information System (INIS)
Dvali, Gia; Redi, Michele; Sibiryakov, Sergey; Vainshtein, Arkady
2008-01-01
We set an upper bound on the gravitational cutoff in theories with exact quantum numbers of large N periodicity, such as Z N discrete symmetries. The bound stems from black hole physics. It is similar to the bound appearing in theories with N particle species, though a priori, a large discrete symmetry does not imply a large number of species. Thus, there emerges a potentially wide class of new theories that address the hierarchy problem by lowering the gravitational cutoff due to the existence of large Z 10 32 -type symmetries
Mitchell, Myles A.; He, Jian-hua; Arnold, Christian; Li, Baojiu
2018-06-01
We propose a new framework for testing gravity using cluster observations, which aims to provide an unbiased constraint on modified gravity models from Sunyaev-Zel'dovich (SZ) and X-ray cluster counts and the cluster gas fraction, among other possible observables. Focusing on a popular f(R) model of gravity, we propose a novel procedure to recalibrate mass scaling relations from Λ cold dark matter (ΛCDM) to f(R) gravity for SZ and X-ray cluster observables. We find that the complicated modified gravity effects can be simply modelled as a dependence on a combination of the background scalar field and redshift, fR(z)/(1 + z), regardless of the f(R) model parameter. By employing a large suite of N-body simulations, we demonstrate that a theoretically derived tanh fitting formula is in excellent agreement with the dynamical mass enhancement of dark matter haloes for a large range of background field parameters and redshifts. Our framework is sufficiently flexible to allow for tests of other models and inclusion of further observables, and the one-parameter description of the dynamical mass enhancement can have important implications on the theoretical modelling of observables and on practical tests of gravity.
On pseudoparticle solutions in Yang's theory of gravity
International Nuclear Information System (INIS)
Mielke, E.W.
1980-03-01
Within the framework of differential geometry, Yang's parallel-displacement gauge theory is considered with respect to ''pure'' gravitational fields. In a four-dimensional Riemannian manifold it is shown that the double self-dual solutions obey Einstein's vacuum equations with cosmological term, whereas the double anti-self-dual configurations satisfy the Rainich conditions of Wheeler's geometrodynamics. Conformal methods reveal that the gravitational analogue of the ''instanton'' or pseudoparticle solution of Yang-Mills theory was already known to Riemann. (author)
The maximum sizes of large scale structures in alternative theories of gravity
Energy Technology Data Exchange (ETDEWEB)
Bhattacharya, Sourav [IUCAA, Pune University Campus, Post Bag 4, Ganeshkhind, Pune, 411 007 India (India); Dialektopoulos, Konstantinos F. [Dipartimento di Fisica, Università di Napoli ' Federico II' , Complesso Universitario di Monte S. Angelo, Edificio G, Via Cinthia, Napoli, I-80126 Italy (Italy); Romano, Antonio Enea [Instituto de Física, Universidad de Antioquia, Calle 70 No. 52–21, Medellín (Colombia); Skordis, Constantinos [Department of Physics, University of Cyprus, 1 Panepistimiou Street, Nicosia, 2109 Cyprus (Cyprus); Tomaras, Theodore N., E-mail: sbhatta@iitrpr.ac.in, E-mail: kdialekt@gmail.com, E-mail: aer@phys.ntu.edu.tw, E-mail: skordis@ucy.ac.cy, E-mail: tomaras@physics.uoc.gr [Institute of Theoretical and Computational Physics and Department of Physics, University of Crete, 70013 Heraklion (Greece)
2017-07-01
The maximum size of a cosmic structure is given by the maximum turnaround radius—the scale where the attraction due to its mass is balanced by the repulsion due to dark energy. We derive generic formulae for the estimation of the maximum turnaround radius in any theory of gravity obeying the Einstein equivalence principle, in two situations: on a spherically symmetric spacetime and on a perturbed Friedman-Robertson-Walker spacetime. We show that the two formulae agree. As an application of our formula, we calculate the maximum turnaround radius in the case of the Brans-Dicke theory of gravity. We find that for this theory, such maximum sizes always lie above the ΛCDM value, by a factor 1 + 1/3ω, where ω>> 1 is the Brans-Dicke parameter, implying consistency of the theory with current data.
Connection dynamics of a gauge theory of gravity coupled with matter
International Nuclear Information System (INIS)
Yang, Jian; Banerjee, Kinjal; Ma, Yongge
2013-01-01
We study the coupling of the gravitational action, which is a linear combination of the Hilbert–Palatini term and the quadratic torsion term, to the action of Dirac fermions. The system possesses local Poincare invariance and hence belongs to Poincare gauge theory (PGT) with matter. The complete Hamiltonian analysis of the theory is carried out without gauge fixing but under certain ansatz on the coupling parameters, which leads to a consistent connection dynamics with second-class constraints and torsion. After performing a partial gauge fixing, all second-class constraints can be solved, and a SU(2)-connection dynamical formalism of the theory can be obtained. Hence, the techniques of loop quantum gravity (LQG) can be employed to quantize this PGT with non-zero torsion. Moreover, the Barbero–Immirzi parameter in LQG acquires its physical meaning as the coupling parameter between the Hilbert–Palatini term and the quadratic torsion term in this gauge theory of gravity. (paper)
Astrophysical tests for the Novello-De Lorenci-Luciane theory of gravity
International Nuclear Information System (INIS)
Mosquera Cuesta, H.J.
2001-01-01
The Novello-DeLorenci-Luciane (NDL) field theory of gravitation predicts that gravitational waves (GWs) follow geodesics of a modified (effective) geometry with a speed lower than the velocity of light. The theory also demonstrates that GWs exhibit the phenomenon of birefringence, formerly believed to be exclusive of electromagnetic waves. Here prospective astrophysical tests of these predictions are proposed. I point out that future measurements of gravitational waves in coincidence with a non-gravitational process such as a neutrino burst (and likely a burst of gamma-rays) may prove useful to discriminate among all the existing theories of gravity. It is also stressed that microlensing of gravitational waves emitted by known galactic sources (i.e., pulsars) in the bulge, lensed by either the Galaxy's central black hole (Sgr A*) or a MACHO object adrift among the Milky Way's stars, may provide a clean test of the birefringence phenomenon implied by the NDL gravity theory. (author)
Wormholes and time-machines in nonminimally coupled matter-curvature theories of gravity
DEFF Research Database (Denmark)
Bertolami, O.; Ferreira, R. Z.
2013-01-01
In this work we show the existence of traversable wormhole and time-machine solutions in a modified theory of gravity where matter and curvature are nonminimally coupled. Those solutions present a nontrivial redshift function and exist even in the presence of ordinary matter which satisfies...
Wormholes and Time-Machines in Nonminimally Coupled Matter-Curvature Theories of Gravity
Directory of Open Access Journals (Sweden)
Bertolami Orfeu
2013-09-01
Full Text Available In this work we show the existence of traversable wormhole and time-machine solutions in a modified theory of gravity where matter and curvature are nonminimally coupled. Those solutions present a nontrivial redshift function and exist even in the presence of ordinary matter which satisfies the dominant energy condition.
Gauge-invariant metric fluctuations from NKK theory of gravity: de Sitter expansion
International Nuclear Information System (INIS)
Aguilar, Jose Edgar Madriz; Anabitarte, Mariano; Bellini, Mauricio
2006-01-01
In this Letter we study gauge-invariant metric fluctuations from a noncompact Kaluza-Klein (NKK) theory of gravity in de Sitter expansion. We recover the well-known result δρ/ρ∼2Φ, obtained from the standard 4D semiclassical approach to inflation. The spectrum for these fluctuations should be dependent of the fifth (spatial-like) coordinate
Gravitational radiation in relativistic theory of gravity with a nonzero graviton mass
International Nuclear Information System (INIS)
Vlasov, A.A.; Chugreev, Yu.V.
1987-01-01
Radiation of gravitation waves have been analysed in the linear approximation of the relative theory of gravity, with the mass of graviton being nonzero. It is shown that the main contribution to the energy loss due to gravitational radiation has been described by the well-known quadrupole formula. Linear approximation applicability conditions have been analysed
Space, time, and gravity. The theory of the big bang and black holes
Energy Technology Data Exchange (ETDEWEB)
Wald, R.M.
1977-01-01
In Einstein's theory of gravity, gravitation is described in terms of the curved geometry of space--time. The implications of these ideas for the universe: its origin, evolution, and large-scale structure are considered. Also discussed are gravitational collapse and black holes. (JFP)
Using scalars to probe theories of low scale quantum gravity
International Nuclear Information System (INIS)
Rizzo, T.G.
1999-01-01
Arkani-Hamed, Dimopoulos and Dvali have recently suggested that gravity may become strong at energies near 1 TeV which would remove the hierarchy problem. Such a scenario can be tested at present and future colliders since the exchange of towers of Kaluza-Klein gravitons leads to a set of new dimension-8 operators that can play important phenomenological roles. In this paper we examine how the production of pairs of scalars at e + e - , γγ and hadron colliders can be used to further probe the effects of graviton tower exchange. In particular we examine the tree-level production of pairs of identical Higgs fields which occurs only at the loop level in both the standard model and its extension to the minimal supersymmetric standard model. Cross sections for such processes are found to be potentially large at the CERN LHC and the next generation of linear colliders. For the γγ case the role of polarization in improving sensitivity to graviton exchange is emphasized. copyright 1999 The American Physical Society
Constraining Alternative Theories of Gravity Using Pulsar Timing Arrays
Cornish, Neil J.; O'Beirne, Logan; Taylor, Stephen R.; Yunes, Nicolás
2018-05-01
The opening of the gravitational wave window by ground-based laser interferometers has made possible many new tests of gravity, including the first constraints on polarization. It is hoped that, within the next decade, pulsar timing will extend the window by making the first detections in the nanohertz frequency regime. Pulsar timing offers several advantages over ground-based interferometers for constraining the polarization of gravitational waves due to the many projections of the polarization pattern provided by the different lines of sight to the pulsars, and the enhanced response to longitudinal polarizations. Here, we show that existing results from pulsar timing arrays can be used to place stringent limits on the energy density of longitudinal stochastic gravitational waves. However, unambiguously distinguishing these modes from noise will be very difficult due to the large variances in the pulsar-pulsar correlation patterns. Existing upper limits on the power spectrum of pulsar timing residuals imply that the amplitude of vector longitudinal (VL) and scalar longitudinal (SL) modes at frequencies of 1/year are constrained, AVL<4 ×10-16 and ASL<4 ×10-17, while the bounds on the energy density for a scale invariant cosmological background are ΩVLh2<4 ×10-11 and ΩSLh2<3 ×10-13.
Cosmological tests of modified gravity.
Koyama, Kazuya
2016-04-01
We review recent progress in the construction of modified gravity models as alternatives to dark energy as well as the development of cosmological tests of gravity. Einstein's theory of general relativity (GR) has been tested accurately within the local universe i.e. the Solar System, but this leaves the possibility open that it is not a good description of gravity at the largest scales in the Universe. This being said, the standard model of cosmology assumes GR on all scales. In 1998, astronomers made the surprising discovery that the expansion of the Universe is accelerating, not slowing down. This late-time acceleration of the Universe has become the most challenging problem in theoretical physics. Within the framework of GR, the acceleration would originate from an unknown dark energy. Alternatively, it could be that there is no dark energy and GR itself is in error on cosmological scales. In this review, we first give an overview of recent developments in modified gravity theories including f(R) gravity, braneworld gravity, Horndeski theory and massive/bigravity theory. We then focus on common properties these models share, such as screening mechanisms they use to evade the stringent Solar System tests. Once armed with a theoretical knowledge of modified gravity models, we move on to discuss how we can test modifications of gravity on cosmological scales. We present tests of gravity using linear cosmological perturbations and review the latest constraints on deviations from the standard [Formula: see text]CDM model. Since screening mechanisms leave distinct signatures in the non-linear structure formation, we also review novel astrophysical tests of gravity using clusters, dwarf galaxies and stars. The last decade has seen a number of new constraints placed on gravity from astrophysical to cosmological scales. Thanks to on-going and future surveys, cosmological tests of gravity will enjoy another, possibly even more, exciting ten years.
Cosmological Solutions of Tensor–Vector Theories of Gravity by ...
Indian Academy of Sciences (India)
We consider tensor–vector theories by varying the space-time–matter coupling constant (varying Einstein velocity) in a spatially flat FRW universe.We examine the dynamics of this model by dynamical system method assuming a CDM background and we find some exact solutions by considering the character of critical ...
Remarks on high energy stability and renormalizability of gravity theory
International Nuclear Information System (INIS)
Salam, A.; Strathdee, J.
1978-02-01
Arguing that high-energy (Froissart) boundedness of gravitational cross-sections may make it necessary to supplement Einstein's Lagrangian with terms containing R 2 and Rsup(μν)Rsub(μν), criteria are suggested which, if satisfied, could make the tensor ghost in such a theory innocuous
Charges and Energy in Chern-Simons Theories and Lovelock Gravity
Allemandi, G.; Francaviglia, M.; Raiteri, M.
2003-01-01
Starting from the SO(2,2n) Chern-Simons form in (2n+1) dimensions we calculate the variation of conserved quantities in Lovelock gravity and Lovelock-Maxwell gravity through the covariant formalism developed in gr-qc/0305047. Despite the technical complexity of the Lovelock Lagrangian we obtain a remarkably simple expression for the variation of the charges ensuing from the diffeomorphism covariance of the theory. The viability of the result is tested in specific applications and the formal e...
Late-time cosmological approach in mimetic f(R, T) gravity
Energy Technology Data Exchange (ETDEWEB)
Baffou, E.H. [Institut de Mathematiques et de Sciences Physiques (IMSP), Porto-Novo (Benin); Houndjo, M.J.S. [Institut de Mathematiques et de Sciences Physiques (IMSP), Porto-Novo (Benin); Faculte des Sciences et Techniques de Natitingou, Natitingou (Benin); Hamani-Daouda, M. [Universite de Niamey, Departement de Physique, Niamey (Niger); Alvarenga, F.G. [Universidade Federal do Espirito Santo, Departamento de Engenharia e Ciencias Naturais, CEUNES, Sao Mateus, ES (Brazil)
2017-10-15
In this paper, we investigate the late-time cosmic acceleration in mimetic f(R, T) gravity with the Lagrange multiplier and potential in a Universe containing, besides radiation and dark energy, a self-interacting (collisional) matter. We obtain through the modified Friedmann equations the main equation that can describe the cosmological evolution. Then, with several models from Q(z) and the well-known particular model f(R, T), we perform an analysis of the late-time evolution. We examine the behavior of the Hubble parameter, the dark energy equation of state and the total effective equation of state and in each case we compare the resulting picture with the non-collisional matter (assumed as dust) and also with the collisional matter in mimetic f(R, T) gravity. The results obtained are in good agreement with the observational data and show that in the presence of the collisional matter the dark energy oscillations in mimetic f(R, T) gravity can be damped. (orig.)
The curious history of relativity how Einstein's theory of gravity was lost and found again
Eisenstaedt, Jean
2006-01-01
Black holes may obliterate most things that come near them, but they saved the theory of general relativity. Einstein's theory was quickly accepted as the true theory of gravity after its publication in 1915, but soon took a back seat in physics to quantum mechanics and languished for decades on the blackboards of mathematicians. Not until the existence of black holes by Stephen Hawking and Roger Penrose in the 1960s, after Einstein's death, was the theory revived. Almost one hundred years after general relativity replaced Newton's theory of gravitation, The Curious History of Relativity tells the story of both events surrounding general relativity and the techniques employed by Einstein and the relativists to construct, develop, and understand his almost impenetrable theory. Jean Eisenstaedt, one of the world's leading experts on the subject, also discusses the theory's place in the evolution of twentieth-century physics. He describes the main stages in the development of general relativity: its beginnings,...
REM - the Shape of Potentials for f(R) Theories in Cosmology and Tachyons
Vulcanov, Dumitru N; Sporea, Ciprian A
2014-01-01
We investigated the reverse engineering method (REM) for constructing the potential of the scalar field in cosmological theories based on metric f(R) gravity and Friedman Robertson Walker (FRW) metric. Then transposing the new field and Friedman equations in an algebraic computing special library (in Maple + GrTennsorII platform) we graphically investigate the shape of the potentials in terms of the scalar field in at least two type of cosmology with exponential and linear scale factor expansion. Some perspectives and conclusions relating these results with tachyonic cosmology theories are noticed.
Fermion localization in higher curvature and scalar-tensor theories of gravity
Energy Technology Data Exchange (ETDEWEB)
Mitra, Joydip [Scottish Church College, Department of Physics, Kolkata (India); Paul, Tanmoy; SenGupta, Soumitra [Indian Association for the Cultivation of Science, Department of Theoretical Physics, Kolkata (India)
2017-12-15
It is well known that, in a braneworld model, the localization of fermions on a lower dimensional submanifold (say a TeV 3-brane) is governed by the gravity in the bulk, which also determines the corresponding phenomenology on the brane. Here we consider a five dimensional warped spacetime where the bulk geometry is governed by higher curvature like F(R) gravity. In such a scenario, we explore the role of higher curvature terms on the localization of bulk fermions which in turn determines the effective radion-fermion coupling on the brane. Our result reveals that, for appropriate choices of the higher curvature parameter, the profiles of the massless chiral modes of the fermions may get localized near the TeV brane, while those for massive Kaluza-Klein (KK) fermions localize towards the Planck brane. We also explore these features in the dual scalar-tensor model by appropriate transformations. The localization property turns out to be identical in the two models. This rules out the possibility of any signature of massive KK fermions in TeV scale collider experiments due to higher curvature gravity effects. (orig.)
Black holes in the gravity/gauge theory correspondence
International Nuclear Information System (INIS)
Gregory, J.P.
2002-06-01
The AdS/CFT correspondence provides a microscopic description of black hole thermodynamics. In this thesis, I study the relation between the classical physics of black holes and this microscopic description. I first consider the gauge theory's holographic encoding of non-trivial global causal structure, by studying various probes of the black hole. I study the charged black hole, so that the thermal scale is separated from the horizon scale, to demonstrate which relates to the field theory scale size. I find that, when probing the horizon, both Wilson loops and the duals of static supergravity probes have a scale size determined by the horizon, but the field theory scale size is divergent for a time-dependent probe. I also use the bulk black hole geometry to study the physics of the boundary theory. If we consider a dynamical boundary, a braneworld cosmology is induced from the bulk. However, the presence of matter on the brane introduces unconventional quadratic terms in the FRW equations of this braneworld. I find that bulk black holes induce identical unconventional terms on a matterless brane, therefore providing an alternative description of the same cosmology. A new conjecture relating classical and thermodynamic stability of black branes has emerged from the AdS/CFT correspondence. I make progress in proving this for the case of Schwarzschild black holes in a finite cavity. I also extend the conjecture to the supergravity backgrounds of the direct product form Schwarzschild-AdS x Sphere, which are relevant to my study of the AdS/CFT correspondence. (author)
Analysis of Weyl-affine theories of gravity in terms of the gravitational frequency shift effect
International Nuclear Information System (INIS)
Coley, A.A.; Sarmiento, G.A.
1986-01-01
A subclass of nonmetric theories of gravity, called Weyl-affine theories of gravity (WATGs), is analyzed by calculating their predictions for the gravitational frequency shift undergone by a wave signal in a planned solar probe. The analysis is carried out using a formalism in a spherically symmetric and static gravitational field. One of the advantages of the formalism is that any possible ''nonmetricity'' is contained in an arbitrary function, λ, of the Newtonian gravitational potential, U. The numerical results are calculated for a situation modeling a future experiment in the solar system. In the calculations, the metric components and the function, λ, are expanded up to third order in U. Within the limits of the gravitational redshift experiments performed to date, it is found that WATGs must coincide with their metric counterparts (i.e., λ is unity). It is hoped that the planned solar probe will test the nature of the theories under investigation to a higher degree of accuracy
Complexity growth in massive gravity theories, the effects of chirality, and more
Ghodrati, Mahdis
2017-11-01
To study the effect of parity violation on the rate of complexity growth, by using "complexity=action " conjecture, we find the complexity growth rates in different solutions of the chiral theory of topologically massive gravity (TMG) and parity-preserving theory of new massive gravity (NMG). Using the results, one can see that decreasing the parameter μ , which increases the effect of the Chern-Simons term and increases chirality, would increase the rate of growth of complexity. Also one can observe a stronger correlation between complexity growth and temperature rather than complexity growth and entropy. At the end we comment on the possible meaning of the deforming term of chiral Liouville action for the rate of complexity growth of warped conformal field theories in the tensor network renormalization picture.
On the covariant formalism of the effective field theory of gravity and leading order corrections
DEFF Research Database (Denmark)
Codello, Alessandro; Jain, Rajeev Kumar
2016-01-01
We construct the covariant effective field theory of gravity as an expansion in inverse powers of the Planck mass, identifying the leading and next-to-leading quantum corrections. We determine the form of the effective action for the cases of pure gravity with cosmological constant as well...... as gravity coupled to matter. By means of heat kernel methods we renormalize and compute the leading quantum corrections to quadratic order in a curvature expansion. The final effective action in our covariant formalism is generally non-local and can be readily used to understand the phenomenology...... on different spacetimes. In particular, we point out that on curved backgrounds the observable leading quantum gravitational effects are less suppressed than on Minkowski spacetime....
On the covariant formalism of the effective field theory of gravity and leading order corrections
International Nuclear Information System (INIS)
Codello, Alessandro; Jain, Rajeev Kumar
2016-01-01
We construct the covariant effective field theory of gravity as an expansion in inverse powers of the Planck mass, identifying the leading and next-to-leading quantum corrections. We determine the form of the effective action for the cases of pure gravity with cosmological constant as well as gravity coupled to matter. By means of heat kernel methods we renormalize and compute the leading quantum corrections to quadratic order in a curvature expansion. The final effective action in our covariant formalism is generally non-local and can be readily used to understand the phenomenology on different spacetimes. In particular, we point out that on curved backgrounds the observable leading quantum gravitational effects are less suppressed than on Minkowski spacetime. (paper)
An elementary introduction to the Gauge theory approach to gravity. 23
International Nuclear Information System (INIS)
Mukunda, N.
1989-01-01
Can all the forces be unified by a gauge group? Can we get a clue by studying gravity itself which is also a gauge theory by gauging the Poincare group?. The main problems have been in the understanding of the role of invariants of the Lie algebra of the group if one has general covariance. One is led to theories more general than general relativity in that, in addition to curvature, one also has torsion. These and other aspects of gravitation as a gauge theory are treated. (author). 11 refs.; 1 fig
Dynamics of Nearshore Sand Bars and Infra-gravity Waves: The Optimal Theory Point of View
Bouchette, F.; Mohammadi, B.
2016-12-01
It is well known that the dynamics of near-shore sand bars are partly controlled by the features (location of nodes, amplitude, length, period) of the so-called infra-gravity waves. Reciprocally, changes in the location, size and shape of near-shore sand bars can control wave/wave interactions which in their turn alter the infra-gravity content of the near-shore wave energy spectrum. The coupling infra-gravity / near-shore bar is thus definitely two ways. Regarding numerical modelling, several approaches have already been considered to analyze such coupled dynamics. Most of them are based on the following strategy: 1) define an energy spectrum including infra-gravity, 2) tentatively compute the radiation stresses driven by this energy spectrum, 3) compute sediment transport and changes in the seabottom elevation including sand bars, 4) loop on the computation of infra-gravity taking into account the morphological changes. In this work, we consider an alternative approach named Nearshore Optimal Theory, which is a kind of breakdown point of view for the modeling of near-shore hydro-morphodynamics and wave/ wave/ seabottom interactions. Optimal theory applied to near-shore hydro-morphodynamics arose with the design of solid coastal defense structures by shape optimization methods, and is being now extended in order to model dynamics of any near-shore system combining waves and sand. The basics are the following: the near-shore system state is through a functional J representative of the energy of the system in some way. This J is computed from a model embedding the physics to be studied only (here hydrodynamics forced by simple infra-gravity). Then the paradigm is to say that the system will evolve so that the energy J tends to minimize. No really matter the complexity of wave propagation nor wave/bottom interactions. As soon as J embeds the physics to be explored, the method does not require a comprehensive modeling. Near-shore Optimal Theory has already given
The Rh = ct universe in alternative theories of gravity
Sultana, Joseph; Kazanas, Demosthenes
2017-12-01
The Λ cold dark matter (ΛCDM) model (one comprising of a cosmological constant Λ and cold dark matter) is generally considered the standard model in cosmology. One of the alternatives that has received attention in the last few years is the Rh = ct universe, which provides an age for the Universe similar to that of ΛCDM and whose (vanishing) deceleration parameter is apparently not inconsistent with observations. Like the ΛCDM, the Rh = ct universe is based on a Friedmann-Robertson-Walker cosmology with the total energy density ρ and pressure p of the cosmic fluid satisfying the simple equation of state ρ + 3p = 0, i.e. a vanishing total active gravitational mass. In an earlier paper, we examined the possible sources for the Rh = ct universe within general relativity, and we have shown that it still contains a dark energy component, albeit not in the form of a cosmological constant. The growing interest in gravitational theories, alternative to Einstein's general relativity, in cosmology, is mainly driven by the need for cosmological models that attain a late-time accelerated expansion without the presence of a cosmological constant as in the ΛCDM, and thereby avoiding the problems associated with it. In this paper, we discuss some of these common alternative theories and show that the Rh = ct is also a solution to some of them.
Torsion in a gravity theory with SO(k) x SO(d-k) as tangent group
International Nuclear Information System (INIS)
Viswanathan, K.S.; Wong, B.; Simon Fraser Univ., Burnaby, British Columbia
1985-01-01
We consider a d-dimensional theory of gravity where the tangent group is SO(k) x SO(d-k) rather than SO(d) as in riemannian theories. This theory has nonvanishing torsion (which is required if the theory is to yield gauge fields). The torsion is determined consistently in terms of vielbein derivatives. (orig.)
Relations between the SU(2|4) symmetric theories and the gauge gravity correspondence
International Nuclear Information System (INIS)
Tsuchiya, Asato
2008-01-01
We study theories with SU(2|4) symmetry, which include N=4 SYM on R x S 3 /Z k , 2+1 SYM on R x S 2 and the plane wave matrix model. All these theories possess many vacua. From Lin-Maldacena's method which gives the gravity dual of each vacuum, it is suggested that the theory around each vacuum of N=4 SYM on R x S 3 /Z k and 2+1 SYM on R x S 2 is equivalent to the theory around a certain vacuum of the plane wave matrix model. We show this directly on the gauge theory side. We realize theories around multi-monopole backgrounds in matrix model, and extend Taylor's matrix T-duality to that on spheres. (author)
Wigner's little group as a gauge generator in linearized gravity theories
International Nuclear Information System (INIS)
Scaria, Tomy; Chakraborty, Biswajit
2002-01-01
We show that the translational subgroup of Wigner's little group for massless particles in 3 + 1 dimensions generates gauge transformation in linearized Einstein gravity. Similarly, a suitable representation of the one-dimensional translational group T(1) is shown to generate gauge transformation in the linearized Einstein-Chern-Simons theory in 2 + 1 dimensions. These representations are derived systematically from appropriate representations of translational groups which generate gauge transformations in gauge theories living in spacetime of one higher dimension by the technique of dimensional descent. The unified picture thus obtained is compared with a similar picture available for vector gauge theories in 3 + 1 and 2 + 1 dimensions. Finally, the polarization tensor of the Einstein-Pauli-Fierz theory in 2 + 1 dimensions is shown to split into the polarization tensors of a pair of Einstein-Chern-Simons theories with opposite helicities suggesting a doublet structure for the Einstein-Pauli-Fierz theory
Risk analysis of gravity dam instability using credibility theory Monte Carlo simulation model.
Xin, Cao; Chongshi, Gu
2016-01-01
Risk analysis of gravity dam stability involves complicated uncertainty in many design parameters and measured data. Stability failure risk ratio described jointly by probability and possibility has deficiency in characterization of influence of fuzzy factors and representation of the likelihood of risk occurrence in practical engineering. In this article, credibility theory is applied into stability failure risk analysis of gravity dam. Stability of gravity dam is viewed as a hybrid event considering both fuzziness and randomness of failure criterion, design parameters and measured data. Credibility distribution function is conducted as a novel way to represent uncertainty of influence factors of gravity dam stability. And combining with Monte Carlo simulation, corresponding calculation method and procedure are proposed. Based on a dam section, a detailed application of the modeling approach on risk calculation of both dam foundation and double sliding surfaces is provided. The results show that, the present method is feasible to be applied on analysis of stability failure risk for gravity dams. The risk assessment obtained can reflect influence of both sorts of uncertainty, and is suitable as an index value.
Chakravarty, G. K.; Mohanty, S.; Lambiase, G.
Cosmological and astrophysical observations lead to the emerging picture of a universe that is spatially flat and presently undertaking an accelerated expansion. The observations supporting this picture come from a range of measurements encompassing estimates of galaxy cluster masses, the Hubble diagram derived from type-Ia supernovae observations, the measurements of Cosmic Microwave Background radiation anisotropies, etc. The present accelerated expansion of the universe can be explained by admitting the existence of a cosmic fluid, with negative pressure. In the simplest scenario, this unknown component of the universe, the Dark Energy, is represented by the cosmological constant (Λ), and accounts for about 70% of the global energy budget of the universe. The remaining 30% consist of a small fraction of baryons (4%) with the rest being Cold Dark Matter (CDM). The Lambda Cold Dark Matter (ΛCDM) model, i.e. General Relativity with cosmological constant, is in good agreement with observations. It can be assumed as the first step towards a new standard cosmological model. However, despite the satisfying agreement with observations, the ΛCDM model presents lack of congruence and shortcomings and therefore theories beyond Einstein’s General Relativity are called for. Many extensions of Einstein’s theory of gravity have been studied and proposed with various motivations like the quest for a quantum theory of gravity to extensions of anomalies in observations at the solar system, galactic and cosmological scales. These extensions include adding higher powers of Ricci curvature R, coupling the Ricci curvature with scalar fields and generalized functions of R. In addition, when viewed from the perspective of Supergravity (SUGRA), many of these theories may originate from the same SUGRA theory, but interpreted in different frames. SUGRA therefore serves as a good framework for organizing and generalizing theories of gravity beyond General Relativity. All these
The Brans-Dicke gravity as a theory of dark matter
International Nuclear Information System (INIS)
Kim, Hongsu
2010-01-01
The pure Brans-Dicke (BD) gravity with or without the cosmological constant Λ has been taken as a model theory for dark matter. Indeed, there has been a consensus that unless one modifies either the standard theory of gravity, namely, general relativity, or the standard model for particle physics, or both, one can never achieve a satisfying understanding of the phenomena associated with dark matter and dark energy. Along this line, our dark matter model in this work can be thought of as an attempt to modify the gravity side alone in the simplest fashion to achieve the goal. Among others, it is demonstrated that our model theory can successfully predict the emergence of a dark matter halo-like configuration in terms of a self-gravitating spacetime solution to the BD field equations and reproduce the flattened rotation curve in this dark halo-like object in terms of the non-trivial energy density of the BD scalar field, which was absent in the context of general relativity, where Newton's constant is strictly a 'constant' having no dynamics. Our model theory, however, is not entirely without flaw, such as the prediction of relativistic jets in all types of galaxies, which actually is not the case.
The current ability to test theories of gravity with black hole shadows
Mizuno, Yosuke; Younsi, Ziri; Fromm, Christian M.; Porth, Oliver; De Laurentis, Mariafelicia; Olivares, Hector; Falcke, Heino; Kramer, Michael; Rezzolla, Luciano
2018-04-01
Our Galactic Centre, Sagittarius A*, is believed to harbour a supermassive black hole, as suggested by observations tracking individual orbiting stars1,2. Upcoming submillimetre very-long baseline interferometry images of Sagittarius A* carried out by the Event Horizon Telescope collaboration (EHTC)3,4 are expected to provide critical evidence for the existence of this supermassive black hole5,6. We assess our present ability to use EHTC images to determine whether they correspond to a Kerr black hole as predicted by Einstein's theory of general relativity or to a black hole in alternative theories of gravity. To this end, we perform general-relativistic magnetohydrodynamical simulations and use general-relativistic radiative-transfer calculations to generate synthetic shadow images of a magnetized accretion flow onto a Kerr black hole. In addition, we perform these simulations and calculations for a dilaton black hole, which we take as a representative solution of an alternative theory of gravity. Adopting the very-long baseline interferometry configuration from the 2017 EHTC campaign, we find that it could be extremely difficult to distinguish between black holes from different theories of gravity, thus highlighting that great caution is needed when interpreting black hole images as tests of general relativity.
Quantum fields in the non-perturbative regime. Yang-Mills theory and gravity
Energy Technology Data Exchange (ETDEWEB)
Eichhorn, Astrid
2011-09-06
In this thesis we study candidates for fundamental quantum field theories, namely non-Abelian gauge theories and asymptotically safe quantum gravity. Whereas the first ones have a stronglyinteracting low-energy limit, the second one enters a non-perturbative regime at high energies. Thus, we apply a tool suited to the study of quantum field theories beyond the perturbative regime, namely the Functional Renormalisation Group. In a first part, we concentrate on the physical properties of non-Abelian gauge theories at low energies. Focussing on the vacuum properties of the theory, we present an evaluation of the full effective potential for the field strength invariant F{sub {mu}}{sub {nu}}F{sup {mu}}{sup {nu}} from non-perturbative gauge correlation functions and find a non-trivial minimum corresponding to the existence of a dimension four gluon condensate in the vacuum. We also relate the infrared asymptotic form of the {beta} function of the running background-gauge coupling to the asymptotic behavior of Landau-gauge gluon and ghost propagators and derive an upper bound on their scaling exponents. We then consider the theory at finite temperature and study the nature of the confinement phase transition in d = 3+1 dimensions in various non-Abelian gauge theories. For SU(N) with N= 3,..,12 and Sp(2) we find a first-order phase transition in agreement with general expectations. Moreover our study suggests that the phase transition in E(7) Yang-Mills theory also is of first order. Our studies shed light on the question which property of a gauge group determines the order of the phase transition. In a second part we consider asymptotically safe quantum gravity. Here, we focus on the Faddeev-Popov ghost sector of the theory, to study its properties in the context of an interacting UV regime. We investigate several truncations, which all lend support to the conjecture that gravity may be asymptotically safe. In a first truncation, we study the ghost anomalous dimension
Quantum fields in the non-perturbative regime. Yang-Mills theory and gravity
International Nuclear Information System (INIS)
Eichhorn, Astrid
2011-01-01
In this thesis we study candidates for fundamental quantum field theories, namely non-Abelian gauge theories and asymptotically safe quantum gravity. Whereas the first ones have a stronglyinteracting low-energy limit, the second one enters a non-perturbative regime at high energies. Thus, we apply a tool suited to the study of quantum field theories beyond the perturbative regime, namely the Functional Renormalisation Group. In a first part, we concentrate on the physical properties of non-Abelian gauge theories at low energies. Focussing on the vacuum properties of the theory, we present an evaluation of the full effective potential for the field strength invariant F μν F μν from non-perturbative gauge correlation functions and find a non-trivial minimum corresponding to the existence of a dimension four gluon condensate in the vacuum. We also relate the infrared asymptotic form of the β function of the running background-gauge coupling to the asymptotic behavior of Landau-gauge gluon and ghost propagators and derive an upper bound on their scaling exponents. We then consider the theory at finite temperature and study the nature of the confinement phase transition in d = 3+1 dimensions in various non-Abelian gauge theories. For SU(N) with N= 3,..,12 and Sp(2) we find a first-order phase transition in agreement with general expectations. Moreover our study suggests that the phase transition in E(7) Yang-Mills theory also is of first order. Our studies shed light on the question which property of a gauge group determines the order of the phase transition. In a second part we consider asymptotically safe quantum gravity. Here, we focus on the Faddeev-Popov ghost sector of the theory, to study its properties in the context of an interacting UV regime. We investigate several truncations, which all lend support to the conjecture that gravity may be asymptotically safe. In a first truncation, we study the ghost anomalous dimension which we find to be negative at the
Cosmological singularity theorems for f ( R ) gravity theories
Energy Technology Data Exchange (ETDEWEB)
Alani, Ivo [Departamento de Física and IFIBA, Facultad de Ciencias Exactas y Naturales UBA Pabellón 1, Ciudad Universitaria (1428) C.A.B.A, Buenos Aires (Argentina); Santillán, Osvaldo P., E-mail: firenzecita@hotmail.com, E-mail: osantil@dm.uba.ar [Instituto de Matemáticas Luis Santaló (IMAS), Facultad de Ciencias Exactas y Naturales UBA Pabellón 1, Ciudad Universitaria (1428) C.A.B.A, Buenos Aires (Argentina)
2016-05-01
In the present work some generalizations of the Hawking singularity theorems in the context of f ( R ) theories are presented. The main assumptions are: the matter fields stress energy tensor satisfies the condition ( T {sub ij} −( g {sub ij} /2) T ) k {sup i} k {sup j} ≥ 0 for any generic unit time like field k {sup i} ; the scalaron takes bounded positive values during its evolution and the resulting space time is globally hyperbolic. Then, if there exist a Cauchy hyper-surface Σ for which the expansion parameter θ of the geodesic congruence emanating orthogonally from Σ satisfies some specific bounds, then the resulting space time is geodesically incomplete. Some mathematical results of reference [92] are very important for proving this. The generalized theorems presented here apply directly for some specific models such as the Hu-Sawicki or Starobinsky ones [27,38]. For other scenarios, some extra assumptions should be implemented in order to have a geodesically incomplete space time. The hypothesis considered in this text are sufficient, but not necessary. In other words, their negation does not imply that a singularity is absent.
Cosmological singularity theorems for f ( R ) gravity theories
International Nuclear Information System (INIS)
Alani, Ivo; Santillán, Osvaldo P.
2016-01-01
In the present work some generalizations of the Hawking singularity theorems in the context of f ( R ) theories are presented. The main assumptions are: the matter fields stress energy tensor satisfies the condition ( T ij −( g ij /2) T ) k i k j ≥ 0 for any generic unit time like field k i ; the scalaron takes bounded positive values during its evolution and the resulting space time is globally hyperbolic. Then, if there exist a Cauchy hyper-surface Σ for which the expansion parameter θ of the geodesic congruence emanating orthogonally from Σ satisfies some specific bounds, then the resulting space time is geodesically incomplete. Some mathematical results of reference [92] are very important for proving this. The generalized theorems presented here apply directly for some specific models such as the Hu-Sawicki or Starobinsky ones [27,38]. For other scenarios, some extra assumptions should be implemented in order to have a geodesically incomplete space time. The hypothesis considered in this text are sufficient, but not necessary. In other words, their negation does not imply that a singularity is absent.
Kaluza–Klein-type models of de Sitter and Poincaré gauge theories of gravity
International Nuclear Information System (INIS)
Lu Jiaan; Huang Chaoguang
2013-01-01
We construct Kaluza–Klein-type models with a de Sitter or Minkowski bundle in the de Sitter or Poincaré gauge theory of gravity, respectively. A manifestly gauge-invariant formalism has been given. The gravitational dynamics is constructed by the geometry of the de Sitter or Minkowski bundle and a global section which plays an important role in the gauge-invariant formalism. Unlike the old Kaluza–Klein-type models of gauge theory of gravity, a suitable cosmological term can be obtained in the Lagrangian of our models and the models in the spin-current-free and torsion-free limit will come back to general relativity with a corresponding cosmological term. We also generalize the results to the case with a variable cosmological term. (paper)
The quantum cosmological wavefunction at very early times for a quadratic gravity theory
International Nuclear Information System (INIS)
Davis, Simon
2003-01-01
The quantum cosmological wavefunction for a quadratic gravity theory derived from the heterotic string effective action is obtained near the inflationary epoch and during the initial Planck era. Neglecting derivatives with respect to the scalar field, the wavefunction would satisfy a third-order differential equation near the inflationary epoch which has a solution that is singular in the scale factor limit a(t) → 0. When scalar field derivatives are included, a sixth-order differential equation is obtained for the wavefunction and the solution by Mellin transform is regular in the a → 0 limit. It follows that inclusion of the scalar field in the quadratic gravity action is necessary for consistency of the quantum cosmology of the theory at very early times
Determination of angle of light deflection in higher-derivative gravity theories
Xu, Chenmei; Yang, Yisong
2018-03-01
Gravitational light deflection is known as one of three classical tests of general relativity and the angle of deflection may be computed explicitly using approximate or exact solutions describing the gravitational force generated from a point mass. In various generalized gravity theories, however, such explicit determination is often impossible due to the difficulty in obtaining an exact expression for the deflection angle. In this work, we present some highly effective globally convergent iterative methods to determine the angle of semiclassical gravitational deflection in higher- and infinite-derivative formalisms of quantum gravity theories. We also establish the universal properties that the deflection angle always stays below the classical Einstein angle and is a strictly decreasing function of the incident photon energy, in these formalisms.
Aspects of Nonlocality in Quantum Field Theory, Quantum Gravity and Cosmology
Barvinsky, A O
2015-01-01
This paper contains a collection of essays on nonlocal phenomena in quantum field theory, gravity and cosmology. Mechanisms of nonlocal contributions to the quantum effective action are discussed within the covariant perturbation expansion in field strengths and spacetime curvatures and the nonperturbative method based on the late time asymptotics of the heat kernel. Euclidean version of the Schwinger-Keldysh technique for quantum expectation values is presented as a special rule of obtaining the nonlocal effective equations of motion for the mean quantum field from the Euclidean effective action. This rule is applied to a new model of ghost free nonlocal cosmology which can generate the de Sitter stage of cosmological evolution at an arbitrary value of $\\varLambda$ -- a model of dark energy with its scale played by the dynamical variable that can be fixed by a kind of a scaling symmetry breaking mechanism. This model is shown to interpolate between the superhorizon phase of gravity theory mediated by a scala...
Unusual square roots in the ghost-free theory of massive gravity
Golovnev, Alexey; Smirnov, Fedor
2017-06-01
A crucial building block of the ghost free massive gravity is the square root function of a matrix. This is a problematic entity from the viewpoint of existence and uniqueness properties. We accurately describe the freedom of choosing a square root of a (non-degenerate) matrix. It has discrete and (in special cases) continuous parts. When continuous freedom is present, the usual perturbation theory in terms of matrices can be critically ill defined for some choices of the square root. We consider the new formulation of massive and bimetric gravity which deals directly with eigenvalues (in disguise of elementary symmetric polynomials) instead of matrices. It allows for a meaningful discussion of perturbation theory in such cases, even though certain non-analytic features arise.
Effective equivalence of the Einstein-Cartan and Einstein theories of gravity
International Nuclear Information System (INIS)
Nester, J.M.
1977-01-01
I prove that, for any choice of minimally coupled source field Lagrangian for the Einstein-Cartan-Sciama-Kibble theory of gravity, there exists a related minimally coupled source field Lagrangian for the Einstein theory which produces the same field equations for the metric and source field. By using a standard first-order form for source Lagrangians, the converse is also demonstrated. This establishes a one-to-one correspondence between source Lagrangians for the two theories which clearly reveals their similarities and their differences. Because of this ''equivalence,'' one can view either theory, in terms of the other, as minimal coupling for a related Minkowski source Lagrangian or as nonminimal coupling for the same Minkowski source Lagrangian. Consequently the two theories are, in this sense, indistinguishable. Some other implications of this ''equivalence'' are discussed
Cosmic censorship and Weak Gravity Conjecture in the Einstein-Maxwell-dilaton theory
Yu, Ten-Yeh; Wen, Wen-Yu
2018-06-01
We explore the cosmic censorship in the Einstein-Maxwell-dilaton theory following Wald's thought experiment to destroy a black hole by throwing in a test particle. We discover that at probe limit the extremal charged dilaton black hole could be destroyed by a test particle with specific energy. Nevertheless the censorship is well protected if backreaction or self-force is included. At the end, we discuss an interesting connection between Hoop Conjecture and Weak Gravity Conjecture.
DEFF Research Database (Denmark)
Codello, Alessandro; Jain, Rajeev Kumar
2017-01-01
Following our previous work wherein the leading order effective action was computed in the covariant effective field theory of gravity, here we specialize the effective action to the FRW spacetime and obtain the effective Friedmann equations. In particular, we focus our attention on studying...... expansion of the universe at the present epoch even in the absence of a cosmological constant. We briefly discuss some phenomenological consequences of our results....
A Unified Field Theory of Gravity, Electromagnetism, and the Yang-Mills Gauge Field
Directory of Open Access Journals (Sweden)
Suhendro I.
2008-01-01
Full Text Available In this work, we attempt at constructing a comprehensive four-dimensional unified field theory of gravity, electromagnetism, and the non-Abelian Yang-Mills gauge field in which the gravitational, electromagnetic, and material spin fields are unified as intrinsic geometric objects of the space-time manifold S4 via the connection, with the general- ized non-Abelian Yang-Mills gauge field appearing in particular as a sub-field of the geometrized electromagnetic interaction.
The effective action in (2+1)-dimensional gravity and generalized BF topological field theory
Energy Technology Data Exchange (ETDEWEB)
Birmingham, D. (Theory Div., CERN, Geneva (Switzerland)); Gibbs, R.; Mokhtari, S. (Physics Dept., Louisiana Tech Univ., Ruston, LA (United States))
1991-07-11
The one-loop off-shell effective action is studied for the case of generalized BF theories in three dimensions, including, for example, (2 + 1)-dimensional gravity with a cosmological constant. The phase contribution to the effective action, originating from the {eta}-function of a particular first order operator, is calculated using a momentum space technique. It is found that the {eta}-function is proportional to the classical action. (orig.).
The effective action in (2+1)-dimensional gravity and generalized BF topological field theory
International Nuclear Information System (INIS)
Birmingham, D.; Gibbs, R.; Mokhtari, S.
1991-01-01
The one-loop off-shell effective action is studied for the case of generalized BF theories in three dimensions, including, for example, (2 + 1)-dimensional gravity with a cosmological constant. The phase contribution to the effective action, originating from the η-function of a particular first order operator, is calculated using a momentum space technique. It is found that the η-function is proportional to the classical action. (orig.)
Gravity Dual for Reggeon Field Theory and Non-linear Quantum Finance
Yu Nakayama
2009-01-01
We study scale invariant but not necessarily conformal invariant deformations of non-relativistic conformal field theories from the dual gravity viewpoint. We present the corresponding metric that solves the Einstein equation coupled with a massive vector field. We find that, within the class of metric we study, when we assume the Galilean invariance, the scale invariant deformation always preserves the non-relativistic conformal invariance. We discuss applications to scaling regime of Reggeo...
The parameterized post-Newtonian limit of bimetric theories of gravity
International Nuclear Information System (INIS)
Clifton, Timothy; Banados, Maximo; Skordis, Constantinos
2010-01-01
We consider the post-Newtonian limit of a general class of bimetric theories of gravity, in which both metrics are dynamical. The established parameterized post-Newtonian approach is followed as closely as possible, although new potentials are found that do not exist within the standard framework. It is found that these theories can evade solar system tests of post-Newtonian gravity remarkably well. We show that perturbations about Minkowski space in these theories contain both massless and massive degrees of freedom, and that in general there are two different types of massive mode, each with a different mass parameter. If both of these masses are sufficiently large then the predictions of the most general class of theories we consider are indistinguishable from those of general relativity, up to post-Newtonian order in a weak-field, low-velocity expansion. In the limit that the massive modes become massless, we find that these general theories do not exhibit a van Dam-Veltman-Zakharov-like discontinuity in their γ parameter, although there are discontinuities in other post-Newtonian parameters as the massless limit is approached. This smooth behaviour in γ is due to the discontinuities from each of the two different massive modes cancelling each other out. Such cancellations cannot occur in special cases with only one massive mode, such as the Isham-Salam-Strathdee theory.
Spherical thin shells in F(R) gravity. Construction and stability
Energy Technology Data Exchange (ETDEWEB)
Eiroa, Ernesto F. [Instituto de Astronomia y Fisica del Espacio (IAFE, CONICET-UBA), Buenos Aires (Argentina); Universidad de Buenos Aires, Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Buenos Aires (Argentina); Figueroa Aguirre, Griselda [Instituto de Astronomia y Fisica del Espacio (IAFE, CONICET-UBA), Buenos Aires (Argentina)
2018-01-15
We present a broad class of spherical thin shells of matter in F(R) gravity. We show that the corresponding junction conditions determine the equation of state between the energy density and the pressure/tension at the surface. We analyze the stability of the static configurations under perturbations preserving the symmetry. We apply the formalism to the construction of charged bubbles and we find that there exist stable static configurations for a suitable set of the parameters of the model. (orig.)
Spherical thin shells in F(R) gravity. Construction and stability
International Nuclear Information System (INIS)
Eiroa, Ernesto F.; Figueroa Aguirre, Griselda
2018-01-01
We present a broad class of spherical thin shells of matter in F(R) gravity. We show that the corresponding junction conditions determine the equation of state between the energy density and the pressure/tension at the surface. We analyze the stability of the static configurations under perturbations preserving the symmetry. We apply the formalism to the construction of charged bubbles and we find that there exist stable static configurations for a suitable set of the parameters of the model. (orig.)
de Rham, Claudia
2014-01-01
We review recent progress in massive gravity. We start by showing how different theories of massive gravity emerge from a higher-dimensional theory of general relativity, leading to the Dvali–Gabadadze–Porrati model (DGP), cascading gravity, and ghost-free massive gravity. We then explore their theoretical and phenomenological consistency, proving the absence of Boulware–Deser ghosts and reviewing the Vainshtein mechanism and the cosmological solutions in these models. Finally, we present alt...
Exact solutions for scalar field cosmology in f(R) gravity
Maharaj, S. D.; Goswami, R.; Chervon, S. V.; Nikolaev, A. V.
2017-09-01
We study scalar field FLRW cosmology in the content of f(R) gravity. Our consideration is restricted to the spatially flat Friedmann universe. We derived the general evolution equations of the model, and showed that the scalar field equation is automatically satisfied for any form of the f(R) function. We also derived representations for kinetic and potential energies, as well as for the acceleration in terms of the Hubble parameter and the form of the f(R) function. Next we found the exact cosmological solutions in modified gravity without specifying the f(R) function. With negligible acceleration of the scalar curvature, we found that the de Sitter inflationary solution is always attained. Also we obtained new solutions with special restrictions on the integration constants. These solutions contain oscillating, accelerating, decelerating and even contracting universes. For further investigation, we selected special cases which can be applied with early or late inflation. We also found exact solutions for the general case for the model with negligible acceleration of the scalar curvature in terms of special Airy functions. Using initial conditions which represent the universe at the present epoch, we determined the constants of integration. This allows for the comparison of the scale factor in the new solutions with that for current stage of the universe evolution in the ΛCDM model.
Mixmaster cosmological model in theories of gravity with a quadratic Lagrangian
International Nuclear Information System (INIS)
Barrow, J.D.; Sirousse-Zia, H.
1989-01-01
We use the method of matched asymptotic expansions to examine the behavior of the vacuum Bianchi type-IX mixmaster universe in a gravity theory derived from a purely quadratic gravitational Lagrangian. The chaotic behavior characteristic of the general-relativistic mixmaster model disappears and the asymptotic behavior is of the monotonic, nonchaotic form found in the exactly soluble Bianchi type-I models of the quadratic theory. The asymptotic behavior far from the singularity is also found to be of monotonic nonchaotic type
A new quantum representation for canonical gravity and SU(2) Yang-Mills theory
International Nuclear Information System (INIS)
Loll, R.
1990-04-01
Starting from Rovelli-Smolin's infinite-dimensional graded Poisson-bracket algebra of loop variables, we propose a new way of constructing a corresponding quantum representation. After eliminating certain quadratic constraints, we 'integrate' an infinite-dimensional subalgebra of loop variables, using a formal group law expansion. With the help of techniques from the representation theory of semidirect-product groups, we find an exact quantum representation of the full classical Poisson-bracket algebra of loop variables, without any higher-order correction terms. This opens new ways of tackling the quantum dynamics for both canonical gravity and Yang-Mills theory. (orig.)
A new quantum representation for canonical gravity and SU(2) Yang-Mills theory
International Nuclear Information System (INIS)
Loll, R.
1991-01-01
Starting from Rovelli-Smolin's infinite-dimensional graded Poisson-bracket algebra of loop variables, we propose a new way of constructing a corresponding quantum representation. After eliminating certain quadratic constraints, we 'integrate' an infinite-dimensional subalgebra of loop variables, using a formal group law expansion. With the help of techniques from the representation theory of semidirect-product groups, we find an exact quantum representation of the full classical Poisson-bracket algebra of loop variables, without any higher-order correction terms. This opens new ways of tackling the quantum dynamics for both canonical gravity and Yang-Mills theory. (orig.)
Quantum analysis of Jackiw and Teitelboim's model for (1+1)D gravity and topological gauge theory
International Nuclear Information System (INIS)
Terao, Haruhiko
1993-01-01
We study the BRST quantization of the (1+1)-dimensional gravity model proposed by Jackiw and Teitelboim and also the topological gauge model which is equivalent to the gravity model at least classically. The gravity model quantized in the light-cone gauge is found to be a free theory with a nilpotent BRST charge. We show also that there exist twisted N=2 superconformal algebras in the Jackiw-Teitelboim model as well as in the topological gauge model. We discuss the quantum equivalence between the gravity theory and the topological gauge theory. It is shown that these theories are indeed equivalent to each other in the light-cone gauge. (orig.)
Effective gravitational wave stress-energy tensor in alternative theories of gravity
International Nuclear Information System (INIS)
Stein, Leo C.; Yunes, Nicolas
2011-01-01
The inspiral of binary systems in vacuum is controlled by the stress-energy of gravitational radiation and any other propagating degrees of freedom. For gravitational waves, the dominant contribution is characterized by an effective stress-energy tensor at future null infinity. We employ perturbation theory and the short-wavelength approximation to compute this stress-energy tensor in a wide class of alternative theories. We find that this tensor is generally a modification of that first computed by Isaacson, where the corrections can dominate over the general relativistic term. In a wide class of theories, however, these corrections identically vanish at asymptotically flat, future, null infinity, reducing the stress-energy tensor to Isaacson's. We exemplify this phenomenon by first considering dynamical Chern-Simons modified gravity, which corrects the action via a scalar field and the contraction of the Riemann tensor and its dual. We then consider a wide class of theories with dynamical scalar fields coupled to higher-order curvature invariants and show that the gravitational wave stress-energy tensor still reduces to Isaacson's. The calculations presented in this paper are crucial to perform systematic tests of such modified gravity theories through the orbital decay of binary pulsars or through gravitational wave observations.
Medium generated gap in gravity and a 3D gauge theory
Gabadadze, Gregory; Older, Daniel
2018-05-01
It is well known that a physical medium that sets a Lorentz frame generates a Lorentz-breaking gap for a graviton. We examine such generated "mass" terms in the presence of a fluid medium whose ground state spontaneously breaks spatial translation invariance in d =D +1 spacetime dimensions, and for a solid in D =2 spatial dimensions. By requiring energy positivity and subluminal propagation, certain constraints are placed on the equation of state of the medium. In the case of D =2 spatial dimensions, classical gravity can be recast as a Chern-Simons gauge theory, and motivated by this we recast the massive theory of gravity in AdS3 as a massive Chern-Simons gauge theory with an unusual mass term. We find that in the flat space limit the Chern-Simons theory has a novel gauge invariance that mixes the kinetic and mass terms, and enables the massive theory with a noncompact internal group to be free of ghosts and tachyons.
A flat Chern-Simons gauge theory for (2+1)-dimensional gravity coupled to point particles
International Nuclear Information System (INIS)
Grignani, G.; Nardelli, G.
1991-01-01
We present a classical ISO (2,1) Chern-Simons gauge theory for planar gravity coupled to point-like sources. The theory is defined in terms of flat coordinates whose relation with the space-time coordinates is established. Though flat, the theory is equivalent to Einstein's as we show explicitly in two examples. (orig.)
Discrete gravity as a local theory of the Poincare group in the first-order formalism
Energy Technology Data Exchange (ETDEWEB)
Gionti, Gabriele [Vatican Observatory Research Group, Steward Observatory, 933 North Cherry Avenue, University of Arizona, Tucson, AZ 85721 (United States); Specola Vaticana, V-00120 Citta Del Vaticano (Vatican City State, Holy See,)
2005-10-21
A discrete theory of gravity, locally invariant under the Poincare group, is considered as in a companion paper. We define a first-order theory, in the sense of Palatini, on the metric-dual Voronoi complex of a simplicial complex. We follow the same spirit as the continuum theory of general relativity in the Cartan formalism. The field equations are carefully derived taking in account the constraints of the theory. They look very similar to first-order Einstein continuum equations in the Cartan formalism. It is shown that in the limit of small deficit angles these equations have Regge calculus, locally, as the only solution. A quantum measure is easily defined which does not suffer the ambiguities of Regge calculus, and a coupling with fermionic matter is easily introduced.
Discrete gravity as a local theory of the Poincare group in the first-order formalism
International Nuclear Information System (INIS)
Gionti, Gabriele
2005-01-01
A discrete theory of gravity, locally invariant under the Poincare group, is considered as in a companion paper. We define a first-order theory, in the sense of Palatini, on the metric-dual Voronoi complex of a simplicial complex. We follow the same spirit as the continuum theory of general relativity in the Cartan formalism. The field equations are carefully derived taking in account the constraints of the theory. They look very similar to first-order Einstein continuum equations in the Cartan formalism. It is shown that in the limit of small deficit angles these equations have Regge calculus, locally, as the only solution. A quantum measure is easily defined which does not suffer the ambiguities of Regge calculus, and a coupling with fermionic matter is easily introduced
International Nuclear Information System (INIS)
Valkenburg, Wessel; Hu, Bin
2015-01-01
We present a description for setting initial particle displacements and field values for simulations of arbitrary metric theories of gravity, for perfect and imperfect fluids with arbitrary characteristics. We extend the Zel'dovich Approximation to nontrivial theories of gravity, and show how scale dependence implies curved particle paths, even in the entirely linear regime of perturbations. For a viable choice of Effective Field Theory of Modified Gravity, initial conditions set at high redshifts are affected at the level of up to 5% at Mpc scales, which exemplifies the importance of going beyond Λ-Cold Dark Matter initial conditions for modifications of gravity outside of the quasi-static approximation. In addition, we show initial conditions for a simulation where a scalar modification of gravity is modelled in a Lagrangian particle-like description. Our description paves the way for simulations and mock galaxy catalogs under theories of gravity beyond the standard model, crucial for progress towards precision tests of gravity and cosmology
Nature of Microscopic Black Holes and Gravity in Theories with Particle Species
Dvali, Gia
2010-01-01
Relying solely on unitarity and the consistency with large-distance black hole physics, we derive model-independent properties of the microscopic black holes and of short-distance gravity in theories with N particle species. In this class of theories black holes can be as light as M_{Planck}/\\sqrt{N} and be produced in particle collisions above this energy. We show, that the micro black holes must come in the same variety as the species do, although their label is not associated with any conserved charge measurable at large distances. In contrast with big Schwarzschildian ones, the evaporation of the smallest black holes is maximally undemocratic and is biased in favor of particular species. With an increasing mass the democracy characteristic to the usual macro black holes is gradually regained. The lowest possible mass above which black holes become Einsteinian is \\sqrt{N} M_{Planck}. This fact uncovers the new fundamental scale (below the quantum gravity scale) above which gravity changes classically, and ...
Towards quantum gravity: a framework for probabilistic theories with non-fixed causal structure
International Nuclear Information System (INIS)
Hardy, Lucien
2007-01-01
General relativity is a deterministic theory with non-fixed causal structure. Quantum theory is a probabilistic theory with fixed causal structure. In this paper, we build a framework for probabilistic theories with non-fixed causal structure. This combines the radical elements of general relativity and quantum theory. We adopt an operational methodology for the purposes of theory construction (though without committing to operationalism as a fundamental philosophy). The key idea in the construction is physical compression. A physical theory relates quantities. Thus, if we specify a sufficiently large set of quantities (this is the compressed set), we can calculate all the others. We apply three levels of physical compression. First, we apply it locally to quantities (actually probabilities) that might be measured in a particular region of spacetime. Then we consider composite regions. We find that there is a second level of physical compression for a composite region over and above the first level physical compression for the component regions. Each application of first and second level physical compression is quantified by a matrix. We find that these matrices themselves are related by the physical theory and can therefore be subject to compression. This is the third level of physical compression. The third level of physical compression gives rise to a new mathematical object which we call the causaloid. From the causaloid for a particular physical theory we can calculate everything the physical theory can calculate. This approach allows us to set up a framework for calculating probabilistic correlations in data without imposing a fixed causal structure (such as a background time). We show how to put quantum theory in this framework (thus providing a new formulation of this theory). We indicate how general relativity might be put into this framework and how the framework might be used to construct a theory of quantum gravity
Generalized Lagrangian Path Approach to Manifestly-Covariant Quantum Gravity Theory
Directory of Open Access Journals (Sweden)
Massimo Tessarotto
2018-03-01
Full Text Available A trajectory-based representation for the quantum theory of the gravitational field is formulated. This is achieved in terms of a covariant Generalized Lagrangian-Path (GLP approach which relies on a suitable statistical representation of Bohmian Lagrangian trajectories, referred to here as GLP-representation. The result is established in the framework of the manifestly-covariant quantum gravity theory (CQG-theory proposed recently and the related CQG-wave equation advancing in proper-time the quantum state associated with massive gravitons. Generally non-stationary analytical solutions for the CQG-wave equation with non-vanishing cosmological constant are determined in such a framework, which exhibit Gaussian-like probability densities that are non-dispersive in proper-time. As a remarkable outcome of the theory achieved by implementing these analytical solutions, the existence of an emergent gravity phenomenon is proven to hold. Accordingly, it is shown that a mean-field background space-time metric tensor can be expressed in terms of a suitable statistical average of stochastic fluctuations of the quantum gravitational field whose quantum-wave dynamics is described by GLP trajectories.
International Nuclear Information System (INIS)
Biswas, Tirthabir; Koivisto, Tomi; Mazumdar, Anupam
2010-01-01
One of the greatest problems of standard cosmology is the Big Bang singularity. Previously it has been shown that non-local ghostfree higher-derivative modifications of Einstein gravity in the ultra-violet regime can admit non-singular bouncing solutions. In this paper we study in more details the dynamical properties of the equations of motion for these theories of gravity in presence of positive and negative cosmological constants and radiation. We find stable inflationary attractor solutions in the presence of a positive cosmological constant which renders inflation geodesically complete, while in the presence of a negative cosmological constant a cyclic universe emerges. We also provide an algorithm for tracking the super-Hubble perturbations during the bounce and show that the bouncing solutions are free from any perturbative instability
Stability of Einstein static universe in gravity theory with a non-minimal derivative coupling
Energy Technology Data Exchange (ETDEWEB)
Huang, Qihong [Hunan Normal University, Department of Physics and Synergetic Innovation Center for Quantum Effects and Applications, Changsha, Hunan (China); Zunyi Normal College, School of Physics and Electronic Science, Zunyi (China); Wu, Puxun [Hunan Normal University, Department of Physics and Synergetic Innovation Center for Quantum Effects and Applications, Changsha, Hunan (China); Peking University, Center for High Energy Physics, Beijing (China); Yu, Hongwei [Hunan Normal University, Department of Physics and Synergetic Innovation Center for Quantum Effects and Applications, Changsha, Hunan (China)
2018-01-15
The emergent mechanism provides a possible way to resolve the big-bang singularity problem by assuming that our universe originates from the Einstein static (ES) state. Thus, the existence of a stable ES solution becomes a very crucial prerequisite for the emergent scenario. In this paper, we study the stability of an ES universe in gravity theory with a non-minimal coupling between the kinetic term of a scalar field and the Einstein tensor. We find that the ES solution is stable under both scalar and tensor perturbations when the model parameters satisfy certain conditions, which indicates that the big-bang singularity can be avoided successfully by the emergent mechanism in the non-minimally kinetic coupled gravity. (orig.)
Stability of Einstein static universe in gravity theory with a non-minimal derivative coupling
Huang, Qihong; Wu, Puxun; Yu, Hongwei
2018-01-01
The emergent mechanism provides a possible way to resolve the big-bang singularity problem by assuming that our universe originates from the Einstein static (ES) state. Thus, the existence of a stable ES solution becomes a very crucial prerequisite for the emergent scenario. In this paper, we study the stability of an ES universe in gravity theory with a non-minimal coupling between the kinetic term of a scalar field and the Einstein tensor. We find that the ES solution is stable under both scalar and tensor perturbations when the model parameters satisfy certain conditions, which indicates that the big-bang singularity can be avoided successfully by the emergent mechanism in the non-minimally kinetic coupled gravity.
Hořava-Lifshitz gravity and effective theory of the fractional quantum Hall effect
Energy Technology Data Exchange (ETDEWEB)
Wu, Chaolun [Kadanoff Center for Theoretical Physics and Enrico Fermi Institute, University of Chicago,Chicago, Illinois 60637 (United States); Wu, Shao-Feng [Department of Physics, Shanghai University,Shanghai 200444 (China); Kadanoff Center for Theoretical Physics and Enrico Fermi Institute, University of Chicago,Chicago, Illinois 60637 (United States)
2015-01-22
We show that Hořava-Lifshitz gravity theory can be employed as a covariant framework to build an effective field theory for the fractional quantum Hall effect that respects all the spacetime symmetries such as non-relativistic diffeomorphism invariance and anisotropic Weyl invariance as well as the gauge symmetry. The key to this formalism is a set of correspondence relations that maps all the field degrees of freedom in the Hořava-Lifshitz gravity theory to external background (source) fields among others in the effective action of the quantum Hall effect, according to their symmetry transformation properties. We originally derive the map as a holographic dictionary, but its form is independent of the existence of holographic duality. This paves the way for the application of Hořava-Lifshitz holography on fractional quantum Hall effect. Using the simplest holographic Chern-Simons model, we compute the low energy effective action at leading orders and show that it captures universal electromagnetic and geometric properties of quantum Hall states, including the Wen-Zee shift, Hall viscosity, angular momentum density and their relations. We identify the shift function in Hořava-Lifshitz gravity theory as minus of guiding center velocity and conjugate to guiding center momentum. This enables us to distinguish guiding center angular momentum density from the internal one, which is the sum of Landau orbit spin and intrinsic (topological) spin of the composite particles. Our effective action shows that Hall viscosity is minus half of the internal angular momentum density and proportional to Wen-Zee shift, and Hall bulk viscosity is half of the guiding center angular momentum density.
Dark energy from modified gravity with Lagrange multipliers
International Nuclear Information System (INIS)
Capozziello, Salvatore; Matsumoto, Jiro; Nojiri, Shin'ichi; Odintsov, Sergei D.
2010-01-01
We study scalar-tensor theory, k-essence and modified gravity with Lagrange multiplier constraint which role is to reduce the number of degrees of freedom. Dark Energy cosmology of different types (ΛCDM, unified inflation with DE, smooth non-phantom/phantom transition epoch) is reconstructed in such models. It is demonstrated that presence of Lagrange multiplier simplifies the reconstruction scenario. It is shown that mathematical equivalence between scalar theory and F(R) gravity is broken due to presence of constraint. The cosmological evolution is defined by the second F 2 (R) function dictated by the constraint. The convenient F(R) gravity sector is relevant for local tests. This opens the possibility to make originally non-realistic theory to be viable by adding the corresponding constraint. A general discussion on the role of Lagrange multipliers to make higher-derivative gravity canonical is developed.
Exploring the liminality: properties of haloes and subhaloes in borderline f(R) gravity
Shi, Difu; Li, Baojiu; Han, Jiaxin; Gao, Liang; Hellwing, Wojciech A.
2015-09-01
We investigate the properties of dark matter haloes and subhaloes in an f(R) gravity model with |fR0| = 10-6, using a very-high-resolution N-body simulation. The model is a borderline between being cosmologically interesting and yet still consistent with current data. We find that the halo mass function in this model has a maximum 20 per cent enhancement compared with the Λ-cold-dark-matter (ΛCDM) predictions between z = 1 and 0. Because of the chameleon mechanism which screens the deviation from standard gravity in dense environments, haloes more massive than 1013 h-1 M⊙ in this f(R) model have very similar properties to haloes of similar mass in ΛCDM, while less massive haloes, such as that of the Milky Way, can have steeper inner density profiles and higher velocity dispersions due to their weaker screening. The halo concentration is remarkably enhanced for low-mass haloes in this model due to a deepening of the total gravitational potential. Contrary to the naive expectation, the halo formation time zf is later for low-mass haloes in this model, a consequence of these haloes growing faster than their counterparts in ΛCDM at late times and the definition of zf. Subhaloes, especially those less massive than 1011 h-1 M⊙, are substantially more abundant in this f(R) model for host haloes less massive than 1013 h-1 M⊙. We discuss the implications of these results for the Milky Way satellite abundance problem. Although the overall halo and subhalo properties in this borderline f(R) model are close to their ΛCDM predictions, our results suggest that studies of the Local Group and astrophysical systems, aided by high-resolution simulations, can be valuable for further tests of it.
Surface density of spacetime degrees of freedom from equipartition law in theories of gravity
International Nuclear Information System (INIS)
Padmanabhan, T.
2010-01-01
I show that the principle of equipartition, applied to area elements of a surface ∂V which are in equilibrium at the local Davies-Unruh temperature, allows one to determine the surface number density of the microscopic spacetime degrees of freedom in any diffeomorphism invariant theory of gravity. The entropy associated with these degrees of freedom matches with the Wald entropy for the theory. This result also allows one to attribute an entropy density to the spacetime in a natural manner. The field equations of the theory can then be obtained by extremizing this entropy. Moreover, when the microscopic degrees of freedom are in local thermal equilibrium, the spacetime entropy of a bulk region resides on its boundary.
BRS current and related anomalies in two-dimensional gravity and string theories
International Nuclear Information System (INIS)
Fujikawa, Kazuo; Inagaki, Takeshi; Suzuki, Hiroshi.
1989-06-01
The BRS currents in two-dimensional gravity and supergravity theories, which are related to string theory, contain anomalous terms. The origin of these anomalies can be neatly understood in a carefully defined path integral. We present the detailed calculations of these BRS and related anomalies in the holomorphic or antiholomorphic sector separately in the conformal gauge. One-loop renormalization of the Liouville action becomes transparent in our formulation. We identify a BRS-invariant BRS current (and thus nil-potent charge) and a conformally invariant ghost number current by incorporating the dynamical Weyl freedom explicitly. The formal path integral construction of various composite operators is also checked by using the operator product technique. Implications of these BRS analyses on possible non-critical string theories at d<26 or d<10 are briefly discussed. (author)
Theoretical frameworks for testing relativistic gravity. V - Post-Newtonian limit of Rosen's theory
Lee, D. L.; Ni, W.-T.; Caves, C. M.; Will, C. M.
1976-01-01
The post-Newtonian limit of Rosen's theory of gravity is evaluated and is shown to be identical to that of general relativity, except for the post-Newtonian parameter alpha sub 2 (which is related to the difference in propagation speeds for gravitational and electromagnetic waves). Both the value of alpha sub 2 and the value of the Newtonian gravitational constant depend on the present cosmological structure of the Universe. If the cosmological structure has a specific (but presumably special) form, the Newtonian gravitational constant assumes its current value, alpha sub 2 is zero, the post-Newtonian limit of Rosen's theory is identical to that of general relativity - and standard solar system experiments cannot distinguish between the two theories.
Theoretical frameworks for testing relativistic gravity. 5: Post-Newtonian limit of Rosen's theory
Lee, D. L.; Caves, C. M.
1974-01-01
The post-Newtonian limit of Rosen's theory of gravity is evaluated and is shown to be identical to that of general relativity, except for the PPN parameter alpha sub 2, which is related to the difference in propagation speeds for gravitational and electromagnetic waves. Both the value of alpha sub 2 and the value of the Newtonian gravitational constant depend on the present cosmological structure of the Universe. If the cosmological structure has a specific but presumably special form, the Newtonian gravitational constant assumes its current value, alpha sub 2 is zero, the post-Newtonian limit of Rosen's theory is identical to that of general relativity--and standard solar system experiments cannot distinguish between the two theories.
Energy Technology Data Exchange (ETDEWEB)
Lu, Jianbo; Wu, Yabo; Wang, Yan; Yang, Weiqiang [Liaoning Normal University, Department of Physics, Dalian (China); Liu, Molin [Xinyang Normal University, Department of Physics, Xinyang (China)
2016-12-15
Tensions between several cosmic observations were found recently, such as the inconsistent values of H{sub 0} (or σ{sub 8}) were indicated by the different cosmic observations. Introducing the massive neutrinos in ΛCDM could potentially solve the tensions. Viable f(R) gravity producing ΛCDM background expansion with massive neutrinos is investigated in this paper. We fit the current observational data: Planck-2015 CMB, RSD, BAO, and SNIa to constrain the mass of neutrinos in viable f(R) theory. The constraint results at 95% confidence level are: Σm{sub ν} < 0.202 eV for the active-neutrino case, m{sub ν,sterile}{sup eff} < 0.757 eV with N{sub eff} < 3.22 for the sterile neutrino case. For the effects due to the mass of the neutrinos, the constraint results on model parameter at 95% confidence level become f{sub R0} x 10{sup -6} > -1.89 and f{sub R0} x 10{sup -6} > -2.02 for two cases, respectively. It is also shown that the fitting values of several parameters much depend on the neutrino properties, such as the cold dark matter density, the cosmological quantities at matter-radiation equality, the neutrino density and the fraction of baryonic mass in helium. Finally, the constraint result shows that the tension between direct and CMB measurements of H{sub 0} gets slightly weaker in the viable f(R) model than that in the base ΛCDM model. (orig.)
Topics in Two-Dimensional Quantum Gravity and Chern-Simons Gauge Theories
Zemba, Guillermo Raul
A series of studies in two and three dimensional theories is presented. The two dimensional problems are considered in the framework of String Theory. The first one determines the region of integration in the space of inequivalent tori of a tadpole diagram in Closed String Field Theory, using the naive Witten three-string vertex. It is shown that every surface is counted an infinite number of times and the source of this behavior is identified. The second study analyzes the behavior of the discrete matrix model of two dimensional gravity without matter using a mathematically well-defined construction, confirming several conjectures and partial results from the literature. The studies in three dimensions are based on Chern Simons pure gauge theory. The first one deals with the projection of the theory onto a two-dimensional surface of constant time, whereas the second analyzes the large N behavior of the SU(N) theory and makes evident a duality symmetry between the only two parameters of the theory. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253 -1690.).
Spinor matter fields in SL(2,C) gauge theories of gravity: Lagrangian and Hamiltonian approaches
Antonowicz, Marek; Szczyrba, Wiktor
1985-06-01
We consider the SL(2,C)-covariant Lagrangian formulation of gravitational theories with the presence of spinor matter fields. The invariance properties of such theories give rise to the conservation laws (the contracted Bianchi identities) having in the presence of matter fields a more complicated form than those known in the literature previously. A general SL(2,C) gauge theory of gravity is cast into an SL(2,C)-covariant Hamiltonian formulation. Breaking the SL(2,C) symmetry of the system to the SU(2) symmetry, by introducing a spacelike slicing of spacetime, we get an SU(2)-covariant Hamiltonian picture. The qualitative analysis of SL(2,C) gauge theories of gravity in the SU(2)-covariant formulation enables us to define the dynamical symplectic variables and the gauge variables of the theory under consideration as well as to divide the set of field equations into the dynamical equations and the constraints. In the SU(2)-covariant Hamiltonian formulation the primary constraints, which are generic for first-order matter Lagrangians (Dirac, Weyl, Fierz-Pauli), can be reduced. The effective matter symplectic variables are given by SU(2)-spinor-valued half-forms on three-dimensional slices of spacetime. The coupled Einstein-Cartan-Dirac (Weyl, Fierz-Pauli) system is analyzed from the (3+1) point of view. This analysis is complete; the field equations of the Einstein-Cartan-Dirac theory split into 18 gravitational dynamical equations, 8 dynamical Dirac equations, and 7 first-class constraints. The system has 4+8=12 independent degrees of freedom in the phase space.
Spinor matter fields in SL(2,C) gauge theories of gravity: Lagrangian and Hamiltonian approaches
International Nuclear Information System (INIS)
Antonowicz, M.; Szczyrba, W.
1985-01-01
We consider the SL(2,C)-covariant Lagrangian formulation of gravitational theories with the presence of spinor matter fields. The invariance properties of such theories give rise to the conservation laws (the contracted Bianchi identities) having in the presence of matter fields a more complicated form than those known in the literature previously. A general SL(2,C) gauge theory of gravity is cast into an SL(2,C)-covariant Hamiltonian formulation. Breaking the SL(2,C) symmetry of the system to the SU(2) symmetry, by introducing a spacelike slicing of spacetime, we get an SU(2)-covariant Hamiltonian picture. The qualitative analysis of SL(2,C) gauge theories of gravity in the SU(2)-covariant formulation enables us to define the dynamical symplectic variables and the gauge variables of the theory under consideration as well as to divide the set of field equations into the dynamical equations and the constraints. In the SU(2)-covariant Hamiltonian formulation the primary constraints, which are generic for first-order matter Lagrangians (Dirac, Weyl, Fierz-Pauli), can be reduced. The effective matter symplectic variables are given by SU(2)-spinor-valued half-forms on three-dimensional slices of spacetime. The coupled Einstein-Cartan-Dirac (Weyl, Fierz-Pauli) system is analyzed from the (3+1) point of view. This analysis is complete; the field equations of the Einstein-Cartan-Dirac theory split into 18 gravitational dynamical equations, 8 dynamical Dirac equations, and 7 first-class constraints. The system has 4+8 = 12 independent degrees of freedom in the phase space
Stellar equilibrium configurations of compact stars in f(R,T) theory of gravity
Moraes, P. H. R. S.; Arbañil, José D. V.; Malheiro, M.
2016-06-01
In this article we study the hydrostatic equilibrium configuration of neutron stars and strange stars, whose fluid pressure is computed from the equations of state p=ωρ5/3 and p=0.28(ρ-4Script B), respectively, with ω and Script B being constants and ρ the energy density of the fluid. We start by deriving the hydrostatic equilibrium equation for the f(R,T) theory of gravity, with R and T standing for the Ricci scalar and trace of the energy-momentum tensor, respectively. Such an equation is a generalization of the one obtained from general relativity, and the latter can be retrieved for a certain limit of the theory. For the f(R,T)=R+2λ T functional form, with λ being a constant, we find that some physical properties of the stars, such as pressure, energy density, mass and radius, are affected when λ is changed. We show that for a fixed central star energy density, the mass of neutron and strange stars can increase with λ. Concerning the star radius, it increases for neutron stars and it decreases for strange stars with the increment of λ. Thus, in f(R,T) theory of gravity we can push the maximum mass above the observational limits. This implies that the equation of state cannot be eliminated if the maximum mass within General Relativity lies below the limit given by observed pulsars.
Stellar equilibrium configurations of compact stars in f ( R , T ) theory of gravity
Energy Technology Data Exchange (ETDEWEB)
Moraes, P.H.R.S.; Arbañil, José D.V.; Malheiro, M., E-mail: moraes.phrs@gmail.com, E-mail: arbanil@ita.br, E-mail: malheiro@ita.br [ITA—Instituto Tecnológico de Aeronáutica—Departamento de Física, 12228-900, São José dos Campos, São Paulo (Brazil)
2016-06-01
In this article we study the hydrostatic equilibrium configuration of neutron stars and strange stars, whose fluid pressure is computed from the equations of state p =ωρ{sup 5/3} and p =0.28(ρ−4B), respectively, with ω and B being constants and ρ the energy density of the fluid. We start by deriving the hydrostatic equilibrium equation for the f ( R , T ) theory of gravity, with R and T standing for the Ricci scalar and trace of the energy-momentum tensor, respectively. Such an equation is a generalization of the one obtained from general relativity, and the latter can be retrieved for a certain limit of the theory. For the f ( R , T )= R +2λ T functional form, with λ being a constant, we find that some physical properties of the stars, such as pressure, energy density, mass and radius, are affected when λ is changed. We show that for a fixed central star energy density, the mass of neutron and strange stars can increase with λ. Concerning the star radius, it increases for neutron stars and it decreases for strange stars with the increment of λ. Thus, in f ( R , T ) theory of gravity we can push the maximum mass above the observational limits. This implies that the equation of state cannot be eliminated if the maximum mass within General Relativity lies below the limit given by observed pulsars.
Dark energy and modified gravity in the Effective Field Theory of Large-Scale Structure
Cusin, Giulia; Lewandowski, Matthew; Vernizzi, Filippo
2018-04-01
We develop an approach to compute observables beyond the linear regime of dark matter perturbations for general dark energy and modified gravity models. We do so by combining the Effective Field Theory of Dark Energy and Effective Field Theory of Large-Scale Structure approaches. In particular, we parametrize the linear and nonlinear effects of dark energy on dark matter clustering in terms of the Lagrangian terms introduced in a companion paper [1], focusing on Horndeski theories and assuming the quasi-static approximation. The Euler equation for dark matter is sourced, via the Newtonian potential, by new nonlinear vertices due to modified gravity and, as in the pure dark matter case, by the effects of short-scale physics in the form of the divergence of an effective stress tensor. The effective fluid introduces a counterterm in the solution to the matter continuity and Euler equations, which allows a controlled expansion of clustering statistics on mildly nonlinear scales. We use this setup to compute the one-loop dark-matter power spectrum.
Cosmological models with a hybrid scale factor in an extended gravity theory
Mishra, B.; Tripathy, S. K.; Tarai, Sankarsan
2018-03-01
A general formalism to investigate Bianchi type V Ih universes is developed in an extended theory of gravity. A minimally coupled geometry and matter field is considered with a rescaled function of f(R,T) substituted in place of the Ricci scalar R in the geometrical action. Dynamical aspects of the models are discussed by using a hybrid scale factor (HSF) that behaves as power law in an initial epoch and as an exponential form at late epoch. The power law behavior and the exponential behavior appear as two extreme cases of the present model.
Stability of cosmic structures in scalar-tensor theories of gravity
Energy Technology Data Exchange (ETDEWEB)
Panotopoulos, Grigoris [Universidade de Lisboa, Centro Multidisciplinar de Astrofisica, Instituto Superior Tecnico, Lisbon (Portugal); Rincon, Angel [Pontificia Universidad Catolica de Chile, Instituto de Fisica, Santiago (Chile)
2018-01-15
In the present work we study a concrete model of scalar-tensor theory of gravity characterized by two free parameters, and we compare its predictions to observational data and constraints coming from supernovae, solar system tests and the stability of cosmic structures. First an exact analytical solution at the background level is obtained. Using that solution the expression for the turnaround radius is computed. Finally we show graphically how current data and limits put bounds on the parameters of the model at hand. (orig.)
The kinematical Hilbert space of loop quantum gravity from BF theories
International Nuclear Information System (INIS)
Cianfrani, Francesco
2011-01-01
In this work, it is demonstrated how the kinematical Hilbert space of loop quantum gravity (LQG) can be inferred from the configuration space of BF theories via the imposition of the Hamiltonian constraints. In particular, it is outlined how the projection to the representations associated with Ashtekar-Barbero connections provides the correct procedure to implement second-class constraints and the corresponding nontrivial induced symplectic structure. Then, the reduction to SU(2) invariant intertwiners is analyzed and the properties of LQG states under Lorentz transformations are discussed.
Parametrizations in scalar-tensor theories of gravity and the limit of general relativity
International Nuclear Information System (INIS)
Järv, L; Kuusk, P; Saal, M; Vilson, O
2014-01-01
We consider a general scalar-tensor theory of gravity and review briefly different forms it can be presented (different conformal frames and scalar field parametrizations). We investigate the conditions under which its field equations and the parametrized post-Newtonian parameters coincide with those of general relativity. We demonstrate that these so-called limits of general relativity are independent of the parametrization of the scalar field, although the transformation between scalar fields may be singular at the corresponding value of the scalar field. In particular, the limit of general relativity can equivalently be determined and investigated in the commonly used Jordan and Einstein frames.
Gauge dependence and new kind of two-dimensional gravity theory with trivial quantum corrections
International Nuclear Information System (INIS)
Banin, A.T.; Shapiro, I.L.
1993-12-01
We search for the new kinds of classical potentials in two-dimensional induced gravity, which provide the triviality of the one-loop quantum corrections. First of all the gauge dependence of the effective potential is studied. The unique effective potential, introduced by Vilkovisly in 1984 is found to manifest the gauge dependence due to some unusual properties of the theory under consideration. Then we take the gauge of harmonical type, which provides the one-loop finiteness off shell, and then the solution for the required classical potential is found. (author). 35 refs
FRW cosmology in F(R,T) gravity
International Nuclear Information System (INIS)
Myrzakulov, Ratbay
2012-01-01
In this paper, we consider a theory of gravity with a metric-dependent torsion namely the F(R,T) gravity, where R is the curvature scalar and T is the torsion scalar. We study the geometric root of such theory. In particular we give the derivation of the model from the geometrical point of view. Then we present the more general form of F(R,T) gravity with two arbitrary functions and give some of its particular cases. In particular, the usual F(R) and F(T) gravity theories are particular cases of the F(R,T) gravity. In the cosmological context, we find that our new gravitational theory can describe the accelerated expansion of the Universe. (orig.)
On entanglement entropy in non-Abelian lattice gauge theory and 3D quantum gravity
Energy Technology Data Exchange (ETDEWEB)
Delcamp, Clement [Perimeter Institute for Theoretical Physics,31 Caroline Street North, Waterloo, Ontario N2L 2Y5 (Canada); Department of Physics & Astronomy and Guelph-Waterloo Physics Institute, University of Waterloo,200 University Avenue West, Waterloo, Ontario N2L 3G1 (Canada); Dittrich, Bianca; Riello, Aldo [Perimeter Institute for Theoretical Physics,31 Caroline Street North, Waterloo, Ontario N2L 2Y5 (Canada)
2016-11-18
Entanglement entropy is a valuable tool for characterizing the correlation structure of quantum field theories. When applied to gauge theories, subtleties arise which prevent the factorization of the Hilbert space underlying the notion of entanglement entropy. Borrowing techniques from extended topological field theories, we introduce a new definition of entanglement entropy for both Abelian and non-Abelian gauge theories. Being based on the notion of excitations, it provides a completely relational way of defining regions. Therefore, it naturally applies to background independent theories, e.g. gravity, by circumventing the difficulty of specifying the position of the entangling surface. We relate our construction to earlier proposals and argue that it brings these closer to each other. In particular, it yields the non-Abelian analogue of the ‘magnetic centre choice’, as obtained through an extended-Hilbert-space method, but applied to the recently introduced fusion basis for 3D lattice gauge theories. We point out that the different definitions of entanglement entropy can be related to a choice of (squeezed) vacuum state.
A Yang-Mills Type Gauge Theory of Gravity and the Dark Matter and Dark Energy Problems
Yang, Yi; Yeung, Wai Bong
2012-01-01
A Yang-Mills type gauge theory of gravity is shown to have a richer structure than the Einstein's General Theory of Relativity. This new structure can give an explanation of the form of the galactic rotation curves, of the amount of intergalactic gravitational lensing, and of the accelerating expansion of the Universe.
International Nuclear Information System (INIS)
Ward, B.F.L.
2006-01-01
We present the elements of three applications of resummation methods in non-Abelian gauge theories: (1), QED-QCD exponentiation and shower/ME matching for LHC physics; (2), IR improvement of DGLAP theory; (3), resummed quantum gravity and the final state of Hawking radiation. In all cases, the extension of the YFS approach, originally introduced for Abelian gauge theory, to non-Abelian gauge theories, QCD and quantum general relativity, leads to new results and solutions which we briefly summarize
Non-perturbative aspects of quantum field theory. From the quark-gluon plasma to quantum gravity
International Nuclear Information System (INIS)
Christiansen, Nicolai
2015-01-01
In this dissertation we investigate several aspects of non-perturbative quantum field theory. Two main parts of the thesis are concerned with non-perturbative renormalization of quantum gravity within the asymptotic safety scenario. This framework is based on a non-Gaussian ultraviolet fixed point and provides a well-defined theory of quantized gravity. We employ functional renormalization group (FRG) techniques that allow for the study of quantum fields even in strongly coupled regimes. We construct a setup for the computation of graviton correlation functions and analyze the ultraviolet completion of quantum gravity in terms of the properties of the two- and three point function of the graviton. Moreover, the coupling of gravity to Yang-Mills theories is discussed. In particular, we study the effects of graviton induced interactions on asymptotic freedom on the one hand, and the role of gluonic fluctuations in the gravity sector on the other hand. The last subject of this thesis is the physics of the quark-gluon plasma. We set-up a general non-perturbative strategy for the computation of transport coefficients in non-Abelian gauge theories. We determine the viscosity over entropy ratio η/s in SU(3) Yang-Mills theory as a function of temperature and estimate its behavior in full quantum chromodynamics (QCD).
Topics in Covariant Closed String Field Theory and Two-Dimensional Quantum Gravity
Saadi, Maha
1991-01-01
The closed string field theory based on the Witten vertex is found to be nonpolynomial in order to reproduce all tree amplitudes correctly. The interactions have a geometrical pattern of overlaps, which can be thought as the edges of a spherical polyhedron with face-perimeters equal to 2pi. At each vertex of the polyhedron there are three faces, thus all elementary interactions are cubic in the sense that at most three strings can coincide at a point. The quantum action is constructed by substracting counterterms which cancel the overcounting of moduli space, and by adding loop vertices in such a way no possible surfaces are missed. A counterterm that gives the correct one-string one-loop amplitude is formulated. The lowest order loop vertices are analyzed in the cases of genus one and two. Also, a one-loop two -string counterterm that restores BRST invariance to the respective scattering amplitude is constructed. An attempt to understand the formulation of two -dimensional pure gravity from the discrete representation of a two-dimensional surface is made. This is considered as a toy model of string theory. A well-defined mathematical model is used. Its continuum limit cannot be naively interpreted as pure gravity because each term of the sum over surfaces is not positive definite. The model, however, could be considered as an analytic continuation of the standard matrix model formulation of gravity. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253-1690.).
Parameterized Post-Newtonian Expansion of Scalar-Vector-Tensor Theory of Gravity
International Nuclear Information System (INIS)
Arianto; Zen, Freddy P.; Gunara, Bobby E.; Hartanto, Andreas
2010-01-01
We investigate the weak-field, post-Newtonian expansion to the solution of the field equations in scalar-vector-tensor theory of gravity. In the calculation we restrict ourselves to the first post Newtonian. The parameterized post Newtonian (PPN) parameters are determined by expanding the modified field equations in the metric perturbation. Then, we compare the solution to the PPN formalism in first PN approximation proposed by Will and Nordtvedt and read of the coefficients (the PPN parameters) of post Newtonian potentials of the theory. We find that the values of γ PPN and β PPN are the same as in General Relativity but the coupling functions β 1 , β 2 , and β 3 are the effect of the preferred frame.
The application of Regge calculus to quantum gravity and quantum field theory in a curved background
International Nuclear Information System (INIS)
Warner, N.P.
1982-01-01
The application of Regge calculus to quantum gravity and quantum field theory in a curved background is discussed. A discrete form of exterior differential calculus is developed, and this is used to obtain Laplacians for p-forms on the Regge manifold. To assess the accuracy of these approximations, the eigenvalues of the discrete Laplacians were calculated for the regular tesselations of S 2 and S 3 . The results indicate that the methods obtained in this paper may be used in curved space-times with an accuracy comparing with that obtained in lattice gauge theories on a flat background. It also becomes evident that Regge calculus provides particularly suitable lattices for Monte-Carlo techniques. (author)
Variational approach to gravity field theories from Newton to Einstein and beyond
Vecchiato, Alberto
2017-01-01
This book offers a detailed and stimulating account of the Lagrangian, or variational, approach to general relativity and beyond. The approach more usually adopted when describing general relativity is to introduce the required concepts of differential geometry and derive the field and geodesic equations from purely geometrical properties. Demonstration of the physical meaning then requires the weak field approximation of these equations to recover their Newtonian counterparts. The potential downside of this approach is that it tends to suit the mathematical mind and requires the physicist to study and work in a completely unfamiliar environment. In contrast, the approach to general relativity described in this book will be especially suited to physics students. After an introduction to field theories and the variational approach, individual sections focus on the variational approach in relation to special relativity, general relativity, and alternative theories of gravity. Throughout the text, solved exercis...
Three-dimensional loop quantum gravity: towards a self-gravitating quantum field theory
International Nuclear Information System (INIS)
Noui, Karim
2007-01-01
In a companion paper, we have emphasized the role of the Drinfeld double DSU(2) in the context of three-dimensional Riemannian loop quantum gravity coupled to massive spinless point particles. We make use of this result to propose a model for a self-gravitating quantum field theory (massive spinless non-causal scalar field) in three-dimensional Riemannian space. We start by constructing the Fock space of the free self-gravitating field: the vacuum is the unique DSU(2) invariant state, one-particle states correspond to DSU(2) unitary irreducible simple representations and any multi-particles states are obtained as the symmetrized tensor product between simple representations. The associated quantum field is defined by the usual requirement of covariance under DSU(2). Then, we introduce a DSU(2)-invariant self-interacting potential (the obtained model is a group field theory) and explicitly compute the lowest order terms (in the self-interaction coupling constant λ) of the propagator and of the three-point function. Finally, we compute the lowest order quantum gravity corrections (in the Newton constant G) to the propagator and to the three-point function
International Nuclear Information System (INIS)
Elizalde, E.; Odintsov, S.D.; Romeo, A.
1995-01-01
We develop a general formalism to study the renormalization-group- (RG-)improved effective potential for renormalizable gauge theories, including matter-R 2 -gravity, in curved spacetime. The result is given up to quadratic terms in curvature, and one-loop effective potentials may be easily obtained from it. As an example, we consider scalar QED, where dimensional transmutation in curved space and the phase structure of the potential (in particular, curvature-induced phase transitions) are discussed. For scalar QED with higher-derivative quantum gravity (QG), we examine the influence of QG on dimensional transmutation and calculate QG corrections to the scalar-to-vector mass ratio. The phase structure of the RG-improved effective potential is also studied in this case, and the values of the induced Newton and cosmological coupling constants at the critical point are estimated. The stability of the running scalar coupling in the Yukawa theory with conformally invariant higher-derivative QG, and in the standard model with the same addition, is numerically analyzed. We show that, in these models, QG tends to make the scalar sector less unstable
Gravity in the Century of Light: The Gravitation Theory of Georges-Louis Le Sage
Evans, James
2006-05-01
Each generation of physicists, or natural philosophers, has sought to place universal gravitation in the context of its own worldview. Often this has entailed an effort to reduce gravitation to something more fundamental. But what is deemed fundamental has, of course, changed with time. Each generation attacked the problem of universal gravitation with the tools of its day and brought to bear the concepts of its own standard model. The most successful eighteenth-century attempt to provide a mechanical explanation of gravity was that of Georges-Louis Le Sage (1724-1803) of Geneva. Le Sage postulated a sea of ultramundane corpuscles, streaming in all directions and characterized by minute mass, great velocity, and complete inelasticity. Mostly these corpuscles just pass through gross bodies such as apples or planets, but a few are absorbed, leading to all the phenomena of attraction. In a voluminous correspondence with nearly all the savants of the day, Le Sage constantly reshaped his arguments for his system in order to appeal to metaphysicians, mechanicians and Newtonians of several varieties. Le Sage's theory is an especially interesting one, for several reasons. First, it serves as the prototype of a dynamical explanation of Newtonian gravity. Second, the theory came quite close to accomplishing its aim. Third, the theory had a long life and attracted comment by the leading physical thinkers of several successive generations, including Laplace, Kelvin, Maxwell and Feynman. Le Sage's theory therefore provides an excellent opportunity for the study of the evolution of attitudes toward physical explanation. The effects of national style in science and generational change take on a new clarity.
Hamiltonian approach to GR. Pt. 2. Covariant theory of quantum gravity
Energy Technology Data Exchange (ETDEWEB)
Cremaschini, Claudio [Faculty of Philosophy and Science, Silesian University in Opava, Institute of Physics and Research Center for Theoretical Physics and Astrophysics, Opava (Czech Republic); Tessarotto, Massimo [University of Trieste, Department of Mathematics and Geosciences, Trieste (Italy); Faculty of Philosophy and Science, Silesian University in Opava, Institute of Physics, Opava (Czech Republic)
2017-05-15
A non-perturbative quantum field theory of General Relativity is presented which leads to a new realization of the theory of covariant quantum gravity (CQG-theory). The treatment is founded on the recently identified Hamiltonian structure associated with the classical space-time, i.e., the corresponding manifestly covariant Hamilton equations and the related Hamilton-Jacobi theory. The quantum Hamiltonian operator and the CQG-wave equation for the corresponding CQG-state and wave function are realized in 4-scalar form. The new quantum wave equation is shown to be equivalent to a set of quantum hydrodynamic equations which warrant the consistency with the classical GR Hamilton-Jacobi equation in the semiclassical limit. A perturbative approximation scheme is developed, which permits the adoption of the harmonic oscillator approximation for the treatment of the Hamiltonian potential. As an application of the theory, the stationary vacuum CQG-wave equation is studied, yielding a stationary equation for the CQG-state in terms of the 4-scalar invariant-energy eigenvalue associated with the corresponding approximate quantum Hamiltonian operator. The conditions for the existence of a discrete invariant-energy spectrum are pointed out. This yields a possible estimate for the graviton mass together with a new interpretation about the quantum origin of the cosmological constant. (orig.)
Locally rotationally symmetric Bianchi type I cosmology in f(R, T) gravity
Energy Technology Data Exchange (ETDEWEB)
Shamir, M.F. [National University of Computer and Emerging Sciences, Department of Sciences and Humanities, Lahore (Pakistan)
2015-08-15
This manuscript is devoted to the investigation of the Bianchi type I universe in the context of f(R, T) gravity. For this purpose, we explore the exact solutions of locally rotationally symmetric Bianchi type I spacetime. The modified field equations are solved by assuming an expansion scalar θ proportional to the shear scalar σ, which gives A = B{sup n}, where A, B are the metric coefficients and n is an arbitrary constant. In particular, three solutions have been found and physical quantities are calculated in each case. (orig.)
International Nuclear Information System (INIS)
Nojiri, Shin'ichi; Odintsov, Sergei D.
2007-01-01
We consider class of modified f(R) gravities with the effective cosmological constant epoch at the early and late universe. Such models pass most of solar system tests as well they satisfy to cosmological bounds. Despite their very attractive properties, it is shown that one realistic class of such models may lead to significant Newton law corrections at large cosmological scales. Nevertheless, these corrections are small at solar system as well as at the future universe. Another realistic model with acceptable Newton law regime shows the matter instability
Cosmological wheel of time: A classical perspective of f(R) gravity
Yadav, Bal Krishna; Verma, Murli Manohar
It is shown that the structures in the universe can be interpreted to show a closed wheel of time, rather than a straight arrow. An analysis in f(R) gravity model has been carried out to show that due to local observations, a small arc at any given spacetime point would invariably indicate an arrow of time from past to future, though on a quantum scale it is not a linear flow but a closed loop, a fact that can be examined through future observations.
Dynamics of anisotropic power-law f(R) cosmology
International Nuclear Information System (INIS)
Shamir, M. F.
2016-01-01
Modified theories of gravity have attracted much attention of the researchers in the recent years. In particular, the f(R) theory has been investigated extensively due to important f(R) gravity models in cosmological contexts. This paper is devoted to exploring an anisotropic universe in metric f(R) gravity. A locally rotationally symmetric Bianchi type I cosmological model is considered for this purpose. Exact solutions of modified field equations are obtained for a well-known f(R) gravity model. The energy conditions are also discussed for the model under consideration. The viability of the model is investigated via graphical analysis using the present-day values of cosmological parameters. The model satisfies null energy, weak energy, and dominant energy conditions for a particular range of the anisotropy parameter while the strong energy condition is violated, which shows that the anisotropic universe in f(R) gravity supports the crucial issue of accelerated expansion of the universe.
Dynamics of anisotropic power-law f(R) cosmology
Energy Technology Data Exchange (ETDEWEB)
Shamir, M. F., E-mail: farasat.shamir@nu.edu.pk [National University of Computer and Emerging Sciences, Lahore Campus, Department of Sciences and Humanities (Pakistan)
2016-12-15
Modified theories of gravity have attracted much attention of the researchers in the recent years. In particular, the f(R) theory has been investigated extensively due to important f(R) gravity models in cosmological contexts. This paper is devoted to exploring an anisotropic universe in metric f(R) gravity. A locally rotationally symmetric Bianchi type I cosmological model is considered for this purpose. Exact solutions of modified field equations are obtained for a well-known f(R) gravity model. The energy conditions are also discussed for the model under consideration. The viability of the model is investigated via graphical analysis using the present-day values of cosmological parameters. The model satisfies null energy, weak energy, and dominant energy conditions for a particular range of the anisotropy parameter while the strong energy condition is violated, which shows that the anisotropic universe in f(R) gravity supports the crucial issue of accelerated expansion of the universe.
Cosmology based on f(R) gravity with O(1) eV sterile neutrino
Energy Technology Data Exchange (ETDEWEB)
Chudaykin, Anton S.; Gorbunov, Dmitry S. [Institute for Nuclear Research of the Russian Academy of Sciences, 60th October Anniversary prospect 7a, Moscow 117312 (Russian Federation); Starobinsky, Alexei A. [L.D. Landau Institute for Theoretical Physics of the Russian Academy of Sciences, Moscow 119334 (Russian Federation); Burenin, Rodion A., E-mail: chudy@ms2.inr.ac.ru, E-mail: gorby@ms2.inr.ac.ru, E-mail: alstar@landau.ac.ru, E-mail: rodion@hea.iki.rssi.ru [Space Research Institute of the Russian Academy of Sciences (IKI), Moscow, ul. Profsoyuznaya, 84/32, 117997 (Russian Federation)
2015-05-01
We address the cosmological role of an additional O(1) eV sterile neutrino in modified gravity models. We confront the present cosmological data with predictions of the FLRW cosmological model based on a variant of f(R) modified gravity proposed by one of the authors previously. This viable cosmological model which deviation from general relativity with a cosmological constant Λ decreases as R{sup −2n} for large, but not too large values of the Ricci scalar R (while no Λ is introduced by hand at small R) provides an alternative explanation of present dark energy and the accelerated expansion of the Universe (the case n=2 is considered in the paper). Various up-to-date cosmological data sets exploited include measurements of the cosmic microwave background (CMB) anisotropy, the CMB lensing potential, the baryon acoustic oscillations (BAO), the cluster mass function and the Hubble constant. We find that the CMB+BAO constraints strongly restrict the sum of neutrino masses from above. This excludes values of the model parameter λ∼ 1 for which distinctive cosmological features of the model are mostly pronounced as compared to the ΛCDM model, since then free streaming damping of perturbations due to neutrino rest masses is not sufficient to compensate their extra growth occurring in f(R) modified gravity. Thus, in the gravity sector we obtain λ>8.2 (2σ) with the account of systematic uncertainties in galaxy cluster mass function measurements and λ>9.4 (2σ) without them. At the same time in the latter case we find for the sterile neutrino mass 0.47 eV < m{sub ν, sterile} < 1 eV (2σ) assuming that the sterile neutrinos are thermalized and the active neutrinos are massless, not significantly larger than in the standard ΛCDM with the same data set: 0.45 eV < m{sub ν, sterile} < 0.92 eV (2σ). However, a possible discovery of a sterile neutrino with the mass m{sub ν, sterile} ≈ 1.5 eV motivated by various anomalies in neutrino oscillation
Mashhoon, Bahram
2017-01-01
Relativity theory is based on a postulate of locality, which means that the past history of the observer is not directly taken into account. This book argues that the past history should be taken into account. In this way, nonlocality---in the sense of history dependence---is introduced into relativity theory. The deep connection between inertia and gravitation suggests that gravity could be nonlocal, and in nonlocal gravity the fading gravitational memory of past events must then be taken into account. Along this line of thought, a classical nonlocal generalization of Einstein's theory of gravitation has recently been developed. A significant consequence of this theory is that the nonlocal aspect of gravity appears to simulate dark matter. According to nonlocal gravity theory, what astronomers attribute to dark matter should instead be due to the nonlocality of gravitation. Nonlocality dominates on the scale of galaxies and beyond. Memory fades with time; therefore, the nonlocal aspect of gravity becomes wea...
Surface singularities in Eddington-inspired Born-Infeld gravity.
Pani, Paolo; Sotiriou, Thomas P
2012-12-21
Eddington-inspired Born-Infeld gravity was recently proposed as an alternative to general relativity that offers a resolution of spacetime singularities. The theory differs from Einstein's gravity only inside matter due to nondynamical degrees of freedom, and it is compatible with all current observations. We show that the theory is reminiscent of Palatini f(R) gravity and that it shares the same pathologies, such as curvature singularities at the surface of polytropic stars and unacceptable Newtonian limit. This casts serious doubt on its viability.
Experimentally verifiable Yang-Mills spin 2 gauge theory of gravity with group U(1) x SU(2)
International Nuclear Information System (INIS)
Peng, H.
1988-01-01
In this work, a Yang-Mills spin 2 gauge theory of gravity is proposed. Based on both the verification of the helicity 2 property of the SU(2) gauge bosons of the theory and the agreement of the theory with most observational and experimental evidence, the authors argues that the theory is truly a gravitational theory. An internal symmetry group, the eigenvalues of its generators are identical with quantum numbers, characterizes the interactions of a given class. The author demonstrates that the 4-momentum P μ of a fermion field generates the U(1) x SU(2) internal symmetry group for gravity, but not the transformation group T 4 . That particles are classified by mass and spin implies that the U(1) x SU(2), instead of the Poincare group, is a symmetry group of gravity. It is shown that the U(1) x SU(2) group represents the time displacement and rotation in ordinary space. Thereby internal space associated with gravity is identical with Minkowski spacetime, so a gauge potential of gravity carries two space-time indices. Then he verifies that the SU(2) gravitational boson has helicity 2. It is this fact, spin from internal spin, that explains alternatively why the gravitational field is the only field which is characterized by spin 2. The Physical meaning of gauge potentials of gravity is determined by comparing theory with the results of experiments, such as the Collella-Overhauser-Werner (COW) experiment and the Newtonian limit, etc. The gauge potentials this must identify with ordinary gravitational potentials
Brief comments on Jackiw-Teitelboim gravity coupled to Liouville theory
Energy Technology Data Exchange (ETDEWEB)
Giribet, Gaston E
2003-06-07
The Jackiw-Teitelboim gravity with non-vanishing cosmological constant coupled to Liouville theory is considered as a non-critical string on d dimensional flat spacetime. In terms of this interpretation of the model as a consistent string theory, it is discussed as to how the presence of a cosmological constant leads one to consider additional constraints on the parameters of the theory, even though the conformal anomaly is independent of the cosmological constant. The constraints agree with the necessary conditions required to ensure that the tachyon field turns out to be a primary prelogarithmic operator within the context of the worldsheet conformal field theory. Thus, the linearized tachyon field equation allows one to impose the diagonal condition for the interaction term. We analyse the neutralization of the Liouville mode induced by the coupling to the Jackiw-Teitelboim Lagrangian. The standard free field prescription leads one to obtain explicit expressions for three-point functions for the case of vanishing cosmological constant in terms of a product of Shapiro-Virasoro integrals; this fact is a consequence of the mentioned neutralization effect.
A novel functional renormalization group framework for gauge theories and gravity
Energy Technology Data Exchange (ETDEWEB)
Codello, Alessandro
2010-07-01
In this thesis we develop further the functional renormalization group (RG) approach to quantum field theory (QFT) based on the effective average action (EAA) and on the exact flow equation that it satisfies. The EAA is a generalization of the standard effective action that interpolates smoothly between the bare action for k{yields}{infinity} and the standard effective action for k{yields}0. In this way, the problem of performing the functional integral is converted into the problem of integrating the exact flow of the EAA from the UV to the IR. The EAA formalism deals naturally with several different aspects of a QFT. One aspect is related to the discovery of non-Gaussian fixed points of the RG flow that can be used to construct continuum limits. In particular, the EAA framework is a useful setting to search for Asymptotically Safe theories, i.e. theories valid up to arbitrarily high energies. A second aspect in which the EAA reveals its usefulness are non-perturbative calculations. In fact, the exact flow that it satisfies is a valuable starting point for devising new approximation schemes. In the first part of this thesis we review and extend the formalism, in particular we derive the exact RG flow equation for the EAA and the related hierarchy of coupled flow equations for the proper-vertices. We show how standard perturbation theory emerges as a particular way to iteratively solve the flow equation, if the starting point is the bare action. Next, we explore both technical and conceptual issues by means of three different applications of the formalism, to QED, to general non-linear sigma models (NL{sigma}M) and to matter fields on curved spacetimes. In the main part of this thesis we construct the EAA for non-abelian gauge theories and for quantum Einstein gravity (QEG), using the background field method to implement the coarse-graining procedure in a gauge invariant way. We propose a new truncation scheme where the EAA is expanded in powers of the curvature or
Holographic description of curved-space quantum field theory and gravity
Energy Technology Data Exchange (ETDEWEB)
Uhlemann, Christoph Frank
2012-12-12
The celebrated AdS/CFT dualities provide a window to strongly-coupled quantum field theories (QFTs), which are realized in nature at the most fundamental level on the one hand, but are hardly accessible for the standard mathematical tools on the other hand. The prototype examples of AdS/CFT relate classical supergravity theories on (d+1)-dimensional anti-de Sitter space (AdS) to strongly-coupled d-dimensional conformal field theories (CFTs). The AdS spacetimes admit a timelike conformal boundary, on which the dual CFT is defined. In that sense the AdS/CFT dualities are holographic, and this new approach has led to remarkable progress in understanding strongly-coupled QFTs defined on Minkowski space and on the Einstein cylinder. On the other hand, the study of QFT on more generic curved spacetimes is of fundamental interest and non-trivial already for free theories. Moreover, understanding the properties of gravity as a quantum theory remains among the hardest problems to solve in physics. Both of these issues can be studied holographically and we investigate here generalizations of AdS/CFT involving on the lower-dimensional side QFTs on curved backgrounds and as a further generalization gravity. In the first part we expand on the holographic description of QFT on fixed curved backgrounds, which involves gravity on an asymptotically-AdS space with that prescribed boundary structure. We discuss geometries with de Sitter and AdS as conformal boundary to holographically describe CFTs on these spacetimes. After setting up the procedure of holographic renormalization we study the reflection of CFT unitarity properties in the dual bulk description. The geometry with AdS on the boundary exhibits a number of interesting features, mainly due to the fact that the boundary itself has a boundary. We study both cases and resolve potential tensions between the unitarity properties of the bulk and boundary theories, which would be incompatible with a duality. The origin of these
Holographic description of curved-space quantum field theory and gravity
International Nuclear Information System (INIS)
Uhlemann, Christoph Frank
2012-01-01
The celebrated AdS/CFT dualities provide a window to strongly-coupled quantum field theories (QFTs), which are realized in nature at the most fundamental level on the one hand, but are hardly accessible for the standard mathematical tools on the other hand. The prototype examples of AdS/CFT relate classical supergravity theories on (d+1)-dimensional anti-de Sitter space (AdS) to strongly-coupled d-dimensional conformal field theories (CFTs). The AdS spacetimes admit a timelike conformal boundary, on which the dual CFT is defined. In that sense the AdS/CFT dualities are holographic, and this new approach has led to remarkable progress in understanding strongly-coupled QFTs defined on Minkowski space and on the Einstein cylinder. On the other hand, the study of QFT on more generic curved spacetimes is of fundamental interest and non-trivial already for free theories. Moreover, understanding the properties of gravity as a quantum theory remains among the hardest problems to solve in physics. Both of these issues can be studied holographically and we investigate here generalizations of AdS/CFT involving on the lower-dimensional side QFTs on curved backgrounds and as a further generalization gravity. In the first part we expand on the holographic description of QFT on fixed curved backgrounds, which involves gravity on an asymptotically-AdS space with that prescribed boundary structure. We discuss geometries with de Sitter and AdS as conformal boundary to holographically describe CFTs on these spacetimes. After setting up the procedure of holographic renormalization we study the reflection of CFT unitarity properties in the dual bulk description. The geometry with AdS on the boundary exhibits a number of interesting features, mainly due to the fact that the boundary itself has a boundary. We study both cases and resolve potential tensions between the unitarity properties of the bulk and boundary theories, which would be incompatible with a duality. The origin of these
A new cubic theory of gravity in five dimensions: black hole, Birkhoff's theorem and C-function
Energy Technology Data Exchange (ETDEWEB)
Oliva, Julio [Instituto de Fisica, Facultad de Ciencias, Universidad Austral de Chile, Valdivia (Chile); Ray, Sourya, E-mail: julio.oliva@docentes.uach.c, E-mail: ray@cecs.c [Centro de Estudios CientIficos (CECS), Casilla 1469, Valdivia (Chile)
2010-11-21
We present a new cubic theory of gravity in five dimensions which has second-order traced field equations, analogous to BHT new massive gravity in three dimensions. Moreover, for static spherically symmetric spacetimes all the field equations are of second order, and the theory admits a new asymptotically locally flat black hole. Furthermore, we prove the uniqueness of this solution, study its thermodynamical properties and show the existence of a C-function for the theory following the arguments of Anber and Kastor (2008 J. High Energy Phys. JHEP05(2008)061 (arXiv:0802.1290 [hep-th])) in pure Lovelock theories. Finally, we include the Einstein-Gauss-Bonnet and cosmological terms and find new asymptotically AdS black holes at the point where the three maximally symmetric solutions of the theory coincide. These black holes may also possess a Cauchy horizon.
A comment on 'The Cauchy problem of f(R) gravity'
International Nuclear Information System (INIS)
Capozziello, S; Vignolo, S
2009-01-01
A critical comment on (N Lanahan-Tremblay and V Faraoni 2007 Class. Quantum Grav. 24 5667) is given discussing the well-formulation of the Chauchy problem for f(R)-gravity in metric-affine theories. (comments and replies)
The anisotropic cosmological models in f(R, T) gravity with (T )
Indian Academy of Sciences (India)
2017-03-15
Mar 15, 2017 ... Recent evidences coming from the observational data [1–6] on the late-time ... theoretical challenge to gravitational theories.The cosmic microwave ... that at large scales the Einstein gravity model of general relativity breaks ...
Rosen, Steven M
2017-12-01
This paper carries forward the author's contribution to PBMP's previous special issue on Integral Biomathics (Rosen 2015). In the earlier paper, the crisis in contemporary theoretical physics was described and it was demonstrated that the problem can be addressed effectively only by shifting the foundations of physics from objectivist Cartesian philosophy to phenomenological philosophy. To that end, a phenomenological string theory was proposed based on qualitative topology and hypercomplex numbers. The current presentation takes this further by delving into the ancient Chinese origin of phenomenological string theory. First, we discover a deep connection between the Klein bottle, which is crucial to the theory, and the Ho-t'u, an old Chinese number archetype central to Taoist cosmology. The two structures are seen to mirror each other in expressing the curious psychophysical (phenomenological) action pattern at the heart of microphysics. But tackling the question of quantum gravity requires that a whole family of topological dimensions be brought into play. What we find in engaging with these structures is a closely related family of Taoist forebears that, in concert with their successors, provide a blueprint for cosmic evolution. Whereas conventional string theory accounts for the generation of nature's fundamental forces via a notion of symmetry breaking that is essentially static and thus unable to explain cosmogony successfully, phenomenological/Taoist string theory is guided by the dialectical interplay between symmetry and asymmetry inherent in the principle of synsymmetry. This dynamic concept of cosmic change is elaborated on in the three concluding sections of the paper. Here, a detailed analysis of cosmogony is offered, first in terms of the theory of dimensional development and its Taoist (yin-yang) counterpart, then in terms of the evolution of the elemental force particles through cycles of expansion and contraction in a spiraling universe. The paper
Poincare gauge theory of gravity: Friedman cosmology with even and odd parity modes: Analytic part
International Nuclear Information System (INIS)
Baekler, Peter; Hehl, Friedrich W.; Nester, James M.
2011-01-01
We propose a cosmological model in the framework of the Poincare gauge theory of gravity (PG). The gravitational Lagrangian is quadratic in both curvature and torsion. In our specific model, the Lagrangian contains (i) the curvature scalar R and the curvature pseudoscalar X linearly and quadratically (including an RX term) and (ii) pieces quadratic in the torsion vector V and the torsion axial vector A (including a VA term). We show generally that in quadratic PG models we have nearly the same number of parity conserving terms ('world') and of parity violating terms ('shadow world'). This offers new perspectives in cosmology for the coupling of gravity to matter and antimatter. Our specific model generalizes the fairly realistic ''torsion cosmologies'' of Shie-Nester-Yo (2008) and Chen et al. (2009). With a Friedman type ansatz for an orthonormal coframe and a Lorentz connection, we derive the two field equations of PG in an explicit form and discuss their general structure in detail. In particular, the second field equation can be reduced to first order ordinary differential equations for the curvature pieces R(t) and X(t). Including these along with certain relations obtained from the first field equation and curvature definitions, we present a first order system of equations suitable for numerical evaluation. This is deferred to the second, numerical part of this paper.
Time varying G and \\varLambda cosmology in f(R,T) gravity theory
Tiwari, R. K.; Beesham, A.; Singh, Rameshwar; Tiwari, L. K.
2017-08-01
We have studied the time dependence of the gravitational constant G and cosmological constant Λ by taking into account an anisotropic and homogeneous Bianchi type-I space-time in the framework of the modified f(R,T) theory of gravity proposed by Harko et al. (Phys. Rev. D 84:024020, 2011). For a specific choice of f(R,T)=R+2f(T) where f(T)=-λ T, two solutions of the modified gravity field equations have been generated with the help of a variation law between the expansion anisotropy ({σ}/{θ}) and the scale factor (S), together with a general non-linear equation of state. The solution for m≠3 corresponds to singular model of the universe whereas the solution for m=3 represents a non-singular model. We infer that the models entail a constant value of the deceleration parameter. A careful analysis of all the physical parameters of the models has also been carried out.
Running coupling in electroweak interactions of leptons from f(R)-gravity with torsion
International Nuclear Information System (INIS)
Capozziello, Salvatore; De Laurentis, Mariafelicia; Fabbri, Luca; Vignolo, Stefano
2012-01-01
The f(R)-gravitational theory with torsion is considered for one family of leptons; it is found that the torsion tensor gives rise to interactions having the structure of the weak forces, while the intrinsic non-linearity of the f(R) function provides an energy-dependent coupling: in this way, torsional f(R) gravity naturally generates both structure and strength of the electroweak interactions among leptons. This implies that the weak interactions among the lepton fields could be addressed as a geometric effect due to the interactions among spinors induced by the presence of torsion in the most general f(R) gravity. Phenomenological considerations are given. (orig.)
International Nuclear Information System (INIS)
Keeton, Charles R.; Petters, A.O.
2006-01-01
We study gravitational lensing by compact objects in gravity theories that can be written in a post-post-Newtonian (PPN) framework: i.e., the metric is static and spherically symmetric, and can be written as a Taylor series in m /r, where m is the gravitational radius of the compact object. Working invariantly, we compute corrections to standard weak-deflection lensing observables at first and second order in the perturbation parameter ε=θ/θ E , where θ is the angular gravitational radius and θ E is the angular Einstein ring radius of the lens. We show that the first-order corrections to the total magnification and centroid position vanish universally for gravity theories that can be written in the PPN framework. This arises from some surprising, fundamental relations among the lensing observables in PPN gravity models. We derive these relations for the image positions, magnifications, and time delays. A deep consequence is that any violation of the universal relations would signal the need for a gravity model outside the PPN framework (provided that some basic assumptions hold). In practical terms, the relations will guide observational programs to test general relativity, modified gravity theories, and possibly the cosmic censorship conjecture. We use the new relations to identify lensing observables that are accessible to current or near-future technology, and to find combinations of observables that are most useful for probing the spacetime metric. We give explicit applications to the galactic black hole, microlensing, and the binary pulsar J0737-3039
International Nuclear Information System (INIS)
Bruneton, Jean-Philippe
2007-01-01
Field theories with Lorentz (or diffeomorphism invariant) action can exhibit superluminal behavior through the breaking of local Lorentz invariance. Quantum induced superluminal velocities are well-known examples of this effect. The issue of the causal behavior of such propagation is somewhat controversial in the literature and we intend to clarify it. We provide a careful analysis of the meaning of causality in classical relativistic field theories and stress the role played by the Cauchy problem and the notion of chronology. We show that, in general, superluminal behavior threatens causality only if one assumes that a prior chronology in spacetime exists. In the case where superluminal propagation occurs, however, there are at least two nonconformally related metrics in spacetime and thus two available notions of chronology. These two chronologies are on equal footing, and it would thus be misleading to choose ab initio one of them to define causality. Rather, we provide a formulation of causality in which no prior chronology is assumed. We argue that this is the only way to deal with the issue of causality in the case where some degrees of freedom propagate faster than others. In that framework, then, it is shown that superluminal propagation is not necessarily noncausal, the final answer depending on the existence of an initial data formulation. This also depends on global properties of spacetime that we discuss in detail. As an illustration of these conceptual issues, we consider two field theories, namely, k-essence scalar fields and bimetric theories of gravity, and we derive the conditions imposed by causality. We discuss various applications such as the dark energy problem, modified-Newtonian-dynamics-like theories of gravity, and varying speed of light theories
Binary Mixture of Perfect Fluid and Dark Energy in Modified Theory of Gravity
Shaikh, A. Y.
2016-07-01
A self consistent system of Plane Symmetric gravitational field and a binary mixture of perfect fluid and dark energy in a modified theory of gravity are considered. The gravitational field plays crucial role in the formation of soliton-like solutions, i.e., solutions with limited total energy, spin, and charge. The perfect fluid is taken to be the one obeying the usual equation of state, i.e., p = γρ with γ∈ [0, 1] whereas, the dark energy is considered to be either the quintessence like equation of state or Chaplygin gas. The exact solutions to the corresponding field equations are obtained for power-law and exponential volumetric expansion. The geometrical and physical parameters for both the models are studied.
International Nuclear Information System (INIS)
Haas, Fernando
2016-01-01
A didactic and systematic derivation of Noether point symmetries and conserved currents is put forward in special relativistic field theories, without a priori assumptions about the transformation laws. Given the Lagrangian density, the invariance condition develops as a set of partial differential equations determining the symmetry transformation. The solution is provided in the case of real scalar, complex scalar, free electromagnetic, and charged electromagnetic fields. Besides the usual conservation laws, a less popular symmetry is analyzed: the symmetry associated with the linear superposition of solutions, whenever applicable. The role of gauge invariance is emphasized. The case of the charged scalar particle under external electromagnetic fields is considered, and the accompanying Noether point symmetries determined. Noether point symmetries for a dynamical system in extended gravity cosmology are also deduced. (paper)
Haas, Fernando
2016-11-01
A didactic and systematic derivation of Noether point symmetries and conserved currents is put forward in special relativistic field theories, without a priori assumptions about the transformation laws. Given the Lagrangian density, the invariance condition develops as a set of partial differential equations determining the symmetry transformation. The solution is provided in the case of real scalar, complex scalar, free electromagnetic, and charged electromagnetic fields. Besides the usual conservation laws, a less popular symmetry is analyzed: the symmetry associated with the linear superposition of solutions, whenever applicable. The role of gauge invariance is emphasized. The case of the charged scalar particle under external electromagnetic fields is considered, and the accompanying Noether point symmetries determined. Noether point symmetries for a dynamical system in extended gravity cosmology are also deduced.
The initial value problem of scalar-tensor theories of gravity
Energy Technology Data Exchange (ETDEWEB)
Salgado, Marcelo; Martinez del Rio, David [Instituto de Ciencias Nucleares Universidad Nacional Autonoma de Mexico Apdo. Postal 70-543 Mexico 04510 D.F. (Mexico)
2007-11-15
The initial value problem of scalar-tensor theories of gravity (STT) is analyzed in the physical (Jordan) frame using a 3+1 decomposition of spacetime. A first order strongly hyperbolic system is obtained for which the well posedness of the Cauchy problem can be established. We provide two simple applications of the 3+1 system of equations: one for static and spherically symmetric spacetimes which allows the construction of unstable initial data (compact objects) for which a further black hole formation and scalar gravitational wave emission can be analyzed, and another application is for homogeneous and isotropic spacetimes that permits to study the dynamics of the Universe in the framework of STT.
Einstein-Gauss-Bonnet theory of gravity: The Gauss-Bonnet-Katz boundary term
Deruelle, Nathalie; Merino, Nelson; Olea, Rodrigo
2018-05-01
We propose a boundary term to the Einstein-Gauss-Bonnet action for gravity, which uses the Chern-Weil theorem plus a dimensional continuation process, such that the extremization of the full action yields the equations of motion when Dirichlet boundary conditions are imposed. When translated into tensorial language, this boundary term is the generalization to this theory of the Katz boundary term and vector for general relativity. The boundary term constructed in this paper allows to deal with a general background and is not equivalent to the Gibbons-Hawking-Myers boundary term. However, we show that they coincide if one replaces the background of the Katz procedure by a product manifold. As a first application we show that this Einstein Gauss-Bonnet Katz action yields, without any extra ingredients, the expected mass of the Boulware-Deser black hole.
Dehghani, M.
2018-02-01
Making use of the suitable transformation relations, the action of three-dimensional Einstein-Maxwell-dilaton gravity theory has been obtained from that of scalar-tensor modified gravity theory coupled to the Maxwell's electrodynamics as the matter field. Two new classes of the static three-dimensional charged dilatonic black holes, as the exact solutions to the coupled scalar, electromagnetic and gravitational field equations, have been obtained in the Einstein frame. Also, it has been found that the scalar potential can be written in the form of a generalized Liouville-type potential. The conserved black hole charge and masses as well as the black entropy, temperature, and electric potential have been calculated from the geometrical and thermodynamical approaches, separately. Through comparison of the results arisen from these two alternative approaches, the validity of the thermodynamical first law has been proved for both of the new black hole solutions in the Einstein frame. Making use of the canonical ensemble method, a black hole stability or phase transition analysis has been performed. Regarding the black hole heat capacity, with the black hole charge as a constant, the points of type-1 and type-2 phase transitions have been determined. Also, the ranges of the black hole horizon radius at which the Einstein black holes are thermally stable have been obtained for both of the new black hole solutions. Then making use of the inverse transformation relations, two new classes of the string black hole solutions have been obtained from their Einstein counterpart. The thermodynamics and thermal stability of the new string black hole solutions have been investigated. It has been found that thermodynamic properties of the new charged black holes are identical in the Einstein and Jordan frames.
Which Quantum Theory Must be Reconciled with Gravity? (And What Does it Mean for Black Holes?
Directory of Open Access Journals (Sweden)
Matthew J. Lake
2016-10-01
Full Text Available We consider the nature of quantum properties in non-relativistic quantum mechanics (QM and relativistic quantum field theories, and examine the connection between formal quantization schemes and intuitive notions of wave-particle duality. Based on the map between classical Poisson brackets and their associated commutators, such schemes give rise to quantum states obeying canonical dispersion relations, obtained by substituting the de Broglie relations into the relevant (classical energy-momentum relation. In canonical QM, this yields a dispersion relation involving ℏ but not c, whereas the canonical relativistic dispersion relation involves both. Extending this logic to the canonical quantization of the gravitational field gives rise to loop quantum gravity, and a map between classical variables containing G and c, and associated commutators involving ℏ. This naturally defines a “wave-gravity duality”, suggesting that a quantum wave packet describing self-gravitating matter obeys a dispersion relation involving G, c and ℏ. We propose an Ansatz for this relation, which is valid in the semi-Newtonian regime of both QM and general relativity. In this limit, space and time are absolute, but imposing v max = c allows us to recover the standard expressions for the Compton wavelength λ C and the Schwarzschild radius r S within the same ontological framework. The new dispersion relation is based on “extended” de Broglie relations, which remain valid for slow-moving bodies of any mass m. These reduce to canonical form for m ≪ m P , yielding λ C from the standard uncertainty principle, whereas, for m ≫ m P , we obtain r S as the natural radius of a self-gravitating quantum object. Thus, the extended de Broglie theory naturally gives rise to a unified description of black holes and fundamental particles in the semi-Newtonian regime.
Massive graviton and determination of cosmological constant from gauge theory of gravity
International Nuclear Information System (INIS)
Mitrut, Alexandru
2002-01-01
The universe contains a lot more than the eye meets . Sophisticated experiments search diligently for this invisible dark matter. Here we will describe some theoretical implications of the gravitational gauge theory recently proposed by Ning Wu (hep-th/0112062), namely the possibility of the existence of massive gravitons which fill the intergalactic space. Dark matter is an important problem in cosmology. In gravitational gauge field theory, the following effects should be taken into account to solve this problem: 1) The existence of massive graviton will have some contribution to the dark matter; 2) If the gravitational magnetic field is strong inside a celestial system, the gravitational Lorentz force will provide additional centripetal force for circular motion of a celestial object; 3) The existence of a factor which violate inverse square law of classical gravity. Combining general relativity and gravitational gauge theory the cosmological constant is determined theoretically. The cosmological constant is related to the average vacuum energy of the gravitational gauge field. Because the vacuum energy of the gravitational gauge field is negative, the cosmological constant is positive what generates repulsive force on stars to make the expansion rate of the Universe accelerated. A rough estimation of it gives out its magnitude order 10 -52 m -2 , which is well consistent with experimental results. (authors)
Numerical simulations of stellar collapse in scalar-tensor theories of gravity
International Nuclear Information System (INIS)
Gerosa, Davide; Sperhake, Ulrich; Ott, Christian D
2016-01-01
We present numerical-relativity simulations of spherically symmetric core collapse and compact-object formation in scalar-tensor theories of gravity. The additional scalar degree of freedom introduces a propagating monopole gravitational-wave mode. Detection of monopole scalar waves with current and future gravitational-wave experiments may constitute smoking gun evidence for strong-field modifications of general relativity. We collapse both polytropic and more realistic pre-supernova profiles using a high-resolution shock-capturing scheme and an approximate prescription for the nuclear equation of state. The most promising sources of scalar radiation are protoneutron stars collapsing to black holes. In case of a galactic core collapse event forming a black hole, Advanced LIGO may be able to place independent constraints on the parameters of the theory at a level comparable to current solar-system and binary-pulsar measurements. In the region of the parameter space admitting spontaneously scalarised stars, transition to configurations with prominent scalar hair before black-hole formation further enhances the emitted signal. Although a more realistic treatment of the microphysics is necessary to fully investigate the occurrence of spontaneous scalarisation of neutron star remnants, we speculate that formation of such objects could constrain the parameters of the theory beyond the current bounds obtained with solar-system and binary-pulsar experiments. (paper)
Energy Technology Data Exchange (ETDEWEB)
Cruz-Dombriz, Álvaro de la; Dunsby, Peter K.S.; Luongo, Orlando; Reverberi, Lorenzo, E-mail: alvaro.delacruzdombriz@uct.ac.za, E-mail: peter.dunsby@uct.ac.za, E-mail: luongo@na.infn.it, E-mail: lorenzo.reverberi@uct.ac.za [Department of Mathematics and Applied Mathematics, University of Cape Town, Rondebosch 7701, Cape Town (South Africa)
2016-12-01
The onset of dark energy domination depends on the particular gravitational theory driving the cosmic evolution. Model independent techniques are crucial to test the both the present ΛCDM cosmological paradigm and alternative theories, making the least possible number of assumptions about the Universe. In this paper we investigate whether cosmography is able to distinguish between different gravitational theories, by determining bounds on model parameters for three different extensions of General Relativity, namely quintessence, F (Τ) and f ( R ) gravitational theories. We expand each class of theories in powers of redshift z around the present time, making no additional assumptions. This procedure is an extension of previous work and can be seen as the most general approach for testing extended theories of gravity through the use of cosmography. In the case of F (Τ) and f ( R ) theories, we show that some assumptions on model parameters often made in previous works are superfluous or even unjustified. We use data from the Union 2.1 supernovae catalogue, baryonic acoustic oscillation data and H ( z ) differential age compilations, which probe cosmology on different scales of the cosmological evolution. We perform a Monte Carlo analysis using a Metropolis-Hastings algorithm with a Gelman-Rubin convergence criterion, reporting 1-σ and 2-σ confidence levels. To do so, we perform two distinct fits, assuming only data within z < 1 first and then without limitations in redshift. We obtain the corresponding numerical intervals in which coefficients span, and find that the data is compatible the ΛCDM limit of all three theories at the 1-σ level, while still compatible with quite a large portion of parameter space. We compare our results to the truncated ΛCDM paradigm, demonstrating that our bounds divert from the expectations of previous works, showing that the permitted regions of coefficients are significantly modified and in general widened with respect to
Some aspects of reconstruction using a scalar field in f(T) gravity
Energy Technology Data Exchange (ETDEWEB)
Chakrabarti, Soumya [Indian Institute of Technology, Centre for Theoretical Studies, Kharagpur (India); Said, Jackson Levi [University of Malta, Institute of Space Sciences and Astronomy, Msida, MSD (Malta); Farrugia, Gabriel [University of Malta, Department of Physics, Msida, MSD (Malta)
2017-12-15
General relativity characterizes gravity as a geometric property exhibited on spacetime by massive objects, while teleparallel gravity achieves the same results at the level of equations, by taking a torsional perspective of gravity. Similar to the f(R) theory teleparallel gravity can also be generalized to f(T), with the resulting field equations being inherently distinct from f(R) gravity in that they are second order, while in the former case they turn out to be fourth order. In the present case, a minimally coupled scalar field is investigated in the f(T) gravity context for several forms of the scalar field potential. A number of new f(T) solutions are found for these potentials. Their respective state parameters are also being examined. (orig.)
International Nuclear Information System (INIS)
Smalley, L.L.; Prestage, J.
1976-01-01
Malin's gravitational theory, which was recently shown by Lindblom and Nester to be incorrect, is modified by means of a recently proposed method for obtaining viable gravitational theories. The resulting self-consistent theory, which is in effect a Rastall-type modification of the Einstein theory, exhibits nonconservation of momentum, yet agrees with all experimental limits known to date within the PPN framework
Constraining f(R) gravity in solar system, cosmology and binary pulsar systems
Liu, Tan; Zhang, Xing; Zhao, Wen
2018-02-01
The f (R) gravity can be cast into the form of a scalar-tensor theory, and scalar degree of freedom can be suppressed in high-density regions by the chameleon mechanism. In this article, for the general f (R) gravity, using a scalar-tensor representation with the chameleon mechanism, we calculate the parametrized post-Newtonian parameters γ and β, the effective gravitational constant Geff, and the effective cosmological constant Λeff. In addition, for the general f (R) gravity, we also calculate the rate of orbital period decay of the binary system due to gravitational radiation. Then we apply these results to specific f (R) models (Hu-Sawicki model, Tsujikawa model and Starobinsky model) and derive the constraints on the model parameters by combining the observations in solar system, cosmological scales and the binary systems.
From gravity to thermal gauge theories. The AdS/CFT correspondence
International Nuclear Information System (INIS)
Papantonopoulos, Eleftherios
2011-01-01
The AdS/CFT correspondence is a powerful tool in studying strongly coupled phenomena in gauge field theories, using results from a weakly coupled gravity background studied in the realm of string theory. AdS/CFT was first successfully applied to the study of phenomena such as the quark-gluon plasma produced in heavy ions collisions. Soon it was realized that its applicability can be extended, in a more phenomenological approach, to condensed matter systems and to systems described by fluid dynamics. The set of tutorial reviews in this volume is intended as an introduction to and survey of the principle of the AdS/CFT correspondence in its field/string theoretic formulation, its applicability to holographic QCD and to heavy ions collisions, and to give a first account of processes in fluid dynamics and condensed matter physics, which can be studied with the use of this principle. Written by leading researchers in the field and cast into the form of a high-level but approachable multi-author textbook, this volume will be of benefit to all postgraduate students, and newcomers from neighboring disciplines wishing to find a comprehensive guide for their future research. (orig.)
Gravity currents in rotating channels. Part 1. Steady-state theory
Hacker, J. N.; Linden, P. F.
2002-04-01
A theory is developed for the speed and structure of steady-state non-dissipative gravity currents in rotating channels. The theory is an extension of that of Benjamin (1968) for non-rotating gravity currents, and in a similar way makes use of the steady-state and perfect-fluid (incompressible, inviscid and immiscible) approximations, and supposes the existence of a hydrostatic ‘control point’ in the current some distance away from the nose. The model allows for fully non-hydrostatic and ageostrophic motion in a control volume V ahead of the control point, with the solution being determined by the requirements, consistent with the perfect-fluid approximation, of energy and momentum conservation in V, as expressed by Bernoulli's theorem and a generalized flow-force balance. The governing parameter in the problem, which expresses the strength of the background rotation, is the ratio W = B/R, where B is the channel width and R = (g[prime prime or minute]H)1/2/f is the internal Rossby radius of deformation based on the total depth of the ambient fluid H. Analytic solutions are determined for the particular case of zero front-relative flow within the gravity current. For each value of W there is a unique non-dissipative two-layer solution, and a non-dissipative one-layer solution which is specified by the value of the wall-depth h0. In the two-layer case, the non-dimensional propagation speed c = cf(g[prime prime or minute]H)[minus sign]1/2 increases smoothly from the non-rotating value of 0.5 as W increases, asymptoting to unity for W [rightward arrow] [infty infinity]. The gravity current separates from the left-hand wall of the channel at W = 0.67 and thereafter has decreasing width. The depth of the current at the right-hand wall, h0, increases, reaching the full depth at W = 1.90, after which point the interface outcrops on both the upper and lower boundaries, with the distance over which the interface slopes being 0.881R. In the one-layer case, the wall
International Nuclear Information System (INIS)
Schoutens, K.; van Nieuwenhuizen, P.; State Univ. of New York, Stony Brook, NY
1991-11-01
We briefly review some results in the theory of quantum W 3 gravity in the chiral gauge. We compare them with similar results in the analogous but simpler cases of d = 2 induced gauge theories and d = 2 induced gravity
Generalized modified gravity in large extra dimensions
International Nuclear Information System (INIS)
Aslan, Onder; Demir, Durmus A.
2006-01-01
We discuss effective interactions among brane matter induced by modifications of higher-dimensional Einstein gravity through the replacement of Einstein-Hilbert term with a generic function f(R,R AB R AB ,R ABCD R ABCD ) of the curvature tensors. We determine gravi-particle spectrum of the theory, and perform a comparative analysis of its predictions with those of the Einstein gravity within Arkani-Hamed-Dvali-Dimopoulos (ADD) setup. We find that this general higher-curvature quantum gravity theory contributes to scatterings among both massive and massless brane matter (in contrast to much simpler generalization of the Einstein gravity, f(R), which influences only the massive matter), and therefore, can be probed via various scattering processes at present and future colliders and directly confronted with the ADD expectations. In addition to collision processes which proceed with tree-level gravi-particle exchange, effective interactions among brane matter are found to exhibit a strong sensitivity to higher-curvature gravity via the gravi-particle loops. Furthermore, particle collisions with missing energy in their final states are found to be sensitive to additional gravi-particles not found in Einstein gravity. In general, road to a correct description of quantum gravity above Fermi energies depends crucially on if collider and other search methods end up with a negative or positive answer for the presence of higher-curvature gravitational interactions
Wibisono, C.; Sulaksono, A.
We study the stability of nonrelativistic polytropic stars within two modified gravity theories, i.e. beyond Horndeski gravity and Eddington-inspired Born-Infeld theories, using the configuration entropy method. We use the spatially localized bounded function of energy density as solutions from stellar effective equations to construct the corresponding configuration entropy. We use the same argument as the one used by Gleiser and coworkers [M. Gleiser and D. Sowinski, Phys. Lett. B 727 (2013) 272; M. Gleiser and N. Jiang, Phys. Rev. D 92 (2015) 044046] that the stars are stable if there is a peak in configuration entropy as a function of adiabatic index curve. Specifically, the boundary between stable and unstable regions which corresponds to Chandrasekhar stability bound is indicated from the existence of the maximum peak while the most stable polytropic stars are indicated by the minimum peak in the corresponding curve. We have found that the values of critical adiabatic indexes of Chandrasekhar stability bound and the most stable polytropic stars predicted by the nonrelativistic limits of beyond Horndeski gravity and Eddington-inspired Born-Infeld theories are different to those predicted by general relativity where the corresponding differences depend on the free parameters of both theories.
Black holes in higher dimensional gravity theory with corrections quadratic in curvature
International Nuclear Information System (INIS)
Frolov, Valeri P.; Shapiro, Ilya L.
2009-01-01
Static spherically symmetric black holes are discussed in the framework of higher dimensional gravity with quadratic in curvature terms. Such terms naturally arise as a result of quantum corrections induced by quantum fields propagating in the gravitational background. We focus our attention on the correction of the form C 2 =C αβγδ C αβγδ . The Gauss-Bonnet equation in four-dimensional spacetime enables one to reduce this term in the action to the terms quadratic in the Ricci tensor and scalar curvature. As a result the Schwarzschild solution which is Ricci flat will be also a solution of the theory with the Weyl scalar C 2 correction. An important new feature of the spaces with dimension D>4 is that in the presence of the Weyl curvature-squared term a necessary solution differs from the corresponding 'classical' vacuum Tangherlini metric. This difference is related to the presence of secondary or induced hair. We explore how the Tangherlini solution is modified by 'quantum corrections', assuming that the gravitational radius r 0 is much larger than the scale of the quantum corrections. We also demonstrated that finding a general solution beyond the perturbation method can be reduced to solving a single third order ordinary differential equation (master equation).
Massive gravity from bimetric gravity
International Nuclear Information System (INIS)
Baccetti, Valentina; Martín-Moruno, Prado; Visser, Matt
2013-01-01
We discuss the subtle relationship between massive gravity and bimetric gravity, focusing particularly on the manner in which massive gravity may be viewed as a suitable limit of bimetric gravity. The limiting procedure is more delicate than currently appreciated. Specifically, this limiting procedure should not unnecessarily constrain the background metric, which must be externally specified by the theory of massive gravity itself. The fact that in bimetric theories one always has two sets of metric equations of motion continues to have an effect even in the massive gravity limit, leading to additional constraints besides the one set of equations of motion naively expected. Thus, since solutions of bimetric gravity in the limit of vanishing kinetic term are also solutions of massive gravity, but the contrary statement is not necessarily true, there is no complete continuity in the parameter space of the theory. In particular, we study the massive cosmological solutions which are continuous in the parameter space, showing that many interesting cosmologies belong to this class. (paper)
International Nuclear Information System (INIS)
Wu Ning; Zhang Dahua
2007-01-01
A systematic method is developed to study the classical motion of a mass point in gravitational gauge field. First, by using Mathematica, a spherical symmetric solution of the field equation of gravitational gauge field is obtained, which is just the traditional Schwarzschild solution. Combining the principle of gauge covariance and Newton's second law of motion, the equation of motion of a mass point in gravitational field is deduced. Based on the spherical symmetric solution of the field equation and the equation of motion of a mass point in gravitational field, we can discuss classical tests of gauge theory of gravity, including the deflection of light by the sun, the precession of the perihelia of the orbits of the inner planets and the time delay of radar echoes passing the sun. It is found that the theoretical predictions of these classical tests given by gauge theory of gravity are completely the same as those given by general relativity.
Directory of Open Access Journals (Sweden)
A. M. Abd-Alla
2013-01-01
Full Text Available Estimation is done to investigate the gravitational and rotational parameters effects on surface waves in fibre-reinforced thermoelastic media. The theory of generalized surface waves has been firstly developed and then it has been employed to investigate particular cases of waves, namely, Stoneley waves, Rayleigh waves, and Love waves. The analytical expressions for surface waves velocity and attenuation coefficient are obtained in the physical domain by using the harmonic vibrations and four thermoelastic theories. The wave velocity equations have been obtained in different cases. The numerical results are given for equation of coupled thermoelastic theory (C-T, Lord-Shulman theory (L-S, Green-Lindsay theory (G-L, and the linearized (G-N theory of type II. Comparison was made with the results obtained in the presence and absence of gravity, rotation, and parameters for fibre-reinforced of the material media. The results obtained are displayed by graphs to clear the phenomena physical meaning. The results indicate that the effect of gravity, rotation, relaxation times, and parameters of fibre-reinforced of the material medium is very pronounced.
International Nuclear Information System (INIS)
Vega, H.J. de
1990-01-01
One of the main challenges in theoretical physics today is the unification of all interactions including gravity. At present, string theories appear as the most promising candidates to achieve such a unification. However, gravity has not completely been incorporated in string theory, many technical and conceptual problems remain and a full quantum theory of gravity is still non-existent. Our aim is to properly understand strings in the context of quantum gravity. Attempts towards this are reviewed. (author)
International Nuclear Information System (INIS)
Romero, Jesus Martin; Bellini, Mauricio
2013-01-01
We extend the Induced Matter Theory of gravity (IMT) to 5D curved spacetimes by using the Weitzenboeck representation of connections on a 5D curved spacetime. In this representation the 5D curvature tensor becomes null, so that we can make a static foliation on the extra non-compact coordinate to induce in the Weitzenboeck representation the Einstein equations. Once we have done it, we can rewrite the effective 4D Einstein equations in the Levi-Civita representation. This generalization of IMT opens a huge window of possible applications for this theory. A pre-big bang collapsing scenario is explored as an example. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Romero, Jesus Martin [Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), Instituto de Investigaciones Fisicas de Mar del Plata (IFIMAR), Mar del Plata (Argentina); Bellini, Mauricio [Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), Instituto de Investigaciones Fisicas de Mar del Plata (IFIMAR), Mar del Plata (Argentina); Universidad Nacional de Mar del Plata, Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Funes 3350, C.P. 7600, Mar del Plata (Argentina)
2013-02-15
We extend the Induced Matter Theory of gravity (IMT) to 5D curved spacetimes by using the Weitzenboeck representation of connections on a 5D curved spacetime. In this representation the 5D curvature tensor becomes null, so that we can make a static foliation on the extra non-compact coordinate to induce in the Weitzenboeck representation the Einstein equations. Once we have done it, we can rewrite the effective 4D Einstein equations in the Levi-Civita representation. This generalization of IMT opens a huge window of possible applications for this theory. A pre-big bang collapsing scenario is explored as an example. (orig.)
Environmental screening of dark matter haloes in f(R) gravity
Shi, Difu; Li, Baojiu; Han, Jiaxin
2017-07-01
In certain theories of modified gravity, Solar system constraints on deviations from general relativity (GR) are satisfied by virtue of a so-called screening mechanism, which enables the theory to revert to GR in regions where the matter density is high or the gravitational potential is deep. In the case of chameleon theories, the screening has two contributions - self-screening, which is due to the mass of an object itself, and environmental screening, which is caused by the surrounding matter - which are often entangled, with the second contribution being more crucial for less massive objects. A quantitative understanding of the effect of the environment on the screening can prove critical in observational tests of such theories using systems such as the Local Group and dwarf galaxies, for which the environment may be inferred in various ways. We use the high-resolution liminality simulation of Shi et al. to test the fidelity of different definitions of environment. We find that, although the different ways to define environment in practice do not agree with one another perfectly, they can provide useful guidance, and cross checks about how well a dark matter halo is screened. In addition, the screening of subhaloes in dark matter haloes is primarily determined by the environment, with the subhalo mass playing a minor role, which means that lower resolution simulations where subhaloes are not well resolved can still be useful for understanding the modification of gravity inside subhaloes.
Clear and Measurable Signature of Modified Gravity in the Galaxy Velocity Field
Hellwing, Wojciech A.; Barreira, Alexandre; Frenk, Carlos S.; Li, Baojiu; Cole, Shaun
2014-06-01
The velocity field of dark matter and galaxies reflects the continued action of gravity throughout cosmic history. We show that the low-order moments of the pairwise velocity distribution v12 are a powerful diagnostic of the laws of gravity on cosmological scales. In particular, the projected line-of-sight galaxy pairwise velocity dispersion σ12(r) is very sensitive to the presence of modified gravity. Using a set of high-resolution N-body simulations, we compute the pairwise velocity distribution and its projected line-of-sight dispersion for a class of modified gravity theories: the chameleon f(R) gravity and Galileon gravity (cubic and quartic). The velocities of dark matter halos with a wide range of masses would exhibit deviations from general relativity at the (5-10)σ level. We examine strategies for detecting these deviations in galaxy redshift and peculiar velocity surveys. If detected, this signature would be a "smoking gun" for modified gravity.
International Nuclear Information System (INIS)
Mirzatuny, Nareg; Khosravi, Shahram; Baghram, Shant; Moshafi, Hossein
2014-01-01
In this work we study the simultaneous effect of primordial non-Gaussianity and the modification of the gravity in f(R) framework on large scale structure observations. We show that non-Gaussianity and modified gravity introduce a scale dependent bias and growth rate functions. The deviation from ΛCDM in the case of primordial non-Gaussian models is in large scales, while the growth rate deviates from ΛCDM in small scales for modified gravity theories. We show that the redshift space distortion can be used to distinguish positive and negative f NL in standard background, while in f(R) theories they are not easily distinguishable. The galaxy power spectrum is generally enhanced in presence of non-Gaussianity and modified gravity. We also obtain the scale dependence of this enhancement. Finally we define galaxy growth rate and galaxy growth rate bias as new observational parameters to constrain cosmology
Friedmann model with viscous cosmology in modified f(R,T) gravity theory
Energy Technology Data Exchange (ETDEWEB)
Singh, C.P.; Kumar, Pankaj [Delhi Technological University, Department of Applied Mathematics, Delhi (India)
2014-10-15
In this paper, we introduce the bulk viscosity in the formalism of modified gravity theory in which the gravitational action contains a general function f(R,T), where R and T denote the curvature scalar and the trace of the energy.momentum tensor, respectively, within the framework of a flat Friedmann-Robertson-Walker model. As an equation of state for a prefect fluid, we take p = (γ - 1)ρ, where 0 ≤ γ ≤ 2 and a viscous term as a bulk viscosity due to the isotropic model, of the form ξ = ξ{sub 0} + ξ{sub 1}H, where ξ{sub 0} and ξ{sub 1} are constants, and H is the Hubble parameter. The exact non-singular solutions to the corresponding field equations are obtained with non-viscous and viscous fluids, respectively, by assuming a simplest particular model of the form of f(R,T) = R + 2f(T), where f(T) = αT (α is a constant). A big-rip singularity is also observed for γ < 0 at a finite value of cosmic time under certain constraints. We study all possible scenarios with the possible positive and negative ranges of α to analyze the expansion history of the universe. It is observed that the universe accelerates or exhibits a transition from a decelerated phase to an accelerated phase under certain constraints of ξ{sub 0} and ξ{sub 1}. We compare the viscous models with the non-viscous one through the graph plotted between the scale factor and cosmic time and find that the bulk viscosity plays a major role in the expansion of the universe. A similar graph is plotted for the deceleration parameter with non-viscous and viscous fluids and we find a transition from decelerated to accelerated phase with some form of bulk viscosity. (orig.)
Quantum gravity in the sky: interplay between fundamental theory and observations
International Nuclear Information System (INIS)
Ashtekar, Abhay; Gupt, Brajesh
2017-01-01
Observational missions have provided us with a reliable model of the evolution of the universe starting from the last scattering surface all the way to future infinity. Furthermore given a specific model of inflation, using quantum field theory on curved space-times this history can be pushed back in time to the epoch when space-time curvature was some 10 62 times that at the horizon of a solar mass black hole! However, to extend the history further back to the Planck regime requires input from quantum gravity. An important aspect of this input is the choice of the background quantum geometry and of the Heisenberg state of cosmological perturbations thereon, motivated by Planck scale physics. This paper introduces first steps in that direction. Specifically we propose two principles that link quantum geometry and Heisenberg uncertainties in the Planck epoch with late time physics and explore in detail the observational consequences of the initial conditions they select. We find that the predicted temperature–temperature (T–T) correlations for scalar modes are indistinguishable from standard inflation at small angular scales even though the initial conditions are now set in the deep Planck regime. However, there is a specific power suppression at large angular scales . As a result, the predicted spectrum provides a better fit to the PLANCK mission data than standard inflation, where the initial conditions are set in the general relativity regime. Thus, our proposal brings out a deep interplay between the ultraviolet and the infrared. Finally, the proposal also leads to specific predictions for power suppression at large angular scales also for the (T–E and E–E) correlations involving electric polarization3. The PLANCK team is expected to release this data in the coming year. (paper)
Quantum gravity in the sky: interplay between fundamental theory and observations
Ashtekar, Abhay; Gupt, Brajesh
2017-01-01
Observational missions have provided us with a reliable model of the evolution of the universe starting from the last scattering surface all the way to future infinity. Furthermore given a specific model of inflation, using quantum field theory on curved space-times this history can be pushed back in time to the epoch when space-time curvature was some 1062 times that at the horizon of a solar mass black hole! However, to extend the history further back to the Planck regime requires input from quantum gravity. An important aspect of this input is the choice of the background quantum geometry and of the Heisenberg state of cosmological perturbations thereon, motivated by Planck scale physics. This paper introduces first steps in that direction. Specifically we propose two principles that link quantum geometry and Heisenberg uncertainties in the Planck epoch with late time physics and explore in detail the observational consequences of the initial conditions they select. We find that the predicted temperature-temperature (T-T) correlations for scalar modes are indistinguishable from standard inflation at small angular scales even though the initial conditions are now set in the deep Planck regime. However, there is a specific power suppression at large angular scales. As a result, the predicted spectrum provides a better fit to the PLANCK mission data than standard inflation, where the initial conditions are set in the general relativity regime. Thus, our proposal brings out a deep interplay between the ultraviolet and the infrared. Finally, the proposal also leads to specific predictions for power suppression at large angular scales also for the (T-E and E-E) correlations involving electric polarization3. The PLANCK team is expected to release this data in the coming year.
Energy Technology Data Exchange (ETDEWEB)
Setare, M.R., E-mail: rezakord@ipm.ir; Adami, H., E-mail: hamed.adami@yahoo.com
2017-01-15
In this paper we study the near horizon symmetry algebra of the non-extremal black hole solutions of the Chern–Simons-like theories of gravity, which are stationary but are not necessarily spherically symmetric. We define the extended off-shell ADT current which is an extension of the generalized ADT current. We use the extended off-shell ADT current to define quasi-local conserved charges such that they are conserved for Killing vectors and asymptotically Killing vectors which depend on dynamical fields of the considered theory. We apply this formalism to the Generalized Minimal Massive Gravity (GMMG) and obtain conserved charges of a spacetime which describes near horizon geometry of non-extremal black holes. Eventually, we find the algebra of conserved charges in Fourier modes. It is interesting that, similar to the Einstein gravity in the presence of negative cosmological constant, for the GMMG model also we obtain the Heisenberg algebra as the near horizon symmetry algebra of the black flower solutions. Also the vacuum state and all descendants of the vacuum have the same energy. Thus these zero energy excitations on the horizon appear as soft hairs on the black hole.
Directory of Open Access Journals (Sweden)
M.R. Setare
2017-01-01
Full Text Available In this paper we study the near horizon symmetry algebra of the non-extremal black hole solutions of the Chern–Simons-like theories of gravity, which are stationary but are not necessarily spherically symmetric. We define the extended off-shell ADT current which is an extension of the generalized ADT current. We use the extended off-shell ADT current to define quasi-local conserved charges such that they are conserved for Killing vectors and asymptotically Killing vectors which depend on dynamical fields of the considered theory. We apply this formalism to the Generalized Minimal Massive Gravity (GMMG and obtain conserved charges of a spacetime which describes near horizon geometry of non-extremal black holes. Eventually, we find the algebra of conserved charges in Fourier modes. It is interesting that, similar to the Einstein gravity in the presence of negative cosmological constant, for the GMMG model also we obtain the Heisenberg algebra as the near horizon symmetry algebra of the black flower solutions. Also the vacuum state and all descendants of the vacuum have the same energy. Thus these zero energy excitations on the horizon appear as soft hairs on the black hole.
Weak lensing probes of modified gravity
International Nuclear Information System (INIS)
Schmidt, Fabian
2008-01-01
We study the effect of modifications to general relativity on large-scale weak lensing observables. In particular, we consider three modified gravity scenarios: f(R) gravity, the Dvali-Gabadadze-Porrati model, and tensor-vector-scalar theory. Weak lensing is sensitive to the growth of structure and the relation between matter and gravitational potentials, both of which will in general be affected by modified gravity. Restricting ourselves to linear scales, we compare the predictions for galaxy-shear and shear-shear correlations of each modified gravity cosmology to those of an effective dark energy cosmology with the same expansion history. In this way, the effects of modified gravity on the growth of perturbations are separated from the expansion history. We also propose a test which isolates the matter-potential relation from the growth factor and matter power spectrum. For all three modified gravity models, the predictions for galaxy and shear correlations will be discernible from those of dark energy with very high significance in future weak lensing surveys. Furthermore, each model predicts a measurably distinct scale dependence and redshift evolution of galaxy and shear correlations, which can be traced back to the physical foundations of each model. We show that the signal-to-noise for detecting signatures of modified gravity is much higher for weak lensing observables as compared to the integrated Sachs-Wolfe effect, measured via the galaxy-cosmic microwave background cross-correlation.
Chakraborty, Somdeb; Roy, Shibaji
2012-02-01
A particular decoupling limit of the nonextremal (D1, D3) brane bound state system of type IIB string theory is known to give the gravity dual of space-space noncommutative Yang-Mills theory at finite temperature. We use a string probe in this background to compute the jet quenching parameter in a strongly coupled plasma of hot noncommutative Yang-Mills theory in (3+1) dimensions from gauge/gravity duality. We give expressions for the jet quenching parameter for both small and large noncommutativity. For small noncommutativity, we find that the value of the jet quenching parameter gets reduced from its commutative value. The reduction is enhanced with temperature as T7 for fixed noncommutativity and fixed ’t Hooft coupling. We also give an estimate of the correction due to noncommutativity at the present collider energies like in RHIC or in LHC and find it too small to be detected. We further generalize the results for noncommutative Yang-Mills theories in diverse dimensions.
Wang, Juven C; Gu, Zheng-Cheng; Wen, Xiao-Gang
2015-01-23
The challenge of identifying symmetry-protected topological states (SPTs) is due to their lack of symmetry-breaking order parameters and intrinsic topological orders. For this reason, it is impossible to formulate SPTs under Ginzburg-Landau theory or probe SPTs via fractionalized bulk excitations and topology-dependent ground state degeneracy. However, the partition functions from path integrals with various symmetry twists are universal SPT invariants, fully characterizing SPTs. In this work, we use gauge fields to represent those symmetry twists in closed spacetimes of any dimensionality and arbitrary topology. This allows us to express the SPT invariants in terms of continuum field theory. We show that SPT invariants of pure gauge actions describe the SPTs predicted by group cohomology, while the mixed gauge-gravity actions describe the beyond-group-cohomology SPTs. We find new examples of mixed gauge-gravity actions for U(1) SPTs in (4+1)D via the gravitational Chern-Simons term. Field theory representations of SPT invariants not only serve as tools for classifying SPTs, but also guide us in designing physical probes for them. In addition, our field theory representations are independently powerful for studying group cohomology within the mathematical context.
Noether symmetry analysis of anisotropic universe in modified gravity
Energy Technology Data Exchange (ETDEWEB)
Shamir, M.F.; Kanwal, Fiza [National University of Computer and Emerging Sciences, Department of Sciences and Humanities, Lahore (Pakistan)
2017-05-15
In this paper we study the anisotropic universe using Noether symmetries in modified gravity. In particular, we choose a locally rotationally symmetric Bianchi type-I universe for the analysis in f(R, G) gravity, where R is the Ricci scalar and G is the Gauss-Bonnet invariant. Firstly, a model f(R, G) = f{sub 0}R{sup l} + f{sub 1}G{sup n} is proposed and the corresponding Noether symmetries are investigated. We have also recovered the Noether symmetries for f(R) and f(G) theories of gravity. Secondly, some important cosmological solutions are reconstructed. Exponential and power-law solutions are reported for a well-known f(R, G) model, i.e., f(R, G) = f{sub 0}R{sup n}G{sup 1-n}. Especially, Kasner's solution is recovered and it is anticipated that the familiar de Sitter spacetime giving ΛCDM cosmology may be reconstructed for some suitable value of n. (orig.)
Probing the f(R) formalism through gravitational wave polarizations
International Nuclear Information System (INIS)
Alves, M.E.S.; Miranda, O.D.; Araujo, J.C.N. de
2009-01-01
The direct observation of gravitational waves (GW) in the near future, and the corresponding determination of the number of independent polarizations, is a powerful tool to test general relativity and alternative theories of gravity. In the present work we use the Newman-Penrose formalism to characterize GWs in quadratic gravity and in a particular class of f(R) Lagrangians. We find that both quadratic gravity and the f(R) theory belong to the most general invariant class of GWs, i.e., they can present up to six independent polarizations of GWs. For a particular combination of the parameters, we find that quadratic gravity can present up to five polarizations states. On the other hand, if we use the Palatini approach for f(R) theories, GWs present only the usual two transverse-traceless polarizations such as in general relativity. Thus, we conclude that the observation of GWs can strongly constrain the suitable formalism for these theories.
Search for scalar-tensor gravity theories with a non-monotonic time evolution of the speed-up factor
Energy Technology Data Exchange (ETDEWEB)
Navarro, A [Dept Fisica, Universidad de Murcia, E30071-Murcia (Spain); Serna, A [Dept Fisica, Computacion y Comunicaciones, Universidad Miguel Hernandez, E03202-Elche (Spain); Alimi, J-M [Lab. de l' Univers et de ses Theories (LUTH, CNRS FRE2462), Observatoire de Paris-Meudon, F92195-Meudon (France)
2002-08-21
We present a method to detect, in the framework of scalar-tensor gravity theories, the existence of stationary points in the time evolution of the speed-up factor. An attractive aspect of this method is that, once the particular scalar-tensor theory has been specified, the stationary points are found through a simple algebraic equation which does not contain any integration. By applying this method to the three classes of scalar-tensor theories defined by Barrow and Parsons, we have found several new cosmological models with a non-monotonic evolution of the speed-up factor. The physical interest of these models is that, as previously shown by Serna and Alimi, they predict the observed primordial abundance of light elements for a very wide range of baryon density. These models are then consistent with recent CMB and Lyman-{alpha} estimates of the baryon content of the universe.
Gravity in the Einstein-Gauss-Bonnet theory with the Randall-Sundrum background
International Nuclear Information System (INIS)
Kim, Jihn E.; Lee, Hyun Min
2001-01-01
We obtain the full 5D graviton propagator in the Randall-Sundrum model with the Gauss-Bonnet interaction. From the decomposition of the graviton propagator on the brane, we show that localization of gravity arises in the presence of the Gauss-Bonnet term. We also obtain the metric perturbation for observers on the brane with considering the brane bending and compute the amplitude of one massless graviton exchange. For the positive definite amplitude or no ghost states, the sign of the Gauss-Bonnet term should be negative in our convention, which is compatible with string amplitude computations. In that case, the ghost-free condition is sufficient for obtaining the Newtonian gravity. For a vanishing Gauss-Bonnet coefficient, the brane bending allows us to reproduce the correct graviton polarizations for the effective 4D Einstein gravity
What energy does gravity unite with grand unified theories in the early universe
International Nuclear Information System (INIS)
Sivaram, C.
1987-01-01
Unification of gravity with GUTs is usually expected at the Planck energy E/sub PI/ ∼ 10 19 GeV. However, the vastly different values of the two couplings at E/sub PI/ (α/sub GUT/ E/sub PI/ with a single dimensionless coupling constant (α/sub U/ << 1) and described by a scale-invariant action quadratic in the Weyl curvature (with Yang-Mills fields). Breaking of scale invariance at E/sub PI/ then separates the interactions into gravity, now described by a Hilbert action with a dimensional G and GUTs with a dimensionless α/sub GUT/ and YM action. Problems with Klein-Kaluza unification of gravity with GUTs are also discussed in this context
International Nuclear Information System (INIS)
Quiros, I.
2008-01-01
Full text: An overview of the state of the art in modern astrophysics and cosmology is given, emphasizing the 'Dark Energy Problem', one of the fundamental problems of theoretical physics at present. In particular is analyzed the possibility that the universe could be a three-dimensional membrane embedded in a higher dimensional space. These models known as 'brane worlds' can explain the present accelerated expansion of the Universe as dissipation due to gravity at cosmological scales extra or limit space infrared (IR). However there are many other problems to solve, including the problem of 'ghost' modes that are inevitable in any IR modification of gravity. (author)
Directory of Open Access Journals (Sweden)
Bondarescu Ruxandra
2015-01-01
Full Text Available The successful miniaturisation of extremely accurate atomic clocks and atom interferometers invites prospects for satellite missions to perform precision experiments. We discuss the effects predicted by general relativity and alternative theories of gravity that can be detected by a clock, which orbits the Earth. Our experiment relies on the precise tracking of the spacecraft using its observed tick-rate. The spacecraft’s reconstructed four-dimensional trajectory will reveal the nature of gravitational perturbations in Earth’s gravitational field, potentially differentiating between different theories of gravity. This mission can measure multiple relativistic effects all during the course of a single experiment, and constrain the Parametrized Post-Newtonian Parameters around the Earth. A satellite carrying a clock of fractional timing inaccuracy of Δ f / f ∼ 10−16 in an elliptic orbit around the Earth would constrain the PPN parameters |β − 1|, |γ − 1| ≲ 10−6. We also briefly review potential constraints by atom interferometers on scalar tensor theories and in particular on Chameleon and dilaton models.
Directory of Open Access Journals (Sweden)
Álvaro de la Cruz Dombriz
2018-02-01
Full Text Available Combined cosmological, astrophysical and numerical tests may shed some light on the viability of theories of gravity beyond Einsteinian relativity. In this letter, we present two different techniques providing complementary ways of testing new physics beyond the Λ CDM cosmological paradigm. First, we shall present some of the latest progress and shortcomings in the cosmographic model-independent approach for several modified gravity theories using supernovae catalogues, baryonic acoustic oscillation data and H ( z differential age compilations. Second, we shall show how once the Einsteinian paradigm is abandoned, the phenomenology of neutron stars changes dramatically since neutron-star masses can be much larger than their General Relativity counterparts. Consequently, the total energy available for radiating gravitational waves could be of the order of several solar masses, and thus a merger of these stars constitutes a privileged wave source. Unfortunately at the present time our persisting lack of understanding in the strong interaction sector does not allow to distinguish the alternative theories from the usual General Relativity predictions.
International Nuclear Information System (INIS)
Wu Xinggang; Fang Zhenyun
2008-01-01
CERN LHC provides a good experimental platform to perturbatively probe the fundamental gravity scale up to several TeV, with the precise value depending on the number of extra dimensions. The leading experimental signal of the graviton at the LHC is from the process pp→jet+Ee T , where Ee T stands for the transverse missing energy. A detailed discussion on the hadronic production of the real graviton through hard subprocesses: qq→G+g, g+q→G+q, and g+g→G+g have been studied within the quantum gravity theory with large extra dimensions. The main theoretical uncertainties together with the dominant standard model background to these processes, e.g. qq→Z 0 +g and g+q→Z 0 +q with Z 0 further decaying into neutrinos, have also been discussed. It is found that only in a certain jet energy region and with a certain number of extra dimensions can the quantum gravity signal be distinguished from the background, which inversely lead to the effective scale M D to be probed up to (8.8±0.9) TeV for two extra dimensions and (5.9±0.5) TeV for four extra dimensions with sufficient integrated luminosity, e.g. 100 fb -1 , at CERN LHC.
Multi-loop correlators for rational theories of 2D gravity from the generalized Kontsevich models
DEFF Research Database (Denmark)
Kristjansen, C.
1994-01-01
functions of the susceptibilities and the eigenvalues of the external field. We furthermore use the moment technique to derive a closed expression for the genus zero multi-loop correlators for $(3,3m-1)$ and $(3,3m-2)$ rational matter fields coupled to gravity. We comment on the relation between the two-matrix...
International Nuclear Information System (INIS)
Markov, M.A.; West, P.C.
1984-01-01
This book discusses the state of the art of quantum gravity, quantum effects in cosmology, quantum black-hole physics, recent developments in supergravity, and quantum gauge theories. Topics considered include the problems of general relativity, pregeometry, complete cosmological theories, quantum fluctuations in cosmology and galaxy formation, a new inflationary universe scenario, grand unified phase transitions and the early Universe, the generalized second law of thermodynamics, vacuum polarization near black holes, the relativity of vacuum, black hole evaporations and their cosmological consequences, currents in supersymmetric theories, the Kaluza-Klein theories, gauge algebra and quantization, and twistor theory. This volume constitutes the proceedings of the Second Seminar on Quantum Gravity held in Moscow in 1981
Implications of extreme flatness in a general f(R theory
Directory of Open Access Journals (Sweden)
Michał Artymowski
2016-09-01
Full Text Available We discuss a modified gravity theory defined by f(R=∑nlαnM2(1−nRn. We consider both finite and infinite number of terms in the series while requiring that the Einstein frame potential of the theory has a flat area around any of its stationary points. We show that the requirement of maximally flat stationary point leads to the existence of the saddle point (local maximum for even (odd l. In both cases for l→∞ one obtains the Starobinsky model with small, exponentially suppressed corrections. Besides the GR minimum the Einstein frame potential has an anti de Sitter vacuum. However we argue that the GR vacuum is absolutely stable and AdS can be reached neither via classical evolution nor via quantum tunnelling. Our results show that a Starobinsky-like model is the only possible realisation of f(R theory with an extremely flat area in the Einstein frame potential.
The reconstruction of f(ϕR and mimetic gravity from viable slow-roll inflation
Directory of Open Access Journals (Sweden)
S.D. Odintsov
2018-04-01
Full Text Available In this work, we extend the bottom-up reconstruction framework of F(R gravity to other modified gravities, and in particular for f(ϕR and mimetic F(R gravities. We investigate which are the important conditions in order for the method to work, and we study several viable cosmological evolutions, focusing on the inflationary era. Particularly, for the f(ϕR theory case, we specify the functional form of the Hubble rate and of the scalar-to-tensor ratio as a function of the e-foldings number and accordingly, the rest of the physical quantities and also the slow-roll and the corresponding observational indices can be calculated. The same method is applied in the mimetic F(R gravity case, and in both cases we thoroughly analyze the resulting free parameter space, in order to show that the viability of the models presented is guaranteed and secondly that there is a wide range of values of the free parameters for which the viability of the models occurs. In addition, the reconstruction method is also studied in the context of mimetic F(R=R gravity. As we demonstrate, the resulting theory is viable, and also in this case, only the scalar-to-tensor ratio needs to be specified, since the rest follow from this condition. Finally, we discuss in brief how the reconstruction method could function for other modified gravities.
International Nuclear Information System (INIS)
Vladimirov, Yu.S.; Kislov, V.V.
1982-01-01
Basic equations of the united five-dimensional theory of gravity, electromagnetism and scalar field are given. Discussed is one of the given theory consequences - dependence of electric charge ratio to the e/m test, particle mass on fundamental scalar field value in the specified point. The latter is determined by the solution of the Einstein, Maxwell and Klein-Fock equations system. In particular, this field varies in the Sun-Earth system for an observer bound to the Earth owing to orbit ellipticity of the Earth. The formula describing the e/m variation is given. Data on measuring Josephson frequency revealing the tendency of season dependence (Earth-Sun distances) which raises the problem of performing direct experiments for controlling e/m ratio stability are reproduced
Levi, Michele; Steinhoff, Jan
2017-12-01
We present a novel public package ‘EFTofPNG’ for high precision computation in the effective field theory of post-Newtonian (PN) gravity, including spins. We created this package in view of the timely need to publicly share automated computation tools, which integrate the various types of physics manifested in the expected increasing influx of gravitational wave (GW) data. Hence, we created a free and open source package, which is self-contained, modular, all-inclusive, and accessible to the classical gravity community. The ‘EFTofPNG’ Mathematica package also uses the power of the ‘xTensor’ package, suited for complicated tensor computation, where our coding also strategically approaches the generic generation of Feynman contractions, which is universal to all perturbation theories in physics, by efficiently treating n-point functions as tensors of rank n. The package currently contains four independent units, which serve as subsidiaries to the main one. Its final unit serves as a pipeline chain for the obtainment of the final GW templates, and provides the full computation of derivatives and physical observables of interest. The upcoming ‘EFTofPNG’ package version 1.0 should cover the point mass sector, and all the spin sectors, up to the fourth PN order, and the two-loop level. We expect and strongly encourage public development of the package to improve its efficiency, and to extend it to further PN sectors, and observables useful for the waveform modelling.
Modified gravity in Arnowitt-Deser-Misner formalism
International Nuclear Information System (INIS)
Gao Changjun
2010-01-01
Motivated by Horava-Lifshitz gravity theory, we propose and investigate two kinds of modified gravity theories, the f(R) kind and the K-essence kind, in the Arnowitt-Deser-Misner (ADM) formalism. The f(R) kind includes one ultraviolet (UV) term and one infrared (IR) term together with the Einstein-Hilbert action. We find that these two terms naturally present the ultraviolet and infrared modifications to the Friedmann equation. The UV and IR modifications can avoid the past Big-Bang singularity and the future Big-Rip singularity, respectively. Furthermore, the IR modification can naturally account for the current acceleration of the Universe. The Lagrangian of K-essence kind modified gravity is made up of the three-dimensional Ricci scalar and an arbitrary function of the extrinsic curvature term. We find the cosmic acceleration can also be naturally interpreted without invoking any kind of dark energy. The static, spherically symmetry and vacuum solutions of both theories are Schwarzschild or Schwarzschild-de Sitter solution. Thus these modified gravity theories are viable for solar system tests.
Modified gravity in Arnowitt-Deser-Misner formalism
Gao, Changjun
2010-02-01
Motivated by Hořava-Lifshitz gravity theory, we propose and investigate two kinds of modified gravity theories, the f(R) kind and the K-essence kind, in the Arnowitt-Deser-Misner (ADM) formalism. The f(R) kind includes one ultraviolet (UV) term and one infrared (IR) term together with the Einstein-Hilbert action. We find that these two terms naturally present the ultraviolet and infrared modifications to the Friedmann equation. The UV and IR modifications can avoid the past Big-Bang singularity and the future Big-Rip singularity, respectively. Furthermore, the IR modification can naturally account for the current acceleration of the Universe. The Lagrangian of K-essence kind modified gravity is made up of the three-dimensional Ricci scalar and an arbitrary function of the extrinsic curvature term. We find the cosmic acceleration can also be naturally interpreted without invoking any kind of dark energy. The static, spherically symmetry and vacuum solutions of both theories are Schwarzschild or Schwarzschild-de Sitter solution. Thus these modified gravity theories are viable for solar system tests.
Kinetic theory of Jean instability in Eddington-inspired Born-Infeld gravity
Energy Technology Data Exchange (ETDEWEB)
Martino, Ivan de [University of the Basque Country UPV/EHU, Department of Theoretical Physics and History of Science, Faculty of Science and Technology, Leioa (Spain); Capolupo, Antonio [Universita di Salerno, Dipartimento di Fisica E.R. Caianiello, Fisciano (Italy); INFN Gruppo Collegato di Salerno, Fisciano (Italy)
2017-10-15
We analyze the stability of self-gravitating systems which dynamics is investigated using the collisionless Boltzmann equation, and the modified Poisson equation of Eddington-inspired Born-Infield gravity. These equations provide a description of the Jeans paradigm used to determine the critical scale above which such systems collapse. At equilibrium, the systems are described using the time-independent Maxwell-Boltzmann distribution function f{sub 0}(v). Considering small perturbations to this equilibrium state, we obtain a modified dispersion relation, and we find a new characteristic scale length. Our results indicate that the dynamics of self-gravitating astrophysical systems can be fully addressed in the Eddington-inspired Born-Infeld gravity. The latter modifies the Jeans instability in high densities environments, while its effects become negligible in star formation regions. (orig.)
A RENORMALIZATION PROCEDURE FOR TENSOR MODELS AND SCALAR-TENSOR THEORIES OF GRAVITY
SASAKURA, NAOKI
2010-01-01
Tensor models are more-index generalizations of the so-called matrix models, and provide models of quantum gravity with the idea that spaces and general relativity are emergent phenomena. In this paper, a renormalization procedure for the tensor models whose dynamical variable is a totally symmetric real three-tensor is discussed. It is proven that configurations with certain Gaussian forms are the attractors of the three-tensor under the renormalization procedure. Since these Gaussian config...
Low-dimensional gravities as gauge theories with non-compact groups
International Nuclear Information System (INIS)
Cangeni, D.
1993-01-01
In another note presented in these Proceedings it is shown that the two main lineal gravities can be given a gauge formulation. If it is already known that one of them the Sitter model - is a dimensional reduction of a Chern-Simons model in (2+1) dimensions, it was not clear whether the other one - the extended Poincare model follows from a similar reduction. The purpose of this note is to show that this is indeed the case provide we start in 2+1 dimensions with an extension ISO(2,1) of the Poincare groups as gauge group of a Chern-Simons model. We first show that this model gives a new proposal for gravity in 2*1 dimensions, since we get classically the Einstein's equations. Performing then a dimensional reduction, we recover not only the extended Poincare model but also the de Sitter one; hence, both lineal gravities get unified in the reduced model. (Author) 6 refs
Entropy of nonrotating isolated horizons in Lovelock theory from loop quantum gravity
Wang, Jing-Bo; Huang, Chao-Guang; Li, Lin
2016-08-01
In this paper, the BF theory method is applied to the nonrotating isolated horizons in Lovelock theory. The final entropy matches the Wald entropy formula for this theory. We also confirm the conclusion obtained by Bodendorfer et al. that the entropy is related to the flux operator rather than the area operator in general diffeomorphic-invariant theory. Supported by National Natural Science Foundation of China (11275207)
Acceleration from Modified Gravity: Lessons from Worked Examples
International Nuclear Information System (INIS)
Hu, Wayne
2009-01-01
I examine how two specific examples of modified gravity explanations of cosmic acceleration help us understand some general problems confronting cosmological tests of gravity: how do we distinguish modified gravity from dark energy if they can be made formally equivalent? how do we parameterize deviations according to physical principles with sufficient generality, yet focus cosmological tests into areas that complement our existing knowledge of gravity? how do we treat the dynamics of modifications which necessarily involve non-linearities that preclude superposition of forces? The modified action f(R) and DGP braneworld models provide insight on these question as fully-worked examples whose expansion history, linear perturbation theory, and most recently, non-linear N-body and force-modification field dynamics of cosmological simulations are available for study.
Induced quantum conformal gravity
International Nuclear Information System (INIS)
Novozhilov, Y.V.; Vassilevich, D.V.
1988-11-01
Quantum gravity is considered as induced by matter degrees of freedom and related to the symmetry breakdown in the low energy region of a non-Abelian gauge theory of fundamental fields. An effective action for quantum conformal gravity is derived where both the gravitational constant and conformal kinetic term are positive. Relation with induced classical gravity is established. (author). 15 refs
MacKeown, P. K.
1984-01-01
Clarifies two concepts of gravity--those of a fictitious force and those of how space and time may have geometry. Reviews the position of Newton's theory of gravity in the context of special relativity and considers why gravity (as distinct from electromagnetics) lends itself to Einstein's revolutionary interpretation. (JN)
N = 6 superconformal Chern-Simons-matter theories, M2-branes and their gravity duals
International Nuclear Information System (INIS)
Aharony, Ofer; Bergman, Oren; Maldacena, Juan; Jafferis, Daniel Louis
2008-01-01
We construct three dimensional Chern-Simons-matter theories with gauge groups U(N) x U(N) and SU(N) x SU(N) which have explicit N = 6 superconformal symmetry. Using brane constructions we argue that the U(N) x U(N) theory at level k describes the low energy limit of N M2-branes probing a C 4 /Z k singularity. At large N the theory is then dual to M-theory on AdS 4 x S 7 /Z k . The theory also has a 't Hooft limit (of large N with a fixed ratio N/k) which is dual to type IIA string theory on AdS 4 x CP 3 . For k = 1 the theory is conjectured to describe N M2-branes in flat space, although our construction realizes explicitly only six of the eight supersymmetries. We give some evidence for this conjecture, which is similar to the evidence for mirror symmetry in d = 3 gauge theories. When the gauge group is SU(2) x SU(2) our theory has extra symmetries and becomes identical to the Bagger-Lambert theory.
A Theory of Gravity and General Relativity based on Quantum Electromagnetism
Zheng-Johansson, J. X.
2018-02-01
Based on first principles solutions in a unified framework of quantum mechanics and electromagnetism we predict the presence of a universal attractive depolarisation radiation (DR) Lorentz force (F) between quantum entities, each being either an IED matter particle or light quantum, in a polarisable dielectric vacuum. Given two quantum entities i = 1, 2 of either kind, of characteristic frequencies ν _i^0, masses m_i0 = hν _i^0/{c^2} and separated at a distance r 0, the solution for F is F = - G}m_1^0m_2^0/{≤ft( {{r^2}} \\right)^2}, where G} = χ _0^2{e^4}/12{π ^2} \\in _0^2{ρ _λ };{χ _0} is the susceptibility and π λ is the reduced linear mass density of the vacuum. This force F resembles in all respects Newton’s gravity and is accurate at the weak F limit; hence ℊ equals the gravitational constant G. The DR wave fields and hence the gravity are each propagated in the dielectric vacuum at the speed of light c; these can not be shielded by matter. A test particle µ of mass m 0 therefore interacts gravitationally with all of the building particles of a given large mass M at r 0 apart, by a total gravitational force F = -GMm 0/(r 0)2 and potential V = -∂F/∂r 0. For a finite V and hence a total Hamiltonian H = m 0 c 2 + V, solution for the eigenvalue equation of µ presents a red-shift in the eigen frequency ν = ν 0(1 - GM/r 0 c 2) and hence in other wave variables. The quantum solutions combined with the wave nature of the gravity further lead to dilated gravito optical distance r = r 0/(1 - GM/r 0 c 2) and time t = t 0/(1 - GM/r 0 c 2), and modified Newton’s gravity and Einstein’s mass energy relation. Applications of these give predictions of the general relativistic effects manifested in the four classical test experiments of Einstein’s general relativity (GR), in direct agreement with the experiments and the predictions given based on GR.
International Nuclear Information System (INIS)
Giribet, G E
2005-01-01
Claus Kiefer presents his book, Quantum Gravity, with his hope that '[the] book will convince readers of [the] outstanding problem [of unification and quantum gravity] and encourage them to work on its solution'. With this aim, the author presents a clear exposition of the fundamental concepts of gravity and the steps towards the understanding of its quantum aspects. The main part of the text is dedicated to the analysis of standard topics in the formulation of general relativity. An analysis of the Hamiltonian formulation of general relativity and the canonical quantization of gravity is performed in detail. Chapters four, five and eight provide a pedagogical introduction to the basic concepts of gravitational physics. In particular, aspects such as the quantization of constrained systems, the role played by the quadratic constraint, the ADM decomposition, the Wheeler-de Witt equation and the problem of time are treated in an expert and concise way. Moreover, other specific topics, such as the minisuperspace approach and the feasibility of defining extrinsic times for certain models, are discussed as well. The ninth chapter of the book is dedicated to the quantum gravitational aspects of string theory. Here, a minimalistic but clear introduction to string theory is presented, and this is actually done with emphasis on gravity. It is worth mentioning that no hard (nor explicit) computations are presented, even though the exposition covers the main features of the topic. For instance, black hole statistical physics (within the framework of string theory) is developed in a pedagogical and concise way by means of heuristical arguments. As the author asserts in the epilogue, the hope of the book is to give 'some impressions from progress' made in the study of quantum gravity since its beginning, i.e., since the end of 1920s. In my opinion, Kiefer's book does actually achieve this goal and gives an extensive review of the subject. (book review)
Directory of Open Access Journals (Sweden)
M.R. Setare
2016-08-01
Full Text Available The Chern–Simons-like theories of gravity (CSLTG are formulated at first order formalism. In this formalism, the derivation of the entropy of a black hole on bifurcation surface, as a quasi-local conserved charge is problematic. In this paper we overcome these problems by considering the concept of total variation and the Lorentz–Lie derivative. We firstly find an expression for the ADT conserved current in the context of the CSLTG which is based on the concept of the Killing vector fields. Then, we generalize it to be conserved for all diffeomorphism generators. Thus, we can extract an off-shell conserved charge for any vector field which generates a diffeomorphism. The formalism presented here is based on the concept of quasi-local conserved charges which are off-shell. The charges can be calculated on any codimension two space-like surface surrounding a black hole and the results are independent of the chosen surface. By using the off-shell quasi-local conserved charge, we investigate the Virasoro algebra and find a formula to calculate the central extension term. We apply the formalism to the BTZ black hole solution in the context of the Einstein gravity and the Generalized massive gravity, then we find the eigenvalues of their Virasoro generators as well as the corresponding central charges. Eventually, we calculate the entropy of the BTZ black hole by the Cardy formula and we show that the result exactly matches the one obtained by the concept of the off-shell conserved charges.
The Gravity of Dark Vortices: Effective Field Theory for Branes and Strings Carrying Localized Flux
Burgess, C P; Williams, M
2015-01-01
A Nielsen-Olesen vortex usually sits in an environment that expels the flux that is confined to the vortex, so flux is not present both inside and outside. We construct vortices for which this is not true, where the flux carried by the vortex also permeates the `bulk' far from the vortex. The idea is to mix the vortex's internal gauge flux with an external flux using off-diagonal kinetic mixing. Such `dark' vortices could play a phenomenological role in models with both cosmic strings and a dark gauge sector. When coupled to gravity they also provide explicit ultra-violet completions for codimension-two brane-localized flux, which arises in extra-dimensional models when the same flux that stabilizes extra-dimensional size is also localized on space-filling branes situated around the extra dimensions. We derive simple formulae for observables such as defect angle, tension, localized flux and on-vortex curvature when coupled to gravity, and show how all of these are insensitive to much of the microscopic detail...
International Nuclear Information System (INIS)
Horvat, R.; Kekez, D.; Krecak, Z.; Ljubicic, A.
2008-01-01
In this experiment we aim to detect Kaluza-Klein (KK) excitations of the bulk gauge field, emitted in a bremsstrahlung process on solar plasma constituents, by looking at a process analogous to the photoelectric effect inside the HPGe detector. Using a generic feature of the underlying effective theory that the unknown four-dimensional gauge coupling is independent of the number of extra large dimensions δ, we show that the expected number of events in the detector is insensitive to the true scale of quantum gravity for δ=2. With the entire data collection time of 202 days in the energy interval 1.7-3.8 keV, the number of events detected was as low as 1.1x10 6 , compared to 2.7x10 6 from the expected high multiplicity of the solar KK excitations for δ=2. Hence, our bound from the presumed existence of new forces associated with additional gauge bosons actually conforms with very stringent bounds set from various astrophysical considerations. Baring any modifications of the infrared part of the KK spectrum, this bound would therefore rule out the possibility of observing any signal at the LHC for δ=2. Although a dependence on the fundamental scale referring to (4+δ)-dimensional gravity turns on again for δ=3, the experimental sensitivity of the present setup proves insufficient to draw any constraint for δ>2.