WorldWideScience

Sample records for fourier transform technique

  1. Fourier transform approach in modulation technique of experimental measurements.

    Science.gov (United States)

    Khazimullin, M V; Lebedev, Yu A

    2010-04-01

    An application of Fourier transform approach in modulation technique of experimental studies is considered. This method has obvious advantages compared with traditional lock-in amplifiers technique--simple experimental setup, a quickly available information on all the required harmonics, high speed of data processing using fast Fourier transform algorithm. A computationally simple, fast and accurate Fourier coefficients interpolation (FCI) method has been implemented to obtain a useful information from harmonics of a multimode signal. Our analysis shows that in this case FCI method has a systematical error (bias) of a signal parameters estimation, which became essential for the short data sets. Hence, a new differential Fourier coefficients interpolation (DFCI) method has been suggested, which is less sensitive to a presence of several modes in a signal. The analysis has been confirmed by simulations and measurements of a quartz wedge birefringence by means of the photoelastic modulator. The obtained bias, noise level, and measuring speed are comparable and even better than in lock-in amplifier technique. Moreover, presented DFCI method is expected to be promised candidate for using in actively developing imaging systems based on the modulation technique requiring fast digital signal processing of large data sets.

  2. Image encryption techniques based on the fractional Fourier transform

    Science.gov (United States)

    Hennelly, B. M.; Sheridan, J. T.

    2003-11-01

    The fractional Fourier transform, (FRT), is a generalisation of the Fourier transform which allows domains of mixed spatial frequency and spatial information to be examined. A number of method have recently been proposed in the literature for the encryption of two dimensional information using optical systems based on the FRT. Typically, these methods require random phase screen keys to decrypt the data, which must be stored at the receiver and must be carefully aligned with the received encrypted data. We have proposed a new technique based on a random shifting or Jigsaw transformation. This method does not require the use of phase keys. The image is encrypted by juxtaposition of sections of the image in various FRT domains. The new method has been compared numerically with existing methods and shows comparable or superior robustness to blind decryption. An optical implementation is also proposed and the sensitivity of the various encryption keys to blind decryption is quantified. We also present a second image encryption technique, which is based on a recently proposed method of optical phase retrieval using the optical FRT and one of its discrete counterparts. Numerical simulations of the new algorithm indicates that the sensitivity of the keys is much greater than any of the techniques currently available. In fact the sensitivity appears to be so high that optical implementation, based on existing optical signal processing technology, may be impossible. However, the technique has been shown to be a powerful method of 2-D image data encryption.

  3. Hyperspectral imaging using the single-pixel Fourier transform technique

    Science.gov (United States)

    Jin, Senlin; Hui, Wangwei; Wang, Yunlong; Huang, Kaicheng; Shi, Qiushuai; Ying, Cuifeng; Liu, Dongqi; Ye, Qing; Zhou, Wenyuan; Tian, Jianguo

    2017-03-01

    Hyperspectral imaging technology is playing an increasingly important role in the fields of food analysis, medicine and biotechnology. To improve the speed of operation and increase the light throughput in a compact equipment structure, a Fourier transform hyperspectral imaging system based on a single-pixel technique is proposed in this study. Compared with current imaging spectrometry approaches, the proposed system has a wider spectral range (400-1100 nm), a better spectral resolution (1 nm) and requires fewer measurement data (a sample rate of 6.25%). The performance of this system was verified by its application to the non-destructive testing of potatoes.

  4. Generalized Fourier transforms classes

    DEFF Research Database (Denmark)

    Berntsen, Svend; Møller, Steen

    2002-01-01

    The Fourier class of integral transforms with kernels $B(\\omega r)$ has by definition inverse transforms with kernel $B(-\\omega r)$. The space of such transforms is explicitly constructed. A slightly more general class of generalized Fourier transforms are introduced. From the general theory...

  5. Generic Quantum Fourier Transforms

    CERN Document Server

    Moore, Cristopher; Russell, A; Moore, Cristopher; Rockmore, Daniel; Russell, Alexander

    2003-01-01

    The quantum Fourier transform (QFT) is the principal algorithmic tool underlying most efficient quantum algorithms. We present a generic framework for the construction of efficient quantum circuits for the QFT by ``quantizing'' the separation of variables technique that has been so successful in the study of classical Fourier transform computations. Specifically, this framework applies the existence of computable Bratteli diagrams, adapted factorizations, and Gel'fand-Tsetlin bases to offer efficient quantum circuits for the QFT over a wide variety a finite Abelian and non-Abelian groups, including all group families for which efficient QFTs are currently known and many new group families. Moreover, the method gives rise to the first subexponential-size quantum circuits for the QFT over the linear groups GL_k(q), SL_k(q), and the finite groups of Lie type, for any fixed prime power q.

  6. Fourier transformation for pedestrians

    CERN Document Server

    Butz, Tilman

    2006-01-01

    Meant to serve an "entertaining textbook," this book belongs to a rare genre. It is written for all students and practitioners who deal with Fourier transformation. Fourier series as well as continuous and discrete Fourier transformation are covered, and particular emphasis is placed on window functions. Many illustrations and easy-to-solve exercises make the book especially accessible, and its humorous style will add to the pleasure of learning from it.

  7. Rainbow Fourier Transform

    Science.gov (United States)

    Alexandrov, Mikhail D.; Cairns, Brian; Mishchenko, Michael I.

    2012-01-01

    We present a novel technique for remote sensing of cloud droplet size distributions. Polarized reflectances in the scattering angle range between 135deg and 165deg exhibit a sharply defined rainbow structure, the shape of which is determined mostly by single scattering properties of cloud particles, and therefore, can be modeled using the Mie theory. Fitting the observed rainbow with such a model (computed for a parameterized family of particle size distributions) has been used for cloud droplet size retrievals. We discovered that the relationship between the rainbow structures and the corresponding particle size distributions is deeper than it had been commonly understood. In fact, the Mie theory-derived polarized reflectance as a function of reduced scattering angle (in the rainbow angular range) and the (monodisperse) particle radius appears to be a proxy to a kernel of an integral transform (similar to the sine Fourier transform on the positive semi-axis). This approach, called the rainbow Fourier transform (RFT), allows us to accurately retrieve the shape of the droplet size distribution by the application of the corresponding inverse transform to the observed polarized rainbow. While the basis functions of the proxy-transform are not exactly orthogonal in the finite angular range, this procedure needs to be complemented by a simple regression technique, which removes the retrieval artifacts. This non-parametric approach does not require any a priori knowledge of the droplet size distribution functional shape and is computationally fast (no look-up tables, no fitting, computations are the same as for the forward modeling).

  8. Fourier and Laplace Transforms

    NARCIS (Netherlands)

    Beerends, R.J.; Morsche, ter H.G.; Berg, van den J.C.

    2003-01-01

    This textbook presents in a unified manner the fundamentals of both continuous and discrete versions of the Fourier and Laplace transforms. These transforms play an important role in the analysis of all kinds of physical phenomena. As a link between the various applications of these transforms the a

  9. Fourier transform mass spectrometry.

    Science.gov (United States)

    Scigelova, Michaela; Hornshaw, Martin; Giannakopulos, Anastassios; Makarov, Alexander

    2011-07-01

    This article provides an introduction to Fourier transform-based mass spectrometry. The key performance characteristics of Fourier transform-based mass spectrometry, mass accuracy and resolution, are presented in the view of how they impact the interpretation of measurements in proteomic applications. The theory and principles of operation of two types of mass analyzer, Fourier transform ion cyclotron resonance and Orbitrap, are described. Major benefits as well as limitations of Fourier transform-based mass spectrometry technology are discussed in the context of practical sample analysis, and illustrated with examples included as figures in this text and in the accompanying slide set. Comparisons highlighting the performance differences between the two mass analyzers are made where deemed useful in assisting the user with choosing the most appropriate technology for an application. Recent developments of these high-performing mass spectrometers are mentioned to provide a future outlook.

  10. Transient excitation and data processing techniques employing the fast fourier transform for aeroelastic testing

    Science.gov (United States)

    Jennings, W. P.; Olsen, N. L.; Walter, M. J.

    1976-01-01

    The development of testing techniques useful in airplane ground resonance testing, wind tunnel aeroelastic model testing, and airplane flight flutter testing is presented. Included is the consideration of impulsive excitation, steady-state sinusoidal excitation, and random and pseudorandom excitation. Reasons for the selection of fast sine sweeps for transient excitation are given. The use of the fast fourier transform dynamic analyzer (HP-5451B) is presented, together with a curve fitting data process in the Laplace domain to experimentally evaluate values of generalized mass, model frequencies, dampings, and mode shapes. The effects of poor signal to noise ratios due to turbulence creating data variance are discussed. Data manipulation techniques used to overcome variance problems are also included. The experience is described that was gained by using these techniques since the early stages of the SST program. Data measured during 747 flight flutter tests, and SST, YC-14, and 727 empennage flutter model tests are included.

  11. Flat-top pulse generation by the optical Fourier transform technique for ultrahigh speed signal processing

    DEFF Research Database (Denmark)

    Palushani, Evarist; Oxenløwe, Leif Katsuo; Galili, Michael;

    2009-01-01

    This paper reports on the generation of 1.6-ps fullwidth at half-maximum flat-top pulses by the optical Fourier transform technique, and the utilization of these pulses in a 320-Gb/s demultiplexing experiment. It is demonstrated how a narrow pulse having a 15-nm wide third-order super-Gaussian sp......This paper reports on the generation of 1.6-ps fullwidth at half-maximum flat-top pulses by the optical Fourier transform technique, and the utilization of these pulses in a 320-Gb/s demultiplexing experiment. It is demonstrated how a narrow pulse having a 15-nm wide third-order super......-Gaussian spectral intensity profile is mapped into a flat-top pulse resembling its spectrum by simple propagation in SMF. Theoretical and experimental descriptions are given on flat-top pulse generation, and an experimental validation of the systems performance of the pulses is carried out, demonstrating a benefit...

  12. Fourier transform infrared spectroscopy techniques for the analysis of drugs of abuse

    Science.gov (United States)

    Kalasinsky, Kathryn S.; Levine, Barry K.; Smith, Michael L.; Magluilo, Joseph J.; Schaefer, Teresa

    1994-01-01

    Cryogenic deposition techniques for Gas Chromatography/Fourier Transform Infrared (GC/FT-IR) can be successfully employed in urinalysis for drugs of abuse with detection limits comparable to those of the established Gas Chromatography/Mass Spectrometry (GC/MS) technique. The additional confidence of the data that infrared analysis can offer has been helpful in identifying ambiguous results, particularly, in the case of amphetamines where drugs of abuse can be confused with over-the-counter medications or naturally occurring amines. Hair analysis has been important in drug testing when adulteration of urine samples has been a question. Functional group mapping can further assist the analysis and track drug use versus time.

  13. Fourier transformation for pedestrians

    CERN Document Server

    Butz, Tilman

    2015-01-01

    This book is an introduction to Fourier Transformation with a focus on signal analysis, based on the first edition. It is well suited for undergraduate students in physics, mathematics, electronic engineering as well as for scientists in research and development. It gives illustrations and recommendations when using existing Fourier programs and thus helps to avoid frustrations. Moreover, it is entertaining and you will learn a lot unconsciously. Fourier series as well as continuous and discrete Fourier transformation are discussed with particular emphasis on window functions. Filter effects of digital data processing are illustrated. Two new chapters are devoted to modern applications. The first deals with data streams and fractional delays and the second with the back-projection of filtered projections in tomography. There are many figures and mostly easy to solve exercises with solutions.

  14. Renal Graft Fibrosis and Inflammation Quantification by an Automated Fourier-Transform Infrared Imaging Technique.

    Science.gov (United States)

    Vuiblet, Vincent; Fere, Michael; Gobinet, Cyril; Birembaut, Philippe; Piot, Olivier; Rieu, Philippe

    2016-08-01

    Renal interstitial fibrosis and interstitial active inflammation are the main histologic features of renal allograft biopsy specimens. Fibrosis is currently assessed by semiquantitative subjective analysis, and color image analysis has been developed to improve the reliability and repeatability of this evaluation. However, these techniques fail to distinguish fibrosis from constitutive collagen or active inflammation. We developed an automatic, reproducible Fourier-transform infrared (FTIR) imaging-based technique for simultaneous quantification of fibrosis and inflammation in renal allograft biopsy specimens. We generated and validated a classification model using 49 renal biopsy specimens and subsequently tested the robustness of this classification algorithm on 166 renal grafts. Finally, we explored the clinical relevance of fibrosis quantification using FTIR imaging by comparing results with renal function at 3 months after transplantation (M3) and the variation of renal function between M3 and M12. We showed excellent robustness for fibrosis and inflammation classification, with >90% of renal biopsy specimens adequately classified by FTIR imaging. Finally, fibrosis quantification by FTIR imaging correlated with renal function at M3, and the variation in fibrosis between M3 and M12 correlated well with the variation in renal function over the same period. This study shows that FTIR-based analysis of renal graft biopsy specimens is a reproducible and reliable label-free technique for quantifying fibrosis and active inflammation. This technique seems to be more relevant than digital image analysis and promising for both research studies and routine clinical practice.

  15. Digital Fourier analysis advanced techniques

    CERN Document Server

    Kido, Ken'iti

    2015-01-01

    This textbook is a thorough, accessible introduction to advanced digital Fourier analysis for advanced undergraduate and graduate students. Assuming knowledge of the Fast Fourier Transform, this book covers advanced topics including the Hilbert transform, cepstrum analysis, and the two-dimensional Fourier transform. Saturated with clear, coherent illustrations, "Digital Fourier Analysis - Advanced Techniques" includes practice problems and thorough Appendices. As a central feature, the book includes interactive applets (available online) that mirror the illustrations. These user-friendly applets animate concepts interactively, allowing the user to experiment with the underlying mathematics. The applet source code in Visual Basic is provided online, enabling advanced students to tweak and change the programs for more sophisticated results. A complete, intuitive guide, "Digital Fourier Analysis - Advanced Techniques" is an essential reference for students in science and engineering.

  16. Studies on Nephrite and Jadeite Jades by Fourier Transform Infrared (ftir) and Raman Spectroscopic Techniques

    Science.gov (United States)

    Tan, T. L.; Ng, L. L.; Lim, L. C.

    2013-10-01

    The mineralogical properties of black nephrite jade from Western Australia are studied by Fourier transform infrared (FTIR) spectroscopy using both transmission and specular reflectance techniques in the 4000-400 cm-1 wavenumber region. The infrared absorption peaks in the 3700-3600 cm-1 region which are due to the O-H stretching mode provides a quantitative analysis of the Fe/(Fe+Mg) ratio in the mineral composition of jade samples. The Fe/(Fe+Mg) percentage in black nephrite is found to be higher than that in green nephrite, but comparable to that of actinolite (iron-rich nephrite). This implies that the mineralogy of black nephrite is closer to actinolite than tremolite. The jade is also characterized using Raman spectroscopy in the 1200-200 cm-1 region. Results from FTIR and Raman spectroscopic data of black nephrite jade are compared with those of green nephrite jade from New Zealand and jadeite jade from Myanmar. Black nephrite appears to have a slightly different chemical composition from green nephrite. Spectra from FTIR and Raman spectroscopic techniques were found to be useful in differentiating black nephrite, green nephrite, and green jadeite jades. Furthermore, data on refractive index, specific gravity, and hardness of black nephrite jade are measured and compared with those of green nephrite and of jadeite jade.

  17. Fourier transforms principles and applications

    CERN Document Server

    Hansen, Eric W

    2014-01-01

    Fourier Transforms: Principles and Applications explains transform methods and their applications to electrical systems from circuits, antennas, and signal processors-ably guiding readers from vector space concepts through the Discrete Fourier Transform (DFT), Fourier series, and Fourier transform to other related transform methods.  Featuring chapter end summaries of key results, over two hundred examples and four hundred homework problems, and a Solutions Manual this book is perfect for graduate students in signal processing and communications as well as practicing engineers.

  18. Multivariation calibration techniques applied to NIRA (near infrared reflectance analysis) and FTIR (Fourier transform infrared) data

    Science.gov (United States)

    Long, C. L.

    1991-02-01

    Multivariate calibration techniques can reduce the time required for routine testing and can provide new methods of analysis. Multivariate calibration is commonly used with near infrared reflectance analysis (NIRA) and Fourier transform infrared (FTIR) spectroscopy. Two feasibility studies were performed to determine the capability of NIRA, using multivariate calibration techniques, to perform analyses on the types of samples that are routinely analyzed at this laboratory. The first study performed included a variety of samples and indicated that NIRA would be well-suited to perform analyses on selected materials properties such as water content and hydroxyl number on polyol samples, epoxy content on epoxy resins, water content of desiccants, and the amine values of various amine cure agents. A second study was performed to assess the capability of NIRA to perform quantitative analysis of hydroxyl numbers and water contents of hydroxyl-containing materials. Hydroxyl number and water content were selected for determination because these tests are frequently run on polyol materials and the hydroxyl number determination is time consuming. This study pointed out the necessity of obtaining calibration standards identical to the samples being analyzed for each type of polyol or other material being analyzed. Multivariate calibration techniques are frequently used with FTIR data to determine the composition of a large variety of complex mixtures. A literature search indicated many applications of multivariate calibration to FTIR data. Areas identified where quantitation by FTIR would provide a new capability are quantitation of components in epoxy and silicone resins, polychlorinated biphenyls (PCBs) in oils, and additives to polymers.

  19. Real Clifford Windowed Fourier Transform

    Institute of Scientific and Technical Information of China (English)

    Mawardi BAHRI; Sriwulan ADJI; Ji Man ZHAO

    2011-01-01

    We study the windowed Fourier transform in the framework of Clifford analysis, which we call the Clifford windowed Fourier transform (CWFT). Based on the spectral representation of the Clifford Fourier transform (CFT), we derive several important properties such as shift, modulation,reconstruction formula, orthogonality relation, isometry, and reproducing kernel. We also present an example to show the differences between the classical windowed Fourier transform (WFT) and the CWFT. Finally, as an application we establish a Heisenberg type uncertainty principle for the CWFT.

  20. Fast classification and compositional analysis of cornstover fractions using Fourier transform near-infrared techniques.

    Science.gov (United States)

    Philip Ye, X; Liu, Lu; Hayes, Douglas; Womac, Alvin; Hong, Kunlun; Sokhansanj, Shahab

    2008-10-01

    The objectives of this research were to determine the variation of chemical composition across botanical fractions of cornstover, and to probe the potential of Fourier transform near-infrared (FT-NIR) techniques in qualitatively classifying separated cornstover fractions and in quantitatively analyzing chemical compositions of cornstover by developing calibration models to predict chemical compositions of cornstover based on FT-NIR spectra. Large variations of cornstover chemical composition for wide calibration ranges, which is required by a reliable calibration model, were achieved by manually separating the cornstover samples into six botanical fractions, and their chemical compositions were determined by conventional wet chemical analyses, which proved that chemical composition varies significantly among different botanical fractions of cornstover. Different botanic fractions, having total saccharide content in descending order, are husk, sheath, pith, rind, leaf, and node. Based on FT-NIR spectra acquired on the biomass, classification by Soft Independent Modeling of Class Analogy (SIMCA) was employed to conduct qualitative classification of cornstover fractions, and partial least square (PLS) regression was used for quantitative chemical composition analysis. SIMCA was successfully demonstrated in classifying botanical fractions of cornstover. The developed PLS model yielded root mean square error of prediction (RMSEP %w/w) of 0.92, 1.03, 0.17, 0.27, 0.21, 1.12, and 0.57 for glucan, xylan, galactan, arabinan, mannan, lignin, and ash, respectively. The results showed the potential of FT-NIR techniques in combination with multivariate analysis to be utilized by biomass feedstock suppliers, bioethanol manufacturers, and bio-power producers in order to better manage bioenergy feedstocks and enhance bioconversion.

  1. Fourier transforms in spectroscopy

    CERN Document Server

    Kauppinen, Jyrki

    2000-01-01

    This modern approach to the subject is clearly and logically structured, and gives readers an understanding of the essence of Fourier transforms and their applications. All important aspects are included with respect to their use with optical spectroscopic data. Based on popular lectures, the authors provide the mathematical fundamentals and numerical applications which are essential in practical use. The main part of the book is dedicated to applications of FT in signal processing and spectroscopy, with IR and NIR, NMR and mass spectrometry dealt with both from a theoretical and practical poi

  2. Fast Fourier transform telescope

    Science.gov (United States)

    Tegmark, Max; Zaldarriaga, Matias

    2009-04-01

    We propose an all-digital telescope for 21 cm tomography, which combines key advantages of both single dishes and interferometers. The electric field is digitized by antennas on a rectangular grid, after which a series of fast Fourier transforms recovers simultaneous multifrequency images of up to half the sky. Thanks to Moore’s law, the bandwidth up to which this is feasible has now reached about 1 GHz, and will likely continue doubling every couple of years. The main advantages over a single dish telescope are cost and orders of magnitude larger field-of-view, translating into dramatically better sensitivity for large-area surveys. The key advantages over traditional interferometers are cost (the correlator computational cost for an N-element array scales as Nlog⁡2N rather than N2) and a compact synthesized beam. We argue that 21 cm tomography could be an ideal first application of a very large fast Fourier transform telescope, which would provide both massive sensitivity improvements per dollar and mitigate the off-beam point source foreground problem with its clean beam. Another potentially interesting application is cosmic microwave background polarization.

  3. Fourier Transform Spectrometer System

    Science.gov (United States)

    Campbell, Joel F. (Inventor)

    2014-01-01

    A Fourier transform spectrometer (FTS) data acquisition system includes an FTS spectrometer that receives a spectral signal and a laser signal. The system further includes a wideband detector, which is in communication with the FTS spectrometer and receives the spectral signal and laser signal from the FTS spectrometer. The wideband detector produces a composite signal comprising the laser signal and the spectral signal. The system further comprises a converter in communication with the wideband detector to receive and digitize the composite signal. The system further includes a signal processing unit that receives the composite signal from the converter. The signal processing unit further filters the laser signal and the spectral signal from the composite signal and demodulates the laser signal, to produce velocity corrected spectral data.

  4. On-line preferential solvation studies of polymers by coupled chromatographic-Fourier transform infrared spectroscopic flow-cell technique.

    Science.gov (United States)

    Malanin, M; Eichhorn, K-J; Lederer, A; Treppe, P; Adam, G; Fischer, D; Voigt, D

    2009-12-18

    Qualitative and quantitative comparison between liquid chromatography (LC) and LC coupled with Fourier transform infrared spectroscopy (LC-FTIR) to evaluate preferential solvation phenomenon of polymers in a mixed solvent has been performed. These studies show that LC-FTIR technique leads to detailed structural information without the requirement for determination of additional parameters for quantitative analysis except calibration. Appropriate experimental conditions for preferential solvation study have been established by variation of polymer concentration, molar mass and eluent content.

  5. Fourier techniques in X-ray timing

    NARCIS (Netherlands)

    M. van der Klis

    1988-01-01

    Basic principles of Fourier techniques often used in X-ray time series analysis are reviewed. The relation between the discrete Fourier transform and the continuous Fourier transform is discussed to introduce the concepts of windowing and aliasing. The relation is derived between the power spectrum

  6. κ-deformed Fourier transform

    Science.gov (United States)

    Scarfone, A. M.

    2017-08-01

    We present a new formulation of Fourier transform in the picture of the κ-algebra derived in the framework of the κ-generalized statistical mechanics. The κ-Fourier transform is obtained from a κ-Fourier series recently introduced by Scarfone (2013). The kernel of this transform, that reduces to the usual exponential phase in the κ → 0 limit, is composed by a κ-deformed phase and a damping factor that gives a wavelet-like behaviour. We show that the κ-Fourier transform is isomorph to the standard Fourier transform through a changing of time and frequency variables. Nevertheless, the new formalism is useful to study, according to Fourier analysis, those functions defined in the realm of the κ-algebra. As a relevant application, we discuss the central limit theorem for the κ-sum of n-iterate statistically independent random variables.

  7. Wavelet-fractional Fourier transforms

    Institute of Scientific and Technical Information of China (English)

    Yuan Lin

    2008-01-01

    This paper extends the definition of fractional Fourier transform (FRFT) proposed by Namias V by using other orthonormal bases for L2 (R) instead of Hermite-Ganssian functions.The new orthonormal basis is gained indirectly from multiresolution analysis and orthonormal wavelets. The so defined FRFT is called wavelets-fractional Fourier transform.

  8. Fourier Transform Infrared Spectroscopy: A Potential Technique for Noninvasive Detection of Spermatogenesis

    Science.gov (United States)

    Gilany, Kambiz; Pouracil, Roudabeh Sadat Moazeni; Sadeghi, Mohammad Reza

    2014-01-01

    Background The seminal plasma is an excellent source for noninvasive detection of spermatogenesis. The seminal plasma of normospermic and azoospermic men has been analyzed for detection of spermatogenesis. Methods Optical spectroscopy (Attenuated Total Reflectance-Infrared spectroscopy (ATR-IR) and Fourier Transform infrared spectroscopy (FT-IR) has been used to analyze the seminal plasma and the metabolome of seminal plasma for detection of spermatogenesis. Results The seminal plasma of normospermic and azoospermic men has been analyzed by ATR-IR. The results show that there is a pattern variation in the azoospermic men compared to normospermic men. However, the seminal plasma is too complex to show significant pattern variation. Therefore, the metabolome which is a subcomponent of the seminal plasma was analyzed. The seminal plasma metabolome of normospermic and azoospermic men has been analyzed by FT-IR. A significant pattern change was observed. The data combined with chemometrics analysis showed that significant changes are observed at metabolome level. Conclusion We suggest that FT-IR has the potential as a diagnostic tool instead of testicular biopsy. PMID:24523955

  9. Fast Numerical Nonlinear Fourier Transforms

    CERN Document Server

    Wahls, Sander

    2014-01-01

    The nonlinear Fourier transform, which is also known as the forward scattering transform, decomposes a periodic signal into nonlinearly interacting waves. In contrast to the common Fourier transform, these waves no longer have to be sinusoidal. Physically relevant waveforms are often available for the analysis instead. The details of the transform depend on the waveforms underlying the analysis, which in turn are specified through the implicit assumption that the signal is governed by a certain evolution equation. For example, water waves generated by the Korteweg-de Vries equation can be expressed in terms of cnoidal waves. Light waves in optical fiber governed by the nonlinear Schr\\"dinger equation (NSE) are another example. Nonlinear analogs of classic problems such as spectral analysis and filtering arise in many applications, with information transmission in optical fiber, as proposed by Yousefi and Kschischang, being a very recent one. The nonlinear Fourier transform is eminently suited to address them ...

  10. Chlorococcalean microalgae Ankistrodesmus convolutes biodiesel characterization with Fourier transform-infrared spectroscopy and gas chromatography mass spectroscopy techniques

    Directory of Open Access Journals (Sweden)

    Swati SONAWANE

    2015-12-01

    Full Text Available The Chlorococcalean microalgae Ankistrodesmus convolutes was found in fresh water Godawari reservoir, Ahmednagar district of Maharashtra State, India. Microalgae are modern biomass for the production of liquid biofuel due to its high solar cultivation efficiency. The collection, harvesting and drying processes were play vital role in converting algal biomass into energy liquid fuel. The oil extraction was the important step for the biodiesel synthesis. The fatty acid methyl ester (FAME synthesis was carried through base catalyzed transesterification method. The product was analyzed by using the hyphened techniques like Fourier Transform-Infrared spectroscopy (FT-IR and Gas Chromatography Mass Spectroscopy (GCMS. FT-IR Spectroscopy was results the ester as functional group of obtained product while the Gas Chromatography Mass Spectroscopy was results the six type of fatty acid methyl ester with different concentration. Ankistrodesmus convolutes biodiesel consist of 46.5% saturated and 49.14% unsaturated FAME.

  11. Static Fourier transform infrared spectrometer.

    Science.gov (United States)

    Schardt, Michael; Murr, Patrik J; Rauscher, Markus S; Tremmel, Anton J; Wiesent, Benjamin R; Koch, Alexander W

    2016-04-01

    Fourier transform spectroscopy has established itself as the standard method for spectral analysis of infrared light. Here we present a robust and compact novel static Fourier transform spectrometer design without any moving parts. The design is well suited for measurements in the infrared as it works with extended light sources independent of their size. The design is experimentally evaluated in the mid-infrared wavelength region between 7.2 μm and 16 μm. Due to its large etendue, its low internal light loss, and its static design it enables high speed spectral analysis in the mid-infrared.

  12. Fourier transform technique in variational treatment of two-electron parabolic quantum dot

    Institute of Scientific and Technical Information of China (English)

    S.(S)akiro(g)lu; A.Yildiz; (U).Dogan; K.Akgüng(o)r; H.Epik; Y.Ergün; H.Sarl; I.S(o)kmen

    2009-01-01

    In this work,we propose an efficient method of reducing the computational effort of variational calculation with a Hylleraas-like trial wavefunction.The method consists of introducing integral transforms for the terms as r12k exp (-λr12)which provide the calculation of the expectation value of energy and the relevant matrix elements to be done analytically over single-electron coordinates instead of Hylleraas coordinates.We have used this method to calculate the ground state energy of a two-electron system in a spherical dot and a disk-like quantum dot separately.Under parabolic confinement potential and within effective mass approximation size and shape effects of quantum dots on the ground state energy of two electrons have been investigated.The calculation shows that our results even with a small number of basis states axe in good agreement with previous theoretical results.

  13. Fast Discrete Fourier Transform Computations Using the Reduced Adder Graph Technique

    Directory of Open Access Journals (Sweden)

    Dempster Andrew G

    2007-01-01

    Full Text Available It has recently been shown that the -dimensional reduced adder graph (RAG- technique is beneficial for many DSP applications such as for FIR and IIR filters, where multipliers can be grouped in multiplier blocks. This paper highlights the importance of DFT and FFT as DSP objects and also explores how the RAG- technique can be applied to these algorithms. This RAG- DFT will be shown to be of low complexity and possess an attractively regular VLSI data flow when implemented with the Rader DFT algorithm or the Bluestein chirp- algorithm. ASIC synthesis data are provided and demonstrate the low complexity and high speed of the design when compared to other alternatives.

  14. Fast Fourier Transform algorithm design and tradeoffs

    Science.gov (United States)

    Kamin, Ray A., III; Adams, George B., III

    1988-01-01

    The Fast Fourier Transform (FFT) is a mainstay of certain numerical techniques for solving fluid dynamics problems. The Connection Machine CM-2 is the target for an investigation into the design of multidimensional Single Instruction Stream/Multiple Data (SIMD) parallel FFT algorithms for high performance. Critical algorithm design issues are discussed, necessary machine performance measurements are identified and made, and the performance of the developed FFT programs are measured. Fast Fourier Transform programs are compared to the currently best Cray-2 FFT program.

  15. Fourier transform infrared spectrometery: an undergraduate experiment

    Science.gov (United States)

    Lerner, L.

    2016-11-01

    Simple apparatus is developed, providing undergraduate students with a solid understanding of Fourier transform (FT) infrared (IR) spectroscopy in a hands on experiment. Apart from its application to measuring the mid-IR spectra of organic molecules, the experiment introduces several techniques with wide applicability in physics, including interferometry, the FT, digital data analysis, and control theory.

  16. Fiber-optic fourier transform mid-infrared reflectance spectroscopy: a suitable technique for in situ studies of mural paintings.

    Science.gov (United States)

    Miliani, C; Rosi, F; Borgia, I; Benedetti, P; Brunetti, B G; Sgamellotti, A

    2007-03-01

    A prototypical in situ noninvasive study of ancient mural painting materials has been carried out using an easily manageable fiber-optic Fourier transform mid-infrared (mid-FT-IR) reflectance spectrophotometer. The reported object of the study is the Renaissance fresco by Pietro Vannucci, called il Perugino, located in the church of Santa Maria delle Lacrime (1521, Trevi, Perugia Italy). For the first classification and interpretation of infrared spectra, principal components analysis was used. Spectral artifacts due to lacunas, restoration materials, or alteration products have been identified, as well as two different secco refinements bound in a tempera medium. For the characterization of inorganic pigments, mid-FT-IR spectra have been integrated with other data obtained through in situ X-ray fluorescence (XRF) elemental analysis. This complementary noninvasive approach led to the characterization of Perugino's pigments, even in the presence of complex mixtures. The mid-FT-IR noninvasive technique, in combination with XRF, is thus recommended as a valuable first approach for the examination of mural paintings, permitting the assessment of the execution technique as well as contributing to the evaluation of the conservation state.

  17. A More Accurate Fourier Transform

    CERN Document Server

    Courtney, Elya

    2015-01-01

    Fourier transform methods are used to analyze functions and data sets to provide frequencies, amplitudes, and phases of underlying oscillatory components. Fast Fourier transform (FFT) methods offer speed advantages over evaluation of explicit integrals (EI) that define Fourier transforms. This paper compares frequency, amplitude, and phase accuracy of the two methods for well resolved peaks over a wide array of data sets including cosine series with and without random noise and a variety of physical data sets, including atmospheric $\\mathrm{CO_2}$ concentrations, tides, temperatures, sound waveforms, and atomic spectra. The FFT uses MIT's FFTW3 library. The EI method uses the rectangle method to compute the areas under the curve via complex math. Results support the hypothesis that EI methods are more accurate than FFT methods. Errors range from 5 to 10 times higher when determining peak frequency by FFT, 1.4 to 60 times higher for peak amplitude, and 6 to 10 times higher for phase under a peak. The ability t...

  18. A Short Biography of Joseph Fourier and Historical Development of Fourier Series and Fourier Transforms

    Science.gov (United States)

    Debnath, Lokenath

    2012-01-01

    This article deals with a brief biographical sketch of Joseph Fourier, his first celebrated work on analytical theory of heat, his first great discovery of Fourier series and Fourier transforms. Included is a historical development of Fourier series and Fourier transforms with their properties, importance and applications. Special emphasis is made…

  19. Multipliers: comparison of Fourier transformation based method and Synopsys design technique for up to 32 bits inputs in regular and saturation arithmetics

    OpenAIRE

    Gorodecky, Danila

    2016-01-01

    The technique for hardware multiplication based upon Fourier transformation has been introduced. The technique has the highest efficiency on multiplication units with up to 8 bit range. Each multiplication unit is realized on base of the minimized Boolean functions. Experimental data showed that this technique the multiplication process speed up to 20% higher for 2-8 bit range of input operands and up to 3% higher for 8-32 bit range of input operands than analogues designed by Synopsys techni...

  20. Spectral Characterizations of the Clouds and the Earth's Radiant Energy System (CERES) Thermistor Bolometers using Fourier Transform Spectrometer (FTS) Techniques

    Science.gov (United States)

    Thornhill, K. Lee; Bitting, Herbert; Lee, Robert B., III; Paden, Jack; Pandey, Dhirendra K.; Priestley, Kory J.; Thomas, Susan; Wilson, Robert S.

    1998-01-01

    Fourier Transform Spectrometer (FTS) techniques are being used to characterize the relative spectral response, or sensitivity, of scanning thermistor bolometers in the infrared (IR) region (2 - >= 100-micrometers). The bolometers are being used in the Clouds and the Earth's Radiant Energy System (CERES) program. The CERES measurements are designed to provide precise, long term monitoring of the Earth's atmospheric radiation energy budget. The CERES instrument houses three bolometric radiometers, a total wavelength (0.3- >= 150-micrometers) sensor, a shortwave (0.3-5-micrometers) sensor, and an atmospheric window (8-12-micrometers) sensor. Accurate spectral characterization is necessary for determining filtered radiances for longwave radiometric calibrations. The CERES bolometers spectral response's are measured in the TRW FTS Vacuum Chamber Facility (FTS - VCF), which uses a FTS as the source and a cavity pyroelectric trap detector as the reference. The CERES bolometers and the cavity detector are contained in a vacuum chamber, while the FTS source is housed in a GN2 purged chamber. Due to the thermal time constant of the CERES bolometers, the FTS must be operated in a step mode. Data are acquired in 6 IR spectral bands covering the entire longwave IR region. In this paper, the TRW spectral calibration facility design and data measurement techniques are described. Two approaches are presented which convert the total channel FTS data into the final CERES spectral characterizations, producing the same calibration coefficients (within 0.1 percent). The resulting spectral response curves are shown, along with error sources in the two procedures. Finally, the impact of each spectral response curve on CERES data validation will be examined through analysis of filtered radiance values from various typical scene types.

  1. Fourier techniques and applications

    CERN Document Server

    1985-01-01

    The first systematic methods of Fourier analysis date from the early eighteenth century with the work of Joseph Fourier on the problem of the flow of heat. (A brief history is contained in the first paper.) Given the initial tempera­ ture at all points of a region, the problem was to determine the changes in the temperature distribution over time. Understanding and predicting these changes was important in such areas as the handling of metals and the determination of geological and atmospheric temperatures. Briefly, Fourier noticed that the solution of the heat diffusion problem was simple if the initial temperature dis­ tribution was sinusoidal. He then asserted that any distri­ bution can be decomposed into a sum of sinusoids, these being the harmonics of the original function. This meant that the general solution could now be obtained by summing the solu­ tions of the component sinusoidal problems. This remarkable ability of the series of sinusoids to describe all "reasonable" functions, the sine qua n...

  2. Novel Micro Fourier Transform Spectrometers

    Institute of Scientific and Technical Information of China (English)

    KONG Yan-mei; LIANG Jing-qiu; LIANG Zhong-zhu; WANG-Bo; ZHANG Jun

    2008-01-01

    The miniaturization of spectrometer opens a new application area with real-time and on-site measurements. The Fourier transform spectrometer(FTS) is much attractive considering its particular advantages among the approaches. This paper reviews the current status of micro FTS in worldwide and describes its developments; In addition, analyzed are the key problems in designing and fabricating FTS to be settled during the miniaturization. Finally, a novel model of micro FTS with no moving parts is proposed and analyzed, which may provide new concepts for the design of spectrometers.

  3. Fourier-transform optical microsystems

    Science.gov (United States)

    Collins, S. D.; Smith, R. L.; Gonzalez, C.; Stewart, K. P.; Hagopian, J. G.; Sirota, J. M.

    1999-01-01

    The design, fabrication, and initial characterization of a miniature single-pass Fourier-transform spectrometer (FTS) that has an optical bench that measures 1 cm x 5 cm x 10 cm is presented. The FTS is predicated on the classic Michelson interferometer design with a moving mirror. Precision translation of the mirror is accomplished by microfabrication of dovetailed bearing surfaces along single-crystal planes in silicon. Although it is miniaturized, the FTS maintains a relatively high spectral resolution, 0.1 cm-1, with adequate optical throughput.

  4. JPL Fourier transform ultraviolet spectrometer

    Science.gov (United States)

    Cageao, R. P.; Friedl, R. R.; Sander, Stanley P.; Yung, Y. L.

    1994-01-01

    The Fourier Transform Ultraviolet Spectrometer (FTUVS) is a new high resolution interferometric spectrometer for multiple-species detection in the UV, visible and near-IR. As an OH sensor, measurements can be carried out by remote sensing (limb emission and column absorption), or in-situ sensing (long-path absorption or laser-induced fluorescence). As a high resolution detector in a high repetition rate (greater than 10 kHz) LIF system, OH fluorescence can be discriminated against non-resonant background emission and laser scatter, permitting (0, 0) excitation.

  5. Fourier-Transform Infrared Spectrometer

    Science.gov (United States)

    Schindler, R. A.

    1986-01-01

    Fourier-transform spectrometer provides approximately hundredfold increase in luminosity at detector plane over that achievable with older instruments of this type. Used to analyze such weak sources as pollutants and other low-concentration substances in atmosphere. Interferometer creates fringe patterns on two distinct arrays of light detectors, which observe different wavelength bands. Objective lens focuses scene on image plane, which contains optical chopper. To make instrument less susceptible to variations in scene under observation, field and detector lenses focus entrance aperture, rather that image, onto detector array.

  6. Fourier Transform Methods. Chapter 4

    Science.gov (United States)

    Kaplan, Simon G.; Quijada, Manuel A.

    2015-01-01

    This chapter describes the use of Fourier transform spectrometers (FTS) for accurate spectrophotometry over a wide spectral range. After a brief exposition of the basic concepts of FTS operation, we discuss instrument designs and their advantages and disadvantages relative to dispersive spectrometers. We then examine how common sources of error in spectrophotometry manifest themselves when using an FTS and ways to reduce the magnitude of these errors. Examples are given of applications to both basic and derived spectrophotometric quantities. Finally, we give recommendations for choosing the right instrument for a specific application, and how to ensure the accuracy of the measurement results..

  7. Fourier Transform Fabry-Perot Interferometer

    Science.gov (United States)

    Snell, Hilary E.; Hays, Paul B.

    1992-01-01

    We are developing a compact, rugged, high-resolution remote sensing instrument with wide spectral scanning capabilities. This relatively new type of instrument, which we have chosen to call the Fourier-Transform Fabry-Perot Interferometer (FT-FPI), is accomplished by mechanically scanning the etalon plates of a Fabry-Perot interferometer (FPI) through a large optical distance while examining the concomitant signal with a Fourier-transform analysis technique similar to that employed by the Michelson interferometer. The FT-FPI will be used initially as a ground-based instrument to study near-infrared atmospheric absorption lines of trace gases using the techniques of solar absorption spectroscopy. Future plans include modifications to allow for measurements of trace gases in the stratosphere using spectral lines at terahertz frequencies.

  8. Matrix isolation studies with Fourier transform IR

    Energy Technology Data Exchange (ETDEWEB)

    Green, David W.; Reedy, Gerald T.

    1977-01-01

    The combination of Fourier transform infrared (FT-IR) spectroscopy with the matrix-isolation techniques has advantages compared with the use of more conventional grating spectroscopy. Furthermore, the recent commercial availability of Fourier transform spectrometers has made FT-IR a practical alternative. Some advantages of the FT-IR spectrometer over the grating spectrometer are the result of the computerized data system that is a necessary part of the FT-IR spectrometer; other advantages are a consequence of the difference in optical arrangements and these represent the inherent advantages of the FT-IR method. In most applications with the matrix-isolation technique, the use of FT-IR spectroscopy results in either an improved signal-to-noise ratio or a shorter time for data collection compared with grating infrared spectroscopy. Fourier transform infrared spectroscopy has been used in the laboratory to study several molecular species in low-temperature matrices. Some species have been produced by high-temperature vaporization from Knudsen cells and others by sputtering. By sputtering, Ar and Kr matrices have been prepared which contain U atoms, UO, UO/sub 2/, UO/sub 3/, PuO, PuO/sub 2/, UN, or UN/sub 2/, depending upon the composition of the gas used to sputter as well as the identity of the metallic cathode. Infrared spectra of matrices containing these compounds are presented and discussed. (JRD)

  9. Fourier Transform Infrared Spectroscopic Studies in Flotation

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Fourier transform infrared (FTIR) spectroscopy has been extensively employed in flotation research.The work done by the author and co-workers has been reported.A comparison has been made among the different FTIR spectroscopic techniques,e.g.,transmission FTIR spectroscopy,diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy,and attenuated total reflectance (ATR) FTIR spectroscopy.FTIR spectroscopy has been used to study the mechanism of interaction between the collector and the surfaces of different minerals,the mechanism of action of the depressant in improving the selectivity of flotation,and the mechanism of adsorption of the polymeric modifying reagent on mineral surfaces.The interaction between particles in mineral suspension has also been studied by FTIR spectroscopy.

  10. Fiber Optic Fourier Transform White-Light Interferometry

    Institute of Scientific and Technical Information of China (English)

    Yi Jiang; Cai-Jie Tang

    2008-01-01

    Fiber optic Fourier transform white-light inter-fereometry is presented to interrogate the absolute optical path difference of an Mach-Zehnder inter-ferometer. The phase change of the interferometer caused by scanning wavelength can be calculated by a Fourier transform-based phase demodulation technique. A linear output is achieved.

  11. The multiple-parameter fractional Fourier transform

    Institute of Scientific and Technical Information of China (English)

    LANG Jun; TAO Ran; RAN QiWen; WANG Yue

    2008-01-01

    The fractional Fourier transform (FRFT) has multiplicity, which is intrinsic in frac-tional operator. A new source for the multiplicity of the weight-type fractional Fou-rier transform (WFRFT) is proposed, which can generalize the weight coefficients of WFRFT to contain two vector parameters MN,∈ZM. Therefore a generalized frac-tional Fourier transform can be defined, which is denoted by the multiple-parameter fractional Fourier transform (MPFRFT). It enlarges the multiplicity of the FRFT, which not only includes the conventional FRFT and general multi-fractional Fourier transform as special cases, but also introduces new fractional Fourier transforms. It provides a unified framework for the FRFT, and the method is also available for fractionalizing other linear operators. In addition, numerical simulations of the MPFRFT on the Hermite-Gaussian and rectangular functions have been performed as a simple application of MPFRFT to signal processing.

  12. The Fourier Transform on Quantum Euclidean Space

    Directory of Open Access Journals (Sweden)

    Kevin Coulembier

    2011-05-01

    Full Text Available We study Fourier theory on quantum Euclidean space. A modified version of the general definition of the Fourier transform on a quantum space is used and its inverse is constructed. The Fourier transforms can be defined by their Bochner's relations and a new type of q-Hankel transforms using the first and second q-Bessel functions. The behavior of the Fourier transforms with respect to partial derivatives and multiplication with variables is studied. The Fourier transform acts between the two representation spaces for the harmonic oscillator on quantum Euclidean space. By using this property it is possible to define a Fourier transform on the entire Hilbert space of the harmonic oscillator, which is its own inverse and satisfies the Parseval theorem.

  13. Two modified discrete chirp Fourier transform schemes

    Institute of Scientific and Technical Information of China (English)

    樊平毅; 夏香根

    2001-01-01

    This paper presents two modified discrete chirp Fourier transform (MDCFT) schemes.Some matched filter properties such as the optimal selection of the transform length, and its relationship to analog chirp-Fourier transform are studied. Compared to the DCFT proposed previously, theoretical and simulation results have shown that the two MDCFTs can further improve the chirp rate resolution of the detected signals.

  14. Fourier Analysis and Structure Determination: Part I: Fourier Transforms.

    Science.gov (United States)

    Chesick, John P.

    1989-01-01

    Provides a brief introduction with some definitions and properties of Fourier transforms. Shows relations, ways of understanding the mathematics, and applications. Notes proofs are not included but references are given. First of three part series. (MVL)

  15. Fourier transform-infrared spectroscopy and Gas chromatography-mass spectroscopy: Reliable techniques for analysis of Parthenium mediated vermicompost

    Science.gov (United States)

    Rajiv, P.; Rajeshwari, Sivaraj; Venckatesh, Rajendran

    2013-12-01

    Fourier transform infrared spectroscopy (FT-IR) and Gas chromatography-mass spectroscopy have been carried out to investigate the chemical composition of Parthenium mediated vermicompost. Four different concentrations of Parthenium and cow dung mixtures were vermicomposted using the earthworms (Eudrilus eugeniae). FT-IR spectra reveal the absence of Parthenin toxin (sesquiterpene lactone) and phenols in vermicompost which was obtained from high concentration of cow dung mixed treatments. GC-MS analysis shows no phenolic compounds and predominant level of intermediate metabolites such as 4,8,12,16-Tetramethylheptadecan-4-olide (7.61%), 2-Pentadecanone, 6,10,14-trimethyl- (5.29%) and Methyl 16-methyl-heptadecanoate (4.69%) during the vermicomposting process. Spectral results indicated that Parthenin toxin and phenols can be eradicated via vermicomposting if mixed with appropriate quantity of cow dung.

  16. SnO2-MOF-Fabry-Perot humidity optical sensor system based on fast Fourier transform technique

    Science.gov (United States)

    Lopez-Aldaba, A.; Lopez-Torres, D.; Ascorbe, J.; Rota-Rodrigo, S.; Elosua, C.; Lopez-Amo, M.; Arregui, F. J.; Corres, J. M.; Auguste, J.-L.; Jamier, R.; Roy, P.

    2016-05-01

    In this paper, a new sensor system for relative humidity measurements based on a SnO2 sputtering deposition on a microstructured optical fiber (MOF) low-finesse Fabry-Perot (FP) sensing head is presented and characterized. The interrogation of the sensing head is carried out by monitoring the Fast Fourier Transform phase variations of the FP interference frequency. This method is low-sensitive to signal amplitude variations and also avoids the necessity of tracking the evolution of peaks and valleys in the spectrum. The sensor is operated within a wide humidity range (20%-90% relative humidity) with a maximum sensitivity achieved of 0.14rad/%. The measurement method uses a commercial optical interrogator as the only active element, this compact solution allows real time analysis of the data.

  17. Shift sampling theory of Fourier transform computation

    Institute of Scientific and Technical Information of China (English)

    柴玉璞

    1997-01-01

    The DFT transform us extended to DFTξη transform and the relationship between FT and DFTξη is given by the Fourier transform discretization theorem. Based on the theorem, the DFTξη algorithm-error equation (DFTξη A-E equation) is established, and the minimization property of discrete effect and the oscillation property of truncation effect are demonstrated. All these construct the shift sampling theory——a new theory about Fourier transform computation.

  18. A new twist to fourier transforms

    CERN Document Server

    Meikle, Hamish D

    2004-01-01

    Making use of the inherent helix in the Fourier transform expression, this book illustrates both Fourier transforms and their properties in the round. The author draws on elementary complex algebra to manipulate the transforms, presenting the ideas in such a way as to avoid pages of complicated mathematics. Similarly, abbreviations are not used throughout and the language is kept deliberately clear so that the result is a text that is accessible to a much wider readership.The treatment is extended with the use of sampled data to finite and discrete transforms, the fast Fourier transform, or FFT, being a special case of a discrete transform. The application of Fourier transforms in statistics is illustrated for the first time using the examples operational research and later radar detection. In addition, a whole chapter on tapering or weighting functions is added for reference. The whole is rounded off by a glossary and examples of diagrams in three dimensions made possible by today's mathematics programs

  19. Generalized Fourier-grid R-matrix theory: a discrete Fourier-Riccati-Bessel transform approach

    Energy Technology Data Exchange (ETDEWEB)

    Layton, E.G. (Joint Inst. for Lab. Astrophysics, Boulder, CO (United States)); Stade, E. (Colorado Univ., Boulder, CO (United States). Dept. of Mathematics)

    1993-08-28

    We present the latest developments in the Fourier-grid R-matrix theory of scattering. These developments are based on the generalized Fourier-grid formalism and use a new type of extended discrete Fourier transform: the discrete Fourier-Riccati-Bessel transform. We apply this new R-matrix approach to problems of potential scattering, to demonstrate how this method reduces computational effort by incorporating centrifugal effects into the representation. As this technique is quite new, we have hopes to broaden the formalism to many types of problems. (author).

  20. The Geostationary Fourier Transform Spectrometer

    Science.gov (United States)

    Key, Richard; Sander, Stanley; Eldering, Annmarie; Blavier, Jean-Francois; Bekker, Dmitriy; Manatt, Ken; Rider, David; Wu, Yen-Hung

    2012-01-01

    The Geostationary Fourier Transform Spectrometer (GeoFTS) is an imaging spectrometer designed for a geostationary orbit (GEO) earth science mission to measure key atmospheric trace gases and process tracers related to climate change and human activity. GEO allows GeoFTS to continuously stare at a region of the earth for frequent sampling to capture the variability of biogenic fluxes and anthropogenic emissions from city to continental spatial scales and temporal scales from diurnal, synoptic, seasonal to interannual. The measurement strategy provides a process based understanding of the carbon cycle from contiguous maps of carbon dioxide (CO2), methane (CH4), carbon monoxide (CO), and chlorophyll fluorescence (CF) collected many times per day at high spatial resolution (2.7kmx2.7km at nadir). The CO2/CH4/CO/CF measurement suite in the near infrared spectral region provides the information needed to disentangle natural and anthropogenic contributions to atmospheric carbon concentrations and to minimize uncertainties in the flow of carbon between the atmosphere and surface. The half meter cube size GeoFTS instrument is based on a Michelson interferometer design that uses all high TRL components in a modular configuration to reduce complexity and cost. It is self-contained and as independent of the spacecraft as possible with simple spacecraft interfaces, making it ideal to be a "hosted" payload on a commercial communications satellite mission. The hosted payload approach for measuring the major carbon-containing gases in the atmosphere from the geostationary vantage point will affordably advance the scientific understating of carbon cycle processes and climate change.

  1. From fractional Fourier transformation to quantum mechanical fractional squeezing transformation

    Institute of Scientific and Technical Information of China (English)

    吕翠红; 范洪义; 李东韡

    2015-01-01

    By converting the triangular functions in the integration kernel of the fractional Fourier transformation to the hy-perbolic function, i.e., tanα→tanhα, sinα→sinhα, we find quantum mechanical fractional squeezing transformation (FrST) which satisfies additivity. By virtue of the integration technique within ordered product of operators (IWOP) wederive the unitary operator responsible for the FrST, which is composite and is made of eiπa†a/2 and exp[ iα2 (a2+a†2)]. The FrST may be implemented in combinations of quadratic nonlinear crystals with different phase mismatches.

  2. Assessment of nitrous oxide emission from cement plants: real data measured with both Fourier transform infrared and nondispersive infrared techniques.

    Science.gov (United States)

    Mosca, Silvia; Benedetti, Paolo; Guerriero, Ettore; Rotatori, Mauro

    2014-11-01

    Nitrous oxide (N2O) is the third most important greenhouse gas after carbon dioxide and methane, and contributes about 6% to the greenhouse effect. Nitrous oxide is a minor component of the atmosphere, and it is a thousand times less than carbon dioxide (CO2). Nevertheless, it is much more potent than CO2 and methane, owing to its long stay in the atmosphere of approximately 120 yr and the high global warmingpotential (GWP) of298 times that of CO2. Although greenhouse gases are natural in the atmosphere, human activities have changed the atmospheric concentrations. Most of the values of emission of nitrous oxide are still obtained by means ofemission factors and not actually measured; the lack ofreal data may result in an underestimation ofcurrent emissions. The emission factors used for the calculation of N2O can be obtained from the "Guidelines for the implementation of the national inventory of emissions" of the Intergovernmental Panel on Climate Change, which refer to all nations for the realization of their inventory. This study will present real data, measured in several Italian cement plants with different characteristics. The work also shows a comparison between N2O concentration measured with in situ-Fourier transform IR (FTIR) and the reference method EN ISO 21258 based on nondispersive IR (NDIR), in order to investigate the interfering compounds in the measurement with NDIR.

  3. Phase Error Caused by Speed Mismatch Analysis in the Line-Scan Defect Detection by Using Fourier Transform Technique

    Directory of Open Access Journals (Sweden)

    Eryi Hu

    2015-01-01

    Full Text Available The phase error caused by the speed mismatch issue is researched in the line-scan images capturing 3D profile measurement. The experimental system is constructed by a line-scan CCD camera, an object moving device, a digital fringe pattern projector, and a personal computer. In the experiment procedure, the detected object is moving relative to the image capturing system by using a motorized translation stage in a stable velocity. The digital fringe pattern is projected onto the detected object, and then the deformed patterns are captured and recorded in the computer. The object surface profile can be calculated by the Fourier transform profilometry. However, the moving speed mismatch error will still exist in most of the engineering application occasion even after an image system calibration. When the moving speed of the detected object is faster than the expected value, the captured image will be compressed in the moving direction of the detected object. In order to overcome this kind of measurement error, an image recovering algorithm is proposed to reconstruct the original compressed image. Thus, the phase values can be extracted much more accurately by the reconstructed images. And then, the phase error distribution caused by the speed mismatch is analyzed by the simulation and experimental methods.

  4. Fourier transforms in radar and signal processing

    CERN Document Server

    Brandwood, David

    2011-01-01

    Fourier transforms are used widely, and are of particular value in the analysis of single functions and combinations of functions found in radar and signal processing. Still, many problems that could have been tackled by using Fourier transforms may have gone unsolved because they require integration that is difficult and tedious. This newly revised and expanded edition of a classic Artech House book provides you with an up-to-date, coordinated system for performing Fourier transforms on a wide variety of functions. Along numerous updates throughout the book, the Second Edition includes a crit

  5. Quantum Fourier transform in computational basis

    Science.gov (United States)

    Zhou, S. S.; Loke, T.; Izaac, J. A.; Wang, J. B.

    2017-03-01

    The quantum Fourier transform, with exponential speed-up compared to the classical fast Fourier transform, has played an important role in quantum computation as a vital part of many quantum algorithms (most prominently, Shor's factoring algorithm). However, situations arise where it is not sufficient to encode the Fourier coefficients within the quantum amplitudes, for example in the implementation of control operations that depend on Fourier coefficients. In this paper, we detail a new quantum scheme to encode Fourier coefficients in the computational basis, with fidelity 1 - δ and digit accuracy ɛ for each Fourier coefficient. Its time complexity depends polynomially on log (N), where N is the problem size, and linearly on 1/δ and 1/ɛ . We also discuss an application of potential practical importance, namely the simulation of circulant Hamiltonians.

  6. Composite Cyclotomic Fourier Transforms with Reduced Complexities

    CERN Document Server

    Wu, Xuebin; Chen, Ning; Yan, Zhiyuan; Wang, Ying

    2010-01-01

    Discrete Fourier transforms~(DFTs) over finite fields have widespread applications in digital communication and storage systems. Hence, reducing the computational complexities of DFTs is of great significance. Recently proposed cyclotomic fast Fourier transforms (CFFTs) are promising due to their low multiplicative complexities. Unfortunately, there are two issues with CFFTs: (1) they rely on efficient short cyclic convolution algorithms, which has not been investigated thoroughly yet, and (2) they have very high additive complexities when directly implemented. In this paper, we address both issues. One of the main contributions of this paper is efficient bilinear 11-point cyclic convolution algorithms, which allow us to construct CFFTs over GF$(2^{11})$. The other main contribution of this paper is that we propose composite cyclotomic Fourier transforms (CCFTs). In comparison to previously proposed fast Fourier transforms, our CCFTs achieve lower overall complexities for moderate to long lengths, and the imp...

  7. Electronically-Scanned Fourier-Transform Spectrometer

    Science.gov (United States)

    Breckinridge, J. B.; Ocallaghan, F. G.

    1984-01-01

    Instrument efficient, lightweight, and stable. Fourier-transform spectrometer configuration uses electronic, instead of mechanical, scanning. Configuration insensitive to vibration-induced sampling errors introduced into mechanically scanned systems.

  8. A DISTRIBUTION SPACE FOR FOURIER TRANSFORM

    Institute of Scientific and Technical Information of China (English)

    Zhou Chaoying; Yang Lihua; Huang Daren

    2007-01-01

    A space DF is constructed and some characterizations of space DF are given. Itis shown that the classical Fourier transform is extended to the distribution space D'F, whichcan be embedded into the Schwartz distribution space D' continuously. It is also shown thatD'F is the biggest embedded subspace of D' on which the extended Fourier transform, F, is ahomeomorphism of D'F onto itself.

  9. Fractional Fourier transform of Lorentz beams

    Institute of Scientific and Technical Information of China (English)

    Zhou Guo-Quan

    2009-01-01

    This paper introduces Lorentz beams to describe certain laser sources that produce highly divergent fields. The fractional Fourier transform (FRFT) is applied to treat the propagation of Lorentz beams. Based on the definition of convolution and the convolution theorem of the Fourier transform, an analytical expression for a Lorentz beam passing through a FRFT system has been derived. By using the derived formula, the properties of a Lorentz beam in the FRFT plane are illustrated numerically.

  10. Comparison of Fourier transform and continuous wavelet transform to study echo-planar imaging flow maps

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez G, A.; Bowtell, R.; Mansfield, P. [Area de Procesamiento Digital de Senales e Imagenes Biomedicas. Universidad Autonoma Metropolitana Iztapalapa. Mexico D.F. 09340 Mexico (Mexico)

    1998-12-31

    Velocity maps were studied combining Doyle and Mansfield method (1986) with each of the following transforms: Fourier, window Fourier and wavelet (Mexican hat). Continuous wavelet transform was compared against the two Fourier transform to determine which technique is best suited to study blood maps generated by Half Fourier Echo-Planar Imaging. Coefficient images were calculated and plots of the pixel intensity variation are presented. Finally, contour maps are shown to visualize the behavior of the blood flow in the cardiac chambers for the wavelet technique. (Author)

  11. Topics In Chemical Instrumentation: Fourier Transformations for Chemists Part I. Introduction to the Fourier Transform.

    Science.gov (United States)

    Glasser, L.

    1987-01-01

    This paper explores how Fourier Transform (FT) mimics spectral transformation, how this property can be exploited to advantage in spectroscopy, and how the FT can be used in data treatment. A table displays a number of important FT serial/spectral pairs related by Fourier Transformations. A bibliography and listing of computer software related to…

  12. From Complex Fractional Fourier Transform to Complex Fractional Radon Transform

    Institute of Scientific and Technical Information of China (English)

    FAN Hong-Yi; JIANG Nian-Quan

    2004-01-01

    We show that for n-dimensional complex fractional Fourier transform the corresponding complex fractional Radon transform can also be derived, however, it is different from the direct product of two n-dimensional real fractional Radon transforms. The complex fractional Radon transform of two-mode Wigner operator is calculated.

  13. On the Scaled Fractional Fourier Transformation Operator

    Institute of Scientific and Technical Information of China (English)

    FAN Hong-Yi; HU Li-Yun

    2008-01-01

    Based on our previous study [Chin.Phys.Lett.24(2007)2238]in which the Fresnel operator corresponding to classical Fresnel transform was introduced,we derive the fractional Fourier transformation operator,and the optical operator method is then enriched.

  14. Dynamic measurement of deformation using Fourier transform digital holographic interferometry

    Science.gov (United States)

    Gao, Xinya; Wu, Sijin; Yang, Lianxiang

    2013-10-01

    Digital holographic interferometry (DHI) is a well-established optical technique for measurement of nano-scale deformations. It has become more and more important due to the rapid development of applications in aerospace engineering and biomedicine. Traditionally, phase shift technique is used to quantitatively measure the deformations in DHI. However, it cannot be applied in dynamic measurement. Fourier transform phase extraction method, which can determine the phase distribution from only a single hologram, becomes a promising method to extract transient phases in DHI. This paper introduces a digital holographic interferometric system based on 2D Fourier transform phase extraction method, with which deformations of objects can be measured quickly. In the optical setup, the object beam strikes a CCD via a lens and aperture, and the reference beam is projected on the CCD through a single-mode fiber. A small inclination angle between the diverging reference beam and optical axial is introduced in order to physically separate the Fourier components in frequency domain. Phase maps are then obtained by the utilization of Fourier transform and windowed inverse Fourier transform. The capability of the Fourier transform DHI is discussed by theoretical discussion as well as experiments.

  15. Evaluation of oxide layers formed during the decarburisation of grain-oriented electrical steel using a Fourier transform infrared (FTIR) technique

    Energy Technology Data Exchange (ETDEWEB)

    Poultney, Darren [Development and Market Research, Cogent Power Ltd., Corporation Road, Newport, South Wales NP19 0XT (United Kingdom)], E-mail: Darren.Poultney@Cogent-Power.com; Snell, David [Development and Market Research, Cogent Power Ltd., Corporation Road, Newport, South Wales NP19 0XT (United Kingdom)

    2008-10-15

    Electrical steels are highly specialised, magnetically soft materials, used to form the cores that carry the magnetic flux in electrical machines such as motors, generators and transformers. During the production of GO electrical steel, the strip passes through a decarburisation furnace, which promotes the formation of a thin surface oxide layer consisting of predominantly fayalite (Fe{sub 2}SiO{sub 4}) and silica (SiO{sub 2}). During a subsequent high temperature anneal, this layer reacts with magnesia (MgO) to form a forsterite 'glass film' layer, which applies a tensile stress to the steel. This reduces the magnetic losses of the material on which the final product is routinely graded. Due to the effect that the oxide layer has on the quality of the final material, it would be beneficial to possess a technique that can rapidly assess its composition and/or morphology. This paper details the assessment of Fourier transform infrared (FTIR) and electrochemical potential (ECP) analysis, and a technique of combining the two. FTIR analysis of the decarburisation oxide layer exhibited evidence of just fayalite, with silica only being observed on the spectra following brief acid etching. To refine the etching process, samples were removed from the acid at various intervals based on the output of the ECP technique. It was established that there was a clear link between the position reached on the ECP profile and absorption bands observed on the corresponding FTIR spectra.

  16. Rotation-invariant texture analysis using Radon and Fourier transforms

    Institute of Scientific and Technical Information of China (English)

    Songshan Xiao; Yongxing Wu

    2007-01-01

    @@ Texture analysis is a basic issue in image processing and computer vision, and how to attain the rotationinvariant texture characterization is a key problem. This paper proposes a rotation-invariant texture analysis technique using Radon and Fourier transforms. This method uses Radon transform to convert rotation to translation, then utilizes Fourier transform and takes the moduli of the Fourier transform of these functions to make the translation invariant. A k-nearest-neighbor rule is employed to classify texture images. The proposed method is robust to additive white noise as a result of summing pixel values to generate projections in the Radon transform step. Experiment results show the feasibility of the proposed method and its robustness to additive white noise.

  17. High order generalized permutational fractional Fourier transforms

    Institute of Scientific and Technical Information of China (English)

    Ran Qi-Wen; Yuan Lin; Tan Li-Ying; Ma Jing; Wang Qi

    2004-01-01

    We generalize the definition of the fractional Fourier transform (FRFT) by extending the new definition proposed by Shih. The generalized FRFT, called the high order generalized permutational fractional Fourier transform (HGPFRFT),is a generalized permutational transform. It is shown to have arbitrary natural number M periodic eigenvalues not only with respect to the order of Hermite-Gaussian functions but also to the order of the transform. This HGPFRFT will be reduced to the original FRFT proposed by Namias and Liu's generalized FRFT and Shih's FRFT at the three limits with M = +∞,M = 4k (k is a natural number), and M = 4, respectively. Therefore the HGPFRFT introduces a comprehensive approach to Shih's FRFT and the original definition. Some important properties of HGPFRFT are discussed. Lastly the results of computer simulations and symbolic representations of the transform are provided.

  18. Robust volume assessment of brain tissues for 3-dimensional fourier transformation MRI via a novel multispectral technique.

    Directory of Open Access Journals (Sweden)

    Jyh-Wen Chai

    Full Text Available A new TRIO algorithm method integrating three different algorithms is proposed to perform brain MRI segmentation in the native coordinate space, with no need of transformation to a standard coordinate space or the probability maps for segmentation. The method is a simple voxel-based algorithm, derived from multispectral remote sensing techniques, and only requires minimal operator input to depict GM, WM, and CSF tissue clusters to complete classification of a 3D high-resolution multislice-multispectral MRI data. Results showed very high accuracy and reproducibility in classification of GM, WM, and CSF in multislice-multispectral synthetic MRI data. The similarity indexes, expressing overlap between classification results and the ground truth, were 0.951, 0.962, and 0.956 for GM, WM, and CSF classifications in the image data with 3% noise level and 0% non-uniformity intensity. The method particularly allows for classification of CSF with 0.994, 0.961 and 0.996 of accuracy, sensitivity and specificity in images data with 3% noise level and 0% non-uniformity intensity, which had seldom performed well in previous studies. As for clinical MRI data, the quantitative data of brain tissue volumes aligned closely with the brain morphometrics in three different study groups of young adults, elderly volunteers, and dementia patients. The results also showed very low rates of the intra- and extra-operator variability in measurements of the absolute volumes and volume fractions of cerebral GM, WM, and CSF in three different study groups. The mean coefficients of variation of GM, WM, and CSF volume measurements were in the range of 0.03% to 0.30% of intra-operator measurements and 0.06% to 0.45% of inter-operator measurements. In conclusion, the TRIO algorithm exhibits a remarkable ability in robust classification of multislice-multispectral brain MR images, which would be potentially applicable for clinical brain volumetric analysis and explicitly promising

  19. Fourier transforms and convolutions for the experimentalist

    CERN Document Server

    Jennison, RC

    1961-01-01

    Fourier Transforms and Convolutions for the Experimentalist provides the experimentalist with a guide to the principles and practical uses of the Fourier transformation. It aims to bridge the gap between the more abstract account of a purely mathematical approach and the rule of thumb calculation and intuition of the practical worker. The monograph springs from a lecture course which the author has given in recent years and for which he has drawn upon a number of sources, including a set of notes compiled by the late Dr. I. C. Browne from a series of lectures given by Mr. J . A. Ratcliffe of t

  20. Clifford Fourier transform on vector fields.

    Science.gov (United States)

    Ebling, Julia; Scheuermann, Gerik

    2005-01-01

    Image processing and computer vision have robust methods for feature extraction and the computation of derivatives of scalar fields. Furthermore, interpolation and the effects of applying a filter can be analyzed in detail and can be advantages when applying these methods to vector fields to obtain a solid theoretical basis for feature extraction. We recently introduced the Clifford convolution, which is an extension of the classical convolution on scalar fields and provides a unified notation for the convolution of scalar and vector fields. It has attractive geometric properties that allow pattern matching on vector fields. In image processing, the convolution and the Fourier transform operators are closely related by the convolution theorem and, in this paper, we extend the Fourier transform to include general elements of Clifford Algebra, called multivectors, including scalars and vectors. The resulting convolution and derivative theorems are extensions of those for convolution and the Fourier transform on scalar fields. The Clifford Fourier transform allows a frequency analysis of vector fields and the behavior of vector-valued filters. In frequency space, vectors are transformed into general multivectors of the Clifford Algebra. Many basic vector-valued patterns, such as source, sink, saddle points, and potential vortices, can be described by a few multivectors in frequency space.

  1. Use of the Fourier transform infrared (FTIR) technique for determination of the composition of final phosphate coatings on grain-oriented electrical steel

    Energy Technology Data Exchange (ETDEWEB)

    Poultney, Darren [Development and Market Research, Cogent Power Ltd., Corporation Road, Newport, South Wales NP19 0XT (United Kingdom)], E-mail: Darren.Poultney@Cogent-Power.com; Snell, David [Development and Market Research, Cogent Power Ltd., Corporation Road, Newport, South Wales NP19 0XT (United Kingdom)

    2008-10-15

    Electrical steels are highly specialised, magnetically soft materials, used to form the cores that carry the magnetic flux in electrical machines such as motors, generators and transformers. The steel strip is coated with a phosphate-based solution, which, on curing, provides an electrically insulating layer that also imparts a tension onto the strip. It has previously been shown that the magnetic losses of the material are affected by the ratio of phosphate and silica within the coating solution [O. Tanaka, H. Kobayashi, E. Minematsu, New insulating coating for grain-oriented electrical steel, J. Mater. Eng. 13 (1991) 161-168.]. It would therefore be highly beneficial to possess an analytical technique that can be used to accurately and rapidly determine the composition of this coating. This paper details the evaluation of the Fourier transform infrared (FTIR) technique for this purpose. Analysing each of the important constituents separately enabled their specific absorption bands to be identified, and laboratory trials produced spectra that exhibited a good agreement with theoretical predictions. Analysis of samples coated under production conditions was found to be more challenging due to the detection of an underlying forsterite layer. However, there is potential for FTIR analysis when using regions of the spectra that were unaffected by this compound.

  2. Application of fast Fourier transformation in thermoluminescence thermogram reconstruction

    Science.gov (United States)

    Pla, C.; Podgorsak, E. B.

    1984-03-01

    A thermoluminescence (TL) thermogram reconstruction technique based on fast Fourier transformation (FFT) techniques is presented. Only the first few terms of the real and imaginary ``frequency arrays,'' representing the thermogram in the frequency domain, are used for thermogram reconstruction by an inverse transformation. A method to determine the optimum number of FFT terms is discussed and a reconstruction study performed on six commonly used TL materials.

  3. Implementation of quantum and classical discrete fractional Fourier transforms.

    Science.gov (United States)

    Weimann, Steffen; Perez-Leija, Armando; Lebugle, Maxime; Keil, Robert; Tichy, Malte; Gräfe, Markus; Heilmann, René; Nolte, Stefan; Moya-Cessa, Hector; Weihs, Gregor; Christodoulides, Demetrios N; Szameit, Alexander

    2016-03-23

    Fourier transforms, integer and fractional, are ubiquitous mathematical tools in basic and applied science. Certainly, since the ordinary Fourier transform is merely a particular case of a continuous set of fractional Fourier domains, every property and application of the ordinary Fourier transform becomes a special case of the fractional Fourier transform. Despite the great practical importance of the discrete Fourier transform, implementation of fractional orders of the corresponding discrete operation has been elusive. Here we report classical and quantum optical realizations of the discrete fractional Fourier transform. In the context of classical optics, we implement discrete fractional Fourier transforms of exemplary wave functions and experimentally demonstrate the shift theorem. Moreover, we apply this approach in the quantum realm to Fourier transform separable and path-entangled biphoton wave functions. The proposed approach is versatile and could find applications in various fields where Fourier transforms are essential tools.

  4. Replica Fourier Transform: Properties and applications

    Directory of Open Access Journals (Sweden)

    A. Crisanti

    2015-02-01

    Full Text Available The Replica Fourier Transform is the generalization of the discrete Fourier Transform to quantities defined on an ultrametric tree. It finds use in conjunction of the replica method used to study thermodynamics properties of disordered systems such as spin glasses. Its definition is presented in a systematic and simple form and its use illustrated with some representative examples. In particular we give a detailed discussion of the diagonalization in the Replica Fourier Space of the Hessian matrix of the Gaussian fluctuations about the mean field saddle point of spin glass theory. The general results are finally discussed for a generic spherical spin glass model, where the Hessian can be computed analytically.

  5. Ultrafast Fourier-transform parallel processor

    Energy Technology Data Exchange (ETDEWEB)

    Greenberg, W.L.

    1980-04-01

    A new, flexible, parallel-processing architecture is developed for a high-speed, high-precision Fourier transform processor. The processor is intended for use in 2-D signal processing including spatial filtering, matched filtering and image reconstruction from projections.

  6. Fourier transforms on an amalgam type space

    CERN Document Server

    Liflyand, E

    2012-01-01

    We introduce an amalgam type space, a subspace of $L^1(\\mathbb R_+).$ Integrability results for the Fourier transform of a function with the derivative from such an amalgam space are proved. As an application we obtain estimates for the integrability of trigonometric series.

  7. Stepwise Iterative Fourier Transform: The SIFT

    Science.gov (United States)

    Benignus, V. A.; Benignus, G.

    1975-01-01

    A program, designed specifically to study the respective effects of some common data problems on results obtained through stepwise iterative Fourier transformation of synthetic data with known waveform composition, was outlined. Included in this group were the problems of gaps in the data, different time-series lengths, periodic but nonsinusoidal waveforms, and noisy (low signal-to-noise) data. Results on sinusoidal data were also compared with results obtained on narrow band noise with similar characteristics. The findings showed that the analytic procedure under study can reliably reduce data in the nature of (1) sinusoids in noise, (2) asymmetric but periodic waves in noise, and (3) sinusoids in noise with substantial gaps in the data. The program was also able to analyze narrow-band noise well, but with increased interpretational problems. The procedure was shown to be a powerful technique for analysis of periodicities, in comparison with classical spectrum analysis techniques. However, informed use of the stepwise procedure nevertheless requires some background of knowledge concerning characteristics of the biological processes under study.

  8. Twin image elimination in digital holography by combination of Fourier transformations

    CERN Document Server

    Choudhury, Debesh

    2013-01-01

    We present a new technique for removing twin image in in-line digital Fourier holography using a combination of Fourier transformations. Instead of recording only a Fourier transform hologram of the object, we propose to record a combined Fourier transform hologram by simultaneously recording the hologram of the Fourier transform and the inverse Fourier transform of the object with suitable weighting coefficients. Twin image is eliminated by appropriate inverse combined Fourier transformation and proper choice of the weighting coefficients. An optical configuration is presented for recording combined Fourier transform holograms. Simulations demonstrate the feasibility of twin image elimination. The hologram reconstruction is sensitive to phase aberrations of the object, thereby opening a way for holographic phase sensing.

  9. Electro-optic imaging Fourier transform spectrometer

    Science.gov (United States)

    Chao, Tien-Hsin (Inventor); Znod, Hanying (Inventor)

    2009-01-01

    An Electro-Optic Imaging Fourier Transform Spectrometer (EOIFTS) for Hyperspectral Imaging is described. The EOIFTS includes an input polarizer, an output polarizer, and a plurality of birefringent phase elements. The relative orientations of the polarizers and birefringent phase elements can be changed mechanically or via a controller, using ferroelectric liquid crystals, to substantially measure the spectral Fourier components of light propagating through the EIOFTS. When achromatic switches are used as an integral part of the birefringent phase elements, the EIOFTS becomes suitable for broadband applications, with over 1 micron infrared bandwidth.

  10. Fourier transform infrared photoacoustic spectroscopy study of physicochemical interaction between human dentin and etch-&-rinse adhesives in a simulated moist bond technique

    DEFF Research Database (Denmark)

    Ubaldini, Adriana L M; Baesso, Mauro L; Sehn, Elizandra

    2012-01-01

    systems: (a) 2-hydroxyethylmethacrylate (HEMA) and 4-methacryloxyethyl trimellitate anhydrate (4-META), and (b) HEMA. The Fourier transform infrared photoacoustic spectroscopy was performed before and after dentin treatment with 37% phosphoric acid, with adhesive systems and also for the adhesive systems...

  11. A simple, sensitive and non-destructive technique for characterizing bovine dental enamel erosion: attenuated total reflection Fourier transform infrared spectroscopy.

    Science.gov (United States)

    Kim, In-Hye; Son, Jun Sik; Min, Bong Ki; Kim, Young Kyoung; Kim, Kyo-Han; Kwon, Tae-Yub

    2016-03-30

    Although many techniques are available to assess enamel erosion in vitro, a simple, non-destructive method with sufficient sensitivity for quantifying dental erosion is required. This study characterized the bovine dental enamel erosion induced by various acidic beverages in vitro using attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy. Deionized water (control) and 10 acidic beverages were selected to study erosion, and the pH and neutralizable acidity were measured. Bovine anterior teeth (110) were polished with up to 1 200-grit silicon carbide paper to produce flat enamel surfaces, which were then immersed in 20 mL of the beverages for 30 min at 37 °C. The degree of erosion was evaluated using ATR-FTIR spectroscopy and Vickers' microhardness measurements. The spectra obtained were interpreted in two ways that focused on the ν1, ν3 phosphate contour: the ratio of the height amplitude of ν3 PO4 to that of ν1 PO4 (Method 1) and the shift of the ν3 PO4 peak to a higher wavenumber (Method 2). The percentage changes in microhardness after the erosion treatments were primarily affected by the pH of the immersion media. Regression analyses revealed highly significant correlations between the surface hardness change and the degree of erosion, as detected by ATR-FTIR spectroscopy (PFTIR spectroscopy is potentially advantageous over the microhardness test as a simple, non-destructive, sensitive technique for the quantification of enamel erosion.

  12. Assessment of natural radioactivity and function of minerals in soils of Yelagiri hills, Tamilnadu, India by Gamma Ray spectroscopic and Fourier Transform Infrared (FTIR) techniques with statistical approach.

    Science.gov (United States)

    Chandrasekaran, A; Ravisankar, R; Rajalakshmi, A; Eswaran, P; Vijayagopal, P; Venkatraman, B

    2015-02-01

    Gamma Ray and Fourier Transform Infrared (FTIR) spectroscopic techniques were used to evaluate the natural radioactivity due to natural radionuclides and mineralogical characterization in soils of Yelagiri hills, Tamilnadu, India. Various radiological parameters were calculated to assess the radiation hazards associated with the soil. The distribution pattern of activity due to natural radionuclides is explained by Kriging method of mapping. Using FTIR spectroscopic technique the minerals such as quartz, microcline feldspar, orthoclase feldspar, kaolinite, montmorillonite, illite, and organic carbon were identified and characterized. The extinction coefficient values were calculated to know the relative distribution of major minerals such as quartz, microcline feldspar, orthoclase feldspar and kaolinite. The calculated values indicate that the amount of quartz is higher than orthoclase feldspar, microcline feldspar and much higher than kaolinite. Crystallinity index was calculated to know the crystalline nature of quartz. The result indicates that the presence of disordered crystalline quartz in soils. The relation between minerals and radioactivity was assessed by multivariate statistical analysis (Pearson's correlation and cluster analysis). The statistical analysis confirms that the clay mineral kaolinite and non-clay mineral quartz is the major factor than other major minerals to induce the important radioactivity variables and concentrations of uranium and thorium.

  13. Derivatization technique to increase the spectral selectivity of two-dimensional Fourier transform infrared focal plane array imaging: analysis of binder composition in aged oil and tempera paint.

    Science.gov (United States)

    Zumbühl, Stefan; Scherrer, Nadim C; Eggenberger, Urs

    2014-01-01

    The interpretation of standard Fourier transform infrared spectra (FT-IR) on oil-based paint samples often suffers from interfering bands of the different compounds, namely, binder, oxidative aging products, carboxylates formed during aging, and several pigments and fillers. The distinction of the aging products such as ketone and carboxylic acid functional groups pose the next problem, as these interfere with the triglyceride esters of the oil. A sample preparation and derivatization technique using gaseous sulfur tetrafluoride (SF4), was thus developed with the aim to discriminate overlapping signals and achieve a signal enhancement on superposed compounds. Of particular interest in this context is the signal elimination of the broad carboxylate bands of the typical reaction products developing during the aging processes in oil-based paints, as well as signal interference originating from several typical pigments in this spectral range. Furthermore, it is possible to distinguish the different carbonyl-containing functional groups upon selective alteration. The derivatization treatment can be applied to both microsamples and polished cross sections. It increases the selectivity of the infrared spectroscopy technique in a fundamental manner and permits the identification and two-dimensional (2D) localization of binder components in aged paint samples at the micrometer scale. The combination of SF4 derivatization with high-resolution 2D FT-IR focal plane array (FPA) imaging delivers considerable advances to the study of micro-morphological processes involving organic compounds.

  14. Advanced stored waveform inverse Fourier transform technique for a matrix-assisted laser desorption/ionization quadrupole ion trap mass spectrometer.

    Science.gov (United States)

    Doroshenko, V M; Cotter, R J

    1996-01-01

    The stored waveform inverse Fourier transform (SWIFT) technique is used for broadband excitation of ions in an ion-trap mass spectrometer to perform mass-selective accumulation, isolation, and fragmentation of peptide ions formed by matrix-assisted laser desorption/ionization. Unit mass resolution is achieved for isolation of ions in the range of m/z up to 1300 using a two-step isolation technique with stretched-in-time narrow band SWIFT pulses at the second stage. The effect of 'stretched-in-time' waveforms is similar to that observed previously for mass-scan-rate reduction. The asymmetry phenomenon resulting from the stretched ion-trap electrode geometry is observed during application of normal and time-reversed waveforms and is similar to the asymmetry effects observed for forward and reverse mass scans in the resonance ejection mode. Mass-selective accumulation of ions from multiple laser shots was accomplished using a method described earlier that involves increasing the trapping voltage during ion introduction for more efficient trapping of ions.

  15. Fourier-transform spectroscopy instrumentation engineering

    CERN Document Server

    Saptari, Vidi

    2003-01-01

    Many applications today require the Fourier-transform (FT) spectrometer to perform close to its limitations, such as taking many quantitative measurements in the visible and in the near infrared wavelength regions. In such cases, the instrument should not be considered as a perfect ""black box."" Knowing where the limitations of performance arise and which components must be improved are crucial to obtaining repeatable and accurate results. One of the objectives of this book is to help the user identify the instrument's bottleneck.

  16. Discrete Fourier Transform in a Complex Vector Space

    Science.gov (United States)

    Dean, Bruce H. (Inventor)

    2015-01-01

    An image-based phase retrieval technique has been developed that can be used on board a space based iterative transformation system. Image-based wavefront sensing is computationally demanding due to the floating-point nature of the process. The discrete Fourier transform (DFT) calculation is presented in "diagonal" form. By diagonal we mean that a transformation of basis is introduced by an application of the similarity transform of linear algebra. The current method exploits the diagonal structure of the DFT in a special way, particularly when parts of the calculation do not have to be repeated at each iteration to converge to an acceptable solution in order to focus an image.

  17. Optical Planar Discrete Fourier and Wavelet Transforms

    Science.gov (United States)

    Cincotti, Gabriella; Moreolo, Michela Svaluto; Neri, Alessandro

    2007-10-01

    We present all-optical architectures to perform discrete wavelet transform (DWT), wavelet packet (WP) decomposition and discrete Fourier transform (DFT) using planar lightwave circuits (PLC) technology. Any compact-support wavelet filter can be implemented as an optical planar two-port lattice-form device, and different subband filtering schemes are possible to denoise, or multiplex optical signals. We consider both parallel and serial input cases. We design a multiport decoder/decoder that is able to generate/process optical codes simultaneously and a flexible logarithmic wavelength multiplexer, with flat top profile and reduced crosstalk.

  18. Characterization of ancient glass excavated in Enez (Ancient Ainos) Turkey by combined Instrumental Neutron Activation Analysis and Fourier Transform Infrared spectrometry techniques

    Energy Technology Data Exchange (ETDEWEB)

    Akyuz, Sevim, E-mail: s.akyuz@iku.edu.tr [Physics Department, Science and Letters Faculty, Istanbul Kultur University, Atakoy Campus, Bakirkoy 34156, Istanbul (Turkey); Akyuz, Tanil [Physics Department, Science and Letters Faculty, Istanbul Kultur University, Atakoy Campus, Bakirkoy 34156, Istanbul (Turkey); Mukhamedshina, Nuranya M.; Mirsagatova, A. Adiba [Institute of Nuclear Physics, Uzbek Academy of Sciences, 702132, Ulugbek, Tashkent (Uzbekistan); Basaran, Sait; Cakan, Banu [Department of Restoration and Conservation of Artefacts, Letters Faculty, Istanbul University, Vezneciler, Istanbul (Turkey)

    2012-05-15

    Ancient glass fragments excavated in the archaeological district Enez (Ancient Ainos)-Turkey were investigated by combined Instrumental Neutron Activation Analysis (INAA) and Fourier Transform Infrared (FTIR) spectrometry techniques. Multi-elemental contents of 15 glass fragments that belong to Hellenistic, Roman, Byzantine, and Ottoman Periods, were determined by INAA. The concentrations of twenty six elements (Na, K, Ca, Sc, Cr, Mn, Fe, Co, Cu, Zn, As, Rb, Sr, Sb, Cs, Ba, Ce, Sm, Eu, Tb, Yb, Lu, Hf, Ta, Au and Th), which might be present in the samples as flux, stabilizers, colorants or opacifiers, and impurities, were examined. Chemometric treatment of the INAA data was performed and principle component analysis revealed presence of 3 distinct groups. The thermal history of the glass samples was determined by FTIR spectrometry. - Highlights: Black-Right-Pointing-Pointer INAA was performed to determine elemental compositions of ancient glass fragments. Black-Right-Pointing-Pointer Basic, coloring/discoloring elements and impurities have been determined. Black-Right-Pointing-Pointer PCA discriminated the glasses depending on their chronological order. Black-Right-Pointing-Pointer The thermal history of the glass samples was determined by FTIR spectrometry.

  19. Development of a Fourier transform infrared spectroscopy coupled to UV-Visible analysis technique for aminosides and glycopeptides quantitation in antibiotic locks.

    Science.gov (United States)

    Sayet, G; Sinegre, M; Ben Reguiga, M

    2014-01-01

    Antibiotic Lock technique maintains catheters' sterility in high-risk patients with long-term parenteral nutrition. In our institution, vancomycin, teicoplanin, amikacin and gentamicin locks are prepared in the pharmaceutical department. In order to insure patient safety and to comply to regulatory requirements, antibiotic locks are submitted to qualitative and quantitative assays prior to their release. The aim of this study was to develop an alternative quantitation technique for each of these 4 antibiotics, using a Fourier transform infrared (FTIR) coupled to UV-Visible spectroscopy and to compare results to HPLC or Immunochemistry assays. Prevalidation studies permitted to assess spectroscopic conditions used for antibiotic locks quantitation: FTIR/UV combinations were used for amikacin (1091-1115cm(-1) and 208-224nm), vancomycin (1222-1240cm(-1) and 276-280nm), and teicoplanin (1226-1230cm(-1) and 278-282nm). Gentamicin was quantified with FTIR only (1045-1169cm(-1) and 2715-2850cm(-1)) due to interferences in UV domain of parabens, preservatives present in the commercial brand used to prepare locks. For all AL, the method was linear (R(2)=0.996 to 0.999), accurate, repeatable (intraday RSD%: from 2.9 to 7.1% and inter-days RSD%: 2.9 to 5.1%) and precise. Compared to the reference methods, the FTIR/UV method appeared tightly correlated (Pearson factor: 97.4 to 99.9%) and did not show significant difference in recovery determinations. We developed a new simple reliable analysis technique for antibiotics quantitation in locks using an original association of FTIR and UV analysis, allowing a short time analysis to identify and quantify the studied antibiotics. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  20. Programs for high-speed Fourier, Mellin and Fourier-Bessel transforms

    Science.gov (United States)

    Ikhabisimov, D. K.; Debabov, A. S.; Kolosov, B. I.; Usikov, D. A.

    1979-01-01

    Several FORTRAN program modules for performing one-dimensional and two-dimensional discrete Fourier transforms, Mellin, and Fourier-Bessel transforms are described along with programs that realize the algebra of high speed Fourier transforms on a computer. The programs can perform numerical harmonic analysis of functions, synthesize complex optical filters on a computer, and model holographic image processing methods.

  1. Digital image pattern recognition system using normalized Fourier transform and normalized analytical Fourier-Mellin transform

    Science.gov (United States)

    Vélez-Rábago, Rodrigo; Solorza-Calderón, Selene; Jordan-Aramburo, Adina

    2016-12-01

    This work presents an image pattern recognition system invariant to translation, scale and rotation. The system uses the Fourier transform to achieve the invariance to translation and the analytical Forier-Mellin transform for the invariance to scale and rotation. According with the statistical theory of box-plots, the pattern recognition system has a confidence level at least of 95.4%.

  2. Fourier spectroscopy with a one-million-point transformation

    Science.gov (United States)

    Connes, J.; Delouis, H.; Connes, P.; Guelachvili, G.; Maillard, J.; Michel, G.

    1972-01-01

    A new type of interferometer for use in Fourier spectroscopy has been devised at the Aime Cotton Laboratory of the National Center for Scientific Research (CNRS), Orsay, France. With this interferometer and newly developed computational techniques, interferograms comprising as many as one million samples can now be transformed. The techniques are described, and examples of spectra of thorium and holmium, derived from one million-point interferograms, are presented.

  3. Fully phase encrypted memory using cascaded extended fractional Fourier transform

    Science.gov (United States)

    Nishchal, Naveen K.; Joseph, Joby; Singh, Kehar

    2003-11-01

    In this paper, we implement a fully phase encrypted memory system using cascaded extended fractional Fourier transform (FRT). We encrypt and decrypt a two-dimensional image obtained from an amplitude image. The fully phase image to be encrypted is fractional Fourier transformed three times and random phase masks are placed in the two intermediate planes. Performing the FRT three times increases the key size, at an added complexity of one more lens. The encrypted image is holographically recorded in a photorefractive crystal and is then decrypted by generating through phase conjugation, conjugate of encrypted image. The decrypted phase image is converted into an amplitude image by using phase contrast technique. A lithium niobate crystal has been used as a phase contrast filter to reconstruct the phase image, alleviating the need of alignment in the Fourier plane, thereby making the system rugged.

  4. A simple, sensitive and non-destructive technique for characterizing bovine dental enamel erosion:attenuated total reflection Fourier transform infrared spectroscopy

    Institute of Scientific and Technical Information of China (English)

    In-Hye Kim; Jun Sik Son; Bong Ki Min; Young Kyoung Kim; Kyo-Han Kim; Tae-Yub Kwon

    2016-01-01

    Although many techniques are available to assess enamel erosion in vitro, a simple, non-destructive method with sufficient sensitivity for quantifying dental erosion is required. This study characterized the bovine dental enamel erosion induced by various acidic beverages in vitro using attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy. Deionized water (control) and 10 acidic beverages were selected to study erosion, and the pH and neutralizable acidity were measured. Bovine anterior teeth (110) were polished with up to 1 200-grit silicon carbide paper to produce flat enamel surfaces, which were then immersed in 20 mL of the beverages for 30 min at 37 °C. The degree of erosion was evaluated using ATR-FTIR spectroscopy and Vickers’ microhardness measurements. The spectra obtained were interpreted in two ways that focused on the ν1, ν3 phosphate contour: the ratio of the height amplitude of ν3 PO4 to that of ν1 PO4 (Method 1) and the shift of the ν3 PO4 peak to a higher wavenumber (Method 2). The percentage changes in microhardness after the erosion treatments were primarily affected by the pH of the immersion media. Regression analyses revealed highly significant correlations between the surface hardness change and the degree of erosion, as detected by ATR-FTIR spectroscopy (Po0.001). Method 1 was the most sensitive to these changes, followed by surface hardness change measurements and Method 2. This study suggests that ATRFTIR spectroscopy is potentially advantageous over the microhardness test as a simple, non-destructive, sensitive technique for the quantification of enamel erosion.

  5. Laser Field Imaging Through Fourier Transform Heterodyne

    Energy Technology Data Exchange (ETDEWEB)

    Cooke, B.J.; Laubscher, B.E.; Olivas, N.L.; Galbraith, A.E.; Strauss, C.E.; Grubler, A.C.

    1999-04-05

    The authors present a detection process capable of directly imaging the transverse amplitude, phase, and Doppler shift of coherent electromagnetic fields. Based on coherent detection principles governing conventional heterodyned RADAR/LADAR systems, Fourier Transform Heterodyne incorporates transverse spatial encoding of the reference local oscillator for image capture. Appropriate selection of spatial encoding functions allows image retrieval by way of classic Fourier manipulations. Of practical interest: (1) imaging may be accomplished with a single element detector/sensor requiring no additional scanning or moving components, (2) as detection is governed by heterodyne principles, near quantum limited performance is achievable, (3) a wide variety of appropriate spatial encoding functions exist that may be adaptively configured in real-time for applications requiring optimal detection, and (4) the concept is general with the applicable electromagnetic spectrum encompassing the RF through optical.

  6. Fourier transforms in the complex domain

    CERN Document Server

    Wiener, N

    1934-01-01

    With the aid of Fourier-Mellin transforms as a tool in analysis, the authors were able to attack such diverse analytic questions as those of quasi-analytic functions, Mercer's theorem on summability, Milne's integral equation of radiative equilibrium, the theorems of Münz and Szász concerning the closure of sets of powers of an argument, Titchmarsh's theory of entire functions of semi-exponential type with real negative zeros, trigonometric interpolation and developments in polynomials of the form \\sum^N_1A_ne^{i\\lambda_nx}, lacunary series, generalized harmonic analysis in the complex domain,

  7. Attenuated Total Reflectance Fourier transform infrared spectroscopy for determination of Long Chain Free Fatty Acid concentration in oily wastewater using the double wavenumber extrapolation technique.

    Science.gov (United States)

    Hao, Zisu; Malyala, Divya; Dean, Lisa; Ducoste, Joel

    2017-04-01

    Long Chain Free Fatty Acids (LCFFAs) from the hydrolysis of fat, oil and grease (FOG) are major components in the formation of insoluble saponified solids known as FOG deposits that accumulate in sewer pipes and lead to sanitary sewer overflows (SSOs). A Double Wavenumber Extrapolative Technique (DWET) was developed to simultaneously measure LCFFAs and FOG concentrations in oily wastewater suspensions. This method is based on the analysis of the Attenuated Total Reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) spectrum, in which the absorbance of carboxyl bond (1710cm(-1)) and triglyceride bond (1745cm(-1)) were selected as the characteristic wavenumbers for total LCFFAs and FOG, respectively. A series of experiments using pure organic samples (Oleic acid/Palmitic acid in Canola oil) were performed that showed a linear relationship between the absorption at these two wavenumbers and the total LCFFA. In addition, the DWET method was validated using GC analyses, which displayed a high degree of agreement between the two methods for simulated oily wastewater suspensions (1-35% Oleic acid in Canola oil/Peanut oil). The average determination error of the DWET approach was ~5% when the LCFFA fraction was above 10wt%, indicating that the DWET could be applied as an experimental method for the determination of both LCFFAs and FOG concentrations in oily wastewater suspensions. Potential applications of this DWET approach includes: (1) monitoring the LCFFAs and FOG concentrations in grease interceptor (GI) effluents for regulatory compliance; (2) evaluating alternative LCFFAs/FOG removal technologies; and (3) quantifying potential FOG deposit high accumulation zones in the sewer collection system.

  8. Fourier transforms in generalized Fock spaces

    Directory of Open Access Journals (Sweden)

    John Schmeelk

    1990-01-01

    Full Text Available A classical Fock space consists of functions of the form,Φ↔(ϕ0,ϕ1,…,ϕq,…,where ϕ0∈C and ϕq∈L2(R3q, q≥1. We will replace the ϕq, q≥1 with q-symmetric rapid descent test functions within tempered distribution theory. This space is a natural generalization of a classical Fock space as seen by expanding functionals having generalized Taylor series. The particular coefficients of such series are multilinear functionals having tempered distributions as their domain. The Fourier transform will be introduced into this setting. A theorem will be proven relating the convergence of the transform to the parameter, s, which sweeps out a scale of generalized Fock spaces.

  9. FFTW: Fastest Fourier Transform in the West

    Science.gov (United States)

    Frigo, Matteo; Johnson, Steven G.

    2012-01-01

    FFTW is a C subroutine library for computing the discrete Fourier transform (DFT) in one or more dimensions, of arbitrary input size, and of both real and complex data (as well as of even/odd data, i.e. the discrete cosine/sine transforms or DCT/DST). Benchmarks performed on a variety of platforms show that FFTW's performance is typically superior to that of other publicly available FFT software, and is even competitive with vendor-tuned codes. In contrast to vendor-tuned codes, however, FFTW's performance is portable: the same program will perform well on most architectures without modification. The FFTW library is required by other codes such as StarCrash and Hammurabi.

  10. Two-dimensional fourier transform spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    DeFlores, Lauren; Tokmakoff, Andrei

    2016-10-25

    The present invention relates to a system and methods for acquiring two-dimensional Fourier transform (2D FT) spectra. Overlap of a collinear pulse pair and probe induce a molecular response which is collected by spectral dispersion of the signal modulated probe beam. Simultaneous collection of the molecular response, pulse timing and characteristics permit real time phasing and rapid acquisition of spectra. Full spectra are acquired as a function of pulse pair timings and numerically transformed to achieve the full frequency-frequency spectrum. This method demonstrates the ability to acquire information on molecular dynamics, couplings and structure in a simple apparatus. Multi-dimensional methods can be used for diagnostic and analytical measurements in the biological, biomedical, and chemical fields.

  11. Two-dimensional fourier transform spectrometer

    Science.gov (United States)

    DeFlores, Lauren; Tokmakoff, Andrei

    2013-09-03

    The present invention relates to a system and methods for acquiring two-dimensional Fourier transform (2D FT) spectra. Overlap of a collinear pulse pair and probe induce a molecular response which is collected by spectral dispersion of the signal modulated probe beam. Simultaneous collection of the molecular response, pulse timing and characteristics permit real time phasing and rapid acquisition of spectra. Full spectra are acquired as a function of pulse pair timings and numerically transformed to achieve the full frequency-frequency spectrum. This method demonstrates the ability to acquire information on molecular dynamics, couplings and structure in a simple apparatus. Multi-dimensional methods can be used for diagnostic and analytical measurements in the biological, biomedical, and chemical fields.

  12. Research progress on discretization of fractional Fourier transform

    Institute of Scientific and Technical Information of China (English)

    TAO Ran; ZHANG Feng; WANG Yue

    2008-01-01

    As the fractional Fourier transform has attracted a considerable amount of atten-tion in the area of optics and signal processing,the discretization of the fractional Fourier transform becomes vital for the application of the fractional Fourier trans-form.Since the discretization of the fractional Fourier transform cannot be obtained by directly sampling in time domain and the fractional Fourier domain,the discre-tization of the fractional Fourier transform has been investigated recently.A sum-mary of discretizations of the fractional Fourier transform developed in the last nearly two decades is presented in this paper.The discretizations include sampling in the fractional Fourier domain,discrete-time fractional Fourier transform,frac-tional Fourier series,discrete fractional Fourier transform (including 3 main types:linear combination-type;sampling-type;and eigen decomposition-type),and other discrete fractional signal transform.It is hoped to offer a doorstep for the readers who are interested in the fractional Fourier transform.

  13. The Fourier transform of tubular densities

    KAUST Repository

    Prior, C B

    2012-05-18

    We consider the Fourier transform of tubular volume densities, with arbitrary axial geometry and (possibly) twisted internal structure. This density can be used to represent, among others, magnetic flux or the electron density of biopolymer molecules. We consider tubes of both finite radii and unrestricted radius. When there is overlap of the tube structure the net density is calculated using the super-position principle. The Fourier transform of this density is composed of two expressions, one for which the radius of the tube is less than the curvature of the axis and one for which the radius is greater (which must have density overlap). This expression can accommodate an asymmetric density distribution and a tube structure which has non-uniform twisting. In addition we give several simpler expressions for isotropic densities, densities of finite radius, densities which decay at a rate sufficient to minimize local overlap and finally individual surfaces of the tube manifold. These simplified cases can often be expressed as arclength integrals and can be evaluated using a system of first-order ODEs. © 2012 IOP Publishing Ltd.

  14. JCE Online: Interactive Fourier Transform Activities

    Science.gov (United States)

    Zielinski, Theresa Julia

    1999-02-01

    In our vigorous teaching of concepts and skills to students, we may cover (hide) more than we uncover, obscuring significant relationships between mathematical models and their associated chemical concepts with excessive mathematical derivations. To set the record straight, I find that mathematical treatments of physical phenomena are beautiful and elegant. Students should know from where the equations and simplifications leading to them arise. They should know the limits of the equations in order to use them properly. However, this can be the Siren's song. For example, the mathematical representation of the Fourier transform and its significance as presented in most texts are too brief to convey understanding to the typical undergraduate student. Furthermore, a few hand calculations would not permit deeper probing of the method and its intimate link to spectroscopy. The Fourier transform is a very good example of how symbolic equation software can help to uncover the science by making the mathematical manipulations easier and the mathematical concepts more accessible. The complete articles and Mathcad documents described in these abstracts are available from JCE Online at http://jchemed.chem.wisc.edu/JCEWWW/Columns/McadInChem/.

  15. Fourier Transforms Simplified: Computing an Infrared Spectrum from an Interferogram

    Science.gov (United States)

    Hanley, Quentin S.

    2012-01-01

    Fourier transforms are used widely in chemistry and allied sciences. Examples include infrared, nuclear magnetic resonance, and mass spectroscopies. A thorough understanding of Fourier methods assists the understanding of microscopy, X-ray diffraction, and diffraction gratings. The theory of Fourier transforms has been presented in this "Journal",…

  16. Thermoanalytical and Fourier transform infrared spectral curve-fitting techniques used to investigate the amorphous indomethacin formation and its physical stability in Indomethacin-Soluplus® solid dispersions.

    Science.gov (United States)

    Lin, Shan-Yang; Lin, Hong-Liang; Chi, Ying-Ting; Huang, Yu-Ting; Kao, Chi-Yu; Hsieh, Wei-Hsien

    2015-12-30

    The amorphous form of a drug has higher water solubility and faster dissolution rate than its crystalline form. However, the amorphous form is less thermodynamically stable and may recrystallize during manufacturing and storage. Maintaining the amorphous state of drug in a solid dosage form is extremely important to ensure product quality. The purpose of this study was to quantitatively determine the amount of amorphous indomethacin (INDO) formed in the Soluplus® solid dispersions using thermoanalytical and Fourier transform infrared (FTIR) spectral curve-fitting techniques. The INDO/Soluplus® solid dispersions with various weight ratios of both components were prepared by air-drying and heat-drying processes. A predominate IR peak at 1683cm(-1) for amorphous INDO was selected as a marker for monitoring the solid state of INDO in the INDO/Soluplus® solid dispersions. The physical stability of amorphous INDO in the INDO/Soluplus® solid dispersions prepared by both drying processes was also studied under accelerated conditions. A typical endothermic peak at 161°C for γ-form of INDO (γ-INDO) disappeared from all the differential scanning calorimetry (DSC) curves of INDO/Soluplus® solid dispersions, suggesting the amorphization of INDO caused by Soluplus® after drying. In addition, two unique IR peaks at 1682 (1681) and 1593 (1591)cm(-1) corresponded to the amorphous form of INDO were observed in the FTIR spectra of all the INDO/Soluplus® solid dispersions. The quantitative amounts of amorphous INDO formed in all the INDO/Soluplus® solid dispersions were increased with the increase of γ-INDO loaded into the INDO/Soluplus® solid dispersions by applying curve-fitting technique. However, the intermolecular hydrogen bonding interaction between Soluplus® and INDO were only observed in the samples prepared by heat-drying process, due to a marked spectral shift from 1636 to 1628cm(-1) in the INDO/Soluplus® solid dispersions. The INDO/Soluplus® solid

  17. A Student's Guide to Fourier Transforms - 2nd Edition

    Science.gov (United States)

    James, J. F.

    2002-09-01

    Fourier transform theory is of central importance in a vast range of applications in physical science, engineering, and applied mathematics. This new edition of a successful student text provides a concise introduction to the theory and practice of Fourier transforms, using qualitative arguments wherever possible and avoiding unnecessary mathematics. After a brief description of the basic ideas and theorems, the power of the technique is then illustrated by referring to particular applications in optics, spectroscopy, electronics and telecommunications. The rarely discussed but important field of multi-dimensional Fourier theory is covered, including a description of computer-aided tomography (CAT-scanning). The final chapter discusses digital methods, with particular attention to the fast Fourier transform. Throughout, discussion of these applications is reinforced by the inclusion of worked examples. The book assumes no previous knowledge of the subject, and will be invaluable to students of physics, electrical and electronic engineering, and computer science. Expanded to include more emphasis on applications An established successful textbook for undergraduate and graduate students Includes worked examples and copious diagrams throughout

  18. Novel fringe scanning/Fourier transform method of synthetic imaging

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, T.M.; Albano, R.K.

    1993-08-01

    We have developed a one-dimensional theory and a computer model for synthetically imaging scenes using a novel fringe scanning/Fourier transform technique. Our method probes a scene using two interfering beams of slightly different frequency. These beams form a moving fringe pattern which scans the scene and resonates with any spatial frequency components having the same spatial frequency as the scanning fringe pattern. A simple, non-imaging detector above the scene observes any scattered radiation from the scene falling onto it. If a resonance occurs between the scanning fringe pattern and the scene, then the scattered radiation will be modulated at the difference frequency between the two probing beams. By changing the spatial period of the fringe pattern and then measuring the amplitude and phase of the modulated radiation that is scattered from the scene, the Fourier amplitudes and phases of the different spatial frequency components making up the scene can be measured. A synthetic image of the scene being probed can be generated from this Fourier amplitude and phase data by taking the inverse Fourier transform of this information. This technique could be used to image objects using light, ultrasonic, or other electromagnetic or acoustic waves.

  19. Fourier transform inequalities for phylogenetic trees.

    Science.gov (United States)

    Matsen, Frederick A

    2009-01-01

    Phylogenetic invariants are not the only constraints on site-pattern frequency vectors for phylogenetic trees. A mutation matrix, by its definition, is the exponential of a matrix with non-negative off-diagonal entries; this positivity requirement implies non-trivial constraints on the site-pattern frequency vectors. We call these additional constraints "edge-parameter inequalities". In this paper, we first motivate the edge-parameter inequalities by considering a pathological site-pattern frequency vector corresponding to a quartet tree with a negative internal edge. This site-pattern frequency vector nevertheless satisfies all of the constraints described up to now in the literature. We next describe two complete sets of edge-parameter inequalities for the group-based models; these constraints are square-free monomial inequalities in the Fourier transformed coordinates. These inequalities, along with the phylogenetic invariants, form a complete description of the set of site-pattern frequency vectors corresponding to bona fide trees. Said in mathematical language, this paper explicitly presents two finite lists of inequalities in Fourier coordinates of the form "monomial < or = 1", each list characterizing the phylogenetically relevant semialgebraic subsets of the phylogenetic varieties.

  20. Fourier transform light scattering angular spectroscopy using digital inline holography.

    Science.gov (United States)

    Kim, Kyoohyun; Park, YongKeun

    2012-10-01

    A simple and practical method for measuring the angle-resolved light scattering (ARLS) from individual objects is reported. Employing the principle of inline holography and a Fourier transform light scattering technique, both the static and dynamic scattering patterns from individual micrometer-sized objects can be effectively and quantitatively obtained. First, the light scattering measurements were performed on individual polystyrene beads, from which the refractive index and diameter of each bead were retrieved. Also, the measurements of the static and dynamic light scattering from intact human red blood cells are demonstrated. Using the present method, an existing microscope can be directly transformed into a precise instrument for ARLS measurements.

  1. Multicomplementary operators via finite Fourier transform

    Energy Technology Data Exchange (ETDEWEB)

    Klimov, Andrei B [Departamento de Fisica, Universidad de Guadalajara, Revolucion 1500, 44420 Guadalajara, Jalisco (Mexico); Sanchez-Soto, Luis L [Department of Physics, Lakehead University, Thunder Bay, Ontario P7B 5E1 (Canada); Guise, Hubert de [Department of Physics, Lakehead University, Thunder Bay, Ontario P7B 5E1 (Canada)

    2005-03-25

    A complete set of d + 1 mutually unbiased bases exists in a Hilbert space of dimension d, whenever d is a power of a prime. We discuss a simple construction of d + 1 disjoint classes (each one having d - 1 commuting operators) such that the corresponding eigenstates form sets of unbiased bases. Such a construction works properly for prime dimension. We investigate an alternative construction in which the real numbers that label the classes are replaced by a finite field having d elements. One of these classes is diagonal, and can be mapped to cyclic operators by means of the finite Fourier transform, which allows one to understand complementarity in a similar way as for the position-momentum pair in standard quantum mechanics. The relevant examples of two and three qubits and two qutrits are discussed in detail.

  2. Fourier transform spectroscopy for future planetary missions

    Science.gov (United States)

    Brasunas, John; Kolasinski, John; Kostiuk, Ted; Hewagama, Tilak

    2017-01-01

    Thermal-emission infrared spectroscopy is a powerful tool for exploring the composition, temperature structure, and dynamics of planetary atmospheres; and the temperature of solid surfaces. A host of Fourier transform spectrometers (FTS) such as Mariner IRIS, Voyager IRIS, and Cassini CIRS from NASA Goddard have made and continue to make important new discoveries throughout the solar system. Future FTS instruments will have to be more sensitive (when we concentrate on the colder, outer reaches of the solar system), and less massive and less power-hungry as we cope with decreasing resource allotments for future planetary science instruments. With this in mind, we have developed CIRS-lite, a smaller version of the CIRS FTS for future planetary missions. We discuss the roadmap for making CIRS-lite a viable candidate for future planetary missions, including the recent increased emphasis on ocean worlds (Europa, Encelatus, Titan) and also on smaller payloads such as CubeSats and SmallSats.

  3. Fourier transform spectrometer based on Fabry-Perot interferometer.

    Science.gov (United States)

    Al-Saeed, Tarek A; Khalil, Diaa A

    2016-07-10

    We analyze the Fourier transform spectrometer based on a symmetric/asymmetric Fabry-Perot interferometer. In this spectrometer, the interferogram is obtained by recording the intensity as a function of the interferometer length. Then, we recover the spectrum by applying the discrete Fourier transform (DFT) directly on the interferogram. This technique results in spectral harmonic overlap and fictitious wavenumber components outside the original spectral range. For this purpose, in this work, we propose a second method to recover the spectrum. This method is based on expanding the DFT of the interferogram and the spectrum by a Haar or box function. By this second method, we recovered the spectrum and got rid of the fictitious spectral components and spectral harmonic overlap.

  4. An Introduction to Fast Fourier Transforms through the Study of Oscillating Reactions.

    Science.gov (United States)

    Eastman, M. P.; And Others

    1986-01-01

    Discusses an experiment designed to introduce students to the basic principles of the fast Fourier transform and Fourier smoothing through transformation of time-dependent optical absorption data from an oscillating reaction. Uses the Belousov-Zhabotinskii reaction. Describes the experimental setup and data analysis techniques.

  5. Kinetics of electrochemically controlled surface reactions on bulk and thin film metals studied with Fourier transform impedance spectroscopy and surface plasmon resonance techniques

    Science.gov (United States)

    Assiongbon, Kankoe A.

    2005-07-01

    In the work presented in this thesis, the surface sensitive electrochemical techniques of cyclic voltametry (CV), potential step (PS) and Fourier transform impedance spectroscopy (FT-EIS), as well as the optical technique of surface plasmon resonance (SPR), were used to probe a wide variety of surface processes at various metal/liquid interface. Three polycrystalline metals (Au, Ta and Cu) and a Cr-coated gold film were used for these studies in different aqueous environments. A combination of CV with FT-EIS and PS was used to investigate electronic and structural proprieties of a modified bulk electrode of Au. This experimental system involved under potential deposition (UPD) of Bi3+ on Au in a supporting aqueous electrolyte containing ClO-4 . UPD range of Bi3+ was determined, and adsorption kinetics of Bi3+ in the presence of coadsorbing anion, ClO-4 were quantified. Potentiodynamic growth of oxide films of Ta in the following electrolytes NaNO3, NaNO3 + 5wt% H2O2, NaOH and NaOH + 5wt% H2O2 had been investigated. The oxide films were grown in the range -0.1 → +0.4V (high electric field) at a scan rate of 10 mV/s. Time resolved A.C. impedance spectroscopy measurements in the frequency range (0.1--20 KHz) were performed to characterize the surface reactions of oxide formation. The results are interpreted in terms of charge conductivity O2- through the oxide film, and disintegration of H2O2 into OH-. In a high pH medium (pH 12), dissociation of H2O2 was catalytically enhanced. This led to destabilization of the electrogenerated tantalum oxide surface film in the form of a soluble hexatantalate species. In contrast with the electrolytes, NaNO3, NaNO3 + 5wt% H2O2, NaOH, where only the oxide growth was observed, the A.C. impedance spectroscopy measurements in NaOH + 5wt% H 2O2 showed competition between oxide formation and its removal. These results are relevant for chemical slurry design in chemical mechanical polishing (CMP) of Ta. Further investigations were

  6. Applying Quaternion Fourier Transforms for Enhancing Color Images

    Directory of Open Access Journals (Sweden)

    M.I. Khalil

    2012-03-01

    Full Text Available The Fourier transforms play a critical role in a broad range of image processing applications, including enhancement, analysis, restoration, and compression. Until recently, it was common to use the conventional methods to deal with colored images. These methods are based on RGB decomposition of the colored image by separating it into three separate scalar images and computing the Fourier transforms of these images separately. The computing of the Hypercomplex 2D Fourier transform of a color image as a whole unit has only recently been realized. This paper is concerned with frequency domain noise reduction of color images using quaternion Fourier transforms. The approach is based on obtaining quaternion Fourier transform of the color image and applying the Gaussian filter to it in the frequency domain. The filtered image is then obtained by calculating the inverse quaternion Fourier transforms.

  7. Integrability of the Fourier transform: functions of bounded variation

    CERN Document Server

    Liflyand, E

    2012-01-01

    Certain relations between the Fourier transform of a function of bounded variation and the Hilbert transform of its derivative are revealed. The widest subspaces of the space of functions of bounded variation are indicated in which the cosine and sine Fourier transforms are integrable.

  8. Geometric interpretations of the Discrete Fourier Transform (DFT)

    Science.gov (United States)

    Campbell, C. W.

    1984-01-01

    One, two, and three dimensional Discrete Fourier Transforms (DFT) and geometric interpretations of their periodicities are presented. These operators are examined for their relationship with the two sided, continuous Fourier transform. Discrete or continuous transforms of real functions have certain symmetry properties. The symmetries are examined for the one, two, and three dimensional cases. Extension to higher dimension is straight forward.

  9. New analytical technique for establishing the quality of Soil Organic Matter affected by a wildfire. A first approach using Fourier transform ion cyclotron resonance mass spectrometry

    Science.gov (United States)

    Jiménez-Morillo, Nicasio T.; González-Pérez, José A.; Waggoner, Derek C.; Almendros, Gonzalo; González-Vila, Francisco J.; Hatcher, Patrick G.

    2016-04-01

    Introduction: Fire is one of the most important modulator factors of the environment and the forest. It is able to induce chemical and biological shifts and these, in turn, can alter the physical properties of soil. Generally, fire affects the most reactive fraction, soil organic matter (SOM) (González-Pérez et al., 2004) resulting in changes to several soil properties and functions. To study changes in SOM following a wildfire, researchers can count on several traditional as well as new analytical techniques. One of the most recently employed techniques is Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS). This new powerful ultra-high resolution mass spectral technique, together with graphic interpretation tools such as van Krevelen diagrams (Kim et al, 2003), may be used to shed light on alterations caused by the burning of SOM. The objective of this research is to study fire impacts on SOM, using a sandy soil collected under a Cork oak (Quercus suber) in Doñana National Park, Southwest Spain. that was affected by a wildfire in August 2012. Methods: The impact of fire on SOM was studied in various different sieve fractions (coarse, 1-2 mm, and fine, organic matter. The presence of molecular formulas which plot in the aromatic and condensed aromatics regions also indicates that this fraction may have contributions from a second, more recalcitrant, organic carbon pool. The appearance of aromatic and condensed aromatic compounds could suggest that, in this fraction the fire induced condensation processes. In the burnt fine fraction, two different SOM sources of alteration could be identified; i) from microbial origin with high relative intensity of lipid-like and protein-like compounds and ii) fire origin with large amounts of condensed aromatic compounds and a high contribution from the carbohydrate-like compounds region. We suggest that these results indicate both, condensation processes yielding black carbon like materials and additions

  10. Fourier Transform Infrared Spectroscopic Analysis of Protein Secondary Structures

    Institute of Scientific and Technical Information of China (English)

    Jilie KONG; Shaoning YU

    2007-01-01

    Infrared spectroscopy is one of the oldest and well established experimental techniques for the analysis of secondary structure of polypeptides and proteins. It is convenient, non-destructive, requires less sample preparation, and can be used under a wide variety of conditions. This review introduces the recent developments in Fourier transform infrared (FTIR) spectroscopy technique and its applications to protein structural studies. The experimental skills, data analysis, and correlations between the FTIR spectroscopic bands and protein secondary structure components are discussed. The applications of FTIR to the secondary structure analysis, conformational changes, structural dynamics and stability studies of proteins are also discussed.

  11. Fourier transform infrared-attenuated total reflectance (FTIR-ATR spectroscopy and chemometric techniques for the determination of adulteration in petrodiesel/biodiesel blends

    Directory of Open Access Journals (Sweden)

    Armando Guerrero Peña

    2014-06-01

    Full Text Available We propose an analytical method based on fourier transform infrared-attenuated total reflectance (FTIR-ATR spectroscopy to detect the adulteration of petrodiesel and petrodiesel/palm biodiesel blends with African crude palm oil. The infrared spectral fingerprints from the sample analysis were used to perform principal components analysis (PCA and to construct a prediction model using partial least squares (PLS regression. The PCA results separated the samples into three groups, allowing identification of those subjected to adulteration with palm oil. The obtained model shows a good predictive capacity for determining the concentration of palm oil in petrodiesel/biodiesel blends. Advantages of the proposed method include cost-effectiveness and speed; it is also environmentally friendly.

  12. Precise and fast spatial-frequency analysis using the iterative local Fourier transform.

    Science.gov (United States)

    Lee, Sukmock; Choi, Heejoo; Kim, Dae Wook

    2016-09-19

    The use of the discrete Fourier transform has decreased since the introduction of the fast Fourier transform (fFT), which is a numerically efficient computing process. This paper presents the iterative local Fourier transform (ilFT), a set of new processing algorithms that iteratively apply the discrete Fourier transform within a local and optimal frequency domain. The new technique achieves 210 times higher frequency resolution than the fFT within a comparable computation time. The method's superb computing efficiency, high resolution, spectrum zoom-in capability, and overall performance are evaluated and compared to other advanced high-resolution Fourier transform techniques, such as the fFT combined with several fitting methods. The effectiveness of the ilFT is demonstrated through the data analysis of a set of Talbot self-images (1280 × 1024 pixels) obtained with an experimental setup using grating in a diverging beam produced by a coherent point source.

  13. Fourier-transform Ghost Imaging with Hard X-rays

    CERN Document Server

    Yu, Hong; Han, Shensheng; Xie, Honglan; Du, Guohao; Xiao, Tiqiao; Zhu, Daming

    2016-01-01

    Knowledge gained through X-ray crystallography fostered structural determination of materials and greatly facilitated the development of modern science and technology in the past century. Atomic details of sample structures is achievable by X-ray crystallography, however, it is only applied to crystalline structures. Imaging techniques based on X-ray coherent diffraction or zone plates are capable of resolving the internal structure of non-crystalline materials at nanoscales, but it is still a challenge to achieve atomic resolution. Here we demonstrate a novel lensless Fourier-transform ghost imaging method with pseudo-thermal hard X-rays by measuring the second-order intensity correlation function of the light. We show that high resolution Fourier-transform diffraction pattern of a complex structure can be achieved at Fresnel region, and the amplitude and phase distributions of a sample in spatial domain can be retrieved successfully. The method of lensless X-ray Fourier-transform ghost imaging extends X-ray...

  14. Weighted inequalities for Hilbert transforms and multiplicators of Fourier transforms

    Directory of Open Access Journals (Sweden)

    Kokilashvili V

    1997-01-01

    Full Text Available As is well known, invariant operators with a shift can be bounded from into only if . We show that the case might also hold for weighted spaces. We derive the sufficient conditions for the validity of strong (weak type inequalities for the Hilbert transform when . The examples of couple of weights which guarantee the fulfillness of two-weighted strong (weak type inequalities for singular integrals are presented. The method of proof of the main results allows us to generalize the results of this paper to the singular integrals which are defined on homogeneous groups. The Fourier multiplier theorem is also proved.

  15. Realization of quantum discrete Fourier transform with NMR

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The pulse sequences of the logic operations used in quantum discrete Fourier transform are designed for the experiment of nuclear magnetic resonance(NMR), and 2-qubit discrete Fourier transforms are implemented experimentally with NMR. The experimental errors are examined and methods for reducing the errors are proposed.

  16. AN ANOMALY INTRUSION DETECTION METHOD USING FOURIER TRANSFORM

    Institute of Scientific and Technical Information of China (English)

    Yue Bing; Zhao Yuexia; Xu Zhoujun; Fu Hongjuan; Ma Fengning

    2004-01-01

    A set of discrete points obtained from audit records on a behavior session is processed with Fourier transform. The criterion of selecting Fourier transform coefficients is introduced, and is used to find a unified value from the set of coefficients. This unified value is compared with a threshold to determine whether the session is abnormal. Finally simple test results are reported.

  17. Fourier-transform Raman spectroscopic study of human hair

    Science.gov (United States)

    Akhtar, W.; Edwards, H. G. M.; Farwell, D. W.; Nutbrown, M.

    1997-07-01

    Fourier-transform Raman microscopic spectra of normal, untreated and bleached hair fibres are presented. Vibrational assignments are made and differences are ascribed to the production of cysteic acid from cysteine. Changes in conformation associated with the disulphide bond in the keratotic component are noted from the ν(CSSC) vibrational modes at wave numbers near 500 cm -1. Raman spectra of hair root ends have also been investigated with a diminution in cysteine content being observed. Application of the technique to the biomedical investigation of healthy and diseased hair is proposed.

  18. Double passing the Kitt Peak 1-m Fourier transform spectrometer

    Science.gov (United States)

    Jennings, D. E.; Hubbard, R.; Brault, J. W.

    1985-01-01

    Attention is given to a simple technique for performing the conversion of the Kitt Peak 1-m Fourier transform spectrometer's dual input/output optical configuration to a double pass configuration that improves spectral resolution by a factor of 2. The modification is made by placing a flat mirror in the output beam from each cat's eye, retroreflecting the beams back through the cat's eyes to the first beam splitter. A single detector is placed at the second input port, which then becomes the instrument's output.

  19. Wavelets for approximate Fourier transform and data compression

    Science.gov (United States)

    Guo, Haitao

    This dissertation has two parts. In the first part, we develop a wavelet-based fast approximate Fourier transform algorithm. The second part is devoted to the developments of several wavelet-based data compression techniques for image and seismic data. We propose an algorithm that uses the discrete wavelet transform (DWT) as a tool to compute the discrete Fourier transform (DFT). The classical Cooley-Tukey FFT is shown to be a special case of the proposed algorithm when the wavelets in use are trivial. The main advantage of our algorithm is that the good time and frequency localization of wavelets can be exploited to approximate the Fourier transform for many classes of signals, resulting in much less computation. Thus the new algorithm provides an efficient complexity versus accuracy tradeoff. When approximations are allowed, under certain sparsity conditions, the algorithm can achieve linear complexity, i.e. O(N). The proposed algorithm also has built-in noise reduction capability. For waveform and image compression, we propose a novel scheme using the recently developed Burrows-Wheeler transform (BWT). We show that the discrete wavelet transform (DWT) should be used before the Burrows-Wheeler transform to improve the compression performance for many natural signals and images. We demonstrate that the simple concatenation of the DWT and BWT coding performs comparably as the embedded zerotree wavelet (EZW) compression for images. Various techniques that significantly improve the performance of our compression scheme are also discussed. The phase information is crucial for seismic data processing. However, traditional compression schemes do not pay special attention to preserving the phase of the seismic data, resulting in the loss of critical information. We propose a lossy compression method that preserves the phase as much as possible. The method is based on the self-adjusting wavelet transform that adapts to the locations of the significant signal components

  20. Thermal stabilization of static single-mirror Fourier transform spectrometers

    Science.gov (United States)

    Schardt, Michael; Schwaller, Christian; Tremmel, Anton J.; Koch, Alexander W.

    2017-05-01

    Fourier transform spectroscopy has become a standard method for spectral analysis of infrared light. With this method, an interferogram is created by two beam interference which is subsequently Fourier-transformed. Most Fourier transform spectrometers used today provide the interferogram in the temporal domain. In contrast, static Fourier transform spectrometers generate interferograms in the spatial domain. One example of this type of spectrometer is the static single-mirror Fourier transform spectrometer which offers a high etendue in combination with a simple, miniaturized optics design. As no moving parts are required, it also features a high vibration resistance and high measurement rates. However, it is susceptible to temperature variations. In this paper, we therefore discuss the main sources for temperature-induced errors in static single-mirror Fourier transform spectrometers: changes in the refractive index of the optical components used, variations of the detector sensitivity, and thermal expansion of the housing. As these errors manifest themselves in temperature-dependent wavenumber shifts and intensity shifts, they prevent static single-mirror Fourier transform spectrometers from delivering long-term stable spectra. To eliminate these shifts, we additionally present a work concept for the thermal stabilization of the spectrometer. With this stabilization, static single-mirror Fourier transform spectrometers are made suitable for infrared process spectroscopy under harsh thermal environmental conditions. As the static single-mirror Fourier transform spectrometer uses the so-called source-doubling principle, many of the mentioned findings are transferable to other designs of static Fourier transform spectrometers based on the same principle.

  1. Fractional Fourier transform of apertured paraboloid refracting system

    Institute of Scientific and Technical Information of China (English)

    Jiannong Chen; Jinliang Yan; Defa Wang; Yongjiang Yu

    2007-01-01

    The limitation of paraxial condition of paraboloid refracting system in performing fractional Fourier transform acts like an aperture, which makes the system different from ideal systems. With aperture expanded as the sum of finite complex Gaussian terms, a more practical approximate analytical solution of fractional Fourier transform of Gaussian beam in an apertured paraboloid refracting system is obtained and also numerical investigation is presented. Complicated and practical fractional Fourier transform systems can be constructed by cascading several apertured paraboloid refracting systems which are the simplest and the most basic units for performing more precise transform.

  2. Cryogenic Scan Mechanism for Fourier Transform Spectrometer

    Science.gov (United States)

    Brasunas, John C.; Francis, John L.

    2011-01-01

    A compact and lightweight mechanism has been developed to accurately move a Fourier transform spectrometer (FTS) scan mirror (a cube corner) in a near-linear fashion with near constant speed at cryogenic temperatures. This innovation includes a slide mechanism to restrict motion to one dimension, an actuator to drive the motion, and a linear velocity transducer (LVT) to measure the speed. The cube corner mirror is double-passed in one arm of the FTS; double-passing is required to compensate for optical beam shear resulting from tilting of the moving cube corner. The slide, actuator, and LVT are off-the-shelf components that are capable of cryogenic vacuum operation. The actuator drives the slide for the required travel of 2.5 cm. The LVT measures translation speed. A proportional feedback loop compares the LVT voltage with the set voltage (speed) to derive an error signal to drive the actuator and achieve near constant speed. When the end of the scan is reached, a personal computer reverses the set voltage. The actuator and LVT have no moving parts in contact, and have magnetic properties consistent with cryogenic operation. The unlubricated slide restricts motion to linear travel, using crossed roller bearings consistent with 100-million- stroke operation. The mechanism tilts several arc seconds during transport of the FTS mirror, which would compromise optical fringe efficiency when using a flat mirror. Consequently, a cube corner mirror is used, which converts a tilt into a shear. The sheared beam strikes (at normal incidence) a flat mirror at the end of the FTS arm with the moving mechanism, thereby returning upon itself and compensating for the shear

  3. OTDM-to-WDM Conversion of Complex Modulation Formats by Time-Domain Optical Fourier Transformation

    DEFF Research Database (Denmark)

    Palushani, Evarist; Richter, T.; Ludwig, R.

    2012-01-01

    We demonstrate the utilization of the optical Fourier transform technique for serial-to-parallel conversion of 64×10-GBd OTDM data tributaries with complex modulation formats into 50-GHz DWDM grid without loss of phase and amplitude information.......We demonstrate the utilization of the optical Fourier transform technique for serial-to-parallel conversion of 64×10-GBd OTDM data tributaries with complex modulation formats into 50-GHz DWDM grid without loss of phase and amplitude information....

  4. Large amplitude Fourier transformed ac voltammetry at a rotating disc electrode: a versatile technique for covering Levich and flow rate insensitive regimes in a single experiment.

    Science.gov (United States)

    Bano, Kiran; Kennedy, Gareth F; Zhang, Jie; Bond, Alan M

    2012-04-14

    The theory for large amplitude Fourier transformed ac voltammetry at a rotating disc electrode is described. Resolution of time domain data into dc and ac harmonic components reveals that the mass transport for the dc component is controlled by convective-diffusion, while the background free higher order harmonic components are flow rate insensitive and mainly governed by linear diffusion. Thus, remarkable versatility is available; Levich behaviour of the dc component limiting current provides diffusion coefficient values and access to higher harmonics allows fast electrode kinetics to be probed. Two series of experiments (dc and ac voltammetry) have been required to extract these parameters; here large amplitude ac voltammetry with RDE methodology is used to demonstrate that kinetics and diffusion coefficient information can be extracted from a single experiment. To demonstrate the power of this approach, theoretical and experimental comparisons of data obtained for the reversible [Ru(NH(3))(6)](3+/2+) and quasi-reversible [Fe(CN)(6)](3-/4-) electron transfer processes are presented over a wide range of electrode rotation rates and with different concentrations and electrode materials. Excellent agreement of experimental and simulated data is achieved, which allows parameters such as electron transfer rate, diffusion coefficient, uncompensated resistance and others to be determined using a strategically applied approach that takes into account the different levels of sensitivity of each parameter to the dc or the ac harmonic.

  5. Fourier Transform Mass Spectrometry: The Transformation of Modern Environmental Analyses

    Directory of Open Access Journals (Sweden)

    Lucy Lim

    2016-01-01

    Full Text Available Unknown compounds in environmental samples are difficult to identify using standard mass spectrometric methods. Fourier transform mass spectrometry (FTMS has revolutionized how environmental analyses are performed. With its unsurpassed mass accuracy, high resolution and sensitivity, researchers now have a tool for difficult and complex environmental analyses. Two features of FTMS are responsible for changing the face of how complex analyses are accomplished. First is the ability to quickly and with high mass accuracy determine the presence of unknown chemical residues in samples. For years, the field has been limited by mass spectrometric methods that were based on knowing what compounds of interest were. Secondly, by utilizing the high resolution capabilities coupled with the low detection limits of FTMS, analysts also could dilute the sample sufficiently to minimize the ionization changes from varied matrices.

  6. A discrete Fourier transform for virtual memory machines

    Science.gov (United States)

    Galant, David C.

    1992-01-01

    An algebraic theory of the Discrete Fourier Transform is developed in great detail. Examination of the details of the theory leads to a computationally efficient fast Fourier transform for the use on computers with virtual memory. Such an algorithm is of great use on modern desktop machines. A FORTRAN coded version of the algorithm is given for the case when the sequence of numbers to be transformed is a power of two.

  7. A Matrix Formulation of Discrete Chirp Fourier Transform Algorithms

    Institute of Scientific and Technical Information of China (English)

    Juan Pablo Soto Quiros; Domingo Rodriguez

    2014-01-01

    This work presents a computational matrix framework in terms of tensor signal algebra for the formulation of discrete chirp Fourier transform algorithms. These algorithms are used in this work to estimate the point target functions (impulse response functions) of multiple-input multiple-output (MIMO) synthetic aperture radar (SAR) systems. This estimation technique is being studied as an alternative to the estimation of point target functions using the discrete cross-ambiguity function for certain types of environmental surveillance applications. The tensor signal algebra is presented as a mathematics environment composed of signal spaces, finite dimensional linear operators, and special matrices where algebraic methods are used to generate these signal transforms as computational estimators. Also, the tensor signal algebra contributes to analysis, design, and implementation of parallel algorithms. An instantiation of the framework was performed by using the MATLAB Parallel Computing Toolbox, where all the algorithms presented in this paper were implemented.

  8. Mechanism Study of Rice Straw Pyrolysis by Fourier Transform Infrared Technique%基于FTIR分析的稻草热解机理

    Institute of Scientific and Technical Information of China (English)

    付鹏; 胡松; 向军; 孙路石; 杨涛; 张安超; 张军营

    2009-01-01

    The pyrolysis mechanism of rice straw (RS) was investigated using a tube reactor with Fourier trans-form infrared (FTIR) spectroscopy and thcrmogravimetric analyzer. The results show that the maximum pyrolysis rate increases with increasing heating rate and the corresponding temperature also increases. The thrce-pseudocomponent model could describe the pyrolysis behavior of rice straw accurately. The main pyrolysis gas products are H2O, CO2, CO, CH4, HCHO (formaldehyde), HCOOH (formic acid), CH3OH (mcthanol), C6H5OH (phenol), etc. The releasing of H2O, CO2, CO and CH4 mainly focuses at 220-400℃. The H2O formation process is separated into two stages corresponding to the evaporation of free water and the formation of primary volatiles. The release of CO2 first increases with increasing temperature and gets the maximum at 309℃. The releasing behavior of CO is similar to H2O and CO2 between 200 and 400℃. The production of CH4 happens, compared to CO2 and CO, at higher temperatures of 275 400℃ with he maximum at 309℃. When the temperature exceeds 200℃, hy-droxyl and aliphatic C-H groups decrease significantly, while C=O, olcfinic C=C bonds and ether structures in-crease first in the chars and then the aromatic structure develops with rising temperature. Above 500℃, the material becomes increasingly more aromatic and the ether groups decreases with an increase of temperature. The aromati-zation process starts at≈:350oC and continues to higher temperatures.

  9. Neural network calibration of a snapshot birefringent Fourier transform spectrometer with periodic phase errors.

    Science.gov (United States)

    Luo, David; Kudenov, Michael W

    2016-05-16

    Systematic phase errors in Fourier transform spectroscopy can severely degrade the calculated spectra. Compensation of these errors is typically accomplished using post-processing techniques, such as Fourier deconvolution, linear unmixing, or iterative solvers. This results in increased computational complexity when reconstructing and calibrating many parallel interference patterns. In this paper, we describe a new method of calibrating a Fourier transform spectrometer based on the use of artificial neural networks (ANNs). In this way, it is demonstrated that a simpler and more straightforward reconstruction process can be achieved at the cost of additional calibration equipment. To this end, we provide a theoretical model for general systematic phase errors in a polarization birefringent interferometer. This is followed by a discussion of our experimental setup and a demonstration of our technique, as applied to data with and without phase error. The technique's utility is then supported by comparison to alternative reconstruction techniques using fast Fourier transforms (FFTs) and linear unmixing.

  10. Image restoration based on the discrete fraction Fourier transform

    Science.gov (United States)

    Yan, Peimin; Mo, Yu L.; Liu, Hong

    2001-09-01

    The fractional Fourier transform is the powerful tool for time-variant signal analysis. For space-variant degradation and non-stationary processes the filtering in fractional Fourier domains permits reduction of the error compared with ordinary Fourier domain filtering. In this paper the concept of filtering in fractional Fourier domains is applied to the problem of estimating degraded images. Efficient digital implementation using discrete Hermite eigenvectors can provide similar results to match the continuous outputs. Expressions for the 2D optimal filter function in fractional domains will be given for transform domains characterized by the two rotation angle parameters of the 2D fractional Fourier transform. The proposed method is used to restore images that have several degradations in the experiments. The results show that the method presented in this paper is valid.

  11. Vortex metrology using Fourier analysis techniques: vortex networks correlation fringes.

    Science.gov (United States)

    Angel-Toro, Luciano; Sierra-Sosa, Daniel; Tebaldi, Myrian; Bolognini, Néstor

    2012-10-20

    In this work, we introduce an alternative method of analysis in vortex metrology based on the application of the Fourier optics techniques. The first part of the procedure is conducted as is usual in vortex metrology for uniform in-plane displacement determination. On the basis of two recorded intensity speckled distributions, corresponding to two states of a diffuser coherently illuminated, we numerically generate an analytical signal from each recorded intensity pattern by using a version of the Riesz integral transform. Then, from each analytical signal, a two-dimensional pseudophase map is generated in which the vortices are located and characterized in terms of their topological charges and their core's structural properties. The second part of the procedure allows obtaining Young's interference fringes when Fourier transforming the light passing through a diffracting mask with multiple apertures at the locations of the homologous vortices. In fact, we use the Fourier transform as a mathematical operation to compute the far-field diffraction intensity pattern corresponding to the multiaperture set. Each aperture from the set is associated with a rectangular hole that coincides both in shape and size with a pixel from recorded images. We show that the fringe analysis can be conducted as in speckle photography in an extended range of displacement measurements. Effects related with speckled decorrelation are also considered. Our experimental results agree with those of speckle photography in the range in which both techniques are applicable.

  12. Research progress of the fractional Fourier transform in signal processing

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The fractional Fourier transform is a generalization of the classical Fourier transform, which is introduced from the mathematic aspect by Namias at first and has many applications in optics quickly. Whereas its potential appears to have remained largely unknown to the signal processing community until 1990s. The fractional Fourier transform can be viewed as the chirp-basis expansion directly from its definition, but essentially it can be interpreted as a rotation in the time-frequency plane, i.e. the unified time-frequency transform. With the order from 0 increasing to 1, the fractional Fourier transform can show the characteristics of the signal changing from the time domain to the frequency domain. In this research paper, the fractional Fourier transform has been comprehensively and systematically treated from the signal processing point of view. Our aim is to provide a course from the definition to the applications of the fractional Fourier transform, especially as a reference and an introduction for researchers and interested readers.

  13. Imaging Analysis by Means of Fractional Fourier Transform

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Starting from the diffraction imaging process,we have discussed the relationship between optical imaging system and fractional Fourier transform, and proposed a specific system which can form an inverse amplified image of input function.

  14. Electro-Optic Imaging Fourier Transform Spectral Polarimeter Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Boulder Nonlinear Systems, Inc. (BNS) proposes to develop an Electro-Optic Imaging Fourier Transform Spectral Polarimeter (E-O IFTSP). The polarimetric system is...

  15. On the physical relevance of the discrete Fourier transform

    CSIR Research Space (South Africa)

    Greben, JM

    1991-11-01

    Full Text Available This paper originated from the author's dissatisfaction with the way the discrete Fourier transform is usually presented in the literature. Although mathematically correct, the physical meaning of the common representation is unsatisfactory...

  16. Embolic Doppler ultrasound signal detection via fractional Fourier transform.

    Science.gov (United States)

    Gençer, Merve; Bilgin, Gökhan; Aydın, Nizamettin

    2013-01-01

    Computerized analysis of Doppler ultrasound signals can aid early detection of asymptomatic circulating emboli. For analysis, physicians use informative features extracted from Doppler ultrasound signals. Time -frequency analysis methods are useful tools to exploit the transient like signals such as Embolic signals. Detection of discriminative features would be the first step toward automated analysis of embolic Doppler ultrasound signals. The most problematic part of setting up emboli detection system is to differentiate embolic signals from confusing similar wave-like patterns such as Doppler speckle and artifacts caused by tissue movement, probe tapping, speaking etc. In this study, discrete version of fractional Fourier transform is presented as a solution in the detection of emboli in digitized Doppler ultrasound signals. An accurate set of parameters are extracted using short time Fourier transform and fractional Fourier transform and the results are compared to reveal detection quality. Experimental results prove the efficiency of fractional Fourier transform in which discriminative features becomes more evident.

  17. A rheumatoid arthritis study by Fourier transform infrared spectroscopy

    Science.gov (United States)

    Carvalho, Carolina S.; Silva, Ana Carla A.; Santos, Tatiano J. P. S.; Martin, Airton A.; dos Santos Fernandes, Ana Célia; Andrade, Luís E.; Raniero, Leandro

    2012-01-01

    Rheumatoid arthritis is a systemic inflammatory disease of unknown causes and a new methods to identify it in early stages are needed. The main purpose of this work is the biochemical differentiation of sera between normal and RA patients, through the establishment of a statistical method that can be appropriately used for serological analysis. The human sera from 39 healthy donors and 39 rheumatics donors were collected and analyzed by Fourier Transform Infrared Spectroscopy. The results show significant spectral variations with p<0.05 in regions corresponding to protein, lipids and immunoglobulins. The technique of latex particles, coated with human IgG and monoclonal anti-CRP by indirect agglutination known as FR and CRP, was performed to confirm possible false-negative results within the groups, facilitating the statistical interpretation and validation of the technique.

  18. High-Throughput Screening Using Fourier-Transform Infrared Imaging

    Directory of Open Access Journals (Sweden)

    Erdem Sasmaz

    2015-06-01

    Full Text Available Efficient parallel screening of combinatorial libraries is one of the most challenging aspects of the high-throughput (HT heterogeneous catalysis workflow. Today, a number of methods have been used in HT catalyst studies, including various optical, mass-spectrometry, and gas-chromatography techniques. Of these, rapid-scanning Fourier-transform infrared (FTIR imaging is one of the fastest and most versatile screening techniques. Here, the new design of the 16-channel HT reactor is presented and test results for its accuracy and reproducibility are shown. The performance of the system was evaluated through the oxidation of CO over commercial Pd/Al2O3 and cobalt oxide nanoparticles synthesized with different reducer-reductant molar ratios, surfactant types, metal and surfactant concentrations, synthesis temperatures, and ramp rates.

  19. A general spectral transformation simultaneously including a Fourier transformation and a Laplace transformation

    Science.gov (United States)

    Marko, H.

    1978-01-01

    A general spectral transformation is proposed and described. Its spectrum can be interpreted as a Fourier spectrum or a Laplace spectrum. The laws and functions of the method are discussed in comparison with the known transformations, and a sample application is shown.

  20. Quantum Fourier Transform and Phase Estimation in Qudit System

    Institute of Scientific and Technical Information of China (English)

    CAO Ye; PENG Shi-Guo; ZHENG Chao; LONG Gui-Lu

    2011-01-01

    The quantum Fourier transform and quantum phase estimation are the key components for many quantum algorithms, such as order-finding, factoring, and etc.In this article, the general procedure of quantum Fourier transform and phase estimation are investigated for high dimensional case.They can be seen as subroutines in a main program run in a qudit quantum computer, and the quantum circuits are given.

  1. Simple optical setup implementation for digital Fourier transform holography

    Energy Technology Data Exchange (ETDEWEB)

    De Oliveira, G N [Pos-graduacao em Engenharia Mecanica, TEM/PGMEC, Universidade Federal Fluminense, Rua Passo da Patria, 156, Niteroi, R.J., Cep.: 24.210-240 (Brazil); Rodrigues, D M C; Dos Santos, P A M, E-mail: pams@if.uff.br [Instituto de Fisica, Laboratorio de Optica Nao-linear e Aplicada, Universidade Federal Fluminense, Av. Gal. Nilton Tavares de Souza, s/n, Gragoata, Niteroi, R.J., Cep.:24.210-346 (Brazil)

    2011-01-01

    In the present work a simple implementation of Digital Fourier Transform Holography (DFTH) setup is discussed. This is obtained making a very simple modification in the classical setup arquiteture of the Fourier Transform holography. It is also demonstrated the easy and practical viability of the setup in an interferometric application for mechanical parameters determination. The work is also proposed as an interesting advanced introductory training for graduated students in digital holography.

  2. Fourier transform spectroscopy in the visible and ultraviolet range.

    Science.gov (United States)

    Luc, P; Gerstenkorn, S

    1978-05-01

    In cases where the photon noise is the limiting factor, the multiplex gain is not always conserved; however the throughput (Jacquinot's advantage) is not affected. Therefore extension of Fourier transform spectroscopy to higher frequencies has great possibilities. Studies at high resolution, both in emission and in absorption, show that the performance achieved by Fourier transform spectroscopy in the visible and uv range is comparable with that reached in the ir.

  3. Chiral Analysis of Isopulegol by Fourier Transform Molecular Rotational Spectroscopy

    Science.gov (United States)

    Evangelisti, Luca; Seifert, Nathan A.; Spada, Lorenzo; Pate, Brooks

    2016-06-01

    Chiral analysis on molecules with multiple chiral centers can be performed using pulsed-jet Fourier transform rotational spectroscopy. This analysis includes quantitative measurement of diastereomer products and, with the three wave mixing methods developed by Patterson, Schnell, and Doyle (Nature 497, 475-477 (2013)), quantitative determination of the enantiomeric excess of each diastereomer. The high resolution features enable to perform the analysis directly on complex samples without the need for chromatographic separation. Isopulegol has been chosen to show the capabilities of Fourier transform rotational spectroscopy for chiral analysis. Broadband rotational spectroscopy produces spectra with signal-to-noise ratio exceeding 1000:1. The ability to identify low-abundance (0.1-1%) diastereomers in the sample will be described. Methods to rapidly identify rotational spectra from isotopologues at natural abundance will be shown and the molecular structures obtained from this analysis will be compared to theory. The role that quantum chemistry calculations play in identifying structural minima and estimating their spectroscopic properties to aid spectral analysis will be described. Finally, the implementation of three wave mixing techniques to measure the enantiomeric excess of each diastereomer and determine the absolute configuration of the enantiomer in excess will be described.

  4. Adaptive Controller for Compact Fourier Transform Spectrometer with Space Applications

    Science.gov (United States)

    Keymeulen, D.; Yiu, P.; Berisford, D. F.; Hand, K. P.; Carlson, R. W.; Conroy, M.

    2014-12-01

    Here we present noise mitigation techniques developed as part of an adaptive controller for a very compact Compositional InfraRed Interferometric Spectrometer (CIRIS) implemented on a stand-alone field programmable gate array (FPGA) architecture with emphasis on space applications in high radiation environments such as Europa. CIRIS is a novel take on traditional Fourier Transform Spectrometers (FTS) and replaces linearly moving mirrors (characteristic of Michelson interferometers) with a constant-velocity rotating refractor to variably phase shift and alter the path length of incoming light. The design eschews a monochromatic reference laser typically used for sampling clock generation and instead utilizes constant time-sampling via internally generated clocks. This allows for a compact and robust device, making it ideal for spaceborne measurements in the near-IR to thermal-IR band (2-12 µm) on planetary exploration missions. The instrument's embedded microcontroller is implemented on a VIRTEX-5 FPGA and a PowerPC with the aim of sampling the instrument's detector and optical rotary encoder in order to construct interferograms. Subsequent onboard signal processing provides spectral immunity from the noise effects introduced by the compact design's removal of a reference laser and by the radiation encountered during space flight to destinations such as Europa. A variety of signal processing techniques including resampling, radiation peak removal, Fast Fourier Transform (FFT), spectral feature alignment, dispersion correction and calibration processes are applied to compose the sample spectrum in real-time with signal-to-noise-ratio (SNR) performance comparable to laser-based FTS designs in radiation-free environments. The instrument's FPGA controller is demonstrated with the FTS to characterize its noise mitigation techniques and highlight its suitability for implementation in space systems.

  5. Research about vibration characteristics of timing chain system based on short-time Fourier transform

    Science.gov (United States)

    Xi, Jiaxin; Liu, Ning

    2017-09-01

    Vibration characteristic of timing chain system is very important for an engine. In this study, we used a bush roller chain drive system as an example to explain how to use mulitybody dynamic techniques and short-time Fourier transform to investigate vibration characteristics of timing chain system. Multibody dynamic simulation data as chain tension force and external excitation sources curves were provided for short-time Fourier transform study. The study results of short-time Fourier transform illustrate that there are two main vibration frequency domain of timing chain system, one is the low frequency vibration caused by crankshaft sprocket velocity and camshaft sprocket torque. Another is vibration around 1000Hz lead by hydraulic tensioner. Hence, short-time Fourier transform method is useful for basic research of vibration characteristics for timing chain system.

  6. Seismic Shear Energy Reflection By Radon-Fourier Transform

    Directory of Open Access Journals (Sweden)

    Malik Umairia

    2016-01-01

    Full Text Available Seismic waves split in an anisotropic medium, instead of rotating horizontal component to principal direction, Radon-Fourier is derived to observe the signature of shear wave reflection. Synthetic model with fracture is built and discretized using finite difference scheme for spatial and time domain. Common depth point (CDP with single shot gives traces and automatic gain is preprocessed before Radon Transform (RT, a filtering technique gives radon domain. It makes easier to observe fractures at specific incidence and improves its quality in some way by removing the noise. A comparison of synthetic data and BF-data is performed on the basis of root means square error (RMS values. The RMS error is minimum at the 10th trace in radon domain.

  7. The RC Circuit: An Approach with Fourier Transforms

    Indian Academy of Sciences (India)

    2016-11-01

    In this article we shall mathematically analyse the Resistor-Capacitor (RC) circuit with the help of Fourier transforms(FT). This very general technique gives us a lot of insight intosolving first order differential equations with source terms dependingon time. In itself, the RC circuit is by far the mostcommonplace entity in modern electronics. But the method ofFT is not the accepted custom for an electronic engineer, whois probably more comfortable working with complex impedancesand phasors while solving problems in network analysis.In fact, what is used much more extensively is the Laplacetransform. But a lot of things, (including the complex impedanceitself, and some insight into complex analysis) can be understoodbetter if we use the FT approach to solve the differentialequations that come up in network analysis. The use of FTcomes smoothly from first principles – precisely what we setout to demonstrate here.

  8. Imaginary angle fractional Fourier transform and its optical implementation

    Institute of Scientific and Technical Information of China (English)

    华建文; 刘立人; 李国强

    1997-01-01

    The concept of imaginary angle fractional Fourier transform is proposed. Its existence and additive operation are proved. With this concept, FRT is expanded to the optical transform of convex lens outside the range of double focal length and that of concave lens.

  9. Digital watermarking for still image based on discrete fractional fourier transform

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Presents a digital watermarking technique based on discrete fractional Fourier transform(DFRFT), discusses the transformation of the original image by DFRFT, and the modification of DFRFT coefficients of the original image by the information of watermark, and concludes from experimental results that the proposed tech nique is robust to lossy compression attack.

  10. A Graphical Presentation to Teach the Concept of the Fourier Transform

    Science.gov (United States)

    Besalu, E.

    2006-01-01

    A study was conducted to visualize the reason why the Fourier transform technique is useful to detect the originating frequencies of a complicated superposition of waves. The findings reveal that students respond well when instructors adapt pictorial presentation to show how the time-domain function is transformed into the frequency domain.

  11. SAW chirp Fourier transform for MB-OFDM UWB receiver

    Institute of Scientific and Technical Information of China (English)

    HE Peng-fei; L(U) Ying-hua; ZHANG Hong-xin; WANG Ye-qiu; XU Yong

    2006-01-01

    In the conventional multiband orthogonal frequency division multiplexing ultra wideband (MB-OFDM UWB )receiver, the fast Fourier transform (FFT) algorithm is realized by the expensive and power-consuming digital signal processor (DSP) chips. In this article, the lower power, lower cost, and lower complexity real-time analog surface acoustic wave (SAW)chirp Fourier transform devices were used to replace the DSP part. A MB-OFDM UWB receiver based on the M-C-M SAW chirp Fourier transform was presented, and the step of signal transformation from input signals was also depicted. The simulation results show that the proposed receiver provides similar bit error performance compared to the fully digital receiver when used in the channel environments proposed by the IEEE 802.15SG3a.

  12. [Analysis of cell arrangements in Biota orientalis using Fourier transformation].

    Science.gov (United States)

    Duo, Hua-Qiong; Wang, Xi-Ming

    2009-10-01

    Fourier transform image-processing technology is applied for determining the cross section cell arrangement of early-wood in Biota orientalis. In this method, the disc-convoluted dot map from each cell radius with 10 pixels is transformed by Fourier transform, generating the angle distribution function in the power spectral pattern. The maximum value is the arrangement of the cell. The results of Fourier transform image-processing technology indicated that the arrangements of the cell of Biota orientalis are 15 degrees in oblique direction, respectively. This method provides a new basis for the digitized identification of the wood, and also the new theoretical research direction for the digitized identification and examination of the wood species.

  13. Electro-Optical Imaging Fourier-Transform Spectrometer

    Science.gov (United States)

    Chao, Tien-Hsin; Zhou, Hanying

    2006-01-01

    An electro-optical (E-O) imaging Fourier-transform spectrometer (IFTS), now under development, is a prototype of improved imaging spectrometers to be used for hyperspectral imaging, especially in the infrared spectral region. Unlike both imaging and non-imaging traditional Fourier-transform spectrometers, the E-O IFTS does not contain any moving parts. Elimination of the moving parts and the associated actuator mechanisms and supporting structures would increase reliability while enabling reductions in size and mass, relative to traditional Fourier-transform spectrometers that offer equivalent capabilities. Elimination of moving parts would also eliminate the vibrations caused by the motions of those parts. Figure 1 schematically depicts a traditional Fourier-transform spectrometer, wherein a critical time delay is varied by translating one the mirrors of a Michelson interferometer. The time-dependent optical output is a periodic representation of the input spectrum. Data characterizing the input spectrum are generated through fast-Fourier-transform (FFT) post-processing of the output in conjunction with the varying time delay.

  14. In situ evaluation of net nitrification rate in Terra rossa soil using a Fourier transform infrared attenuated total reflection 15N tracing technique.

    Science.gov (United States)

    Du, Changwen; Linker, Raphael; Shaviv, Avi; Zhou, Jianmin

    2009-10-01

    Nitrification and mineralization of organic nitrogen (N) are important N transformation processes in soil, and mass spectrometry is a suitable technique for tracing changes of (15)N isotopic species of mineral N and estimating the rates of these processes. However, mass spectrometric methods for tracing N dynamics are costly, time consuming, and require long and laborious preparation procedures. This study investigates mid-infrared attenuated total reflection (ATR) spectroscopy as an alternative method for detecting changes in (14)NO(3)-N and (15)NO(3)-N concentrations. There is a significant shift of the nu(3) absorption band of nitrate according to N species, namely from the 1275 to 1460 cm(-1) region for (14)NO(3)(-) to the 1240-1425 cm(-1) region for (15)NO(3). This shift makes it possible to quantify the N isotopes using multivariate calibration methods. Partial least squares regression (PLSR) models with five factors yielded a determination error of 6.7-9.2 mg N L(-1) for aqueous solutions and 5.9-7.8 mg N kg(-1) (dry soil) for pastes of a Terra rossa soil. These PLSR models were used to monitor the changes of (15)NO(3)-N and (14)NO(3)-N content in the same Terra rossa soil during an incubation experiment in which [(15)NH(4)](2)SO(4) was applied to the soil, allowing the estimation of the contributions of applied N and mineralized N to the net nitrification rate, the potential losses of the applied (15)NH(4)-N, and the net mineralization of soil organic N.

  15. Methods of theme presentation "The Fourier transform of impulse functions"

    Directory of Open Access Journals (Sweden)

    Faniya Ahmetova

    2016-09-01

    Full Text Available The paper considers the Fourier transform of impulse functions, which is the mathematical basis of the tasks associated with the theory of reception and signal conversion in optoelectronic system. The method of calculating of two functions convolution, its Fourier image and the image of the Fourier-Bessel axisymmetric functions are demonstrated in details. A table, which summarizes the analytical expression for the shifted impulse functions and records their Fourier transforms, is provided. A wide range of examples of solving tasks, containing the graphic illustration, is analyzed. A structured approach to the presentation of the material, which combines basic theoretical information and analysis of typical tasks, will help second-year students of optoelectronic specialty in their independent work and homework.

  16. COMPARISON OF FOURIER AND WAVELET TRANSFORMS IN GEOPHYSICAL APPLICATIONS

    Directory of Open Access Journals (Sweden)

    Hakan ALP

    2008-01-01

    Full Text Available In this study, it was compared Fourier Transformation using widely in analysing of geophysics data and image processing and Wavelet Transformation using in image processing, boundary analysis and recently years in use geophysical data analysis. It was applicated and compared two transformations in the both geophysical data and fundamental functions. Then the results obtained were evaluated. In this study it was compared two transformation using earthquake records and Bouger gravity anomalies map of Hatay region geophysical data. At the end of the our study it was clearly seen that wavelet transform can be used by geophysical data analysing.

  17. The Formalization of Discrete Fourier Transform in HOL

    Directory of Open Access Journals (Sweden)

    Zhiping Shi

    2015-01-01

    Full Text Available Traditionally, Discrete Fourier Transform (DFT is performed with numerical or symbolic computation, which cannot guarantee 100% accurate analysis which may be necessary for safety-critical applications. Machine theorem proving is one of the formal methods that perform accurate analysis with completeness to some extent. This paper proposes the formalization of DFT in a higher-order logic theorem prover named HOL. We propose the formal definition of DFT and verify the fundamental properties of DFT. Two case studies are presented to illustrate usefulness and correctness of the formalized DFT, including formal verifications of Fast Fourier Transform (FFT and cosine frequency shift.

  18. Fourier transform infrared spectra applications to chemical systems

    CERN Document Server

    Ferraro, John R

    1985-01-01

    The final and largest volume to complete this four-volume treatise is published in response to the intense commercial and research interest in Fourier Transform Interferometry.Presenting current information from leading experts in the field, Volume 4 introduces new information on, for example, applications of Diffuse Reflectance Spectroscopy in the Far-Infrared Region. The editors place emphasis on surface studies and address advances in Capillary Gas Chromatography - Fourier Transform Interferometry.Volume 4 especially benefits spectroscopists and physicists, as well as researchers

  19. Recording Fractional Fourier Transform Hologram Using Holographic Zone Plate

    Institute of Scientific and Technical Information of China (English)

    高峰; 曾阳素; 张怡霄; 杨静; 高福华; 郭永康

    2002-01-01

    FRTH(fractional Fourier transform hologram) is a new kind of hologram that differs from common Fresnel holograms and Fourier transform holograms. Due to the flexibility of zone plate. A method that uses the -1 order diffraction wave of zone plate as the object wave and the 0 order diffraction wave as the reference wave to record FRTH is presented. It provides a new simple way to record FRTH. In this paper, the theory of achieving FRT and recording FRTH using holographic zone plate is presented and experimental results are given.

  20. Multifractional Fourier Transform Method and Its Applications to Image Encryption

    Institute of Scientific and Technical Information of China (English)

    RANQiwen; WANGQi; MAJing; TANLiying

    2003-01-01

    The multiplicity of the fractional Fourier transform(FRFT),which is intrinsic in any fractional operator,has been claimed by several authors,but never across-the-board developed.Particularly,the weight-type FRFT(WFRFT) has not been investigated.Starting with defining the multifractional Fourier transform (MFRFT),we gained the generalization permutation matrix group (GPMG)representation and multiplicity of the MFRFT,and the relationships among the MFRFT the standard WFRFT and the standard CFRFT.Finally,as a application,a novel image encryption method hased on the MFRFT is propounded.Similation results show that this method is safe,practicable and impactful.

  1. Phase retrieval for attacking fractional Fourier transform encryption.

    Science.gov (United States)

    Kong, Dezhao; Shen, Xueju; Cao, Liangcai; Jin, Guofan

    2017-04-20

    An advanced iterative phase retrieval algorithm is applied to perform a ciphertext-only attack on the fractional Fourier transform-based double random phase encryption system. With the given complex amplitude of ciphertext and definite support of the object image, the original object image can be recovered by estimating the energy of support area in the recovered image. The encryption system can be attacked by analyzing the sensibility of fractional Fourier transform order keys and evaluating the energy of the object image support area. The proposed algorithm can obtain encrypted fractional order and retrieve two random phase keys. Numerical results demonstrate the efficacy of the proposed attacking method.

  2. Fourier-transform and global contrast interferometer alignment methods

    Science.gov (United States)

    Goldberg, Kenneth A.

    2001-01-01

    Interferometric methods are presented to facilitate alignment of image-plane components within an interferometer and for the magnified viewing of interferometer masks in situ. Fourier-transforms are performed on intensity patterns that are detected with the interferometer and are used to calculate pseudo-images of the electric field in the image plane of the test optic where the critical alignment of various components is being performed. Fine alignment is aided by the introduction and optimization of a global contrast parameter that is easily calculated from the Fourier-transform.

  3. Fourier transform infrared spectra applications to chemical systems

    CERN Document Server

    Ferraro, John R

    1978-01-01

    Fourier Transform Infrared Spectroscopy: Applications to Chemical Systems presents the chemical applications of the Fourier transform interferometry (FT-IR).The book contains discussions on the applications of FT-IR in the fields of chromatography FT-IR, polymers and biological macromolecules, emission spectroscopy, matrix isolation, high-pressure interferometry, and far infrared interferometry. The final chapter is devoted to the presentation of the use of FT-IR in solving national technical problems such as air pollution, space exploration, and energy related subjects.Researc

  4. The performance of methods based on the fractional Fourier transform for detecting marine mammal vocalizations.

    Science.gov (United States)

    Locke, Jonathan; White, Paul R

    2011-10-01

    The analysis of cetacean vocalizations is considered using Fourier-based techniques that employ chirp functions in their decomposition. In particular, the paper considers a short-time methods based on the fractional Fourier transform for detecting frequency modulated narrow-band signals, such as dolphin whistles, and compares this to the classical short-time Fourier methods. The fractional Fourier technique explored computes transforms associated with a range of chirp rates and automatically selects the rate for the final analysis. This avoids the need for prior knowledge of signal's chirp rate. An analysis is presented that details the performance of both methods as signal detectors and allows one to determine their detection thresholds. These thresholds are then used to measure the detectability of synthetic signals. This principle is then extended to measure performance on a set of recordings of narrow-band vocalizations from a range of cetacean species.

  5. Fourier transform optical profilometry using fiber optic Lloyd's mirrors.

    Science.gov (United States)

    Kart, Türkay; Kösoğlu, Gülşen; Yüksel, Heba; İnci, Mehmet Naci

    2014-12-10

    A fiber optic Lloyd's mirror assembly is used to obtain various optical interference patterns for the detection of 3D rigid body shapes. Two types of fiber optic Lloyd's systems are used in this work. The first consists of a single-mode optical fiber and a highly reflecting flat mirror to produce bright and dark strips. The second is constructed by locating a single-mode optical fiber in a v-groove, which is formed by two orthogonal flat mirrors to allow the generation of square-type interference patterns for the desired applications. The structured light patterns formed by these two fiber Lloyd's techniques are projected onto 3D objects. Fringe patterns are deformed due to the object's surface topography, which are captured by a digital CCD camera and processed with a Fourier transform technique to accomplish 3D surface topography of the object. It is demonstrated that the fiber-optic Lloyd's technique proposed in this work is more compact, more stable, and easier to configure than other existing surface profilometry systems, since it does not include any high-cost optical tools such as aligners, couplers, or 3D stages. The fringe patterns are observed to be more robust against environmental disturbances such as ambient temperature and vibrations.

  6. Fourier transform Raman approach to structural correlation in hemoglobin derivatives.

    Science.gov (United States)

    Venkatesh, B; Ramasamy, S; Mylrajan, M; Asokan, R; Manoharan, P T; Rifkind, J M

    1999-07-01

    In order to obtain information on the structural aspects of hemoglobin (Hb), Fourier transform Raman (FT-R) measurements on various ferrous, ferric derivatives and nickel reconstituted Hb (NiHb) has been made. FT-R spectra for these derivatives were obtained by laser excitation in the near infrared region (NIR) (1064 nm) whereby the wave-number region (600-1700 cm-1) related to both porphyrin ring modes and some globin modes were monitored. Comparison of various modes was made based on previous resonance Raman (RR) results. The wave-number shifts with respect to changes in oxidation state and spin state are very similar to those observed by RR. Additional bands at 1654, 1459, and 1003 cm-1 for deoxyHb and at 1656, 1454, and 1004 cm-1 for oxy Hb can be correlated to globin modes. The shift in the position of these bands for the binding of oxygen can be related to changes in conformation during the transformation. The presence of two distinct sites in NiHb could be monitored by the use of FT-R technique.

  7. Discrete Fourier Transform Analysis in a Complex Vector Space

    Science.gov (United States)

    Dean, Bruce H.

    2009-01-01

    Alternative computational strategies for the Discrete Fourier Transform (DFT) have been developed using analysis of geometric manifolds. This approach provides a general framework for performing DFT calculations, and suggests a more efficient implementation of the DFT for applications using iterative transform methods, particularly phase retrieval. The DFT can thus be implemented using fewer operations when compared to the usual DFT counterpart. The software decreases the run time of the DFT in certain applications such as phase retrieval that iteratively call the DFT function. The algorithm exploits a special computational approach based on analysis of the DFT as a transformation in a complex vector space. As such, this approach has the potential to realize a DFT computation that approaches N operations versus Nlog(N) operations for the equivalent Fast Fourier Transform (FFT) calculation.

  8. Fourier and Hadamard transform spectrometers - A limited comparison

    Science.gov (United States)

    Tai, M. H.; Harwit, M.

    1976-01-01

    An encoding figure of merit is established for a detector-noise limited Fourier transform spectrometer (FTS) and compared to the comparable figure for a Hadamard transform spectrometer (HTS). The limitation of the Fourier system is partly that it does not truly Fourier analyze the radiation. Instead a cosine squared modulation is imposed on the different spectral frequencies. An additional difficulty is that neither the cosine nor the cosine squared functions form an orthonormal set. This makes the Fellgett's advantage (root-mean-squared figure of merit) for a single detector Michelson interferometer a factor of the square root of (N/8) greater than for a conventional grating instrument - rather than the square root of (N/2). The theoretical limit would be the square root of N.

  9. Degree of conversion of Z250 composite determined by fourier transform infrared spectroscopy: comparison of techniques, storage periods and photo-activation methods

    Directory of Open Access Journals (Sweden)

    Andresa Carla Obici

    2004-12-01

    Full Text Available The purpose of this study was to evaluate the degree of conversion (DC of the Z250 composite, using six photo-activation methods, two storage periods and two preparation techniques of the FTIR specimens (n = 3. For the KBr pellet technique, the composite was placed into a metallic mold and photo-activated as follows: continuous light, exponential light, intermittent light, stepped light, PAC and LED. The measurements were made after 24 h and 20 days. For the resin film technique, approximately 0.07 g of the composite was pressed between two polyester strips, photo-activated as above described and analyzed. The DC was calculated by the standard technique and submitted to ANOVA and Tukey's test (alpha = 5%. Independently of the storage period and specimen preparation technique, there were no significant differences among photo-activation methods. No statistical difference was observed between the time periods used. The specimens analyzed under the KBr pellet technique presented higher DC values than those analyzed by the resin film technique.

  10. SPICA/SAFARI fourier transform spectrometer mechanism evolutionary design

    NARCIS (Netherlands)

    Dool, T.C. van den; Kruizinga, B.; Braam, B.C.; Hamelinck, R.F.M.M.; Loix, N.; Loon, D. van; Dams, J.

    2012-01-01

    TNO, together with its partners, have designed a cryogenic scanning mechanism for use in the SAFARI Fourier Transform Spectrometer (FTS) on board of the SPICA mission. SPICA is one of the M-class missions competing to be launched in ESA's Cosmic Vision Programme in 2022. JAXA leads the development o

  11. Optical correlation based on the fractional Fourier transform.

    Science.gov (United States)

    Granieri, S; Arizaga, R; Sicre, E E

    1997-09-10

    Some properties of optical correlation based on the fractional Fourier transform are analyzed. For a particular set of fractional orders, a filter is obtained that becomes insensitive to scale variations of the object. An optical configuration is also proposed to carry out the fractional correlation in a flexible way, and some experimental results are shown.

  12. Coupling of column liquid chromatography and Fourier transform infrared spectrometry

    NARCIS (Netherlands)

    Somsen, G.W; Gooijer, C; Velthorst, N.H; Brinkman, U.A Th

    1998-01-01

    This paper provides an extensive overview of the literature on the coupling of column liquid chromatography (LC) and Fourier transform infrared spectrometry (FT-IR). Flow-cell-based FT-IR detection and early solvent-elimination interfaces for LC-FT-IR are discussed in brief. A comprehensive descript

  13. Quantum Discrete Fourier Transform in an Ion Trap System

    Institute of Scientific and Technical Information of China (English)

    ZHENG Shi-Biao

    2007-01-01

    We propose two schemes for the implementation of quantum discrete Fourier transform in the ion trap system. In each scheme we design a tunable two-qubit phase gate as the main ingredient. The experimental implementation of the schemes would be an important step toward complex quantum computation in the ion trap system.

  14. Fourier transformation methods in the field of gamma spectrometry

    Indian Academy of Sciences (India)

    A Abdel-Hafiez

    2006-09-01

    The basic principles of a new version of Fourier transformation is presented. This new version was applied to solve some main problems such as smoothing, and denoising in gamma spectroscopy. The mathematical procedures were first tested by simulated data and then by actual experimental data.

  15. Quaternion Fourier transforms for signal and image processing

    CERN Document Server

    Ell, Todd A; Sangwine, Stephen J

    2014-01-01

    Based on updates to signal and image processing technology made in the last two decades, this text examines the most recent research results pertaining to Quaternion Fourier Transforms. QFT is a central component of processing color images and complex valued signals. The book's attention to mathematical concepts, imaging applications, and Matlab compatibility render it an irreplaceable resource for students, scientists, researchers, and engineers.

  16. AN ASYMPTOTIC ORDER OF FOURIER TRANSFORM ON SL(2,R)

    Institute of Scientific and Technical Information of China (English)

    Wang Xinsong; Zheng Weixing

    2003-01-01

    In this paper, a better asymptotic order of Fourier transform on SL(2 ,R) is obtained by using classicalanalysis and Lie analysis comparing with that of [5]、 [6], and the Plancherel theorem on Cc2 (SL (2, R)) isalso obtained as an application.

  17. Chiral Process Monitoring Using Fourier Transform Microwave Spectroscopy

    Science.gov (United States)

    Neill, Justin L.; Muckle, Matt; Pate, Brooks

    2017-06-01

    We present the application of Fourier transform microwave (FTMW) spectroscopy in monitoring the chiral purity of components in a reaction mixture. This is of particular interest due to the increasing use of continuous pharmaceutical manufacturing processes, in which a number of attributes (including the chiral purity of the product) can change on short time scales. Therefore, new techniques that can accomplish this measurement rapidly are desired. The excellent specificity of FTMW spectroscopy, coupled with newly developed techniques for measuring enantiomeric excess in a mixture, have motivated this work. In collaboration with B. Frank Gupton (Virginia Commonwealth University), we are testing this application first with the synthesis of artemisinin. Artemisinin, a common drug for malaria treatment, is of high global health interest and subject to supply shortages, and therefore a strong candidate for continuous manufacturing. It also has moderately high molecular weight (282 amu) and seven chiral centers, making it a good candidate to test the capabilities of FTMW spectroscopy. Using a miniature cavity-enhanced FTMW spectrometer design, we aim to demonstrate selective component quantification in the reaction mixture. Future work that will be needed to fully realize this application will be discussed. R.D. Suenram, J.U. Grabow, A.Zuban, and I.Leonov, Rev. Sci. Instrum. 70, 2127 (1999).

  18. Fourier transform ion cyclotron resonance mass spectrometry: a primer.

    Science.gov (United States)

    Marshall, A G; Hendrickson, C L; Jackson, G S

    1998-01-01

    This review offers an introduction to the principles and generic applications of FT-ICR mass spectrometry, directed to readers with no prior experience with the technique. We are able to explain the fundamental FT-ICR phenomena from a simplified theoretical treatment of ion behavior in idealized magnetic and electric fields. The effects of trapping voltage, trap size and shape, and other nonidealities are manifested mainly as perturbations that preserve the idealized ion behavior modified by appropriate numerical correction factors. Topics include: effect of ion mass, charge, magnetic field, and trapping voltage on ion cyclotron frequency; excitation and detection of ICR signals; mass calibration; mass resolving power and mass accuracy; upper mass limit(s); dynamic range; detection limit, strategies for mass and energy selection for MSn; ion axialization, cooling, and remeasurement; and means for guiding externally formed ions into the ion trap. The relation of FT-ICR MS to other types of Fourier transform spectroscopy and to the Paul (quadrupole) ion trap is described. The article concludes with selected applications, an appendix listing accurate fundamental constants needed for ultrahigh-precision analysis, and an annotated list of selected reviews and primary source publications that describe in further detail various FT-ICR MS techniques and applications.

  19. Single beam Fourier transform digital holographic quantitative phase microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Anand, A., E-mail: arun-nair-in@yahoo.com; Chhaniwal, V. K.; Mahajan, S.; Trivedi, V. [Optics Laboratory, Applied Physics Department, Faculty of Technology and Engineering, M.S. University of Baroda, Vadodara 390001 (India); Faridian, A.; Pedrini, G.; Osten, W. [Institut für Technische Optik, Universität Stuttgart, Pfaffenwaldring 9, 70569 Stuttgart (Germany); Dubey, S. K. [Siemens Technology and Services Pvt. Ltd, Corporate Technology—Research and Technology Centre, Bangalore 560100 (India); Javidi, B. [Department of Electrical and Computer Engineering, U-4157, University of Connecticut, Storrs, Connecticut 06269-2157 (United States)

    2014-03-10

    Quantitative phase contrast microscopy reveals thickness or height information of a biological or technical micro-object under investigation. The information obtained from this process provides a means to study their dynamics. Digital holographic (DH) microscopy is one of the most used, state of the art single-shot quantitative techniques for three dimensional imaging of living cells. Conventional off axis DH microscopy directly provides phase contrast images of the objects. However, this process requires two separate beams and their ratio adjustment for high contrast interference fringes. Also the use of two separate beams may make the system more vulnerable to vibrations. Single beam techniques can overcome these hurdles while remaining compact as well. Here, we describe the development of a single beam DH microscope providing whole field imaging of micro-objects. A hologram of the magnified object projected on to a diffuser co-located with a pinhole is recorded with the use of a commercially available diode laser and an arrayed sensor. A Fourier transform of the recorded hologram directly yields the complex amplitude at the image plane. The method proposed was investigated using various phase objects. It was also used to image the dynamics of human red blood cells in which sub-micrometer level thickness variation were measurable.

  20. Quasi- Chun- Ching Shih's Fractional Fourier Transform with Periodicity of 2,3 and M

    Institute of Scientific and Technical Information of China (English)

    FAN Xi-zhi

    2004-01-01

    Based on Chun-Ching Shih's idea, the basic transform was substituted and the quasi-ChunChing Shih's fractional Fourier transform with periodicity of 2, 3 and M was deduced. The two former transforms and the Chun-Ching Shih's fractional Fourier transform were only the particular cases of quasiChun-Ching Shih's fractional Fourier transform with periodicity of M.

  1. Discrete fourier transform (DFT) analysis for applications using iterative transform methods

    Science.gov (United States)

    Dean, Bruce H. (Inventor)

    2012-01-01

    According to various embodiments, a method is provided for determining aberration data for an optical system. The method comprises collecting a data signal, and generating a pre-transformation algorithm. The data is pre-transformed by multiplying the data with the pre-transformation algorithm. A discrete Fourier transform of the pre-transformed data is performed in an iterative loop. The method further comprises back-transforming the data to generate aberration data.

  2. Fractional Fourier transform-based optical encryption with treble random phase-encoding

    Science.gov (United States)

    Xin, Yi; Tao, Ran; Wang, Yue

    2008-03-01

    We propose a new architecture of optical encryption technique using the fractional Fourier transform with three statistically independent random phase masks. Compared with the existing double-phase encoding method in the fractional Fourier-domain, the proposed extra phase mask in the last fractional Fourier domain makes the architecture symmetrical, and additive processing to the encrypted image can be turned into complex stationary white noise after decryption, and enlarge the key space without any degradation of its robustness to blind decryption. This property can be utilized to improve the quality of the recover image. Simulation results have verified the validity.

  3. A Unified Method of Finding Laplace Transforms, Fourier Transforms, and Fourier Series. [and] An Inversion Method for Laplace Transforms, Fourier Transforms, and Fourier Series. Integral Transforms and Series Expansions. Modules and Monographs in Undergraduate Mathematics and Its Applications Project. UMAP Units 324 and 325.

    Science.gov (United States)

    Grimm, C. A.

    This document contains two units that examine integral transforms and series expansions. In the first module, the user is expected to learn how to use the unified method presented to obtain Laplace transforms, Fourier transforms, complex Fourier series, real Fourier series, and half-range sine series for given piecewise continuous functions. In…

  4. On the finite Fourier transforms of functions with infinite discontinuities

    Directory of Open Access Journals (Sweden)

    Branko Saric

    2002-01-01

    Full Text Available The introductory part of the paper is provided to give a brief review of the stability theory of a matrix pencil for discrete linear time-invariant singular control systems, based on the causal relationship between Jordan's theorem from the theory of Fourier series and Laurent's theorem from the calculus of residues. The main part is concerned with the theory of the integral transforms, which has proved to be a powerful tool in the control systems theory. On the basis of a newly defined notion of the total value of improper integrals, throughout the main part of the paper, an attempt has been made to present the global theory of the integral transforms, which are slightly more general with respect to the Laplace and Fourier transforms. The paper ends with examples by which the results of the theory are verified.

  5. An introduction to Laplace transforms and Fourier series

    CERN Document Server

    Dyke, Phil

    2014-01-01

    Laplace transforms continue to be a very important tool for the engineer, physicist and applied mathematician. They are also now useful to financial, economic and biological modellers as these disciplines become more quantitative. Any problem that has underlying linearity and with solution based on initial values can be expressed as an appropriate differential equation and hence be solved using Laplace transforms. In this book, there is a strong emphasis on application with the necessary mathematical grounding. There are plenty of worked examples with all solutions provided. This enlarged new edition includes generalised Fourier series and a completely new chapter on wavelets. Only knowledge of elementary trigonometry and calculus are required as prerequisites. An Introduction to Laplace Transforms and Fourier Series will be useful for second and third year undergraduate students in engineering, physics or mathematics, as well as for graduates in any discipline such as financial mathematics, econometrics and ...

  6. Ultrafast ranging lidar based on real-time Fourier transformation.

    Science.gov (United States)

    Xia, Haiyun; Zhang, Chunxi

    2009-07-15

    Real-time Fourier-transformation-based ranging lidar using a mode-locked femtosecond fiber laser is demonstrated. The object signal and the reference signal are guided from a fiber Mach-Zehnder interferometer into a dispersive element. The two optical pulses extend and overlap with each other temporally, which yields a microwave pulse on the photodetector with its frequency proportional to the time delay between the two signals. The temporal interferograms are transformed from the time domain into the frequency domain using a time-to-frequency conversion function obtained in the calibration process. The Fourier transform is used in the data processing. A range resolution of 334 nm at a sampling rate of 48.6 MHz over a distance of 16 cm is demonstrated in the laboratory.

  7. The Discrete Fourier Transform on hexagonal remote sensing image

    Science.gov (United States)

    Li, Yalu; Ben, Jin; Wang, Rui; Du, Lingyu

    2016-11-01

    Global discrete grid system will subdivide the earth recursively to form a multi-resolution grid hierarchy with no Overlap and seamless which help build global uniform spatial reference datum and multi-source data processing mode which takes the position as the object and in the aspect of data structure supports the organization, process and analysis of the remote sensing big data. This paper adopts the base transform to realize the mutual transformation of square pixel and hexagonal pixel. This paper designs the corresponding discrete Fourier transform algorithm for any lattice. Finally, the paper show the result of the DFT of the remote sensing image of the hexagonal pixel.

  8. Transfer Functions Via Laplace- And Fourier-Borel Transforms

    Science.gov (United States)

    Can, Sumer; Unal, Aynur

    1991-01-01

    Approach to solution of nonlinear ordinary differential equations involves transfer functions based on recently-introduced Laplace-Borel and Fourier-Borel transforms. Main theorem gives transform of response of nonlinear system as Cauchy product of transfer function and transform of input function of system, together with memory effects. Used to determine responses of electrical circuits containing variable inductances or resistances. Also possibility of doing all noncommutative algebra on computers in such symbolic programming languages as Macsyma, Reduce, PL1, or Lisp. Process of solution organized and possibly simplified by algebraic manipulations reducing integrals in solutions to known or tabulated forms.

  9. A VLSI architecture for simplified arithmetic Fourier transform algorithm

    Science.gov (United States)

    Reed, Irving S.; Shih, Ming-Tang; Truong, T. K.; Hendon, E.; Tufts, D. W.

    1992-01-01

    The arithmetic Fourier transform (AFT) is a number-theoretic approach to Fourier analysis which has been shown to perform competitively with the classical FFT in terms of accuracy, complexity, and speed. Theorems developed in a previous paper for the AFT algorithm are used here to derive the original AFT algorithm which Bruns found in 1903. This is shown to yield an algorithm of less complexity and of improved performance over certain recent AFT algorithms. A VLSI architecture is suggested for this simplified AFT algorithm. This architecture uses a butterfly structure which reduces the number of additions by 25 percent of that used in the direct method.

  10. Reducing aberration effect of Fourier transform lens by modifying Fourier spectrum of diffractive optical element in beam shaping optical system.

    Science.gov (United States)

    Zhang, Fang; Zhu, Jing; Song, Qiang; Yue, Weirui; Liu, Jingdan; Wang, Jian; Situ, Guohai; Huang, Huijie

    2015-10-20

    In general, Fourier transform lenses are considered as ideal in the design algorithms of diffractive optical elements (DOEs). However, the inherent aberrations of a real Fourier transform lens disturb the far field pattern. The difference between the generated pattern and the expected design will impact the system performance. Therefore, a method for modifying the Fourier spectrum of DOEs without introducing other optical elements to reduce the aberration effect of the Fourier transform lens is proposed. By applying this method, beam shaping performance is improved markedly for the optical system with a real Fourier transform lens. The experiments carried out with a commercial Fourier transform lens give evidence for this method. The method is capable of reducing the system complexity as well as improving its performance.

  11. External Second Gate-Fourier Transform Ion Mobility Spectrometry.

    Energy Technology Data Exchange (ETDEWEB)

    Tarver, Edward E., III

    2005-01-01

    Ion mobility spectrometry (IMS) is recognized as one of the most sensitive and versatile techniques for the detection of trace levels of organic vapors. IMS is widely used for detecting contraband narcotics, explosives, toxic industrial compounds and chemical warfare agents. Increasing threat of terrorist attacks, the proliferation of narcotics, Chemical Weapons Convention treaty verification as well as humanitarian de-mining efforts has mandated that equal importance be placed on the analysis time as well as the quality of the analytical data. (1) IMS is unrivaled when both speed of response and sensitivity has to be considered. (2) With conventional (signal averaging) IMS systems the number of available ions contributing to the measured signal to less than 1%. Furthermore, the signal averaging process incorporates scan-to-scan variations decreasing resolution. With external second gate Fourier Transform ion mobility spectrometry (FT-IMS), the entrance gate frequency is variable and can be altered in conjunction with other data acquisition parameters to increase the spectral resolution. The FT-IMS entrance gate operates with a 50% duty cycle and so affords a 7 to 10-fold increase in sensitivity. Recent data on high explosives are presented to demonstrate the parametric optimization in sensitivity and resolution of our system.

  12. Online Botnet Detection Based on Incremental Discrete Fourier Transform

    Directory of Open Access Journals (Sweden)

    Xiaocong Yu

    2010-05-01

    Full Text Available Botnet detection has attracted lots of attention since botnet attack is becoming one of the most serious threats on the Internet. But little work has considered the online detection. In this paper, we propose a novel approach that can monitor the botnet activities in an online way. We define the concept of “feature streams” to describe raw network traffic. If some feature streams show high similarities, the corresponding hosts will be regarded as suspected bots which will be added into the suspected bot hosts set. After activity analysis, bot hosts will be confirmed as soon as possible. We present a simple method by computing the average Euclidean distance for similarity measurement.  To avoid huge calculation among feature streams, classical Discrete Fourier Transform (DFT technique is adopted. Then an incremental calculation of DFT coefficients is introduced to obtain the optimal execution time. The experimental evaluations show that our approach can detect both centralized and distributed botnet activities successfully with high efficiency and low false positive rate.

  13. Fourier Transform Infrared Spectroscopy and Photoacoustic Spectroscopy for Saliva Analysis.

    Science.gov (United States)

    Mikkonen, Jopi J W; Raittila, Jussi; Rieppo, Lassi; Lappalainen, Reijo; Kullaa, Arja M; Myllymaa, Sami

    2016-09-01

    Saliva provides a valuable tool for assessing oral and systemic diseases, but concentrations of salivary components are very small, calling the need for precise analysis methods. In this work, Fourier transform infrared (FT-IR) spectroscopy using transmission and photoacoustic (PA) modes were compared for quantitative analysis of saliva. The performance of these techniques was compared with a calibration series. The linearity of spectrum output was verified by using albumin-thiocyanate (SCN(-)) solution at different SCN(-) concentrations. Saliva samples used as a comparison were obtained from healthy subjects. Saliva droplets of 15 µL were applied on the silicon sample substrate, 6 drops for each specimen, and dried at 37 ℃ overnight. The measurements were carried out using an FT-IR spectrometer in conjunction with an accessory unit for PA measurements. The findings with both transmission and PA modes mirror each other. The major bands presented were 1500-1750 cm(-1) for proteins and 1050-1200 cm(-1) for carbohydrates. In addition, the distinct spectral band at 2050 cm(-1) derives from SCN(-) anions, which is converted by salivary peroxidases to hypothiocyanate (OSCN(-)). The correlation between the spectroscopic data with SCN(-) concentration (r > 0.990 for transmission and r = 0.967 for PA mode) was found to be significant (P < 0.01), thus promising to be utilized in future applications.

  14. Three-dimensional radiative transfer using a Fourier-transform matrix-operator method

    Science.gov (United States)

    Martonchik, J. V.; Diner, D. J.

    1985-01-01

    The three-dimensional equation of transfer for a scattering medium with planar geometry is solved by using a spatial Fourier transform and extending matrix-operator techniques developed previously for the one-dimensional equation. Doubling and adding algorithms were derived by means of an interaction principle for computing the Fourier-transformed radiation field. The resulting expressions fully describe the radiative transfer process in a scattering medium, inhomogeneous in the x-, y- and z-directions, illuminated from above by an arbitrarily general intensity field and bounded from below by a surface with completely general reflection properties.

  15. Estimation of structural modal parameters by fourier transform with an optimal window

    Institute of Scientific and Technical Information of China (English)

    ZHU Hong-ping; WAN Xin-hua

    2005-01-01

    An adaptive Fourier Transform (FT) with an optimal window has been proposed for the time-frequency analysis of nonstationary time series. The method allows for a good estimation of both frequency and amplitude of the spectrum and can be easily applied to the general case of time-varying signals. The evaluation of the proposed approach has been performed on measured time-varying signals from a suspension bridge model and a steel frame model whose data have the typical non-stationary characteristics. The numerical results show that the proposed approach can overcome some of the difficulties encountered in the classic Fourier transform technique and can achieve higher computation accuracy.

  16. Local structure information by EXAFS analysis using two algorithms for Fourier transform calculation

    Energy Technology Data Exchange (ETDEWEB)

    Aldea, N; Pintea, S; Rednic, V [National Institute for Research and Development of Isotopic and Molecular Technologies, 65-103 Donath, 400293 Cluj-Napoca (Romania); Matei, F [University of Agricultural Sciences and Veterinary Medicine, 3-5 Calea Manastur, 400372 Cluj-Napoca (Romania); Hu Tiandou; Xie Yaning, E-mail: nicolae.aldea@itim-cj.r [Beijing Synchrotron Radiation Facilities of Beijing Electron Positron Collider National Laboratory (China)

    2009-08-01

    The present work is a comparison study between different algorithms of Fourier transform for obtaining very accurate local structure results using Extended X-ray Absorption Fine Structure technique. In this paper we focus on the local structural characteristics of supported nickel catalysts and Fe{sub 3}O{sub 4} core-shell nanocomposites. The radial distribution function could be efficiently calculated by the fast Fourier transform when the coordination shells are well separated while the Filon quadrature gave remarkable results for close-shell coordination.

  17. Subpixel translation of MEMS measured by discrete fourier transform analysis of CCD images

    NARCIS (Netherlands)

    Yamahata, C.; Sarajlic, Edin; Stranczl, M.; Krijnen, Gijsbertus J.M.; Gijs, M.A.M.

    2011-01-01

    We present a straightforward method for measuring in-plane linear displacements of microelectromechanical systems (MEMS) with subnanometer resolution. The technique is based on Fourier transform analysis of a video recorded with a Charge-Coupled Device (CCD) camera attached to an optical microscope

  18. Subpixel translation of MEMS measured by discrete fourier transform analysis of CCD images

    NARCIS (Netherlands)

    Yamahata, C.; Sarajlic, E.; Stranczl, M.; Krijnen, G.J.M.; Gijs, M.A.M.

    2011-01-01

    We present a straightforward method for measuring in-plane linear displacements of microelectromechanical systems (MEMS) with subnanometer resolution. The technique is based on Fourier transform analysis of a video recorded with a Charge-Coupled Device (CCD) camera attached to an optical microscope

  19. Fourier Transform Moire Deflectometry for Measuring the 3-D Temperature Field

    Institute of Scientific and Technical Information of China (English)

    MA Li; WANG Ming; LIU Song; QI Xiaopin

    2000-01-01

    Fourier transform evaluation of fringe phase is applied to Moire deflectometry. 3-D gas temperature distribution for a given layer is reconstructed by optical tomography. The results show that the high-precise and automatic measurement for the 3-D gas temperature field can be realized by this technique.

  20. The Kinetics of Mo(Co)6 Substitution Monitored by Fourier Transform Infrared Spectrophotometry.

    Science.gov (United States)

    Suslick, Kenneth S.; And Others

    1987-01-01

    Describes a physical chemistry experiment that uses Fourier transform (FTIR) spectrometers and microcomputers as a way of introducing students to the spectral storage and manipulation techniques associated with digitized data. It can be used to illustrate FTIR spectroscopy, simple kinetics, inorganic mechanisms, and Beer's Law. (TW)

  1. Measurement of Microscopic Deformations Using Double-Exposure Holographic Interferometry and the Fourier Transform Method

    Directory of Open Access Journals (Sweden)

    Percival Almoro

    1998-12-01

    Full Text Available Microscopic deformations on the surface of a circular diaphragm were measured using double exposure holographic interferometry and Fourier transform method (FTM. The three-dimensional surface deformations were successfully visualized by applying FTM to holographic interferogram analysis. The minimum surface displacement measured was 0.317 µm. This was calibrated via the Michelson interferometry technique.

  2. Image encryption based on the reality-preserving multiple-parameter fractional Fourier transform

    Science.gov (United States)

    Lang, Jun

    2012-05-01

    In recent years, a number of methods have been proposed in the literature for the encryption of two-dimensional information by using the fractional Fourier transform, but most of their encryptions are complex values and need digital hologram technique to record information, which is inconvenient for digital transmission. In this paper, we propose a new approach for image encryption based on the real-valuedness and decorrelation property of the reality-preserving multiple-parameter fractional Fourier transform in order to meet the requirements of the secure image transmission. In the proposed scheme, the original and encrypted images are respectively in the spatial domain and the reality-preserving multiple-parameter fractional Fourier transformed domain determined by the encryption keys. Numerical simulations are performed to demonstrate that the proposed method is reliable and more robust to blind decryption than several existing methods.

  3. Fractional Fourier Transform for Ultrasonic Chirplet Signal Decomposition

    Directory of Open Access Journals (Sweden)

    Yufeng Lu

    2012-01-01

    Full Text Available A fractional fourier transform (FrFT based chirplet signal decomposition (FrFT-CSD algorithm is proposed to analyze ultrasonic signals for NDE applications. Particularly, this method is utilized to isolate dominant chirplet echoes for successive steps in signal decomposition and parameter estimation. FrFT rotates the signal with an optimal transform order. The search of optimal transform order is conducted by determining the highest kurtosis value of the signal in the transformed domain. A simulation study reveals the relationship among the kurtosis, the transform order of FrFT, and the chirp rate parameter in the simulated ultrasonic echoes. Benchmark and ultrasonic experimental data are used to evaluate the FrFT-CSD algorithm. Signal processing results show that FrFT-CSD not only reconstructs signal successfully, but also characterizes echoes and estimates echo parameters accurately. This study has a broad range of applications of importance in signal detection, estimation, and pattern recognition.

  4. Prediction of Tide Height Using the Discrete Fourier Transform

    Directory of Open Access Journals (Sweden)

    Md. Towhiduzzaman

    2016-12-01

    Full Text Available In this study, I have investigated some aspects of astronomical tide and predicted tide time and height by different methods. This thesis deals with the prediction of height and time for both high and low waters of the ports set up in several places by discrete Fourier transform. I computed the tide height using Discrete Fourier Transform (DFT. The results are found to be in an agreement with the predicted data of others. By this work, we can predict the tide height of overall stations if the sample observed data are available for any kind of stations. I think that my work could be helpful to predict the tides over all stations where the observed data are available.

  5. A simple scanning mirror mechanism for a Fourier transform spectrometer

    Science.gov (United States)

    Brasunas, John C.; Cushman, G. Mark

    1998-04-01

    We present a simple scanning mirror mechanism for a Fourier transform spectrometer, consisting of a voice coil actuator, a ball-bearing slide, and a single cube corner mirror or retroreflector. The use of a single cube corner reduces significantly the sensitivity of the Fourier transform spectrometer to the tilt of its moving mirror, enabling the simple mechanism. With simple velocity feedback using a linear velocity transducer, we achieve a scan speed stability of 2%-5% (root-mean-square) for scan speeds from 40 to 440 μm/s for a travel of 2.2 cm, corresponding to a spectral resolution of 0.06 cm-1. Fringe amplitude stability is about 5%. This scan mechanism was operated at standard temperature and pressure, but the relatively minute amount of lubricant in the ball-bearing slide may indicate possible operation under vacuum and/or cryogenic conditions.

  6. Implementing quantum Fourier transform with integrated photonic devices

    Science.gov (United States)

    Tabia, Gelo Noel

    2014-03-01

    Many quantum algorithms that exhibit exponential speedup over their classical counterparts employ the quantum Fourier transform, which is used to solve interesting problems such as prime factorization. Meanwhile, nonclassical interference of single photons achieved on integrated platforms holds the promise of achieving large-scale quantum computation with multiport devices. An optical multiport device can be built to realize any quantum circuit as a sequence of unitary operations performed by beam splitters and phase shifters on path-encoded qudits. In this talk, I will present a recursive scheme for implementing quantum Fourier transform with a multimode interference photonic integrated circuit. Research at Perimeter Institute is supported by the Government of Canada through Industry Canada and by the Province of Ontario through the Ministry of Research and Innovation.

  7. Perfect vortex beam: Fourier transformation of a Bessel beam.

    Science.gov (United States)

    Vaity, Pravin; Rusch, Leslie

    2015-02-15

    We derive a mathematical description of a perfect vortex beam as the Fourier transformation of a Bessel beam. Building on this development, we experimentally generate Bessel-Gauss beams of different orders and Fourier transform them to form perfect vortex beams. By controlling the radial wave vector of a Bessel-Gauss beam, we can control the ring radius of the generated beam. Our theoretical predictions match with the experimental results and also provide an explanation for previous published works. We find the perfect vortex resembles that of an orbital angular momentum (OAM) mode supported in annular profiled waveguides. Our prefect vortex beam generation method can be used to excite OAM modes in an annular core fiber.

  8. Multiparty Quantum Secret Sharing Using Quantum Fourier Transform

    Institute of Scientific and Technical Information of China (English)

    HUANG Da-Zu; CHEN Zhi-Gang; GUO Ying

    2009-01-01

    A (n, n )-threshold scheme of multiparty quantum secret sharing of classical or quantum message is proposed based on the discrete quantum Fourier transform.In our proposed scheme, the secret message, which is encoded by using the forward quantum Fourier transform and decoded by using the reverse, is split and shared in such a way that it can be reconstructed among them only if all the participants work in concert.Furthermore, we also discuss how this protocol must be carefully designed for correcting errors and checking eavesdropping or a dishonest participant.Security analysis shows that our scheme is secure.Also, this scheme has an advantage that it is completely compatible with quantum computation and easier to realize in the distributed quantum secure computation.

  9. On the Fourier transform of the greatest common divisor

    CERN Document Server

    van der Kamp, Peter H

    2012-01-01

    The discrete Fourier transform of the greatest common divisor is a multiplicative function that generalises both the gcd-sum function and Euler's totient function. On the one hand it is the Dirichlet convolution of the identity with Ramanujan's sum, and on the other hand it can be written as a generalised convolution product of the identity with the totient function. We show that this arithmetic function of two integers (a,m) counts the number of elements in the set of ordered pairs (i,j) such that i*j is equivalent to a modulo m. Furthermore we generalise a dozen known identities for the totient function, to identities which involve the discrete Fourier transform of the greatest common divisor, including its partial sums, and its Lambert series.

  10. Scalable Fourier transform system for instantly structured illumination in lithography.

    Science.gov (United States)

    Ye, Yan; Xu, Fengchuan; Wei, Guojun; Xu, Yishen; Pu, Donglin; Chen, Linsen; Huang, Zhiwei

    2017-05-15

    We report the development of a unique scalable Fourier transform 4-f system for instantly structured illumination in lithography. In the 4-f system, coupled with a 1-D grating and a phase retarder, the ±1st order of diffracted light from the grating serve as coherent incident sources for creating interference patterns on the image plane. By adjusting the grating and the phase retarder, the interference fringes with consecutive frequencies, as well as their orientations and phase shifts, can be generated instantly within a constant interference area. We demonstrate that by adapting this scalable Fourier transform system into lithography, the pixelated nano-fringe arrays with arbitrary frequencies and orientations can be dynamically produced in the photoresist with high variation resolution, suggesting its promising application for large-area functional materials based on space-variant nanostructures in lithography.

  11. On-chip photonic Fourier transform with surface plasmon polaritons

    Institute of Scientific and Technical Information of China (English)

    Shan Shan Kou; Guanghui Yuan; Qian wang; Luping Du; Eugeniu Balaur; Daohua Zhang; Dingyuan Tang

    2016-01-01

    The Fourier transform (FT),a cornerstone of optical processing,enables rapid evaluation of fundamental mathematical operations,such as derivatives and integrals.Conventionally,a converging lens performs an optical FT in free space when light passes through it.The speed of the transformation is limited by the thickness and the focal length of the lens.By usingthe wave nature of surface plasmon polaritons (SPPs),here we demonstrate that the FT can be implemented in a planar configuration with a minimal propagation distance of around 10 μm,resulting in an increase of speed by four to five orders of magnitude.The photonic FT was tested by synthesizing intricate SPP waves with their Fourier components.The reduced dimensionality in the minuscule device allows the future development of an ultrafast on-chip photonic information processing platform for large-scale optical computing.

  12. Matrix-Vector Based Fast Fourier Transformations on SDR Architectures

    Directory of Open Access Journals (Sweden)

    Y. He

    2008-05-01

    Full Text Available Today Discrete Fourier Transforms (DFTs are applied in various radio standards based on OFDM (Orthogonal Frequency Division Multiplex. It is important to gain a fast computational speed for the DFT, which is usually achieved by using specialized Fast Fourier Transform (FFT engines. However, in face of the Software Defined Radio (SDR development, more general (parallel processor architectures are often desirable, which are not tailored to FFT computations. Therefore, alternative approaches are required to reduce the complexity of the DFT. Starting from a matrix-vector based description of the FFT idea, we will present different factorizations of the DFT matrix, which allow a reduction of the complexity that lies between the original DFT and the minimum FFT complexity. The computational complexities of these factorizations and their suitability for implementation on different processor architectures are investigated.

  13. Time-frequency representation measurement based on temporal Fourier transformation

    Science.gov (United States)

    Suen, Yifan; Xiao, Shaoqiu; Hao, Sumin; Zhao, Xiaoxiang; Xiong, Yigao; Liu, Shenye

    2016-10-01

    We propose a new scheme to physically realize the short-time Fourier transform (STFT) of chirped optical pulse using time-lens array that enables us to get time-frequency representation without using FFT algorithm. The time-lens based upon the four-wave mixing is used to perform the process of temporal Fourier transformation. Pump pulse is used for both providing the quadratic phase and being the window function of STFT. The idea of STFT is physically realized in our scheme. Simulations have been done to investigate performance of the time-frequency representation scheme (TFRS) in comparison with STFT using FFT algorithm. Optimal measurement of resolution in time and frequency has been discussed.

  14. Perspective: The first ten years of broadband chirped pulse Fourier transform microwave spectroscopy

    Science.gov (United States)

    Park, G. Barratt; Field, Robert W.

    2016-05-01

    Since its invention in 2006, the broadband chirped pulse Fourier transform spectrometer has transformed the field of microwave spectroscopy. The technique enables the collection of a ≥10 GHz bandwidth spectrum in a single shot of the spectrometer, which allows broadband, high-resolution microwave spectra to be acquired several orders of magnitude faster than what was previously possible. We discuss the advantages and challenges associated with the technique and look back on the first ten years of chirped pulse Fourier transform spectroscopy. In addition to enabling faster-than-ever structure determination of increasingly complex species, the technique has given rise to an assortment of entirely new classes of experiments, ranging from chiral sensing by three-wave mixing to microwave detection of multichannel reaction kinetics. However, this is only the beginning. Future generations of microwave experiments will make increasingly creative use of frequency-agile pulse sequences for the coherent manipulation and interrogation of molecular dynamics.

  15. Perspective: The first ten years of broadband chirped pulse Fourier transform microwave spectroscopy.

    Science.gov (United States)

    Park, G Barratt; Field, Robert W

    2016-05-28

    Since its invention in 2006, the broadband chirped pulse Fourier transform spectrometer has transformed the field of microwave spectroscopy. The technique enables the collection of a ≥10 GHz bandwidth spectrum in a single shot of the spectrometer, which allows broadband, high-resolution microwave spectra to be acquired several orders of magnitude faster than what was previously possible. We discuss the advantages and challenges associated with the technique and look back on the first ten years of chirped pulse Fourier transform spectroscopy. In addition to enabling faster-than-ever structure determination of increasingly complex species, the technique has given rise to an assortment of entirely new classes of experiments, ranging from chiral sensing by three-wave mixing to microwave detection of multichannel reaction kinetics. However, this is only the beginning. Future generations of microwave experiments will make increasingly creative use of frequency-agile pulse sequences for the coherent manipulation and interrogation of molecular dynamics.

  16. Magnetic suspension based Fourier Transform Infrared Spectrometer mechanism (FTIS)

    Science.gov (United States)

    Köker, Ingo; Langenbach, Harald; Schmid, Manfred; Lautier, Jean-Michel

    2005-07-01

    In the frame of an ESTEC technology contract the development of a Magnetically Suspended Fourier Transform Spectrometer Mechanism (FTIS) was carried out. The aim of the development is to avoid the issues found in mechanically suspended systems and to provide an active alignment and disturbance rejection capability for spectrometer applications. In the frame of FTIS an actively controlled suspension system based on the use of magnetic bearings was defined, developed and built as a demonstration model.

  17. Homology of balanced complexes via the Fourier transform

    CERN Document Server

    Meshulam, Roy

    2011-01-01

    Let G_0,...,G_k be finite abelian groups and let G_0*...*G_k be the join of the 0-dimensional complexes G_i. We give a characterization of the integral k-coboundaries of subcomplexes of G_0*...*G_k in terms of the Fourier transform on the group G_0 \\times ... \\times G_k. This leads to an extension of a recent result of Musiker and Reiner on a topological interpretation of the cyclotomic polynomial.

  18. 10th International Conference on Progress in Fourier Transform Spectroscopy

    CERN Document Server

    Keresztury, Gábor; Kellner, Robert

    1997-01-01

    19 plenary lectures and 203 poster papers presented at the 10th International Conference of Fourier Transform Spectroscopy in Budapest 1995 give an overview on the state-of-the art of this technology and its wide range of applications. The reader will get information on any aspects of FTS including the latest instrumental developments, e.g. in diode array detection, time resolution FTS, microscopy and spectral mapping, double modulation and two-dimensional FTS.

  19. Scaled Fractional Fourier Transform for Partially Coherent Beams

    Institute of Scientific and Technical Information of China (English)

    蔡阳健; 林强

    2003-01-01

    The definition of scaled fractional Fourier transform (SFRT) is extended to partially coherent beams based directly on the cross-spectral density. Based on this formula, an equivalent tensor ABCD law for the SFRT of partially coherent twisted anisotropic Gaussian-Schell model beams is derived. The derived formulae provide a powerful tool for analysing and calculating the SFRT of partially coherent beams. An application example is provided.

  20. Entangled Fractional Fourier Transform for the Multipartite Entangled State Representation

    Institute of Scientific and Technical Information of China (English)

    QIAN Xiao-Qing; SONG Tong-Qiang

    2006-01-01

    We deduce entangled fractional Fourier transformation (EFFT) for the multipartite entangled state representation, which was newly constructed with two mutually conjugate n-mode entangled states of continuum variables in n-mode Fock space. We establish a formalism of EFFT for quantum mechanical wave functions, which provides us a convenient way to derive some wave functions. We find that the eigenmode of EFFT is different from the usual Hermite Polynomials. We also derive the EFFT of the n-mode squeezed state.

  1. CONCURRENT SPEECHES SEPARATION USING WRAPPED DISCRETE FOURIER TRANSFORM

    Institute of Scientific and Technical Information of China (English)

    Zhang Xichun; Li Yunjie; Zhang Jun; Wei Gang

    2005-01-01

    This letter proposes a new method for concurrent voiced speech separation. Firstly the Wrapped Discrete Fourier Transform (WDFT) is used to decompose the harmonic spectra of the mixed speeches. Then the individual speech is reconstructed by using the sinusoidal speech model. By taking advantage of the non-uniform frequency resolution of WDFT, harmonic spectra parameters can be estimated and separated accurately. Experimental results on mixed vowels separation show that the proposed method can recover the original speeches effectively.

  2. Mass spectral peak distortion due to Fourier transform signal processing.

    Science.gov (United States)

    Rockwood, Alan L; Erve, John C L

    2014-12-01

    Distortions of peaks can occur when one uses the standard method of signal processing of data from the Orbitrap and other FT-based methods of mass spectrometry. These distortions arise because the standard method of signal processing is not a linear process. If one adds two or more functions, such as time-dependent signals from a Fourier transform mass spectrometer and performs a linear operation on the sum, the result is the same as if the operation was performed on separate functions and the results added. If this relationship is not valid, the operation is non-linear and can produce unexpected and/or distorted results. Although the Fourier transform itself is a linear operator, the standard algorithm for processing spectra in Fourier transform-based methods include non-linear mathematical operators such that spectra processed by the standard algorithm may become distorted. The most serious consequence is that apparent abundances of the peaks in the spectrum may be incorrect. In light of these considerations, we performed theoretical modeling studies to illustrate several distortion effects that can be observed, including abundance distortions. In addition, we discuss experimental systems where these effects may manifest, including suggested systems for study that should demonstrate these peak distortions. Finally, we point to several examples in the literature where peak distortions may be rationalized by the phenomena presented here.

  3. [Continuum based fast Fourier transform processing of infrared spectrum].

    Science.gov (United States)

    Liu, Qing-Jie; Lin, Qi-Zhong; Wang, Qin-Jun; Li, Hui; Li, Shuai

    2009-12-01

    To recognize ground objects with infrared spectrum, high frequency noise removing is one of the most important phases in spectrum feature analysis and extraction. A new method for infrared spectrum preprocessing was given combining spectrum continuum processing and Fast Fourier Transform (CFFT). Continuum was firstly removed from the noise polluted infrared spectrum to standardize hyper-spectra. Then the spectrum was transformed into frequency domain (FD) with fast Fourier transform (FFT), separating noise information from target information After noise eliminating from useful information with a low-pass filter, the filtered FD spectrum was transformed into time domain (TD) with fast Fourier inverse transform. Finally the continuum was recovered to the spectrum, and the filtered infrared spectrum was achieved. Experiment was performed for chlorite spectrum in USGS polluted with two kinds of simulated white noise to validate the filtering ability of CFFT by contrast with cubic function of five point (CFFP) in time domain and traditional FFT in frequency domain. A circle of CFFP has limited filtering effect, so it should work much with more circles and consume more time to achieve better filtering result. As for conventional FFT, Gibbs phenomenon has great effect on preprocessing result at edge bands because of special character of rock or mineral spectra, while works well at middle bands. Mean squared error of CFFT is 0. 000 012 336 with cut-off frequency of 150, while that of FFT and CFFP is 0. 000 061 074 with cut-off frequency of 150 and 0.000 022 963 with 150 working circles respectively. Besides the filtering result of CFFT can be improved by adjusting the filter cut-off frequency, and has little effect on working time. The CFFT method overcomes the Gibbs problem of FFT in spectrum filtering, and can be more convenient, dependable, and effective than traditional TD filter methods.

  4. Time-Frequency Signal Processing Based on Fractional Fourier Transform in Passive Sonar Classification

    Directory of Open Access Journals (Sweden)

    Vahid Bagheri

    2014-11-01

    Full Text Available This paper introduce a new data SONAR classification method based on Short-Time Fractional Fourier Transform (STFrFT analysis. The passive SONAR system receives the acoustic signals radiated by vessels and attempts to categorize them as a function of the similarities between vessels of the same class.Here, a time-frequency processing and feature extraction method is developed in order to improve the performance of a feedforwardneural network, which is used to classify five classes of vessels.Processing of time-varying signals in fractional fourier domain allows us to estimate the signal with higher concentration than conventional fourier domain, making the technique robust against additive noise, maintaining same computational complexity. With the purpose of dimension reduction and classification improvement, we use Linear Discriminant Analysis (LDA technique. The feasibility of the proposed technique (STFrFTLDA has been tested experimentally using a real database. The experimental results show the superiority of the proposed method

  5. A Fourier transform infrared trace gas analyser for atmospheric applications

    Directory of Open Access Journals (Sweden)

    D. W. T. Griffith

    2012-05-01

    Full Text Available Concern in recent decades about human impacts on Earth's climate has led to the need for improved and expanded measurement capabilities for greenhouse gases in the atmosphere. In this paper we describe in detail an in situ trace gas analyser based on Fourier Transform Infrared (FTIR spectroscopy that is capable of simultaneous and continuous measurements of carbon dioxide (CO2, methane (CH4, carbon monoxide (CO, nitrous oxide (N2O and 13C in CO2 in air with high precision and accuracy. Stable water isotopes can also be measured in undried airstreams. The analyser is automated and allows unattended operation with minimal operator intervention. Precision and accuracy meet and exceed the compatibility targets set by the World Meteorological Organisation – Global Atmosphere Watch Programme for baseline measurements in the unpolluted troposphere for all species except 13C in CO2.

    The analyser is mobile and well suited to fixed sites, tower measurements, mobile platforms and campaign-based measurements. The isotopic specificity of the optically-based technique and analysis allows application of the analyser in isotopic tracer experiments, for example 13C in CO2 and 15N in N2O. We review a number of applications illustrating use of the analyser in clean air monitoring, micrometeorological flux and tower measurements, mobile measurements on a train, and soil flux chamber measurements.

  6. Improved Spectral Representation for Birdcall Based on Fractional Fourier Transform

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    A novel spectral representation based on fractional Fourier transform (FrFT) is proposed and applied to birdcall analysis. The FrFT-based spectrogram of a signal is derived and compared with its FT-based counterpart, and the spectrum gathering method is used to show the energy distribution related to the pitch frequency. The fixed transform order and adaptive orders for FrFT are tested. The fixed order can be obtained empirically or calculated according to the known chirp rate. The adaptive optimal orders are determined by using ambiguity function. Experimental results with birdcalls show that the FrFT-based spectrogram with an optimal transform order has higher resolution than its STFT-based counterpart, and the better performance can be achieved if adaptive orders are used.

  7. Partial differential equation transform - Variational formulation and Fourier analysis.

    Science.gov (United States)

    Wang, Yang; Wei, Guo-Wei; Yang, Siyang

    2011-12-01

    Nonlinear partial differential equation (PDE) models are established approaches for image/signal processing, data analysis and surface construction. Most previous geometric PDEs are utilized as low-pass filters which give rise to image trend information. In an earlier work, we introduced mode decomposition evolution equations (MoDEEs), which behave like high-pass filters and are able to systematically provide intrinsic mode functions (IMFs) of signals and images. Due to their tunable time-frequency localization and perfect reconstruction, the operation of MoDEEs is called a PDE transform. By appropriate selection of PDE transform parameters, we can tune IMFs into trends, edges, textures, noise etc., which can be further utilized in the secondary processing for various purposes. This work introduces the variational formulation, performs the Fourier analysis, and conducts biomedical and biological applications of the proposed PDE transform. The variational formulation offers an algorithm to incorporate two image functions and two sets of low-pass PDE operators in the total energy functional. Two low-pass PDE operators have different signs, leading to energy disparity, while a coupling term, acting as a relative fidelity of two image functions, is introduced to reduce the disparity of two energy components. We construct variational PDE transforms by using Euler-Lagrange equation and artificial time propagation. Fourier analysis of a simplified PDE transform is presented to shed light on the filter properties of high order PDE transforms. Such an analysis also offers insight on the parameter selection of the PDE transform. The proposed PDE transform algorithm is validated by numerous benchmark tests. In one selected challenging example, we illustrate the ability of PDE transform to separate two adjacent frequencies of sin(x) and sin(1.1x). Such an ability is due to PDE transform's controllable frequency localization obtained by adjusting the order of PDEs. The

  8. Numerical Analysis of Inhomogeneous Dielectric Waveguide Using Periodic Fourier Transform

    Directory of Open Access Journals (Sweden)

    M. Moradian

    2007-01-01

    Full Text Available A general method is introduced to obtain the propagation constants of the inhomogeneous dielectric waveguide. The periodic Fourier transform is applied to the normalized Maxwell's equations and makes the field components periodic. Then they are expanded in Fourier series. Finally, the trapezoidal rule is applied to approximate the convolution integral which leads to a set of coupled second-order differential equations that can be solved as an eigenvalue-eigenvector problem. The normalized propagation constant can be obtained as the square roots of the eigenvalues of the coefficient matrices. The proposed method is applied to the dielectric waveguide with a two-layered dielectric profile in the transverse direction, and the first four-confined TE modes are obtained. The propagation constants for the mentioned dielectric waveguide are also derived analytically and are then compared with those derived by the proposed method. Comparison of results shows the efficacy of the proposed method.

  9. A transformada de Fourier em basic The Fourier transform (FFT in basic

    Directory of Open Access Journals (Sweden)

    Mauricio Gomes Constantino

    2000-06-01

    Full Text Available In this paper we describe three computer programs in Basic language about the Fourier transform (FFT which are available in the Internet site http://artemis.ffclrp.usp.br/SoftwareE.htm (in English or http://artemis.ffclrp.usp.br/softwareP.htm (in Portuguese since October 1998. Those are addresses to the Web Page of our Laboratory of Organic Synthesis. The programs can be downloaded and used by anyone who is interested on the subject. The texts, menus and captions in the programs are written in English.

  10. Ion collision cross section measurements in Fourier transform-based mass analyzers.

    Science.gov (United States)

    Li, Dayu; Tang, Yang; Xu, Wei

    2016-06-01

    With the increasing demands of molecular structure analysis, several methods have been developed to measure ion collision cross sections within Fourier transform (FT) based mass analyzers. Particularly in the recent three years since 2012, the method of obtaining biomolecule collision cross sections was achieved in Fourier transform ion cyclotron resonance (FT-ICR) cells. Furthermore, similar methods have been realized or proposed for orbitraps and quadrupole ion traps. This technique adds a new ion structure analysis capability to FT-based mass analyzers. By providing complementary ion structure information, it could be used together with tandem mass spectrometry and ion mobility spectroscopy techniques. Although many questions and challenges remain, this technique potentially would greatly enhance the ion structure analysis capability of a mass spectrometer, and provide a new tool for chemists and biochemists.

  11. Experimental determination of Hurst exponent of the self-affine fractal patterns with optical fractional Fourier transform

    Institute of Scientific and Technical Information of China (English)

    FENG; Shaotong; HAN; Dianrong; DING; Heping

    2004-01-01

    By means of experimental technique of optical fractional Fourier transform,we have determined the Hurst exponent of a regular self-affine fractal pattern to demonstrate the feasibility of this approach. Then we extend this method to determine the Hurst exponents of some irregular self-affine fractal patterns. Experimental results show that optical fractional Fourier transform is a practical method for analyzing the self-affine fractal patterns.

  12. Fourier-Mukai and Nahm transforms for holomorphic triples on elliptic curves

    Science.gov (United States)

    García-Prada, Oscar; Hernández Ruipérez, Daniel; Pioli, Fabio; Tejero Prieto, Carlos

    2005-12-01

    We define a Fourier-Mukai transform for a triple consisting of two holomorphic vector bundles over an elliptic curve and a homomorphism between them. We prove that in some cases, the transform preserves the natural stability condition for a triple. We also define a Nahm transform for solutions to natural gauge-theoretic equations on a triple—vortices—and explore some of its basic properties. Our approach combines direct methods with dimensional reduction techniques, relating triples over a curve with vector bundles over the product of the curve with the complex projective line.

  13. Denoise in the pseudopolar grid Fourier space using exact inverse pseudopolar Fourier transform

    CERN Document Server

    Wei, Fan Jun

    2015-01-01

    In this paper I show a matrix method to calculate the exact inverse pseudopolar grid Fourier transform, and use this transform to do noise removals in the k space of pseudopolar grids. I apply the Gaussian filter to this pseudopolar grid and find the advantages of the noise removals are very excellent by using pseudopolar grid, and finally I show the Cartesian grid denoise for comparisons. The results present the signal to noise ratio and the variance are much better when doing noise removals in the pseudopolar grid than the Cartesian grid. The noise removals of pseudopolar grid or Cartesian grid are both in the k space, and all these noises are added in the real space.

  14. Double-resolution electron holography with simple Fourier transform of fringe-shifted holograms.

    Science.gov (United States)

    Volkov, V V; Han, M G; Zhu, Y

    2013-11-01

    We propose a fringe-shifting holographic method with an appropriate image wave recovery algorithm leading to exact solution of holographic equations. With this new method the complex object image wave recovered from holograms appears to have much less traditional artifacts caused by the autocorrelation band present practically in all Fourier transformed holograms. The new analytical solutions make possible a double-resolution electron holography free from autocorrelation band artifacts and thus push the limits for phase resolution. The new image wave recovery algorithm uses a popular Fourier solution of the side band-pass filter technique, while the fringe-shifting holographic method is simple to implement in practice.

  15. Directional short-time Fourier transform of distributions

    Directory of Open Access Journals (Sweden)

    Katerina Hadzi-Velkova Saneva

    2016-04-01

    Full Text Available Abstract In this paper we consider the directional short-time Fourier transform (DSTFT that was introduced and investigated in (Giv in J. Math. Anal. Appl. 399:100-107, 2013. We analyze the DSTFT and its transpose on test function spaces S ( R n $\\mathcal {S}(\\mathbb {R}^{n}$ and S ( Y 2 n $\\mathcal {S}(\\mathbb {Y}^{2n}$ , respectively, and prove the continuity theorems on these spaces. Then the obtained results are used to extend the DSTFT to spaces of distributions.

  16. THREE-VARIABLE ALTERNATING TRIGONOMETRIC FUNCTIONS AND CORRESPONDING FOURIER TRANSFORMS

    Directory of Open Access Journals (Sweden)

    Agata Bezubik

    2016-06-01

    Full Text Available The common trigonometric functions admit generalizations to any higher dimension, the symmetric, antisymmetric and alternating ones. In this paper, we restrict ourselves to three dimensional generalization only, focusing on alternating case in detail. Many specific properties of this new class of special functions useful in applications are studied. Such are the orthogonalities, both the continuous one and the discrete one on the 3D lattice of any density, corresponding discrete and continuous Fourier transforms, and others. Rapidly increasing precision of the interpolation with increasing density of the 3D lattice is shown in an example.

  17. The discrete Fourier transform theory, algorithms and applications

    CERN Document Server

    Sundaraajan, D

    2001-01-01

    This authoritative book provides comprehensive coverage of practical Fourier analysis. It develops the concepts right from the basics and gradually guides the reader to the advanced topics. It presents the latest and practically efficient DFT algorithms, as well as the computation of discrete cosine and Walsh-Hadamard transforms. The large number of visual aids such as figures, flow graphs and flow charts makes the mathematical topic easy to understand. In addition, the numerous examples and the set of C-language programs (a supplement to the book) help greatly in understanding the theory and

  18. Parallel image registration method for snapshot Fourier transform imaging spectroscopy

    Science.gov (United States)

    Zhang, Yu; Zhu, Shuaishuai; Lin, Jie; Zhu, Feijia; Jin, Peng

    2017-08-01

    A fast and precise registration method for multi-image snapshot Fourier transform imaging spectroscopy is proposed. This method accomplishes registration of an image array using the positional relationship between homologous points in the subimages, which are obtained offline by preregistration. Through the preregistration process, the registration problem is converted to the problem of using a registration matrix to interpolate subimages. Therefore, the hardware interpolation of graphics processing unit (GPU) texture memory, which has speed advantages for its parallel computing, can be used to significantly enhance computational efficiency. Compared to a central processing unit, GPU performance showed ˜27 times acceleration in registration efficiency.

  19. Atomic transition probabilities of Ce I from Fourier transform spectra

    Science.gov (United States)

    Lawler, J. E.; Chisholm, J.; Nitz, D. E.; Wood, M. P.; Sobeck, J.; Den Hartog, E. A.

    2010-04-01

    Atomic transition probabilities for 2874 lines of the first spectrum of cerium (Ce I) are reported. These data are from new branching fraction measurements on Fourier transform spectra normalized with previously reported radiative lifetimes from time-resolved laser-induced-fluorescence measurements (Den Hartog et al 2009 J. Phys. B: At. Mol. Opt. Phys. 42 085006). The wavelength range of the data set is from 360 to 1500 nm. Comparisons are made to previous investigations which are less extensive. Accurate Ce i transition probabilities are needed for lighting research and development on metal halide high-intensity discharge lamps.

  20. Multi-band Image Registration Method Based on Fourier Transform

    Institute of Scientific and Technical Information of China (English)

    庹红娅; 刘允才

    2004-01-01

    This paper presented a registration method based on Fourier transform for multi-band images which is involved in translation and small rotation. Although different band images differ a lot in the intensity and features,they contain certain common information which we can exploit. A model was given that the multi-band images have linear correlations under the least-square sense. It is proved that the coefficients have no effect on the registration progress if two images have linear correlations. Finally, the steps of the registration method were proposed. The experiments show that the model is reasonable and the results are satisfying.

  1. A high-resolution Fourier-transform infrared spectrometer.

    Science.gov (United States)

    Johnson, H. L.; Forbes, F. F.; Thompson, R. I.; Steinmetz , D. L.; Harris, O.

    1973-01-01

    We have developed a Fourier-transform infrared spectrometer having a resolution of 0.5/cm over the range of wavelength from 1 to 5.5 microns. It has been used to observe the sun over this wavelength range from a Lear Jet flying at an altitude of 14 km, and to observe a number of stars from the ground, using the 229-cm telescope of the Steward Observatory and the 152-cm aluminum-mirror telescope at the Observatorio Astronomico Nacional in the Sierra de San Pedro Martir, Baja California, Mexico. The solar spectrum is given here, while the ground-based spectra are being published separately.

  2. Ash melting behavior by Fourier transform infrared spectroscopy

    Institute of Scientific and Technical Information of China (English)

    LI Han-xu; QIU Xiao-sheng; TANG Yong-xin

    2008-01-01

    A Fourier Transform Infrared Spectroscopic (FTIR) method involving a Fe2O3 flux was used to learn how China's coal ash melts. The relationship between ash fusion temperature and chemical composition, as well as the effects of Fe2O3 flux on the ash fusion temperature were studied. The relationship between ash fusion temperature and chemical composition, mineralogical phases and functional groups was analyzed with the FTIR method. The results show that the ash fusion temperature is related to the location and transmittance of certain absorption peaks, which is of great significance for the study of ash behavior.

  3. Beam profile for the Herschel-SPIRE Fourier transform spectrometer.

    Science.gov (United States)

    Makiwa, Gibion; Naylor, David A; Ferlet, Marc; Salji, Carl; Swinyard, Bruce; Polehampton, Edward; van der Wiel, Matthijs H D

    2013-06-01

    One of the instruments on board the Herschel Space Observatory is the Spectral and Photometric Imaging Receiver (SPIRE). SPIRE employs a Fourier transform spectrometer with feed-horn-coupled bolometers to provide imaging spectroscopy. To interpret the resultant spectral images requires knowledge of the wavelength-dependent beam, which in the case of SPIRE is complicated by the use of multimoded feed horns. In this paper we describe a series of observations and the analysis conducted to determine the wavelength dependence of the SPIRE spectrometer beam profile.

  4. Particle field holography data reduction by Fourier transform analysis

    Science.gov (United States)

    Hess, Cecil F.; Trolinger, James D.

    1987-01-01

    The size distribution of a particle field hologram is obtained with a Fourier transformation of the Fraunhofer diffraction pattern of the reconstructed hologram. Off-axis absorption holograms of particle fields with known characteristics were obtained and analyzed with a commercially available instrument. The mean particle size of the reconstructed hologram was measured with an error of + or - 5 percent, while the distribution broadening was estimated within + or - 15 percent. Small sections of a pulsed laser hologram of a synthetic fuel spray were analyzed with this method thus yielding a spatially resolved size distribution. The method yields fast and accurate automated analysis of particle field holograms.

  5. Transfer Function Identification Using Orthogonal Fourier Transform Modeling Functions

    Science.gov (United States)

    Morelli, Eugene A.

    2013-01-01

    A method for transfer function identification, including both model structure determination and parameter estimation, was developed and demonstrated. The approach uses orthogonal modeling functions generated from frequency domain data obtained by Fourier transformation of time series data. The method was applied to simulation data to identify continuous-time transfer function models and unsteady aerodynamic models. Model fit error, estimated model parameters, and the associated uncertainties were used to show the effectiveness of the method for identifying accurate transfer function models from noisy data.

  6. The Non-uniform Fast Fourier Transform in Computed Tomography

    CERN Document Server

    Tang, Junqi

    2016-01-01

    This project is aimed at designing the fast forward projection algorithm and also the backprojection algorithm for cone beam CT imaging systems with circular X-ray source trajectory. The principle of the designs is based on utilizing the potential computational efficiency which the Fourier Slice Theorem and the Non-uniform Fast Fourier Transform (NUFFT) will bring forth. In this Masters report, the detailed design of the NUFFT based forward projector including a novel 3D (derivative of) Radon space resampling method will be given. Meanwhile the complexity of the NUFFT based forward projector is analysed and compared with the non-Fourier based CT projector, and the advantage of the NUFFT based forward projection in terms of the computational efficiency is demonstrated in this report. Base on the design of the forward algorithm, the NUFFT based 3D direct reconstruction algorithm will be derived. The experiments will be taken to test the performance of the forward algorithm and the backprojection algorithm to sh...

  7. Ordered fast fourier transforms on a massively parallel hypercube multiprocessor

    Science.gov (United States)

    Tong, Charles; Swarztrauber, Paul N.

    1989-01-01

    Design alternatives for ordered Fast Fourier Transformation (FFT) algorithms were examined on massively parallel hypercube multiprocessors such as the Connection Machine. Particular emphasis is placed on reducing communication which is known to dominate the overall computing time. To this end, the order and computational phases of the FFT were combined, and the sequence to processor maps that reduce communication were used. The class of ordered transforms is expanded to include any FFT in which the order of the transform is the same as that of the input sequence. Two such orderings are examined, namely, standard-order and A-order which can be implemented with equal ease on the Connection Machine where orderings are determined by geometries and priorities. If the sequence has N = 2 exp r elements and the hypercube has P = 2 exp d processors, then a standard-order FFT can be implemented with d + r/2 + 1 parallel transmissions. An A-order sequence can be transformed with 2d - r/2 parallel transmissions which is r - d + 1 fewer than the standard order. A parallel method for computing the trigonometric coefficients is presented that does not use trigonometric functions or interprocessor communication. A performance of 0.9 GFLOPS was obtained for an A-order transform on the Connection Machine.

  8. The Fractional Fourier Transform and Its Application to Energy Localization Problems

    Directory of Open Access Journals (Sweden)

    ter Morsche Hennie G

    2003-01-01

    Full Text Available Applying the fractional Fourier transform (FRFT and the Wigner distribution on a signal in a cascade fashion is equivalent to a rotation of the time and frequency parameters of the Wigner distribution. We presented in ter Morsche and Oonincx, 2002, an integral representation formula that yields affine transformations on the spatial and frequency parameters of the -dimensional Wigner distribution if it is applied on a signal with the Wigner distribution as for the FRFT. In this paper, we show how this representation formula can be used to solve certain energy localization problems in phase space. Examples of such problems are given by means of some classical results. Although the results on localization problems are classical, the application of generalized Fourier transform enlarges the class of problems that can be solved with traditional techniques.

  9. Fractional Fourier transform of Cantor sets: further numerical study

    Institute of Scientific and Technical Information of China (English)

    Gao Qiong; Liao tian-He; Cui Yuan-Feng

    2008-01-01

    This paper is a further work of the authors' paper published previously (Liao T H and Gao Q 2005 Chin. Phys. Lett. 22 2316). The amplitudes of fractional Fourier transform of Cantor sets are analysed from the viewpoint of multifractal by wavelet transform maxima method (WTMM). An integral operation is carried out before the application of WTMM, such that the function obtained can be considered as the perturbed devil staircase. Also, wavelets with large number of vanishing moments are used, which makes the complete singularity spectrum more accessible. The validity of multifractal formalism is guaranteed by restricting parameter q to a proper range, so that the phenomenon of multifractal phase transition can be explained reasonably. Particularly, the method of determining the range of parameter q in the above paper is developed to be more operational and rigorous.

  10. A high-resolution Fourier Transform Spectrometer for planetary spectroscopy

    Science.gov (United States)

    Cruikshank, D. P.; Sinton, W. M.

    1973-01-01

    The employment of a high-resolution Fourier Transform Spectrometer (FTS) is described for planetary and other astronomical spectroscopy in conjunction with the 88-inch telescope at Mauna Kea Observatory. The FTS system is designed for a broad range of uses, including double-beam laboratory spectroscopy, infrared gas chromatography, and nuclear magnetic resonance spectroscopy. The data system is well-suited to astronomical applications because of its great speed in acquiring and transforming data, and because of the enormous storage capability of the magnetic tape unit supplied with the system. The basic instrument is outlined 2nd some of the initial results from the first attempted use on the Mauna Kea 88-inch telescope are reported.

  11. Robust Video Watermarking Based on Discrete Fractional Fourier Transform

    Institute of Scientific and Technical Information of China (English)

    NIU Xiamu; SUN Shenghe

    2001-01-01

    A video watermarking techniquebased on discrete fractional Fourier transform(DFRFT) is proposed. Each frame of an original videois first decomposed into two-dimensional (2-D) mul-tiresolution representations by 2-D discrete wavelettransforms (DWT) along the spatial axis. Then thewavelet coefficient frames in each group of pictures(GOP, each GOP has 16 frames) are transformed intoDFRFT coefficient frames by one-dimensional (1-D)DFRFT along the temporal axis. The watermark isembedded into each DFRFT coefficient frame in theGOP, and the angular parameter of the DFRFT canbe changed to adapt itself to the original video. Experimental results show that the proposed techniqueis robust enough against the attacks of frame dropping, averaging and lossy compression.

  12. Fourier transform for fermionic systems and the spectral tensor network.

    Science.gov (United States)

    Ferris, Andrew J

    2014-07-01

    Leveraging the decomposability of the fast Fourier transform, I propose a new class of tensor network that is efficiently contractible and able to represent many-body systems with local entanglement that is greater than the area law. Translationally invariant systems of free fermions in arbitrary dimensions as well as 1D systems solved by the Jordan-Wigner transformation are shown to be exactly represented in this class. Further, it is proposed that these tensor networks be used as generic structures to variationally describe more complicated systems, such as interacting fermions. This class shares some similarities with the Evenbly-Vidal branching multiscale entanglement renormalization ansatz, but with some important differences and greatly reduced computational demands.

  13. Fast Fourier Transform Co-Processor (FFTC)- Towards Embedded GFLOPs

    Science.gov (United States)

    Kuehl, Christopher; Liebstueckel, Uwe; Tejerina, Isaac; Uemminghaus, Michael; Wite, Felix; Kolb, Michael; Suess, Martin; Weigand, Roland

    2012-08-01

    Many signal processing applications and algorithms perform their operations on the data in the transform domain to gain efficiency. The Fourier Transform Co- Processor has been developed with the aim to offload General Purpose Processors from performing these transformations and therefore to boast the overall performance of a processing module. The IP of the commercial PowerFFT processor has been selected and adapted to meet the constraints of the space environment.In frame of the ESA activity “Fast Fourier Transform DSP Co-processor (FFTC)” (ESTEC/Contract No. 15314/07/NL/LvH/ma) the objectives were the following:Production of prototypes of a space qualified version of the commercial PowerFFT chip called FFTC based on the PowerFFT IP.The development of a stand-alone FFTC Accelerator Board (FTAB) based on the FFTC including the Controller FPGA and SpaceWire Interfaces to verify the FFTC function and performance.The FFTC chip performs its calculations with floating point precision. Stand alone it is capable computing FFTs of up to 1K complex samples in length in only 10μsec. This corresponds to an equivalent processing performance of 4.7 GFlops. In this mode the maximum sustained data throughput reaches 6.4Gbit/s. When connected to up to 4 EDAC protected SDRAM memory banks the FFTC can perform long FFTs with up to 1M complex samples in length or multidimensional FFT- based processing tasks.A Controller FPGA on the FTAB takes care of the SDRAM addressing. The instructions commanded via the Controller FPGA are used to set up the data flow and generate the memory addresses.The presentation will give and overview on the project, including the results of the validation of the FFTC ASIC prototypes.

  14. Fast Fourier Transform Co-processor (FFTC), towards embedded GFLOPs

    Science.gov (United States)

    Kuehl, Christopher; Liebstueckel, Uwe; Tejerina, Isaac; Uemminghaus, Michael; Witte, Felix; Kolb, Michael; Suess, Martin; Weigand, Roland; Kopp, Nicholas

    2012-10-01

    Many signal processing applications and algorithms perform their operations on the data in the transform domain to gain efficiency. The Fourier Transform Co-Processor has been developed with the aim to offload General Purpose Processors from performing these transformations and therefore to boast the overall performance of a processing module. The IP of the commercial PowerFFT processor has been selected and adapted to meet the constraints of the space environment. In frame of the ESA activity "Fast Fourier Transform DSP Co-processor (FFTC)" (ESTEC/Contract No. 15314/07/NL/LvH/ma) the objectives were the following: • Production of prototypes of a space qualified version of the commercial PowerFFT chip called FFTC based on the PowerFFT IP. • The development of a stand-alone FFTC Accelerator Board (FTAB) based on the FFTC including the Controller FPGA and SpaceWire Interfaces to verify the FFTC function and performance. The FFTC chip performs its calculations with floating point precision. Stand alone it is capable computing FFTs of up to 1K complex samples in length in only 10μsec. This corresponds to an equivalent processing performance of 4.7 GFlops. In this mode the maximum sustained data throughput reaches 6.4Gbit/s. When connected to up to 4 EDAC protected SDRAM memory banks the FFTC can perform long FFTs with up to 1M complex samples in length or multidimensional FFT-based processing tasks. A Controller FPGA on the FTAB takes care of the SDRAM addressing. The instructions commanded via the Controller FPGA are used to set up the data flow and generate the memory addresses. The paper will give an overview on the project, including the results of the validation of the FFTC ASIC prototypes.

  15. Quantum process tomography of the quantum Fourier transform.

    Science.gov (United States)

    Weinstein, Yaakov S; Havel, Timothy F; Emerson, Joseph; Boulant, Nicolas; Saraceno, Marcos; Lloyd, Seth; Cory, David G

    2004-10-01

    The results of quantum process tomography on a three-qubit nuclear magnetic resonance quantum information processor are presented and shown to be consistent with a detailed model of the system-plus-apparatus used for the experiments. The quantum operation studied was the quantum Fourier transform, which is important in several quantum algorithms and poses a rigorous test for the precision of our recently developed strongly modulating control fields. The results were analyzed in an attempt to decompose the implementation errors into coherent (overall systematic), incoherent (microscopically deterministic), and decoherent (microscopically random) components. This analysis yielded a superoperator consisting of a unitary part that was strongly correlated with the theoretically expected unitary superoperator of the quantum Fourier transform, an overall attenuation consistent with decoherence, and a residual portion that was not completely positive-although complete positivity is required for any quantum operation. By comparison with the results of computer simulations, the lack of complete positivity was shown to be largely a consequence of the incoherent errors which occurred over the full quantum process tomography procedure. These simulations further showed that coherent, incoherent, and decoherent errors can often be identified by their distinctive effects on the spectrum of the overall superoperator. The gate fidelity of the experimentally determined superoperator was 0.64, while the correlation coefficient between experimentally determined superoperator and the simulated superoperator was 0.79; most of the discrepancies with the simulations could be explained by the cumulative effect of small errors in the single qubit gates.

  16. High Etendue Imaging Fourier Transform Spectrometer: initial results

    Science.gov (United States)

    Horton, Richard F.; Conger, Chris A.; Pelligrino, L. S.

    1997-10-01

    At the Denver meeting, last year, we presented the High Etendue Imaging Fourier Transform Spectrometer, (HEIFTS), theory and optical design. This device uses a new 'image plane interferometer' geometry to produce 'autocorrelation function modulation' in the image plane of a 2D imaging array, such that the phase offset of the modulation varies linearly across the image. As a 2D image is pushbroomed across the imaging, array, the record of an individual scene pixel is recorded for each autocorrelation phase offset. The 3D array of this data is processed to yield an 'autocorrelation function' data cube, which is Fourier transformed to yield a 'wavenumber' hyperspectral data curve. A phase I device has been demonstrated in the laboratory and initial results are presented. The significant increase in signal to noise ratio, which the HEIFTS optical design promises over conventional hyperspectral imaging schemes, has been simulated, and results will be discussed. A Phase II system is being prepared for initial field deployment, and will be described.

  17. Integrated optics in an electrically scanned imaging Fourier transform spectrometer

    Science.gov (United States)

    Breckinridge, James B. (Inventor); Ocallaghan, Fred G. (Inventor)

    1982-01-01

    An efficient, lightweight and stable, Fourier transform spectrometer was developed. The mechanical slide mechanism needed to create a path difference was eliminated by the use of retro-reflecting mirrors in a monolithic interferometer assembly in which the mirrors are not at 90 degrees to the propagation vector of the radiation, but rather at a small angle. The resulting plane wave fronts create a double-sided inteferogram of the source irradiance distribution which is detected by a charge-coupled device image sensor array. The position of each CCD pixel in the array is an indication of the path difference between the two retro-reflecting mirrors in the monolithic optical structure. The Fourier transform of the signals generated by the image sensor provide the spectral irradiance distribution of the source. For imaging, the interferometer assembly scans the source of irradiation by moving the entire instrument, such as would occur if it was fixedly mounted to a moving platform, i.e., a spacecraft. During scanning, the entrace slot to the monolithic optical structure sends different pixels to corresponding interferograms detected by adjacent columns of pixels of the image sensor.

  18. [Fourier Transform Spectrometer Based on Rotating Parallel-Mirror-Pair].

    Science.gov (United States)

    Zhao, Bao-wei; Xiangli, Bin; Cai, Qi-sheng; Lü, Qun-bo; Zhou, Jin-song

    2015-11-01

    In the temporally-modulated Fourier transform spectroscopy, the translational moving mirror is difficult to drive accurately, causing tilt and shear problems. While, a rotational moving mirror can solve these problems. A rotary Fourier transform spectrometer is recommanded in this paper. Its principle is analyzed and the optical path difference is deduced. Also, the constrains for engineering realization are presented. This spectrometer consists of one beamsplitter, two fixed mirrors, one rotating parallel mirror pair, a collimating lens, a collecting lens, and one detector. From it's principle, this spectrometer show a simple structure, and it is assembled and adjustmented easily because the two split light are interfered with each other after reflected through the same plane mirror; By calculating the expression of it's optical path difference, the spectrometer is easy to realize large optical path difference, meaning high spectral resolution; Through analyzing it's engineering design constraints and computer simulation, it is known that the spectrometer should get the high resolution sample by high-speed spinning motor, so it is easy to achieve precise motion control, good stability, fast measurement speed.

  19. Fourier-Transform Ghost Imaging with Hard X Rays

    Science.gov (United States)

    Yu, Hong; Lu, Ronghua; Han, Shensheng; Xie, Honglan; Du, Guohao; Xiao, Tiqiao; Zhu, Daming

    2016-09-01

    Knowledge gained through x-ray crystallography fostered structural determination of materials and greatly facilitated the development of modern science and technology in the past century. However, it is only applied to crystalline structures and cannot resolve noncrystalline materials. Here we demonstrate a novel lensless Fourier-transform ghost imaging method with pseudothermal hard x rays that extends x-ray crystallography to noncrystalline samples. By measuring the second-order intensity correlation function of the light, Fourier-transform diffraction pattern of a complex amplitude sample is achieved at the Fresnel region in our experiment and the amplitude and phase distributions of the sample in the spatial domain are retrieved successfully. For the first time, ghost imaging is experimentally realized with x rays. Since a highly coherent x-ray source is not required, the method can be implemented with laboratory x-ray sources and it also provides a potential solution for lensless diffraction imaging with fermions, such as neutrons and electrons where intensive coherent sources usually are not available.

  20. Zernike aberration coefficients transformed to and from Fourier series coefficients for wavefront representation.

    Science.gov (United States)

    Dai, Guang-Ming

    2006-02-15

    The set of Fourier series is discussed following some discussion of Zernike polynomials. Fourier transforms of Zernike polynomials are derived that allow for relating Fourier series expansion coefficients to Zernike polynomial expansion coefficients. With iterative Fourier reconstruction, Zernike representations of wavefront aberrations can easily be obtained from wavefront derivative measurements.

  1. Computationally efficient method for Fourier transform of highly chirped pulses for laser and parametric amplifier modeling.

    Science.gov (United States)

    Andrianov, Alexey; Szabo, Aron; Sergeev, Alexander; Kim, Arkady; Chvykov, Vladimir; Kalashnikov, Mikhail

    2016-11-14

    We developed an improved approach to calculate the Fourier transform of signals with arbitrary large quadratic phase which can be efficiently implemented in numerical simulations utilizing Fast Fourier transform. The proposed algorithm significantly reduces the computational cost of Fourier transform of a highly chirped and stretched pulse by splitting it into two separate transforms of almost transform limited pulses, thereby reducing the required grid size roughly by a factor of the pulse stretching. The application of our improved Fourier transform algorithm in the split-step method for numerical modeling of CPA and OPCPA shows excellent agreement with standard algorithms.

  2. Measurement of hygroscopic strain in deodar wood during convective drying using lensless Fourier transform digial holography

    Science.gov (United States)

    Kumar, Manoj; Shakher, Chandra

    2016-04-01

    In this paper, moisture induced deformation and shrinkage behaviour of deodar wood during convective drying is experimentally investigated by using digital holographic interferometry. There induces dimensional changes in wood due to the moisture absorption and desorption. Lensless Fourier transform digital holographic interferometry (LLFTDH) is used to study the moisture induced deformation and strain distribution in deodar wood. The proposed technique having high sensitivity and enables the observation of deformation and strain distribution during the variations of moisture content in the deodar wood.

  3. The Characterisation of Pluripotent and Multipotent Stem Cells Using Fourier Transform Infrared Microspectroscopy

    Directory of Open Access Journals (Sweden)

    Mark J. Tobin

    2013-08-01

    Full Text Available Fourier transform infrared (FTIR microspectroscopy shows potential as a benign, objective and rapid tool to screen pluripotent and multipotent stem cells for clinical use. It offers a new experimental approach that provides a holistic measurement of macromolecular composition such that a signature representing the internal cellular phenotype is obtained. The use of this technique therefore contributes information that is complementary to that acquired by conventional genetic and immunohistochemical methods.

  4. Multiphoton Interference in Quantum Fourier Transform Circuits and Applications to Quantum Metrology

    Science.gov (United States)

    Su, Zu-En; Li, Yuan; Rohde, Peter P.; Huang, He-Liang; Wang, Xi-Lin; Li, Li; Liu, Nai-Le; Dowling, Jonathan P.; Lu, Chao-Yang; Pan, Jian-Wei

    2017-08-01

    Quantum Fourier transforms (QFTs) have gained increased attention with the rise of quantum walks, boson sampling, and quantum metrology. Here, we present and demonstrate a general technique that simplifies the construction of QFT interferometers using both path and polarization modes. On that basis, we first observe the generalized Hong-Ou-Mandel effect with up to four photons. Furthermore, we directly exploit number-path entanglement generated in these QFT interferometers and demonstrate optical phase supersensitivities deterministically.

  5. Data Compression in RCS Modeling by Using the Threshold Discrete Fourier Transform Method

    Institute of Scientific and Technical Information of China (English)

    SHENG Weixing; FANG Dagang; ZHUANG Jing; LIU T.J.; YANG Zhenglong

    2001-01-01

    A new data compression tech-nique, called the threshold discrete Fourier trans-form (TDFT) method, is proposed to efficiently com-press the scattered field data from complex targets.Compared with the matrix pencil (MP) method andCLEAN method, it is quite simple and time saving un-der the similar compression ratio and reconstructionerror. In TDFT and CLEAN methods, the optimizedsegmentation is found which results in high compres-sion ratio.

  6. Radon-Fractional Fourier Transform and Its Application to Radar Maneuvering Target Detection (Preprint)

    Science.gov (United States)

    2014-10-09

    Radon -Fractional Fourier Transform and Its Application to Radar Maneuvering Target Detection Xiaolong Chen*, Fuqing Cai, Yu Cong, Jian Guan...unit (ARU) and Doppler frequency migration (DFM) effects. In this paper, a novel transform called the Radon -fractional Fourier transform (RFRFT) is...are carried out and the performances of different methods including MTD, FRFT, and the Radon -Fourier transform (RFT) are compared, which demonstrate

  7. Detection and parameter estimation of multicomponent LFM signal based on the fractional Fourier transform

    Institute of Scientific and Technical Information of China (English)

    QI Lin; TAO Ran; ZHOU Siyong; WANG Yue

    2004-01-01

    This paper presents a new method for the detection and parameter estimation of multicomponent LFM signals based on the fractional Fourier transform. For the optimization in the fractional Fourier domain, an algorithm based on Quasi-Newton method is proposed which consists of two steps of searching, leading to a reduction in computation without loss of accuracy. And for multicomponent signals, we further propose a signal separation technique in the fractional Fourier domain which can effectively suppress the interferences on the detection of the weak components brought by the stronger components. The statistical analysis of the estimate errors is also performed which perfects the method theoretically, and finally, simulation results are provided to show the validity of our method.

  8. Spectrogram analysis of selected tremor signals using short-time Fourier transform and continuous wavelet transform

    Energy Technology Data Exchange (ETDEWEB)

    Bartosch, T. [Erlanger-Nuernberg Univ., Erlanger (Germany). Lehrstul fuer Nachrichtentechnik I; Seidl, D. [Seismologisches Zentralobservatorium Graefenberg, Erlanegen (Greece). Bundesanstalt fuer Geiwissenschaften und Rohstoffe

    1999-06-01

    Among a variety of spectrogram methods short-time Fourier transform (STFT) and continuous wavelet transform (CWT) were selected to analyse transients in non-stationary signals. Depending on the properties of the tremor signals from the volcanos Mt. Stromboli, Mt. Semeru and Mt. Pinatubo were analyzed using both methods. The CWT can also be used to extend the definition of coherency into a time-varying coherency spectrogram. An example is given using array data from the volcano Mt. Stromboli (Italy).

  9. Quantum Mechanical Fourier-Hankel Representation Transform for an Electron Moving in a Uniform Magnetic Field

    Institute of Scientific and Technical Information of China (English)

    FAN Hong-Yi

    2004-01-01

    We find quantum mechanical Fourier-Hankel representation transform for an electron moving in a uniform magnetic field. The physical meaning of Fourier decomposition states of electron's coordinate eigenstate and the momentum eigenstate are revealed.

  10. Fourier Transform Infrared Spectroscopy (FTIR) as a Tool for the Identification and Differentiation of Pathogenic Bacteria.

    Science.gov (United States)

    Zarnowiec, Paulina; Lechowicz, Łukasz; Czerwonka, Grzegorz; Kaca, Wiesław

    2015-01-01

    Methods of human bacterial pathogen identification need to be fast, reliable, inexpensive, and time efficient. These requirements may be met by vibrational spectroscopic techniques. The method that is most often used for bacterial detection and identification is Fourier transform infrared spectroscopy (FTIR). It enables biochemical scans of whole bacterial cells or parts thereof at infrared frequencies (4,000-600 cm(-1)). The recorded spectra must be subsequently transformed in order to minimize data variability and to amplify the chemically-based spectral differences in order to facilitate spectra interpretation and analysis. In the next step, the transformed spectra are analyzed by data reduction tools, regression techniques, and classification methods. Chemometric analysis of FTIR spectra is a basic technique for discriminating between bacteria at the genus, species, and clonal levels. Examples of bacterial pathogen identification and methods of differentiation up to the clonal level, based on infrared spectroscopy, are presented below.

  11. Transformation of Zernike coefficients: a Fourier-based method for scaled, translated, and rotated wavefront apertures.

    Science.gov (United States)

    Tatulli, Eric

    2013-04-01

    This paper studies the effects on Zernike coefficients of aperture scaling, translation, and rotation, when a given aberrated wavefront is described on the Zernike polynomial basis. It proposes an analytical method for computing the matrix that enables the building of transformed Zernike coefficients from the original ones. The technique is based on the properties of Zernike polynomials and Fourier transform, and, in the case of a full aperture without central obstruction, the coefficients of the matrix are given in terms of integrals of Bessel functions. The integral formulas are exact and do not depend on any specific ordering of the polynomials.

  12. Charge reversal Fourier transform ion cyclotron resonance mass spectrometry.

    Science.gov (United States)

    Lobodin, Vladislav V; Savory, Joshua J; Kaiser, Nathan K; Dunk, Paul W; Marshall, Alan G

    2013-02-01

    We report the first charge reversal experiments performed by tandem-in-time rather than tandem-in-space MS/MS. Precursor odd-electron anions from fullerene C(60), and even-electron ions from 2,7-di-tert-butylfluorene-9-carboxylic acid and 3,3'-bicarbazole were converted into positive product ions ((-)CR(+)) inside the magnet of a Fourier transform ion cyclotron resonance mass spectrometer. Charge reversal was activated by irradiating precursor ions with high energy electrons or UV photons: the first reported use of those activation methods for charge reversal. We suggest that high energy electrons achieve charge reversal in one step as double electron transfer, whereas UV-activated (-)CR(+) takes place stepwise through two single electron transfers and formally corresponds to a neutralization-reionization ((-)NR(+)) experiment.

  13. Observing Extended Sources with the \\Herschel SPIRE Fourier Transform Spectrometer

    CERN Document Server

    Wu, Ronin; Etxaluze, Mireya; Makiwa, Gibion; Naylor, David A; Salji, Carl; Swinyard, Bruce M; Ferlet, Marc; van der Wiel, Matthijs H D; Smith, Anthony J; Fulton, Trevor; Griffin, Matt J; Baluteau, Jean-Paul; Benielli, Dominique; Glenn, Jason; Hopwood, Rosalind; Imhof, Peter; Lim, Tanya; Lu, Nanyao; Panuzzo, Pasquale; Pearson, Chris; Sidher, Sunil; Valtchanov, Ivan

    2013-01-01

    The Spectral and Photometric Imaging Receiver (SPIRE) on the European Space Agency's Herschel Space Observatory utilizes a pioneering design for its imaging spectrometer in the form of a Fourier Transform Spectrometer (FTS). The standard FTS data reduction and calibration schemes are aimed at objects with either a spatial extent much larger than the beam size or a source that can be approximated as a point source within the beam. However, when sources are of intermediate spatial extent, neither of these calibrations schemes is appropriate and both the spatial response of the instrument and the source's light profile must be taken into account and the coupling between them explicitly derived. To that end, we derive the necessary corrections using an observed spectrum of a fully extended source with the beam profile and the source's light profile taken into account. We apply the derived correction to several observations of planets and compare the corrected spectra with their spectral models to study the beam c...

  14. Mid-Infrared Frequency Comb Fourier Transform Spectrometer

    CERN Document Server

    Adler, Florian; Foltynowicz, Aleksandra; Cossel, Kevin C; Briles, Travis C; Hartl, Ingmar; Ye, Jun

    2010-01-01

    Optical frequency-comb-based-high-resolution spectrometers offer enormous potential for spectroscopic applications. Although various implementations have been demonstrated, the lack of suitable mid-infrared comb sources has impeded explorations of molecular fingerprinting. Here we present for the first time a frequency-comb Fourier transform spectrometer operating in the 2100-to-3700-cm-1 spectral region that allows fast and simultaneous acquisitions of broadband absorption spectra with up to 0.0056 cm-1 resolution. We demonstrate part-per-billion detection limits in 30 seconds of integration time for various important molecules including methane, ethane, isoprene, and nitrous oxide. Our system enables precise concentration measurements even in gas mixtures that exhibit continuous absorption bands, and it allows detection of molecules at levels below the noise floor via simultaneous analysis of multiple spectral features. This system represents a near real-time, high-resolution, high-bandwidth mid-infrared sp...

  15. Persian Sign Language Recognition Using Radial Distance and Fourier Transform

    Directory of Open Access Journals (Sweden)

    Bahare Jalilian

    2013-11-01

    Full Text Available This paper provides a novel hand gesture recognition method to recognize 32 static signs of the Persian Sign Language (PSL alphabets. Accurate hand segmentation is the first and important step in sign language recognition systems. Here, we propose a method for hand segmentation that helps to build a better vision based sign language recognition system. The proposed method is based on YCbCr color space, single Gaussian model and Bayes rule. It detects region of hand in complex background and non-uniform illumination. Hand gesture features are extracted by radial distance and Fourier transform. Finally, the Euclidean distanceis used to compute the similarity between the input signs and all training feature vectors in the database. The system is tested on 480 posture images of the PSL, 15 images for each 32 signs. Experimental results show that our approach is capable to recognize all 32 PSL alphabets with 95.62% recognition rate.

  16. Lamellar grating optimization for miniaturized fourier transform spectrometers.

    Science.gov (United States)

    Ferhanoglu, Onur; Seren, Hüseyin R; Lüttjohann, Stephan; Urey, Hakan

    2009-11-09

    Microfabricated Lamellar grating interferometers (LGI) require fewer components compared to Michelson interferotemeters and offer compact and broadband Fourier transform spectrometers (FTS) with good spectral resolution, high speed and high efficiency. This study presents the fundamental equations that govern the performance and limitations of LGI based FTS systems. Simulations and experiments were conducted to demonstrate and explain the periodic nature of the interferogram envelope due to Talbot image formation. Simulations reveal that the grating period should be chosen large enough to avoid Talbot phase reversal at the expense of mixing of the diffraction orders at the detector. Optimal LGI grating period selection depends on a number of system parameters and requires compromises in spectral resolution and signal-to-bias ratio (SBR) of the interferogram within the spectral range of interest. New analytical equations are derived for spectral resolution and SBR of LGI based FTS systems.

  17. Spatially Resolved Fourier Transform Spectroscopy in the Extreme Ultraviolet

    CERN Document Server

    Jansen, G S M; Freisem, L; Eikema, K S E; Witte, S

    2016-01-01

    Coherent extreme ultraviolet (XUV) radiation produced by table-top high-harmonic generation (HHG) sources provides a wealth of possibilities in research areas ranging from attosecond physics to high resolution coherent imaging. However, it remains challenging to fully exploit the coherence of such sources for interferometry and Fourier transform spectroscopy (FTS). This is due to the need for a measurement system that is stable at the level of a wavelength fraction, yet allowing a controlled scanning of time delays. Here we demonstrate XUV interferometry and FTS in the 17-55 nm wavelength range using an ultrastable common-path interferometer suitable for high-intensity laser pulses that drive the HHG process. This approach enables the generation of fully coherent XUV pulse pairs with sub-attosecond timing variation, tunable time delay and a clean Gaussian spatial mode profile. We demonstrate the capabilities of our XUV interferometer by performing spatially resolved FTS on a thin film composed of titanium and...

  18. Initial Results from the USNO Dispersed Fourier Transform Spectrograph

    CERN Document Server

    Hajian, A R; Cenko, A T; Olling, R P; Mozurkewich, D; Armstrong, J T; Pohl, B; Petrossian, S; Knuth, K H; Hindsley, R B; Murison, M; Efroimsky, M; Dantowitz, R; Kozubal, M; Currie, D G; Nordgren, T E; Tycner, C; McMillan, R S; Hajian, Arsen R.; Behr, Bradford B.; Cenko, Andrew T.; Olling, Robert P.; Mozurkewich, David; Pohl, Brian; Petrossian, Sevan; Knuth, Kevin H.; Hindsley, Robert B.; Murison, Marc; Efroimsky, Michael; Dantowitz, Ronald; Kozubal, Marek; Currie, Douglas G.; Nordgren, Tyler E.; Tycner, Christopher; Millan, Robert S. Mc

    2006-01-01

    We have designed and constructed a ``dispersed Fourier Transform Spectrometer'' (dFTS), consisting of a conventional FTS followed by a grating spectrometer. By combining these two devices, we negate a substantial fraction of the sensitivity disadvantage of a conventional FTS for high resolution, broadband, optical spectroscopy, while preserving many of the advantages inherent to interferometric spectrometers. In addition, we have implemented a simple and inexpensive laser metrology system, which enables very precise calibration of the interferometer wavelength scale. The fusion of interferometric and dispersive technologies with a laser metrology system yields an instrument well-suited to stellar spectroscopy, velocimetry, and extrasolar planet detection, which is competitive with existing high-resolution, high accuracy stellar spectrometers. In this paper, we describe the design of our prototype dFTS, explain the algorithm we use to efficiently reconstruct a broadband spectrum from a sequence of narrowband i...

  19. Wide-Field Detected Fourier Transform CARS Microscopy

    Science.gov (United States)

    Duarte, Alex Soares; Schnedermann, Christoph; Kukura, Philipp

    2016-11-01

    We present a wide-field imaging implementation of Fourier transform coherent anti-Stokes Raman scattering (wide-field detected FT-CARS) microscopy capable of acquiring high-contrast label-free but chemically specific images over the full vibrational ‘fingerprint’ region, suitable for a large field of view. Rapid resonant mechanical scanning of the illumination beam coupled with highly sensitive, camera-based detection of the CARS signal allows for fast and direct hyperspectral wide-field image acquisition, while minimizing sample damage. Intrinsic to FT-CARS microscopy, the ability to control the range of time-delays between pump and probe pulses allows for fine tuning of spectral resolution, bandwidth and imaging speed while maintaining full duty cycle. We outline the basic principles of wide-field detected FT-CARS microscopy and demonstrate how it can be used as a sensitive optical probe for chemically specific Raman imaging.

  20. Microscope system with on axis programmable Fourier transform filtering

    Science.gov (United States)

    Martínez, José Luis; García-Martínez, Pascuala; Moreno, Ignacio

    2017-02-01

    We propose an on-axis microscope optical system to implement programmable optical Fourier transform image processing operations, taking advantage of phase and polarization modulation of a liquid crystal on silicon (LCOS) display. We use a Hamamatsu spatial light modulator (SLM), free of flickering, which therefore can be tuned to fully eliminate the zero order component of the encoded diffractive filter. This allows the realization of filtering operation on axis (as opposed to other systems in the literature that require operating off axis), therefore making use of the full space bandwidth provided by the SLM. The system is first demonstrated by implementing different optical processing operations based on phase-only blazed gratings such as phase contrast, band-pass filtering, or additive and substractive imaging. Then, a simple Differential interference contrast (DIC) imaging is obtained changing to a polarization modulation scheme, achieved simply by selecting a different incident state of polarization on the incident beam.

  1. Motion saliency detection using a temporal fourier transform

    Science.gov (United States)

    Chen, Zhe; Wang, Xin; Sun, Zhen; Wang, Zhijian

    2016-06-01

    Motion saliency detection aims at detecting the dynamic semantic regions in a video sequence. It is very important for many vision tasks. This paper proposes a new type of motion saliency detection method, Temporal Fourier Transform, for fast motion saliency detection. Different from conventional motion saliency detection methods that use complex mathematical models or features, variations in the phase spectrum of consecutive frames are identified and extracted as the key to obtaining the location of salient motion. As all the calculation is made on the temporal frequency spectrum, our model is independent of features, background models, or other forms of prior knowledge about scenes. The benefits of the proposed approach are evaluated for various videos where the number of moving objects, illumination, and background are all different. Compared with some the state of the art methods, our method achieves both good accuracy and fast computation.

  2. Short-time Fourier transform laser Doppler holography

    CERN Document Server

    Atlan, Michael

    2012-01-01

    We report a demonstration of laser Doppler holography at a sustained acquisition rate of 250 Hz on a 1 Megapixel complementary metal-oxide-semiconductor (CMOS) sensor array and image display at 10 Hz frame rate. The holograms are optically acquired in off-axis configuration, with a frequency-shifted reference beam. Wide-field imaging of optical fluctuations in a 250 Hz frequency band is achieved by turning time-domain samplings to the dual domain via short-time temporal Fourier transformation. The measurement band can be positioned freely within the low radio-frequency spectrum by tuning the frequency of the reference beam in real-time. Video-rate image rendering is achieved by streamline image processing with commodity computer graphics hardware. This experimental scheme is validated by a non-contact vibrometry experiment.

  3. Instrument concept of the imaging Fourier transform spectrometer GLORIA

    Directory of Open Access Journals (Sweden)

    F. Friedl-Vallon

    2014-10-01

    Full Text Available The Gimballed Limb Observer for Radiance Imaging of the Atmosphere (GLORIA is an imaging limb emission sounder operating in the thermal infrared region. It is designed to provide measurements of the upper troposphere/lower stratosphere with high spatial and high spectral resolution. The instrument consists of an imaging Fourier transform spectrometer integrated into a gimbal. The assembly can be mounted in the belly pod of the German High Altitude and Long Range research aircraft (HALO and in instrument bays of the Russian M55 Geophysica. Measurements are made in two distinct modes: the chemistry mode emphasises chemical analysis with high spectral resolution, and the dynamics mode focuses on dynamical processes of the atmosphere with very high spatial resolution. In addition, the instrument allows tomographic analyses of air volumes. The first measurement campaigns have shown compliance with key performance and operational requirements.

  4. Optical design of the ATMOS Fourier transform spectrometer

    Science.gov (United States)

    Abel, I. R.; Reynolds, B. R.; Breckinridge, J. B.; Pritchard, J.

    1979-01-01

    The optical system design of the ATMOS Fourier transform spectrometer to be operated from Spacelab for the measurement of stratospheric trace molecules is described. The design contains features which can achieve the required fringe contrast of 80% and spectral resolution of 0.02/cm over a spectral range of 2-16 microns. In particular, the design is based on the following features which alleviate the usual requirements for alignment precision: (1) 'cat's eye' mirror configuration in the two arms of the interferometer for retroreflection stability, (2) tilt-compensated system of beamsplitter, compensator, and fold mirrors for wavefront directional stability, (3) paraboloidal 'cat's eye' primary mirror for wavefront stability against shear, (4) rotatable compensator for matching chromatic dispersion, and (5) wedged refractive components to avoid channel spectra due to the Fabry-Perot effect.

  5. Calibration of the Geostationary Imaging Fourier Transform Spectrometer (GIFTS)

    Science.gov (United States)

    Best, F. A.; Revercomb, H. E.; Bingham, G. E.; Knuteson, R. O.; Tobin, D. C.; LaPorte, D. D.; Smith, W. L.

    2001-01-01

    The NASA New Millennium Program's Geostationary Imaging Fourier Transform Spectrometer (GIFTS) requires highly accurate radiometric and spectral calibration in order to carry out its mission to provide water vapor, wind, temperature, and trace gas profiling from geostationary orbit. A calibration concept has been developed for the GIFTS Phase A instrument design. The in-flight calibration is performed using views of two on-board blackbody sources along with cold space. A radiometric calibration uncertainty analysis has been developed and used to show that the expected performance for GIFTS exceeds its top level requirement to measure brightness temperature to better than 1 K. For the Phase A GIFTS design, the spectral calibration is established by the highly stable diode laser used as the reference for interferogram sampling, and verified with comparisons to atmospheric calculations.

  6. A direct digital synthesis chirped pulse Fourier transform microwave spectrometer.

    Science.gov (United States)

    Finneran, Ian A; Holland, Daniel B; Carroll, P Brandon; Blake, Geoffrey A

    2013-08-01

    Chirped pulse Fourier transform microwave (CP-FTMW) spectrometers have become the instrument of choice for acquiring rotational spectra, due to their high sensitivity, fast acquisition rate, and large bandwidth. Here we present the design and capabilities of a recently constructed CP-FTMW spectrometer using direct digital synthesis (DDS) as a new method for chirped pulse generation, through both a suite of extensive microwave characterizations and deep averaging of the 10-14 GHz spectrum of jet-cooled acetone. The use of DDS is more suited for in situ applications of CP-FTMW spectroscopy, as it reduces the size, weight, and power consumption of the chirp generation segment of the spectrometer all by more than an order of magnitude, while matching the performance of traditional designs. The performance of the instrument was further improved by the use of a high speed digitizer with dedicated signal averaging electronics, which facilitates a data acquisition rate of 2.1 kHz.

  7. A Fourier transform Raman spectrometer with visible laser excitation

    CERN Document Server

    Dzsaber, S; Bernáth, B; Gyüre, B; Fehér, T; Kramberger, C; Pichler, T; Simon, F

    2014-01-01

    We present the development and performance of a Fourier transformation (FT) based Raman spectrometer working with visible laser (532 nm) excitation. It is generally thought that FT-Raman spectrometers are not viable in the visible range where shot-noise limits the detector performance and therein they are outperformed by grating based, dispersive ones. We show that contrary to this common belief, the recent advances of high-performance interference filters makes the FT-Raman design a valid alternative to dispersive Raman spectrometers for samples which do not luminesce. We critically compare the performance of our spectrometer to two dispersive ones: a home-built single channel and a state-of-the-art CCD based instruments. We demonstrate a similar or even better sensitivity than the CCD based dispersive spectrometer particularly when the laser power density is considered. The instrument possesses all the known advantages of the FT principle of spectral accuracy, high throughput, and economic design. We also d...

  8. [Influence of collimation system on static Fourier transform spectrometer].

    Science.gov (United States)

    Jiang, Cheng-Zhi; Liang, Jing-Qiu; Liang, Zhong-Zhu; Sun, Qiang; Wang, Wei-Biao

    2014-01-01

    Collimation system provides collimated light for the static Fourier-transform spectroscopy (SFTS). Its quality is crucial to the signal to noise ratio (SNR) of SFTS. In the present paper, the physical model of SFTS was established based on the Fresnel diffraction theory by means of numerical software. The influence of collimation system on the SFTS was discussed in detail focusing on the aberrations of collimation lens and the quality of extended source. The results of simulation show that the influences of different kinds of aberrations on SNR take on obvious regularity, and in particular, the influences of off-axis aberrations on SNR are closely related to the location of off-axis point source. Finally the extended source's maximum radius allowed was obtained by simulation, which equals to 0.65 mm. The discussion results will be used for the design of collimation system.

  9. How to tickle spins with a fourier transform NMR spectrometer.

    Science.gov (United States)

    Segawa, Takuya F; Carnevale, Diego; Bodenhausen, Geoffrey

    2013-02-01

    In the long bygone days of continuous-wave nuclear magnetic resonance (NMR) spectroscopy, a selected transition within a multiplet of a high-resolution spectrum could be irradiated by a highly selective continuous-wave (CW) radio-frequency (rf) field with a very weak amplitude ω(2)/(2π)≤J. This causes splittings of connected transitions, allowing one to map the connectivities of all transitions within the energy-level diagram of the spin system. Such "tickling" experiments stimulated the invention of two-dimensional spectroscopy, but seem to have been forgotten for nearly 50 years. We show that tickling can readily be achieved in homonuclear systems with Fourier transform spectrometers by applying short pulses in the intervals between the sampling points. Extensions to heteronuclear systems are even more straightforward since they can be carried out using very weak CW rf fields.

  10. Indirect Fourier transform in the context of statistical inference.

    Science.gov (United States)

    Muthig, Michael; Prévost, Sylvain; Orglmeister, Reinhold; Gradzielski, Michael

    2016-09-01

    Inferring structural information from the intensity of a small-angle scattering (SAS) experiment is an ill-posed inverse problem. Thus, the determination of a solution is in general non-trivial. In this work, the indirect Fourier transform (IFT), which determines the pair distance distribution function from the intensity and hence yields structural information, is discussed within two different statistical inference approaches, namely a frequentist one and a Bayesian one, in order to determine a solution objectively From the frequentist approach the cross-validation method is obtained as a good practical objective function for selecting an IFT solution. Moreover, modern machine learning methods are employed to suppress oscillatory behaviour of the solution, hence extracting only meaningful features of the solution. By comparing the results yielded by the different methods presented here, the reliability of the outcome can be improved and thus the approach should enable more reliable information to be deduced from SAS experiments.

  11. OCTAD-S: digital fast Fourier transform spectrometers by FPGA

    Science.gov (United States)

    Iwai, Kazumasa; Kubo, Yûki; Ishibashi, Hiromitsu; Naoi, Takahiro; Harada, Kenichi; Ema, Kenji; Hayashi, Yoshinori; Chikahiro, Yuichi

    2017-07-01

    We have developed a digital fast Fourier transform spectrometer made of an analog-to-digital converter (ADC) and a field-programmable gate array (FPGA). The base instrument has independent ADC and FPGA modules, which allow us to implement different spectrometers in a relatively easy manner. Two types of spectrometers have been instrumented: one with 4.096 GS/s sampling speed and 2048 frequency channels and the other with 2.048 GS/s sampling speed and 32,768 frequency channels. The signal processing in these spectrometers has no dead time, and the accumulated spectra are recorded in external media every 8 ms. A direct sampling spectroscopy up to 8 GHz is achieved by a microwave track-and-hold circuit, which can reduce the analog receiver in front of the spectrometer. Highly stable spectroscopy with a wide dynamic range was demonstrated in a series of laboratory experiments and test observations of solar radio bursts.

  12. Radix-3 Algorithm for Realization of Discrete Fourier Transform

    Directory of Open Access Journals (Sweden)

    M.Narayan Murty

    2016-07-01

    Full Text Available In this paper, a new radix-3 algorithm for realization of discrete Fourier transform (DFT of length N = 3m (m = 1, 2, 3,... is presented. The DFT of length N can be realized from three DFT sequences, each of length N/3. If the input signal has length N, direct calculation of DFT requires O (N 2 complex multiplications (4N 2 real multiplications and some additions. This radix-3 algorithm reduces the number of multiplications required for realizing DFT. For example, the number of complex multiplications required for realizing 9-point DFT using the proposed radix-3 algorithm is 60. Thus, saving in time can be achieved in the realization of proposed algorithm.

  13. Quantum copying and simplification of the quantum Fourier transform

    Science.gov (United States)

    Niu, Chi-Sheng

    Theoretical studies of quantum computation and quantum information theory are presented in this thesis. Three topics are considered: simplification of the quantum Fourier transform in Shor's algorithm, optimal eavesdropping in the BB84 quantum cryptographic protocol, and quantum copying of one qubit. The quantum Fourier transform preceding the final measurement in Shor's algorithm is simplified by replacing a network of quantum gates with one that has fewer and simpler gates controlled by classical signals. This simplification results from an analysis of the network using the consistent history approach to quantum mechanics. The optimal amount of information which an eavesdropper can gain, for a given level of noise in the communication channel, is worked out for the BB84 quantum cryptographic protocol. The optimal eavesdropping strategy is expressed in terms of various quantum networks. A consistent history analysis of these networks using two conjugate quantum bases shows how the information gain in one basis influences the noise level in the conjugate basis. The no-cloning property of quantum systems, which is the physics behind quantum cryptography, is studied by considering copying machines that generate two imperfect copies of one qubit. The best qualities these copies can have are worked out with the help of the Bloch sphere representation for one qubit, and a quantum network is worked out for an optimal copying machine. If the copying machine does not have additional ancillary qubits, the copying process can be viewed using a 2-dimensional subspace in a product space of two qubits. A special representation of such a two-dimensional subspace makes possible a complete characterization of this type of copying. This characterization in turn leads to simplified eavesdropping strategies in the BB84 and the B92 quantum cryptographic protocols.

  14. Suppression law of quantum states in a 3D photonic fast Fourier transform chip

    Science.gov (United States)

    Crespi, Andrea; Osellame, Roberto; Ramponi, Roberta; Bentivegna, Marco; Flamini, Fulvio; Spagnolo, Nicolò; Viggianiello, Niko; Innocenti, Luca; Mataloni, Paolo; Sciarrino, Fabio

    2016-01-01

    The identification of phenomena able to pinpoint quantum interference is attracting large interest. Indeed, a generalization of the Hong–Ou–Mandel effect valid for any number of photons and optical modes would represent an important leap ahead both from a fundamental perspective and for practical applications, such as certification of photonic quantum devices, whose computational speedup is expected to depend critically on multi-particle interference. Quantum distinctive features have been predicted for many particles injected into multimode interferometers implementing the Fourier transform over the optical modes. Here we develop a scalable approach for the implementation of the fast Fourier transform algorithm using three-dimensional photonic integrated interferometers, fabricated via femtosecond laser writing technique. We observe the suppression law for a large number of output states with four- and eight-mode optical circuits: the experimental results demonstrate genuine quantum interference between the injected photons, thus offering a powerful tool for diagnostic of photonic platforms. PMID:26843135

  15. Improving Spectral Results Using Row-by-Row Fourier Transform of Spatial Heterodyne Raman Spectrometer Interferogram.

    Science.gov (United States)

    Barnett, Patrick D; Strange, K Alicia; Angel, S Michael

    2016-12-12

    This work describes a method of applying the Fourier transform to the two-dimensional Fizeau fringe patterns generated by the spatial heterodyne Raman spectrometer (SHRS), a dispersive interferometer, to correct the effects of certain types of optical alignment errors. In the SHRS, certain types of optical misalignments result in wavelength-dependent and wavelength-independent rotations of the fringe pattern on the detector. We describe here a simple correction technique that can be used in post-processing, by applying the Fourier transform in a row-by-row manner. This allows the user to be more forgiving of fringe alignment and allows for a reduction in the mechanical complexity of the SHRS.

  16. Fourier Transform Ultrasound Spectroscopy for the determination of wave propagation parameters.

    Science.gov (United States)

    Pal, Barnana

    2017-01-01

    The reported results for ultrasonic wave attenuation constant (α) in pure water show noticeable inconsistency in magnitude. A "Propagating-Wave" model analysis of the most popular pulse-echo technique indicates that this is a consequence of the inherent wave propagation characteristics in a bounded medium. In the present work Fourier Transform Ultrasound Spectroscopy (FTUS) is adopted to determine ultrasonic wave propagation parameters, the wave number (k) and attenuation constant (α) at 1MHz frequency in tri-distilled water at room temperature (25°C). Pulse-echo signals obtained under same experimental conditions regarding the exciting input signal and reflecting boundary wall of the water container for various lengths of water columns are captured. The Fast Fourier Transform (FFT) components of the echo signals are taken to compute k, α and r, the reflection constant at the boundary, using Oak Ridge and Oxford method. The results are compared with existing literature values.

  17. Four-quadrant spatial phase-shifting Fourier transform digital holography for recording of cosine transform coefficients

    Institute of Scientific and Technical Information of China (English)

    Chujun Zheng; Peng Han; Hongsen Chang

    2006-01-01

    @@ A new one-step four-quadrant spatial phase-shifting Fourier transform digital holography is presented for recording of cosine transform coefficients, because cosine transform is a real-even symmetric Fourier transform. This approach implements four quadrant spatial phase shifting at a time using a special phase mask, which is located in the reference arm, and the phase distributions of its four-quadrants are 0, π/2, π,and 3π/2 respectively. The theoretical analysis and computer simulation results show that cosine transform coefficients of real-valued image can be calculated by capturing single four-quadrant spatial phase-shifting Fourier transform digital hologram.

  18. Development of Imaging Fourier-Transform Spectroscopy for the Characterization of Turbulent Jet Flames

    Science.gov (United States)

    2014-09-18

    DEVELOPMENT OF IMAGING FOURIER -TRANSFORM SPECTROSCOPY FOR THE CHARACTERIZATION OF TURBULENT JET FLAMES DISSERTATION Jacob L. Harley, Captain, USAF...work of the U.S. Government and is not subject to copyright protection in the United States. AFIT-ENP-DS-14-S-13 DEVELOPMENT OF IMAGING FOURIER -TRANSFORM...DISTRIBUTION UNLIMITED AFIT-ENP-DS-14-S-13 DEVELOPMENT OF IMAGING FOURIER -TRANSFORM SPECTROSCOPY FOR THE CHARACTERIZATION OF TURBULENT JET FLAMES Jacob L

  19. Differentiating Fragmentation Pathways of Cholesterol by Two-Dimensional Fourier Transform Ion Cyclotron Resonance Mass Spectrometry

    National Research Council Canada - National Science Library

    van Agthoven, Maria A; Barrow, Mark P; Chiron, Lionel; Coutouly, Marie-Aude; Kilgour, David; Wootton, Christopher A; Wei, Juan; Soulby, Andrew; Delsuc, Marc-André; Rolando, Christian; O’Connor, Peter B

    2015-01-01

    ...) Fourier transform ion cyclotron resonance mass spectrometry. In the resulting 2D mass spectrum, the fragmentation patterns of the radical and protonated species from cholesterol are differentiated...

  20. Design and fabrication of step mirrors used in space-modulated Fourier transform infrared spectrometer.

    Science.gov (United States)

    Zheng, Ying; Liang, Jingqiu; Liang, Zhongzhu

    2013-01-14

    A model of miniaturized space-modulated Fourier transform infrared spectrometer (FTIR) is given. The two step mirrors as the key components are designed and a lithography-electroplating technique used to fabricate the small step mirror is proposed. We analyze the effect of the experiment results resulted from fabricating technics on the recovery spectrum in theory, and demonstrate that the lithography-electroplating technique is an effective method to fabricate the step mirror, which make miniaturized FTIR realized. We believe that the performances of FTIR can be better realized by optimizing experimental conditions to make this fabricating method more attractive.

  1. Wave scattering theory a series approach based on the Fourier transformation

    CERN Document Server

    Eom, Hyo J

    2001-01-01

    The book provides a unified technique of Fourier transform to solve the wave scattering, diffraction, penetration, and radiation problems where the technique of separation of variables is applicable. The book discusses wave scattering from waveguide discontinuities, various apertures, and coupling structures, often encountered in electromagnetic, electrostatic, magnetostatic, and acoustic problems. A system of simultaneous equations for the modal coefficients is formulated and the rapidly-convergent series solutions amenable to numerical computation are presented. The series solutions find practical applications in the design of microwave/acoustic transmission lines, waveguide filters, antennas, and electromagnetic interference/compatibilty-related problems.

  2. Applications of asynoptic space - Time Fourier transform methods to scanning satellite measurements

    Science.gov (United States)

    Lait, Leslie R.; Stanford, John L.

    1988-01-01

    A method proposed by Salby (1982) for computing the zonal space-time Fourier transform of asynoptically acquired satellite data is discussed. The method and its relationship to other techniques are briefly described, and possible problems in applying it to real data are outlined. Examples of results obtained using this technique are given which demonstrate its sensitivity to small-amplitude signals. A number of waves are found which have previously been observed as well as two not heretofore reported. A possible extension of the method which could increase temporal and longitudinal resolution is described.

  3. Tensorial analysis of a Fourier-transform profilometric setup devoted to the evaluation of muscular contractions

    Science.gov (United States)

    Hanafi, Abdelmalek; Gharbi, Tijani; Cornu, Jean-Yves

    2005-07-01

    We explore the potential use of the Fourier-transform profilometry technique in in vivo studies of muscular contractions through the variation of muscle-group cross sections. Thanks to a tensorial analysis of the technique, a general expression of its sensitivity vector is established. It allows derivation of the expression of the resolution and the limit condition imposed by the spatial sampling of the fringe pattern. Key parameters that maximize the sensitivity are then simulated. A measurement system is accordingly built up and characterized. It is then successfully applied to the evaluation of the deformation of the forearm muscles during grasping exertions.

  4. Fourier-Transform Raman Spectroscopy of Polymers Caractérisation de polymères par spectroscopie Raman à transformée de Fourier

    Directory of Open Access Journals (Sweden)

    Siesler H. W.

    2006-11-01

    Full Text Available The recent extension of the Fourier-Transform (FT technique to the Raman effect has launched Raman spectroscopy into a new era of polymer chemical and physical applications. Thus, the increase in signal-to-noise ratio and the improvement in time resolution have largely enhanced the potential of FT-Raman spectroscopy for analytical applications, the characterization of time-dependent phenomena and the on-line combination with other techniques. Primarily the suppression of fluorescence by shifting the excitation line to the near-infrared (NIR region has contributed to the fast acceptance as an industrial routine tool. Furthermore, the application of fiber optics has opened up the areas of process-control and remote sensing. Les applications de la spectroscopie Raman dans le domaine des polymères sont entrées dans une ère nouvelle, grâce aux récents développements de la technique à transformée de Fourier avec excitation dans le proche infrarouge. L'augmentation du rapport signal sur bruit et l'amélioration de la résolution temporelle ont fortement renforcé les potentialités de la technique en ce qui concerne les applications analytiques, la caractérisation de phénomènes qui dépendent du temps et le couplage en ligne avec d'autres techniques. La suppression du phénomène de fluorescence par déplacement de la longueur d'onde de l'excitatrice dans le proche infrarouge a contribué à l'intégration rapide de l'outil en site industriel. L'emploi de fibres optiques a permis l'accroissement des applications dans le domaine du contrôle des procédés et d'analyser à distance.

  5. Demonstration of a compressive-sensing Fourier-transform on-chip spectrometer.

    Science.gov (United States)

    Podmore, Hugh; Scott, Alan; Cheben, Pavel; Velasco, Aitor V; Schmid, Jens H; Vachon, Martin; Lee, Regina

    2017-04-01

    We demonstrate compressive-sensing (CS) spectroscopy in a planar-waveguide Fourier-transform spectrometer (FTS) device. The spectrometer is implemented as an array of Mach-Zehnder interferometers (MZIs) integrated on a photonic chip. The signal from a set of MZIs is composed of an undersampled discrete Fourier interferogram, which we invert using l1-norm minimization to retrieve a sparse input spectrum. To implement this technique, we use a subwavelength-engineered spatial heterodyne FTS on a chip composed of 32 independent MZIs. We demonstrate the retrieval of three sparse input signals by collecting data from restricted sets (8 and 14) of MZIs and applying common CS reconstruction techniques to this data. We show that this retrieval maintains the full resolution and bandwidth of the original device, despite a sampling factor as low as one-fourth of a conventional (non-compressive) design.

  6. [Biological Process Oriented Online Fourier Transform Infrared Spectrometer].

    Science.gov (United States)

    Xie, Fei; Wu, Qiong-shui; Zeng, Li-bo

    2015-08-01

    An online Fourier Transform Infrared Spectrometer and an ATR (Attenuated Total Reflection) probe, specifically at the application of real time measurement of the reaction substrate concentration in biological processes, were designed. (1) The spectrometer combined the theories of double cube-corner reflectors and flat mirror, which created a kind of high performance interferometer system. The light path folding way was utilized to makes the interferometer compact structure. Adopting double cube-corner reflectors, greatly reduces the influence of factors in the process of moving mirror movement such as rotation, tilt, etc. The parallelogram oscillation flexible support device was utilized to support the moving mirror moves. It cancelled the friction and vibration during mirror moving, and ensures the smooth operation. The ZnSe splitter significantly improved the hardware reliability in high moisture environment. The method of 60° entrance to light splitter improves the luminous flux. (2) An ATR in situ measuring probe with simple structure, large-flux, economical and practical character was designed in this article. The transmission of incident light and the light output utilized the infrared pipe with large diameter and innerplanted-high plating membrane, which conducted for the infrared transmission media of ATR probe. It greatly reduced the energy loss of infrared light after multiple reflection on the inner wall of the light pipe. Therefore, the ATR probe obtained high flux, improved the signal strength, which make the signal detected easily. Finally, the high sensitivity of MCT (Mercury Cadmium Telluride) detector was utilized to realize infrared interference signal collection, and improved the data quality of detection. The test results showed that the system yields the advantages of perfect moisture-proof performance, luminous flux, online measurement, etc. The designed online Fourier infrared spectrometer can real-time measured common reactant substrates

  7. INTERFERENCE MITIGATING BASED ON FRACTIONAL FOURIER TRANSFORM IN TRANSFORM DOMAIN COMMUNICATION SYSTEM

    Institute of Scientific and Technical Information of China (English)

    Wang Chuandan; Zhang Zhongpei; Li Shaoqian

    2007-01-01

    The method of FRactional Fourier Transform (FRFT) is introduced to Transform Domain Communication System (TDCS) for signal transforming in the paper after theoretical analysis. The method yields optimal Basis Function (BF) by FRFT with optimal transform angle. The TDCS using the proposed method has wider usable spectrum, stronger robustness and better ability of anti non-stationary jamming than using usual methods, such as Fourier Transform (FT), Auto Regressive (AR), Wavelet Transform (WT), etc. The main simulation results are as follows. First, the Bit Error Rate (BER) Pb is close to theoretical bound of no jamming no matter in single tone or in linear chirp interference. Second, the interference-to-signal ratio J/E is at least 12dB more than that of Direct Spread Spectrum System (DSSS) under the same BER if the spectrum hopping-to-signal ratio is 1:20 in chirp plus hopping interfering. Third, the Eb/No (when estimation difference is 90% between transmitter and receiver) is about 3.5dB or about 0.5dB (when estimation difference is 10% between transmitter and receiver) more than that of theoretical result when no estimation difference under Pb = 10-2.

  8. Application of Fractional Fourier Transform to Moving Target Indication via Along-Track Interferometry

    Directory of Open Access Journals (Sweden)

    Chiu Shen

    2005-01-01

    Full Text Available A relatively unknown yet powerful technique, the so-called fractional Fourier transform (FrFT, is applied to SAR along-track interferometry (SAR-ATI in order to estimate moving target parameters. By mapping a target's signal onto a fractional Fourier axis, the FrFT permits a constant-velocity target to be focused in the fractional Fourier domain thereby affording orders of magnitude improvement in SCR. Moving target velocity and position parameters are derived and expressed in terms of an optimum fractional angle and a measured fractional Fourier position , allowing a target to be accurately repositioned and its velocity components computed without actually forming an SAR image. The new estimation algorithm is compared with the matched filter bank approach, showing some of the advantages of the FrFT method. The proposed technique is applied to the data acquired by the two-aperture CV580 airborne radar system configured in its along-track mode. Results show that the method is effective in estimating target velocity and position parameters.

  9. Fourier transform profilometry based on mean envelope extraction

    Science.gov (United States)

    Zhang, Xiaoxuan; Huang, Shujun; Gao, Nan; Zhang, Zonghua

    2017-02-01

    Based on an image pre-processing algorithm, a three-dimensional (3D) object measurement method is proposed by combining time domain and frequency domain analysis. Firstly, extreme points of sinusoidal fringes under the disturbance of noise are accurately extracted. Secondly, mean envelope of the fringe is obtained through appropriate interpolation method and then removed. Thirdly, phase information is extracted by using specific filtering in Fourier spectrum of the pre-processed fringe pattern. Finally, simulated and experimental results show a good property of the proposed method in accuracy and measurement range. The proposed method can achieve 3D shape of objects having large slopes and/or discontinuous surfaces from one-shot acquisition by using color fringe projection technique and will have wide applications in the fields of fast measurement.

  10. Subpixel shift with Fourier transform to achieve efficient and high-quality image interpolation

    Science.gov (United States)

    Chen, Qin-Sheng; Weinhous, Martin S.

    1999-05-01

    A new approach to image interpolation is proposed. Different from the conventional scheme, the interpolation of a digital image is achieved with a sub-unity coordinate shift technique. In the approach, the original image is first shifted by sub-unity distances matching the locations where the image values need to be restored. The original and the shifted images are then interspersed together, yielding an interpolated image. High quality sub-unity image shift which is crucial to the approach is accomplished by implementing the shift theorem of Fourier transformation. It is well known that under the Nyquist sampling criterion, the most accurate image interpolation can be achieved with the interpolating function (sinc function). A major drawback is its computation efficiency. The present approach can achieve an interpolation quality as good as that with the sinc function since the sub-unity shift in Fourier domain is equivalent to shifting the sinc function in spatial domain, while the efficiency, thanks to the fast Fourier transform, is very much improved. In comparison to the conventional interpolation techniques such as linear or cubic B-spline interpolation, the interpolation accuracy is significantly enhanced. In order to compensate for the under-sampling effects in the interpolation of 3D medical images owing to a larger inter-slice distance, proper window functions were recommended. The application of the approach to 2- and 3-D CT and MRI images produced satisfactory interpolation results.

  11. 连续Fourier变换、逆变换的数值计算%Numerical computation for continuous Fourier transform and inverse Fourier transform

    Institute of Scientific and Technical Information of China (English)

    魏鑫宇; 冯立新; 张国艳

    2012-01-01

    Based on the trigonometric interpolation theory, a function is approximated by its trigonometric interpolation function. By the properties of Dirac distribution function, the analytic expressions of the Fourier transform and inverse Fourier transform for the trigonometric interpolation function are derived to approximate the Fourier transform and inverse Fourier transform for the original function. The numerical formulations for calculating the Fourier transforms and the inverse Fourier transforms of the functions with one variable and two variables are derived, respectively. Comparing with the algorithm using rectangular formula of numerical integration, the numerical examples show that the proposed method achieves higher accuracy.%基于三角插值理论,用函数的三角插值函数代替函数本身,并借助Dirac广义函数的性质写出三角插值函数的Fourier变换、逆变换的解析表达式,将之作为函数的Fourier变换、逆变换的近似.基于这种想法,分别推导一元函数、二元函数的Fourier变换和Fourier逆变换的计算公式.数值实验表明,这种方法比通常基于矩形求积公式计算连续Fourier变换、逆变换的精度要高.

  12. Grid-Based Fourier Transform Phase Contrast Imaging

    Science.gov (United States)

    Tahir, Sajjad

    Low contrast in x-ray attenuation imaging between different materials of low electron density is a limitation of traditional x-ray radiography. Phase contrast imaging offers the potential to improve the contrast between such materials, but due to the requirements on the spatial coherence of the x-ray beam, practical implementation of such systems with tabletop (i.e. non-synchrotron) sources has been limited. One recently developed phase imaging technique employs multiple fine-pitched gratings. However, the strict manufacturing tolerances and precise alignment requirements have limited the widespread adoption of grating-based techniques. In this work, we have investigated a technique recently demonstrated by Bennett et al. that utilizes a single grid of much coarser pitch. Our system consisted of a low power 100 microm spot Mo source, a CCD with 22 microm pixel pitch, and either a focused mammography linear grid or a stainless steel woven mesh. Phase is extracted from a single image by windowing and comparing data localized about harmonics of the grid in the Fourier domain. A Matlab code was written to perform the image processing. For the first time, the effects on the diffraction phase contrast and scattering amplitude images of varying grid types and periods, and of varying the window function type used to separate the harmonics, and the window widths, were investigated. Using the wire mesh, derivatives of the phase along two orthogonal directions were obtained and new methods investigated to form improved phase contrast images.

  13. Mesh-based phase contrast Fourier transform imaging

    Science.gov (United States)

    Tahir, Sajjad; Bashir, Sajid; MacDonald, C. A.; Petruccelli, Jonathan C.

    2017-04-01

    Traditional x-ray radiography is limited by low attenuation contrast in materials of low electron density. Phase contrast imaging offers the potential to improve the contrast between such materials, but due to the requirements on the spatial coherence of the x-ray beam, practical implementation of such systems with tabletop (i.e. non-synchrotron) sources has been limited. One phase imaging technique employs multiple fine-pitched gratings. However, the strict manufacturing tolerances and precise alignment requirements have limited the widespread adoption of grating-based techniques. In this work, we have investigated a recently developed technique that utilizes a single grid of much coarser pitch. Our system consisted of a low power 100 μm spot Mo source, a CCD with 22 μm pixel pitch, and either a focused mammography linear grid or a stainless steel woven mesh. Phase is extracted from a single image by windowing and comparing data localized about harmonics of the mesh in the Fourier domain. The effects on the diffraction phase contrast and scattering amplitude images of varying grid types and periods, and of varying the width of the window function used to separate the harmonics were investigated. Using the wire mesh, derivatives of the phase along two orthogonal directions were obtained and combined to form improved phase contrast images.

  14. Automated charge state determination of complex isotope-resolved mass spectra by peak-target Fourier transform.

    Science.gov (United States)

    Chen, Li; Yap, Yee Leng

    2008-01-01

    This study describes a new algorithm for charge state determination of complex isotope-resolved mass spectra. This algorithm is based on peak-target Fourier transform (PTFT) of isotope packets. It is modified from the widely used Fourier transform method because Fourier transform may give ambiguous charge state assignment for low signal-to-noise ratio (S/N) or overlapping isotopic clusters. The PTFT algorithm applies a novel "folding" strategy to enhance peaks that are symmetrically spaced about the targeted peak before applying the FT. The "folding" strategy multiplies each point to the high-m/z side of the targeted peak by its counterpart on the low-m/z side. A Fourier transform of this "folded" spectrum is thus simplified, emphasizing the charge state of the "chosen" ion, whereas ions of other charge states contribute less to the transformed data. An intensity-dependent technique is also proposed for charge state determination from frequency signals. The performance of PTFT is demonstrated using experimental electrospray ionization Fourier transform ion cyclotron resonance mass spectra. The results show that PTFT is robust for charge state determination of low S/N and overlapping isotopic clusters, and also useful for manual verification of potential hidden isotopic clusters that may be missed by the current analysis algorithms, i.e., AID-MS or THRASH.

  15. Spectrogram analysis of selected tremor signals using short-time Fourier transform and continuous wavelet transform

    Directory of Open Access Journals (Sweden)

    D. Seidl

    1999-06-01

    Full Text Available Among a variety of spectrogram methods Short-Time Fourier Transform (STFT and Continuous Wavelet Transform (CWT were selected to analyse transients in non-stationary tremor signals. Depending on the properties of the tremor signal a more suitable representation of the signal is gained by CWT. Three selected broadband tremor signals from the volcanos Mt. Stromboli, Mt. Semeru and Mt. Pinatubo were analyzed using both methods. The CWT can also be used to extend the definition of coherency into a time-varying coherency spectrogram. An example is given using array data from the volcano Mt. Stromboli.

  16. Barley Transformation Using Biolistic Techniques

    Science.gov (United States)

    Harwood, Wendy A.; Smedley, Mark A.

    Microprojectile bombardment or biolistic techniques have been widely used for cereal transformation. These methods rely on the acceleration of gold particles, coated with plasmid DNA, into plant cells as a method of directly introducing the DNA. The first report of the generation of fertile, transgenic barley plants used biolistic techniques. However, more recently Agrobacterium-mediated transformation has been adopted as the method of choice for most cereals including barley. Biolistic procedures are still important for some barley transformation applications and also provide transient test systems for the rapid checking of constructs. This chapter describes methods for the transformation of barley using biolistic procedures and also highlights the use of the technology in transient assays.

  17. Fractional Fourier Transform Applied to Digital Images Encryption

    Science.gov (United States)

    Vilardy, Juan M.; Torres, Cesar O.; Mattos, Lorenzo

    2008-04-01

    In the present paper a digital algorithm was developed to make phase encryption of digital indexed images to color using the fractional Fourier transform (the images in RGB are converted to indexed before to encrypt). The indexed images are represented by a matrix of M×N pixels (where M defines the height and N is the Width of the image) and a color map (it's a matrix of C×3 elements, where C indicates the colors number of the image and the number 3 indicates the three columns associated with the color components: Red, Green and Blue of each pixel of the matrix of M×N) associated to the matrix of pixels to suitably represent the color information of the image. The indexed image (matrix of M×N pixels) to encrypt is placed as the phase of a complex exponential, then is transformed three times and multiplied in intermediate steps by two random phase masks statistically independent thus to obtain the encrypted image, for decrypt the coding image the encryption procedure is applied in the inverse sense to the conjugated complex of the encrypted image, then is taken the negative of the phase of the resulting function of the decryption process and the original image is obtained this way that had been encrypted; For the color map equal procedure is applied in the encryption/decryption process described previously for the matrix of M×N pixels. In the implemented cryptographic algorithm five keys are used, constituted by three fractional orders and two random phase masks, all these keys are necessary for a correct decryption providing a dependability to the transference of images by means of the communications nets.

  18. Calibration of the Herschel SPIRE Fourier Transform Spectrometer

    CERN Document Server

    Swinyard, B M; Hopwood, R; Valtchanov, I; Lu, N; Fulton, T; Benielli, D; Imhof, P; Marchili, N; Baluteau, J -P; Bendo, G J; Ferlet, M; Griffin, M J; Lim, T L; Makiwa, G; Naylor, D A; Orton, G S; Papageorgiou, A; Pearson, C P; Schulz, B; Sidher, S D; Spencer, L D; van der Wiel, M H D; Wu, R

    2014-01-01

    The Herschel SPIRE instrument consists of an imaging photometric camera and an imaging Fourier Transform Spectrometer (FTS), both operating over a frequency range of 450-1550 GHz. In this paper, we briefly review the FTS design, operation, and data reduction, and describe in detail the approach taken to relative calibration (removal of instrument signatures) and absolute calibration against standard astronomical sources. The calibration scheme assumes a spatially extended source and uses the Herschel telescope as primary calibrator. Conversion from extended to point-source calibration is carried out using observations of the planet Uranus. The model of the telescope emission is shown to be accurate to within 6% and repeatable to better than 0.06% and, by comparison with models of Mars and Neptune, the Uranus model is shown to be accurate to within 3%. Multiple observations of a number of point-like sources show that the repeatability of the calibration is better than 1%, if the effects of the satellite absolu...

  19. Fourier transform infrared absorption spectroscopy of jet-cooled radicals

    Science.gov (United States)

    Rohrs, Henry W.; Wickham-Jones, C. Tom; Ellison, G. Barney; Berry, David; Argrow, Brian M.

    1995-03-01

    We describe an experiment that couples a high-resolution Fourier transform spectrometer (FTS) to a supersonic jet of radicals. A 1-mm-i.d. cylindrical SiC nozzle is resistively heated to 1500 K in order to decompose organic precursors and generate expansions of jet-cooled radicals. We have used this apparatus to pyrolyze alkyl nitrites to make alkoxy and nitric oxide radicals. The residence time of radicals in this hot nozzle is roughly 20 μs RONO→ΔRO+NO. We use the FTS to detect the IR absorption of the product NO (ν0=1876.1 cm-1) at resolutions as fine as 0.005 cm-1 FWHM. We observe the product NO from the pyrolysis of CH3CH2ONO to be rotationally cooled to roughly 50 K. The IR spectra indicate that the optical path length is about 3/4 cm and that the nitrites pyrolyze to produce approximately 1014 NO radicals cm-3 some 9 mm downstream from the nozzle. Our spectrometer is capable of detecting an absorption signal of 0.1% over a bandwidth of 100 cm-1 at 0.005 cm-1 resolution. Depending on the infrared cross section of the radical, this implies that we are able to monitor diatomic radical densities of roughly 5×1012 cm-3 (quantum state)-1.

  20. Transmission fourier transform Raman spectroscopy of pharmaceutical tablet cores.

    Science.gov (United States)

    Pelletier, Michael J; Larkin, Peter; Santangelo, Matthew

    2012-04-01

    Transmission Fourier transform (FT) Raman spectroscopy of pharmaceutical tablet cores is demonstrated using traditional, unmodified commercial instrumentation. The benefits of improved precision over backscattering Raman spectroscopy due to increased sample volume are demonstrated. Self-absorption effects on analyte band ratios and sample probe volume are apparent, however. A survey of near-infrared (NIR) absorption spectra in the FT-Raman spectral range (approximately 0 to 3500 wavenumber shift from 1064 nm, or 1064 to 1700 nm) of molecules with a wide range of NIR-active functional groups shows that although absorption at the laser wavelength (1064 nm) is relatively small, some regions of the Raman spectrum coincide with NIR absorbances of 0.5 per cm or greater. Fortunately, the pharmaceutically important regions of the Raman shift spectrum from 0 to 600 cm(-1) and from 1400 to 1900 cm(-1) exhibit low self-absorption for most organic materials. A statistical analysis of transmission FT-Raman noise in spectra collected from different regions of a pharmaceutical tablet provides insight into both spectral distortion and reduced sampling volume caused by self-absorption.

  1. Spin Glass Field Theory with Replica Fourier Transforms

    Science.gov (United States)

    Pimentel, Iveta R.; De Dominicis, Cirano

    We develop a field theory for spin glasses using Replica Fourier Transforms (RFT). We present the formalism for the case of replica symmetry and the case of replica symmetry breaking on an ultrametric tree, with the number of replicas n and the number of replica symmetry breaking steps R generic integers. We show how the RFT applied to the two-replica fields allows to construct a new basis which block-diagonalizes the four-replica mass-matrix, into the replicon, anomalous and longitudinal modes. The eigenvalues are given in terms of the mass RFT and the propagators in the RFT space are obtained by inversion of the block-diagonal matrix. The formalism allows to express any i-replica vertex in the new RFT basis and hence enables to perform a standard perturbation expansion. We apply the formalism to calculate the contribution of the Gaussian fluctuations around the Parisi's solution for the free-energy of an Ising spin glass.

  2. Resource requirements for a fault-tolerant quantum Fourier transform

    Science.gov (United States)

    Goto, Hayato; Nakamura, Satoshi; Kujiraoka, Mamiko; Ichimura, Kouichi

    2015-03-01

    The quantum Fourier transform (QFT) is a basic subroutine for most quantum algorithms providing an exponential speedup over classical ones. We investigate resource requirements for a fault-tolerant QFT. To implement single-qubit rotations for a QFT in a fault-tolerant manner, we examine three types of approaches: ancilla-free gate synthesis, ancilla-assisted gate synthesis, and state distillation. While the gate synthesis approximates single-qubit rotations with basic quantum operations, the state distillation enables to perform specific single-qubit rotations required for the QFT exactly. It is unknown, however, which approach is better for the QFT. We estimated the resource requirement for a QFT in each case, where the resource is measured by the total number of the π / 8 gates denoted by T, which is called the T count. Contrary to the initial expectation, the total T count for the state distillation is considerably larger than those for the ancilla-free and ancilla-assisted gate synthesis. Thus, we conclude that the ancilla-assisted gate synthesis is the best for a fault-tolerant QFT so far.

  3. SAR-based vibrometry using the fractional Fourier transform

    Science.gov (United States)

    Campbell, Justin B.; Wang, Qi; Ade-Bello, Jelili; Caudana, Humberto; Trujillo, Nicole B.; Bhatta, Ishwor; Dunkel, Ralf; Atwood, Thomas; Doerry, Armin; Gerstle, Walter H.; Santhanam, Balu; Hayat, Majeed M.

    2015-05-01

    A fundamental assumption when applying Synthetic Aperture Radar (SAR) to a ground scene is that all targets are motionless. If a target is not stationary, but instead vibrating in the scene, it will introduce a non-stationary phase modulation, termed the micro-Doppler effect, into the returned SAR signals. Previously, the authors proposed a pseudosubspace method, a modification to the Discrete Fractional Fourier Transform (DFRFT), which demonstrated success for estimating the instantaneous accelerations of vibrating objects. However, this method may not yield reliable results when clutter in the SAR image is strong. Simulations and experimental results have shown that the DFRFT method can yield reliable results when the signal-to-clutter ratio (SCR) > 8 dB. Here, we provide the capability to determine a target's frequency and amplitude in a low SCR environment by presenting two methods that can perform vibration estimations when SCR < 3 dB. The first method is a variation and continuation of the subspace approach proposed previously in conjunction with the DFRFT. In the second method, we employ the dual-beam SAR collection architecture combined with the extended Kalman filter (EKF) to extract information from the returned SAR signals about the vibrating target. We also show the potential for extending this SAR-based capability to remotely detect and classify objects housed inside buildings or other cover based on knowing the location of vibrations as well as the vibration histories of the vibrating structures that house the vibrating objects.

  4. Improved Fast Fourier Transform Based Method for Code Accuracy Quantification

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Tae Wook; Jeong, Jae Jun [Pusan National University, Busan (Korea, Republic of); Choi, Ki Yong [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    The capability of the proposed method is discussed. In this study, the limitations of the FFTBM were analyzed. The FFTBM produces quantitatively different results due to its frequency dependence. Because the problem is intensified by including a lot of high frequency components, a new method using a reduced cut-off frequency was proposed. The results of the proposed method show that the shortcomings of FFTBM are considerably relieved. Among them, the fast Fourier transform based method (FFTBM) introduced in 1990 has been widely used to evaluate a code uncertainty or accuracy. Prosek et al., (2008) identified its drawbacks, the so-called 'edge effect'. To overcome the problems, an improved FFTBM by signal mirroring (FFTBM-SM) was proposed and it has been used up to now. In spite of the improvement, the FFTBM-SM yielded different accuracy depending on the frequency components of a parameter, such as pressure, temperature and mass flow rate. Therefore, it is necessary to reduce the frequency dependence of the FFTBMs. In this study, the deficiencies of the present FFTBMs are analyzed and a new method is proposed to mitigate its frequency dependence.

  5. Analysis of ovarian tumor pathology by Fourier Transform Infrared Spectroscopy

    Directory of Open Access Journals (Sweden)

    Mehrotra Ranjana

    2010-12-01

    Full Text Available Abstract Background Ovarian cancer is the second most common cancer among women and the leading cause of death among gynecologic malignancies. In recent years, infrared (IR spectroscopy has gained attention as a simple and inexpensive method for the biomedical study of several diseases. In the present study infrared spectra of normal and malignant ovarian tissues were recorded in the 650 cm-1 to 4000 cm-1 region. Methods Post surgical tissue samples were taken from the normal and tumor sections of the tissue. Fourier Transform Infrared (FTIR data on twelve cases of ovarian cancer with different grades of malignancy from patients of different age groups were analyzed. Results Significant spectral differences between the normal and the ovarian cancerous tissues were observed. In particular changes in frequency and intensity in the spectral region of protein, nucleic acid and lipid vibrational modes were observed. It was evident that the sample-to-sample or patient-to-patient variations were small and the spectral differences between normal and diseased tissues were reproducible. Conclusion The measured spectroscopic features, which are the spectroscopic fingerprints of the tissues, provided the important differentiating information about the malignant and normal tissues. The findings of this study demonstrate the possible use of infrared spectroscopy in differentiating normal and malignant ovarian tissues.

  6. Two-dimensional Fourier transform ESR correlation spectroscopy

    Science.gov (United States)

    Gorcester, Jeff; Freed, Jack H.

    1988-04-01

    We describe our pulsed two-dimensional Fourier transform ESR experiment and demonstrate its applicabilty for the double resonance of motionally narrowed nitroxides. Multiple pulse irradiation of the entire nitroxide spectrum enables the correlation of two precessional periods, allowing observation of cross correlations between hyperfine lines introduced by magnetization transfer in the case of a three-pulse experiment (2D ELDOR), or coherence transfer in the case of a two-pulse experiment (COSY). Cross correlations are revealed by the presence of cross peaks which connect the autocorrelation lines appearing along the diagonal ω1=ω2. The amplitudes of these cross peaks are determined by the rates of magnetization transfer in the 2D ELDOR experiment. The density operator theory for the experiment is outlined and applied to the determination of Heisenberg exchange (HE) rates in 2,2,6,6-tetramethyl-4-piperidone-N-oxyl-d15 (PD-tempone) dissolved in toluene-d8. The quantitative accuracy of this experiment is established by comparison with the HE rate measured from the dependence of the spin echo T2 on nitroxide concentration.

  7. Screening cervical lesions with Fourier transform infrared spectroscopy

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The screening results were reported based on the Fourier transform infrared spectroscopy (FTIR) analysis of the samples of exfoliated cervical cells from 354 women. Their spectra can be sorted into two types based on the emerging or not of the absorption bands near 970 cm-1 and 1 170 cm-1: T1 (83.1%) type without emerging, and T2 (16.9%) type with obviously emerging. All of the samples assigned to T1 were cytologically diagnosed as normal or within normal limits (PapⅠ). 28.9% and 71.1% of samples exhibiting T2 profile, were cytologically evaluated as Pap Ⅰand abnormal respectively. 3 women in the abnormal group were diagnosed as to have cervical cells with changes associated with high grade of inflammation, cervical scar and cervical erosion. Furthermore, based on the progressive change of the relative intensities of the absorption bands, both T1 and T2 profiles can be categorized into 6 subtypes. The observed heterogeneous spectra and the progressive changes in the absorption frequencies and the relative intensities exhibit features suggestive of the progressive process of cervical lesion. The FTIR method has the potential to complement the cytological smear for large-volume screening of cervical lesions.

  8. Continued Development of a Planetary Imaging Fourier Transform Spectrometer (PIFTS)

    Science.gov (United States)

    Sromovsky, L. A.

    2002-01-01

    This report describes continued efforts to evaluate a breadboard of a Planetary Imaging Fourier Transform Spectrometer (PIFTS). The PIFTS breadboard was developed under prior PIDDP funding. That effort is described in the final report for NASA Grant NAG5-6248 and in two conference papers (Sromovsky et al. 2000; Revercomb et al. 2000). The PIFTS breadboard was designed for near-IR (1-5.2 micrometer imaging of planetary targets with spectral resolving powers of several hundred to several thousand, using an InSb detector array providing at least 64x64 pixels imaging detail. The major focus of the development effort was to combine existing technologies to produce a small and low power design compatible with a very low mass flyable instrument. The objective of this grant (NAG5-10729) was further characterization of the breadboard performance, including intercomparisons with the highly accurate non-imaging Advanced Emitted Radiance Interferometer (AERI) (Revercomb et al. 1994; Best et al. 1997).

  9. Geosynchronous Imaging Fourier Transform Spectrometer (GIFTS): Imaging and Tracking Capability

    Science.gov (United States)

    Zhou, D. K.; Larar, A. M.; Liu, Xu; Reisse, R. A.; Smith, W. L.; Revercomb, H. E.; Bingham, G. E.; Zollinger, L. J.; Tansock, J. J.; Huppi, Ronald J.

    2007-01-01

    The geosynchronous-imaging Fourier transform spectrometer (GIFTS) engineering demonstration unit (EDU) is an imaging infrared spectrometer designed for atmospheric soundings. It measures the infrared spectrum in two spectral bands (14.6 to 8.8 microns, 6.0 to 4.4 microns) using two 128 128 detector arrays with a spectral resolution of 0.57/cm with a scan duration of approx. 11 seconds. From a geosynchronous orbit, the instrument will have the capability of taking successive measurements of such data to scan desired regions of the globe, from which atmospheric status, cloud parameters, wind field profiles, and other derived products can be retrieved. The GIFTS EDU provides a flexible and accurate testbed for the new challenges of the emerging hyperspectral era. The EDU ground-based measurement experiment, held in Logan, Utah during September 2006, demonstrated its extensive capabilities and potential for geosynchronous and other applications (e.g., Earth observing environmental measurements). This paper addresses the experiment objectives and overall performance of the sensor system with a focus on the GIFTS EDU imaging capability and proof of the GIFTS measurement concept.

  10. Fourier transform infrared microspectroscopy and multivariate methods for radiobiological dosimetry.

    Science.gov (United States)

    Meade, A D; Clarke, C; Byrne, H J; Lyng, F M

    2010-02-01

    The scientific literature contains an ever-growing number of reports of applications of vibrational spectroscopy as a multivariate non-invasive tool for analysis of biological effects at the molecular level. Recently, Fourier transform infrared microspectroscopy (FTIRM) has been demonstrated to be sensitive to molecular events occurring in cells and tissue after exposure to ionizing radiation. In this work the application of FTIRM in the examination of dose-dependent molecular effects occurring in skin cells after exposure to ionizing radiation with the use of partial least-squares regression (PLSR) and generalized regression neural networks (GRNN) was studied. The methodology is shown to be sensitive to molecular events occurring with radiation dose and time after exposure. The variation in molecular species with dose and time after irradiation is shown to be non-linear by virtue of the higher modeling efficiency yielded from the non-linear algorithms. Dose prediction efficiencies of approximately +/-10 mGy were achieved at 96 h after irradiation, highlighting the potential applications of the methodology in radiobiological dosimetry.

  11. High-resolution wide-band Fast Fourier Transform spectrometers

    CERN Document Server

    Klein, Bernd; Krämer, Ingo; Bell, Andreas; Meyer, Klaus; Güsten, Rolf

    2012-01-01

    We describe the performance of our latest generations of sensitive wide-band high-resolution digital Fast Fourier Transform Spectrometer (FFTS). Their design, optimized for a wide range of radio astronomical applications, is presented. Developed for operation with the GREAT far infrared heterodyne spectrometer on-board SOFIA, the eXtended bandwidth FFTS (XFFTS) offers a high instantaneous bandwidth of 2.5 GHz with 88.5 kHz spectral resolution and has been in routine operation during SOFIA's Basic Science since July 2011. We discuss the advanced field programmable gate array (FPGA) signal processing pipeline, with an optimized multi-tap polyphase filter bank algorithm that provides a nearly loss-less time-to-frequency data conversion with significantly reduced frequency scallop and fast sidelobe fall-off. Our digital spectrometers have been proven to be extremely reliable and robust, even under the harsh environmental conditions of an airborne observatory, with Allan-variance stability times of several 1000 se...

  12. Multi-channel sampling theorems for band-limited signals with fractional Fourier transform

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Multi-channel sampling for band-limited signals is fundamental in the theory of multi-channel parallel A/D environment and multiplexing wireless communication environment. As the fractional Fourier transform has been found wide applications in signal processing fields, it is necessary to consider the multi-channel sampling theorem based on the fractional Fourier transform. In this paper, the multi-channel sampling theorem for the fractional band-limited signal is firstly proposed, which is the generalization of the well-known sampling theorem for the fractional Fourier transform. Since the periodic nonuniformly sampled signal in the fractional Fourier domain has valuable applications, the reconstruction expression for the periodic nonuniformly sampled signal has been then obtained by using the derived multi-channel sampling theorem and the specific space-shifting and phase-shifting properties of the fractional Fourier transform. Moreover, by designing different fractional Fourier filters, we can obtain reconstruction methods for other sampling strategies.

  13. Localization Operators and an Uncertainty Principle for the Discrete Short Time Fourier Transform

    Directory of Open Access Journals (Sweden)

    Carmen Fernández

    2014-01-01

    Full Text Available Localization operators in the discrete setting are used to obtain information on a signal f from the knowledge on the support of its short time Fourier transform. In particular, the extremal functions of the uncertainty principle for the discrete short time Fourier transform are characterized and their connection with functions that generate a time-frequency basis is studied.

  14. Imaging photonic crystals using Fourier plane imaging and Fourier ptychographic microscopy techniques implemented with a computer controlled hemispherical digital condenser

    Science.gov (United States)

    Sen, Sanchari; Desai, Darshan B.; Alsubaie, Meznh H.; Zhelyeznyakov, Maksym V.; Molina, L.; Sarraf, Hamed Sari; Bernussi, Ayrton A.; Peralta, Luis Grave de

    2017-01-01

    Fourier plane imaging (FPIM) and Fourier ptychographic (FPM) microscopy techniques were used to image photonic crystals. A computer-controlled hemispherical digital condenser provided required sample illumination with variable inclination. Notable improvement in image resolution was obtained with both methods. However, it was determined that the FPM technique cannot surpass the Rayleigh resolution limit when imaging photonic crystals.

  15. Optimal Padding for the Two-Dimensional Fast Fourier Transform

    Science.gov (United States)

    Dean, Bruce H.; Aronstein, David L.; Smith, Jeffrey S.

    2011-01-01

    One-dimensional Fast Fourier Transform (FFT) operations work fastest on grids whose size is divisible by a power of two. Because of this, padding grids (that are not already sized to a power of two) so that their size is the next highest power of two can speed up operations. While this works well for one-dimensional grids, it does not work well for two-dimensional grids. For a two-dimensional grid, there are certain pad sizes that work better than others. Therefore, the need exists to generalize a strategy for determining optimal pad sizes. There are three steps in the FFT algorithm. The first is to perform a one-dimensional transform on each row in the grid. The second step is to transpose the resulting matrix. The third step is to perform a one-dimensional transform on each row in the resulting grid. Steps one and three both benefit from padding the row to the next highest power of two, but the second step needs a novel approach. An algorithm was developed that struck a balance between optimizing the grid pad size with prime factors that are small (which are optimal for one-dimensional operations), and with prime factors that are large (which are optimal for two-dimensional operations). This algorithm optimizes based on average run times, and is not fine-tuned for any specific application. It increases the amount of times that processor-requested data is found in the set-associative processor cache. Cache retrievals are 4-10 times faster than conventional memory retrievals. The tested implementation of the algorithm resulted in faster execution times on all platforms tested, but with varying sized grids. This is because various computer architectures process commands differently. The test grid was 512 512. Using a 540 540 grid on a Pentium V processor, the code ran 30 percent faster. On a PowerPC, a 256x256 grid worked best. A Core2Duo computer preferred either a 1040x1040 (15 percent faster) or a 1008x1008 (30 percent faster) grid. There are many industries that

  16. Missing texture reconstruction method based on error reduction algorithm using Fourier transform magnitude estimation scheme.

    Science.gov (United States)

    Ogawa, Takahiro; Haseyama, Miki

    2013-03-01

    A missing texture reconstruction method based on an error reduction (ER) algorithm, including a novel estimation scheme of Fourier transform magnitudes is presented in this brief. In our method, Fourier transform magnitude is estimated for a target patch including missing areas, and the missing intensities are estimated by retrieving its phase based on the ER algorithm. Specifically, by monitoring errors converged in the ER algorithm, known patches whose Fourier transform magnitudes are similar to that of the target patch are selected from the target image. In the second approach, the Fourier transform magnitude of the target patch is estimated from those of the selected known patches and their corresponding errors. Consequently, by using the ER algorithm, we can estimate both the Fourier transform magnitudes and phases to reconstruct the missing areas.

  17. Fourier transform ion cyclotron resonance at SHIPTRAP. A non-destructive detection method for heavy radionuclides

    Energy Technology Data Exchange (ETDEWEB)

    Weber, C.; Dilling, J.; Kluge, H.J.; Marx, G.; Mukherjee, M.; Quint, W.; Rahaman, S.; Rodriguez, D.; Schoenfelder, J.; Sikler, G.; Tarisien, M. [GSI, Darmstadt (Germany)

    2003-07-01

    The physics program of the SHIPTRAP facility comprises mass spectrometry, nuclear spectroscopy, optical spectroscopy, and chemistry of fusion reaction produced nuclides and, especially, transeinsteinium elements. One of the major limitations to the experimental investigations is the low production rate for exotic nuclei. Detection schemes based on a destructive time-of-flight measurement lead to intolerably long beam times. An alternative is the Fourier transform-ion cyclotron resonance (FT-ICR) technique. It is suited for ion identification and mass measurements as well as for chemical studies. (orig.)

  18. Correcting attenuated total reflection-fourier transform infrared spectra for water vapor and carbon dioxide

    DEFF Research Database (Denmark)

    Bruun, Susanne Wrang; Kohler, Achim; Adt, Isabelle

    2006-01-01

    Fourier transform infrared (FT-IR) spectroscopy is a valuable technique for characterization of biological samples, providing a detailed fingerprint of the major chemical constituents. However, water vapor and CO(2) in the beam path often cause interferences in the spectra, which can hamper...... an absorption band from either water vapor or CO(2). From two calibration data sets, gas model spectra were estimated in each of the four spectral regions, and these model spectra were applied for correction of gas absorptions in two independent test sets (spectra of aqueous solutions and a yeast biofilm (C...

  19. Predictive analog-to-digital converter for Fourier-transform spectrometers.

    Science.gov (United States)

    Deschênes, Jean-Daniel; Potvin, Simon; Ash, Jean-Simon; Genest, Jérôme

    2010-09-10

    This paper proposes the use of predictive analog-to-digital converters (ADC) to handle dynamic range issues in Fourier-transform spectrometers. Several predictive approaches are proposed, and one is implemented experimentally to show that the technique works. A system was implemented with 16 bit (13 bits effective) ADCs and digital-to-analog converters (DACs) operated at 8 bits to provide a comparison basis. Measurements of a blackbody at 900 °C performed using the setup show a 13 bit effective performance, limited by the input noise of the data acquisition card.

  20. Spatial Carrier Bi-frequency Fourier Transform Profilometry for the 3-D Shape Measurement of Object with Discontinuous Height Steps

    Institute of Scientific and Technical Information of China (English)

    ZHONG Jingang; DI Hongwei; ZHANG Yonglin

    2000-01-01

    The combination of shearing interferometer, Fourier-transform profilometry, phase unwrapping by lookup table method has resulted in a new and more powerful method of measuring surface profile. The technique permits the three-dimensional shape measurement of objects that have discontinuous height steps. Experimental results have demonstrated the validity of the principle.

  1. Feasibility investigation of integrated optics Fourier transform devices. [holographic subtraction for multichannel data preprocessing

    Science.gov (United States)

    Verber, C. M.; Vahey, D. W.; Wood, V. E.; Kenan, R. P.; Hartman, N. F.

    1977-01-01

    The possibility of producing an integrated optics data processing device based upon Fourier transformations or other parallel processing techniques, and the ways in which such techniques may be used to upgrade the performance of present and projected NASA systems were investigated. Activities toward this goal include; (1) production of near-diffraction-limited geodesic lenses in glass waveguides; (2) development of grinding and polishing techniques for the production of geodesic lenses in LiNbO3 waveguides; (3) development of a characterization technique for waveguide lenses; and (4) development of a theory for corrected aspheric geodesic lenses. A holographic subtraction system was devised which should be capable of rapid on-board preprocessing of a large number of parallel data channels. The principle involved is validated in three demonstrations.

  2. Fourier Transform Spectrometer measurements of Atmospheric Carbon Dioxide and Methane

    Science.gov (United States)

    Kivi, Rigel; Heikkinen, Pauli; Chen, Huilin; Hatakka, Juha; Laurila, Tuomas

    2016-04-01

    Ground based remote sensing measurements of column CO2 and CH4 using Fourier Transform Spectrometers (FTS) within the Total Carbon Column Observing Network (TCCON) are known for high precision and accuracy. These measurements are performed at various locations globally and they have been widely used in carbon cycle studies and validation of space born measurements. The relevant satellite missions include the Orbiting Carbon Observatory-2 (OCO-2) by the National Aeronautics and Space Administration (NASA); the SCanning Imaging Absorption SpectroMeter for Atmospheric CHartographY (SCIAMACHY) by the European Space Agency (ESA); the Greenhouse gases Observing SATellite (GOSAT) by the Japan Aerospace Exploration Agency (JAXA) and the upcoming Sentinel-5 Precursor mission, which is an ESA mission and scheduled for launch in 2016. Results of the column CO2 and CH4 measurements at Sodankylä in northern Finland (at 67.4° N, 26.6° E) are reported in this study. The measurements have been performed on regular basis since the beginning of the program in early 2009. We also present evaluation of the data quality of the ground based measurements and comparisons with the available satellite based retrievals. In case of comparisons between the GOSAT and ground based retrievals of CO2 and CH4 no significant biases were found. Sodankylä is one of the northernmost stations in the TCCON network. However, the data coverage has been relatively good thanks to the progress towards automation of the FTS measurement system. At Sodankylä the retrievals have been also compared with the balloon borne AirCore measurements at the site. AirCore sampling system is directly related to the World Meteorological Organization in situ trace gas measurement scales. The balloon platform allows sampling in both stratosphere and troposphere, which is a benefit, compared to the aircraft in situ measurements.

  3. Continuously tunable optical multidimensional Fourier-transform spectrometer.

    Science.gov (United States)

    Dey, P; Paul, J; Bylsma, J; Deminico, S; Karaiskaj, D

    2013-02-01

    A multidimensional optical nonlinear spectrometer (MONSTR) is a robust, ultrastable platform consisting of nested and folded Michelson interferometers that can be actively phase stabilized. The MONSTR provides output pulses for nonlinear excitation of materials and phase-stabilized reference pulses for heterodyne detection of the induced signal. This platform generates a square of identical laser pulses that can be adjusted to have arbitrary time delays between them while maintaining phase stability. This arrangement is ideal for performing coherent optical experiments, such as multidimensional Fourier-transform spectroscopy. The present work reports on overcoming some important limitations on the original design of the MONSTR apparatus. One important advantage of the MONSTR is the fact that it is a closed platform, which provides the high stability. Once the optical alignment is performed, it is desirable to maintain the alignment over long periods of time. The previous design of the MONSTR was limited to a narrow spectral range defined by the optical coating of the beam splitters. In order to achieve tunability over a broad spectral range the internal optics needed to be changed. By using broadband coated and wedged beam splitters and compensator plates, combined with modifications of the beam paths, continuous tunability can be achieved from 520 nm to 1100 nm without changing any optics or performing alignment of the internal components of the MONSTR. Furthermore, in order to achieve continuous tunability in the spectral region between 520 nm and 720 nm, crucially important for studies on numerous biological molecules, a single longitudinal mode laser at 488.5 nm was identified and used as a metrology laser. The shorter wavelength of the metrology laser as compared to the usual HeNe laser has also increased the phase stability of the system. Finally, in order to perform experiments in the reflection geometry, a simple method to achieve active phase stabilization

  4. A hybrid algorithm for the rapid Fourier transform of extensive series of data

    Directory of Open Access Journals (Sweden)

    A. S Franco

    1971-12-01

    Full Text Available A technique is described for the rapid Fourier transform of large series of numbers. The technique takes advantage of the fact that most digital series are highly factorizable by the number 2, which permits the use of the F.F.T. algorithm. Using two magnetic tape units, or alternatively magnetic disk facilities, very large series can be transformed efficiently with only modest computer facilities. For the transformation of odd-valued series the Thomas Prime-Factor and Gentleman and Sande algorithms are treated in detail.Apresenta-se neste trabalho uma técnica de transformação rápida de Fourier aplicada a uma longa série de valores numéricos. A técnica tira partido do fato de que a grande maioria das séries digitalizadas é, em geral, suscetível de fatoração onde aparece frequentemente o fator 2, o que permite o emprego do algorítmo da transformação rápida de Fourier (F.F.T.. Com o emprego de duas fitas magnéticas ou discos, pode ser efetuada eficientemente a transformação de longas séries em computadores de modesta memória. O algorítmo de fatores primos de Thomas e o de Gentleman e Sande são, respectivamente, tratados em detalhe, na transformação de séries com numero ímpar de valores.

  5. Far-field radiation patterns of aperture antennas by the Winograd Fourier transform algorithm

    Science.gov (United States)

    Heisler, R.

    1978-01-01

    A more time-efficient algorithm for computing the discrete Fourier transform, the Winograd Fourier transform (WFT), is described. The WFT algorithm is compared with other transform algorithms. Results indicate that the WFT algorithm in antenna analysis appears to be a very successful application. Significant savings in cpu time will improve the computer turn around time and circumvent the need to resort to weekend runs.

  6. Compact imaging spectrometer combining Fourier transform spectroscopy with a Fabry-Perot interferometer.

    Science.gov (United States)

    Pisani, Marco; Zucco, Massimo

    2009-05-11

    An imaging spectrometer based on a Fabry-Perot interferometer is presented. The Fabry-Perot interferometer scans the mirror distance up to contact and the intensity modulated light signal is transformed using a Fourier Transform based algorithm, as the Michelson based Fourier Transform Spectrometers does. The resulting instrument has the advantage of a compact, high numerical aperture, high luminosity hyperspectral imaging device. Theory of operation is described along with one experimental realization and preliminary results.

  7. Analytical model and spectral correction of vibration effects on Fourier transform spectrometer

    Science.gov (United States)

    Shatalina, Irina; Schmidt, Frederic; Saggin, Bortolino; Gac, Nicolas; Kowalski, Matthieu; Giuranna, Marco

    2013-10-01

    Sensitivity to mechanical vibrations of Fourier Transform Spectrometers (FTS) is a well-known phenomenon. It is especially critical for FTS devoted to atmospheric studies (like the Planetary Fourier Spectrometer (PFS) onboard Mars Express 2003), as absorption bands for the gases of low concentration are comparable with the generated instrument spectral noise. The adopted techniques for the vibration sensitivity reduction suffer of limitations in practical implementation, leaving residual modulations of the interferogram and the so-called ghosts in the spectra. Moreover as it is often impossible to measure the vibrations during the FTS measurement, the position and magnitude of these ghosts cannot be evaluated. Up to now the adopted ghost reduction techniques are mostly based on the averaging of spectra, because the disturbance phase is randomly distributed. This paper presents an innovative data treatment technique which allows single spectrum correction from distortions of unknown nature. Such a technique would increase the spatial resolution of the mapping process and becomes crucial when the desired information is linked to a particular mapping area associated to an individual spectrum. The full study consists in the explicit analysis of the ghost formation and the post-processing algorithm based on the semiblind deconvolution method - an iterative numerical algorithm of the series of consecutive deconvolutions. The technique was tested on the data from the PFS and the algorithm proved to be consistent according to the selected efficiency criteria (coming from the available general information about the signal spectral shape).

  8. A Synthetic Quadrature Phase Detector/Demodulator for Fourier Transform Transform Spectrometers

    Science.gov (United States)

    Campbell, Joel

    2008-01-01

    A method is developed to demodulate (velocity correct) Fourier transform spectrometer (FTS) data that is taken with an analog to digital converter that digitizes equally spaced in time. This method makes it possible to use simple low cost, high resolution audio digitizers to record high quality data without the need for an event timer or quadrature laser hardware, and makes it possible to use a metrology laser of any wavelength. The reduced parts count and simplicity implementation makes it an attractive alternative in space based applications when compared to previous methods such as the Brault algorithm.

  9. Causal Correlation Functions and Fourier Transforms: Application in Calculating Pressure Induced Shifts

    Science.gov (United States)

    Ma, Q.; Tipping, R. H.; Lavrentieva, N. N.

    2012-01-01

    By adopting a concept from signal processing, instead of starting from the correlation functions which are even, one considers the causal correlation functions whose Fourier transforms become complex. Their real and imaginary parts multiplied by 2 are the Fourier transforms of the original correlations and the subsequent Hilbert transforms, respectively. Thus, by taking this step one can complete the two previously needed transforms. However, to obviate performing the Cauchy principal integrations required in the Hilbert transforms is the greatest advantage. Meanwhile, because the causal correlations are well-bounded within the time domain and band limited in the frequency domain, one can replace their Fourier transforms by the discrete Fourier transforms and the latter can be carried out with the FFT algorithm. This replacement is justified by sampling theory because the Fourier transforms can be derived from the discrete Fourier transforms with the Nyquis rate without any distortions. We apply this method in calculating pressure induced shifts of H2O lines and obtain more reliable values. By comparing the calculated shifts with those in HITRAN 2008 and by screening both of them with the pair identity and the smooth variation rules, one can conclude many of shift values in HITRAN are not correct.

  10. Periodic nonlinear Fourier transform for fiber-optic communications, Part I: theory and numerical methods.

    Science.gov (United States)

    Kamalian, Morteza; Prilepsky, Jaroslaw E; Le, Son Thai; Turitsyn, Sergei K

    2016-08-08

    In this work, we introduce the periodic nonlinear Fourier transform (PNFT) method as an alternative and efficacious tool for compensation of the nonlinear transmission effects in optical fiber links. In the Part I, we introduce the algorithmic platform of the technique, describing in details the direct and inverse PNFT operations, also known as the inverse scattering transform for periodic (in time variable) nonlinear Schrödinger equation (NLSE). We pay a special attention to explaining the potential advantages of the PNFT-based processing over the previously studied nonlinear Fourier transform (NFT) based methods. Further, we elucidate the issue of the numerical PNFT computation: we compare the performance of four known numerical methods applicable for the calculation of nonlinear spectral data (the direct PNFT), in particular, taking the main spectrum (utilized further in Part II for the modulation and transmission) associated with some simple example waveforms as the quality indicator for each method. We show that the Ablowitz-Ladik discretization approach for the direct PNFT provides the best performance in terms of the accuracy and computational time consumption.

  11. Dynamic interferometer alignment and its utility in UV Fourier transform spectrometer systems

    Science.gov (United States)

    Dorval, Rick K.; Engel, James R.; Wyntjes, Geert J.

    1993-01-01

    Dynamic alignment has been demonstrated as a practical approach to alignment maintenance for systems in the infrared region of the spectrum. On the basis of work done by OPTRA, this technique was introduced in commercial Fourier transform spectrometer systems in 1982 and in various forms is now available from a number of manufacturers. This paper reports on work by OPTRA to extend the basic technique to systems operating in the ultraviolet. In addition, this paper reports the preliminary results of the development of an alignment system using a laser diode in place of a gas laser normally found in dynamic alignment systems. A unique optical system and spatial heterodyne technique allows for achievement of a metrology system with characteristics that fully satisfy the requirements of an ultraviolet spectrometer system.

  12. Estimation of Interchannel Time Difference in Frequency Subbands Based on Nonuniform Discrete Fourier Transform

    Directory of Open Access Journals (Sweden)

    Qiu Bo

    2008-01-01

    Full Text Available Binaural cue coding (BCC is an efficient technique for spatial audio rendering by using the side information such as interchannel level difference (ICLD, interchannel time difference (ICTD, and interchannel correlation (ICC. Of the side information, the ICTD plays an important role to the auditory spatial image. However, inaccurate estimation of the ICTD may lead to the audio quality degradation. In this paper, we develop a novel ICTD estimation algorithm based on the nonuniform discrete Fourier transform (NDFT and integrate it with the BCC approach to improve the decoded auditory image. Furthermore, a new subjective assessment method is proposed for the evaluation of auditory image widths of decoded signals. The test results demonstrate that the NDFT-based scheme can achieve much wider and more externalized auditory image than the existing BCC scheme based on the discrete Fourier transform (DFT. It is found that the present technique, regardless of the image width, does not deteriorate the sound quality at the decoder compared to the traditional scheme without ICTD estimation.

  13. Estimation of Interchannel Time Difference in Frequency Subbands Based on Nonuniform Discrete Fourier Transform

    Directory of Open Access Journals (Sweden)

    Bo Qiu

    2008-05-01

    Full Text Available Binaural cue coding (BCC is an efficient technique for spatial audio rendering by using the side information such as interchannel level difference (ICLD, interchannel time difference (ICTD, and interchannel correlation (ICC. Of the side information, the ICTD plays an important role to the auditory spatial image. However, inaccurate estimation of the ICTD may lead to the audio quality degradation. In this paper, we develop a novel ICTD estimation algorithm based on the nonuniform discrete Fourier transform (NDFT and integrate it with the BCC approach to improve the decoded auditory image. Furthermore, a new subjective assessment method is proposed for the evaluation of auditory image widths of decoded signals. The test results demonstrate that the NDFT-based scheme can achieve much wider and more externalized auditory image than the existing BCC scheme based on the discrete Fourier transform (DFT. It is found that the present technique, regardless of the image width, does not deteriorate the sound quality at the decoder compared to the traditional scheme without ICTD estimation.

  14. A fractional Fourier transform analysis of a bubble excited by an ultrasonic chirp.

    Science.gov (United States)

    Barlow, Euan; Mulholland, Anthony J

    2011-11-01

    The fractional Fourier transform is proposed here as a model based, signal processing technique for determining the size of a bubble in a fluid. The bubble is insonified with an ultrasonic chirp and the radiated pressure field is recorded. This experimental bubble response is then compared with a series of theoretical model responses to identify the most accurate match between experiment and theory which allows the correct bubble size to be identified. The fractional Fourier transform is used to produce a more detailed description of each response, and two-dimensional cross correlation is then employed to identify the similarities between the experimental response and each theoretical response. In this paper the experimental bubble response is simulated by adding various levels of noise to the theoretical model output. The method is compared to the standard technique of using time-domain cross correlation. The proposed method is shown to be far more robust at correctly sizing the bubble and can cope with much lower signal to noise ratios.

  15. Broadband Mid-Infrared Comb-Resolved Fourier Transform Spectroscopy

    Science.gov (United States)

    Lee, Kevin; Mills, Andrew; Mohr, Christian; Jiang, Jie; Fermann, Martin; Maslowski, Piotr

    2014-06-01

    We report on a comb-resolved, broadband, direct-comb spectroscopy system in the mid-IR and its application to the detection of trace gases and molecular line shape analysis. By coupling an optical parametric oscillator (OPO), a 100 m multipass cell, and a high-resolution Fourier transform spectrometer (FTS), sensitive, comb-resolved broadband spectroscopy of dilute gases is possible. The OPO has radiation output at 3.1-3.7 and 4.5-5.5 μm. The laser repetition rate is scanned to arbitrary values with 1 Hz accuracy around 417 MHz. The comb-resolved spectrum is produced with an absolute frequency axis depending only on the RF reference (in this case a GPS disciplined oscillator), stable to 1 part in 10^9. The minimum detectable absorption is 1.6x10-6 wn Hz-1/2. The operating range of the experimental setup enables access to strong fundamental transitions of numerous molecular species for applications based on trace gas detection such as environmental monitoring, industrial gas calibration or medical application of human breath analysis. In addition to these capabilities, we show the application for careful line shape analysis of argon-broadened CO band spectra around 4.7 μm. Fits of the obtained spectra clearly illustrate the discrepancy between the measured spectra and the Voigt profile (VP), indicating the need to include effects such as Dicke narrowing and the speed-dependence of the collisional width and shift in the line shape model, as was shown in previous cw-laser studies. In contrast to cw-laser based experiments, in this case the entire spectrum (˜ 250 wn) covering the whole P and R branches can be measured in 16 s with 417 MHz resolution, decreasing the acquisition time by orders of magnitude. The parallel acquisition allows collection of multiple lines simultaneously, removing the correlation of possible temperature and pressure drifts. While cw-systems are capable of measuring spectra with higher precision, this demonstration opens the door for fast

  16. Fast Fourier Transform Chlorine Nuclear Quadrupole Resonance Spectroscopy.

    Science.gov (United States)

    D'Iorio, Marie

    A nuclear quadrupole resonance spectrometer operating in the frequency range 1-40 MHz was updated for fast Fourier transform spectroscopy and coupled to a Nicolet 1180 computer and data acquisition system. It was used with a low temperature cryostat for studies shown down to liquid helium temperature and with a high pressure/low temperature system for studies down to liquid nitrogen temperature and up to six kilobars. The study of the ('35)Cl NQR spectrum of K(,2)OsCl(,6) at 298 K and 77 K revealed the presence of a satellite associated with the nearest neighbour chlorines to H('+) ion impurities located at vacant octahedral sties. This result is in agreement with the predictions of a point charge model calculation. A residence time for the H('+) ion was deduced and is consistent with the result obtained from dielectric measurements. A detailed study of the ('35)Cl NQR frequency in K(,2)ReCl(,6) was performed in the temperature range 85 - 130K where two structural phase transitions occur, and at pressures from 1 to 2643 bars. A number of unusual features were revealed and discussed as the possible signature of incommensurate behavior. The primary effect of the pressure was to alter the temperatures at which the phase transitions occurred. Contrary to the behavior expected, the transition temperature for the antiferrorotative transition has a negative pressure coefficient. The spin-lattice and spin-spin relaxation times for the ('35)Cl and ('37)Cl isotopes of the one dimensional XY system, PrCl(,3), were measured at 4.2K. The spin-lattice relaxation is exponential and dominated by magnetic dipole -dipole interactions. The spin-spin relaxation is non-exponential and dominated by electric quadrupolar interactions arising from the coupling of the electric dipole moment at the praseodymium site and the quadrupole moment of the chlorine ion. The temperature dependence of the spin-spin relaxation time was investigated. At 17.4 K both magnetic dipolar and electric

  17. Identification of early biomarkers during acetaminophen-induced hepatotoxicity by fourier transform infrared microspectroscopy.

    Directory of Open Access Journals (Sweden)

    Rekha Gautam

    Full Text Available Acetaminophen is a widely prescribed drug used to relieve pain and fever; however, it is a leading cause of drug-induced liver injury and a burden on public healthcare. In this study, hepatotoxicity in mice post oral dosing of acetaminophen was investigated using liver and sera samples with Fourier Transform Infrared microspectroscopy. The infrared spectra of acetaminophen treated livers in BALB/c mice show decrease in glycogen, increase in amounts of cholesteryl esters and DNA respectively. Rescue experiments using L-methionine demonstrate that depletion in glycogen and increase in DNA are abrogated with pre-treatment, but not post-treatment, with L-methionine. This indicates that changes in glycogen and DNA are more sensitive to the rapid depletion of glutathione. Importantly, analysis of sera identified lowering of glycogen and increase in DNA and chlolesteryl esters earlier than increase in alanine aminotransferase, which is routinely used to diagnose liver damage. In addition, these changes are also observed in C57BL/6 and Nos2(-/- mice. There is no difference in the kinetics of expression of these three molecules in both strains of mice, the extent of damage is similar and corroborated with ALT and histological analysis. Quantification of cytokines in sera showed increase upon APAP treatment. Although the levels of Tnfα and Ifnγ in sera are not significantly affected, Nos2(-/- mice display lower Il6 but higher Il10 levels during this acute model of hepatotoxicity. Overall, this study reinforces the growing potential of Fourier Transform Infrared microspectroscopy as a fast, highly sensitive and label-free technique for non-invasive diagnosis of liver damage. The combination of Fourier Transform Infrared microspectroscopy and cytokine analysis is a powerful tool to identify multiple biomarkers, understand differential host responses and evaluate therapeutic regimens during liver damage and, possibly, other diseases.

  18. Extracting Micro-Doppler Radar Signatures from Rotating Targets Using Fourier-Bessel Transform and Time-Frequency Analysis

    Science.gov (United States)

    2014-10-16

    1 Extracting micro-Doppler radar signatures from rotating targets using Fourier- Bessel Transform and Time-Frequency analysis P. Suresh1,T...kvenkataramanaiah@sssihl.edu.in Abstract In this paper, we report the efficiency of Fourier Bessel transform and time-frequency based method in conjunction with...decomposed into stationary and non-stationary components using Fourier Bessel transform in conjunction with the fractional Fourier transform. The

  19. Analysis of tokamak plasma confinement modes using the fast Fourier transformation

    Indian Academy of Sciences (India)

    S R MIRMOEINI; A SALAR ELAHI; M GHORANNEVISS

    2016-11-01

    The Fourier analysis is a satisfactory technique for detecting plasma confinement modes in tokamaks. The confinement mode of tokamak plasma was analysed using the fast Fourier transformation (FFT). For this purpose, we used the data of Mirnov coils that is one of the identifying tools in the IR-T1 tokamak, with and without external field (electric biasing), and then compared it with each other. After the Fourier analysis of Mirnov coil data, the diagram of power spectrum density was depicted in different angles of Mirnov coils in the ‘presenceof external field’ as well as in the ‘absence of external field’. The power spectrum density (PSD) interprets the manner of power distribution of a signal with frequency. In this article, the number of plasma modes and the safety factor $q$ were obtained by using the mode number of $q = m/n$ ($m$ is the mode number). The maximum MHD activity was obtained in 30–35 kHz frequency, using the density of the energy spectrum. In addition, the number of different modes across 0–35 ms time was compared with each other in the presence and absence of theexternal field.

  20. Combined Wavelet Transform with Curve-fitting for Objective Optimization of the Parameters in Fourier Self-deconvolution

    Institute of Scientific and Technical Information of China (English)

    张秀琦; 郑建斌; 高鸿

    2001-01-01

    Fourier self-deconvolution was the most effective technique in resolving overlapping bands, in which deconvolution function results in deconvolution and apodization smoothes the magnified noise. Yet, the choice of the original half-width of each component and breaking point for truncation is often very subjective. In this paper, the method of combined wavelet transform with curve fitting was described with the advantages of an enhancement of signal to noise ratio as well as the improved fitting condition, and was applied to objective optimization of the o riginal half-widths of components in unresolved bands for Fourier self-deconvolution. Again, a noise was separated from a noisy signal by wavelet transform,therefore, the breaking point of apodization function can be determined directly in frequency domain. Accordingly, some artifacts in Fourier self-deconvolution were minimized significantly.

  1. Fourier transforms of spherical distributions on compact symmetric spaces

    OpenAIRE

    Olafsson, Gestur; Schlichtkrull, Henrik

    2008-01-01

    In our previous articles "A local Paley-Wiener theorem for compact symmetric spaces", Adv. Math. 218 (2008), 202--215, and "Fourier series on compact symmetric spaces" (submitted) we studied Fourier series on a compact symmetric space M=U/K. In particular, we proved a Paley-Wiener type theorem for the smooth functions on M, which have sufficiently small support and are K-invariant, respectively K-finite. In this article we extend those results to K-invariant distributions on M. We show that t...

  2. Implementation of Period-Finding Algorithm by Means of Simulating Quantum Fourier Transform

    Directory of Open Access Journals (Sweden)

    Zohreh Moghareh Abed

    2010-01-01

    Full Text Available In this paper, we introduce quantum fourier transform as a key ingredient for many useful algorithms. These algorithms make a solution for problems which is considered to be intractable problems on a classical computer. Quantum Fourier transform is propounded as a key for quantum phase estimation algorithm. In this paper our aim is the implementation of period-finding algorithm.Quantum computer solves this problem, exponentially faster than classical one. Quantum phase estimation algorithm is the key for the period-finding problem .Therefore, by means of simulating quantum Fourier transform, we are able to implement the period-finding algorithm. In this paper, the simulation of quantum Fourier transform is carried out by Matlab software.

  3. Fourier Transform Infrared Spectroscopy: Part II. Advantages of FT-IR.

    Science.gov (United States)

    Perkins, W. D.

    1987-01-01

    This is Part II in a series on Fourier transform infrared spectroscopy (FT-IR). Described are various advantages of FT-IR spectroscopy including energy advantages, wavenumber accuracy, constant resolution, polarization effects, and stepping at grating changes. (RH)

  4. Improved method of generating bit reversed numbers for calculating fast fourier transform

    Digital Repository Service at National Institute of Oceanography (India)

    Suresh, T.

    Fast Fourier Transform (FFT) is an important tool required for signal processing in defence applications. This paper reports an improved method for generating bit reversed numbers needed in calculating FFT using radix-2. The refined algorithm takes...

  5. Properly used ''aliasing'' can give better resolution from fewer points in Fourier transform spectroscopy

    Science.gov (United States)

    D'Astous, Y.; Blanchard, M.

    1982-05-01

    In the past years, the Journal has published a number of articles1-5 devoted to the introduction of Fourier transform spectroscopy in the undergraduate labs. In most papers, the proposed experimental setup consists of a Michelson interferometer, a light source, a light detector, and a chart recorder. The student uses this setup to record an interferogram which is then Fourier transformed to obtain the spectrogram of the light source. Although attempts have been made to ease the task of performing the required Fourier transform,6 the use of computers and Cooley-Tukey's fast Fourier transform (FFT) algorithm7 is by far the simplest method to use. However, to be able to use FFT, one has to get a number of samples of the interferogram, a tedious job which should be kept to a minimum. (AIP)

  6. Designing Fresnel microlenses for focusing astigmatic multi-Gaussian beams by using fractional order Fourier transforms

    Energy Technology Data Exchange (ETDEWEB)

    Patino, A [Universidad Technologica de Bolivar, Cartagena de Indias (Colombia); Durand, P-E; Fogret, E; Pellat-Finet, P, E-mail: alberto.patino-vanegas@univ-ubs.fr [Laboratoire de mathematiques et applications des mathematiques, Universite de Bretagne Sud, B P 92116, 56321 Lorient cedex (France)

    2011-01-01

    According to a scalar theory of diffraction, light propagation can be expressed by two-dimensional fractional order Fourier transforms. Since the fractional Fourier transform of a chirp function is a Dirac distribution, focusing a light beam is optically achieved by using a diffractive screen whose transmission function is a two-dimensional chirp function. This property is applied to designing Fresnel microlenses, and the orders of the involved Fourier fractional transforms depend on diffraction distances as well as on emitter and receiver radii of curvature. If the emitter is astigmatic (with two principal radii of curvature), the diffraction phenomenon involves two one-dimensional fractional Fourier transforms whose orders are different. This degree of freedom allows us to design microlenses that can focus astigmatic Gaussian beams, as produced by a line-shaped laser diode source.

  7. A High Resolution Fourier-Transform Spectrometer for the Measurement of Atmospheric Column Abundances

    Science.gov (United States)

    Cageao, R.; Sander, S.; Blavier, J.; Jiang, Y.; Nemtchinov, V.

    2000-01-01

    A compact, high resolution Fourier-transform spectrometer for atmospheric near ultraviolet spectroscopy has been installed at the Jet Propulsion Laboratory's Table Mountain Facility (34.4N, 117.7 W, elevation 2290m).

  8. The Fourier Transform in Chemistry. Part 1. Nuclear Magnetic Resonance: Introduction.

    Science.gov (United States)

    King, Roy W.; Williams, Kathryn R.

    1989-01-01

    Using fourier transformation methods in nuclear magnetic resonance has made possible increased sensitivity in chemical analysis. This article describes these methods as they relate to magnetization, the RF magnetic field, nuclear relaxation, the RF pulse, and free induction decay. (CW)

  9. Fourier transform of delayed fluorescence as an indicator of herbicide concentration.

    Science.gov (United States)

    Guo, Ya; Tan, Jinglu

    2014-12-21

    It is well known that delayed fluorescence (DF) from Photosystem II (PSII) of plant leaves can be potentially used to sense herbicide pollution and evaluate the effect of herbicides on plant leaves. The research of using DF as a measure of herbicides in the literature was mainly conducted in time domain and qualitative correlation was often obtained. Fourier transform is often used to analyze signals. Viewing DF signal in frequency domain through Fourier transform may allow separation of signal components and provide a quantitative method for sensing herbicides. However, there is a lack of an attempt to use Fourier transform of DF as an indicator of herbicide. In this work, the relationship between the Fourier transform of DF and herbicide concentration was theoretically modelled and analyzed, which immediately yielded a quantitative method to measure herbicide concentration in frequency domain. Experiments were performed to validate the developed method.

  10. Structure in the 3D Galaxy Distribution. III. Fourier Transforming the Universe: Phase and Power Spectra

    Science.gov (United States)

    Scargle, Jeffrey D.; Way, M. J.; Gazis, P. G.

    2017-01-01

    We demonstrate the effectiveness of a relatively straightforward analysis of the complex 3D Fourier transform of galaxy coordinates derived from redshift surveys. Numerical demonstrations of this approach are carried out on a volume-limited sample of the Sloan Digital Sky Survey redshift survey. The direct unbinned transform yields a complex 3D data cube quite similar to that from the Fast Fourier Transform of finely binned galaxy positions. In both cases, deconvolution of the sampling window function yields estimates of the true transform. Simple power spectrum estimates from these transforms are roughly consistent with those using more elaborate methods. The complex Fourier transform characterizes spatial distributional properties beyond the power spectrum in a manner different from (and we argue is more easily interpreted than) the conventional multipoint hierarchy. We identify some threads of modern large-scale inference methodology that will presumably yield detections in new wider and deeper surveys.

  11. Building a symbolic computer algebra toolbox to compute 2D Fourier transforms in polar coordinates.

    Science.gov (United States)

    Dovlo, Edem; Baddour, Natalie

    2015-01-01

    The development of a symbolic computer algebra toolbox for the computation of two dimensional (2D) Fourier transforms in polar coordinates is presented. Multidimensional Fourier transforms are widely used in image processing, tomographic reconstructions and in fact any application that requires a multidimensional convolution. By examining a function in the frequency domain, additional information and insights may be obtained. The advantages of our method include: •The implementation of the 2D Fourier transform in polar coordinates within the toolbox via the combination of two significantly simpler transforms.•The modular approach along with the idea of lookup tables implemented help avoid the issue of indeterminate results which may occur when attempting to directly evaluate the transform.•The concept also helps prevent unnecessary computation of already known transforms thereby saving memory and processing time.

  12. Mathematic Models for Analysis of Quality Components in Sugarcane Juice with Fourier Transform Near Infrared Spectroscopy

    Institute of Scientific and Technical Information of China (English)

    CAO Gan; TAN Zhong-wen; LIANG Ji-nan; LONG Yong-hui; ZHOU Xue-qiu

    2003-01-01

    With the technique of Fourier transform near infrared (FT-NIR) spectroscopy, the calibration models for quantitative analysis of sucrose and polarization in sugarcane juice were developed by using transmission mode and calibrating with partial least square (PIS) algorithm. The determination coefficients (R2)of the predicted models for sucrose and polarization in juice were 0. 9980 and 0. 9979 respectively; the root mean square errors of cross validation (RMSECV) were 0. 143 and 0. 155% for sucrose and polarization in juice respectively. The predictive errors measured by FT-NIR were close to those by routine laboratory methods. The results demonstrated that the FT-NIR methods had high accuracy and they were able to replace the routine laboratory analysis. It was also demonstrated that as a rapid and accurate measurement, the FT-NIR technique had potential applications in quality control of mill sugarcane, establishment of payment system based on sugarcane quality, and selection of clones in sugarcane breeding.

  13. MEASUREMENT OF GALACTIC LOGARITHMIC SPIRAL ARM PITCH ANGLE USING TWO-DIMENSIONAL FAST FOURIER TRANSFORM DECOMPOSITION

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Benjamin L.; Berrier, Joel C.; Shields, Douglas W.; Kennefick, Julia; Kennefick, Daniel; Seigar, Marc S.; Lacy, Claud H. S. [Arkansas Center for Space and Planetary Sciences, 202 Field House, University of Arkansas, Fayetteville, AR 72701 (United States); Puerari, Ivanio [Instituto Nacional de Astrofisica, Optica y Electronica, Calle Luis Enrique Erro 1, 72840 Santa Maria Tonantzintla, Puebla (Mexico)

    2012-04-01

    A logarithmic spiral is a prominent feature appearing in a majority of observed galaxies. This feature has long been associated with the traditional Hubble classification scheme, but historical quotes of pitch angle of spiral galaxies have been almost exclusively qualitative. We have developed a methodology, utilizing two-dimensional fast Fourier transformations of images of spiral galaxies, in order to isolate and measure the pitch angles of their spiral arms. Our technique provides a quantitative way to measure this morphological feature. This will allow comparison of spiral galaxy pitch angle to other galactic parameters and test spiral arm genesis theories. In this work, we detail our image processing and analysis of spiral galaxy images and discuss the robustness of our analysis techniques.

  14. Quantitative analysis of virgin coconut oil in cream cosmetics preparations using fourier transform infrared (FTIR) spectroscopy.

    Science.gov (United States)

    Rohman, A; Man, Yb Che; Sismindari

    2009-10-01

    Today, virgin coconut oil (VCO) is becoming valuable oil and is receiving an attractive topic for researchers because of its several biological activities. In cosmetics industry, VCO is excellent material which functions as a skin moisturizer and softener. Therefore, it is important to develop a quantitative analytical method offering a fast and reliable technique. Fourier transform infrared (FTIR) spectroscopy with sample handling technique of attenuated total reflectance (ATR) can be successfully used to analyze VCO quantitatively in cream cosmetic preparations. A multivariate analysis using calibration of partial least square (PLS) model revealed the good relationship between actual value and FTIR-predicted value of VCO with coefficient of determination (R2) of 0.998.

  15. Accelerating the 2-point and 3-point galaxy correlation functions using Fourier transforms

    CERN Document Server

    Slepian, Zachary

    2015-01-01

    Though Fourier Transforms (FTs) are a common technique for finding correlation functions, they are not typically used in computations of the anisotropy of the two-point correlation function (2PCF) about the line of sight in wide-angle surveys because the line-of-sight direction is not constant on the Cartesian grid. Here we show how FTs can be used to compute the multipole moments of the anisotropic 2PCF. We also show how FTs can be used to accelerate the 3PCF algorithm of Slepian & Eisenstein (2015). In both cases, these FT methods allow one to avoid the computational cost of pair counting, which scales as the square of the number density of objects in the survey. With the upcoming large datasets of DESI, Euclid, and LSST, FT techniques will therefore offer an important complement to simple pair or triplet counts.

  16. Secondary structure of food proteins by Fourier transform spectroscopy in the mid-infrared region.

    Science.gov (United States)

    Carbonaro, M; Nucara, A

    2010-03-01

    Fourier transform spectroscopy in the mid-infrared (400-5,000 cm(-1)) (FT-IR) is being recognized as a powerful tool for analyzing chemical composition of food, with special concern to molecular architecture of food proteins. Unlike other spectroscopic techniques, it provides high-quality spectra with very small amount of protein, in various environments irrespective of the molecular mass. The fraction of peptide bonds in alpha-helical, beta-pleated sheet, turns and aperiodic conformations can be accurately estimated by analysis of the amide I band (1,600-1,700 cm(-1)) in the mid-IR region. In addition, FT-IR measurement of secondary structure highlights the mechanism of protein aggregation and stability, making this technique of strategic importance in the food proteomic field. Examples of applications of FT-IR spectroscopy in the study of structural features of food proteins critical of nutritional and technological performance are discussed.

  17. Fourier transform two-dimensional fluorescence excitation spectrometer by using tandem Fabry-Pérot interferometer.

    Science.gov (United States)

    Anzai, Hiroshi; Joshi, Neeraj Kumar; Fuyuki, Masanori; Wada, Akihide

    2015-01-01

    A Fourier transform two-dimensional fluorescence excitation spectrometer (FT-2DFES) was developed based on the multiplex technique using a tandem Fabry-Pérot interferometer (tandem FPI). In addition to the advantage of the multiplex technique, the main advantage of the tandem FPI is applicable to the modulation of transition with a large absorption bandwidth (larger than 100 nm) and is thus applicable to the modulation of the excitation of molecules in the condensed phase. As a demonstration of the effectiveness of FT-2DFES, we succeeded in separately observing the fluorescence excitation peaks from a mixed methanol solution of laser dyes (coumarin 480, rhodamine 6G, DCM (4-dicyanomethylene-2-methyl-6-(p-(dimethylamino)styryl)-4H-pyran), and LDS750). Furthermore, the energy transfer from rhodamine 6G to LDS750 was observed.

  18. Measurement of Galactic Logarithmic Spiral Arm Pitch Angle Using Two-Dimensional Fast Fourier Transform Decomposition

    CERN Document Server

    Davis, Benjamin L; Shields, Douglas W; Kennefick, Julia; Kennefick, Daniel; Seigar, Marc S; Lacy, Claud H S; Puerari, Ivânio

    2012-01-01

    A logarithmic spiral is a prominent feature appearing in a majority of observed galaxies. This feature has long been associated with the traditional Hubble classification scheme, but historical quotes of pitch angle of spiral galaxies have been almost exclusively qualitative. We have developed a methodology, utilizing two-dimensional fast Fourier transformations of images of spiral galaxies, in order to isolate and measure the pitch angles of their spiral arms. Our technique provides a quantitative way to measure this morphological feature. This will allow comparison of spiral galaxy pitch angle to other galactic parameters and test spiral arm genesis theories. In this work, we detail our image processing and analysis of spiral galaxy images and discuss the robustness of our analysis techniques.

  19. Asset management techniques for transformers

    Energy Technology Data Exchange (ETDEWEB)

    Abu-Elanien, Ahmed E.B.; Salama, M.M.A. [University of Waterloo, Waterloo, ON (Canada)

    2010-04-15

    In a deregulated/reformed environment, the electric utilities are under constant pressure for reducing operating costs, enhancing the reliability of transmission and distribution equipments, and improving quality of power and services to the customer. Moreover, the risk involved in running the system without proper attention to assets integrity in service is quite high. Additionally, the probability of losing any equipment vital to the transmission and distribution system, such as power and distribution transformers, is increasing especially with the aging of power system's assets. Today the focus of operating the power system is changed and efforts are being directed to explore new approaches/techniques of monitoring, diagnosis, condition evaluation, maintenance, life assessment, and possibility of extending the life of existing assets. In this paper, a comprehensive illustration of the transformer asset management activities is presented. The importance of each activity together with the latest researches done in the area is highlighted. (author)

  20. The Design of Lens Imaging System by Means of Fractional Fourier Transform

    Institute of Scientific and Technical Information of China (English)

    CHEN Jiannong; XU Qiang; D.R.Selviah

    2002-01-01

    The relation between the 2nd fractional Fourier transform and the imaging process of an optical system is discussed. By changing the coordinate scales of the input plane in respect to the magnification of the optical imaging system, the fractional Fourier transform can be a powerful tool in designing specific imaging system. The Gaussian imaging formula of single lens is obtained by using the tool. Finally the procedures are generalized for designing a double-lens imaging system through an example.

  1. Optical Image Addition and Encryption by Multi-Exposure Based on Fractional Fourier Transform Hologram

    Institute of Scientific and Technical Information of China (English)

    CHEN Lin-Fei; ZHAO Dao-Mu

    2006-01-01

    @@ We propose a new method to add different images together by optical implementation that is realized by the multi-exposure based on fractional Fourier transform hologram. Partial image fusion is proposed and realized by this method. Multiple images encryption can also be implemented by the multi-exposure of the hologram based on fractional Fourier transform. Computer simulations prove that this method is valid.

  2. Quantum Fourier Transforms and the Complexity of Link Invariants for Quantum Doubles of Finite Groups

    OpenAIRE

    Krovi, Hari; Russell, Alexander

    2012-01-01

    Knot and link invariants naturally arise from any braided Hopf algebra. We consider the computational complexity of the invariants arising from an elementary family of finite-dimensional Hopf algebras: quantum doubles of finite groups (denoted D(G), for a group G). Regarding algorithms for these invariants, we develop quantum circuits for the quantum Fourier transform over D(G); in general, we show that when one can uniformly and efficiently carry out the quantum Fourier transform over the ce...

  3. Time-Domain Optical Fourier Transformation for OTDM-DWDM and DWDM-OTDM Conversion

    DEFF Research Database (Denmark)

    Mulvad, Hans Christian Hansen; Palushani, Evarist; Galili, Michael

    2011-01-01

    Applications of time-domain optical Fourier transformation (OFT) in ultra-high-speed optical time-division multiplexed systems (OTDM) are reviewed, with emphasis on the recent demonstrations of OFT-based conversion between the OTDM and DWDM formats.......Applications of time-domain optical Fourier transformation (OFT) in ultra-high-speed optical time-division multiplexed systems (OTDM) are reviewed, with emphasis on the recent demonstrations of OFT-based conversion between the OTDM and DWDM formats....

  4. Fourier Transform Infrared Spectroscopic Study of Sodium Phosphate Solids and Solutions

    Institute of Scientific and Technical Information of China (English)

    龚文琪

    2001-01-01

    Solids and solutions of sodium phosphates with various chain lengths have been studied by using the techniques of diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy and attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectroscopy, respectively. A systematic study of the infrared spectra of the solid sodium phosphates has been conducted on the basis of the information available in the literatures to establish the assignments of the infrared vibrations of the different groups in the phosphate molecules. The infrared spectra of the solutions of sodium phosphates have been analyzed according to the infrared study on the relevant solids, in conjunction with the study of the phosphate species distribution in solution on the basis of the acid-base reaction equilibria. The results obtained have revealed the correlations between the infrared absorption spectra and the structure of the different P-O groups in different kinds of phosphates and are useful in the analysis of phosphate solids and solutions widely used in the various operations of mineral processing.

  5. Accelerating the Non-equispaced Fast Fourier Transform on Commodity Graphics Hardware

    DEFF Research Database (Denmark)

    Sørensen, Thomas Sangild; Schaeffter, Tobias; Noe, Karsten Østergaard

    2008-01-01

    We present a fast parallel algorithm to compute the Non-equispaced fast Fourier transform on commodity graphics hardware (the GPU). We focus particularly on a novel implementation of the convolution step in the transform, which was previously its most time consuming part. We describe the performa......We present a fast parallel algorithm to compute the Non-equispaced fast Fourier transform on commodity graphics hardware (the GPU). We focus particularly on a novel implementation of the convolution step in the transform, which was previously its most time consuming part. We describe...

  6. Simple surface structure determination from Fourier transforms of angle-resolved photoemission extended fine structure

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Y. [Pennsylvania State Univ., University Park, PA (United States)]|[Lawrence Berkeley Lab., CA (United States); Shirley, D.A. [Pennsylvania State Univ., University Park, PA (United States)

    1995-02-01

    The authors show by Fourier analyses of experimental data, with no further treatment, that the positions of all the strong peaks in Fourier transforms of angle-resolved photoemission extended fine structure (ARPEFS) from adsorbed surfaces can be explicitly predicted from a trial structure with an accuracy of about {+-} 0.3 {angstrom} based on a single-scattering cluster model together with the concept of a strong backscattering cone, and without any additional analysis. This characteristic of ARPEFS Fourier transforms can be developed as a simple method for determining the structures of adsorbed surfaces to an accuracy of about {+-} 0.1 {angstrom}.

  7. Image encryption based on the reality-preserving multiple-parameter fractional Fourier transform and chaos permutation

    Science.gov (United States)

    Lang, Jun

    2012-07-01

    In recent years, a number of methods have been proposed in the literature for the encryption of two-dimensional information by use of the fractional Fourier transform, but most of their encryptions are complex value and need digital hologram technique to record their encrypted information, which is inconvenience for digital transmission. In this paper, we first propose a novel reality-preserving multiple-parameter fractional Fourier transform which share real-valuedness outputs as well as most of the properties required for a fractional transform. Then we propose a new approach for image encryption based on the real-valuedness of the reality-preserving multiple-parameter fractional Fourier transform and the decorrelation property of chaotic maps in order to meet the requirements of the secure image transmission. In the proposed scheme, the image is encrypted by juxtaposition of sections of the image in the reality-preserving multiple-parameter fractional Fourier domains and the alignment of sections is determined by chaotic logistic maps. Numerical simulations are performed to demonstrate that the proposed method is reliable and more robust to blind decryption than several existing methods.

  8. MULTIVARIATE FOURIER TRANSFORM METHODS OVER SIMPLEX AND SUPER-SIMPLEX DOMAINS

    Institute of Scientific and Technical Information of China (English)

    Jiachang Sun

    2006-01-01

    In this paper we propose the well-known Fourier method on some non-tensor product domains in Rd, including simplex and so-called super-simplex which consists of (d + 1)! simplices. As two examples, in 2-D and 3-D case a super-simplex is shown as a paralle lhexagon and a parallel quadrilateral dodecahedron, respectively. We have extended most of concepts and results of the traditional Fourier methods on multivariate cases, such as Fourier basis system, Fourier series, discrete Fourier transform (DFT) and its fast algorithm(FFT) on the super-simplex, as well as generalized sine and cosine transforms (DST, DCT) and related fast algorithms over a simplex. The relationship between the basic orthogonal system and eigen-functions of a Laplacian-like operator over these domains is explored.

  9. Product Summability Transform of Conjugate Series of Fourier Series

    Directory of Open Access Journals (Sweden)

    Vishnu Narayan Mishra

    2012-01-01

    Full Text Available A known theorem, Nigam (2010 dealing with the degree of approximation of conjugate of a signal belonging to Lipξ(t-class by (E,1(C,1 product summability means of conjugate series of Fourier series has been generalized for the weighted W(Lr,ξ(t, (r≥1,(t>0-class, where ξ(t is nonnegative and increasing function of t, by En1Cn1~ which is in more general form of Theorem 2 of Nigam and Sharma (2011.

  10. Magneto-sensor circuit efficiency incremented by Fourier-transformation

    KAUST Repository

    Talukdar, Abdul Hafiz Ibne

    2011-10-01

    In this paper detection by recognized intelligent algorithm for different magnetic films with the aid of a cost-effective and simple high efficient circuit are realized. Well-known, magnetic films generate oscillating frequencies when they stay a part of an LC- oscillatory circuit. These frequencies can be further analyzed to gather information about their magnetic properties. For the first time in this work we apply the signal analysis in frequency domain to create the Fourier frequency spectra which was used to detect the sample properties and their recognition. In this paper we have summarized both the simulation and experimental results. © 2011 Elsevier Ltd. All rights reserved.

  11. Computer Generation of Fourier Transform Libraries for Distributed Memory Architectures

    Science.gov (United States)

    2010-12-01

    Cooley-TukeyFFT.Thefirst “fast” algorithm for theDFTwas discoveredbyCooley andTukey [Coo- ley and Tukey, 1965] 1, and is often referred to as “the...Carl Friedrich Gauss , but his work was not widely recog- nized [Heideman et al., 1985]. 2It is important to note the distinction between the terms...Applications, pages 129–136. North-Holland, 1994. 26 M. T. Heideman, D. H. Johnson, and C. S. Burrus. Gauss and the history of the fast Fourier

  12. Label-free identification of individual bacteria using Fourier transform light scattering

    CERN Document Server

    Jo, YoungJu; Kim, Min-hyeok; Park, HyunJoo; Kang, Suk-Jo; Park, YongKeun

    2015-01-01

    Rapid identification of bacterial species is crucial in medicine and food hygiene. In order to achieve rapid and label-free identification of bacterial species at the single bacterium level, we propose and experimentally demonstrate an optical method based on Fourier transform light scattering (FTLS) measurements and statistical classification. For individual rod-shaped bacteria belonging to four bacterial species (Listeria monocytogenes, Escherichia coli, Lactobacillus casei, and Bacillus subtilis), two-dimensional angle-resolved light scattering maps are precisely measured using FTLS technique. The scattering maps are then systematically analyzed, employing statistical classification in order to extract the unique fingerprint patterns for each species, so that a new unidentified bacterium can be identified by a single light scattering measurement. The single-bacterial and label-free nature of our method suggests wide applicability for rapid point-of-care bacterial diagnosis.

  13. Fourier transform infrared difference spectroscopy for studying the molecular mechanism of photosynthetic water oxidation

    Directory of Open Access Journals (Sweden)

    Hsiu-An eChu

    2013-05-01

    Full Text Available The photosystem II reaction center mediates the light-induced transfer of electrons from water to plastoquinone, with concomitant production of O2. Water oxidation chemistry occurs in the oxygen-evolving complex (OEC, which consists of an inorganic Mn4CaO5 cluster and its surrounding protein matrix. Light-induced Fourier transform infrared (FTIR difference spectroscopy has been successfully used to study the molecular mechanism of photosynthetic water oxidation. This powerful technique has enabled the characterization of the dynamic structural changes in active water molecules, the Mn4CaO5 cluster, and its surrounding protein matrix during the catalytic cycle. This mini-review presents an overview of recent important progress in FTIR studies of the OEC and implications for revealing the molecular mechanism of photosynthetic water oxidation.

  14. High-definition Fourier transform infrared spectroscopic imaging of prostate tissue

    Science.gov (United States)

    Wrobel, Tomasz P.; Kwak, Jin Tae; Kadjacsy-Balla, Andre; Bhargava, Rohit

    2016-03-01

    Histopathology forms the gold standard for cancer diagnosis and therapy, and generally relies on manual examination of microscopic structural morphology within tissue. Fourier-Transform Infrared (FT-IR) imaging is an emerging vibrational spectroscopic imaging technique, especially in a High-Definition (HD) format, that provides the spatial specificity of microscopy at magnifications used in diagnostic surgical pathology. While it has been shown for standard imaging that IR absorption by tissue creates a strong signal where the spectrum at each pixel is a quantitative "fingerprint" of the molecular composition of the sample, here we show that this fingerprint also enables direct digital pathology without the need for stains or dyes for HD imaging. An assessment of the potential of HD imaging to improve diagnostic pathology accuracy is presented.

  15. Kinetic study of olive oil degradation monitored by fourier transform infrared spectrometry. Application to oil characterization.

    Science.gov (United States)

    Román Falcó, Iván P; Grané Teruel, Nuria; Prats Moya, Soledad; Martín Carratalá, M Luisa

    2012-11-28

    A new approach for the determination of kinetic parameters of the cis/trans isomerization during the oxidation process of 24 virgin olive oils belonging to 8 different varieties is presented. The accelerated process of degradation at 100 °C was monitored by recording the Fourier transform infrared spectra. The parameters obtained confirm pseudo-first-order kinetics for the degradation of cis and the appearance of trans double bonds. The kinetic approach affords the induction time and the rate coefficient; these parameters are related to the fatty acid profile of the fresh olive oils. The data obtained were used to compare the oil stability of the samples with the help of multivariate statistical techniques. Fatty acid allowed a classification of the samples in five groups, one of them constituted by the cultivars with higher stability. Meanwhile, the kinetic parameters showed greater ability for the characterization of olive oils, allowing the classification in seven groups.

  16. Stress degradation studies of nelfinavir mesylate by Fourier transform infrared spectroscopy.

    Science.gov (United States)

    Singh, Parul; Mehrotra, Ranjana; Bakhshi, A K

    2010-11-02

    Nelfinavir mesylate is the first nonpeptidic protease inhibitor available in pediatric formulation. In the present paper the stability of nelfinavir mesylate under different stress conditions is evaluated using Fourier transform infrared spectroscopy. The drug is subjected to thermal degradation, photodegradation, acid hydrolysis, base hydrolysis and oxidation as per ICH guidelines. Differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), X-ray diffraction (XRD) and high performance liquid chromatography (HPLC) are carried out to support the implementation of infrared spectroscopy for the stability studies of nelfinavir mesylate. Significant changes are observed in the IR spectra collected after exposing the drug to thermal radiations, acid and base hydrolysis and oxidative degradation. No change is observed in the spectra of the drug after exposing it to sunlight indicating the good photostability of nelfinavir mesylate. The results of infrared spectroscopy agree well with that of other complementary techniques as DSC, TGA, XRD and HPLC.

  17. Highly folded 5 m Fourier transform spectrometer for spaceborne wind lidar.

    Science.gov (United States)

    Luu, Jane; Willard, Bert

    2015-07-10

    We have designed and built a prototype Fourier transform spectrometer intended for a wind lidar system. The significant characteristics of this design include (1) an optical layout that folds a maximum optical path difference of 5.8 m to fit into a 1.2 m cavity, (2) two confocal parabolas to compensate for beam diffraction over the entire path length, and (3) a photon-counting detector for high sensitivity. The optical path difference is measured with a reference beam produced by the heterodyne technique. The reference beam is collinear with the data beam, and accounts for all mechanical vibrations along the optical path.

  18. A Novel Application of Fourier Transform Spectroscopy with HEMT Amplifiers at Microwave Frequencies

    Science.gov (United States)

    Wilkinson, David T.; Page, Lyman

    1995-01-01

    The goal was to develop cryogenic high-electron-mobility transistor (HEMT) based radiometers and use them to measure the anisotropy in the cosmic microwave background (CMB). In particular, a novel Fourier transform spectrometer (FTS) built entirely of waveguide components would be developed. A dual-polarization Ka-band HEMT radiometer and a similar Q-band radiometer were built. In a series of measurements spanning three years made from a ground-based site in Saskatoon, SK, the amplitude, frequency spectrum, and spatial frequency spectrum of the anisotropy were measured. A prototype Ka-band FTS was built and tested, and a simplified version is proposed for the MAP satellite mission. The 1/f characteristics of HEMT amplifiers were quantified using correlation techniques.

  19. Preliminary study on diffuse axonal injury by Fourier transform infrared spectroscopy histopathology imaging.

    Science.gov (United States)

    Yang, Tiantong; He, Guanglong; Zhang, Xiang; Chang, Lin; Zhang, Haidong; Ripple, Mary G; Fowler, David R; Li, Ling

    2014-01-01

    The objective of this study was to evaluate the application of Fourier transform infrared (FTIR) spectroscopy for detecting diffuse axonal injury (DAI) in a mouse model. Brain tissues from DAI mouse model were prepared with H&E, silver, and β-amyloid precursor protein (β-APP) immunohistochemistry stains and were also studied with FTIR. The infrared spectrum images showed high absorption of amide II in the subcortical white matter of the experimental mouse brain, while there was no obvious expression of amide II in the control mouse brain. The areas with high absorption of amide II were in the same distribution as the DAI region confirmed by the silver and β-APP studies. The result suggests that high absorption of amide II correlates with axonal injury. The use of FTIR imaging allows the biochemical changes associated with DAI pathologies to be detected in the tissues, thus providing an important adjunct method to the current conventional pathological diagnostic techniques.

  20. Capacity estimates for optical transmission based on the nonlinear Fourier transform

    Science.gov (United States)

    Derevyanko, Stanislav A.; Prilepsky, Jaroslaw E.; Turitsyn, Sergei K.

    2016-09-01

    What is the maximum rate at which information can be transmitted error-free in fibre-optic communication systems? For linear channels, this was established in classic works of Nyquist and Shannon. However, despite the immense practical importance of fibre-optic communications providing for >99% of global data traffic, the channel capacity of optical links remains unknown due to the complexity introduced by fibre nonlinearity. Recently, there has been a flurry of studies examining an expected cap that nonlinearity puts on the information-carrying capacity of fibre-optic systems. Mastering the nonlinear channels requires paradigm shift from current modulation, coding and transmission techniques originally developed for linear communication systems. Here we demonstrate that using the integrability of the master model and the nonlinear Fourier transform, the lower bound on the capacity per symbol can be estimated as 10.7 bits per symbol with 500 GHz bandwidth over 2,000 km.

  1. An automatic frequency control loop using overlapping DFTs (Discrete Fourier Transforms)

    Science.gov (United States)

    Aguirre, S.

    1988-01-01

    An automatic frequency control (AFC) loop is introduced and analyzed in detail. The new scheme is a generalization of the well known Cross Product AFC loop that uses running overlapping discrete Fourier transforms (DFTs) to create a discriminator curve. Linear analysis is included and supported with computer simulations. The algorithm is tested in a low carrier to noise ratio (CNR) dynamic environment, and the probability of loss of lock is estimated via computer simulations. The algorithm discussed is a suboptimum tracking scheme with a larger frequency error variance compared to an optimum strategy, but offers simplicity of implementation and a very low operating threshold CNR. This technique can be applied during the carrier acquisition and re-acquisition process in the Advanced Receiver.

  2. Prediction of Japanese green tea ranking by fourier transform near-infrared reflectance spectroscopy.

    Science.gov (United States)

    Ikeda, Tatsuhiko; Kanaya, Shigehiko; Yonetani, Tsutomu; Kobayashi, Akio; Fukusaki, Eiichiro

    2007-11-28

    A rapid and easy determination method of green tea's quality was developed by using Fourier transform near-infrared (FT-NIR) reflectance spectroscopy and metabolomics techniques. The method is applied to an online measurement and an online prediction of green tea's quality. FT-NIR was employed to measure green tea metabolites' alteration affected by green tea varieties and manufacturing processes. A set of ranked green tea samples from a Japanese commercial tea contest was analyzed to create a reliable quality-prediction model. As multivariate analyses, principal component analysis (PCA) and partial least-squares projections to latent structures (PLS) were used. It was indicated that the wavenumber region from 5500 to 5200 cm(-1) had high correlation with the quality of the tea. In this study, a reliable quality-prediction model of green tea has been achieved.

  3. Diffuse Reflectance Infrared Fourier Transform Spectroscopy for the Determination of Asbestos Species in Bulk Building Materials

    Directory of Open Access Journals (Sweden)

    Grazia Accardo

    2014-01-01

    Full Text Available Diffuse reflectance infrared Fourier transform (DRIFT spectroscopy is a well-known technique for thin film characterization. Since all asbestos species exhibit intense adsorptions peaks in the 4000–400 cm−1 region of the infrared spectrum, a quantitative analysis of asbestos in bulk samples by DRIFT is possible. In this work, different quantitative analytical procedures have been used to quantify chrysotile content in bulk materials produced by building requalification: partial least squares (PLS chemometrics, the Linear Calibration Curve Method (LCM and the Method of Additions (MoA. Each method has its own pros and cons, but all give affordable results for material characterization: the amount of asbestos (around 10%, weight by weight can be determined with precision and accuracy (errors less than 0.1.

  4. Fourier transform infrared analysis of ceramic powders: Quantitative determination of alpha, beta, and amorphous phases of silicon nitride

    Energy Technology Data Exchange (ETDEWEB)

    Trout, T.K.; Bellama, J.M.; Brinckman, F.E.; Faltynek, R.A.

    1989-03-01

    Fourier transform infrared spectroscopy (FT-IR) forms the basis for determining the morphological composition of mixtures containing alpha, beta, and amorphous phases of silicon nitride. The analytical technique, involving multiple linear regression treatment of Kubelka-Munk absorbance values from diffuse reflectance measurements, yields specific percent composition data for the amorphous phase as well as the crystalline phases in ternary mixtures of 0--1% by weight Si/sub 3/N/sub 4/ in potassium bromide.

  5. Two-dimensional Fourier transform ESR in the slow-motional and rigid limits: 2D-ELDOR

    Science.gov (United States)

    Patyal, Baldev R.; Crepeau, Richard H.; Gamliel, Dan; Freed, Jack H.

    1990-12-01

    The two-dimensional Fourier transform ESP techniques of stimulated SECSY and 2D-ELDOR are shown to be powerful methods for the study of slow motions for nitroxides. Stimulated SECSY provides magnetization transfer rates, whereas 2D-ELDOR displays how the rotational motions spread the spins out from their initial spectral positions to new spectral positions, as a function of mixing time. The role of nuclear modulation in studies of structure and dynamics is also considered.

  6. Microfluidic Approaches to Synchrotron Radiation-Based Fourier Transform Infrared (SR-FTIR) Spectral Microscopy of Living Biosystems

    OpenAIRE

    Loutherback, K; Birarda, G; Chen, L.; Holman, HYN

    2016-01-01

    © 2016 Bentham Science Publishers.A long-standing desire in biological and biomedical sciences is to be able to probe cellular chemistry as biological processes are happening inside living cells. Synchrotron radiation-based Fourier transform infrared (SR-FTIR) spectral microscopy is a label-free and nondestructive analytical technique that can provide spatiotemporal distributions and relative abundances of biomolecules of a specimen by their characteristic vibrational modes. Despite great pro...

  7. Fourier-Transformed Infrared Spectroscopy Applied for Studying Compatible Interaction in the Pathosystem Phytophtora infestans-Solanum tuberosum

    OpenAIRE

    Abdelmoumen TAOUTAOU; Socaciu, Carmen; Doru PAMFIL; Florinela FETEA; Erika BALAZS; Constantin BOTEZ; Adina CHIS; Daniela BRICIU; Alexandru BRICIU

    2010-01-01

    In this study we used the Fourier-Transformed Infrared (FT-IR) technique to examine the compatible reaction of potato (Solanum tuberosum) to infection by the late blight agent Phytophthora infestans. Three virulent isolates have been used, different by their level of pathogenicity on R2 potato. The response was dependent on the pathogenicity of the isolate. The Infrared spectra in the middle infrared region (MIR) of infested versus healthy (control) leaves showed that controls absorb (intensi...

  8. Fourier and Schur-Weyl transforms applied to XXX Heisenberg magnet

    Science.gov (United States)

    Jakubczyk, P.; Lulek, T.; Jakubczyk, D.; Lulek, B.

    2010-03-01

    Similarities and differences between Fourier and Schur-Weyl transforms have been discussed in the context of a one-dimensional Heisenberg magnetic ring with N nodes. We demonstrate that main difference between them correspond to another partitioning of the Hilbert space of the magnet. In particular, we point out that application of the quantum Fourier transform corresponds to splitting of the Hilbert space of the model into subspaces associated with the orbits of the cyclic group, whereas, the Schur-Weyl transform corresponds to splitting into subspaces associated with orbits of the symmetric group.

  9. Discrete Fourier Transform Method for Discrimination of Digital Scintillation Pulses in Mixed Neutron-Gamma Fields

    CERN Document Server

    Safari, M J; Afarideh, H; Jamili, S; Bayat, E

    2016-01-01

    A Discrete Fourier Transform Method (DFTM) for discrimination between the signal of neutrons and gamma rays in organic scintillation detectors is presented. The method is based on the transformation of signals into the frequency domain using the sine and cosine Fourier transforms in combination with the discrete Fourier transform. The method is largely benefited from considerable differences that usually is available between the zero-frequency components of sine and cosine and the norm of the amplitude of the DFT for neutrons and gamma-ray signals. Moreover, working in frequency domain naturally results in considerable suppression of the unwanted effects of various noise sources that is expected to be effective in time domain methods. The proposed method could also be assumed as a generalized nonlinear weighting method that could result in a new class of pulse shape discrimination methods, beyond definition of the DFT. A comparison to the traditional Charge Integration Method (CIM), as well as the Frequency G...

  10. Fast Inverse Nonlinear Fourier Transforms for Fiber Bragg Grating Design and Related Problems

    CERN Document Server

    Wahls, Sander

    2016-01-01

    The problem of constructing a fiber Bragg grating profile numerically such that the reflection coefficient of the grating matches a given specification is considered. The well-known analytic solution to this problem is given by a suitable inverse nonlinear Fourier transform (also known as inverse scattering transform) of the specificed reflection coefficient. Many different algorithms have been proposed to compute this inverse nonlinear Fourier transform numerically. The most efficient ones require $\\mathcal{O}(D^{2})$ floating point operations (flops) to generate $D$ samples of the grating profile. In this paper, two new fast inverse nonlinear Fourier transform algorithms that require only $\\mathcal{O}(D\\log^{2}D)$ flops are proposed. The merits of our algorithms are demonstrated in numerical examples, in which they are compared to a conventional layer peeling method, the Toeplitz inner bordering method and integral layer peeling. One of our two algorithms also extends to the design problem for fiber-assiste...

  11. Fourier Self-deconvolution Using Approximation Obtained from Frequency Domain Wavelet Transform as a Linear Function

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A new method of resolving overlapped peak, Fourier self-deconvolution (FSD) using approximation CN obtained from frequency domain wavelet transform of F(ω) yielded by Fourier transform of overlapped peak signals f(t) as the linear function, was presented in this paper.Compared with classical FSD, the new method exhibits excellent resolution for different overlapped peak signals such as HPLC signals, and have some characteristics such as an extensive applicability for any overlapped peak shape signals and a simple operation because of no selection procedure of the linear function. Its excellent resolution for those different overlapped peak signals is mainly because F(ω) obtained from Fourier transform of f(t) and CN obtained from wavelet transform of F(ω) have the similar linearity and peak width. The effect of those fake peaks can be eliminated by the algorithm proposed by authors. This method has good potential in the process of different overlapped peak signals.

  12. Rejection of Linear FM Interference in DSSS System Based on Fractional Fourier Transform

    Institute of Scientific and Technical Information of China (English)

    QI Lin; TAO Ran; ZHOU Si-yong

    2005-01-01

    A new method for the rejection of linear frequency modulation (LFM) interference in direct sequence spread spectrum (DSSS) system based on the fractional Fourier transform is proposed, and the configuration of the receiver with an interference exciser is also presented. Based on the property that the fractional Fourier transform of a signal is equivalent to rotating the signal in the time-frequency plane, the received signal is transform into a certain fractional Fourier domain, this transform will result in the least spectrum overlap between the signal and interference. Then, a narrowband filter is exploited to extract most of the interference energy. The performance analyses show that remarkable improvements in signal-to-noise ratio (SNR) and biterror-ratio (BER) are obtained.

  13. Image Registration Based on Fourier-Mellin Transform%利用Fourier-Mellin变换的遥感图像自动配准

    Institute of Scientific and Technical Information of China (English)

    林卉; 梁亮; 杜培军; 孙华生

    2012-01-01

    提出了一种利用Fourier-Mellin变换的遥感图像配准方法。首先,进行Fourier变换求取频谱能量值并进行高通滤波,将滤波后的能量转换成对数极坐标,通过计算互功率谱,运用相位相关技术得到比例系数和旋转角,两幅图像按照得到的参数进行旋转缩放变换得到变换图像;然后,进行相位相关运算得到平移量,作平移变换;最终叠加显示,可以得到配准图像。实验结果表明,该算法具有很好的有效性和可靠性。%The purpose of image registration is to remove inconsistencies in geometry between the matched registration image and the reference image, including translation, rotation and scaling transform, which is the necessary premise for image contrast, data fusion, transform analysis and target recognition. A new kind of remote sensing image registration, which is called Fourier-Mellin transform method is put forward. Firstly, Fourier transform is per- formed to get frequency spectrum power for the reference image and the matched image re- spectively. Next, high-pass filtering is conducted with regard to their energy spectrum. Then, energy after filtering is converted into log-polar coordinate formation. In the case,mu- tual power spectrum can be computed adopting phase correlation technique to obtain their ro- tation angle and scale factor correspondingly. Lastly, transform image may be gotten by these parameters . And again, for reference image, high-pass filtering is performed to reduce background noise and frequency aliasing interference in the transformation process. Then, phase correlation calculation may achieve translation value, another transform image can be gotten through translation transform. Finally, registration image may gain by the two ima- ges' superposition. The experimental results show that the algorithm is efficiency and relia- bility.

  14. Does the Entorhinal Cortex use the Fourier Transform?

    Directory of Open Access Journals (Sweden)

    Jeff eOrchard

    2013-12-01

    Full Text Available Some neurons in the entorhinal cortex (EC fire bursts when the animal occupies locations organized in a hexagonal grid pattern in their spatial environment. Place cells have also been observed, firing bursts only when the animal occupies a particular region of the environment. Both of these types of cells exhibit theta-cycle modulation, firing bursts in the 4-12Hz range. Grid cells fire bursts of action potentials that precess with respect to the theta cycle, a phenomenon dubbed "theta precession". Various models have been proposed to explain these phenomena, and how they relate to navigation. Among the most promising are the oscillator interference models. The bank-of-oscillators model proposed by Welday et al. (2011 exhibits all these features. However, their simulations are based on theoretical oscillators, and not implemented entirely with spiking neurons. We extend their work in a number of ways. First, we place the oscillators in a frequency domain and reformulate the model in terms of Fourier theory. Second, this perspective suggests a division of labour for implementing spatial maps: position, versus map layout. The animal's position is encoded in the phases of the oscillators, while the spatial map shape is encoded implicitly in the weights of the connections between the oscillators and the read-out nodes. Third, it reveals that the oscillator phases all need to conform to a linear relationship across the frequency domain. Fourth, we implement a partial model of the EC using spiking leaky integrate-and-fire (LIF neurons. Fifth, we devise new coupling mechanisms, enlightened by the global phase constraint, and show they are capable of keeping spiking neural oscillators in consistent formation. Our model demonstrates place cells, grid cells, and phase precession. The Fourier model also gives direction for future investigations, such as integrating sensory feedback to combat drift, or explaining why grid cells exist at all.

  15. Method of local pointed function reduction of original shape in Fourier transformation

    CERN Document Server

    Dosch, H

    2002-01-01

    The method for analytical reduction of the original shape in the one-dimensional Fourier transformation by the fourier image modulus is proposed. The basic concept of the method consists in the presentation of the model shape in the form of the local peak functions sum. The eigenfunctions, generated by the linear differential equations with the polynomial coefficients, are selected as the latter ones. This provides for the possibility of managing the Fourier transformation without numerical integration. This reduces the reverse task to the nonlinear regression with a small number of the evaluated parameters and to the numerical or asymptotic study on the model peak functions - the eigenfunctions of the differential tasks and their fourier images

  16. Fourier and Hadamard transform spectrometers - A limited comparison. II

    Science.gov (United States)

    Harwit, M.; Tai, M. H.

    1977-01-01

    A mathematical approach was used to compare interferometric spectrometers and Hadamard transform spectrometers. The principle results are reported, noting that the simple Hadamard spectrometer encodes more efficiently than a Michelson interferometer which, in turn, encodes less efficiently than is usually acknowledged. Hirschfeld's (1977) major objections to these findings are discussed, although it is noted that none of his objections is supported by evidence.

  17. On Analog of Fourier Transform in Interior of the Light Cone

    Directory of Open Access Journals (Sweden)

    Tatyana Shtepina

    2014-01-01

    Full Text Available We introduce an analog of Fourier transform Fhρ in interior of light cone that commutes with the action of the Lorentz group. We describe some properties of Fhρ, namely, its action on pseudoradial functions and functions being products of pseudoradial function and space hyperbolic harmonics. We prove that Fhρ-transform gives a one-to-one correspondence on each of the irreducible components of quasiregular representation. We calculate the inverse transform too.

  18. A Static Imaging Fourier Transform Spectrometer (SIFTS) for infrared remote sensing

    Science.gov (United States)

    Mortimer, Hugh; Hussain, Ali

    2017-04-01

    A Static Imaging Fourier Transform Spectrometer, SIFTS, has been developed for hyperspectral remote sensing in the infrared. The compact instrument has no moving components and so is insensitive to vibration. It has been optimised for operation from the Near (3 microns) to Mid Infrared (15 microns) through the use of an uncooled, wideband microbolometer detector array. The resolution across this spectral range has been shown to be 8cm-1. This instrument is inherently imaging, whereby spectral information is recorded along the of the detector array whilst imaging information is recorded down the column of the detector array. The Connes advantage, inherent to the Michelson spectrometer Fourier Transform Spectrometer (FTS), whereby the spectral wavelength accuracy is referenced to a stabilised laser has also been demonstrated in the SIFTS instrument. This has been implemented through the use of an expanded internal laser diode with Distributed Bragg Reflector (DFB) which acts as the calibration source used to maintain the wavelength stability of the SIFTS instrument. As there are no moving components, the instrument is compact, light and insensitive to mechanical vibration, additionally the speed of measurement is determined by the frame rate of the detector array. Thus, this instrument has a temporal advantage over common Michelson FTIR instruments. The novel optical design has reduced the optics to only 3 optical components, and the detector array, to generate and measure the interferogram. The experimental performance of the SIFTS instrument is demonstrated in measurements against theoretical and The technique is based on a static optical configuration whereby light is split into two paths and made to recombine along a focal plane producing an interference pattern. The spectral information is returned using a detector array to digitally capture the interferogram which can then be processed into a spectrum by applying a Fourier transform. As there are no moving

  19. Products of multiple Fourier series with application to the multiblade transformation

    Science.gov (United States)

    Kunz, D. L.

    1981-01-01

    A relatively simple and systematic method for forming the products of multiple Fourier series using tensor like operations is demonstrated. This symbolic multiplication can be performed for any arbitrary number of series, and the coefficients of a set of linear differential equations with periodic coefficients from a rotating coordinate system to a nonrotating system is also demonstrated. It is shown that using Fourier operations to perform this transformation make it easily understood, simple to apply, and generally applicable.

  20. Adaptive motion mapping in pancreatic SBRT patients using Fourier transforms

    CERN Document Server

    Jones, Bernard L; Miften, Moyed

    2015-01-01

    Recent studies suggest that 4DCT is unable to accurately measure respiratory-induced pancreatic tumor motion. In this work, we assessed the daily motion of pancreatic tumors treated with SBRT, and developed adaptive strategies to predict and account for this motion. The daily motion trajectory of pancreatic tumors during CBCT acquisition was calculated using a model which reconstructs the instantaneous 3D position in each 2D CBCT projection image. We developed a metric (termed "Spectral Coherence," SC) based on the Fourier frequency spectrum of motion in the SI direction, and analyzed the ability of SC to predict motion-based errors and classify patients according to motion characteristics. The amplitude of daily motion exceeded the predictions of pre-treatment 4DCT imaging by an average of 3.0 mm, 2.3 mm, and 3.5 mm in the AP, LR, and SI directions. SC was correlated with daily motion differences and tumor dose coverage. In a simulated adaptive protocol, target margins were adjusted based on SC, resulting in...

  1. Functional differential equations for the q-Fourier transform of q-Gaussians

    Energy Technology Data Exchange (ETDEWEB)

    Umarov, S [Department of Mathematics, Tufts University, Medford, MA (United States); Queiros, S M Duarte, E-mail: sdqueiro@gmail.co [Unilever R and D Port Sunlight, Quarry Road East, Wirral, CH63 3JW (United Kingdom)

    2010-02-05

    In this paper the question 'is the q-Fourier transform of a q-Gaussian a q'-Gaussian (with some q') up to a constant factor?' is studied for the whole range of q in (- infty, 3). This question is connected with applicability of the q-Fourier transform in the study of limit processes in nonextensive statistical mechanics. Using the functional differential equation approach we prove that the answer is affirmative if and only if 1 <= q < 3, excluding two particular cases of q < 1, namely q=1/2 and q=2/3. Complementarily, we discuss some applications of the q-Fourier transform to nonlinear partial differential equations such as the porous medium equation.

  2. Inversion of Fourier Transforms by Means of Scale-Frequency Series

    Directory of Open Access Journals (Sweden)

    Nassar H. S. Haidar

    2014-01-01

    Full Text Available We report on inversion of the Fourier transform when the frequency variable can be scaled in a variety of different ways that improve the resolution of certain parts of the frequency domain. The corresponding inverse Fourier transform is shown to exist in the form of two dual scale-frequency series. Upon discretization of the continuous scale factor, this Fourier transform series inverse becomes a certain nonharmonic double series, a discretized scale-frequency (DSF series. The DSF series is also demonstrated, theoretically and practically, to be rate-optimizable with respect to its two free parameters, when it satisfies, as an entropy maximizer, a pertaining recursive nonlinear programming problem incorporating the entropy-based uncertainty principle.

  3. Atomic Gaussian type orbitals and their Fourier transforms via the Rayleigh expansion

    Science.gov (United States)

    Yükçü, Niyazi

    2016-03-01

    Gaussian type orbitals (GTOs), which are one of the types of exponential type orbitals (ETOs), are used usually as basis functions in the multi-center atomic and molecular integrals to better understand physical and chemical properties of matter. In the Fourier transform method (FTM), basis functions have not simplicity to make mathematical operations, but their Fourier transforms are easier to use. In this work, with the help of FTM, Rayleigh expansion and some properties of unnormalized GTOs, we present new mathematical results for the Fourier transform of GTOs in terms of Laguerre polynomials, hypergeometric and Whittaker functions. Physical and analytical properties of GTOs are discussed and some numerical results have been given in a table. Finally, we compare our mathematical results with the other known literature results by using a computer program and details of evaluation are presented.

  4. Continuous Fourier transform method and apparatus. [for the analysis of simultaneous analog signal components

    Science.gov (United States)

    Munoz, R. M. (Inventor)

    1974-01-01

    An input analog signal to be frequency analyzed is separated into N number of simultaneous analog signal components each identical to the original but delayed relative to the original by a successively larger time delay. The separated and delayed analog components are combined together in a suitable number of adders and attenuators in accordance with at least one component product of the continuous Fourier transform and analog signal matrices to separate the analog input signal into at least one of its continuous analog frequency components of bandwidth 1/N times the bandwidth of the original input signal. The original analog input signal can be reconstituted by combining the separate analog frequency components in accordance with the component products of the continuous Fourier transform and analog frequency component matrices. The continuous Fourier transformation is useful for spectrum analysis, filtering, transfer function synthesis, and communications.

  5. Differentiating Fragmentation Pathways of Cholesterol by Two-Dimensional Fourier Transform Ion Cyclotron Resonance Mass Spectrometry

    Science.gov (United States)

    van Agthoven, Maria A.; Barrow, Mark P.; Chiron, Lionel; Coutouly, Marie-Aude; Kilgour, David; Wootton, Christopher A.; Wei, Juan; Soulby, Andrew; Delsuc, Marc-André; Rolando, Christian; O'Connor, Peter B.

    2015-12-01

    Two-dimensional Fourier transform ion cyclotron resonance mass spectrometry is a data-independent analytical method that records the fragmentation patterns of all the compounds in a sample. This study shows the implementation of atmospheric pressure photoionization with two-dimensional (2D) Fourier transform ion cyclotron resonance mass spectrometry. In the resulting 2D mass spectrum, the fragmentation patterns of the radical and protonated species from cholesterol are differentiated. This study shows the use of fragment ion lines, precursor ion lines, and neutral loss lines in the 2D mass spectrum to determine fragmentation mechanisms of known compounds and to gain information on unknown ion species in the spectrum. In concert with high resolution mass spectrometry, 2D Fourier transform ion cyclotron resonance mass spectrometry can be a useful tool for the structural analysis of small molecules.

  6. Fourier-transform spectroscopy: new methods and applications: introduction by the feature editors.

    Science.gov (United States)

    Traub, W A; Winkel, R J; Goldman, A

    1996-06-01

    We are pleased to introduce this special issue of papers on Fourier-transform spectroscopy, which grew out of a recent topical meeting sponsored by the Optical Society of America. The topical meeting welcomed all researchers who practice the art of Fourier-transform spectroscopy in the laboratory, in the atmosphere, and in space. The power and the wide applicability of Fourier-transform spectroscopy unite these fields with a common mathematical and instrumental bond. The meeting probed each of these areas in depth, bringing out new ideas for instrumentation, analysis, and applications. There was a strong sentiment at the meeting that the quality of papers and posters was exceptionally high and that it would be important for future progress in the field to have the results of this meeting captured in print. This special issue is the fruit of that effort.

  7. The Application of Fourier Transform Infrared Photoacoustics Spectroscopy (FTIR-PAS for Rapid Soil Quality Evaluation

    Directory of Open Access Journals (Sweden)

    Ichwana Ichwana

    2017-04-01

    The Application of Fourier Transform Infrared Photoacoustics Spectroscopy (FTIR-PAS for Rapid Soil Quality Evaluation Abstract. The major function of soil is to provide fundamental natural resources for survival of plants, animals, and the human race. Soil functions depend on the balances of its structure and composition, well as the chemical, biological, and physical properties. It is become one important key aspect and routine activity in crop management system. To monitor and determine soil quality properties, several methods were already widely used in which most of them are based on solvent extraction followed by other laboratory procedures. However, these methods often require laborious and complicated processing for samples. They are time consuming and destructive. In last few decades, the application of infrared spectroscopy as non-destructive technique in determining soil quality properties (C, N, P and K rapidly and simultaneously. Fourier transform infrared spectrum (FTIR were acquired in wavelength range from 1000 to 2500 nm with applying photo-acoustic spectroscopy (PAS. Least square-support vector machine regression (LS-SVM approach was then applied to predict soil quality properties. The results showed that C and N can be predicted accurately using FTIR-PAS whilst other parameters (P, K, Mg, Ca, S can be predicted with maximum RPD index is 1.9. Moreover, soil clay, moisture and soil microbes were feasible to be detected by using FTIR-PAS combining with discriminant analysis (LS-DA or cluster analysis (CA. It may conclude that FTIR-PAS technology can be used as a real time method  in monitoring soil quality and fertility properties.

  8. [Evaluation of nutrient release profiles from polymer coated fertilizers using Fourier transform mid-infrared photoacoustic spectroscopy].

    Science.gov (United States)

    Shen, Ya-zhen; Du, Chang-wen; Zhou, Jian-min; Wang, Huo-yan; Chen, Xiao-qin

    2012-02-01

    The acrylate-like materials were used to develop the polymer coated controlled release fertilizer, the nutrients release profiles were determined, meanwhile the Fourier transform mid-infrared photoacoustic spectra of the coatings were recorded and characterized; GRNN model was used to predict the nutrients release profiles using the principal components of the mid-infrared photoacoustic spectra as input. Results showed that the GRNN model could fast and effectively predict the nutrient release profiles, and the predicted calibration coefficients were more than 0.93; on the whole, the prediction errors (RMSE) were influenced by the profiling depth of the spectra, the average prediction error was 10.28%, and the spectra from the surface depth resulted in a lowest prediction error with 7.14%. Therefore, coupled with GRNN modeling, Fourier transform mid-infrared photoacoustic spectroscopy can be used as an alternative new technique in the fast and accurate prediction of nutrient release from polymer coated fertilizer.

  9. Super-resolution discrete-Fourier-transform spectroscopy using precisely periodic radiation beyond time window size limitation

    CERN Document Server

    Yasui, Takeshi; Hsieh, Yi-Da; Sakaguchi, Yoshiyuki; Hindle, Francis; Yokoyama, Shuko; Araki, Tsutomu; Hashimoto, Mamoru

    2014-01-01

    Fourier transform spectroscopy (FTS) has been widely used in a variety of fields in research, industry, and medicine due to its high signal-to-noise ratio, simultaneous acquisition of signals in a broad spectrum, and versatility for different radiation sources. Further improvement of the spectroscopic performance will widen its scope of applications. Here, we demonstrate improved spectral resolution by overcoming the time window limitation using discrete Fourier transform spectroscopy (dFTS) with precisely periodic pulsed terahertz (THz) radiation. Since infinitesimal resolution can be achieved at periodically discrete frequencies when the time window size is exactly matched to the repetition period T, a combination of THz-dFTS with a spectral interleaving technique achieves a spectral resolution only limited by the spectral interleaving interval. Linewidths narrower than 1/(50T) are fully resolved allowing the attribution of rotational-transition absorption lines of low-pressure molecular gases within a 1.25...

  10. Time Lens based Optical Fourier Transformation for All-Optical Signal Processing of Spectrally-Efficient Data

    DEFF Research Database (Denmark)

    Guan, Pengyu; Røge, Kasper Meldgaard; Lillieholm, Mads;

    2016-01-01

    four-wave mixing (FWM), separated by a dispersive medium, which enables time-to-frequency and frequency-to-time conversions simultaneously, thus performing an exchange between the temporal and spectral profiles of the input signal. Using the proposed complete OFT, several advanced all-optical signal......We review recent progress in the use of time lens based optical Fourier transformation for advanced all-optical signal processing. A novel time lens based complete optical Fourier transformation (OFT) technique is introduced. This complete OFT is based on two quadratic phase-modulation stages using...... processing schemes for spectrally-efficient systems and networks have been achieved, including all-optical generation, detection and format conversion of spectrally-efficient signals. The spectrally-efficient signals in this paper mainly refer to efficiently multiplexed signals with a high symbol rate per Hz...

  11. Discrete Fourier and wavelet transforms an introduction through linear algebra with applications to signal processing

    CERN Document Server

    Goodman, Roe W

    2016-01-01

    This textbook for undergraduate mathematics, science, and engineering students introduces the theory and applications of discrete Fourier and wavelet transforms using elementary linear algebra, without assuming prior knowledge of signal processing or advanced analysis.It explains how to use the Fourier matrix to extract frequency information from a digital signal and how to use circulant matrices to emphasize selected frequency ranges. It introduces discrete wavelet transforms for digital signals through the lifting method and illustrates through examples and computer explorations how these transforms are used in signal and image processing. Then the general theory of discrete wavelet transforms is developed via the matrix algebra of two-channel filter banks. Finally, wavelet transforms for analog signals are constructed based on filter bank results already presented, and the mathematical framework of multiresolution analysis is examined.

  12. Preliminary Analysis of ULPC Light Curves Using Fourier Decomposition Technique

    CERN Document Server

    Ngeow, Chow-Choong; Kanbur, Shashi; Barrett, Brittany; Lin, Bin

    2013-01-01

    Recent work on Ultra Long Period Cepheids (ULPCs) has suggested their usefulness as a distance indicator, but has not commented on their relationship as compared with other types of variable stars. In this work, we use Fourier analysis to quantify the structure of ULPC light curves and compare them to Classical Cepheids and Mira variables. Our preliminary results suggest that the low order Fourier parameters of ULPCs show a continuous trend defined by Classical Cepheids after the resonance around 10 days. However their Fourier parameters also overlapped with those from Miras, which make the classification of long period variable stars difficult based on the light curves information alone.

  13. q-Extension of Mehta's eigenvectors of the finite Fourier transform for q, a root of unity

    Energy Technology Data Exchange (ETDEWEB)

    Atakishiyeva, Mesuma K [Facultad de Ciencias, Universidad Autonoma del Estado de Morelos, CP 62250 Cuernavaca, Morelos (Mexico); Atakishiyev, Natig M [Instituto de Matematicas, Unidad Cuernavaca Universidad Nacional Autonoma de Mexico, AP 273-3 Admon 3, Cuernavaca, Morelos 62251 (Mexico); Koornwinder, Tom H [Korteweg-de Vries Institute, University of Amsterdam, PO Box 94248, 1090 GE Amsterdam (Netherlands)], E-mail: mesuma@servm.fc.uaem.mx, E-mail: natig@matcuer.unam.mx, E-mail: T.H.Koornwinder@uva.nl

    2009-10-30

    It is shown that the continuous q-Hermite polynomials for q, a root of unity, have simple transformation properties with respect to the classical Fourier transform. This result is then used to construct q-extended eigenvectors of the finite Fourier transform in terms of these polynomials.

  14. Single-channel 1.28 Tbit/s-525 km DQPSK transmission using ultrafast time-domain optical Fourier transformation and nonlinear optical loop mirror

    DEFF Research Database (Denmark)

    Guan, Pengyu; Mulvad, Hans Christian Hansen; Tomiyama, Yutaro

    2011-01-01

    developed an ultrafast timedomain optical Fourier transformation technique in a round-trip configuration. By applying this technique to subpicosecond pulses, transmission impairments were greatly reduced, and BER performance below FEC limit was obtained with increased system margin. Copyright © 2011...

  15. Remote monitoring of volcanic gases using passive Fourier transform spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Love, S.P.; Goff, F.; Counce, D.; Schmidt, S.C. [Los Alamos National Lab., NM (United States); Siebe, C.; Delgado, H. [Univ. Nactional Autonoma de Mexico, Coyoacan (Mexico)

    1999-06-01

    Volcanic gases provide important insights on the internal workings of volcanoes and changes in their composition and total flux can warn of impending changes in a volcano`s eruptive state. In addition, volcanoes are important contributors to the earth`s atmosphere, and understanding this volcanic contribution is crucial for unraveling the effect of anthropogenic gases on the global climate. Studies of volcanic gases have long relied upon direct in situ sampling, which requires volcanologists to work on-site within a volcanic crater. In recent years, spectroscopic techniques have increasingly been employed to obtain information on volcanic gases from greater distances and thus at reduced risk. These techniques have included UV correlation spectroscopy (Cospec) for SO{sub 2} monitoring, the most widely-used technique, and infrared spectroscopy in a variety of configurations, both open- and closed-path. Francis et al. have demonstrated good results using the sun as the IR source. This solar occultation technique is quite useful, but puts rather strong restrictions on the location of instrument and is thus best suited to more accessible volcanoes. In order to maximize the flexibility and range of FTIR measurements at volcanoes, work over the last few years has emphasized techniques which utilize the strong radiance contrast between the volcanic gas plume and the sky. The authors have successfully employed these techniques at several volcanoes, including the White Island and Ruapehu volcanoes in New Zealand, the Kilauea volcano on Hawaii, and Mt. Etna in Italy. But Popocatepetl (5452 m), the recently re-awakened volcano 70 km southeast of downtown Mexico City, has provided perhaps the best examples to date of the usefulness of these techniques.

  16. ANNSVM: A Novel Method for Graph-Type Classification by Utilization of Fourier Transformation, Wavelet Transformation, and Hough Transformation

    Directory of Open Access Journals (Sweden)

    Sarunya Kanjanawattana

    2017-07-01

    Full Text Available Image classification plays a vital role in many areas of study, such as data mining and image processing; however, serious problems collectively referred to as the course of dimensionality have been encountered in previous studies as factors that reduce system performance. Furthermore, we also confront the problem of different graph characteristics even if graphs belong to same types. In this study, we propose a novel method of graph-type classification. Using our approach, we open up a new solution of high-dimensional images and address problems of different characteristics by converting graph images to one dimension with a discrete Fourier transformation and creating numeric datasets using wavelet and Hough transformations. Moreover, we introduce a new classifier, which is a combination between artificial neuron networks (ANNs and support vector machines (SVMs, which we call ANNSVM, to enhance accuracy. The objectives of our study are to propose an effective graph-type classification method that includes finding a new data representative used for classification instead of two-dimensional images and to investigate what features make our data separable. To evaluate the method of our study, we conducted five experiments with different methods and datasets. The input dataset we focused on was a numeric dataset containing wavelet coefficients and outputs of a Hough transformation. From our experimental results, we observed that the highest accuracy was provided using our method with Coiflet 1, which achieved a 0.91 accuracy.

  17. All-optical WDM Regeneration of DPSK Signals using Optical Fourier Transformation and Phase Sensitive Amplification

    DEFF Research Database (Denmark)

    Guan, Pengyu; Røge, Kasper Meldgaard; Kjøller, Niels-Kristian;

    2015-01-01

    We propose a novel all-optical WDM regeneration scheme for DPSK signals based on optical Fourier transformation and phase sensitive amplification. Phase regeneration of a WDM signal consisting of 4x10-Gbit/s phase noise degraded DPSK channels is demonstrated for the first time.......We propose a novel all-optical WDM regeneration scheme for DPSK signals based on optical Fourier transformation and phase sensitive amplification. Phase regeneration of a WDM signal consisting of 4x10-Gbit/s phase noise degraded DPSK channels is demonstrated for the first time....

  18. Change of Scale Formulas for Wiener Integrals Related to Fourier-Feynman Transform and Convolution

    Directory of Open Access Journals (Sweden)

    Bong Jin Kim

    2014-01-01

    Full Text Available Cameron and Storvick discovered change of scale formulas for Wiener integrals of functionals in Banach algebra S on classical Wiener space. Yoo and Skoug extended these results for functionals in the Fresnel class F(B and in a generalized Fresnel class FA1,A2 on abstract Wiener space. We express Fourier-Feynman transform and convolution product of functionals in S as limits of Wiener integrals. Moreover we obtain change of scale formulas for Wiener integrals related to Fourier-Feynman transform and convolution product of these functionals.

  19. Security of image encryption scheme based on multi-parameter fractional Fourier transform

    Science.gov (United States)

    Zhao, Tieyu; Ran, Qiwen; Yuan, Lin; Chi, Yingying; Ma, Jing

    2016-10-01

    Recently, multi-parameter fractional Fourier transform (MPFRFT) has been widely applied in the optics cryptosystem, which has attracted more and more researchers' attention. However, in further study we find a serious security problem on the MPFRFT which is the multi-choice of decryption key corresponding to an encryption key. The existence of multi-decryption-key hinders the application of this algorithm. We present a new generalized fractional Fourier transform, which can overcome the problem and enlarge the key space. The simulation results show that the proposed algorithm has higher security and key sensitivity.

  20. The Pegg-Barnett phase operator and the discrete Fourier transform

    Science.gov (United States)

    Perez-Leija, Armando; Andrade-Morales, Luis A.; Soto-Eguibar, Francisco; Szameit, Alexander; Moya-Cessa, Héctor M.

    2016-04-01

    In quantum mechanics the position and momentum operators are related to each other via the Fourier transform. In the same way, here we show that the so-called Pegg-Barnett phase operator can be obtained by the application of the discrete Fourier transform to the number operators defined in a finite-dimensional Hilbert space. Furthermore, we show that the structure of the London-Susskind-Glogower phase operator, whose natural logarithm gives rise to the Pegg-Barnett phase operator, is contained in the Hamiltonian of circular waveguide arrays. Our results may find applications in the development of new finite-dimensional photonic systems with interesting phase-dependent properties.

  1. Interferometric time delay correction for Fourier transform spectroscopy in the extreme ultraviolet

    Science.gov (United States)

    Meng, Yijian; Zhang, Chunmei; Marceau, Claude; Naumov, A. Yu.; Corkum, P. B.; Villeneuve, D. M.

    2016-09-01

    We demonstrate a Fourier transform spectrometer in the extreme ultraviolet (XUV) spectrum using a high-harmonic source, with wavelengths as short as 32 nm. The femtosecond infrared laser source is divided into two separate foci in the same gas jet to create two synchronized XUV sources. An interferometric method to determine the relative delay between the two sources is shown to improve the accuracy of the delay time, with corrections of up to 200 asec required. By correcting the time base before the Fourier transform, the frequency resolution is improved by up to an order of magnitude.

  2. DWDM-TO-OTDM Conversion by Time-Domain Optical Fourier Transformation

    DEFF Research Database (Denmark)

    Mulvad, Hans Christian Hansen; Hu, Hao; Galili, Michael

    2011-01-01

    We propose DWDM-OTDM conversion by time-domain optical Fourier transformation. Error-free conversion of a 16×10 Gbit/s 50 GHz-spacing DWDM data signal to a 160 Gbit/s OTDM signal with a 2.1 dB average penalty is demonstrated.......We propose DWDM-OTDM conversion by time-domain optical Fourier transformation. Error-free conversion of a 16×10 Gbit/s 50 GHz-spacing DWDM data signal to a 160 Gbit/s OTDM signal with a 2.1 dB average penalty is demonstrated....

  3. 1.28 Tbaud Nyquist Signal Transmission using Time-Domain Optical Fourier Transformation based Receiver

    DEFF Research Database (Denmark)

    Hu, Hao; Kong, Deming; Palushani, Evarist

    2013-01-01

    We demonstrate transmission of a 1.28-Tbaud Nyquist-OTDM signal over a record distance of 100 km with detection by time-domain optical Fourier transformation followed by FEC decoding, resulting in error-free performance for all tributaries.......We demonstrate transmission of a 1.28-Tbaud Nyquist-OTDM signal over a record distance of 100 km with detection by time-domain optical Fourier transformation followed by FEC decoding, resulting in error-free performance for all tributaries....

  4. 16 channel WDM regeneration in a single phase-sensitive amplifier through optical Fourier transformation

    DEFF Research Database (Denmark)

    Guan, Pengyu; Da Ros, Francesco; Lillieholm, Mads

    2016-01-01

    We demonstrate simultaneous phase regeneration of 16-WDM DPSK channels using optical Fourier transformation and a single phase-sensitive amplifier. The BERs of 16-WDM×10-Gbit/s phase noise degraded DPSK signals are improved by 0.4-1.3 orders of magnitude......We demonstrate simultaneous phase regeneration of 16-WDM DPSK channels using optical Fourier transformation and a single phase-sensitive amplifier. The BERs of 16-WDM×10-Gbit/s phase noise degraded DPSK signals are improved by 0.4-1.3 orders of magnitude...

  5. Usando um website para explicar a espectrometria de ressonância ciclotrônica de íons por transformada de Fourier Using a website to explain Fourier transform ion ciclotron resonance mass spectrometry

    Directory of Open Access Journals (Sweden)

    Luciano Aparecido Xavier

    2001-06-01

    Full Text Available This article shows the usefulness of a website to explain the concepts, operational events, vacuum system, applications and an experimental sequence of the Fourier Transform Ion Ciclotron Resonance Mass Spectrometry technique (http://143.107.46.113/icr/icrj.html.

  6. Investigations of Accelerated Climate Aged Wood Substrates by Fourier Transform Infrared Material Characterization

    Directory of Open Access Journals (Sweden)

    Bjørn Petter Jelle

    2012-01-01

    Full Text Available Fourier transform infrared (FTIR material characterization by applying the attenuated total reflectance (ATR experimental technique represents a powerful measurement tool. The ATR technique may be applied on both solid state materials, liquids and gases with none or only minor sample preparations, also including materials which are nontransparent to infrared radiation. This facilitation is made possible by pressing the sample directly onto various crystals, for example, diamond, with high refractive indices, in a special reflectance setup. Materials undergoing ageing processes by natural and accelerated climate exposure, decomposition and formation of chemical bonds and products, may be studied in an ATR-FTIR analysis. In this work, the ATR-FTIR technique is utilized to detect changes in selected wood building material substrates subjected to accelerated climate exposure conditions. Changes in specific FTIR absorbance peaks are designated to different wood deterioration processes. One aim is by ATR-FTIR analysis to be able to quantitatively determine the length of the wood ageing time before priming/treatment. Climate parameters like temperature (including freezing/thawing, relative air humidity, wind driven rain amount, solar and/or ultraviolet radiation, and exposure duration may be controlled in different climate ageing apparatuses. Both impregnated and raw wood samples have been employed in the experimental investigations.

  7. Fourier Transform Infrared Radiation Spectroscopy Applied for Wood Rot Decay and Mould Fungi Growth Detection

    Directory of Open Access Journals (Sweden)

    Bjørn Petter Jelle

    2012-01-01

    Full Text Available Material characterization may be carried out by the attenuated total reflectance (ATR Fourier transform infrared (FTIR radiation spectroscopical technique, which represents a powerful experimental tool. The ATR technique may be applied on both solid state materials, liquids, and gases with none or only minor sample preparations, also including materials which are nontransparent to IR radiation. This facilitation is made possible by pressing the sample directly onto various crystals, for example, diamond, with high refractive indices, in a special reflectance setup. Thus ATR saves time and enables the study of materials in a pristine condition, that is, the comprehensive sample preparation by pressing thin KBr pellets in traditional FTIR transmittance spectroscopy is hence avoided. Materials and their ageing processes, both ageing by natural and accelerated climate exposure, decomposition and formation of chemical bonds and products, may be studied in an ATR-FTIR analysis. In this work, the ATR-FTIR technique is utilized to detect wood rot decay and mould fungi growth on various building material substrates. An experimental challenge and aim is to be able to detect the wood rot decay and mould fungi growth at early stages when it is barely visible to the naked eye. Another goal is to be able to distinguish between various species of fungi and wood rot.

  8. FOURIER TRANSFORMED INFRA RED SPECTROSCOPY IN BEEPRODUCTS ANALYSIS

    Directory of Open Access Journals (Sweden)

    L.AL. MĂRGHITAS

    2013-12-01

    Full Text Available FTIR spectroscopy is a very recent technique mainly used so far for classification of honeys of different geographical and botanical origin, on identification of honey and other food products adulteration. Some of the advantages of FTIR methodology are described in this article.

  9. 3-D superposition for radiotherapy treatment planning using fast Fourier transforms.

    Science.gov (United States)

    Murray, D C; Hoban, P W; Metcalfe, P E; Round, W H

    1989-09-01

    Currently used radiotherapy treatment planning algorithms based on effective path length or scatter function methods do not model electron ranging from photon interaction sites. The superposition (or convolution) technique does model this effect, which is especially important at higher (linear accelerator) energies since the electron range is significant. Another advantage of this method is that it is conceptually simple and models the physical processes directly, rather than using empirically derived methods. A major disadvantage of superposition lies in the large amount of computer time required to generate a plan, especially in three dimensions. To help solve this problem, superposition using an invariant dose spread array (kernel) can be achieved by performing a convolution in Fourier space using fast Fourier transforms (FFTs). A method for 3 dimensional calculation of dose using FFTs is presented. Dose spread arrays are calculated using the EGS Monte Carlo code, and convolved with the TERMA (total energy released per unit mass). In both cases a 10 MV nominal beam energy is modelled by a 10 component spectrum, which is compared to the result obtained using monochromatic energy only (3.0 MeV at the surface). The FFT technique is shown to be significantly faster than standard convolution for medium to large TERMA and dose spread array sizes. The method is shown to be highly accurate for small fields in homogeneous media. For larger fields the central axis depth dose is accurate but the profile shape in the penumbral region becomes slightly distorted. This is because photons incident near the beam edges are not parallel to the cartesian coordinate system used as the convolution framework. However, this effect is sufficiently small to indicate that the convolution method is suitable for use in routine treatment planning.

  10. Separation of overlapping linear frequency modulated (LFM) signals using the fractional fourier transform.

    Science.gov (United States)

    Cowell, David M J; Freear, Steven

    2010-10-01

    Linear frequency modulated (LFM) excitation combined with pulse compression provides an increase in SNR at the receiver. LFM signals are of longer duration than pulsed signals of the same bandwidth; consequently, in many practical situations, maintaining temporal separation between echoes is not possible. Where analysis is performed on individual LFM signals, a separation technique is required. Time windowing is unable to separate signals overlapping in time. Frequency domain filtering is unable to separate signals with overlapping spectra. This paper describes a method to separate time-overlapping LFM signals through the application of the fractional Fourier transform (FrFT), a transform operating in both time and frequency domains. A short introduction to the FrFT and its operation and calculation are presented. The proposed signal separation method is illustrated by application to a simulated ultrasound signal, created by the summation of multiple time-overlapping LFM signals and the component signals recovered with ±0.6% spectral error. The results of an experimental investigation are presented in which the proposed separation method is applied to time-overlapping LFM signals created by the transmission of a LFM signal through a stainless steel plate and water-filled pipe.

  11. Application of Fourier-transform infrared (FT-ir) spectroscopy to in-situ studies of coal combustion

    Energy Technology Data Exchange (ETDEWEB)

    Ottesen, D K; Thorne, L R

    1982-04-01

    The feasibility of using Fourier-transform infrared (FT-ir) spectroscopy for in situ measurement of gas phase species concentrations and temperature during coal combustion is examined. This technique is evaluated in terms of its potential ability to monitor several important chemical and physical processes which occur in pulverized coal combustion. FT-ir absorption measurements of highly sooting, gaseous hydrocarbon/air flames are presented to demonstrate the fundamental usefulness of the technique for in situ detection of gas phase temperatures and species concentrations in high temperature combustion environments containing coal, char, mineral matter and soot particles. Preliminary results for coal/gaseous fuel/air flames are given.

  12. OTDM-to-WDM Conversion Based on Time-to-Frequency Mapping by Time-Domain Optical Fourier Transformation

    DEFF Research Database (Denmark)

    Palushani, Evarist; Mulvad, Hans Christian Hansen; Galili, Michael

    2012-01-01

    a dispersive medium followed by phase modulation; the latter being achieved by a four-wave mixing process with linearly chirped pump pulses. Both numerical and experimental investigations of the OTDM-to-WDM conversion technique are carried out. Experimental validations are performed on......This paper reports on the utilization of the timedomain optical Fourier transformation (OFT) technique for serial-to-parallel conversion of optical time division multiplexed (OTDM) data tributaries into dense wavelength division multiplexed (DWDM) channels. The OFT is implemented by using...

  13. [The application of Fourier transform infrared technology in biomedical sphere].

    Science.gov (United States)

    Zhang, Xiao-qing; Xu, Zhi; Ling, Xiao-feng; Xu, Yi-zhuang; Wu, Jin-guang

    2010-01-01

    The authors systemically reviewed the development of FTIR technology and its innovative advances during the past fifty years. FTIR technique was once abandoned after initial exploration in biomedical fields, which could not confirm its reliability and credibility. After technological innovation and refined numerical analysis methods, FTIR technique has been applied to a wide range of fields, from single cellular to the complex biomedical tissue components. Nowadays, mature and advanced FTIR technology, such as FTIR microspectrometer and FTIR imaging system, with the aid of pattern recognition and tissue microarray, greatly facilitated the large parallel scale investigation of molecular structure. The recent development of FTIR spectroscopic imaging has enhanced our capability to examine, on a microscopic scale, the spatial distribution of vibrational spectroscopic signatures of materials spanning the physical and biomedical disciplines. The integration of instrumentation development, theoretical analyses to provide guidelines for imaging practice, novel data processing algorithms, and the introduction of the technique to new fields. FTIR technique has helped analyze the complex components of bile stones, which persisted to be a vexing problem and causing high death rate in China. Besides, FTIR technology could provide reliable information in discriminating benign and malignancy. It has been used in detecting thyroid nodules, mammary gland, gastrointestinal tract, cardiovascular and prostate diseases, and parotid gland tissue in combination with ATR detecting device, and has broad clinical application prospects. Till now, FTIR technology has achieved the fast and accurate diagnosis for freshly dissected tissues such as discriminating thyroid carcinoma from nodular goiter intraoperatively. However, further investigations need to be done in this sphere to achieve greater accomplishments.

  14. A Fourier-based compressed sensing technique for accelerated CT image reconstruction using first-order methods.

    Science.gov (United States)

    Choi, Kihwan; Li, Ruijiang; Nam, Haewon; Xing, Lei

    2014-06-21

    As a solution to iterative CT image reconstruction, first-order methods are prominent for the large-scale capability and the fast convergence rate [Formula: see text]. In practice, the CT system matrix with a large condition number may lead to slow convergence speed despite the theoretically promising upper bound. The aim of this study is to develop a Fourier-based scaling technique to enhance the convergence speed of first-order methods applied to CT image reconstruction. Instead of working in the projection domain, we transform the projection data and construct a data fidelity model in Fourier space. Inspired by the filtered backprojection formalism, the data are appropriately weighted in Fourier space. We formulate an optimization problem based on weighted least-squares in the Fourier space and total-variation (TV) regularization in image space for parallel-beam, fan-beam and cone-beam CT geometry. To achieve the maximum computational speed, the optimization problem is solved using a fast iterative shrinkage-thresholding algorithm with backtracking line search and GPU implementation of projection/backprojection. The performance of the proposed algorithm is demonstrated through a series of digital simulation and experimental phantom studies. The results are compared with the existing TV regularized techniques based on statistics-based weighted least-squares as well as basic algebraic reconstruction technique. The proposed Fourier-based compressed sensing (CS) method significantly improves both the image quality and the convergence rate compared to the existing CS techniques.

  15. Viewing the effective k-space coverage of MR images: phantom experiments with fast Fourier transform.

    Science.gov (United States)

    Menke, Jan; Helms, Gunther; Larsen, Jörg

    2010-01-01

    The purpose of this experimental study was to evaluate whether the effective k-space coverage of MR images can in principle be viewed after multidimensional Fourier transform back to k-space. A water-soaked sponge phantom providing homogeneous k-space pattern was imaged with different standard MR sequences, utilizing elliptic acquisitions, partial-Fourier acquisitions and elliptic filtering as imaging examples. The resulting MR images were Fourier-transformed to the spatial frequency domain (the k-space) to visualize their effective k-space coverage. These frequency domain images are named "backtransformed k-space images." For a quantitative assessment, the sponge phantom was imaged with three-dimensional partial-Fourier sequences while varying the partial acquisition parameters in slice and phase direction. By linear regression analysis, the k-space coverage as expected from the sequence menu parameters was compared to the effective k-space coverage as observed in the backtransformed k-space images. The k-space coverage of elliptic and partial-Fourier acquisitions became visible in the backtransformed k-space images, as well as the effect of elliptic filtering. The expected and the observed k-space coverage showed a highly significant correlation (r=.99, PFourier-transforming MR images of a sponge phantom back to k-space. This method could be used for several purposes including sequence parameter optimization, basic imaging research, and to enhance a visual understanding of k-space, especially in three-dimensional MR imaging.

  16. Fourier Transform Near Infrared Spectrometry: Using Interferograms To Determine Chemical Composition

    Science.gov (United States)

    Hoy, R. M.; McClure, W. Fred

    1989-12-01

    Previous research conducted in this laboratory has demonstrated several advantages accrued by transforming near infrared spectra from the wavelength domain to the Fourier domain. Those advantages include: [1] smoothing wavelength domain data without loss of end points, [2] correcting for particle size phenomena encountered in solid sample analyses by simply omitting the mean term Fourier coefficient from the "retransformation process", [3] minimizing the multicollinearity problem prevalent in wavelength space, [4] generating wavelength-space derivatives from Fourier space without loss of end points, [5] performing band enhancements via Fourier self-deconvolution, [6] identifying sample type using Fourier vectors, [7] estimating chemical composition using only the first few Fourier coefficients, [8] cutting of computer storage requirements by more than 96%, [9] cutting of calibration time by more than 96%, hence [10] reducing the drudgery of maintaining calibrations. That the first 12 Fourier coefficients contain sufficient information to determine chemical constituents in many products has turned out to be a major advantage leading us to understand that the chemical absorption information in the wavelength spectrum of a sample obtained with an interferometer was also present in the interferogram.

  17. Multi-modal Color Medical Image Fusion Using Quaternion Discrete Fourier Transform

    Science.gov (United States)

    Nawaz, Qamar; Xiao, Bin; Hamid, Isma; Jiao, Du

    2016-12-01

    Multimodal image fusion is a process of combining multiple images, generated by identical or diverse imaging modalities, to get precise inside information about the same body organ. In recent years, various multimodal image fusion algorithms have been proposed to fuse medical image. However, most of them focus on fusing grayscale images. This paper proposes a novel algorithm for the fusion of multimodal color medical images. The proposed algorithm divides source images into blocks, converts each RGB block into quaternion representation and transforms them from special domain to frequency domain by applying quaternion discrete Fourier transform. The fused coefficients are obtained by calculating and comparing contrast values of corresponding coefficients in transformed blocks. The resultant fused image is reconstructed by merging all the blocks after applying inverse quaternion discrete Fourier transform on each block. Experimental evaluation demonstrates that the proposed algorithm qualitatively outperforms many existing state-of-the-art multimodal image fusion algorithms.

  18. Fast Inverse Nonlinear Fourier Transform For Generating Multi-Solitons In Optical Fiber

    CERN Document Server

    Wahls, Sander

    2015-01-01

    The achievable data rates of current fiber-optic wavelength-division-multiplexing (WDM) systems are limited by nonlinear interactions between different subchannels. Recently, it was thus proposed to replace the conventional Fourier transform in WDM systems with an appropriately defined nonlinear Fourier transform (NFT). The computational complexity of NFTs is a topic of current research. In this paper, a fast inverse NFT algorithm for the important special case of multi-solitonic signals is presented. The algorithm requires only $\\mathcal{O}(D\\log^{2}D)$ floating point operations to compute $D$ samples of a multi-soliton. To the best of our knowledge, this is the first algorithm for this problem with $\\log^{2}$-linear complexity. The paper also includes a many samples analysis of the generated nonlinear Fourier spectra.

  19. Novel Polynomial Basis with Fast Fourier Transform and Its Application to Reed-Solomon Erasure Codes

    KAUST Repository

    Lin, Sian-Jheng

    2016-09-13

    In this paper, we present a fast Fourier transform (FFT) algorithm over extension binary fields, where the polynomial is represented in a non-standard basis. The proposed Fourier-like transform requires O(h lg(h)) field operations, where h is the number of evaluation points. Based on the proposed Fourier-like algorithm, we then develop the encoding/ decoding algorithms for (n = 2m; k) Reed-Solomon erasure codes. The proposed encoding/erasure decoding algorithm requires O(n lg(n)), in both additive and multiplicative complexities. As the complexity leading factor is small, the proposed algorithms are advantageous in practical applications. Finally, the approaches to convert the basis between the monomial basis and the new basis are proposed.

  20. Fully phase-encrypted memory using cascaded extended fractional Fourier transform

    Science.gov (United States)

    Nishchal, Naveen Kumar; Joseph, Joby; Singh, Kehar

    2004-08-01

    In this paper, we implement a fully phase-encrypted memory system using cascaded extended fractional Fourier transform (FRT). We encrypt and decrypt a two-dimensional image obtained from an amplitude image. The full phase image to be encrypted is fractional Fourier transformed three times and random phase masks are placed in the two intermediate planes. Performing the FRT three times increases the key size, at an added complexity of one more lens. The encrypted image is holographically recorded in a photorefractive crystal and is then decrypted by generating through phase conjugation, the conjugate of the encrypted image. A lithium niobate crystal has been used as a phase contrast filter to reconstruct the decrypted phase image, alleviating the need of alignment in the Fourier plane making the system rugged.

  1. Selection of convolution kernel in non-uniform fast Fourier transform for Fourier domain optical coherence tomography.

    Science.gov (United States)

    Chan, Kenny K H; Tang, Shuo

    2011-12-19

    Gridding based non-uniform fast Fourier transform (NUFFT) has recently been shown as an efficient method of processing non-linearly sampled data from Fourier-domain optical coherence tomography (FD-OCT). This method requires selecting design parameters, such as kernel function type, oversampling ratio and kernel width, to balance between computational complexity and accuracy. The Kaiser-Bessel (KB) and Gaussian kernels have been used independently on the NUFFT algorithm for FD-OCT. This paper compares the reconstruction error and speed for the optimization of these design parameters and justifies particular kernel choice for FD-OCT applications. It is found that for on-the-fly computation of the kernel function, the simpler Gaussian function offers a better accuracy-speed tradeoff. The KB kernel, however, is a better choice in the pre-computed kernel mode of NUFFT, in which the processing speed is no longer dependent on the kernel function type. Finally, the algorithm is used to reconstruct in-vivo images of a human finger at a camera limited 50k A-line/s.

  2. Application of Local Fourier Transform to Mathematical Simulation of Synchronous Machines with Valve Excitation Systems

    Directory of Open Access Journals (Sweden)

    Fedotov A.

    2017-02-01

    Full Text Available The article proposes a method of mathematical simulation of electrical machines with thyristor exciters on the basis of the local Fourier transform. The present research demonstrates that this method allows switching from a variable structure model to a constant structure model. Transition from the continuous variables to the discrete variables is used. The numerical example is given in the paper.

  3. Application of Local Fourier Transform to Mathematical Simulation of Synchronous Machines with Valve Excitation Systems

    Science.gov (United States)

    Fedotov, A.; Fedotov, E.; Bahteev, K.

    2017-02-01

    The article proposes a method of mathematical simulation of electrical machines with thyristor exciters on the basis of the local Fourier transform. The present research demonstrates that this method allows switching from a variable structure model to a constant structure model. Transition from the continuous variables to the discrete variables is used. The numerical example is given in the paper.

  4. Cryogenic magnetic bearing scanning mechanism design for the SPICA/SAFARI Fourier Transform Spectrometer

    NARCIS (Netherlands)

    Dool, T.C. van den; Hamelinck, R.F.M.M.; Kruizinga, B.; Gielesen, W.L.M.; Braam, B.C.; Nijenhuis, J.R.; Loix, N.; Luyckx, S.; Loon, D. van; Kooijman, P.P.; Swinyard, B.M.

    2010-01-01

    TNO, together with its partners Micromega and SRON, have designed a cryogenic scanning mechanism for use in the SAFARI Fourier Transform Spectrometer (FTS) on board of the SPICA mission. The optics of the FTS scanning mechanism (FTSM) consists of two back-to-back cat's-eyes. The optics are mounted

  5. Shifting and Variational Properties for Fourier-Feynman Transform and Convolution

    Directory of Open Access Journals (Sweden)

    Byoung Soo Kim

    2015-01-01

    Full Text Available Shifting, scaling, modulation, and variational properties for Fourier-Feynman transform of functionals in a Banach algebra S are given. Cameron and Storvick's translation theorem can be obtained as a corollary of our result. We also study shifting, scaling, and modulation properties for the convolution product of functionals in S.

  6. Specification of the Fast Fourier Transform algorithm as a term rewriting system

    NARCIS (Netherlands)

    Rodenburg, P.H.; Hoekzema, D.J.

    2008-01-01

    We specify an algorithm for multiplying polynomials with complex coefficients incorporating, the Fast Fourier Transform algorithm of Cooley and Tukey [CT]. The specification formalism we use is a variant of the formalism ASF described in. [BHK]. The difference with ASF is essentially a matter of sem

  7. Postdispersion system for astronomical observations with Fourier transform spectrometers in the thermal infrared

    Science.gov (United States)

    Wiedermann, Guenter; Jennings, D. E.; Hanel, R. H.; Kunde, V. G.; Moseley, S. H.

    1989-01-01

    A postdispersion system for astronomical observations with Fourier transform spectrometers in the thermal infrared has been developed which improves the sensitivity of radiation noise limited observations by reducing the spectral range incident on the detector. Special attention is given to the first-generation blocked impurity band detector. Planetary, solar, and stellar observations are reported.

  8. Measurement of surface temperature and emissivity by a multitemperature method for Fourier-transform infrared spectrometers

    DEFF Research Database (Denmark)

    Clausen, Sønnik; Morgenstjerne, Axel; Rathmann, Ole

    1996-01-01

    Surface temperatures are estimated with high precision based on a multitemperature method for Fourier-transform spectrometers. The method is based on Planck's radiation law and a nonlinear least-squares fitting algorithm applied to two or more spectra at different sample temperatures and a single...

  9. Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Development of instrumentation, data aquisition software and processing methods

    NARCIS (Netherlands)

    Barbu, I.M.

    2008-01-01

    This thesis describes, the use of a Fourier Transform Ion Cyclotron (FTICR) mass spectrometer in the study of biological samples with, imaging mass spectrometry (MS). To achieve this goal experiments were performed on an in-house modified FTICR-MS instrument (for which special acquisition software w

  10. VUV Fourier-transform absorption study of the Lyman and Werner bands in D-2

    NARCIS (Netherlands)

    Lange, de A.; Dickenson, G.D.; Salumbides, E.J.; Ubachs, W.M.G.; Oliveira, de N.; Joyeux, D.; Nahon, L.

    2012-01-01

    An extensive survey of the D-2 absorption spectrum has been performed with the high-resolution VUV Fourier-transform spectrometer employing synchrotron radiation. The frequency range of 90 000-119 000 cm (1) covers the full depth of the potential wells of the B (1)Sigma(+)(u), B' 1 Sigma(+)(u), and

  11. Cryogenic magnetic bearing scanning mechanism design for the SPICA/SAFARI Fourier Transform Spectrometer

    NARCIS (Netherlands)

    Dool, T.C. van den; Hamelinck, R.F.M.M.; Kruizinga, B.; Gielesen, W.L.M.; Braam, B.C.; Nijenhuis, J.R.; Loix, N.; Luyckx, S.; Loon, D. van; Kooijman, P.P.; Swinyard, B.M.

    2010-01-01

    TNO, together with its partners Micromega and SRON, have designed a cryogenic scanning mechanism for use in the SAFARI Fourier Transform Spectrometer (FTS) on board of the SPICA mission. The optics of the FTS scanning mechanism (FTSM) consists of two back-to-back cat's-eyes. The optics are mounted o

  12. Fourier transform spectroscopy around 3 microns with a broad difference frequency comb

    CERN Document Server

    Meek, Samuel A; Guelachvili, Guy; Hänsch, Theodor W; Picqué, Nathalie

    2013-01-01

    We characterize a new mid-infrared frequency comb generator based on difference frequency generation around 3.2 microns. High power per comb mode (>10-7 W/mode) is obtained over a broad spectral span (>700 nm). The source is used for direct absorption spectroscopy with a Michelson-based Fourier transform interferometer.

  13. 16 channel WDM regeneration in a single phase-sensitive amplifier through optical Fourier transformation

    DEFF Research Database (Denmark)

    Guan, Pengyu; Da Ros, Francesco; Lillieholm, Mads

    2016-01-01

    We demonstrate simultaneous phase regeneration of 16-WDM DPSK channels using optical Fourier transformation and a single phase-sensitive amplifier. The BERs of 16-WDM×10-Gbit/s phase noise degraded DPSK signals are improved by 0.4-1.3 orders of magnitude...

  14. The Fourier transform solution for the Green's function of monoenergetic neutron transport theory

    OpenAIRE

    Ganapol, Barry D.

    2014-01-01

    Nearly 45 years ago, Ken Case published his seminal paper on the singular eigenfunction solution for the Green's function of the monoenergetic neutron transport equation with isotropic scattering. Previously, the solution had been obtained by Fourier transform. While it is apparent the two had to be equivalent, a convincing equivalence proof for general anisotropic scattering remained a challenge until now.

  15. Nonuniform fast Fourier transform method for numerical diffraction simulation on tilted planes.

    Science.gov (United States)

    Xiao, Yu; Tang, Xiahui; Qin, Yingxiong; Peng, Hao; Wang, Wei; Zhong, Lijing

    2016-10-01

    The method, based on the rotation of the angular spectrum in the frequency domain, is generally used for the diffraction simulation between the tilted planes. Due to the rotation of the angular spectrum, the interval between the sampling points in the Fourier domain is not even. For the conventional fast Fourier transform (FFT)-based methods, a spectrum interpolation is needed to get the approximate sampling value on the equidistant sampling points. However, due to the numerical error caused by the spectrum interpolation, the calculation accuracy degrades very quickly as the rotation angle increases. Here, the diffraction propagation between the tilted planes is transformed into a problem about the discrete Fourier transform on the uneven sampling points, which can be evaluated effectively and precisely through the nonuniform fast Fourier transform method (NUFFT). The most important advantage of this method is that the conventional spectrum interpolation is avoided and the high calculation accuracy can be guaranteed for different rotation angles, even when the rotation angle is close to π/2. Also, its calculation efficiency is comparable with that of the conventional FFT-based methods. Numerical examples as well as a discussion about the calculation accuracy and the sampling method are presented.

  16. Development of secondary cell wall in cotton fibers as examined with Fourier transform-infrared spectroscopy

    Science.gov (United States)

    Our presentation will focus on continuing efforts to examine secondary cell wall development in cotton fibers using infrared Spectroscopy. Cotton fibers harvested at 18, 20, 24, 28, 32, 36 and 40 days after flowering were examined using attenuated total reflection Fourier transform-infrared (ATR FT-...

  17. Limitations and potential of spectral subtractions in fourier-transform infrared (FTIR) spectroscopy of soil samples

    Science.gov (United States)

    Soil science research is increasingly applying Fourier transform infrared (FTIR) spectroscopy for analysis of soil organic matter (SOM). However, the compositional complexity of soils and the dominance of the mineral component can limit spectroscopic resolution of SOM and other minor components. The...

  18. Teaching Stable Two-Mirror Resonators through the Fractional Fourier Transform

    Science.gov (United States)

    Moreno, Ignacio; Garcia-Martinez, Pascuala; Ferreira, Carlos

    2010-01-01

    We analyse two-mirror resonators in terms of their fractional Fourier transform (FRFT) properties. We use the basic ABCD ray transfer matrix method to show how the resonator can be regarded as the cascade of two propagation-lens-propagation FRFT systems. Then, we present a connection between the geometric properties of the resonator (the g…

  19. Study of cancer cell lines with Fourier transform infrared (FTIR)/vibrational absorption (VA) spectroscopy

    DEFF Research Database (Denmark)

    Uceda Otero, E. P.; Eliel, G. S. N.; Fonseca, E. J. S.

    2013-01-01

    In this work we have used Fourier transform infrared (FTIR) / vibrational absorption (VA) spectroscopy to study two cancer cell lines: the Henrietta Lacks (HeLa) human cervix carcinoma and 5637 human bladder carcinoma cell lines. Our goal is to experimentally investigate biochemical changes and d...

  20. The Relationship between Tsallis Statistics, the Fourier Transform, and Nonlinear Coupling

    CERN Document Server

    Nelson, Kenric P

    2008-01-01

    Tsallis statistics (or q-statistics) in nonextensive statistical mechanics is a one-parameter description of correlated states. In this paper we use a translated entropic index: $1 - q \\to q$ . The essence of this translation is to improve the mathematical symmetry of the q-algebra and make q directly proportional to the nonlinear coupling. A conjugate transformation is defined $\\hat q \\equiv \\frac{{- 2q}}{{2 + q}}$ which provides a dual mapping between the heavy-tail q-Gaussian distributions, whose translated q parameter is between $ - 2 < q < 0$, and the compact-support q-Gaussians, between $0 < q < \\infty $ . This conjugate transformation is used to extend the definition of the q-Fourier transform to the domain of compact support. A conjugate q-Fourier transform is proposed which transforms a q-Gaussian into a conjugate $\\hat q$ -Gaussian, which has the same exponential decay as the Fourier transform of a power-law function. The nonlinear statistical coupling is defined such that the conjugate ...