WorldWideScience

Sample records for fourier transformation ftir

  1. Fourier Transform Infrared Spectroscopy: Part II. Advantages of FT-IR.

    Science.gov (United States)

    Perkins, W. D.

    1987-01-01

    This is Part II in a series on Fourier transform infrared spectroscopy (FT-IR). Described are various advantages of FT-IR spectroscopy including energy advantages, wavenumber accuracy, constant resolution, polarization effects, and stepping at grating changes. (RH)

  2. Limitations and potential of spectral subtractions in fourier-transform infrared (FTIR) spectroscopy of soil samples

    Science.gov (United States)

    Soil science research is increasingly applying Fourier transform infrared (FTIR) spectroscopy for analysis of soil organic matter (SOM). However, the compositional complexity of soils and the dominance of the mineral component can limit spectroscopic resolution of SOM and other minor components. The...

  3. Study of cancer cell lines with Fourier transform infrared (FTIR)/vibrational absorption (VA) spectroscopy

    DEFF Research Database (Denmark)

    Uceda Otero, E. P.; Eliel, G. S. N.; Fonseca, E. J. S.

    2013-01-01

    In this work we have used Fourier transform infrared (FTIR) / vibrational absorption (VA) spectroscopy to study two cancer cell lines: the Henrietta Lacks (HeLa) human cervix carcinoma and 5637 human bladder carcinoma cell lines. Our goal is to experimentally investigate biochemical changes and d...

  4. Fourier Transform Infrared Spectroscopy (FTIR) as a Tool for the Identification and Differentiation of Pathogenic Bacteria.

    Science.gov (United States)

    Zarnowiec, Paulina; Lechowicz, Łukasz; Czerwonka, Grzegorz; Kaca, Wiesław

    2015-01-01

    Methods of human bacterial pathogen identification need to be fast, reliable, inexpensive, and time efficient. These requirements may be met by vibrational spectroscopic techniques. The method that is most often used for bacterial detection and identification is Fourier transform infrared spectroscopy (FTIR). It enables biochemical scans of whole bacterial cells or parts thereof at infrared frequencies (4,000-600 cm(-1)). The recorded spectra must be subsequently transformed in order to minimize data variability and to amplify the chemically-based spectral differences in order to facilitate spectra interpretation and analysis. In the next step, the transformed spectra are analyzed by data reduction tools, regression techniques, and classification methods. Chemometric analysis of FTIR spectra is a basic technique for discriminating between bacteria at the genus, species, and clonal levels. Examples of bacterial pathogen identification and methods of differentiation up to the clonal level, based on infrared spectroscopy, are presented below.

  5. Fourier Transform Infrared Spectroscopy (FTIR for MUN analysis in normal and adulterated Milk

    Directory of Open Access Journals (Sweden)

    M.C.P.P. Oliveira

    2012-10-01

    Full Text Available The objective of this study was to evaluate the CombiScope FTIR equipment based on Fourier Transform Infrared methodology (FTIR, to assess the content of milk urea nitrogen (MUN in Brazil. Repeatability and reproducibility of CombiScopeTM FTIR (Delta Instruments, and comparison with an enzymatic automated method (Chemspec® 150; Bentley Instruments were tested to measure raw milk urea nitrogen (MUN. Additionally, MUN levels stability after storage of raw milk samples at 4ºC, and 20ºC for up to 15 days, and capability and precision to detect extraneous urea added as an adulterant to the milk were evaluated by FTIR equipment. There was a high correlation coefficient for the analysis of MUN by FTIR equipment, when compared with the automated enzymatic method, with no significant difference between both. MUN concentration in raw milk remained stable at temperatures of 4ºC for up to 15 days of storage, but after 3 days of storage at 20ºC there was an increase in the MUN levels. The CombiScope FTIR equipment proved to be a reliable method for analysis of MUN content in raw milk. However, results for MUN were not linear with the amount of extraneous urea added to raw milk, having a significant difference for samples when 40mg/dL of urea was added to milk.

  6. The Application of Fourier Transform Infrared Photoacoustics Spectroscopy (FTIR-PAS for Rapid Soil Quality Evaluation

    Directory of Open Access Journals (Sweden)

    Ichwana Ichwana

    2017-04-01

    The Application of Fourier Transform Infrared Photoacoustics Spectroscopy (FTIR-PAS for Rapid Soil Quality Evaluation Abstract. The major function of soil is to provide fundamental natural resources for survival of plants, animals, and the human race. Soil functions depend on the balances of its structure and composition, well as the chemical, biological, and physical properties. It is become one important key aspect and routine activity in crop management system. To monitor and determine soil quality properties, several methods were already widely used in which most of them are based on solvent extraction followed by other laboratory procedures. However, these methods often require laborious and complicated processing for samples. They are time consuming and destructive. In last few decades, the application of infrared spectroscopy as non-destructive technique in determining soil quality properties (C, N, P and K rapidly and simultaneously. Fourier transform infrared spectrum (FTIR were acquired in wavelength range from 1000 to 2500 nm with applying photo-acoustic spectroscopy (PAS. Least square-support vector machine regression (LS-SVM approach was then applied to predict soil quality properties. The results showed that C and N can be predicted accurately using FTIR-PAS whilst other parameters (P, K, Mg, Ca, S can be predicted with maximum RPD index is 1.9. Moreover, soil clay, moisture and soil microbes were feasible to be detected by using FTIR-PAS combining with discriminant analysis (LS-DA or cluster analysis (CA. It may conclude that FTIR-PAS technology can be used as a real time method  in monitoring soil quality and fertility properties.

  7. Application of Fourier transform infrared (FT-IR) spectroscopy in determination of microalgal compositions.

    Science.gov (United States)

    Meng, Yingying; Yao, Changhong; Xue, Song; Yang, Haibo

    2014-01-01

    Fourier transform infrared spectroscopy (FT-IR) was applied in algal strain screening and monitoring cell composition dynamics in a marine microalga Isochrysis zhangjiangensis during algal cultivation. The content of lipid, carbohydrate and protein of samples determined by traditional methods had validated the accuracy of FT-IR method. For algal screening, the band absorption ratios of lipid/amide I and carbo/amide I from FT-IR measurements allowed for the selection of Isochrysis sp. and Tetraselmis subcordiformis as the most potential lipid and carbohydrate producers, respectively. The cell composition dynamics of I. zhangjiangensis measured by FT-IR revealed the diversion of carbon allocation from protein to carbohydrate and neutral lipid when nitrogen-replete cells were subjected to nitrogen limitation. The carbo/amide I band absorption ratio had also been demonstrated to depict physiological status under nutrient stress in T. subcordiformis. FT-IR serves as a tool for the simultaneous measurement of lipid, carbohydrate, and protein content in cell.

  8. Ectomycorrhizal identification in environmental samples of tree roots by Fourier-transform infrared (FTIR spectroscopy

    Directory of Open Access Journals (Sweden)

    Rodica ePena

    2014-05-01

    Full Text Available Roots of forest trees are associated with various ectomycorrhizal (ECM fungal species that are involved in nutrient exchange between host plant and the soil compartment. The identification of ECM fungi in small environmental samples is difficult. The present study tested the feasibility of attenuated total reflection Fourier-transform infrared (ATR-FTIR spectroscopy followed by hierarchical cluster analysis (HCA to discriminate in situ collected ECM fungal species. Root tips colonized by distinct ECM fungal species, i.e., Amanita rubescens, Cenococcum geophilum, Lactarius subdulcis, Russula ochroleuca, and Xerocomus pruinatus were collected in mono-specific beech (Fagus sylvatica and mixed deciduous forests in different geographic areas to investigate the environmental variability of the ECM FTIR signatures.A clear HCA discrimination was obtained for ECM fungal species independent of individual provenance. Environmental variability neither limited the discrimination between fungal species nor provided sufficient resolution to discern species sub-clusters for different sites. However, the de-convoluted FTIR spectra contained site-related spectral information for fungi with wide nutrient ranges, but not for Lactarius subdulcis, a fungus residing only in the litter layer. Specific markers for distinct ECM were identified in spectral regions associated with carbohydrates (i.e. mannans, lipids, and secondary protein structures. The present results support that FTIR spectroscopy coupled with multivariate analysis is a reliable and fast method to identify ECM fungal species in minute environmental samples. Moreover, our data suggest that the FTIR spectral signatures contain information on physiological and functional traits of ECM fungi.

  9. Quantitative analysis of virgin coconut oil in cream cosmetics preparations using fourier transform infrared (FTIR) spectroscopy.

    Science.gov (United States)

    Rohman, A; Man, Yb Che; Sismindari

    2009-10-01

    Today, virgin coconut oil (VCO) is becoming valuable oil and is receiving an attractive topic for researchers because of its several biological activities. In cosmetics industry, VCO is excellent material which functions as a skin moisturizer and softener. Therefore, it is important to develop a quantitative analytical method offering a fast and reliable technique. Fourier transform infrared (FTIR) spectroscopy with sample handling technique of attenuated total reflectance (ATR) can be successfully used to analyze VCO quantitatively in cream cosmetic preparations. A multivariate analysis using calibration of partial least square (PLS) model revealed the good relationship between actual value and FTIR-predicted value of VCO with coefficient of determination (R2) of 0.998.

  10. Monitoring wine aging with Fourier transform infrared spectroscopy (FT-IR

    Directory of Open Access Journals (Sweden)

    Basalekou Marianthi

    2015-01-01

    Full Text Available Oak wood has commonly been used in wine aging but recently other wood types such as Acacia and Chestnut, have attracted the interest of the researchers due to their possible positive contribution to wine quality. However, only the use of oak and chestnut woods is approved by the International Enological Codex of the International Organisation of Vine and Wine. In this study Fourier Transform (FT-mid-infrared spectroscopy combined with Discriminant Analysis was used to differentiate wines aged in barrels made from French oak, American oak, Acacia and Chestnut and in tanks with oak chips, over a period of 12 months. Two red (Mandilaria, Kotsifali and two white (Vilana, Dafni native Greek grape varieties where used to produce four wines. The Fourier Transform Infrared (FT-IR spectra of the samples were recorded on a Zinc Selenide (ZnSe window after incubation at 40 °C for 30 min. A complete differentiation of the samples according to both the type of wood used and the contact time was achieved based on their FT-IR spectra.

  11. Applications of Micro-Fourier Transform Infrared Spectroscopy (FTIR) in the Geological Sciences--A Review.

    Science.gov (United States)

    Chen, Yanyan; Zou, Caineng; Mastalerz, Maria; Hu, Suyun; Gasaway, Carley; Tao, Xiaowan

    2015-12-18

    Fourier transform infrared spectroscopy (FTIR) can provide crucial information on the molecular structure of organic and inorganic components and has been used extensively for chemical characterization of geological samples in the past few decades. In this paper, recent applications of FTIR in the geological sciences are reviewed. Particularly, its use in the characterization of geochemistry and thermal maturation of organic matter in coal and shale is addressed. These investigations demonstrate that the employment of high-resolution micro-FTIR imaging enables visualization and mapping of the distributions of organic matter and minerals on a micrometer scale in geological samples, and promotes an advanced understanding of heterogeneity of organic rich coal and shale. Additionally, micro-FTIR is particularly suitable for in situ, non-destructive characterization of minute microfossils, small fluid and melt inclusions within crystals, and volatiles in glasses and minerals. This technique can also assist in the chemotaxonomic classification of macrofossils such as plant fossils. These features, barely accessible with other analytical techniques, may provide fundamental information on paleoclimate, depositional environment, and the evolution of geological (e.g., volcanic and magmatic) systems.

  12. Applications of Micro-Fourier Transform Infrared Spectroscopy (FTIR in the Geological Sciences—A Review

    Directory of Open Access Journals (Sweden)

    Yanyan Chen

    2015-12-01

    Full Text Available Fourier transform infrared spectroscopy (FTIR can provide crucial information on the molecular structure of organic and inorganic components and has been used extensively for chemical characterization of geological samples in the past few decades. In this paper, recent applications of FTIR in the geological sciences are reviewed. Particularly, its use in the characterization of geochemistry and thermal maturation of organic matter in coal and shale is addressed. These investigations demonstrate that the employment of high-resolution micro-FTIR imaging enables visualization and mapping of the distributions of organic matter and minerals on a micrometer scale in geological samples, and promotes an advanced understanding of heterogeneity of organic rich coal and shale. Additionally, micro-FTIR is particularly suitable for in situ, non-destructive characterization of minute microfossils, small fluid and melt inclusions within crystals, and volatiles in glasses and minerals. This technique can also assist in the chemotaxonomic classification of macrofossils such as plant fossils. These features, barely accessible with other analytical techniques, may provide fundamental information on paleoclimate, depositional environment, and the evolution of geological (e.g., volcanic and magmatic systems.

  13. An Alternate Method for Fourier Transform Infrared (FTIR) Spectroscopic Determination of Soil Nitrate Using Derivative Analysis and Sample Treatments

    NARCIS (Netherlands)

    Choe, E.; Meer, van der F.; Rossiter, D.; Salm, van der C.; Kim, K.W.

    2010-01-01

    This study aimed at examining effective sample treatments and spectral processing for an alternate method of soil nitrate determination using the attenuated total reflectance (ATR) of Fourier transform infrared (FTIR) spectroscopy. Prior to FTIR measurements, soil samples were prepared as paste to e

  14. FTIR (Fourier Transform Infrared) spectrophotometry for thin film monitors: Computer and equipment integration for enhanced capabilities

    Science.gov (United States)

    Cox, J. N.; Sedayao, J.; Shergill, G.; Villasol, R.; Haaland, D. M.

    Fourier transform infrared spectrophotometry (FTIR) is a valuable technique for monitoring thin films used in semiconductor device manufacture. Determinations of the constituent contents in borophosphosilicate (BPSG), phosphosilicate (PSG), silicon oxynitride (SiON:H,OH), and spin-on-glass (SOG) thin films are a few applications. Due to the nature of the technique, FTIR instrumentation is one of the most extensively computer-dependent pieces of equipment that is likely to be found in a microelectronics plant. In the role of fab monitor or reactor characterization tool, FTIR instruments can rapidly generate large amounts of data. By linking a local FTIR data station to a remote minicomputer its capabilities are greatly improved. We discuss three caused of enhancement. First, the FTIR in the fab area communicates and interacts in real time with the minicomputer: transferring data segments to it, instructing it to perform sophisticated processing, and returning the result to the operator in the fab. Characterizations of PSG thin films by this approach are discussed. Second, the spectra of large numbers of samples are processed locally. The large database is then transmitted to the minicomputer for study by statistical/graphics software. Results of CVD-reactor spatial profiling experiments for plasma SiON are presented. Third, processing of calibration spectra is performed on the minicomputer to optimize the accuracy and precision of a Partial Least Squares analysis mode. This model is then transferred to the data station in the fab. The analysis of BPSG thin films is discussed in this regard. The prospects for fully automated at-line monitoring and for real-time, in-situ monitoring will be discussed.

  15. FTIR (Fourier transform infrared) spectrophotometry for thin film monitors: Computer and equipment integration for enhanced capabilities

    Energy Technology Data Exchange (ETDEWEB)

    Cox, J.N.; Sedayao, J.; Shergill, G.; Villasol, R. (Intel Corp., Santa Clara, CA (USA)); Haaland, D.M. (Sandia National Labs., Albuquerque, NM (USA))

    1990-01-01

    Fourier transform infrared spectrophotometry (FTIR) is a valuable technique for monitoring thin films used in semiconductor device manufacture. Determinations of the constituent contents in borophosphosilicate (BPSG), phosphosilicate (PSG), silicon oxynitride (SiON:H,OH), and spin-on-glass (SOG) thin films are a few applications. Due to the nature of the technique, FTIR instrumentation is one of the most extensively computer-dependent pieces of equipment that is likely to be found in a microelectronics plant. In the role of fab monitor or reactor characterization tool, FTIR instruments can rapidly generate large amounts of data. By linking a local FTIR data station to a remote minicomputer its capabilities are greatly improved. We discuss three caused of enhancement. First, the FTIR in the fab area communicates and interacts in real time with the minicomputer: transferring data segments to it, instructing it to perform sophisticated processing, and returning the result to the operator in the fab. Characterizations of PSG thin films by this approach are discussed. Second, the spectra of large numbers of samples are processed locally. The large database is then transmitted to the minicomputer for study by statistical/graphics software. Results of CVD-reactor spatial profiling experiments for plasma SiON are presented. Third, processing of calibration spectra is performed on the minicomputer to optimize the accuracy and precision of a Partial Least Squares'' analysis mode. This model is then transferred to the data station in the fab. The analysis of BPSG thin films is discussed in this regard. The prospects for fully automated at-line monitoring and for real-time, in-situ monitoring will be discussed. 10 refs., 4 figs.

  16. Identification of species' blood by attenuated total reflection (ATR) Fourier transform infrared (FT-IR) spectroscopy.

    Science.gov (United States)

    Mistek, Ewelina; Lednev, Igor K

    2015-09-01

    Blood is one of the most common and informative forms of biological evidence found at a crime scene. A very crucial step in forensic investigations is identifying a blood stain's origin. The standard methods currently employed for analyzing blood are destructive to the sample and time-consuming. In this study, attenuated total reflection (ATR) Fourier transform infrared (FT-IR) spectroscopy is used as a confirmatory, nondestructive, and rapid method for distinction between human and animal (nonhuman) blood. Partial least squares-discriminant analysis (PLS-DA) models were built and demonstrated complete separation between human and animal donors, as well as distinction between three separate species: human, cat, and dog. Classification predictions of unknown blood donors were performed by the model, resulting in 100 % accuracy. This study demonstrates ATR FT-IR spectroscopy's great potential for blood stain analysis and species discrimination, both in the lab and at a crime scene since portable ATR FT-IR instrumentation is commercially available.

  17. Studies on Nephrite and Jadeite Jades by Fourier Transform Infrared (ftir) and Raman Spectroscopic Techniques

    Science.gov (United States)

    Tan, T. L.; Ng, L. L.; Lim, L. C.

    2013-10-01

    The mineralogical properties of black nephrite jade from Western Australia are studied by Fourier transform infrared (FTIR) spectroscopy using both transmission and specular reflectance techniques in the 4000-400 cm-1 wavenumber region. The infrared absorption peaks in the 3700-3600 cm-1 region which are due to the O-H stretching mode provides a quantitative analysis of the Fe/(Fe+Mg) ratio in the mineral composition of jade samples. The Fe/(Fe+Mg) percentage in black nephrite is found to be higher than that in green nephrite, but comparable to that of actinolite (iron-rich nephrite). This implies that the mineralogy of black nephrite is closer to actinolite than tremolite. The jade is also characterized using Raman spectroscopy in the 1200-200 cm-1 region. Results from FTIR and Raman spectroscopic data of black nephrite jade are compared with those of green nephrite jade from New Zealand and jadeite jade from Myanmar. Black nephrite appears to have a slightly different chemical composition from green nephrite. Spectra from FTIR and Raman spectroscopic techniques were found to be useful in differentiating black nephrite, green nephrite, and green jadeite jades. Furthermore, data on refractive index, specific gravity, and hardness of black nephrite jade are measured and compared with those of green nephrite and of jadeite jade.

  18. Fourier-transform infrared spectroscopy (FTIR) analysis of triclinic and hexagonal birnessites.

    Science.gov (United States)

    Ling, Florence T; Post, Jeffrey E; Heaney, Peter J; Kubicki, James D; Santelli, Cara M

    2017-05-05

    The characterization of birnessite structures is particularly challenging for poorly crystalline materials of biogenic origin, and a determination of the relative concentrations of triclinic and hexagonal birnessite in a mixed assemblage has typically required synchrotron-based spectroscopy and diffraction approaches. In this study, Fourier-transform infrared spectroscopy (FTIR) is demonstrated to be capable of differentiating synthetic triclinic Na-birnessite and synthetic hexagonal H-birnessite. Furthermore, IR spectral deconvolution of peaks resulting from MnO lattice vibrations between 400 and 750cm(-1) yield results comparable to those obtained by linear combination fitting of synchrotron X-ray absorption fine structure (EXAFS) data when applied to known mixtures of triclinic and hexagonal birnessites. Density functional theory (DFT) calculations suggest that an infrared absorbance peak at ~1628cm(-1) may be related to OH vibrations near vacancy sites. The integrated intensity of this peak may show sensitivity to vacancy concentrations in the Mn octahedral sheet for different birnessites.

  19. Multivariation calibration techniques applied to NIRA (near infrared reflectance analysis) and FTIR (Fourier transform infrared) data

    Science.gov (United States)

    Long, C. L.

    1991-02-01

    Multivariate calibration techniques can reduce the time required for routine testing and can provide new methods of analysis. Multivariate calibration is commonly used with near infrared reflectance analysis (NIRA) and Fourier transform infrared (FTIR) spectroscopy. Two feasibility studies were performed to determine the capability of NIRA, using multivariate calibration techniques, to perform analyses on the types of samples that are routinely analyzed at this laboratory. The first study performed included a variety of samples and indicated that NIRA would be well-suited to perform analyses on selected materials properties such as water content and hydroxyl number on polyol samples, epoxy content on epoxy resins, water content of desiccants, and the amine values of various amine cure agents. A second study was performed to assess the capability of NIRA to perform quantitative analysis of hydroxyl numbers and water contents of hydroxyl-containing materials. Hydroxyl number and water content were selected for determination because these tests are frequently run on polyol materials and the hydroxyl number determination is time consuming. This study pointed out the necessity of obtaining calibration standards identical to the samples being analyzed for each type of polyol or other material being analyzed. Multivariate calibration techniques are frequently used with FTIR data to determine the composition of a large variety of complex mixtures. A literature search indicated many applications of multivariate calibration to FTIR data. Areas identified where quantitation by FTIR would provide a new capability are quantitation of components in epoxy and silicone resins, polychlorinated biphenyls (PCBs) in oils, and additives to polymers.

  20. Application of Fourier transform infrared (FTIR) spectroscopy for the identification of wheat varieties.

    Science.gov (United States)

    Amir, Rai Muhammad; Anjum, Faqir Muhammad; Khan, Muhammad Issa; Khan, Moazzam Rafiq; Pasha, Imran; Nadeem, Muhammad

    2013-10-01

    Quality characteristics of wheat are determined by different physiochemical and rheological analysis by using different AACC methods. AACC methods are expensive, time consuming and cause destruction of samples. Fourier transforms infrared (FTIR) spectroscopy is one of the most important and emerging tool used for analyzing wheat for different quality parameters. This technique is rapid and sensitive with a great variety of sampling techniques. In the present study different wheat varieties were analyzed for quality assessment and were also characterized by using AACC methods and FTIR technique. The straight grade flour was analyzed for physical, chemical and rheological properties by standard methods and results were obtained. FTIR works on the basis of functional groups and provide information in the form of peaks. On basis of peaks the value of moisture, protein, fat, ash, carbohydrates and hardness of grain were determined. Peaks for water were observed in the range 1,640 cm(-1) and 3,300 cm(-1) on the basis of functional group H and OH. Protein was observed in the range from 1,600 cm(-1) to 1,700 cm(-1) and 1,550 cm(-1) to 1,570 cm(-1) on the basis of bond amide I and amide II respectively. Fat was also observed within these ranges but on the basis of C-H bond and also starch was observed in the range from 2,800 and 3,000 cm(-1) (C-H stretch region) and in the range 3,000 and 3,600 cm(-1) (O-H stretch region). As FTIR is a fast tool it can be easily emplyed for wheat varieties identification according to a set criterion.

  1. Fourier Transform Infrared (FT-IR) Spectroscopy of Atmospheric Trace Gases HCl, NO and SO2

    Science.gov (United States)

    Haridass, C.; Aw-Musse, A.; Dowdye, E.; Bandyopadhyay, C.; Misra, P.; Okabe, H.

    1998-01-01

    Fourier Transform Infrared (FT-IR) spectral data have been recorded in the spectral region 400-4000/cm of hydrogen chloride and sulfur dioxide with I/cm resolution and of nitric oxide with 0.25 cm-i resolution, under quasi-static conditions, when the sample gas was passed through tubings of aluminum, copper, stainless steel and teflon. The absorbance was measured for the rotational lines of the fundamental bands of (1)H(35)Cl and (1)H(37)Cl for pressures in the range 100-1000 Torr and for the (14)N(16)O molecule in the range 100-300 Torr. The absorbance was also measured for individual rotational lines corresponding to the three modes of vibrations (upsilon(sub 1) - symmetric stretch, upsilon(sub 2) - symmetric bend, upsilon(sub 3) - anti-symmetric stretch) of the SO2 molecule in the pressure range 25-150 Torr. A graph of absorbance versus pressure was plotted for the observed rotational transitions of the three atmospherically significant molecules, and it was found that the absorbance was linearly proportional to the pressure range chosen, thereby validating Beer's law. The absorption cross-sections were determined from the graphical slopes for each rotational transition recorded for the HCl, NO and SO2 species. Qualitative and quantitative spectral changes in the FT-IR data will be discussed to identify and characterize various tubing materials with respect to their absorption features.

  2. Volatile gas concentrations in turkey houses estimated by Fourier Transform Infrared Spectroscopy (FTIR).

    Science.gov (United States)

    Witkowska, D

    2013-06-01

    1. The aim of the present study was to estimate gas concentrations in commercial turkey houses by Fourier Transform Infrared Spectroscopy (FTIR). 2. The experiment was conducted in 5 buildings of a commercial turkey farm. The measurements of gases were carried out every 3 weeks of the growth cycle. 3. The results demonstrate that ammonia and carbon dioxide are the prevalent gases released during the entire production cycle in turkey houses. The mean concentrations of the above compounds ranged between 4-31 ppm and 220-2058 ppm, respectively. Thiols, nitriles, amines, aldehydes, hydrocarbons and other organic and inorganic compounds also occurred in turkey houses, but they were emitted periodically and their mean concentrations were significantly lower in comparison with CO2 and NH3. 4. Lower ventilation ratio and higher moisture of excreta in the first half of the growth period accelerated the release of some gases, whereas gradual faeces and urine accumulation contributed to an increase in the concentration of selected organic compounds. 5. A portable FTIR analyser is a useful device for measuring gas concentrations in commercial turkey farms, and it supports determinations of tolerable emission limits in turkey production.

  3. Determination of the emissivity of the tungsten hexa-ethoxide pyrolysis flame using Fourier Transform Infrared (FTIR) spectroscopy

    CSIR Research Space (South Africa)

    Mudau, AE

    2010-09-01

    Full Text Available of the Tungsten Hexa-Ethoxide Pyrolysis Flame using Fourier Transform Infrared (FTIR) Spectroscopy Azwitamisi E Mudau1, Bonex W Mwakikunga2, Neels Brink3, Cornelius J Willers1, Andrew Forbes2, Lerato Shikwambana2, Malcolm Govender2 1Defence, Peace... effects. The later is negligible in the setup used. In this paper we present the emissivity of the flame determined from the transmissivity measured using the FTIR Spectroscopy. 1. Introduction Laser pyrolysis is a versatile non...

  4. DIFERENCIACIÓN DE ESPECIE MICOBACTERIANA POR FT-IR (ESPECTROSCOPIA INFRARROJA CON TRANSFORMADA DE FOURIER Differentiation of Mycobacterial Species by FT-IR (Fourier Transform Infrared Spectroscopy

    Directory of Open Access Journals (Sweden)

    JORGE ANDRÉS CUÉLLAR GIL

    2011-08-01

    Full Text Available Se trabajó con espectroscopía infrarroja transformada de Fourier (FT-IR para diferenciar diez especies de micobacterias. Mycobacterium intracelullare y M. fortuitum (ATCC, M. flavensces, M. smegmatis, M. chelone, M. gordonae, M. triviale, M. vaccae, M. terrae y M. nonchromogenicum (IP. Como control de diferenciación de género se incluyó Staphylococcus aureus, Streptococcus viridans y Streptococcus pyogenes, Klebsiella pneumoniae y Escherichia coli, cada especie se corrió por triplicado en KBr y ATR. Los espectros se analizaron según el método de diferenciación de componentes principales, y se realizaron derivadas de primer orden (D1 en modalidad de transmisión usando la pastilla de KBr y la base ATR, además se diseñó una biblioteca espectral con la primera derivada de ATR. La sensibilidad de detección fue de 100% al trabajar con KBr y el nivel de diferenciación fue de 100% en tres de cuatro muestras problema.Spectroscopy Fourier Transform infrared (FT-IR was used to differentiate 10 species of mycobacteria. Mycobacterium intracelullare and M. fortuitum (ATCC. M. flavensces, M. smegmatis, M. chelone, M. gordonae, M. triviale, M. vaccae, M. terrae and M. nonchromogenicum (IP. For gender differentiation Staphylococcus aureus, Streptococcus viridans and Streptococcus pyogenes, Klebsiella pneumoniae y Escherichia coli were incluided as controls, each species was run for triplicate in KBr and ATR. The spectra were analyzed with the method of principal components to make the first derivatives of first order (D1 in the transmission mode using KBr pellet and ATR base, and a spectral library of the first derivative of ATR was kept. The detection sensitivity was 100% with KBr and the level of differentiation was 100% in three of the four samples problems.

  5. Thyroid lesions diagnosis by Fourier transformed infrared absorption spectroscopy (FTIR); Diagnostico de lesoes da tireoide pela espectroscopia de absorcao no infravermelho por transformada de Fourier - FTIR

    Energy Technology Data Exchange (ETDEWEB)

    Albero, Felipe Guimaraes

    2009-07-01

    Thyroid nodules are a common disorder, with 4-7% of incidence in the Brazilian population. Although the fine needle aspiration (FNA) is an accurate method for thyroid tumors diagnosis, the discrimination between benign and malignant neoplasm is currently not possible in some cases with high incidence of false negative diagnosis, leading to a surgical intervention due to the risk of carcinomas. The aim of this study was to verify if the Fourier Transform infrared spectroscopy (FTIR) can contribute to the diagnosis of thyroid carcinomas and goiters, using samples of tissue and aspirates. Samples of FNA, homogenates and tissues of thyroid nodules with histopathological diagnosis were obtained and prepared for FTIR spectroscopy analysis. The FNA and homogenates samples were measured by {mu}-FTIR (between 950 . 1750 cm{sup -1}), at a nominal resolution of 4 cm{sup -1} and 120 scans). Tissue samples were analyzed directly by ATR-FTIR technique, at a resolution 2 cm{sup -1}, with 60 scans in the same region. All spectra were corrected by the baseline and normalized by amides area (1550-1640 cm{sup -1}) in order to minimize variations of sample homogeneity. Then, spectra were converted into second derivatives using the Savitzk-Golay algorithm with a 13 points window. The Ward's minimum variance algorithm and Euclidean distances among the points were used for cluster analysis. Some FNA samples showed complex spectral pattern. All samples showed some cell pellets and large amount of hormone, represented by the bands of 1545 and 1655 cm{sup -1}. Bands in 1409, 1412, 1414, 1578 and 1579 cm{sup -1} were also found, indicating possible presence of sugar, DNA, citric acid or metabolic products. In this study, it was obtained an excellent separation between goiter and malign lesion for the samples of tissues, with 100% of specificity in specific cluster and 67% sensibility and 50 of specificity. In homogenate and FNA samples this sensibility and specificity were lower

  6. Detection and classification of salmonella serotypes using spectral signatures collected by fourier transform infrared (FT-IR) spectroscopy

    Science.gov (United States)

    Spectral signatures of Salmonella serotypes namely Salmonella Typhimurium, Salmonella Enteritidis, Salmonella Infantis, Salmonella Heidelberg and Salmonella Kentucky were collected using Fourier transform infrared spectroscopy (FT-IR). About 5-10 µL of Salmonella suspensions with concentrations of 1...

  7. Forensic Hair Differentiation Using Attenuated Total Reflection Fourier Transform Infrared (ATR FT-IR) Spectroscopy.

    Science.gov (United States)

    Manheim, Jeremy; Doty, Kyle C; McLaughlin, Gregory; Lednev, Igor K

    2016-07-01

    Hair and fibers are common forms of trace evidence found at crime scenes. The current methodology of microscopic examination of potential hair evidence is absent of statistical measures of performance, and examiner results for identification can be subjective. Here, attenuated total reflection (ATR) Fourier transform-infrared (FT-IR) spectroscopy was used to analyze synthetic fibers and natural hairs of human, cat, and dog origin. Chemometric analysis was used to differentiate hair spectra from the three different species, and to predict unknown hairs to their proper species class, with a high degree of certainty. A species-specific partial least squares discriminant analysis (PLSDA) model was constructed to discriminate human hair from cat and dog hairs. This model was successful in distinguishing between the three classes and, more importantly, all human samples were correctly predicted as human. An external validation resulted in zero false positive and false negative assignments for the human class. From a forensic perspective, this technique would be complementary to microscopic hair examination, and in no way replace it. As such, this methodology is able to provide a statistical measure of confidence to the identification of a sample of human, cat, and dog hair, which was called for in the 2009 National Academy of Sciences report. More importantly, this approach is non-destructive, rapid, can provide reliable results, and requires no sample preparation, making it of ample importance to the field of forensic science.

  8. Fourier-transform infrared spectroscopy (FTIR) analysis of triclinic and hexagonal birnessites

    Energy Technology Data Exchange (ETDEWEB)

    Ling, Florence T.; Post, Jeffrey E.; Heaney, Peter J.; Kubicki, James D.; Santelli, Cara M.

    2017-05-01

    The characterization of birnessite structures is particularly challenging for poorly crystalline materials of biogenic origin, and a determination of the relative concentrations of triclinic and hexagonal birnessite in a mixed assemblage has typically required synchrotron-based spectroscopy and diffraction approaches. In this study, Fourier-transform infrared spectroscopy (FTIR) is demonstrated to be capable of differentiating synthetic triclinic Na-birnessite and synthetic hexagonal H-birnessite. Furthermore, IR spectral deconvolution of peaks resulting from Mnsingle bondO lattice vibrations between 400 and 750 cm- 1 yield results comparable to those obtained by linear combination fitting of synchrotron X-ray absorption fine structure (EXAFS) data when applied to known mixtures of triclinic and hexagonal birnessites. Density functional theory (DFT) calculations suggest that an infrared absorbance peak at ~ 1628 cm- 1 may be related to OH vibrations near vacancy sites. The integrated intensity of this peak may show sensitivity to vacancy concentrations in the Mn octahedral sheet for different birnessites.

  9. Classification and identification of Rhodobryum roseum Limpr. and its adulterants based on fourier-transform infrared spectroscopy (FTIR) and chemometrics.

    Science.gov (United States)

    Cao, Zhen; Wang, Zhenjie; Shang, Zhonglin; Zhao, Jiancheng

    2017-01-01

    Fourier-transform infrared spectroscopy (FTIR) with the attenuated total reflectance technique was used to identify Rhodobryum roseum from its four adulterants. The FTIR spectra of six samples in the range from 4000 cm-1 to 600 cm-1 were obtained. The second-derivative transformation test was used to identify the small and nearby absorption peaks. A cluster analysis was performed to classify the spectra in a dendrogram based on the spectral similarity. Principal component analysis (PCA) was used to classify the species of six moss samples. A cluster analysis with PCA was used to identify different genera. However, some species of the same genus exhibited highly similar chemical components and FTIR spectra. Fourier self-deconvolution and discrete wavelet transform (DWT) were used to enhance the differences among the species with similar chemical components and FTIR spectra. Three scales were selected as the feature-extracting space in the DWT domain. The results show that FTIR spectroscopy with chemometrics is suitable for identifying Rhodobryum roseum and its adulterants.

  10. Application of Fourier-transform infrared (FT-ir) spectroscopy to in-situ studies of coal combustion

    Energy Technology Data Exchange (ETDEWEB)

    Ottesen, D K; Thorne, L R

    1982-04-01

    The feasibility of using Fourier-transform infrared (FT-ir) spectroscopy for in situ measurement of gas phase species concentrations and temperature during coal combustion is examined. This technique is evaluated in terms of its potential ability to monitor several important chemical and physical processes which occur in pulverized coal combustion. FT-ir absorption measurements of highly sooting, gaseous hydrocarbon/air flames are presented to demonstrate the fundamental usefulness of the technique for in situ detection of gas phase temperatures and species concentrations in high temperature combustion environments containing coal, char, mineral matter and soot particles. Preliminary results for coal/gaseous fuel/air flames are given.

  11. Qualitative analysis of thin films of crude oil deposits on the metallic substrate by Fourier transform infrared (FTIR) microscopy

    DEFF Research Database (Denmark)

    Batina, N.; Reyna-Cordova, A.; Trinidad-Reyes, Y.

    2005-01-01

    Thin films of crude oil samples were prepared for atomic force microscopy (AFM) analysis on the gold substrate. Sample preparation involved evaporation during a long (24 h) but mild thermal exposure (80 °C). Fourier transform infrared (FTIR) microscopy (reflectance spectroscopy) was employed...... of oxidation state was compared to surface morphology data by AFM previously reported. The reported results emphasize the advantage of complementary techniques (AFM/FTIR microscopy) in the analysis of petroleum thin films that should be considered during analysis and interpretation of this type of data....

  12. Microfluidic Approaches to Synchrotron Radiation-Based Fourier Transform Infrared (SR-FTIR) Spectral Microscopy of Living Biosystems

    OpenAIRE

    Loutherback, K; Birarda, G; Chen, L.; Holman, HYN

    2016-01-01

    © 2016 Bentham Science Publishers.A long-standing desire in biological and biomedical sciences is to be able to probe cellular chemistry as biological processes are happening inside living cells. Synchrotron radiation-based Fourier transform infrared (SR-FTIR) spectral microscopy is a label-free and nondestructive analytical technique that can provide spatiotemporal distributions and relative abundances of biomolecules of a specimen by their characteristic vibrational modes. Despite great pro...

  13. Comparison of methodologies for separation of fungal isolates using Fourier transform infrared (FTIR) spectroscopy and Fourier transform infrared-attenuated total reflectance (FTIR-ATR) microspectroscopy.

    Science.gov (United States)

    Oberle, Jennifer; Dighton, John; Arbuckle-Keil, Georgia

    2015-11-01

    Twenty distinct fungal isolates were analysed using three methods of sample preparation for FTIR spectroscopy and FTIR-ATR microspectroscopy to test for differences in surface chemical composition between living and dried fungal samples, as well as differences between surface chemistry and overall chemistry of homogenized dried samples. Results indicated that visually the FTIR spectra of different fungi are remarkably similar with subtle discernable differences, which statistical analysis of the spectra supported. Within each data set, different fungal isolates were responsible for statistical differences. Lack of congruence between each of the methods used suggests that determination of chemical composition is highly dependent upon the method of sample preparation and analysis (surface vs. whole) applied.

  14. High-definition Fourier Transform Infrared (FT-IR) spectroscopic imaging of human tissue sections towards improving pathology.

    Science.gov (United States)

    Sreedhar, Hari; Varma, Vishal K; Nguyen, Peter L; Davidson, Bennett; Akkina, Sanjeev; Guzman, Grace; Setty, Suman; Kajdacsy-Balla, Andre; Walsh, Michael J

    2015-01-21

    High-definition Fourier Transform Infrared (FT-IR) spectroscopic imaging is an emerging approach to obtain detailed images that have associated biochemical information. FT-IR imaging of tissue is based on the principle that different regions of the mid-infrared are absorbed by different chemical bonds (e.g., C=O, C-H, N-H) within cells or tissue that can then be related to the presence and composition of biomolecules (e.g., lipids, DNA, glycogen, protein, collagen). In an FT-IR image, every pixel within the image comprises an entire Infrared (IR) spectrum that can give information on the biochemical status of the cells that can then be exploited for cell-type or disease-type classification. In this paper, we show: how to obtain IR images from human tissues using an FT-IR system, how to modify existing instrumentation to allow for high-definition imaging capabilities, and how to visualize FT-IR images. We then present some applications of FT-IR for pathology using the liver and kidney as examples. FT-IR imaging holds exciting applications in providing a novel route to obtain biochemical information from cells and tissue in an entirely label-free non-perturbing route towards giving new insight into biomolecular changes as part of disease processes. Additionally, this biochemical information can potentially allow for objective and automated analysis of certain aspects of disease diagnosis.

  15. Micro-Attenuated Total Reflection Fourier Transform Infrared (Micro ATR FT-IR) Spectroscopic Imaging with Variable Angles of Incidence.

    Science.gov (United States)

    Wrobel, Tomasz P; Vichi, Alessandra; Baranska, Malgorzata; Kazarian, Sergei G

    2015-10-01

    The control of the angle of incidence in attenuated total reflection (ATR) Fourier transform infrared (FT-IR) spectroscopy allows for the probing of the sample at different depths of penetration of the evanescent wave. This approach has been recently coupled with macro-imaging capability using a diamond ATR accessory. In this paper, the design of optical apertures for the micro-germanium (Ge) ATR objective is presented for an FT-IR spectroscopic imaging microscope, allowing measurements with different angles of incidence. This approach provides the possibility of three-dimensional (3D) profiling in micro-ATR FT-IR imaging mode. The proof of principle results for measurements of polymer laminate samples at different angles of incidence confirm that controlling the depth of penetration is possible using a Ge ATR objective with added apertures.

  16. Use of Fourier transformed infrared spectrophotometer (FTIR) for determination of breastmilk output by the deuterium dilution method among Senegalese women.

    Science.gov (United States)

    Cissé, Aïta Sarr; Bluck, Leslie; Diaham, Babou; Dossou, Nicole; Guiro, Amadou Tidiane; Wade, Salimata

    2002-09-01

    Breastmilk output can be estimated from the mother's total body water and water turnover rates after oral administration of deuterium oxide. Usually the deuterium enrichments are determined using a isotope ratio mass spectrometer, which is expensive and requires a specialist for operation and maintenance. Such equipment is difficult to set up in developing countries. A less expensive method was developed which uses a Fourier transform infrared spectrophotometer (FTIR) for deuterium enrichment analysis. This study evaluated the constraints of using FTIR to study lactating women in Senegal. The deuterium isotope method was found to be adequate for free living subjects and presented few constraints except for the duration of the saliva sampling (14 days). The method offers the opportunity to determine simultaneously breastmilk output, mother's body composition, and breastfeeding practices. Deuterium sample enrichments measured with FTIR were fast and easy, but for spectrum quality some environmental control is required to optimize the results.

  17. Fourier Transform Infrared (FTIR) Spectroscopy as a Utilitarian Tool for the Routine Determination of Acidity in Ester-Based Oils.

    Science.gov (United States)

    Meng, Xianghe; Li, Lei; Ye, Qin; van de Voort, Frederik

    2015-09-23

    A primary Fourier transform infrared (FTIR) method capable of determining acidity in ester-based oils is described and evaluated. Absolute free fatty acid (%FFA) and acid value (AV) calibrations were devised by spiking oleic acid into a refined, acid-free oil and measuring ν COO(-) at ∼ 1569 and ν phenolate(-) at ∼ 1588 cm(-1), respectively, in the second-derivative differential spectra. The FTIR acidity predictions were compared to the AOCS titrimetric method using acid mixtures as well as acid containing used vendor oils of undefined makeup and provenance, using two spectroscopically divergent reference oils as AC0. Relative to the AOCS reference method, the FTIR procedure was found to be both more accurate (± 0.107 vs ± 0.122) and reproducible (± 0.025 vs ± 0.077) in determining %FFA and similar in predicting AV. The FTIR phenolate method overcomes a variety of limitations of earlier FTIR-based methods, being particularly simple and well suited to routine, semiautomated acidity analysis of ester-based oils using a basic FTIR spectrometer.

  18. Application of Fourier Transform Infrared Spectroscopy (FTIR for assessing biogenic silica sample purity in geochemical analyses and palaeoenvironmental research

    Directory of Open Access Journals (Sweden)

    G. E. A. Swann

    2011-02-01

    Full Text Available The development of a rapid and non-destructive method to assess purity levels in samples of biogenic silica prior to geochemical/isotope analysis remains a key objective in improving both the quality and use of such data in environmental and palaeoclimatic research. Here a Fourier Transform Infrared Spectroscopy (FTIR mass-balance method is demonstrated for calculating levels of contamination in cleaned sediment core diatom samples from Lake Baikal, Russia. Following the selection of end-members representative of diatoms and contaminants in the analysed samples, a mass-balance model is generated to simulate the expected FTIR spectra for a given level of contamination. By fitting the sample FTIR spectra to the modelled FTIR spectra and calculating the residual spectra, the optimum best-fit model and level of contamination is obtained. When compared to X-ray Fluorescence (XRF the FTIR method portrays the main changes in sample contamination through the core sequence, permitting its use in instances where other, destructive, techniques are not appropriate. The ability to analyse samples of <1 mg enables, for the first time, routine analyses of small sized samples. Discrepancies between FTIR and XRF measurements can be attributed to FTIR end-members not fully representing all contaminants and problems in using XRF to detect organic matter external to the diatom frustule. By analysing samples with both FTIR and XRF, these limitations can be eliminated to accurately identify contaminated samples. Future, routine use of these techniques in palaeoenvironmental research will therefore significantly reduce the number of erroneous measurements and so improve the accuracy of biogenic silica/diatom based climate reconstructions.

  19. Application of Fourier Transform Infrared Spectroscopy (FTIR) for assessing biogenic silica sample purity in geochemical analyses and palaeoenvironmental research

    Science.gov (United States)

    Swann, G. E. A.; Patwardhan, S. V.

    2011-02-01

    The development of a rapid and non-destructive method to assess purity levels in samples of biogenic silica prior to geochemical/isotope analysis remains a key objective in improving both the quality and use of such data in environmental and palaeoclimatic research. Here a Fourier Transform Infrared Spectroscopy (FTIR) mass-balance method is demonstrated for calculating levels of contamination in cleaned sediment core diatom samples from Lake Baikal, Russia. Following the selection of end-members representative of diatoms and contaminants in the analysed samples, a mass-balance model is generated to simulate the expected FTIR spectra for a given level of contamination. By fitting the sample FTIR spectra to the modelled FTIR spectra and calculating the residual spectra, the optimum best-fit model and level of contamination is obtained. When compared to X-ray Fluorescence (XRF) the FTIR method portrays the main changes in sample contamination through the core sequence, permitting its use in instances where other, destructive, techniques are not appropriate. The ability to analyse samples of <1 mg enables, for the first time, routine analyses of small sized samples. Discrepancies between FTIR and XRF measurements can be attributed to FTIR end-members not fully representing all contaminants and problems in using XRF to detect organic matter external to the diatom frustule. By analysing samples with both FTIR and XRF, these limitations can be eliminated to accurately identify contaminated samples. Future, routine use of these techniques in palaeoenvironmental research will therefore significantly reduce the number of erroneous measurements and so improve the accuracy of biogenic silica/diatom based climate reconstructions.

  20. Application of Fourier Transform Infrared Spectroscopy (FTIR for assessing biogenic silica sample purity in geochemical analyses and palaeoenvironmental research

    Directory of Open Access Journals (Sweden)

    G. E. A. Swann

    2010-09-01

    Full Text Available The development of a rapid and non-destructive method to assess levels of purity in samples of biogenic silica prior to geochemical/isotope analysis remains a key objective in improving both the quality and use of such data in environmental and palaeoclimatic research. Here a Fourier Transform Infrared Spectroscopy (FTIR mass-balance method is demonstrated for calculating levels of contamination in cleaned sediment core diatom samples from Lake Baikal Russia. Following the selection of end-members representative of diatoms and contaminants in the analysed samples, a mass-balance model is generated to simulate the expected FTIR spectra for a given level of contamination. By fitting the sample FTIR spectra to the modelled FTIR spectra and calculating the Euclidean distance, the optimum “best-fit” model and level of contamination is obtained. When compared to X-ray Fluorescence (XRF, FTIR method results portray the main changes in sample contamination through the core sequence, permitting its use in instances where other, destructive, techniques are not appropriate. The ability to analyses samples of <1 mg enables, for the first time, routine analyses of small sized samples. Discrepancies between FTIR and XRF measurements can be attributed to FTIR end-members not fully representing all contaminants and problems in using XRF to detect organic matter external to the diatom frustule. By analysing samples with both FTIR and XRF, these limitations can be eliminated to accurately identify contaminated samples and improve the accuracy of climate reconstructions. Future, routine, use of these techniques in palaeoenvironmental research will significantly reduce the number of erroneous measurements and so improve the accuracy of biogenic silica/diatom based reconstructions.

  1. Historical perspective and modern applications of Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy (ATR-FTIR).

    Science.gov (United States)

    Blum, Marc-Michael; John, Harald

    2012-01-01

    Vibrational spectroscopy has a long history as an important spectroscopic method in chemical and pharmaceutical analysis. Instrumentation for infrared (IR) spectroscopy was revolutionized by the introduction of Fourier Transform Infrared (FTIR) spectrometers. In addition, easier sampling combined with better sample-to-sample reproducibility and user-to-user spectral variation became available with attenuated total reflectance (ATR) probes and their application for in situ IR spectroscopy. These innovations allow many new applications in chemical and pharmaceutical analysis, such as the use of IR spectroscopy in Process Analytical Chemistry (PAC), the quantitation of drugs in complex matrix formulations, the analysis of protein binding and function and in combination with IR microscopy to the emergence of IR imaging technologies. The use of ATR-FTIR instruments in forensics and first response to 'white powder' incidents is also discussed. A short overview is given in this perspective article with the aim to renew and intensify interest in IR spectroscopy.

  2. Remote detection of biological aerosols at a distance of 3 km with a passive Fourier transform infrared (FTIR) sensor.

    Science.gov (United States)

    Ben-David, Avishai

    2003-03-10

    Bio-aerosols containing Bacillus subtilis var. niger (BG) were detected at a distance of 3 km with a passive Fourier Transform InfraRed (FTIR) spectrometer in an open-air environment where the thermal contrast was low (~ 1 K). The measurements were analyzed with a new hyperspectral detection, identification and estimation algorithm based on radiative transfer theory and advanced signal processing techniques that statistically subtract the undesired background spectra. The results are encouraging as they suggest for the first time the feasibility of detecting biological aerosols with passive FTIR sensors. The number of detection events was small but statistically significant. We estimate the false alarm rate for this experiment to be 0.0095 and the probability of detection to be 0.61 when a threshold of detection that minimizes the sum of the probabilities of false alarm and of missed detection is chosen.

  3. Characterization of the surfaces of platinum/tin oxide based catalysts by Fourier Transform Infrared Spectroscopy (FTIR)

    Science.gov (United States)

    Keiser, Joseph T.; Upchurch, Billy T.

    1990-01-01

    A Pt/SnO2 catalyst has been developed at NASA Langley that is effective for the oxidation of CO at room temperature (1). A mechanism has been proposed to explain the effectiveness of this catalyst (2), but most of the species involved in this mechanism have not been observed under actual catalytic conditions. A number of these species are potentially detectable by Fourier Transform Infrared Spectroscopy (FTIR), e.g., HOSnO sub x, HO sub y PtO sub z, Pt-CO, and SnHCO3. Therefore a preliminary investigation was conducted to determine what might be learned about this particular catalyst by transmission FTIR. The main advantage of FTIR for this work is that the catalyst can be examined under conditions similar to the actual catalytic conditions. This can be of critical importance since some surface species may exist only when the reaction gases are present. Another advantage of the infrared approach is that since vibrations are probed, subtle chemical details may be obtained. The main disadvantage of this approach is that FTIR is not nearly as sensitive as the Ultra High Vacuum (UHV) surface analytical techniques such as Auger, Electron Spectroscopy for Chemical Analysis (ESCA), Electron Energy Loss Spectroscopy (EELS), etc. Another problem is that the assignment of the observed infrared bands may be difficult.

  4. Predicting of Effective Dose as Biomarker for Cytotoxicity Using Partial Least Square-Fourier Transform Infrared Spectroscopy (PLS_FTIR).

    Science.gov (United States)

    Zendehdel, Rezvan; Khodakarim, Soheila; H Shirazi, Farshad

    2015-01-01

    Toxicity bioassays are important tools to determine biological effects of chemical agents on species. The questions remained on, what effects have been imposed on each of the different molecular site of cells by chemical exposure and how to find a pattern for chemical toxicity. To address the questions, HepG2 cell lines were exposed to the different concentrations of cisplatin for 24 hours to result cell mortality in the range of one to one hundred percent. Fourier Transform Infrared spectroscopy (FTIR) has been used in this study to analyze the chemical alterations on HepG2 cell line by cisplatin. Partial least square regression (PLS) analysis was then applied to the FTIR spectrum results to search for a biomarker peak and present the desire cellular effects of cisplatin. The comparison of cellular FTIR spectra after exposure to different concentrations of cisplatin confirmed the binding of cisplatin to DNA through direct interaction of platinum to guanine and thymine bases of DNA. Biochemical Index Spectra (BIS) were defined based on the differences between of normal and cisplatin exposed cells. Information from the BIS was subjected to PLS analysis to trigger any particular relationship between the toxicity spectral response and cisplatin concentration. This approach was capable of predicting the concentration of cisplatin for any particular effects observed in the cellular FTIR spectrum (R(2) = 0.968 ± 0.037). Our work supports the promises that, FTIR can demonstrate the trace of toxicity before the cells dies. Finally, PLS of FTIR data directly predicts the effective concentration of chemicals in particular cellular components.

  5. Nondestructive wood discrimination: FTIR - Fourier Transform Infrared Spectroscopy in the characterization of different wood species used for artistic objects

    Science.gov (United States)

    Buoso, Maria Crista; de Poli, Mario; Matthaes, Peter; Silvestrin, Luca; Zafiropoulos, Demetre

    2016-09-01

    Wooden artifacts represent a significant component of past cultures. Successful conservation of wooden artifacts depends on the knowledge of wood structure and types. It is critical that conservators know the category of wood that they are treating in order to successfully conserve it. Recently, vibrational spectroscopy has been successfully applied to determine the chemical structure of wood and to characterize wood types. FTIR (Fourier Transform Infrared) is a useful nondestructive or micro-destructive analytical technique providing information about chemical bonding and molecular structure. Its application in the discrimination between softwoods (conifers) and hardwoods (broad-leafs) has already been reported. The aim of the present study was to investigate the potential of FTIR as a tool for the discrimination between different wood types belonging to the same genus. Three different hardwood species, namely poplar (Populus spp), lime (Tilia spp) and birch (Betula spp), were investigated by means of FTIR spectroscopy. The woods were first inspected using a light microscope to certify the wood essence types through micrographic and morphoanatomical features. The FTIR spectra in the 4000 cm-1 to 450 cm-1 region were recorded using a Perkin-Elmer Spectrum 100 spectrometer. To enhance the qualitative interpretation of the IR spectra, second derivatives of all spectra were calculated using the Spectrum software to separate superimposed bands and to extract fine spectral details. To obtain a comprehensive characterization, the essences under investigation were also analyzed by means of Raman Spectroscopy. Clear differences were found in the spectra of the three samples confirming FTIR to be a powerful tool for wood type discrimination.

  6. Fourier transform infrared spectroscopy (FTIR) and multivariate analysis for identification of different vegetable oils used in biodiesel production.

    Science.gov (United States)

    Mueller, Daniela; Ferrão, Marco Flôres; Marder, Luciano; da Costa, Adilson Ben; Schneider, Rosana de Cássia de Souza

    2013-03-28

    The main objective of this study was to use infrared spectroscopy to identify vegetable oils used as raw material for biodiesel production and apply multivariate analysis to the data. Six different vegetable oil sources--canola, cotton, corn, palm, sunflower and soybeans--were used to produce biodiesel batches. The spectra were acquired by Fourier transform infrared spectroscopy using a universal attenuated total reflectance sensor (FTIR-UATR). For the multivariate analysis principal component analysis (PCA), hierarchical cluster analysis (HCA), interval principal component analysis (iPCA) and soft independent modeling of class analogy (SIMCA) were used. The results indicate that is possible to develop a methodology to identify vegetable oils used as raw material in the production of biodiesel by FTIR-UATR applying multivariate analysis. It was also observed that the iPCA found the best spectral range for separation of biodiesel batches using FTIR-UATR data, and with this result, the SIMCA method classified 100% of the soybean biodiesel samples.

  7. Microfluidic approaches to synchrotron radiation-based Fourier transform infrared (SR-FTIR) spectral microscopy of living biosystems.

    Science.gov (United States)

    Loutherback, Kevin; Birarda, Giovanni; Chen, Liang; Holman, Hoi-Ying N

    2016-01-01

    A long-standing desire in biological and biomedical sciences is to be able to probe cellular chemistry as biological processes are happening inside living cells. Synchrotron radiation-based Fourier transform infrared (SR-FTIR) spectral microscopy is a label-free and nondestructive analytical technique that can provide spatiotemporal distributions and relative abundances of biomolecules of a specimen by their characteristic vibrational modes. Despite great progress in recent years, SR-FTIR imaging of living biological systems remains challenging because of the demanding requirements on environmental control and strong infrared absorption of water. To meet this challenge, microfluidic devices have emerged as a method to control the water thickness while providing a hospitable environment to measure cellular processes and responses over many hours or days. This paper will provide an overview of microfluidic device development for SR-FTIR imaging of living biological systems, provide contrast between the various techniques including closed and open-channel designs, and discuss future directions of development within this area. Even as the fundamental science and technological demonstrations develop, other ongoing issues must be addressed; for example, choosing applications whose experimental requirements closely match device capabilities, and developing strategies to efficiently complete the cycle of development. These will require imagination, ingenuity and collaboration.

  8. Analysis of Complex Carbohydrate Composition in Plant Cell Wall Using Fourier Transformed Mid-Infrared Spectroscopy (FT-IR).

    Science.gov (United States)

    Badhan, Ajay; Wang, Yuxi; McAllister, Tim A

    2017-01-01

    Fourier transformed mid-infrared spectroscopy (FTIR) is a powerful tool for compositional analysis of plant cell walls (Acebes et al., Front Plant Sci 5:303, 2014; Badhan et al., Biotechnol Biofuels 7:1-15, 2014; Badhan et al., BioMed Res Int 2015: 562952, 2015; Roach et al., Plant Physiol 156:1351-1363, 2011). The infrared spectrum generates a fingerprint of a sample with absorption peaks corresponding to the frequency of vibrations between the bonds of the atoms making up the material. Here, we describe a method focused on the use of FTIR in combination with principal component analysis (PCA) to characterize the composition of the plant cell wall. This method has been successfully used to study complex enzyme saccharification processes like rumen digestion to identify recalcitrant moieties in low-quality forage which resist rumen digestion (Badhan et al., BioMed Res Int 2015: 562952, 2015), as well as to characterize cell wall mutant lines or transgenic lines expressing exogenous hydrolases (Badhan et al., Biotechnol Biofuels 7:1-15, 2014; Roach et al., Plant Physiol 156:1351-1363, 2011). The FTIR method described here facilitates high-throughput identification of the major compositional differences across a large set of samples in a low cost and nondestructive manner.

  9. USING FOURIER TRANSFORM INFRARED (FTIR TO CHARACTERIZE TSUNAMI DEPOSITS IN NEAR-SHORE AND COASTAL WATERS OF THAILAND

    Directory of Open Access Journals (Sweden)

    S. Pongpiachan

    2013-01-01

    Full Text Available Understanding the tsunami cycle requires a simple method for identification of tsunami backwash deposits. This study investigates Fourier transform infrared (FTIR spectroscopy followed by careful analysis of variance (ANOVA, Gaussian distribution, hierarchical cluster analysis (HCA and principal component analysis (PCA for the discrimination of typical marine sediments and tsunami backwash deposits. In order to test the suitability of FTIR spectra as innovative methods for classifications of tsunami deposits, typical marine sediments and terrestrial soils were classified into three zones, namely zone-1 (i.e. typical marine sediments, zone-2 (i.e. including tsunami backwash deposits and zone-3 (i.e. coastal terrestrial soils. HCA was performed to group the spectra according to their spectral similarity in a dendrogram and successfully separate FTIR spectra of all three sampling zones into two main clusters with five sub-clusters. The simplicifolious (i.e. single-leafed type of dendrogram was observed with the strong dissimilarity of terrestrial components in subcluster- 5. Graphical displays of PC1 vs PC2 highlight the prominent features of zone-1, which is explicitly different from those of zone-2 and zone-3. The acceptable discrimination of typical marine sediments and tsunami backwash deposits, even six years after the tsunami on Boxing Day 2004, dramatically demonstrates the potential of the method for the identification of paleotsunami.

  10. Differentiation of Body Fluid Stains on Fabrics Using External Reflection Fourier Transform Infrared Spectroscopy (FT-IR) and Chemometrics.

    Science.gov (United States)

    Zapata, Félix; de la Ossa, Ma Ángeles Fernández; García-Ruiz, Carmen

    2016-04-01

    Body fluids are evidence of great forensic interest due to the DNA extracted from them, which allows genetic identification of people. This study focuses on the discrimination among semen, vaginal fluid, and urine stains (main fluids in sexual crimes) placed on different colored cotton fabrics by external reflection Fourier transform infrared spectroscopy (FT-IR) combined with chemometrics. Semen-vaginal fluid mixtures and potential false positive substances commonly found in daily life such as soaps, milk, juices, and lotions were also studied. Results demonstrated that the IR spectral signature obtained for each body fluid allowed its identification and the correct classification of unknown stains by means of principal component analysis (PCA) and soft independent modeling of class analogy (SIMCA). Interestingly, results proved that these IR spectra did not show any bands due to the color of the fabric and no substance of those present in daily life which were analyzed, provided a false positive.

  11. Authentication of yerba mate according to the country of origin by using Fourier transform infrared (FTIR) associated with chemometrics.

    Science.gov (United States)

    Marcelo, Marcelo C A; Pozebon, Dirce; Ferrão, Marco F

    2015-01-01

    This study deals with the development of a method for classification of yerba mate (Ilex paraguariensis) using attenuated total-reflectance Fourier transform infrared (ATR-FTIR) and multivariate analysis. Fifty-four brands of yerba mate from southern South America were analysed in order to classify the commercialised yerba mate according to the respective country of yerba mate processing. The yerba mate was ground in a cryogenic mill, and the reflectance was directly measured in the region ranging from 4000 to 650 cm(-1). Different pre-processing algorithms and three methods of multivariate analysis were investigated, including principal component analysis (PCA), partial least square discriminant analysis (PLS-DA) and support vector machine discriminant analysis (SVM-DA). The yerba mate classification was 100% correct when the reflectance spectra were pre-treated (derived at first order, normalised by standard normal variation, smoothed and mean centred) and analysed using the SVM-DA method.

  12. The Micro Fourier Transform Interferometer (muFTIR) - A New Field Spectrometer for Acquisition of Infrared Data of Natural Surfaces

    Science.gov (United States)

    Hook, Simon J.

    1995-01-01

    A lightweight, rugged, high-spectral-resolution interferometer has been built by Designs and Prototypes based on a set of specifications provided by the Jet Propulsion Laboratory and Dr. J. W. Salisbury (Johns Hopkins University). The instrument, the micro Fourier Transform Interferometer (mFTIR), permits the acquisition of infrared spectra of natural surfaces. Such data can be used to validate low and high spectral resolution data acquired remotely from aircraft and spacecraft in the 3-5 mm and 8-14 mm atmospheric window. The instrument has a spectral resolutions of 6 wavenumbers, weighs 16 kg including batteries and computer, and can be operated easily by two people in the field. Laboratory analysis indicates the instrument is spectrally calibrated to better than 1 wavenumber and the radiometric accuracy is <0.5 K if the radiances from the blackbodies used for calibration bracket the radiance from the sample.

  13. [Determination of the carboxyl content of oxidized starch by fourier transform infrared (FTIR) spectroscopy].

    Science.gov (United States)

    Ding, Long-Long; Zhang, Yan-Hua; Gu, Ji-You; Tan, Hai-Yan; Zhu, Li-Bin

    2014-02-01

    In the present study, the carboxyl content of oxidized starch was determined by FTIR spectroscopy. Standard curve was drawn in which the ordinate was carboxyl content determined by national standard method with the ratio of carbonyl absorbance to the key of C-H absorbance in FTIR spectroscopy as the abscissa. The ratio of absorbance of unknown oxidized starch tested by FTIR spectroscopy was obtained, The carboxyl content was calculated by standard curve, and then compared with the carboxyl content determined by national standard method, and the deviation is between 2% and 4%. In order to improve the accuracy of the experiment, standard sample was selected to draw standard curve to better ensure that the carboxyl content of the unknown oxidized starch is in the range of standard curve calculation limit, and deviates from the limit of standard curve. Compared with the carboxyl content determined by national standard method, testing with FTIR spectroscopy is simple, easy to operate, and of high efficiency and better accuracy. So, it is significant to forecast the carboxyl content of oxidized starch by FTIR spectroscopy.

  14. Detection and differentiation of bacterial spores in a mineral matrix by Fourier transform infrared spectroscopy (FTIR and chemometrical data treatment

    Directory of Open Access Journals (Sweden)

    Brandes Ammann Andrea

    2011-07-01

    Full Text Available Abstract Background Fourier transform infrared spectroscopy (FTIR has been used as analytical tool in chemistry for many years. In addition, FTIR can also be applied as a rapid and non-invasive method to detect and identify microorganisms. The specific and fingerprint-like spectra allow - under optimal conditions - discrimination down to the species level. The aim of this study was to develop a fast and reproducible non-molecular method to differentiate pure samples of Bacillus spores originating from different species as well as to identify spores in a simple matrix, such as the clay mineral, bentonite. Results We investigated spores from pure cultures of seven different Bacillus species by FTIR in reflection or transmission mode followed by chemometrical data treatment. All species investigated (B. atrophaeus, B. brevis, B. circulans, B. lentus, B. megaterium, B. subtilis, B. thuringiensis are typical aerobic soil-borne spore formers. Additionally, a solid matrix (bentonite and mixtures of benonite with spores of B. megaterium at various wt/wt ratios were included in the study. Both hierarchical cluster analysis and principal component analysis of the spectra along with multidimensional scaling allowed the discrimination of different species and spore-matrix-mixtures. Conclusions Our results show that FTIR spectroscopy is a fast method for species-level discrimination of Bacillus spores. Spores were still detectable in the presence of the clay mineral bentonite. Even a tenfold excess of bentonite (corresponding to 2.1 × 1010 colony forming units per gram of mineral matrix still resulted in an unambiguous identification of B. megaterium spores.

  15. Attenuated total reflection Fourier-transform infrared (ATR-FTIR) imaging of tissues and live cells.

    Science.gov (United States)

    Andrew Chan, K L; Kazarian, Sergei G

    2016-04-07

    FTIR spectroscopic imaging is a label-free, non-destructive and chemically specific technique that can be utilised to study a wide range of biomedical applications such as imaging of biopsy tissues, fixed cells and live cells, including cancer cells. In particular, the use of FTIR imaging in attenuated total reflection (ATR) mode has attracted much attention because of the small, but well controlled, depth of penetration and corresponding path length of infrared light into the sample. This has enabled the study of samples containing large amounts of water, as well as achieving an increased spatial resolution provided by the high refractive index of the micro-ATR element. This review is focused on discussing the recent developments in FTIR spectroscopic imaging, particularly in ATR sampling mode, and its applications in the biomedical science field as well as discussing the future opportunities possible as the imaging technology continues to advance.

  16. FOURIER TRANSFORM INFRA RED (FT-IR SPECTRAL STUDIES OF FOENICULUM VULGARE

    Directory of Open Access Journals (Sweden)

    V. Devika

    2013-03-01

    Full Text Available Plants have been used in traditional medicine for several thousand years. Medicinal plants as a group comprise approximately 8000 species and account for about 50% of all the higher flowering plant species in India. In the present study, the plant Foeniculum vulgare was subjected to FT-IR spectroscopy. FT-IR-is a vibrational spectroscopy that records absorptions of IR light by chemical bonds in all molecules incl. polymers. Foeniculum vulgare (Apiaceae commonly known as fennel is a well known and important medicinal and aromatic plant widely used as carminative, digestive, lactogogue and diuretic and in treating respiratory and gastrointestinal disorders. The results showed the detections of the bands in organic molecules. Thus the study became evident that the plant posses some bioactive compounds at various bands obtained after FT-IR.

  17. Comparing proteins and carbohydrates molecular structures in different sorghum cultivars using fourier transform infrared spectroscopy (FTIR and multivariate analyses

    Directory of Open Access Journals (Sweden)

    Hojat Gholizadeh

    2015-04-01

    Full Text Available This study was carried out to determine the protein and carbohydrate molecular structure of sorghum cultivars using Fourier Transform Infrared Spectroscopy (FTIR with multivariate molecular spectroscopy analyses. Sorghum cultivars included: 1- Kimia, 2- Sepideh, 3- M2 and 4- M8. Protein and carbohydrate molecular functional groups studied included: peak area and height amide I, amide II, α-helix, β-sheet, 860 (non-structure carbohydrate, 928 (non-structure carbohydrate, total carbohydrate (CHO with three major component peaks in this region, cellulosic compounds and different ratio of molecular structure. FTIR results showed that there were significant differences between sorghum cultivars in terms of proteins and carbohydrates molecular structures. Kimia had the greatest peak area and height amide I, II, α-helix, β-sheet, total carbohydrate and cellulosic compounds. Sepideh, M2 and M8 had similar proteins and carbohydrates molecular structures. Differences in protein and carbohydrate molecular structures can influence the availability of proteins and carbohydrates in ruminant and monogastric. Further studies needed to understand the effect of variety on protein and carbohydrate structure of sorghum and the relationship between protein and carbohydrate structure of a feed with nutrient availability in ruminant and monogastric

  18. A four class model for digital breast histopathology using high-definition Fourier transform infrared (FT-IR) spectroscopic imaging

    Science.gov (United States)

    Mittal, Shachi; Wrobel, Tomasz P.; Leslie, L. S.; Kadjacsy-Balla, Andre; Bhargava, Rohit

    2016-03-01

    High-definition (HD) Fourier transform infrared (FT-IR) spectroscopic imaging is an emerging technique that not only enables chemistry-based visualization of tissue constituents, and label free extraction of biochemical information but its higher spatial detail makes it a potentially useful platform to conduct digital pathology. This methodology, along with fast and efficient data analysis, can enable both quantitative and automated pathology. Here we demonstrate a combination of HD FT-IR spectroscopic imaging of breast tissue microarrays (TMAs) with data analysis algorithms to perform histologic analysis. The samples comprise four tissue states, namely hyperplasia, dysplasia, cancerous and normal. We identify various cell types which would act as biomarkers for breast cancer detection and differentiate between them using statistical pattern recognition tools i.e. Random Forest (RF) and Bayesian algorithms. Feature optimization is integrally carried out for the RF algorithm, reducing computation time as well as redundant spectral features. We achieved an order of magnitude reduction in the number of features with comparable prediction accuracy to that of the original feature set. Together, the demonstration of histology and selection of features paves the way for future applications in more complex models and rapid data acquisition.

  19. Characterization of large amyloid fibers and tapes with Fourier transform infrared (FT-IR) and Raman spectroscopy.

    Science.gov (United States)

    Ridgley, Devin M; Claunch, Elizabeth C; Barone, Justin R

    2013-12-01

    Amyloids are self-assembled protein structures implicated in a host of neurodegenerative diseases. Organisms can also produce "functional amyloids" to perpetuate life, and these materials serve as models for robust biomaterials. Amyloids are typically studied using fluorescent dyes, Fourier transform infrared (FT-IR), or Raman spectroscopy analysis of the protein amide I region, and X-ray diffraction (XRD) because the self-assembled β-sheet secondary structure of the amyloid can be easily identified with these techniques. Here, FT-IR and Raman spectroscopy analyses are described to characterize amyloid structures beyond just identification of the β-sheet structure. It has been shown that peptide mixtures can self-assemble into nanometer-sized amyloid structures that then continue to self-assemble to the micrometer scale. The resulting structures are flat tapes of low rigidity or cylinders of high rigidity depending on the peptides in the mixture. By monitoring the aggregation of peptides in solution using FT-IR spectroscopy, it is possible to identify specific amino acids implicated in β-sheet formation and higher order self-assembly. It is also possible to predict the final tape or cylinder morphology and gain insight into the structure's physical properties based on observed intermolecular interactions during the self-assembly process. Tapes and cylinders are shown to both have a similar core self-assembled β-sheet structure. Soft tapes also have weak hydrophobic interactions between alanine, isoleucine, leucine, and valine that facilitate self-assembly. Rigid cylinders have similar hydrophobic interactions that facilitate self-assembly and also have extensive hydrogen bonding between glutamines. Raman spectroscopy performed on the dried tapes and fibers shows the persistence of these interactions. The spectroscopic analyses described could be generalized to other self-assembling amyloid systems to explain property and morphological differences.

  20. Polyimide analysis using diffuse reflectance-FTIR. [Fourier Transform IR Spectroscopy

    Science.gov (United States)

    Young, P. R.; Chang, A. C.

    1985-01-01

    The thermal imidization of a number of polyimide precursors in the form of powders, films, and prepregs was examined by an in situ diffuse reflectance-FTIR technique where infrared spectra were determined while the material was being heated. An analysis of these spectra revealed that, with the exception of one water soluble adhesive, each precursor developed an anhydride band around 1850 cm/cu during imidization. This band diminished in intensity during final stages of cure. Efforts were made to quantify the amount of anhydride in several samples. Evidence obtained could be interpreted to mean that poly(amic acid) resins undergo an initial reduction in molecular weight during imidization before recombining to achieve their ultimate molecular weights as polyimides. Several reports in the literature are cited to support this interpretation. This report serves both to document anhydride formation during imidization and to increase our fundamental understanding of how polyimides cure.

  1. Fourier transform infrared (FTIR) fiber optic monitoring of composites during cure in an autoclave

    Science.gov (United States)

    Druy, Mark A.; Elandjian, Lucy; Stevenson, William A.; Driver, Richard D.; Leskowitz, Garett M.

    1990-01-01

    Real-time in situ monitoring of the chemical states of epoxy resins was investigated during cure in an autoclave using infrared evanescent spectroscopy. Fiber evanescent sensors were developed which may be sandwiched between the plies of the prepreg sample. A short length of sapphire fiber was used as the sensor cell portion of the fiber probe. Heavy metal fluoride glass optical fiber cables were designed for connecting the FTIR spectrometer to the sensor fiber within the autoclave. The sapphire fibers have outstanding mechanical thermal properties which should permit their use as an embedded link in all thermoset composites. The system is capable of operation at a temperature of 250 C for periods up to 8 hours without major changes to the fiber transmission. A discussion of the selection of suitable sensor fibers, the construction of a fiber-optic interface, and the interpretation of in situ infrared spectra of the curing process is presented.

  2. On-Chip Micro-Electro-Mechanical System Fourier Transform Infrared (MEMS FT-IR) Spectrometer-Based Gas Sensing.

    Science.gov (United States)

    Erfan, Mazen; Sabry, Yasser M; Sakr, Mohammad; Mortada, Bassem; Medhat, Mostafa; Khalil, Diaa

    2016-05-01

    In this work, we study the detection of acetylene (C2H2), carbon dioxide (CO2) and water vapor (H2O) gases in the near-infrared (NIR) range using an on-chip silicon micro-electro-mechanical system (MEMS) Fourier transform infrared (FT-IR) spectrometer in the wavelength range 1300-2500 nm (4000-7692 cm(-1)). The spectrometer core engine is a scanning Michelson interferometer micro-fabricated using a deep-etching technology producing self-aligned components. The light is free-space propagating in-plane with respect to the silicon chip substrate. The moving mirror of the interferometer is driven by a relatively large stroke electrostatic comb-drive actuator corresponding to about 30 cm(-1) resolution. Multi-mode optical fibers are used to connect light between the wideband light source, the interferometer, the 10 cm gas cell, and the optical detector. A wide dynamic range of gas concentration down to 2000 parts per million (ppm) in only 10 cm length gas cell is demonstrated. Extending the wavelength range to the mid-infrared (MIR) range up to 4200 nm (2380 cm(-1)) is also experimentally demonstrated, for the first time, using a bulk micro-machined on-chip MEMS FT-IR spectrometer. The obtained results open the door for an on-chip optical gas sensor for many applications including environmental sensing and industrial process control in the NIR/MIR spectral ranges.

  3. Optical Determination of Lead Chrome Green in Green Tea by Fourier Transform Infrared (FT-IR) Transmission Spectroscopy

    Science.gov (United States)

    Li, Xiaoli; Xu, Kaiwen; Zhang, Yuying; Sun, Chanjun; He, Yong

    2017-01-01

    The potential of Fourier transform infrared (FT-IR) transmission spectroscopy for determination of lead chrome green in green tea was investigated based on chemometric methods. Firstly, the qualitative analysis of lead chrome green in tea was performed based on partial least squares discriminant analysis (PLS-DA), and the correct rate of classification was 100%. And then, a hybrid method of interval partial least squares (iPLS) regression and successive projections algorithm (SPA) was proposed to select characteristic wavenumbers for the quantitative analysis of lead chrome green in green tea, and 19 wavenumbers were obtained finally. Among these wavenumbers, 1384 (C = C), 1456, 1438, 1419(C = N), and 1506 (CNH) cm-1 were the characteristic wavenumbers of lead chrome green. Then, these 19 wavenumbers were used to build determination models. The best model was achieved by least squares support vector machine (LS-SVM)algorithm with high coefficient of determination and low root-mean square error of prediction set (R2p = 0.864 and RMSEP = 0.291). All these results indicated the feasibility of IR spectra for detecting lead chrome green in green tea. PMID:28068348

  4. Step-scan Fourier transform infrared (FTIR) spectrometer for investigating chemical reactions of energy-related materials. Final report, April 1, 1995--March 31, 1997

    Energy Technology Data Exchange (ETDEWEB)

    Eyring, E.M.

    1997-11-04

    Two step-scan Fourier transform infrared (FTIR) spectrometers were purchased with URI-DOE funds by the University of Utah. These infrared spectrometers have been used to carry out the following investigations: the determination of strength of adsorption of organic molecules at the liquid-solid interface of coated attenuated total reflectance (ATR) elements, the kinetic study of the photoinitiated polymerization of a dental resin, the exploration of the kinetics of photochemical reactions of organic molecules in solution, and the development of a stopped-flow FTIR interface for measuring rates and mechanisms of reactions in solution that are not photoinitiated and do not have convenient ultraviolet-visible spectral features.

  5. Correlation between Onset Oxidation Temperature (OOT and Fourier Transform Infrared Spectroscopy (FTIR for monitoring the restabilization of Recycled Low-density Polyethylene (LDPE

    Directory of Open Access Journals (Sweden)

    Adhemar Ruvolo-Filho

    2013-01-01

    Full Text Available In this work a new method was developed for monitoring the oxidative stability of restabilized and non-restabilized low-density polyethylene (LDPE during multiple extrusion cycles. The method is based on correlations between Fourier Transform Infrared spectroscopy (FTIR and Onset Oxidation Temperature (OOT. Non-linear calibration curves correlating the concentration of primary or secondary antioxidants and the OOT values were obtained.

  6. Correlation between Onset Oxidation Temperature (OOT) and Fourier Transform Infrared Spectroscopy (FTIR) for monitoring the restabilization of Recycled Low-density Polyethylene (LDPE)

    Energy Technology Data Exchange (ETDEWEB)

    Ruvolo-Filho, Adhemar; Pelozzi, Tadeu Luiz Alonso, E-mail: adhemar@power.ufscar.br [Universidade Federal de Sao Carlos (UFSCar), SP (Brazil). Departamento de Quimica

    2013-07-01

    In this work a new method was developed for monitoring the oxidative stability of restabilized and non-restabilized low-density polyethylene (LDPE) during multiple extrusion cycles. The method is based on correlations between Fourier Transform Infrared Spectroscopy (FTIR) and Onset Oxidation Temperature (OOT). Non-linear calibration curves correlating the concentration of primary or secondary antioxidants and the OOT values were obtained. (author)

  7. Real-time feedback control using online attenuated total reflection Fourier transform infrared (ATR FT-IR) spectroscopy for continuous flow optimization and process knowledge.

    Science.gov (United States)

    Skilton, Ryan A; Parrott, Andrew J; George, Michael W; Poliakoff, Martyn; Bourne, Richard A

    2013-10-01

    The use of automated continuous flow reactors is described, with real-time online Fourier transform infrared spectroscopy (FT-IR) analysis to enable rapid optimization of reaction yield using a self-optimizing feedback algorithm. This technique has been applied to the solvent-free methylation of 1-pentanol with dimethyl carbonate using a γ-alumina catalyst. Calibration of the FT-IR signal was performed using gas chromatography to enable quantification of yield over a wide variety of flow rates and temperatures. The use of FT-IR as a real-time analytical technique resulted in an order of magnitude reduction in the time and materials required compared to previous studies. This permitted a wide exploration of the parameter space to provide process understanding and validation of the optimization algorithms.

  8. Simultaneous and continuous measurements of dissolved CO2, CH4, N2O and CO in rivers using Fourier-Transform-InfraRed (FTIR) spectrometry

    Science.gov (United States)

    Warneke, Thorsten; Müller, Denise; Caldow, Christopher; Rixen, Tim; Notholt, Justus

    2015-04-01

    We have coupled a Fourier-Transform InfraRed (FTIR) trace gas analyser to an equilibrator, which allows the simultaneous and continuous measurement of dissolved CO2, CH4, N2O and CO in water. The FTIR-technique has a high precision over a wide range of concentrations, making it very suitable for the measurement of these gases in freshwater systems. We have employed this measurement system on a commercial river barge on the Elbe river (Czech Republic, Germany) and on a fisher boat in the coastal area of Sarawak (Malaysia). In addition we have performed stationary continuous measurements at a small river in Northern Germany over the duration of 3 months. The presentation will outline the advantages and disadvantages of the FTIR-technique for freshwater measurements and will present results from the measurement campaigns.

  9. Fourier Transform Infrared (FTIR) Spectroscopy, Ultraviolet Resonance Raman (UVRR) Spectroscopy, and Atomic Force Microscopy (AFM) for Study of the Kinetics of Formation and Structural Characterization of Tau Fibrils.

    Science.gov (United States)

    Ramachandran, Gayathri

    2017-01-01

    Kinetic studies of tau fibril formation in vitro most commonly employ spectroscopic probes such as thioflavinT fluorescence and laser light scattering or negative stain transmission electron microscopy. Here, I describe the use of Fourier transform infrared (FTIR) spectroscopy, ultraviolet resonance Raman (UVRR) spectroscopy, and atomic force microscopy (AFM) as complementary probes for studies of tau aggregation. The sensitivity of vibrational spectroscopic techniques (FTIR and UVRR) to secondary structure content allows for measurement of conformational changes that occur when the intrinsically disordered protein tau transforms into cross-β-core containing fibrils. AFM imaging serves as a gentle probe of structures populated over the time course of tau fibrillization. Together, these assays help further elucidate the structural and mechanistic complexity inherent in tau fibril formation.

  10. Generalized Fourier transforms classes

    DEFF Research Database (Denmark)

    Berntsen, Svend; Møller, Steen

    2002-01-01

    The Fourier class of integral transforms with kernels $B(\\omega r)$ has by definition inverse transforms with kernel $B(-\\omega r)$. The space of such transforms is explicitly constructed. A slightly more general class of generalized Fourier transforms are introduced. From the general theory...

  11. Resin characterization in cured graphite fiber reinforced composites using diffuse reflectance-FTIR. [Fourier transform infrared spectroscopy

    Science.gov (United States)

    Young, P. R.; Stein, B. A.; Chang, A. C.

    1983-01-01

    The feasibility of using diffuse reflectance in combination with Fourier transform infrared spectroscopy to obtain information on cured graphite fiber reinforced polymeric matrix resin composites was investigated. Several graphite/epoxy, polysulfone, and polyimide composites exposed to thermal or radiation environments were examined. An experimental polyimide-sulfone adhesive tape was also studied during processing. In each case, significant changes in resin molecular structure was observed due to environmental exposure. These changes in molecular structure were correlated with previously observed changes in material properties providing new insights into material behavior.

  12. Simultaneous monitoring of curing shrinkage and degree of cure of thermosets by attenuated total reflection Fourier transform infrared (ATR FT-IR) spectroscopy.

    Science.gov (United States)

    Fernàndez-Francos, Xavier; Kazarian, Sergei G; Ramis, Xavier; Serra, Àngels

    2013-12-01

    We present a novel methodology to simultaneously monitor of the degree of cure and curing shrinkage of thermosetting formulations. This methodology is based on the observation of changes in the infrared absorption of reactive functional groups and the groups used as a standard reference for normalization. While the optical path length is exact and controlled in transmission infrared spectroscopy, in attenuated total reflection Fourier transform infrared (ATR FT-IR), the exact determination of volume changes requires the measurement of the refractive indices of the studied system throughout the curing process or at least an indirect parallel measurement of this property. The methodology presented here allows one to achieve quantitative measurements of the degree of cure and shrinkage for thermosets using in situ ATR FT-IR spectroscopy.

  13. In-situ CIR-FTIR (cylindrical internal reflection/Fourier transform infrared) characterization of salicylate complexes at the goethite/aqueous solution interface

    Energy Technology Data Exchange (ETDEWEB)

    Yost, E.C.; Tejedor-Tejedor, M.I.; Anderson, M.A. (Univ. of Wisconsin, Madison (USA))

    1990-06-01

    The types of complexes that salicylate (2-hydroxy-benzoate) forms with the surface of goethite ({alpha}-FeOOH) in aqueous medium were studied in situ by using cylindrical internal reflection (CIR) Fourier transform infrared (FTIR) spectroscopy. Results obtained from CIR-FTIR studies were compared with adsorption isotherm experiments in order to relate the level of salicylate coverage to the nature of the surface complex. At lower surface coverages all the interfacial salicylate has a chelate structure in which one carboxylic oxygen and the ortho phenolic oxygen bind one Fe atom of the goethite surface. At higher surface coverages this chelate complex coexists with salicylate ions, which are weakly bound in the double layer.

  14. Using attenuated total reflection Fourier transform infrared spectroscopy (ATR FT-IR) to study the molecular conformation of parchment artifacts in different macroscopic states.

    Science.gov (United States)

    Gonzalez, Lee; Wade, Matthew; Bell, Nancy; Thomas, Kate; Wess, Tim

    2013-02-01

    Maintaining appropriate temperatures and relative humidity is considered essential to extending the useful life of parchment artifacts. Although the relationship between environmental factors and changes to the physical state of artifacts is reasonably understood, an improved understanding of the relationship between the molecular conformation and changes to the macroscopic condition of parchment is needed to optimize environmental conditions. Using Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy (ATR FT-IR) analysis, the conformation of the molecular structure in selected parchment samples with specific macroscopic conditions, typically discoloration and planar deformations (e.g., cockling and tearing), have been made. The results of this investigation showed that the Fourier transform infrared signal differs for parchment samples exhibiting different macroscopic conditions. In areas exhibiting planar deformation, a change in the Fourier Transform Infrared signal was observed that indicates unfolding of the molecular conformation. In comparison, the discolored samples showed a change in molecular conformation that indicates a chemical change within the collagen molecular structure. This paper discusses the possible causal associations and implications of these findings for the conservation and preservation of parchment artifacts.

  15. Rapid, nondestructive estimation of surface polymer layer thickness using attenuated total reflection fourier transform infrared (ATR FT-IR) spectroscopy and synthetic spectra derived from optical principles.

    Science.gov (United States)

    Weinstock, B André; Guiney, Linda M; Loose, Christopher

    2012-11-01

    We have developed a rapid, nondestructive analytical method that estimates the thickness of a surface polymer layer with high precision but unknown accuracy using a single attenuated total reflection Fourier transform infrared (ATR FT-IR) measurement. Because the method is rapid, nondestructive, and requires no sample preparation, it is ideal as a process analytical technique. Prior to implementation, the ATR FT-IR spectrum of the substrate layer pure component and the ATR FT-IR and real refractive index spectra of the surface layer pure component must be known. From these three input spectra a synthetic mid-infrared spectral matrix of surface layers 0 nm to 10,000 nm thick on substrate is created de novo. A minimum statistical distance match between a process sample's ATR FT-IR spectrum and the synthetic spectral matrix provides the thickness of that sample. We show that this method can be used to successfully estimate the thickness of polysulfobetaine surface modification, a hydrated polymeric surface layer covalently bonded onto a polyetherurethane substrate. A database of 1850 sample spectra was examined. Spectrochemical matrix-effect unknowns, such as the nonuniform and molecularly novel polysulfobetaine-polyetherurethane interface, were found to be minimal. A partial least squares regression analysis of the database spectra versus their thicknesses as calculated by the method described yielded an estimate of precision of ±52 nm.

  16. Determination of trans Fat in Selected Fast Food Products and Hydrogenated Fats of India Using Attenuated Total Reflection Fourier Transform Infrared (ATR-FTIR) Spectroscopy.

    Science.gov (United States)

    Khan, Mohd Umar; Hassan, Mohammad Fahimul; Rauf, Abdul

    2017-01-01

    This paper reports the application of a simple and rapid method for the determination of trans fatty acid (TFA) content in some of the selected Indian fast food products and hydrogenated fats using Fourier transform infrared (FTIR) spectroscopy in conjunction with second derivative procedure. FTIR spectroscopy has been successfully applied to trans measurement using the absorbance bands at or near 966 cm(-1) in the FTIR spectra. It was found from the analysis that TFA content of fast food product was ranging from 1.57% to 3.83% of the total fat while for hydrogenated fats, comparatively large quantity of TFA was detected in the range of 3.31% to 4.73%. Since GC-FID is most widely used method for the determination of fatty acid (FA) composition, this method was used for the sake of comparison. Value of regression coefficient was found very close to one (0.99503) with standard deviation of 0.10247 showing a good agreement between GC-FID and proposed ATR-FTIR method.

  17. Evaluation of oxide layers formed during the decarburisation of grain-oriented electrical steel using a Fourier transform infrared (FTIR) technique

    Energy Technology Data Exchange (ETDEWEB)

    Poultney, Darren [Development and Market Research, Cogent Power Ltd., Corporation Road, Newport, South Wales NP19 0XT (United Kingdom)], E-mail: Darren.Poultney@Cogent-Power.com; Snell, David [Development and Market Research, Cogent Power Ltd., Corporation Road, Newport, South Wales NP19 0XT (United Kingdom)

    2008-10-15

    Electrical steels are highly specialised, magnetically soft materials, used to form the cores that carry the magnetic flux in electrical machines such as motors, generators and transformers. During the production of GO electrical steel, the strip passes through a decarburisation furnace, which promotes the formation of a thin surface oxide layer consisting of predominantly fayalite (Fe{sub 2}SiO{sub 4}) and silica (SiO{sub 2}). During a subsequent high temperature anneal, this layer reacts with magnesia (MgO) to form a forsterite 'glass film' layer, which applies a tensile stress to the steel. This reduces the magnetic losses of the material on which the final product is routinely graded. Due to the effect that the oxide layer has on the quality of the final material, it would be beneficial to possess a technique that can rapidly assess its composition and/or morphology. This paper details the assessment of Fourier transform infrared (FTIR) and electrochemical potential (ECP) analysis, and a technique of combining the two. FTIR analysis of the decarburisation oxide layer exhibited evidence of just fayalite, with silica only being observed on the spectra following brief acid etching. To refine the etching process, samples were removed from the acid at various intervals based on the output of the ECP technique. It was established that there was a clear link between the position reached on the ECP profile and absorption bands observed on the corresponding FTIR spectra.

  18. Fourier transformation for pedestrians

    CERN Document Server

    Butz, Tilman

    2006-01-01

    Meant to serve an "entertaining textbook," this book belongs to a rare genre. It is written for all students and practitioners who deal with Fourier transformation. Fourier series as well as continuous and discrete Fourier transformation are covered, and particular emphasis is placed on window functions. Many illustrations and easy-to-solve exercises make the book especially accessible, and its humorous style will add to the pleasure of learning from it.

  19. Rapid quantification of methamphetamine: using attenuated total reflectance fourier transform infrared spectroscopy (ATR-FTIR) and chemometrics.

    Science.gov (United States)

    Hughes, Juanita; Ayoko, Godwin; Collett, Simon; Golding, Gary

    2013-01-01

    In Australia and increasingly worldwide, methamphetamine is one of the most commonly seized drugs analysed by forensic chemists. The current well-established GC/MS methods used to identify and quantify methamphetamine are lengthy, expensive processes, but often rapid analysis is requested by undercover police leading to an interest in developing this new analytical technique. Ninety six illicit drug seizures containing methamphetamine (0.1%-78.6%) were analysed using Fourier Transform Infrared Spectroscopy with an Attenuated Total Reflectance attachment and Chemometrics. Two Partial Least Squares models were developed, one using the principal Infrared Spectroscopy peaks of methamphetamine and the other a Hierarchical Partial Least Squares model. Both of these models were refined to choose the variables that were most closely associated with the methamphetamine % vector. Both of the models were excellent, with the principal peaks in the Partial Least Squares model having Root Mean Square Error of Prediction 3.8, R(2) 0.9779 and lower limit of quantification 7% methamphetamine. The Hierarchical Partial Least Squares model had lower limit of quantification 0.3% methamphetamine, Root Mean Square Error of Prediction 5.2 and R(2) 0.9637. Such models offer rapid and effective methods for screening illicit drug samples to determine the percentage of methamphetamine they contain.

  20. Rapid Quantification of Methamphetamine: Using Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy (ATR-FTIR) and Chemometrics

    Science.gov (United States)

    Hughes, Juanita; Ayoko, Godwin; Collett, Simon; Golding, Gary

    2013-01-01

    In Australia and increasingly worldwide, methamphetamine is one of the most commonly seized drugs analysed by forensic chemists. The current well-established GC/MS methods used to identify and quantify methamphetamine are lengthy, expensive processes, but often rapid analysis is requested by undercover police leading to an interest in developing this new analytical technique. Ninety six illicit drug seizures containing methamphetamine (0.1%–78.6%) were analysed using Fourier Transform Infrared Spectroscopy with an Attenuated Total Reflectance attachment and Chemometrics. Two Partial Least Squares models were developed, one using the principal Infrared Spectroscopy peaks of methamphetamine and the other a Hierarchical Partial Least Squares model. Both of these models were refined to choose the variables that were most closely associated with the methamphetamine % vector. Both of the models were excellent, with the principal peaks in the Partial Least Squares model having Root Mean Square Error of Prediction 3.8, R2 0.9779 and lower limit of quantification 7% methamphetamine. The Hierarchical Partial Least Squares model had lower limit of quantification 0.3% methamphetamine, Root Mean Square Error of Prediction 5.2 and R2 0.9637. Such models offer rapid and effective methods for screening illicit drug samples to determine the percentage of methamphetamine they contain. PMID:23936058

  1. Rapid quantification of methamphetamine: using attenuated total reflectance fourier transform infrared spectroscopy (ATR-FTIR and chemometrics.

    Directory of Open Access Journals (Sweden)

    Juanita Hughes

    Full Text Available In Australia and increasingly worldwide, methamphetamine is one of the most commonly seized drugs analysed by forensic chemists. The current well-established GC/MS methods used to identify and quantify methamphetamine are lengthy, expensive processes, but often rapid analysis is requested by undercover police leading to an interest in developing this new analytical technique. Ninety six illicit drug seizures containing methamphetamine (0.1%-78.6% were analysed using Fourier Transform Infrared Spectroscopy with an Attenuated Total Reflectance attachment and Chemometrics. Two Partial Least Squares models were developed, one using the principal Infrared Spectroscopy peaks of methamphetamine and the other a Hierarchical Partial Least Squares model. Both of these models were refined to choose the variables that were most closely associated with the methamphetamine % vector. Both of the models were excellent, with the principal peaks in the Partial Least Squares model having Root Mean Square Error of Prediction 3.8, R(2 0.9779 and lower limit of quantification 7% methamphetamine. The Hierarchical Partial Least Squares model had lower limit of quantification 0.3% methamphetamine, Root Mean Square Error of Prediction 5.2 and R(2 0.9637. Such models offer rapid and effective methods for screening illicit drug samples to determine the percentage of methamphetamine they contain.

  2. Chemical profiling and adulteration screening of Aquilariae Lignum Resinatum by Fourier transform infrared (FT-IR) spectroscopy and two-dimensional correlation infrared (2D-IR) spectroscopy.

    Science.gov (United States)

    Qu, Lei; Chen, Jian-Bo; Zhang, Gui-Jun; Sun, Su-Qin; Zheng, Jing

    2017-03-05

    As a kind of expensive perfume and valuable herb, Aquilariae Lignum Resinatum (ALR) is often adulterated for economic motivations. In this research, Fourier transform infrared (FT-IR) spectroscopy is employed to establish a simple and quick method for the adulteration screening of ALR. First, the principal chemical constituents of ALR are characterized by FT-IR spectroscopy at room temperature and two-dimensional correlation infrared (2D-IR) spectroscopy with thermal perturbation. Besides the common cellulose and lignin compounds, a certain amount of resin is the characteristic constituent of ALR. Synchronous and asynchronous 2D-IR spectra indicate that the resin (an unstable secondary metabolite) is more sensitive than cellulose and lignin (stable structural constituents) to the thermal perturbation. Using a certified ALR sample as the reference, the infrared spectral correlation threshold is determined by 30 authentic samples and 6 adulterated samples. The spectral correlation coefficient of an authentic ALR sample to the standard reference should be not less than 0.9886 (p=0.01). Three commercial adulterated ALR samples are identified by the correlation threshold. Further interpretation of the infrared spectra of the adulterated samples indicates the common adulterating methods - counterfeiting with other kind of wood, adding ingredient such as sand to increase the weight, and adding the cheap resin such as rosin to increase the content of resin compounds. Results of this research prove that FT-IR spectroscopy can be used as a simple and accurate quality control method of ALR.

  3. Detection Limits for Blood on Fabrics Using Attenuated Total Reflection Fourier Transform Infrared (ATR FT-IR) Spectroscopy and Derivative Processing.

    Science.gov (United States)

    Lu, Zhenyu; DeJong, Stephanie A; Cassidy, Brianna M; Belliveau, Raymond G; Myrick, Michael L; Morgan, Stephen L

    2016-06-27

    Attenuated total reflection Fourier transform infrared spectroscopy (ATR FT-IR) was used to detect blood stains based on signature protein absorption in the mid-IR region, where intensity changes in the spectrum can be related to blood concentration. Partial least squares regression (PLSR) was applied for multivariate calibrations of IR spectra of blood dilutions on four types of fabric (acrylic, nylon, polyester, and cotton). Gap derivatives (GDs) were applied as a preprocessing technique to optimize the performance of calibration models. We report a much improved IR detection limit (DL) for blood on cotton (2700× in dilution factor units) and the first IR DL reported for blood on nylon (250×). Due to sample heterogeneity caused by fabric hydrophobicity, acrylic fabric produced variable ATR FT-IR spectra that caused poor DLs in concentration units compared to previous work. Polyester showed a similar problem at low blood concentrations that lead to a relatively poor DL as well. However, the increased surface sensitivity and decreased penetration depth of ATR FT-IR make it an excellent choice for detection of small quantities of blood on the front surface of all fabrics tested (0.0010 µg for cotton, 0.0077 µg for nylon, 0.011 µg for acrylic, and 0.0066 µg for polyester).

  4. Proteolytically-induced changes of secondary structural protein conformation of bovine serum albumin monitored by Fourier transform infrared (FT-IR) and UV-circular dichroism spectroscopy

    Science.gov (United States)

    Güler, Günnur; Vorob'ev, Mikhail M.; Vogel, Vitali; Mäntele, Werner

    2016-05-01

    Enzymatically-induced degradation of bovine serum albumin (BSA) by serine proteases (trypsin and α-chymotrypsin) in various concentrations was monitored by means of Fourier transform infrared (FT-IR) and ultraviolet circular dichroism (UV-CD) spectroscopy. In this study, the applicability of both spectroscopies to monitor the proteolysis process in real time has been proven, by tracking the spectral changes together with secondary structure analysis of BSA as proteolysis proceeds. On the basis of the FTIR spectra and the changes in the amide I band region, we suggest the progression of proteolysis process via conversion of α-helices (1654 cm- 1) into unordered structures and an increase in the concentration of free carboxylates (absorption of 1593 and 1402 cm- 1). For the first time, the correlation between the degree of hydrolysis and the concentration of carboxylic groups measured by FTIR spectroscopy was revealed as well. The far UV-CD spectra together with their secondary structure analysis suggest that the α-helical content decreases concomitant with an increase in the unordered structure. Both spectroscopic techniques also demonstrate that there are similar but less spectral changes of BSA for the trypsin attack than for α-chymotrypsin although the substrate/enzyme ratio is taken the same.

  5. Detection and quantification of soymilk in cow-buffalo milk using Attenuated Total Reflectance Fourier Transform Infrared spectroscopy (ATR-FTIR).

    Science.gov (United States)

    Jaiswal, Pranita; Jha, Shyam Narayan; Borah, Anjan; Gautam, Anuj; Grewal, Manpreet Kaur; Jindal, Gaurav

    2015-02-01

    Milk consumption is steadily increasing, especially in India and China, due to rising income. To bridge the gap between supply and demand, unscrupulous milk vendors add milk-like products from vegetable sources (soymilk) to milk without declaration. A rapid detection technique is required to enforce the safety norms of food regulatory authorities. Fourier Transform Infrared (FTIR) spectroscopy has demonstrated potential as a rapid quality monitoring method and was therefore explored for detection of soymilk in milk. In the present work, spectra of milk, soymilk (SM), and milk adulterated with known quantity of SM were acquired in the wave number range of 4000-500cm(-1) using Attenuated Total Reflectance (ATR)-FTIR. The acquired spectra revealed differences amongst milk, SM and adulterated milk (AM) samples in the wave number range of 1680-1058cm(-1). This region encompasses the absorption frequency of amide-I, amide-II, amide-III, beta-sheet protein, α-tocopherol and Soybean Kunitz Trypsin Inhibitor. Principal component analysis (PCA) showed clustering of samples based on SM concentration at 5% level of significance and thus SM could be detected in milk using ATR-FTIR. The SM was best predicted in the range of 1472-1241cm(-1) using multiple linear regression with coefficient of determination (R(2)) of 0.99 and 0.92 for calibration and validation, respectively. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Chemical profiling and adulteration screening of Aquilariae Lignum Resinatum by Fourier transform infrared (FT-IR) spectroscopy and two-dimensional correlation infrared (2D-IR) spectroscopy

    Science.gov (United States)

    Qu, Lei; Chen, Jian-bo; Zhang, Gui-Jun; Sun, Su-qin; Zheng, Jing

    2017-03-01

    As a kind of expensive perfume and valuable herb, Aquilariae Lignum Resinatum (ALR) is often adulterated for economic motivations. In this research, Fourier transform infrared (FT-IR) spectroscopy is employed to establish a simple and quick method for the adulteration screening of ALR. First, the principal chemical constituents of ALR are characterized by FT-IR spectroscopy at room temperature and two-dimensional correlation infrared (2D-IR) spectroscopy with thermal perturbation. Besides the common cellulose and lignin compounds, a certain amount of resin is the characteristic constituent of ALR. Synchronous and asynchronous 2D-IR spectra indicate that the resin (an unstable secondary metabolite) is more sensitive than cellulose and lignin (stable structural constituents) to the thermal perturbation. Using a certified ALR sample as the reference, the infrared spectral correlation threshold is determined by 30 authentic samples and 6 adulterated samples. The spectral correlation coefficient of an authentic ALR sample to the standard reference should be not less than 0.9886 (p = 0.01). Three commercial adulterated ALR samples are identified by the correlation threshold. Further interpretation of the infrared spectra of the adulterated samples indicates the common adulterating methods - counterfeiting with other kind of wood, adding ingredient such as sand to increase the weight, and adding the cheap resin such as rosin to increase the content of resin compounds. Results of this research prove that FT-IR spectroscopy can be used as a simple and accurate quality control method of ALR.

  7. Fiber-optic Fourier transform infrared (FO-FTIR) spectroscopy for detecting endotoxin contamination in ophthalmic viscosurgical devices (OVDS) (Conference Presentation)

    Science.gov (United States)

    Hassan, Moinuddin; Ilev, Ilko

    2016-03-01

    Ophthalmic Viscosurgical Devices (OVDs) in clinical setting are a major health risk factor for potential endotoxin contamination in the eye, due to their extensive applications in cataract surgery for space creation, stabilization and protection of intraocular tissue and intraocular lens (IOL) during implantation. Endotoxin contamination of OVDs is implicated in toxic anterior syndrome (TASS), a severe complication of cataract surgery that leads to intraocular damage and even blindness. Current standard methods for endotoxin contamination detection utilize rabbit assay or Limulus amoebocyte lysate (LAL) assays. These endotoxin detection strategies are extremely difficult for gel-like type devices such as OVDs. To overcome the endotoxin detection limitations in OVDs, we have developed an alternative optical detection methodology for label-free and real-time sensing of bacterial endotoxin in OVDs, based on fiber-optic Fourier transform infrared (FO-FTIR) transmission spectrometry in the mid-IR spectral range from 2.5 micron to 12 micron. Endotoxin contaminated OVD test samples were prepared by serial dilutions of endotoxins on OVDs. The major results of this study revealed two salient spectral peak shifts (in the regions 2925 to 2890 cm^-1 and 1125 to 1100 cm^-1), which are associated with endotoxin in OVDs. In addition, FO-FTIR experimental results processed using a multivariate analysis confirmed the observed specific peak shifts associated with endotoxin contamination in OVDs. Thus, employing the FO-FTIR sensing methodology integrated with a multivariate analysis could potentially be used as an alternative endotoxin detection technique in OVD.

  8. Rapid prediction of phenolic compounds and antioxidant activity of Sudanese honey using Raman and Fourier transform infrared (FT-IR) spectroscopy.

    Science.gov (United States)

    Tahir, Haroon Elrasheid; Xiaobo, Zou; Zhihua, Li; Jiyong, Shi; Zhai, Xiaodong; Wang, Sheng; Mariod, Abdalbasit Adam

    2017-07-01

    Fourier transform infrared with attenuated total reflectance (FTIR-ATR) and Raman spectroscopy combined with partial least square regression (PLSR) were applied for the prediction of phenolic compounds and antioxidant activity in honey. Standards of catechin, syringic, vanillic, and chlorogenic acids were used for the identification and quantification of the individual phenolic compounds in six honey varieties using HPLC-DAD. Total antioxidant activity (TAC) and ferrous chelating capacity were measured spectrophotometrically. For the establishment of PLSR model, Raman spectra with Savitzky-Golay smoothing in wavenumber region 1500-400cm(-1) was used while for FTIR-ATR the wavenumber regions of 1800-700 and 3000-2800cm(-1) with multiplicative scattering correction (MSC) and Savitzky-Golay smoothing were used. The determination coefficients (R(2)) were ranged from 0.9272 to 0.9992 for Raman while from 0.9461 to 0.9988 for FTIT-ART. The FTIR-ATR and Raman demonstrated to be simple, rapid and nondestructive methods to quantify phenolic compounds and antioxidant activities in honey. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Fourier and Laplace Transforms

    NARCIS (Netherlands)

    Beerends, R.J.; Morsche, ter H.G.; Berg, van den J.C.

    2003-01-01

    This textbook presents in a unified manner the fundamentals of both continuous and discrete versions of the Fourier and Laplace transforms. These transforms play an important role in the analysis of all kinds of physical phenomena. As a link between the various applications of these transforms the a

  10. Step-Scan T-Cell Fourier Transform Infrared Photoacoustic Spectroscopy (FTIR-PAS) for Monitoring Environmental Air Pollutants

    Science.gov (United States)

    Liu, Lixian; Mandelis, Andreas; Melnikov, Alexander; Michaelian, Kirk; Huan, Huiting; Haisch, Christoph

    2016-07-01

    Air pollutants have adverse effects on the Earth's climate system. There is an urgent need for cost-effective devices capable of recognizing and detecting various ambient pollutants. An FTIR photoacoustic spectroscopy (FTIR-PAS) method based on a commercial FTIR spectrometer developed for air contamination monitoring will be presented. A resonant T-cell was determined to be the most appropriate resonator in view of the low-frequency requirement and space limitations in the sample compartment. Step-scan FTIR-PAS theory for regular cylinder resonator has been described as a reference for prediction of T-cell vibration principles. Both simulated amplitude and phase responses of the T-cell show good agreement with measurement data Carbon dioxide IR absorption spectra were used to demonstrate the capacity of the FTIR-PAS method to detect ambient pollutants. The theoretical detection limit for carbon dioxide was found to be 4 ppmv. A linear response to carbon dioxide concentration was found in the range from 2500 ppmv to 5000 ppmv. The results indicate that it is possible to use step-scan FTIR-PAS with a T-cell as a quantitative method for analysis of ambient contaminants.

  11. Use of the Fourier transform infrared (FTIR) technique for determination of the composition of final phosphate coatings on grain-oriented electrical steel

    Energy Technology Data Exchange (ETDEWEB)

    Poultney, Darren [Development and Market Research, Cogent Power Ltd., Corporation Road, Newport, South Wales NP19 0XT (United Kingdom)], E-mail: Darren.Poultney@Cogent-Power.com; Snell, David [Development and Market Research, Cogent Power Ltd., Corporation Road, Newport, South Wales NP19 0XT (United Kingdom)

    2008-10-15

    Electrical steels are highly specialised, magnetically soft materials, used to form the cores that carry the magnetic flux in electrical machines such as motors, generators and transformers. The steel strip is coated with a phosphate-based solution, which, on curing, provides an electrically insulating layer that also imparts a tension onto the strip. It has previously been shown that the magnetic losses of the material are affected by the ratio of phosphate and silica within the coating solution [O. Tanaka, H. Kobayashi, E. Minematsu, New insulating coating for grain-oriented electrical steel, J. Mater. Eng. 13 (1991) 161-168.]. It would therefore be highly beneficial to possess an analytical technique that can be used to accurately and rapidly determine the composition of this coating. This paper details the evaluation of the Fourier transform infrared (FTIR) technique for this purpose. Analysing each of the important constituents separately enabled their specific absorption bands to be identified, and laboratory trials produced spectra that exhibited a good agreement with theoretical predictions. Analysis of samples coated under production conditions was found to be more challenging due to the detection of an underlying forsterite layer. However, there is potential for FTIR analysis when using regions of the spectra that were unaffected by this compound.

  12. Fourier transform mass spectrometry.

    Science.gov (United States)

    Scigelova, Michaela; Hornshaw, Martin; Giannakopulos, Anastassios; Makarov, Alexander

    2011-07-01

    This article provides an introduction to Fourier transform-based mass spectrometry. The key performance characteristics of Fourier transform-based mass spectrometry, mass accuracy and resolution, are presented in the view of how they impact the interpretation of measurements in proteomic applications. The theory and principles of operation of two types of mass analyzer, Fourier transform ion cyclotron resonance and Orbitrap, are described. Major benefits as well as limitations of Fourier transform-based mass spectrometry technology are discussed in the context of practical sample analysis, and illustrated with examples included as figures in this text and in the accompanying slide set. Comparisons highlighting the performance differences between the two mass analyzers are made where deemed useful in assisting the user with choosing the most appropriate technology for an application. Recent developments of these high-performing mass spectrometers are mentioned to provide a future outlook.

  13. Fourier transform infrared-attenuated total reflectance (FTIR-ATR spectroscopy and chemometric techniques for the determination of adulteration in petrodiesel/biodiesel blends

    Directory of Open Access Journals (Sweden)

    Armando Guerrero Peña

    2014-06-01

    Full Text Available We propose an analytical method based on fourier transform infrared-attenuated total reflectance (FTIR-ATR spectroscopy to detect the adulteration of petrodiesel and petrodiesel/palm biodiesel blends with African crude palm oil. The infrared spectral fingerprints from the sample analysis were used to perform principal components analysis (PCA and to construct a prediction model using partial least squares (PLS regression. The PCA results separated the samples into three groups, allowing identification of those subjected to adulteration with palm oil. The obtained model shows a good predictive capacity for determining the concentration of palm oil in petrodiesel/biodiesel blends. Advantages of the proposed method include cost-effectiveness and speed; it is also environmentally friendly.

  14. An attenuated total reflection Fourier transform infrared (ATR FT-IR) spectroscopic study of gas adsorption on colloidal stearate-capped ZnO catalyst substrate.

    Science.gov (United States)

    Silverwood, Ian P; Keyworth, Colin W; Brown, Neil J; Shaffer, Milo S P; Williams, Charlotte K; Hellgardt, Klaus; Kelsall, Geoff H; Kazarian, Sergei G

    2014-01-01

    Attenuated total reflection Fourier transform infrared (ATR FT-IR) spectroscopy has been applied in situ to study gas adsorption on a colloidal stearate-capped zinc oxide (ZnO) surface. Infrared spectra of a colloidal stearate-capped ZnO catalyst substrate were assigned at room temperature using zinc stearate as a reference compound. Heating was shown to create a monodentate species that allowed conformational change to occur, leading to altered binding geometry of the stearate ligands upon cooling. CO2 and H2 adsorption measurements demonstrated that the ligand shell was permeable and did not cover the entire surface, allowing adsorption and reaction with at least some portion of the ZnO surface. It has been demonstrated that stearate ligands did not prevent the usual chemisorption processes involved in catalytic reactions on a model ZnO catalyst system, yet the ligand-support system is dynamic under representative reaction conditions.

  15. Attenuated Total Reflection Fourier Transform Infrared Spectroscopy (ATR FT-IR) Applied to Study the Distribution of Ink Components in Printed Newspapers.

    Science.gov (United States)

    Gómez, Nuria; Molleda, Cristina; Quintana, Ester; Carbajo, José M; Rodríguez, Alejandro; Villar, Juan C

    2016-09-01

    A new method was developed to study how the oil and cyan pigments of cold-set ink are distributed in newspaper thickness. The methodology involved laboratory printing followed by delamination of the printed paper. The unprinted side, printed side, and resulting layers were analyzed using attenuated total reflection Fourier transform infrared spectroscopy (ATR FT-IR). Three commercial newspapers and black and cyan cold-set inks were chosen for the study. Attenuated total reflection Fourier transform infrared spectroscopy enabled the proportion of oil and cyan pigment on the printed surface and throughout the sheet thickness to be measured. Oil percentage was evaluated as the area increment of the region from 2800 cm(-1) to 3000 cm(-1) The relative amount of cyan pigment was determined as the area of the absorption band at 730 cm(-1) The ink oil was found mainly below half the paper thickness, whereas the pigment was detected at the layers closer to the printed surface, at a depth penetration of less than 15 µm (20% of thickness). Distribution of these two components in paper thickness depended on the type of cold-set ink, the amount of ink transferred, and the newspaper properties.

  16. A fourier transform infrared spectroscopy (FTIR) based assay for Candida parapsilosis ATCC 7330 mediated oxidation of aryl alcohols.

    Science.gov (United States)

    Sudhakara, Sneha; Chadha, Anju

    2015-09-10

    We present an FTIR based assay to monitor the whole cell mediated oxidation of aryl alcohols by measuring the characteristic IR absorption of the hydroxyl group [OH] of the substrate and the carbonyl group [CO] of the corresponding oxidized product. This method expedites the analysis of whole cell mediated catalysis which is usually done by GC and/or HPLC. The FTIR assay had linearity with R(2)≥0.980 and sensitivity up to 10μM. The accuracy and precision of FTIR assay was found ≥81% and ≥94%, respectively. This assay was validated by GC which exhibited ≥82% accuracy and ≥79% precision. The time of analysis taken by this assay was 2-3min per sample in comparison with 20-40min by GC.

  17. Use of Fourier transform infrared spectroscopy (FTIR spectroscopy for rapid and accurate identification of Yeasts isolated from human and animals

    Directory of Open Access Journals (Sweden)

    M. Taha

    2013-06-01

    Full Text Available Rapid and accurate identification of yeast is increasingly important to stipulate the appropriate therapy thus reducing morbidity and mortality related to yeast infections. Vibrational spectroscopic techniques (infrared (IR and Raman could provide potential alternatives to conventional typing methods, because they constitute a rapid, inexpensive and highly specific spectroscopic fingerprint through-which microorganism can be identified. The present study evaluate (FTIR spectroscopy as a sensitive and effective assay for the identification of the most frequent yeast species isolated from human and animals. One hundred and twenty-eight yeasts isolated from infected human mouths/vaginas, chronic diseased cows, crop mycosis in chicken and soil contaminated with pigeon droppings were phenotypically identified. Using universal primers, ITS1/ITS4, we have amplified ITS1-5.8S-ITS2 rDNA regions for 39 yeast isolates as representative samples. The PCR products were digested with restriction enzyme MspI and examined by PCR-RFLP, which was an efficient technique for identification of Candida spp., Cryptococcus neoformans and Trichosporon asahii. Further, identification of the same 39 isolates were done by FTIR spectroscopy and considered as reference for other strains by comparison of their FTIR spectra. The current study has sharply demonstrated the significant spectral differences between the various examined species of Candida, Cryptococcus, Trichosporon, Rhodotorula and Geotrichum isolated from different sources. Decisively, our research has confirmed that FTIR spectroscopy is a promising diagnostic tool, because of its sensitivity, rapidity, high differentiation capacity and simplicity compared to conventional/molecular techniques.

  18. Multivariate analysis of attenuated total reflection Fourier transform infrared (ATR FT-IR) spectroscopic data to confirm phase partitioning in methacrylate-based dentin adhesive.

    Science.gov (United States)

    Ye, Qiang; Parthasarathy, Ranganathan; Abedin, Farhana; Laurence, Jennifer S; Misra, Anil; Spencer, Paulette

    2013-12-01

    Water is ubiquitous in the mouths of healthy individuals and is a major interfering factor in the development of a durable seal between the tooth and composite restoration. Water leads to the formation of a variety of defects in dentin adhesives; these defects undermine the tooth-composite bond. Our group recently analyzed phase partitioning of dentin adhesives using high-performance liquid chromatography (HPLC). The concentration measurements provided by HPLC offered a more thorough representation of current adhesive performance and elucidated directions to be taken for further improvement. The sample preparation and instrument analysis using HPLC are, however, time-consuming and labor-intensive. The objective of this work was to develop a methodology for rapid, reliable, and accurate quantitative analysis of near-equilibrium phase partitioning in adhesives exposed to conditions simulating the wet oral environment. Analysis by Fourier transform infrared (FT-IR) spectroscopy in combination with multivariate statistical methods, including partial least squares (PLS) regression and principal component regression (PCR), were used for multivariate calibration to quantify the compositions in separated phases. Excellent predictions were achieved when either the hydrophobic-rich phase or the hydrophilic-rich phase mixtures were analyzed. These results indicate that FT-IR spectroscopy has excellent potential as a rapid method of detection and quantification of dentin adhesives that experience phase separation under conditions that simulate the wet oral environment.

  19. Assessment of natural radioactivity and function of minerals in soils of Yelagiri hills, Tamilnadu, India by Gamma Ray spectroscopic and Fourier Transform Infrared (FTIR) techniques with statistical approach.

    Science.gov (United States)

    Chandrasekaran, A; Ravisankar, R; Rajalakshmi, A; Eswaran, P; Vijayagopal, P; Venkatraman, B

    2015-02-01

    Gamma Ray and Fourier Transform Infrared (FTIR) spectroscopic techniques were used to evaluate the natural radioactivity due to natural radionuclides and mineralogical characterization in soils of Yelagiri hills, Tamilnadu, India. Various radiological parameters were calculated to assess the radiation hazards associated with the soil. The distribution pattern of activity due to natural radionuclides is explained by Kriging method of mapping. Using FTIR spectroscopic technique the minerals such as quartz, microcline feldspar, orthoclase feldspar, kaolinite, montmorillonite, illite, and organic carbon were identified and characterized. The extinction coefficient values were calculated to know the relative distribution of major minerals such as quartz, microcline feldspar, orthoclase feldspar and kaolinite. The calculated values indicate that the amount of quartz is higher than orthoclase feldspar, microcline feldspar and much higher than kaolinite. Crystallinity index was calculated to know the crystalline nature of quartz. The result indicates that the presence of disordered crystalline quartz in soils. The relation between minerals and radioactivity was assessed by multivariate statistical analysis (Pearson's correlation and cluster analysis). The statistical analysis confirms that the clay mineral kaolinite and non-clay mineral quartz is the major factor than other major minerals to induce the important radioactivity variables and concentrations of uranium and thorium.

  20. Identification of Quercus agrifolia (coast live oak resistant to the invasive pathogen Phytophthora ramorum in native stands using Fourier-transform infrared (FT-IR spectroscopy

    Directory of Open Access Journals (Sweden)

    Anna Olivia Conrad

    2014-10-01

    Full Text Available Over the last two decades coast live oak (CLO dominance in many California coastal ecosystems has been threatened by the alien invasive pathogen Phytophthora ramorum, the causal agent of sudden oak death. In spite of high infection and mortality rates in some areas, the presence of apparently resistant trees has been observed, including trees that become infected but recover over time. However, identifying resistant trees based on recovery alone can take many years. The objective of this study was to determine if Fourier-transform infrared (FT-IR spectroscopy, a chemical fingerprinting technique, can be used to identify CLO resistant to P. ramorum prior to infection. Soft independent modeling of class analogy identified spectral regions that differed between resistant and susceptible trees. Regions most useful for discrimination were associated with carbonyl group vibrations. Additionally, concentrations of two putative phenolic biomarkers of resistance were predicted using partial least squares regression; > 99% of the variation was explained by this analysis. This study demonstrates that chemical fingerprinting can be used to identify resistance in a natural population of forest trees prior to infection with a pathogen. FT-IR spectroscopy may be a useful approach for managing forests impacted by sudden oak death, as well as in other situations where emerging or existing forest pests and diseases are of concern.

  1. Effect of ingested tungsten oxide (WOx) nanofibers on digestive gland tissue of Porcellio scaber (Isopoda, Crustacea): fourier transform infrared (FTIR) imaging.

    Science.gov (United States)

    Novak, Sara; Drobne, Damjana; Vaccari, Lisa; Kiskinova, Maya; Ferraris, Paolo; Birarda, Giovanni; Remškar, Maja; Hočevar, Matej

    2013-10-01

    Tungsten nanofibers are recognized as biologically potent. We study deviations in molecular composition between normal and digestive gland tissue of WOx nanofibers (nano-WOx) fed invertebrate Porcellio scaber (Iosopda, Crustacea) and revealed mechanisms of nano-WOx effect in vivo. Fourier Transform Infrared (FTIR) imaging performed on digestive gland epithelium was supplemented by toxicity and cytotoxicity analyses as well as scanning electron microscopy (SEM) of the surface of the epithelium. The difference in the spectra of the Nano-WOx treated and control cells showed up in the central region of the cells and were related to lipid peroxidation, and structural changes of nucleic acids. The conventional toxicity parameters failed to show toxic effects of nano-WOx, whereas the cytotoxicity biomarkers and SEM investigation of digestive gland epithelium indicated sporadic effects of nanofibers. Since toxicological and cytological measurements did not highlight severe effects, the biochemical alterations evidenced by FTIR imaging have been explained as the result of cell protection (acclimation) mechanisms to unfavorable conditions and indication of a nonhomeostatic state, which can lead to toxic effects.

  2. Biochemical imaging of normal, adenoma, and colorectal adenocarcinoma tissues by Fourier transform infrared spectroscopy (FTIR and morphological correlation by histopathological analysis: preliminary results

    Directory of Open Access Journals (Sweden)

    Juliana Aparecida de Almeida Chaves Piva

    Full Text Available Introduction The colorectal cancer is a major health problem worldwide. Histology is considered the gold standard for differential diagnosis. However, it depends on the observer's experience, which can lead to discrepancies and poor results. Spectroscopic imaging by Fourier transform infrared (FTIR is a technique that may be able to improve the diagnosis, because it is based on biochemical differences of the structural constituents of tissue. Therefore, the main goal of this study was to explore the use of FTIR imaging technique in normal colon tissue, colorectal adenoma, and adenocarcinoma in order to correlate their morphological structures with their biochemical imaging. Methods Samples were collected from normal (n = 4, adenoma (n = 4, and adenocarcinoma human colorectal tissue (n = 4 from patients undergoing colonoscopy or surgical resection of colon lesions. The samples were sectioned with a cryostat in sequential sections; the first slice was placed on CaF2 slide and the second slice was placed on glass slide for histological analysis (HE staining. The cluster analyses were performed by the software Cytospec (1.4.02®. Results In normal samples, biochemical analysis classified six different structures, namely the lamina propria of mucous glands (epithelial cells and goblet cells, central lumen of the gland, mucin, and conjunctive tissue. In samples with adenoma and adenocarcinoma, altered regions could also be identified with high sensitivity and specificity. Conclusion The results of this study demonstrate the potential and viability of using infrared spectroscopy to identify and classify colorectal tissues.

  3. Structural features and functional properties of water in model DMPC membranes: thermally stimulated depolarization currents (TSDCs) and Fourier transform infrared (FTIR) studies

    Science.gov (United States)

    Bridelli, M. G.; Capelletti, R.; Mora, C.

    2013-12-01

    Thermally stimulated depolarization currents (TSDCs) and Fourier transform infrared (FTIR) spectroscopies were employed to investigate the state of water incorporated in a model DMPC (dimyristoyl-phosphatidylcholine) membrane. The lipid multilayers, highly inhomogeneous from the dielectric point of view, originate complex TSDC spectra critically dependent on the sample water content and thermal history. Different temperature ranges were chosen to polarize the sample, i.e. 100-300 K (type I) and 100-285 K (type II). The purpose of the latter choice was to avoid any sample heating above the DMPC phase transition temperature (295 K) along the sample polarization. According to the results, water in a fully hydrated system (aw = 0.92) (1) is ordered around the hydrophilic head molecular groups, (2) is layered in the interbilayer space and (3) penetrates among the hydrocarbon chains. It can assume different local structural configurations depending on the lipid packing. Irreversible conformational transitions in the lipid array system were monitored as a consequence of different dehydration treatments. FTIR absorption measurements were performed to study the water sorption kinetics into a DMPC thin film. The water related OH band was decomposed into three components, describing three water states, with different propensity to the H-bond formation. The changes of the lipid characteristic groups (CH2/CH3, PO_{2}^{-} and C=O) absorption bands as a function of increasing hydration level were monitored and discussed.

  4. On the Use of Fourier Transform Infrared (FT-IR) Spectroscopy and Synthetic Calibration Spectra to Quantify Gas Concentrations in a Fischer-Tropsch Catalyst System

    Science.gov (United States)

    Ferguson, Frank T.; Johnson, Natasha M.; Nuth, Joseph A., III

    2015-01-01

    One possible origin of prebiotic organic material is that these compounds were formed via Fischer-Tropsch-type (FTT) reactions of carbon monoxide and hydrogen on silicate and oxide grains in the warm, inner-solar nebula. To investigate this possibility, an experimental system has been built in which the catalytic efficiency of different grain-analog materials can be tested. During such runs, the gas phase above these grain analogs is sampled using Fourier transform infrared (FT-IR) spectroscopy. To provide quantitative estimates of the concentration of these gases, a technique in which high-resolution spectra of the gases are calculated using the high-resolution transmission molecular absorption (HITRAN) database is used. Next, these spectra are processed via a method that mimics the processes giving rise to the instrumental line shape of the FT-IR spectrometer, including apodization, self-apodization, and broadening due to the finite resolution. The result is a very close match between the measured and computed spectra. This technique was tested using four major gases found in the FTT reactions: carbon monoxide, methane, carbon dioxide, and water. For the ranges typical of the FTT reactions, the carbon monoxide results were found to be accurate to within 5% and the remaining gases accurate to within 10%. These spectra can then be used to generate synthetic calibration data, allowing the rapid computation of the gas concentrations in the FTT experiments.

  5. Fast and nondestructive determination of protein content in rapeseeds (Brassica napus L.) using Fourier transform infrared photoacoustic spectroscopy (FTIR-PAS).

    Science.gov (United States)

    Lu, Yuzhen; Du, Changwen; Yu, Changbing; Zhou, Jianmin

    2014-08-01

    Fast and non-destructive determination of rapeseed protein content carries significant implications in rapeseed production. This study presented the first attempt of using Fourier transform mid-infrared photoacoustic spectroscopy (FTIR-PAS) to quantify protein content of rapeseed. The full-spectrum model was first built using partial least squares (PLS). Interval selection methods including interval partial least squares (iPLS), synergy interval partial least squares (siPLS), backward elimination interval partial least squares (biPLS) and dynamic backward elimination interval partial least squares (dyn-biPLS) were then employed to select the relevant band or band combination for PLS modeling. The full-spectrum PLS model achieved an ratio of prediction to deviation (RPD) of 2.047. In comparison, all interval selection methods produced better results than full-spectrum modeling. siPLS achieved the best predictive accuracy with an RPD of 3.215 when the spectrum was sectioned into 25 intervals, and two intervals (1198-1335 and 1614-1753 cm(-1) ) were selected. iPLS excelled biPLS and dyn-biPLS, and dyn-biPLS performed slightly better than biPLS. FTIR-PAS was verified as a promising analytical tool to quantify rapeseed protein content. Interval selection could extract the relevant individual band or synergy band associated with the sample constituent of interest, and then improve the prediction accuracy of the full-spectrum model. © 2013 Society of Chemical Industry.

  6. Rapid detection of gelatin in dental materials using attenuated total reflection fourier transform infrared spectroscopy (ATR-FTIR)

    Science.gov (United States)

    Irfanita, N.; Jaswir, I.; Mirghani, M. E. S.; Sukmasari, S.; Ardini, Y. D.; Lestari, W.

    2017-08-01

    The presence of gelatin is not limited to food products but has also been found in pharmaceuticals. Most dental materials available in Malaysia are imported from other countries and might contain gelatin which is a protein derived either from porcine, bovine or other animal sources. Authentication of gelatin is crucial due to religious and health concerns. Therefore, this study aimed to detect gelatin in dental materials using ATR-FTIR. Forty two samples of dental material were purchased from dental suppliers and detection was done using ATR-FTIR. The spectrum from each sample was compared against standard bovine and porcine gelatin. Experimental dental paste containing bovine and porcine gelatin at concentrations of 5, 10, 15 and 20% were also prepared for quantification analysis. The results showed that gelatin was present in nine out of forty two samples of dental materials but the species of origin was not confirmed. Meanwhile, in the experimental bovine and porcine dental paste, it was seen that as the concentration increased, the intensity of the absorption of Amide group also increased. Thus, ATR-FTIR can be utilized as a reliable tool to detect gelatin in dental materials and other pharmaceuticals.

  7. Fourier transformation for pedestrians

    CERN Document Server

    Butz, Tilman

    2015-01-01

    This book is an introduction to Fourier Transformation with a focus on signal analysis, based on the first edition. It is well suited for undergraduate students in physics, mathematics, electronic engineering as well as for scientists in research and development. It gives illustrations and recommendations when using existing Fourier programs and thus helps to avoid frustrations. Moreover, it is entertaining and you will learn a lot unconsciously. Fourier series as well as continuous and discrete Fourier transformation are discussed with particular emphasis on window functions. Filter effects of digital data processing are illustrated. Two new chapters are devoted to modern applications. The first deals with data streams and fractional delays and the second with the back-projection of filtered projections in tomography. There are many figures and mostly easy to solve exercises with solutions.

  8. Proton transfers in a channelrhodopsin-1 studied by Fourier transform infrared (FTIR) difference spectroscopy and site-directed mutagenesis.

    Science.gov (United States)

    Ogren, John I; Yi, Adrian; Mamaev, Sergey; Li, Hai; Spudich, John L; Rothschild, Kenneth J

    2015-05-15

    Channelrhodopsin-1 from the alga Chlamydomonas augustae (CaChR1) is a low-efficiency light-activated cation channel that exhibits properties useful for optogenetic applications such as a slow light inactivation and a red-shifted visible absorption maximum as compared with the more extensively studied channelrhodopsin-2 from Chlamydomonas reinhardtii (CrChR2). Previously, both resonance Raman and low-temperature FTIR difference spectroscopy revealed that unlike CrChR2, CaChR1 under our conditions exhibits an almost pure all-trans retinal composition in the unphotolyzed ground state and undergoes an all-trans to 13-cis isomerization during the primary phototransition typical of other microbial rhodopsins such as bacteriorhodopsin (BR). Here, we apply static and rapid-scan FTIR difference spectroscopy along with site-directed mutagenesis to characterize the proton transfer events occurring upon the formation of the long-lived conducting P2 (380) state of CaChR1. Assignment of carboxylic C=O stretch bands indicates that Asp-299 (homolog to Asp-212 in BR) becomes protonated and Asp-169 (homolog to Asp-85 in BR) undergoes a net change in hydrogen bonding relative to the unphotolyzed ground state of CaChR1. These data along with earlier FTIR measurements on the CaChR1 → P1 transition are consistent with a two-step proton relay mechanism that transfers a proton from Glu-169 to Asp-299 during the primary phototransition and from the Schiff base to Glu-169 during P2 (380) formation. The unusual charge neutrality of both Schiff base counterions in the P2 (380) conducting state suggests that these residues may function as part of a cation selective filter in the open channel state of CaChR1 as well as other low-efficiency ChRs.

  9. Qualitative analysis of thin films of crude oil deposits on the metallic substrate by Fourier transform infrared (FTIR) microscopy

    DEFF Research Database (Denmark)

    Batina, N.; Reyna-Cordova, A.; Trinidad-Reyes, Y.;

    2005-01-01

    indicated that the surface of the thin films of the oil samples prepared for AFM is oxidized. Oil samples of different origin show different degrees of oxidation seen by the development of carboxylic acid vibrations at 1750 cm-1 as well as vibrations in the 1300−1100 cm-1 region. The relative degree...... of oxidation state was compared to surface morphology data by AFM previously reported. The reported results emphasize the advantage of complementary techniques (AFM/FTIR microscopy) in the analysis of petroleum thin films that should be considered during analysis and interpretation of this type of data....

  10. A chemometrics approach applied to Fourier transform infrared spectroscopy (FTIR) for monitoring the spoilage of fresh salmon (Salmo salar) stored under modified atmospheres.

    Science.gov (United States)

    Saraiva, C; Vasconcelos, H; de Almeida, José M M M

    2017-01-16

    The aim of this work was to investigate the potential of Fourier transform infrared spectroscopy (FTIR) to detect and predict the bacterial load of salmon fillets (Salmo salar) stored at 3, 8 and 30°C under three packaging conditions: air packaging (AP) and two modified atmospheres constituted by a mixture of 50%N2/40%CO2/10%O2 with lemon juice (MAPL) and without lemon juice (MAP). Fresh salmon samples were periodically examined for total viable counts (TVC), specific spoilage organisms (SSO) counts, pH, FTIR and sensory assessment of freshness. Principal components analysis (PCA) allowed identification of the wavenumbers potentially correlated with the spoilage process. Linear discriminant analysis (LDA) of infrared spectral data was performed to support sensory data and to accurately identify samples freshness. The effect of the packaging atmospheres was assessed by microbial enumeration and LDA was used to determine sample packaging from the measured infrared spectra. It was verified that modified atmospheres can decrease significantly the bacterial load of fresh salmon. Lemon juice combined with MAP showed a more pronounced delay in the growth of Brochothrix thermosphacta, Photobacterium phosphoreum, psychrotrophs and H2S producers. Partial least squares regression (PLS-R) allowed estimates of TVC and psychrotrophs, lactic acid bacteria, molds and yeasts, Brochothrix thermosphacta, Enterobacteriaceae, Pseudomonas spp. and H2S producer counts from the infrared spectral data. For TVC, the root mean square error of prediction (RMSEP) value was 0.78logcfug(-1) for an external set of samples. According to the results, FTIR can be used as a reliable, accurate and fast method for real time freshness evaluation of salmon fillets stored under different temperatures and packaging atmospheres.

  11. Efficacy of using multiple open-path Fourier transform infrared (OP-FTIR) spectrometers in an odor emission episode investigation at a semiconductor manufacturing plant.

    Science.gov (United States)

    Tsao, Yung-Chieh; Wu, Chang-Fu; Chang, Pao-Erh; Chen, Shin-Yu; Hwang, Yaw-Huei

    2011-08-01

    This study evaluated the efficacy of simultaneously employing three open-path Fourier transform infrared (OP-FTIR) spectrometers with 3-day consecutive monitoring, using an odor episode as an example. The corresponding monitoring paths were allocated among the possible emission sources of a semiconductor manufacturing plant and the surrounding optoelectronic and electronic-related factories, which were located in a high-tech industrial park. There was a combined total odor rate of 43.9% for the three monitoring paths, each comprised of 736 continuous 5-minute monitoring records and containing detectable odor compounds, such as ammonia, ozone, butyl acetate, and propylene glycol monomethyl ether acetate (PGMEA). The results of the logistic regression model indicated that the prevailing south wind and the OP-FTIR monitoring path closest to the emission source in down-wind direction resulted in a high efficacy for detecting odorous samples with odds ratios (OR) of 3.8 (95% confidence interval (CI): 2.9-5.0) and 5.1 (95% CI: 3.6-7.2), respectively. Meanwhile, the odds ratio for detecting ammonia odorous samples was 7.5 for Path II, which was downwind closer to the possible source, as compared to Path III, downwind far away from the possible source. PGMEA could not be monitored at Path II but could be at Path III, indicating the importance of the monitoring path and flow ejection velocities inside the stacks on the monitoring performance of OP-FTIR. Besides, an odds ratio of 5.1 for odorous sample detection was obtained with south prevailing wind comprising 65.0% of the monitoring time period. In general, it is concluded that OP-FTIR operated with multiple paths simultaneously shall be considered for investigation on relatively complicated episodes such as emergency of chemical release, multiple-source emission and chemical monitoring for odor in a densely populated plant area to enhance the efficacy of OP-FTIR monitoring. Copyright © 2011 Elsevier B.V. All rights

  12. Computer-assisted analysis of Fourier Transform Infrared (FTIR spectra for characterization of various treated and untreated agriculture biomass

    Directory of Open Access Journals (Sweden)

    Siong Fong Sim

    2012-11-01

    Full Text Available A computational approach was used to analyze the FTIR spectra of a wide range of treated and untreated lignocellulosic biomass (coconut husk, banana trunk, sago hampas, rice husk, and empty fruit bunch. The biomass was treated with strong sulphuric acid and NaOH, respectively. A total of 87 spectra were obtained in which the absorption bands were de-convoluted automatically, generating a peak table of 87 rows and 60 columns. Square roots were taken of the peak values, with further standardization prior to Principal Component Analysis (PCA for data exploration. In a scores plot, the treated and untreated biomass were distinguishable along the two main axes, PC1 and PC2. Examining the absorption bands corresponding to lignocellulosic components indicated that the acid pretreatment had resulted in dissolution and degradation of hemicelluloses and lignin, confirmed typically by disappearance of bands. The alkali treatment however was not as rigorous as the acid treatment, as some characteristic bands of hemicelluloses and lignin were enhanced, suggesting condensation of the degraded polysaccharides. The computer-assisted analysis of the FTIR spectra allowed efficient and simultaneous comparisons of lignocellulosic compositions present in various treated and untreated biomass. This represents an improvement relative to the conventional methods, since a large dataset can be handled efficiently and individual peaks can be examined.

  13. Measuring similarity and improving stability in biomarker identification methods applied to Fourier-transform infrared (FTIR) spectroscopy.

    Science.gov (United States)

    Trevisan, Júlio; Park, Juhyun; Angelov, Plamen P; Ahmadzai, Abdullah A; Gajjar, Ketan; Scott, Andrew D; Carmichael, Paul L; Martin, Francis L

    2014-04-01

    FTIR spectroscopy is a powerful diagnostic tool that can also derive biochemical signatures of a wide range of cellular materials, such as cytology, histology, live cells, and biofluids. However, while classification is a well-established subject, biomarker identification lacks standards and validation of its methods. Validation of biomarker identification methods is difficult because, unlike classification, there is usually no reference biomarker against which to test the biomarkers extracted by a method. In this paper, we propose a framework to assess and improve the stability of biomarkers derived by a method, and to compare biomarkers derived by different method set-ups and between different methods by means of a proposed "biomarkers similarity index".

  14. Fourier Transform Infrared Spectroscopic Studies in Flotation

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Fourier transform infrared (FTIR) spectroscopy has been extensively employed in flotation research.The work done by the author and co-workers has been reported.A comparison has been made among the different FTIR spectroscopic techniques,e.g.,transmission FTIR spectroscopy,diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy,and attenuated total reflectance (ATR) FTIR spectroscopy.FTIR spectroscopy has been used to study the mechanism of interaction between the collector and the surfaces of different minerals,the mechanism of action of the depressant in improving the selectivity of flotation,and the mechanism of adsorption of the polymeric modifying reagent on mineral surfaces.The interaction between particles in mineral suspension has also been studied by FTIR spectroscopy.

  15. Identification of authentic and adulterated Aquilariae Lignum Resinatum by Fourier transform infrared (FT-IR) spectroscopy and two-dimensional correlation analysis

    Science.gov (United States)

    Qu, Lei; Chen, Jian-bo; Zhou, Qun; Zhang, Gui-jun; Sun, Su-qin; Guo, Yi-zhen

    2016-11-01

    As a kind of expensive perfume and valuable herb, the commercial Aquilariae Lignum Resinatum (ALR) is often adulterated for economic motivations. In this research, Fourier transform infrared (FT-IR) spectroscopy and two-dimensional (2D) correlation analysis are employed to establish a simple and quick identification method for the authentic and adulterated ALR. In the conventional infrared spectra, the standard ALR has a strong peak at 1658 cm-1 referring to the conjugated carbonyl of resin, while this peak is absent in the adulterated samples. The position, intensity, and shape of the auto-peaks and cross-peaks of the authentic and adulterated ALR are much different in the synchronous 2D correlation spectra with thermal perturbation. In the range of 1700-1500 cm-1, the standard ALR has four obvious auto-peaks, while the strongest one is at 1659 cm-1. The adulterated sample w-1 has three obvious auto-peaks and the strongest one is at 1647 cm-1. The adulterated sample w-2 has three obvious auto-peaks and the strongest one is at 1519 cm-1. The adulterated sample w-3 has four obvious auto-peaks and the strongest one is at 1690 cm-1. The above auto-peaks confirm that the standard ALR contains a certain content of resin compounds, while the three counterfeits contain little or different resins. The results show the potential of FT-IR spectroscopy and 2D correlation analysis in the simple and quick identification of authentic and adulterated ALR.

  16. Measurement of conjugated linoleic acid (CLA) in CLA-rich soy oil by attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR).

    Science.gov (United States)

    Kadamne, Jeta V; Jain, Vishal P; Saleh, Mohammed; Proctor, Andrew

    2009-11-25

    Conjugated linoleic acid (CLA) isomers in oils are currently measured as fatty acid methyl esters by a gas chromatography-flame ionization detector (GC-FID) technique, which requires approximately 2 h to complete the analysis. Hence, we aim to develop a method to rapidly determine CLA isomers in CLA-rich soy oil. Soy oil with 0.38-25.11% total CLA was obtained by photo-isomerization of 96 soy oil samples for 24 h. A sample was withdrawn at 30 min intervals with repeated processing using a second batch of oil. Six replicates of GC-FID fatty acid analysis were conducted for each oil sample. The oil samples were scanned using attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), and the spectrum was collected. Calibration models were developed using partial least-squares (PLS-1) regression using Unscrambler software. Models were validated using a full cross-validation technique and tested using samples that were not included in the calibration sample set. Measured and predicted total CLA, trans,trans CLA isomers, total mono trans CLA isomers, trans-10,cis-12 CLA, trans-9,cis-11 CLA and cis-10,trans-12 CLA, and cis-9,trans-11 CLA had cross-validated coefficients of determinations (R2v) of 0.97, 0.98, 0.97, 0.98, 0.97, and 0.99 and corresponding root-mean-square error of validation (RMSEV) of 1.14, 0.69, 0.27, 0.07, 0.14, and 0.07% CLA, respectively. The ATR-FTIR technique is a rapid and less expensive method for determining CLA isomers in linoleic acid photo-isomerized soy oil than GC-FID.

  17. Automated Fast Screening Method for Cocaine Identification in Seized Drug Samples Using a Portable Fourier Transform Infrared (FT-IR) Instrument.

    Science.gov (United States)

    Mainali, Dipak; Seelenbinder, John

    2016-05-01

    Quick and presumptive identification of seized drug samples without destroying evidence is necessary for law enforcement officials to control the trafficking and abuse of drugs. This work reports an automated screening method to detect the presence of cocaine in seized samples using portable Fourier transform infrared (FT-IR) spectrometers. The method is based on the identification of well-defined characteristic vibrational frequencies related to the functional group of the cocaine molecule and is fully automated through the use of an expert system. Traditionally, analysts look for key functional group bands in the infrared spectra and characterization of the molecules present is dependent on user interpretation. This implies the need for user expertise, especially in samples that likely are mixtures. As such, this approach is biased and also not suitable for non-experts. The method proposed in this work uses the well-established "center of gravity" peak picking mathematical algorithm and combines it with the conditional reporting feature in MicroLab software to provide an automated method that can be successfully employed by users with varied experience levels. The method reports the confidence level of cocaine present only when a certain number of cocaine related peaks are identified by the automated method. Unlike library search and chemometric methods that are dependent on the library database or the training set samples used to build the calibration model, the proposed method is relatively independent of adulterants and diluents present in the seized mixture. This automated method in combination with a portable FT-IR spectrometer provides law enforcement officials, criminal investigators, or forensic experts a quick field-based prescreening capability for the presence of cocaine in seized drug samples.

  18. Probing the application of Fourier Transform Infrared (FTIR) spectroscopy for assessment of deposited flux of Radon and Thoron progeny in high exposure conditions

    Science.gov (United States)

    Mishra, R.; Sapra, B. K.; Rout, R. P.; Prajith, R.

    2016-12-01

    Direct measurement of Radon and Thoron progeny in the atmosphere and occupational environments such as Uranium mines, Uranium and Thorium handling facilities has gained importance because of its radiological significance in inhalation dose assessment. In this regard, Radon and Thoron Progeny sensors (DTPS and DRPS) are the only passive solid state nuclear track detector (SSNTD, LR115) based devices which are being extensively used for time integrated direct progeny measurements. An essential component of the analysis is the chemical etching of the detectors, followed by spark counting of tracks and then estimation of the inhalation dose using appropriate calibration factors. Alternatively, the tracks may be counted using image analysis techniques. However, under high exposure conditions, both these methods have inherent limitations and errors arising due to increased frequency of tracks. In the present work, we probe the use of Fourier Transform Infra Red (FTIR) spectroscopy to analyse the deposited fluence of the progeny particulates based on change in transmittance of the nitric group vibrational bands of the LR115. A linear relationship between the transmittance and the deposited fluence was observed, which can be used to estimate the deposited fluence rate and the inhalation dose. This alternative method of analysis will provide a faster and non-destructive technique for inhalation dose assessment, specially for routine large scale measurements.

  19. Implementation of time-resolved step-scan fourier transform infrared (FT-IR) spectroscopy using a kHz repetition rate pump laser.

    Science.gov (United States)

    Magana, Donny; Parul, Dzmitry; Dyer, R Brian; Shreve, Andrew P

    2011-05-01

    Time-resolved step-scan Fourier transform infrared (FT-IR) spectroscopy has been shown to be invaluable for studying excited-state structures and dynamics in both biological and inorganic systems. Despite the established utility of this method, technical challenges continue to limit the data quality and more wide ranging applications. A critical problem has been the low laser repetition rate and interferometer stepping rate (both are typically 10 Hz) used for data acquisition. Here we demonstrate significant improvement in the quality of time-resolved spectra through the use of a kHz repetition rate laser to achieve kHz excitation and data collection rates while stepping the spectrometer at 200 Hz. We have studied the metal-to-ligand charge transfer excited state of Ru(bipyridine)(3)Cl(2) in deuterated acetonitrile to test and optimize high repetition rate data collection. Comparison of different interferometer stepping rates reveals an optimum rate of 200 Hz due to minimization of long-term baseline drift. With the improved collection efficiency and signal-to-noise ratio, better assignments of the MLCT excited-state bands can be made. Using optimized parameters, carbonmonoxy myoglobin in deuterated buffer is also studied by observing the infrared signatures of carbon monoxide photolysis upon excitation of the heme. We conclude from these studies that a substantial increase in performance of ss-FT-IR instrumentation is achieved by coupling commercial infrared benches with kHz repetition rate lasers.

  20. Fourier transforms principles and applications

    CERN Document Server

    Hansen, Eric W

    2014-01-01

    Fourier Transforms: Principles and Applications explains transform methods and their applications to electrical systems from circuits, antennas, and signal processors-ably guiding readers from vector space concepts through the Discrete Fourier Transform (DFT), Fourier series, and Fourier transform to other related transform methods.  Featuring chapter end summaries of key results, over two hundred examples and four hundred homework problems, and a Solutions Manual this book is perfect for graduate students in signal processing and communications as well as practicing engineers.

  1. Principles, performance, and applications of spectral reconstitution (SR) in quantitative analysis of oils by Fourier transform infrared spectroscopy (FT-IR).

    Science.gov (United States)

    García-González, Diego L; Sedman, Jacqueline; van de Voort, Frederik R

    2013-04-01

    Spectral reconstitution (SR) is a dilution technique developed to facilitate the rapid, automated, and quantitative analysis of viscous oil samples by Fourier transform infrared spectroscopy (FT-IR). This technique involves determining the dilution factor through measurement of an absorption band of a suitable spectral marker added to the diluent, and then spectrally removing the diluent from the sample and multiplying the resulting spectrum to compensate for the effect of dilution on the band intensities. The facsimile spectrum of the neat oil thus obtained can then be qualitatively or quantitatively analyzed for the parameter(s) of interest. The quantitative performance of the SR technique was examined with two transition-metal carbonyl complexes as spectral markers, chromium hexacarbonyl and methylcyclopentadienyl manganese tricarbonyl. The estimation of the volume fraction (VF) of the diluent in a model system, consisting of canola oil diluted to various extents with odorless mineral spirits, served as the basis for assessment of these markers. The relationship between the VF estimates and the true volume fraction (VF(t)) was found to be strongly dependent on the dilution ratio and also depended, to a lesser extent, on the spectral resolution. These dependences are attributable to the effect of changes in matrix polarity on the bandwidth of the ν(CO) marker bands. Excellent VF(t) estimates were obtained by making a polarity correction devised with a variance-spectrum-delineated correction equation. In the absence of such a correction, SR was shown to introduce only a minor and constant bias, provided that polarity differences among all the diluted samples analyzed were minimal. This bias can be built into the calibration of a quantitative FT-IR analytical method by subjecting appropriate calibration standards to the same SR procedure as the samples to be analyzed. The primary purpose of the SR technique is to simplify preparation of diluted samples such that

  2. Generic Quantum Fourier Transforms

    CERN Document Server

    Moore, Cristopher; Russell, A; Moore, Cristopher; Rockmore, Daniel; Russell, Alexander

    2003-01-01

    The quantum Fourier transform (QFT) is the principal algorithmic tool underlying most efficient quantum algorithms. We present a generic framework for the construction of efficient quantum circuits for the QFT by ``quantizing'' the separation of variables technique that has been so successful in the study of classical Fourier transform computations. Specifically, this framework applies the existence of computable Bratteli diagrams, adapted factorizations, and Gel'fand-Tsetlin bases to offer efficient quantum circuits for the QFT over a wide variety a finite Abelian and non-Abelian groups, including all group families for which efficient QFTs are currently known and many new group families. Moreover, the method gives rise to the first subexponential-size quantum circuits for the QFT over the linear groups GL_k(q), SL_k(q), and the finite groups of Lie type, for any fixed prime power q.

  3. Real Clifford Windowed Fourier Transform

    Institute of Scientific and Technical Information of China (English)

    Mawardi BAHRI; Sriwulan ADJI; Ji Man ZHAO

    2011-01-01

    We study the windowed Fourier transform in the framework of Clifford analysis, which we call the Clifford windowed Fourier transform (CWFT). Based on the spectral representation of the Clifford Fourier transform (CFT), we derive several important properties such as shift, modulation,reconstruction formula, orthogonality relation, isometry, and reproducing kernel. We also present an example to show the differences between the classical windowed Fourier transform (WFT) and the CWFT. Finally, as an application we establish a Heisenberg type uncertainty principle for the CWFT.

  4. Optimized data analysis algorithm for on-site chemical identification using a hand-held attenuated total reflection Fourier transform infrared (ATR FT-IR) spectrometer.

    Science.gov (United States)

    Ron, Izhar; Zaltsman, Amalia; Kendler, Shai

    2013-12-01

    On-site identification of organic compounds in the presence of interfering materials using a field-portable attenuated total reflection Fourier transform infrared (ATR FT-IR) spectrometer is presented. Identification is based on an algorithm that compares the analyte's infrared absorption spectrum with the reference spectra. The comparison is performed at several predetermined frequencies, and a similarity value (distance) between the measured and the reference spectra is calculated either at each frequency individually, or, alternatively, the average distance for all frequencies is calculated. The examined frequencies are selected to give the best contrast between the target materials of interest. In this study, the algorithm was optimized to identify three common chemical warfare agents (CWAs): O-ethyl S-[2-(diisopropylamino)ethyl] methylphosphonothioic acid (VX), sarin (GB), and sulfur mustard (bis(2-chloroethyl) sulfide) (HD), in the presence of field-related interfering materials (fuels, water, and dust). Receiver operating characteristics analysis was performed in order to determine the probabilities for detection (PD) and for false alerts (PF). Challenging the algorithm with a set of data that contains mixtures of CWAs and interfering materials resulted in PD of 90% and PF of 0%, 0%, and 1% for VX, GB, and HD, respectively, using the average distance approach, which was found to be much more effective than analyzing each frequency individually. This finding was validated for all possible combinations of 2-7 peaks per material. It is suggested that this algorithm provides a reliable mean for the identification of a predetermined set of target analytes and interfering materials.

  5. Rainbow Fourier Transform

    Science.gov (United States)

    Alexandrov, Mikhail D.; Cairns, Brian; Mishchenko, Michael I.

    2012-01-01

    We present a novel technique for remote sensing of cloud droplet size distributions. Polarized reflectances in the scattering angle range between 135deg and 165deg exhibit a sharply defined rainbow structure, the shape of which is determined mostly by single scattering properties of cloud particles, and therefore, can be modeled using the Mie theory. Fitting the observed rainbow with such a model (computed for a parameterized family of particle size distributions) has been used for cloud droplet size retrievals. We discovered that the relationship between the rainbow structures and the corresponding particle size distributions is deeper than it had been commonly understood. In fact, the Mie theory-derived polarized reflectance as a function of reduced scattering angle (in the rainbow angular range) and the (monodisperse) particle radius appears to be a proxy to a kernel of an integral transform (similar to the sine Fourier transform on the positive semi-axis). This approach, called the rainbow Fourier transform (RFT), allows us to accurately retrieve the shape of the droplet size distribution by the application of the corresponding inverse transform to the observed polarized rainbow. While the basis functions of the proxy-transform are not exactly orthogonal in the finite angular range, this procedure needs to be complemented by a simple regression technique, which removes the retrieval artifacts. This non-parametric approach does not require any a priori knowledge of the droplet size distribution functional shape and is computationally fast (no look-up tables, no fitting, computations are the same as for the forward modeling).

  6. Fourier transforms in spectroscopy

    CERN Document Server

    Kauppinen, Jyrki

    2000-01-01

    This modern approach to the subject is clearly and logically structured, and gives readers an understanding of the essence of Fourier transforms and their applications. All important aspects are included with respect to their use with optical spectroscopic data. Based on popular lectures, the authors provide the mathematical fundamentals and numerical applications which are essential in practical use. The main part of the book is dedicated to applications of FT in signal processing and spectroscopy, with IR and NIR, NMR and mass spectrometry dealt with both from a theoretical and practical poi

  7. Fast Fourier transform telescope

    Science.gov (United States)

    Tegmark, Max; Zaldarriaga, Matias

    2009-04-01

    We propose an all-digital telescope for 21 cm tomography, which combines key advantages of both single dishes and interferometers. The electric field is digitized by antennas on a rectangular grid, after which a series of fast Fourier transforms recovers simultaneous multifrequency images of up to half the sky. Thanks to Moore’s law, the bandwidth up to which this is feasible has now reached about 1 GHz, and will likely continue doubling every couple of years. The main advantages over a single dish telescope are cost and orders of magnitude larger field-of-view, translating into dramatically better sensitivity for large-area surveys. The key advantages over traditional interferometers are cost (the correlator computational cost for an N-element array scales as Nlog⁡2N rather than N2) and a compact synthesized beam. We argue that 21 cm tomography could be an ideal first application of a very large fast Fourier transform telescope, which would provide both massive sensitivity improvements per dollar and mitigate the off-beam point source foreground problem with its clean beam. Another potentially interesting application is cosmic microwave background polarization.

  8. Matrix isolation studies with Fourier transform IR

    Energy Technology Data Exchange (ETDEWEB)

    Green, David W.; Reedy, Gerald T.

    1977-01-01

    The combination of Fourier transform infrared (FT-IR) spectroscopy with the matrix-isolation techniques has advantages compared with the use of more conventional grating spectroscopy. Furthermore, the recent commercial availability of Fourier transform spectrometers has made FT-IR a practical alternative. Some advantages of the FT-IR spectrometer over the grating spectrometer are the result of the computerized data system that is a necessary part of the FT-IR spectrometer; other advantages are a consequence of the difference in optical arrangements and these represent the inherent advantages of the FT-IR method. In most applications with the matrix-isolation technique, the use of FT-IR spectroscopy results in either an improved signal-to-noise ratio or a shorter time for data collection compared with grating infrared spectroscopy. Fourier transform infrared spectroscopy has been used in the laboratory to study several molecular species in low-temperature matrices. Some species have been produced by high-temperature vaporization from Knudsen cells and others by sputtering. By sputtering, Ar and Kr matrices have been prepared which contain U atoms, UO, UO/sub 2/, UO/sub 3/, PuO, PuO/sub 2/, UN, or UN/sub 2/, depending upon the composition of the gas used to sputter as well as the identity of the metallic cathode. Infrared spectra of matrices containing these compounds are presented and discussed. (JRD)

  9. Fourier Transform Spectrometer System

    Science.gov (United States)

    Campbell, Joel F. (Inventor)

    2014-01-01

    A Fourier transform spectrometer (FTS) data acquisition system includes an FTS spectrometer that receives a spectral signal and a laser signal. The system further includes a wideband detector, which is in communication with the FTS spectrometer and receives the spectral signal and laser signal from the FTS spectrometer. The wideband detector produces a composite signal comprising the laser signal and the spectral signal. The system further comprises a converter in communication with the wideband detector to receive and digitize the composite signal. The system further includes a signal processing unit that receives the composite signal from the converter. The signal processing unit further filters the laser signal and the spectral signal from the composite signal and demodulates the laser signal, to produce velocity corrected spectral data.

  10. κ-deformed Fourier transform

    Science.gov (United States)

    Scarfone, A. M.

    2017-08-01

    We present a new formulation of Fourier transform in the picture of the κ-algebra derived in the framework of the κ-generalized statistical mechanics. The κ-Fourier transform is obtained from a κ-Fourier series recently introduced by Scarfone (2013). The kernel of this transform, that reduces to the usual exponential phase in the κ → 0 limit, is composed by a κ-deformed phase and a damping factor that gives a wavelet-like behaviour. We show that the κ-Fourier transform is isomorph to the standard Fourier transform through a changing of time and frequency variables. Nevertheless, the new formalism is useful to study, according to Fourier analysis, those functions defined in the realm of the κ-algebra. As a relevant application, we discuss the central limit theorem for the κ-sum of n-iterate statistically independent random variables.

  11. Wavelet-fractional Fourier transforms

    Institute of Scientific and Technical Information of China (English)

    Yuan Lin

    2008-01-01

    This paper extends the definition of fractional Fourier transform (FRFT) proposed by Namias V by using other orthonormal bases for L2 (R) instead of Hermite-Ganssian functions.The new orthonormal basis is gained indirectly from multiresolution analysis and orthonormal wavelets. The so defined FRFT is called wavelets-fractional Fourier transform.

  12. Fast Numerical Nonlinear Fourier Transforms

    CERN Document Server

    Wahls, Sander

    2014-01-01

    The nonlinear Fourier transform, which is also known as the forward scattering transform, decomposes a periodic signal into nonlinearly interacting waves. In contrast to the common Fourier transform, these waves no longer have to be sinusoidal. Physically relevant waveforms are often available for the analysis instead. The details of the transform depend on the waveforms underlying the analysis, which in turn are specified through the implicit assumption that the signal is governed by a certain evolution equation. For example, water waves generated by the Korteweg-de Vries equation can be expressed in terms of cnoidal waves. Light waves in optical fiber governed by the nonlinear Schr\\"dinger equation (NSE) are another example. Nonlinear analogs of classic problems such as spectral analysis and filtering arise in many applications, with information transmission in optical fiber, as proposed by Yousefi and Kschischang, being a very recent one. The nonlinear Fourier transform is eminently suited to address them ...

  13. Coupling of column liquid chromatography and Fourier transform infrared spectrometry

    NARCIS (Netherlands)

    Somsen, G.W; Gooijer, C; Velthorst, N.H; Brinkman, U.A Th

    1998-01-01

    This paper provides an extensive overview of the literature on the coupling of column liquid chromatography (LC) and Fourier transform infrared spectrometry (FT-IR). Flow-cell-based FT-IR detection and early solvent-elimination interfaces for LC-FT-IR are discussed in brief. A comprehensive descript

  14. Characterization by Fourier transform infrared spectroscopy (FT-IR) and 2D IR correlation spectroscopy of a carbosilane dendrimer with peripheral ammonium groups

    Energy Technology Data Exchange (ETDEWEB)

    Popescu, Maria-Cristina, E-mail: cpopescu@icmpp.ro [' Petru Poni' Institute of Macromolecular Chemistry (Romania); Gomez, Rafael; Mata, Fco Javier de la; Rasines, Beatriz [Universidad de Alcala, Departamento de Quimica Inorganica (Spain); Simionescu, Bogdan C. [' Petru Poni' Institute of Macromolecular Chemistry (Romania)

    2013-06-15

    Fourier transform infrared spectroscopy and 2D correlation spectroscopy were used to study the microstructural changes occurring on heating of a new carbosilane dendrimer with peripheral ammonium groups. Temperature-dependent spectral variations in the 3,010-2,710, 1,530-1,170, and 1,170-625 cm{sup -1} regions were monitored during the heating process. The dependence, on temperature, of integral absorptions and position of spectral bands was established and the spectral modifications associated with molecular conformation rearrangements, allowing molecular shape changes, were found. Before 180 Degree-Sign C, the studied carbosilane dendrimer proved to be stable, while at higher temperatures it oxidizes and Si-O groups appear. 2D IR correlation spectroscopy gives new information about the effect of temperature on the structure and dynamics of the system. Synchronous and asynchronous spectra indicate that, at low temperature, conformational changes of CH{sub 3} and CH{sub 3}-N{sup +} groups take place first. With increasing temperature, the intensity variation of the CH{sub 2}, C-N, Si-C and C-C groups from the dendritic core is faster than that of the terminal units. This indicates that, with increasing temperature, the segments of the dendritic core obtain enough energy to change their conformation more easily as compared to the terminal units, due to their internal flexibility.

  15. Fourier transform infrared spectra applications to chemical systems

    CERN Document Server

    Ferraro, John R

    1978-01-01

    Fourier Transform Infrared Spectroscopy: Applications to Chemical Systems presents the chemical applications of the Fourier transform interferometry (FT-IR).The book contains discussions on the applications of FT-IR in the fields of chromatography FT-IR, polymers and biological macromolecules, emission spectroscopy, matrix isolation, high-pressure interferometry, and far infrared interferometry. The final chapter is devoted to the presentation of the use of FT-IR in solving national technical problems such as air pollution, space exploration, and energy related subjects.Researc

  16. Static Fourier transform infrared spectrometer.

    Science.gov (United States)

    Schardt, Michael; Murr, Patrik J; Rauscher, Markus S; Tremmel, Anton J; Wiesent, Benjamin R; Koch, Alexander W

    2016-04-01

    Fourier transform spectroscopy has established itself as the standard method for spectral analysis of infrared light. Here we present a robust and compact novel static Fourier transform spectrometer design without any moving parts. The design is well suited for measurements in the infrared as it works with extended light sources independent of their size. The design is experimentally evaluated in the mid-infrared wavelength region between 7.2 μm and 16 μm. Due to its large etendue, its low internal light loss, and its static design it enables high speed spectral analysis in the mid-infrared.

  17. Grazing incidence angle based sensing approach integrated with fiber-optic Fourier transform infrared (FO-FTIR) spectroscopy for remote and label-free detection of medical device contaminations

    Energy Technology Data Exchange (ETDEWEB)

    Hassan, Moinuddin, E-mail: moinuddin.hassan@fda.hhs.gov; Ilev, Ilko [Optical Therapeutics and Medical Nanophotonics Laboratory, Division of Biomedical Physics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, Maryland 20993 (United States)

    2014-10-15

    Contamination of medical devices has become a critical and prevalent public health safety concern since medical devices are being increasingly used in clinical practices for diagnostics, therapeutics and medical implants. The development of effective sensing methods for real-time detection of pathogenic contamination is needed to prevent and reduce the spread of infections to patients and the healthcare community. In this study, a hollow-core fiber-optic Fourier transform infrared spectroscopy methodology employing a grazing incidence angle based sensing approach (FO-FTIR-GIA) was developed for detection of various biochemical contaminants on medical device surfaces. We demonstrated the sensitivity of FO-FTIR-GIA sensing approach for non-contact and label-free detection of contaminants such as lipopolysaccharide from various surface materials relevant to medical device. The proposed sensing system can detect at a minimum loading concentration of approximately 0.7 μg/cm{sup 2}. The FO-FTIR-GIA has the potential for the detection of unwanted pathogen in real time.

  18. Application of Attenuated Total Reflectance-Fourier Transformed Infrared (ATR-FTIR) Spectroscopy To Determine the Chlorogenic Acid Isomer Profile and Antioxidant Capacity of Coffee Beans.

    Science.gov (United States)

    Liang, Ningjian; Lu, Xiaonan; Hu, Yaxi; Kitts, David D

    2016-01-27

    The chlorogenic acid isomer profile and antioxidant activity of both green and roasted coffee beans are reported herein using ATR-FTIR spectroscopy combined with chemometric analyses. High-performance liquid chromatography (HPLC) quantified different chlorogenic acid isomer contents for reference, whereas ORAC, ABTS, and DPPH were used to determine the antioxidant activity of the same coffee bean extracts. FTIR spectral data and reference data of 42 coffee bean samples were processed to build optimized PLSR models, and 18 samples were used for external validation of constructed PLSR models. In total, six PLSR models were constructed for six chlorogenic acid isomers to predict content, with three PLSR models constructed to forecast the free radical scavenging activities, obtained using different chemical assays. In conclusion, FTIR spectroscopy, coupled with PLSR, serves as a reliable, nondestructive, and rapid analytical method to quantify chlorogenic acids and to assess different free radical-scavenging capacities in coffee beans.

  19. Properties of starch-polyglutamic acid (PGA) graft copolymer prepared by microwave irradiation - Fourier transform infrared spectroscopy (FTIR) and rheology studies

    Science.gov (United States)

    The rheological properties of waxy starch-'-polygutamic acid (PGA) graft copolymers were investigated. Grafting was confirmed by FTIR spectroscopy. The starch-PGA copolymers absorbed water and formed gels, which exhibited concentration-dependent viscoelastic solid properties. Higher starch-PGA conce...

  20. Determination of Trichinella spiralis in pig muscles using Mid-Fourier Transform Infrared Spectroscopy (MID-FTIR) with Attenuated Total Reflectance (ATR) and Soft Independent Modeling of Class Analogy (SIMCA).

    Science.gov (United States)

    Gómez-De-Anda, Fabián; Dorantes-Álvarez, Lidia; Gallardo-Velázquez, Tzayhri; Osorio-Revilla, Guillermo; Calderón-Domínguez, Georgina; Martínez Labat, Pablo; de-la-Rosa-Arana, Jorge-Luis

    2012-07-01

    The aim of this work was to study the feasibility of detection of Trichinella spiralis in swine meat using Middle Infrared Spectroscopy Fourier Transform with Attenuated Total Reflectance (ATR) and Soft Independent Modeling of Class Analogy (MID-FTIR-ATR-SIMCA). Five male Pigs were orally infected at different larvae concentrations (13,000, 6500, 3500, 1625, 812 larvae/pig) and after 24 weeks the animals were euthanized. Five types of muscles were studied (leg, loin, rib, masseter, and diaphragm). Results showed that MID-FTIR-ATR-SIMCA was useful to determine the presence of T. spiralis in the samples, as the interclass distance between infected and non infected muscles varied from 13.5 to 36.8. This technique was also useful to discriminate among pig muscles, where masseter showed the largest interclass distance, while rib presented the smallest one. In all cases the recognition and rejection rates were 100%, which means that the methodology is capable of accurately separating T. spiralis infected from non infected swine meat.

  1. Standard test method for the analysis of refrigerant 114, plus other carbon-containing and fluorine-containing compounds in uranium hexafluoride via fourier-transform infrared (FTIR) spectroscopy

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2004-01-01

    1.1 This test method covers determining the concentrations of refrigerant-114, other carbon-containing and fluorine-containing compounds, hydrocarbons, and partially or completely substituted halohydrocarbons that may be impurities in uranium hexafluoride. The two options are outlined for this test method. They are designated as Part A and Part B. 1.1.1 To provide instructions for performing Fourier-Transform Infrared (FTIR) spectroscopic analysis for the possible presence of Refrigerant-114 impurity in a gaseous sample of uranium hexafluoride, collected in a "2S" container or equivalent at room temperature. The all gas procedure applies to the analysis of possible Refrigerant-114 impurity in uranium hexafluoride, and to the gas manifold system used for FTIR applications. The pressure and temperatures must be controlled to maintain a gaseous sample. The concentration units are in mole percent. This is Part A. 1.2 Part B involves a high pressure liquid sample of uranium hexafluoride. This method can be appli...

  2. Feasibility study for the detection of Trichinella spiralis in a murine model using mid-Fourier transform infrared spectroscopy (MID-FTIR) with attenuated total reflectance (ATR) and soft independent modelling of class analogies (SIMCA).

    Science.gov (United States)

    Gómez-de Anda, Fabián; Gallardo-Velazquez, Tzayhri; Osorio-Revilla, Guillermo; Dorantes-Alvarez, Lidia; Calderon-Dominguez, Georgina; Nogueda-Torres, Benjamín; de-la-Rosa-Arana, Jorge-Luis

    2012-12-21

    Fourier transform infrared (FTIR) spectroscopy with attenuated total reflectance (ATR) and soft independent modelling by class analogies (SIMCA) was used to assess the feasibility of detecting Trichinella spiralis in a murine model. The selected FTIR wavenumber range was 1700-900 cm(-1) and the first derivative of the spectra was subjected to SIMCA analysis. The SIMCA model developed for rat meat spiked with T. spiralis larvae was successfully apply to classify non-infected from infected rat meat with a limit of detection of 3 larvae/10 g rat meat and no false positives with 99% confidence limit. To avoid false positives arising from the presence of other parasites, another chemometric model was developed to demonstrate the capacity of the model to discriminate between Ascaris suum, Taenia solium and T. spiralis. Results confirmed that this method could correctly distinguish these parasites. Additional studies are needed to prove the effectiveness of this technique for other types of muscle meats, including those relevant to human consumption. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Nondestructive Handheld Fourier Transform Infrared (FT-IR) Analysis of Spectroscopic Changes and Multivariate Modeling of Thermally Degraded Plain Portland Cement Concrete and its Slag and Fly Ash-Based Analogs.

    Science.gov (United States)

    Leung Tang, Pik; Alqassim, Mohammad; Nic Daéid, Niamh; Berlouis, Leonard; Seelenbinder, John

    2016-05-01

    Concrete is by far the world's most common construction material. Modern concrete is a mixture of industrial pozzolanic cement formulations and aggregate fillers. The former acts as the glue or binder in the final inorganic composite; however, when exposed to a fire the degree of concrete damage is often difficult to evaluate nondestructively. Fourier transform infrared (FT-IR) spectroscopy through techniques such as transmission, attenuated total reflectance, and diffuse reflectance have been rarely used to evaluate thermally damaged concrete. In this paper, we report on a study assessing the thermal damage of concrete via the use of a nondestructive handheld FT-IR with a diffuse reflectance sample interface. In situ measurements can be made on actual damaged areas, without the need for sample preparation. Separate multivariate models were developed to determine the equivalent maximal temperature endured for three common industrial concrete formulations. The concrete mixtures were successfully modeled displaying high predictive power as well as good specificity. This has potential uses in forensic investigation and remediation services particularly for fires in buildings.

  4. A More Accurate Fourier Transform

    CERN Document Server

    Courtney, Elya

    2015-01-01

    Fourier transform methods are used to analyze functions and data sets to provide frequencies, amplitudes, and phases of underlying oscillatory components. Fast Fourier transform (FFT) methods offer speed advantages over evaluation of explicit integrals (EI) that define Fourier transforms. This paper compares frequency, amplitude, and phase accuracy of the two methods for well resolved peaks over a wide array of data sets including cosine series with and without random noise and a variety of physical data sets, including atmospheric $\\mathrm{CO_2}$ concentrations, tides, temperatures, sound waveforms, and atomic spectra. The FFT uses MIT's FFTW3 library. The EI method uses the rectangle method to compute the areas under the curve via complex math. Results support the hypothesis that EI methods are more accurate than FFT methods. Errors range from 5 to 10 times higher when determining peak frequency by FFT, 1.4 to 60 times higher for peak amplitude, and 6 to 10 times higher for phase under a peak. The ability t...

  5. A Short Biography of Joseph Fourier and Historical Development of Fourier Series and Fourier Transforms

    Science.gov (United States)

    Debnath, Lokenath

    2012-01-01

    This article deals with a brief biographical sketch of Joseph Fourier, his first celebrated work on analytical theory of heat, his first great discovery of Fourier series and Fourier transforms. Included is a historical development of Fourier series and Fourier transforms with their properties, importance and applications. Special emphasis is made…

  6. Macroscopic Fourier transform infrared scanning in reflection mode (MA-rFTIR), a new tool for chemical imaging of cultural heritage artefacts in the mid-infrared range.

    Science.gov (United States)

    Legrand, Stijn; Alfeld, Matthias; Vanmeert, Frederik; De Nolf, Wout; Janssens, Koen

    2014-05-21

    In this paper we demonstrate that by means of scanning reflection FTIR spectroscopy, it is possible to record highly specific distribution maps of organic and inorganic compounds from flat, macroscopic objects with cultural heritage value in a non-invasive manner. Our previous work involved the recording of macroscopic distributions of chemical elements or crystal phases from painted works of art based on respectively macroscopic X-ray fluorescence or X-ray powder diffraction analysis. The use of infrared radiation instead of X-rays has the advantage that more specific information about the nature and distribution of the chemical compounds present can be gathered. This higher imaging specificity represents a clear advantage for the characterization of painting and artist materials. It allows the distribution of metallo-organic compounds to be visualized and permits distinguishing between pigmented materials containing the same key metal. The prototype instrument allows the recording of hyperspectral datacubes by scanning the surface of the artefact in a contactless and sequential single-point measuring mode, while recording the spectrum of reflected infrared radiation. After the acquisition, spectral line intensities of individual bands and chemical distribution maps can be extracted from the datacube to identify the compounds present and/or to highlight their spatial distribution. Not only is information gained on the surface of the investigated artefacts, but also images of overpainted paint layers and, if present, the underdrawing may be revealed in this manner. A current major limitation is the long scanning times required to record these maps.

  7. Novel Micro Fourier Transform Spectrometers

    Institute of Scientific and Technical Information of China (English)

    KONG Yan-mei; LIANG Jing-qiu; LIANG Zhong-zhu; WANG-Bo; ZHANG Jun

    2008-01-01

    The miniaturization of spectrometer opens a new application area with real-time and on-site measurements. The Fourier transform spectrometer(FTS) is much attractive considering its particular advantages among the approaches. This paper reviews the current status of micro FTS in worldwide and describes its developments; In addition, analyzed are the key problems in designing and fabricating FTS to be settled during the miniaturization. Finally, a novel model of micro FTS with no moving parts is proposed and analyzed, which may provide new concepts for the design of spectrometers.

  8. Fourier-transform optical microsystems

    Science.gov (United States)

    Collins, S. D.; Smith, R. L.; Gonzalez, C.; Stewart, K. P.; Hagopian, J. G.; Sirota, J. M.

    1999-01-01

    The design, fabrication, and initial characterization of a miniature single-pass Fourier-transform spectrometer (FTS) that has an optical bench that measures 1 cm x 5 cm x 10 cm is presented. The FTS is predicated on the classic Michelson interferometer design with a moving mirror. Precision translation of the mirror is accomplished by microfabrication of dovetailed bearing surfaces along single-crystal planes in silicon. Although it is miniaturized, the FTS maintains a relatively high spectral resolution, 0.1 cm-1, with adequate optical throughput.

  9. JPL Fourier transform ultraviolet spectrometer

    Science.gov (United States)

    Cageao, R. P.; Friedl, R. R.; Sander, Stanley P.; Yung, Y. L.

    1994-01-01

    The Fourier Transform Ultraviolet Spectrometer (FTUVS) is a new high resolution interferometric spectrometer for multiple-species detection in the UV, visible and near-IR. As an OH sensor, measurements can be carried out by remote sensing (limb emission and column absorption), or in-situ sensing (long-path absorption or laser-induced fluorescence). As a high resolution detector in a high repetition rate (greater than 10 kHz) LIF system, OH fluorescence can be discriminated against non-resonant background emission and laser scatter, permitting (0, 0) excitation.

  10. Fourier-Transform Infrared Spectrometer

    Science.gov (United States)

    Schindler, R. A.

    1986-01-01

    Fourier-transform spectrometer provides approximately hundredfold increase in luminosity at detector plane over that achievable with older instruments of this type. Used to analyze such weak sources as pollutants and other low-concentration substances in atmosphere. Interferometer creates fringe patterns on two distinct arrays of light detectors, which observe different wavelength bands. Objective lens focuses scene on image plane, which contains optical chopper. To make instrument less susceptible to variations in scene under observation, field and detector lenses focus entrance aperture, rather that image, onto detector array.

  11. Fourier Transform Methods. Chapter 4

    Science.gov (United States)

    Kaplan, Simon G.; Quijada, Manuel A.

    2015-01-01

    This chapter describes the use of Fourier transform spectrometers (FTS) for accurate spectrophotometry over a wide spectral range. After a brief exposition of the basic concepts of FTS operation, we discuss instrument designs and their advantages and disadvantages relative to dispersive spectrometers. We then examine how common sources of error in spectrophotometry manifest themselves when using an FTS and ways to reduce the magnitude of these errors. Examples are given of applications to both basic and derived spectrophotometric quantities. Finally, we give recommendations for choosing the right instrument for a specific application, and how to ensure the accuracy of the measurement results..

  12. Fourier transform infra-red (FTIR) spectroscopy investigation, dose effect, kinetics and adsorption capacity of phosphate from aqueous solution onto laterite and sandstone.

    Science.gov (United States)

    Coulibaly, Lassina Sandotin; Akpo, Sylvain Kouakou; Yvon, Jacques; Coulibaly, Lacina

    2016-12-01

    Environmental pollution by phosphate in developing countries is growing with extensive and diffuse pollution. Solving these problem with intensive technologies is very expensive. Using natural sorbent such as laterite and sandstone could be a solution. The main objective of the study is to evaluate the P-removal efficiency of these materials under various solution properties. Laterite and sandstone used mainly contain very high levels of finely grained iron and aluminum oxy-hydroxides and diverse dioctahedral clays. Phosphate adsorption tests were carried out using crushed laterite and sandstone. Optimal doses and pH effects on phosphate adsorption were studied with a potassium hydrogeno-phosphate solution of 5 mg/L at 30 °C. The main results were that the optimal dosage is 15 and 20 mg/L respectively for laterite and sandstone. The phosphate adsorptions efficiency of laterite and sandstone are pH-dependent, they increase when the pH grows up to the Point of Zero Charge (PZC) and slowly decrease beyond. The adsorption capacities of the materials also increase proportionally with the initial phosphate concentration. The pseudo-second-order successfully described the kinetics of the phosphate adsorption on the two adsorbents. With this model, the adsorption capacity values are obtained, which give an idea of the maximum phosphate uptake that the laterite and sandstone could achieve. The changes on the FTIR spectra of raw materials and phosphate adsorbed material confirm the mechanism of chemisorptions. Considering the above, laterite and sandstone could be used as efficient and cheap adsorbent for the removal of phosphate in aqueous solution. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Direct determination of sorbitol and sodium glutamate by attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) in the thermostabilizer employed in the production of yellow-fever vaccine.

    Science.gov (United States)

    de Castro, Eduardo da S G; Cassella, Ricardo J

    2016-05-15

    Reference methods for quality control of vaccines usually require treatment of the samples before analysis. These procedures are expensive, time-consuming, unhealthy and require careful manipulation of the sample, making them a potential source of analytical errors. This work proposes a novel method for the quality control of thermostabilizer samples of the yellow fever vaccine employing attenuated total reflectance Fourier transform infrared spectrometry (ATR-FTIR). The main advantage of the proposed method is the possibility of direct determination of the analytes (sodium glutamate and sorbitol) without any pretreatment of the samples. Operational parameters of the FTIR technique, such as the number of accumulated scans and nominal resolution, were evaluated. The best conditions for sodium glutamate were achieved when 64 scans were accumulated using a nominal resolution of 4 cm(-1). The measurements for sodium glutamate were performed at 1347 cm(-1) (baseline correction between 1322 and 1369 cm(-1)). In the case of sorbitol, the measurements were done at 890cm(-1) (baseline correction between 825 and 910 cm(-1)) using a nominal resolution of 2 cm(-1) with 32 accumulated scans. In both cases, the quantitative variable was the band height. Recovery tests were performed in order to evaluate the accuracy of the method and recovery percentages in the range 93-106% were obtained. Also, the methods were compared with reference methods and no statistical differences were observed. The limits of detection and quantification for sodium glutamate were 0.20 and 0.62% (m/v), respectively, whereas for sorbitol they were 1 and 3.3% (m/v), respectively.

  14. Analysis of spectral identifier of fatty acid functional group of packaging frying oil and bulk frying oil with the effect of repeated heating using FTIR (Fourier Transform InfraRed) spectroscopy

    Science.gov (United States)

    Putri, Vinda Dwi Dini; Nasution, Aulia M. T.

    2016-11-01

    Frying oil is a cooking medium that is commonly used in Indonesia. Frying process can lead changes in the properties of frying oil. Heating oil with high temperature and many repetition will cause degradation in oil and may cause health problems, such as cholesterol, induces heart disease, and cancer. Degradation of the frying oil can be determined based on changes in the cluster function of fatty acids due to the heating influence. Therefore, it is necessary to test the frying oil under treatments with variety of time heating using a spectrometer Fourier Transform Infrared (FTIR). Spectra from FTIR was processed using derivative spectroscopy method to clearly see the difference in the measured spectra. Range spectra of interest is at wavelength of 13,500 to 14,200 nm i.e. indicating the double bond of carbon in molecule HC = CH. The analysis was performed by calculating the area of the spectral curve from the respected 2nd order derivative. Result show that the absorbance of packaging frying oil is higher than the bulk frying oil. In addition, heating of frying oil can decrease the area of respected 2nd order derivative. Packaging frying oil heating on 30 minutes which has the area of spectral curve of 0.904217 decrease become 0.881394 after 3 times heating. While the bulk frying oil heating 30 minutes, in the first heating which has area of spectral curve of 0.916089 decrease become 0.865379 after 3 times heating. The decline in the area of the curve occurs due to breakdown of the double bond of carbon in the molecule HC = CH that caused by heating at high temperatures and repeated heating.

  15. Attenuated Total Reflection Fourier Transform Infrared (ATR FT-IR) Spectroscopy as a Forensic Method to Determine the Composition of Inks Used to Print the United States One-cent Blue Benjamin Franklin Postage Stamps of the 19th Century.

    Science.gov (United States)

    Brittain, Harry G

    2016-01-01

    Through the combined use of infrared (IR) absorption spectroscopy and attenuated total reflectance (ATR) sampling, the composition of inks used to print the many different types of one-cent Benjamin Franklin stamps of the 19th century has been established. This information permits a historical evaluation of the formulations used at various times, and also facilitates the differentiation of the various stamps from each other. In two instances, the ink composition permits the unambiguous identification of stamps whose appearance is identical, and which (until now) have only been differentiated through estimates of the degree of hardness or softness of the stamp paper, or through the presence or absence of a watermark in the paper. In these instances, the use of ATR Fourier transform infrared spectroscopy (FT-IR) spectroscopy effectively renders irrelevant two 100-year-old practices of stamp identification. Furthermore, since the use of ATR sampling makes it possible to obtain the spectrum of a stamp still attached to its cover, it is no longer necessary to identify these blue Franklin stamps using their cancellation dates.

  16. Fourier Transform Infrared Spectroscopic Analysis of Protein Secondary Structures

    Institute of Scientific and Technical Information of China (English)

    Jilie KONG; Shaoning YU

    2007-01-01

    Infrared spectroscopy is one of the oldest and well established experimental techniques for the analysis of secondary structure of polypeptides and proteins. It is convenient, non-destructive, requires less sample preparation, and can be used under a wide variety of conditions. This review introduces the recent developments in Fourier transform infrared (FTIR) spectroscopy technique and its applications to protein structural studies. The experimental skills, data analysis, and correlations between the FTIR spectroscopic bands and protein secondary structure components are discussed. The applications of FTIR to the secondary structure analysis, conformational changes, structural dynamics and stability studies of proteins are also discussed.

  17. The multiple-parameter fractional Fourier transform

    Institute of Scientific and Technical Information of China (English)

    LANG Jun; TAO Ran; RAN QiWen; WANG Yue

    2008-01-01

    The fractional Fourier transform (FRFT) has multiplicity, which is intrinsic in frac-tional operator. A new source for the multiplicity of the weight-type fractional Fou-rier transform (WFRFT) is proposed, which can generalize the weight coefficients of WFRFT to contain two vector parameters MN,∈ZM. Therefore a generalized frac-tional Fourier transform can be defined, which is denoted by the multiple-parameter fractional Fourier transform (MPFRFT). It enlarges the multiplicity of the FRFT, which not only includes the conventional FRFT and general multi-fractional Fourier transform as special cases, but also introduces new fractional Fourier transforms. It provides a unified framework for the FRFT, and the method is also available for fractionalizing other linear operators. In addition, numerical simulations of the MPFRFT on the Hermite-Gaussian and rectangular functions have been performed as a simple application of MPFRFT to signal processing.

  18. The Fourier Transform on Quantum Euclidean Space

    Directory of Open Access Journals (Sweden)

    Kevin Coulembier

    2011-05-01

    Full Text Available We study Fourier theory on quantum Euclidean space. A modified version of the general definition of the Fourier transform on a quantum space is used and its inverse is constructed. The Fourier transforms can be defined by their Bochner's relations and a new type of q-Hankel transforms using the first and second q-Bessel functions. The behavior of the Fourier transforms with respect to partial derivatives and multiplication with variables is studied. The Fourier transform acts between the two representation spaces for the harmonic oscillator on quantum Euclidean space. By using this property it is possible to define a Fourier transform on the entire Hilbert space of the harmonic oscillator, which is its own inverse and satisfies the Parseval theorem.

  19. Two modified discrete chirp Fourier transform schemes

    Institute of Scientific and Technical Information of China (English)

    樊平毅; 夏香根

    2001-01-01

    This paper presents two modified discrete chirp Fourier transform (MDCFT) schemes.Some matched filter properties such as the optimal selection of the transform length, and its relationship to analog chirp-Fourier transform are studied. Compared to the DCFT proposed previously, theoretical and simulation results have shown that the two MDCFTs can further improve the chirp rate resolution of the detected signals.

  20. Fourier Analysis and Structure Determination: Part I: Fourier Transforms.

    Science.gov (United States)

    Chesick, John P.

    1989-01-01

    Provides a brief introduction with some definitions and properties of Fourier transforms. Shows relations, ways of understanding the mathematics, and applications. Notes proofs are not included but references are given. First of three part series. (MVL)

  1. Lipid profiles of adipose and muscle tissues in mouse models of juvenile onset of obesity without high fat diet induction: a Fourier transform infrared (FT-IR) spectroscopic study.

    Science.gov (United States)

    Sen, Ilke; Bozkurt, Ozlem; Aras, Ebru; Heise, Sebastian; Brockmann, Gudrun Anni; Severcan, Feride

    2015-06-01

    The current study aims to determine lipid profiles in terms of the content and structure of skeletal muscle and adipose tissues to better understand the characteristics of juvenile-onset spontaneous obesity without high fat diet induction. For the purposes of this study, muscle (longissimus, quadriceps) and adipose (inguinal, gonadal) tissues of 10-week-old male DBA/2J and Berlin fat mouse inbred (BFMI) lines (BFMI856, BFMI860, BFMI861) fed with a standard breeding diet were used. Biomolecular structure and composition was determined using attenuated total reflection Fourier transform (ATR FT-IR) spectroscopy, and muscle triglyceride content was further quantified using high-performance liquid chromatography (HPLC) coupled with an evaporative light scattering detector (ELSD). The results revealed a loss of unsaturation in BFMI860 and BFMI861 lines in both muscles and inguinal adipose tissue, together with a decrease in the hydrocarbon chain length of lipids, especially in the BFMI860 line in muscles, suggesting an increased lipid peroxidation. There was an increase in saturated lipid and triglyceride content in all tissues of BFMI lines, more profoundly in longissimus muscle, where the increased triglyceride content was quantitatively confirmed by HPLC-ELSD. Moreover, an increase in the metabolic turnover of carbohydrates in muscles of the BFMI860 line was observed. The results demonstrated that subcutaneous (inguinal) fat also displayed considerable obesity-induced alterations. Taken together, the results revealed differences in lipid structure and content of BFMI lines, which may originate from different insulin sensitivity levels of the lines, making them promising animal models for spontaneous obesity. The results will contribute to the understanding of the generation of insulin resistance in obesity without high fat diet induction.

  2. Shift sampling theory of Fourier transform computation

    Institute of Scientific and Technical Information of China (English)

    柴玉璞

    1997-01-01

    The DFT transform us extended to DFTξη transform and the relationship between FT and DFTξη is given by the Fourier transform discretization theorem. Based on the theorem, the DFTξη algorithm-error equation (DFTξη A-E equation) is established, and the minimization property of discrete effect and the oscillation property of truncation effect are demonstrated. All these construct the shift sampling theory——a new theory about Fourier transform computation.

  3. A new twist to fourier transforms

    CERN Document Server

    Meikle, Hamish D

    2004-01-01

    Making use of the inherent helix in the Fourier transform expression, this book illustrates both Fourier transforms and their properties in the round. The author draws on elementary complex algebra to manipulate the transforms, presenting the ideas in such a way as to avoid pages of complicated mathematics. Similarly, abbreviations are not used throughout and the language is kept deliberately clear so that the result is a text that is accessible to a much wider readership.The treatment is extended with the use of sampled data to finite and discrete transforms, the fast Fourier transform, or FFT, being a special case of a discrete transform. The application of Fourier transforms in statistics is illustrated for the first time using the examples operational research and later radar detection. In addition, a whole chapter on tapering or weighting functions is added for reference. The whole is rounded off by a glossary and examples of diagrams in three dimensions made possible by today's mathematics programs

  4. The Geostationary Fourier Transform Spectrometer

    Science.gov (United States)

    Key, Richard; Sander, Stanley; Eldering, Annmarie; Blavier, Jean-Francois; Bekker, Dmitriy; Manatt, Ken; Rider, David; Wu, Yen-Hung

    2012-01-01

    The Geostationary Fourier Transform Spectrometer (GeoFTS) is an imaging spectrometer designed for a geostationary orbit (GEO) earth science mission to measure key atmospheric trace gases and process tracers related to climate change and human activity. GEO allows GeoFTS to continuously stare at a region of the earth for frequent sampling to capture the variability of biogenic fluxes and anthropogenic emissions from city to continental spatial scales and temporal scales from diurnal, synoptic, seasonal to interannual. The measurement strategy provides a process based understanding of the carbon cycle from contiguous maps of carbon dioxide (CO2), methane (CH4), carbon monoxide (CO), and chlorophyll fluorescence (CF) collected many times per day at high spatial resolution (2.7kmx2.7km at nadir). The CO2/CH4/CO/CF measurement suite in the near infrared spectral region provides the information needed to disentangle natural and anthropogenic contributions to atmospheric carbon concentrations and to minimize uncertainties in the flow of carbon between the atmosphere and surface. The half meter cube size GeoFTS instrument is based on a Michelson interferometer design that uses all high TRL components in a modular configuration to reduce complexity and cost. It is self-contained and as independent of the spacecraft as possible with simple spacecraft interfaces, making it ideal to be a "hosted" payload on a commercial communications satellite mission. The hosted payload approach for measuring the major carbon-containing gases in the atmosphere from the geostationary vantage point will affordably advance the scientific understating of carbon cycle processes and climate change.

  5. Fourier transforms in radar and signal processing

    CERN Document Server

    Brandwood, David

    2011-01-01

    Fourier transforms are used widely, and are of particular value in the analysis of single functions and combinations of functions found in radar and signal processing. Still, many problems that could have been tackled by using Fourier transforms may have gone unsolved because they require integration that is difficult and tedious. This newly revised and expanded edition of a classic Artech House book provides you with an up-to-date, coordinated system for performing Fourier transforms on a wide variety of functions. Along numerous updates throughout the book, the Second Edition includes a crit

  6. Quantum Fourier transform in computational basis

    Science.gov (United States)

    Zhou, S. S.; Loke, T.; Izaac, J. A.; Wang, J. B.

    2017-03-01

    The quantum Fourier transform, with exponential speed-up compared to the classical fast Fourier transform, has played an important role in quantum computation as a vital part of many quantum algorithms (most prominently, Shor's factoring algorithm). However, situations arise where it is not sufficient to encode the Fourier coefficients within the quantum amplitudes, for example in the implementation of control operations that depend on Fourier coefficients. In this paper, we detail a new quantum scheme to encode Fourier coefficients in the computational basis, with fidelity 1 - δ and digit accuracy ɛ for each Fourier coefficient. Its time complexity depends polynomially on log (N), where N is the problem size, and linearly on 1/δ and 1/ɛ . We also discuss an application of potential practical importance, namely the simulation of circulant Hamiltonians.

  7. Ash melting behavior by Fourier transform infrared spectroscopy

    Institute of Scientific and Technical Information of China (English)

    LI Han-xu; QIU Xiao-sheng; TANG Yong-xin

    2008-01-01

    A Fourier Transform Infrared Spectroscopic (FTIR) method involving a Fe2O3 flux was used to learn how China's coal ash melts. The relationship between ash fusion temperature and chemical composition, as well as the effects of Fe2O3 flux on the ash fusion temperature were studied. The relationship between ash fusion temperature and chemical composition, mineralogical phases and functional groups was analyzed with the FTIR method. The results show that the ash fusion temperature is related to the location and transmittance of certain absorption peaks, which is of great significance for the study of ash behavior.

  8. Composite Cyclotomic Fourier Transforms with Reduced Complexities

    CERN Document Server

    Wu, Xuebin; Chen, Ning; Yan, Zhiyuan; Wang, Ying

    2010-01-01

    Discrete Fourier transforms~(DFTs) over finite fields have widespread applications in digital communication and storage systems. Hence, reducing the computational complexities of DFTs is of great significance. Recently proposed cyclotomic fast Fourier transforms (CFFTs) are promising due to their low multiplicative complexities. Unfortunately, there are two issues with CFFTs: (1) they rely on efficient short cyclic convolution algorithms, which has not been investigated thoroughly yet, and (2) they have very high additive complexities when directly implemented. In this paper, we address both issues. One of the main contributions of this paper is efficient bilinear 11-point cyclic convolution algorithms, which allow us to construct CFFTs over GF$(2^{11})$. The other main contribution of this paper is that we propose composite cyclotomic Fourier transforms (CCFTs). In comparison to previously proposed fast Fourier transforms, our CCFTs achieve lower overall complexities for moderate to long lengths, and the imp...

  9. Electronically-Scanned Fourier-Transform Spectrometer

    Science.gov (United States)

    Breckinridge, J. B.; Ocallaghan, F. G.

    1984-01-01

    Instrument efficient, lightweight, and stable. Fourier-transform spectrometer configuration uses electronic, instead of mechanical, scanning. Configuration insensitive to vibration-induced sampling errors introduced into mechanically scanned systems.

  10. A DISTRIBUTION SPACE FOR FOURIER TRANSFORM

    Institute of Scientific and Technical Information of China (English)

    Zhou Chaoying; Yang Lihua; Huang Daren

    2007-01-01

    A space DF is constructed and some characterizations of space DF are given. Itis shown that the classical Fourier transform is extended to the distribution space D'F, whichcan be embedded into the Schwartz distribution space D' continuously. It is also shown thatD'F is the biggest embedded subspace of D' on which the extended Fourier transform, F, is ahomeomorphism of D'F onto itself.

  11. Fractional Fourier transform of Lorentz beams

    Institute of Scientific and Technical Information of China (English)

    Zhou Guo-Quan

    2009-01-01

    This paper introduces Lorentz beams to describe certain laser sources that produce highly divergent fields. The fractional Fourier transform (FRFT) is applied to treat the propagation of Lorentz beams. Based on the definition of convolution and the convolution theorem of the Fourier transform, an analytical expression for a Lorentz beam passing through a FRFT system has been derived. By using the derived formula, the properties of a Lorentz beam in the FRFT plane are illustrated numerically.

  12. Trace gas emissions from combustion of peat, crop residue, domestic biofuels, grasses, and other fuels: configuration and Fourier transform infrared (FTIR) component of the fourth Fire Lab at Missoula Experiment (FLAME-4)

    Science.gov (United States)

    Stockwell, C. E.; Yokelson, R. J.; Kreidenweis, S. M.; Robinson, A. L.; DeMott, P. J.; Sullivan, R. C.; Reardon, J.; Ryan, K. C.; Griffith, D. W. T.; Stevens, L.

    2014-09-01

    During the fourth Fire Lab at Missoula Experiment (FLAME-4, October-November 2012) a large variety of regionally and globally significant biomass fuels was burned at the US Forest Service Fire Sciences Laboratory in Missoula, Montana. The particle emissions were characterized by an extensive suite of instrumentation that measured aerosol chemistry, size distribution, optical properties, and cloud-nucleating properties. The trace gas measurements included high-resolution mass spectrometry, one- and two-dimensional gas chromatography, and open-path Fourier transform infrared (OP-FTIR) spectroscopy. This paper summarizes the overall experimental design for FLAME-4 - including the fuel properties, the nature of the burn simulations, and the instrumentation employed - and then focuses on the OP-FTIR results. The OP-FTIR was used to measure the initial emissions of 20 trace gases: CO2, CO, CH4, C2H2, C2H4, C3H6, HCHO, HCOOH, CH3OH, CH3COOH, glycolaldehyde, furan, H2O, NO, NO2, HONO, NH3, HCN, HCl, and SO2. These species include most of the major trace gases emitted by biomass burning, and for several of these compounds, this is the first time their emissions are reported for important fuel types. The main fire types included African grasses, Asian rice straw, cooking fires (open (three-stone), rocket, and gasifier stoves), Indonesian and extratropical peat, temperate and boreal coniferous canopy fuels, US crop residue, shredded tires, and trash. Comparisons of the OP-FTIR emission factors (EFs) and emission ratios (ERs) to field measurements of biomass burning verify that the large body of FLAME-4 results can be used to enhance the understanding of global biomass burning and its representation in atmospheric chemistry models. Crop residue fires are widespread globally and account for the most burned area in the US, but their emissions were previously poorly characterized. Extensive results are presented for burning rice and wheat straw: two major global crop residues

  13. Topics In Chemical Instrumentation: Fourier Transformations for Chemists Part I. Introduction to the Fourier Transform.

    Science.gov (United States)

    Glasser, L.

    1987-01-01

    This paper explores how Fourier Transform (FT) mimics spectral transformation, how this property can be exploited to advantage in spectroscopy, and how the FT can be used in data treatment. A table displays a number of important FT serial/spectral pairs related by Fourier Transformations. A bibliography and listing of computer software related to…

  14. From Complex Fractional Fourier Transform to Complex Fractional Radon Transform

    Institute of Scientific and Technical Information of China (English)

    FAN Hong-Yi; JIANG Nian-Quan

    2004-01-01

    We show that for n-dimensional complex fractional Fourier transform the corresponding complex fractional Radon transform can also be derived, however, it is different from the direct product of two n-dimensional real fractional Radon transforms. The complex fractional Radon transform of two-mode Wigner operator is calculated.

  15. On the Scaled Fractional Fourier Transformation Operator

    Institute of Scientific and Technical Information of China (English)

    FAN Hong-Yi; HU Li-Yun

    2008-01-01

    Based on our previous study [Chin.Phys.Lett.24(2007)2238]in which the Fresnel operator corresponding to classical Fresnel transform was introduced,we derive the fractional Fourier transformation operator,and the optical operator method is then enriched.

  16. [Quantitative analysis of transformer oil dissolved gases using FTIR].

    Science.gov (United States)

    Zhao, An-xin; Tang, Xiao-jun; Wang, Er-zhen; Zhang, Zhong-hua; Liu, Jun-hua

    2013-09-01

    For the defects of requiring carrier gas and regular calibration, and low safety using chromatography to on line monitor transformer dissolved gases, it was attempted to establish a dissolved gas analysis system based on Fourier transform infrared spectroscopy. Taking into account the small amount of characteristic gases, many components, detection limit and safety requirements and the difficulty of degasser to put an end to the presence of interference gas, the quantitative analysis model was established based on sparse partial least squares, piecewise section correction and feature variable extraction algorithm using improvement TR regularization. With the characteristic gas of CH4, C2H6, C2H6, and CO2, the results show that using FTIR meets DGA requirements with the spectrum wave number resolution of 1 cm(-1) and optical path of 10 cm.

  17. The Kinetics of Mo(Co)6 Substitution Monitored by Fourier Transform Infrared Spectrophotometry.

    Science.gov (United States)

    Suslick, Kenneth S.; And Others

    1987-01-01

    Describes a physical chemistry experiment that uses Fourier transform (FTIR) spectrometers and microcomputers as a way of introducing students to the spectral storage and manipulation techniques associated with digitized data. It can be used to illustrate FTIR spectroscopy, simple kinetics, inorganic mechanisms, and Beer's Law. (TW)

  18. High order generalized permutational fractional Fourier transforms

    Institute of Scientific and Technical Information of China (English)

    Ran Qi-Wen; Yuan Lin; Tan Li-Ying; Ma Jing; Wang Qi

    2004-01-01

    We generalize the definition of the fractional Fourier transform (FRFT) by extending the new definition proposed by Shih. The generalized FRFT, called the high order generalized permutational fractional Fourier transform (HGPFRFT),is a generalized permutational transform. It is shown to have arbitrary natural number M periodic eigenvalues not only with respect to the order of Hermite-Gaussian functions but also to the order of the transform. This HGPFRFT will be reduced to the original FRFT proposed by Namias and Liu's generalized FRFT and Shih's FRFT at the three limits with M = +∞,M = 4k (k is a natural number), and M = 4, respectively. Therefore the HGPFRFT introduces a comprehensive approach to Shih's FRFT and the original definition. Some important properties of HGPFRFT are discussed. Lastly the results of computer simulations and symbolic representations of the transform are provided.

  19. Fourier transforms and convolutions for the experimentalist

    CERN Document Server

    Jennison, RC

    1961-01-01

    Fourier Transforms and Convolutions for the Experimentalist provides the experimentalist with a guide to the principles and practical uses of the Fourier transformation. It aims to bridge the gap between the more abstract account of a purely mathematical approach and the rule of thumb calculation and intuition of the practical worker. The monograph springs from a lecture course which the author has given in recent years and for which he has drawn upon a number of sources, including a set of notes compiled by the late Dr. I. C. Browne from a series of lectures given by Mr. J . A. Ratcliffe of t

  20. Fast Fourier Transform algorithm design and tradeoffs

    Science.gov (United States)

    Kamin, Ray A., III; Adams, George B., III

    1988-01-01

    The Fast Fourier Transform (FFT) is a mainstay of certain numerical techniques for solving fluid dynamics problems. The Connection Machine CM-2 is the target for an investigation into the design of multidimensional Single Instruction Stream/Multiple Data (SIMD) parallel FFT algorithms for high performance. Critical algorithm design issues are discussed, necessary machine performance measurements are identified and made, and the performance of the developed FFT programs are measured. Fast Fourier Transform programs are compared to the currently best Cray-2 FFT program.

  1. Clifford Fourier transform on vector fields.

    Science.gov (United States)

    Ebling, Julia; Scheuermann, Gerik

    2005-01-01

    Image processing and computer vision have robust methods for feature extraction and the computation of derivatives of scalar fields. Furthermore, interpolation and the effects of applying a filter can be analyzed in detail and can be advantages when applying these methods to vector fields to obtain a solid theoretical basis for feature extraction. We recently introduced the Clifford convolution, which is an extension of the classical convolution on scalar fields and provides a unified notation for the convolution of scalar and vector fields. It has attractive geometric properties that allow pattern matching on vector fields. In image processing, the convolution and the Fourier transform operators are closely related by the convolution theorem and, in this paper, we extend the Fourier transform to include general elements of Clifford Algebra, called multivectors, including scalars and vectors. The resulting convolution and derivative theorems are extensions of those for convolution and the Fourier transform on scalar fields. The Clifford Fourier transform allows a frequency analysis of vector fields and the behavior of vector-valued filters. In frequency space, vectors are transformed into general multivectors of the Clifford Algebra. Many basic vector-valued patterns, such as source, sink, saddle points, and potential vortices, can be described by a few multivectors in frequency space.

  2. Fourier transform infrared spectroscopic study of intact cells of the nitrogen-fixing bacterium Azospirillum brasilense

    Science.gov (United States)

    Kamnev, A. A.; Ristić, M.; Antonyuk, L. P.; Chernyshev, A. V.; Ignatov, V. V.

    1997-06-01

    The data of Fourier transform infrared (FTIR) spectroscopic measurements performed on intact cells of the soil nitrogen-fixing bacterium Azospirillum brasilense grown in a standard medium and under the conditions of an increased metal uptake are compared and discussed. The structural FTIR information obtained is considered together with atomic absorption spectrometry (AAS) data on the content of metal cations in the bacterial cells. Some methodological aspects concerning preparation of bacterial cell samples for FTIR measurements are also discussed.

  3. Implementation of quantum and classical discrete fractional Fourier transforms.

    Science.gov (United States)

    Weimann, Steffen; Perez-Leija, Armando; Lebugle, Maxime; Keil, Robert; Tichy, Malte; Gräfe, Markus; Heilmann, René; Nolte, Stefan; Moya-Cessa, Hector; Weihs, Gregor; Christodoulides, Demetrios N; Szameit, Alexander

    2016-03-23

    Fourier transforms, integer and fractional, are ubiquitous mathematical tools in basic and applied science. Certainly, since the ordinary Fourier transform is merely a particular case of a continuous set of fractional Fourier domains, every property and application of the ordinary Fourier transform becomes a special case of the fractional Fourier transform. Despite the great practical importance of the discrete Fourier transform, implementation of fractional orders of the corresponding discrete operation has been elusive. Here we report classical and quantum optical realizations of the discrete fractional Fourier transform. In the context of classical optics, we implement discrete fractional Fourier transforms of exemplary wave functions and experimentally demonstrate the shift theorem. Moreover, we apply this approach in the quantum realm to Fourier transform separable and path-entangled biphoton wave functions. The proposed approach is versatile and could find applications in various fields where Fourier transforms are essential tools.

  4. Replica Fourier Transform: Properties and applications

    Directory of Open Access Journals (Sweden)

    A. Crisanti

    2015-02-01

    Full Text Available The Replica Fourier Transform is the generalization of the discrete Fourier Transform to quantities defined on an ultrametric tree. It finds use in conjunction of the replica method used to study thermodynamics properties of disordered systems such as spin glasses. Its definition is presented in a systematic and simple form and its use illustrated with some representative examples. In particular we give a detailed discussion of the diagonalization in the Replica Fourier Space of the Hessian matrix of the Gaussian fluctuations about the mean field saddle point of spin glass theory. The general results are finally discussed for a generic spherical spin glass model, where the Hessian can be computed analytically.

  5. Ultrafast Fourier-transform parallel processor

    Energy Technology Data Exchange (ETDEWEB)

    Greenberg, W.L.

    1980-04-01

    A new, flexible, parallel-processing architecture is developed for a high-speed, high-precision Fourier transform processor. The processor is intended for use in 2-D signal processing including spatial filtering, matched filtering and image reconstruction from projections.

  6. Fourier transforms on an amalgam type space

    CERN Document Server

    Liflyand, E

    2012-01-01

    We introduce an amalgam type space, a subspace of $L^1(\\mathbb R_+).$ Integrability results for the Fourier transform of a function with the derivative from such an amalgam space are proved. As an application we obtain estimates for the integrability of trigonometric series.

  7. Fourier transform infrared spectrometery: an undergraduate experiment

    Science.gov (United States)

    Lerner, L.

    2016-11-01

    Simple apparatus is developed, providing undergraduate students with a solid understanding of Fourier transform (FT) infrared (IR) spectroscopy in a hands on experiment. Apart from its application to measuring the mid-IR spectra of organic molecules, the experiment introduces several techniques with wide applicability in physics, including interferometry, the FT, digital data analysis, and control theory.

  8. Electro-optic imaging Fourier transform spectrometer

    Science.gov (United States)

    Chao, Tien-Hsin (Inventor); Znod, Hanying (Inventor)

    2009-01-01

    An Electro-Optic Imaging Fourier Transform Spectrometer (EOIFTS) for Hyperspectral Imaging is described. The EOIFTS includes an input polarizer, an output polarizer, and a plurality of birefringent phase elements. The relative orientations of the polarizers and birefringent phase elements can be changed mechanically or via a controller, using ferroelectric liquid crystals, to substantially measure the spectral Fourier components of light propagating through the EIOFTS. When achromatic switches are used as an integral part of the birefringent phase elements, the EIOFTS becomes suitable for broadband applications, with over 1 micron infrared bandwidth.

  9. Fourier Transform Fabry-Perot Interferometer

    Science.gov (United States)

    Snell, Hilary E.; Hays, Paul B.

    1992-01-01

    We are developing a compact, rugged, high-resolution remote sensing instrument with wide spectral scanning capabilities. This relatively new type of instrument, which we have chosen to call the Fourier-Transform Fabry-Perot Interferometer (FT-FPI), is accomplished by mechanically scanning the etalon plates of a Fabry-Perot interferometer (FPI) through a large optical distance while examining the concomitant signal with a Fourier-transform analysis technique similar to that employed by the Michelson interferometer. The FT-FPI will be used initially as a ground-based instrument to study near-infrared atmospheric absorption lines of trace gases using the techniques of solar absorption spectroscopy. Future plans include modifications to allow for measurements of trace gases in the stratosphere using spectral lines at terahertz frequencies.

  10. Fourier-transform spectroscopy instrumentation engineering

    CERN Document Server

    Saptari, Vidi

    2003-01-01

    Many applications today require the Fourier-transform (FT) spectrometer to perform close to its limitations, such as taking many quantitative measurements in the visible and in the near infrared wavelength regions. In such cases, the instrument should not be considered as a perfect ""black box."" Knowing where the limitations of performance arise and which components must be improved are crucial to obtaining repeatable and accurate results. One of the objectives of this book is to help the user identify the instrument's bottleneck.

  11. Optical Planar Discrete Fourier and Wavelet Transforms

    Science.gov (United States)

    Cincotti, Gabriella; Moreolo, Michela Svaluto; Neri, Alessandro

    2007-10-01

    We present all-optical architectures to perform discrete wavelet transform (DWT), wavelet packet (WP) decomposition and discrete Fourier transform (DFT) using planar lightwave circuits (PLC) technology. Any compact-support wavelet filter can be implemented as an optical planar two-port lattice-form device, and different subband filtering schemes are possible to denoise, or multiplex optical signals. We consider both parallel and serial input cases. We design a multiport decoder/decoder that is able to generate/process optical codes simultaneously and a flexible logarithmic wavelength multiplexer, with flat top profile and reduced crosstalk.

  12. Programs for high-speed Fourier, Mellin and Fourier-Bessel transforms

    Science.gov (United States)

    Ikhabisimov, D. K.; Debabov, A. S.; Kolosov, B. I.; Usikov, D. A.

    1979-01-01

    Several FORTRAN program modules for performing one-dimensional and two-dimensional discrete Fourier transforms, Mellin, and Fourier-Bessel transforms are described along with programs that realize the algebra of high speed Fourier transforms on a computer. The programs can perform numerical harmonic analysis of functions, synthesize complex optical filters on a computer, and model holographic image processing methods.

  13. Digital image pattern recognition system using normalized Fourier transform and normalized analytical Fourier-Mellin transform

    Science.gov (United States)

    Vélez-Rábago, Rodrigo; Solorza-Calderón, Selene; Jordan-Aramburo, Adina

    2016-12-01

    This work presents an image pattern recognition system invariant to translation, scale and rotation. The system uses the Fourier transform to achieve the invariance to translation and the analytical Forier-Mellin transform for the invariance to scale and rotation. According with the statistical theory of box-plots, the pattern recognition system has a confidence level at least of 95.4%.

  14. Laser Field Imaging Through Fourier Transform Heterodyne

    Energy Technology Data Exchange (ETDEWEB)

    Cooke, B.J.; Laubscher, B.E.; Olivas, N.L.; Galbraith, A.E.; Strauss, C.E.; Grubler, A.C.

    1999-04-05

    The authors present a detection process capable of directly imaging the transverse amplitude, phase, and Doppler shift of coherent electromagnetic fields. Based on coherent detection principles governing conventional heterodyned RADAR/LADAR systems, Fourier Transform Heterodyne incorporates transverse spatial encoding of the reference local oscillator for image capture. Appropriate selection of spatial encoding functions allows image retrieval by way of classic Fourier manipulations. Of practical interest: (1) imaging may be accomplished with a single element detector/sensor requiring no additional scanning or moving components, (2) as detection is governed by heterodyne principles, near quantum limited performance is achievable, (3) a wide variety of appropriate spatial encoding functions exist that may be adaptively configured in real-time for applications requiring optimal detection, and (4) the concept is general with the applicable electromagnetic spectrum encompassing the RF through optical.

  15. Fourier transforms in the complex domain

    CERN Document Server

    Wiener, N

    1934-01-01

    With the aid of Fourier-Mellin transforms as a tool in analysis, the authors were able to attack such diverse analytic questions as those of quasi-analytic functions, Mercer's theorem on summability, Milne's integral equation of radiative equilibrium, the theorems of Münz and Szász concerning the closure of sets of powers of an argument, Titchmarsh's theory of entire functions of semi-exponential type with real negative zeros, trigonometric interpolation and developments in polynomials of the form \\sum^N_1A_ne^{i\\lambda_nx}, lacunary series, generalized harmonic analysis in the complex domain,

  16. A Fourier Transform Infrared Spectrophotometry Method Used For Oseltamivir Determination in Pharmaceutical Formulations

    OpenAIRE

    Aboul-Enein, Y; BUNACIU, Andrei; Nita, Sultana; FLESCHIN, Serban; AYDOGMUS, Zeynep

    2012-01-01

    A Fourier transform infrared (FT-IR) spectrometric method was developed for the rapid, direct measurement of oseltamivir phosphate (OP) in pharmaceutical formulations. Conventional KBr-spectra were compared for best determination of the active substance in pharmaceutical preparations. The Beer-Lambert law and two chemometric approaches, partial least squares (PLS) and principal component regression (PCR+) methods, were used in data processing. Key words: FT-IR analysis, oseltamivir, ...

  17. Fourier transforms in generalized Fock spaces

    Directory of Open Access Journals (Sweden)

    John Schmeelk

    1990-01-01

    Full Text Available A classical Fock space consists of functions of the form,Φ↔(ϕ0,ϕ1,…,ϕq,…,where ϕ0∈C and ϕq∈L2(R3q, q≥1. We will replace the ϕq, q≥1 with q-symmetric rapid descent test functions within tempered distribution theory. This space is a natural generalization of a classical Fock space as seen by expanding functionals having generalized Taylor series. The particular coefficients of such series are multilinear functionals having tempered distributions as their domain. The Fourier transform will be introduced into this setting. A theorem will be proven relating the convergence of the transform to the parameter, s, which sweeps out a scale of generalized Fock spaces.

  18. FFTW: Fastest Fourier Transform in the West

    Science.gov (United States)

    Frigo, Matteo; Johnson, Steven G.

    2012-01-01

    FFTW is a C subroutine library for computing the discrete Fourier transform (DFT) in one or more dimensions, of arbitrary input size, and of both real and complex data (as well as of even/odd data, i.e. the discrete cosine/sine transforms or DCT/DST). Benchmarks performed on a variety of platforms show that FFTW's performance is typically superior to that of other publicly available FFT software, and is even competitive with vendor-tuned codes. In contrast to vendor-tuned codes, however, FFTW's performance is portable: the same program will perform well on most architectures without modification. The FFTW library is required by other codes such as StarCrash and Hammurabi.

  19. Two-dimensional fourier transform spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    DeFlores, Lauren; Tokmakoff, Andrei

    2016-10-25

    The present invention relates to a system and methods for acquiring two-dimensional Fourier transform (2D FT) spectra. Overlap of a collinear pulse pair and probe induce a molecular response which is collected by spectral dispersion of the signal modulated probe beam. Simultaneous collection of the molecular response, pulse timing and characteristics permit real time phasing and rapid acquisition of spectra. Full spectra are acquired as a function of pulse pair timings and numerically transformed to achieve the full frequency-frequency spectrum. This method demonstrates the ability to acquire information on molecular dynamics, couplings and structure in a simple apparatus. Multi-dimensional methods can be used for diagnostic and analytical measurements in the biological, biomedical, and chemical fields.

  20. Two-dimensional fourier transform spectrometer

    Science.gov (United States)

    DeFlores, Lauren; Tokmakoff, Andrei

    2013-09-03

    The present invention relates to a system and methods for acquiring two-dimensional Fourier transform (2D FT) spectra. Overlap of a collinear pulse pair and probe induce a molecular response which is collected by spectral dispersion of the signal modulated probe beam. Simultaneous collection of the molecular response, pulse timing and characteristics permit real time phasing and rapid acquisition of spectra. Full spectra are acquired as a function of pulse pair timings and numerically transformed to achieve the full frequency-frequency spectrum. This method demonstrates the ability to acquire information on molecular dynamics, couplings and structure in a simple apparatus. Multi-dimensional methods can be used for diagnostic and analytical measurements in the biological, biomedical, and chemical fields.

  1. Research progress on discretization of fractional Fourier transform

    Institute of Scientific and Technical Information of China (English)

    TAO Ran; ZHANG Feng; WANG Yue

    2008-01-01

    As the fractional Fourier transform has attracted a considerable amount of atten-tion in the area of optics and signal processing,the discretization of the fractional Fourier transform becomes vital for the application of the fractional Fourier trans-form.Since the discretization of the fractional Fourier transform cannot be obtained by directly sampling in time domain and the fractional Fourier domain,the discre-tization of the fractional Fourier transform has been investigated recently.A sum-mary of discretizations of the fractional Fourier transform developed in the last nearly two decades is presented in this paper.The discretizations include sampling in the fractional Fourier domain,discrete-time fractional Fourier transform,frac-tional Fourier series,discrete fractional Fourier transform (including 3 main types:linear combination-type;sampling-type;and eigen decomposition-type),and other discrete fractional signal transform.It is hoped to offer a doorstep for the readers who are interested in the fractional Fourier transform.

  2. The Fourier transform of tubular densities

    KAUST Repository

    Prior, C B

    2012-05-18

    We consider the Fourier transform of tubular volume densities, with arbitrary axial geometry and (possibly) twisted internal structure. This density can be used to represent, among others, magnetic flux or the electron density of biopolymer molecules. We consider tubes of both finite radii and unrestricted radius. When there is overlap of the tube structure the net density is calculated using the super-position principle. The Fourier transform of this density is composed of two expressions, one for which the radius of the tube is less than the curvature of the axis and one for which the radius is greater (which must have density overlap). This expression can accommodate an asymmetric density distribution and a tube structure which has non-uniform twisting. In addition we give several simpler expressions for isotropic densities, densities of finite radius, densities which decay at a rate sufficient to minimize local overlap and finally individual surfaces of the tube manifold. These simplified cases can often be expressed as arclength integrals and can be evaluated using a system of first-order ODEs. © 2012 IOP Publishing Ltd.

  3. JCE Online: Interactive Fourier Transform Activities

    Science.gov (United States)

    Zielinski, Theresa Julia

    1999-02-01

    In our vigorous teaching of concepts and skills to students, we may cover (hide) more than we uncover, obscuring significant relationships between mathematical models and their associated chemical concepts with excessive mathematical derivations. To set the record straight, I find that mathematical treatments of physical phenomena are beautiful and elegant. Students should know from where the equations and simplifications leading to them arise. They should know the limits of the equations in order to use them properly. However, this can be the Siren's song. For example, the mathematical representation of the Fourier transform and its significance as presented in most texts are too brief to convey understanding to the typical undergraduate student. Furthermore, a few hand calculations would not permit deeper probing of the method and its intimate link to spectroscopy. The Fourier transform is a very good example of how symbolic equation software can help to uncover the science by making the mathematical manipulations easier and the mathematical concepts more accessible. The complete articles and Mathcad documents described in these abstracts are available from JCE Online at http://jchemed.chem.wisc.edu/JCEWWW/Columns/McadInChem/.

  4. Fourier Transforms Simplified: Computing an Infrared Spectrum from an Interferogram

    Science.gov (United States)

    Hanley, Quentin S.

    2012-01-01

    Fourier transforms are used widely in chemistry and allied sciences. Examples include infrared, nuclear magnetic resonance, and mass spectroscopies. A thorough understanding of Fourier methods assists the understanding of microscopy, X-ray diffraction, and diffraction gratings. The theory of Fourier transforms has been presented in this "Journal",…

  5. From fractional Fourier transformation to quantum mechanical fractional squeezing transformation

    Institute of Scientific and Technical Information of China (English)

    吕翠红; 范洪义; 李东韡

    2015-01-01

    By converting the triangular functions in the integration kernel of the fractional Fourier transformation to the hy-perbolic function, i.e., tanα→tanhα, sinα→sinhα, we find quantum mechanical fractional squeezing transformation (FrST) which satisfies additivity. By virtue of the integration technique within ordered product of operators (IWOP) wederive the unitary operator responsible for the FrST, which is composite and is made of eiπa†a/2 and exp[ iα2 (a2+a†2)]. The FrST may be implemented in combinations of quadratic nonlinear crystals with different phase mismatches.

  6. High-Throughput Screening Using Fourier-Transform Infrared Imaging

    Directory of Open Access Journals (Sweden)

    Erdem Sasmaz

    2015-06-01

    Full Text Available Efficient parallel screening of combinatorial libraries is one of the most challenging aspects of the high-throughput (HT heterogeneous catalysis workflow. Today, a number of methods have been used in HT catalyst studies, including various optical, mass-spectrometry, and gas-chromatography techniques. Of these, rapid-scanning Fourier-transform infrared (FTIR imaging is one of the fastest and most versatile screening techniques. Here, the new design of the 16-channel HT reactor is presented and test results for its accuracy and reproducibility are shown. The performance of the system was evaluated through the oxidation of CO over commercial Pd/Al2O3 and cobalt oxide nanoparticles synthesized with different reducer-reductant molar ratios, surfactant types, metal and surfactant concentrations, synthesis temperatures, and ramp rates.

  7. Fourier transform inequalities for phylogenetic trees.

    Science.gov (United States)

    Matsen, Frederick A

    2009-01-01

    Phylogenetic invariants are not the only constraints on site-pattern frequency vectors for phylogenetic trees. A mutation matrix, by its definition, is the exponential of a matrix with non-negative off-diagonal entries; this positivity requirement implies non-trivial constraints on the site-pattern frequency vectors. We call these additional constraints "edge-parameter inequalities". In this paper, we first motivate the edge-parameter inequalities by considering a pathological site-pattern frequency vector corresponding to a quartet tree with a negative internal edge. This site-pattern frequency vector nevertheless satisfies all of the constraints described up to now in the literature. We next describe two complete sets of edge-parameter inequalities for the group-based models; these constraints are square-free monomial inequalities in the Fourier transformed coordinates. These inequalities, along with the phylogenetic invariants, form a complete description of the set of site-pattern frequency vectors corresponding to bona fide trees. Said in mathematical language, this paper explicitly presents two finite lists of inequalities in Fourier coordinates of the form "monomial < or = 1", each list characterizing the phylogenetically relevant semialgebraic subsets of the phylogenetic varieties.

  8. Multicomplementary operators via finite Fourier transform

    Energy Technology Data Exchange (ETDEWEB)

    Klimov, Andrei B [Departamento de Fisica, Universidad de Guadalajara, Revolucion 1500, 44420 Guadalajara, Jalisco (Mexico); Sanchez-Soto, Luis L [Department of Physics, Lakehead University, Thunder Bay, Ontario P7B 5E1 (Canada); Guise, Hubert de [Department of Physics, Lakehead University, Thunder Bay, Ontario P7B 5E1 (Canada)

    2005-03-25

    A complete set of d + 1 mutually unbiased bases exists in a Hilbert space of dimension d, whenever d is a power of a prime. We discuss a simple construction of d + 1 disjoint classes (each one having d - 1 commuting operators) such that the corresponding eigenstates form sets of unbiased bases. Such a construction works properly for prime dimension. We investigate an alternative construction in which the real numbers that label the classes are replaced by a finite field having d elements. One of these classes is diagonal, and can be mapped to cyclic operators by means of the finite Fourier transform, which allows one to understand complementarity in a similar way as for the position-momentum pair in standard quantum mechanics. The relevant examples of two and three qubits and two qutrits are discussed in detail.

  9. Fourier transform spectroscopy for future planetary missions

    Science.gov (United States)

    Brasunas, John; Kolasinski, John; Kostiuk, Ted; Hewagama, Tilak

    2017-01-01

    Thermal-emission infrared spectroscopy is a powerful tool for exploring the composition, temperature structure, and dynamics of planetary atmospheres; and the temperature of solid surfaces. A host of Fourier transform spectrometers (FTS) such as Mariner IRIS, Voyager IRIS, and Cassini CIRS from NASA Goddard have made and continue to make important new discoveries throughout the solar system. Future FTS instruments will have to be more sensitive (when we concentrate on the colder, outer reaches of the solar system), and less massive and less power-hungry as we cope with decreasing resource allotments for future planetary science instruments. With this in mind, we have developed CIRS-lite, a smaller version of the CIRS FTS for future planetary missions. We discuss the roadmap for making CIRS-lite a viable candidate for future planetary missions, including the recent increased emphasis on ocean worlds (Europa, Encelatus, Titan) and also on smaller payloads such as CubeSats and SmallSats.

  10. Design and fabrication of step mirrors used in space-modulated Fourier transform infrared spectrometer.

    Science.gov (United States)

    Zheng, Ying; Liang, Jingqiu; Liang, Zhongzhu

    2013-01-14

    A model of miniaturized space-modulated Fourier transform infrared spectrometer (FTIR) is given. The two step mirrors as the key components are designed and a lithography-electroplating technique used to fabricate the small step mirror is proposed. We analyze the effect of the experiment results resulted from fabricating technics on the recovery spectrum in theory, and demonstrate that the lithography-electroplating technique is an effective method to fabricate the step mirror, which make miniaturized FTIR realized. We believe that the performances of FTIR can be better realized by optimizing experimental conditions to make this fabricating method more attractive.

  11. Unfolding features of bovine testicular hyaluronidase studied by fluorescence spectroscopy and fourier transformed infrared spectroscopy.

    Science.gov (United States)

    Pan, Nina; Cai, Xiaoqiang; Tang, Kai; Zou, Guolin

    2005-11-01

    Chemical unfolding of bovine testicular hyaluronidase (HAase) has been studied by fluorescence spectroscopy and Fourier transformed infrared spectroscopy (FTIR). Thermodynamic parameters were determined for unfolding HAase from changes in the intrinsic fluorescence emission intensity and the formations of several possible unfolding intermediates have been identified. This was further confirmed by representation of fluorescence data in terms of 'phase diagram'. The secondary structures of HAase have been assigned and semiquantitatively estimated from the FTIR. The occurrence of conformational change during chemical unfolding as judged by fluorescence and FTIR spectroscopy indicated that the unfolding of HAase may not follow the typical two-state model.

  12. Applying Quaternion Fourier Transforms for Enhancing Color Images

    Directory of Open Access Journals (Sweden)

    M.I. Khalil

    2012-03-01

    Full Text Available The Fourier transforms play a critical role in a broad range of image processing applications, including enhancement, analysis, restoration, and compression. Until recently, it was common to use the conventional methods to deal with colored images. These methods are based on RGB decomposition of the colored image by separating it into three separate scalar images and computing the Fourier transforms of these images separately. The computing of the Hypercomplex 2D Fourier transform of a color image as a whole unit has only recently been realized. This paper is concerned with frequency domain noise reduction of color images using quaternion Fourier transforms. The approach is based on obtaining quaternion Fourier transform of the color image and applying the Gaussian filter to it in the frequency domain. The filtered image is then obtained by calculating the inverse quaternion Fourier transforms.

  13. Integrability of the Fourier transform: functions of bounded variation

    CERN Document Server

    Liflyand, E

    2012-01-01

    Certain relations between the Fourier transform of a function of bounded variation and the Hilbert transform of its derivative are revealed. The widest subspaces of the space of functions of bounded variation are indicated in which the cosine and sine Fourier transforms are integrable.

  14. Geometric interpretations of the Discrete Fourier Transform (DFT)

    Science.gov (United States)

    Campbell, C. W.

    1984-01-01

    One, two, and three dimensional Discrete Fourier Transforms (DFT) and geometric interpretations of their periodicities are presented. These operators are examined for their relationship with the two sided, continuous Fourier transform. Discrete or continuous transforms of real functions have certain symmetry properties. The symmetries are examined for the one, two, and three dimensional cases. Extension to higher dimension is straight forward.

  15. Non-Contact Measurement of the Spectral Emissivity through Active/Passive Synergy of CO₂ Laser at 10.6 µm and 102F FTIR (Fourier Transform Infrared) Spectrometer.

    Science.gov (United States)

    Zhang, Ren-Hua; Su, Hong-Bo; Tian, Jing; Mi, Su-Juan; Li, Zhao-Liang

    2016-06-24

    In the inversion of land surface temperature (LST) from satellite data, obtaining the information on land surface emissivity is most challenging. How to solve both the emissivity and the LST from the underdetermined equations for thermal infrared radiation is a hot research topic related to quantitative thermal infrared remote sensing. The academic research and practical applications based on the temperature-emissivity retrieval algorithms show that directly measuring the emissivity of objects at a fixed thermal infrared waveband is an important way to close the underdetermined equations for thermal infrared radiation. Based on the prior research results of both the authors and others, this paper proposes a new approach of obtaining the spectral emissivity of the object at 8-14 µm with a single-band CO₂ laser at 10.6 µm and a 102F FTIR spectrometer. Through experiments, the spectral emissivity of several key samples, including aluminum plate, iron plate, copper plate, marble plate, rubber sheet, and paper board, at 8-14 µm is obtained, and the measured data are basically consistent with the hemispherical emissivity measurement by a Nicolet iS10 FTIR spectrometer for the same objects. For the rough surface of materials, such as marble and rusty iron, the RMSE of emissivity is below 0.05. The differences in the field of view angle and in the measuring direction between the Nicolet FTIR method and the method proposed in the paper, and the heterogeneity in the degree of oxidation, polishing and composition of the samples, are the main reasons for the differences of the emissivities between the two methods.

  16. Non-Contact Measurement of the Spectral Emissivity through Active/Passive Synergy of CO2 Laser at 10.6 µm and 102F FTIR (Fourier Transform Infrared) Spectrometer

    Science.gov (United States)

    Zhang, Ren-Hua; Su, Hong-Bo; Tian, Jing; Mi, Su-Juan; Li, Zhao-Liang

    2016-01-01

    In the inversion of land surface temperature (LST) from satellite data, obtaining the information on land surface emissivity is most challenging. How to solve both the emissivity and the LST from the underdetermined equations for thermal infrared radiation is a hot research topic related to quantitative thermal infrared remote sensing. The academic research and practical applications based on the temperature-emissivity retrieval algorithms show that directly measuring the emissivity of objects at a fixed thermal infrared waveband is an important way to close the underdetermined equations for thermal infrared radiation. Based on the prior research results of both the authors and others, this paper proposes a new approach of obtaining the spectral emissivity of the object at 8–14 µm with a single-band CO2 laser at 10.6 µm and a 102F FTIR spectrometer. Through experiments, the spectral emissivity of several key samples, including aluminum plate, iron plate, copper plate, marble plate, rubber sheet, and paper board, at 8–14 µm is obtained, and the measured data are basically consistent with the hemispherical emissivity measurement by a Nicolet iS10 FTIR spectrometer for the same objects. For the rough surface of materials, such as marble and rusty iron, the RMSE of emissivity is below 0.05. The differences in the field of view angle and in the measuring direction between the Nicolet FTIR method and the method proposed in the paper, and the heterogeneity in the degree of oxidation, polishing and composition of the samples, are the main reasons for the differences of the emissivities between the two methods. PMID:27347964

  17. Screening cervical lesions with Fourier transform infrared spectroscopy

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The screening results were reported based on the Fourier transform infrared spectroscopy (FTIR) analysis of the samples of exfoliated cervical cells from 354 women. Their spectra can be sorted into two types based on the emerging or not of the absorption bands near 970 cm-1 and 1 170 cm-1: T1 (83.1%) type without emerging, and T2 (16.9%) type with obviously emerging. All of the samples assigned to T1 were cytologically diagnosed as normal or within normal limits (PapⅠ). 28.9% and 71.1% of samples exhibiting T2 profile, were cytologically evaluated as Pap Ⅰand abnormal respectively. 3 women in the abnormal group were diagnosed as to have cervical cells with changes associated with high grade of inflammation, cervical scar and cervical erosion. Furthermore, based on the progressive change of the relative intensities of the absorption bands, both T1 and T2 profiles can be categorized into 6 subtypes. The observed heterogeneous spectra and the progressive changes in the absorption frequencies and the relative intensities exhibit features suggestive of the progressive process of cervical lesion. The FTIR method has the potential to complement the cytological smear for large-volume screening of cervical lesions.

  18. Fourier Transform Infrared Spectroscopy and Photoacoustic Spectroscopy for Saliva Analysis.

    Science.gov (United States)

    Mikkonen, Jopi J W; Raittila, Jussi; Rieppo, Lassi; Lappalainen, Reijo; Kullaa, Arja M; Myllymaa, Sami

    2016-09-01

    Saliva provides a valuable tool for assessing oral and systemic diseases, but concentrations of salivary components are very small, calling the need for precise analysis methods. In this work, Fourier transform infrared (FT-IR) spectroscopy using transmission and photoacoustic (PA) modes were compared for quantitative analysis of saliva. The performance of these techniques was compared with a calibration series. The linearity of spectrum output was verified by using albumin-thiocyanate (SCN(-)) solution at different SCN(-) concentrations. Saliva samples used as a comparison were obtained from healthy subjects. Saliva droplets of 15 µL were applied on the silicon sample substrate, 6 drops for each specimen, and dried at 37 ℃ overnight. The measurements were carried out using an FT-IR spectrometer in conjunction with an accessory unit for PA measurements. The findings with both transmission and PA modes mirror each other. The major bands presented were 1500-1750 cm(-1) for proteins and 1050-1200 cm(-1) for carbohydrates. In addition, the distinct spectral band at 2050 cm(-1) derives from SCN(-) anions, which is converted by salivary peroxidases to hypothiocyanate (OSCN(-)). The correlation between the spectroscopic data with SCN(-) concentration (r > 0.990 for transmission and r = 0.967 for PA mode) was found to be significant (P < 0.01), thus promising to be utilized in future applications.

  19. Weighted inequalities for Hilbert transforms and multiplicators of Fourier transforms

    Directory of Open Access Journals (Sweden)

    Kokilashvili V

    1997-01-01

    Full Text Available As is well known, invariant operators with a shift can be bounded from into only if . We show that the case might also hold for weighted spaces. We derive the sufficient conditions for the validity of strong (weak type inequalities for the Hilbert transform when . The examples of couple of weights which guarantee the fulfillness of two-weighted strong (weak type inequalities for singular integrals are presented. The method of proof of the main results allows us to generalize the results of this paper to the singular integrals which are defined on homogeneous groups. The Fourier multiplier theorem is also proved.

  20. Stepwise Iterative Fourier Transform: The SIFT

    Science.gov (United States)

    Benignus, V. A.; Benignus, G.

    1975-01-01

    A program, designed specifically to study the respective effects of some common data problems on results obtained through stepwise iterative Fourier transformation of synthetic data with known waveform composition, was outlined. Included in this group were the problems of gaps in the data, different time-series lengths, periodic but nonsinusoidal waveforms, and noisy (low signal-to-noise) data. Results on sinusoidal data were also compared with results obtained on narrow band noise with similar characteristics. The findings showed that the analytic procedure under study can reliably reduce data in the nature of (1) sinusoids in noise, (2) asymmetric but periodic waves in noise, and (3) sinusoids in noise with substantial gaps in the data. The program was also able to analyze narrow-band noise well, but with increased interpretational problems. The procedure was shown to be a powerful technique for analysis of periodicities, in comparison with classical spectrum analysis techniques. However, informed use of the stepwise procedure nevertheless requires some background of knowledge concerning characteristics of the biological processes under study.

  1. Realization of quantum discrete Fourier transform with NMR

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The pulse sequences of the logic operations used in quantum discrete Fourier transform are designed for the experiment of nuclear magnetic resonance(NMR), and 2-qubit discrete Fourier transforms are implemented experimentally with NMR. The experimental errors are examined and methods for reducing the errors are proposed.

  2. AN ANOMALY INTRUSION DETECTION METHOD USING FOURIER TRANSFORM

    Institute of Scientific and Technical Information of China (English)

    Yue Bing; Zhao Yuexia; Xu Zhoujun; Fu Hongjuan; Ma Fengning

    2004-01-01

    A set of discrete points obtained from audit records on a behavior session is processed with Fourier transform. The criterion of selecting Fourier transform coefficients is introduced, and is used to find a unified value from the set of coefficients. This unified value is compared with a threshold to determine whether the session is abnormal. Finally simple test results are reported.

  3. Fiber Optic Fourier Transform White-Light Interferometry

    Institute of Scientific and Technical Information of China (English)

    Yi Jiang; Cai-Jie Tang

    2008-01-01

    Fiber optic Fourier transform white-light inter-fereometry is presented to interrogate the absolute optical path difference of an Mach-Zehnder inter-ferometer. The phase change of the interferometer caused by scanning wavelength can be calculated by a Fourier transform-based phase demodulation technique. A linear output is achieved.

  4. Thermal stabilization of static single-mirror Fourier transform spectrometers

    Science.gov (United States)

    Schardt, Michael; Schwaller, Christian; Tremmel, Anton J.; Koch, Alexander W.

    2017-05-01

    Fourier transform spectroscopy has become a standard method for spectral analysis of infrared light. With this method, an interferogram is created by two beam interference which is subsequently Fourier-transformed. Most Fourier transform spectrometers used today provide the interferogram in the temporal domain. In contrast, static Fourier transform spectrometers generate interferograms in the spatial domain. One example of this type of spectrometer is the static single-mirror Fourier transform spectrometer which offers a high etendue in combination with a simple, miniaturized optics design. As no moving parts are required, it also features a high vibration resistance and high measurement rates. However, it is susceptible to temperature variations. In this paper, we therefore discuss the main sources for temperature-induced errors in static single-mirror Fourier transform spectrometers: changes in the refractive index of the optical components used, variations of the detector sensitivity, and thermal expansion of the housing. As these errors manifest themselves in temperature-dependent wavenumber shifts and intensity shifts, they prevent static single-mirror Fourier transform spectrometers from delivering long-term stable spectra. To eliminate these shifts, we additionally present a work concept for the thermal stabilization of the spectrometer. With this stabilization, static single-mirror Fourier transform spectrometers are made suitable for infrared process spectroscopy under harsh thermal environmental conditions. As the static single-mirror Fourier transform spectrometer uses the so-called source-doubling principle, many of the mentioned findings are transferable to other designs of static Fourier transform spectrometers based on the same principle.

  5. Fractional Fourier transform of apertured paraboloid refracting system

    Institute of Scientific and Technical Information of China (English)

    Jiannong Chen; Jinliang Yan; Defa Wang; Yongjiang Yu

    2007-01-01

    The limitation of paraxial condition of paraboloid refracting system in performing fractional Fourier transform acts like an aperture, which makes the system different from ideal systems. With aperture expanded as the sum of finite complex Gaussian terms, a more practical approximate analytical solution of fractional Fourier transform of Gaussian beam in an apertured paraboloid refracting system is obtained and also numerical investigation is presented. Complicated and practical fractional Fourier transform systems can be constructed by cascading several apertured paraboloid refracting systems which are the simplest and the most basic units for performing more precise transform.

  6. Generalized Fourier-grid R-matrix theory: a discrete Fourier-Riccati-Bessel transform approach

    Energy Technology Data Exchange (ETDEWEB)

    Layton, E.G. (Joint Inst. for Lab. Astrophysics, Boulder, CO (United States)); Stade, E. (Colorado Univ., Boulder, CO (United States). Dept. of Mathematics)

    1993-08-28

    We present the latest developments in the Fourier-grid R-matrix theory of scattering. These developments are based on the generalized Fourier-grid formalism and use a new type of extended discrete Fourier transform: the discrete Fourier-Riccati-Bessel transform. We apply this new R-matrix approach to problems of potential scattering, to demonstrate how this method reduces computational effort by incorporating centrifugal effects into the representation. As this technique is quite new, we have hopes to broaden the formalism to many types of problems. (author).

  7. High-resolution subtyping of Staphylococcus aureus strains by means of Fourier-transform infrared spectroscopy.

    Science.gov (United States)

    Johler, Sophia; Stephan, Roger; Althaus, Denise; Ehling-Schulz, Monika; Grunert, Tom

    2016-05-01

    Staphylococcus aureus causes a variety of serious illnesses in humans and animals. Subtyping of S. aureus isolates plays a crucial role in epidemiological investigations. Metabolic fingerprinting by Fourier-transform infrared (FTIR) spectroscopy is commonly used to identify microbes at species as well as subspecies level. In this study, we aimed to assess the suitability of FTIR spectroscopy as a tool for S. aureus subtyping. To this end, we compared the subtyping performance of FTIR spectroscopy to other subtyping methods such as pulsed field gel electrophoresis (PFGE) and spa typing in a blinded experimental setup and investigated the ability of FTIR spectroscopy for identifying S. aureus clonal complexes (CC). A total of 70 S. aureus strains from human, animal, and food sources were selected, for which clonal complexes and a unique virulence and resistance gene pattern had been determined by DNA microarray analysis. FTIR spectral analysis resulted in high discriminatory power similar as obtained by spa typing and PFGE. High directional concordance was found between FTIR spectroscopy based subtypes and capsular polysaccharide expression detected by FTIR spectroscopy and the cap specific locus, reflecting strain specific expression of capsular polysaccharides and/or other surface glycopolymers, such as wall teichoic acid, peptidoglycane, and lipoteichoic acid. Supervised chemometrics showed only limited possibilities for differentiation of S. aureus CC by FTIR spectroscopy with the exception of CC45 and CC705. In conclusion, FTIR spectroscopy represents a valuable tool for S. aureus subtyping, which complements current molecular and proteomic strain typing.

  8. Cryogenic Scan Mechanism for Fourier Transform Spectrometer

    Science.gov (United States)

    Brasunas, John C.; Francis, John L.

    2011-01-01

    A compact and lightweight mechanism has been developed to accurately move a Fourier transform spectrometer (FTS) scan mirror (a cube corner) in a near-linear fashion with near constant speed at cryogenic temperatures. This innovation includes a slide mechanism to restrict motion to one dimension, an actuator to drive the motion, and a linear velocity transducer (LVT) to measure the speed. The cube corner mirror is double-passed in one arm of the FTS; double-passing is required to compensate for optical beam shear resulting from tilting of the moving cube corner. The slide, actuator, and LVT are off-the-shelf components that are capable of cryogenic vacuum operation. The actuator drives the slide for the required travel of 2.5 cm. The LVT measures translation speed. A proportional feedback loop compares the LVT voltage with the set voltage (speed) to derive an error signal to drive the actuator and achieve near constant speed. When the end of the scan is reached, a personal computer reverses the set voltage. The actuator and LVT have no moving parts in contact, and have magnetic properties consistent with cryogenic operation. The unlubricated slide restricts motion to linear travel, using crossed roller bearings consistent with 100-million- stroke operation. The mechanism tilts several arc seconds during transport of the FTS mirror, which would compromise optical fringe efficiency when using a flat mirror. Consequently, a cube corner mirror is used, which converts a tilt into a shear. The sheared beam strikes (at normal incidence) a flat mirror at the end of the FTS arm with the moving mechanism, thereby returning upon itself and compensating for the shear

  9. Fourier Transform Infrared Spectroscopic Determination of Shale ...

    African Journals Online (AJOL)

    acer

    Square analysis; Mineralogy; Reservoir rocks; Shales. INTRODUCTION ... oxidation reactions of Turkish Goynuk and US. Green River .... handled which is essential in FTIR analysis because of ..... Conference Paper Number 9308. pp. Basalm ...

  10. Fourier Transform Mass Spectrometry: The Transformation of Modern Environmental Analyses

    Directory of Open Access Journals (Sweden)

    Lucy Lim

    2016-01-01

    Full Text Available Unknown compounds in environmental samples are difficult to identify using standard mass spectrometric methods. Fourier transform mass spectrometry (FTMS has revolutionized how environmental analyses are performed. With its unsurpassed mass accuracy, high resolution and sensitivity, researchers now have a tool for difficult and complex environmental analyses. Two features of FTMS are responsible for changing the face of how complex analyses are accomplished. First is the ability to quickly and with high mass accuracy determine the presence of unknown chemical residues in samples. For years, the field has been limited by mass spectrometric methods that were based on knowing what compounds of interest were. Secondly, by utilizing the high resolution capabilities coupled with the low detection limits of FTMS, analysts also could dilute the sample sufficiently to minimize the ionization changes from varied matrices.

  11. A discrete Fourier transform for virtual memory machines

    Science.gov (United States)

    Galant, David C.

    1992-01-01

    An algebraic theory of the Discrete Fourier Transform is developed in great detail. Examination of the details of the theory leads to a computationally efficient fast Fourier transform for the use on computers with virtual memory. Such an algorithm is of great use on modern desktop machines. A FORTRAN coded version of the algorithm is given for the case when the sequence of numbers to be transformed is a power of two.

  12. Identification of Semen Celosiae and Cockscomb Flower Using Continuous Wavelet Transform with FTIR

    Institute of Scientific and Technical Information of China (English)

    Changjiang Zhang; Cungui Cheng

    2006-01-01

    Infrared spectra of semen celosiae and cockscomb flower can be obtained directly, quickly and accurately employing Fourier transform infrared spectroscopy (FTIR) with OMNI sampler. Continuous wavelet transform (CWT) is employed to zoom in local region of infrared spectra of semen celosiae and cockscomb flower. Thus difference of infrared spectra between semen celosiae and cockscomb flower is greatly extruded. Identification rate is greatly improved.Daubechies wavelet is used as mother wavelet. CWT is implemented to the infrared spectra of semen celosiae and cockscomb flower. The difference between semen celosiae and cockscomb flower is observed at all scales in the continuous wavelet domain. An optimal scale is selected to identify semen celosiae and cockscomb flower. Experimental results show that it is effective to apply CWT on the basis of FTIR to identify traditional Chinese medicinal materials, which are the same general but different species.

  13. Fourier transform infrared imaging analysis in discrimination studies of St. John's wort (Hypericum perforatum).

    Science.gov (United States)

    Huck-Pezzei, V A; Pallua, J D; Pezzei, C; Bittner, L K; Schönbichler, S A; Abel, G; Popp, M; Bonn, G K; Huck, C W

    2012-10-01

    In the present study, Fourier transform infrared (FTIR) imaging and data analysis methods were combined to study morphological and molecular patterns of St. John's wort (Hypericum perforatum) in detail. For interpretation, FTIR imaging results were correlated with histological information gained from light microscopy (LM). Additionally, we tested several evaluation processes and optimized the methodology for use of complex FTIR microscopic images to monitor molecular patterns. It is demonstrated that the combination of the used spectroscopic method with LM enables a more distinct picture, concerning morphology and distribution of active ingredients, to be gained. We were able to obtain high-quality FTIR microscopic imaging results and to distinguish different tissue types with their chemical ingredients.

  14. Angular acceptance analysis of an infrared focal plane array with a built-in stationary Fourier transform spectrometer.

    Science.gov (United States)

    Gillard, Frédéric; Ferrec, Yann; Guérineau, Nicolas; Rommeluère, Sylvain; Taboury, Jean; Chavel, Pierre

    2012-06-01

    Stationary Fourier transform spectrometry is an interesting concept for building reliable field or embedded spectroradiometers, especially for the mid- and far- IR. Here, a very compact configuration of a cryogenic stationary Fourier transform IR (FTIR) spectrometer is investigated, where the interferometer is directly integrated in the focal plane array (FPA). We present a theoretical analysis to explain and describe the fringe formation inside the FTIR-FPA structure when illuminated by an extended source positioned at a finite distance from the detection plane. The results are then exploited to propose a simple front lens design compatible with a handheld package.

  15. Nih-3T3 Fibroblast Studied by Fourier Transform Infrared Spectroscopy

    CERN Document Server

    Iovenitti, Marco

    2009-01-01

    In this work I present the study of the behaviour response of mouse fibroblasts NIH-3T3 under UVB radiation using Fourier transform infrared spectroscopy (FT-IR), the preferred method of infrared spectroscopy. FT-IR, in fact, it is convenient to study molecular cell processes because it has the potential to provide the identification of the vibrational modes of some of the major compounds (lipid, proteins and nucleic acids) without being invasive in the biomaterials. The results show that apoptotic process is induced by UVB radiation.

  16. The Characterisation of Pluripotent and Multipotent Stem Cells Using Fourier Transform Infrared Microspectroscopy

    Directory of Open Access Journals (Sweden)

    Mark J. Tobin

    2013-08-01

    Full Text Available Fourier transform infrared (FTIR microspectroscopy shows potential as a benign, objective and rapid tool to screen pluripotent and multipotent stem cells for clinical use. It offers a new experimental approach that provides a holistic measurement of macromolecular composition such that a signature representing the internal cellular phenotype is obtained. The use of this technique therefore contributes information that is complementary to that acquired by conventional genetic and immunohistochemical methods.

  17. Multivariate quality control of lubricating oils using Fourier transform infrared spectroscopy

    OpenAIRE

    Borin,Alessandra; Poppi, Ronei Jesus

    2004-01-01

    Multivariate quality control in conjunction with Fourier transform infrared Spectroscopy (FTIR) were used to qualitatively detect the class and the condition of lubricating oils. The multivariate approach was based on principal component analysis (PCA), first to classify the lubricating oil type (mineral, synthetic and semi-synthetic) and then to develop two control charts: a T² chart using the most significant principal components and a Q chart with the PC not used in the first chart. From t...

  18. Solubilization of spider silk proteins and its structural analysis using Fourier transform infrared spectroscopy

    Science.gov (United States)

    Osbin, K.; Jayan, Manuel; Bhadrakumari, S.; Predeep, P.

    2017-06-01

    This study investigates the presence of various amide bands present in different spider silk species, which provides extraordinary physical properties. Three different spider silks were collected from Western Ghats region. The collected spider silks samples belonging to the spider Heteropoda venatoria (species 1), Hersilia savignyi (species 2) and Pholcus phalangioides (species 3). Fourier transform infrared (FTIR) spectra reveals the protein peaks in the amide I, II, and III regions in all the three types of spider silk species.

  19. Image restoration based on the discrete fraction Fourier transform

    Science.gov (United States)

    Yan, Peimin; Mo, Yu L.; Liu, Hong

    2001-09-01

    The fractional Fourier transform is the powerful tool for time-variant signal analysis. For space-variant degradation and non-stationary processes the filtering in fractional Fourier domains permits reduction of the error compared with ordinary Fourier domain filtering. In this paper the concept of filtering in fractional Fourier domains is applied to the problem of estimating degraded images. Efficient digital implementation using discrete Hermite eigenvectors can provide similar results to match the continuous outputs. Expressions for the 2D optimal filter function in fractional domains will be given for transform domains characterized by the two rotation angle parameters of the 2D fractional Fourier transform. The proposed method is used to restore images that have several degradations in the experiments. The results show that the method presented in this paper is valid.

  20. Characterization of Campylobacter jejuni applying flaA short variable region sequencing, multilocus sequencing and Fourier transform infrared spectroscopy

    DEFF Research Database (Denmark)

    Josefsen, Mathilde Hartmann; Bonnichsen, Lise; Larsson, Jonas

    flaA short variable region sequencing and phenetic Fourier transform infrared (FTIR) spectroscopy was applied on a collection of 102 Campylobacter jejuni isolated from continuous sampling of organic, free range geese and chickens. FTIR has been shown to serve as a valuable tool in typing.......94 and 0.92, respectively. Dendrograms based on cluster analysis grouped the isolates in 6 clusters based on flaA sequences and 9 clusters based on the FTIR spectroscopy profiles. Furthermore, the cluster analysis of flaA sequences, MLST and FTIR spectroscopy profiles showed a surprisingly high degree...

  1. Analysis of ovarian tumor pathology by Fourier Transform Infrared Spectroscopy

    Directory of Open Access Journals (Sweden)

    Mehrotra Ranjana

    2010-12-01

    Full Text Available Abstract Background Ovarian cancer is the second most common cancer among women and the leading cause of death among gynecologic malignancies. In recent years, infrared (IR spectroscopy has gained attention as a simple and inexpensive method for the biomedical study of several diseases. In the present study infrared spectra of normal and malignant ovarian tissues were recorded in the 650 cm-1 to 4000 cm-1 region. Methods Post surgical tissue samples were taken from the normal and tumor sections of the tissue. Fourier Transform Infrared (FTIR data on twelve cases of ovarian cancer with different grades of malignancy from patients of different age groups were analyzed. Results Significant spectral differences between the normal and the ovarian cancerous tissues were observed. In particular changes in frequency and intensity in the spectral region of protein, nucleic acid and lipid vibrational modes were observed. It was evident that the sample-to-sample or patient-to-patient variations were small and the spectral differences between normal and diseased tissues were reproducible. Conclusion The measured spectroscopic features, which are the spectroscopic fingerprints of the tissues, provided the important differentiating information about the malignant and normal tissues. The findings of this study demonstrate the possible use of infrared spectroscopy in differentiating normal and malignant ovarian tissues.

  2. Research progress of the fractional Fourier transform in signal processing

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The fractional Fourier transform is a generalization of the classical Fourier transform, which is introduced from the mathematic aspect by Namias at first and has many applications in optics quickly. Whereas its potential appears to have remained largely unknown to the signal processing community until 1990s. The fractional Fourier transform can be viewed as the chirp-basis expansion directly from its definition, but essentially it can be interpreted as a rotation in the time-frequency plane, i.e. the unified time-frequency transform. With the order from 0 increasing to 1, the fractional Fourier transform can show the characteristics of the signal changing from the time domain to the frequency domain. In this research paper, the fractional Fourier transform has been comprehensively and systematically treated from the signal processing point of view. Our aim is to provide a course from the definition to the applications of the fractional Fourier transform, especially as a reference and an introduction for researchers and interested readers.

  3. Imaging Analysis by Means of Fractional Fourier Transform

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Starting from the diffraction imaging process,we have discussed the relationship between optical imaging system and fractional Fourier transform, and proposed a specific system which can form an inverse amplified image of input function.

  4. Electro-Optic Imaging Fourier Transform Spectral Polarimeter Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Boulder Nonlinear Systems, Inc. (BNS) proposes to develop an Electro-Optic Imaging Fourier Transform Spectral Polarimeter (E-O IFTSP). The polarimetric system is...

  5. On the physical relevance of the discrete Fourier transform

    CSIR Research Space (South Africa)

    Greben, JM

    1991-11-01

    Full Text Available This paper originated from the author's dissatisfaction with the way the discrete Fourier transform is usually presented in the literature. Although mathematically correct, the physical meaning of the common representation is unsatisfactory...

  6. Embolic Doppler ultrasound signal detection via fractional Fourier transform.

    Science.gov (United States)

    Gençer, Merve; Bilgin, Gökhan; Aydın, Nizamettin

    2013-01-01

    Computerized analysis of Doppler ultrasound signals can aid early detection of asymptomatic circulating emboli. For analysis, physicians use informative features extracted from Doppler ultrasound signals. Time -frequency analysis methods are useful tools to exploit the transient like signals such as Embolic signals. Detection of discriminative features would be the first step toward automated analysis of embolic Doppler ultrasound signals. The most problematic part of setting up emboli detection system is to differentiate embolic signals from confusing similar wave-like patterns such as Doppler speckle and artifacts caused by tissue movement, probe tapping, speaking etc. In this study, discrete version of fractional Fourier transform is presented as a solution in the detection of emboli in digitized Doppler ultrasound signals. An accurate set of parameters are extracted using short time Fourier transform and fractional Fourier transform and the results are compared to reveal detection quality. Experimental results prove the efficiency of fractional Fourier transform in which discriminative features becomes more evident.

  7. A general spectral transformation simultaneously including a Fourier transformation and a Laplace transformation

    Science.gov (United States)

    Marko, H.

    1978-01-01

    A general spectral transformation is proposed and described. Its spectrum can be interpreted as a Fourier spectrum or a Laplace spectrum. The laws and functions of the method are discussed in comparison with the known transformations, and a sample application is shown.

  8. Quantum Fourier Transform and Phase Estimation in Qudit System

    Institute of Scientific and Technical Information of China (English)

    CAO Ye; PENG Shi-Guo; ZHENG Chao; LONG Gui-Lu

    2011-01-01

    The quantum Fourier transform and quantum phase estimation are the key components for many quantum algorithms, such as order-finding, factoring, and etc.In this article, the general procedure of quantum Fourier transform and phase estimation are investigated for high dimensional case.They can be seen as subroutines in a main program run in a qudit quantum computer, and the quantum circuits are given.

  9. Simple optical setup implementation for digital Fourier transform holography

    Energy Technology Data Exchange (ETDEWEB)

    De Oliveira, G N [Pos-graduacao em Engenharia Mecanica, TEM/PGMEC, Universidade Federal Fluminense, Rua Passo da Patria, 156, Niteroi, R.J., Cep.: 24.210-240 (Brazil); Rodrigues, D M C; Dos Santos, P A M, E-mail: pams@if.uff.br [Instituto de Fisica, Laboratorio de Optica Nao-linear e Aplicada, Universidade Federal Fluminense, Av. Gal. Nilton Tavares de Souza, s/n, Gragoata, Niteroi, R.J., Cep.:24.210-346 (Brazil)

    2011-01-01

    In the present work a simple implementation of Digital Fourier Transform Holography (DFTH) setup is discussed. This is obtained making a very simple modification in the classical setup arquiteture of the Fourier Transform holography. It is also demonstrated the easy and practical viability of the setup in an interferometric application for mechanical parameters determination. The work is also proposed as an interesting advanced introductory training for graduated students in digital holography.

  10. Fourier transform spectroscopy in the visible and ultraviolet range.

    Science.gov (United States)

    Luc, P; Gerstenkorn, S

    1978-05-01

    In cases where the photon noise is the limiting factor, the multiplex gain is not always conserved; however the throughput (Jacquinot's advantage) is not affected. Therefore extension of Fourier transform spectroscopy to higher frequencies has great possibilities. Studies at high resolution, both in emission and in absorption, show that the performance achieved by Fourier transform spectroscopy in the visible and uv range is comparable with that reached in the ir.

  11. Comparative evaluation of bioactivity of crystalline trypsin for drying by Fourier-transformed infrared spectroscopy.

    Science.gov (United States)

    Otsuka, Makoto; Fukui, Yuya; Ozaki, Yukihiro

    2009-03-01

    The purpose of this study was to evaluate the enzymatic stability of colloidal trypsin powder during heating in a solid-state by using Fourier transform infrared (FT-IR) spectra with chemoinformatics and generalized two-dimensional (2D) correlation spectroscopy. Colloidal crystalline trypsin powders were heated using differential scanning calorimetry. The enzymatic activity of trypsin was assayed by the kinetic degradation method. Spectra of 10 calibration sample sets were recorded three times with a FT-IR spectrometer. The maximum intensity at 1634cm(-1) of FT-IR spectra and enzymatic activity of trypsin decreased as the temperature increased. The FT-IR spectra of trypsin samples were analyzed by a principal component regression analysis (PCR). A plot of the calibration data obtained was made between the actual and predicted trypsin activity based on a two-component model with gamma(2)=0.962. On the other hand, a 2D method was applied to FT-IR spectra of heat-treated trypsin. The result was consistent with that of the chemoinformetrical method. The results for deactivation of colloidal trypsin powder by heat-treatment indicated that nano-structure of crystalline trypsin changed by heating reflecting that the beta-sheet was mainly transformed, since the peak at 1634cm(-1) decreased with dehydration. The FT-IR chemoinformetrical method allows for a solid-state quantitative analysis of the bioactivity of the bulk powder of trypsin during drying.

  12. Rotation-invariant texture analysis using Radon and Fourier transforms

    Institute of Scientific and Technical Information of China (English)

    Songshan Xiao; Yongxing Wu

    2007-01-01

    @@ Texture analysis is a basic issue in image processing and computer vision, and how to attain the rotationinvariant texture characterization is a key problem. This paper proposes a rotation-invariant texture analysis technique using Radon and Fourier transforms. This method uses Radon transform to convert rotation to translation, then utilizes Fourier transform and takes the moduli of the Fourier transform of these functions to make the translation invariant. A k-nearest-neighbor rule is employed to classify texture images. The proposed method is robust to additive white noise as a result of summing pixel values to generate projections in the Radon transform step. Experiment results show the feasibility of the proposed method and its robustness to additive white noise.

  13. Monitoring bacterial processes by Fourier transform infrared spectroscopy : Helicobacter pylori drug inactivation and plasmid bioproduction in recombinant Escherichia coli cultures

    OpenAIRE

    Scholz, Teresa; Lopes, Vitor V.; Calado, Cecília R. C.

    2011-01-01

    Fourier transform infrared (FTIR) spectroscopy is evaluated as a tool to monitor two bacterial processes: strain discrimination and drug inactivation studies with the gastric pathogen Helicobacter pylori and the plasmid production process based on high-density cultures of recombinant Escherichia coli. Results show, that after evaluation of different incubation conditions of H.pylori with the drug model, the application of principal component analysis to the FTIR spectra assembles the samples ...

  14. On-line preferential solvation studies of polymers by coupled chromatographic-Fourier transform infrared spectroscopic flow-cell technique.

    Science.gov (United States)

    Malanin, M; Eichhorn, K-J; Lederer, A; Treppe, P; Adam, G; Fischer, D; Voigt, D

    2009-12-18

    Qualitative and quantitative comparison between liquid chromatography (LC) and LC coupled with Fourier transform infrared spectroscopy (LC-FTIR) to evaluate preferential solvation phenomenon of polymers in a mixed solvent has been performed. These studies show that LC-FTIR technique leads to detailed structural information without the requirement for determination of additional parameters for quantitative analysis except calibration. Appropriate experimental conditions for preferential solvation study have been established by variation of polymer concentration, molar mass and eluent content.

  15. Dynamic measurement of deformation using Fourier transform digital holographic interferometry

    Science.gov (United States)

    Gao, Xinya; Wu, Sijin; Yang, Lianxiang

    2013-10-01

    Digital holographic interferometry (DHI) is a well-established optical technique for measurement of nano-scale deformations. It has become more and more important due to the rapid development of applications in aerospace engineering and biomedicine. Traditionally, phase shift technique is used to quantitatively measure the deformations in DHI. However, it cannot be applied in dynamic measurement. Fourier transform phase extraction method, which can determine the phase distribution from only a single hologram, becomes a promising method to extract transient phases in DHI. This paper introduces a digital holographic interferometric system based on 2D Fourier transform phase extraction method, with which deformations of objects can be measured quickly. In the optical setup, the object beam strikes a CCD via a lens and aperture, and the reference beam is projected on the CCD through a single-mode fiber. A small inclination angle between the diverging reference beam and optical axial is introduced in order to physically separate the Fourier components in frequency domain. Phase maps are then obtained by the utilization of Fourier transform and windowed inverse Fourier transform. The capability of the Fourier transform DHI is discussed by theoretical discussion as well as experiments.

  16. Bird sexing by Fourier transform infrared spectroscopy

    Science.gov (United States)

    Steiner, Gerald; Bartels, Thomas; Krautwald-Junghanns, Maria-Elisabeth; Koch, Edmund

    2010-02-01

    Birds are traditionally classified as male or female based on their anatomy and plumage color as judged by the human eye. Knowledge of a bird's gender is important for the veterinary practitioner, the owner and the breeder. The accurate gender determination is essential for proper pairing of birds, and knowing the gender of a bird will allow the veterinarian to rule in or out gender-specific diseases. Several biochemical methods of gender determination have been developed for avian species where otherwise the gender of the birds cannot be determined by their physical appearances or characteristics. In this contribution, we demonstrate that FT-IR spectroscopy is a suitable tool for a quick and objective determination of the bird's gender. The method is based on differences in chromosome size. Male birds have two Z chromosomes and female birds have a W-chromosome and a Z-chromosome. Each Z-chromosome has approx. 75.000.000 bps whereas the W-chromosome has approx. 260.00 bps. This difference can be detected by FT-IR spectroscopy. Spectra were recorded from germ cells obtained from the feather pulp of chicks as well as from the germinal disk of fertilized but non-bred eggs. Significant changes between cells of male and female birds occur in the region of phosphate vibrations around 1080 and 1120 cm-1.

  17. Identification of Propionibacteria to the species level using Fourier transform infrared spectroscopy and artificial neural networks.

    Science.gov (United States)

    Dziuba, B

    2013-01-01

    Fourier transform infrared spectroscopy (FTIR) and artificial neural networks (ANN's) were used to identify species of Propionibacteria strains. The aim of the study was to improve the methodology to identify species of Propionibacteria strains, in which the differentiation index D, calculated based on Pearson's correlation and cluster analyses were used to describe the correlation between the Fourier transform infrared spectra and bacteria as molecular systems brought unsatisfactory results. More advanced statistical methods of identification of the FTIR spectra with application of artificial neural networks (ANN's) were used. In this experiment, the FTIR spectra of Propionibacteria strains stored in the library were used to develop artificial neural networks for their identification. Several multilayer perceptrons (MLP) and probabilistic neural networks (PNN) were tested. The practical value of selected artificial neural networks was assessed based on identification results of spectra of 9 reference strains and 28 isolates. To verify results of isolates identification, the PCR based method with the pairs of species-specific primers was used. The use of artificial neural networks in FTIR spectral analyses as the most advanced chemometric method supported correct identification of 93% bacteria of the genus Propionibacterium to the species level.

  18. Imaginary angle fractional Fourier transform and its optical implementation

    Institute of Scientific and Technical Information of China (English)

    华建文; 刘立人; 李国强

    1997-01-01

    The concept of imaginary angle fractional Fourier transform is proposed. Its existence and additive operation are proved. With this concept, FRT is expanded to the optical transform of convex lens outside the range of double focal length and that of concave lens.

  19. SAW chirp Fourier transform for MB-OFDM UWB receiver

    Institute of Scientific and Technical Information of China (English)

    HE Peng-fei; L(U) Ying-hua; ZHANG Hong-xin; WANG Ye-qiu; XU Yong

    2006-01-01

    In the conventional multiband orthogonal frequency division multiplexing ultra wideband (MB-OFDM UWB )receiver, the fast Fourier transform (FFT) algorithm is realized by the expensive and power-consuming digital signal processor (DSP) chips. In this article, the lower power, lower cost, and lower complexity real-time analog surface acoustic wave (SAW)chirp Fourier transform devices were used to replace the DSP part. A MB-OFDM UWB receiver based on the M-C-M SAW chirp Fourier transform was presented, and the step of signal transformation from input signals was also depicted. The simulation results show that the proposed receiver provides similar bit error performance compared to the fully digital receiver when used in the channel environments proposed by the IEEE 802.15SG3a.

  20. [Analysis of cell arrangements in Biota orientalis using Fourier transformation].

    Science.gov (United States)

    Duo, Hua-Qiong; Wang, Xi-Ming

    2009-10-01

    Fourier transform image-processing technology is applied for determining the cross section cell arrangement of early-wood in Biota orientalis. In this method, the disc-convoluted dot map from each cell radius with 10 pixels is transformed by Fourier transform, generating the angle distribution function in the power spectral pattern. The maximum value is the arrangement of the cell. The results of Fourier transform image-processing technology indicated that the arrangements of the cell of Biota orientalis are 15 degrees in oblique direction, respectively. This method provides a new basis for the digitized identification of the wood, and also the new theoretical research direction for the digitized identification and examination of the wood species.

  1. [Preliminary study on identification of heroin from different route with clustering analysis by fourier transform infrared spectroscopy].

    Science.gov (United States)

    Cai, Xi-lan; Wu, Guo-ping

    2007-12-01

    In the present paper, using Fourier transform infrared (FTIR) absorption spectrometry, the characteristic peaks of fingerprint infrared spectra of heroin samples from different routes were identified with clustering analysis successfully. It is a very fast, simple and reliable method. That is to say, a new method for the discrimination of heroin seizured from different routes is provided.

  2. Determination of Carbon Dioxide, Carbon Monoxide, and Methane Concentrations in Cigarette Smoke by Fourier Transform Infrared Spectroscopy

    Science.gov (United States)

    Tan, T. L.; Lebron, G. B.

    2012-01-01

    The integrated absorbance areas of vibrational bands of CO[subscript 2], CO, and CH[subscript 4] gases in cigarette smoke were measured from Fourier transform infrared (FTIR) spectra to derive the partial pressures of these gases at different smoke times. The quantity of the three gas-phase components of cigarette smoke at different smoke times…

  3. Secondary cell wall development in cotton fibers as examined with attenuated total reflection Fourier transform infrared spectroscopy

    Science.gov (United States)

    Cotton fibers harvested at 18, 20, 24, 28, 32, 36 and 40 days after flowering were examined using attenuated total reflection Fourier transform-infrared (ATR FT-IR) spectroscopy. The selected harvesting points coincide with secondary cell wall (SCW) development in the fibers. Progressive but moderat...

  4. Determination of Carbon Dioxide, Carbon Monoxide, and Methane Concentrations in Cigarette Smoke by Fourier Transform Infrared Spectroscopy

    Science.gov (United States)

    Tan, T. L.; Lebron, G. B.

    2012-01-01

    The integrated absorbance areas of vibrational bands of CO[subscript 2], CO, and CH[subscript 4] gases in cigarette smoke were measured from Fourier transform infrared (FTIR) spectra to derive the partial pressures of these gases at different smoke times. The quantity of the three gas-phase components of cigarette smoke at different smoke times…

  5. Spaceborne infrared Fourier-transform spectrometers for temperature and humidity sounding of the Earth's atmosphere

    Science.gov (United States)

    Golovin, Yu. M.; Zavelevich, F. S.; Nikulin, A. G.; Kozlov, D. A.; Monakhov, D. O.; Kozlov, I. A.; Arkhipov, S. A.; Tselikov, V. A.; Romanovskii, A. S.

    2014-12-01

    A spaceborne Fourier-transform infrared (FTIR) spectrometer was designed for measuring the spectra of the outgoing Earth's atmosphere radiation and serves for providing for the needs of online meteorology and climatology with regard to obtaining the following kinds of data: vertical profiles of temperature and humidity profiles in the troposphere and the lower stratosphere, the general and altitudinal ozone distribution, concentrations of small gaseous constituents, temperature of the underlying surface, etc. At present, works are underway at the Keldysh Research Centre for creating IKFS-series FTIR spectrometers for satellites in Sun-synchronous orbits: the IKFS-2 instrument for the Meteor-M spacecraft no. 2 of the Meteor-3M space complex (developed and supplied for testing together with the spacecraft) and an advanced IKFS-3 instrument for the Meteor-MP fourth-generation hydrometeorological and oceanographic space complex for Earth monitoring (at the developmental stage). The composition, functional diagram, and technical specifications of the FTIR spectrometers are presented.

  6. Secondary structure of food proteins by Fourier transform spectroscopy in the mid-infrared region.

    Science.gov (United States)

    Carbonaro, M; Nucara, A

    2010-03-01

    Fourier transform spectroscopy in the mid-infrared (400-5,000 cm(-1)) (FT-IR) is being recognized as a powerful tool for analyzing chemical composition of food, with special concern to molecular architecture of food proteins. Unlike other spectroscopic techniques, it provides high-quality spectra with very small amount of protein, in various environments irrespective of the molecular mass. The fraction of peptide bonds in alpha-helical, beta-pleated sheet, turns and aperiodic conformations can be accurately estimated by analysis of the amide I band (1,600-1,700 cm(-1)) in the mid-IR region. In addition, FT-IR measurement of secondary structure highlights the mechanism of protein aggregation and stability, making this technique of strategic importance in the food proteomic field. Examples of applications of FT-IR spectroscopy in the study of structural features of food proteins critical of nutritional and technological performance are discussed.

  7. Preliminary study on diffuse axonal injury by Fourier transform infrared spectroscopy histopathology imaging.

    Science.gov (United States)

    Yang, Tiantong; He, Guanglong; Zhang, Xiang; Chang, Lin; Zhang, Haidong; Ripple, Mary G; Fowler, David R; Li, Ling

    2014-01-01

    The objective of this study was to evaluate the application of Fourier transform infrared (FTIR) spectroscopy for detecting diffuse axonal injury (DAI) in a mouse model. Brain tissues from DAI mouse model were prepared with H&E, silver, and β-amyloid precursor protein (β-APP) immunohistochemistry stains and were also studied with FTIR. The infrared spectrum images showed high absorption of amide II in the subcortical white matter of the experimental mouse brain, while there was no obvious expression of amide II in the control mouse brain. The areas with high absorption of amide II were in the same distribution as the DAI region confirmed by the silver and β-APP studies. The result suggests that high absorption of amide II correlates with axonal injury. The use of FTIR imaging allows the biochemical changes associated with DAI pathologies to be detected in the tissues, thus providing an important adjunct method to the current conventional pathological diagnostic techniques.

  8. Electro-Optical Imaging Fourier-Transform Spectrometer

    Science.gov (United States)

    Chao, Tien-Hsin; Zhou, Hanying

    2006-01-01

    An electro-optical (E-O) imaging Fourier-transform spectrometer (IFTS), now under development, is a prototype of improved imaging spectrometers to be used for hyperspectral imaging, especially in the infrared spectral region. Unlike both imaging and non-imaging traditional Fourier-transform spectrometers, the E-O IFTS does not contain any moving parts. Elimination of the moving parts and the associated actuator mechanisms and supporting structures would increase reliability while enabling reductions in size and mass, relative to traditional Fourier-transform spectrometers that offer equivalent capabilities. Elimination of moving parts would also eliminate the vibrations caused by the motions of those parts. Figure 1 schematically depicts a traditional Fourier-transform spectrometer, wherein a critical time delay is varied by translating one the mirrors of a Michelson interferometer. The time-dependent optical output is a periodic representation of the input spectrum. Data characterizing the input spectrum are generated through fast-Fourier-transform (FFT) post-processing of the output in conjunction with the varying time delay.

  9. Methods of theme presentation "The Fourier transform of impulse functions"

    Directory of Open Access Journals (Sweden)

    Faniya Ahmetova

    2016-09-01

    Full Text Available The paper considers the Fourier transform of impulse functions, which is the mathematical basis of the tasks associated with the theory of reception and signal conversion in optoelectronic system. The method of calculating of two functions convolution, its Fourier image and the image of the Fourier-Bessel axisymmetric functions are demonstrated in details. A table, which summarizes the analytical expression for the shifted impulse functions and records their Fourier transforms, is provided. A wide range of examples of solving tasks, containing the graphic illustration, is analyzed. A structured approach to the presentation of the material, which combines basic theoretical information and analysis of typical tasks, will help second-year students of optoelectronic specialty in their independent work and homework.

  10. A Fourier transform infrared trace gas analyser for atmospheric applications

    Directory of Open Access Journals (Sweden)

    D. W. T. Griffith

    2012-05-01

    Full Text Available Concern in recent decades about human impacts on Earth's climate has led to the need for improved and expanded measurement capabilities for greenhouse gases in the atmosphere. In this paper we describe in detail an in situ trace gas analyser based on Fourier Transform Infrared (FTIR spectroscopy that is capable of simultaneous and continuous measurements of carbon dioxide (CO2, methane (CH4, carbon monoxide (CO, nitrous oxide (N2O and 13C in CO2 in air with high precision and accuracy. Stable water isotopes can also be measured in undried airstreams. The analyser is automated and allows unattended operation with minimal operator intervention. Precision and accuracy meet and exceed the compatibility targets set by the World Meteorological Organisation – Global Atmosphere Watch Programme for baseline measurements in the unpolluted troposphere for all species except 13C in CO2.

    The analyser is mobile and well suited to fixed sites, tower measurements, mobile platforms and campaign-based measurements. The isotopic specificity of the optically-based technique and analysis allows application of the analyser in isotopic tracer experiments, for example 13C in CO2 and 15N in N2O. We review a number of applications illustrating use of the analyser in clean air monitoring, micrometeorological flux and tower measurements, mobile measurements on a train, and soil flux chamber measurements.

  11. Amide resonance and FT-IR spectra of some β-lactam derivatives: application of resolution enhancement procedures in Fourier space

    Science.gov (United States)

    Gil, M.; Plumet, J.; Iza, N.; Morcillo, J.

    1988-05-01

    Fourier Transform infrared (FT-IR) spectra of five 4-acyl-β-lactam derivatives in three organic solvents (carbon tetrachloride, benzene and chloroform) have been registered. Nominal spectral resolution was 1 cm -1 and a Happ-Genzel function was used to apodize the interferograms. Fourier self-deconvolutions were done using standard software based on the algorithm of Kauppinen (1981). The digitalized FT-IR spectra were converted into second and fourth derivatives in Fourier domain using a standard software package supplied for the purpose and based on the technique developed by the N.R.C.C. group. The inherent enhancement resolution of Fourier self-deconvolution and derivatives in Fourier Space have permitted resolution of the characteristic "amide I" bands of the β-lactam ring. The ν(CO) band splitting in the "amide I" region is due to solvent and ring substitution influences on amide resonance and not to H-bonding association. Simultaneous application of both apparent resolution enhancement procedures has allowed us to identify true bands and mathematical artifacts.

  12. COMPARISON OF FOURIER AND WAVELET TRANSFORMS IN GEOPHYSICAL APPLICATIONS

    Directory of Open Access Journals (Sweden)

    Hakan ALP

    2008-01-01

    Full Text Available In this study, it was compared Fourier Transformation using widely in analysing of geophysics data and image processing and Wavelet Transformation using in image processing, boundary analysis and recently years in use geophysical data analysis. It was applicated and compared two transformations in the both geophysical data and fundamental functions. Then the results obtained were evaluated. In this study it was compared two transformation using earthquake records and Bouger gravity anomalies map of Hatay region geophysical data. At the end of the our study it was clearly seen that wavelet transform can be used by geophysical data analysing.

  13. In vivo and in situ detection of colorectal cancer using Fourier transform infrared spectroscopy

    Institute of Scientific and Technical Information of China (English)

    Qing-Bo Li; Xiao-Si Zhou; Jing-Sen Shi; Jin-Guang Wu; Zhi Xu; Neng-Wei Zhang; Li Zhang; Fan Wang; Li-Min Yang; Jian-Sheng Wang; Su Zhou; Yuan-Fu Zhang

    2005-01-01

    AIM: Real-time and rapid identification of the malignant tissue can be performed during or before surgical operation.Here we aimed to detect in vivo and in situ colorectal cancer by using Fourier transform infrared (FTIR) spectroscopy and fiber-optic technology.METHODS: A total of five patients with large intestine cancer were detected in vivo and in situ. Of them, three cases of colon cancer and one case of cecum cancer were detected intraoperatively and in vivo by using a FTIR spectrometer during surgical operation, and one case of rectum cancer was explored non-invasively and in vivo before the surgical operation. Normal and malignant colorectal tissues were detected in vivo and in situ using FTIR spectroscopy on the basis of fundamental studies.RESULTS: There were significant differences between FTIR spectra of normal and malignant colorectal tissues detected in vivo and in situ. Experimental results revealed that the spectral characteristics of normal and malignant tissues found in vivo and in situ were similar to those obtained from in vitro measurement in our previous fundamental research.CONCLUSION: FTIR fiber-optic attenuated total reflectance (ATR) spectroscopy can identify in situ and in vivo colorectal cancer. FTIR spectroscopic method with fiber optics is a non-invasive, rapid, accurate and in vivo cancer detection technique in clinical diagnosis.

  14. Comparison of Fourier transform and continuous wavelet transform to study echo-planar imaging flow maps

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez G, A.; Bowtell, R.; Mansfield, P. [Area de Procesamiento Digital de Senales e Imagenes Biomedicas. Universidad Autonoma Metropolitana Iztapalapa. Mexico D.F. 09340 Mexico (Mexico)

    1998-12-31

    Velocity maps were studied combining Doyle and Mansfield method (1986) with each of the following transforms: Fourier, window Fourier and wavelet (Mexican hat). Continuous wavelet transform was compared against the two Fourier transform to determine which technique is best suited to study blood maps generated by Half Fourier Echo-Planar Imaging. Coefficient images were calculated and plots of the pixel intensity variation are presented. Finally, contour maps are shown to visualize the behavior of the blood flow in the cardiac chambers for the wavelet technique. (Author)

  15. The Formalization of Discrete Fourier Transform in HOL

    Directory of Open Access Journals (Sweden)

    Zhiping Shi

    2015-01-01

    Full Text Available Traditionally, Discrete Fourier Transform (DFT is performed with numerical or symbolic computation, which cannot guarantee 100% accurate analysis which may be necessary for safety-critical applications. Machine theorem proving is one of the formal methods that perform accurate analysis with completeness to some extent. This paper proposes the formalization of DFT in a higher-order logic theorem prover named HOL. We propose the formal definition of DFT and verify the fundamental properties of DFT. Two case studies are presented to illustrate usefulness and correctness of the formalized DFT, including formal verifications of Fast Fourier Transform (FFT and cosine frequency shift.

  16. Fourier transform infrared spectra applications to chemical systems

    CERN Document Server

    Ferraro, John R

    1985-01-01

    The final and largest volume to complete this four-volume treatise is published in response to the intense commercial and research interest in Fourier Transform Interferometry.Presenting current information from leading experts in the field, Volume 4 introduces new information on, for example, applications of Diffuse Reflectance Spectroscopy in the Far-Infrared Region. The editors place emphasis on surface studies and address advances in Capillary Gas Chromatography - Fourier Transform Interferometry.Volume 4 especially benefits spectroscopists and physicists, as well as researchers

  17. Recording Fractional Fourier Transform Hologram Using Holographic Zone Plate

    Institute of Scientific and Technical Information of China (English)

    高峰; 曾阳素; 张怡霄; 杨静; 高福华; 郭永康

    2002-01-01

    FRTH(fractional Fourier transform hologram) is a new kind of hologram that differs from common Fresnel holograms and Fourier transform holograms. Due to the flexibility of zone plate. A method that uses the -1 order diffraction wave of zone plate as the object wave and the 0 order diffraction wave as the reference wave to record FRTH is presented. It provides a new simple way to record FRTH. In this paper, the theory of achieving FRT and recording FRTH using holographic zone plate is presented and experimental results are given.

  18. Multifractional Fourier Transform Method and Its Applications to Image Encryption

    Institute of Scientific and Technical Information of China (English)

    RANQiwen; WANGQi; MAJing; TANLiying

    2003-01-01

    The multiplicity of the fractional Fourier transform(FRFT),which is intrinsic in any fractional operator,has been claimed by several authors,but never across-the-board developed.Particularly,the weight-type FRFT(WFRFT) has not been investigated.Starting with defining the multifractional Fourier transform (MFRFT),we gained the generalization permutation matrix group (GPMG)representation and multiplicity of the MFRFT,and the relationships among the MFRFT the standard WFRFT and the standard CFRFT.Finally,as a application,a novel image encryption method hased on the MFRFT is propounded.Similation results show that this method is safe,practicable and impactful.

  19. Phase retrieval for attacking fractional Fourier transform encryption.

    Science.gov (United States)

    Kong, Dezhao; Shen, Xueju; Cao, Liangcai; Jin, Guofan

    2017-04-20

    An advanced iterative phase retrieval algorithm is applied to perform a ciphertext-only attack on the fractional Fourier transform-based double random phase encryption system. With the given complex amplitude of ciphertext and definite support of the object image, the original object image can be recovered by estimating the energy of support area in the recovered image. The encryption system can be attacked by analyzing the sensibility of fractional Fourier transform order keys and evaluating the energy of the object image support area. The proposed algorithm can obtain encrypted fractional order and retrieve two random phase keys. Numerical results demonstrate the efficacy of the proposed attacking method.

  20. Fourier-transform and global contrast interferometer alignment methods

    Science.gov (United States)

    Goldberg, Kenneth A.

    2001-01-01

    Interferometric methods are presented to facilitate alignment of image-plane components within an interferometer and for the magnified viewing of interferometer masks in situ. Fourier-transforms are performed on intensity patterns that are detected with the interferometer and are used to calculate pseudo-images of the electric field in the image plane of the test optic where the critical alignment of various components is being performed. Fine alignment is aided by the introduction and optimization of a global contrast parameter that is easily calculated from the Fourier-transform.

  1. Rapid Isolation of Phenol Degrading Bacteria by Fourier Transform Inf rared (FTIR) Spectroscopy%利用衰减全反射傅里叶红外光谱(ATR-FTIR)技术快速筛选可降解苯酚菌株

    Institute of Scientific and Technical Information of China (English)

    李霏; 宋文军; 魏纪平; 王素英; 刘崇基

    2015-01-01

    Phenol is an important chemical engineering material and ubiquitous in industry wastewater ,its ex-istence has become a thorny issue in many developed and developing country .More and more stringent stand-ards for effluent all over the world with human realizing the toxicity of phenol have been announced .Many ad-vanced biological methods are applied to industrial wastewater treatment with low cost ,high efficiency and no secondary pollution ,but the screening of function microorganisms is certain cumbersome process .In our study a rapid procedure devised for screening bacteria on solid medium can degrade phenol coupled with attenuated total reflection fourier transform infrared (ATR-FTIR) which is a detection method has the characteristics of efficient ,fast ,high fingerprint were used .Principal component analysis (PCA) is a method in common use to extract fingerprint peaks effectively ,it couples with partial least squares (PLS) statistical method could estab-lish a credible model .The model we created using PCA-PLS can reach 99.5% of coefficient determination and validation data get 99.4% ,which shows the promising fitness and forecasting of the model .The high fitting model is used for predicting the concentration of phenol at solid medium where the bacteria were grown .The highly consistent result of two screening methods ,solid cultural with ATR-FTIR detected and traditional liq-uid cultural detected by GC methods ,suggests the former can rapid isolate the bacteria which can degrade sub-strates as well as traditional cumbersome liquid cultural method .Many hazardous substrates widely existed in industry wastewater ,most of them has specialize fingerprint peaks detected by ATR-FTIR ,thereby this detec-ted method could be used as a rapid detection for isolation of functional microorganisms those can degrade many other toxic substrates .%苯酚是一种重要的化工原料并广泛存在于工业废水中,随着各国对苯酚生物毒性的认识,排放

  2. Discrete Fourier Transform in a Complex Vector Space

    Science.gov (United States)

    Dean, Bruce H. (Inventor)

    2015-01-01

    An image-based phase retrieval technique has been developed that can be used on board a space based iterative transformation system. Image-based wavefront sensing is computationally demanding due to the floating-point nature of the process. The discrete Fourier transform (DFT) calculation is presented in "diagonal" form. By diagonal we mean that a transformation of basis is introduced by an application of the similarity transform of linear algebra. The current method exploits the diagonal structure of the DFT in a special way, particularly when parts of the calculation do not have to be repeated at each iteration to converge to an acceptable solution in order to focus an image.

  3. Discrete Fourier Transform Analysis in a Complex Vector Space

    Science.gov (United States)

    Dean, Bruce H.

    2009-01-01

    Alternative computational strategies for the Discrete Fourier Transform (DFT) have been developed using analysis of geometric manifolds. This approach provides a general framework for performing DFT calculations, and suggests a more efficient implementation of the DFT for applications using iterative transform methods, particularly phase retrieval. The DFT can thus be implemented using fewer operations when compared to the usual DFT counterpart. The software decreases the run time of the DFT in certain applications such as phase retrieval that iteratively call the DFT function. The algorithm exploits a special computational approach based on analysis of the DFT as a transformation in a complex vector space. As such, this approach has the potential to realize a DFT computation that approaches N operations versus Nlog(N) operations for the equivalent Fast Fourier Transform (FFT) calculation.

  4. Fully phase encrypted memory using cascaded extended fractional Fourier transform

    Science.gov (United States)

    Nishchal, Naveen K.; Joseph, Joby; Singh, Kehar

    2003-11-01

    In this paper, we implement a fully phase encrypted memory system using cascaded extended fractional Fourier transform (FRT). We encrypt and decrypt a two-dimensional image obtained from an amplitude image. The fully phase image to be encrypted is fractional Fourier transformed three times and random phase masks are placed in the two intermediate planes. Performing the FRT three times increases the key size, at an added complexity of one more lens. The encrypted image is holographically recorded in a photorefractive crystal and is then decrypted by generating through phase conjugation, conjugate of encrypted image. The decrypted phase image is converted into an amplitude image by using phase contrast technique. A lithium niobate crystal has been used as a phase contrast filter to reconstruct the phase image, alleviating the need of alignment in the Fourier plane, thereby making the system rugged.

  5. Fourier and Hadamard transform spectrometers - A limited comparison

    Science.gov (United States)

    Tai, M. H.; Harwit, M.

    1976-01-01

    An encoding figure of merit is established for a detector-noise limited Fourier transform spectrometer (FTS) and compared to the comparable figure for a Hadamard transform spectrometer (HTS). The limitation of the Fourier system is partly that it does not truly Fourier analyze the radiation. Instead a cosine squared modulation is imposed on the different spectral frequencies. An additional difficulty is that neither the cosine nor the cosine squared functions form an orthonormal set. This makes the Fellgett's advantage (root-mean-squared figure of merit) for a single detector Michelson interferometer a factor of the square root of (N/8) greater than for a conventional grating instrument - rather than the square root of (N/2). The theoretical limit would be the square root of N.

  6. Application of fast Fourier transformation in thermoluminescence thermogram reconstruction

    Science.gov (United States)

    Pla, C.; Podgorsak, E. B.

    1984-03-01

    A thermoluminescence (TL) thermogram reconstruction technique based on fast Fourier transformation (FFT) techniques is presented. Only the first few terms of the real and imaginary ``frequency arrays,'' representing the thermogram in the frequency domain, are used for thermogram reconstruction by an inverse transformation. A method to determine the optimum number of FFT terms is discussed and a reconstruction study performed on six commonly used TL materials.

  7. Analysis of chicken fat as adulterant in butter using fourier transform infrared spectroscopy and chemometrics

    Directory of Open Access Journals (Sweden)

    Nurrulhidayah, A. F.

    2013-09-01

    Full Text Available Butter may be adulterated with cheaper animal fats, such as chicken fat (CF. Thus, the detection and quantification of butter adulteration with CF was monitored using Fourier transform infrared (FTIR spectroscopy, combined with chemometric of partial least square (PLS at the frequency regions of 1200-1000cm–1. FTIR measurements were made on pure butter and that adulterated with varying concentrations of CF (0-100% w/w in butter. PLS calibration exhibits a good relationship between actual and FTIR predicted values of CF with a coefficient of determination (R2 of 0.981. The root means standard error of calibration (RMSEC and during cross validation (RMSECV obtained using six principal components (PCs are 2.08 and 4.33% v/v, respectively.La mantequilla puede ser adulterada con grasas animales más baratas, como la grasa de pollo (GP. Así, la detección y cuantificación de la adulteración de mantequilla con GP se controló usando transformada de Fourier infrarroja (FTIR, combinada con técnicas quimiométricas de mínimos cuadrados parciales (PLS en las regiones de frecuencia de 1200-1000cm–1. Las medidas FTIR se realizaron sobre la mantequilla pura y adulterada con diferentes concentraciones de GP (0-100% w/w en la mantequilla. La calibración de PLS presenta una buena relación entre los valores reales y los valores pronosticados de FTIR de la GP con un coeficiente de determinación (R2 de 0.981. La raíz del error estándar de calibración (RMSEC durante la validación cruzada (RMSECV obtenido utilizando seis componentes principales (PC fueron 2,08 y 4,33% v/v, respectivamente.

  8. SPICA/SAFARI fourier transform spectrometer mechanism evolutionary design

    NARCIS (Netherlands)

    Dool, T.C. van den; Kruizinga, B.; Braam, B.C.; Hamelinck, R.F.M.M.; Loix, N.; Loon, D. van; Dams, J.

    2012-01-01

    TNO, together with its partners, have designed a cryogenic scanning mechanism for use in the SAFARI Fourier Transform Spectrometer (FTS) on board of the SPICA mission. SPICA is one of the M-class missions competing to be launched in ESA's Cosmic Vision Programme in 2022. JAXA leads the development o

  9. Optical correlation based on the fractional Fourier transform.

    Science.gov (United States)

    Granieri, S; Arizaga, R; Sicre, E E

    1997-09-10

    Some properties of optical correlation based on the fractional Fourier transform are analyzed. For a particular set of fractional orders, a filter is obtained that becomes insensitive to scale variations of the object. An optical configuration is also proposed to carry out the fractional correlation in a flexible way, and some experimental results are shown.

  10. Quantum Discrete Fourier Transform in an Ion Trap System

    Institute of Scientific and Technical Information of China (English)

    ZHENG Shi-Biao

    2007-01-01

    We propose two schemes for the implementation of quantum discrete Fourier transform in the ion trap system. In each scheme we design a tunable two-qubit phase gate as the main ingredient. The experimental implementation of the schemes would be an important step toward complex quantum computation in the ion trap system.

  11. Fourier transformation methods in the field of gamma spectrometry

    Indian Academy of Sciences (India)

    A Abdel-Hafiez

    2006-09-01

    The basic principles of a new version of Fourier transformation is presented. This new version was applied to solve some main problems such as smoothing, and denoising in gamma spectroscopy. The mathematical procedures were first tested by simulated data and then by actual experimental data.

  12. Quaternion Fourier transforms for signal and image processing

    CERN Document Server

    Ell, Todd A; Sangwine, Stephen J

    2014-01-01

    Based on updates to signal and image processing technology made in the last two decades, this text examines the most recent research results pertaining to Quaternion Fourier Transforms. QFT is a central component of processing color images and complex valued signals. The book's attention to mathematical concepts, imaging applications, and Matlab compatibility render it an irreplaceable resource for students, scientists, researchers, and engineers.

  13. AN ASYMPTOTIC ORDER OF FOURIER TRANSFORM ON SL(2,R)

    Institute of Scientific and Technical Information of China (English)

    Wang Xinsong; Zheng Weixing

    2003-01-01

    In this paper, a better asymptotic order of Fourier transform on SL(2 ,R) is obtained by using classicalanalysis and Lie analysis comparing with that of [5]、 [6], and the Plancherel theorem on Cc2 (SL (2, R)) isalso obtained as an application.

  14. Quasi- Chun- Ching Shih's Fractional Fourier Transform with Periodicity of 2,3 and M

    Institute of Scientific and Technical Information of China (English)

    FAN Xi-zhi

    2004-01-01

    Based on Chun-Ching Shih's idea, the basic transform was substituted and the quasi-ChunChing Shih's fractional Fourier transform with periodicity of 2, 3 and M was deduced. The two former transforms and the Chun-Ching Shih's fractional Fourier transform were only the particular cases of quasiChun-Ching Shih's fractional Fourier transform with periodicity of M.

  15. Discrete fourier transform (DFT) analysis for applications using iterative transform methods

    Science.gov (United States)

    Dean, Bruce H. (Inventor)

    2012-01-01

    According to various embodiments, a method is provided for determining aberration data for an optical system. The method comprises collecting a data signal, and generating a pre-transformation algorithm. The data is pre-transformed by multiplying the data with the pre-transformation algorithm. A discrete Fourier transform of the pre-transformed data is performed in an iterative loop. The method further comprises back-transforming the data to generate aberration data.

  16. Fourier transform infrared spectrophotometry for thin film monitors: computer and equipment integration for enhanced capabilities

    Science.gov (United States)

    Cox, J. Neal; Sedayao, J.; Shergill, Gurmeet S.; Villasol, R.; Haaland, David M.

    1991-03-01

    Fourier transform infrared spectrophotometry (FTIR) is a valuable technique for monitoring thin films used in semiconductor device manufacture. Determinations of the constituent contents in borophosphosilicate (BPSG) phosphosilicate (PSG) silicon oxynitride (SiON:H and spin-on-glass (SOG) thin films are a few applications. Due to the nature of the technique FTIR instrumentation is one of the most extensively computer-dependent pieces of equipment that is likely to be found in a microelectronics plant. In the role of fab monitor or reactor characterization tool FTIR instruments can rapidly generate large amounts of data. Also the drive for greater accuracy and tighter precision is leading to the development of increasingly sophisticated data processing software that tax the computing abilities of most instrument local data stations. By linking a local FTIR data station to a remote minicomputer its capabilities are greatly improved. We discuss three classes of enhancement. First the FTIR in the fab area communicates and interacts in real time with the minicomputer: transferring data segments to it instructing it to perform sophisticated processing and returning the results to the operator in the fab. Characterizations of PSG thin films by this approach are discussed. Second the spectra of large numbers of samples are processed locally. The large database is then transmitted to the minicomputer for study by statistical/graphics software. Results of CVD-reactor spatial profiling experiments for plasma SiON are presented. Third processing of calibration spectra is performed

  17. Discrimination of organic coffee via Fourier transform infrared-photoacoustic spectroscopy.

    Science.gov (United States)

    Gordillo-Delgado, Fernando; Marín, Ernesto; Cortés-Hernández, Diego Mauricio; Mejía-Morales, Claudia; García-Salcedo, Angela Janet

    2012-08-30

    Procedures for the evaluation of the origin and quality of ground and roasted coffee are constantly needed for the associated industry due to complexity of the related market. Conventional Fourier transform infrared (FTIR) spectroscopy can be used for detecting changes in functional groups of compounds, such as coffee. However, dispersion, reflection and non-homogeneity of the sample matrix can cause problems resulting in low spectral quality. On the other hand, sample preparation frequently takes place in a destructive way. To overcome these difficulties, in this work a photoacoustic cell has been adapted as a detector in a FTIR spectrophotometer to perform a study of roasted and ground coffee from three varieties of Coffea arabica grown by organic and conventional methods. Comparison between spectra of coffee recorded by FTIR-photoacoustic spectrometry (PAS) and by FTIR spectrophotometry showed a better resolution of the former method, which, aided by principal components analysis, allowed the identification of some absorption bands that allow the discrimination between organic and conventional coffee. The results obtained provide information about the spectral behavior of coffee powder which can be useful for establishing discrimination criteria. It has been demonstrated that FTIR-PAS can be a useful experimental tool for the characterization of coffee. Copyright © 2012 Society of Chemical Industry.

  18. Identification of Plant-Pathogenic Fungi Using Fourier Transform Infrared Spectroscopy Combined with Chemometric Analyses

    Institute of Scientific and Technical Information of China (English)

    CHAI A-li; WANG Yi-kai; ZHU Fa-di; SHI Yan-xia; XIE Xue-wen; LI Bao-ju

    2016-01-01

    Identification of plant-pathogenic fungi is time-consuming due to cultivation and microscopic exami-nation and can be influenced by the interpretation of the micro-morphological characters observed.The present investigation aimed to create a simple but sophisticated method for the identification of plant-pathogenic fungi by Fourier transform infrared (FTIR)spectroscopy.In this study,FTIR-attenuated total reflectance (ATR) spectroscopy was used in combination with chemometric analysis for identification of important pathogenic fun-gi of horticultural plants.Mixtures of mycelia and spores from 27 fungal strains belonging to nine different families were collected from liquid PD or solid PDA media cultures and subj ected to FTIR-ATR spectroscopy measurements.The FTIR-ATR spectra ranging from 4 000 to 400 cm-1 were obtained.To classify the FTIR-ATR spectra,cluster analysis was compared with canonical vitiate analysis (CVA)in the spectral regions of 3 050~2 800 and 1 800~900 cm-1 .Results showed that the identification accuracies achieved 97.53% and 9 9.1 8% for the cluster analysis and CVA analysis,respectively,demonstrating the high potential of this tech-nique for fungal strain identification.

  19. Fourier transform infared spectroscopic imaging for the identification of concealed drug residue particles and fingerprints

    Science.gov (United States)

    Ricci, Camilla; Chan, K. L. Andrew; Kazarian, Sergei G.

    2006-09-01

    Conventional FTIR spectroscopy and microscopy has been widely used in forensic science. New opportunities exist to obtain rapid chemical images and to enhance the sensitivity of detection of trace materials using attenuated total reflection (ATR) Fourier transform infrared (FTIR) spectroscopy coupled with a focal-plane array (FPA) detector. In this work, the sensitivity of ATR-FTIR spectroscopic imaging using three different kinds of ATR crystals (Ge coupled with an infrared microscope, ZnSe and diamond) and resulting in three different optical arrangements for the detection of model drug particles is discussed. Model systems of ibuprofen and paracetamol particles having a size below 32 micrometers have been prepared by sieving. The sensitivity level in the three different approaches has been compared and it has been found that both micro and macro-ATR imaging methods have proven to be a promising techniques for the identification of concealed drug particles. To demonstrate the power and applicability of FTIR chemical imaging to forensic research, various examples are discussed. This includes investigation of the changes of chemical nature of latent fingerprint residue under controlled conditions of humidity and temperature studied by ATR-FTIR imaging. This study demonstrates the potential of spectroscopic imaging for visualizing the chemical changes of fingerprints.

  20. Investigations of Accelerated Climate Aged Wood Substrates by Fourier Transform Infrared Material Characterization

    Directory of Open Access Journals (Sweden)

    Bjørn Petter Jelle

    2012-01-01

    Full Text Available Fourier transform infrared (FTIR material characterization by applying the attenuated total reflectance (ATR experimental technique represents a powerful measurement tool. The ATR technique may be applied on both solid state materials, liquids and gases with none or only minor sample preparations, also including materials which are nontransparent to infrared radiation. This facilitation is made possible by pressing the sample directly onto various crystals, for example, diamond, with high refractive indices, in a special reflectance setup. Materials undergoing ageing processes by natural and accelerated climate exposure, decomposition and formation of chemical bonds and products, may be studied in an ATR-FTIR analysis. In this work, the ATR-FTIR technique is utilized to detect changes in selected wood building material substrates subjected to accelerated climate exposure conditions. Changes in specific FTIR absorbance peaks are designated to different wood deterioration processes. One aim is by ATR-FTIR analysis to be able to quantitatively determine the length of the wood ageing time before priming/treatment. Climate parameters like temperature (including freezing/thawing, relative air humidity, wind driven rain amount, solar and/or ultraviolet radiation, and exposure duration may be controlled in different climate ageing apparatuses. Both impregnated and raw wood samples have been employed in the experimental investigations.

  1. Fourier transform infrared spectroscopy and Raman spectroscopy as tools for identification of steryl ferulates.

    Science.gov (United States)

    Mandak, Eszter; Zhu, Dan; Godany, Tamas A; Nyström, Laura

    2013-03-13

    Steryl ferulates are a mixture of minor bioactive compounds, possessing well-established health benefits. However, individual steryl ferulate species show structural differences, which seem to substantially influence their health-promoting potential. In this study, we tested Fourier transform infrared (FTIR) spectroscopy and Raman spectroscopy, as potential tools in the identification of steryl ferulates. On the basis of our spectral data obtained from various individual steryl ferulates and steryl ferulate mixtures extracted from rice (γ-oryzanol), corn bran, and wheat bran, we provide comprehensive peak assignment tables for both FTIR and Raman. With the help of FTIR spectroscopy, structural differences between individual steryl ferulates were possible to identify, such as the presence of the cyclopropane ring and additional differences in the side chain of the sterane skeleton. Data obtained with Raman spectroscopy provided us with a control for FTIR peak assignment and also with some additional information on the samples. However, detecting structural differences between steryl ferulates was not possible with this method. We consider that FTIR spectroscopy alone or combined with Raman provides detailed data on the structures of steryl ferulates. Moreover, thorough peak assignment tables presented in this study could prove to be helpful tools when identifying steryl ferulates, especially as a group, in future studies.

  2. Renal Graft Fibrosis and Inflammation Quantification by an Automated Fourier-Transform Infrared Imaging Technique.

    Science.gov (United States)

    Vuiblet, Vincent; Fere, Michael; Gobinet, Cyril; Birembaut, Philippe; Piot, Olivier; Rieu, Philippe

    2016-08-01

    Renal interstitial fibrosis and interstitial active inflammation are the main histologic features of renal allograft biopsy specimens. Fibrosis is currently assessed by semiquantitative subjective analysis, and color image analysis has been developed to improve the reliability and repeatability of this evaluation. However, these techniques fail to distinguish fibrosis from constitutive collagen or active inflammation. We developed an automatic, reproducible Fourier-transform infrared (FTIR) imaging-based technique for simultaneous quantification of fibrosis and inflammation in renal allograft biopsy specimens. We generated and validated a classification model using 49 renal biopsy specimens and subsequently tested the robustness of this classification algorithm on 166 renal grafts. Finally, we explored the clinical relevance of fibrosis quantification using FTIR imaging by comparing results with renal function at 3 months after transplantation (M3) and the variation of renal function between M3 and M12. We showed excellent robustness for fibrosis and inflammation classification, with >90% of renal biopsy specimens adequately classified by FTIR imaging. Finally, fibrosis quantification by FTIR imaging correlated with renal function at M3, and the variation in fibrosis between M3 and M12 correlated well with the variation in renal function over the same period. This study shows that FTIR-based analysis of renal graft biopsy specimens is a reproducible and reliable label-free technique for quantifying fibrosis and active inflammation. This technique seems to be more relevant than digital image analysis and promising for both research studies and routine clinical practice.

  3. Fourier transform infrared spectroscopy of DNA from Borrelia burgdorferi sensu lato and Ixodes ricinus ticks

    Science.gov (United States)

    Muntean, Cristina M.; Stefan, Razvan; Bindea, Maria; Cozma, Vasile

    2013-06-01

    In this work we present a method for detection of motile and immotile Borrelia burgdorferi genomic DNA, in relation with infectious and noninfectious spirochetes. An FT-IR study of DNA isolated from B. burgdorferi sensu lato strains and from positive and negative Ixodes ricinus ticks, respectively, is reported. Motile bacterial cells from the species B. burgdorferi sensu stricto, Borrelia garinii and Borrelia afzelii were of interest. Also, FT-IR absorbance spectra of DNA from immotile spirochetes of B. burgdorferi sensu stricto, in the absence and presence of different antibiotics (doxycycline, erythromycin, gentamicin, penicillin V or phenoxymethylpenicillin, tetracycline, respectively) were investigated. FT-IR spectra, providing a high molecular structural information, have been analyzed in the wavenumber range 400-1800 cm-1. FT-IR signatures, spectroscopic band assignments and structural interpretations of these DNAs are reported. Spectral differences between FT-IR absorbances of DNAs from motile bacterial cells and immotile spirochetes, respectively, have been found. Particularly, alterations of the sugar-phosphate B-form chain in the case of DNA from Borrelia immotile cells, as compared with DNA from B. burgdorferi sensu lato motile cells have been observed. Based on this work, specific B. burgdorferi sensu lato and I. ricinus DNA-ligand interactions, respectively, might be further investigated using Fourier transform infrared spectroscopy.

  4. Diffuse reflectance infrared fourier transform spectroscopic (DRIFTS) investigation of E.coli, Staphylococcus aureus and Candida albicans

    Digital Repository Service at National Institute of Oceanography (India)

    DeSouza, L.; PrabhaDevi; Kamat, T.; Naik, C.G.

    & Labischinski H, Microbiological characterization by FT-IR spectroscopy. Nature, 351 (1991b) 81-82. 10 Van der Mei H C, Naumann D & Busscher H J, Grouping of oral streptococcal species using Fourier transform infrared spectroscopy in comparison... with classical microbiological identification. Arch Oral BioI, 38 (1993) 1013-1019. 11 Curk M C, Peladan F & Hubert J C, Fourier-transform infrared spectroscopy for identifying Lactobacillus sp. FEMS Microbiol Lett, 123 (1994) 241-248. 12 Holt C, Hirst D...

  5. Evolution of Lactococcus strains during ripening in Brie cheese using Fourier transform infrared spectroscopy

    OpenAIRE

    Lefier, Dominique; Lamprell, Helen; Mazerolles, Gérard

    2000-01-01

    International audience; The diversity of the Lactococcus flora during maturation of soft cheese, produced using one of 2 different starter cultures (S$_{\\rm A}$ and S$_{\\rm B}$), was determined using Fourier transform infrared spectroscopy (FTIR). Identification of Lactococcus sp. was achieved using a model composed of the 6 strains of Lc. lactis ssp. lactis and the 2 strains of Lc. lactis ssp. cremoris, present in the starter cultures S$_{\\rm A}$ and S$_{\\rm B}$, as well as a reference strai...

  6. Correcting attenuated total reflection-fourier transform infrared spectra for water vapor and carbon dioxide

    DEFF Research Database (Denmark)

    Bruun, Susanne Wrang; Kohler, Achim; Adt, Isabelle

    2006-01-01

    Fourier transform infrared (FT-IR) spectroscopy is a valuable technique for characterization of biological samples, providing a detailed fingerprint of the major chemical constituents. However, water vapor and CO(2) in the beam path often cause interferences in the spectra, which can hamper...... an absorption band from either water vapor or CO(2). From two calibration data sets, gas model spectra were estimated in each of the four spectral regions, and these model spectra were applied for correction of gas absorptions in two independent test sets (spectra of aqueous solutions and a yeast biofilm (C...

  7. A Unified Method of Finding Laplace Transforms, Fourier Transforms, and Fourier Series. [and] An Inversion Method for Laplace Transforms, Fourier Transforms, and Fourier Series. Integral Transforms and Series Expansions. Modules and Monographs in Undergraduate Mathematics and Its Applications Project. UMAP Units 324 and 325.

    Science.gov (United States)

    Grimm, C. A.

    This document contains two units that examine integral transforms and series expansions. In the first module, the user is expected to learn how to use the unified method presented to obtain Laplace transforms, Fourier transforms, complex Fourier series, real Fourier series, and half-range sine series for given piecewise continuous functions. In…

  8. On the finite Fourier transforms of functions with infinite discontinuities

    Directory of Open Access Journals (Sweden)

    Branko Saric

    2002-01-01

    Full Text Available The introductory part of the paper is provided to give a brief review of the stability theory of a matrix pencil for discrete linear time-invariant singular control systems, based on the causal relationship between Jordan's theorem from the theory of Fourier series and Laurent's theorem from the calculus of residues. The main part is concerned with the theory of the integral transforms, which has proved to be a powerful tool in the control systems theory. On the basis of a newly defined notion of the total value of improper integrals, throughout the main part of the paper, an attempt has been made to present the global theory of the integral transforms, which are slightly more general with respect to the Laplace and Fourier transforms. The paper ends with examples by which the results of the theory are verified.

  9. An introduction to Laplace transforms and Fourier series

    CERN Document Server

    Dyke, Phil

    2014-01-01

    Laplace transforms continue to be a very important tool for the engineer, physicist and applied mathematician. They are also now useful to financial, economic and biological modellers as these disciplines become more quantitative. Any problem that has underlying linearity and with solution based on initial values can be expressed as an appropriate differential equation and hence be solved using Laplace transforms. In this book, there is a strong emphasis on application with the necessary mathematical grounding. There are plenty of worked examples with all solutions provided. This enlarged new edition includes generalised Fourier series and a completely new chapter on wavelets. Only knowledge of elementary trigonometry and calculus are required as prerequisites. An Introduction to Laplace Transforms and Fourier Series will be useful for second and third year undergraduate students in engineering, physics or mathematics, as well as for graduates in any discipline such as financial mathematics, econometrics and ...

  10. Ultrafast ranging lidar based on real-time Fourier transformation.

    Science.gov (United States)

    Xia, Haiyun; Zhang, Chunxi

    2009-07-15

    Real-time Fourier-transformation-based ranging lidar using a mode-locked femtosecond fiber laser is demonstrated. The object signal and the reference signal are guided from a fiber Mach-Zehnder interferometer into a dispersive element. The two optical pulses extend and overlap with each other temporally, which yields a microwave pulse on the photodetector with its frequency proportional to the time delay between the two signals. The temporal interferograms are transformed from the time domain into the frequency domain using a time-to-frequency conversion function obtained in the calibration process. The Fourier transform is used in the data processing. A range resolution of 334 nm at a sampling rate of 48.6 MHz over a distance of 16 cm is demonstrated in the laboratory.

  11. The Discrete Fourier Transform on hexagonal remote sensing image

    Science.gov (United States)

    Li, Yalu; Ben, Jin; Wang, Rui; Du, Lingyu

    2016-11-01

    Global discrete grid system will subdivide the earth recursively to form a multi-resolution grid hierarchy with no Overlap and seamless which help build global uniform spatial reference datum and multi-source data processing mode which takes the position as the object and in the aspect of data structure supports the organization, process and analysis of the remote sensing big data. This paper adopts the base transform to realize the mutual transformation of square pixel and hexagonal pixel. This paper designs the corresponding discrete Fourier transform algorithm for any lattice. Finally, the paper show the result of the DFT of the remote sensing image of the hexagonal pixel.

  12. Transfer Functions Via Laplace- And Fourier-Borel Transforms

    Science.gov (United States)

    Can, Sumer; Unal, Aynur

    1991-01-01

    Approach to solution of nonlinear ordinary differential equations involves transfer functions based on recently-introduced Laplace-Borel and Fourier-Borel transforms. Main theorem gives transform of response of nonlinear system as Cauchy product of transfer function and transform of input function of system, together with memory effects. Used to determine responses of electrical circuits containing variable inductances or resistances. Also possibility of doing all noncommutative algebra on computers in such symbolic programming languages as Macsyma, Reduce, PL1, or Lisp. Process of solution organized and possibly simplified by algebraic manipulations reducing integrals in solutions to known or tabulated forms.

  13. A Student's Guide to Fourier Transforms - 2nd Edition

    Science.gov (United States)

    James, J. F.

    2002-09-01

    Fourier transform theory is of central importance in a vast range of applications in physical science, engineering, and applied mathematics. This new edition of a successful student text provides a concise introduction to the theory and practice of Fourier transforms, using qualitative arguments wherever possible and avoiding unnecessary mathematics. After a brief description of the basic ideas and theorems, the power of the technique is then illustrated by referring to particular applications in optics, spectroscopy, electronics and telecommunications. The rarely discussed but important field of multi-dimensional Fourier theory is covered, including a description of computer-aided tomography (CAT-scanning). The final chapter discusses digital methods, with particular attention to the fast Fourier transform. Throughout, discussion of these applications is reinforced by the inclusion of worked examples. The book assumes no previous knowledge of the subject, and will be invaluable to students of physics, electrical and electronic engineering, and computer science. Expanded to include more emphasis on applications An established successful textbook for undergraduate and graduate students Includes worked examples and copious diagrams throughout

  14. A VLSI architecture for simplified arithmetic Fourier transform algorithm

    Science.gov (United States)

    Reed, Irving S.; Shih, Ming-Tang; Truong, T. K.; Hendon, E.; Tufts, D. W.

    1992-01-01

    The arithmetic Fourier transform (AFT) is a number-theoretic approach to Fourier analysis which has been shown to perform competitively with the classical FFT in terms of accuracy, complexity, and speed. Theorems developed in a previous paper for the AFT algorithm are used here to derive the original AFT algorithm which Bruns found in 1903. This is shown to yield an algorithm of less complexity and of improved performance over certain recent AFT algorithms. A VLSI architecture is suggested for this simplified AFT algorithm. This architecture uses a butterfly structure which reduces the number of additions by 25 percent of that used in the direct method.

  15. Reducing aberration effect of Fourier transform lens by modifying Fourier spectrum of diffractive optical element in beam shaping optical system.

    Science.gov (United States)

    Zhang, Fang; Zhu, Jing; Song, Qiang; Yue, Weirui; Liu, Jingdan; Wang, Jian; Situ, Guohai; Huang, Huijie

    2015-10-20

    In general, Fourier transform lenses are considered as ideal in the design algorithms of diffractive optical elements (DOEs). However, the inherent aberrations of a real Fourier transform lens disturb the far field pattern. The difference between the generated pattern and the expected design will impact the system performance. Therefore, a method for modifying the Fourier spectrum of DOEs without introducing other optical elements to reduce the aberration effect of the Fourier transform lens is proposed. By applying this method, beam shaping performance is improved markedly for the optical system with a real Fourier transform lens. The experiments carried out with a commercial Fourier transform lens give evidence for this method. The method is capable of reducing the system complexity as well as improving its performance.

  16. DIFERENCIACIÓN DE ESPECIE MICOBACTERIANA POR FT-IR (ESPECTROSCOPIA INFRARROJA CON TRANSFORMADA DE FOURIER

    Directory of Open Access Journals (Sweden)

    JORGE ANDRÉS CUÉLLAR GIL

    2011-01-01

    Full Text Available Se trabajó con espectroscopía infrarroja transformada de Fourier (FT-IR para diferenciar diez especies de micobacterias. Mycobacterium intracelullare y M. fortuitum (ATCC, M. flavensces , M. smegmatis , M. chelone , M. gordonae , M. triviale , M. vaccae , M. terrae y M. nonchromogenicum (IP. Como control de diferenciación de género se incluyó Staphylococcus aureus , Streptococcus viridans y Streptococcus pyogenes , Klebsiella pneumoniae y Escherichia coli , cada especie se corrió por triplicado en KBr y ATR. Los espectros se analizaron según el método de diferenciación de componentes principales, y se realizaron derivadas de primer orden (D1 en modalidad de transmisión usando la pastilla de KBr y la base ATR, además se diseñó una biblioteca espectral con la primera derivada de ATR. La sensibilidad de detección fue de 100% al trabajar con KBr y el nivel de diferenciación fue de 100% en tres de cuatro muestras problema.

  17. [Monitoring and analysis of urban ozone using open path Fourier transform infrared spectrometry].

    Science.gov (United States)

    Li, Sheng; Gao, Min-guang; Zhang, Yu-jun; Liu, Wen-qing; Xu, Liang; Tong, Jing-jing; Cheng, Si-yang; Jin, Ling; Wei, Xiu-li; Wang, Ya-ping; Chen, Jun

    2011-12-01

    An ozone monitoring system was developed by the method of open path Fourier transform infrared (OP-FTIR) spectrometry based on our FTIR spectrometer. In order to improve measurement precision and detection limit, the quantitative analysis was completed to get ozone concentration by combining synthetic background spectrum method which uses information from HITRAN database and instrumental line shape, and nonlinear least squares (NLLSQ) method. The measurement methods for system detection limit were discussed and the result is 1.42 nmol x mol(-1) with sixteen times averages. The authors developed continuous monitoring experiments in the suburban area of Hefei. For the day and month measurement results, the authors analyzed their variations with the generation sources. The result has shown that this system is reliable and precise and can be used as a new device and method for national ozone monitoring.

  18. Pharmacologic application of fourier transform IR spectroscopy: in vivo toxicity of carbon tetrachloride on rat liver.

    Science.gov (United States)

    Melin, A M; Perromat, A; Déléris, G

    2000-01-01

    Microsomal fractions from rat liver were examined by means of Fourier transform IR (FTIR) spectroscopy to study the in vivo toxic effect of carbon tetrachloride administered by intraperitoneal injection. Lipid content was significantly enhanced in the liver of treated rats compared with untreated ones. The level of saturated fatty acids largely increased while that of unsaturated acids slightly decreased as a consequence of lipid peroxidation induced by the xenobiotic compound. The conformational structure of membrane proteins was changed, which was shown by the large decrease in the alpha-helical configuration. In the polysaccharide region we observed an important loss in glucidic structures that could be related to the metabolic changes caused by carbon tetrachloride intoxication. Thus, FTIR spectroscopy appears to be a useful tool to rapidly investigate the chemical alterations induced by this drug in liver microsomes and to correlate them with biochemical and physiological data.

  19. Authentication of canned fish packing oils by means of Fourier transform infrared spectroscopy.

    Science.gov (United States)

    Dominguez-Vidal, Ana; Pantoja-de la Rosa, Jaime; Cuadros-Rodríguez, Luis; Ayora-Cañada, María José

    2016-01-01

    The authentication of packing oil from commercial canned tuna and other tuna-like fish species was examined by means of attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) and chemometrics. Using partial least squares discriminant analysis (PLS-DA), it was possible to differentiate olive oil from seed oils. Discrimination of olive oil from high-oleic sunflower oil was possible, despite the latter having a degree of unsaturation more similar to olive oil than to sunflower oil. However, in the samples analyzed, sunflower oil could not be differentiated clearly from those labeled with the generic term "vegetable oil". Furthermore, the authentication of extra virgin olive oil, although more difficult, could be achieved using ATR-FTIR spectroscopy. The method could be applied regardless of fish type, without interference from fish lipids.

  20. Fourier transform infrared difference spectroscopy for studying the molecular mechanism of photosynthetic water oxidation

    Directory of Open Access Journals (Sweden)

    Hsiu-An eChu

    2013-05-01

    Full Text Available The photosystem II reaction center mediates the light-induced transfer of electrons from water to plastoquinone, with concomitant production of O2. Water oxidation chemistry occurs in the oxygen-evolving complex (OEC, which consists of an inorganic Mn4CaO5 cluster and its surrounding protein matrix. Light-induced Fourier transform infrared (FTIR difference spectroscopy has been successfully used to study the molecular mechanism of photosynthetic water oxidation. This powerful technique has enabled the characterization of the dynamic structural changes in active water molecules, the Mn4CaO5 cluster, and its surrounding protein matrix during the catalytic cycle. This mini-review presents an overview of recent important progress in FTIR studies of the OEC and implications for revealing the molecular mechanism of photosynthetic water oxidation.

  1. Differentiation and detection of microorganisms using Fourier transform infrared photoacoustic spectroscopy

    Science.gov (United States)

    Irudayaraj, Joseph; Yang, Hong; Sakhamuri, Sivakesava

    2002-03-01

    Fourier transform infrared photoacoustic spectroscopy (FTIR-PAS) was used to differentiate and identify microorganisms on a food (apple) surface. Microorganisms considered include bacteria (Lactobacillus casei, Bacillus cereus, and Escherichia coli), yeast (Saccharomyces cerevisiae), and fungi (Aspergillus niger and Fusarium verticilliodes). Discriminant analysis was used to differentiate apples contaminated with the different microorganisms from uncontaminated apple. Mahalanobis distances were calculated to quantify the differences. The higher the value of the Mahalanobis distance metric between different microorganisms, the greater is their difference. Additionally, pathogenic (O157:H7) E. coli was successfully differentiated from non-pathogenic strains. Results demonstrate that FTIR-PAS spectroscopy has the potential to become a non-destructive analysis tool in food safety related research.

  2. Pectin functionalised by fatty acids: Diffuse reflectance infrared Fourier transform (DRIFT) spectroscopic characterisation

    Science.gov (United States)

    Kamnev, Alexander A.; Calce, Enrica; Tarantilis, Petros A.; Tugarova, Anna V.; De Luca, Stefania

    2015-01-01

    Chemically modified pectin derivatives obtained by partial esterification of its hydroxyl moieties with fatty acids (FA; oleic, linoleic and palmitic acids), as well as the initial apple peel pectin were comparatively characterised using diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy. Characteristic changes observed in DRIFT spectra in going from pectin to its FA esters are related to the corresponding chemical modifications. Comparing the DRIFT spectra with some reported data on FTIR spectra of the same materials measured in KBr or NaCl matrices has revealed noticeable shifts of several polar functional groups both in pectin and in its FA-esterified products induced by the halide salts. The results obtained have implications for careful structural analyses of biopolymers with hydrophilic functional groups by means of different FTIR spectroscopic methodologies.

  3. Discrimination of handlebar grip samples by fourier transform infrared microspectroscopy analysis and statistics

    Directory of Open Access Journals (Sweden)

    Zeyu Lin

    2017-01-01

    Full Text Available In this paper, the authors presented a study on the discrimination of handlebar grip samples, to provide effective forensic science service for hit and run traffic cases. 50 bicycle handlebar grip samples, 49 electric bike handlebar grip samples, and 96 motorcycle handlebar grip samples have been randomly collected by the local police in Beijing (China. Fourier transform infrared microspectroscopy (FTIR was utilized as analytical technology. Then, target absorption selection, data pretreatment, and discrimination of linked samples and unlinked samples were chosen as three steps to improve the discrimination of FTIR spectrums collected from different handlebar grip samples. Principal component analysis and receiver operating characteristic curve were utilized to evaluate different data selection methods and different data pretreatment methods, respectively. It is possible to explore the evidential value of handlebar grip residue evidence through instrumental analysis and statistical treatments. It will provide a universal discrimination method for other forensic science samples as well.

  4. Noninvasive biochemical monitoring of physiological stress by Fourier transform infrared saliva spectroscopy.

    Science.gov (United States)

    Khaustova, Svetlana; Shkurnikov, Maxim; Tonevitsky, Evgeny; Artyushenko, Viacheslav; Tonevitsky, Alexander

    2010-12-01

    Physical stress affects the immune system, activates the sympathetic (SNS) and parasympathetic (PNS) subsystems of autonomic nervous system (ANS), and increases the activity of the hypothalamic-pituitary-adrenal axis (HPA). The specific response of the major regulatory systems depends on the human functional state. Saliva is a unique diagnostic fluid, the composition of which immediately reflects the SNS, PNS, HPA and immune system response to stress. A new method of saliva biomarker determination by Attenuated Total Reflection Fourier-Transform Infrared (ATR FTIR) spectroscopy has been developed to monitor the exercise induced metabolic changes in saliva from male endurance athletes. The method has been tested using a group of professional athletes by analysing saliva samples collected before and after the exercise, and the saliva composition monitoring by ATR FTIR spectroscopy was shown to be suitable for real-time checking of response to stress.

  5. Fractional Fourier Transform for Ultrasonic Chirplet Signal Decomposition

    Directory of Open Access Journals (Sweden)

    Yufeng Lu

    2012-01-01

    Full Text Available A fractional fourier transform (FrFT based chirplet signal decomposition (FrFT-CSD algorithm is proposed to analyze ultrasonic signals for NDE applications. Particularly, this method is utilized to isolate dominant chirplet echoes for successive steps in signal decomposition and parameter estimation. FrFT rotates the signal with an optimal transform order. The search of optimal transform order is conducted by determining the highest kurtosis value of the signal in the transformed domain. A simulation study reveals the relationship among the kurtosis, the transform order of FrFT, and the chirp rate parameter in the simulated ultrasonic echoes. Benchmark and ultrasonic experimental data are used to evaluate the FrFT-CSD algorithm. Signal processing results show that FrFT-CSD not only reconstructs signal successfully, but also characterizes echoes and estimates echo parameters accurately. This study has a broad range of applications of importance in signal detection, estimation, and pattern recognition.

  6. Novel fringe scanning/Fourier transform method of synthetic imaging

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, T.M.; Albano, R.K.

    1993-08-01

    We have developed a one-dimensional theory and a computer model for synthetically imaging scenes using a novel fringe scanning/Fourier transform technique. Our method probes a scene using two interfering beams of slightly different frequency. These beams form a moving fringe pattern which scans the scene and resonates with any spatial frequency components having the same spatial frequency as the scanning fringe pattern. A simple, non-imaging detector above the scene observes any scattered radiation from the scene falling onto it. If a resonance occurs between the scanning fringe pattern and the scene, then the scattered radiation will be modulated at the difference frequency between the two probing beams. By changing the spatial period of the fringe pattern and then measuring the amplitude and phase of the modulated radiation that is scattered from the scene, the Fourier amplitudes and phases of the different spatial frequency components making up the scene can be measured. A synthetic image of the scene being probed can be generated from this Fourier amplitude and phase data by taking the inverse Fourier transform of this information. This technique could be used to image objects using light, ultrasonic, or other electromagnetic or acoustic waves.

  7. Fourier transform approach in modulation technique of experimental measurements.

    Science.gov (United States)

    Khazimullin, M V; Lebedev, Yu A

    2010-04-01

    An application of Fourier transform approach in modulation technique of experimental studies is considered. This method has obvious advantages compared with traditional lock-in amplifiers technique--simple experimental setup, a quickly available information on all the required harmonics, high speed of data processing using fast Fourier transform algorithm. A computationally simple, fast and accurate Fourier coefficients interpolation (FCI) method has been implemented to obtain a useful information from harmonics of a multimode signal. Our analysis shows that in this case FCI method has a systematical error (bias) of a signal parameters estimation, which became essential for the short data sets. Hence, a new differential Fourier coefficients interpolation (DFCI) method has been suggested, which is less sensitive to a presence of several modes in a signal. The analysis has been confirmed by simulations and measurements of a quartz wedge birefringence by means of the photoelastic modulator. The obtained bias, noise level, and measuring speed are comparable and even better than in lock-in amplifier technique. Moreover, presented DFCI method is expected to be promised candidate for using in actively developing imaging systems based on the modulation technique requiring fast digital signal processing of large data sets.

  8. Prediction of Tide Height Using the Discrete Fourier Transform

    Directory of Open Access Journals (Sweden)

    Md. Towhiduzzaman

    2016-12-01

    Full Text Available In this study, I have investigated some aspects of astronomical tide and predicted tide time and height by different methods. This thesis deals with the prediction of height and time for both high and low waters of the ports set up in several places by discrete Fourier transform. I computed the tide height using Discrete Fourier Transform (DFT. The results are found to be in an agreement with the predicted data of others. By this work, we can predict the tide height of overall stations if the sample observed data are available for any kind of stations. I think that my work could be helpful to predict the tides over all stations where the observed data are available.

  9. A simple scanning mirror mechanism for a Fourier transform spectrometer

    Science.gov (United States)

    Brasunas, John C.; Cushman, G. Mark

    1998-04-01

    We present a simple scanning mirror mechanism for a Fourier transform spectrometer, consisting of a voice coil actuator, a ball-bearing slide, and a single cube corner mirror or retroreflector. The use of a single cube corner reduces significantly the sensitivity of the Fourier transform spectrometer to the tilt of its moving mirror, enabling the simple mechanism. With simple velocity feedback using a linear velocity transducer, we achieve a scan speed stability of 2%-5% (root-mean-square) for scan speeds from 40 to 440 μm/s for a travel of 2.2 cm, corresponding to a spectral resolution of 0.06 cm-1. Fringe amplitude stability is about 5%. This scan mechanism was operated at standard temperature and pressure, but the relatively minute amount of lubricant in the ball-bearing slide may indicate possible operation under vacuum and/or cryogenic conditions.

  10. Implementing quantum Fourier transform with integrated photonic devices

    Science.gov (United States)

    Tabia, Gelo Noel

    2014-03-01

    Many quantum algorithms that exhibit exponential speedup over their classical counterparts employ the quantum Fourier transform, which is used to solve interesting problems such as prime factorization. Meanwhile, nonclassical interference of single photons achieved on integrated platforms holds the promise of achieving large-scale quantum computation with multiport devices. An optical multiport device can be built to realize any quantum circuit as a sequence of unitary operations performed by beam splitters and phase shifters on path-encoded qudits. In this talk, I will present a recursive scheme for implementing quantum Fourier transform with a multimode interference photonic integrated circuit. Research at Perimeter Institute is supported by the Government of Canada through Industry Canada and by the Province of Ontario through the Ministry of Research and Innovation.

  11. Fourier transform spectrometer based on Fabry-Perot interferometer.

    Science.gov (United States)

    Al-Saeed, Tarek A; Khalil, Diaa A

    2016-07-10

    We analyze the Fourier transform spectrometer based on a symmetric/asymmetric Fabry-Perot interferometer. In this spectrometer, the interferogram is obtained by recording the intensity as a function of the interferometer length. Then, we recover the spectrum by applying the discrete Fourier transform (DFT) directly on the interferogram. This technique results in spectral harmonic overlap and fictitious wavenumber components outside the original spectral range. For this purpose, in this work, we propose a second method to recover the spectrum. This method is based on expanding the DFT of the interferogram and the spectrum by a Haar or box function. By this second method, we recovered the spectrum and got rid of the fictitious spectral components and spectral harmonic overlap.

  12. Perfect vortex beam: Fourier transformation of a Bessel beam.

    Science.gov (United States)

    Vaity, Pravin; Rusch, Leslie

    2015-02-15

    We derive a mathematical description of a perfect vortex beam as the Fourier transformation of a Bessel beam. Building on this development, we experimentally generate Bessel-Gauss beams of different orders and Fourier transform them to form perfect vortex beams. By controlling the radial wave vector of a Bessel-Gauss beam, we can control the ring radius of the generated beam. Our theoretical predictions match with the experimental results and also provide an explanation for previous published works. We find the perfect vortex resembles that of an orbital angular momentum (OAM) mode supported in annular profiled waveguides. Our prefect vortex beam generation method can be used to excite OAM modes in an annular core fiber.

  13. Multiparty Quantum Secret Sharing Using Quantum Fourier Transform

    Institute of Scientific and Technical Information of China (English)

    HUANG Da-Zu; CHEN Zhi-Gang; GUO Ying

    2009-01-01

    A (n, n )-threshold scheme of multiparty quantum secret sharing of classical or quantum message is proposed based on the discrete quantum Fourier transform.In our proposed scheme, the secret message, which is encoded by using the forward quantum Fourier transform and decoded by using the reverse, is split and shared in such a way that it can be reconstructed among them only if all the participants work in concert.Furthermore, we also discuss how this protocol must be carefully designed for correcting errors and checking eavesdropping or a dishonest participant.Security analysis shows that our scheme is secure.Also, this scheme has an advantage that it is completely compatible with quantum computation and easier to realize in the distributed quantum secure computation.

  14. On the Fourier transform of the greatest common divisor

    CERN Document Server

    van der Kamp, Peter H

    2012-01-01

    The discrete Fourier transform of the greatest common divisor is a multiplicative function that generalises both the gcd-sum function and Euler's totient function. On the one hand it is the Dirichlet convolution of the identity with Ramanujan's sum, and on the other hand it can be written as a generalised convolution product of the identity with the totient function. We show that this arithmetic function of two integers (a,m) counts the number of elements in the set of ordered pairs (i,j) such that i*j is equivalent to a modulo m. Furthermore we generalise a dozen known identities for the totient function, to identities which involve the discrete Fourier transform of the greatest common divisor, including its partial sums, and its Lambert series.

  15. Scalable Fourier transform system for instantly structured illumination in lithography.

    Science.gov (United States)

    Ye, Yan; Xu, Fengchuan; Wei, Guojun; Xu, Yishen; Pu, Donglin; Chen, Linsen; Huang, Zhiwei

    2017-05-15

    We report the development of a unique scalable Fourier transform 4-f system for instantly structured illumination in lithography. In the 4-f system, coupled with a 1-D grating and a phase retarder, the ±1st order of diffracted light from the grating serve as coherent incident sources for creating interference patterns on the image plane. By adjusting the grating and the phase retarder, the interference fringes with consecutive frequencies, as well as their orientations and phase shifts, can be generated instantly within a constant interference area. We demonstrate that by adapting this scalable Fourier transform system into lithography, the pixelated nano-fringe arrays with arbitrary frequencies and orientations can be dynamically produced in the photoresist with high variation resolution, suggesting its promising application for large-area functional materials based on space-variant nanostructures in lithography.

  16. On-chip photonic Fourier transform with surface plasmon polaritons

    Institute of Scientific and Technical Information of China (English)

    Shan Shan Kou; Guanghui Yuan; Qian wang; Luping Du; Eugeniu Balaur; Daohua Zhang; Dingyuan Tang

    2016-01-01

    The Fourier transform (FT),a cornerstone of optical processing,enables rapid evaluation of fundamental mathematical operations,such as derivatives and integrals.Conventionally,a converging lens performs an optical FT in free space when light passes through it.The speed of the transformation is limited by the thickness and the focal length of the lens.By usingthe wave nature of surface plasmon polaritons (SPPs),here we demonstrate that the FT can be implemented in a planar configuration with a minimal propagation distance of around 10 μm,resulting in an increase of speed by four to five orders of magnitude.The photonic FT was tested by synthesizing intricate SPP waves with their Fourier components.The reduced dimensionality in the minuscule device allows the future development of an ultrafast on-chip photonic information processing platform for large-scale optical computing.

  17. Matrix-Vector Based Fast Fourier Transformations on SDR Architectures

    Directory of Open Access Journals (Sweden)

    Y. He

    2008-05-01

    Full Text Available Today Discrete Fourier Transforms (DFTs are applied in various radio standards based on OFDM (Orthogonal Frequency Division Multiplex. It is important to gain a fast computational speed for the DFT, which is usually achieved by using specialized Fast Fourier Transform (FFT engines. However, in face of the Software Defined Radio (SDR development, more general (parallel processor architectures are often desirable, which are not tailored to FFT computations. Therefore, alternative approaches are required to reduce the complexity of the DFT. Starting from a matrix-vector based description of the FFT idea, we will present different factorizations of the DFT matrix, which allow a reduction of the complexity that lies between the original DFT and the minimum FFT complexity. The computational complexities of these factorizations and their suitability for implementation on different processor architectures are investigated.

  18. Time-frequency representation measurement based on temporal Fourier transformation

    Science.gov (United States)

    Suen, Yifan; Xiao, Shaoqiu; Hao, Sumin; Zhao, Xiaoxiang; Xiong, Yigao; Liu, Shenye

    2016-10-01

    We propose a new scheme to physically realize the short-time Fourier transform (STFT) of chirped optical pulse using time-lens array that enables us to get time-frequency representation without using FFT algorithm. The time-lens based upon the four-wave mixing is used to perform the process of temporal Fourier transformation. Pump pulse is used for both providing the quadratic phase and being the window function of STFT. The idea of STFT is physically realized in our scheme. Simulations have been done to investigate performance of the time-frequency representation scheme (TFRS) in comparison with STFT using FFT algorithm. Optimal measurement of resolution in time and frequency has been discussed.

  19. Magnetic suspension based Fourier Transform Infrared Spectrometer mechanism (FTIS)

    Science.gov (United States)

    Köker, Ingo; Langenbach, Harald; Schmid, Manfred; Lautier, Jean-Michel

    2005-07-01

    In the frame of an ESTEC technology contract the development of a Magnetically Suspended Fourier Transform Spectrometer Mechanism (FTIS) was carried out. The aim of the development is to avoid the issues found in mechanically suspended systems and to provide an active alignment and disturbance rejection capability for spectrometer applications. In the frame of FTIS an actively controlled suspension system based on the use of magnetic bearings was defined, developed and built as a demonstration model.

  20. Homology of balanced complexes via the Fourier transform

    CERN Document Server

    Meshulam, Roy

    2011-01-01

    Let G_0,...,G_k be finite abelian groups and let G_0*...*G_k be the join of the 0-dimensional complexes G_i. We give a characterization of the integral k-coboundaries of subcomplexes of G_0*...*G_k in terms of the Fourier transform on the group G_0 \\times ... \\times G_k. This leads to an extension of a recent result of Musiker and Reiner on a topological interpretation of the cyclotomic polynomial.

  1. 10th International Conference on Progress in Fourier Transform Spectroscopy

    CERN Document Server

    Keresztury, Gábor; Kellner, Robert

    1997-01-01

    19 plenary lectures and 203 poster papers presented at the 10th International Conference of Fourier Transform Spectroscopy in Budapest 1995 give an overview on the state-of-the art of this technology and its wide range of applications. The reader will get information on any aspects of FTS including the latest instrumental developments, e.g. in diode array detection, time resolution FTS, microscopy and spectral mapping, double modulation and two-dimensional FTS.

  2. Scaled Fractional Fourier Transform for Partially Coherent Beams

    Institute of Scientific and Technical Information of China (English)

    蔡阳健; 林强

    2003-01-01

    The definition of scaled fractional Fourier transform (SFRT) is extended to partially coherent beams based directly on the cross-spectral density. Based on this formula, an equivalent tensor ABCD law for the SFRT of partially coherent twisted anisotropic Gaussian-Schell model beams is derived. The derived formulae provide a powerful tool for analysing and calculating the SFRT of partially coherent beams. An application example is provided.

  3. Fourier spectroscopy with a one-million-point transformation

    Science.gov (United States)

    Connes, J.; Delouis, H.; Connes, P.; Guelachvili, G.; Maillard, J.; Michel, G.

    1972-01-01

    A new type of interferometer for use in Fourier spectroscopy has been devised at the Aime Cotton Laboratory of the National Center for Scientific Research (CNRS), Orsay, France. With this interferometer and newly developed computational techniques, interferograms comprising as many as one million samples can now be transformed. The techniques are described, and examples of spectra of thorium and holmium, derived from one million-point interferograms, are presented.

  4. Entangled Fractional Fourier Transform for the Multipartite Entangled State Representation

    Institute of Scientific and Technical Information of China (English)

    QIAN Xiao-Qing; SONG Tong-Qiang

    2006-01-01

    We deduce entangled fractional Fourier transformation (EFFT) for the multipartite entangled state representation, which was newly constructed with two mutually conjugate n-mode entangled states of continuum variables in n-mode Fock space. We establish a formalism of EFFT for quantum mechanical wave functions, which provides us a convenient way to derive some wave functions. We find that the eigenmode of EFFT is different from the usual Hermite Polynomials. We also derive the EFFT of the n-mode squeezed state.

  5. CONCURRENT SPEECHES SEPARATION USING WRAPPED DISCRETE FOURIER TRANSFORM

    Institute of Scientific and Technical Information of China (English)

    Zhang Xichun; Li Yunjie; Zhang Jun; Wei Gang

    2005-01-01

    This letter proposes a new method for concurrent voiced speech separation. Firstly the Wrapped Discrete Fourier Transform (WDFT) is used to decompose the harmonic spectra of the mixed speeches. Then the individual speech is reconstructed by using the sinusoidal speech model. By taking advantage of the non-uniform frequency resolution of WDFT, harmonic spectra parameters can be estimated and separated accurately. Experimental results on mixed vowels separation show that the proposed method can recover the original speeches effectively.

  6. Discrimination of a transformation phenotype in Syrian golden hamster embryo (SHE) cells using ATR-FTIR spectroscopy.

    Science.gov (United States)

    Walsh, Michael J; Bruce, Shannon W; Pant, Kamala; Carmichael, Paul L; Scott, Andrew D; Martin, Francis L

    2009-04-05

    Primary Syrian hamster embryo (SHE) cells might be used to assess morphological transformation following treatment with chemical carcinogens. We employed attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectroscopy to interrogate SHE colonies, as complex biomolecules absorb in the mid-infrared (IR; lambda=2-20microm) giving vibrational spectra associated with structure and function. Early-passage SHE cells were cultured (pH 6.7) in the presence or absence of benzo[a]pyrene (B[a]P; 5.0microg/ml). Unstained colonies were applied to an ATR crystal, and vibrational spectra were obtained in the ATR mode using a Bruker Vector 22 FTIR spectrometer with Helios ATR attachment. These were individually baseline-corrected and normalised. Spectra were then analysed using principal component analysis (PCA) plus linear discriminant analysis (LDA). PCA was used to reduce the dataset dimensions before LDA was employed to reveal clustering. This determined whether wavenumber-absorbance relationships expressed as single points (scores) in 'hyperspace' might on the basis of multivariate distance reveal biophysical differences associated with morphologies in vehicle control (non-transformed or transformed) or carcinogen-treated (non-transformed or transformed) cells. Retrospectively designated SHE colonies (following staining and microscopic analysis) clustered according to whether they were vehicle control (non-transformed), B[a]P-treated (non-transformed) or transformed (control and B[a]P-treated). Scores plots pointed to a B[a]P-treated phenotype and derived loadings plots highlighted distinguishing markers in control transformed vs. B[a]P-treated transformed; these were mostly associated with Amide I, Amide II and phosphate stretching (asymmetric and symmetric) vibrations. Combined application of ATR-FTIR spectroscopy and unsupervised (PCA)/supervised (LDA) may be a novel approach to scoring SHE colonies for morphological transformation.

  7. Fourier-transform Ghost Imaging with Hard X-rays

    CERN Document Server

    Yu, Hong; Han, Shensheng; Xie, Honglan; Du, Guohao; Xiao, Tiqiao; Zhu, Daming

    2016-01-01

    Knowledge gained through X-ray crystallography fostered structural determination of materials and greatly facilitated the development of modern science and technology in the past century. Atomic details of sample structures is achievable by X-ray crystallography, however, it is only applied to crystalline structures. Imaging techniques based on X-ray coherent diffraction or zone plates are capable of resolving the internal structure of non-crystalline materials at nanoscales, but it is still a challenge to achieve atomic resolution. Here we demonstrate a novel lensless Fourier-transform ghost imaging method with pseudo-thermal hard X-rays by measuring the second-order intensity correlation function of the light. We show that high resolution Fourier-transform diffraction pattern of a complex structure can be achieved at Fresnel region, and the amplitude and phase distributions of a sample in spatial domain can be retrieved successfully. The method of lensless X-ray Fourier-transform ghost imaging extends X-ray...

  8. Mass spectral peak distortion due to Fourier transform signal processing.

    Science.gov (United States)

    Rockwood, Alan L; Erve, John C L

    2014-12-01

    Distortions of peaks can occur when one uses the standard method of signal processing of data from the Orbitrap and other FT-based methods of mass spectrometry. These distortions arise because the standard method of signal processing is not a linear process. If one adds two or more functions, such as time-dependent signals from a Fourier transform mass spectrometer and performs a linear operation on the sum, the result is the same as if the operation was performed on separate functions and the results added. If this relationship is not valid, the operation is non-linear and can produce unexpected and/or distorted results. Although the Fourier transform itself is a linear operator, the standard algorithm for processing spectra in Fourier transform-based methods include non-linear mathematical operators such that spectra processed by the standard algorithm may become distorted. The most serious consequence is that apparent abundances of the peaks in the spectrum may be incorrect. In light of these considerations, we performed theoretical modeling studies to illustrate several distortion effects that can be observed, including abundance distortions. In addition, we discuss experimental systems where these effects may manifest, including suggested systems for study that should demonstrate these peak distortions. Finally, we point to several examples in the literature where peak distortions may be rationalized by the phenomena presented here.

  9. Fourier transform light scattering angular spectroscopy using digital inline holography.

    Science.gov (United States)

    Kim, Kyoohyun; Park, YongKeun

    2012-10-01

    A simple and practical method for measuring the angle-resolved light scattering (ARLS) from individual objects is reported. Employing the principle of inline holography and a Fourier transform light scattering technique, both the static and dynamic scattering patterns from individual micrometer-sized objects can be effectively and quantitatively obtained. First, the light scattering measurements were performed on individual polystyrene beads, from which the refractive index and diameter of each bead were retrieved. Also, the measurements of the static and dynamic light scattering from intact human red blood cells are demonstrated. Using the present method, an existing microscope can be directly transformed into a precise instrument for ARLS measurements.

  10. Analysis of Resistant Starches in Rat Cecal Contents Using Fourier Transform Infrared Photoacoustic Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Timothy J. [Ames Laboratory; Ai, Yongfeng [Iowa State University; Jones, Roger W. [Ames Laboratory; Houk, Robert S. [Ames Laboratory; Jane, Jay-lin [Iowa State University; Zhao, Yinsheng [Iowa State University; Birt, Diane F. [Iowa State University; McClelland, John F. [Ames Laboratory

    2013-01-29

    Fourier transform infrared photoacoustic spectroscopy (FTIR-PAS) qualitatively and quantitatively measured resistant starch (RS) in rat cecal contents. Fisher 344 rats were fed diets of 55% (w/w, dry basis) starch for 8 weeks. Cecal contents were collected from sacrificed rats. A corn starch control was compared against three RS diets. The RS diets were high-amylose corn starch (HA7), HA7 chemically modified with octenyl succinic anhydride, and stearic-acid-complexed HA7 starch. To calibrate the FTIR-PAS analysis, samples from each diet were analyzed using an enzymatic assay. A partial least-squares cross-validation plot generated from the enzymatic assay and FTIR-PAS spectral results for starch fit the ideal curve with a R2 of 0.997. A principal component analysis plot of components 1 and 2 showed that spectra from diets clustered significantly from each other. This study clearly showed that FTIR-PAS can accurately quantify starch content and identify the form of starch in complex matrices.

  11. Headspace Fourier transform infrared spectroscopy for the differentiation of Pandanus species.

    Science.gov (United States)

    Aganda, Kim Christopher C; Nonato, Maribel G; Sevilla, Fortunato; Santiago, Karen S

    2017-03-01

    Headspace Fourier Transform Infrared Spectroscopy (HS-FTIR) in tandem with chemometrics was applied to differentiate several species of the genus Pandanus. The headspace was generated from each Pandanus sample after incubation in a tightly sealed sample chamber. The resulting FTIR spectra of the headspace samples were found to be almost similar, but the application of principal component analysis (PCA) effectively differentiated the species. The unique spectral features for some samples were highlighted in the second-derivative FTIR spectra. A higher variance was exhibited in the PCA bi-plot of the 2nd derivative spectral data. The principal components differentiated not only the species, but also the cultivars or varieties, which formed distinct but proximate clusters. The manner of clustering obtained in this study resembled the behavior reported in a Random Amplified Polymorphic DNA analysis conducted on the Pandanus samples. The results demonstrate the potential of headspace FTIR spectroscopy as a simple, rapid, non-destructive, and relatively inexpensive method to discriminate between plant species and varieties.

  12. Use of Fourier-transform infrared spectroscopy to rapidly diagnose gastric endoscopic biopsies

    Institute of Scientific and Technical Information of China (English)

    Qing-Bo Li; Xue-Jun Sun; Yi-Zhuang Xu; Li-Min Yang; Yuan-Fu Zhang; Shi-Fu Weng; Jing-Sen Shi; Jin-Guang Wu

    2005-01-01

    AIM: To determine if Fourier-transform infrared (FT-IR)spectroscopy of endoscopic biopsies could accurately diagnose gastritis and malignancy.METHODS: A total of 123 gastroscopic samples, including 11 cases of cancerous tissues, 63 cases of chronic atrophic gastritis tissues, 47 cases of chronic superficial gastritis tissues and 2 cases of normal tissues, were obtained from the First Hospital of Xi'an Jiaotong University, China. A modified attenuated total reflectance (ATR) accessory was linked to a WQD-500 FT-IR spectrometer for spectral measurement followed by submission of the samples for pathologic analysis. The spectral characteristics for different types of gastroscopic tissues were summarized and correlated with the corresponding pathologic results.RESULTS: Distinct differences were observed in the FTIR spectra of normal, atrophic gastritis, superficial gastritis and malignant gastric tissues. The sensitivity of FT-IR for detection of gastric cancer, chronic atrophic gastritis and superficial gastritis was 90.9%, 82.5%, 91.5%, and specificity was 97.3%, 91.7%, 89.5% respectively.CONCLUSION: FT-IR spectroscopy can distinguish gastric inflammation from malignancy.

  13. Analysis of Index Gases of Coal Spontaneous Combustion Using Fourier Transform Infrared Spectrometer

    Directory of Open Access Journals (Sweden)

    Xiaojun Tang

    2014-01-01

    Full Text Available Analysis of the index gases of coal for the prevention of spontaneous combustion is of great importance for the enhancement of coal mine safety. In this work, Fourier Transform Infrared Spectrometer (FTIRS is presented to be used to analyze the index gases of coal in real time to monitor spontaneous combustion conditions. Both the instrument parameters and the analysis method are introduced at first by combining characteristics of the absorption spectra of the target analyte with the analysis requirements. Next, more than ten sets of the gas mixture containing ten components (CH4, C2H6, C3H8, iso-C4H10, n-C4H10, C2H4, C3H6, C2H2, CO, and CO2 are included and analyzed with a Spectrum Two FTIRS made by Perkin Elmer. The testing results show that the detection limit of most analytes is less than 2×10-6. All the detection limits meet the monitoring requirements of coal spontaneous combustion in China, which means that FTIRS may be an ideal instrument and the analysis method used in this paper is sufficient for spontaneous combustion gas monitoring on-line and even in situ, since FTIRS has many advantages such as fast analysis, being maintenance-free, and good safety.

  14. Identification of Contaminated Cells with Viruses, Bacteria, or Fungi by Fourier Transform Infrared Microspectroscopy

    Directory of Open Access Journals (Sweden)

    V. Erukhimovitch

    2013-01-01

    Full Text Available Fourier transform infrared microspectroscopy (FTIR-M can detect small molecular changes in cells and therefore was previously applied for the identification of different biological samples. In the present study, FTIR spectroscopy was used for the identification and discrimination of Vero cells infected with herpes viruses or contaminated with bacteria or fungi in cell culture. Vero cells in culture were infected herpes simplex virus type 1 (HSV-1 or contaminated with E. coli bacteria or Candida albicans fungi and analyzed by FTIR microscopy at 24 h postinfection/contamination. Specific different spectral changes were observed according to the infecting or contaminating agent. For instance, both pure fungi and cell culture contaminated with this fungi showed specific peaks at 1030 cm−1 and at 1373 cm−1 regions, while pure E. coli and cell culture contaminated with this bacteria showed a specific and unique peak at 1657 cm−1. These results support the potential of developing FTIR microspectroscopy as a simple, reagent free method for identification and discrimination between different tissue infection or contamination with various pathogens.

  15. Fourier Transform Infrared Radiation Spectroscopy Applied for Wood Rot Decay and Mould Fungi Growth Detection

    Directory of Open Access Journals (Sweden)

    Bjørn Petter Jelle

    2012-01-01

    Full Text Available Material characterization may be carried out by the attenuated total reflectance (ATR Fourier transform infrared (FTIR radiation spectroscopical technique, which represents a powerful experimental tool. The ATR technique may be applied on both solid state materials, liquids, and gases with none or only minor sample preparations, also including materials which are nontransparent to IR radiation. This facilitation is made possible by pressing the sample directly onto various crystals, for example, diamond, with high refractive indices, in a special reflectance setup. Thus ATR saves time and enables the study of materials in a pristine condition, that is, the comprehensive sample preparation by pressing thin KBr pellets in traditional FTIR transmittance spectroscopy is hence avoided. Materials and their ageing processes, both ageing by natural and accelerated climate exposure, decomposition and formation of chemical bonds and products, may be studied in an ATR-FTIR analysis. In this work, the ATR-FTIR technique is utilized to detect wood rot decay and mould fungi growth on various building material substrates. An experimental challenge and aim is to be able to detect the wood rot decay and mould fungi growth at early stages when it is barely visible to the naked eye. Another goal is to be able to distinguish between various species of fungi and wood rot.

  16. Fourier Transform Infrared Spectroscopy of CF4 on the GEC Reference Cell

    Science.gov (United States)

    Rao, M. V. V. S.; Sharma, S. P.; Meyyappan, M.; Cruden, Brett A.; Arnold, Jim (Technical Monitor)

    2001-01-01

    Fourier Transform Infrared Spectroscopy (FTIR) has been used to characterize inductively coupled CF4 plasmas in a GEC Reference Cell in-situ In examining these FTIR spectra, several assumptions and approximations of FTIR analysis are addressed. This includes the density dependence of cross-sections, non-linear effects in the addition of overlapping bands and the effect of spatial variations in density and temperature, This analysis demonstrates that temperatures extracted from MR spectra may provide a poor estimate of the true neutral plasma temperature. The FTIR spectra are dominated by unreacted CF, accounting for 40-60% of the gas products. The amount of CF4 consumption is found to have a marked dependence on power, and is nearly independent of pressure in the range of 10-50 mtorr. Small amounts of C2F6 are observed at low power. Also observed are etching products from the quartz window SiF4 COF2 and CO which occur in approximately equal ratios and together account for less than 10% of the gas. The concentrations of these species are nearly independent of pressure. CFx radicals are below the detection limit of this apparatus (approx. 1012/cc).

  17. Fourier transform infrared phase-modulated ellipsometry for in situ diagnostics of plasma-surface interactions

    Energy Technology Data Exchange (ETDEWEB)

    Shirafuji, T [International Innovation Center, Kyoto University, Sakyo-ku, Kyoto 606-8501 (Japan); Motomura, H [Department of Electronics, Kyoto University, Nishikyo-ku, Katsura 615-8510 (Japan); Tachibana, K [Department of Electronics, Kyoto University, Nishikyo-ku, Katsura 615-8510 (Japan)

    2004-03-21

    Applicability of Fourier transform infrared (FTIR) spectroscopy to an in situ diagnostics tool of plasma-surface interactions is described. After a brief review of conventional reflection absorption spectroscopy (RAS) and phase-modulated RAS (PMRAS), our FTIR phase-modulated spectroscopic ellipsometry (PMSE) is described in detail. The FTIR PMSE is constructed by insertion of a grid polarizer as an analyser in front of an infrared detector in addition to the conventional set-up of PMRAS. This simple change brings about a higher sensitivity than that of conventional PMRAS, which enables us to detect chemical species generated on (or removed from) the top surface layer during plasma processing. This feature is demonstrated by the fact that our FTIR PMSE can be applied to surface diagnostics during reactive ion etching processes such as for Si, SiO{sub 2}/Si, SiO{sub 2}/Si{sub 3}N{sub 4}, SiO{sub 2}/photo-resist and low-dielectric-constant films. (topical review)

  18. [Continuum based fast Fourier transform processing of infrared spectrum].

    Science.gov (United States)

    Liu, Qing-Jie; Lin, Qi-Zhong; Wang, Qin-Jun; Li, Hui; Li, Shuai

    2009-12-01

    To recognize ground objects with infrared spectrum, high frequency noise removing is one of the most important phases in spectrum feature analysis and extraction. A new method for infrared spectrum preprocessing was given combining spectrum continuum processing and Fast Fourier Transform (CFFT). Continuum was firstly removed from the noise polluted infrared spectrum to standardize hyper-spectra. Then the spectrum was transformed into frequency domain (FD) with fast Fourier transform (FFT), separating noise information from target information After noise eliminating from useful information with a low-pass filter, the filtered FD spectrum was transformed into time domain (TD) with fast Fourier inverse transform. Finally the continuum was recovered to the spectrum, and the filtered infrared spectrum was achieved. Experiment was performed for chlorite spectrum in USGS polluted with two kinds of simulated white noise to validate the filtering ability of CFFT by contrast with cubic function of five point (CFFP) in time domain and traditional FFT in frequency domain. A circle of CFFP has limited filtering effect, so it should work much with more circles and consume more time to achieve better filtering result. As for conventional FFT, Gibbs phenomenon has great effect on preprocessing result at edge bands because of special character of rock or mineral spectra, while works well at middle bands. Mean squared error of CFFT is 0. 000 012 336 with cut-off frequency of 150, while that of FFT and CFFP is 0. 000 061 074 with cut-off frequency of 150 and 0.000 022 963 with 150 working circles respectively. Besides the filtering result of CFFT can be improved by adjusting the filter cut-off frequency, and has little effect on working time. The CFFT method overcomes the Gibbs problem of FFT in spectrum filtering, and can be more convenient, dependable, and effective than traditional TD filter methods.

  19. [Passive detection of aeroengine exhaust based on Fourier transform infrared system].

    Science.gov (United States)

    Li, Shao-cheng; Zuo, Hong-fu; Xia, Qing

    2008-10-01

    Since the composition and concentration of aeroengine exhaust can reflect the combustion efficiency, they can provide the basis for condition based maintenance, and also the basis for the analysis of environment pollution caused by aeroengine exhaust. So the importance of aeroengine exhaust detection is evident. Up to now, the measurement of aeroengine exhaust is based on sampling analysis which is not convenient and can't meet the detection requirements when an aeroplane is flying-off or flying in the sky. Hence, new methods of exhaust detection must be studied. The passive measurement technology based on Fourier transform infrared spectroscopy (FTIR) was applied to the measurement of aeroengine exhaust in the present paper. At first, the principle of passive measurement based on FTIR was introduced in detail. On this basis, a model algorithm for gas concentration calculation was deduced based on the principle of infrared transmission. Then the feasibility of aeroengine exhaust measurement based on passive FTIR was analyzed, and the passive measurement method of aeroengine exhaust based on FTIR was given. In the end, an experiment of aeroengine exhaust passive measurement was carried out by a FTIR with the type of Tensor 27 produced by BRUKER. Good quality spectra of the exhaust and the background were measured. Based on the model algo rithm of passive measurement, the absorbance spectra of CO and NO were obtained respectively, and the concentrations of CO and NO were figured out. To check up the veracity of this method, a comparison was made with another apparatus. There were only little differences between the results of the two experiments, showing that the passive measurement technology based on FTIR could meet the requirements of aeroengine exhaust detection.

  20. Fourier transform infrared analysis of ceramic powders: Quantitative determination of alpha, beta, and amorphous phases of silicon nitride

    Energy Technology Data Exchange (ETDEWEB)

    Trout, T.K.; Bellama, J.M.; Brinckman, F.E.; Faltynek, R.A.

    1989-03-01

    Fourier transform infrared spectroscopy (FT-IR) forms the basis for determining the morphological composition of mixtures containing alpha, beta, and amorphous phases of silicon nitride. The analytical technique, involving multiple linear regression treatment of Kubelka-Munk absorbance values from diffuse reflectance measurements, yields specific percent composition data for the amorphous phase as well as the crystalline phases in ternary mixtures of 0--1% by weight Si/sub 3/N/sub 4/ in potassium bromide.

  1. Fourier-Transformed Infrared Spectroscopy Applied for Studying Compatible Interaction in the Pathosystem Phytophtora infestans-Solanum tuberosum

    OpenAIRE

    Abdelmoumen TAOUTAOU; Socaciu, Carmen; Doru PAMFIL; Florinela FETEA; Erika BALAZS; Constantin BOTEZ; Adina CHIS; Daniela BRICIU; Alexandru BRICIU

    2010-01-01

    In this study we used the Fourier-Transformed Infrared (FT-IR) technique to examine the compatible reaction of potato (Solanum tuberosum) to infection by the late blight agent Phytophthora infestans. Three virulent isolates have been used, different by their level of pathogenicity on R2 potato. The response was dependent on the pathogenicity of the isolate. The Infrared spectra in the middle infrared region (MIR) of infested versus healthy (control) leaves showed that controls absorb (intensi...

  2. Wavelets for approximate Fourier transform and data compression

    Science.gov (United States)

    Guo, Haitao

    This dissertation has two parts. In the first part, we develop a wavelet-based fast approximate Fourier transform algorithm. The second part is devoted to the developments of several wavelet-based data compression techniques for image and seismic data. We propose an algorithm that uses the discrete wavelet transform (DWT) as a tool to compute the discrete Fourier transform (DFT). The classical Cooley-Tukey FFT is shown to be a special case of the proposed algorithm when the wavelets in use are trivial. The main advantage of our algorithm is that the good time and frequency localization of wavelets can be exploited to approximate the Fourier transform for many classes of signals, resulting in much less computation. Thus the new algorithm provides an efficient complexity versus accuracy tradeoff. When approximations are allowed, under certain sparsity conditions, the algorithm can achieve linear complexity, i.e. O(N). The proposed algorithm also has built-in noise reduction capability. For waveform and image compression, we propose a novel scheme using the recently developed Burrows-Wheeler transform (BWT). We show that the discrete wavelet transform (DWT) should be used before the Burrows-Wheeler transform to improve the compression performance for many natural signals and images. We demonstrate that the simple concatenation of the DWT and BWT coding performs comparably as the embedded zerotree wavelet (EZW) compression for images. Various techniques that significantly improve the performance of our compression scheme are also discussed. The phase information is crucial for seismic data processing. However, traditional compression schemes do not pay special attention to preserving the phase of the seismic data, resulting in the loss of critical information. We propose a lossy compression method that preserves the phase as much as possible. The method is based on the self-adjusting wavelet transform that adapts to the locations of the significant signal components

  3. Twin image elimination in digital holography by combination of Fourier transformations

    CERN Document Server

    Choudhury, Debesh

    2013-01-01

    We present a new technique for removing twin image in in-line digital Fourier holography using a combination of Fourier transformations. Instead of recording only a Fourier transform hologram of the object, we propose to record a combined Fourier transform hologram by simultaneously recording the hologram of the Fourier transform and the inverse Fourier transform of the object with suitable weighting coefficients. Twin image is eliminated by appropriate inverse combined Fourier transformation and proper choice of the weighting coefficients. An optical configuration is presented for recording combined Fourier transform holograms. Simulations demonstrate the feasibility of twin image elimination. The hologram reconstruction is sensitive to phase aberrations of the object, thereby opening a way for holographic phase sensing.

  4. Calibration transfer based on maximum margin criterion for qualitative analysis using Fourier transform infrared spectroscopy.

    Science.gov (United States)

    Hu, Yong; Peng, Silong; Bi, Yiming; Tang, Liang

    2012-12-21

    A traditional multivariate calibration transfer method such as piecewise direct standardization (PDS) is usually applied to quantitative analysis. To make the method apply to qualitative analysis of Fourier Transform Infrared spectroscopy (FTIR), we propose an improved calibration transfer method based on the maximum margin criterion (CTMMC). The new method not only considers the spectral changes under different conditions, but also takes into account the geometric characteristics of spectra from different classes, so the transformed spectra from different classes will be separated as far as possible, and this will improve the performance of the follow-up qualitative analysis. A comparative study is provided between the proposed method CTMMC and other traditional calibration transfer methods on two data sets. Experimental results show that the proposed method can achieve better performance than previous methods.

  5. Improved Spectral Representation for Birdcall Based on Fractional Fourier Transform

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    A novel spectral representation based on fractional Fourier transform (FrFT) is proposed and applied to birdcall analysis. The FrFT-based spectrogram of a signal is derived and compared with its FT-based counterpart, and the spectrum gathering method is used to show the energy distribution related to the pitch frequency. The fixed transform order and adaptive orders for FrFT are tested. The fixed order can be obtained empirically or calculated according to the known chirp rate. The adaptive optimal orders are determined by using ambiguity function. Experimental results with birdcalls show that the FrFT-based spectrogram with an optimal transform order has higher resolution than its STFT-based counterpart, and the better performance can be achieved if adaptive orders are used.

  6. Partial differential equation transform - Variational formulation and Fourier analysis.

    Science.gov (United States)

    Wang, Yang; Wei, Guo-Wei; Yang, Siyang

    2011-12-01

    Nonlinear partial differential equation (PDE) models are established approaches for image/signal processing, data analysis and surface construction. Most previous geometric PDEs are utilized as low-pass filters which give rise to image trend information. In an earlier work, we introduced mode decomposition evolution equations (MoDEEs), which behave like high-pass filters and are able to systematically provide intrinsic mode functions (IMFs) of signals and images. Due to their tunable time-frequency localization and perfect reconstruction, the operation of MoDEEs is called a PDE transform. By appropriate selection of PDE transform parameters, we can tune IMFs into trends, edges, textures, noise etc., which can be further utilized in the secondary processing for various purposes. This work introduces the variational formulation, performs the Fourier analysis, and conducts biomedical and biological applications of the proposed PDE transform. The variational formulation offers an algorithm to incorporate two image functions and two sets of low-pass PDE operators in the total energy functional. Two low-pass PDE operators have different signs, leading to energy disparity, while a coupling term, acting as a relative fidelity of two image functions, is introduced to reduce the disparity of two energy components. We construct variational PDE transforms by using Euler-Lagrange equation and artificial time propagation. Fourier analysis of a simplified PDE transform is presented to shed light on the filter properties of high order PDE transforms. Such an analysis also offers insight on the parameter selection of the PDE transform. The proposed PDE transform algorithm is validated by numerous benchmark tests. In one selected challenging example, we illustrate the ability of PDE transform to separate two adjacent frequencies of sin(x) and sin(1.1x). Such an ability is due to PDE transform's controllable frequency localization obtained by adjusting the order of PDEs. The

  7. Numerical Analysis of Inhomogeneous Dielectric Waveguide Using Periodic Fourier Transform

    Directory of Open Access Journals (Sweden)

    M. Moradian

    2007-01-01

    Full Text Available A general method is introduced to obtain the propagation constants of the inhomogeneous dielectric waveguide. The periodic Fourier transform is applied to the normalized Maxwell's equations and makes the field components periodic. Then they are expanded in Fourier series. Finally, the trapezoidal rule is applied to approximate the convolution integral which leads to a set of coupled second-order differential equations that can be solved as an eigenvalue-eigenvector problem. The normalized propagation constant can be obtained as the square roots of the eigenvalues of the coefficient matrices. The proposed method is applied to the dielectric waveguide with a two-layered dielectric profile in the transverse direction, and the first four-confined TE modes are obtained. The propagation constants for the mentioned dielectric waveguide are also derived analytically and are then compared with those derived by the proposed method. Comparison of results shows the efficacy of the proposed method.

  8. A transformada de Fourier em basic The Fourier transform (FFT in basic

    Directory of Open Access Journals (Sweden)

    Mauricio Gomes Constantino

    2000-06-01

    Full Text Available In this paper we describe three computer programs in Basic language about the Fourier transform (FFT which are available in the Internet site http://artemis.ffclrp.usp.br/SoftwareE.htm (in English or http://artemis.ffclrp.usp.br/softwareP.htm (in Portuguese since October 1998. Those are addresses to the Web Page of our Laboratory of Organic Synthesis. The programs can be downloaded and used by anyone who is interested on the subject. The texts, menus and captions in the programs are written in English.

  9. Retrieval algorithm of quantitative analysis of passive Fourier transform infrared (FTRD) remote sensing measurements of chemical gas cloud from measuring the transmissivity by passive remote Fourier transform infrared

    Institute of Scientific and Technical Information of China (English)

    Liu Zhi-Ming; Liu Wen-qing; Gao Ming-Guang; Tong Jing-Jing; Zhang Wian-Shu; Xu Liang; Wei Xiuai

    2008-01-01

    Passive Fourier transform infrared (FTIR) remote sensing measurement of chemical gas cloud is a vital technology.It takes an important part in many fields for the detection of released gases.The principle of concentration measurement is based on the Beer-Lambert law.Unlike the active measurement,for the passive remote sensing,in most cases,the difference between the temperature of the gas cloud and the brightness temperature of the background is usually a few kelvins.The gas cloud emission is almost equal to the background emission,thereby the emission of the gas cloud cannot be ignored.The concentration retrieval algorithm is quite different from the active measurement.In this paper,the concentration retrieval algorithm for the passive FTIR remote measurement of gas cloud is presented in detail,which involves radiative transfer model,radiometric calibration,absorption coefficient calculation,et al.The background spectrum has a broad feature,which is a slowly varying function of frequency.In this paper,the background spectrum is fitted with a polynomial by using the Levenberg-Marquardt method which is a kind of nonlinear least squares fitting algorithm.No background spectra are required.Thus,this method allows mobile,real-time and fast measurements of gas clouds.

  10. Image encryption techniques based on the fractional Fourier transform

    Science.gov (United States)

    Hennelly, B. M.; Sheridan, J. T.

    2003-11-01

    The fractional Fourier transform, (FRT), is a generalisation of the Fourier transform which allows domains of mixed spatial frequency and spatial information to be examined. A number of method have recently been proposed in the literature for the encryption of two dimensional information using optical systems based on the FRT. Typically, these methods require random phase screen keys to decrypt the data, which must be stored at the receiver and must be carefully aligned with the received encrypted data. We have proposed a new technique based on a random shifting or Jigsaw transformation. This method does not require the use of phase keys. The image is encrypted by juxtaposition of sections of the image in various FRT domains. The new method has been compared numerically with existing methods and shows comparable or superior robustness to blind decryption. An optical implementation is also proposed and the sensitivity of the various encryption keys to blind decryption is quantified. We also present a second image encryption technique, which is based on a recently proposed method of optical phase retrieval using the optical FRT and one of its discrete counterparts. Numerical simulations of the new algorithm indicates that the sensitivity of the keys is much greater than any of the techniques currently available. In fact the sensitivity appears to be so high that optical implementation, based on existing optical signal processing technology, may be impossible. However, the technique has been shown to be a powerful method of 2-D image data encryption.

  11. DIFERENCIACIÓN DE ESPECIE MICOBACTERIANA POR FT-IR (Espectroscopia Infrarroja con Transformada de Fourier

    Directory of Open Access Journals (Sweden)

    Arrubla Carlos Roberto

    2011-08-01

    Full Text Available

    Se trabajó con espectroscopía infrarroja transformada de Fourier (FT-IR para diferenciar diez especies de micobacterias. Mycobacterium intracelullare y M. fortuitum (ATCC, M.flavenscesM.  smegmatisM.  cheloneM.  gordonaeM.  trivialeM.  vaccaeM.  terrae y M.nonchromogenicum (IP. Como control de diferenciación de género se incluyó  Staphylococcus
    aureusStreptococcus viridans y Streptococcus pyogenesKlebsiella pneumoniae y Escherichia coli,
    cada especie se corrió por triplicado en KBr y ATR. Los espectros se analizaron según el método de diferenciación de componentes principales, y se realizaron derivadas de
    primer orden (D1 en modalidad de transmisión usando  la pastilla de KBr y  la base ATR, además se diseñó una biblioteca espectral con  la primera derivada de ATR. La
    sensibilidad de detección fue de 100% al trabajar con KBr y el nivel de diferenciación fue de 100% en tres de cuatro muestras problema.

  12. Denoise in the pseudopolar grid Fourier space using exact inverse pseudopolar Fourier transform

    CERN Document Server

    Wei, Fan Jun

    2015-01-01

    In this paper I show a matrix method to calculate the exact inverse pseudopolar grid Fourier transform, and use this transform to do noise removals in the k space of pseudopolar grids. I apply the Gaussian filter to this pseudopolar grid and find the advantages of the noise removals are very excellent by using pseudopolar grid, and finally I show the Cartesian grid denoise for comparisons. The results present the signal to noise ratio and the variance are much better when doing noise removals in the pseudopolar grid than the Cartesian grid. The noise removals of pseudopolar grid or Cartesian grid are both in the k space, and all these noises are added in the real space.

  13. Directional short-time Fourier transform of distributions

    Directory of Open Access Journals (Sweden)

    Katerina Hadzi-Velkova Saneva

    2016-04-01

    Full Text Available Abstract In this paper we consider the directional short-time Fourier transform (DSTFT that was introduced and investigated in (Giv in J. Math. Anal. Appl. 399:100-107, 2013. We analyze the DSTFT and its transpose on test function spaces S ( R n $\\mathcal {S}(\\mathbb {R}^{n}$ and S ( Y 2 n $\\mathcal {S}(\\mathbb {Y}^{2n}$ , respectively, and prove the continuity theorems on these spaces. Then the obtained results are used to extend the DSTFT to spaces of distributions.

  14. THREE-VARIABLE ALTERNATING TRIGONOMETRIC FUNCTIONS AND CORRESPONDING FOURIER TRANSFORMS

    Directory of Open Access Journals (Sweden)

    Agata Bezubik

    2016-06-01

    Full Text Available The common trigonometric functions admit generalizations to any higher dimension, the symmetric, antisymmetric and alternating ones. In this paper, we restrict ourselves to three dimensional generalization only, focusing on alternating case in detail. Many specific properties of this new class of special functions useful in applications are studied. Such are the orthogonalities, both the continuous one and the discrete one on the 3D lattice of any density, corresponding discrete and continuous Fourier transforms, and others. Rapidly increasing precision of the interpolation with increasing density of the 3D lattice is shown in an example.

  15. The discrete Fourier transform theory, algorithms and applications

    CERN Document Server

    Sundaraajan, D

    2001-01-01

    This authoritative book provides comprehensive coverage of practical Fourier analysis. It develops the concepts right from the basics and gradually guides the reader to the advanced topics. It presents the latest and practically efficient DFT algorithms, as well as the computation of discrete cosine and Walsh-Hadamard transforms. The large number of visual aids such as figures, flow graphs and flow charts makes the mathematical topic easy to understand. In addition, the numerous examples and the set of C-language programs (a supplement to the book) help greatly in understanding the theory and

  16. Hyperspectral imaging using the single-pixel Fourier transform technique

    Science.gov (United States)

    Jin, Senlin; Hui, Wangwei; Wang, Yunlong; Huang, Kaicheng; Shi, Qiushuai; Ying, Cuifeng; Liu, Dongqi; Ye, Qing; Zhou, Wenyuan; Tian, Jianguo

    2017-03-01

    Hyperspectral imaging technology is playing an increasingly important role in the fields of food analysis, medicine and biotechnology. To improve the speed of operation and increase the light throughput in a compact equipment structure, a Fourier transform hyperspectral imaging system based on a single-pixel technique is proposed in this study. Compared with current imaging spectrometry approaches, the proposed system has a wider spectral range (400-1100 nm), a better spectral resolution (1 nm) and requires fewer measurement data (a sample rate of 6.25%). The performance of this system was verified by its application to the non-destructive testing of potatoes.

  17. Parallel image registration method for snapshot Fourier transform imaging spectroscopy

    Science.gov (United States)

    Zhang, Yu; Zhu, Shuaishuai; Lin, Jie; Zhu, Feijia; Jin, Peng

    2017-08-01

    A fast and precise registration method for multi-image snapshot Fourier transform imaging spectroscopy is proposed. This method accomplishes registration of an image array using the positional relationship between homologous points in the subimages, which are obtained offline by preregistration. Through the preregistration process, the registration problem is converted to the problem of using a registration matrix to interpolate subimages. Therefore, the hardware interpolation of graphics processing unit (GPU) texture memory, which has speed advantages for its parallel computing, can be used to significantly enhance computational efficiency. Compared to a central processing unit, GPU performance showed ˜27 times acceleration in registration efficiency.

  18. Atomic transition probabilities of Ce I from Fourier transform spectra

    Science.gov (United States)

    Lawler, J. E.; Chisholm, J.; Nitz, D. E.; Wood, M. P.; Sobeck, J.; Den Hartog, E. A.

    2010-04-01

    Atomic transition probabilities for 2874 lines of the first spectrum of cerium (Ce I) are reported. These data are from new branching fraction measurements on Fourier transform spectra normalized with previously reported radiative lifetimes from time-resolved laser-induced-fluorescence measurements (Den Hartog et al 2009 J. Phys. B: At. Mol. Opt. Phys. 42 085006). The wavelength range of the data set is from 360 to 1500 nm. Comparisons are made to previous investigations which are less extensive. Accurate Ce i transition probabilities are needed for lighting research and development on metal halide high-intensity discharge lamps.

  19. Multi-band Image Registration Method Based on Fourier Transform

    Institute of Scientific and Technical Information of China (English)

    庹红娅; 刘允才

    2004-01-01

    This paper presented a registration method based on Fourier transform for multi-band images which is involved in translation and small rotation. Although different band images differ a lot in the intensity and features,they contain certain common information which we can exploit. A model was given that the multi-band images have linear correlations under the least-square sense. It is proved that the coefficients have no effect on the registration progress if two images have linear correlations. Finally, the steps of the registration method were proposed. The experiments show that the model is reasonable and the results are satisfying.

  20. A high-resolution Fourier-transform infrared spectrometer.

    Science.gov (United States)

    Johnson, H. L.; Forbes, F. F.; Thompson, R. I.; Steinmetz , D. L.; Harris, O.

    1973-01-01

    We have developed a Fourier-transform infrared spectrometer having a resolution of 0.5/cm over the range of wavelength from 1 to 5.5 microns. It has been used to observe the sun over this wavelength range from a Lear Jet flying at an altitude of 14 km, and to observe a number of stars from the ground, using the 229-cm telescope of the Steward Observatory and the 152-cm aluminum-mirror telescope at the Observatorio Astronomico Nacional in the Sierra de San Pedro Martir, Baja California, Mexico. The solar spectrum is given here, while the ground-based spectra are being published separately.

  1. Fourier-transform Raman spectroscopic study of human hair

    Science.gov (United States)

    Akhtar, W.; Edwards, H. G. M.; Farwell, D. W.; Nutbrown, M.

    1997-07-01

    Fourier-transform Raman microscopic spectra of normal, untreated and bleached hair fibres are presented. Vibrational assignments are made and differences are ascribed to the production of cysteic acid from cysteine. Changes in conformation associated with the disulphide bond in the keratotic component are noted from the ν(CSSC) vibrational modes at wave numbers near 500 cm -1. Raman spectra of hair root ends have also been investigated with a diminution in cysteine content being observed. Application of the technique to the biomedical investigation of healthy and diseased hair is proposed.

  2. Beam profile for the Herschel-SPIRE Fourier transform spectrometer.

    Science.gov (United States)

    Makiwa, Gibion; Naylor, David A; Ferlet, Marc; Salji, Carl; Swinyard, Bruce; Polehampton, Edward; van der Wiel, Matthijs H D

    2013-06-01

    One of the instruments on board the Herschel Space Observatory is the Spectral and Photometric Imaging Receiver (SPIRE). SPIRE employs a Fourier transform spectrometer with feed-horn-coupled bolometers to provide imaging spectroscopy. To interpret the resultant spectral images requires knowledge of the wavelength-dependent beam, which in the case of SPIRE is complicated by the use of multimoded feed horns. In this paper we describe a series of observations and the analysis conducted to determine the wavelength dependence of the SPIRE spectrometer beam profile.

  3. Double passing the Kitt Peak 1-m Fourier transform spectrometer

    Science.gov (United States)

    Jennings, D. E.; Hubbard, R.; Brault, J. W.

    1985-01-01

    Attention is given to a simple technique for performing the conversion of the Kitt Peak 1-m Fourier transform spectrometer's dual input/output optical configuration to a double pass configuration that improves spectral resolution by a factor of 2. The modification is made by placing a flat mirror in the output beam from each cat's eye, retroreflecting the beams back through the cat's eyes to the first beam splitter. A single detector is placed at the second input port, which then becomes the instrument's output.

  4. Particle field holography data reduction by Fourier transform analysis

    Science.gov (United States)

    Hess, Cecil F.; Trolinger, James D.

    1987-01-01

    The size distribution of a particle field hologram is obtained with a Fourier transformation of the Fraunhofer diffraction pattern of the reconstructed hologram. Off-axis absorption holograms of particle fields with known characteristics were obtained and analyzed with a commercially available instrument. The mean particle size of the reconstructed hologram was measured with an error of + or - 5 percent, while the distribution broadening was estimated within + or - 15 percent. Small sections of a pulsed laser hologram of a synthetic fuel spray were analyzed with this method thus yielding a spatially resolved size distribution. The method yields fast and accurate automated analysis of particle field holograms.

  5. Transfer Function Identification Using Orthogonal Fourier Transform Modeling Functions

    Science.gov (United States)

    Morelli, Eugene A.

    2013-01-01

    A method for transfer function identification, including both model structure determination and parameter estimation, was developed and demonstrated. The approach uses orthogonal modeling functions generated from frequency domain data obtained by Fourier transformation of time series data. The method was applied to simulation data to identify continuous-time transfer function models and unsteady aerodynamic models. Model fit error, estimated model parameters, and the associated uncertainties were used to show the effectiveness of the method for identifying accurate transfer function models from noisy data.

  6. Genetic and environmental information in goat milk Fourier transform infrared spectra.

    Science.gov (United States)

    Dagnachew, B S; Kohler, A; Adnøy, T

    2013-06-01

    Fourier transform infrared (FTIR) spectroscopy is often used in prediction of major milk components in genetic evaluation of dairy animals. Until now genetic variability of goat milk FTIR spectra has only been known indirectly through their contribution to the major milk components. In this study, genetic and environmental components of goat milk FTIR spectra were examined directly. A data set containing 83,858 milk FTIR spectral observations belonging to 29,320 Norwegian dairy goats of 271 herds was used for the study. Principal components analysis was applied on both unprocessed and preprocessed spectral data, and new traits (latent traits) were defined because a multitrait analysis of all spectral variables for variance components could not be done. Eight and 7 latent variables, explaining approximately 99% of the total unprocessed and preprocessed spectral variation, respectively, were kept from the principal components analysis for genetic analysis. Genetic and environmental variance components were estimated for the latent traits using restricted maximum likelihood. Genetic-to-total phenotypic variance ratios (heritabilities) of the latent traits were between 0.011 and 0.285 for the unprocessed spectra and between 0.135 and 0.262 for the preprocessed spectra. The estimated variance components for the latent traits were back transformed to the spectral variables. Heritabilities of these spectral variables ranged from 0.018 to 0.408 and variance ratios of the permanent environmental effects of goats were between 0.002 and 0.184 of the phenotypic spectral variation. High-to-moderate heritabilities were observed in particular in spectral regions related to major milk components (fat, lactose, and protein): between 1,030 and 1,300 cm(-1), 1,500 and 1,600 cm(-1), 1,700 and 1,800 cm(-1), and 2,800 and 3,000 cm(-1). Our results confirmed that a substantial amount of genetic variation exists in goat milk FTIR spectra. Not all spectral variations are of genetic origin

  7. Fourier transform infrared spectroscopic imaging identifies early biochemical markers of tissue damage

    Science.gov (United States)

    Varma, Vishal K.; Ohlander, Samuel; Nguyen, Peter; Vendryes, Christopher; Parthiban, Sujeeth; Hamilton, Blake; Wallis, M. Chad; Kajdacsy-Balla, Andre; Hannaford, Blake; Lendvay, Thomas; Hotaling, James M.; Walsh, Michael J.

    2014-03-01

    Fourier Transform Infrared (FT-IR) spectroscopic imaging can allow for the rapid imaging of tissue biochemistry in a label-free and non-perturbing fashion. With the rapid adoption of new minimally invasive surgery (MIS) technologies over the last 20 years, adequate skill to safely and effectively use these technologies may not be achieved and risk of undue physical pressure being placed on tissues is a concern. Previous work has demonstrated that a number of histological stains can detect tissue damage, however, this process requires the initiation and progression of a signaling cascade that results in the epitope of interest being expressed. We proposed to identify the early biochemical markers associated with physical tissue damage from applied forces, thus not requiring transcriptional and translational protein synthesis as traditional immunohistochemistry does. To demonstrate that FT-IR can measure biochemical changes in tissues that have undergone physical force, we took ex-vivo lamb's liver that had been freshly excised and applied varying levels of physical pressure (0kPa to 30kPa). Tissues were then formalin-fixed, paraffin-embedded, and sectioned on to glass for H and E staining to identify damage and on to an IR slide for FT-IR imaging. Regions of interest containing hepatocytes were identified and average FT-IR spectra were extracted from the damaged and undamaged livers. FT-IR spectra showed clear biochemical changes associated with tissue damage. In addition, chemical changes could be observed proceeding histological changes observed when using conventional staining approaches.

  8. Metabolism of fatty acids and lipid hydroperoxides in human body monitoring with Fourier transform Infrared Spectroscopy

    Directory of Open Access Journals (Sweden)

    Zhang Qin-Zeng

    2009-07-01

    Full Text Available Abstract Background The metabolism of dietary fatty acids in human has been measured so far using human blood cells and stable-isotope labeled fatty acids, however, no direct data was available for human peripheral tissues and other major organs. To realize the role of dietary fatty acids in human health and diseases, it would be eager to develop convenient and suitable method to monitor fatty acid metabolism in human. Results We have developed the measurement system in situ for human lip surface lipids using the Fourier transform infrared spectroscopy (FTIR – attenuated total reflection (ATR detection system with special adaptor to monitor metabolic changes of lipids in human body. As human lip surface lipids may not be much affected by skin sebum constituents and may be affected directly by the lipid constituents of diet, we could detect changes of FTIR-ATR spectra, especially at 3005~3015 cm-1, of lip surface polyunsaturated fatty acids in a duration time-dependent manner after intake of the docosahexaenoic acid (DHA-containing triglyceride diet. The ingested DHA appeared on the lip surface and was detected by FTIR-ATR directly and non-invasively. It was found that the metabolic rates of DHA for male volunteer subjects with age 60s were much lower than those with age 20s. Lipid hydroperoxides were found in lip lipids which were extracted from the lip surface using a mixture of ethanol/ethylpropionate/iso-octane solvents, and were the highest in the content just before noon. The changes of lipid hydroperoxides were detected also in situ with FTIR-ATR at 968 cm-1. Conclusion The measurements of lip surface lipids with FTIR-ATR technique may advance the investigation of human lipid metabolism in situ non-invasively.

  9. High-throughput biochemical fingerprinting of Saccharomyces cerevisiae by Fourier transform infrared spectroscopy.

    Directory of Open Access Journals (Sweden)

    Achim Kohler

    Full Text Available Single-channel optical density measurements of population growth are the dominant large scale phenotyping methodology for bridging the gene-function gap in yeast. However, a substantial amount of the genetic variation induced by single allele, single gene or double gene knock-out technologies fail to manifest in detectable growth phenotypes under conditions readily testable in the laboratory. Thus, new high-throughput phenotyping technologies capable of providing information about molecular level consequences of genetic variation are sorely needed. Here we report a protocol for high-throughput Fourier transform infrared spectroscopy (FTIR measuring biochemical fingerprints of yeast strains. It includes high-throughput cultivation for FTIR spectroscopy, FTIR measurements and spectral pre-treatment to increase measurement accuracy. We demonstrate its capacity to distinguish not only yeast genera, species and populations, but also strains that differ only by a single gene, its excellent signal-to-noise ratio and its relative robustness to measurement bias. Finally, we illustrated its applicability by determining the FTIR signatures of all viable Saccharomyces cerevisiae single gene knock-outs corresponding to lipid biosynthesis genes. Many of the examined knock-out strains showed distinct, highly reproducible FTIR phenotypes despite having no detectable growth phenotype. These phenotypes were confirmed by conventional lipid analysis and could be linked to specific changes in lipid composition. We conclude that the introduced protocol is robust to noise and bias, possible to apply on a very large scale, and capable of generating biologically meaningful biochemical fingerprints that are strain specific, even when strains lack detectable growth phenotypes. Thus, it has a substantial potential for application in the molecular functionalization of the yeast genome.

  10. Recognition of FT-IR Data Cuscutae Semen, Japanese Dodder, and Sinapis Semen Using Discrete Wavelet Transformation and RBF Networks

    Directory of Open Access Journals (Sweden)

    Tao Hu

    2013-01-01

    Full Text Available Horizontal attenuation total reflection Fourier transformation infrared spectroscopy (HATR-FT-IR studies on cuscutae semen and its confusable varieties Japanese dodder and sinapis semen combined with discrete wavelet transformation (DWT and radial basis function (RBF neural networks have been conducted in order to classify them. DWT is used to decompose the FT-IRs of cuscutae semen, Japanese dodder, and sinapis semen. Two main scales are selected as the feature extracting space in the DWT domain. According to the distribution of cuscutae semen, Japanese dodder, and sinapis semen’s FT-IRs, three feature regions are determined at detail 3, and two feature regions are determined at detail 4 by selecting two scales in the DWT domain. Thus five feature parameters form the feature vector. The feature vector is input to the RBF neural networks to train so as to accurately classify the cuscutae semen, Japanese dodder, and sinapis semen. 120 sets of FT-IR data are used to train and test the proposed method, where 60 sets of data are used to train samples, and another 60 sets of FT-IR data are used to test samples. Experimental results show that the accurate recognition rate of cuscutae semen, Japanese dodder, and sinapis semen is average of 100.00%, 98.33%, and 100.00%, respectively, following the proposed method.

  11. Tropospheric and total ozone columns over Paris (France) measured using medium-resolution ground-based solar-absorption Fourier-transform infrared spectroscopy

    OpenAIRE

    C. Viatte; B. Gaubert; Eremenko, M.; Hase, F.; Schneider, M; Blumenstock, T.; Ray, M; P. Chelin; J.-M. Flaud; Orphal, J

    2011-01-01

    Ground-based Fourier-transform infrared (FTIR) solar absorption spectroscopy is a powerful remote sensing technique providing information on the vertical distribution of various atmospheric constituents. This work presents the first evaluation of a mid-resolution ground-based FTIR to measure tropospheric ozone, independently of stratospheric ozone. This is demonstrated using a new atmospheric observatory (named OASIS for "Observations of the Atmosphere by Solar absorption Infrared Spectroscop...

  12. Tropospheric and total ozone columns over Paris (France) measured using medium-resolution ground-based solar-absorption Fourier-transform infrared spectroscopy [Discussion paper

    OpenAIRE

    C. Viatte; B. Gaubert; Eremenko, M.; Hase, F.; Schneider, M; Blumenstock, T.; Ray, M; P. Chelin; J.-M. Flaud; Orphal, J

    2011-01-01

    Ground-based Fourier-transform infrared (FTIR) solar absorption spectroscopy is a powerful remote sensing technique providing information on the vertical distribution of various atmospheric constituents. This work presents the first evaluation of a mid-resolution ground-based FTIR to measure tropospheric ozone, independently of stratospheric ozone. This is demonstrated using a new atmospheric observatory (named OASIS for "Observations of the Atmosphere by Solar absorption Infrared Spectroscop...

  13. Fourier transform infrared and near-infrared spectroscopic methods for the detection of toxic Diethylene Glycol (DEG) contaminant in glycerin based cough syrup

    OpenAIRE

    Ahmed, M. Khalique; McLeod, Michael P.; Nézivar, Jean; Giuliani, Allison W.

    2010-01-01

    Recently there have been reports of the contamination of cough syrups with Diethylene Glycol (DEG). The consumption of such cough syrups has devastating effects on the health. In this paper we report evidence that Fourier transform infrared (FT-IR) and near-infrared (NIR) spectroscopic techniques are viable, simple, cost effective, rapid and fool proof methods for the identification and quantification of DEG in glycerin based cough syrups. The FT-IR and NIR spectra of the glycerin based cough...

  14. Determination of the Degree of Degradation of Frying Rapeseed Oil Using Fourier-Transform Infrared Spectroscopy Combined with Partial Least-Squares Regression

    OpenAIRE

    Jie Yu Chen; Han Zhang; Jinkui Ma; Tomohiro Tuchiya; Yelian Miao

    2015-01-01

    This rapid method for determining the degree of degradation of frying rapeseed oils uses Fourier-transform infrared (FTIR) spectroscopy combined with partial least-squares (PLS) regression. One hundred and fifty-six frying oil samples that degraded to different degrees by frying potatoes were scanned by an FTIR spectrometer using attenuated total reflectance (ATR). PLS regression with full cross validation was used for the prediction of acid value (AV) and total polar compounds (TPC) based on...

  15. The Non-uniform Fast Fourier Transform in Computed Tomography

    CERN Document Server

    Tang, Junqi

    2016-01-01

    This project is aimed at designing the fast forward projection algorithm and also the backprojection algorithm for cone beam CT imaging systems with circular X-ray source trajectory. The principle of the designs is based on utilizing the potential computational efficiency which the Fourier Slice Theorem and the Non-uniform Fast Fourier Transform (NUFFT) will bring forth. In this Masters report, the detailed design of the NUFFT based forward projector including a novel 3D (derivative of) Radon space resampling method will be given. Meanwhile the complexity of the NUFFT based forward projector is analysed and compared with the non-Fourier based CT projector, and the advantage of the NUFFT based forward projection in terms of the computational efficiency is demonstrated in this report. Base on the design of the forward algorithm, the NUFFT based 3D direct reconstruction algorithm will be derived. The experiments will be taken to test the performance of the forward algorithm and the backprojection algorithm to sh...

  16. Ordered fast fourier transforms on a massively parallel hypercube multiprocessor

    Science.gov (United States)

    Tong, Charles; Swarztrauber, Paul N.

    1989-01-01

    Design alternatives for ordered Fast Fourier Transformation (FFT) algorithms were examined on massively parallel hypercube multiprocessors such as the Connection Machine. Particular emphasis is placed on reducing communication which is known to dominate the overall computing time. To this end, the order and computational phases of the FFT were combined, and the sequence to processor maps that reduce communication were used. The class of ordered transforms is expanded to include any FFT in which the order of the transform is the same as that of the input sequence. Two such orderings are examined, namely, standard-order and A-order which can be implemented with equal ease on the Connection Machine where orderings are determined by geometries and priorities. If the sequence has N = 2 exp r elements and the hypercube has P = 2 exp d processors, then a standard-order FFT can be implemented with d + r/2 + 1 parallel transmissions. An A-order sequence can be transformed with 2d - r/2 parallel transmissions which is r - d + 1 fewer than the standard order. A parallel method for computing the trigonometric coefficients is presented that does not use trigonometric functions or interprocessor communication. A performance of 0.9 GFLOPS was obtained for an A-order transform on the Connection Machine.

  17. Fractional Fourier transform of Cantor sets: further numerical study

    Institute of Scientific and Technical Information of China (English)

    Gao Qiong; Liao tian-He; Cui Yuan-Feng

    2008-01-01

    This paper is a further work of the authors' paper published previously (Liao T H and Gao Q 2005 Chin. Phys. Lett. 22 2316). The amplitudes of fractional Fourier transform of Cantor sets are analysed from the viewpoint of multifractal by wavelet transform maxima method (WTMM). An integral operation is carried out before the application of WTMM, such that the function obtained can be considered as the perturbed devil staircase. Also, wavelets with large number of vanishing moments are used, which makes the complete singularity spectrum more accessible. The validity of multifractal formalism is guaranteed by restricting parameter q to a proper range, so that the phenomenon of multifractal phase transition can be explained reasonably. Particularly, the method of determining the range of parameter q in the above paper is developed to be more operational and rigorous.

  18. A high-resolution Fourier Transform Spectrometer for planetary spectroscopy

    Science.gov (United States)

    Cruikshank, D. P.; Sinton, W. M.

    1973-01-01

    The employment of a high-resolution Fourier Transform Spectrometer (FTS) is described for planetary and other astronomical spectroscopy in conjunction with the 88-inch telescope at Mauna Kea Observatory. The FTS system is designed for a broad range of uses, including double-beam laboratory spectroscopy, infrared gas chromatography, and nuclear magnetic resonance spectroscopy. The data system is well-suited to astronomical applications because of its great speed in acquiring and transforming data, and because of the enormous storage capability of the magnetic tape unit supplied with the system. The basic instrument is outlined 2nd some of the initial results from the first attempted use on the Mauna Kea 88-inch telescope are reported.

  19. A Matrix Formulation of Discrete Chirp Fourier Transform Algorithms

    Institute of Scientific and Technical Information of China (English)

    Juan Pablo Soto Quiros; Domingo Rodriguez

    2014-01-01

    This work presents a computational matrix framework in terms of tensor signal algebra for the formulation of discrete chirp Fourier transform algorithms. These algorithms are used in this work to estimate the point target functions (impulse response functions) of multiple-input multiple-output (MIMO) synthetic aperture radar (SAR) systems. This estimation technique is being studied as an alternative to the estimation of point target functions using the discrete cross-ambiguity function for certain types of environmental surveillance applications. The tensor signal algebra is presented as a mathematics environment composed of signal spaces, finite dimensional linear operators, and special matrices where algebraic methods are used to generate these signal transforms as computational estimators. Also, the tensor signal algebra contributes to analysis, design, and implementation of parallel algorithms. An instantiation of the framework was performed by using the MATLAB Parallel Computing Toolbox, where all the algorithms presented in this paper were implemented.

  20. Robust Video Watermarking Based on Discrete Fractional Fourier Transform

    Institute of Scientific and Technical Information of China (English)

    NIU Xiamu; SUN Shenghe

    2001-01-01

    A video watermarking techniquebased on discrete fractional Fourier transform(DFRFT) is proposed. Each frame of an original videois first decomposed into two-dimensional (2-D) mul-tiresolution representations by 2-D discrete wavelettransforms (DWT) along the spatial axis. Then thewavelet coefficient frames in each group of pictures(GOP, each GOP has 16 frames) are transformed intoDFRFT coefficient frames by one-dimensional (1-D)DFRFT along the temporal axis. The watermark isembedded into each DFRFT coefficient frame in theGOP, and the angular parameter of the DFRFT canbe changed to adapt itself to the original video. Experimental results show that the proposed techniqueis robust enough against the attacks of frame dropping, averaging and lossy compression.

  1. Fourier transform for fermionic systems and the spectral tensor network.

    Science.gov (United States)

    Ferris, Andrew J

    2014-07-01

    Leveraging the decomposability of the fast Fourier transform, I propose a new class of tensor network that is efficiently contractible and able to represent many-body systems with local entanglement that is greater than the area law. Translationally invariant systems of free fermions in arbitrary dimensions as well as 1D systems solved by the Jordan-Wigner transformation are shown to be exactly represented in this class. Further, it is proposed that these tensor networks be used as generic structures to variationally describe more complicated systems, such as interacting fermions. This class shares some similarities with the Evenbly-Vidal branching multiscale entanglement renormalization ansatz, but with some important differences and greatly reduced computational demands.

  2. Strain dependent UV degradation of Escherichia coli DNA monitored by Fourier transform infrared spectroscopy.

    Science.gov (United States)

    Muntean, Cristina M; Lapusan, Alexandra; Mihaiu, Liora; Stefan, Razvan

    2014-01-05

    In this work we present a method for detection of DNA isolated from nonpathogenic Escherichia coli strains, respectively. Untreated and UV irradiated bacterial DNAs were analyzed by FT-IR spectroscopy, to investigate their screening characteristic features and their structural radiotolerance at 253.7nm. FT-IR spectra, providing a high molecular structural information, have been analyzed in the wavenumber range 800-1800cm(-1). FT-IR signatures, spectroscopic band assignments and structural interpretations of these DNAs are reported. Also, UV damage at the DNA molecular level is of interest. Strain dependent UV degradation of DNA from E. coli has been observed. Particularly, alterations in nucleic acid bases, base pairing and base stacking have been found. Also changes in the DNA conformation and deoxyribose were detected. Based on this work, specific E. coli DNA-ligand interactions, drug development and vaccine design for a better understanding of the infection mechanism caused by an interference between pathogenic and nonpathogenic bacteria and for a better control of disease, respectively, might be further investigated using Fourier transform infrared spectroscopy. Besides, understanding the pathways for UV damaged DNA response, like nucleic acids repair mechanisms is appreciated.

  3. Influence of external voltage on the reprotonated polyaniline films by Fourier Transform Infrared spectroscopy.

    Science.gov (United States)

    Zhou, Tieli; Xing, Shuangxi; Zhang, Chuanzhou; Wu, Yan; Zhao, Chun

    2009-07-01

    In this paper, we reported the electrical fourier transform infrared (FT-IR) spectra measurements on the reprotonated polyaniline (PANI) thin films. Application of external voltage reduced the intensity in FT-IR spectra and resulted in the shift of band situation. The FT-IR spectra as a function of temperature were also conducted in order to investigate the effect of Joule heating. We found that the influence of CC of phenyl units and the CC of quinoid were quite different as a function of external voltage and temperature. The current-voltage (I-V) curves of the PANI film measured in the range of 0-175 V showed that the resistance kept constant at 0-75 V while it increased from 75 to 175 V. The I-V curves confirmed the presence of Joule heating effect during 75-175 V. According to the experiment results, we concluded that external voltage could produce large average hopping energy, which allowed the charge transfer by hopping between the conducting domains during 0-75 V. The deprotonation of PANI was caused by Joule heating effect, resulting in the decreasing conductivity from 75 to 175 V.

  4. Analysis of serum cortisol levels by Fourier Transform Infrared Spectroscopy for diagnosis of stress in athletes

    Directory of Open Access Journals (Sweden)

    Lia Campos Lemes

    Full Text Available Abstract Introduction Fourier-transform infrared (FT-IR spectroscopy is a technique with great potential for body fluids analyses. The aim of this study was to examine the impact of session training on cortisol concentrations in rugby players by means of infrared analysis of serum. Methods Blood collections were performed pre, post and 24 hours after of rugby training sessions. Serum cortisol was analyzed by FT-IR spectroscopy and chemiluminescent immunoassay. Results There was a significant difference between the integrated area, in the region of 1180-1102 cm-1, of the spectra for pre, post and post 24 h serums. The cortisol concentration obtained by chemiluminescent immunoassay showed no significant difference between pre, post and post 24 h. Positive correlations were obtained between the techniques (r = 0.75, post (r = 0.83 and post 24 h (r = 0.73. Conclusion The results showed no increase in cortisol levels of the players after the training sessions, as well as positive correlations indicating that FT-IR spectroscopy have produced promising results for the analysis of serum for diagnosis of stress.

  5. Fourier transform infrared and fluorescence spectroscopy for analysis of vegetable oils

    Directory of Open Access Journals (Sweden)

    Nigri S.

    2013-09-01

    Full Text Available Fourier transform infrared (FTIR and fluorescence spectroscopy, combined with chemometric approaches have been developed to analysis of extra virgin olive oil adulterated with pomace olive oil. The measurements were made on pure vegetable oils: extra virgin oil, pomace olive oil and that adulterated with varying concentration of pomace olive oil. Today, the application of FTIR spectroscopy has increased in food studied, and particularly has become a powerful analytical tool in the study of edible oils and fats. The spectral regions where the variations were observed chosen for developing models and cross validation was used. The synchronous fluorescence spectrometry takes advantage of the hardware capability to vary both the excitation and emission wavelengths during the analysis with constant wavelength difference is maintained between the two. The region between 300 and 400 nm is attributed to the tocopherols and phenols, the derivatives of vitamin E are associated with the region 400–600 nm and the bands in the region of 600–700 nm are attributed to the chlorophyll and peophytin pigments. The results presented in this study suggest that FTIR and fluorescence may be a useful tool for analysis and detecting adulteration of extra virgin olive oil with pomace oil.

  6. Fourier Transform Infrared Spectroscopy: A Potential Technique for Noninvasive Detection of Spermatogenesis

    Science.gov (United States)

    Gilany, Kambiz; Pouracil, Roudabeh Sadat Moazeni; Sadeghi, Mohammad Reza

    2014-01-01

    Background The seminal plasma is an excellent source for noninvasive detection of spermatogenesis. The seminal plasma of normospermic and azoospermic men has been analyzed for detection of spermatogenesis. Methods Optical spectroscopy (Attenuated Total Reflectance-Infrared spectroscopy (ATR-IR) and Fourier Transform infrared spectroscopy (FT-IR) has been used to analyze the seminal plasma and the metabolome of seminal plasma for detection of spermatogenesis. Results The seminal plasma of normospermic and azoospermic men has been analyzed by ATR-IR. The results show that there is a pattern variation in the azoospermic men compared to normospermic men. However, the seminal plasma is too complex to show significant pattern variation. Therefore, the metabolome which is a subcomponent of the seminal plasma was analyzed. The seminal plasma metabolome of normospermic and azoospermic men has been analyzed by FT-IR. A significant pattern change was observed. The data combined with chemometrics analysis showed that significant changes are observed at metabolome level. Conclusion We suggest that FT-IR has the potential as a diagnostic tool instead of testicular biopsy. PMID:24523955

  7. Attenuated total reflectance fourier transform infrared analysis of fly ash geopolymer gel aging.

    Science.gov (United States)

    Rees, Catherine A; Provis, John L; Lukey, Grant C; van Deventer, Jannie S J

    2007-07-17

    Structural changes in fly ash geopolymers activated with different sodium hydroxide and silicate concentrations are investigated using attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy over a period of 200 days. A strong correlation is found between the concentration of silicate monomer in the activating solution and the position of the main Si-O-T stretching band in the FTIR spectrum, which gives an indication of the relative changes in the gel Si/Al ratio. The FTIR spectra of geopolymer samples with activating solution concentrations of up to 1.2 M SiO2 indicate that an Al-rich gel forms before the final gel composition is reached. The time required for the system to reach a steady gel composition depends on the silicate activating solution concentration and speciation. Geopolymers activated with solutions containing predominantly high-order silicate species rapidly reach a steady gel composition without first forming an Al-rich gel. A minimum silicate monomer concentration of approximately 0.6 M is required to shift the geopolymer synthesis mechanism from hydroxide activation to silicate activation. Silicate speciation in the activating solutions also affects zeolite formation and geopolymer microstructures, with a more homogeneous microstructure and less zeolite formation observed at a higher SiO2 content.

  8. Metabolomic Prediction of Pregnancy Viability in Superovulated Cattle Embryos and Recipients with Fourier Transform Infrared Spectroscopy

    Directory of Open Access Journals (Sweden)

    Marta Muñoz

    2014-01-01

    Full Text Available We analyzed embryo culture medium (CM and recipient blood plasma using Fourier transform infrared spectroscopy (FTIR metabolomics to identify spectral models predictive of pregnancy outcome. Embryos collected on Day 6 from superovulated cows in 2 countries were individually cultured in synthetic oviduct fluid medium with BSA for 24 h before embryo transfer. Spent CM, blank controls, and plasma samples (Day 0 and Day 7 were evaluated using FTIR. The spectra obtained were analyzed. The discrimination capability of the classifiers was assessed for accuracy, sensitivity (pregnancy, specificity (nonpregnancy, and area under the ROC curve (AUC. Endpoints considered were Day 60 pregnancy and birth. High AUC was obtained for Day 60 pregnancy in CM within individual laboratories (France AUC=0.751±0.039, Spain AUC=0.718±0.024, while cumulative data decreased the AUC (AUC=0.604 ± 0.029. Predictions for CM at birth were lower than Day 60 pregnancy. Predictions with plasma at birth improved cumulative over individual results (Day 0: France AUC=0.690±0.044; Spain AUC<0.55; cumulative AUC=0.747±0.032. Plasma generally predicted pregnancy and birth better than CM. These first results show that FTIR metabolomics could allow the identification of embryos and recipients with improved pregnancy viability, which may contribute to increasing the efficiency of selection schemes based on ET.

  9. Detailed description of oil shale organic and mineralogical heterogeneity via fourier transform infrared mircoscopy

    Science.gov (United States)

    Washburn, Kathryn E.; Birdwell, Justin E.; Foster, Michael; Gutierrez, Fernando

    2015-01-01

    Mineralogical and geochemical information on reservoir and source rocks is necessary to assess and produce from petroleum systems. The standard methods in the petroleum industry for obtaining these properties are bulk measurements on homogenized, generally crushed, and pulverized rock samples and can take from hours to days to perform. New methods using Fourier transform infrared (FTIR) spectroscopy have been developed to more rapidly obtain information on mineralogy and geochemistry. However, these methods are also typically performed on bulk, homogenized samples. We present a new approach to rock sample characterization incorporating multivariate analysis and FTIR microscopy to provide non-destructive, spatially resolved mineralogy and geochemistry on whole rock samples. We are able to predict bulk mineralogy and organic carbon content within the same margin of error as standard characterization techniques, including X-ray diffraction (XRD) and total organic carbon (TOC) analysis. Validation of the method was performed using two oil shale samples from the Green River Formation in the Piceance Basin with differing sedimentary structures. One sample represents laminated Green River oil shales, and the other is representative of oil shale breccia. The FTIR microscopy results on the oil shales agree with XRD and LECO TOC data from the homogenized samples but also give additional detail regarding sample heterogeneity by providing information on the distribution of mineral phases and organic content. While measurements for this study were performed on oil shales, the method could also be applied to other geological samples, such as other mudrocks, complex carbonates, and soils.

  10. Classification of select category A and B bacteria by Fourier transform infrared spectroscopy

    Science.gov (United States)

    Samuels, Alan C.; Snyder, A. Peter; St. Amant, Diane; Emge, Darren K.; Minter, Jennifer; Campbell, Mark; Tripathi, Ashish

    2008-04-01

    Relatively few reports have investigated the determination and classification of pathogens such as the National Institute of Allergy and Infectious Diseases (NIAID) Category A Bacillus anthracis spores and cells (BA), Yersinia species, Francisella tularensis (FT), and Category B Brucella species from FTIR spectra. We investigated the classification ability of the Fourier transform infrared (FTIR) spectra of viable pathogenic and non-pathogenic NIAID Category A and B bacteria. The impact of different growth media, growth time and temperature, rolling circle filter of the data, and wavelength range were investigated for their microorganism differentiation. Various 2-D PC plots provided differential degrees of separation with respect to the four viable, bacterial genera including the BA sub-categories of pathogenic spores, vegetative cells, and nonpathogenic vegetative cells. FT spectra were separated from that of the three other genera. The BA pathogenic spore strains 1029, LA1, and Ames were clearly differentiated from the rest of the dataset. Yersinia species were distinctly separated from the remaining dataset and could also be classified by growth media. This work provided evidence that FTIR spectroscopy can separate the four major pathogenic bacterial genera of NIAID Category A and B biological threat agents.

  11. Light-induced reactions of Escherichia coli DNA photolyase monitored by Fourier transform infrared spectroscopy.

    Science.gov (United States)

    Schleicher, Erik; Hessling, Benedikt; Illarionova, Viktoria; Bacher, Adelbert; Weber, Stefan; Richter, Gerald; Gerwert, Klaus

    2005-04-01

    Cyclobutane-type pyrimidine dimers generated by ultraviolet irradiation of DNA can be cleaved by DNA photolyase. The enzyme-catalysed reaction is believed to be initiated by the light-induced transfer of an electron from the anionic FADH- chromophore of the enzyme to the pyrimidine dimer. In this contribution, first infrared experiments using a novel E109A mutant of Escherichia coli DNA photolyase, which is catalytically active but unable to bind the second cofactor methenyltetrahydrofolate, are described. A stable blue-coloured form of the enzyme carrying a neutral FADH radical cofactor can be interpreted as an intermediate analogue of the light-driven DNA repair reaction and can be reduced to the enzymatically active FADH- form by red-light irradiation. Difference Fourier transform infrared (FT-IR) spectroscopy was used to monitor vibronic bands of the blue radical form and of the fully reduced FADH- form of the enzyme. Preliminary band assignments are based on experiments with 15N-labelled enzyme and on experiments with D2O as solvent. Difference FT-IR measurements were also used to observe the formation of thymidine dimers by ultraviolet irradiation and their repair by light-driven photolyase catalysis. This study provides the basis for future time-resolved FT-IR studies which are aimed at an elucidation of a detailed molecular picture of the light-driven DNA repair process.

  12. Fast Fourier Transform Co-Processor (FFTC)- Towards Embedded GFLOPs

    Science.gov (United States)

    Kuehl, Christopher; Liebstueckel, Uwe; Tejerina, Isaac; Uemminghaus, Michael; Wite, Felix; Kolb, Michael; Suess, Martin; Weigand, Roland

    2012-08-01

    Many signal processing applications and algorithms perform their operations on the data in the transform domain to gain efficiency. The Fourier Transform Co- Processor has been developed with the aim to offload General Purpose Processors from performing these transformations and therefore to boast the overall performance of a processing module. The IP of the commercial PowerFFT processor has been selected and adapted to meet the constraints of the space environment.In frame of the ESA activity “Fast Fourier Transform DSP Co-processor (FFTC)” (ESTEC/Contract No. 15314/07/NL/LvH/ma) the objectives were the following:Production of prototypes of a space qualified version of the commercial PowerFFT chip called FFTC based on the PowerFFT IP.The development of a stand-alone FFTC Accelerator Board (FTAB) based on the FFTC including the Controller FPGA and SpaceWire Interfaces to verify the FFTC function and performance.The FFTC chip performs its calculations with floating point precision. Stand alone it is capable computing FFTs of up to 1K complex samples in length in only 10μsec. This corresponds to an equivalent processing performance of 4.7 GFlops. In this mode the maximum sustained data throughput reaches 6.4Gbit/s. When connected to up to 4 EDAC protected SDRAM memory banks the FFTC can perform long FFTs with up to 1M complex samples in length or multidimensional FFT- based processing tasks.A Controller FPGA on the FTAB takes care of the SDRAM addressing. The instructions commanded via the Controller FPGA are used to set up the data flow and generate the memory addresses.The presentation will give and overview on the project, including the results of the validation of the FFTC ASIC prototypes.

  13. Fast Fourier Transform Co-processor (FFTC), towards embedded GFLOPs

    Science.gov (United States)

    Kuehl, Christopher; Liebstueckel, Uwe; Tejerina, Isaac; Uemminghaus, Michael; Witte, Felix; Kolb, Michael; Suess, Martin; Weigand, Roland; Kopp, Nicholas

    2012-10-01

    Many signal processing applications and algorithms perform their operations on the data in the transform domain to gain efficiency. The Fourier Transform Co-Processor has been developed with the aim to offload General Purpose Processors from performing these transformations and therefore to boast the overall performance of a processing module. The IP of the commercial PowerFFT processor has been selected and adapted to meet the constraints of the space environment. In frame of the ESA activity "Fast Fourier Transform DSP Co-processor (FFTC)" (ESTEC/Contract No. 15314/07/NL/LvH/ma) the objectives were the following: • Production of prototypes of a space qualified version of the commercial PowerFFT chip called FFTC based on the PowerFFT IP. • The development of a stand-alone FFTC Accelerator Board (FTAB) based on the FFTC including the Controller FPGA and SpaceWire Interfaces to verify the FFTC function and performance. The FFTC chip performs its calculations with floating point precision. Stand alone it is capable computing FFTs of up to 1K complex samples in length in only 10μsec. This corresponds to an equivalent processing performance of 4.7 GFlops. In this mode the maximum sustained data throughput reaches 6.4Gbit/s. When connected to up to 4 EDAC protected SDRAM memory banks the FFTC can perform long FFTs with up to 1M complex samples in length or multidimensional FFT-based processing tasks. A Controller FPGA on the FTAB takes care of the SDRAM addressing. The instructions commanded via the Controller FPGA are used to set up the data flow and generate the memory addresses. The paper will give an overview on the project, including the results of the validation of the FFTC ASIC prototypes.

  14. Quantum process tomography of the quantum Fourier transform.

    Science.gov (United States)

    Weinstein, Yaakov S; Havel, Timothy F; Emerson, Joseph; Boulant, Nicolas; Saraceno, Marcos; Lloyd, Seth; Cory, David G

    2004-10-01

    The results of quantum process tomography on a three-qubit nuclear magnetic resonance quantum information processor are presented and shown to be consistent with a detailed model of the system-plus-apparatus used for the experiments. The quantum operation studied was the quantum Fourier transform, which is important in several quantum algorithms and poses a rigorous test for the precision of our recently developed strongly modulating control fields. The results were analyzed in an attempt to decompose the implementation errors into coherent (overall systematic), incoherent (microscopically deterministic), and decoherent (microscopically random) components. This analysis yielded a superoperator consisting of a unitary part that was strongly correlated with the theoretically expected unitary superoperator of the quantum Fourier transform, an overall attenuation consistent with decoherence, and a residual portion that was not completely positive-although complete positivity is required for any quantum operation. By comparison with the results of computer simulations, the lack of complete positivity was shown to be largely a consequence of the incoherent errors which occurred over the full quantum process tomography procedure. These simulations further showed that coherent, incoherent, and decoherent errors can often be identified by their distinctive effects on the spectrum of the overall superoperator. The gate fidelity of the experimentally determined superoperator was 0.64, while the correlation coefficient between experimentally determined superoperator and the simulated superoperator was 0.79; most of the discrepancies with the simulations could be explained by the cumulative effect of small errors in the single qubit gates.

  15. High Etendue Imaging Fourier Transform Spectrometer: initial results

    Science.gov (United States)

    Horton, Richard F.; Conger, Chris A.; Pelligrino, L. S.

    1997-10-01

    At the Denver meeting, last year, we presented the High Etendue Imaging Fourier Transform Spectrometer, (HEIFTS), theory and optical design. This device uses a new 'image plane interferometer' geometry to produce 'autocorrelation function modulation' in the image plane of a 2D imaging array, such that the phase offset of the modulation varies linearly across the image. As a 2D image is pushbroomed across the imaging, array, the record of an individual scene pixel is recorded for each autocorrelation phase offset. The 3D array of this data is processed to yield an 'autocorrelation function' data cube, which is Fourier transformed to yield a 'wavenumber' hyperspectral data curve. A phase I device has been demonstrated in the laboratory and initial results are presented. The significant increase in signal to noise ratio, which the HEIFTS optical design promises over conventional hyperspectral imaging schemes, has been simulated, and results will be discussed. A Phase II system is being prepared for initial field deployment, and will be described.

  16. Chiral Analysis of Isopulegol by Fourier Transform Molecular Rotational Spectroscopy

    Science.gov (United States)

    Evangelisti, Luca; Seifert, Nathan A.; Spada, Lorenzo; Pate, Brooks

    2016-06-01

    Chiral analysis on molecules with multiple chiral centers can be performed using pulsed-jet Fourier transform rotational spectroscopy. This analysis includes quantitative measurement of diastereomer products and, with the three wave mixing methods developed by Patterson, Schnell, and Doyle (Nature 497, 475-477 (2013)), quantitative determination of the enantiomeric excess of each diastereomer. The high resolution features enable to perform the analysis directly on complex samples without the need for chromatographic separation. Isopulegol has been chosen to show the capabilities of Fourier transform rotational spectroscopy for chiral analysis. Broadband rotational spectroscopy produces spectra with signal-to-noise ratio exceeding 1000:1. The ability to identify low-abundance (0.1-1%) diastereomers in the sample will be described. Methods to rapidly identify rotational spectra from isotopologues at natural abundance will be shown and the molecular structures obtained from this analysis will be compared to theory. The role that quantum chemistry calculations play in identifying structural minima and estimating their spectroscopic properties to aid spectral analysis will be described. Finally, the implementation of three wave mixing techniques to measure the enantiomeric excess of each diastereomer and determine the absolute configuration of the enantiomer in excess will be described.

  17. Integrated optics in an electrically scanned imaging Fourier transform spectrometer

    Science.gov (United States)

    Breckinridge, James B. (Inventor); Ocallaghan, Fred G. (Inventor)

    1982-01-01

    An efficient, lightweight and stable, Fourier transform spectrometer was developed. The mechanical slide mechanism needed to create a path difference was eliminated by the use of retro-reflecting mirrors in a monolithic interferometer assembly in which the mirrors are not at 90 degrees to the propagation vector of the radiation, but rather at a small angle. The resulting plane wave fronts create a double-sided inteferogram of the source irradiance distribution which is detected by a charge-coupled device image sensor array. The position of each CCD pixel in the array is an indication of the path difference between the two retro-reflecting mirrors in the monolithic optical structure. The Fourier transform of the signals generated by the image sensor provide the spectral irradiance distribution of the source. For imaging, the interferometer assembly scans the source of irradiation by moving the entire instrument, such as would occur if it was fixedly mounted to a moving platform, i.e., a spacecraft. During scanning, the entrace slot to the monolithic optical structure sends different pixels to corresponding interferograms detected by adjacent columns of pixels of the image sensor.

  18. [Fourier Transform Spectrometer Based on Rotating Parallel-Mirror-Pair].

    Science.gov (United States)

    Zhao, Bao-wei; Xiangli, Bin; Cai, Qi-sheng; Lü, Qun-bo; Zhou, Jin-song

    2015-11-01

    In the temporally-modulated Fourier transform spectroscopy, the translational moving mirror is difficult to drive accurately, causing tilt and shear problems. While, a rotational moving mirror can solve these problems. A rotary Fourier transform spectrometer is recommanded in this paper. Its principle is analyzed and the optical path difference is deduced. Also, the constrains for engineering realization are presented. This spectrometer consists of one beamsplitter, two fixed mirrors, one rotating parallel mirror pair, a collimating lens, a collecting lens, and one detector. From it's principle, this spectrometer show a simple structure, and it is assembled and adjustmented easily because the two split light are interfered with each other after reflected through the same plane mirror; By calculating the expression of it's optical path difference, the spectrometer is easy to realize large optical path difference, meaning high spectral resolution; Through analyzing it's engineering design constraints and computer simulation, it is known that the spectrometer should get the high resolution sample by high-speed spinning motor, so it is easy to achieve precise motion control, good stability, fast measurement speed.

  19. Fourier-Transform Ghost Imaging with Hard X Rays

    Science.gov (United States)

    Yu, Hong; Lu, Ronghua; Han, Shensheng; Xie, Honglan; Du, Guohao; Xiao, Tiqiao; Zhu, Daming

    2016-09-01

    Knowledge gained through x-ray crystallography fostered structural determination of materials and greatly facilitated the development of modern science and technology in the past century. However, it is only applied to crystalline structures and cannot resolve noncrystalline materials. Here we demonstrate a novel lensless Fourier-transform ghost imaging method with pseudothermal hard x rays that extends x-ray crystallography to noncrystalline samples. By measuring the second-order intensity correlation function of the light, Fourier-transform diffraction pattern of a complex amplitude sample is achieved at the Fresnel region in our experiment and the amplitude and phase distributions of the sample in the spatial domain are retrieved successfully. For the first time, ghost imaging is experimentally realized with x rays. Since a highly coherent x-ray source is not required, the method can be implemented with laboratory x-ray sources and it also provides a potential solution for lensless diffraction imaging with fermions, such as neutrons and electrons where intensive coherent sources usually are not available.

  20. Zernike aberration coefficients transformed to and from Fourier series coefficients for wavefront representation.

    Science.gov (United States)

    Dai, Guang-Ming

    2006-02-15

    The set of Fourier series is discussed following some discussion of Zernike polynomials. Fourier transforms of Zernike polynomials are derived that allow for relating Fourier series expansion coefficients to Zernike polynomial expansion coefficients. With iterative Fourier reconstruction, Zernike representations of wavefront aberrations can easily be obtained from wavefront derivative measurements.

  1. Computationally efficient method for Fourier transform of highly chirped pulses for laser and parametric amplifier modeling.

    Science.gov (United States)

    Andrianov, Alexey; Szabo, Aron; Sergeev, Alexander; Kim, Arkady; Chvykov, Vladimir; Kalashnikov, Mikhail

    2016-11-14

    We developed an improved approach to calculate the Fourier transform of signals with arbitrary large quadratic phase which can be efficiently implemented in numerical simulations utilizing Fast Fourier transform. The proposed algorithm significantly reduces the computational cost of Fourier transform of a highly chirped and stretched pulse by splitting it into two separate transforms of almost transform limited pulses, thereby reducing the required grid size roughly by a factor of the pulse stretching. The application of our improved Fourier transform algorithm in the split-step method for numerical modeling of CPA and OPCPA shows excellent agreement with standard algorithms.

  2. Short communication: Ketone body concentration in milk determined by Fourier transform infrared spectroscopy: Value for the detection of hyperketonemia in dairy cows

    NARCIS (Netherlands)

    Knegsel, van A.T.M.; Drift, van der S.G.A.; Horneman, M.; Roos, de S.; Kemp, B.; Graat, E.A.M.

    2010-01-01

    The objective of this study was to evaluate Fourier transform infrared (FTIR) spectrometry to measure milk ketone bodies to detect hyperketonemic cows and compare this method with milk fat to protein ratio to detect hyperketonemia. Plasma and milk samples were obtained weekly from calving to wk 9 po

  3. Application of Near-Infrared and Fourier Transform Infrared Spectroscopy in the Characterization of Ligand-Induced Conformation Changes in Folate Binding Protein Purified from Bovine Milk

    DEFF Research Database (Denmark)

    Bruun, Susanne Wrang; Holm, Jan; Hansen, Steen Ingemann;

    2006-01-01

    Fourier transform infrared (FT-IR) and near-infrared (NIR) spectroscopy have been applied to detect structural alterations in folate binding protein (FBP) induced by ligation in different buffer types. The amide I region pointed to a beta-sheet to alpha-helix transition upon ligation in acetate...

  4. Influence of irrigation sequence on the adhesion of root canal sealers to dentin: a fourier transform infrared spectroscopy and push-out bond strength analysis

    NARCIS (Netherlands)

    P. Neelakantan; S. Sharma; H. Shemesh; P.R. Wesselink

    2015-01-01

    Introduction There is a lack of evidence on the chemical interaction between sealers and dentin. The influence of irrigation on the chemical interaction between root canal sealers and dentin was analyzed by using Fourier transform infrared spectroscopy (FTIRS) and measurement of dislocation resistan

  5. Rapid identification and classification of Listeria spp. and serotype assignment of Listeria monocytogenes using fourier transform-infrared spectroscopy and artificial neural network analysis

    Science.gov (United States)

    The use of Fourier Transform-Infrared Spectroscopy (FT-IR) in conjunction with Artificial Neural Network software, NeuroDeveloper™ was examined for the rapid identification and classification of Listeria species and serotyping of Listeria monocytogenes. A spectral library was created for 245 strains...

  6. Radon-Fractional Fourier Transform and Its Application to Radar Maneuvering Target Detection (Preprint)

    Science.gov (United States)

    2014-10-09

    Radon -Fractional Fourier Transform and Its Application to Radar Maneuvering Target Detection Xiaolong Chen*, Fuqing Cai, Yu Cong, Jian Guan...unit (ARU) and Doppler frequency migration (DFM) effects. In this paper, a novel transform called the Radon -fractional Fourier transform (RFRFT) is...are carried out and the performances of different methods including MTD, FRFT, and the Radon -Fourier transform (RFT) are compared, which demonstrate

  7. [Relationship between PMI and fourier transform infrared spectral changes in muscle of rats after death caused by mechanical asphyxial].

    Science.gov (United States)

    Li, Shi-ying; Shao, Yu; Li, Zheng-dong; Liu, Ning-guo; Zou, Dong-hua; Qin, Zhi-qiang; Chen, Yi-jiu; Huang, Ping

    2012-06-01

    To observe the postmortem degradation process in rat myocardium and skeletal muscle using Fourier transform infrared (FTIR) spectroscopy and to provide a new method for estimating postmortem interval (PMI). Left ventricle and skeletal muscles of rats dying of mechanical asphyxiated were sampled at different PMIs. The changes of different chemical functional group in the myocardium and skeletal muscle samples were measured by FTIR spectroscopy. The different absorbance (A) ratios of peaks were calculated and the curve estimation analysis between absorbance ratios (x) and PMI (y) were performed to establish six mathematical models. FTIR spectral absorption peak of rat myocardium and skeletal muscle showed three changes: increase, decrease and stable. The cubic model function showed the strongest correlation coefficient. The A1080/A1396 ratio of skeletal muscle showed the strongest correlation coefficient (r = 0.832) with more accurate determination of PMI. FYIR spectroscopy can be potentially used as an effective method for estimating PMI in forensic practice using myocardium and skeletal muscle.

  8. Spectrogram analysis of selected tremor signals using short-time Fourier transform and continuous wavelet transform

    Energy Technology Data Exchange (ETDEWEB)

    Bartosch, T. [Erlanger-Nuernberg Univ., Erlanger (Germany). Lehrstul fuer Nachrichtentechnik I; Seidl, D. [Seismologisches Zentralobservatorium Graefenberg, Erlanegen (Greece). Bundesanstalt fuer Geiwissenschaften und Rohstoffe

    1999-06-01

    Among a variety of spectrogram methods short-time Fourier transform (STFT) and continuous wavelet transform (CWT) were selected to analyse transients in non-stationary signals. Depending on the properties of the tremor signals from the volcanos Mt. Stromboli, Mt. Semeru and Mt. Pinatubo were analyzed using both methods. The CWT can also be used to extend the definition of coherency into a time-varying coherency spectrogram. An example is given using array data from the volcano Mt. Stromboli (Italy).

  9. High-definition Fourier transform infrared spectroscopic imaging of prostate tissue

    Science.gov (United States)

    Wrobel, Tomasz P.; Kwak, Jin Tae; Kadjacsy-Balla, Andre; Bhargava, Rohit

    2016-03-01

    Histopathology forms the gold standard for cancer diagnosis and therapy, and generally relies on manual examination of microscopic structural morphology within tissue. Fourier-Transform Infrared (FT-IR) imaging is an emerging vibrational spectroscopic imaging technique, especially in a High-Definition (HD) format, that provides the spatial specificity of microscopy at magnifications used in diagnostic surgical pathology. While it has been shown for standard imaging that IR absorption by tissue creates a strong signal where the spectrum at each pixel is a quantitative "fingerprint" of the molecular composition of the sample, here we show that this fingerprint also enables direct digital pathology without the need for stains or dyes for HD imaging. An assessment of the potential of HD imaging to improve diagnostic pathology accuracy is presented.

  10. Fourier transform infrared spectroscopy quantitative analysis of SF6 partial discharge decomposition components.

    Science.gov (United States)

    Zhang, Xiaoxing; Liu, Heng; Ren, Jiangbo; Li, Jian; Li, Xin

    2015-02-05

    Gas-insulated switchgear (GIS) internal SF6 gas produces specific decomposition components under partial discharge (PD). By detecting these characteristic decomposition components, such information as the type and level of GIS internal insulation deterioration can be obtained effectively, and the status of GIS internal insulation can be evaluated. SF6 was selected as the background gas for Fourier transform infrared spectroscopy (FTIR) detection in this study. SOF2, SO2F2, SO2, and CO were selected as the characteristic decomposition components for system analysis. The standard infrared absorption spectroscopy of the four characteristic components was measured, the optimal absorption peaks were recorded and the corresponding absorption coefficient was calculated. Quantitative detection experiments on the four characteristic components were conducted. The volume fraction variation trend of four characteristic components at different PD time were analyzed. And under five different PD quantity, the quantitative relationships among gas production rate, PD time, and PD quantity were studied.

  11. A quantitative and qualitative method to control chemotherapeutic preparations by Fourier transform infrared-ultraviolet spectrophotometry.

    Science.gov (United States)

    Dziopa, Florian; Galy, Guillaume; Bauler, Stephanie; Vincent, Benoit; Crochon, Sarah; Tall, Mamadou Lamine; Pirot, Fabrice; Pivot, Christine

    2013-06-01

    Chemotherapy products in hospitals include a reconstitution step of manufactured drugs providing an adapted dosage to each patient. The administration of highly iatrogenic drugs raises the question of patients' safety and treatment efficiency. In order to reduce administration errors due to faulty preparations, we introduced a new qualitative and quantitative routine control based on Fourier Transform Infrared (FTIR) and UV-Visible spectrophotometry. This automated method enabled fast and specific control for 14 anticancer drugs. A 1.2 mL sample was used to assay and identify each preparation in less than 90 sec. Over a two-year period, 9370 controlled infusion bags showed a 1.49% nonconformity rate, under 15% tolerance from the theoretical concentration and 96% minimum identification matching factor. This study evaluated the reliability of the control process, as well as its accordance to chemotherapy deliverance requirements. Thus, corrective measures were defined to improve the control process.

  12. Quantum Mechanical Fourier-Hankel Representation Transform for an Electron Moving in a Uniform Magnetic Field

    Institute of Scientific and Technical Information of China (English)

    FAN Hong-Yi

    2004-01-01

    We find quantum mechanical Fourier-Hankel representation transform for an electron moving in a uniform magnetic field. The physical meaning of Fourier decomposition states of electron's coordinate eigenstate and the momentum eigenstate are revealed.

  13. Fourier Transform Infrared Spectroscopic Study of Sodium Phosphate Solids and Solutions

    Institute of Scientific and Technical Information of China (English)

    龚文琪

    2001-01-01

    Solids and solutions of sodium phosphates with various chain lengths have been studied by using the techniques of diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy and attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectroscopy, respectively. A systematic study of the infrared spectra of the solid sodium phosphates has been conducted on the basis of the information available in the literatures to establish the assignments of the infrared vibrations of the different groups in the phosphate molecules. The infrared spectra of the solutions of sodium phosphates have been analyzed according to the infrared study on the relevant solids, in conjunction with the study of the phosphate species distribution in solution on the basis of the acid-base reaction equilibria. The results obtained have revealed the correlations between the infrared absorption spectra and the structure of the different P-O groups in different kinds of phosphates and are useful in the analysis of phosphate solids and solutions widely used in the various operations of mineral processing.

  14. Fourier-transform infrared study of the photoactivation process of Xenopus (6-4) photolyase.

    Science.gov (United States)

    Yamada, Daichi; Zhang, Yu; Iwata, Tatsuya; Hitomi, Kenichi; Getzoff, Elizabeth D; Kandori, Hideki

    2012-07-24

    Photolyases (PHRs) are blue light-activated DNA repair enzymes that maintain genetic integrity by reverting UV-induced photoproducts into normal bases. The flavin adenine dinucleotide (FAD) chromophore of PHRs has four different redox states: oxidized (FAD(ox)), anion radical (FAD(•-)), neutral radical (FADH(•)), and fully reduced (FADH(-)). We combined difference Fourier-transform infrared (FTIR) spectroscopy with UV-visible spectroscopy to study the detailed photoactivation process of Xenopus (6-4) PHR. Two photons produce the enzymatically active, fully reduced PHR from oxidized FAD: FAD(ox) is converted to semiquinone via light-induced one-electron and one-proton transfers and then to FADH(-) by light-induced one-electron transfer. We successfully trapped FAD(•-) at 200 K, where electron transfer occurs but proton transfer does not. UV-visible spectroscopy following 450 nm illumination of FAD(ox) at 277 K defined the FADH(•)/FADH(-) mixture and allowed calculation of difference FTIR spectra among the four redox states. The absence of a characteristic C=O stretching vibration indicated that the proton donor is not a protonated carboxylic acid. Structural changes in Trp and Tyr are suggested by UV-visible and FTIR analysis of FAD(•-) at 200 K. Spectral analysis of amide I vibrations revealed structural perturbation of the protein's β-sheet during initial electron transfer (FAD(•-) formation), a transient increase in α-helicity during proton transfer (FADH(•) formation), and reversion to the initial amide I signal following subsequent electron transfer (FADH(-) formation). Consequently, in (6-4) PHR, unlike cryptochrome-DASH, formation of enzymatically active FADH(-) did not perturb α-helicity. Protein structural changes in the photoactivation of (6-4) PHR are discussed on the basis of these FTIR observations.

  15. Charge reversal Fourier transform ion cyclotron resonance mass spectrometry.

    Science.gov (United States)

    Lobodin, Vladislav V; Savory, Joshua J; Kaiser, Nathan K; Dunk, Paul W; Marshall, Alan G

    2013-02-01

    We report the first charge reversal experiments performed by tandem-in-time rather than tandem-in-space MS/MS. Precursor odd-electron anions from fullerene C(60), and even-electron ions from 2,7-di-tert-butylfluorene-9-carboxylic acid and 3,3'-bicarbazole were converted into positive product ions ((-)CR(+)) inside the magnet of a Fourier transform ion cyclotron resonance mass spectrometer. Charge reversal was activated by irradiating precursor ions with high energy electrons or UV photons: the first reported use of those activation methods for charge reversal. We suggest that high energy electrons achieve charge reversal in one step as double electron transfer, whereas UV-activated (-)CR(+) takes place stepwise through two single electron transfers and formally corresponds to a neutralization-reionization ((-)NR(+)) experiment.

  16. Observing Extended Sources with the \\Herschel SPIRE Fourier Transform Spectrometer

    CERN Document Server

    Wu, Ronin; Etxaluze, Mireya; Makiwa, Gibion; Naylor, David A; Salji, Carl; Swinyard, Bruce M; Ferlet, Marc; van der Wiel, Matthijs H D; Smith, Anthony J; Fulton, Trevor; Griffin, Matt J; Baluteau, Jean-Paul; Benielli, Dominique; Glenn, Jason; Hopwood, Rosalind; Imhof, Peter; Lim, Tanya; Lu, Nanyao; Panuzzo, Pasquale; Pearson, Chris; Sidher, Sunil; Valtchanov, Ivan

    2013-01-01

    The Spectral and Photometric Imaging Receiver (SPIRE) on the European Space Agency's Herschel Space Observatory utilizes a pioneering design for its imaging spectrometer in the form of a Fourier Transform Spectrometer (FTS). The standard FTS data reduction and calibration schemes are aimed at objects with either a spatial extent much larger than the beam size or a source that can be approximated as a point source within the beam. However, when sources are of intermediate spatial extent, neither of these calibrations schemes is appropriate and both the spatial response of the instrument and the source's light profile must be taken into account and the coupling between them explicitly derived. To that end, we derive the necessary corrections using an observed spectrum of a fully extended source with the beam profile and the source's light profile taken into account. We apply the derived correction to several observations of planets and compare the corrected spectra with their spectral models to study the beam c...

  17. Seismic Shear Energy Reflection By Radon-Fourier Transform

    Directory of Open Access Journals (Sweden)

    Malik Umairia

    2016-01-01

    Full Text Available Seismic waves split in an anisotropic medium, instead of rotating horizontal component to principal direction, Radon-Fourier is derived to observe the signature of shear wave reflection. Synthetic model with fracture is built and discretized using finite difference scheme for spatial and time domain. Common depth point (CDP with single shot gives traces and automatic gain is preprocessed before Radon Transform (RT, a filtering technique gives radon domain. It makes easier to observe fractures at specific incidence and improves its quality in some way by removing the noise. A comparison of synthetic data and BF-data is performed on the basis of root means square error (RMS values. The RMS error is minimum at the 10th trace in radon domain.

  18. Mid-Infrared Frequency Comb Fourier Transform Spectrometer

    CERN Document Server

    Adler, Florian; Foltynowicz, Aleksandra; Cossel, Kevin C; Briles, Travis C; Hartl, Ingmar; Ye, Jun

    2010-01-01

    Optical frequency-comb-based-high-resolution spectrometers offer enormous potential for spectroscopic applications. Although various implementations have been demonstrated, the lack of suitable mid-infrared comb sources has impeded explorations of molecular fingerprinting. Here we present for the first time a frequency-comb Fourier transform spectrometer operating in the 2100-to-3700-cm-1 spectral region that allows fast and simultaneous acquisitions of broadband absorption spectra with up to 0.0056 cm-1 resolution. We demonstrate part-per-billion detection limits in 30 seconds of integration time for various important molecules including methane, ethane, isoprene, and nitrous oxide. Our system enables precise concentration measurements even in gas mixtures that exhibit continuous absorption bands, and it allows detection of molecules at levels below the noise floor via simultaneous analysis of multiple spectral features. This system represents a near real-time, high-resolution, high-bandwidth mid-infrared sp...

  19. Persian Sign Language Recognition Using Radial Distance and Fourier Transform

    Directory of Open Access Journals (Sweden)

    Bahare Jalilian

    2013-11-01

    Full Text Available This paper provides a novel hand gesture recognition method to recognize 32 static signs of the Persian Sign Language (PSL alphabets. Accurate hand segmentation is the first and important step in sign language recognition systems. Here, we propose a method for hand segmentation that helps to build a better vision based sign language recognition system. The proposed method is based on YCbCr color space, single Gaussian model and Bayes rule. It detects region of hand in complex background and non-uniform illumination. Hand gesture features are extracted by radial distance and Fourier transform. Finally, the Euclidean distanceis used to compute the similarity between the input signs and all training feature vectors in the database. The system is tested on 480 posture images of the PSL, 15 images for each 32 signs. Experimental results show that our approach is capable to recognize all 32 PSL alphabets with 95.62% recognition rate.

  20. A rheumatoid arthritis study by Fourier transform infrared spectroscopy

    Science.gov (United States)

    Carvalho, Carolina S.; Silva, Ana Carla A.; Santos, Tatiano J. P. S.; Martin, Airton A.; dos Santos Fernandes, Ana Célia; Andrade, Luís E.; Raniero, Leandro

    2012-01-01

    Rheumatoid arthritis is a systemic inflammatory disease of unknown causes and a new methods to identify it in early stages are needed. The main purpose of this work is the biochemical differentiation of sera between normal and RA patients, through the establishment of a statistical method that can be appropriately used for serological analysis. The human sera from 39 healthy donors and 39 rheumatics donors were collected and analyzed by Fourier Transform Infrared Spectroscopy. The results show significant spectral variations with p<0.05 in regions corresponding to protein, lipids and immunoglobulins. The technique of latex particles, coated with human IgG and monoclonal anti-CRP by indirect agglutination known as FR and CRP, was performed to confirm possible false-negative results within the groups, facilitating the statistical interpretation and validation of the technique.

  1. Lamellar grating optimization for miniaturized fourier transform spectrometers.

    Science.gov (United States)

    Ferhanoglu, Onur; Seren, Hüseyin R; Lüttjohann, Stephan; Urey, Hakan

    2009-11-09

    Microfabricated Lamellar grating interferometers (LGI) require fewer components compared to Michelson interferotemeters and offer compact and broadband Fourier transform spectrometers (FTS) with good spectral resolution, high speed and high efficiency. This study presents the fundamental equations that govern the performance and limitations of LGI based FTS systems. Simulations and experiments were conducted to demonstrate and explain the periodic nature of the interferogram envelope due to Talbot image formation. Simulations reveal that the grating period should be chosen large enough to avoid Talbot phase reversal at the expense of mixing of the diffraction orders at the detector. Optimal LGI grating period selection depends on a number of system parameters and requires compromises in spectral resolution and signal-to-bias ratio (SBR) of the interferogram within the spectral range of interest. New analytical equations are derived for spectral resolution and SBR of LGI based FTS systems.

  2. Spatially Resolved Fourier Transform Spectroscopy in the Extreme Ultraviolet

    CERN Document Server

    Jansen, G S M; Freisem, L; Eikema, K S E; Witte, S

    2016-01-01

    Coherent extreme ultraviolet (XUV) radiation produced by table-top high-harmonic generation (HHG) sources provides a wealth of possibilities in research areas ranging from attosecond physics to high resolution coherent imaging. However, it remains challenging to fully exploit the coherence of such sources for interferometry and Fourier transform spectroscopy (FTS). This is due to the need for a measurement system that is stable at the level of a wavelength fraction, yet allowing a controlled scanning of time delays. Here we demonstrate XUV interferometry and FTS in the 17-55 nm wavelength range using an ultrastable common-path interferometer suitable for high-intensity laser pulses that drive the HHG process. This approach enables the generation of fully coherent XUV pulse pairs with sub-attosecond timing variation, tunable time delay and a clean Gaussian spatial mode profile. We demonstrate the capabilities of our XUV interferometer by performing spatially resolved FTS on a thin film composed of titanium and...

  3. The RC Circuit: An Approach with Fourier Transforms

    Indian Academy of Sciences (India)

    2016-11-01

    In this article we shall mathematically analyse the Resistor-Capacitor (RC) circuit with the help of Fourier transforms(FT). This very general technique gives us a lot of insight intosolving first order differential equations with source terms dependingon time. In itself, the RC circuit is by far the mostcommonplace entity in modern electronics. But the method ofFT is not the accepted custom for an electronic engineer, whois probably more comfortable working with complex impedancesand phasors while solving problems in network analysis.In fact, what is used much more extensively is the Laplacetransform. But a lot of things, (including the complex impedanceitself, and some insight into complex analysis) can be understoodbetter if we use the FT approach to solve the differentialequations that come up in network analysis. The use of FTcomes smoothly from first principles – precisely what we setout to demonstrate here.

  4. Initial Results from the USNO Dispersed Fourier Transform Spectrograph

    CERN Document Server

    Hajian, A R; Cenko, A T; Olling, R P; Mozurkewich, D; Armstrong, J T; Pohl, B; Petrossian, S; Knuth, K H; Hindsley, R B; Murison, M; Efroimsky, M; Dantowitz, R; Kozubal, M; Currie, D G; Nordgren, T E; Tycner, C; McMillan, R S; Hajian, Arsen R.; Behr, Bradford B.; Cenko, Andrew T.; Olling, Robert P.; Mozurkewich, David; Pohl, Brian; Petrossian, Sevan; Knuth, Kevin H.; Hindsley, Robert B.; Murison, Marc; Efroimsky, Michael; Dantowitz, Ronald; Kozubal, Marek; Currie, Douglas G.; Nordgren, Tyler E.; Tycner, Christopher; Millan, Robert S. Mc

    2006-01-01

    We have designed and constructed a ``dispersed Fourier Transform Spectrometer'' (dFTS), consisting of a conventional FTS followed by a grating spectrometer. By combining these two devices, we negate a substantial fraction of the sensitivity disadvantage of a conventional FTS for high resolution, broadband, optical spectroscopy, while preserving many of the advantages inherent to interferometric spectrometers. In addition, we have implemented a simple and inexpensive laser metrology system, which enables very precise calibration of the interferometer wavelength scale. The fusion of interferometric and dispersive technologies with a laser metrology system yields an instrument well-suited to stellar spectroscopy, velocimetry, and extrasolar planet detection, which is competitive with existing high-resolution, high accuracy stellar spectrometers. In this paper, we describe the design of our prototype dFTS, explain the algorithm we use to efficiently reconstruct a broadband spectrum from a sequence of narrowband i...

  5. Wide-Field Detected Fourier Transform CARS Microscopy

    Science.gov (United States)

    Duarte, Alex Soares; Schnedermann, Christoph; Kukura, Philipp

    2016-11-01

    We present a wide-field imaging implementation of Fourier transform coherent anti-Stokes Raman scattering (wide-field detected FT-CARS) microscopy capable of acquiring high-contrast label-free but chemically specific images over the full vibrational ‘fingerprint’ region, suitable for a large field of view. Rapid resonant mechanical scanning of the illumination beam coupled with highly sensitive, camera-based detection of the CARS signal allows for fast and direct hyperspectral wide-field image acquisition, while minimizing sample damage. Intrinsic to FT-CARS microscopy, the ability to control the range of time-delays between pump and probe pulses allows for fine tuning of spectral resolution, bandwidth and imaging speed while maintaining full duty cycle. We outline the basic principles of wide-field detected FT-CARS microscopy and demonstrate how it can be used as a sensitive optical probe for chemically specific Raman imaging.

  6. Microscope system with on axis programmable Fourier transform filtering

    Science.gov (United States)

    Martínez, José Luis; García-Martínez, Pascuala; Moreno, Ignacio

    2017-02-01

    We propose an on-axis microscope optical system to implement programmable optical Fourier transform image processing operations, taking advantage of phase and polarization modulation of a liquid crystal on silicon (LCOS) display. We use a Hamamatsu spatial light modulator (SLM), free of flickering, which therefore can be tuned to fully eliminate the zero order component of the encoded diffractive filter. This allows the realization of filtering operation on axis (as opposed to other systems in the literature that require operating off axis), therefore making use of the full space bandwidth provided by the SLM. The system is first demonstrated by implementing different optical processing operations based on phase-only blazed gratings such as phase contrast, band-pass filtering, or additive and substractive imaging. Then, a simple Differential interference contrast (DIC) imaging is obtained changing to a polarization modulation scheme, achieved simply by selecting a different incident state of polarization on the incident beam.

  7. Motion saliency detection using a temporal fourier transform

    Science.gov (United States)

    Chen, Zhe; Wang, Xin; Sun, Zhen; Wang, Zhijian

    2016-06-01

    Motion saliency detection aims at detecting the dynamic semantic regions in a video sequence. It is very important for many vision tasks. This paper proposes a new type of motion saliency detection method, Temporal Fourier Transform, for fast motion saliency detection. Different from conventional motion saliency detection methods that use complex mathematical models or features, variations in the phase spectrum of consecutive frames are identified and extracted as the key to obtaining the location of salient motion. As all the calculation is made on the temporal frequency spectrum, our model is independent of features, background models, or other forms of prior knowledge about scenes. The benefits of the proposed approach are evaluated for various videos where the number of moving objects, illumination, and background are all different. Compared with some the state of the art methods, our method achieves both good accuracy and fast computation.

  8. Short-time Fourier transform laser Doppler holography

    CERN Document Server

    Atlan, Michael

    2012-01-01

    We report a demonstration of laser Doppler holography at a sustained acquisition rate of 250 Hz on a 1 Megapixel complementary metal-oxide-semiconductor (CMOS) sensor array and image display at 10 Hz frame rate. The holograms are optically acquired in off-axis configuration, with a frequency-shifted reference beam. Wide-field imaging of optical fluctuations in a 250 Hz frequency band is achieved by turning time-domain samplings to the dual domain via short-time temporal Fourier transformation. The measurement band can be positioned freely within the low radio-frequency spectrum by tuning the frequency of the reference beam in real-time. Video-rate image rendering is achieved by streamline image processing with commodity computer graphics hardware. This experimental scheme is validated by a non-contact vibrometry experiment.

  9. Instrument concept of the imaging Fourier transform spectrometer GLORIA

    Directory of Open Access Journals (Sweden)

    F. Friedl-Vallon

    2014-10-01

    Full Text Available The Gimballed Limb Observer for Radiance Imaging of the Atmosphere (GLORIA is an imaging limb emission sounder operating in the thermal infrared region. It is designed to provide measurements of the upper troposphere/lower stratosphere with high spatial and high spectral resolution. The instrument consists of an imaging Fourier transform spectrometer integrated into a gimbal. The assembly can be mounted in the belly pod of the German High Altitude and Long Range research aircraft (HALO and in instrument bays of the Russian M55 Geophysica. Measurements are made in two distinct modes: the chemistry mode emphasises chemical analysis with high spectral resolution, and the dynamics mode focuses on dynamical processes of the atmosphere with very high spatial resolution. In addition, the instrument allows tomographic analyses of air volumes. The first measurement campaigns have shown compliance with key performance and operational requirements.

  10. Optical design of the ATMOS Fourier transform spectrometer

    Science.gov (United States)

    Abel, I. R.; Reynolds, B. R.; Breckinridge, J. B.; Pritchard, J.

    1979-01-01

    The optical system design of the ATMOS Fourier transform spectrometer to be operated from Spacelab for the measurement of stratospheric trace molecules is described. The design contains features which can achieve the required fringe contrast of 80% and spectral resolution of 0.02/cm over a spectral range of 2-16 microns. In particular, the design is based on the following features which alleviate the usual requirements for alignment precision: (1) 'cat's eye' mirror configuration in the two arms of the interferometer for retroreflection stability, (2) tilt-compensated system of beamsplitter, compensator, and fold mirrors for wavefront directional stability, (3) paraboloidal 'cat's eye' primary mirror for wavefront stability against shear, (4) rotatable compensator for matching chromatic dispersion, and (5) wedged refractive components to avoid channel spectra due to the Fabry-Perot effect.

  11. Calibration of the Geostationary Imaging Fourier Transform Spectrometer (GIFTS)

    Science.gov (United States)

    Best, F. A.; Revercomb, H. E.; Bingham, G. E.; Knuteson, R. O.; Tobin, D. C.; LaPorte, D. D.; Smith, W. L.

    2001-01-01

    The NASA New Millennium Program's Geostationary Imaging Fourier Transform Spectrometer (GIFTS) requires highly accurate radiometric and spectral calibration in order to carry out its mission to provide water vapor, wind, temperature, and trace gas profiling from geostationary orbit. A calibration concept has been developed for the GIFTS Phase A instrument design. The in-flight calibration is performed using views of two on-board blackbody sources along with cold space. A radiometric calibration uncertainty analysis has been developed and used to show that the expected performance for GIFTS exceeds its top level requirement to measure brightness temperature to better than 1 K. For the Phase A GIFTS design, the spectral calibration is established by the highly stable diode laser used as the reference for interferogram sampling, and verified with comparisons to atmospheric calculations.

  12. A direct digital synthesis chirped pulse Fourier transform microwave spectrometer.

    Science.gov (United States)

    Finneran, Ian A; Holland, Daniel B; Carroll, P Brandon; Blake, Geoffrey A

    2013-08-01

    Chirped pulse Fourier transform microwave (CP-FTMW) spectrometers have become the instrument of choice for acquiring rotational spectra, due to their high sensitivity, fast acquisition rate, and large bandwidth. Here we present the design and capabilities of a recently constructed CP-FTMW spectrometer using direct digital synthesis (DDS) as a new method for chirped pulse generation, through both a suite of extensive microwave characterizations and deep averaging of the 10-14 GHz spectrum of jet-cooled acetone. The use of DDS is more suited for in situ applications of CP-FTMW spectroscopy, as it reduces the size, weight, and power consumption of the chirp generation segment of the spectrometer all by more than an order of magnitude, while matching the performance of traditional designs. The performance of the instrument was further improved by the use of a high speed digitizer with dedicated signal averaging electronics, which facilitates a data acquisition rate of 2.1 kHz.

  13. A Fourier transform Raman spectrometer with visible laser excitation

    CERN Document Server

    Dzsaber, S; Bernáth, B; Gyüre, B; Fehér, T; Kramberger, C; Pichler, T; Simon, F

    2014-01-01

    We present the development and performance of a Fourier transformation (FT) based Raman spectrometer working with visible laser (532 nm) excitation. It is generally thought that FT-Raman spectrometers are not viable in the visible range where shot-noise limits the detector performance and therein they are outperformed by grating based, dispersive ones. We show that contrary to this common belief, the recent advances of high-performance interference filters makes the FT-Raman design a valid alternative to dispersive Raman spectrometers for samples which do not luminesce. We critically compare the performance of our spectrometer to two dispersive ones: a home-built single channel and a state-of-the-art CCD based instruments. We demonstrate a similar or even better sensitivity than the CCD based dispersive spectrometer particularly when the laser power density is considered. The instrument possesses all the known advantages of the FT principle of spectral accuracy, high throughput, and economic design. We also d...

  14. [Influence of collimation system on static Fourier transform spectrometer].

    Science.gov (United States)

    Jiang, Cheng-Zhi; Liang, Jing-Qiu; Liang, Zhong-Zhu; Sun, Qiang; Wang, Wei-Biao

    2014-01-01

    Collimation system provides collimated light for the static Fourier-transform spectroscopy (SFTS). Its quality is crucial to the signal to noise ratio (SNR) of SFTS. In the present paper, the physical model of SFTS was established based on the Fresnel diffraction theory by means of numerical software. The influence of collimation system on the SFTS was discussed in detail focusing on the aberrations of collimation lens and the quality of extended source. The results of simulation show that the influences of different kinds of aberrations on SNR take on obvious regularity, and in particular, the influences of off-axis aberrations on SNR are closely related to the location of off-axis point source. Finally the extended source's maximum radius allowed was obtained by simulation, which equals to 0.65 mm. The discussion results will be used for the design of collimation system.

  15. How to tickle spins with a fourier transform NMR spectrometer.

    Science.gov (United States)

    Segawa, Takuya F; Carnevale, Diego; Bodenhausen, Geoffrey

    2013-02-01

    In the long bygone days of continuous-wave nuclear magnetic resonance (NMR) spectroscopy, a selected transition within a multiplet of a high-resolution spectrum could be irradiated by a highly selective continuous-wave (CW) radio-frequency (rf) field with a very weak amplitude ω(2)/(2π)≤J. This causes splittings of connected transitions, allowing one to map the connectivities of all transitions within the energy-level diagram of the spin system. Such "tickling" experiments stimulated the invention of two-dimensional spectroscopy, but seem to have been forgotten for nearly 50 years. We show that tickling can readily be achieved in homonuclear systems with Fourier transform spectrometers by applying short pulses in the intervals between the sampling points. Extensions to heteronuclear systems are even more straightforward since they can be carried out using very weak CW rf fields.

  16. Indirect Fourier transform in the context of statistical inference.

    Science.gov (United States)

    Muthig, Michael; Prévost, Sylvain; Orglmeister, Reinhold; Gradzielski, Michael

    2016-09-01

    Inferring structural information from the intensity of a small-angle scattering (SAS) experiment is an ill-posed inverse problem. Thus, the determination of a solution is in general non-trivial. In this work, the indirect Fourier transform (IFT), which determines the pair distance distribution function from the intensity and hence yields structural information, is discussed within two different statistical inference approaches, namely a frequentist one and a Bayesian one, in order to determine a solution objectively From the frequentist approach the cross-validation method is obtained as a good practical objective function for selecting an IFT solution. Moreover, modern machine learning methods are employed to suppress oscillatory behaviour of the solution, hence extracting only meaningful features of the solution. By comparing the results yielded by the different methods presented here, the reliability of the outcome can be improved and thus the approach should enable more reliable information to be deduced from SAS experiments.

  17. OCTAD-S: digital fast Fourier transform spectrometers by FPGA

    Science.gov (United States)

    Iwai, Kazumasa; Kubo, Yûki; Ishibashi, Hiromitsu; Naoi, Takahiro; Harada, Kenichi; Ema, Kenji; Hayashi, Yoshinori; Chikahiro, Yuichi

    2017-07-01

    We have developed a digital fast Fourier transform spectrometer made of an analog-to-digital converter (ADC) and a field-programmable gate array (FPGA). The base instrument has independent ADC and FPGA modules, which allow us to implement different spectrometers in a relatively easy manner. Two types of spectrometers have been instrumented: one with 4.096 GS/s sampling speed and 2048 frequency channels and the other with 2.048 GS/s sampling speed and 32,768 frequency channels. The signal processing in these spectrometers has no dead time, and the accumulated spectra are recorded in external media every 8 ms. A direct sampling spectroscopy up to 8 GHz is achieved by a microwave track-and-hold circuit, which can reduce the analog receiver in front of the spectrometer. Highly stable spectroscopy with a wide dynamic range was demonstrated in a series of laboratory experiments and test observations of solar radio bursts.

  18. Radix-3 Algorithm for Realization of Discrete Fourier Transform

    Directory of Open Access Journals (Sweden)

    M.Narayan Murty

    2016-07-01

    Full Text Available In this paper, a new radix-3 algorithm for realization of discrete Fourier transform (DFT of length N = 3m (m = 1, 2, 3,... is presented. The DFT of length N can be realized from three DFT sequences, each of length N/3. If the input signal has length N, direct calculation of DFT requires O (N 2 complex multiplications (4N 2 real multiplications and some additions. This radix-3 algorithm reduces the number of multiplications required for realizing DFT. For example, the number of complex multiplications required for realizing 9-point DFT using the proposed radix-3 algorithm is 60. Thus, saving in time can be achieved in the realization of proposed algorithm.

  19. Bladder cancer diagnosis from bladder wash by Fourier transform infrared spectroscopy as a novel test for tumor recurrence.

    Science.gov (United States)

    Gok, Seher; Aydin, Ozge Z; Sural, Yavuz S; Zorlu, Ferruh; Bayol, Umit; Severcan, Feride

    2016-09-01

    This study proposes Fourier Transform Infrared (FTIR) spectroscopy as a more sensitive, rapid, non-destructive and operator-independent analytical diagnostic method for bladder cancer recurrence from bladder wash than other routinely used urine cytology and cystoscopy methods. A total of 136 patients were recruited. FTIR spectroscopic experiments were carried out as a blind study, the classification results of which were then compared with those of cytology and cystoscopy. Firstly, 71 samples (n = 37; bladder cancer and n = 34; control) were studied with transmittance FTIR spectroscopy. After achieving successful differentiation of the groups, to develop a more rapid diagnostic tool and check the reproducibility of the results, the work was continued with different samples (n = 65 as n = 44; bladder cancer and n = 21; control), using the reflection mode (ATR) of FTIR spectroscopy by a different operator. The results revealed significant alterations in moleculer content in the cancer group. Based on the spectral differences, using transmittance FTIR spectroscopy coupled with chemometrics, the diseased group was successfully differentiated from the control. When only carcinoma group was taken into consideration a sensitivity value of 100% was achieved. Similar results were also obtained by ATR-FTIR spectroscopy. This study shows the power of infrared spectroscopy in the diagnosis of bladder cancer.

  20. Solid-film sampling method for the determination of protein secondary structure by Fourier transform infrared spectroscopy.

    Science.gov (United States)

    Zhang, Junting; Zhang, Xiaoning; Zhang, Fan; Yu, Shaoning

    2017-07-01

    Fourier transform infrared (FTIR) spectroscopy is one of the widely used vibrational spectroscopic methods in protein structural analysis. The protein solution sample loaded in demountable CaF2 liquid cell presents a challenge and is limited to high concentrations. Some researchers attempted the simpler solid-film sampling method for the collection of protein FTIR spectra. In this study, the solid-film sampling FTIR method was studied in detail. The secondary structure components of some globular proteins were determined by this sampling method, and the results were consistent with those data determined by the traditional solution sampling FTIR method and X-ray crystallography, indicating that this sampling method is feasible and efficient for the structural characterization of proteins. Furthermore, much lower protein concentrations (~0.5 mg/mL) were needed to obtain high-quality FTIR spectra, which expands the application of FTIR spectroscopy to almost the same concentration range used for circular dichroism and fluorescence spectroscopy, making comparisons among three commonly used techniques possible in protein studies. Graphical Abstract ᅟ.

  1. Adaptive Controller for Compact Fourier Transform Spectrometer with Space Applications

    Science.gov (United States)

    Keymeulen, D.; Yiu, P.; Berisford, D. F.; Hand, K. P.; Carlson, R. W.; Conroy, M.

    2014-12-01

    Here we present noise mitigation techniques developed as part of an adaptive controller for a very compact Compositional InfraRed Interferometric Spectrometer (CIRIS) implemented on a stand-alone field programmable gate array (FPGA) architecture with emphasis on space applications in high radiation environments such as Europa. CIRIS is a novel take on traditional Fourier Transform Spectrometers (FTS) and replaces linearly moving mirrors (characteristic of Michelson interferometers) with a constant-velocity rotating refractor to variably phase shift and alter the path length of incoming light. The design eschews a monochromatic reference laser typically used for sampling clock generation and instead utilizes constant time-sampling via internally generated clocks. This allows for a compact and robust device, making it ideal for spaceborne measurements in the near-IR to thermal-IR band (2-12 µm) on planetary exploration missions. The instrument's embedded microcontroller is implemented on a VIRTEX-5 FPGA and a PowerPC with the aim of sampling the instrument's detector and optical rotary encoder in order to construct interferograms. Subsequent onboard signal processing provides spectral immunity from the noise effects introduced by the compact design's removal of a reference laser and by the radiation encountered during space flight to destinations such as Europa. A variety of signal processing techniques including resampling, radiation peak removal, Fast Fourier Transform (FFT), spectral feature alignment, dispersion correction and calibration processes are applied to compose the sample spectrum in real-time with signal-to-noise-ratio (SNR) performance comparable to laser-based FTS designs in radiation-free environments. The instrument's FPGA controller is demonstrated with the FTS to characterize its noise mitigation techniques and highlight its suitability for implementation in space systems.

  2. Quantum copying and simplification of the quantum Fourier transform

    Science.gov (United States)

    Niu, Chi-Sheng

    Theoretical studies of quantum computation and quantum information theory are presented in this thesis. Three topics are considered: simplification of the quantum Fourier transform in Shor's algorithm, optimal eavesdropping in the BB84 quantum cryptographic protocol, and quantum copying of one qubit. The quantum Fourier transform preceding the final measurement in Shor's algorithm is simplified by replacing a network of quantum gates with one that has fewer and simpler gates controlled by classical signals. This simplification results from an analysis of the network using the consistent history approach to quantum mechanics. The optimal amount of information which an eavesdropper can gain, for a given level of noise in the communication channel, is worked out for the BB84 quantum cryptographic protocol. The optimal eavesdropping strategy is expressed in terms of various quantum networks. A consistent history analysis of these networks using two conjugate quantum bases shows how the information gain in one basis influences the noise level in the conjugate basis. The no-cloning property of quantum systems, which is the physics behind quantum cryptography, is studied by considering copying machines that generate two imperfect copies of one qubit. The best qualities these copies can have are worked out with the help of the Bloch sphere representation for one qubit, and a quantum network is worked out for an optimal copying machine. If the copying machine does not have additional ancillary qubits, the copying process can be viewed using a 2-dimensional subspace in a product space of two qubits. A special representation of such a two-dimensional subspace makes possible a complete characterization of this type of copying. This characterization in turn leads to simplified eavesdropping strategies in the BB84 and the B92 quantum cryptographic protocols.

  3. A Fourier transform infrared spectroscopy analysis of carious dentin from transparent zone to normal zone.

    Science.gov (United States)

    Liu, Y; Yao, X; Liu, Y W; Wang, Y

    2014-01-01

    It is well known that caries invasion leads to the differentiation of dentin into zones with altered composition, collagen integrity and mineral identity. However, understanding of these changes from the fundamental perspective of molecular structure has been lacking so far. In light of this, the present work aims to utilize Fourier transform infrared spectroscopy (FTIR) to directly extract molecular information regarding collagen's and hydroxyapatite's structural changes as dentin transitions from the transparent zone (TZ) into the normal zone (NZ). Unembedded ultrathin dentin films were sectioned from carious teeth, and an FTIR imaging system was used to obtain spatially resolved FTIR spectra. According to the mineral-to-matrix ratio image generated from large-area low-spectral-resolution scan, the TZ, the NZ and the intermediate subtransparent zone (STZ) were identified. High-spectral-resolution spectra were taken from each zone and subsequently examined with regard to mineral content, carbonate distribution, collagen denaturation and carbonate substitution patterns. The integrity of collagen's triple helical structure was also evaluated based on spectra collected from demineralized dentin films of selected teeth. The results support the argument that STZ is the real sclerotic layer, and they corroborate the established knowledge that collagen in TZ is hardly altered and therefore should be reserved for reparative purposes. Moreover, the close resemblance between the STZ and the NZ in terms of carbonate content, and that between the STZ and the TZ in terms of being A-type carbonate-rich, suggest that the mineral that initially occludes dentin tubules is hydroxyapatite newly generated from odontoblastic activities, which is then transformed into whitlockite in the demineralization/remineralization process as caries progresses.

  4. Four-quadrant spatial phase-shifting Fourier transform digital holography for recording of cosine transform coefficients

    Institute of Scientific and Technical Information of China (English)

    Chujun Zheng; Peng Han; Hongsen Chang

    2006-01-01

    @@ A new one-step four-quadrant spatial phase-shifting Fourier transform digital holography is presented for recording of cosine transform coefficients, because cosine transform is a real-even symmetric Fourier transform. This approach implements four quadrant spatial phase shifting at a time using a special phase mask, which is located in the reference arm, and the phase distributions of its four-quadrants are 0, π/2, π,and 3π/2 respectively. The theoretical analysis and computer simulation results show that cosine transform coefficients of real-valued image can be calculated by capturing single four-quadrant spatial phase-shifting Fourier transform digital hologram.

  5. A Static Imaging Fourier Transform Spectrometer (SIFTS) for infrared remote sensing

    Science.gov (United States)

    Mortimer, Hugh; Hussain, Ali

    2017-04-01

    A Static Imaging Fourier Transform Spectrometer, SIFTS, has been developed for hyperspectral remote sensing in the infrared. The compact instrument has no moving components and so is insensitive to vibration. It has been optimised for operation from the Near (3 microns) to Mid Infrared (15 microns) through the use of an uncooled, wideband microbolometer detector array. The resolution across this spectral range has been shown to be 8cm-1. This instrument is inherently imaging, whereby spectral information is recorded along the of the detector array whilst imaging information is recorded down the column of the detector array. The Connes advantage, inherent to the Michelson spectrometer Fourier Transform Spectrometer (FTS), whereby the spectral wavelength accuracy is referenced to a stabilised laser has also been demonstrated in the SIFTS instrument. This has been implemented through the use of an expanded internal laser diode with Distributed Bragg Reflector (DFB) which acts as the calibration source used to maintain the wavelength stability of the SIFTS instrument. As there are no moving components, the instrument is compact, light and insensitive to mechanical vibration, additionally the speed of measurement is determined by the frame rate of the detector array. Thus, this instrument has a temporal advantage over common Michelson FTIR instruments. The novel optical design has reduced the optics to only 3 optical components, and the detector array, to generate and measure the interferogram. The experimental performance of the SIFTS instrument is demonstrated in measurements against theoretical and The technique is based on a static optical configuration whereby light is split into two paths and made to recombine along a focal plane producing an interference pattern. The spectral information is returned using a detector array to digitally capture the interferogram which can then be processed into a spectrum by applying a Fourier transform. As there are no moving

  6. Development of Imaging Fourier-Transform Spectroscopy for the Characterization of Turbulent Jet Flames

    Science.gov (United States)

    2014-09-18

    DEVELOPMENT OF IMAGING FOURIER -TRANSFORM SPECTROSCOPY FOR THE CHARACTERIZATION OF TURBULENT JET FLAMES DISSERTATION Jacob L. Harley, Captain, USAF...work of the U.S. Government and is not subject to copyright protection in the United States. AFIT-ENP-DS-14-S-13 DEVELOPMENT OF IMAGING FOURIER -TRANSFORM...DISTRIBUTION UNLIMITED AFIT-ENP-DS-14-S-13 DEVELOPMENT OF IMAGING FOURIER -TRANSFORM SPECTROSCOPY FOR THE CHARACTERIZATION OF TURBULENT JET FLAMES Jacob L

  7. FTIR characterization of advanced materials

    Science.gov (United States)

    Young, P. R.; Chang, A. C.

    1986-01-01

    This paper surveys the application of Fourier transform infrared spectroscopy to the characterization of advanced materials. FTIR sampling techniques including internal and external reflectance and photoacoustic spectroscopy are discussed. Representative examples from the literature of the analysis of resins, fibers, prepregs and composites are reviewed. A discussion of several promising specialized FTIR techniques is also presented.

  8. Fourier transform Raman approach to structural correlation in hemoglobin derivatives.

    Science.gov (United States)

    Venkatesh, B; Ramasamy, S; Mylrajan, M; Asokan, R; Manoharan, P T; Rifkind, J M

    1999-07-01

    In order to obtain information on the structural aspects of hemoglobin (Hb), Fourier transform Raman (FT-R) measurements on various ferrous, ferric derivatives and nickel reconstituted Hb (NiHb) has been made. FT-R spectra for these derivatives were obtained by laser excitation in the near infrared region (NIR) (1064 nm) whereby the wave-number region (600-1700 cm-1) related to both porphyrin ring modes and some globin modes were monitored. Comparison of various modes was made based on previous resonance Raman (RR) results. The wave-number shifts with respect to changes in oxidation state and spin state are very similar to those observed by RR. Additional bands at 1654, 1459, and 1003 cm-1 for deoxyHb and at 1656, 1454, and 1004 cm-1 for oxy Hb can be correlated to globin modes. The shift in the position of these bands for the binding of oxygen can be related to changes in conformation during the transformation. The presence of two distinct sites in NiHb could be monitored by the use of FT-R technique.

  9. Differentiating Fragmentation Pathways of Cholesterol by Two-Dimensional Fourier Transform Ion Cyclotron Resonance Mass Spectrometry

    National Research Council Canada - National Science Library

    van Agthoven, Maria A; Barrow, Mark P; Chiron, Lionel; Coutouly, Marie-Aude; Kilgour, David; Wootton, Christopher A; Wei, Juan; Soulby, Andrew; Delsuc, Marc-André; Rolando, Christian; O’Connor, Peter B

    2015-01-01

    ...) Fourier transform ion cyclotron resonance mass spectrometry. In the resulting 2D mass spectrum, the fragmentation patterns of the radical and protonated species from cholesterol are differentiated...

  10. [Biological Process Oriented Online Fourier Transform Infrared Spectrometer].

    Science.gov (United States)

    Xie, Fei; Wu, Qiong-shui; Zeng, Li-bo

    2015-08-01

    An online Fourier Transform Infrared Spectrometer and an ATR (Attenuated Total Reflection) probe, specifically at the application of real time measurement of the reaction substrate concentration in biological processes, were designed. (1) The spectrometer combined the theories of double cube-corner reflectors and flat mirror, which created a kind of high performance interferometer system. The light path folding way was utilized to makes the interferometer compact structure. Adopting double cube-corner reflectors, greatly reduces the influence of factors in the process of moving mirror movement such as rotation, tilt, etc. The parallelogram oscillation flexible support device was utilized to support the moving mirror moves. It cancelled the friction and vibration during mirror moving, and ensures the smooth operation. The ZnSe splitter significantly improved the hardware reliability in high moisture environment. The method of 60° entrance to light splitter improves the luminous flux. (2) An ATR in situ measuring probe with simple structure, large-flux, economical and practical character was designed in this article. The transmission of incident light and the light output utilized the infrared pipe with large diameter and innerplanted-high plating membrane, which conducted for the infrared transmission media of ATR probe. It greatly reduced the energy loss of infrared light after multiple reflection on the inner wall of the light pipe. Therefore, the ATR probe obtained high flux, improved the signal strength, which make the signal detected easily. Finally, the high sensitivity of MCT (Mercury Cadmium Telluride) detector was utilized to realize infrared interference signal collection, and improved the data quality of detection. The test results showed that the system yields the advantages of perfect moisture-proof performance, luminous flux, online measurement, etc. The designed online Fourier infrared spectrometer can real-time measured common reactant substrates

  11. Identification of four Sedum plant medicines by Fourier transform infrared spectra

    Directory of Open Access Journals (Sweden)

    Ran Xu

    2012-01-01

    Full Text Available Background: Sedum sarmentosum bunge (SSB., S. lineare Thunb. (SLT, S. erythrostictum migo. (SEM, and S. aizoon L. (SAL were four widely used Chinese traditional drugs or ethnic drugs, which were easy to be confused with each other. Objective: This study aimed at developing a rapid and accurate method to identify the four Sedum plant medicines with very similar appearances and close relationships. Materials and Methods: The herbal medicines employed here were SSB, SLT, SEM, and SAL collected in different places and seasons. Through comparing the infrared (IR spectra of their 70% ethanol extracts, the results showed that the IR spectra of the four plant medicines possessed not only some common characteristics but also certain notable distinctions, such as shapes, numbers, positions, intensity, and ratios of the absorbing peaks. Results: By Fourier transform infrared (FT-IR spectroscopy, the four medicines could be effectively differed, their habitats could be judged preliminarily, and the genetic relationships of the original plants of the four medicines could also be estimated to some extent. Conclusion: The application of FT-IR spectroscopy in crude medicine authentication and quality evaluation deserved to be further emphasized.

  12. Attenuated total reflectance Fourier transform infrared spectroscopy method to differentiate between normal and cancerous breast cells.

    Science.gov (United States)

    Lane, Randy; See, Seong S

    2012-09-01

    Attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) is used to find the structural differences between cancerous breast cells (MCF-7 line) and normal breast cells (MCF-12F line). Gold nanoparticles were prepared and the hydrodynamic diameter of the gold nanoparticles found to be 38.45 nm. The Gold nanoparticles were exposed to both MCF-7 and MCF-12F cells from lower to higher concentrations. Spectroscopic studies founds nanoparticles were within the cells, and increasing the nanoparticles concentration inside the cells also resulted in sharper IR peaks as a result of localized surface Plasmon resonance. Asymmetric and symmetric stretching and bending vibrations between phosphate, COO-, CH2 groups were found to give negative shifts in wavenumbers and a decrease in peak intensities when going from noncancerous to cancerous cells. Cellular proteins produced peak assignments at the 1542 and 1644 cm(-1) wavenumbers which were attributed to the amide I and amide II bands of the polypeptide bond of proteins. Significant changes were found in the peak intensities between the cell lines in the spectrum range from 2854-2956 cm(-1). Results show that the concentration range of gold nanoparticles used in this research showed no significant changes in cell viability in either cell line. Therefore, we believe ATR-FTIR and gold nanotechnology can be at the forefront of cancer diagnosis for some time to come.

  13. Analysis of pulmonary surfactant by Fourier transform infrared spectroscopy after exposure to sevoflurane and isoflurane.

    Science.gov (United States)

    Vrbanović Mijatović, Vilena; Šerman, Ljiljana; Gamulin, Ozren

    2017-02-21

    Pulmonary surfactant, consisting primarily of phospholipids and four surfactant-specific proteins, is among the first structures that is exposed to inhalation anesthetics. Consequently, changes of pulmonary surfactant due to this exposure could cause respiratory complications after long anesthetic procedures. Fourier transform infrared (FTIR) spectroscopy was used to explore the effects of two inhalation anesthetics, sevoflurane and isoflurane, on a commercially available pulmonary surfactant. The research was primarily focused on the effect of anesthetics on the lipid component of the surfactant. Four different concentrations of anesthetics were added, and the doses were higher from the low clinical doses typically used. Recorded spectra were analyzed using principal component analysis, and the Student's t-test was performed to confirm the results. The exposure to both anesthetics induced similar changes, consistent with the increase of the anesthetic concentration. The most pronounced effect was on the hydrophilic head group of phospholipids, which is in agreement with the disruption of the hydrogen bond, caused by the anesthetics. A change in the band intensities of CH2 stretching vibrations, indicative of a disordering effect of anesthetics on the hydrophobic tails of phospholipids, was also observed. Changes induced by isoflurane appear to be more pronounced than those induced by sevoflurane. Furthermore, our results suggest that FTIR spectroscopy is a promising tool in studying anesthetic effects on pulmonary surfactant.

  14. Thermal stability of high concentration lysozyme across varying pH: A Fourier Transform Infrared study

    Directory of Open Access Journals (Sweden)

    Sathyadevi Venkataramani

    2013-01-01

    Full Text Available Aim: The current work is aimed at understanding the effect of pH on the thermal stability of hen egg white lysozyme (HEWL at high concentration (200 mg/mL. Materials and Methods: Fourier Transform Infrared (FTIR Spectroscopy with modified hardware and software to overcome some of the traditional challenges like water subtraction, sample evaporation, proper purging etc., are used in this study. Results: HEWL was subjected to thermal stress at pH 3.0-7.0 between 25°C and 95°C and monitored by FTIR spectroscopy. Calculated T m values showed that the enzyme exhibited maximum thermal stability at pH 5.0. Second derivative plots constructed in the amide I region suggested that at pH 5.0 the enzyme possessed higher amount of α-helix and lower amount of aggregates, when compared to other pHs. Conclusions: Considering the fact that HEWL has attractive applications in various industries and being processed under different experimental conditions including high temperatures, our work is able to reveal the reason behind the pH dependent thermal stability of HEWL at high concentration, when subjected to heat denaturation. In future, studies should aim at using various excipients that may help to increase the stability and activity of the enzyme at this high concentration.

  15. Chemical characterization of the dentin/adhesive interface by Fourier transform infrared photoacoustic spectroscopy.

    Science.gov (United States)

    Spencer, P; Byerley, T J; Eick, J D; Witt, J D

    1992-01-01

    Irreversible bonding of composite materials to tooth structure depends on chemical as well as mechanical adhesion. The proposed bonding mechanism for several commercial dental adhesives is chemical adhesion to the dentin surface. The purpose of this in vitro investigation was to characterize the chemical nature of the surface interaction between dentin and two commercial adhesives by use of Fourier transform infrared photoacoustic spectroscopy (FTIR/PAS). The occlusal thirds of the crowns of freshly extracted, non-carious, unerupted human molars were sectioned perpendicular to the long axis. Dentin disks, 6 mm x 2 mm, were prepared from these sectioned teeth. The exposed dentin surface was treated with either Scotchbond 2, a BIS-GMA resin, or Dentin-Adhesit, a polyurethane resin. All spectra were recorded from 4000 to 400 cm-1 by use of an Analect RFX-65 FTIR spectrometer equipped with an MTEC Photoacoustics Model 200 photoacoustic cell. An initial spectrum of the dentin surface was collected. This surface was primed according to manufacturer's instructions and spectra recorded of the primed surface plus one to three layers of adhesive. By comparison of these spectra, it was possible for us to record changes in the phosphate and amide I and II bands due to surface interactions between the adhesive and the dentin. Although early results do not indicate covalent bonding between the dentin and these adhesives, this technique presents several advantages for spectroscopic evaluation of the dentin/adhesive interface.

  16. Rapid detection of melamine adulteration in dairy milk by SB-ATR-Fourier transform infrared spectroscopy.

    Science.gov (United States)

    Jawaid, Sana; Talpur, Farah N; Sherazi, S T H; Nizamani, Shafi M; Khaskheli, Abid A

    2013-12-01

    Melamine is a nitrogenous chemical substance used principally as a starting material for the manufacture of synthetic resins. Due to its very high proportion of nitrogen melamine has been added illegitimately to foods and feeds to increase the measured protein content, which determines the value of the product. These issues prompted private as well as governmental laboratories to develop methods for the analysis of melamine in a wide variety of food products and ingredients. Owing to this fact present study is aimed to use single bounce attenuated total reflectance (SB-ATR) Fourier transform infrared spectroscopy (FTIR) method as an effective rapid tool for the detection and quantification of melamine in milk (liquid and powder). Partial least-squares (PLS) models were established for correlating spectral data to melamine concentration with R(2)>0.99, and RMSEC 0.370. Linear calibration curves were obtained over the calibration range of 25-0.0625%. The LOD and LOQ of the method was 0.00025% (2.5 ppm) and 0.0015% (15 ppm) respectively. Proposed SB-ATR-FTIR method requires little or no sample preparation with an assay time of 1-2 min.

  17. Characterization of organic thin films using transmission electron microscopy and Fourier Transform Infra Red spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Bhansali, Unnat S.; Quevedo Lopez, M.A.; Jia Huiping; Alshareef, H.N.; Cha, Dong Kyu; Kim, M.J. [Department of Materials Science and Engineering, Erik Jonsson School of Engineering and Computer Science, University of Texas at Dallas, Richardson, Texas 75080 (United States); Gnade, Bruce E., E-mail: gnade@utdallas.ed [Department of Materials Science and Engineering, Erik Jonsson School of Engineering and Computer Science, University of Texas at Dallas, Richardson, Texas 75080 (United States)

    2009-08-31

    Organic Light Emitting Diodes (OLEDs) have received much attention for use in display and solid-state lighting applications. Consequently, evaluating materials analyses techniques to better understand potential issues between the different films constituting the OLED device structure becomes important. In particular, film thickness monitoring and control is essential for reproducible and reliable OLED performance. Typically, Quartz Crystal Microbalances (QCMs) are used to monitor the thicknesses in-situ. While QCMs can provide thickness information, they do not provide information about the composition or quality of the deposited films. To overcome these issues, in this paper, we have used Fourier Transform InfraRed Spectroscopy (FT-IR) to measure film thicknesses and compositions in individual as well as stacked organic layers relevant to OLED structures and used cross-sectional Transmission Electron Microscopy imaging to correlate the physical thickness of the organic films to their IR (infrared) absorption peak intensities from FT-IR. We demonstrate that this technique can be used to precisely measure film thicknesses within 5% of the nominal thickness and provide information about film composition.

  18. Fourier transform infrared absorption spectroscopy characterization of gaseous atmospheric pressure plasmas with 2 mm spatial resolution.

    Science.gov (United States)

    Laroche, G; Vallade, J; Bazinette, R; van Nijnatten, P; Hernandez, E; Hernandez, G; Massines, F

    2012-10-01

    This paper describes an optical setup built to record Fourier transform infrared (FTIR) absorption spectra in an atmospheric pressure plasma with a spatial resolution of 2 mm. The overall system consisted of three basic parts: (1) optical components located within the FTIR sample compartment, making it possible to define the size of the infrared beam (2 mm × 2 mm over a path length of 50 mm) imaged at the site of the plasma by (2) an optical interface positioned between the spectrometer and the plasma reactor. Once through the plasma region, (3) a retro-reflector module, located behind the plasma reactor, redirected the infrared beam coincident to the incident path up to a 45° beamsplitter to reflect the beam toward a narrow-band mercury-cadmium-telluride detector. The antireflective plasma-coating experiments performed with ammonia and silane demonstrated that it was possible to quantify 42 and 2 ppm of these species in argon, respectively. In the case of ammonia, this was approximately three times less than this gas concentration typically used in plasma coating experiments while the silane limit of quantification was 35 times lower. Moreover, 70% of the incoming infrared radiation was focused within a 2 mm width at the site of the plasma, in reasonable agreement with the expected spatial resolution. The possibility of reaching this spatial resolution thus enabled us to measure the gaseous precursor consumption as a function of their residence time in the plasma.

  19. Fourier transform infrared spectroscopy as a tool to study farmed and wild sea bass lipid composition.

    Science.gov (United States)

    Vidal, Natalia P; Goicoechea, Encarnación; Manzanos, María J; Guillén, María D

    2014-05-01

    The lipids of 16 farmed and wild European sea bass (Dicentrarchus labrax) samples were studied by Fourier transform infrared (FTIR) spectroscopy. The spectroscopic parameters which would be useful when distinguishing between both fish origins were analysed. It was shown, for the first time, that the frequency and the ratio between the absorbance of certain bands are efficient and reliable authentication tools for the origin of sea bass. Furthermore, relationships between infrared data and fish lipids composition referring to the molar percentage or concentration of certain acyl groups were also studied. It was proved that some infrared spectroscopic data (the frequency of certain bands or the ratio of the absorbance of others), are very closely related to the composition of sea bass lipids. It was shown for the first time that certain infrared spectroscopic data could predict, with a certain degree of approximation, the molar percentage, or concentration, of omega-3, docosahexaenoic (DHA) and di-unsaturated omega-6 (linoleic) in sea bass lipids. The consistency of the results confirms the usefulness of FTIR spectroscopy to detect frauds regarding sea bass origin, and to provide important compositional data about sea bass lipids from the nutritional and technological point of view. © 2013 Society of Chemical Industry.

  20. Portable Gas Analyzer Based on Fourier Transform Infrared Spectrometer for Patrolling and Examining Gas Exhaust

    Directory of Open Access Journals (Sweden)

    Yuntao Liang

    2015-01-01

    Full Text Available Aimed at monitoring emission of organic gases such as CH4, C2H6, C3H8, iso-C4H10, n-C4H10, C2H4, C3H6, C2H2, CO, and CO2, from coal mines, petroleum refineries, and other plants, a Fourier Transform Infrared (FT-IR spectrometer was used to develop a portable gas analyzer for patrolling and examining gas exhaust. Firstly, structure of the instrument was introduced. Then, a spectral analysis approach was presented. Finally, instrument was tested with standard gases and with actual gases emitted from a petroleum refinery. For the latter test, a gas chromatograph (GC was used as a reference instrument. The test results showed that the detection limit of every component of analyte was less than 10 × 10−6. The maximum test error of every analyte was less than 15 × 10−6 when its practical concentration was no more than 500 × 10−6. A final comparison showed that the result curves of analytes obtained with FT-IR spectrometer almost overlapped with those obtained with GC, and their resulting noise was less than 6.4% when the practical gas concentration was above 100 × 10−6. As a result, our instrument was suitable to be used as a portable instrument for monitoring exhaust gases.

  1. Fourier-transformed infrared breath testing after ingestion of technical alcohol.

    Science.gov (United States)

    Laakso, Olli; Haapala, Matti; Pennanen, Teemu; Kuitunen, Tapio; Himberg, Jaakko-Juhani

    2007-07-01

    The study aim was to evaluate the feasibility of a Fourier-transformed infrared (FT-IR) analyzer for out-of-laboratory use by screening the exhalations of inebriated individuals, and to determine analysis quality using common breath components and solvents. Each of the 35 inebriated participants gave an acceptable sample. Because of the metabolism of 2-propanol, the subjects exhaled high concentrations of acetone in addition to ethanol. Other volatile ingredients of technical ethanol products (methyl ethyl ketone, methyl isobutyl ketone, and 2-propanol) were also detected. The lower limits of quantification for the analyzed components ranged from 1.7 to 12 microg/L in simulated breath samples. The bias was +/-2% for ethanol and -11% for methanol. Within-day and between-day coefficients of variation were <1% for ethanol and <4% for methanol. The bias of ethanol and methanol analyses due to coexisting solvents ranged from -0.8 to +2.2% and from -5.6 to +2.9%, respectively. The FT-IR method proved suitable for use outside the laboratory and fulfilled the quality criteria for analysis of solvents in breath.

  2. Analysis of the DNA Fourier transform-infrared microspectroscopic signature using an all-reflecting objective.

    Science.gov (United States)

    Mello, Maria Luiza S; Vidal, Benedicto C

    2014-06-01

    The Fourier transform-infrared (FT-IR) signature of dry samples of DNA and DNA-polypeptide complexes, as studied by IR microspectroscopy using a diamond attenuated total reflection (ATR) objective, has revealed important discriminatory characteristics relative to the PO2(-) vibrational stretchings. However, DNA IR marks that provide information on the sample's richness in hydrogen bonds have not been resolved in the spectral profiles obtained with this objective. Here we investigated the performance of an "all reflecting objective" (ARO) for analysis of the FT-IR signal of hydrogen bonds in DNA samples differing in base richness types (salmon testis vs calf thymus). The results obtained using the ARO indicate prominent band peaks at the spectral region representative of the vibration of nitrogenous base hydrogen bonds and of NH and NH2 groups. The band areas at this spectral region differ in agreement with the DNA base richness type when using the ARO. A peak assigned to adenine was more evident in the AT-rich salmon DNA using either the ARO or the ATR objective. It is concluded that, for the discrimination of DNA IR hydrogen bond vibrations associated with varying base type proportions, the use of an ARO is recommended.

  3. Fourier transform infrared absorption spectroscopy characterization of gaseous atmospheric pressure plasmas with 2 mm spatial resolution

    Energy Technology Data Exchange (ETDEWEB)

    Laroche, G. [Laboratoire d' Ingenierie de Surface, Centre de Recherche sur les Materiaux Avances, Departement de genie des mines, de la metallurgie et des materiaux, Universite Laval, 1065, avenue de la Medecine, Quebec G1V 0A6 (Canada); Centre de recherche du CHUQ, Hopital St Francois d' Assise, 10, rue de l' Espinay, local E0-165, Quebec G1L 3L5 (Canada); Vallade, J. [Laboratoire Procedes, Materiaux et Energie Solaire, PROMES, CNRS, Technosud, Rambla de la Thermodynamique, F-66100 Perpignan (France); Agence de l' environnement et de la Ma Latin-Small-Letter-Dotless-I -carettrise de l' Energie, 20, avenue du Gresille, BP 90406, F-49004 Angers Cedex 01 (France); Bazinette, R.; Hernandez, E.; Hernandez, G.; Massines, F. [Laboratoire Procedes, Materiaux et Energie Solaire, PROMES, CNRS, Technosud, Rambla de la Thermodynamique, F-66100 Perpignan (France); Nijnatten, P. van [OMT Solutions bv, High Tech Campus 9, 5656AE Eindhoven (Netherlands)

    2012-10-15

    This paper describes an optical setup built to record Fourier transform infrared (FTIR) absorption spectra in an atmospheric pressure plasma with a spatial resolution of 2 mm. The overall system consisted of three basic parts: (1) optical components located within the FTIR sample compartment, making it possible to define the size of the infrared beam (2 mm Multiplication-Sign 2 mm over a path length of 50 mm) imaged at the site of the plasma by (2) an optical interface positioned between the spectrometer and the plasma reactor. Once through the plasma region, (3) a retro-reflector module, located behind the plasma reactor, redirected the infrared beam coincident to the incident path up to a 45 Degree-Sign beamsplitter to reflect the beam toward a narrow-band mercury-cadmium-telluride detector. The antireflective plasma-coating experiments performed with ammonia and silane demonstrated that it was possible to quantify 42 and 2 ppm of these species in argon, respectively. In the case of ammonia, this was approximately three times less than this gas concentration typically used in plasma coating experiments while the silane limit of quantification was 35 times lower. Moreover, 70% of the incoming infrared radiation was focused within a 2 mm width at the site of the plasma, in reasonable agreement with the expected spatial resolution. The possibility of reaching this spatial resolution thus enabled us to measure the gaseous precursor consumption as a function of their residence time in the plasma.

  4. Portable Fourier Transform Spectroscopy for Analysis of Surface Contamination and Quality Control

    Science.gov (United States)

    Pugel, Diane

    2012-01-01

    Progress has been made into adapting and enhancing a commercially available infrared spectrometer for the development of a handheld device for in-field measurements of the chemical composition of various samples of materials. The intent is to duplicate the functionality of a benchtop Fourier transform infrared spectrometer (FTIR) within the compactness of a handheld instrument with significantly improved spectral responsivity. Existing commercial technology, like the deuterated L-alanine triglycine sulfide detectors (DLATGS), is capable of sensitive in-field chemical analysis. This proposed approach compares several subsystem elements of the FTIR inside of the commercial, non-benchtop system to the commercial benchtop systems. These subsystem elements are the detector, the preamplifier and associated electronics of the detector, the interferometer, associated readout parameters, and cooling. This effort will examine these different detector subsystem elements to look for limitations in each. These limitations will be explored collaboratively with the commercial provider, and will be prioritized to meet the deliverable objectives. The tool design will be that of a handheld gun containing the IR filament source and associated optics. It will operate in a point-and-shoot manner, pointing the source and optics at the sample under test and capturing the reflected response of the material in the same handheld gun. Data will be captured via the gun and ported to a laptop.

  5. INTERFERENCE MITIGATING BASED ON FRACTIONAL FOURIER TRANSFORM IN TRANSFORM DOMAIN COMMUNICATION SYSTEM

    Institute of Scientific and Technical Information of China (English)

    Wang Chuandan; Zhang Zhongpei; Li Shaoqian

    2007-01-01

    The method of FRactional Fourier Transform (FRFT) is introduced to Transform Domain Communication System (TDCS) for signal transforming in the paper after theoretical analysis. The method yields optimal Basis Function (BF) by FRFT with optimal transform angle. The TDCS using the proposed method has wider usable spectrum, stronger robustness and better ability of anti non-stationary jamming than using usual methods, such as Fourier Transform (FT), Auto Regressive (AR), Wavelet Transform (WT), etc. The main simulation results are as follows. First, the Bit Error Rate (BER) Pb is close to theoretical bound of no jamming no matter in single tone or in linear chirp interference. Second, the interference-to-signal ratio J/E is at least 12dB more than that of Direct Spread Spectrum System (DSSS) under the same BER if the spectrum hopping-to-signal ratio is 1:20 in chirp plus hopping interfering. Third, the Eb/No (when estimation difference is 90% between transmitter and receiver) is about 3.5dB or about 0.5dB (when estimation difference is 10% between transmitter and receiver) more than that of theoretical result when no estimation difference under Pb = 10-2.

  6. Fourier transform infrared spectroscopy, a new method for rapid determination of total organic and inorganic carbon and biogenic silica concentration in lake sediments

    DEFF Research Database (Denmark)

    Rosén, Peter; Vogel, Hendrik; Cunningham, Laura

    2010-01-01

    We demonstrate the use of Fourier transform infrared spectroscopy (FTIRS) to make quantitative measures of total organic carbon (TOC), total inorganic carbon (TIC) and biogenic silica (BSi) concentrations in sediment. FTIRS is a fast and cost-effective technique and only small sediment samples...... varied between r = 0.84-0.99 for TOC, r = 0.85-0.99 for TIC, and r = 0.68-0.94 for BSi. Because FTIR spectra contain information on a large number of both inorganic and organic components, there is great potential for FTIRS to become an important tool in paleolimnology....... are needed (0.01 g). Statistically significant models were developed using sediment samples from northern Sweden and were applied to sediment records from Sweden, northeast Siberia and Macedonia. The correlation between FTIRS-inferred values and amounts of biogeochemical constituents assessed conventionally...

  7. 连续Fourier变换、逆变换的数值计算%Numerical computation for continuous Fourier transform and inverse Fourier transform

    Institute of Scientific and Technical Information of China (English)

    魏鑫宇; 冯立新; 张国艳

    2012-01-01

    Based on the trigonometric interpolation theory, a function is approximated by its trigonometric interpolation function. By the properties of Dirac distribution function, the analytic expressions of the Fourier transform and inverse Fourier transform for the trigonometric interpolation function are derived to approximate the Fourier transform and inverse Fourier transform for the original function. The numerical formulations for calculating the Fourier transforms and the inverse Fourier transforms of the functions with one variable and two variables are derived, respectively. Comparing with the algorithm using rectangular formula of numerical integration, the numerical examples show that the proposed method achieves higher accuracy.%基于三角插值理论,用函数的三角插值函数代替函数本身,并借助Dirac广义函数的性质写出三角插值函数的Fourier变换、逆变换的解析表达式,将之作为函数的Fourier变换、逆变换的近似.基于这种想法,分别推导一元函数、二元函数的Fourier变换和Fourier逆变换的计算公式.数值实验表明,这种方法比通常基于矩形求积公式计算连续Fourier变换、逆变换的精度要高.

  8. Spectrogram analysis of selected tremor signals using short-time Fourier transform and continuous wavelet transform

    Directory of Open Access Journals (Sweden)

    D. Seidl

    1999-06-01

    Full Text Available Among a variety of spectrogram methods Short-Time Fourier Transform (STFT and Continuous Wavelet Transform (CWT were selected to analyse transients in non-stationary tremor signals. Depending on the properties of the tremor signal a more suitable representation of the signal is gained by CWT. Three selected broadband tremor signals from the volcanos Mt. Stromboli, Mt. Semeru and Mt. Pinatubo were analyzed using both methods. The CWT can also be used to extend the definition of coherency into a time-varying coherency spectrogram. An example is given using array data from the volcano Mt. Stromboli.

  9. Fast quality control of Herba Epimedii by using Fourier transform infrared spectroscopy

    Science.gov (United States)

    Pei, Li-Kuan; Sun, Su-Qin; Guo, Bao-Lin; Huang, Wen-Hua; Xiao, Pei-Gen

    2008-07-01

    Herba Epimedii is a well-known traditional Chinese medicine (TCM) having the effect of nourishing the kidney and strengthening the 'Yang'. Its primary effective constituents are considered to be the 8-prenyl flavonols, which can be assorted into 4'-methoxyl-prenylflavonols (MPFs) and 4'-hydroxyl-prenylflavonols (HPFs), according to the group (methoxyl or hydroxyl) located at 4' in their structures. The Fourier transform infrared spectroscopy (FT-IR) has been widely used in the researches of TCMs. In the present study, the FT-IR was attempted to be applied in the quality control of Herba Epimedii. We compared the IR spectra of 17 pure flavonoids, of which eight were derived from Herba Epimedii, and found a characteristic absorption peak at 1259 ± 1 cm -1, corresponding to the MPFs, the major 8-prenyl flavonols in the aerial parts of the Epimedium species. This peak could also be found in the IR spectra of both the herbal samples and their 70% ethanol extracts. Moreover, the intensity of this peak was in the direct correlation with the total content of MPFs. The correlation values, representing the semblance of two spectra, of the IR spectrum of herbal sample and icariin, in the range of 1280-1200 cm -1, had been established to be a good index for the quality control of the herbs. Accordingly, a correlation value of not less than 0.50 could be used as the essential screening criteria for the herbs. The FT-IR could be used for the fast and effective quality control of Herba Epimedii.

  10. Fieldable Fourier Transform Spectrometer: System Construction, Background Variability Measurements, and Chemical Attack Warning Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Hatchell, Brian K.; Harper, Warren W.; Batishko, Charles R.; Johnson, Timothy J.; Sheen, David M.; Stewart, Timothy L.; Schultz, John F.

    2002-10-01

    The infrared sensors task at the Pacific Northwest National Laboratory (PNNL) is focused on the science and technology of remote and in-situ chemical sensors for detecting proliferation and countering terrorism. Missions to be addressed by remote chemical sensor development will include detecting proliferation of nuclear or chemical weapons, and providing warning of terrorist use of chemical weapons. Missions to be addressed by in-situ chemical sensor development include countering terrorism by screening luggage, personnel, and shipping containers for explosives, firearms, narcotics, chemical weapons, or chemical weapons residues, and mapping contaminated areas. The science and technology relevant to these primary missions is also likely to be useful for battlefield chemical weapons defense, air operations support, monitoring emissions from chemical weapons destruction facilities or industrial chemical plants, and law enforcement applications. PNNL will seek to serve organizations with direct interest in these missions through collaborative research and development efforts approved by NA-22. During FY02, PNNL began assembling a remote IR detection capability that would allow field experiments to be conducted. The capability consists of a commercially available FTIR (Fourier Transform Infrared) emission spectrometer and a frequency-modulation differential-absorption LIDAR (FM-DIAL) system being developed at PNNL. To provide environmental protection for these systems, a large, well insulated, temperature controlled trailer was specified and procured. While the FTIR system was field-ready, the FM-DIAL system required many modifications to prepare for field deployment. This document provides an overview of the FTIR system, summarizes the modifications made to the FM-DIAL system, and describes the salient features of the remote systems trailer.

  11. Fractional Fourier Transform Applied to Digital Images Encryption

    Science.gov (United States)

    Vilardy, Juan M.; Torres, Cesar O.; Mattos, Lorenzo

    2008-04-01

    In the present paper a digital algorithm was developed to make phase encryption of digital indexed images to color using the fractional Fourier transform (the images in RGB are converted to indexed before to encrypt). The indexed images are represented by a matrix of M×N pixels (where M defines the height and N is the Width of the image) and a color map (it's a matrix of C×3 elements, where C indicates the colors number of the image and the number 3 indicates the three columns associated with the color components: Red, Green and Blue of each pixel of the matrix of M×N) associated to the matrix of pixels to suitably represent the color information of the image. The indexed image (matrix of M×N pixels) to encrypt is placed as the phase of a complex exponential, then is transformed three times and multiplied in intermediate steps by two random phase masks statistically independent thus to obtain the encrypted image, for decrypt the coding image the encryption procedure is applied in the inverse sense to the conjugated complex of the encrypted image, then is taken the negative of the phase of the resulting function of the decryption process and the original image is obtained this way that had been encrypted; For the color map equal procedure is applied in the encryption/decryption process described previously for the matrix of M×N pixels. In the implemented cryptographic algorithm five keys are used, constituted by three fractional orders and two random phase masks, all these keys are necessary for a correct decryption providing a dependability to the transference of images by means of the communications nets.

  12. Calibration of the Herschel SPIRE Fourier Transform Spectrometer

    CERN Document Server

    Swinyard, B M; Hopwood, R; Valtchanov, I; Lu, N; Fulton, T; Benielli, D; Imhof, P; Marchili, N; Baluteau, J -P; Bendo, G J; Ferlet, M; Griffin, M J; Lim, T L; Makiwa, G; Naylor, D A; Orton, G S; Papageorgiou, A; Pearson, C P; Schulz, B; Sidher, S D; Spencer, L D; van der Wiel, M H D; Wu, R

    2014-01-01

    The Herschel SPIRE instrument consists of an imaging photometric camera and an imaging Fourier Transform Spectrometer (FTS), both operating over a frequency range of 450-1550 GHz. In this paper, we briefly review the FTS design, operation, and data reduction, and describe in detail the approach taken to relative calibration (removal of instrument signatures) and absolute calibration against standard astronomical sources. The calibration scheme assumes a spatially extended source and uses the Herschel telescope as primary calibrator. Conversion from extended to point-source calibration is carried out using observations of the planet Uranus. The model of the telescope emission is shown to be accurate to within 6% and repeatable to better than 0.06% and, by comparison with models of Mars and Neptune, the Uranus model is shown to be accurate to within 3%. Multiple observations of a number of point-like sources show that the repeatability of the calibration is better than 1%, if the effects of the satellite absolu...

  13. Fourier transform infrared absorption spectroscopy of jet-cooled radicals

    Science.gov (United States)

    Rohrs, Henry W.; Wickham-Jones, C. Tom; Ellison, G. Barney; Berry, David; Argrow, Brian M.

    1995-03-01

    We describe an experiment that couples a high-resolution Fourier transform spectrometer (FTS) to a supersonic jet of radicals. A 1-mm-i.d. cylindrical SiC nozzle is resistively heated to 1500 K in order to decompose organic precursors and generate expansions of jet-cooled radicals. We have used this apparatus to pyrolyze alkyl nitrites to make alkoxy and nitric oxide radicals. The residence time of radicals in this hot nozzle is roughly 20 μs RONO→ΔRO+NO. We use the FTS to detect the IR absorption of the product NO (ν0=1876.1 cm-1) at resolutions as fine as 0.005 cm-1 FWHM. We observe the product NO from the pyrolysis of CH3CH2ONO to be rotationally cooled to roughly 50 K. The IR spectra indicate that the optical path length is about 3/4 cm and that the nitrites pyrolyze to produce approximately 1014 NO radicals cm-3 some 9 mm downstream from the nozzle. Our spectrometer is capable of detecting an absorption signal of 0.1% over a bandwidth of 100 cm-1 at 0.005 cm-1 resolution. Depending on the infrared cross section of the radical, this implies that we are able to monitor diatomic radical densities of roughly 5×1012 cm-3 (quantum state)-1.

  14. External Second Gate-Fourier Transform Ion Mobility Spectrometry.

    Energy Technology Data Exchange (ETDEWEB)

    Tarver, Edward E., III

    2005-01-01

    Ion mobility spectrometry (IMS) is recognized as one of the most sensitive and versatile techniques for the detection of trace levels of organic vapors. IMS is widely used for detecting contraband narcotics, explosives, toxic industrial compounds and chemical warfare agents. Increasing threat of terrorist attacks, the proliferation of narcotics, Chemical Weapons Convention treaty verification as well as humanitarian de-mining efforts has mandated that equal importance be placed on the analysis time as well as the quality of the analytical data. (1) IMS is unrivaled when both speed of response and sensitivity has to be considered. (2) With conventional (signal averaging) IMS systems the number of available ions contributing to the measured signal to less than 1%. Furthermore, the signal averaging process incorporates scan-to-scan variations decreasing resolution. With external second gate Fourier Transform ion mobility spectrometry (FT-IMS), the entrance gate frequency is variable and can be altered in conjunction with other data acquisition parameters to increase the spectral resolution. The FT-IMS entrance gate operates with a 50% duty cycle and so affords a 7 to 10-fold increase in sensitivity. Recent data on high explosives are presented to demonstrate the parametric optimization in sensitivity and resolution of our system.

  15. Transmission fourier transform Raman spectroscopy of pharmaceutical tablet cores.

    Science.gov (United States)

    Pelletier, Michael J; Larkin, Peter; Santangelo, Matthew

    2012-04-01

    Transmission Fourier transform (FT) Raman spectroscopy of pharmaceutical tablet cores is demonstrated using traditional, unmodified commercial instrumentation. The benefits of improved precision over backscattering Raman spectroscopy due to increased sample volume are demonstrated. Self-absorption effects on analyte band ratios and sample probe volume are apparent, however. A survey of near-infrared (NIR) absorption spectra in the FT-Raman spectral range (approximately 0 to 3500 wavenumber shift from 1064 nm, or 1064 to 1700 nm) of molecules with a wide range of NIR-active functional groups shows that although absorption at the laser wavelength (1064 nm) is relatively small, some regions of the Raman spectrum coincide with NIR absorbances of 0.5 per cm or greater. Fortunately, the pharmaceutically important regions of the Raman shift spectrum from 0 to 600 cm(-1) and from 1400 to 1900 cm(-1) exhibit low self-absorption for most organic materials. A statistical analysis of transmission FT-Raman noise in spectra collected from different regions of a pharmaceutical tablet provides insight into both spectral distortion and reduced sampling volume caused by self-absorption.

  16. Spin Glass Field Theory with Replica Fourier Transforms

    Science.gov (United States)

    Pimentel, Iveta R.; De Dominicis, Cirano

    We develop a field theory for spin glasses using Replica Fourier Transforms (RFT). We present the formalism for the case of replica symmetry and the case of replica symmetry breaking on an ultrametric tree, with the number of replicas n and the number of replica symmetry breaking steps R generic integers. We show how the RFT applied to the two-replica fields allows to construct a new basis which block-diagonalizes the four-replica mass-matrix, into the replicon, anomalous and longitudinal modes. The eigenvalues are given in terms of the mass RFT and the propagators in the RFT space are obtained by inversion of the block-diagonal matrix. The formalism allows to express any i-replica vertex in the new RFT basis and hence enables to perform a standard perturbation expansion. We apply the formalism to calculate the contribution of the Gaussian fluctuations around the Parisi's solution for the free-energy of an Ising spin glass.

  17. Resource requirements for a fault-tolerant quantum Fourier transform

    Science.gov (United States)

    Goto, Hayato; Nakamura, Satoshi; Kujiraoka, Mamiko; Ichimura, Kouichi

    2015-03-01

    The quantum Fourier transform (QFT) is a basic subroutine for most quantum algorithms providing an exponential speedup over classical ones. We investigate resource requirements for a fault-tolerant QFT. To implement single-qubit rotations for a QFT in a fault-tolerant manner, we examine three types of approaches: ancilla-free gate synthesis, ancilla-assisted gate synthesis, and state distillation. While the gate synthesis approximates single-qubit rotations with basic quantum operations, the state distillation enables to perform specific single-qubit rotations required for the QFT exactly. It is unknown, however, which approach is better for the QFT. We estimated the resource requirement for a QFT in each case, where the resource is measured by the total number of the π / 8 gates denoted by T, which is called the T count. Contrary to the initial expectation, the total T count for the state distillation is considerably larger than those for the ancilla-free and ancilla-assisted gate synthesis. Thus, we conclude that the ancilla-assisted gate synthesis is the best for a fault-tolerant QFT so far.

  18. Online Botnet Detection Based on Incremental Discrete Fourier Transform

    Directory of Open Access Journals (Sweden)

    Xiaocong Yu

    2010-05-01

    Full Text Available Botnet detection has attracted lots of attention since botnet attack is becoming one of the most serious threats on the Internet. But little work has considered the online detection. In this paper, we propose a novel approach that can monitor the botnet activities in an online way. We define the concept of “feature streams” to describe raw network traffic. If some feature streams show high similarities, the corresponding hosts will be regarded as suspected bots which will be added into the suspected bot hosts set. After activity analysis, bot hosts will be confirmed as soon as possible. We present a simple method by computing the average Euclidean distance for similarity measurement.  To avoid huge calculation among feature streams, classical Discrete Fourier Transform (DFT technique is adopted. Then an incremental calculation of DFT coefficients is introduced to obtain the optimal execution time. The experimental evaluations show that our approach can detect both centralized and distributed botnet activities successfully with high efficiency and low false positive rate.

  19. SAR-based vibrometry using the fractional Fourier transform

    Science.gov (United States)

    Campbell, Justin B.; Wang, Qi; Ade-Bello, Jelili; Caudana, Humberto; Trujillo, Nicole B.; Bhatta, Ishwor; Dunkel, Ralf; Atwood, Thomas; Doerry, Armin; Gerstle, Walter H.; Santhanam, Balu; Hayat, Majeed M.

    2015-05-01

    A fundamental assumption when applying Synthetic Aperture Radar (SAR) to a ground scene is that all targets are motionless. If a target is not stationary, but instead vibrating in the scene, it will introduce a non-stationary phase modulation, termed the micro-Doppler effect, into the returned SAR signals. Previously, the authors proposed a pseudosubspace method, a modification to the Discrete Fractional Fourier Transform (DFRFT), which demonstrated success for estimating the instantaneous accelerations of vibrating objects. However, this method may not yield reliable results when clutter in the SAR image is strong. Simulations and experimental results have shown that the DFRFT method can yield reliable results when the signal-to-clutter ratio (SCR) > 8 dB. Here, we provide the capability to determine a target's frequency and amplitude in a low SCR environment by presenting two methods that can perform vibration estimations when SCR < 3 dB. The first method is a variation and continuation of the subspace approach proposed previously in conjunction with the DFRFT. In the second method, we employ the dual-beam SAR collection architecture combined with the extended Kalman filter (EKF) to extract information from the returned SAR signals about the vibrating target. We also show the potential for extending this SAR-based capability to remotely detect and classify objects housed inside buildings or other cover based on knowing the location of vibrations as well as the vibration histories of the vibrating structures that house the vibrating objects.

  20. Improved Fast Fourier Transform Based Method for Code Accuracy Quantification

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Tae Wook; Jeong, Jae Jun [Pusan National University, Busan (Korea, Republic of); Choi, Ki Yong [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    The capability of the proposed method is discussed. In this study, the limitations of the FFTBM were analyzed. The FFTBM produces quantitatively different results due to its frequency dependence. Because the problem is intensified by including a lot of high frequency components, a new method using a reduced cut-off frequency was proposed. The results of the proposed method show that the shortcomings of FFTBM are considerably relieved. Among them, the fast Fourier transform based method (FFTBM) introduced in 1990 has been widely used to evaluate a code uncertainty or accuracy. Prosek et al., (2008) identified its drawbacks, the so-called 'edge effect'. To overcome the problems, an improved FFTBM by signal mirroring (FFTBM-SM) was proposed and it has been used up to now. In spite of the improvement, the FFTBM-SM yielded different accuracy depending on the frequency components of a parameter, such as pressure, temperature and mass flow rate. Therefore, it is necessary to reduce the frequency dependence of the FFTBMs. In this study, the deficiencies of the present FFTBMs are analyzed and a new method is proposed to mitigate its frequency dependence.