Oates, Chris
2012-06-01
Since they were first proposed in 2003 [1], optical lattice clocks have become one of the leading technologies for the next generation of atomic clocks, which will be used for advanced timing applications and in tests of fundamental physics [2]. These clocks are based on stabilized lasers whose frequency is ultimately referenced to an ultra-narrow neutral atom transition (natural linewidths magic'' value so as to yield a vanishing net AC Stark shift for the clock transition. As a result lattice clocks have demonstrated the capability of generating high stability clock signals with small absolute uncertainties (˜ 1 part in 10^16). In this presentation I will first give an overview of the field, which now includes three different atomic species. I will then use experiments with Yb performed in our laboratory to illustrate the key features of a lattice clock. Our research has included the development of state-of-the-art optical cavities enabling ultra-high-resolution optical spectroscopy (1 Hz linewidth). Together with the large atom number in the optical lattice, we are able to achieve very low clock instability (< 0.3 Hz in 1 s) [3]. Furthermore, I will show results from some of our recent investigations of key shifts for the Yb lattice clock, including high precision measurements of ultracold atom-atom interactions in the lattice and the dc Stark effect for the Yb clock transition (necessary for the evaluation of blackbody radiation shifts). [4pt] [1] H. Katori, M. Takamoto, V. G. Pal'chikov, and V. D. Ovsiannikov, Phys. Rev. Lett. 91, 173005 (2003). [0pt] [2] Andrei Derevianko and Hidetoshi Katori, Rev. Mod. Phys. 83, 331 (2011). [0pt] [3] Y. Y. Jiang, A. D. Ludlow, N. D. Lemke, R. W. Fox, J. A. Sherman, L.-S. Ma, and C. W. Oates, Nature Photonics 5, 158 (2011).
Quantum phases in optical lattices
Dickerscheid, Dennis Brian Martin
2006-01-01
An important new development in the field of ultracold atomic gases is the study of the properties of these gases in a so-called optical lattice. An optical lattice is a periodic trapping potential for the atoms that is formed by the interference pattern of a few laser beams. A reason for the
Integrated optical fiber lattice accumulators
Atherton, Adam F
1997-01-01
Approved for public release; distribution is unlimited. Sigma-delta modulators track a signal by accumulating the error between an input signal and a feedback signal. The accumulated energy is amplitude analyzed by a comparator. The comparator output signal is fed back and subtracted from the input signal. This thesis is primarily concerned with designing accumulators for inclusion in an optical sigma-delta modulator. Fiber lattice structures with optical amplifiers are used to perform the...
Orbital optical lattices with bosons
Kock, T.; Hippler, C.; Ewerbeck, A.; Hemmerich, A.
2016-02-01
This article provides a synopsis of our recent experimental work exploring Bose-Einstein condensation in metastable higher Bloch bands of optical lattices. Bipartite lattice geometries have allowed us to implement appropriate band structures, which meet three basic requirements: the existence of metastable excited states sufficiently protected from collisional band relaxation, a mechanism to excite the atoms initially prepared in the lowest band with moderate entropy increase, and the possibility of cross-dimensional tunneling dynamics, necessary to establish coherence along all lattice axes. A variety of bands can be selectively populated and a subsequent thermalization process leads to the formation of a condensate in the lowest energy state of the chosen band. As examples the 2nd, 4th and 7th bands in a bipartite square lattice are discussed. The geometry of the 2nd and 7th bands can be tuned such that two inequivalent energetically degenerate energy minima arise at the X ±-points at the edge of the 1st Brillouin zone. In this case even a small interaction energy is sufficient to lock the phase between the two condensation points such that a complex-valued chiral superfluid order parameter can emerge, which breaks time reversal symmetry. In the 4th band a condensate can be formed at the Γ-point in the center of the 1st Brillouin zone, which can be used to explore topologically protected band touching points. The new techniques to access orbital degrees of freedom in higher bands greatly extend the class of many-body scenarios that can be explored with bosons in optical lattices.
Quantum Entanglement in Optical Lattice Systems
2015-02-18
SECURITY CLASSIFICATION OF: Optical lattice systems provide an ideal platform for investigating entanglement because of their unprecedented level of...ABSTRACT Final report for ARO grant entitled "Quantum Entanglement in Optical Lattice Systems" Report Title Optical lattice systems provide an ideal ...2010): 0. doi: 10.1103/PhysRevA.82.063612 D. Blume, K. Daily. Breakdown of Universality for Unequal-Mass Fermi Gases with Infinite Scattering Length
Optical Lattice Simulations of Correlated Fermions
2013-10-04
simple-cubic optical lattice, , (06 2009): 0. doi: 09/20/2013 51.00 Tin-Lun Ho, Qi Zhou. Squeezing out the entropy of fermions in optical lattices...Convention and Exhibition Center, Hong Kong, May 12, 2009 "Reducing Entropy in Quantum Gases in optical lattices", Jason Ho, Aspen workshop on quantum...Sciences Randall Hulet: chosen as a 2010 Outstanding Referee of the Physical Review and Physical Review Letters Journals Randall Hulet: Willis E. Lamb
Experimental generation of optical coherence lattices
Energy Technology Data Exchange (ETDEWEB)
Chen, Yahong; Cai, Yangjian, E-mail: serpo@dal.ca, E-mail: yangjiancai@suda.edu.cn [College of Physics, Optoelectronics and Energy and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006 (China); Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province and Key Lab of Modern Optical Technologies of Education Ministry of China, Soochow University, Suzhou 215006 (China); Ponomarenko, Sergey A., E-mail: serpo@dal.ca, E-mail: yangjiancai@suda.edu.cn [Department of Electrical and Computer Engineering, Dalhousie University, Halifax, Nova Scotia B3J 2X4 (Canada)
2016-08-08
We report experimental generation and measurement of recently introduced optical coherence lattices. The presented optical coherence lattice realization technique hinges on a superposition of mutually uncorrelated partially coherent Schell-model beams with tailored coherence properties. We show theoretically that information can be encoded into and, in principle, recovered from the lattice degree of coherence. Our results can find applications to image transmission and optical encryption.
Optical Lattices with Micromechanical Mirrors
Hammerer, K; Genes, C; Zoller, P; Treutlein, P; Camerer, S; Hunger, D; Haensch, T W
2010-01-01
We investigate a setup where a cloud of atoms is trapped in an optical lattice potential of a standing wave laser field which is created by retro-reflection on a micro-membrane. The membrane vibrations itself realize a quantum mechanical degree of freedom. We show that the center of mass mode of atoms can be coupled to the vibrational mode of the membrane in free space, and predict a significant sympathetic cooling effect of the membrane when atoms are laser cooled. The controllability of the dissipation rate of the atomic motion gives a considerable advantage over typical optomechanical systems enclosed in optical cavities, in that it allows a segregation between the cooling and coherent dynamics regimes. The membrane can thereby be kept in a cryogenic environment, and the atoms at a distance in a vacuum chamber.
Optical lattice clocks and frequency comparison
Energy Technology Data Exchange (ETDEWEB)
Katori, Hidetoshi; Takano, Tetsushi; Takamoto, Masao, E-mail: katori@amo.t.u-tokyo.ac.jp [Department of Applied Physics, University of Tokyo, Tokyo (Japan); CREST, Japan Science and Technology Agency, Saitama (Japan)
2011-01-10
We consider designs of optical lattice clocks in view of the quantum statistics, relevant atomic spins, and atom-lattice interactions. The first two issues lead to two optimal constructions for the clock: a one-dimensional (1D) optical lattice loaded with spin-polarized fermions and a 3D optical lattice loaded with bosons. By taking atomic multipolar interactions with the lattice fields into account, an 'atomic motion insensitive' wavelength is proposed to provide a precise definition of the 'magic wavelength'. We then present a frequency comparison of these two optical lattice clocks: spin-polarized fermionic {sup 87}Sr and bosonic {sup 88}Sr prepared in 1D and 3D optical lattices, respectively. Synchronous interrogations of these two optical lattice clocks by the same probe laser allowed canceling out its frequency noise as a common mode noise to achieve a relative stability of 3x10{sup -17} for an averaging time of {tau} = 350 s. The scheme, therefore, provides us with a powerful means to investigate intrinsic uncertainty of the clocks regardless of the probe laser stability. We discuss prospects of the synchronous operation of the clocks on the measurement of the geoid height difference and on the search of constancy of fundamental constants.
Optical lattice on an atom chip
DEFF Research Database (Denmark)
Gallego, D.; Hofferberth, S.; Schumm, Thorsten
2009-01-01
Optical dipole traps and atom chips are two very powerful tools for the quantum manipulation of neutral atoms. We demonstrate that both methods can be combined by creating an optical lattice potential on an atom chip. A red-detuned laser beam is retroreflected using the atom chip surface as a high......-quality mirror, generating a vertical array of purely optical oblate traps. We transfer thermal atoms from the chip into the lattice and observe cooling into the two-dimensional regime. Using a chip-generated Bose-Einstein condensate, we demonstrate coherent Bloch oscillations in the lattice....
Cold atoms in a rotating optical lattice
Foot, Christopher J.
2009-05-01
We have demonstrated a novel experimental arrangement which can rotate a two-dimensional optical lattice at frequencies up to several kilohertz. Our arrangement also allows the periodicity of the optical lattice to be varied dynamically, producing a 2D ``accordion lattice'' [1]. The angles of the laser beams are controlled by acousto-optic deflectors and this allows smooth changes with little heating of the trapped cold (rubidium) atoms. We have loaded a BEC into lattices with periodicities ranging from 1.8μm to 18μm, observing the collapse and revival of the diffraction orders of the condensate over a large range of lattice parameters as recently reported by a group in NIST [2]. We have also imaged atoms in situ in a 2D lattice over a range of lattice periodicities. Ultracold atoms in a rotating lattice can be used for the direct quantum simulation of strongly correlated systems under large effective magnetic fields, i.e. the Hamiltonian of the atoms in the rotating frame resembles that of a charged particle in a strong magnetic field. In the future, we plan to use this to investigate a range of phenomena such as the analogue of the fractional quantum Hall effect. [4pt] [1] R. A. Williams, J. D. Pillet, S. Al-Assam, B. Fletcher, M. Shotter, and C. J. Foot, ``Dynamic optical lattices: two-dimensional rotating and accordion lattices for ultracold atoms,'' Opt. Express 16, 16977-16983 (2008) [0pt] [2] J. H. Huckans, I. B. Spielman, B. Laburthe Tolra, W. D. Phillips, and J. V. Porto, Quantum and Classical Dynamics of a BEC in a Large-Period Optical Lattice, arXiv:0901.1386v1
Optical vortex array in spatially varying lattice
Kapoor, Amit; Senthilkumaran, P; Joseph, Joby
2015-01-01
We present an experimental method based on a modified multiple beam interference approach to generate an optical vortex array arranged in a spatially varying lattice. This method involves two steps which are: numerical synthesis of a consistent phase mask by using two-dimensional integrated phase gradient calculations and experimental implementation of produced phase mask by utilizing a phase only spatial light modulator in an optical 4f Fourier filtering setup. This method enables an independent variation of the orientation and period of the vortex lattice. As working examples, we provide the experimental demonstration of various spatially variant optical vortex lattices. We further confirm the existence of optical vortices by formation of fork fringes. Such lattices may find applications in size dependent trapping, sorting, manipulation and photonic crystals.
Bloch oscillations in optical dissipative lattices.
Efremidis, Nikolaos K; Christodoulides, Demetrios N
2004-11-01
We show that Bloch oscillations are possible in dissipative optical waveguide lattices with a linearly varying propagation constant. These oscillations occur in spite of the fact that the Bloch wave packet experiences coupling gain and (or) loss. Experimentally, this process can be observed in different settings, such as in laser arrays and lattices of semiconductor optical amplifiers. In addition, we demonstrate that these systems can suppress instabilities arising from preferential mode noise growth.
Light propagation in optically induced Fibonacci lattices
Boguslawski, Martin; Timotijevic, Dejan V; Denz, Cornelia; Savic, Dragana M Jovic
2015-01-01
We report on the optical induction of Fibonacci lattices in photorefractive strontium barium niobate by use of Bessel beam waveguide-wise writing techniques. Fibonacci elements A and B are used as lattice periods. We further use the induced structures to execute probing experiments with variously focused Gaussian beams in order to observe light confinement owing to the quasiperiodic character of Fibonacci word sequences. Essentially, we show that Gaussian beam expansion is just slowed down in Fibonacci lattices, as compared with appropriate periodic lattices.
Colloquium: Physics of optical lattice clocks
Derevianko, Andrei
2010-01-01
Recently invented and demonstrated, optical lattice clocks hold great promise for improving the precision of modern timekeeping. These clocks aim at the 10^-18 fractional accuracy, which translates into a clock that would neither lose or gain a fraction of a second over an estimated age of the Universe. In these clocks, millions of atoms are trapped and interrogated simultaneously, dramatically improving clock stability. Here we discuss the principles of operation of these clocks and, in particular, a novel concept of "magic" trapping of atoms in optical lattices. We also highlight recently proposed microwave lattice clocks and several applications that employ the optical lattice clocks as a platform for precision measurements and quantum information processing.
The Optical Potential on the Lattice
Agadjanov, Dimitri; Mai, Maxim; Meißner, Ulf-G; Rusetsky, Akaki
2016-01-01
The extraction of hadron-hadron scattering parameters from lattice data by using the L\\"uscher approach becomes increasingly complicated in the presence of inelastic channels. We propose a method for the direct extraction of the complex hadron-hadron optical potential on the lattice, which does not require the use of the multi-channel L\\"uscher formalism. Moreover, this method is applicable without modifications if some inelastic channels contain three or more particles.
Local gauge symmetry on optical lattices?
Liu, Yuzhi; Tsai, Shan-Wen
2012-01-01
The versatile technology of cold atoms confined in optical lattices allows the creation of a vast number of lattice geometries and interactions, providing a promising platform for emulating various lattice models. This opens the possibility of letting nature take care of sign problems and real time evolution in carefully prepared situations. Up to now, experimentalists have succeeded to implement several types of Hubbard models considered by condensed matter theorists. In this proceeding, we discuss the possibility of extending this effort to lattice gauge theory. We report recent efforts to establish the strong coupling equivalence between the Fermi Hubbard model and SU(2) pure gauge theory in 2+1 dimensions by standard determinantal methods developed by Robert Sugar and collaborators. We discuss the possibility of using dipolar molecules and external fields to build models where the equivalence holds beyond the leading order in the strong coupling expansion.
Optical Lattice Gases of Interacting Fermions
2015-12-02
theoretical research supported by this grant focused on discovering new phases of quantum matter for ultracold fermionic atoms or molecules confined in optical... theoretically a “topological ladder”, i.e. a ladder-like optical lattice containing ultracold atoms in higher orbital bands [15] in the absence of...seemed hard or impossible to achieve in traditional solids. Publications stemming from the research effort: 1. Xiaopeng Li, W. Vincent Liu
Delocalized Entanglement of Atoms in optical Lattices
Vollbrecht, K. G. H.; Cirac, J. I.
2006-01-01
We show how to detect and quantify entanglement of atoms in optical lattices in terms of correlations functions of the momentum distribution. These distributions can be measured directly in the experiments. We introduce two kinds of entanglement measures related to the position and the spin of the atoms.
Statistical Transmutation in Floquet Driven Optical Lattices.
Sedrakyan, Tigran A; Galitski, Victor M; Kamenev, Alex
2015-11-06
We show that interacting bosons in a periodically driven two dimensional (2D) optical lattice may effectively exhibit fermionic statistics. The phenomenon is similar to the celebrated Tonks-Girardeau regime in 1D. The Floquet band of a driven lattice develops the moat shape, i.e., a minimum along a closed contour in the Brillouin zone. Such degeneracy of the kinetic energy favors fermionic quasiparticles. The statistical transmutation is achieved by the Chern-Simons flux attachment similar to the fractional quantum Hall case. We show that the velocity distribution of the released bosons is a sensitive probe of the fermionic nature of their stationary Floquet state.
Fibonacci optical lattices for tunable quantum quasicrystals
Singh, K.; Saha, K.; Parameswaran, S. A.; Weld, D. M.
2015-12-01
We describe a quasiperiodic optical lattice, created by a physical realization of the abstract cut-and-project construction underlying all quasicrystals. The resulting potential is a generalization of the Fibonacci tiling. Calculation of the energies and wave functions of ultracold atoms loaded into such a lattice demonstrate a multifractal energy spectrum, a singular continuous momentum-space structure, and the existence of controllable edge states. These results open the door to cold atom quantum simulation experiments in tunable or dynamic quasicrystalline potentials, including topological pumping of edge states and phasonic spectroscopy.
Theory of vortex-lattice melting in a one-dimensional optical lattice
Snoek, M.; Stoof, H.T.C.
2006-01-01
We investigate quantum and temperature fluctuations of a vortex lattice in a one-dimensional optical lattice. We discuss in particular the Bloch bands of the Tkachenko modes and calculate the correlation function of the vortex positions along the direction of the optical lattice. Because of the
Strongly Correlated Quantum Walks in Optical Lattices
Preiss, Philipp M.; Ma, Ruichao; Tai, M. Eric; Lukin, Alexander; Rispoli, Matthew; Zupancic, Philip; Lahini, Yoav; Islam, Rajibul; Greiner, Markus
2014-01-01
Full control over the dynamics of interacting, indistinguishable quantum particles is an important prerequisite for the experimental study of strongly correlated quantum matter and the implementation of high-fidelity quantum information processing. Here we demonstrate such control over the quantum walk - the quantum mechanical analogue of the classical random walk - in the strong interaction regime. Using interacting bosonic atoms in an optical lattice, we directly observe fundamental effects...
Ultra-cold atoms in far-detuned optical lattices
Jones, P H
2001-01-01
This thesis describes the design and construction of a laser cooling experiment for the study of optical lattices, and reports on the results of experiments aimed at 'quantum state preparation' by means of resolved-sideband Raman cooling in a far-detuned optical lattice. Preliminary experiments were performed on cold atoms in a magneto-optical trap, in an optical molasses and in an optical lattice to determine their properties and optimise the conditions for the loading of a far-detuned optical lattice. Temperature measurement techniques such as ballistic expansion and recoil-induced resonances were used. The vibrational levels and coherences of the optical lattice were investigated with conventional probe absorption spectroscopy and a novel method based on coherent transients, which revealed evidence that the anharmonicity of the potential wells is the dominant factor in determining the widths of Raman transitions between levels. A two-dimensional far-detuned (non-dissipative) lattice was loaded from a spati...
Dark propagation modes in optical lattices
Schiavoni, M; Carminati, F R; Renzoni, F; Grynberg, G; Schiavoni, Michele; Sanchez-Palencia, Laurent; Carminati, Francois-Regis; Renzoni, Ferruccio; Proxy, Gilbert Grynberg; ccsd-00000108, ccsd
2002-01-01
We examine the stimulated light scattering onto the propagation modes of a dissipative optical lattice. We show that two different pump-probe configurations may lead to the excitation, via different mechanisms, of the same mode. We found that in one configuration the scattering on the propagation mode results in a resonance in the probe transmission spectrum while in the other configuration no modification of the scattering spectrum occurs, i.e. the mode is dark. A theoretical explanation of this behaviour is provided.
Antiferromagnetic noise correlations in optical lattices
DEFF Research Database (Denmark)
Bruun, Niels Bohr International Academy, University of Copenhagen, DK-2100 Copenhagen Ø, Denmark, Georg Morten; Syljuåsen, F. T.; Pedersen, K. G. L.;
2009-01-01
We analyze how noise correlations probed by time-of-flight experiments reveal antiferromagnetic (AF) correlations of fermionic atoms in two-dimensional and three-dimensional optical lattices. Combining analytical and quantum Monte Carlo calculations using experimentally realistic parameters, we...... show that AF correlations can be detected for temperatures above and below the critical temperature for AF ordering. It is demonstrated that spin-resolved noise correlations yield important information about the spin ordering. Finally, we show how to extract the spin correlation length and the related...
Vortex-lattice melting in a one-dimensional optical lattice
Snoek, M.; Stoof, H.T.C.
2006-01-01
We investigate quantum fluctuations of a vortex lattice in a one-dimensional optical lattice. Our method gives full access to all the modes of the vortex lattice and we discuss in particular the Bloch bands of the Tkachenko modes. Because of the small number of particles in the pancake
Vortex-lattice melting in a one-dimensional optical lattice
Snoek, M.; Stoof, H.T.C.
2006-01-01
We investigate quantum fluctuations of a vortex lattice in a one-dimensional optical lattice for realistic numbers of particles and vortices. Our method gives full access to all the modes of the vortex lattice and we discuss in particular the Bloch bands of the Tkachenko modes. Because of the
A low maintenance Sr optical lattice clock
Hill, Ian R; Bowden, William; Bridge, Elizabeth M; Donnellan, Sean; Curtis, E Anne; Gill, Patrick
2016-01-01
We describe the Sr optical lattice clock apparatus at NPL with particular emphasis on techniques used to increase reliability and minimise the human requirement in its operation. Central to this is a clock-referenced transfer cavity scheme for the stabilisation of cooling and trapping lasers. We highlight several measures to increase the reliability of the clock with a view towards the realisation of an optical time-scale. The clock contributed 502 hours of data over a 25 day period (84% uptime) in a recent measurement campaign with several uninterrupted periods of more than 48 hours. An instability of $2\\times10^{-17}$ was reached after $10^5$ s of averaging in an interleaved self-comparison of the clock.
Optical lattice trap for Kerr solitons
Taheri, Hossein; Matsko, Andrey B.; Maleki, Lute
2017-06-01
We show theoretically and numerically that dichromatic pumping of a nonlinear microresonator by two continuous wave coherent optical pumps creates an optical lattice trap that results in the localization of intra-cavity Kerr solitons with soliton positions defined by the beat frequency of the two pumps. This phenomenon corresponds to the stabilization of the comb repetition rate. The locking of the second pump, through adiabatic tuning of its frequency, to the comb generated by the first pump allows transitioning to single-soliton states, manipulating the position of Kerr solitons in the cavity, and tuning the frequency comb repetition rate within the locking range. It also explains soliton crystal formation in resonators supporting a dispersive wave emitted as a result of higher-order group velocity dispersion or avoided mode crossing. We show that dichromatic pumping by externally stabilized pumps can be utilized for stabilization of microresonator-based optical frequency combs when the comb span does not cover an octave or a significant fraction thereof and standard self-referencing techniques cannot be employed. Our findings have significant ramifications for high-precision applications of optical frequency combs in spectrally pure signal generation, metrology, and timekeeping.
Dynamical Gauge Fields on Optical Lattices: A Lattice Gauge Theorist Point of View
Meurice, Yannick
2011-01-01
Dynamical gauge fields are essential to capture the short and large distance behavior of gauge theories (confinement, mass gap, chiral symmetry breaking, asymptotic freedom). I propose two possible strategies to use optical lattices to mimic simulations performed in lattice gauge theory. I discuss how new developments in optical lattices could be used to generate local invariance and link composite operators with adjoint quantum numbers that could play a role similar to the link variables used in lattice gauge theory. This is a slightly expanded version of a poster presented at the KITP Conference: Frontiers of Ultracold Atoms and Molecules (Oct 11-15, 2010) that I plan to turn into a more comprehensive tutorial that could be used by members of the optical lattice and lattice gauge theory communities. Suggestions are welcome.
Landau Levels in Strained Optical Lattices.
Tian, Binbin; Endres, Manuel; Pekker, David
2015-12-01
We propose a hexagonal optical lattice system with spatial variations in the hopping matrix elements. Just like in the valley Hall effect in strained graphene, for atoms near the Dirac points the variations in the hopping matrix elements can be described by a pseudomagnetic field and result in the formation of Landau levels. We show that the pseudomagnetic field leads to measurable experimental signatures in momentum resolved Bragg spectroscopy, Bloch oscillations, cyclotron motion, and quantization of in situ densities. Our proposal can be realized by a slight modification of existing experiments. In contrast to previous methods, pseudomagnetic fields are realized in a completely static system avoiding common heating effects and therefore opening the door to studying interaction effects in Landau levels with cold atoms.
Spatial entanglement of bosons in optical lattices.
Cramer, M; Bernard, A; Fabbri, N; Fallani, L; Fort, C; Rosi, S; Caruso, F; Inguscio, M; Plenio, M B
2013-01-01
Entanglement is a fundamental resource for quantum information processing, occurring naturally in many-body systems at low temperatures. The presence of entanglement and, in particular, its scaling with the size of system partitions underlies the complexity of quantum many-body states. The quantitative estimation of entanglement in many-body systems represents a major challenge, as it requires either full-state tomography, scaling exponentially in the system size, or the assumption of unverified system characteristics such as its Hamiltonian or temperature. Here we adopt recently developed approaches for the determination of rigorous lower entanglement bounds from readily accessible measurements and apply them in an experiment of ultracold interacting bosons in optical lattices of ~10(5) sites. We then study the behaviour of spatial entanglement between the sites when crossing the superfluid-Mott insulator transition and when varying temperature. This constitutes the first rigorous experimental large-scale entanglement quantification in a scalable quantum simulator.
Resonant superfluidity in an optical lattice
Energy Technology Data Exchange (ETDEWEB)
Titvinidze, Irakli; Hofstetter, Walter [Institut fuer Theoretische Physik, Johann Wolfgang Goethe-Universitaet, 60438 Frankfurt am Main (Germany); Snoek, Michiel [Institute for Theoretical Physics, Valckenierstraat 65, 1018 XE Amsterdam (Netherlands)
2010-07-01
We study a system of ultracold fermionic Potassium ({sup 40}K) atoms in a three-dimensional optical lattice in the neighborhood of an s-wave Feshbach resonance. Close to resonance, the system is described by a multi-band Bose-Fermi Hubbard Hamiltonian. We derive an effective lowest-band Hamiltonian in which the effect of the higher band is incorporated by a self-consistent mean-field approximation. The resulting model is solved by means of Generalized Dynamical Mean-Field Theory. In addition to the BEC/BCS crossover we find on the BCS side of the resonance a phase transition to a fermionic Mott insulator at half filling, induced by the repulsive fermionic background scattering length. We also calculate the critical temperature of the BEC/BCS-state across the resonance and find it to be minimal at resonance.
Vortex matter and ultracold superstrings in optical lattices
Snoek, M.
2006-01-01
The combination of a rotating cigar-shaped Bose-Einstein condensate with a one-dimensional optical lattice gives rise to very interesting physics. The one-dimensional optical lattice splits the Bose-Einstein condensate into two-dimensional pancake-condensates, each containing a small number of
Optimized geometries for future generation optical lattice clocks
Krämer, Sebastian; Ritsch, Helmut
2015-01-01
Atoms trapped in magic wavelength optical lattices provide a Doppler- and collision-free dense ensemble of quantum emitters ideal for fast high precision spectroscopy and thus they are the basis of the best optical clock setups to date. Despite the minute optical dipole moments the inherent long range dipole-dipole interactions in such lattices at high densities generate measurable line shifts, increased dephasing and modified decay rates. We show that these effects can be resonantly enhanced or suppressed depending on lattice constant, geometry and excitation procedure. While these interactions generally limit the accuracy and precision of Ramsey spectroscopy, under optimal conditions collective effects can be exploited to yield zero effective shifts and long dipole lifetimes for a measurement precision beyond a noninteracting ensemble. In particular, 2D lattices with a lattice constant below the optical wavelength feature an almost ideal performance.
Tunneling of Spinor Bose-Einstein Condensates in Optical Lattice
Institute of Scientific and Technical Information of China (English)
无
2005-01-01
In this letter, we have studied the tunneling effects and fluctuations of spinor Bose-Einstein condensates in optical lattice. It is found that there exist tunneling effects and fluctuations between lattices l and l + 1, l and l - 1,respectively. In particular, when the optical lattice is infinitely long and the spin excitations are in the long-wavelength limit, tunneling effects disappear between lattices l and l+ 1, and l and l - 1. In this case the fluctuations are a constant,and the magnetic soliton appears.
Lattice gaugefixing and other optics in lattice gauge theory
Energy Technology Data Exchange (ETDEWEB)
Yee, Ken
1992-06-01
We present results from four projects. In the first, quark and gluon propagators and effective masses and {Delta}I = 1/2 Rule operator matching coefficients are computed numerically in gaugefixed lattice QCD. In the second, the same quantities are evaluated analytically in the strong coupling, N {yields} {infinity} limit. In the third project, the Schwinger model is studied in covariant gauges, where we show that the effective electron mass varies with the gauge parameter and that longitudinal gaugefixing ambiguities affect operator product expansion coefficients (analogous to {Delta}I = 1/2 Rule matching coefficients) determined by matching gauge variant matrix elements. However, we find that matching coefficients even if shifted by the unphysical modes are {xi} invariant. In the fourth project, we show that the strong coupling parallelogram lattice Schwinger model as a different thermodynamic limit than the weak coupling continuum limit. As a function of lattice skewness angle these models span the {Delta} = {minus}1 critical line of 6-vertex models which, in turn, have been identified as c = 1 conformal field theories.
Lattice gaugefixing and other optics in lattice gauge theory
Energy Technology Data Exchange (ETDEWEB)
Yee, Ken.
1992-06-01
We present results from four projects. In the first, quark and gluon propagators and effective masses and {Delta}I = 1/2 Rule operator matching coefficients are computed numerically in gaugefixed lattice QCD. In the second, the same quantities are evaluated analytically in the strong coupling, N {yields} {infinity} limit. In the third project, the Schwinger model is studied in covariant gauges, where we show that the effective electron mass varies with the gauge parameter and that longitudinal gaugefixing ambiguities affect operator product expansion coefficients (analogous to {Delta}I = 1/2 Rule matching coefficients) determined by matching gauge variant matrix elements. However, we find that matching coefficients even if shifted by the unphysical modes are {xi} invariant. In the fourth project, we show that the strong coupling parallelogram lattice Schwinger model as a different thermodynamic limit than the weak coupling continuum limit. As a function of lattice skewness angle these models span the {Delta} = {minus}1 critical line of 6-vertex models which, in turn, have been identified as c = 1 conformal field theories.
Spinor bose gases in cubic optical lattice
Energy Technology Data Exchange (ETDEWEB)
Mobarak, Mohamed Saidan Sayed Mohamed
2014-01-27
In recent years the quantum simulation of condensed-matter physics problems has resulted from exciting experimental progress in the realm of ultracold atoms and molecules in optical lattices. In this thesis we analyze theoretically a spinor Bose gas loaded into a three-dimensional cubic optical lattice. In order to account for different superfluid phases of spin-1 bosons with a linear Zeeman effect, we work out a Ginzburg-Landau theory for the underlying spin-1 Bose-Hubbard model. To this end we add artificial symmetry-breaking currents to the spin-1 Bose-Hubbard Hamiltonian in order to break the global U (1) symmetry. With this we determine a diagrammatic expansion of the grand-canonical free energy up to fourth order in the symmetry-breaking currents and up to the leading non-trivial order in the hopping strength which is of first order. As a cross-check we demonstrate that the resulting grand-canonical free energy allows to recover the mean-field theory. Applying a Legendre transformation to the grand-canonical free energy, where the symmetry-breaking currents are transformed to order parameters, we obtain the effective Ginzburg-Landau action. With this we calculate in detail at zero temperature the Mott insulator-superfluid quantum phase boundary as well as condensate and particle number density in the superfluid phase. We find that both mean-field and Ginzburg-Landau theory yield the same quantum phase transition between the Mott insulator and superfluid phases, but the range of validity of the mean-field theory turns out to be smaller than that of the Ginzburg-Landau theory. Due to this finding we expect that the Ginzburg-Landau theory gives better results for the superfluid phase and, thus, we restrict ourselves to extremize only the effective Ginzburg-Landau action with respect to the order parameters. Without external magnetic field the superfluid phase is a polar (ferromagnetic) state for anti-ferromagnetic (ferromagnetic) interactions, i.e. only the
Strongly Interacting Fermions in Optical Lattices
Koetsier, A. O.
2009-07-01
presented here concerns fermionic atoms in periodic potential formed by interfering laser beams. Indeed, the standing light wave created by the interfering beams gives rise to a lattice potential because of the Stark effect which couples the electronic energy levels of the atoms to the spatially undulating electric field. Furthermore, fermionic atoms can be prepared in two different hyperfine states corresponding to the the spin-up and spin-down quantum states, and as such mimic electrons moving in the lattice structure of solids. This system is well described by the famous Hubbard model which we introduce in chapter 2 and, under certain conditions, undergoes a phase transition into the Néel state which believed to be a precursor to superconductivity in certain high-temperature superconductors. In chapter 3, we calculate precisely how the Néel state may be achieved in an ultracold fermionic atom gas. When the number of spin-up and spin-down atoms is unequal the system becomes spin-canted and exhibits both ferro- and antiferromagnetic characteristics, as we show in chapter 4. We also find there are topological excitations present in the quantum spin texture known as merons which have never unambiguously been observed before. In order to form a Bose-Einstein condensate, fermionic atoms must first form pairs, and can do so in two contrasting ways. The relationship between these two qualitatively di erent forms of pairing is described in chapter 5, and we examine how these two types of pairs transform into one another in an optical lattice in chapter 6. Finally, chapter 7 is a detailed eld-theoretic study of pairing as it occurs in an ultracold Bose gas. There, we find there is an intriguing bosonic analogy of the two forms of fermion pairing and explore the properties of these pairs.
Estimating strong correlations in optical lattices
Gertis, J.; Friesdorf, M.; Riofrío, C. A.; Eisert, J.
2016-11-01
Ultracold atoms in optical lattices provide one of the most promising platforms for analog quantum simulations of complex quantum many-body systems. Large-size systems can now routinely be reached and are already used to probe a large variety of different physical situations, ranging from quantum phase transitions to artificial gauge theories. At the same time, measurement techniques are still limited and full tomography for these systems seems out of reach. Motivated by this observation, we present a method to directly detect and quantify to what extent a quantum state deviates from a local Gaussian description, based on available noise correlation measurements from in situ and time-of-flight measurements. This is an indicator of the significance of strong correlations in ground and thermal states, as Gaussian states are precisely the ground and thermal states of noninteracting models. We connect our findings, augmented by numerical tensor network simulations, to notions of equilibration, disordered systems, and the suppression of transport in Anderson insulators.
Correlations of Pairs in Bichromatic Optical Lattices
Li, Yan; He, Zhi
2017-09-01
Correlation functions of two interacting bosons in bound states confined in a quasi-periodic 1D optical lattice are investigated. This two-body problem is exactly solvable, and therefore, various correlation functions can be directly calculated. The first-order correlation and the resulting momentum distribution behave smoothly across the phase boundary and exhibit a strong dependence on the sign of on-site interactions. We demonstrate that this special signature of momentum distribution exists for both the extended phase and the localized phase. In addition to the dependence on the sign of on-site interactions, the second-order quantum coherence reveals complementary information about the quasi-periodic order of the system, the underling structure of the bound states and the characterization of the different phases of the bound states. We also study the second-order correlation in momentum space of the bound states in both the weak and strong coupling regimes and demonstrate different correlation patterns in these two regimes.
Classical Ising Models Realised on Optical Lattices
Cirio, Mauro; Brennen, G. K.; Twamley, J.; Iblisdir, S.; Boada, O.
2012-02-01
We describe a simple quantum algorithm acting on a register of qubits in d spatial dimensions which computes statistical properties of d+1 dimensional classical Ising models. The algorithm works by measuring scattering matrix elements for quantum processes and Wick rotating to provide estimates for real partition functions of classical systems. This method can be implemented in a straightforward way in ensembles of qubits, e.g. three dimensional optical lattices with only nearest neighbor Ising like interactions. By measuring noise in the estimate useful information regarding location of critical points and scaling laws can be extracted for classical Ising models, possibly with inhomogeneity. Unlike the case of quantum simulation of quantum hamiltonians, this algorithm does not require Trotter expansion of the evolution operator and thus has the advantage of being amenable to fault tolerant gate design in a straightforward manner. Through this setting it is possible to study the quantum computational complexity of the estimation of a classical partition function for a 2D Ising model with non uniform couplings and magnetic fields. We provide examples for the 2 dimensional case.
Kinetic view of chirped optical lattice gas heating
Graul, J. S.; Gimelshein, S. F.; Lilly, T. C.
2014-12-01
With a focus on optical lattice gas heating, direct simulation Monte Carlo was used to investigate the interaction between molecular nitrogen, argon and methane, initially at 300 K and 0.8 atm, with pulsed, chirped optical lattices. Created from two 700 mJ, 532 nm, flattop laser pulses, the optical lattice parameters simulated are based on published optical lattice-based experiments, to ensure that pulse energies and durations do not exceed published optical breakdown (ionization) thresholds. Resultant translational gas temperatures, as well as induced bulk velocities, were used quantify energy and momentum deposition. To maximize available gas temperature changes achieved using the technique, laser pulses were linearly chirped to produce lattice velocities able to more effectively facilitate energy deposition throughout the pulse duration. From the initial conditions, the maximum, end pulse axial translational temperature obtained in nitrogen was approximately 755 K, at a lattice velocity of 400 m/s linearly chirped at 25 Gm/s2 over the 40 ns pulse duration. To date, this stands as the single largest, numerically-predicted temperature change from optical lattice gas heating under the numerical integration of real world energy and laser-based limitations.
Quantum phase transitions in low-dimensional optical lattices
Di Liberto, M.F.
2015-01-01
In this thesis, we discuss quantum phase transitions in low-dimensional optical lattices, namely one- and two-dimensional lattices. The dimensional confinement is realized in experiments by suppressing the hopping in the extra dimensions through a deep potential barrier that prevents the atoms to tu
Pinning an Ion with an Intracavity Optical Lattice
DEFF Research Database (Denmark)
Linnet, Rasmus Bogh; Leroux, Ian Daniel; Marciante, Mathieu
2012-01-01
We report one-dimensional pinning of a single ion by an optical lattice. A standing-wave cavity produces the lattice potential along the rf-field-free axis of a linear Paul trap. The ion’s localization is detected by measuring its fluorescence when excited by standing-wave fields with the same...
Edge Transport in 2D Cold Atom Optical Lattices
V. W. Scarola; Sarma, S. Das
2006-01-01
We theoretically study the observable response of edge currents in two dimensional cold atom optical lattices. As an example we use Gutzwiller mean-field theory to relate persistent edge currents surrounding a Mott insulator in a slowly rotating trapped Bose-Hubbard system to time of flight measurements. We briefly discuss an application, the detection of Chern number using edge currents of a topologically ordered optical lattice insulator.
Physics of higher orbital bands in optical lattices: a review
Li, Xiaopeng; Liu, W. Vincent
2015-01-01
Orbital degree of freedom plays a fundamental role in understanding the unconventional properties in solid state materials. Experimental progress in quantum atomic gases has demonstrated that high orbitals in optical lattices can be used to construct quantum emulators of exotic models beyond natural crystals, where novel many-body states such as complex Bose-Einstein condensation and topological semimetals emerge. A brief introduction of orbital degree of freedom in optical lattices is given ...
Microscopic theory of photonic band gaps in optical lattices
Samoylova, M; Bachelard, R; Courteille, Ph W
2013-01-01
We propose a microscopic model to describe the scattering of light by atoms in optical lattices. The model is shown to efficiently capture Bragg scattering, spontaneous emission and photonic band gaps. A connection to the transfer matrix formalism is established in the limit of a one-dimensional optical lattice, and we find the two theories to yield results in good agreement. The advantage of the microscopic model is, however, that it suits better for studies of finite-size and disorder effects.
Super-resolution microscopy of single atoms in optical lattices
Alberti, Andrea; Alt, Wolfgang; Brakhane, Stefan; Karski, Michał; Reimann, René; Widera, Artur; Meschede, Dieter
2015-01-01
We report on image processing techniques and experimental procedures to determine the lattice-site positions of single atoms in an optical lattice with high reliability, even for limited acquisition time or optical resolution. Determining the positions of atoms beyond the diffraction limit relies on parametric deconvolution in close analogy to methods employed in super-resolution microscopy. We develop a deconvolution method that makes effective use of the prior knowledge of the optical transfer function, noise properties, and discreteness of the optical lattice. We show that accurate knowledge of the image formation process enables a dramatic improvement on the localization reliability. This is especially relevant for closely packed ensembles of atoms where the separation between particles cannot be directly optically resolved. Furthermore, we demonstrate experimental methods to precisely reconstruct the point spread function with sub-pixel resolution from fluorescence images of single atoms, and we give a m...
Realizing type-II Weyl points in an optical lattice
Shastri, Kunal; Yang, Zhaoju; Zhang, Baile
2017-01-01
The recent discovery of the Lorentz symmetry-violating "type-II" Weyl semimetal phase has renewed interest in the study of Weyl physics in condensed-matter systems. However, tuning the exceptional properties of this novel state has remained a challenge. Optical lattices, created using standing laser beams, provide a convenient platform to tune tunneling parameters continuously in time. In this paper, we propose a generalized two level system exhibiting type-II Weyl points that can be realized using ultracold atoms in an optical lattice. The system is engineered using a three-dimensional lattice with complex π phase tunneling amplitudes. Various unique properties of the type-II Weyl semimetal such as open Fermi surface, anomalous chirality, and topological Fermi arcs can be probed using the proposed optical lattice scheme.
Dimensional Crossover in Bragg Scattering from an Optical Lattice
Slama, S; Ludewig, A; Köhler, M; Zimmermann, C; Courteille, P W; Courteille, Ph.W.
2005-01-01
We study Bragg scattering at 1D optical lattices. Cold atoms are confined by the optical dipole force at the antinodes of a standing wave generated inside a laser-driven high-finesse cavity. The atoms arrange themselves into a chain of pancake-shaped layers located at the antinodes of the standing wave. Laser light incident on this chain is partially Bragg-reflected. We observe an angular dependence of this Bragg reflection which is different to what is known from crystalline solids. In solids the scattering layers can be taken to be infinitely spread (3D limit). This is not generally true for an optical lattice consistent of a 1D linear chain of point-like scattering sites. By an explicit structure factor calculation we derive a generalized Bragg condition, which is valid in the intermediate regime. This enables us to determine the aspect ratio of the atomic lattice from the angular dependance of the Bragg scattered light.
Bloch-Zener oscillations in a tunable optical honeycomb lattice
Energy Technology Data Exchange (ETDEWEB)
Uehlinger, Thomas; Greif, Daniel; Jotzu, Gregor; Esslinger, Tilman [Institute for Quantum Electronics, ETH Zurich, 8093 Zurich (Switzerland); Tarruell, Leticia [Institute for Quantum Electronics, ETH Zurich, 8093 Zurich, Switzerland and LP2N, Universite Bordeaux 1, IOGS, CNRS, 351 cours de la Liberation, 33405 Talence (France)
2013-12-04
Ultracold gases in optical lattices have proved to be a flexible tool to simulate many different phenomena of solid state physics [1, 2]. Recently, optical lattices with complex geometries have been realized [3, 4, 5, 6, 7], paving the way to simulating more realistic systems. The honeycomb structure has recently become accessible in an optical lattice composed of mutually perpendicular laser beams. This lattice structure exhibits topological features in its band structure – the Dirac points. At these points, two energy bands intersect linearly and the particles behave as relativistic Dirac fermions. In optical lattices, Bloch oscillations [8] resolved both in time and in quasi-momentum space can be directly observed. We make use of such Bloch-Zener oscillations to probe the vanishing energy gap at the Dirac points as well as their position in the band structure. In small band gap regions, we observe Landau-Zener tunneling [7, 9] to the second band and the regions of maximum transfer can be identified with the position of the Dirac points.
Extended Hubbard models for ultracold atoms in optical lattices
Energy Technology Data Exchange (ETDEWEB)
Juergensen, Ole
2015-06-05
In this thesis, the phase diagrams and dynamics of various extended Hubbard models for ultracold atoms in optical lattices are studied. Hubbard models are the primary description for many interacting particles in periodic potentials with the paramount example of the electrons in solids. The very same models describe the behavior of ultracold quantum gases trapped in the periodic potentials generated by interfering beams of laser light. These optical lattices provide an unprecedented access to the fundamentals of the many-particle physics that govern the properties of solid-state materials. They can be used to simulate solid-state systems and validate the approximations and simplifications made in theoretical models. This thesis revisits the numerous approximations underlying the standard Hubbard models with special regard to optical lattice experiments. The incorporation of the interaction between particles on adjacent lattice sites leads to extended Hubbard models. Offsite interactions have a strong influence on the phase boundaries and can give rise to novel correlated quantum phases. The extended models are studied with the numerical methods of exact diagonalization and time evolution, a cluster Gutzwiller approximation, as well as with the strong-coupling expansion approach. In total, this thesis demonstrates the high relevance of beyond-Hubbard processes for ultracold atoms in optical lattices. Extended Hubbard models can be employed to tackle unexplained problems of solid-state physics as well as enter previously inaccessible regimes.
Localization Spectroscopy of a Single Ion in an Optical Lattice
DEFF Research Database (Denmark)
Legrand, Olivier Philippe Alexandre
2015-01-01
The work reported in this thesis primarily focuses on studies of the dynamics of a single laser-cooled ion, simultaneously confined in the harmonic potential of a linear Paul trap and a rapidly varying periodic potential – a so-called optical lattice – generated from an optical standing-wave. Bes......The work reported in this thesis primarily focuses on studies of the dynamics of a single laser-cooled ion, simultaneously confined in the harmonic potential of a linear Paul trap and a rapidly varying periodic potential – a so-called optical lattice – generated from an optical standing...... calibration and analysis of the detection system, several theoretical simulations of the expected dynamics and associated optical response of the ion were undertaken. Finally, a new laser source based on second harmonic generation was developed in order to perform laser-cooling of Ca+ ions, and to serve...
Trapped ions in optical lattices for probing oscillator chain models
Pruttivarasin, Thaned; Talukdar, Ishan; Kreuter, Axel; Haeffner, Hartmut
2011-01-01
We show that a chain of trapped ions embedded in microtraps generated by an optical lattice can be used to study oscillator models related to dry friction and energy transport. Numerical calculations with realistic experimental parameters demonstrate that both static and dynamic properties of the ion chain change significantly as the optical lattice power is varied. Finally, we lay out an experimental scheme to use the spin degree of freedom to probe the phase space structure and quantum critical behavior of the ion chain.
Physics of higher orbital bands in optical lattices: a review
Li, Xiaopeng; Liu, W. Vincent
2016-11-01
The orbital degree of freedom plays a fundamental role in understanding the unconventional properties in solid state materials. Experimental progress in quantum atomic gases has demonstrated that high orbitals in optical lattices can be used to construct quantum emulators of exotic models beyond natural crystals, where novel many-body states such as complex Bose-Einstein condensates and topological semimetals emerge. A brief introduction of orbital degrees of freedom in optical lattices is given and a summary of exotic orbital models and resulting many-body phases is provided. Experimental consequences of the novel phases are also discussed.
Optical properties of graphene antidot lattices
DEFF Research Database (Denmark)
Pedersen, Thomas Garm; Flindt, Christian; Pedersen, Jesper Goor
2008-01-01
demonstrate that this artificial nanomaterial is a dipole-allowed direct-gap semiconductor with a very pronounced optical-absorption edge. Hence, optical infrared spectroscopy should be an ideal probe of the electronic structure. To address realistic experimental situations, we include effects due to disorder...
Fluorescence spectra of atomic ensembles in a magneto-optical trap as an optical lattice
Yoon, Seokchan; Kang, Sungsam; Kim, Wook-Rae; Kim, Jung-Ryul; An, Kyungwon
2015-01-01
We present a study on characteristics of a magneto-optical trap (MOT) as an optical lattice. Fluorescence spectra of atoms trapped in a MOT with a passively phase-stabilized beam configuration have been measured by means of the photon-counting heterodyne spectroscopy. We observe a narrow Rayleigh peak and well-resolved Raman sidebands in the fluorescence spectra which clearly show that the MOT itself behaves as a three-dimensional optical lattice. Optical-lattice-like properties of the phase-stabilized MOT such as vibrational frequencies and lineshapes of Rayleigh peak and Raman sidebands are investigated systematically for various trap conditions.
Triangular and honeycomb lattices of cold atoms in optical cavities
Safaei, Shabnam; Miniatura, Christian; Grémaud, BenoÃ®t.
2015-10-01
We consider a two-dimensional homogeneous ensemble of cold bosonic atoms loaded inside two optical cavities and pumped by a far-detuned external laser field. We examine the conditions for these atoms to self-organize into triangular and honeycomb lattices as a result of superradiance. By collectively scattering the pump photons, the atoms feed the initially empty cavity modes. As a result, the superposition of the pump and cavity fields creates a space-periodic light-shift external potential and atoms self-organize into the potential wells of this optical lattice. Depending on the phase of the cavity fields with respect to the pump laser, these minima can either form a triangular or a hexagonal lattice. By numerically solving the dynamical equations of the coupled atom-cavity system, we have shown that the two stable atomic structures at long times are the triangular lattice and the honeycomb lattice with equally populated sites. We have also studied how to drive atoms from one lattice structure to another by dynamically changing the phase of the cavity fields with respect to the pump laser.
Different models of gravitating Dirac fermions in optical lattices
Celi, Alessio
2017-07-01
In this paper I construct the naive lattice Dirac Hamiltonian describing the propagation of fermions in a generic 2D optical metric for different lattice and flux-lattice geometries. First, I apply a top-down constructive approach that we first proposed in [Boada et al., New J. Phys. 13, 035002 (2011)] to the honeycomb and to the brickwall lattices. I carefully discuss how gauge transformations that generalize momentum (and Dirac cone) shifts in the Brillouin zone in the Minkowski homogeneous case can be used in order to change the phases of the hopping. In particular, I show that lattice Dirac Hamiltonian for Rindler spacetime in the honeycomb and brickwall lattices can be realized by considering real and isotropic (but properly position dependent) tunneling terms. For completeness, I also discuss a suitable formulation of Rindler Dirac Hamiltonian in semi-synthetic brickwall and π-flux square lattices (where one of the dimension is implemented by using internal spin states of atoms as we originally proposed in [Boada et al., Phys. Rev. Lett. 108, 133001 (2012)] and [Celi et al., Phys. Rev. Lett. 112, 043001 (2014)]).
An atom interferometer with a shaken optical lattice
Weidner, C A; Kosloff, Ronnie; Anderson, and Dana Z
2016-01-01
We introduce shaken lattice interferometry with atoms trapped in a one-dimensional optical lattice. The atoms undergo an interferometer sequence of splitting, propagation, reflection, and recombination by phase modulation of the lattice through a sequence of shaking functions. Each function in the sequence is determined by a learning procedure that is implemented with a genetic algorithm. Numerical simulations determine the momentum state of the atoms, which is experimentally accessible with time-of-flight imaging. The shaking function is then optimized to achieve the desired state transitions. The sensitivity of the interferometer to perturbations such as those introduced by inertial forces scales the same way as for conventional matter wave interferometers. The shaken lattice interferometer may be optimized to sense signals of interest while rejecting others, such as the measurement of an AC signal while rejecting a DC bias.
Stability analysis for solitons in PT-symmetric optical lattices
Nixon, Sean; Yang, Jianke
2012-01-01
Stability of solitons in parity-time (PT)-symmetric periodic potentials (optical lattices) is analyzed in both one- and two-dimensional systems. First we show analytically that when the strength of the gain-loss component in the PT lattice rises above a certain threshold (phase-transition point), an infinite number of linear Bloch bands turn complex simultaneously. Second, we show that while stable families of solitons can exist in PT lattices, increasing the gain-loss component has an overall destabilizing effect on soliton propagation. Specifically, when the gain-loss component increases, the parameter range of stable solitons shrinks as new regions of instability appear. Thirdly, we investigate the nonlinear evolution of unstable PT solitons under perturbations, and show that the energy of perturbed solitons can grow unbounded even though the PT lattice is below the phase transition point.
Veselago lensing with ultracold atoms in an optical lattice
Leder, Martin; Weitz, Martin
2014-01-01
Veselago pointed out that electromagnetic wave theory allows for materials with a negative index of refraction, in which most known optical phenomena would be reversed. A slab of such a material can focus light by negative refraction, an imaging technique strikingly different from conventional positive refractive index optics, where curved surfaces bend the rays to form an image of an object. Here we demonstrate Veselago lensing for matter waves, using ultracold atoms in an optical lattice. A relativistic, i.e. photon-like, dispersion relation for rubidium atoms is realized with a bichromatic optical lattice potential. We rely on a Raman $\\pi$-pulse technique to transfer atoms between two different branches of the dispersion relation, resulting in a focusing completely analogous to the effect described by Veselago for light waves. Future prospects of the demonstrated effects include novel sub-de Broglie wave imaging applications.
Direct Tunneling Delay Time Measurement in an Optical Lattice.
Fortun, A; Cabrera-Gutiérrez, C; Condon, G; Michon, E; Billy, J; Guéry-Odelin, D
2016-07-01
We report on the measurement of the time required for a wave packet to tunnel through the potential barriers of an optical lattice. The experiment is carried out by loading adiabatically a Bose-Einstein condensate into a 1D optical lattice. A sudden displacement of the lattice by a few tens of nanometers excites the micromotion of the dipole mode. We then directly observe in momentum space the splitting of the wave packet at the turning points and measure the delay between the reflected and the tunneled packets for various initial displacements. Using this atomic beam splitter twice, we realize a chain of coherent micron-size Mach-Zehnder interferometers at the exit of which we get essentially a wave packet with a negative momentum, a result opposite to the prediction of classical physics.
Expansion of Bose-Hubbard Mott insulators in optical lattices
Energy Technology Data Exchange (ETDEWEB)
Jreissaty, Mark; Carrasquilla, Juan; Rigol, Marcos [Department of Physics, Georgetown University, Washington DC 20057 (United States); Wolf, F. Alexander [Department of Physics, Georgetown University, Washington DC 20057 (United States); Theoretical Physics III, Center for Electronic Correlations and Magnetism, Institute of Physics, Augsburg University, D-86135 Augsburg (Germany)
2011-10-15
We study the expansion of bosonic Mott insulators in the presence of an optical lattice after switching off a confining potential. We use the Gutzwiller mean-field approximation and consider two different setups. In the first one, the expansion is restricted to one direction. We show that this leads to the emergence of two condensates with well-defined momenta, and argue that such a construct can be used to create atom lasers in optical lattices. In the second setup, we study Mott insulators that are allowed to expand in all directions in the lattice. In this case, a simple condensate is seen to develop within the mean-field approximation. However, its constituent bosons are found to populate many nonzero momentum modes. An analytic understanding of both phenomena in terms of the exact dispersion relation in the hard-core limit is presented.
Super-resolution microscopy of single atoms in optical lattices
Alberti, Andrea; Robens, Carsten; Alt, Wolfgang; Brakhane, Stefan; Karski, Michał; Reimann, René; Widera, Artur; Meschede, Dieter
2016-05-01
We report on image processing techniques and experimental procedures to determine the lattice-site positions of single atoms in an optical lattice with high reliability, even for limited acquisition time or optical resolution. Determining the positions of atoms beyond the diffraction limit relies on parametric deconvolution in close analogy to methods employed in super-resolution microscopy. We develop a deconvolution method that makes effective use of the prior knowledge of the optical transfer function, noise properties, and discreteness of the optical lattice. We show that accurate knowledge of the image formation process enables a dramatic improvement on the localization reliability. This allows us to demonstrate super-resolution of the atoms’ position in closely packed ensembles where the separation between particles cannot be directly optically resolved. Furthermore, we demonstrate experimental methods to precisely reconstruct the point spread function with sub-pixel resolution from fluorescence images of single atoms, and we give a mathematical foundation thereof. We also discuss discretized image sampling in pixel detectors and provide a quantitative model of noise sources in electron multiplying CCD cameras. The techniques developed here are not only beneficial to neutral atom experiments, but could also be employed to improve the localization precision of trapped ions for ultra precise force sensing.
Quantum Phases of Matter in Optical Lattices
2015-06-30
findings contained in this report are those of the author(s) and should not contrued as an official Department of the Army position , policy or...phases in beyond-standard optical lattices”, Oct 25, 2013 Nikhil Monga, John Shumway, Kaden Hazzard, Erich Mueller, Steven Desch, " Renormalization of...Ho, “Cold Atoms in Curved Space ”, Quantum Materials-Perspectives and Opportunities, The Rice Center for Quantum Materials, December 15, 2014
Light-Induced Hofstadter's Butterfly Spectrum in Optical Lattices
Institute of Scientific and Technical Information of China (English)
HOU Jing-Min
2009-01-01
We propose a scheme to create an effective magnetic field, which can be perceived by cold neutral atoms in a two-dimensional optical lattice, with a laser field with a space-dependent phase and a conventional laser field acting on A-type three-level atoms. When the dimensionless parameter α, being the ratio of flux through a lattice cell to one flux quantum, is rational, the energy spectrum shows a fractal band structure, which is so-called Hofstadter's butterfly.
Optical spectra and lattice dynamics of molecular crystals
Zhizhin, GN
1995-01-01
The current volume is a single topic volume on the optical spectra and lattice dynamics of molecular crystals. The book is divided into two parts. Part I covers both the theoretical and experimental investigations of organic crystals. Part II deals with the investigation of the structure, phase transitions and reorientational motion of molecules in organic crystals. In addition appendices are given which provide the parameters for the calculation of the lattice dynamics of molecular crystals, procedures for the calculation of frequency eigenvectors of utilizing computers, and the frequencies and eigenvectors of lattice modes for several organic crystals. Quite a large amount of Russian literature is cited, some of which has previously not been available to scientists in the West.
Cold bosons in optical lattices: a tutorial for exact diagonalization
Raventós, David; Graß, Tobias; Lewenstein, Maciej; Juliá-Díaz, Bruno
2017-06-01
Exact diagonalization (ED) techniques are a powerful method for studying many-body problems. Here, we apply this method to systems of few bosons in an optical lattice, and use it to demonstrate the emergence of interesting quantum phenomena such as fragmentation and coherence. Starting with a standard Bose-Hubbard Hamiltonian, we first revise the characterisation of the superfluid to Mott insulator (MI) transitions. We then consider an inhomogeneous lattice, where one potential minimum is made much deeper than the others. The MI phase due to repulsive on-site interactions then competes with the trapping of all atoms in the deep potential. Finally, we turn our attention to attractively interacting systems, and discuss the appearance of strongly correlated phases and the onset of localisation for a slightly biased lattice. The article is intended to serve as a tutorial for ED of Bose-Hubbard models.
Measuring spin correlations in optical lattices using superlattice potentials
DEFF Research Database (Denmark)
Pedersen, Kim Georg Lind; Andersen, Brian Møller; Bruun, Georg Morten;
2011-01-01
We suggest two experimental methods for probing both short- and long-range spin correlations of atoms in optical lattices using superlattice potentials. The first method involves an adiabatic doubling of the periodicity of the underlying lattice to probe neighboring singlet (triplet) correlations...... for fermions (bosons) by the occupation of the resulting vibrational ground state. The second method utilizes a time-dependent superlattice potential to generate spin-dependent transport by any number of prescribed lattice sites, and probes correlations by the resulting number of doubly occupied sites....... For experimentally relevant parameters, we demonstrate how both methods yield large signatures of antiferromagnetic correlations of strongly repulsive fermionic atoms in a single shot of the experiment. Lastly, we show how this method may also be applied to probe d-wave pairing, a possible ground-state candidate...
Massive Parallelization of STED Nanoscopy Using Optical Lattices
Yang, Bin; Mestre, Michael; Trebbia, Jean-Baptiste; Lounis, Brahim
2013-01-01
Recent developments in stimulated emission depletion (STED) microscopy achieved nanometer scale resolution and showed great potential in live cell imaging. Yet, STED nanoscopy techniques are based on single point-scanning. This constitutes a drawback for wide field imaging, since the gain in spatial resolution requires dense pixelation and hence long recording times. Here we achieve massive parallelization of STED nanoscopy using wide-field excitation together with well-designed optical lattices for depletion and a fast camera for detection. Acquisition of large field of view super-resolved images requires scanning over a single unit cell of the optical lattice which can be as small as 290 nm*290nm. Interference STED (In-STED) images of 2.9 {\\mu}m* 2.9 {\\mu}m with resolution down to 70 nm are obtained at 12.5 frames per second. The development of this technique opens many prospects for fast wide-field nanoscopy.
Superfluid and Insulating Phases of Fermion Mixtures in Optical Lattices
Iskin, M.; de Melo, C. A. R. Sá
2007-08-01
The ground state phase diagram of fermion mixtures in optical lattices is analyzed as a function of interaction strength, fermion filling factor, and tunneling parameters. In addition to standard superfluid, phase-separated or coexisting superfluid excess-fermion phases found in homogeneous or harmonically trapped systems, fermions in optical lattices have several insulating phases, including a molecular Bose-Mott insulator (BMI), a Fermi-Pauli (band) insulator (FPI), a phase-separated BMI-FPI mixture or a Bose-Fermi checkerboard (BFC). The molecular BMI phase is the fermion mixture counterpart of the atomic BMI found in atomic Bose systems, the BFC or BMI-FPI phases exist in Bose-Fermi mixtures, and lastly the FPI phase is particular to the Fermi nature of the constituent atoms of the mixture.
Could optical lattices be used to simulate real materials?
Hague, J P
2015-01-01
With the aim of understanding whether it is possible to build a quantum simulator that can probe multiband effects, we make DFT calculations for a system of cold atoms/ions. These move in a 1/r periodic potential convoluted by resolution effects, which represent the closest form of optical lattice to the nuclear potential in materials, that could be generated with painted potentials or holograms. We demonstrate that while resolution effects in optical lattices affect bandstructures, the physics of the bands closest to the fermi surface is sufficiently similar to that in real materials that they could give useful insight into complex multi-band processes. We determine that decoherence effects are sufficiently small that they do not destroy multiband effects, however there are strict constraints on the temperature and strength of interactions in experimental systems. The interaction form investigated here is most appropriate for cold ions, since inter-ion potentials have a native 1/r form. While a scaling argum...
Pyramid diffraction in parity-time-symmetric optical lattices
Nixon, Sean
2013-01-01
Nonlinear dynamics of wave packets in two-dimensional parity-time-symmetric optical lattices near the phase-transition point are analytically studied. A novel fourth-order equation is derived for the envelope of these wave packets. A pyramid diffraction pattern is demonstrated in both the linear and nonlinear regimes. Blow-up is also possible in the nonlinear regime for both focusing and defocusing nonlinearities.
Quantum phases of Fermi-Fermi mixtures in optical lattices
Iskin, M.; de Melo, C. A. R. Sa
2007-01-01
The ground state phase diagram of Fermi-Fermi mixtures in optical lattices is analyzed as a function of interaction strength, population imbalance, filling fraction and tunneling parameters. It is shown that population imbalanced Fermi-Fermi mixtures reduce to strongly interacting Bose-Fermi mixtures in the molecular limit, in sharp contrast to homogeneous or harmonically trapped systems where the resulting Bose-Fermi mixture is weakly interacting. Furthermore, insulating phases are found in ...
One-dimensional photonic band gaps in optical lattices
Samoylova, Marina; Holynski, Michael; Courteille, Philippe Wilhelm; Bachelard, Romain
2013-01-01
The phenomenon of photonic band gaps in one-dimensional optical lattices is reviewed using a microscopic approach. Formally equivalent to the transfer matrix approach in the thermodynamic limit, a microscopic model is required to study finite-size effects, such as deviations from the Bragg condition. Microscopic models describing both scalar and vectorial light are proposed, as well as for two- and three-level atoms. Several analytical results are compared to experimental data, showing a good agreement.
Detecting atoms trapped in an optical lattice using a tapered optical nanofiber.
Hennessy, T; Busch, Th
2014-12-29
Optical detection of structures with dimensions smaller than an optical wavelength requires devices that work on scales beyond the diffraction limit. Here we present the possibility of using a tapered optical nanofiber as a detector to resolve individual atoms trapped in an optical lattice in the Mott insulator phase. We show that the small size of the fiber combined with an enhanced photon collection rate can allow for the attainment of large and reliable measurement signals.
Nonlocal optical properties in periodic lattice of graphene layers.
Chern, Ruey-Lin; Han, Dezhuan
2014-02-24
Based on the effective medium model, nonlocal optical properties in periodic lattice of graphene layers with the period much less than the wavelength are investigated. Strong nonlocal effects are found in a broad frequency range for TM polarization, where the effective permittivity tensor exhibits the Lorentzian resonance. The resonance frequency varies with the wave vector and coincides well with the polaritonic mode. Nonlocal features are manifest on the emergence of additional wave and the occurrence of negative refraction. By examining the characters of the eigenmode, the nonlocal optical properties are attributed to the excitation of plasmons on the graphene surfaces.
Stability improvements for the NIST Yb optical lattice clock
Fasano, R. J.; Schioppo, M.; McGrew, W. F.; Brown, R. C.; Hinkley, N.; Yoon, T. H.; Beloy, K.; Oates, C. W.; Ludlow, A. D.
2016-05-01
To reach the fundamental limit given by quantum projection noise, optical lattice clocks require advanced laser stabilization techniques. The NIST ytterbium clock has benefited from several generations of extremely high finesse optical cavities, with cavity linewidths below 1 kHz. Characterization of the cavity drift rate has allowed compensation to the mHz/s level, improving the medium-term stability of the cavity. Based on recent measurements using Ramsey spectroscopy with synchronous interrogation, we report a fractional instability σy(1s) thermal noise floor, which will improve our Dick-limited fractional instability at 1 s to below 10-16. Also at University of Colorado.
Optical to microwave clock frequency ratios with a nearly continuous strontium optical lattice clock
Lodewyck, Jérôme; Bookjans, Eva; Robyr, Jean-Luc; Shi, Chunyan; Vallet, Grégoire; Targat, Rodolphe Le; Nicolodi, Daniele; Coq, Yann Le; Guéna, Jocelyne; Abgrall, Michel; Rosenbusch, Peter; Bize, Sébastien
2016-01-01
Optical lattice clocks are at the forefront of frequency metrology. Both the instability and systematic uncertainty of these clocks have been reported to be two orders of magnitude smaller than the best microwave clocks. For this reason, a redefinition of the SI second based on optical clocks seems possible in the near future. However, the operation of optical lattice clocks has not yet reached the reliability that microwave clocks have achieved so far. In this paper, we report on the operation of a strontium optical lattice clock that spans several weeks, with more than 80% uptime. We make use of this long integration time to demonstrate a reproducible measurement of frequency ratios between the strontium clock transition and microwave Cs primary and Rb secondary frequency standards.
Nonlinear coherent dynamics of an atom in an optical lattice
Argonov, V Y
2006-01-01
We consider a simple model of lossless interaction between a two-level single atom and a standing-wave single-mode laser field which creates a one-dimensional optical lattice. Internal dynamics of the atom is governed by the laser field which is treated to be classical with a large number of photons. Center-of-mass classical atomic motion is governed by the optical potential and the internal atomic degree of freedom. The resulting Hamilton-Schr\\"odinger equations of motion are a five-dimensional nonlinear dynamical system with two integrals of motion. The main focus of the paper is chaotic atomic motion that may be quantified strictly by positive values of the maximal Lyapunov exponent. It is shown that atom, depending on the value of its total energy, can either oscillate chaotically in a well of the optical potential or fly ballistically with weak chaotic oscillations of its momentum or wander in the optical lattice changing the direction of motion in a chaotic way. In the regime of chaotic wandering atomic...
Zeptonewton force sensing with nanospheres in an optical lattice
Ranjit, Gambhir; Casey, Kirsten; Geraci, Andrew A
2016-01-01
Optically trapped nanospheres in high-vaccum experience little friction and hence are promising for ultra-sensitive force detection. Here we demonstrate measurement times exceeding $10^5$ seconds and zeptonewton force sensitivity with laser-cooled silica nanospheres trapped in an optical lattice. The sensitivity achieved exceeds that of conventional room-temperature solid-state force sensors, and enables a variety of applications including electric field sensing, inertial sensing, and gravimetry. The optical potential allows the particle to be confined in a number of possible trapping sites, with precise localization at the anti-nodes of the optical standing wave. By studying the motion of a particle which has been moved to an adjacent trapping site, the known spacing of the lattice anti-nodes can be used to calibrate the displacement spectrum of the particle. Finally, we study the dependence of the trap stability and lifetime on the laser intensity and gas pressure, and examine the heating rate of the partic...
Deviations from Boltzmann-Gibbs Statistics in Confined Optical Lattices.
Dechant, Andreas; Kessler, David A; Barkai, Eli
2015-10-23
We investigate the semiclassical phase-space probability distribution P(x,p) of cold atoms in a Sisyphus cooling lattice with an additional harmonic confinement. We pose the question of whether this nonequilibrium steady state satisfies the equivalence of energy and probability. This equivalence is the foundation of Boltzmann-Gibbs and generalized thermostatic statistics, and a prerequisite for the description in terms of a temperature. At large energies, P(x,p) depends only on the Hamiltonian H(x,p) and the answer to the question is yes. In distinction to the Boltzmann-Gibbs state, the large-energy tails are power laws P(x,p)∝H(x,p)(-1/D), where D is related to the depth of the optical lattice. At intermediate energies, however, P(x,p) cannot be expressed as a function of the Hamiltonian and the equivalence between energy and probability breaks down. As a consequence the average potential and kinetic energy differ and no well-defined temperature can be assigned. The Boltzmann-Gibbs state is regained only in the limit of deep optical lattices. For strong confinement relative to the damping, we derive an explicit expression for the stationary phase-space distribution.
Intrinsic Localized Modes in Optical Photonic Lattices and Arrays
Christodoulides, Demetrios
Discretizing light behavior requires optical elements that can confine optical energy at distinct sites. One possible scenario in implementing such arrangements is to store energy within low loss high Q-microcavities and then allow photon exchange between such components in time. This scheme requires high-contrast dielectric elements that became available with the advent of photonic crystal technologies. Another possible avenue where such light discretization can be directly observed and studied is that based on evanescently coupled waveguide arrays. As indicated in several studies, discrete systems open up whole new directions in terms of modifying light transport properties. One such example is that of discrete solitons. By nature, discrete solitons represent self-trapped wavepackets in nonlinear periodic structures and result from the interplay between lattice diffraction (or dispersion) and material nonlinearity. In optics, this class of self-localized states has been successfully observed in both one- and two-dimensional nonlinear waveguide arrays. In recent years such photonic lattices have been implemented or induced in a variety of material systems, including those with cubic (Kerr), quadratic, photorefractive, and liquid-crystal nonlinearities. In all cases the underlying periodicity or discreteness can lead to new families of optical solitons that have no counterpart whatsoever in continuous systems. Interestingly, these results paved the way for observations in other physical systems obeying similar evolution equations like Bose-Einstein condensates. New developments in laser writing ultrashort femtosecond laser pulses, now allow the realization of all-optical switching networks in fully 3D environments using nonlinear discrete optics. Using this approach all-optical routing can be achieved using blocking operations. The spatio-temporal evolution of optical pulses in both normally and anomalously dispersive arrays can lead to novel schemes for mode
Spin-orbit coupled fermions in an optical lattice clock
Kolkowitz, S; Bothwell, T; Wall, M L; Marti, G E; Koller, A P; Zhang, X; Rey, A M; Ye, J
2016-01-01
Engineered spin-orbit coupling (SOC) in cold atom systems can aid in the study of novel synthetic materials and complex condensed matter phenomena. Despite great advances, alkali atom SOC systems are hindered by heating from spontaneous emission, which limits the observation of many-body effects. Here we demonstrate the use of optical lattice clocks (OLCs) to engineer and study SOC with metrological precision and negligible heating. We show that clock spectroscopy of the ultra-narrow transition in fermionic 87Sr represents a momentum- and spin-resolved in situ probe of the SOC band structure and eigenstates, providing direct access to the SOC dynamics and control over lattice band populations, internal electronic states, and quasimomenta. We utilize these capabilities to study Bloch oscillations, spin-momentum locking, and van Hove singularities in the transition density of states. Our results lay the groundwork for the use of OLCs to probe novel SOC phases including magnetic crystals, helical liquids, and to...
Synthetic Spin-Orbit Coupling in an Optical Lattice Clock
Wall, Michael L.; Koller, Andrew P.; Li, Shuming; Zhang, Xibo; Cooper, Nigel R.; Ye, Jun; Rey, Ana Maria
2016-01-01
We propose the use of optical lattice clocks operated with fermionic alkaline-earth atoms to study spin-orbit coupling (SOC) in interacting many-body systems. The SOC emerges naturally during the clock interrogation, when atoms are allowed to tunnel and accumulate a phase set by the ratio of the "magic" lattice wavelength to the clock transition wavelength. We demonstrate how standard protocols such as Rabi and Ramsey spectroscopy that take advantage of the sub-Hertz resolution of state-of-the-art clock lasers can perform momentum-resolved band tomography and determine SOC-induced s -wave collisions in nuclear-spin-polarized fermions. With the use of a second counterpropagating clock beam, we propose a method for engineering controlled atomic transport and study how it is modified by p - and s -wave interactions. The proposed spectroscopic probes provide clean and well-resolved signatures at current clock operating temperatures.
Optical trapping via guided resonance modes in a Slot-Suzuki-phase photonic crystal lattice.
Ma, Jing; Martínez, Luis Javier; Povinelli, Michelle L
2012-03-12
A novel photonic crystal lattice is proposed for trapping a two-dimensional array of particles. The lattice is created by introducing a rectangular slot in each unit cell of the Suzuki-Phase lattice to enhance the light confinement of guided resonance modes. Large quality factors on the order of 10⁵ are predicted in the lattice. A significant decrease of the optical power required for optical trapping can be achieved compared to our previous design.
Dynamical phase diagram of Gaussian wave packets in optical lattices
Hennig, H.; Neff, T.; Fleischmann, R.
2016-03-01
We study the dynamics of self-trapping in Bose-Einstein condensates (BECs) loaded in deep optical lattices with Gaussian initial conditions, when the dynamics is well described by the discrete nonlinear Schrödinger equation (DNLSE). In the literature an approximate dynamical phase diagram based on a variational approach was introduced to distinguish different dynamical regimes: diffusion, self-trapping, and moving breathers. However, we find that the actual DNLSE dynamics shows a completely different diagram than the variational prediction. We calculate numerically a detailed dynamical phase diagram accurately describing the different dynamical regimes. It exhibits a complex structure that can readily be tested in current experiments in BECs in optical lattices and in optical waveguide arrays. Moreover, we derive an explicit theoretical estimate for the transition to self-trapping in excellent agreement with our numerical findings, which may be a valuable guide as well for future studies on a quantum dynamical phase diagram based on the Bose-Hubbard Hamiltonian.
Hofstadter butterflies in nonlinear Harper lattices, and their optical realizations
Energy Technology Data Exchange (ETDEWEB)
Manela, Ofer; Segev, Mordechai [Department of Physics and Solid State Institute, Technion, Haifa 32000 (Israel); Christodoulides, Demetrios N [College of Optics/CREOL, University of Central Florida, FL 32816-2700 (United States); Kip, Detlef, E-mail: msegev@tx.technion.ac.i [Department of Electrical Engineering, Helmut Schmidt University, 22043 Hamburg (Germany)
2010-05-15
The ubiquitous Hofstadter butterfly describes a variety of systems characterized by incommensurable periodicities, ranging from Bloch electrons in magnetic fields and the quantum Hall effect to cold atoms in optical lattices and more. Here, we introduce nonlinearity into the underlying (Harper) model and study the nonlinear spectra and the corresponding extended eigenmodes of nonlinear quasiperiodic systems. We show that the spectra of the nonlinear eigenmodes form deformed versions of the Hofstadter butterfly and demonstrate that the modes can be classified into two families: nonlinear modes that are a 'continuation' of the linear modes of the system and new nonlinear modes that have no counterparts in the linear spectrum. Finally, we propose an optical realization of the linear and nonlinear Harper models in transversely modulated waveguide arrays, where these Hofstadter butterflies can be observed. This work is relevant to a variety of other branches of physics beyond optics, such as disorder-induced localization in ultracold bosonic gases, localization transition processes in disordered lattices, and more.
Cold atoms in optical lattices a Hamiltonian ratchet
Monteiro, T S; Hutchings, N A C; Isherwood, M R
2002-01-01
We investigate a new type of quantum ratchet which may be realised by cold atoms in a double-well optical lattice which is pulsed with unequal periods. The classical dynamics is chaotic and we find the classical diffusion rate $D$ is asymmetric in momentum up to a finite time $t_r$. The quantum behaviour produces a corresponding asymmetry in the momentum distribution which is 'frozen-in' by Dynamical Localisation provided the break-time $t^* > t_r$. We conclude that the cold atom ratchets require $Db/ \\hbar \\sim 1$ where b is a small deviation from period-one pulses.
Wilson fermions and axion electrodynamics in optical lattices.
Bermudez, A; Mazza, L; Rizzi, M; Goldman, N; Lewenstein, M; Martin-Delgado, M A
2010-11-05
We show that ultracold Fermi gases in optical superlattices can be used as quantum simulators of relativistic lattice fermions in 3+1 dimensions. By exploiting laser-assisted tunneling, we find an analogue of the so-called naive Dirac fermions, and thus provide a realization of the fermion doubling problem. Moreover, we show how to implement Wilson fermions, and discuss how their mass can be inverted by tuning the laser intensities. In this regime, our atomic gas corresponds to a phase of matter where Maxwell electrodynamics is replaced by axion electrodynamics: a 3D topological insulator.
Energy spectrum of fermionized bosonic atoms in optical lattices
Institute of Scientific and Technical Information of China (English)
Jiurong Han; Haichao Zhang; Yuzhu Wang
2005-01-01
We investigate the energy spectrum of fermionized bosonic atoms, which behave very much like spinless noninteracting fermions, in optical lattices by means of the perturbation expansion and the retarded Green's function method. The results show that the energy spectrum splits into two energy bands with single-occupation; the fermionized bosonic atom occupies nonvanishing energy state and left hole has a vanishing energy at any given momentum, and the system is in Mott-insulating state with a energy gap.Using the characteristic of energy spectra we obtained a criterion with which one can judge whether the Tonks-Girardeau (TG) gas is achieved or not.
Effective theory of interacting fermions in shaken square optical lattices
Keleş, Ahmet; Zhao, Erhai; Liu, W. Vincent
2017-06-01
We develop a theory of weakly interacting fermionic atoms in shaken optical lattices based on the orbital mixing in the presence of time-periodic modulations. Specifically, we focus on fermionic atoms in a circularly shaken square lattice with near-resonance frequencies, i.e., tuned close to the energy separation between the s band and the p bands. First, we derive a time-independent four-band effective Hamiltonian in the noninteracting limit. Diagonalization of the effective Hamiltonian yields a quasienergy spectrum consistent with the full numerical Floquet solution that includes all higher bands. In particular, we find that the hybridized s band develops multiple minima and therefore nontrivial Fermi surfaces at different fillings. We then obtain the effective interactions for atoms in the hybridized s band analytically and show that they acquire momentum dependence on the Fermi surface even though the bare interaction is contactlike. We apply the theory to find the phase diagram of fermions with weak attractive interactions and demonstrate that the pairing symmetry is s +d wave. Our theory is valid for a range of shaking frequencies near resonance, and it can be generalized to other phases of interacting fermions in shaken lattices.
Bose-Einstein condensation in a frustrated triangular optical lattice
Janzen, Peter; Huang, Wen-Min; Mathey, L.
2016-12-01
The recent experimental condensation of ultracold atoms in a triangular optical lattice with a negative effective tunneling parameter paves the way for the study of frustrated systems in a controlled environment. Here, we explore the critical behavior of the chiral phase transition in such a frustrated lattice in three dimensions. We represent the low-energy action of the lattice system as a two-component Bose gas corresponding to the two minima of the dispersion. The contact repulsion between the bosons separates into intra- and intercomponent interactions, referred to as V0 and V12, respectively. We first employ a Huang-Yang-Luttinger approximation of the free energy. For V12/V0=2 , which corresponds to the bare interaction, this approach suggests a first-order phase transition, at which both the U (1 ) symmetry of condensation and the Z2 symmetry of the emergent chiral order are broken simultaneously. Furthermore, we perform a renormalization-group calculation at one-loop order. We demonstrate that the coupling regime 0 1 we show that V0 flows to a negative value, while V12 increases and remains positive. This results in a breakdown of the effective quartic-field theory due to a cubic anisotropy and, again, suggests a discontinuous phase transition.
Gravitational wave detection with optical lattice atomic clocks
Kolkowitz, Shimon; Langellier, Nicholas; Lukin, Mikhail D; Walsworth, Ronald L; Ye, Jun
2016-01-01
We propose a space-based gravitational wave detector consisting of two spatially separated, drag-free satellites sharing ultra-stable optical laser light over a single baseline. Each satellite contains an optical lattice atomic clock, which serves as a sensitive, narrowband detector of the local frequency of the shared laser light. A synchronized two-clock comparison between the satellites will be sensitive to the effective Doppler shifts induced by incident gravitational waves (GWs) at a level competitive with other proposed space-based GW detectors, while providing complementary features. The detected signal is a differential frequency shift of the shared laser light due to the relative velocity of the satellites, rather than a phase shift arising from the relative satellite positions, and the detection window can be tuned through the control sequence applied to the atoms' internal states. This scheme enables the detection of GWs from continuous, spectrally narrow sources, such as compact binary inspirals, ...
Comparing a mercury optical lattice clock with microwave and optical frequency standards
Tyumenev, R; Bilicki, S; Bookjans, E; Targat, R Le; Lodewyck, J; Nicolodi, D; Coq, Y Le; Abgrall, M; Guéna, J; De Sarlo, L; Bize, S
2016-01-01
In this paper we report the evaluation of an optical lattice clock based on neutral mercury down to a relative uncertainty of $1.7\\times 10^{-16}$. Comparing this characterized frequency standard to a Cs atomic fountain we determine the absolute frequency of the $^1S_0 \\rightarrow \\phantom{}^3P_0$ transition of $^{199}$Hg as $\
Directory of Open Access Journals (Sweden)
Daohong Song
2012-01-01
Full Text Available We provide a brief overview on our recent experimental work on linear and nonlinear localization of singly charged vortices (SCVs and doubly charged vortices (DCVs in two-dimensional optically induced photonic lattices. In the nonlinear case, vortex propagation at the lattice surface as well as inside the uniform square-shaped photonic lattices is considered. It is shown that, apart from the fundamental (semi-infinite gap discrete vortex solitons demonstrated earlier, the SCVs can self-trap into stable gap vortex solitons under the normal four-site excitation with a self-defocusing nonlinearity, while the DCVs can be stable only under an eight-site excitation inside the photonic lattices. Moreover, the SCVs can also turn into stable surface vortex solitons under the four-site excitation at the surface of a semi-infinite photonics lattice with a self-focusing nonlinearity. In the linear case, bandgap guidance of both SCVs and DCVs in photonic lattices with a tunable negative defect is investigated. It is found that the SCVs can be guided at the negative defect as linear vortex defect modes, while the DCVs tend to turn into quadrupole-like defect modes provided that the defect strength is not too strong.
Phases of d-orbital bosons in optical lattices
Pinheiro, Fernanda; Matrikainen, Jani-Petri; Larson, Jonas
2015-05-01
We explore the properties of bosonic atoms loaded into the d bands of an isotropic square optical lattice. Following the recent experimental success reported in Zhai et al (2013 Phys. Rev. A 87 063638), in which populating d bands with a 99 % fidelity was demonstrated, we present a theoretical study of the possible phases that can appear in this system. Using the Gutzwiller ansatz for the three d band orbitals we map the boundaries of the Mott insulating phases. For not too large occupation, two of the orbitals are predominantly occupied, while the third, of a slightly higher energy, remains almost unpopulated. In this regime, in the superfluid phase we find the formation of a vortex lattice, where the vortices come in vortex/anti-vortex pairs with two pairs locked to every site. Due to the orientation of the vortices time-reversal symmetry is spontaneously broken. This state also breaks a discrete {{{Z}}2}-symmetry. We further derive an effective spin-1/2 model that describe the relevant physics of the lowest Mott-phase with unit filling. We argue that the corresponding two dimensional phase diagram should be rich with several different phases. We also explain how to generate anti-symmetric spin interactions that can give rise to novel effects like spin canting.
Optics Design and Lattice Optimisation for the HL-LHC
Holzer, B J; Fartoukh, S; Chancé, A; Dalena, B; Payet, J; Bogomyagkov, A; Appleby, R B; Kelly, S; Thomas, M B; Thompson, L; Korostelev, M; Hock, K M; Wolski, A; Milardi, C; Faus-Golfe, A; Resta Lopez, J
2013-01-01
The luminosity upgrade project of the LHC collider at CERN is based on a strong focusing scheme to reach lowest values of the β function at the collision points. Depending on the magnet technology (Nb3Sn or Nb-Ti) that will be available, a number of beam optics has been developed to define the specifications for the new superconducting magnets. In the context of the optics matching new issues have been addressed and new concepts have been used that play a major role in dealing with the extremely high beta functions. Quadrupole strength flexibility and chromatic corrections have been studied, the influence of the quadrupole fringe fields has been taken into account and the lattice in the matching section had been optimised including the needs of the crab cavities that will be installed. The transition between injection and low β optics has to guarantee smooth gradient changes over a wide range of β* values and the tolerances on misalignments and power converter ripple has been re-evaluated. Finally the succ...
Experimenting an optical second with strontium lattice clocks
Targat, R Le; Coq, Y Le; Zawada, M; Guéna, J; Abgrall, M; Gurov, M; Rosenbusch, P; Rovera, D G; Nagórny, B; Gartman, R; Westergaard, P G; Tobar, M E; Lours, M; Santarelli, G; Clairon, A; Bize, S; Laurent, P; Lemonde, P; Lodewyck, J
2013-01-01
Progress in realizing the SI second had multiple technological impacts and enabled to further constraint theoretical models in fundamental physics. Caesium microwave fountains, realizing best the second according to its current definition with a relative uncertainty of 2-4x10^(-16), have already been superseded by atomic clocks referenced to an optical transition, both more stable and more accurate. Are we ready for a new definition of the second? Here we present an important step in this direction: our system of five clocks connects with an unprecedented consistency the optical and the microwave worlds. For the first time, two state-of-the-art strontium optical lattice clocks are proven to agree within their accuracy budget, with a total uncertainty of 1.6x10^(-16). Their comparison with three independent caesium fountains shows a degree of reproducibility henceforth solely limited at the level of 3.1x10^(-16) by the best realizations of the microwave-defined second.
Frequency comparison of optical lattice clocks beyond the Dick limit
Takamoto, Masao; Takano, Tetsushi; Katori, Hidetoshi
2011-05-01
The supreme accuracy of atomic clocks relies on the universality of atomic transition frequencies. The stability of a clock, meanwhile, measures how quickly the clock's statistical uncertainties are reduced. The ultimate measure of stability is provided by the quantum projection noise, which improves as 1/√N by measuring N uncorrelated atoms. Quantum projection noise limited stabilities have been demonstrated in caesium clocks and in single-ion optical clocks, where the quantum noise overwhelms the Dick effect attributed to local oscillator noise. Here, we demonstrate a synchronous frequency comparison of two optical lattice clocks using 87Sr and 88Sr atoms, respectively, for which the Allan standard deviation reached 1 × 10-17 in an averaging time of 1,600 s by cancelling out the Dick effect to approach the quantum projection noise limit. The scheme demonstrates the advantage of using a large number (N ~ 1,000) of atoms in optical clocks and paves the way to investigating the inherent uncertainties of clocks and relativistic geodesy on a timescale of tens of minutes.
Tunable multiple layered Dirac cones in optical lattices.
Lan, Z; Celi, A; Lu, W; Öhberg, P; Lewenstein, M
2011-12-16
We show that multiple layered Dirac cones can emerge in the band structure of properly addressed multicomponent cold fermionic gases in optical lattices. The layered Dirac cones contain multiple copies of massless spin-1/2 Dirac fermions at the same location in momentum space, whose different Fermi velocity can be tuned at will. On-site microwave Raman transitions can further be used to mix the different Dirac species, resulting in either splitting of or preserving the Dirac point (depending on the symmetry of the on-site term). The tunability of the multiple layered Dirac cones allows us to simulate a number of fundamental phenomena in modern physics, such as neutrino oscillations and exotic particle dispersions with E~p(N) for arbitrary integer N.
Dynamics of pattern-loaded fermions in bichromatic optical lattices
Reichl, Matthew D.; Mueller, Erich J.
2016-03-01
Motivated by experiments in Munich [M. Schreiber et al., Science 349, 842 (2015)., 10.1126/science.aaa7432], we study the dynamics of interacting fermions initially prepared in charge density wave states in one-dimensional bichromatic optical lattices. The experiment sees a marked lack of thermalization, which has been taken as evidence for an interacting generalization of Anderson localization, dubbed "many-body localization." We model the experiments using an interacting Aubry-Andre model and develop a computationally efficient low-density cluster expansion to calculate the even-odd density imbalance as a function of interaction strength and potential strength. Our calculations agree with the experimental results and shed light on the phenomena. We also explore a two-dimensional generalization. The cluster expansion method we develop should have broad applicability to similar problems in nonequilibrium quantum physics.
Quantum simulations with ultracold atoms in optical lattices.
Gross, Christian; Bloch, Immanuel
2017-09-08
Quantum simulation, a subdiscipline of quantum computation, can provide valuable insight into difficult quantum problems in physics or chemistry. Ultracold atoms in optical lattices represent an ideal platform for simulations of quantum many-body problems. Within this setting, quantum gas microscopes enable single atom observation and manipulation in large samples. Ultracold atom-based quantum simulators have already been used to probe quantum magnetism, to realize and detect topological quantum matter, and to study quantum systems with controlled long-range interactions. Experiments on many-body systems out of equilibrium have also provided results in regimes unavailable to the most advanced supercomputers. We review recent experimental progress in this field and comment on future directions. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
2014-10-13
Félix Riou, Aaron Reinhard, Laura A. Zundel, David S. Weiss. Spontaneous-emission- induced transition rates between atomic states in optical lattices...complementary technique to measure the hyperfine states at each lattice site. We developed a technique to cool atoms so that they are mostly in the vibrational ...28-Feb-2013 Approved for Public Release; Distribution Unlimited Final Report: Quantum Computation with Neutral Atoms at Addressable Optical Lattice
Orbit, optics and chromaticity correction for PS2 negative momentum compaction lattices
Energy Technology Data Exchange (ETDEWEB)
Papaphilippou,Y.; Barranco, J.; Bartmann, W.; Benedikt, M.; Carli, C.; de Maria, R.; Peggs, S.; Trbojevic, D.
2009-05-04
The effect of magnet misalignments in the beam orbit and linear optics functions are reviewed and correction schemes are applied to the negative momentum compaction lattice of PS2. Chromaticity correction schemes are also proposed and tested with respect to off-momentum optics properties. The impact of the correction schemes in the dynamic aperture of the lattice is finally evaluated.
Institute of Scientific and Technical Information of China (English)
ZHOU Jun; XUE Chun-Hua; QI Yi-Hong; LOU Sen-Yue
2008-01-01
The properties of controllable soliton switching in Kerr-type optical lattices with different modulation are investigated theoretically and simulated numerically. The results show that the optical lattices can be available for all-optical soliton switching through utilization for length-scale competition effects. And through longitudinal exponential-asymptotic modulation for the linear refractive index, the properties of soliton switching in the optical lattices can be improved. The number of output channels of soliton switching can be controlled by the parameters such as incident angle, asymptotic rate of longitudinal modulation, guiding parameter and form factor.
Critical temperature and condensed fraction of Bose-Einstein condensation in optical lattices
Institute of Scientific and Technical Information of China (English)
2007-01-01
Critical temperature and condensate fraction of Bose-Einstein condensation in the optical lattice are studied. The results show that the critical temperature in optical lattices can be characterized with an equivalent critical temperature in a single lattice, which provide a fast evaluation of critical temperature and condensate fraction of Bose-Einstein condensation confined with pure optical trap. Critical temperature can be estimated with an equivalent critical temperature. It is predicted that critical temperature is proportional to q in q number lattices for superfluid state and should be equal to that in a single lattic for Mott insulate state. Required potential depth or Rabi frequency and maximum atom number in the lattices both for superfluid state and Mott state are presented based on views of thermal mechanical statistics.
Development of a strontium optical lattice clock for space applications
Singh, Yeshpal
2016-07-01
With timekeeping being of paramount importance for modern life, much research and major scientific advances have been undertaken in the field of frequency metrology, particularly over the last few years. New Nobel-prize winning technologies have enabled a new era of atomic clocks; namely the optical clock. These have been shown to perform significantly better than the best microwave clocks reaching an inaccuracy of 1.6x10-18 [1]. With such results being found in large lab based apparatus, the focus now has shifted to portability - to enable the accuracy of various ground based clocks to be measured, and compact autonomous performance - to enable such technologies to be tested in space. This could lead to a master clock in space, improving not only the accuracy of technologies on which modern life has come to require such as GPS and communication networks. But also more fundamentally, this could lead to the redefinition of the second and tests of fundamental physics including applications in the fields of ground based and satellite geodesy, metrology, positioning, navigation, transport and logistics etc. Within the European collaboration, Space Optical Clocks (SOC2) [2-3] consisting of various institutes and industry partners across Europe we have tried to tackle this problem of miniaturisation whilst maintaining stability, accuracy (5x10-17) and robustness whilst keeping power consumption to a minimum - necessary for space applications. We will present the most recent results of the Sr optical clock in SOC2 and also the novel compact design features, new methods employed and outlook. References [1] B. J. Bloom, T. L. Nicholson, J. R. Williams, S. L. Campbell, M. Bishof, X. Zhang, W. Zhang, S. L. Bromley, and J. Ye, "An optical lattice clock with accuracy and stability at the 10-18 level," Nature 506, 71-75 (2014). [2] S. Schiller et al. "Towards Neutral-atom Space Optical Clocks (SOC2): Development of high-performance transportable and breadboard optical clocks and
Demonstration of flat-band image transmission in optically induced Lieb photonic lattices.
Xia, Shiqiang; Hu, Yi; Song, Daohong; Zong, Yuanyuan; Tang, Liqin; Chen, Zhigang
2016-04-01
We present a simple, yet effective, approach for optical induction of Lieb photonic lattices, which typically rely on the femtosecond laser writing technique. Such lattices are established by judiciously overlapping two sublattices (an "egg-crate" lattice and a square lattice) with different periodicities through a self-defocusing photorefractive medium. Furthermore, taking advantage of the superposition of localized flat-band states inherent in the Lieb lattices, we demonstrate distortion-free image transmission in such two-dimensional perovskite-like photonic structures. Our experimental observations find good agreement with numerical simulations.
`Flat Phase' Loading of a Bose-Einstein Condensate into an Optical Lattice
Sklarz, S E; Tannor, D J; Band, Y B; Williams, C J; Sklarz, Shlomo E.; Friedler, Inbal; Tannor, David J.; Band, Yehuda B.; Williams, Carl J.
2002-01-01
It has been proposed that the adiabatic loading of a Bose-Einstein Condensate (BEC) into an optical lattice via the Mott-insulator transition can be used to initialize a quantum computer [D.~Jaksch, {\\it et al.}, Phys. Rev. Lett.~{\\bf 81}, 3108 (1998)]. The loading of a BEC into the lattice without causing band excitation is readily achievable; however, unless one switches on an optical lattice very slowly, the optical lattice causes a phase to accumulate across the condensate. We show analytically and numerically that a cancellation of this effect is possible by adjusting the harmonic trap force-constant of the magnetic trap appropriately, thereby facilitating quick loading of an optical lattice for quantum computing purposes. A simple analytical theory is developed for a non-stationary BEC in a harmonic trap.
Optical Bloch oscillations and Zener tunneling of Airy beams in ionic-type photonic lattices.
Xiao, Fajun; Zhu, Weiren; Shang, Wuyun; Wang, Meirong; Zhang, Peng; Liu, Sheng; Premaratne, Malin; Zhao, Jianlin
2016-08-01
We report on the existence of optical Bloch oscillations (OBOs) and Zener tunneling (ZT) of Airy beams in ionic-type photonic lattices with a refractive index ramp. Different from their counterparts in uniform lattices, Airy beams undergoing OBOs show an alternatively switched concave and convex trajectory as well as a periodical revival of input beam profiles. Moreover, the ionic-type photonic lattice established in photorefractive crystal exhibits a reconfigurable lattice structure, which provides a flexible way to tune the amplitude and period of the OBOs. Remarkably, it is demonstrated that the band gap of the lattice can be readily controlled by rotating the lattice inducing beam, which forces the ZT rate to follow two significant different decay curves amidst decreasing index gradient. Our results open up new possibilities for all-optical switching, routing and manipulation of Airy beams.
Atomic Bloch-Zener oscillations and Stückelberg interferometry in optical lattices.
Kling, Sebastian; Salger, Tobias; Grossert, Christopher; Weitz, Martin
2010-11-19
We report on experiments investigating quantum transport and band interferometry of an atomic Bose-Einstein condensate in an optical lattice with a two-band miniband structure, realized with a Fourier-synthesized optical lattice potential. Bloch-Zener oscillations, the coherent superposition of Bloch oscillations and Landau-Zener tunneling between the two bands, are observed. When the relative phase between paths in different bands is varied, an interference signal is observed, demonstrating the coherence of the dynamics in the miniband system. Measured fringe patterns of this Stückelberg interferometer allow us to interferometrically map out the band structure of the optical lattice over the full Brillouin zone.
Instabilities of bosonic spin currents in optical lattices
Energy Technology Data Exchange (ETDEWEB)
Hui, Hoi-Yin; Barnett, Ryan; Sensarma, Rajdeep; Das Sarma, S. [Condensed Matter Theory Center and Joint Quantum Institute, Department of Physics, University of Maryland, College Park, Maryland 20742 (United States)
2011-10-15
We analyze the dynamical and energetic instabilities of spin currents in a system of two-component bosons in an optical lattice, with a particular focus on the Neel state. We consider both the weakly interacting superfluid and the strongly interacting Mott insulating limits as well as the regime near the superfluid-insulator transition and establish the criteria for the onset of these instabilities. We use Bogoliubov theory to treat the weakly interacting superfluid regime. Near the Mott transition, we calculate the stability phase diagram within a variational Gutzwiller wave-function approach. In the deep Mott limit we discuss the emergence of the Heisenberg model and calculate the stability diagram within this model. Though the Bogoliubov theory and the Heisenberg model (appropriate for the deep superfluid and the deep Mott-insulating phase, respectively) predict no dynamical instabilities, we find, interestingly, that between these two limiting cases there is a regime of dynamical instability. This result is relevant for the ongoing experimental efforts to realize a stable Neel-ordered state in multicomponent ultracold bosons.
Subharmonic Shapiro steps of sliding colloidal monolayers in optical lattices.
Paronuzzi Ticco, Stella V; Fornasier, Gabriele; Manini, Nicola; Santoro, Giuseppe E; Tosatti, Erio; Vanossi, Andrea
2016-04-06
We investigate theoretically the possibility to observe dynamical mode locking, in the form of Shapiro steps, when a time-periodic potential or force modulation is applied to a two-dimensional (2D) lattice of colloidal particles that are dragged by an external force over an optically generated periodic potential. Here we present realistic molecular dynamics simulations of a 2D experimental setup, where the colloid sliding is realized through the motion of soliton lines between locally commensurate patches or domains, and where the Shapiro steps are predicted and analyzed. Interestingly, the jump between one step and the next is seen to correspond to a fixed number of colloids jumping from one patch to the next, across the soliton line boundary, during each ac cycle. In addition to ordinary 'integer' steps, coinciding here with the synchronous rigid advancement of the whole colloid monolayer, our main prediction is the existence of additional smaller 'subharmonic' steps due to localized solitonic regions of incommensurate layers executing synchronized slips, while the majority of the colloids remains pinned to a potential minimum. The current availability and wide parameter tunability of colloid monolayers makes these predictions potentially easy to access in an experimentally rich 2D geometrical configuration.
Hamiltonian chaos with a cold atom in an optical lattice
Prants, S V
2012-01-01
We consider a basic model of the lossless interaction between a moving two-level atom and a standing-wave single-mode laser field. Classical treatment of the translational atomic motion provides the semiclassical Hamilton-Schrodinger equations which are a 5D nonlinear dynamical system with two integrals of motion. The atomic dynamics can be regular or chaotic in dependence on values of the control parameters, the atom-field detuning and recoil frequency. We develop a semiclassical theory of the chaotic atomic transport in terms of a random walk of the atomic electric dipole moment $u$. Based on a jump-like behavior of this variable for atoms crossing nodes of the standing wave, we construct a stochastic map that specifies the center-of-mass motion. We find the relations between the detuning, recoil frequency and the atomic energy, under which atoms may move in a optical lattice in a chaotic way. We obtain the analytical conditions under which deterministic atomic transport has fractal properties and explain a...
Beam evolutions of solitons in strongly nonlocal media with fading optical lattices
Institute of Scientific and Technical Information of China (English)
Dai Zhi-Ping; Lu Shi-Zhuan; You Kai-Ming
2013-01-01
We address the impact of imprinted fading optical lattices on the beam evolution of solitons in strongly nonlocal nonlinear media.The results show that the width of the soliton experiences a change with the increasing propagation distance,the critical power for the soliton varies with the lattice fading away,and the soliton breathing is affected by the initial lattice depth and the nonlocality degree.
Bose-Einstein Condensates in Optical Lattices with Higher-Order Interactions
Institute of Scientific and Technical Information of China (English)
张爱霞; 薛具奎
2012-01-01
The higher-order interactions of Bose-Einstein condensate in multi-dimensional optical lattices are discussed both analytically and numerically.It is demonstrated that the effects of the higher-order atomic interactions on the sound speed and the stabilities of Bloch waves strongly depend on the lattice strength.In the presence of higher-order effects,tighter and high-dimensional lattices are confirmed to be two positive factors for maintaining the system＇s energetic stability,and the dynamical instability of Bloch waves can take place simultaneously with the energetic instability.In addition,we find that the higher-order interactions exhibit a long-range behavior and the long-lived coherent Bloch oscillations in a tilted optical lattice exist.Our results provide an effective way to probe the higher-order interactions in optical lattices.
Comparing a mercury optical lattice clock with microwave and optical frequency standards
Tyumenev, R.; Favier, M.; Bilicki, S.; Bookjans, E.; Le Targat, R.; Lodewyck, J.; Nicolodi, D.; Le Coq, Y.; Abgrall, M.; Guéna, J.; De Sarlo, L.; Bize, S.
2016-11-01
In this paper we report the evaluation of an optical lattice clock based on neutral mercury with a relative uncertainty of 1.7× {10}-16. Comparing this characterized frequency standard to a 133Cs atomic fountain we determine the absolute frequency of the {}1{{{S}}}0\\to {}3{{{P}}}0 transition of 199Hg as {ν }{Hg}=1128 575 290 808 154.62 {Hz}+/- 0.19 {Hz}({statistical})+/- 0.38 {Hz} (systematic), limited solely by the realization of the SI second. Furthermore, by comparing the mercury optical lattice clock to a 87Rb atomic fountain, we determine for the first time to our knowledge the ratio between the 199Hg clock transition and the 87Rb ground state hyperfine transition. Finally we present a direct optical to optical measurement of the 199Hg/87Sr frequency ratio. The obtained value of {ν }{Hg}/{ν }{Sr} = 2.629 314 209 898 909 15 with a fractional uncertainty of 1.8× {10}-16 is in excellent agreement with a similar measurement obtained by Yamanaka et al (2015 Phys. Rev. Lett. 114 230801). This makes this frequency ratio one of the few physical quantities agreed upon by different laboratories to this level of uncertainty. Frequency ratio measurements of the kind reported in this paper have a strong impact for frequency metrology and fundamental physics as they can be used to monitor putative variations of fundamental constants.
Lattice Induced Frequency Shifts in Sr Optical Lattice Clocks at the $10^{-17}$ Level
Westergaard, Philip G; Lorini, Luca; Lecallier, Arnaud; Burt, Eric; Zawada, Michal; Millo, Jacques; Lemonde, Pierre
2011-01-01
We present a comprehensive study of the frequency shifts associated with the lattice potential for a Sr lattice clock. By comparing two such clocks with a frequency stability reaching $5\\times 10^{-17}$ after a one hour integration time, and varying the lattice depth up to $U_0=900 \\, E_r$ with $E_r$ being the recoil energy, we evaluate lattice related shifts with an unprecedented accuracy. We put the first experimental upper bound on the recently predicted frequency shift due to the magnetic dipole (M1) and electric quadrupole (E2) interactions. This upper bound is significantly smaller than the theoretical upper limit. We also give a new upper limit on the effect of hyperpolarizability with an improvement by more than one order of magnitude. Finally, we report the first observation of the vector and tensor shifts in a lattice clock. Combining these measurements, we show that all known lattice related perturbation will not affect the clock accuracy down to the $10^{-17}$ level, even for very deep lattices, u...
A Next-Generation Apparatus for Lithium Optical Lattice Experiments
Keshet, Aviv
Quantum simulation is emerging as an ambitious and active subfield of atomic physics. This thesis describes progress towards the goal of simulating condensed matter systems, in particular the physics of the Fermi-Hubbard model, using ultracold Lithium atoms in an optical lattice. A major goal of the quantum simulation program is to observe phase transitions of the Hubbard model, into Neal antiferromagnetic phases and d-wave superfluid phases. Phase transitions are generally accompanied by a change in an underlying correlation in a physical system. Such correlations may be most amenable to probing by looking at fluctuations in the system. Experimental techniques for probing density and magnetization fluctuations in a variety of atomic Fermi systems are developed. The suppression of density fluctuations (or atom "shot noise") in an ideal degenerate Fermi gas is observed by absorption imaging of time-of-flight expanded clouds. In-trap measurements of density and magnetization fluctuations are not easy to probe with absorption imaging, due to their extremely high attenuation. A method to probe these fluctuations based on speckle patterns, caused by fluctuations in the index of refraction for a detuned illumination beam, is developed and applied first to weakly interacting and then to strongly interacting in-trap gases. Fluctuation probes such as these will be a crucial tool in future quantum simulation of condensed matter systems. The quantum simulation experiments that we want to perform require a complex sequence of precisely timed computer controlled events. A distributed GUI-based control system designed with such experiments in mind, The Cicero Word Generator, is described. The system makes use of a client-server separation between a user interface for sequence design and a set of output hardware servers. Output hardware servers are designed to use standard National Instruments output cards, but the client-server nature allows this to be extended to other output
Frequency Ratio of ${}^{199}$Hg and ${}^{87}$Sr Optical Lattice Clocks beyond the SI Limit
Yamanaka, Kazuhiro; Ushijima, Ichiro; Takamoto, Masao; Katori, Hidetoshi
2015-01-01
We report on a frequency ratio measurement of a ${}^{199}$Hg-based optical lattice clock referencing a ${}^{87}$Sr-based clock. Evaluations of lattice light shift, including atomic-motion-dependent shift, enable us to achieve a total systematic uncertainty of $7.2 \\times 10^{-17}$ for the Hg clock. The frequency ratio is measured to be $\
Synthetic-lattice enabled all-optical devices based on orbital angular momentum of light
Luo, Xi-Wang; Zhou, Xingxiang; Xu, Jin-Shi; Li, Chuan-Feng; Guo, Guang-Can; Zhang, Chuanwei; Zhou, Zheng-Wei
2017-07-01
All-optical photonic devices are crucial for many important photonic technologies and applications, ranging from optical communication to quantum information processing. Conventional design of all-optical devices is based on photon propagation and interference in real space, which may rely on large numbers of optical elements, and the requirement of precise control makes this approach challenging. Here we propose an unconventional route for engineering all-optical devices using the photon's internal degrees of freedom, which form photonic crystals in such synthetic dimensions for photon propagation and interference. We demonstrate this design concept by showing how important optical devices such as quantum memory and optical filters can be realized using synthetic orbital angular momentum (OAM) lattices in degenerate cavities. The design route utilizing synthetic photonic lattices may significantly reduce the requirement for numerous optical elements and their fine tuning in conventional design, paving the way for realistic all-optical photonic devices with novel functionalities.
Chen, Yi-Chung; Yossifon, Gilad; Yang, Ya-Tang
2016-11-01
Photothermal convection has been a major obstacle for stable particle trapping in plasmonic optical tweezer at high optical power. Here, we demonstrate a strategy to suppress the plasmonic photothermal convection by using vanishingly small thermal expansion coefficient of water at low temperature. A simple square nanoplasmonic array is illuminated with a loosely Gaussian beam to produce a two dimensional optical lattice for trapping of micro particles. We observe stable particle trapping due to near-field optical gradient forces at elevated optical power at low temperature. In contrast, for the same optical power at room temperature, the particles are convected away from the center of the optical lattice without their accumulation. This technique will greatly increase usable optical power and enhance the trapping capability of plasmonic optical tweezer.
Crosstalk comparison of lattice-form optical interleaver with different coupler structures
Wan, Zhujun; Luo, Fengguang; Luo, Zhixiang
2009-05-01
Lattice circuit made from a cascade of couplers and delay-lines is a popular approach for optical interleaver based on planar lightwave circuit (PLC) technology. Different coupler structures can be employed in the lattice circuit, including 1-stage directional couplers (DCs), 4-stage DCs, and 2-stage multimode interference (MMI) couplers. We fabricated optical interleavers with above three coupler structures, respectively. The experimental results prove that the latter two coupler structures can help to reduce crosstalk, which meets the simulation results well.
Zhou, Xiaoji; Xu, Xu; Yin, Lan; Liu, W M; Chen, Xuzong
2010-07-19
We propose a new method of detecting quantum coherence of a Bose gas trapped in a one-dimensional optical lattice by measuring the light intensity from Raman scattering in cavity. After pump and displacement process, the intensity or amplitude of scattering light is different for different quantum states of a Bose gas, such as superfluid and Mott-Insulator states. This method can also be useful to detect quantum states of atoms with two components in an optical lattice.
Phase-Stable Free-Space Optical Lattices for Trapped Ions.
Schmiegelow, C T; Kaufmann, H; Ruster, T; Schulz, J; Kaushal, V; Hettrich, M; Schmidt-Kaler, F; Poschinger, U G
2016-01-22
We demonstrate control of the absolute phase of an optical lattice with respect to a single trapped ion. The lattice is generated by off-resonant free-space laser beams, and we actively stabilize its phase by measuring its ac-Stark shift on a trapped ion. The ion is localized within the standing wave to better than 2% of its period. The locked lattice allows us to apply displacement operations via resonant optical forces with a controlled direction in phase space. Moreover, we observe the lattice-induced phase evolution of spin superposition states in order to analyze the relevant decoherence mechanisms. Finally, we employ lattice-induced phase shifts for inferring the variation of the ion position over the 157 μm range along the trap axis at accuracies of better than 6 nm.
Phase-stable free-space optical lattices for trapped ions
Schmiegelow, Christian Tomas; Ruster, Thomas; Schulz, Jonas; Kaushal, Vidyut; Hettrich, Max; Schmidt-Kaler, Ferdinand; Poschinger, Ulrich G
2016-01-01
We demonstrate control of the absolute phase of an optical lattice with respect to a single trapped ion. The lattice is generated by off-resonant free-space laser beams, we actively stabilize its phase by measuring its ac-Stark shift on a trapped ion. The ion is localized within the standing wave to better than 2\\% of its period. The locked lattice allows us to apply displacement operations via resonant optical forces with a controlled direction in phase space. Moreover, we observe the lattice-induced phase evolution of spin superposition states in order to analyze the relevant decoherence mechanisms. Finally, we employ lattice-induced phase shifts for inferring the variation of the ion position over 157~$\\mu$m range along the trap axis at accuracies of better than 6~nm.
Effective three-body interactions of neutral bosons in optical lattices
Energy Technology Data Exchange (ETDEWEB)
Johnson, P R [Department of Physics, American University, Washington, DC 20016 (United States); Tiesinga, E; Porto, J V; Williams, C J [Joint Quantum Institute, National Institute of Standards and Technology and University of Maryland, Gaithersburg, MD 20899 (United States)], E-mail: pjohnson@american.edu
2009-09-15
We show that there are effective three- and higher-body interactions generated by the two-body collisions of atoms confined in the lowest vibrational states of a three-dimensional (3D) optical lattice. The collapse and revival dynamics of approximate coherent states loaded into a lattice are a particularly sensitive probe of these higher-body interactions; the visibility of interference fringes depend on both two-, three- and higher-body energy scales, and these produce an initial dephasing that can help explain the surprisingly rapid decay of revivals seen in experiments. If inhomogeneities in the lattice system are sufficiently reduced, longer timescale partial and nearly full revivals will be visible. Using Feshbach resonances or control of the lattice potential it is possible to tune the effective higher-body interactions and simulate effective field theories in optical lattices.
Statics characteristics of two Bose-Einstein condensate dark solitons trapped in an optical lattice
Institute of Scientific and Technical Information of China (English)
CHENG Yong-shan; GONG Rong-zhou; LI Hong
2006-01-01
The statics characteristics of two coupled Bose-Einstein condensate (BEC) dark solitons trapped in an optical lattice are investigated with the variational approach.It is found that the interaction between a ‘kink’ and an ‘anti-kink’ with opposite phase gradients is effectively repulsive, and the optical lattice can be controllably used to produce a pair of static BEC dark solitons.Its effect depends on the initial location of the BEC dark solitons, the lattice amplitude and wave number.
Energy Technology Data Exchange (ETDEWEB)
Kafka, Gene [Illinois Inst. of Technology, Chicago, IL (United States)
2015-05-01
The Integrable Optics Test Accelerator (IOTA) storage ring at Fermilab will serve as the backbone for a broad spectrum of Advanced Accelerator R&D (AARD) experiments, and as such, must be designed with signi cant exibility in mind, but without compromising cost e ciency. The nonlinear experiments at IOTA will include: achievement of a large nonlinear tune shift/spread without degradation of dynamic aperture; suppression of strong lattice resonances; study of stability of nonlinear systems to perturbations; and studies of di erent variants of nonlinear magnet design. The ring optics control has challenging requirements that reach or exceed the present state of the art. The development of a complete self-consistent design of the IOTA ring optics, meeting the demands of all planned AARD experiments, is presented. Of particular interest are the precise control for nonlinear integrable optics experiments and the transverse-to-longitudinal coupling and phase stability for the Optical Stochastic Cooling Experiment (OSC). Since the beam time-of- ight must be tightly controlled in the OSC section, studies of second order corrections in this section are presented.
Simulating quantum-optical phenomena with cold atoms in optical lattices
Energy Technology Data Exchange (ETDEWEB)
Navarrete-Benlloch, Carlos [Departament d' Optica, Universitat de Valencia, Dr Moliner 50, 46100 Burjassot (Spain); Vega, Ines de [Institut fuer Theoretische Physik, Albert-Einstein-Allee 11, Universitaet Ulm, D-89069 Ulm (Germany); Porras, Diego [Departamento de Fisica Teorica I, Universidad Complutense, 28040 Madrid (Spain); Ignacio Cirac, J, E-mail: carlos.navarrete@uv.es, E-mail: ines.devega@uni-ulm.de, E-mail: diego.porras@fis.ucm.es, E-mail: ignacio.cirac@mpq.mpg.de [Max-Planck-Institut fuer Quantenoptik, Hans-Kopfermann-Strasse 1, 85748 Garching (Germany)
2011-02-15
We propose a scheme involving cold atoms trapped in optical lattices to observe different phenomena traditionally linked to quantum-optical systems. The basic idea consists of connecting the trapped atomic state to a non-trapped state through a Raman scheme. The coupling between these two types of atoms (trapped and free) turns out to be similar to that describing light-matter interaction within the rotating-wave approximation, the role of matter and photons being played by the trapped and free atoms, respectively. We explain in particular how to observe phenomena arising from the collective spontaneous emission of atomic and harmonic oscillator samples, such as superradiance and directional emission. We also show how the same setup can simulate Bose-Hubbard Hamiltonians with extended hopping as well as Ising models with long-range interactions. We believe that this system can be realized with state of the art technology.
Tikan, A. M.; Vatnik, I. D.; Churkin, D. V.; Sukhorukov, A. A.
2017-02-01
A method based on optical heterodyning is proposed for measuring relative optical phases of pulses circulating in synthetic photonic lattices (SPL). The knowledge of the phases can be further used for qualitative reconstruction of an eigenmode excitation spectrum in the SPL.
Frequency-doubled telecom fiber laser for a cold atom interferometer using optical lattices
Theron, Fabien; Bidel, Yannick; Dieu, Emily; Zahzam, Nassim; Cadoret, Malo; Bresson, Alexandre
2017-06-01
A compact and robust frequency-doubled telecom laser system at 780 nm is presented for a rubidium cold atom interferometer using optical lattices. Adopting an optical switch at 1.5 μm and a dual-wavelength second harmonic generation system, only one laser amplifier is required for the laser system. Our system delivers a 900 mW laser beam with a detuning of 110 GHz for the optical lattice and a 650 mW laser beam with an adjustable detuning between 0 and -1 GHz for the laser cooling, the detection and the Raman transitions.
Frequency doubled telecom fiber laser for a cold atom interferometer using optical lattices
Theron, Fabien; Dieu, Emily; Zahzam, Nassim; Cadoret, Malo; Zahzam, Nassim; Bresson, Alexandre
2016-01-01
A compact and robust laser system, based on a frequency-doubled telecom laser, providing all the lasers needed for a rubidium cold atom interferometer using optical lattices is presented. Thanks to an optical switch at 1.5 \\mu m and a dual-wavelength second harmonic generation system, only one laser amplifier is needed for all the laser system. Our system delivers at 780 nm a power of 900 mW with a detuning of 110 GHz for the optical lattice and a power of 650 mW with an adjustable detuning between 0 and -1 GHz for the laser cooling, the detection and the Raman transitions.
Effective mass approach for a Bose-Einstein condensate in an optical lattice
Institute of Scientific and Technical Information of China (English)
DUAN ZhengLu; STEEL M J; XU AiTing; ZHANG WeiPing
2009-01-01
We study the stationary and propagating solutions for a Bose-Einstein condensate (BEC) in a periodic optical potential with an additional confining optical or magnetic potential.Using an effective mass approximation we express the condensate wave function in terms of slowly-varying envelopes modulating the Bloch modes of the optical lattice.In the limit of a weak nonlinearity,we derive a nonlinear Schr(o)dinger equation for propagation of the envelope function which does not contain the rapid oscillation of the lattice.We then consider the ground state solutions in detail in the regime of weak,moderate and strong nonlinear interactions.We describe the form of solution which is appropriate in each regime,and place careful limits on the validity of each type of solution.Finally we extend the study to the propagating dynamics of a spinor atomic BEC in an optical lattice and some interesting phenomena are revealed.
Normal mode splitting and mechanical effects of an optical lattice in a ring cavity
Klinner, J; Lindholdt, M; Nagorny, B; Hemmerich, Andreas; Klinner, Julian; Lindholdt, Malik; Nagorny, Boris
2005-01-01
A novel regime of atom-cavity physics is explored, arising when large atom samples dispersively interact with high-finesse optical cavities. A stable far detuned optical lattice of several million rubidium atoms is formed inside an optical ring resonator by coupling equal amounts of laser light to each propagation direction of a longitudinal cavity mode. An adjacent longitudinal mode, detunedby about 3 GHz, is used to perform probe transmission spectroscopy of the system. The atom-cavity coupling for the lattice beams and the probe is dispersive and dissipation results only from the finite photon-storage time. The observation of two well-resolved normal modes demonstrates the regime of strong cooperative coupling. The details of the normal mode spectrum reveal mechanical effects associated with the retroaction of the probe upon the optical lattice.
Normal Mode Splitting and Mechanical Effects of an Optical Lattice in a Ring Cavity
Klinner, Julian; Lindholdt, Malik; Nagorny, Boris; Hemmerich, Andreas
2006-01-01
A novel regime of atom-cavity physics is explored, arising when large atom samples dispersively interact with high-finesse optical cavities. A stable far-detuned optical lattice of several million rubidium atoms is formed inside an optical ring resonator by coupling equal amounts of laser light to each propagation direction of a longitudinal cavity mode. An adjacent longitudinal mode, detuned by about 3 GHz, is used to perform probe transmission spectroscopy of the system. The atom-cavity coupling for the lattice beams and the probe is dispersive and dissipation results only from the finite photon-storage time. The observation of two well-resolved normal modes demonstrates the regime of strong cooperative coupling. The details of the normal mode spectrum reveal mechanical effects associated with the retroaction of the probe upon the optical lattice.
Golubeva, Anna; Sotnikov, Andrii; Hofstetter, Walter
2015-10-01
We study the effects of anisotropic hopping amplitudes on quantum phases of ultracold fermions in optical lattices described by the repulsive Fermi-Hubbard model. In particular, using dynamical mean-field theory (DMFT) we investigate the dimensional crossover between the isotropic square and the isotropic cubic lattice. We analyze the phase transition from the antiferromagnetic to the paramagnetic state and observe a significant change in the critical temperature: depending on the interaction strength, the anisotropy can lead to both a suppression or increase. We also investigate the localization properties of the system, such as the compressibility and double occupancy. Using the local-density approximation in combination with DMFT we conclude that density profiles can be used to detect the mentioned anisotropy-driven transitions.
Correlated hopping of bosonic atoms induced by optical lattices
Energy Technology Data Exchange (ETDEWEB)
Eckholt, Maria [Max-Planck-Institut fuer Quantenoptik, Hans-Kopfermann-Strasse 1, Garching, D-85478 (Germany); Garcia-Ripoll, Juan Jose [Instituto de Fisica Fundamental, CSIC, c/Serrano 113b, Madrid E-28006 (Spain)], E-mail: maria.eckholt@mpq.mpg.de
2009-09-15
In this work, we analyze a particular setup with ultracold atoms trapped in state-dependent lattices. We show that any asymmetry in the contact interaction translates into one of two classes of correlated hopping. After deriving the effective lattice Hamiltonian for the atoms, we obtain analytically and numerically the different phases and quantum phase transitions. We find for weak correlated hopping both Mott insulators and charge density waves, while for stronger correlated hopping the system transitions into a pair superfluid. We demonstrate that this phase exists for a wide range of interaction asymmetries and has interesting correlation properties that differentiate it from an ordinary atomic Bose-Einstein condensate.
Anderson localization in optical lattices with speckle disorder
Energy Technology Data Exchange (ETDEWEB)
Sucu, Serpil; Aktas, Saban; Okan, S. Erol [Department of Physics, Trakya University, 22030 Edirne (Turkey); Akdeniz, Zehra [Piri Reis University, 34940 Tuzla-Istanbul (Turkey); Vignolo, Patrizia [Universite de Nice-Sophia Antipolis, Institut non Lineaire de Nice, CNRS, 1361 route des Lucioles, F-06560 Valbonne (France)
2011-12-15
We study the localization properties of noninteracting waves propagating in a speckle-like potential superposed on a one-dimensional lattice. Using a combined decimation-renormalization procedure, we estimate the localization length for a tight-binding Hamiltonian where site energies are square-sinc-correlated random variables. By decreasing the width of the correlation function, the disorder patterns approach a {delta}-correlated disorder, and the localization length becomes almost energy independent in the strong disorder limit. We show that this regime can be reached for a size of the speckle grains on the order of (lower than) four lattice steps.
Institute of Scientific and Technical Information of China (English)
WANG Xiao-Rui; YANG Lu; TAN Xin-Zhou; XIONG Hong-Wei; L(U) Bao-Long
2009-01-01
We study the phase coherence property of Bose-Einstein condensates confined in a one-dimensional optical lattice formed by a standing-wave laser field.The lattice depth is determined using a method of Kapitza-Dirac scattering between a condensate and a short pulse lattice potential.Condensates are then adiabatically loaded into the optical lattice.The phase coherence property of the confined condensates is reflected by the interference patterns of the expanded atomic cloud released from the optical lattice.For weak lattice,nearly all of the atoms stay in a superfluid state.However,as the lattice depth is increased,the phase coherence of the whole condensate sample is gradually lost,which confirms that the sub-condensates in each lattice well have evolved into number-squeezed states.
Ultracold Nonreactive Molecules in an Optical Lattice: Connecting Chemistry to Many-Body Physics.
Doçaj, Andris; Wall, Michael L; Mukherjee, Rick; Hazzard, Kaden R A
2016-04-01
We derive effective lattice models for ultracold bosonic or fermionic nonreactive molecules (NRMs) in an optical lattice, analogous to the Hubbard model that describes ultracold atoms in a lattice. In stark contrast to the Hubbard model, which is commonly assumed to accurately describe NRMs, we find that the single on-site interaction parameter U is replaced by a multichannel interaction, whose properties we elucidate. Because this arises from complex short-range collisional physics, it requires no dipolar interactions and thus occurs even in the absence of an electric field or for homonuclear molecules. We find a crossover between coherent few-channel models and fully incoherent single-channel models as the lattice depth is increased. We show that the effective model parameters can be determined in lattice modulation experiments, which, consequently, measure molecular collision dynamics with a vastly sharper energy resolution than experiments in a free-space ultracold gas.
Weyl points in three-dimensional optical lattices: synthetic magnetic monopoles in momentum space
Buljan, Hrvoje; Dubcek, Tena; Kennedy, Colin; Lu, Ling; Ketterle, Wolfgang; Soljacic, Marin
2015-05-01
We show that Hamiltonians with Weyl points can be realized for ultracold atoms using laser-assisted tunneling in three-dimensional (3D) optical lattices. Weyl points are synthetic magnetic monopoles that exhibit a robust, 3D linear dispersion (e.g., see). They are associated with many interesting topological states of matter, such as Weyl semimetals and chiral Weyl fermions. However, Weyl points have yet to be experimentally observed in any system. We show that this elusive goal is well-within experimental reach with an extension of the techniques recently used to obtain the Harper Hamiltonian. We propose using laser assisted tunneling to create a 3D optical lattice, with specifically designed hopping between lattice sites that breaks inversion symmetry. The design leads to creation of four Weyl points in the Brillouin zone of the lattice, which are verified to be monopoles of the synthetic magnetic field. Supported by the Unity through Knowledge Fund (Grant 5/13).
Optical properties of two-dimensional magnetoelectric point scattering lattices
DEFF Research Database (Denmark)
Hansen, Per Lunnemann; Sersic, Ivana; Koenderink, A. Femius
2013-01-01
of split ring resonators and provide a quantitative comparison of measured and calculated transmission spectra at normal incidence as a function of lattice density, showing excellent agreement. We further show angle-dependent transmission calculations for circularly polarized light and compare...
Taichenachev, A V; Yudin, V I; Ovsiannikov, V D; Pal'chikov, V G; Oates, C W
2008-11-01
We report a hitherto undiscovered frequency shift for forbidden J = 0-->J = 0 clock transitions excited in atoms confined to an optical lattice. These shifts result from magnetic-dipole and electric-quadrupole transitions, which have a spatial dependence in an optical lattice that differs from that of the stronger electric-dipole transitions. In combination with the residual translational motion of atoms in an optical lattice, this spatial mismatch leads to a frequency shift via differential energy level spacing in the lattice wells for ground state and excited state atoms. We estimate that this effect could lead to fractional frequency shifts as large as 10(-16), which might prevent lattice-based optical clocks from reaching their predicted performance levels. Moreover, these effects could shift the magic wavelength in lattice clocks in three dimensions by as much as 100 MHz, depending on the lattice configuration.
Realizing the Harper Hamiltonian with laser-assisted tunneling in optical lattices.
Miyake, Hirokazu; Siviloglou, Georgios A; Kennedy, Colin J; Burton, William Cody; Ketterle, Wolfgang
2013-11-01
We experimentally implement the Harper Hamiltonian for neutral particles in optical lattices using laser-assisted tunneling and a potential energy gradient provided by gravity or magnetic field gradients. This Hamiltonian describes the motion of charged particles in strong magnetic fields. Laser-assisted tunneling processes are characterized by studying the expansion of the atoms in the lattice. The band structure of this Hamiltonian should display Hofstadter's butterfly. For fermions, this scheme should realize the quantum Hall effect and chiral edge states.
Dynamics of a Bose-Einstein condensate in a horizontally vibrating shallow optical lattice
Valizadeh, A.; Jahanbani, Kh.; Kolahchi, M. R.
2010-02-01
We consider a solitonic solution of the self-attractive Bose-Einstein condensate in a one-dimensional external potential of a shallow optical lattice with large periodicity when the lattice is horizontally shaken. We investigate the dynamics of the bright soliton through the properties of the fixed points. The special type of bifurcation results in a simple criterion for the stability of the fixed points depending only on the amplitude of the shaking lattice. Because of the similarity of the equations with those of an ac-driven Josephson junction, some results may find applications in other branches of physics.
Magic wavelengths for lattice trapped Rubidium four-level active optical clock
Zang, Xiaorun; Chen, Jingbiao
2012-01-01
After pumped from $5s_{1/2}$ ground state to $6p_{1/2}$ state, the population inversion between $6s_{1/2}$ and $5p_{1/2,3/2}$ will be established for Rubidium four-level active optical clock. In this paper, we calculate AC Stark shift due to lattice trapping laser which dominates the frequency shift of clock transition in lattice trapped Rubidium four-level active optical clock. Several blue detuned magic wavelengths are found that can form desired optical lattice trapping potential. When the trapping laser is tuned to the magic wavelength, with 1 MHz frequency uncertainty and 10 kW$\\cdot$cm$^{-2}$ intensity, the frequency uncertainty of clock transition due to AC Stark shift of trapping laser, is estimated to be below 0.05 mHz.
Measuring the spin Chern number in time-reversal-invariant Hofstadter optical lattices
Zhang, Dan-Wei; Cao, Shuai
2016-10-01
We propose an experimental scheme to directly measure the spin Chern number of the time-reversal-invariant Hofstadter model in optical lattices. We first show that this model can be realized by using ultracold Fermi atoms with two pseudo-spin states encoded by the internal Zeeman states in a square optical lattice and the corresponding topological Bloch bands are characterized by the spin Chern number. We then propose and numerically demonstrate that this topological invariant can be extracted from the shift of the hybrid Wannier center in the optical lattice. By spin-resolved in situ detection of the atomic densities along the transverse direction combined with time-of-flight measurement along another spatial direction, the spin Chern number in this system is directly measured.
Controllable Photonic Band Gap and Defect Mode in a 1D CO2-Laser Optical Lattice
Institute of Scientific and Technical Information of China (English)
ZHOU Qi; YIN Jian-Ping
2008-01-01
We Dropose a new method to form a novel controllable photonic crystal with cold atoms and study the photonic band gap(PBG)of an infinite 1D CO2-laser optical lattice of 85Rb atoms under the condition of quantum coherence.A significant gap generated near the resonant frequency of the atom is founded and its dependence on physical parameters is also discussed.Using the eigenquation of defect mode,we calculate the defect mode when a defect is introduced into such a lattice.Our study shows that the proposed new method can be used to optically probe optical lattice in situ and to design some novel and controllable photonic crystals.
Observation of Parity-Time Symmetry in Optically Induced Atomic Lattices
Zhang, Zhaoyang; Sheng, Jiteng; Yang, Liu; Miri, Mohammad-Ali; Christodoulides, Demetrios N; He, Bing; Zhang, Yanpeng; Xiao, Min
2016-01-01
A wide class of non-Hermitian Hamiltonians can possess entirely real eigenvalues when they have parity-time (PT) symmetric potentials. Due to their unusual properties, this family of non-Hermitian systems has recently attracted considerable attention in diverse areas of physics, especially in coupled gain-loss waveguides and optical lattices. Given that multi-level atoms can be quite efficient in judiciously synthesizing refractive index profiles, schemes based on atomic coherence have been recently proposed to realize optical potentials with PT-symmetric properties. Here, we experimentally demonstrate for the first time PT-symmetric optical lattices in a coherently-prepared four-level N-type atomic system. By appropriately tuning the pertinent atomic parameters, the onset of PT symmetry breaking is observed through measuring an abrupt phase-shift jump. The experimental realization of such readily reconfigurable and effectively controllable PT-symmetric periodic lattice structures sets a new stage for further...
A quantum gas of polar KRb molecules in an optical lattice
Covey, Jacob; Miecnikowski, Matthew; Moses, Steven; Fu, Zhengkun; Jin, Deborah; Ye, Jun
2016-05-01
Ultracold polar molecules provide new opportunities for investigation of strongly correlated many-body spin systems such as many-body localization and quantum magnetism. In an effort to access such phenomena, we load polar KRb molecules into a three-dimensional optical lattice. In this system, we observed many-body spin dynamics between molecules pinned in a deep lattice, even though the filling fraction of the molecules was only 5%. We have recently performed a thorough investigation of the molecule creation process in an optical lattice, and consequently improved our filling fraction to 30% by preparing and overlapping Mott and band insulators of the initial atomic gases. More recently, we switched to a second generation KRb apparatus that will allow application of large, stable electric fields as well as high-resolution addressing and detection of polar molecules in optical lattices. We plan to use these capabilities to study non-equilibrium spin dynamics in an optical lattice with nearly single site resolution. I will present the status and direction of the second generation apparatus.
Low-Entropy States of Neutral Atoms in Polarization-Synthesized Optical Lattices.
Robens, Carsten; Zopes, Jonathan; Alt, Wolfgang; Brakhane, Stefan; Meschede, Dieter; Alberti, Andrea
2017-02-10
We create low-entropy states of neutral atoms by utilizing a conceptually new optical-lattice technique that relies on a high-precision, high-bandwidth synthesis of light polarization. Polarization-synthesized optical lattices provide two fully controllable optical lattice potentials, each of them confining only atoms in either one of the two long-lived hyperfine states. By employing one lattice as the storage register and the other one as the shift register, we provide a proof of concept using four atoms that selected regions of the periodic potential can be filled with one particle per site. We expect that our results can be scaled up to thousands of atoms by employing an atom-sorting algorithm with logarithmic complexity, which is enabled by polarization-synthesized optical lattices. Vibrational entropy is subsequently removed by sideband cooling methods. Our results pave the way for a bottom-up approach to creating ultralow-entropy states of a many-body system.
Competing bosonic condensates in optical lattice with a mixture of single and pair hoppings
Travin, V. M.; Kopeć, T. K.
2017-01-01
A system of ultra-cold atoms with single boson and pair tunneling of bosonic atoms is considered in an optical lattice at arbitrary temperature. A mean-field theory was applied to the extended Bose-Hubbard Hamiltonian describing the system in order to investigate the competition between superfluid and pair superfluid as a function of the chemical potential and the temperature. To this end we have applied a method based on the Laplace transform method for the efficient calculation of the statistical sum for the quantum Hamiltonian. These results may be of interest for experiments on cold atom systems in optical lattices.
Evolution of Matter Wave Interference of Bose-Condensed Gas in a 2D Optical Lattice
Institute of Scientific and Technical Information of China (English)
XUZhi-Jun; LINGuo-Cheng; XUJun; LIZhen
2005-01-01
We investigate the average particle-number distribution of the atoms in the combined potential of 2D optical lattices and 31) harmonic magnetic trap based on the Gross-Pitaevskii equation. After the combined potential is switched of[, and only the optical lattice is switched off, we give the analytical results of the wavefunction of the Bosecondensed gas at any time t by using a propagator method. For both disk-shaped and cigar-shaped Bose-condensed gas,we discuss the evolution process of the central and side peaks of the interference pattern.
Linear optics design of negative momentum compaction lattices for PS2
Energy Technology Data Exchange (ETDEWEB)
Papaphilippou,Y.; de Maria,R.; Barranco, J.; Bartmann, W.; Benedikt, M.; Carli, C.; Goddard, B.; Peggs, S.; Trbojevic, D.
2009-05-04
In view of the CERN Proton Synchrotron proposed replacement with a new ring (PS2), a detailed optics design has been undertaken following the evaluation of several lattice options. The basic arc module consists of cells providing negative momentum compaction. The straight section is formed with a combination of FODO and quadrupole triplet cells, to accommodate the injection and extraction systems, in particular the H{sup -} injection elements. The arc is matched to the straight section with a dispersion suppressor and matching module. Different lattices are compared with respect to their linear optics functions, tuning flexibility and geometrical acceptance properties.
Wu, Ya-Jie; Li, Ning; Kou, Su-Peng
2016-12-01
Motivated by the recent experimental realization of two-dimensional spin-orbit coupling through optical Raman lattice scheme, we study attractive interacting ultracold gases with spin-orbit interaction in anisotropic square optical lattices, and find that rich s-wave topological superfluids can be realized, including Z2 topological superfluids beyond the characterization of "tenfold way" in addition to chiral topological superfluids. The topological defects-superfluid vortex and edge dislocations-may host Majorana modes in some topological superfluids, which are helpful for realizing topological quantum computation and Majorana fermionic quantum computation. In addition, we also discuss the Berezinsky-Kosterlitz-Thouless phase transitions for different topological superfluids.
The solitons redistribution in Bose-Einstein condensate in quasiperiodic optical lattice
Energy Technology Data Exchange (ETDEWEB)
Burlak, G.N. [Center for Research on Engineering and Applied Sciences, Autonomous State University of Morelos, Cuernavaca, Mor. 62210 (Mexico)], E-mail: gburlak@uaem.mx; Klimov, A.B. [Departamento de Fisica, Universidad de Guadalajara, Revolucion 1500, Guadalajara, Jalisco 44420 (Mexico)], E-mail: klimov@cencar.udg.mx
2007-10-01
We numerically study the dynamical excitations in Bose-Einstein condensate (BEC) placed in periodic and quasiperiodic 2D optical lattice (OL). In case of the repulsive mean-field interaction the BEC quantum tunneling leads to a progressive soliton's splitting and generating of secondary solitons, which migrate to closest trapping potential minima. A nontrivial soliton dynamics appears when a series of {pi}-pulses (phase kicks) are applied to the optical lattice. Such sudden perturbation produces a dynamic redistribution of the secondary solitons, leading to a formation of an artificial solitonic superlattice. Different geometries of OL are analyzed.
Excitation Spectrum of Spin-1 Bosonic Atoms in an Optical Lattice with High Filling Factors
Institute of Scientific and Technical Information of China (English)
HOU Jing-Min
2007-01-01
The Green's function and the higher-order correlation functions of spin-1 cold atoms in an optical lattice are defined.Because we consider the problem of spin-1 Bose condensed atoms in an optical lattice with high filling factors,I.e.,the number density of Bose condensed atoms no is large,the fluctuation of them can be neglected and we take mean-field approximation for the higher-order terms.The excitation spectra for both the polar case and the ferromagnetic case are obtained and analyzed.
Matter-wave propagation in optical lattices: geometrical and flat-band effects
Metcalf, Mekena; Chern, Gia-Wei; Di Ventra, Massimiliano; Chien, Chih-Chun
2016-04-01
The geometry of optical lattices can be engineered, allowing the study of atomic transport along paths arranged in patterns that are otherwise difficult to probe in the solid state. A question feasible to atomic systems is related to the speed of matter-wave propagation as a function of the lattice geometry. To address this issue, we investigated, theoretically, the quantum transport of noninteracting and weakly-interacting ultracold fermionic atoms in several 2D optical lattice geometries. We find that the triangular lattice has a higher propagation velocity compared to the square lattice, and the cross-linked square lattice has an even faster propagation velocity. The increase results from the mixing of the momentum states which leads to different group velocities in quantum systems. Standard band theory provides an explanation and allows for a systematic way to search and design systems with controllable matter-wave propagation. Moreover, the presence of a flat band such as in a two-leg ladder geometry leads to a dynamical density discontinuity due to its localized atoms. Possible realizations of those dynamical phenomena are discussed.
Zitterbewegung with spin-orbit coupled ultracold atoms in a fluctuating optical lattice
Argonov, V. Yu; Makarov, D. V.
2016-09-01
The dynamics of non-interacting ultracold atoms with artificial spin-orbit coupling is considered. Spin-orbit coupling is created using two moving optical lattices with orthogonal polarizations. Our main goal is to study influence of lattice noise on Rabi oscillations. Special attention is paid to the phenomenon of the Zitterbewegung being trembling motion caused by Rabi transitions between states with different velocities. Phase and amplitude fluctuations of lattices are modelled by means of the two-dimensional stochastic Ornstein-Uhlenbeck process, also known as harmonic noise. In the the noiseless case the problem is solved analytically in terms of the momentum representation. It is shown that lattice noise significantly extends duration of the Zitterbewegung as compared to the noiseless case. This effect originates from noise-induced decoherence of Rabi oscillations.
Jaksch, D
2003-01-01
We investigate the dynamics of neutral atoms in a 2D optical lattice which traps two distinct internal states of the atoms in different columns. Two Raman lasers are used to coherently transfer atoms from one internal state to the other, thereby causing hopping between the different columns. By adjusting the laser parameters appropriately we can induce a non vanishing phase of particles moving along a closed path on the lattice. This phase is proportional to the enclosed area and we thus simulate a magnetic flux through the lattice. This setup is described by a Hamiltonian identical to the one for electrons on a lattice subject to a magnetic field and thus allows us to study this equivalent situation under very well defined controllable conditions. We consider the limiting case of huge magnetic fields -- which is not experimentally accessible for electrons in metals -- where a fractal band structure, the Hofstadter butterfly, characterizes the system.
Optics for the lattice of the compact storage ring for a Compton X-ray source
Institute of Scientific and Technical Information of China (English)
YU Pei-Cheng; WANG Yu; SHEN Xiao-zhe; HUANG Wen-Hui; YAN Li-xin; DU Ying-Chao; LI Ren-Kai; TANG Chuan-Xiang
2009-01-01
We present two types of optics for the lattice of a compact storage ring for a Compton X-ray source.The optics design for different operation modes of the storage ring are discussed in detail.For the pulse mode optics,an IBS-suppression scheme is applied to optimize the optics for lower IBS emittance growth rate;as for the steady mode,the method to control momentum compact factor is adopted[Gladkikh P,Phys.Rev.ST Accel.Beams 8,050702]to obtain stability of the electron beam.
Divalent Rydberg atoms in optical lattices: intensity landscape and magic trapping
Topcu, Turker
2013-01-01
We develop a theoretical understanding of trapping divalent Rydberg atoms in optical lattices. Because the size of the Rydberg electron cloud can be comparable to the scale of spatial variations of laser intensity, we pay special attention to averaging optical fields over the atomic wavefunctions. Optical potential is proportional to the ac Stark polarizability. We find that in the independent particle approximation for the valence electrons, this polarizability breaks into two contributions: the singly ionized core polarizability and the contribution from the Rydberg electron. Unlike the usually employed free electron polarizability, the Rydberg contribution depends both on laser intensity profile and the rotational symmetry of the total electronic wavefunction. We focus on the $J=0$ Rydberg states of Sr and evaluate the dynamic polarizabilities of the 5s$n$s($^1S_0$) and 5s$n$p($^3P_0$) Rydberg states. We specifically choose Sr atom for its optical lattice clock applications. We find that there are several ...
Optically Induced Lattice Dynamics of hexagonal manganite using Ultrafast X-ray Diffraction
Lee, Hae Ja; Workman, J. B.; Hur, N.
2005-03-01
We have studied the picosecond lattice dynamics of optically pumped hexagonal manganite LuMnO3 using ultrafast x-ray diffraction. The results show a shift and broadening of the diffraction curve due to the stimulated lattice expansion. To understand the transient response of the lattice, the measured time- and angle-resolved diffraction curves are compared with a theoretical calculation based on dynamical diffraction theory modified for the hexagonal crystal structure of LuMnO3. Our simulations reveal that a large coupling coefficient between the a-b plane and the c-axis (c13) is required to the data. We compare this result to our previous coherent phonon studies of LuMnO3 using optical pump-probe spectroscopy.
Cavity-aided magnetic-resonance microscopy of atoms in optical lattices
Purdy, Tom P; Brooks, Daniel W C; Botter, Thierry; Stamper-Kurn, Dan M
2010-01-01
Magnetic resonance imaging (MRI) is a powerful technique for investigating the microscopic properties and dynamics of physical systems. In this work we demonstrate state-sensitive MRI of ultracold atoms in an optical lattice. Single-shot spatial resolution is 120 nm, well below the lattice spacing, and number sensitivity is +/-2.4 for 150 atoms on a single site, well below Poissonian atom-number fluctuations. We achieve this by combining high-spatial-resolution control over the atomic spin using an atom chip, together with nearly quantum-limited spin measurement, obtained by dispersively coupling the atoms to light in a high-finesse optical cavity. The MRI is minimally disruptive of the atoms' internal state, preserving the magnetisation of the gas for subsequent experiments. Using this technique, we observe the nonequilibrium transport dynamics of the atoms among individual lattice sites. We see the atom cloud initially expand ballistically, followed by the onset of interaction-inhibited transport.
Measuring finite-range phase coherence in an optical lattice using Talbot interferometry
Santra, Bodhaditya; Baals, Christian; Labouvie, Ralf; Bhattacherjee, Aranya B.; Pelster, Axel; Ott, Herwig
2017-06-01
One of the important goals of present research is to control and manipulate coherence in a broad variety of systems, such as semiconductor spintronics, biological photosynthetic systems, superconducting qubits and complex atomic networks. Over the past decades, interferometry of atoms and molecules has proven to be a powerful tool to explore coherence. Here we demonstrate a near-field interferometer based on the Talbot effect, which allows us to measure finite-range phase coherence of ultracold atoms in an optical lattice. We apply this interferometer to study the build-up of phase coherence after a quantum quench of a Bose-Einstein condensate residing in a one-dimensional optical lattice. Our technique of measuring finite-range phase coherence is generic, easy to adopt and can be applied in practically all lattice experiments without further modifications.
Controlling a quantum gas of polar molecules in an optical lattice
Covey, Jacob P; Ye, Jun; Jin, Deborah S
2016-01-01
The production of molecules from dual species atomic quantum gases has enabled experiments that employ molecules at nanoKelvin temperatures. As a result, every degree of freedom of these molecules is in a well-defined quantum state and exquisitely controlled. These ultracold molecules open a new world of precision quantum chemistry in which quantum statistics, quantum partial waves, and even many-body correlations can play important roles. Moreover, to investigate the strongly correlated physics of many interacting molecular dipoles, we can mitigate lossy chemical reactions by controlling the dimensionality of the system using optical lattices formed by interfering laser fields. In a full three-dimensional optical lattice, chemistry can be turned on or off by tuning the lattice depth, which allows us to configure an array of long-range interacting quantum systems with rich internal structure. Such a system represents an excellent platform for gaining fundamental insights to complex materials based on quantum ...
Lattice location and optical activation of rare earth implanted GaN
Wahl, U; Lorenz, K; Correia, J G; Monteiro, T; De Vries, B; Vantomme, A; Vianden, R
2003-01-01
This paper reviews the current knowledge on rare earths (REs) implanted into GaN with a special focus on their lattice location and on the optical activation by means of thermal annealing. While emission channeling experiments have given information on the lattice location of rare earths following low-dose (around 10$^{13}$ cm$^{-2}$) implantation, both in the as-implanted state and after annealing up to 900°C, the lattice location of higher-dose implants (10$^{14}-10^{15}$ cm$^{-2}$) and their defect annealing behaviour were studied using the Rutherford backscattering/channeling method. The available channeling and luminescence results suggest that the optical activation of implanted REs in GaN is related to their incorporation in substitutional Ga sites combined with the effective removal of the implantation damage.
Topological orbital superfluid with chiral d-wave order in a rotating optical lattice
Hao, Ningning; Guo, Huaiming; Zhang, Ping
2017-08-01
Topological superfluid is an exotic state of quantum matter that possesses a nodeless superfluid gap in the bulk and Andreev edge modes at the boundary of a finite system. Here, we study a multi-orbital superfluid driven by an attractive s-wave interaction in a rotating optical lattice. Interestingly, we find that the rotation induces the inter-orbital hybridization and drives the system into topological orbital superfluid in accordance with intrinsically chiral d-wave pairing characteristics. Thanks to the conservation of spin, the topological orbital superfluid supports four rather than two chiral Andreev edge modes at the boundary of the lattice. Moreover, we find that the intrinsic harmonic confining potential forms a circular spatial barrier which accumulates atoms and supports a mass current under the injection of small angular momentum as an external driving force. This feature provides an experimentally detectable phenomenon to verify the topological orbital superfluid with chiral d-wave order in a rotating optical lattice.
Calculation of the Spin-Dependent Optical Lattice in Rubidium Bose-Einstein Condensation
Institute of Scientific and Technical Information of China (English)
CAO Ming-Tao; HAN Liang; QI Yue-Rong; ZHANG Shou-Gang; GAO Hong; LI Fu-Li
2012-01-01
We provide a theoretical study to calculate the spin-dependent optical lattice with rubidium Bose-Einstein condensation (BEC) in a steady magnetic field.The optical dipole potential variation at different Zeeman levels are obtained.We also show that atoms can be transported in three dimensions by changing the polarization of the trapping field.An explanation of this transportation process in an atomic coordinate is presented.
Andriyash, I A; Malka, V; d'Humières, E; Balcou, Ph
2014-01-01
The scheme of the XUV/X-ray free electron laser based on the optical undulator created by two overlapped transverse laser beams is analyzed. A kinetic theoretical description and an ad hoc numerical model are developed to account for the finite energy spread, angular divergence and the spectral properties of the electron beam in the optical lattice. The theoretical findings are compared to the results of the one- and three-dimensional numerical modeling with the spectral free electron laser code PLARES.
Trapped fermions with short-range and dipolar interactions in 2D optical lattices
DEFF Research Database (Denmark)
Larsen, Anne-Louise G.
Ultracold atoms in optical lattices are ideal quantum simulators of complex many-body Hamiltonians that arise in condensed matter systems. Manipulation of these model systems allows us to explore a variety of physical phenomena taking place in solid state systems. Here, we present mean...
Adiabatic cooling of a tunable Bose-Fermi mixture in an optical lattice
DEFF Research Database (Denmark)
Sørensen, Ole Søe; Nygaard, Nicolai; Blakie, P.B.
2009-01-01
We consider an atomic Fermi gas confined in a uniform optical lattice potential, where the atoms can pair into molecules via a magnetic field controlled narrow Feshbach resonance. Thus by adjusting the magnetic field the portion of fermionic and bosonic particles in the system can be continuously...
Rakhimov, Abdulla; Askerzade, Iman N
2014-09-01
We have shown that the critical temperature of a Bose-Einstein condensate to a normal phase transition of noninteracting bosons in cubic optical lattices has a linear dependence on the filling factor, especially at large densities. The condensed fraction exhibits a linear power law dependence on temperature in contrast to the case of ideal homogeneous Bose gases.
Multiparticle Entanglement and Spatial Addressability of Ultracold Atoms in Optical Lattices
2009-02-01
resolution imaging system will be located. • Magnetic trapping and evaporation We initially planned to realize a Bose - Einstein condensate in an... Bose Einstein Condensate in a hybrid trap consisting of the magnetic trap and a dipole trap. • Integration of the prepared optical lattice setup
Statistical mechanics of a Feshbach-coupled Bose-Fermi gas in an optical lattice
DEFF Research Database (Denmark)
Sørensen, Ole Søe; Nygaard, Nicolai; Blakie, P.B.
2009-01-01
We consider an atomic Fermi gas confined in a uniform optical lattice potential, where the atoms can pair into molecules via a magnetic-field-controlled narrow Feshbach resonance. The phase diagram of the resulting atom-molecule mixture in chemical and thermal equilibria is determined numerically...
Quantum simulation of correlated-hopping models with fermions in optical lattices
Liberto, M. Di; Creffield, C. E.; Japaridze, G. I.; Smith, C. Morais
2014-01-01
By using a modulated magnetic field in a Feshbach resonance for ultracold fermionic atoms in optical lattices, we show that it is possible to engineer a class of models usually referred to as correlated-hopping models. These models differ from the Hubbard model in exhibiting additional density-depen
Controlling coherence via tuning of the population imbalance in a bipartite optical lattice
Liberto, M. Di; Comparin, T.; Kock, T.; Ölschläger, M.; Hemmerich, A.; Smith, C. Morais
2014-01-01
The control of transport properties is a key tool at the basis of many technologically relevant effects in condensed matter. The clean and precisely controlled environment of ultracold atoms in optical lattices allows one to prepare simplified but instructive models, which can help to better underst
Inducing spin-dependent tunneling to probe magnetic correlations in optical lattices
DEFF Research Database (Denmark)
Pedersen, Kim-Georg; Andersen, Brian; Syljuåsen, Olav;
2012-01-01
We suggest a simple experimental method for probing antiferromagnetic spin correlations of two-component Fermi gases in optical lattices. The method relies on a spin selective Raman transition to excite atoms of one spin species to their first excited vibrational mode where the tunneling is large...
Wang, Ji-Guo; Yang, Shi-Jie
2017-05-01
We study a model to realize the long-distance correlated tunneling of ultracold bosons in a one-dimensional optical lattice chain. The model reveals the behavior of a quantum Newton's cradle, which is the perfect transfer between two macroscopic quantum states. Due to the Bose enhancement effect, we find that the resonantly tunneling through a Mott domain is greatly enhanced.
Development of a strontium optical lattice clock for the SOC mission on the ISS
Bongs, K; Smith, L; He, W; Kock, O; Swierad, D; Hughes, J; Schiller, S; Alighanbari, S; Origlia, S; Vogt, S; Sterr, U; Lisdat, Ch; Targat, R Le; Lodewyck, J; Holleville, D; Venon, B; Bize, S; Barwood, G P; Gill, P; Hill, I R; Ovchinnikov, Y B; Poli, N; Tino, G M; Stuhler, J; Kaenders, W
2015-01-01
Ultra-precise optical clocks in space will allow new studies in fundamental physics and astronomy. Within an European Space Agency (ESA) program, the Space Optical Clocks (SOC) project aims to install and to operate an optical lattice clock on the International Space Station (ISS) towards the end of this decade. It would be a natural follow-on to the ACES mission, improving its performance by at least one order of magnitude. The payload is planned to include an optical lattice clock, as well as a frequency comb, a microwave link, and an optical link for comparisons of the ISS clock with ground clocks located in several countries and continents. Within the EU-FP7-SPACE-2010-1 project no. 263500, during the years 2011-2015 a compact, modular and robust strontium lattice optical clock demonstrator has been developed. Goal performance is a fractional frequency instability below 1x10^{-15}, tau^{-1/2} and a fractional inaccuracy below 5x10^{-17}. Here we describe the current status of the apparatus' development, i...
Two-dimensional novel optical lattices with multi-well traps for cold atoms or molecules
Institute of Scientific and Technical Information of China (English)
Junfa Lu; Xianming Ji; Jianping Yin
2006-01-01
We propose some new schemes to constitute two-dimensional (2D) array of multi-well optical dipole traps for cold atoms (or molecules) by using an optical system consisting of a binary π-phase grating and a 2D array of rectangle microlens. We calculate the intensity distribution of each optical well in 2D array of multi-well traps and its geometric parameters and so on. The proposed 2D array of multi-well traps can be used to form novel 2D optical lattices with cold atoms (or molecules), and form various novel optical crystals with cold atoms (or molecules), or to perform quantum computing and quantum information processing on an atom chip, even to realize an array of all-optical multi-well atomic (or molecular) BoseEinstein condensates (BECs) on an all-optical integrated atom (or molecule) chip.
Control of diffusion of nanoparticles in an optical vortex lattice.
Zapata, Ivar; Delgado-Buscalioni, Rafael; Sáenz, Juan José
2016-06-01
A two-dimensional periodic optical force field, which combines conservative dipolar forces with vortices from radiation pressure, is proposed in order to influence the diffusion properties of optically susceptible nanoparticles. The different deterministic flow patterns are identified. In the low-noise limit, the diffusion coefficient is computed from a mean first passage time and the most probable escape paths are identified for those flow patterns which possess a stable stationary point. Numerical simulations of the associated Langevin equations show remarkable agreement with the analytically deduced expressions. Modifications of the force field are proposed so that a wider range of phenomena could be tested.
Hernandez, R A Vargas
2015-01-01
We show that Zeeman excitations in an ensemble of highly magnetic atoms trapped in an optical lattice lead to interacting Frenkel excitons described by a tunable $t$-$V$ model. The dispersion of the excitons and the interactions between excitons can be tuned in a wide range by transferring atoms to different Zeeman states. We show that these parameters are insensitive to an external magnetic field, which leads to an interesting possibility of engineering lattice models with significant particle-non-conserving terms. We consider the coupling of the Zeeman excitations to the translational motion of atoms in the lattice and show that the resulting Hamiltonian is equivalent to a polaron Hamiltonian, where the mathematical form of the particle - phonon interaction can be tuned by transferring atoms to different Zeeman states. We calculate the model parameters for the specific system of Dy atoms on an optical lattice with the lattice site separation 266 nm and show that the exciton interaction parameters can be tun...
Optical Signatures of Antiferromagnetic Ordering of Fermionic Atoms in an Optical Lattice
Directory of Open Access Journals (Sweden)
Francisco Cordobes Aguilar
2014-09-01
Full Text Available We show how off-resonant light scattering can provide quantitative information on antiferromagnetic ordering of a two-species fermionic atomic gas in a tightly-confined two-dimensional optical lattice. We analyze the emerging magnetic ordering of atoms in the mean-field and in random phase approximations and show how the many-body static and dynamic correlations, evaluated in the standard Feynman-Dyson perturbation series, can be detected in the scattered light signal. The staggered magnetization reveals itself in the magnetic Bragg peaks of the individual spin components. These magnetic peaks, however, can be considerably suppressed in the absence of a true long-range antiferromagnetic order. The light scattered outside the diffraction orders can be collected by a lens with highly improved signal-to-shot-noise ratio when the diffraction maxima are blocked. The collective and single-particle excitations are identified in the spectrum of the scattered light. We find that the spin-conserving and spin-exchanging atomic transitions convey information on density, longitudinal spin, and transverse spin correlations. The different correlations and scattering processes exhibit characteristic angular distribution profiles for the scattered light, and e.g., the diagnostic signal of transverse spin correlations could be separated from the optical response by the scattering direction, frequency, or polarization. We also analyze the detection accuracy by estimating the number of required measurements, constrained by the heating rate that is determined by inelastic light-scattering events. The imaging technique could be extended to the two-species fermionic states in other regions of the phase diagram where the ground-state properties are still not fully understood.
Taichenachev, A V; Yudin, V I; Oates, C W; Hoyt, C W; Barber, Z W; Hollberg, L
2006-03-01
We develop a method of spectroscopy that uses a weak static magnetic field to enable direct optical excitation of forbidden electric-dipole transitions that are otherwise prohibitively weak. The power of this scheme is demonstrated using the important application of optical atomic clocks based on neutral atoms confined to an optical lattice. The simple experimental implementation of this method--a single clock laser combined with a dc magnetic field--relaxes stringent requirements in current lattice-based clocks (e.g., magnetic field shielding and light polarization), and could therefore expedite the realization of the extraordinary performance level predicted for these clocks. We estimate that a clock using alkaline-earth-like atoms such as Yb could achieve a fractional frequency uncertainty of well below 10(-17) for the metrologically preferred even isotopes.
Negative refraction of ultra-cold atoms in optical lattices with nonuniform artificial gauge fields
Energy Technology Data Exchange (ETDEWEB)
Zhang, Ai-Xia, E-mail: zhangax@nwnu.edu.cn; Xue, Ju-Kui
2016-07-01
We theoretically study the reflection and refraction of ultra-cold atoms in optical lattices exposed to a nonuniform artificial magnetic field. The introduction of the nonuniform artificial magnetic field to the optical lattice for suitable designer magnetic potential barrier can lead to a series of intriguing reflection and refraction phenomena of atoms, including reflection, positive refraction, negative refraction and atomic matter wave splitting. Both the occurrence and the distribution of these reflection and refraction scenarios can be coherently controlled by the nonuniform artificial magnetic field. In particular, the regions close to the boundary of reflection demonstrate two more interesting propagation modes, i.e., a reflected branch of atoms comprising a positive or negative refracted branch of atoms with almost same atom population will be excited simultaneously at the magnetic potential barrier. The results can be a guide for the coherent control of the matter waves in optical lattices and the design of new atom optics devices. - Highlights: • Ultra-cold atoms in OL with nonuniform magnetic field are studied. • Matter wave reflection, refraction and splitting are coherently controlled. • Results provide a guide for the design of new atomic optics devices.
Nie, Weijie; He, Ruiyun; Cheng, Chen; Rocha, Uéslen; Rodríguez Vázquez de Aldana, Javier; Jaque, Daniel; Chen, Feng
2016-05-15
We report on the fabrication of optical lattice-like waveguide structures in an Nd:YAP laser crystal by using direct femtosecond laser writing. With periodically arrayed laser-induced tracks, the waveguiding cores can be located in either the regions between the neighbored tracks or the central zone surrounded by a number of tracks as outer cladding. The polarization of the femtosecond laser pulses for the inscription has been found to play a critical role in the anisotropic guiding behaviors of the structures. The confocal photoluminescence investigations reveal different stress-induced modifications of the structures inscribed by different polarization of the femtosecond laser beam, which are considered to be responsible for the refractive index changes of the structures. Under optical pump at 808 nm, efficient waveguide lasing at ∼1 μm wavelength has been realized from the optical lattice-like structure, which exhibits potential applications as novel miniature light sources.
Optical resonance problem in metamaterial arrays: a lattice dynamics approach
Liu, Wanguo
2016-11-01
A systematic dynamic theory is established to deal with the optical collective resonance in metamaterial arrays. As a reference model, we consider an infinite split ring resonator (SRR) array illuminated by a linearly polarized wave and introduce an N-degree-of-freedom forced oscillator equation to simplify the coupled-mode vibration problem. We derive a strict formula of resonance frequency (RF) and its adjustable range from the steady-state response. Unlike a single SRR possesses invariant RF, it successfully explains the mechanism of RF shift effect in the SRR array when the incident angle changes. Instead of full wave analysis, only one or two adjacent resonance modes can give an accurate response line shape. Our approach is applicable for metallic arrays with any N-particle cell at all incident angles and well matched with numerical results. It provides a versatile way to study the vibration dynamics in optical periodic many-body systems.
Fundamental and vortex solitons in a two-dimensional optical lattice
Yang, J; Yang, Jianke; Musslimani, Ziad
2003-01-01
Fundamental and vortex solitons in a two-dimensional optically induced waveguide array are reported. In the strong localization regime, the fundamental soliton is largely confined to one lattice site, while the vortex state comprises of four fundamental modes superimposed in a square configuration with a phase structure that is topologically equivalent to the conventional vortex. However, in the weak localization regime, both the fundamental and vortex solitons spread over many lattice sites. We further show that fundamental and vortex solitons are stable against small perturbations in the strong localization regime.
Vibrational mechanics in an optical lattice: controlling transport via potential renormalization.
Wickenbrock, A; Holz, P C; Wahab, N A Abdul; Phoonthong, P; Cubero, D; Renzoni, F
2012-01-13
We demonstrate theoretically and experimentally the phenomenon of vibrational resonance in a periodic potential, using cold atoms in an optical lattice as a model system. A high-frequency (HF) drive, with a frequency much larger than any characteristic frequency of the system, is applied by phase modulating one of the lattice beams. We show that the HF drive leads to the renormalization of the potential. We used transport measurements as a probe of the potential renormalization. The very same experiments also demonstrate that transport can be controlled by the HF drive via potential renormalization.
A novel optical beam splitter based on photonic crystal with hybrid lattices
Institute of Scientific and Technical Information of China (English)
Zhu Qing-Yi; Fu Yong-Qi; Hu De-Qing; Zhang Zhi-Min
2012-01-01
A novel optical beam splitter constructed on the basis of photonic crystal (PC) with hybrid lattices is proposed in this paper.The band gap of square-lattice PC is so designed that the incident light is divided into several branch beams.Triangular-lattice graded-index PCs are combined for focusing each branch.Computational calculations are carried out on the basis of finite-different time-domain algorithm to prove the feasibility of our design.The waveguide is unnecessary in the design.Thus the device has functions of both splitting and focusing beams.Size of the divided beam at site of full-width at half-maximum is of the order of λ/2.The designed splitter has the advantages that it has a small volume and can be integrated by conventional semiconductor manufacturing process.
Weyl points and topological nodal superfluids in a face-centered-cubic optical lattice
Lang, Li-Jun; Zhang, Shao-Liang; Law, K. T.; Zhou, Qi
2017-07-01
We point out that a face-centered-cubic (fcc) optical lattice, which can be realized by a simple scheme using three lasers, provides one a highly controllable platform for creating Weyl points and topological nodal superfluids in ultracold atoms. In noninteracting systems, Weyl points automatically arise in the Floquet band structure when shaking such fcc lattices, and sophisticated design of the tunneling is not required. More interestingly, in the presence of attractive interaction between two hyperfine spin states, which experience the same shaken fcc lattice, a three-dimensional topological nodal superfluid emerges, and Weyl points show up as the gapless points in the quasiparticle spectrum. One could either create a double Weyl point of charge 2, or split it into two Weyl points of charge 1, which can be moved in the momentum space by tuning the interactions. Correspondingly, the Fermi arcs at the surface may be linked with each other or separated as individual ones.
Lattice-supersolid phase of strongly correlated bosons in an optical cavity
Li, Yongqiang; He, Liang; Hofstetter, Walter
2013-05-01
We numerically simulate strongly correlated ultracold bosons coupled to a high-finesse cavity field, pumped by a laser beam in the transverse direction. Assuming a weak classical optical lattice added in the cavity direction, we model this system by a generalized Bose-Hubbard model, which is solved by means of bosonic dynamical mean-field theory. The complete phase diagram is established, which contains two novel self-organized quantum phases, lattice supersolid and checkerboard solid, in addition to conventional phases such as superfluid and Mott insulator. At finite but low temperature, thermal fluctuations are found to enhance the buildup of the self-organized phases. We demonstrate that cavity-mediated long-range interactions can give rise to stable lattice supersolid and checkerboard solid phases even in the regime of strong s-wave scattering. In the presence of a harmonic trap, we discuss coexistence of these self-organized phases, as relevant to experiments.
Coherent driving and freezing of bosonic matter wave in an optical Lieb lattice.
Taie, Shintaro; Ozawa, Hideki; Ichinose, Tomohiro; Nishio, Takuei; Nakajima, Shuta; Takahashi, Yoshiro
2015-11-01
Although kinetic energy of a massive particle generally has quadratic dependence on its momentum, a flat, dispersionless energy band is realized in crystals with specific lattice structures. Such macroscopic degeneracy causes the emergence of localized eigenstates and has been a key concept in the context of itinerant ferromagnetism. We report the realization of a "Lieb lattice" configuration with an optical lattice, which has a flat energy band as the first excited state. Our optical lattice potential has various degrees of freedom in its manipulation, which enables coherent transfer of a Bose-Einstein condensate into the flat band. In addition to measuring lifetime of the flat band population for different tight-binding parameters, we investigate the inter-sublattice dynamics of the system by projecting the sublattice population onto the band population. This measurement clearly shows the formation of the localized state with the specific sublattice decoupled in the flat band, and even detects the presence of flat-band breaking perturbations, resulting in the delocalization. Our results will open up the possibilities of exploring the physics of flat bands with a highly controllable quantum system.
Energy band gap and optical transition of metal ion modified double crossover DNA lattices.
Dugasani, Sreekantha Reddy; Ha, Taewoo; Gnapareddy, Bramaramba; Choi, Kyujin; Lee, Junwye; Kim, Byeonghoon; Kim, Jae Hoon; Park, Sung Ha
2014-10-22
We report on the energy band gap and optical transition of a series of divalent metal ion (Cu(2+), Ni(2+), Zn(2+), and Co(2+)) modified DNA (M-DNA) double crossover (DX) lattices fabricated on fused silica by the substrate-assisted growth (SAG) method. We demonstrate how the degree of coverage of the DX lattices is influenced by the DX monomer concentration and also analyze the band gaps of the M-DNA lattices. The energy band gap of the M-DNA, between the lowest unoccupied molecular orbital (LUMO) and the highest occupied molecular orbital (HOMO), ranges from 4.67 to 4.98 eV as judged by optical transitions. Relative to the band gap of a pristine DNA molecule (4.69 eV), the band gap of the M-DNA lattices increases with metal ion doping up to a critical concentration and then decreases with further doping. Interestingly, except for the case of Ni(2+), the onset of the second absorption band shifts to a lower energy until a critical concentration and then shifts to a higher energy with further increasing the metal ion concentration, which is consistent with the evolution of electrical transport characteristics. Our results show that controllable metal ion doping is an effective method to tune the band gap energy of DNA-based nanostructures.
Chaos and band structure in a three-dimensional optical lattice.
Boretz, Yingyue; Reichl, L E
2015-04-01
Classical chaos is known to affect wave propagation because it signifies the presence of broken symmetries. The effect of chaos has been observed experimentally for matter waves, electromagnetic waves, and acoustic waves. When these three types of waves propagate through a spatially periodic medium, the allowed propagation energies form bands. For energies in the band gaps, no wave propagation is possible. We show that optical lattices provide a well-defined system that allows a study of the effect of chaos on band structure. We have determined the band structure of a body-centered-cubic optical lattice for all theoretically possible couplings, and we find that the band structure for those lattices realizable in the laboratory differs significantly from that expected for the bands in an "empty" body-centered-cubic crystal. However, as coupling is increased, the lattice becomes increasingly chaotic and it becomes possible to produce band structure that has behavior qualitatively similar to the "empty" body-centered-cubic band structure, although with fewer degeneracies.
Realization of the Harper Hamiltonian with Artificial Gauge Fields in Optical Lattices
Miyake, Hirokazu; Siviloglou, Georgios; Kennedy, Colin; Burton, William Cody; Ketterle, Wolfgang
2014-03-01
Systems of charged particles in magnetic fields have led to many discoveries in science-such as the integer and fractional quantum Hall effects-and have become important paradigms of quantum many-body physics. We have proposed and implemented a scheme which realizes the Harper Hamiltonian, a lattice model for charged particles in magnetic fields, whose energy spectrum is the fractal Hofstadter butterfly. We experimentally realize this Hamiltonian for ultracold, charge neutral bosonic particles of 87Rb in a two-dimensional optical lattice by creating an artificial gauge field using laser-assisted tunneling and a potential energy gradient provided by gravity. Laser-assisted tunneling processes are characterized by studying the expansion of the atoms in the lattice. Furthermore, this scheme can be extended to realize spin-orbit coupling and the spin Hall effect for neutral atoms in optical lattices by modifying the motion of atoms in a spin-dependent way by laser recoil and Zeeman shifts created with a magnetic field gradient. Major advantages of our scheme are that it does not rely on near-resonant laser light to couple different spin states and should work even for fermionic particles. Our work is a step towards studying novel topological phenomena with ultracold atoms. Currently at the RAND Corporation.
Bai, Xiao-Dong; Zhang, Mei; Xiong, Jun; Yang, Guo-Jian; Deng, Fu-Guo
2015-01-01
We investigate the formation of discrete breathers (DBs) and the dynamics of the mixture of two-species Bose-Einstein condensates (BECs) in open boundary optical lattices using the discrete nonlinear Schrödinger equations. The results show that the coupling of intra- and interspecies interaction can lead to the existence of pure single-species DBs and symbiotic DBs (i.e., two-species DBs). Furthermore, we find that there is a selective distillation phenomenon in the dynamics of the mixture of two-species BECs. One can selectively distil one species from the mixture of two-species BECs and can even control dominant species fraction by adjusting the intra- and interspecies interaction in optical lattices. Our selective distillation mechanism may find potential application in quantum information storage and quantum information processing based on multi-species atoms. PMID:26597592
Systematic studies on the effect of linear lattice optics for space-charge limited beams
Fitterer, M; Molodozhentsev, A; Müller, A S
2015-01-01
The HL-LHC (High Luminosity LHC) project aims to an increase of the luminosity of the LHC by a factor of 10. In order to realize this ambitious goal, the LHC itself has to undergo a major upgrade accompanied by an extensive upgrade of the complete injector complex referred to as LHC injector upgrade (LIU). In the framework of the LIU project, a new rapid cycling synchrotron (RCS) as an alternative to the energy upgrade of the existing PS Booster has been proposed. Motivated by the optics studies conducted for this RCS, the more general question of the influence of the linear optics on the machine performance has been raised. In this paper, we want to investigate this question by comparing different lattices with the final aim of identifying lattice characteristics advantageous under strong space-charge effects.
Controlling coherence via tuning of the population imbalance in a bipartite optical lattice
di Liberto, Marco Fedele
2015-03-01
The control of transport properties is a key tool at the basis of many technologically relevant effects in condensed matter. The clean and precisely controlled environment of ultracold atoms in optical lattices allows one to prepare simplified but instructive models, which can help to better understand the underlying physical mechanisms. Here we show that by tuning a structural deformation of the unit cell in a bipartite optical lattice, one can induce a phase transition from a superfluid into various Mott insulating phases forming a shell structure in the superimposed harmonic trap. The Mott shells are identified via characteristic features in the visibility of Bragg maxima in momentum spectra. The experimental findings are explained by Gutzwiller mean-field and quantum Monte Carlo calculations. Our system bears similarities with the loss of coherence in cuprate superconductors, known to be associated with the doping induced buckling of the oxygen octahedra surrounding the copper sites.
Evolution of Matter Wave Interference of Bose-Condensed Gas in a 1D Optical Lattice
Institute of Scientific and Technical Information of China (English)
XU Zhi-Jun; ZHANG Dong-Mei
2007-01-01
For a Bose-condensed gas in a combined potential consisting of an axially-symmetric harmonic magnetic trap and one-dimensional (1D) optical lattice, using the mean-field Gross-Pitaevskii (G-P) equation and the propagator method, we obtain the analytical result of the order parameter for matter wave interference at any time. The evolution of the interference pattern under a variation of the relative phase △φ between successive subcondensates trapped on an optical lattices is also studied. For △φ = π, the interference pattern is symmetric with two sharp peaks, which are symmetrically located on a straight line on both sides of a vacant central peak and moving apart from each other. This work is in agreement with available experimental results.
Artificial topological models based on a one-dimensional spin-dependent optical lattice
Zheng, Zhen; Pu, Han; Zou, Xubo; Guo, Guangcan
2017-01-01
Topological matter is a popular topic in both condensed matter and cold-atom research. In the past decades, a variety of models have been identified with fascinating topological features. Some, but not all, of the models can be found in materials. As a fully controllable system, cold atoms trapped in optical lattices provide an ideal platform to simulate and realize these topological models. Here we present a proposal for synthesizing topological models in cold atoms based on a one-dimensional spin-dependent optical lattice potential. In our system, features such as staggered tunneling, staggered Zeeman field, nearest-neighbor interaction, beyond-near-neighbor tunneling, etc. can be readily realized. They underlie the emergence of various topological phases. Our proposal can be realized with current technology and hence has potential applications in quantum simulation of topological matter.
Surface-modified Wannier-Stark states in a 1D optical lattice
Maury, A; Gorza, M -P; Lambrecht, A; Guérout, R
2016-01-01
We study the energy spectrum of atoms trapped in a vertical 1D optical lattice in close proximity to a reflective surface. We propose an effective model to describe the interaction between the atoms and the surface at any distance. Our model includes the long-range Casimir-Polder potential together with a short-range Lennard-Jones potential, which are considered non-perturbatively with respect to the optical lattice potential. We find an intricate energy spectrum which contains a pair of loosely-bound states localized close to the surface in addition to a surface-modified Wannier-Stark ladder at long distances. Atomic interferometry involving those loosely-bound atom-surface states is proposed to probe the adsorption dynamics of atoms on mirrors.
Controlled Production of Sub-Radiant States of a Diatomic Molecule in an Optical Lattice
Takasu, Yosuke; Takahashi, Yoshiro; Borkowski, Mateusz; Ciuryło, Roman; Julienne, Paul S
2012-01-01
We report successful production of sub-radiant states of a two-atom system in a three-dimensional optical lattice starting from doubly occupied sites in a Mott insulator phase of a quantum gas of atomic ytterbium. We can selectively produce either sub-radiant 1g state or super-radiant 0u state by choosing the excitation laser frequency. The inherent weak excitation rate for the sub-radiant 1g state is overcome by the increased atomic density due to the tight-confinement in a three-dimensional optical lattice. Our experimental measurements of binding energies, linewidth, and Zeeman shift confirm observation of sub-radiant levels of the 1g state of the Yb_2 molecule.
Tarallo, M G; Poli, N; Chiofalo, M L; Wang, F -Y; Tino, G M
2012-01-01
In this paper we describe and compare different methods used for accurate determination of forces acting on matter-wave packets in optical lattices. The quantum interference nature responsible for the production of both Bloch oscillations and coherent delocalization is investigated in detail. We study conditions for optimal detection of Bloch oscillation for a thermal ensemble of cold atoms with a large velocity spread. We report on the experimental observation of resonant tunneling in an amplitude-modulated (AM) optical lattice up to the sixth harmonic with Fourier-limited linewidth. We then explore the fundamental and technical phenomena which limit both the sensitivity and the final accuracy of the atomic force sensor at 10^{-7} precision level [1], with an analysis of the coherence time of the system and addressing few simple setup changes to go beyond the current accuracy.
Self-consistent approach for Bose-condensed atoms in optical lattices
Directory of Open Access Journals (Sweden)
V.I. Yukalov
2013-06-01
Full Text Available Bose atoms in optical lattices are considered at low temperatures and weak interactions, when Bose-Einstein condensate is formed. A self-consistent approach, based on the use of a representative statistical ensemble, is employed, guaranteeing a gapless spectrum of collective excitations and the validity of conservation laws. In order to show that the approach is applicable to both weak and tight binding, the problem is treated in the Bloch as well as in the Wannier representations. Both these ways result in similar expressions that are compared for the self-consistent Hartree-Fock-Bogolubov approximation. A convenient general formula for the superfluid fraction of atoms in an optical lattice is derived.
Ultra-cold mechanical resonators coupled to atoms in an optical lattice
Geraci, Andrew A
2009-01-01
We propose an experiment utilizing an array of cooled micro-cantilevers coupled to a sample of ultra-cold atoms trapped near a micro-fabricated surface. The cantilevers allow individual lattice site addressing for atomic state control and readout, and potentially may be useful in optical lattice quantum computation schemes. Assuming resonators can be cooled to their vibrational ground state, the implementation of a two-qubit controlled-NOT gate with atomic internal states and the motional states of the resonator is described. We also consider a protocol for entangling two or more cantilevers on the atom chip with different resonance frequencies, using the trapped atoms as an intermediary. Although similar experiments could be carried out with magnetic microchip traps, the optical confinement scheme we consider may exhibit reduced near-field magnetic noise and decoherence. Prospects for using this novel system for tests of quantum mechanics at macroscopic scales or quantum information processing are discussed.
Controlling and detecting spin correlations of ultracold atoms in optical lattices.
Trotzky, Stefan; Chen, Yu-Ao; Schnorrberger, Ute; Cheinet, Patrick; Bloch, Immanuel
2010-12-31
We report on the controlled creation of a valence bond state of delocalized effective-spin singlet and triplet dimers by means of a bichromatic optical superlattice. We demonstrate a coherent coupling between the singlet and triplet states and show how the superlattice can be employed to measure the singlet-fraction employing a spin-blockade effect. Our method provides a reliable way to detect and control nearest-neighbor spin correlations in many-body systems of ultracold atoms. Being able to measure these correlations is an important ingredient in studying quantum magnetism in optical lattices. We furthermore employ a SWAP operation between atoms which are part of different triplets, thus effectively increasing their bond-length. Such a SWAP operation provides an important step towards the massively parallel creation of a multiparticle entangled state in the lattice.
Lin, Chenxi; Povinelli, Michelle L
2009-10-26
In this paper, we use the transfer matrix method to calculate the optical absorptance of vertically-aligned silicon nanowire (SiNW) arrays. For fixed filling ratio, significant optical absorption enhancement occurs when the lattice constant is increased from 100 nm to 600 nm. The enhancement arises from an increase in field concentration within the nanowire as well as excitation of guided resonance modes. We quantify the absorption enhancement in terms of ultimate efficiency. Results show that an optimized SiNW array with lattice constant of 600 nm and wire diameter of 540 nm has a 72.4% higher ultimate efficiency than a Si thin film of equal thickness. The enhancement effect can be maintained over a large range of incidence angles.
Geopotential measurements with synchronously linked optical lattice clocks
Takano, Tetsushi; Takamoto, Masao; Ushijima, Ichiro; Ohmae, Noriaki; Akatsuka, Tomoya; Yamaguchi, Atsushi; Kuroishi, Yuki; Munekane, Hiroshi; Miyahara, Basara; Katori, Hidetoshi
2016-10-01
According to Einstein's theory of relativity, the passage of time changes in a gravitational field. On Earth, raising a clock by 1 cm increases its apparent tick rate by 1.1 parts in 1018, allowing chronometric levelling through comparison of optical clocks. Here, we demonstrate such geopotential measurements by determining the height difference of master and slave clocks separated by 15 km with an uncertainty of 5 cm. A subharmonic of the master clock laser is delivered through a telecom fibre to synchronously operate the distant clocks. Clocks operated under such phase coherence reject clock laser noise and facilitate proposals for linking clocks and interferometers. Taken over half a year, 11 measurements determine the fractional frequency difference between the two clocks to be 1,652.9(5.9) × 10-18, consistent with an independent measurement by levelling and gravimetry. Our system demonstrates a building block for an internet of clocks, which may constitute ‘quantum benchmarks’, serving as height references with dynamic responses.
Real-time geopotentiometry with synchronously linked optical lattice clocks
Takano, Tetsushi; Ushijima, Ichiro; Ohmae, Noriaki; Akatsuka, Tomoya; Yamaguchi, Atsushi; Kuroishi, Yuki; Munekane, Hiroshi; Miyahara, Basara; Katori, Hidetoshi
2016-01-01
According to the Einstein's theory of relativity, the passage of time changes in a gravitational field. On earth, raising a clock by one centimetre increases its tick rate by 1.1 parts in 10$^{18}$, enabling optical clocks to perform precision geodesy. Here, we demonstrate geopotentiometry by determining the height difference of master and slave clocks separated by 15 km with uncertainty of 5 cm. The subharmonic of the master clock is delivered through a telecom fibre to phase-lock and synchronously interrogate the slave clock. This protocol rejects laser noise in the comparison of two clocks, which improves the stability of measuring the gravitational red shift. Such phase-coherently operated clocks facilitate proposals for linking clocks and interferometers. Over half a year, 11 measurements determine the fractional frequency difference between the two clocks to be $1,652.9(5.9)\\times 10^{-18}$, or a height difference of 1,516(5) cm, consistent with an independent measurement by levelling and gravimetry. Ou...
Nonlinear Sensing With Collective States of Ultracold Atoms in Optical Lattices
2015-04-02
decimation algorithm , a method that takes into account quantum correlations. B.1. In collaboration with D. Blume and X.Y. Yin at Washington State...Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 Nonlinear quantum sensing, quantum metrology, ultracold atoms, optical lattices REPORT...with applications to interaction-based quantum metrology, Physical Review A, (10 2014): 0. doi: 10.1103/PhysRevA.90.041602 Khan W Mahmud, Lei Jiang
Deconfinement and quantum liquid crystalline states of dipolar fermions in optical lattices
2009-01-01
We describe a simple model of fermions in quasi-one dimension that features interaction induced deconfinement (a phase transition where the effective dimensionality of the system increases as interactions are turned on) and which can be realised using dipolar fermions in an optical lattice. The model provides a relisation of a "soft quantum matter" phase diagram of strongly-correlated fermions, featuring meta-nematic, smectic and crystalline states, in addition to the normal Fermi liquid. In ...
Nonlinear dynamics of wave packets in PT-symmetric optical lattices near the phase transition point
Nixon, Sean; Yang, Jianke
2012-01-01
Nonlinear dynamics of wave packets in PT-symmetric optical lattices near the phase-transition point are analytically studied. A nonlinear Klein-Gordon equation is derived for the envelope of these wave packets. A variety of novel phenomena known to exist in this envelope equation are shown to also exist in the full equation including wave blowup, periodic bound states and solitary wave solutions.
Bloch Oscillations of Two-Component Bose-Einstein Condensates in Optical Lattices
Institute of Scientific and Technical Information of China (English)
GU Huai-Qiang; WANG Zhi-Cheng; JIN Kang; TAN Lei
2006-01-01
@@ We study the Bloch oscillations of two-component Bose-Einstein condensates trapped in spin-dependent optical lattices. The influence of the intercomponent atom interaction on the system is discussed in detail Accelerated breakdown of the Bloch oscillations and revival phenomena are found respectively for the repulsive and attractive case. For both the cases, the system will finally be set in a quantum self-trapping state due to dynamical instability.
Nonlinear control of chaotic walking of atoms in an optical lattice
Yu, Argonov V.; Prants, S.V.
2007-01-01
Centre-of-mass atomic motion in an optical lattice near the resonance is shown to be a chaotic walking due to the interplay between coherent internal atomic dynamics and spontaneous emission. Statistical properties of chaotic atomic motion can be controlled by the single parameter, the detuning between the atomic transition frequency and the laser frequency. We derive a Fokker-Planck equation in the energetic space to describe the atomic transport near the resonance and demonstrate numericall...
Analysis of the blackbody-radiation shift in an ytterbium optical lattice clock
Xu, Yi-Lin; Xu, Xin-Ye
2016-10-01
We accurately evaluate the blackbody-radiation shift in a 171Yb optical lattice clock by utilizing temperature measurement and numerical simulation. In this work. three main radiation sources are considered for the blackbody-radiation shift, including the heated atomic oven, the warm vacuum chamber, and the room-temperature vacuum windows. The temperatures on the outer surface of the vacuum chamber are measured during the clock operation period by utilizing seven calibrated temperature sensors. Then we infer the temperature distribution inside the vacuum chamber by numerical simulation according to the measured temperatures. Furthermore, we simulate the temperature variation around the cold atoms while the environmental temperature is fluctuating. Finally, we obtain that the total blackbody-radiation shift is -1.289(7) Hz with an uncertainty of 1.25 × 10-17 for our 171Yb optical lattice clock. The presented method is quite suitable for accurately evaluating the blackbody-radiation shift of the optical lattice clock in the case of lacking the sensors inside the vacuum chamber. Project supported by the National Key Basic Research and Development Program of China (Grant No. 2012CB821302), the National Natural Science Foundation of China (Grant No. 11134003), the National High Technology Research and Development Program of China (Grant No. 2014AA123401), and the Shanghai Excellent Academic Leaders Program of China (Grant No. 12XD1402400).
Quantum phases from competing short- and long-range interactions in an optical lattice.
Landig, Renate; Hruby, Lorenz; Dogra, Nishant; Landini, Manuele; Mottl, Rafael; Donner, Tobias; Esslinger, Tilman
2016-04-28
Insights into complex phenomena in quantum matter can be gained from simulation experiments with ultracold atoms, especially in cases where theoretical characterization is challenging. However, these experiments are mostly limited to short-range collisional interactions; recently observed perturbative effects of long-range interactions were too weak to reach new quantum phases. Here we experimentally realize a bosonic lattice model with competing short- and long-range interactions, and observe the appearance of four distinct quantum phases--a superfluid, a supersolid, a Mott insulator and a charge density wave. Our system is based on an atomic quantum gas trapped in an optical lattice inside a high-finesse optical cavity. The strength of the short-range on-site interactions is controlled by means of the optical lattice depth. The long (infinite)-range interaction potential is mediated by a vacuum mode of the cavity and is independently controlled by tuning the cavity resonance. When probing the phase transition between the Mott insulator and the charge density wave in real time, we observed a behaviour characteristic of a first-order phase transition. Our measurements have accessed a regime for quantum simulation of many-body systems where the physics is determined by the intricate competition between two different types of interactions and the zero point motion of the particles.
Controllable Persistent Atom Current of Bose-Einstein Condensates in an Optical Lattice Ring
Institute of Scientific and Technical Information of China (English)
ZHENG Gong-Ping; LIANG Jiu-Qing
2005-01-01
In this paper the macroscopic quantum state of Bose-Einstein condensates in optical lattices is studied by solving the periodic Gross-Pitaevskii equation in one-dimensional geometry. It is shown that an exact solution seen to be a travelling wave of excited macroscopic quantum states resultes in a persistent atom current, which can be controlled by adjusting of the barrier height of the optical periodic potential. A critical condition to generate the travelling wave is demonstrated and we moreover propose a practical experiment to realize the persistent atom current in a toroidal atom waveguide.
Development of a strontium optical lattice clock for the SOC mission on the ISS
Origlia, S.; Schiller, S.; Pramod, M. S.; Smith, L.; Singh, Y.; He, W.; Viswam, S.; Świerad, D.; Hughes, J.; Bongs, K.; Sterr, U.; Lisdat, Ch.; Vogt, S.; Bize, S.; Lodewyck, J.; Le Targat, R.; Holleville, D.; Venon, B.; Gill, P.; Barwood, G.; Hill, I. R.; Ovchinnikov, Y.; Kulosa, A.; Ertmer, W.; Rasel, E.-M.; Stuhler, J.; Kaenders, W.
2016-04-01
The ESA mission "Space Optical Clock" project aims at operating an optical lattice clock on the ISS in approximately 2023. The scientific goals of the mission are to perform tests of fundamental physics, to enable space-assisted relativistic geodesy and to intercompare optical clocks on the ground using microwave and optical links. The performance goal of the space clock is less than 1 × 10-17 uncertainty and 1 × 10-15 τ-1/2 instability. Within an EU-FP7-funded project, a strontium optical lattice clock demonstrator has been developed. Goal performances are instability below 1 × 10-15 τ-1/2 and fractional inaccuracy 5 × 10-17. For the design of the clock, techniques and approaches suitable for later space application are used, such as modular design, diode lasers, low power consumption subunits, and compact dimensions. The Sr clock apparatus is fully operational, and the clock transition in 88Sr was observed with linewidth as small as 9 Hz.
Development of a strontium optical lattice clock for the SOC mission on the ISS
Origlia, S; Pramod, M S; Smith, L; Singh, Y; He, W; Viswam, S; Świerad, D; Hughes, J; Bongs, K; Sterr, U; Lisdat, Ch; Vogt, S; Bize, S; Lodewyck, J; Targat, R Le; Holleville, D; Venon, B; Gill, P; Barwood, G; Hill, I R; Ovchinnikov, Y; Kulosa, A; Ertmer, W; Rasel, E -M; Stuhler, J; Kaenders, W
2016-01-01
The ESA mission "Space Optical Clock" project aims at operating an optical lattice clock on the ISS in approximately 2023. The scientific goals of the mission are to perform tests of fundamental physics, to enable space-assisted relativistic geodesy and to intercompare optical clocks on the ground using microwave and optical links. The performance goal of the space clock is less than $1 \\times 10^{-17}$ uncertainty and $1 \\times 10^{-15} {\\tau}^{-1/2}$ instability. Within an EU-FP7-funded project, a strontium optical lattice clock demonstrator has been developed. Goal performances are instability below $1 \\times 10^{-15} {\\tau}^{-1/2}$ and fractional inaccuracy $5 \\times 10^{-17}$. For the design of the clock, techniques and approaches suitable for later space application are used, such as modular design, diode lasers, low power consumption subunits, and compact dimensions. The Sr clock apparatus is fully operational, and the clock transition in $^{88}$Sr was observed with linewidth as small as 9 Hz.
Magneto-optical response in the arbitrary-Chern number topological phase on square lattice
Energy Technology Data Exchange (ETDEWEB)
Wang, Yi-Xiang, E-mail: wangyixiang@jiangnan.edu.cn
2016-07-01
In this work, we investigate the magneto-optical response in the arbitrary-Chern number topological phase. Based on the Dirac theory, we derive the analytic expressions for the magneto-optical response. More importantly, we construct the model on the possible square lattice and make the numerical calculations with the exact diagonalization method. We find the analytical and numerical results are in good agreement with each other. For the optical absorption spectrum, the low-energy absorptive peaks and the corresponding hopping processes are distinct in different Chern number phases, heavily depending on the filling factor of the system. While for the optical Hall conductivities, the physical mechanisms are revealed for the dichroism of the absorption peaks in response to the right- and left-circularly polarized light. We discuss the feasibility of these results in experiment. - Highlights: • The arbitrary-Chern number topological phase is constructed on square lattice. • The optical absorption spectra are distinct in different Chern number phases. • The physical mechanisms are revealed for the dichroism of the absorption peaks.
8-dimensional lattice optimized formats in 25-GBaud/s VCSEL based IM/DD optical interconnections
DEFF Research Database (Denmark)
Lu, Xiaofeng; Tafur Monroy, Idelfonso
2015-01-01
Temporally combined 4- and 8-dimensional lattice grids optimized modulation formats for VCSEL based IM/DD short-reach optical inter-connections has been proposed and investigated numerically together with its conventional counterpart PAM-4. © 2015 OSA.......Temporally combined 4- and 8-dimensional lattice grids optimized modulation formats for VCSEL based IM/DD short-reach optical inter-connections has been proposed and investigated numerically together with its conventional counterpart PAM-4. © 2015 OSA....
Bloch oscillations and mean-field effects of Bose-Einstein condensates in 1D optical lattices.
Morsch, O; Müller, J H; Cristiani, M; Ciampini, D; Arimondo, E
2001-10-01
We have loaded Bose-Einstein condensates into one-dimensional, off-resonant optical lattices and accelerated them by chirping the frequency difference between the two lattice beams. For small values of the lattice well depth, Bloch oscillations were observed. Reducing the potential depth further, Landau-Zener tunneling out of the lowest lattice band, leading to a breakdown of the oscillations, was also studied and used as a probe for the effective potential resulting from mean-field interactions as predicted by Choi and Niu [Phys. Rev. Lett. 82, 2022 (1999)]. The effective potential was measured for various condensate densities and trap geometries, yielding good qualitative agreement with theoretical calculations.
A quantum gas microscope for detecting single atoms in a Hubbard-regime optical lattice.
Bakr, Waseem S; Gillen, Jonathon I; Peng, Amy; Fölling, Simon; Greiner, Markus
2009-11-05
Recent years have seen tremendous progress in creating complex atomic many-body quantum systems. One approach is to use macroscopic, effectively thermodynamic ensembles of ultracold atoms to create quantum gases and strongly correlated states of matter, and to analyse the bulk properties of the ensemble. For example, bosonic and fermionic atoms in a Hubbard-regime optical lattice can be used for quantum simulations of solid-state models. The opposite approach is to build up microscopic quantum systems atom-by-atom, with complete control over all degrees of freedom. The atoms or ions act as qubits and allow the realization of quantum gates, with the goal of creating highly controllable quantum information systems. Until now, the macroscopic and microscopic strategies have been fairly disconnected. Here we present a quantum gas 'microscope' that bridges the two approaches, realizing a system in which atoms of a macroscopic ensemble are detected individually and a complete set of degrees of freedom for each of them is determined through preparation and measurement. By implementing a high-resolution optical imaging system, single atoms are detected with near-unity fidelity on individual sites of a Hubbard-regime optical lattice. The lattice itself is generated by projecting a holographic mask through the imaging system. It has an arbitrary geometry, chosen to support both strong tunnel coupling between lattice sites and strong on-site confinement. Our approach can be used to directly detect strongly correlated states of matter; in the context of condensed matter simulation, this corresponds to the detection of individual electrons in the simulated crystal. Also, the quantum gas microscope may enable addressing and read-out of large-scale quantum information systems based on ultracold atoms.
Sudden-quench dynamics of Bardeen-Cooper-Schrieffer states in deep optical lattices
Nuske, Marlon; Mathey, L.; Tiesinga, Eite
2016-08-01
We determine the exact dynamics of an initial Bardeen-Cooper-Schrieffer (BCS) state of ultracold atoms in a deep hexagonal optical lattice. The dynamical evolution is triggered by a quench of the lattice potential such that the interaction strength Uf is much larger than the hopping amplitude Jf. The quench initiates collective oscillations with frequency | Uf|/2 π in the momentum occupation numbers and imprints an oscillating phase with the same frequency on the BCS order parameter Δ . The oscillation frequency of Δ is not reproduced by treating the time evolution in mean-field theory. In our theory, the momentum noise (i.e., density-density) correlation functions oscillate at frequency | Uf|/2 π as well as at its second harmonic. For a very deep lattice, with zero tunneling energy, the oscillations of momentum occupation numbers are undamped. Nonzero tunneling after the quench leads to dephasing of the different momentum modes and a subsequent damping of the oscillations. The damping occurs even for a finite-temperature initial BCS state, but not for a noninteracting Fermi gas. Furthermore, damping is stronger for larger order parameter and may therefore be used as a signature of the BCS state. Finally, our theory shows that the noise correlation functions in a honeycomb lattice will develop strong anticorrelations near the Dirac point.
Optical induction of Bessel-like lattices in methyl-red doped liquid crystal cells
Mantashyan, Paytsar; Drampyan, Rafael; Beeckman, Jeroen; Willekens, Oliver; Neyts, Kristiaan
2015-03-01
The optical induction of annular photonic lattices by a traveling Bessel beam has been investigated in Methyl-red (MR) doped nematic liquid crystal (LC). Non-diffracting Bessel beams were formed by an axicon. The induced Bessel-like lattice had a ~15 μm period in the radial direction. The lattice was tested by measuring the forward diffracted power of the recording Bessel beam. The dependency on the angle between the polarization of the laser beam and the director of the LC and on the axial position of the LC cell had been investigated. A diffraction efficiency of 14% had been obtained. Investigations have been performed for different MR dye doping concentrations. An erasure time of the lattice of 60 s has been determined by a 532 nm probe Gaussian beam of 2 mW in a LC cell with MR dye concentration of 1.15 wt%. The induced periodically varying refractive index in the LC medium is analogous to microstructured fibers and allows the study of light localization and soliton behavior in highly nonlinear waveguide arrays.
Quantum many-body dynamics of ultracold atoms in optical lattices
Energy Technology Data Exchange (ETDEWEB)
Kessler, Stefan
2014-04-15
Ultracold atoms can be trapped in periodic intensity patterns of light created by counterpropagating laser beams, so-called optical lattices. In contrast to its natural counterpart, electrons in a solid state crystal, this man-made setup is very clean and highly isolated from environmental degrees of freedom. Moreover, to a large extent, the experimenter has dynamical control over the relevant system parameters: the interaction between atoms, the tunneling amplitude between lattice sites, and even the dimensionality of the lattice. These advantages render this system a unique platform for the simulation of quantum many-body dynamics for various lattice Hamiltonians as has been demonstrated in several experiments by now. The most significant step in recent times has arguably been the introduction of single-site detection of individual atoms in optical lattices. This technique, based on fluorescence microscopy, opens a new doorway for the study of quantum many-body states: the detection of the microscopic atom configuration. In this thesis, we theoretically explore the dynamics of ultracold atoms in optical lattices for various setups realized in present-day experiments. Our main focus lies on aspects that become experimentally accessible by (realistic extensions of) the novel single-site measurement technique. The first part deals with the expansion of initially confined atoms in a homogeneous lattice, which is one way to create atomic motion in experiments. We analyze the buildup of spatial correlations during the expansion of a finitely extended band insulating state in one dimension. The numerical simulation reveals the creation of remote spin-entangled fermions in the strongly interacting regime. We discuss the experimental observation of such spin-entangled pairs by means of a single-site measurement. Furthermore, we suggest studying the impact of observations on the expansion dynamics for the extreme case of a projective measurement in the spatial occupation
Inner-shell magnetic dipole transition in Tm atom as a candidate for optical lattice clocks
Sukachev, D; Tolstikhina, I; Kalganova, E; Vishnyakova, G; Khabarova, K; Tregubov, D; Golovizin, A; Sorokin, V; Kolachevsky, N
2016-01-01
We consider a narrow magneto-dipole transition in the $^{169}$Tm atom at the wavelength of $1.14\\,\\mu$m as a candidate for a 2D optical lattice clock. Calculating dynamic polarizabilities of the two clock levels $[\\text{Xe}]4f^{13}6s^2 (J=7/2)$ and $[\\text{Xe}]4f^{13}6s^2 (J=5/2)$ in the spectral range from $250\\,$nm to $1200\\,$nm, we suggest the "magic" wavelength for the optical lattice at $807\\,$nm. Frequency shifts due to black-body radiation (BBR), the van der Waals interaction, the magnetic dipole-dipole interaction and other effects which can perturb the transition frequency are calculated. The transition at $1.14\\,\\mu$m demonstrates low sensitivity to the BBR shift corresponding to $8\\times10^{-17}$ in fractional units at room temperature which makes it an interesting candidate for high-performance optical clocks. The total estimated frequency uncertainty is less than $5 \\times 10^{-18}$ in fractional units. By direct excitation of the $1.14\\,\\mu$m transition in Tm atoms loaded into an optical dipole ...
Optical lattice clock with Strontium atoms; Horloge a reseau optique a atomes de strontium
Energy Technology Data Exchange (ETDEWEB)
Baillard, X
2008-01-15
This thesis presents the latest achievements regarding the optical lattice clock with Strontium atoms developed at LNE-SYRTE. After a review of the different types of optical clocks that are currently under development, we stress on the concept of optical lattice clock which was first imagined for Sr{sup 87} using the {sup 1}S{sub 0} {yields} {sup 3}P{sub 0} transition. We exhibit the features of this atom, in particular the concept of magic wavelength for the trap, and the achievable performances for this kind of clock. The second part presents the experimental aspects, insisting particularly on the ultra-stable laser used for the interrogation of the atoms which is a central part of the experiment. Among the latest improvements, an optical pumping phase and an interrogation phase using a magnetic field have been added in order to refine the evaluation of the Zeeman effect. Finally, the last part presents the experimental results. The last evaluation of the clock using Sr{sup 87} atoms allowed us to reach a frequency accuracy of 2.6*10{sup -15} and a measurement in agreement with the one made at JILA (Tokyo university) at the 10{sup -15} level. On another hand, thanks to recent theoretical proposals, we made a measurement using the bosonic isotope Sr{sup 88} by adapting the experimental setup. This measurement represents the first evaluation for this type of clock, with a frequency accuracy of 7*10{sup -14}. (author)
Optically induced lattice dynamics probed with ultrafast x-ray diffraction
Lee, H. J.; Workman, J.; Wark, J. S.; Averitt, R. D.; Taylor, A. J.; Roberts, J.; McCulloch, Q.; Hof, D. E.; Hur, N.; Cheong, S.-W.; Funk, D. J.
2008-04-01
We have studied the picosecond lattice dynamics of optically pumped hexagonal LuMnO3 by using ultrafast x-ray diffraction. The results show a shift and broadening of the diffraction curve due to the stimulated lattice expansion. To understand the transient response of the lattice, the measured time- and angle-resolved diffraction curves are compared to a theoretical calculation based on the dynamical diffraction theory of coherent phonon propagation modified for the hexagonal crystal structure of LuMnO3 . Our simulations reveal that a large coupling coefficient (c13) between the a-b plane and the c axis is required to fit the data. Though we interpret the transient response within the framework of thermal coherent phonons, we do not exclude the possibility of strong nonthermal coupling of the electronic excitation to the atomic framework. We compare this result to our previous coherent phonon studies of LuMnO3 in which we used optical pump-probe spectroscopy.
Bound states and Cooper pairs of molecules in 2D optical lattices bilayer
Energy Technology Data Exchange (ETDEWEB)
Camacho-Guardian, A.; Dominguez-Castro, G.A.; Paredes, R. [Instituto de Fisica, Universidad Nacional Autonoma de Mexico (Mexico)
2016-08-15
We investigate the formation of Cooper pairs, bound dimers and the dimer-dimer elastic scattering of ultracold dipolar Fermi molecules confined in a 2D optical lattice bilayer configuration. While the energy and their associated bound states are determined in a variational way, the correlated two-molecule pair is addressed as in the original Cooper formulation. We demonstrate that the 2D lattice confinement favors the formation of zero center mass momentum bound states. Regarding the Cooper pairs binding energy, this depends on the molecule populations in each layer. Maximum binding energies occur for non-zero (zero) pair momentum when the Fermi system is polarized (unpolarized). We find an analytic expression for the dimer-dimer effective interaction in the deep BEC regime. The present analysis represents a route for addressing the BCS-BEC crossover in dipolar Fermi gases confined in 2D optical lattices within the current experimental panorama. (copyright 2016 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Study for optical manipulation of a surfactant-covered droplet using lattice Boltzmann method.
Choi, Se Bin; Kondaraju, Sasidhar; Sang Lee, Joon
2014-03-01
In this study, we simulated deformation and surfactant distribution on the interface of a surfactant-covered droplet using optical tweezers as an external source. Two optical forces attracted a single droplet from the center to both sides. This resulted in an elliptical shape deformation. The droplet deformation was characterized as the change of the magnitudes of surface tension and optical force. In this process, a non-linear relationship among deformation, surface tension, and optical forces was observed. The change in the local surfactant concentration resulting from the application of optical forces was also analyzed and compared with the concentration of surfactants subjected to an extensional flow. Under the optical force influence, the surfactant molecules were concentrated at the droplet equator, which is totally opposite to the surfactants behavior under extensional flow, where the molecules were concentrated at the poles. Lastly, the quasi-equilibrium surfactant distribution was obtained by combining the effects of the optical forces with the extensional flow. All simulations were executed by the lattice Boltzmann method which is a powerful tool for solving micro-scale problems.
Quantum Critical Dynamics of Bose-Einstein Condensates in a Shaken Optical Lattice
Clark, Logan W.; Feng, Lei; Ha, Li-Chung; Chin, Cheng
2016-05-01
From condensed matter to cosmology, systems which cross a continuous, symmetry-breaking phase transition are expected to generate topological defects whose density scales universally with the rate at which the phase transition is crossed. We experimentally test the application of this universal Kibble-Zurek scaling prediction to quantum phase transitions by studying ultracold bosons in a shaken optical lattice. When the lattice shaking amplitude crosses a critical threshold, an ordinary Bose condensate transitions to an effectively ferromagnetic pseudo-spinor condensate with discrete, magnetized regions separated by domain walls. We appraise the dynamic scaling laws for both the time at which the domain structure forms and the typical size of the domains by varying the quench rate across the transition. We explore the regime in which the universal prediction applies, as well as potential deviations at extreme quench rates.
Kozlowski, Wojciech; Mekhov, Igor B
2014-01-01
We show that light scattering from an ultracold gas reveals not only density correlations, but also matter-field interference at its shortest possible distance in an optical lattice, which defines key properties such as tunneling and matter-field phase gradients. This signal can be enhanced by concentrating probe light between lattice sites rather than at density maxima. As addressing between two single sites is challenging, we focus on global nondestructive scattering, allowing probing order parameters, matter-field quadratures and their squeezing. The scattering angular distribution displays peaks even if classical diffraction is forbidden and we derive generalized Bragg conditions. Light scattering distinguishes all phases in the Mott insulator - superfluid - Bose glass phase transition.
Flow-induced charge modulation in superfluid atomic fermions loaded into an optical kagome lattice.
Yamamoto, Daisuke; Sato, Chika; Nikuni, Tetsuro; Tsuchiya, Shunji
2013-04-05
We study the superfluid state of atomic fermions in a tunable optical kagome lattice motivated by recent experiments. We show that the imposed superflow induces spatial modulations in the density and order parameter of the pair condensate and leads to a charge modulated superfluid state analogous to a supersolid state. The spatial modulations in the superfluid emerge due to the geometric effect of the kagome lattice that introduces anisotropy in hopping amplitudes of fermion pairs in the presence of superflow. We also study superflow instabilities and find that the critical current limited by the dynamical instability is quite enhanced due to the large density of states associated with the flatband. The charge modulated superfluid state can sustain high temperatures close to the transition temperature that is also enhanced due to the flatband and is therefore realizable in experiments.
Interferometric approach to measuring band topology in 2D optical lattices.
Abanin, Dmitry A; Kitagawa, Takuya; Bloch, Immanuel; Demler, Eugene
2013-04-19
Recently, optical lattices with nonzero Berry's phases of Bloch bands have been realized. New approaches for measuring Berry's phases and topological properties of bands with experimental tools appropriate for ultracold atoms need to be developed. In this Letter, we propose an interferometric method for measuring Berry's phases of two-dimensional Bloch bands. The key idea is to use a combination of Ramsey interference and Bloch oscillations to measure Zak phases, i.e., Berry's phases for closed trajectories corresponding to reciprocal lattice vectors. We demonstrate that this technique can be used to measure the Berry curvature of Bloch bands, the π Berry's phase of Dirac points, and the first Chern number of topological bands. We discuss several experimentally feasible realizations of this technique, which make it robust against low-frequency magnetic noise.
Atom dynamics in optical lattices: Time-dependent simulation and decoherence suppression
de Rinaldis, Sergio; Lidar, Daniel A.
2004-03-01
We develop a model to simulate the dynamics of atoms trapped in an optical lattice with gravity in the presence of natural decoherence. The latter, measured by quantum process tomography, is dominated by pure dephasing. The wavefunction is represented on a grid and the time dependent evolution operator is expanded in Chebychev polynomials according to the (t,t') method (*), while a fictitious environment is introduced that simulates the observed dephasing. The control field consists in raising or lowering the potential wells of the atoms and modifying the phase of the laser fields (that results in a translation of the lattice). As an example relevant for quantum information processing, we simulate the effect of bang-bang pulses designed to suppress decoherence. (*) Ref. U.Peskin, R. Kosloff, N. Moiseyev, J. Chem. Phys. 8849 (1994)
Stochastic resonance in periodic potentials realization in a dissipative optical lattice
Schiavoni, M; Sánchez-Palencia, L; Renzoni, F; Grynberg, G; Schiavoni, Michele; Carminati, Francois-Regis; Sanchez-Palencia, Laurent; Renzoni, Ferruccio; Proxy, Gilbert Grynberg; ccsd-00000107, ccsd
2002-01-01
We have observed the phenomenon of stochastic resonance on the Brillouin propagation modes of a dissipative optical lattice. Such a mode has been excited by applying a moving potential modulation with phase velocity equal to the velocity of the mode. Its amplitude has been characterized by the center-of-mass (CM) velocity of the atomic cloud. At Brillouin resonance, we studied the CM-velocity as a function of the optical pumping rate at a given depth of the potential wells. We have observed a resonant dependence of the CM velocity on the optical pumping rate, corresponding to the noise strength. This corresponds to the experimental observation of stochastic resonance in a periodic potential in the low-damping regime.
On-chip non-reciprocal optical devices based on quantum inspired photonic lattices
El-Ganainy, Ramy; Eisfeld, Alexander; Christodoulides, Demetrios N
2013-01-01
We propose a novel geometry for integrated photonic devices that can be used as isolators and polarization splitters based on engineered photonic lattices. Starting from optical waveguide arrays that mimic Fock space representation of a non-interacting two-site Bose Hubbard Hamiltonian, we show that introducing magneto-optic nonreciprocity to these structures leads to a superior optical isolation performance. In the forward propagation direction, an input TM polarized beam experiences a perfect state transfer between the input and output waveguide channels while surface Bloch oscillations block the backward transmission between the same ports. Our analysis indicates a large isolation ratio of 75 dB after a propagation distance of 8 mm inside seven coupled waveguides. Moreover, we demonstrate that, a judicious choice of the nonreciprocity in this same geometry can lead to perfect polarization splitting.
Propagation of an optical vortex in fiber arrays with triangular lattices
Mushref, Muhammad Abdulrahman Abdulghani
The propagation of optical vortices (OVs) in linear and nonlinear media is an important field of research in science and engineering. The most important goal is to explore the properties of guiding dynamics for potential applications such as sensing, all-optical switching, frequency mixing and modulation. In this dissertation, we present analytical methods and numerical techniques to investigate the propagation of an optical vortex in fiber array waveguides. Analytically, we model wave propagation in a waveguide by coupled mode Equations as a simplified approximation. The beam propagation method (BPM) is also employed to numerically solve the paraxial wave Equation by finite difference (FD) techniques. We will investigate the propagation of fields in a 2D triangular lattice with different core arrangements in the optical waveguide. In order to eliminate wave reflections at the boundaries of the computational area, the transparent boundary condition (TBC) is applied. In our explorations for the propagation properties of an optical vortex in a linear and a non-linear triangular lattice medium, images are numerically generated for the field phase and intensity in addition to the interferogram of the vortex field with a reference plane or Gaussian field. The finite difference beam propagation method (FD-BPM) with transparent boundary condition (TBC) is a robust approach to numerically deal with optical field propagations in waveguides. In a fiber array arranged in triangular lattices, new vortices vary with respect to the propagation distance and the number of cores in the fiber array for both linear and nonlinear regimes. With more cores and longer propagation distances, more vortices are created. However, they do not always survive and may disappear while other new vortices are formed at other points. In a linear triangular lattice, the results demonstrated that the number of vortices may increase or decrease with respect to the number of cores in the array lattice
Frequency ratios of Sr, Yb and Hg based optical lattice clocks and their applications
Takamoto, Masao; Das, Manoj; Nemitz, Nils; Ohkubo, Takuya; Yamanaka, Kazuhiro; Ohmae, Noriaki; Takano, Tetsushi; Akatsuka, Tomoya; Yamaguchi, Atsushi; Katori, Hidetoshi
2015-01-01
This article describes the recent progress of optical lattice clocks with neutral strontium ($^{87}$Sr), ytterbium ($^{171}$Yb) and mercury ($^{199}$Hg) atoms. In particular, we present frequency comparison between the clocks locally via an optical frequency comb and between two Sr clocks at remote sites using a phase-stabilized fibre link. We first review cryogenic Sr optical lattice clocks that reduce the room-temperature blackbody radiation shift by two orders of magnitude and serve as a reference in the following clock comparisons. Similar physical properties of Sr and Yb atoms, such as transition wavelengths and vapour pressure, have allowed our development of a compatible clock for both species. A cryogenic Yb clock is evaluated by referencing a Sr clock. We also report on a Hg clock, which shows one order of magnitude less sensitivity to blackbody radiation, while its large nuclear charge makes the clock sensitive to the variation of fine-structure constant. Connecting all three types of clocks by an o...
Transportable Optical Lattice Clock with 7 ×10-17 Uncertainty
Koller, S. B.; Grotti, J.; Vogt, St.; Al-Masoudi, A.; Dörscher, S.; Häfner, S.; Sterr, U.; Lisdat, Ch.
2017-02-01
We present a transportable optical clock (TOC) with Sr 87 . Its complete characterization against a stationary lattice clock resulted in a systematic uncertainty of 7.4 ×10-17, which is currently limited by the statistics of the determination of the residual lattice light shift, and an instability of 1.3 ×10-15/√{τ } with an averaging time τ in seconds. Measurements confirm that the systematic uncertainty can be reduced to below the design goal of 1 ×10-17. To our knowledge, these are the best uncertainties and instabilities reported for any transportable clock to date. For autonomous operation, the TOC has been installed in an air-conditioned car trailer. It is suitable for chronometric leveling with submeter resolution as well as for intercontinental cross-linking of optical clocks, which is essential for a redefinition of the International System of Units (SI) second. In addition, the TOC will be used for high precision experiments for fundamental science that are commonly tied to precise frequency measurements and its development is an important step to space-borne optical clocks.
Transportable Optical Lattice Clock with 7×10^{-17} Uncertainty.
Koller, S B; Grotti, J; Vogt, St; Al-Masoudi, A; Dörscher, S; Häfner, S; Sterr, U; Lisdat, Ch
2017-02-17
We present a transportable optical clock (TOC) with ^{87}Sr. Its complete characterization against a stationary lattice clock resulted in a systematic uncertainty of 7.4×10^{-17}, which is currently limited by the statistics of the determination of the residual lattice light shift, and an instability of 1.3×10^{-15}/sqrt[τ] with an averaging time τ in seconds. Measurements confirm that the systematic uncertainty can be reduced to below the design goal of 1×10^{-17}. To our knowledge, these are the best uncertainties and instabilities reported for any transportable clock to date. For autonomous operation, the TOC has been installed in an air-conditioned car trailer. It is suitable for chronometric leveling with submeter resolution as well as for intercontinental cross-linking of optical clocks, which is essential for a redefinition of the International System of Units (SI) second. In addition, the TOC will be used for high precision experiments for fundamental science that are commonly tied to precise frequency measurements and its development is an important step to space-borne optical clocks.
Proposal for a Chaotic Ratchet Using Cold Atoms in Optical Lattices
Monteiro, T. S.; Dando, P. A.; Hutchings, N. A.; Isherwood, M. R.
2002-10-01
We investigate a new type of quantum ratchet which may be realized by cold atoms in a double-well optical lattice, pulsed with unequal periods. The classical dynamics is chaotic and we find the classical diffusion rate D is asymmetric in momentum up to a finite time tr. The quantum behavior produces a corresponding asymmetry in the momentum distribution which is ``frozen-in'' by dynamical localization provided the break time t*>=tr. We conclude that the cold atom ratchets require Db/ℏ~1, where b is a small deviation from period-one pulses.
Stability of trapped Bose-Einstein condensates in one-dimensional tilted optical lattice potential
Institute of Scientific and Technical Information of China (English)
Fang Jian-Shu; Liao Xiang-Ping
2011-01-01
Using the direct perturbation technique, this paper obtains a general perturbed solution of the Bose-Einstein condensates trapped in one-dimensional tilted optical lattice potential. We also gave out two necessary and sufficient conditions for boundedness of the perturbed solution. Theoretical analytical results and the corresponding numerical results show that the perturbed solution of the Bose-Einstein condensate system is unbounded in general and indicate that the Bose-Einstein condensates are Lyapunov-unstable. However, when the conditions for boundedness of the perturbed solution are satisfied, then the Bose-Einstein condensates are Lyapunov-stable.
Effect of interaction strength on gap solitons of Bose-Einstein condensates in optical lattices
Institute of Scientific and Technical Information of China (English)
Yang Ru-Shu; Yang Jiang-He
2008-01-01
We have developed a systematic analytical approach to the study on the dynamic properties of the linear and the nonlinear excitations for quasi-one-dimensional Bose-Einstein condensate trapped in optical lattices. A novel linear dispersion relation and an algebraic soliton solution of the condensate are derived analytically under consideration of Bose-Einstein condensate with a periodic potential. By analysing the soliton solution, we find that the interatomic interaction strength has an important effect on soliton dynamic properties of Bose-Einstein condensate.
Phase-sensitive detection of Bragg scattering at 1D optical lattices
Slama, S; Deh, B; Ludewig, A; Zimmermann, C; Courteille, P W; Courteille, Ph.W.
2004-01-01
We report on the observation of Bragg scattering at 1D atomic lattices. Cold atoms are confined by optical dipole forces at the antinodes of a standing wave generated by the two counter-propagating modes of a laser-driven high-finesse ring cavity. By heterodyning the Bragg-scattered light with a reference beam, we obtain detailed information on phase shifts imparted by the Bragg scattering process. Being deep in the Lamb-Dicke regime, the scattered light is not broadened by the motion of individual atoms. In contrast, we have detected signatures of global translatory motion of the atomic grating.
Direct comparison of optical lattice clocks with an intercontinental baseline of 9 000 km
Hachisu, H; Nagano, S; Gotoh, T; Nogami, A; Ido, T; Falke, St; Huntemann, N; Grebing, C; Lipphardt, B; Lisdat, Ch; Piester, D
2014-01-01
We have demonstrated a direct frequency comparison between two $^{87}{\\rm Sr}$ lattice clocks operated in intercontinentally separated laboratories in real time. Two-way satellite time and frequency transfer technique based on the carrier phase was employed for a direct comparison with a baseline of 9 000 km between Japan and Germany. A clock comparison was achieved for 83 640 s resulting in a fractional difference of $(1.1\\pm1.6) \\times 10^{-15}$, where the statistical part is the biggest contribution to the uncertainty. This measurement directly confirms the agreement of the two optical clocks on an intercontinental scale.
Impurity-induced localization of Bose-Einstein condensates in one-dimensional optical lattices
Institute of Scientific and Technical Information of China (English)
Wang Jian-Jun; Zhang Ai-Xia; Xue Ju-Kui
2011-01-01
The impurity-induced localization of two-component Bose-Einstein condensates loaded into deep one-dimensional optical lattices is studied both analytically and numerically.It is shown that,the analytical criteria for self-trapping and moving soliton/breather of the primary-component condensate are modified significantly by an admixture of an impurity component(the second component).The realization of the self-trapped state and the moving soliton/breather states of the primary-component becomes more easy with the minor admixture of the impurity-component,even if the two components are partly overlapped.
Schrodinger cat states prepared by Bloch oscillation in a spin-dependent optical lattice
Wu, B J
2011-01-01
We propose to use Bloch oscillation of ultra-cold atoms in a spin-dependent optical lattice to prepare schrodinger cat states. Depending on its internal state, an atom feels different periodic potentials and thus has different energy band structures for its center-of-mass motion. Consequently, under the same gravity force, the wave packets associated with different internal states perform Bloch oscillation of different amplitudes in space and in particular they can be macroscopically displaced with respect to each other. In this way, a cat state can be prepared.
Coherent addressing of individual neutral atoms in a 3D optical lattice
Wang, Yang; Corcovilos, Theodore A; Kumar, Aishwarya; Weiss, David S
2015-01-01
We demonstrate arbitrary coherent addressing of individual neutral atoms in a $5\\times 5\\times 5$ array formed by an optical lattice. Addressing is accomplished using rapidly reconfigurable crossed laser beams to selectively ac Stark shift target atoms, so that only target atoms are resonant with state-changing microwaves. The effect of these targeted single qubit gates on the quantum information stored in non-targeted atoms is smaller than $3\\times 10^{-3}$ in state fidelity. This is an important step along the path of converting the scalability promise of neutral atoms into reality.
Modulational instability of two-component Bose-Einstein condensates in an optical lattice
Jin, G R; Nahm, K; Jin, Guang-Ri; Kim, Chul Koo; Nahm, Kyun
2004-01-01
We study modulational instability of two-component Bose-Einstein condensates in a deep optical lattice, which is modelled as a coupled discrete nonlinear Schr\\"{o}dinger equation. The excitation spectrum and the modulational instability condition of the total system are presented analytically. In the long-wavelength limit, our results agree with the homogeneous two-component Bose-Einstein condensates case. The discreteness effects result in the appearance of the modulational instability for the condensates in miscible region. The numerical calculations confirm our analytical results and show that the interspecies coupling can transfer the instability from one component to another.
Elliptic Function Waves of Spinor Bose-Einstein Condensates in an Optical Lattice
Institute of Scientific and Technical Information of China (English)
XIE Yuan-Dong
2009-01-01
An improved nonlinear Schrodinger equation different from usual one of spinor Bose-Einstein condensates (BECs) in an optical lattice are obtained by taking into account a nonlinear term in the equation of motion for probability amplitude of spins carefully. The elliptic function wave solutions of the model are found under specific boundary condition, for example, the two ends of the atomic chain are fixed. In the case of limit the elliptic function wave solutions are reduced into spin-wave-like or solitons.
Coherent Addressing of Individual Neutral Atoms in a 3D Optical Lattice.
Wang, Yang; Zhang, Xianli; Corcovilos, Theodore A; Kumar, Aishwarya; Weiss, David S
2015-07-24
We demonstrate arbitrary coherent addressing of individual neutral atoms in a 5×5×5 array formed by an optical lattice. Addressing is accomplished using rapidly reconfigurable crossed laser beams to selectively ac Stark shift target atoms, so that only target atoms are resonant with state-changing microwaves. The effect of these targeted single qubit gates on the quantum information stored in nontargeted atoms is smaller than 3×10^{-3} in state fidelity. This is an important step along the path of converting the scalability promise of neutral atoms into reality.
Yu, Jinlong; Xu, Zhi-Fang; You, Li
2017-01-01
We propose a scheme to dynamically generate optical flux lattices with nontrivial band topology using amplitude-modulated Raman lasers and radio-frequency (rf) magnetic fields. By tuning the strength of Raman and rf fields, three distinct phases are realized at unit filling for a unit cell. Respectively, these three phases correspond to normal insulator, topological Chern insulator, and semimetal. Nearly nondispersive bands are found to appear in the topological phase, which promises opportunities for investigating strongly correlated quantum states within a simple cold-atom setup. The validity of our proposal is confirmed by comparing the Floquet quasienergies from the evolution operator with the spectrum of the effective Hamiltonian.
Magnetic ordering of three-component ultracold fermionic mixtures in optical lattices
Sotnikov, Andrii; Hofstetter, Walter
2014-06-01
We study finite-temperature magnetic phases of three-component mixtures of ultracold fermions with repulsive interactions in optical lattices with simple cubic or square geometry by means of dynamical mean-field theory (DMFT). We focus on the case of one particle per site (1/3 band filling) at moderate interaction strength, where we observe a sequence of thermal phase transitions into two- and three-sublattice ordered states by means of the unrestricted real-space generalization of DMFT. From our quantitative analysis we conclude that long-range ordering in three-component mixtures should be observable at comparable temperatures as in two-component mixtures.
Anisotropic pair superfluidity of trapped two-component Bose gases in an optical lattice
Li, Yongqiang; He, Liang; Hofstetter, Walter
2013-09-01
We theoretically investigate the pair-superfluid phase of two-component ultracold gases with attractive inter-species interactions in an optical lattice. We establish the phase diagram for filling n = 1 at zero and finite temperatures, by applying bosonic dynamical mean-field theory, and observe stable pair-superfluid and charge-density wave quantum phases for asymmetric hopping of the two species. While the pair superfluid is found to be robust in the presence of a harmonic trap, we observe that it is destroyed already by a small population imbalance of the two species.
Thermal entanglement in 1D optical lattice chains with nonlinear coupling
Institute of Scientific and Technical Information of China (English)
Zhou Ling; Yi Xue-Xi; Song He-Shan; Guo Yan-Qing
2005-01-01
he thermal entanglement of spin-1 atoms with nonlinear coupling in an optical lattice chain is investigated for two-particle and multi-particle systems. It is found that the relation between linear coupling and nonlinear coupling is the key to determine thermal entanglement, which shows in what kinds of atoms thermal entanglement exists. This result is true both for two-particle and multi-particle systems. For multi-particle systems, the thermal entanglement does not decrease greatly, and the critical temperature decreases only slightly.
Two-component Fermions in Optical Lattice with Spatially Alternating Interactions
Hoang, Anh-Tuan; Nguyen, Thi-Hai-Yen; Tran, Thi-Thu-Trang; Le, Duc-Anh
2016-10-01
We investigate two-component mass-imbalanced fermions in an optical lattice with spatially modulated interactions by using two-site dynamical mean field theory. At half-filling and zero temperature, the phase diagram of the system is analytically obtained, in which the metallic region is reduced with increasing the mass imbalance. The ground-state properties of the fermionic system are discussed from the behaviors of both the spin-dependent quasi-particle weight at the Fermi level and the double occupancy for each sublattice as functions of the local interaction strengths for various values of the mass imbalance.
Magnons interaction of spinor Bose–Einstein condensates in an optical lattice
Indian Academy of Sciences (India)
Yong-Qing Liu
2009-12-01
We study the interaction of magnons in dipolar spinor Bose–Einstein condensates in an optical lattice. By means of Holstein–Primakoff and Fourier transformations the energy spectra of the ground and the excited states is obtained analytically. Our results show that the collision of magnons is elastic which is expressed by the conservation of wave numbers in the process of collision. At last, we found that the interaction of magnons is attractive which tends to self-localization to form spin waves, i.e., a cluster of a macroscopic number of coherent magnons. Because of the attraction, the instability of spin wave brings about the existence of solitary wave.
Chaos control of a Bose-Einstein condensate in a moving optical lattice
Zhang, Zhiying; Feng, Xiuqin; Yao, Zhihai
2016-07-01
Chaos control of a Bose-Einstein condensate (BEC) loaded into a moving optical lattice with attractive interaction is investigated on the basis of Lyapunov stability theory. Three methods are designed to control chaos in BEC. As a controller, a bias constant, periodic force, or wavelet function feedback is added to the BEC system. Numerical simulations reveal that chaotic behavior can be well controlled to achieve periodicity by regulating control parameters. Different periodic orbits are available for different control parameters only if the maximal Lyapunov exponent of the system is negative. The abundant effect of chaotic control is also demonstrated numerically. Chaos control can be realized effectively by using our proposed control strategies.
Kumar, Manish
2016-01-01
We propose a simple and straightforward method to generate a spatially variant lattice structures by optical interference lithography method. Using this method, it is possible to independently vary the orientation and period of the two-dimensional lattice. The method consists of two steps which are: numerical synthesis of corresponding phase mask by employing a two-dimensional integrated gradient calculations and experimental implementation of synthesized phase mask by making use of a phase only spatial light modulator in an optical 4f Fourier filtering setup. As a working example, we provide the experimental fabrication of a spatially variant square lattice structure which has the possibility to guide a Gaussian beam through a 90{\\deg} bend by photonic crystal self-collimation phenomena. The method is digitally reconfigurable, is completely scalable and could be extended to other kind of lattices as well.
Energy Technology Data Exchange (ETDEWEB)
Kumar, Manish, E-mail: manishk@physics.iitd.ac.in; Joseph, Joby, E-mail: joby@physics.iitd.ac.in [Photonics Research Laboratory, Department of Physics, Indian Institute of Technology Delhi, New Delhi 110016 (India)
2014-08-04
We propose a simple and straightforward method to generate spatially variant lattice structures by optical interference lithography method. Using this method, it is possible to independently vary the orientation and period of the two-dimensional lattice. The method consists of two steps which are: numerical synthesis of corresponding phase mask by employing a two-dimensional integrated gradient calculations and experimental implementation of synthesized phase mask by making use of a phase only spatial light modulator in an optical 4f Fourier filtering setup. As a working example, we provide the experimental fabrication of a spatially variant square lattice structure which has the possibility to guide a Gaussian beam through a 90° bend by photonic crystal self-collimation phenomena. The method is digitally reconfigurable, is completely scalable, and could be extended to other kind of lattices as well.
Institute of Scientific and Technical Information of China (English)
Song Chang-Sheng; Li Jing; Zong Feng-De
2012-01-01
An extended variation approach to describing the dynamic evolution of self-attractive Bose-Einstein condensates is developed.We consider bright matter-wave solitons in the presence of a parabolic magnetic potential and a timespace periodic optical lattice.The dynamics of condensates is shown to be well approximated by four coupled nonlinear differential equations.A noteworthy feature is that the extended variation approach gives a critical strength ratio to support multiple stable lattice sites for the condensate.We further examine the existence of the solitons and their stabilities at the multiple stable lattice sites. In this case,the analytical predictions of Bose-Einstein condensates variational dynamics are found to be in good agreement with numerical simulations.We then find a stable region for successful manipulating matter-wave solitons without collapse,which are dragged from an initial stationary to a prescribed position by a moving periodic optical lattice.
A transportable optical lattice clock with $7\\times10^{-17}$ uncertainty
Koller, S B; Vogt, St; Al-Masoudi, A; Dörscher, S; Häfner, S; Sterr, U; Lisdat, Ch
2016-01-01
We present a transportable optical clock (TOC) with $^{87}$Sr. Its complete characterization against a stationary lattice clock resulted in a systematic uncertainty of ${7.4 \\times 10^{-17}}$ which is currently limited by the statistics of the determination of the residual lattice light shift. The measurements confirm that the systematic uncertainty is reduceable to below the design goal of $1 \\times 10^{-17}$. The instability of our TOC is $1.3 \\times 10^{-15}/\\sqrt{(\\tau/s)}$. Both, the systematic uncertainty and the instability are to our best knowledge currently the best achieved with any type of transportable clock. For autonomous operation the TOC is installed in an air-conditioned car-trailer. It is suitable for chronometric leveling with sub-meter resolution as well as intercontinental cross-linking of optical clocks, which is essential for a redefiniton of the SI second. In addition, the TOC will be used for high precision experiments for fundamental science that are commonly tied to precise frequenc...
Inelastic light scattering to probe strongly correlated bosons in optical lattices
Energy Technology Data Exchange (ETDEWEB)
Fort, Chiara; Fabbri, Nicole; Fallani, Leonardo; Clement, David; Inguscio, Massimo, E-mail: fort@lens.unifi.it [European Laboratory for Nonlinear Spectroscopy (LENS), via Nello Carrara 1, 50019 Sesto Fiorentino (Italy)
2011-01-10
We have used inelastic light scattering to study correlated phases of an array of one-dimensional interacting Bose gases. In the linear response regime, the observed spectra are proportional to the dynamic structure factor. In particular we have investigated the superfluid to Mott insulator crossover loading the one-dimensional gases in an optical lattice and monitoring the appearance of an energy gap due to finite particle-hole excitation energy. We attribute the low frequency side of the spectra to the presence of some superfluid and normal phase fraction between the Mott insulator regions with different fillings produced in the inhomogeneous systems. In the Mott phase we also investigated excitations to higher excited bands of the optical lattice, the spectra obtained in this case being connected to the single particle spectral function. In one-dimensional systems the effect of thermal fluctuations and interactions is enhanced by the reduced dimensionality showing up in the dynamic structure factor. We measured the dynamic structure factor of an array of one-dimensional bosonic gases pointing out the effect of temperature-induced phase fluctuations in reducing the coherence length of the system.
External meeting - Geneva University: A lab in a trap: quantum gases in optical lattices
2007-01-01
GENEVA UNIVERSITY ECOLE DE PHYSIQUE Département de physique nucléaire et corspusculaire 24, Quai Ernest-Ansermet 1211 GENEVE 4 - Tél: 022 379 62 73 - Fax: 022 379 69 92 Monday 16 April 2007 PARTICLE PHYSICS SEMINAR at 17:00 - Stückelberg Auditorium A lab in a trap: quantum gases in optical lattices by Prof. Tilman Esslinger / Department of Physics, ETH Zurich The field of ultra cold quantum gases has seen an astonishing development during the last ten years. With the demonstration of Bose-Einstein condensation in weakly interacting atomic gases a theoretical concept of unique beauty could be witnessed experimentally. Very recent developments have now made it possible to engineer atomic many-body systems which are dominated by strong interactions. A major driving force for these advances are experiments in which ultracold atoms are trapped in optical lattices. These systems provide anew avenue for designing and studying quantum many-body systems. Exposed to the crystal structure of interfering laser wave...
Institute of Scientific and Technical Information of China (English)
Zhang Bing-Zhi; Cui Hu; Li Xiang-Heng; She Wei-Long
2009-01-01
We theoretically study the beam dynamical hehaviour in a modulated optical lattice with a quadratic potential in a photovoltaic photorefractive crystal. We find that two different Bloch oscillation patterns appear for the excitation of both broad and narrow light beams. One kind of optical Landau-Zener tunnelling also appears upon the Bloch oscillation and can be controlled by adjusting the parameter of the optical lattice. Unlike the case of linear potential, the energy radiation due to Landau-Zener tunnelling can be confined in modulated lattices of this kind. For high input intensity levels, the Landau-Zener tunnelling is suppressed by the photovoltaic photorefractive nonlinearity and a symmetry breaking of beam propagation from the modulational instability appears.
Xiao, Fajun; Li, Baoran; Wang, Meirong; Zhu, Weiren; Zhang, Peng; Liu, Sheng; Premaratne, Malin; Zhao, Jianlin
2014-09-22
We theoretically report the existence of optical Bloch oscillations (BO) of an Airy beam in a one-dimensional optically induced photonic lattice with a linear transverse index gradient. The Airy beam experiencing optical BO shows a more robust non-diffracting feature than its counterparts in free space or in a uniform photonic lattice. Interestingly, a periodical recurrence of Airy shape accompanied with constant alternation of its acceleration direction is also found during the BO. Furthermore, we demonstrate that the period and amplitude of BO of an Airy beam can be readily controlled over a wide range by varying the index gradient and/or the lattice period. Exploiting these features, we propose a scheme to rout an Airy beam to a predefined output channel without losing its characteristics by longitudinally modulating the transverse index gradient.
Charukhchyan, M. V.; Sedov, E. S.; Arakelian, S. M.; Alodjants, A. P.
2014-06-01
We consider the problem of formation of small-amplitude spatially localized oscillatory structures for atomic Bose-Einstein condensates confined in two- and three-dimensional optical lattices, respectively. Our approach is based on applying the regions with different signs of atomic effective masses where an atomic system exhibits effective hyperbolic dispersion within the first Brillouin zone. By using the kp method we have demonstrated mapping of the initial Gross-Pitaevskii equation on nonlinear Klein-Gordon and/or Ginzburg-Landau-Higgs equations, which is inherent in matter fields within ϕ4-field theories. Formation of breatherlike oscillating localized states—atomic oscillons—as well as kink-shaped states have been predicted in this case. Apart from classical field theories atomic field oscillons occurring in finite lattice structures possess a critical number of particles for their formation. The obtained results pave the way to simulating some analogues of fundamental cosmological processes occurring during our Universe's evolution and to modeling nonlinear hyperbolic metamaterials with condensed matter (atomic) systems.
Sun, Kai; Liu, W. Vincent; Das Sarma, S.
2011-03-01
We demonstrate that a novel topological semimetal emerges as a parity-protected critical theory for fermionic atoms loaded in the p and d orbital bands of a two-dimensional optical lattice. The new quantum state is characterized by a parabolic band-degeneracy point with Berry flux 2 π , in sharp contrast to the π flux of Dirac points as in graphene. We prove that this topological liquid is a universal property for all lattices of D4 point group symmetry and the band degeneracy is protected by odd parity. Turning on interparticle repulsive interaction, the system undergoes a phase transition to a topological insulator, whose experimental signature includes chiral gapless domain-wall modes, reminiscent of quantum Hall edge states. KS and SDS acknowledge the support of JQI-NSF-PFC, AFOSR-MURI, ARO-DARPA-OLE and ARO-MURI. W.V.L. is supported by ARO and ARO-DARPA-OLE. We thank the KITP at UCSB for its hospitality where this research is supported in part by NSF Grant No. PHY05-51164.
Impact of Nb3Sn Dipoles on the LHC Lattice and Beam Optics
Holzer, B
2014-01-01
In view of the LHC operation at full energy (7 TeV) as well as in preparation for the HL-LHC luminosity upgrade an improved collimation system is planned, which foresees additional collimators in the dispersion suppressor region of the ring. To deliver the space needed in the cold part of the LHC lattice the use of new, stronger dipole magnets based on Nb3Sn technology is proposed to deliver room for the new collimators. Based on field calculations and assumptions for their multipole content the impact of these new magnets on the machine optics, the lattice design and finally the dynamic aperture is discussed. Persistent currents especially at low field play an essential role and accordingly additional multipole corrector coils might be needed to compensate the field errors at LHC injection energy and the low part of the acceleration procedure. The calculations presented here give estimates for the "allowed" multipole tolerances of the new magnets and propose - where needed - the installation of spool piece c...
Li, Pan; Fan, Weiliu; Li, Yanlu; Sun, Honggang; Cheng, Xiufeng; Zhao, Xian; Jiang, Minhua
2010-08-01
First-principles calculations of the electronic, optical properties and lattice dynamics of tantalum oxynitride are performed with the density functional theory plane-wave pseudopotential method. The analysis of the electronic structure shows a covalent nature in Ta-N bonds and Ta-O bonds. The hybridization of anion 2p and Ta 5d states results in enhanced dispersion of the valence band, raising the top of the valence band and leading to the visible-light response in TaON. It has a high dielectric constant, and the anisotropy is displayed obviously in the lower energy region. Our calculation indicated that TaON has excellent dielectric properties along [010] direction. Various optical properties, including the reflectivity, absorption coefficient, refractive index, and the energy-loss spectrum are derived from the complex dielectric function. We also present phonon dispersion relation, zone-center optical mode frequency, density of phonon states, and some thermodynamic properties. The experimental IR modes (B(u) at 808 cm(-1) and A(u) at 863 cm(-1)) are reproduced well and assigned to a combination of stretching and bending vibrations for the Ta-N bond and Ta-O bond. The thermodynamic properties of TaON, such as heat capacity and Debye temperature, which were important parameters for the measurement of crystal physical properties, were first given for reference. Our investigations provide useful information for the potential application of this material.
Proposal for the Quantum Simulation of the CP(2) Model on Optical Lattices
Laflamme, Catherine; Dalmonte, Marcello; Gerber, Urs; Mejía-Díaz, Héctor; Bietenholz, Wolfgang; Wiese, Uwe-Jens; Zoller, Peter
2015-01-01
The 2d CP(N-1) models share a number of features with QCD, like asymptotic freedom, a dynamically generated mass gap and topological sectors. They have been formulated and analysed successfully in the framework of the so-called D-theory, which provides a smooth access to the continuum limit. In that framework, we propose an experimental set-up for the quantum simulation of the CP(2) model. It is based on ultra-cold Alkaline-Earth Atoms (AEAs) located on the sites of an optical lattice, where the nuclear spins represent the relevant degrees of freedom. We present numerical results for the correlation length and for the real time decay of a false vacuum, to be compared with such a future experiment. The latter could also enable the exploration of theta-vacua and of the phase diagram at finite chemical potentials, since it does not suffer from any sign problem.
Quantum engineering of a low-entropy gas of heteronuclear bosonic molecules in an optical lattice
Reichsöllner, Lukas; Takekoshi, Tetsu; Grimm, Rudolf; Nägerl, Hanns-Christoph
2016-01-01
We produce low-entropy samples of ultracold 87Rb133Cs Feshbach molecules in an optical lattice with a filling fraction exceeding 30%. Starting from two spatially separated Bose-Einstein condensates of Rb and Cs atoms, Rb-Cs atom pairs are efficiently produced in a sample mixing process that utilizes the superfluid-to-Mott insulator quantum phase transition twice, first for the Cs sample, then for the Rb sample, after nulling the Rb-Cs interaction at a Feshbach resonance's zero crossing. We characterize the mixing process in terms of sample overlap and mixing speed. The dense and ultracold sample of more than 5000 RbCs molecules is an ideal starting point for experiments in the context of quantum many-body physics with long-range dipolar interactions.
Energy Spectrum of Two-Component Bose-Einstein Condensates in Optical Lattices
Institute of Scientific and Technical Information of China (English)
HAN Jiu-Rong; LIU Jin-Ming; JING Hui; WANG Yu-Zhu
2005-01-01
With the method of Green's function, we investigate the energy spectra of two-component ultracold bosonic atoms in optical lattices. We find that there are two energy bands for each component. The critical condition of the superfluid-Mott insulator phase transition is determined by the energy band structure. We also find that the nearest neighboring and on-site interactions fail to change the structure of energy bands, but shift the energy bands only.According to the conditions of the phase transitions, three stable superfluid and Mott insulating phases can be found by adjusting the experiment parameters. We also discuss the possibility of observing these new phases and their transitions in further experiments.
Self-localization of Bose–Einstein condensates in optical lattices
Kruse, Johannes; Fleischmann, Ragnar
2017-03-01
Mean field and beyond mean field model calculations of Bose–Einstein condensates trapped in optical lattices have shown that initially homogeneous condensates can evolve into self-trapped, strongly localized states in the presence of weak boundary dissipation, a phenomenon called self-localization. A dynamical phase transition from extended to localized states can be observed when the effective nonlinearity exceeds a critical threshold {{{Λ }}}{eff}{{c}}. We investigate this phase transition to self-localization in the mean field approximation of the discrete nonlinear Schrödinger equation. We quantitatively characterize the properties of the discrete breathers, i.e. the nonlinear localized solutions, at the phase transition. This leads us to propose and numerically verify an analytical lower bound {{{Λ }}}{eff}{{L}} for the critical nonlinearity based on the idea of self-induced Anderson localization.
Topological superfluid state of fermions on a p-band optical square lattice
Wu, Ya-Jie; He, Jing; Zang, Chun-Li; Kou, Su-Peng
2012-08-01
In this paper we study an interacting mixture of ultracold spinless fermions on the s band and bosons on the p band in a 2D square optical lattice, of which the effective model is reduced to a p-band fermionic system with nearest-neighbor attractive interaction. From this effective p-band model, we find a translation symmetry protected Z2 topological superfluid that is characterized by a special fermion parity pattern at high-symmetry points in momentum space k=(0,0), (0,π), (π,0), (π,π). Such Z2 topological superfluid supports the robust Majorana edge modes and a new type of low-energy excitation—(supersymmetric) Z2 link excitation.
Tomza, Michal; Jeziorska, Malgorzata; Koch, Christiane P; Moszynski, Robert
2011-01-01
State-of-the-art {\\em ab initio} techniques have been applied to compute the potential energy curves for the SrYb molecule in the Born-Oppenheimer approximation for the ground state and first fifteen excited singlet and triplet states within the coupled-cluster framework. The leading long-range coefficients describing the dispersion interactions at large interatomic distances are also reported. The electric transition dipole moments have been obtained as the first residue of the polarization propagator computed with the linear response coupled-cluster method restricted to single and double excitations. Spin-orbit coupling matrix elements have been evaluated using the multireference configuration interaction method restricted to single and double excitations with a large active space. The electronic structure data was employed to investigate the possibility of forming deeply bound ultracold SrYb molecules in an optical lattice in a photoassociation experiment using continuous-wave lasers. Photoassociation near...
Batrouni, George
2011-03-01
I will discuss pairing in fermionic systems in one- and two-dimensional optical lattices with population imbalance. This will be done in the context of the attractive fermionic Hubbard model using the Stochastic Green Function algorithm in d=1 while for d=2 we use Determinant Quantum Monte Carlo. This is the first exact QMC study examining the effects of finite temperature which is very important in experiments on ultra-cold atoms. Our results show that, in the ground state, the dominant pairing mechanism is at nonzero center of mass momentum, i.e. FFLO. I will then discuss the effect of finite temperature in the uniform and confined systems and present finite temperature phase diagrams. The numerical results will be compared with experiments. With M. J. Wolak (CQT, National University of Singapore) and V. G. Rousseau (Department of Physics and Astronomy, Louisiana State University).
Tunneling dynamics of Bose-Einstein condensates with higher-order interactions in optical lattice
Institute of Scientific and Technical Information of China (English)
Tie Lu; Xue Ju-Kui
2011-01-01
The nonlinear Landau-Zener tunneling and nonlinear Rabi oscillations of Bose-Einstein condensate (BEC) with higher-order atomic interaction between the Bloch bands in an accelerating optical lattice are discussed.Within the two-level model,the tunneling probability of BEC with higher-order atomic interaction between Bloch bands is obtained.We finds that the tunneling rate is closely related to the higher-order atomic interaction.Furthermore,the nonlinear Rabi oscillations of BEC with higher-order atomic interaction between the bands are discussed by imposing a periodic modulation on the level bias.Analytical expressions of the critical higher-order atomic interaction for suppressing/enhancing the Rabi oscillations are obtained.It is shown that the critical value strongly depends on the modulation parameters (i.e.,the modulation amplitude and frequency) and the strength of periodic potential.
Chaotic synchronization in Bose Einstein condensate of moving optical lattices via linear coupling
Institute of Scientific and Technical Information of China (English)
张志颖; 冯秀琴; 姚治海; 贾洪洋
2015-01-01
A systematic study of the chaotic synchronization of Bose–Einstein condensed body is performed using linear cou-pling method based on Lyapunov stability theory, Sylvester’s criterion, and Gerschgorin disc theorem. The chaotic synchro-nization of Bose–Einstein condensed body in moving optical lattices is realized by linear coupling. The relationship be-tween the synchronization time and coupling coefficient is obtained. Both the single-variable coupling and double-variable coupling are effective. The results of numerical calculation prove that the chaotic synchronization of double-variable cou-pling is faster than that of single-variable coupling and small coupling coefficient can achieve the chaotic synchronization. Weak noise has little influence on synchronization effect, so the linear coupling technology is suitable for the chaotic synchronization of Bose–Einstein condensate.
Xu, Zhihao; Zhang, Yunbo; Chen, Shu
2017-07-01
Experimental realizations of topological quantum systems and detections of topological invariants in ultracold atomic systems have been a greatly attractive topic. In this work, we propose a scheme to realize topologically different phases in a bichromatic optical lattice subjected to a periodically driven tilt harmonic oscillation, which can be effectively described by a superlattice model with tunable long-range hopping processes. By tuning the ratio of nearest-neighbor (NN) and next-nearest-neighbor (NNN) hopping amplitudes, the system undergoes a topological phase transition accompanied by the change of topological numbers of the lowest band from -1 to 2. Using a slowly time-periodic modulation, the system emerges distinct quantized topological pumped charges (TPCs) of atoms in the filled band for different topological phases. Our scheme is realizable in current cold atomic technique.
Uniform synthetic magnetic field and effective mass for cold atoms in a shaken optical lattice.
Sols, Fernando; Creffield, Charles E.; Pieplow, Gregor; Goldman, Nathan
2016-05-01
Cold atoms can be made to experience synthetic magnetic fields when placed in a suitably driven optical lattice. For coherent systems the switching protocol plays an essential role in determining the long time behavior. Relatively simple driving schemes may generate a uniform magnetic flux but an inhomogeneous effective mass. A two-stage split driving scheme can recover a uniform effective mass but at the price of rendering the magnetic field space dependent. We propose a four-stage split driving that generates uniform field and mass of arbitrary values for all driving amplitudes. Finally, we study a modified two-stage split driving approach that enables uniform field and mass for most of but not all values of the magnetic field. Work supported by MINECO (Spain) under Grant FIS2013-41716-P, by FRS-FNRS (Belgium), and by BSPO under PAI Project No. P7/18 DYGEST.
Koutentakis, G M; Schmelcher, P
2016-01-01
The non-equilibrium dynamics of small boson ensembles in a one-dimensional optical lattice is explored upon a sudden quench of an additional harmonic trap from strong to weak confinement. We find that the competition between the initial localization and the repulsive interaction leads to a resonant response of the system for intermediate quench amplitudes, corresponding to avoided crossings in the many-body eigenspectrum with varying final trap frequency. In particular, we show that these avoided crossings can be utilized to prepare the system in a desired state. The dynamical response is shown to depend on both the interaction strength as well as the number of atoms manifesting the many-body nature of the tunneling dynamics.
Koutentakis, G. M.; Mistakidis, S. I.; Schmelcher, P.
2017-01-01
The nonequilibrium dynamics of small boson ensembles in a one-dimensional optical lattice is explored upon a sudden quench of an additional harmonic trap from strong to weak confinement. We find that the competition between the initial localization and the repulsive interaction leads to a resonant response of the system for intermediate quench amplitudes, corresponding to avoided crossings in the many-body eigenspectrum with varying final trap frequency. In particular, we show that these avoided crossings can be utilized to prepare the system in a desired state. The dynamical response is shown to depend on both the interaction strength as well as the number of atoms manifesting the many-body nature of the tunneling dynamics.
Phase diagram of two-component bosons on an optical lattice
Energy Technology Data Exchange (ETDEWEB)
Altman, Ehud; Hofstetter, Walter; Demler, Eugene; Lukin, Mikhail D [Department of Physics, Harvard University, Cambridge, MA 02138 (United States)
2003-09-01
We present a theoretical analysis of the phase diagram of two-component bosons on an optical lattice. A new formalism is developed which treats the effective spin interactions in the Mott and superfluid phases on the same footing. Using this new approach we chart the phase boundaries of the broken spin symmetry states up to the Mott to superfluid transition and beyond. Near the transition point, the magnitude of spin exchange can be very large, which facilitates the experimental realization of spin-ordered states. We find that spin and quantum fluctuations have a dramatic effect on the transition, making it first order in extended regions of the phase diagram. When each species is at integer filling, an additional phase transition may occur, from a spin-ordered insulator to a Mott insulator with no broken symmetries. We determine the phase boundaries in this regime and show that this is essentially a Mott transition in the spin sector.
Magnetic phase transitions of spin-1 ultracold bosons in a cubic optical lattice
Li, Yongqiang; He, Liang; Hofstetter, Walter
2016-03-01
We investigate strongly correlated spin-1 ultracold bosons with antiferromagnetic interactions in a cubic optical lattice, based on bosonic dynamical mean-field theory. Rich phase diagrams of the system are mapped out at both zero and finite temperature, and in particular the existence of a spin-singlet condensate is established. Interestingly, at finite temperature, we find that the superfluid can be heated into a Mott insulator with even (odd) filling via a first- (second-) order phase transition, analogous to the Pomeranchuk effect in 3He. Moreover, for typical experimental setups, we estimate the critical temperature (entropy) for different ordered phases and our results suggest that direct experimental observation of these phases is promising.
Magnetic phases of mass- and population-imbalanced ultracold fermionic mixtures in optical lattices
Sotnikov, Andrii; Snoek, Michiel; Hofstetter, Walter
2013-05-01
We study magnetic phases of two-component mixtures of ultracold fermions with repulsive interactions in optical lattices in the presence of both hopping and population imbalance by means of dynamical mean-field theory (DMFT). It is shown that these mixtures can have easy-axis antiferromagnetic, ferrimagnetic, charge-density wave, and canted-antiferromagnetic order or be unordered depending on parameters of the system. We study the resulting phase diagram in detail and investigate the stability of the different phases with respect to thermal fluctuations. We also perform a quantitative analysis for a gas confined in a harmonic trap, both within the local density approximation and using a full real-space generalization of DMFT.
Bimodal momentum distribution of laser-cooled atoms in optical lattices
Dion, Claude M; Kastberg, Anders; Sjölund, Peder
2016-01-01
We study, numerically and experimentally, the momentum distribution of atoms cooled in optical lattices. Using semi-classical simulations, we show that this distribution is bimodal, made up of a central feature corresponding to "cold", trapped atoms, with tails of "hot", untrapped atoms, and that this holds true also for very shallow potentials. Careful analysis of the distribution of high-momentum untrapped atoms, both from simulations and experiments, shows that the tails of the distribution does not follow a normal law, hinting at a power-law distribution and non-ergodic behavior. We also revisit the phenomenon of d\\'ecrochage, the potential depth below which the temperature of the atoms starts increasing.
Physics Colloquium - Tight-binding in a new light: Photons in optical lattices
Ecole de Physique - Université de Genève
2011-01-01
Geneva University Physics Department 24, Quai Ernest Ansermet CH-1211 Geneva 4 Lundi 21 mars 2011, 17h00 Ecole de Physique, Auditoire Stueckelberg Tight-binding in a new light: Photons in optical lattices Dr. Niels Madsen Department of Physics, Swansea University, Singleton Park, Swansea, United Kingdom Antihydrogen, the bound state of an antiproton and a positron, has been produced at low energies at CERN (the European Organization for Nuclear Research) since 2002. Antihydrogen is of interest for use in a precision test of nature's fundamental symmetries. The charge conjugation/parity/time reversal (CPT) theorem, a crucial part of the foundation of the standard model of elementary particles and interactions, demands that hydrogen and antihydrogen have the same spectrum. Given the current experimental precision of measurements on the hydrogen atom, subjecting antihydrogen to rigorous spectroscopic examination would constitute a compelling, model-independent test of CPT. Antihydrogen co...
LIGHT SOURCE: Optics for the lattice of the compact storage ring for a Compton X-ray source
Yu, Pei-Cheng; Wang, Yu; Shen, Xiao-Zhe; Huang, Wen-Hui; Yan, Li-Xin; Du, Ying-Chao; Li, Ren-Kai; Tang, Chuan-Xiang
2009-06-01
We present two types of optics for the lattice of a compact storage ring for a Compton X-ray source. The optics design for different operation modes of the storage ring are discussed in detail. For the pulse mode optics, an IBS-suppression scheme is applied to optimize the optics for lower IBS emittance growth rate; as for the steady mode, the method to control momentum compact factor is adopted [Gladkikh P, Phys. Rev. ST Accel. Beams 8, 050702] to obtain stability of the electron beam.
Singh, Navinder
2008-06-01
We have studied some transport properties of cold atoms in an accelerated optical lattice in the presence of decohering effects due to spontaneous emission. One new feature added is the effect of an external ac drive. As a result we obtain a tunable diffusion coefficient and its nonlinear enhancement with increasing drive amplitude. We report an interesting maximum diffusion condition.
Institute of Scientific and Technical Information of China (English)
Song Wei
2009-01-01
We have investigated the intrinsic decoherence on the entanglement of a two-qutrit one-dimensional (1D) optical lattice chain with nonlinear coupling.As a measure of the entanglement,the negativity of the system is calculated.It is shown that the influence of intrinsic decoherence on the entanglement varies in different initial systems.
Cryogenic optical lattice clocks with a relative frequency difference of $1\\times 10^{-18}$
Ushijima, Ichiro; Das, Manoj; Ohkubo, Takuya; Katori, Hidetoshi
2014-01-01
Time and frequency are the most accurately measurable quantities, providing foundations for science and modern technologies. The accuracy relies on the SI (Syst\\'eme International) second that refers to Cs microwave clocks with fractional uncertainties at $10^{-16}$. Recent revolutionary progress of optical clocks aims to achieve $1\\times 10^{-18}$ uncertainty, which however has been hindered by long averaging-times or by systematic uncertainties. Here, we demonstrate optical lattice clocks with $^{87}$Sr atoms interrogated in a cryogenic environment to address the blackbody radiation-induced frequency-shift, which remains the primary source of clocks' uncertainties and has initiated vigorous theoretical and experimental investigations. The quantum-limited stability for $N \\sim 1,000$ atoms allows investigation of the uncertainties at $2\\times 10^{-18}$ in two hours of clock operation. After 11 measurements performed over a month, the two cryo-clocks agree to within $(-1.1\\pm 1.6)\\times 10^{-18}$. Besides its...
Institute of Scientific and Technical Information of China (English)
Jian Fu; Xiang Yin; Ningyuan Li; Limin Tong
2008-01-01
We propose a two-color scheme of atom waveguides and one-dimensional(1D)optical lattices using evanescent wave fields of different transverse modes around an optical micro/nano-fiber.The atom guide potential can be produced when the optical fiber carries a red-detuned light with TE01 mode and a blue-detuned light with HE11 mode,and the 1D optical lattice potential can be produced when the red-detuned light is transformed to the superposition of the TE01 mode and HE11 mode.The two trapping potentials can be transformed to each other for accurately controlling mode transformation for the red-detuned light.This might provide a new approach to realize flexible transition between the guiding and trapping states of atoms.
Yamane, Haruki; Kobayashi, Masanobu
2014-01-01
The influence of two-dimensional array structures (hexagonal anti-dot lattices) on magneto-optical (MO) properties was investigated in perpendicular antiferromagnetically coupled Co80Pt20 stacked films containing ZnO optical interference layers. Antiferromagnetic exchange coupling was generated in a [CoPt/Ru/CoPt] tri-layered structure, and anti-dot lattices were formed on both CoPt layers. The exchange coupling between the CoPt layers across a very thin 0.46-nm Ru interlayer was maintained even after nanofabrication. Characteristic MO hysteresis loops were measured by a 405-nm wavelength incident light on samples containing a 50-nm ZnO optical interference layer. The anti-dot lattice with a 200-nm diameter hole exhibited an increase in the residual Kerr rotation angle owing to the antiparallel magnetization alignment of the CoPt layers. Furthermore, compared with samples without the interference layer, the figure of merit for the anti-dot lattice with a 200-nm diameter hole was enhanced by inserting a 100-nm ZnO interference layer. These improvements are attributed to MO interference effects inside the stacked films.
Static and dynamic properties of interacting spin-1 bosons in an optical lattice
Natu, Stefan S.; Pixley, J. H.; Das Sarma, S.
2015-04-01
We study the physics of interacting spin-1 bosons in an optical lattice using a variational Gutzwiller technique. We compute the mean-field ground state wave function and discuss the evolution of the condensate, spin, nematic, and singlet order parameters across the superfluid-Mott transition. We then extend the Gutzwiller method to derive the equations governing the dynamics of low energy excitations in the lattice. Linearizing these equations, we compute the excitation spectra in the superfluid and Mott phases for both ferromagnetic and antiferromagnetic spin-spin interactions. In the superfluid phase, we recover the known excitation spectrum obtained from Bogoliubov theory. In the nematic Mott phase, we obtain gapped, quadratically dispersing particle and hole-like collective modes, whereas in the singlet Mott phase, we obtain a nondispersive gapped mode, corresponding to the breaking of a singlet pair. For the ferromagnetic Mott insulator, the Gutzwiller mean-field theory only yields particle-hole-like modes but no Goldstone mode associated with long-range spin order. To overcome this limitation, we supplement the Gutzwiller theory with a Schwinger boson mean-field theory which captures superexchange-driven fluctuations. In addition to the gapped particle-hole-like modes, we obtain a gapless quadratically dispersing ferromagnetic spin-wave Goldstone mode. We discuss the evolution of the singlet gap, particle-hole gap, and the effective mass of the ferromagnetic Goldstone mode as the superfluid-Mott phase boundary is approached from the insulating side. We discuss the relevance and validity of Gutzwiller mean-field theories to spinful systems, and potential extensions of this framework to include more exotic physics which appears in the presence of spin-orbit coupling or artificial gauge fields.
Zou, Haiyuan; Zhao, Erhai; Liu, W. Vincent
2017-08-01
Motivated by the experimental realization of quantum spin models of polar molecule KRb in optical lattices, we analyze the spin 1 /2 dipolar Heisenberg model with competing anisotropic, long-range exchange interactions. We show that, by tilting the orientation of dipoles using an external electric field, the dipolar spin system on square lattice comes close to a maximally frustrated region similar, but not identical, to that of the J1-J2 model. This provides a simple yet powerful route to potentially realize a quantum spin liquid without the need for a triangular or kagome lattice. The ground state phase diagrams obtained from Schwinger-boson and spin-wave theories consistently show a spin disordered region between the Néel, stripe, and spiral phase. The existence of a finite quantum paramagnetic region is further confirmed by an unbiased variational ansatz based on tensor network states and a tensor renormalization group.
Nonlinear localized modes in dipolar Bose–Einstein condensates in two-dimensional optical lattices
Energy Technology Data Exchange (ETDEWEB)
Rojas-Rojas, Santiago, E-mail: srojas@cefop.cl [Center for Optics and Photonics and MSI-Nucleus on Advanced Optics, Universidad de Concepción, Casilla 160-C, Concepción (Chile); Departamento de Física, Universidad de Concepción, Casilla 160-C, Concepción (Chile); Naether, Uta [Instituto de Ciencia de Materiales de Aragón and Departamento de Física de la Materia Condensada, CSIC-Universidad de Zaragoza, 50009 Zaragoza (Spain); Delgado, Aldo [Center for Optics and Photonics and MSI-Nucleus on Advanced Optics, Universidad de Concepción, Casilla 160-C, Concepción (Chile); Departamento de Física, Universidad de Concepción, Casilla 160-C, Concepción (Chile); Vicencio, Rodrigo A. [Center for Optics and Photonics and MSI-Nucleus on Advanced Optics, Universidad de Concepción, Casilla 160-C, Concepción (Chile); Departamento de Física, Facultad de Ciencias, Universidad de Chile, Santiago (Chile)
2016-09-16
Highlights: • We study discrete two-dimensional breathers in dipolar Bose–Einstein Condensates. • Important differences in the properties of three fundamental modes are found. • Norm threshold for existence of 2D breathers varies with dipolar interaction. • The Effective Potential Method is implemented for stability analysis. • Uncommon mobility of 2D discrete solitons is observed. - Abstract: We analyze the existence and properties of discrete localized excitations in a Bose–Einstein condensate loaded into a periodic two-dimensional optical lattice, when a dipolar interaction between atoms is present. The dependence of the Number of Atoms (Norm) on the energy of solutions is studied, along with their stability. Two important features of the system are shown, namely, the absence of the Norm threshold required for localized solutions to exist in finite 2D systems, and the existence of regions in the parameter space where two fundamental solutions are simultaneously unstable. This feature enables mobility of localized solutions, which is an uncommon feature in 2D discrete nonlinear systems. With attractive dipolar interaction, a non-trivial behavior of the Norm dependence is obtained, which is well described by an analytical model.
Non-equilibrium dynamics and state preparation in bilayer optical lattices
Langer, Stephan; Daley, Andrew J.
2014-03-01
We study dynamical schemes to obtain low entropy ground states of strongly interacting many body systems. The focus of our work is on ultra-cold Bose and Fermi gases in bilayer optical lattice systems with separately tunable interlayer coupling, energy offset between the layers and repulsive interactions. The case of two coupled one-dimensional chains is treated in a numerically exact manner using the adaptive time-dependent density matrix renormalization group which allows us to study the change of offset and interlayer coupling in real time. We identify parameter regimes where the ground state of the coupled system in the limit of small interlayer coupling consists of a Mott insulator in one layer and a superfluid/metallic state in the other layer can serve as an entropy reservoir. We then investigate the time-dependent dynamics of this system, studying entropy transfer between layers and the emergence of characteristic many-body correlations as we change the layer offset energy and coupling strength. In addition to applications as a preparation scheme for fully interacting Mott-insulator states, feasible with available experimental techniques, the investigated protocols could be easily adapted to also allow for a controlled preparation of highly excited states.
Waseem, Muhammad; Yoshida, Jun; Hattori, Keita; Saito, Taketo; Mukaiyama, Takashi
2016-01-01
We selectively create p-wave Feshbach molecules in the $m_{l}=\\pm 1$ orbital angular momentum projection state of $^{6}$Li. We use an optical lattice potential to restrict the relative momentum of the atoms such that only the $m_{l}=\\pm 1$ molecular state couples to the atoms at the Feshbach resonance. We observe the hollow-centered dissociation profile, which is a clear indication of the selective creation of p-wave molecules in the $m_{l}=\\pm1$ states. We also measure the dissociation energy of the p-wave molecules created in the optical lattice and develop a theoretical formulation to explain the dissociation energy as a function of the magnetic field ramp rate for dissociation. The capability of selecting one of the two closely-residing p-wave Feshbach resonances is useful for the precise characterization of the p-wave Feshbach resonances.
Mazzucchi, Gabriel; Caballero-Benitez, Santiago F; Elliott, Thomas J; Mekhov, Igor B
2015-01-01
Trapping ultracold atoms in optical lattices enabled numerous breakthroughs uniting several disciplines. Although the light is a key ingredient in such systems, its quantum properties are typically neglected, reducing the role of light to a classical tool for atom manipulation. Here we show how elevating light to the quantum level leads to novel phenomena, inaccessible in setups based on classical optics. Interfacing a many-body atomic system with quantum light opens it to the environment in an essentially nonlocal way, where spatial coupling can be carefully designed. The competition between typical processes in strongly correlated systems (local tunnelling and interaction) with global measurement backaction leads to novel multimode dynamics and the appearance of long-range correlated tunnelling capable of entangling distant lattices sites, even when tunnelling between neighbouring sites is suppressed by the quantum Zeno effect. We demonstrate both the break-up and protection of strongly interacting fermion ...
Energy Technology Data Exchange (ETDEWEB)
Zou, Jianfei, E-mail: zoujianfei@hhu.edu.cn; Tang, Chunmei; Zhang, Aimei
2017-04-04
We study the photo-induced spin current injection in a hexagonal lattice with both intrinsic and Rashba spin–orbit interactions which is irradiated by a polarized light beam. It is found that the spin current injection rate could be enhanced as the graphene lattice is in the topological insulator state. Furthermore, the spin current injection rate could be remarkably modulated by the degree of polarization of light and its frequency. - Highlights: • The optical spin current could be enhanced by the intrinsic spin–orbit interaction. • The optical spin current could be modulated by the degree of polarization of light. • The maximum of the spin current injection rate is obtained.
A topological semimetal model with f-wave symmetry in a non-Abelian triangular optical lattice
Energy Technology Data Exchange (ETDEWEB)
Li, Ling; Bai, Zhiming [School of Science, Hebei University of Science and Technology, Shijiazhuang 050018 (China); Hao, Ningning [Department of Physics, The University of Hong Kong, Pokfulam Road, Hong Kong (China); Liu, Guocai, E-mail: guocailiu@semi.ac.cn [School of Science, Hebei University of Science and Technology, Shijiazhuang 050018 (China)
2016-08-01
We demonstrate that an chiral f-wave topological semimetal can be induced in a non-Abelian triangular optical lattice. We show that the f-wave symmetry topological semimetal is characterized by the topological invariant, i.e., the winding number W, with W=3 and is different from the semimetal with W=1 and 2 which have the p-wave and d-wave symmetry, respectively.
DEFF Research Database (Denmark)
Aramburu, José Antonio; García-Fernández, Pablo; García Lastra, Juan Maria
2017-01-01
of the electric field created by the rest of lattice ions over the complex. To illustrate this concept we analyze the origin of the surprisingly large differences in the d–d optical transitions of two systems containing square-planar CuF42– complexes, CaCuF4, and center II in Cu2+-doped Ba2ZnF6, even though...
Energy Technology Data Exchange (ETDEWEB)
Wang, Ji-Guo; Yang, Shi-Jie, E-mail: yangshijie@tsinghua.org.cn
2017-05-18
We study a model to realize the long-distance correlated tunneling of ultracold bosons in a one-dimensional optical lattice chain. The model reveals the behavior of a quantum Newton's cradle, which is the perfect transfer between two macroscopic quantum states. Due to the Bose enhancement effect, we find that the resonantly tunneling through a Mott domain is greatly enhanced.
Fan, W. J.; Bose, Sumanta; Zhang, D. H.
2016-09-01
Dilute nitride bismide GaNBiAs is a potential semiconductor alloy for near- and mid-infrared applications, particularly in 1.55 μm optical communication systems. Incorporating dilute amounts of bismuth (Bi) into GaAs reduces the effective bandgap rapidly, while significantly increasing the spin-orbit-splitting energy. Additional incorporation of dilute amounts of nitrogen (N) helps to attain lattice matching with GaAs, while providing a route for flexible bandgap tuning. Here we present a study of the electronic bandstructure and optical gain of the lattice matched GaNxBiy As1 -x -y /GaAs quaternary alloy quantum well (QW) based on the 16-band k .p model. We have taken into consideration the interactions between the N and Bi impurity states with the host material based on the band anticrossing and valence band anticrossing model. The optical gain calculation is based on the density matrix theory. We have considered different lattice matched GaNBiAs QW cases and studied their energy dispersion curves, optical gain spectrum, maximum optical gain, and differential gain and compared their performances based on these factors. The thickness and composition of these QWs were varied in order to keep the emission peak fixed at 1.55 μm. The well thickness has an effect on the spectral width of the gain curves. On the other hand, a variation in the injection carrier density has different effects on the maximum gain and differential gain of QWs of varying thicknesses. Among the cases studied, we found that the 6.3 nm thick GaN3 Bi5.17 As91.83 lattice matched QW was most suited for 1.55 μm (0.8 eV) GaAs-based photonic applications.
McDonald, Mickey Patrick
Over the past several decades, rapid progress has been made toward the accurate characterization and control of atoms, made possible largely by the development of narrow-linewidth lasers and techniques for trapping and cooling at ultracold temperatures. Extending this progress to molecules will have exciting implications for chemistry, condensed matter physics, and precision tests of physics beyond the Standard Model. These possibilities are all consequences of the richness of molecular structure, which is governed by physics substantially different from that characterizing atomic structure. This same richness of structure, however, increases the complexity of any molecular experiment manyfold over its atomic counterpart, magnifying the difficulty of everything from trapping and cooling to the comparison of theory with experiment. This thesis describes work performed over the past six years to establish the state of the art in manipulation and quantum control of ultracold molecules. Our molecules are produced via photoassociation of ultracold strontium atoms followed by spontaneous decay to a stable ground state. We describe a thorough set of measurements characterizing the rovibrational structure of very weakly bound (and therefore very large) 88Sr2 molecules from several different perspectives, including determinations of binding energies; linear, quadratic, and higher order Zeeman shifts; transition strengths between bound states; and lifetimes of narrow subradiant states. The physical intuition gained in these experiments applies generally to weakly bound diatomic molecules, and suggests extensive applications in precision measurement and metrology. In addition, we present a detailed analysis of the thermally broadened spectroscopic lineshape of molecules in a non-magic optical lattice trap, showing how such lineshapes can be used to directly determine the temperature of atoms or molecules in situ, addressing a long-standing problem in ultracold physics
Three-dimensional topological solitons in PT-symmetric optical lattices
Kartashov, Yaroslav V; Huang, Guoxiang; Torner, Lluis
2016-01-01
We address the properties of fully three-dimensional solitons in complex parity-time (PT)-symmetric periodic lattices with focusing Kerr nonlinearity, and uncover that such lattices can stabilize both, fundamental and vortex-carrying soliton states. The imaginary part of the lattice induces internal currents in the solitons that strongly affect their domains of existence and stability. The domain of stability for fundamental solitons can extend nearly up to the PT-symmetry breaking point, where the linear lattice spectrum becomes complex. Vortex solitons feature spatially asymmetric profiles in the PT-symmetric lattices, but they are found to still exist as stable states within narrow regions. Our results provide the first example of continuous families of stable three-dimensional propagating solitons supported by complex potentials.
Institute of Scientific and Technical Information of China (English)
刘淑娟; 徐志君; 隋成华; 黄琳; 熊宏伟
2003-01-01
Evolution of a Bose-condensed gas in one-dimensional optical lattices is investigated in the presence of a potential barrier created by a far-off resonant laser beam. After the magnetic trap and optical lattices are switched off,by using the propagator method, the analytical result of the evolution of the density distribution of the Bosecondensed gas is given. In particular, the collision between the condensate and the potential barrier is shown in this paper.
Entangling Dipole-Dipole Interactions for Quantum Logic in Optical Lattices
Deutsch, Ivan
2000-06-01
The ability to engineer the quantum state of a many-body system represents the ``holy grail" of coherent control and opens the door to a host of new applications and fundamental studies ranging from improvements in precision measurement to quantum computation. At the heart of these quantum-information processing tasks are entangled states. These can be created through a ``quantum-circuit" consisting of a series of simple quantum logic gates acting only on single or pairs of qubits. Any physical implementation of a quantum circuit must contend with an inherent conflict. Qubits must strongly couple to one another and to an external classical field which drives the algorithm, while simultaneously coupling very weakly to the noisy environment which decoheres the quantum superpositions. We have identified a new system for quantum-information processing: ultra-cold trapped neutral atoms (G. K. Brennen et al. ), Phys. Rev. Lett. 82 , 1060 (1999); see also eprint quant- ph/9910031. Neutrals interact very weakly with the environment and coupling between them can be induced on demand through resonant excitation or elastic collisions via direct overlap between wavepackets(D. Jaksch et al.), Phys. Rev. Lett. 82 1975 (1999).. The ability to turn interactions on and off reduces decoherence and the spread of errors amongst qubits. In the implementation presented here I will discuss entangling atoms with electric dipole-dipole interactions in optical lattices (P.S. Jessen and I. H. Deutsch, Adv. At. Mol. Phys. 36), 91 (1996).. These traps provide an extremely flexible environment for coherent control of both internal and external degrees of freedom of atom wave packets as in ion traps(D. Wineland et al.), Fortschr. Phys. 46, 363 (1998).. Dipole-dipole interactions can be coherent when atoms are tightly localized at a distance small compared to the optical wavelength. By inducing dipoles conditional on the logical state of the atoms we can engineer quantum gates. Detailed analysis
Stanislavchuk, T. N.; Litvinchuk, A. P.; Hu, Rongwei; Jeon, Young Hun; Ji, Sung Dae; Cheong, S.-W.; Sirenko, A. A.
2015-10-01
Optical properties and lattice dynamics of hexagonal 2 H -BaMn O3 single crystals are studied experimentally in a wide temperature range by means of rotating analyzer ellipsometry and Raman scattering. The magnitude of the direct electronic band gap is found to be Eg=3.2 eV . At room temperature the far-infrared (IR) ellipsometry spectra reveal six IR-active phonons; two of them are polarized along the c axis and four are polarized within the a-b plane. Seven phonon modes are identified in the Raman scattering experiments. Group theoretical mode analysis and complementary density functional theory lattice dynamics calculations are consistent with the 2 H -BaMn O3 structure belonging to the polar P 63m c space group at room temperature. All observed vibrational modes are assigned to specific eigenmodes of the lattice. The neutron diffraction measurements reveal a structural phase transition upon cooling below TC=130 ±5 K , which is accompanied by a lattice symmetry change from P 63m c to P 63c m . Simultaneously, at temperatures below TC several additional IR- and Raman-active modes are detected in experimental spectra. This confirms the occurrence of a structural transition, which is possibly associated with the appearance of electrical polarization along the c axis and a previously known tripling of the primitive cell volume at low temperatures.
Fourier's law on a one-dimensional optical random lattice
Energy Technology Data Exchange (ETDEWEB)
Platini, T [Department of Physics, Virginia Tech, Blacksburg, VA 24061 (United States); Harris, R J [School of Mathematical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS (United Kingdom); Karevski, D [Institut Jean Lamour, Departement Physique de la Matiere et des Materiaux, Groupe de Physique Statistique, Nancy-Universite CNRS, BP 70239, F-54506 Vandoeuvre les Nancy Cedex (France)
2010-04-02
We study the transport properties of a one-dimensional hard-core bosonic lattice gas coupled to two particle reservoirs at different chemical potentials which generate a current flow through the system. In particular, the influence of random fluctuations of the underlying lattice on the stationary-state properties is investigated. We show analytically that the steady-state density presents a linear profile. The local steady-state current obeys the Fourier law j = -{kappa}({tau}){nabla}n where {tau} is a typical timescale of the lattice fluctuations and {nabla}n is the density gradient imposed by the reservoirs.
Energy Technology Data Exchange (ETDEWEB)
Pal, S.; Das, K.; Barman, A., E-mail: abarman@ybose.res.in [Thematic Unit of Excellence on Nanodevice Technology and Department of Condensed Matter Physics and Material Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata 700 098 (India); Klos, J. W.; Gruszecki, P.; Krawczyk, M., E-mail: krawczyk@amu.edu.pl [Faculty of Physics, A. Mickiewicz University in Poznan, Umultowska 85, 61-614 Poznań (Poland); Hellwig, O. [San Jose Research Center, HGST, a Western Digital Company, 3403 Yerba Buena Rd., San Jose, California 95135 (United States)
2014-10-20
We present an all-optical time-resolved measurement of spin wave (SW) dynamics in a series of antidot lattices based on [Co(0.75 nm)/Pd(0.9 nm)]{sub 8} multilayer (ML) systems with perpendicular magnetic anisotropy. The spectra depend significantly on the areal density of the antidots. The observed SW modes are qualitatively reproduced by the plane wave method. The interesting results found in our measurements and calculations at small lattice constants can be attributed to the increase of areal density of the shells with modified magnetic properties probably due to distortion of the regular ML structure by the Ga ion bombardment and to increased coupling between localized modes. We propose and discuss the possible mechanisms for this coupling including exchange interaction, tunnelling, and dipolar interactions.
Zhao, Xing-Dong; Zhao, Xu; Jing, Hui; Zhou, Lu; Zhang, Weiping
2013-05-01
We propose to realize controllable squeezing states of ferromagnetic magnons with a spinor Bose-Einstein condensate confined in an optical lattice. We use an external laser field to induce optical dipole-dipole interaction, which leads to magnon excitations of the system. By focusing on the role of the long-range magnetic and the optical dipole-dipole interactions, we show that the existence and properties of the produced squeezed magnons can be well controlled by tuning the transverse trapping widths of the condensates. We also show that the magnon excitations in this system have a close analogy with the dynamical Casimir effect at finite temperature predicted by Plunien [Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.84.1882 84, 1882 (2000)] and Jing [Phys. Lett. APYLAAG0375-960110.1016/S0375-9601(00)00165-1 268, 174 (2000)].
Open quantum spin systems in semiconductor quantum dots and atoms in optical lattices
Energy Technology Data Exchange (ETDEWEB)
Schwager, Heike
2012-07-04
In this Thesis, we study open quantum spin systems from different perspectives. The first part is motivated by technological challenges of quantum computation. An important building block for quantum computation and quantum communication networks is an interface between material qubits for storage and data processing and travelling photonic qubits for communication. We propose the realisation of a quantum interface between a travelling-wave light field and the nuclear spins in a quantum dot strongly coupled to a cavity. Our scheme is robust against cavity decay as it uses the decay of the cavity to achieve the coupling between nuclear spins and the travelling-wave light fields. A prerequiste for such a quantum interface is a highly polarized ensemble of nuclear spins. High polarization of the nuclear spin ensemble is moreover highly desirable as it protects the potential electron spin qubit from decoherence. Here we present the theoretical description of an experiment in which highly asymmetric dynamic nuclear spin pumping is observed in a single self-assembled InGaAs quantum dot. The second part of this Thesis is devoted to fundamental studies of dissipative spin systems. We study general one-dimensional spin chains under dissipation and propose a scheme to realize a quantum spin system using ultracold atoms in an optical lattice in which both coherent interaction and dissipation can be engineered and controlled. This system enables the study of non-equilibrium and steady state physics of open and driven spin systems. We find, that the steady state expectation values of different spin models exhibit discontinuous behaviour at degeneracy points of the Hamiltonian in the limit of weak dissipation. This effect can be used to dissipatively probe the spectrum of the Hamiltonian. We moreover study spin models under the aspect of state preparation and show that dissipation drives certain spin models into highly entangled state. Finally, we study a spin chain with
Topcu, Turker; Derevianko, Andrei
2014-05-01
Long range interactions between neutral Rydberg atoms has emerged as a potential means for implementing quantum logical gates. These experiments utilize hyperfine manifold of ground state atoms to act as a qubit basis, while exploiting the Rydberg blockade mechanism to mediate conditional quantum logic. The necessity for overcoming several sources of decoherence makes magic wavelength trapping in optical lattices an indispensable tool for gate experiments. The common wisdom is that atoms in Rydberg states see trapping potentials that are essentially that of a free electron, and can only be trapped at laser intensity minima. We show that although the polarizability of a Rydberg state is always negative, the optical potential can be both attractive or repulsive at long wavelengths (up to ~104 nm). This opens up the possibility of magic trapping Rydberg states with ground state atoms in optical lattices, thereby eliminating the necessity to turn off trapping fields during gate operations. Because the wavelengths are near the CO2 laser band, the photon scattering and the ensuing motional heating is also reduced compared to conventional traps near low lying resonances, alleviating an important source of decoherence. This work was supported by the National Science Foundation (NSF) Grant No. PHY-1212482.
Kennedy, Colin; Miyake, Hiro; Burton, Cody; Chung, Woo Chang; Siviloglou, Georgios; Ketterle, Wolfgang
2014-05-01
The study of charged particles in a magnetic field has led to paradigm shifts in condensed matter physics including the discovery of topologically ordered states like the quantum Hall and fractional quantum Hall states. Quantum simulation of such systems using neutral atoms has drawn much interest recently in the atomic physics community due to the versatility and defect-free nature of such systems. We discuss our recent experimental realization of the Harper Hamiltonian and strong, uniform effective magnetic fields for neutral particles in an optical lattice. Additionally, our scheme represents a promising system to realize spin-orbit coupling and the quantum spin Hall states without flipping atomic spin states and thus without the intrinsic heating that comes with near-resonant Raman lasers. We point out that our scheme can be implemented all optically through the use of a period-tripling superlattice, offering faster switching times and more precise control than with magnetic field gradients. Finally, we show that this method is very general for engineering novel single particle spectra in an optical lattice and can be used to map out Hofstadter's butterfly.
Cladé, Pierre; de Mirandes, Estefania; Cadoret, Malo; Guellati-Khélifa, Saïda; Schwob, Catherine; Nez, François; Julien, Lucile; Biraben, François
2006-01-27
We report an accurate measurement of the recoil velocity of 87Rb atoms based on Bloch oscillations in a vertical accelerated optical lattice. We transfer about 900 recoil momenta with an efficiency of 99.97% per recoil. A set of 72 measurements of the recoil velocity, each one with a relative uncertainty of about 33 ppb in 20 min integration time, leads to a determination of the fine structure constant with a statistical relative uncertainty of 4.4 ppb. The detailed analysis of the different systematic errors yields to a relative uncertainty of 6.7 ppb. The deduced value of alpha-1 is 137.035 998 78(91).
Institute of Scientific and Technical Information of China (English)
无
2005-01-01
We investigate the energy spectrum of ground state and quasi-particle excitation spectrum of hard-core bosons, which behave very much like spinless noninteracting fermions, in optical lattices by means of the perturbation expansion and Bogoliubov approach. The results show that the energy spectrum has a single band structure, and the energy is lower near zero momentum; the excitation spectrum gives corresponding energy gap, and the system is in Mott-insulating state at Tonks limit. The analytic result of energy spectrum is in good agreement with that calculated in terms of Green's function at strong correlation limit.
Optical properties of GaAs 2D Archimedean photonic lattice tiling with the p4g symmetry
Directory of Open Access Journals (Sweden)
Jovanović Đ.
2008-01-01
Full Text Available In this paper we present our investigation of 2D Archimedean lattice photonic crystals with p4g space group symmetry. The structures are made of GaAs both as air holes and dielectric rods in air. In order to analyze the photonic crystal optical properties we performed calculations of the band structures, equi-frequency contours and electromagnetic propagation through the basic structures and waveguides. In addition, we investigated negative refraction and left-handedness in the p4g photonic crystal.
Inaba, Kensuke; Yamashita, Makoto
2010-10-22
We propose a simple method to detect the antiferromagnetic (AF) state of fermionic atoms in an optical lattice by combining a time-of-flight (TOF) imaging method and a Feshbach resonance. In this scheme, the nontrivial dynamics of fermionic atoms during the imaging process works as a probe with respect to the breaking of the translational symmetry in the AF state. Precise numerical simulations demonstrate that the characteristic oscillatory dynamics induced by the scattering process that transfers an AF ordering vector appears in TOF images, which can be easily observed experimentally.
Martínez, Luis Javier; Huang, Ningfeng; Ma, Jing; Lin, Chenxi; Jaquay, Eric; Povinelli, Michelle L
2013-12-16
A new photonic crystal structure is generated by using a regular graphite lattice as the base and adding a slot in the center of each unit cell to enhance field confinement. The theoretical Q factor in an ideal structure is over 4 × 10(5). The structure was fabricated on a silicon-on-insulator wafer and optically characterized by transmission spectroscopy. The resonance wavelength and quality factor were measured as a function of slot height. The measured trends show good agreement with simulation.
First Considerations on Beam Optics and Lattice Design for the Future Hadron-Hadron Collider FCC
Alemany Fernandez, R
2014-01-01
The present document explains the steps carried out in order to make the first design of the Future Hadron-Hadron Collider (FCC-hh) following the base line parameters that can be found in [1]. Two lattice layouts are presented, a ring collider with 12 arcs and 12 straight sections, four of them designed as interaction points, and a racetrack like collider with two arcs and two straight sections, each of them equipped with two interaction points. The lattice design presented in the paper is modular allowing the same modules be used for both layouts. The present document addresses as well the beta star reach at the interaction points.
Aquifer data from four wells in the Mendenhall Valley near Juneau, Alaska
Balding, G.O.; Dearborn, L.L.
1982-01-01
This report summarizes data collected during drilling and testing of four wells in Mendenhall Valley, an area being developed as a suburb of Juneau, Alaska. Previous studies indicated that the glacial deposits on the east side of the valley had the potential for producing the large quantities of water needed for a community water supply. The drilling defined an upper aquifer between the water table and a depth of 215 feet and a lower aquifer below 252 feet. The testing did not define the storage coefficient or transmissivity of the upper aquifer. Drawdowns within 20 feet of the test well were less than 12 feet when the pumping rate was 300 gallons per minute. Greater pumping rates could be sustained in larger diameter wells having larger screened intervals in the upper aquifer but would produce greater drawdowns. The performance of the lower aquifer was not tested. Water in the upper aquifer is of adequate quality for drinking water, but may require treatment for iron; water from the lower aquifer is brackish. (USGS)
Optical techniques for Rydberg physics in lattice geometries : A technical guide
Naber, J.B.; Vos, J.; Rengelink, R.J.; Nusselder, R.J.; Davtyan, D.
2016-01-01
We address the technical challenges when performing quantum information experiments with ultracold Rydberg atoms in lattice geometries. We discuss the following key aspects: (i) the coherent manipulation of atomic ground states, (ii) the coherent excitation of Rydberg states, and (iii) spatial addre
Inaba, Hajime; Hosaka, Kazumoto; Yasuda, Masami; Nakajima, Yoshiaki; Iwakuni, Kana; Akamatsu, Daisuke; Okubo, Sho; Kohno, Takuya; Onae, Atsushi; Hong, Feng-Lei
2013-04-08
We propose a novel, high-performance, and practical laser source system for optical clocks. The laser linewidth of a fiber-based frequency comb is reduced by phase locking a comb mode to an ultrastable master laser at 1064 nm with a broad servo bandwidth. A slave laser at 578 nm is successively phase locked to a comb mode at 578 nm with a broad servo bandwidth without any pre-stabilization. Laser frequency characteristics such as spectral linewidth and frequency stability are transferred to the 578-nm slave laser from the 1064-nm master laser. Using the slave laser, we have succeeded in observing the clock transition of (171)Yb atoms confined in an optical lattice with a 20-Hz spectral linewidth.
Energy Technology Data Exchange (ETDEWEB)
Radu, I.E.
2006-03-15
This thesis presents the femtosecond laser-induced electron, lattice and spin dynamics on two representative rare-earth systems: The ferromagnetic gadolinium Gd(0001) and the paramagnetic yttrium Y(0001) metals. The employed investigation tools are the time-resolved linear reflectivity and second-harmonic generation, which provide complementary information about the bulk and surface/interface dynamics, respectively. The femtosecond laser excitation of the exchange-split surface state of Gd(0001) triggers simultaneously the coherent vibrational dynamics of the lattice and spin subsystems in the surface region at a frequency of 3 THz. The coherent optical phonon corresponds to the vibration of the topmost atomic layer against the underlying bulk along the normal direction to the surface. The coupling mechanism between phonons and magnons is attributed to the modulation of the exchange interaction J between neighbour atoms due to the coherent lattice vibration. This leads to an oscillatory motion of the magnetic moments having the same frequency as the lattice vibration. Thus these results reveal a new type of phonon-magnon coupling mediated by the modulation of the exchange interaction and not by the conventional spin-orbit interaction. Moreover, we show that coherent spin dynamics in the THz frequency domain is achievable, which is at least one order of magnitude faster than previously reported. The laser-induced (de)magnetization dynamics of the ferromagnetic Gd(0001) thin films have been studied. Upon photo-excitation, the nonlinear magneto-optics measurements performed in this work show a sudden drop in the spin polarization of the surface state by more than 50% in a <100 fs time interval. Under comparable experimental conditions, the time-resolved photoemission studies reveal a constant exchange splitting of the surface state. The ultrafast decrease of spin polarization can be explained by the quasi-elastic spin-flip scattering of the hot electrons among spin
Institute of Scientific and Technical Information of China (English)
Yang Ping; Li Pei; Zhang Li-Qiang; Wang Xiao-Liang; Wang Huan; Song Xi-Fu; Xie Fang-Wei
2012-01-01
The lattice,the band gap and the optical properties of n-type ZnO under uniaxial stress are investigated by firstprinciples calculations.The results show that the lattice constants change linearly with stress.Band gaps are broadened linearly as the uniaxial compressive stress increases.The change of band gap for n-type ZnO comes mainly from the contribution of stress in the c-axis direction,and the reason for band gap of n-type ZnO changing with stress is also explained.The calculated results of optical properties reveal that the imaginary part of the dielectric function decreases with the increase of uniaxial compressive stress at low energy.However,when the energy is higher than 4.0 eV,the imaginary part of the dielectric function increases with the increase of stress and a blueshift appears.There are two peaks in the absorption spectrum in an energy range of 4.0-13.0 eV.The stress coefficient of the band gap of n-type ZnO is larger than that of pure ZnO,which supplies the theoretical reference value for the modulation of the band gap of doped ZnO.
Hou, Jing-Min; Chen, Wei
2016-09-01
We propose to realize Weyl semimetals in a cubic optical lattice. We find that there exist three distinct Weyl semimetal phases in the cubic optical lattice for different parameter ranges. One of them has two pairs of Weyl points and the other two have one pair of Weyl points in the Brillouin zone. For a slab geometry with (010) surfaces, the Fermi arcs connecting the projections of Weyl points with opposite topological charges on the surface Brillouin zone is presented. By adjusting the parameters, the Weyl points can move in the Brillouin zone. Interestingly, for two pairs of Weyl points, as one pair of them meet and annihilate, the originial two Fermi arcs coneect into one. As the remaining Weyl points annihilate further, the Fermi arc vanishes and a gap is opened. Furthermore, we find that there always exists a hidden symmetry at Weyl points, regardless of anywhere they located in the Brillouin zone. The hidden symmetry has an antiunitary operator with its square being ‑1.
Ultracold Fermions in the P-Orbital Band of an Optical Lattice
2015-07-27
cooling and trapping of lithium atoms. Nd:YVO 4 etalon1 OC LD 808nm LD 808nm etalon2 PZT1 PZT2 OI M1 M2 M3 M4 PBS LBO ICPZT3 M7 M5 671nm M6 EOM HWP HWP...Haddad from the Colorado School of Mines which focussed on relativistic phe- nomena that can be studied with ultracold atoms in a honeycomb lattice
Lim, Ju Won; Lee, Young Tack; Pandey, Rina; Yoo, Tae-Hee; Sang, Byoung-In; Ju, Byeong-Kwon; Hwang, Do Kyung; Choi, Won Kook
2014-11-03
Silver (Ag) grid transparent electrode is one of the most promising transparent conducting electrodes (TCEs) to replace conventional indium tin oxide (ITO). We systematically investigate an effect of geometric lattice modifications on optical and electrical properties of Ag grid electrode. The reference Ag grid with 5 μm width and 100 μm pitch (duty of 0.05) prepared by conventional photo-lithography and lift-off processes shows the sheet resistance of 13.27 Ω/sq, transmittance of 81.1%, and resultant figure of merit (FOM) of 129.05. Three different modified Ag grid electrodes with stripe added-mesh (SAM), triangle-added mesh (TAM), and diagonal-added mesh (DAM) are suggested to improve optical and electrical properties. Although all three of SAM, TAM, and DAM Ag grid electrodes exhibit the lower transmittance values of about 72 - 77%, they showed much decreased sheet resistance of 6 - 8 Ω/sq. As a result, all of the lattice-modified Ag grid electrodes display significant improvement of FOM and the highest value of 171.14 is obtained from DAM Ag grid, which is comparable to that of conventional ITO electrode (175.46). Also, the feasibility of DAM Ag gird electrode for use in organic solar cell is confirmed by finite difference time domain (FDTD) simulations. Unlike a conventional ITO electrode, DAM Ag grid electrode can induce light scattering and trapping due to the diffuse transmission that compensates for the loss in optical transparency, resulting in comparable light absorption in the photo active layer of poly(3-hexylthiophene) (P3HT): [6,6]-phenyl-C61-butyric acid methyl ester (PC₆₀BM). P3HT:PC₆₀BM based OSCs with the DAM Ag grid electrode were fabricated, which also showed the potential for ITO-free transparent electrode.
High accuracy measure of atomic polarizability in an optical lattice clock
Sherman, J. A.; Lemke, N. D.; Hinkley, N.; Pizzocaro, M.; Fox, R. W.; Ludlow, A. D.; Oates, C. W.
2011-01-01
Despite being a canonical example of quantum mechanical perturbation theory, as well as one of the earliest observed spectroscopic shifts, the Stark effect contributes the largest source of uncertainty in a modern optical atomic clock through blackbody radiation. By employing an ultracold, trapped atomic ensemble and high stability optical clock, we characterize the quadratic Stark effect with unprecedented precision. We report the ytterbium optical clock's sensitivity to electric fields (suc...
Ho, Tin-Lun
2008-03-01
Cold atoms in optical lattices show great promise to generate a whole host of new strongly correlated states and to emulate many theoretical models for strongly interacting electronic systems. However, to reach these strongly correlated regimes, we need to reach unprecedented low temperatures within current experimental settings. To achieve this, it is necessary to remove considerable amount of entropy from the system. Here, we point out a general principle for removing entropies of quantum gases in optical lattices which will allow one to reach some extraordinarily low temperature scales.
Solitons in spiraling Vogel lattices
Kartashov, Yaroslav V; Torner, Lluis
2012-01-01
We address light propagation in Vogel optical lattices and show that such lattices support a variety of stable soliton solutions in both self-focusing and self-defocusing media, whose propagation constants belong to domains resembling gaps in the spectrum of a truly periodic lattice. The azimuthally-rich structure of Vogel lattices allows generation of spiraling soliton motion.
High accuracy correction of blackbody radiation shift in an optical lattice clock
Middelmann, Thomas; Lisdat, Christian; Sterr, Uwe
2012-01-01
We have determined the frequency shift that blackbody radiation is inducing on the $5s^2$ $^1$S$_0$ -- $5s5p$ $^3$P$_0$ clock transition in strontium. Previously its uncertainty limited the uncertainty of strontium lattice clocks to $1\\times10^{-16}$. Now the uncertainty associated to the black body radiation shift correction translates to $5\\times 10^{-18}$ relative frequency uncertainty at room temperature. Our evaluation is based on a measurement of the differential dc-polarizability of the two clock states and on a modeling of the dynamic contribution using this value and experimental data for other atomic properties.
Photonic analogue of Josephson effect in a dual-species optical-lattice cavity
Lei, Soi-Chan; Lee, Ray-Kuang
2010-01-01
We extend the idea of quantum phase transitions of light in the photonic Bose-Hubbard model with interactions to two atomic species by a self-consistent mean field theory. The excitation of two-level atoms interacting with coherent photon fields is analyzed with a finite temperature dependence of the order parameters. Four ground states of the system are found, including an isolated Mott-insulator phase and three different superfluid phases. Like two weakly coupled superconductors, our proposed dual-species lattice system shows a photonic analogue of Josephson effect. The dynamics of the proposed two species model provides a promising quantum simulator for possible quantum information processes.
Ultracold atoms in optical lattices simulating quantum many-body systems
Lewenstein, Maciej; Ahufinger, Verònica
2012-01-01
Quantum computers, though not yet available on the market, will revolutionize the future of information processing. Quantum computers for special purposes like quantum simulators are already within reach. The physics of ultracold atoms, ions and molecules offer unprecedented possibilities of control of quantum many body systems and novel possibilities of applications to quantum information processing and quantum metrology. Particularly fascinating is the possibility of usingultracold atoms in lattices to simulate condensed matter or even high energy physics.This book provides a complete and co
Yan, Jie-Yun; Wang, Lan-Yu
2016-09-01
We investigate the atomic current in optical lattices under the presence of both constant and periodic external field with Landau-Zener tunneling considered. By simplifying the system to a two-band model, the atomic current is obtained based on the Boltzmann equations. We focus on three situations to discuss the influence of the Landau-Zener tunneling and periodic field on the atomic current. Numerical calculations show the atomic transient current would finally become the stable oscillation, whose amplitude and average value can be further adjusted by the periodic external field. It is concluded that the periodic external field could provide an effective modulation on the atomic current even when the Landau-Zener tunneling probability has almostly become a constant.
Energy Technology Data Exchange (ETDEWEB)
Xi, Kui-Tian, E-mail: kuitianxi@gmail.com; Li, Jinbin, E-mail: jinbin@nuaa.edu.cn; Shi, Da-Ning, E-mail: shi@nuaa.edu.cn
2014-03-01
We consider a weakly interacting two-component Bose–Einstein condensate (BEC) in a two-dimensional (2D) quasi-periodic bichromatic optical lattice (BOL). The problem is studied by means of split-step Crank–Nicolson method. The effects of weak intra- and inter-component interactions on localization of a two-component BEC are investigated. It is shown that in the quasi-2D regime, due to the enhanced disorder, there is no symmetry breaking like that in the one-dimensional (1D) case under a sine-typed potential, while configurations of density profiles are also quite different from that in the 1D case. By modulating interactions, the interplay of disorder and weak repulsive or attractive interactions is studied in detail. The cases with sine- and cosine-typed potentials acting on components 1 and 2 respectively are also discussed.
Institute of Scientific and Technical Information of China (English)
ZHU Rui
2007-01-01
The Bose Hubbard model describing interacting bosons in an optical lattice is reduced to a simple spin-1 XY model with single-ion anisotropy in the vicinity of the Mott phase. In the strong coupling Mott insulating regime,we propose a mean field theory based on a constraint SU(3) pseudo-boson representation on the effective model and discuss the excitation spectra and the phase transition to the superfluid state. Further to the superfluid phase, we use the coherent-state approach to derive the collective excitation modes. It is found that the Mott phase has two degenerate gapped quadratic excitation spectra which graduate into two degenerate gapless linear ones at the transition point, and one gapless linear mode with one gapped quadratic mode in the superfluid phase.
Campbell, Russell; Oppo, Gian-Luca; Borkowski, Mateusz
2015-01-01
The dynamics of static and traveling breathers in two-species Bose-Einstein condensates in a one-dimensional optical lattice is modelled within the tight-binding approximation. Two coupled discrete nonlinear Schrödinger equations describe the interaction of the condensates in two cases of relevance: a mixture of two ytterbium isotopes and a mixture of 87Rb and 41K. Depending on their initial separation, interaction between static breathers of different species can lead to the formation of symbiotic structures and transform one of the breathers from a static into a traveling one. Collisions between traveling and static discrete breathers composed of different species are separated into four distinct regimes ranging from totally elastic when the interspecies interaction is highly attractive to mutual destruction when the interaction is sufficiently large and repulsive. We provide an explanation of the collision features in terms of the interspecies coupling and the negative effective mass of the discrete breathers.
Energy Technology Data Exchange (ETDEWEB)
Yan, Jie-Yun, E-mail: jyyan@bupt.edu.cn; Wang, Lan-Yu, E-mail: lan_yu_wang@163.com
2016-09-01
We investigate the atomic current in optical lattices under the presence of both constant and periodic external field with Landau–Zener tunneling considered. By simplifying the system to a two-band model, the atomic current is obtained based on the Boltzmann equations. We focus on three situations to discuss the influence of the Landau–Zener tunneling and periodic field on the atomic current. Numerical calculations show the atomic transient current would finally become the stable oscillation, whose amplitude and average value can be further adjusted by the periodic external field. It is concluded that the periodic external field could provide an effective modulation on the atomic current even when the Landau–Zener tunneling probability has almostly become a constant.
Zhou, Zhenyu; Zhao, Erhai; Liu, W Vincent
2015-03-13
Mott insulators with both spin and orbital degeneracy are pertinent to a large number of transition metal oxides. The intertwined spin and orbital fluctuations can lead to rather exotic phases such as quantum spin-orbital liquids. Here, we consider two-component (spin 1/2) fermionic atoms with strong repulsive interactions on the p band of the optical square lattice. We derive the spin-orbital exchange for quarter filling of the p band when the density fluctuations are suppressed, and show that it frustrates the development of long-range spin order. Exact diagonalization indicates a spin-disordered ground state with ferro-orbital order. The system dynamically decouples into individual Heisenberg spin chains, each realizing a Luttinger liquid accessible at higher temperatures compared to atoms confined to the s band.
Dawkins, S T; Petersen, M; Millo, J; Magalhães, D V; Mandache, C; Coq, Y Le; Bize, S
2010-01-01
We have developed an ultra-stable source in the deep ultraviolet, suitable to fulfill the interrogation requirements of a future fully-operational lattice clock based on neutral mercury. At the core of the system is a Fabry-P\\'erot cavity which is highly impervious to temperature and vibrational perturbations. The mirror substrate is made of fused silica in order to exploit the comparatively low thermal noise limits associated with this material. By stabilizing the frequency of a 1062.6 nm Yb-doped fiber laser to the cavity, and including an additional link to LNE-SYRTE's fountain primary frequency standards via an optical frequency comb, we produce a signal which is both stable at the 1E-15 level in fractional terms and referenced to primary frequency standards. The signal is subsequently amplified and frequency-doubled twice to produce several milliwatts of interrogation signal at 265.6 nm in the deep ultraviolet.
Nie, Weijie; Jia, Yuechen; Vázquez de Aldana, Javier R; Chen, Feng
2016-02-29
Integrated photonic devices with beam splitting function are intriguing for a broad range of photonic applications. Through optical-lattice-like cladding waveguide structures fabricated by direct femtosecond laser writing, the light propagation can be engineered via the track-confined refractive index profiles, achieving tailored output beam distributions. In this work, we report on the fabrication of 3D laser-written optical-lattice-like structures in a nonlinear KTP crystal to implement 1 × 4 beam splitting. Second harmonic generation (SHG) of green light through these nonlinear waveguide beam splitter structures provides the capability for the compact visible laser emitting devices. With Type II phase matching of the fundamental wavelength (@ 1064 nm) to second harmonic waves (@ 532 nm), the frequency doubling has been achieved through this three-dimensional beam splitter. Under 1064-nm continuous-wave fundamental-wavelength pump beam, guided-wave SHG at 532 nm are measured with the maximum power of 0.65 mW and 0.48 mW for waveguide splitters (0.67 mW and 0.51 mW for corresponding straight channel waveguides), corresponding to a SH conversion efficiency of approximately ~14.3%/W and 13.9%/W (11.2%/W, 11.3%/W for corresponding straight channel waveguides), respectively. This work paves a way to fabricate compact integrated nonlinear photonic devices in a single chip with beam dividing functions.
DEFF Research Database (Denmark)
Pedersen, Jesper Goor; Zhang, Lei; Gilbert, M.J.
2010-01-01
We explore exchange coupling of a pair of spins in a double dot and in an optical lattice, using the frequency of exchanges in a bosonic path integral, evaluated using Monte Carlo simulation. The algorithm gives insights into the role of correlation through visualization of two-particle probability...
Kim, Wookrae; Kim, Jung-Ryul; Lee, Yea-Lee; Ihm, Jisoon; An, Kyungwon
2010-01-01
Supplementary information is presented on the recent work by W. Kim et al. on the matter-wave-tunneling-induced broadening in the near-resonant spectra of a single rubidium atom localized in a three-dimensional optical lattice in a strong Lamb-Dicke regime.
Directory of Open Access Journals (Sweden)
B. Prasanna Venkatesh
2015-12-01
Full Text Available In this paper we give a new description, in terms of optomechanics, of previous work on the problem of an atomic Bose–Einstein condensate interacting with the optical lattice inside a laser-pumped optical cavity and subject to a bias force, such as gravity. An atomic wave packet in a tilted lattice undergoes Bloch oscillations; in a high-finesse optical cavity the backaction of the atoms on the light leads to a time-dependent modulation of the intracavity lattice depth at the Bloch frequency which can in turn transport the atoms up or down the lattice. In the optomechanical picture, the transport dynamics can be interpreted as a manifestation of dynamical backaction-induced sideband damping/amplification of the Bloch oscillator. Depending on the sign of the pump-cavity detuning, atoms are transported either with or against the bias force accompanied by an up- or down-conversion of the frequency of the pump laser light. We also evaluate the prospects for using the optomechanical Bloch oscillator to make continuous measurements of forces by reading out the Bloch frequency. In this context, we establish the significant result that the optical spring effect is absent and the Bloch frequency is not modified by the backaction.
Applied optics. Gain modulation by graphene plasmons in aperiodic lattice lasers.
Chakraborty, S; Marshall, O P; Folland, T G; Kim, Y-J; Grigorenko, A N; Novoselov, K S
2016-01-15
Two-dimensional graphene plasmon-based technologies will enable the development of fast, compact, and inexpensive active photonic elements because, unlike plasmons in other materials, graphene plasmons can be tuned via the doping level. Such tuning is harnessed within terahertz quantum cascade lasers to reversibly alter their emission. This is achieved in two key steps: first, by exciting graphene plasmons within an aperiodic lattice laser and, second, by engineering photon lifetimes, linking graphene's Fermi energy with the round-trip gain. Modal gain and hence laser spectra are highly sensitive to the doping of an integrated, electrically controllable, graphene layer. Demonstration of the integrated graphene plasmon laser principle lays the foundation for a new generation of active, programmable plasmonic metamaterials with major implications across photonics, material sciences, and nanotechnology.
Bose-Bose mixtures with synthetic spin-orbit coupling in optical lattices
He, Liang; Ji, Anchun; Hofstetter, Walter
2015-08-01
We investigate the ground-state properties of Bose-Bose mixtures with Rashba-type spin-orbit (SO) coupling in a square lattice. The system displays rich physics from the deep Mott insulator (MI) all the way to the superfluid (SF) regime. In the deep MI regime, exotic spin-ordered phases arise due to the effective Dzyaloshinskii-Moriya type of superexchange interactions. By employing the nonperturbative bosonic dynamical mean-field theory (BDMFT), we numerically study and establish the stability of these magnetic phases against increasing hopping amplitude. We show that as hopping is increased across the MI to SF transition, exotic superfluid phases with magnetic textures emerge. In particular, we identify an exotic spin-spiral magnetic texture with spatial period 3 in the superfluid close to the MI-SF transition.
Loh, Yen Lee; Trivedi, Nandini
2010-04-23
A system with unequal populations of up and down fermions may exhibit a Larkin-Ovchinnikov (LO) phase consisting of a periodic arrangement of domain walls where the order parameter changes sign and the excess polarization is localized. We find that the LO phase has a much larger range of stability in a lattice compared to the continuum; in a harmonic trap, the LO phase may involve 80% of the atoms in the trap, and can exist up to an entropy s approximately 0.5k(B) per fermion. We discuss detection of the LO phase (i) in real space by phase-contrast imaging of the periodic excess polarization; (ii) in k space by time-of-flight imaging of the single-particle and pair-momentum distributions; (iii) in energy space from the excess density of states within the gap arising from Andreev bound states in the domain walls.
Computational and Theoretical Investigations of Strongly Correlated Fermions in Optical Lattices
2013-08-29
speaker, \\Physics of Superconductor - Insulator Transition and related topics", Argonne National Laboratory, November 16-19, 2010; talk titled \\Single...and two-particle spectral functions across the disorder- driven superconductor - insulator transition ". 22. Invited speaker, \\Fermions in Optical...energy gaps across the disorder- driven superconductor - insulator transition ", October 7, 2010, Harvard. 27. Seminar on \\Probing Quantum Phases of
Optic phonon bandwidth and lattice thermal conductivity: The case of L i2X (X =O , S, Se, Te)
Mukhopadhyay, S.; Lindsay, L.; Parker, D. S.
2016-06-01
We examine the lattice thermal conductivities (κl) of L i2X (X =O ,S ,Se ,Te ) using a first-principles Peierls-Boltzmann transport methodology. We find low κl values ranging between 12 and 30 W m-1K-1 despite light Li atoms, a large mass difference between constituent atoms, and tightly bunched acoustic branches, all features that give high κl in other materials including BeSe (630 W m-1K-1 ), BeTe (370 W m-1K-1 ), and cubic BAs (3170 W m-1K-1 ). Together these results suggest a missing ingredient in the basic guidelines commonly used to understand and predict κl. Unlike typical simple systems (e.g., Si, GaAs, SiC), the dominant resistance to heat-carrying acoustic phonons in L i2Se and L i2Te comes from interactions of these modes with two optic phonons. These interactions require significant bandwidth and dispersion of the optic branches, both present in L i2X materials. These considerations are important for the discovery and design of new materials for thermal management applications and give a more comprehensive understanding of thermal transport in crystalline solids.
Leder, Martin; Grossert, Christopher; Sitta, Lukas; Genske, Maximilian; Rosch, Achim; Weitz, Martin
2016-10-01
To describe a mobile defect in polyacetylene chains, Su, Schrieffer and Heeger formulated a model assuming two degenerate energy configurations that are characterized by two different topological phases. An immediate consequence was the emergence of a soliton-type edge state located at the boundary between two regions of different configurations. Besides giving first insights in the electrical properties of polyacetylene materials, interest in this effect also stems from its close connection to states with fractional charge from relativistic field theory. Here, using a one-dimensional optical lattice for cold rubidium atoms with a spatially chirped amplitude, we experimentally realize an interface between two spatial regions of different topological order in an atomic physics system. We directly observe atoms confined in the edge state at the intersection by optical real-space imaging and characterize the state as well as the size of the associated energy gap. Our findings hold prospects for the spectroscopy of surface states in topological matter and for the quantum simulation of interacting Dirac systems.
Atomic loss and gain as a resource for nonequilibrium phase transitions in optical lattices
Everest, B.; Marcuzzi, M.; Lesanovsky, I.
2016-02-01
Recent breakthroughs in the experimental manipulation of strongly interacting atomic Rydberg gases in lattice potentials have opened an avenue for the study of many-body phenomena. Considerable efforts are currently being undertaken to achieve clean experimental settings that show a minimal amount of noise and disorder and are close to zero temperature. A complementary direction investigates the interplay between coherent and dissipative processes. Recent experiments have revealed a glimpse into the emergence of a rich nonequilibrium behavior stemming from the competition of laser excitation, strong interactions, and radiative decay of Rydberg atoms. The aim of the present theoretical work is to show that local incoherent loss and gain of atoms can in fact be the source of interesting out-of-equilibrium dynamics. This perspective opens up paths for the exploration of nonequilibrium critical phenomena and, more generally, phase transitions, some of which so far have been rather difficult to study. To demonstrate the richness of the encountered dynamical behavior we consider here three examples. The first two feature local atom loss and gain together with an incoherent excitation of Rydberg states. In this setting either a continuous or a discontinuous phase transition emerges with the former being reminiscent of genuine nonequilibrium transitions of stochastic processes with multiple absorbing states. The third example considers the regime of coherent laser excitation. Here the many-body dynamics is dominated by an equilibrium transition of the "model A" universality class.
Gauge-invariant implementation of the Abelian Higgs model on optical lattices
Bazavov, Alexei; Tsai, Shan-Wen; Unmuth-Yockey, Judah; Zhang, Jin
2015-01-01
We present a gauge-invariant effective action for the Abelian Higgs model (scalar electrodynamics) with a chemical potential $\\mu$ on a 1+1 dimensional lattice. This formulation provides an expansion in the hopping parameter $\\kappa$ which we test with Monte Carlo simulations for a broad range of the inverse gauge coupling $\\beta_{pl}$ and small values of the scalar self-coupling $\\lambda$. In the opposite limit of infinitely large $\\lambda$, the partition function can be written as a traced product of local tensors which allows us to write exact blocking formulas. Their numerical implementation requires truncations but there is no sign problem for arbitrary values of $\\mu$. We show that the time continuum limit of the blocked transfer matrix can be obtained numerically and, in the limit of infinite $\\beta_{pl}$ and with a spin-1 truncation, the small volume energy spectrum is identical to the low energy spectrum of a two-species Bose-Hubbard model in the limit of large onsite repulsion. We extend this proced...
Zhong, Yin; Liu, Yu; Luo, Hong-Gang
2017-10-01
The periodic Anderson model (PAM), where local electron orbitals interplay with itinerant electronic carriers, plays an essential role in our understanding of heavy fermion materials. Motivated by recent proposals for simulating the Kondo lattice model (KLM) in terms of alkaline-earth metal atoms, we take another step toward the simulation of PAM, which includes the crucial charge/valence fluctuation of local f-electrons beyond purely low-energy spin fluctuation in the KLM. To realize PAM, a transition induced by a suitable laser between the electronic excited and ground state of alkaline-earth metal atoms (1 S 0⇌3 P 0) is introduced. This leads to effective hybridization between local electrons and conduction electrons in PAM. Generally, the SU( N) version of PAM can be realized by our proposal, which gives a unique opportunity to detect large- N physics without complexity in realistic materials. In the present work, high-temperature physical features of standard [ SU(2)] PAM with harmonic trapping potential are analyzed by quantum Monte Carlo and dynamic mean-field theory, where the Mott/orbital-selective Mott state was found to coexist with metallic states. Indications for near-future experiments are provided. We expect our theoretical proposal and (hopefully) forthcoming experiments will deepen our understanding of heavy fermion systems. At the same time, we hope these will trigger further studies on related Mott physics, quantum criticality, and non-trivial topology in both the inhomogeneous and nonequilibrium realms.
Nakrela, A.; Benramdane, N.; Bouzidi, A.; Kebbab, Z.; Medles, M.; Mathieu, C.
The zinc oxide thin films, highly transparent, doped aluminium were prepared on glass substrates by the reactive chemical spray method. The incorporation nature of Al atoms in the ZnO lattice was determined by X-ray diffraction and optical analyses. Indeed, for low doping ⩽2%, the results of X-ray spectra analysis show a simultaneous reduction of lattice parameters (a and c), this variation, which follows VEGARD's law, tends to indicate a substitution of Zn by Al. By against for doping >2% the increase in the lattice parameters thus the grain sizes, in accordance with the VEGARD's law can be explained by occupation of the interstitial sites by Al atoms. Beyond 4%, the material tends to get disorderly and the crystallites orientation is random. The studied optical properties show that the variation of the optical gap follows a law of the x3/2 form for x x is the aluminium atom fraction incorporated in the ZnO lattice). The granular structure is fairly visible and some local growths are disrupted. The crystallite size at low enlargement is coherent with the XRD results.
Coherent control of the optical absorption in a plasmonic lattice coupled to a luminescent layer
Pirruccio, Giuseppe; Rodriguez, Said Rahimzadeh-Kalaleh; Rivas, Jaime Gomez
2016-01-01
We experimentally demonstrate the coherent control, i.e., phase-dependent enhancement and suppression, of the optical absorption in an array of metallic nanoantennas covered by a thin lu- minescent layer. The coherent control is achieved by using two collinear, counter-propagating and phase-controlled incident waves with wavelength matching the absorption spectrum of dye molecules coupled to the array. Symmetry arguments shed light on the relation between the relative phase of the incident waves and the excitation efficiency of the optical resonances of the system. This coherent control is associated with a phase-dependent distribution of the electromagnetic near-fields in the structure which enables a significant reduction of the unwanted dissipation in the metallic structures.
A quantum many-body spin system in an optical lattice clock
Martin, M J; Swallows, M D; Zhang, X; Benko, C; von-Stecher, J; Gorshkov, A V; Rey, A M; Ye, Jun
2013-01-01
Strongly interacting quantum many-body systems are fundamentally compelling and ubiquitous in science. However, their complexity generally prevents exact solutions of their dynamics. Precisely engineered ultracold atomic gases are emerging as a powerful tool to unravel these challenging physical problems. Here we present a new laboratory for the study of many-body effects: strongly interacting two-level systems formed by the clock states in ${}^{87}$Sr, which are used to realize a neutral atom optical clock that performs at the highest level of optical-atomic coherence and with precision near the limit set by quantum fluctuations. Our measurements of the collective spin evolution reveal signatures of many-body dynamics, including beyond-mean-field effects. We derive a many-body Hamiltonian that describes the experimental observation of severely distorted lineshapes, atomic spin coherence decay, density-dependent frequency shifts, and correlated quantum spin noise. These investigations open the door to explori...
Frank, Regine
2011-01-01
An ultracold gas of interacting fermionic atoms in a three dimensional optical lattice is considered, where the lattice potential strength is periodically modulated. This non-equilibrium system is nonperturbatively described by means of a Keldysh-Floquet-Green's function approach employing a generalized dynamical mean field theory (DMFT). Strong repulsive interactions between different atoms lead to a Mott-Insulator state for the equilibrium system, but the additional external driving yields a non-equilibrium density of Floquet-states and a transition to a liquid or conducting state.
Zhang, Dan-Wei; Zhao, Y. X.; Liu, Rui-Bin; Xue, Zheng-Yuan; Zhu, Shi-Liang; Wang, Z. D.
2016-04-01
Since the well-known PT symmetry has its fundamental significance and implication in physics, where PT denotes a joint operation of space inversion P and time reversal T , it is important and intriguing to explore exotic PT -invariant topological metals and to physically realize them. Here we develop a theory for a different type of topological metals that are described by a two-band model of PT -invariant topological nodal loop states in a three-dimensional Brillouin zone, with the topological stability being revealed through the PT -symmetry-protected nontrivial Z2 topological charge even in the absence of both P and T symmetries. Moreover, the gapless boundary modes are demonstrated to originate from the nontrivial topological charge of the bulk nodal loop. Based on these exact results, we propose an experimental scheme to realize and to detect tunable PT -invariant topological nodal loop states with ultracold atoms in an optical lattice, in which atoms with two hyperfine spin states are loaded in a spin-dependent three-dimensional optical lattice and two pairs of Raman lasers are used to create out-of-plane spin-flip hopping with site-dependent phase. It is shown that such a realistic cold-atom setup can yield topological nodal loop states, having a tunable band-touching ring with the twofold degeneracy in the bulk spectrum and nontrivial surface states. The nodal loop states are actually protected by the combined PT symmetry and are characterized by a Z2-type invariant (or topological charge), i.e., a quantized Berry phase. Remarkably, we demonstrate with numerical simulations that (i) the characteristic nodal ring can be detected by measuring the atomic transfer fractions in a Bloch-Zener oscillation; (ii) the topological invariant may be measured based on the time-of-flight imaging; and (iii) the surface states may be probed through Bragg spectroscopy. The present proposal for realizing topological nodal loop states in cold-atom systems may provide a unique
Mazzucchi, Gabriel; Caballero-Benitez, Santiago F.; Mekhov, Igor B.
2016-08-01
Ultracold atomic systems offer a unique tool for understanding behavior of matter in the quantum degenerate regime, promising studies of a vast range of phenomena covering many disciplines from condensed matter to quantum information and particle physics. Coupling these systems to quantized light fields opens further possibilities of observing delicate effects typical of quantum optics in the context of strongly correlated systems. Measurement backaction is one of the most funda- mental manifestations of quantum mechanics and it is at the core of many famous quantum optics experiments. Here we show that quantum backaction of weak measurement can be used for tailoring long-range correlations of ultracold fermions, realizing quantum states with spatial modulations of the density and magnetization, thus overcoming usual requirement for a strong interatomic interactions. We propose detection schemes for implementing antiferromagnetic states and density waves. We demonstrate that such long-range correlations cannot be realized with local addressing, and they are a consequence of the competition between global but spatially structured backaction of weak quantum measurement and unitary dynamics of fermions.
Mazzucchi, Gabriel; Caballero-Benitez, Santiago F; Mekhov, Igor B
2016-08-11
Ultracold atomic systems offer a unique tool for understanding behavior of matter in the quantum degenerate regime, promising studies of a vast range of phenomena covering many disciplines from condensed matter to quantum information and particle physics. Coupling these systems to quantized light fields opens further possibilities of observing delicate effects typical of quantum optics in the context of strongly correlated systems. Measurement backaction is one of the most funda- mental manifestations of quantum mechanics and it is at the core of many famous quantum optics experiments. Here we show that quantum backaction of weak measurement can be used for tailoring long-range correlations of ultracold fermions, realizing quantum states with spatial modulations of the density and magnetization, thus overcoming usual requirement for a strong interatomic interactions. We propose detection schemes for implementing antiferromagnetic states and density waves. We demonstrate that such long-range correlations cannot be realized with local addressing, and they are a consequence of the competition between global but spatially structured backaction of weak quantum measurement and unitary dynamics of fermions.
Singular Mapping for a $PT$-Symmetric Sinusoidal Optical Lattice at the Symmetry-Breaking Threshold
Jones, H F
2014-01-01
A popular $PT$-symmetric optical potential (variation of the refractive index) that supports a variety of interesting and unusual phenomena is the imaginary exponential, the limiting case of the potential $V_0[\\cos(2\\pi x/a)+i\\lambda\\sin(2\\pi x/a)]$ as $\\lambda \\to 1$, the symmetry-breaking point. For $\\lambda<1$, when the spectrum is entirely real, there is a well-known mapping by a similarity transformation to an equivalent Hermitian potential. However, as $\\lambda \\to 1$, the spectrum, while remaining real, contains Jordan blocks in which eigenvalues and the corresponding eigenfunctions coincide. In this limit the similarity transformation becomes singular. Nonetheless, we show that the mapping from the original potential to its Hermitian counterpart can still be implemented; however, the inverse mapping breaks down. We also illuminate the role of Jordan associated functions in the original problem, showing that they map onto eigenfunctions in the associated Hermitian problem.
Ibarra-Hernández, Wilfredo; Elsayed, Hannan; Romero, Aldo H.; Bautista-Hernández, Alejandro; Olguín, Daniel; Cantarero, Andrés
2017-07-01
There is a growing interest in the property dependence of transition metal dichalcogenides as a function of the number of layers and formation of heterostructures. Depending on the stacking, doping, edge effects, and interlayer distance, the properties can be modified, which opens the door to novel applications that require a detailed understanding of the atomic mechanisms responsible for those changes. In this work, we analyze the electronic properties and lattice dynamics of a heterostructure constructed by simultaneously stacking InSe layers and GaSe layers bounded by van der Waals forces. We have assumed the same space group of GaSe, P 6 ¯m 2 as it becomes the lower energy configuration for other considered stackings. The structural, vibrational, and optical properties of this layered compound have been calculated using density functional theory. The structure is shown to be energetically, thermally, and elastically stable, which indicates its possible chemical synthesis. A correlation of the theoretical physical properties with respect to its parent compounds is extensively discussed. One of the most interesting properties is the low thermal conductivity, which indicates its potential use in thermolectric applications. Additionally, we discuss the possibility of using electronic gap engineering methods, which can help us to tune the optical emission in a variable range close to that used in the field of biological systems (NIR). Finally, the importance of considering properly van der Waals dispersion in layered materials has been emphasized as included in the exchange correlation functional. As for the presence of atoms with important spin-orbit coupling, relativistic corrections have been included.
Chien, Chih-Chun; Zwolak, Michael; di Ventra, Massimiliano
2012-02-01
We consider several non-equilibrium scenarios where ultra-cold atoms are initially loaded into the ground state of a 1D optical lattice. The system is then set out of equilibrium either by inducing a density imbalance or by imposing time-dependent inhomogeneous interactions. To monitor the dynamics, we have implemented the micro-canonical approach to transport [1] which has been previously used to study electron dynamics in nanoscale systems. We have found that by removing particles on the right half of the lattice, fermions form a quasi steady-state current, which can be observed as a plateau in the current as a function of time. In contrast, the bosonic current oscillates and decays to zero in the thermodynamic limit [2]. The difference appears in uniform lattices as well as lattices with a harmonic trap. Further, when light-induced interactions are applied to half of the lattice, we have found, using a Hartree-Fock approximation, a conducting-nonconducting transition in the fermionic case as the interaction increases. Our studies are relevant to recent experiments on transport of ultra-cold atoms and address fundamental issues in nanoscale electronic transport. [4pt] [1] Di Ventra and Todorov,J. Phys. Cond. Matt. 16, 8025 (2004).[0pt] [2] Chien, Zwolak, Di Ventra, arXiv: 1110.1646.
Energy Technology Data Exchange (ETDEWEB)
Gautam, Khyati, E-mail: khyati34@gmail.com; Nirwal, Varun Singh; Singh, Joginder; Peta, Koteswara Rao; Bhatnagar, P. K. [Department of Electronic Science, University of Delhi South Campus, Benito Juarez Road, New Delhi-110021 (India); Singh, Inderpreet [Department of Electronics, SGTB KhalsaCollege, University of Delhi, Delhi-110007 (India)
2016-05-06
In this work, we have synthesized ZnO nanorods over ZnO seeds/ITO/glass substrate by the facile hydrothermal method. ZnO seeds are grown at different temperatures ranging from 150°C to 550°C in steps of 100°C. We have studied the effect of strain on the structural and optical properties of ZnO nanorods. It was observed that the growth temperature of seed layer has an influence over the lattice strain present in the nanorods. The as synthesized nanorods were characterized by scanning electron microscope (SEM), x-ray diffraction (XRD) and photoluminescence (PL). SEM images confirm the formation of dense arrays of vertically aligned nanorods on seeds which are grown at 350°C. In addition to this, XRD patterns reveal that these ZnO nanorods are preferentially oriented along (002) direction. The strain analysis based on the XRD results reveals that the minimum value of strain is obtained at 350°C which is attributed to the improved crystalline quality of the interface of seed layer and nanorods leading to their c-axis alignment and enhancement of ultraviolet emission as observed in the PL spectra.
Venkatesh, B Prasanna; Goldwin, J
2015-01-01
We analyze the optomechanics of an atomic Bose-Einstein condensate interacting with the optical lattice inside a laser-pumped optical cavity and subject to a uniform bias force such as gravity. An atomic wave packet in a tilted lattice undergoes Bloch oscillations; in a cavity the backaction of the atoms on the light leads to a time-dependent modulation of the intracavity lattice at the Bloch frequency. When the Bloch frequency is on the order of the cavity damping rate we find transport of the atoms either up or down the lattice. The transport dynamics can be interpreted as a manifestation of dynamical backaction-induced sideband damping/amplification of the optomechanical Bloch oscillator. Depending on the sign of the pump-cavity detuning, atoms are transported either with or against the bias force accompanied by an up- or down-conversion of the frequency of the pump laser light. We also evaluate the prospects for using the optomechanical Bloch oscillator to make continuous measurements of forces by reading...
Liu, Y.; Crespillo, M. L.; Huang, Q.; Wang, T. J.; Liu, P.; Wang, X. L.
2017-02-01
As one of the representative ABO3 perovskite-structured oxides, lanthanum aluminate (LaAlO3) crystal has emerged as one of the most valuable functional-materials, and has attracted plenty of fundamental research and promising applications in recent years. Electronic, magnetic, optical and other properties of LaAlO3 strongly depend on its crystal structure, which could be strongly modified owing to the nuclear or electronic energy loss deposited in an ion irradiation environment and, therefore, significantly affecting the performance of LaAlO3-based devices. In this work, utilizing swift (tens of MeV) Si-ion irradiation, the damage behavior of LaAlO3 crystal induced by nuclear or electronic energy loss has been studied in detail utilizing complementary characterization techniques. Differing from other perovskite-structured crystals in which the electronic energy loss could lead to the formation of an amorphous region based on the thermal spike mechanism, in this case, intense electronic energy loss in LaAlO3 will not induce any obvious structural damage. The effects of ion irradiation on the mechanical properties, including hardness increase and elastic modulus decrease, have been confirmed. On the other hand, considering the potential applications of LaAlO3 in the field of integrated optoelectronics, the optical-waveguide properties of the irradiation region have been studied. The significant correspondence (symmetrical inversion) between the iWKB-reconstructed refractive-index profile and SRIM-simulated dpa profile further proves the effects (irradiation-damage production and refractive-index decrease) of nuclear energy loss during the swift-ion penetration process in LaAlO3 crystal. In the case of the rather-thick damage layer produced by swift-ion irradiation, obtaining a damage profile will be constrained owing to the analysis-depth limitation of the characterization techniques (RBS/channeling), and our analysis process (optical guided-mode measurement and
Energy Technology Data Exchange (ETDEWEB)
Westergaard, Ph.G.
2010-10-15
This thesis presents the latest achievements regarding the Sr optical lattice clock experiment at LNESYRTE, Observatoire de Paris. After having described the general principles for optical lattice clocks and the operation of the clock in question, the emphasis is put on the features that have been added to the experiment since 2007. The most important new elements are an ultra-stable reference cavity for the clock laser, the development of a non-destructive detection technique, and the construction of a second Sr lattice clock. The ultra-stable cavity is constructed from a ULE spacer and fused silica mirrors and has shown a thermal noise floor at 6.5 * 10{sup -16}, placing it among the best in the world. The non-destructive detection is effectuated by a phase measurement of a weak probe beam that traverses the atoms placed in one arm of a Mach-Zender interferometer. The non-destructive aspect enables a recycling of the atoms from cycle to cycle which consequently increases the duty cycle, allowing for an increase of the stability of the clock. With these new tools the frequency stability is expected to be 2.2 * 10{sup -16}/{radical}{tau} for an optimized sequence. The most recent comparisons between the two Sr clocks reach an accuracy level of 10{sup -16} after about 1000 s, and this way we have been able to characterize lattice related frequency shifts with an unprecedented accuracy. The measurements ensure a control of lattice related effects at the 10{sup -18} level even for trap depths as large as 50E{sub r}. (authors)
de Forges de Parny, L.; Rousseau, V. G.
2017-01-01
We study the ground state and the thermal phase diagram of a two-species Bose-Hubbard model, with U(1 ) ×Z2 symmetry, describing atoms and molecules on a two-dimensional optical lattice interacting via a Feshbach resonance. Using quantum Monte Carlo simulations and mean-field theory, we show that the conversion between the two species, coherently coupling the atomic and molecular states, has a crucial impact on the Mott-superfluid transition and stabilizes an insulating phase with a gap controlled by the conversion term—the Feshbach insulator—instead of a standard Mott-insulating phase. Depending on the detuning between atoms and molecules, this model exhibits three phases: the Feshbach insulator, a molecular condensate coexisting with noncondensed atoms, and a mixed atomic-molecular condensate. Employing finite-size scaling analysis, we observe three-dimensional (3D) X Y (3D Ising) transition when U(1 ) (Z2) symmetry is broken, whereas the transition is first order when both U(1 ) and Z2 symmetries are spontaneously broken. The finite-temperature phase diagram is also discussed. The thermal disappearance of the molecular superfluid leads to a Berezinskii-Kosterlitz-Thouless transition with unusual universal jump in the superfluid density. The loss of the quasi-long-range coherence of the mixed atomic and molecular superfluid is more subtle since only atoms exhibit conventional Berezinskii-Kosterlitz-Thouless criticality. We also observe a signal compatible with a classical first-order transition between the mixed superfluid and the normal Bose liquid at low temperature.
Energy Technology Data Exchange (ETDEWEB)
Middelmann, Thomas
2013-05-31
Optical clocks have the potential to be 100 times more accurate than current best cesium atomic clocks within a fraction of the averaging time. This corresponds to a fractional uncertainty of the clock frequency on the level of 10{sup -18} and requires highaccuracy knowledge of systematic frequency shifts, such that they can be avoided or corrected for. In strontium optical lattice clocks an ensemble of ultracold strontium atoms is confined in an optical lattice, to allow for spectroscopy of the reference transition 5s{sup 2} {sup 1}S{sub 0}-5s5p {sup 3}P{sub 0} in the Lamb-Dicke regime. The by far largest systematic frequency shift of the strontium clock transition is caused by its high sensitivity to blackbody radiation (BBR). The knowledge of the resulting frequency shift limited the achievable clock uncertainty to about 1 x 10{sup -16}. In this thesis for the first time an experimental approach was followed, to determine the sensitivity of the strontium clock transition to blackbody radiation. At an environmental temperature of 300 K the resulting frequency shift corresponds to 2.277 8(23) Hz. The achieved uncertainty contributes with 5 x 10{sup -18} to the fractional systematic uncertainty of the clock frequency. The determination is based on a precision measurement of the difference of static polarizabilities of the two clock states {Delta}{alpha}{sub dc} = {alpha}(5s5p {sup 3}P{sub 0})-{alpha}(5s{sup 2} {sup 1}S{sub 0}) = 4.078 73(11) x 10{sup -39} Cm{sup 2} /V. For this the de Stark shift of the clock transition has been measured in the accurately known electric field of a precision plate capacitor, which has been developed in this work. The attained static polarizability difference {Delta}{alpha}{sub dc} corresponds to the first term of a power series of the sensitivity to BBR. Higher orders are accumulated as dynamic part of the BBR shift. Which has been modelled using {Delta}{alpha}{sub dc} and experimental data for other atomic properties. To
Energy Technology Data Exchange (ETDEWEB)
Mimouni, R.; Boubaker, K., E-mail: mmbb11112000@yahoo.fr; Amlouk, M.
2015-03-05
Highlights: • Co/Cr co-doped ZnO thin films were synthesized by a low-cost spray technique. • Optical and morphological properties of the Co/Cr co-doped ZnO system were described. • Lattice Compatibility Theory explains Co preferential incorporation in ZnO lattice. - Abstract: (Co,Cr)-codoped zinc oxide thin films (ZnO:Cr:Co) at different percentages (0%, 1–1%, 1–2%, 2–1%) were deposited on glass substrates using a chemical low-cost spray technique. The effect of Cr and Co concentration on the structural, morphological and optical properties of the ZnO:Cr:Co thin films were investigated by means of X-ray diffraction, optical measurement, contact Atomic Force Microscopy (AFM), and Photoluminescence spectroscopy. The results revealed that all films consist of single phase ZnO and were well crystallized in würtzite phase with the crystallites preferentially oriented towards (0 0 2) direction parallel to c-axis. Also, the co-doping has effective role in the enhancement of the crystallinity and leads to an improvement of roughness of the ZnO films. Doping by chrome and cobalt resulted in a slight decrease in the optical band gap energy of the films. The optical band gap of these films is calculated. The optical absorption spectra show that the absorption mechanism is a direct transition. The UV peak positions for ZnO:Cr:Co samples slightly red shift to the longer wavelength in comparison with the pure ZnO which can be attributed to the change in the acceptor level induced by the substitutional Co{sup 2+} and Cr{sup 3+} and the band-gap narrowing of ZnO with the Cr and Co dopants. The Lattice Compatibility Theory analyses have been applied in order to give original, plausible and founded explanation to the recorded preferential incorporation of cobalt ions within ZnO lattice over chromium.
Kristensen, Tom; Simoni, Andrea; Launay, Jean-Michel
2016-05-01
We compute scattering and bound state properties for two ultracold molecules in a pure 1D optical lattice. We introduce reference functions with complex quasi-momentum that naturally account for the effect of excited energy bands. Our exact results for a short-range interaction are first compared with the simplest version of the standard Bose-Hubbard (BH) model. Such comparison allows us to highlight the effect of the excited bands, of the non-on-site interaction and of tunneling with distant neighbor, that are not taken into account in the BH model. The effective interaction can depend strongly on the particle quasi-momenta and can present a resonant behavior even in a deep lattice. As a second step, we study scattering of two polar particles in the optical lattice. Peculiar Wigner threshold laws stem from the interplay of the long range dipolar interaction and the presence of the energy bands. We finally assess the validity of an extended Bose-Hubbard model for dipolar gases based on our exact two-body calculations. This work was supported by the Agence Nationale de la Recherche (Contract No. ANR-12-BS04-0020-01).
Zou, Jianfei; Tang, Chunmei; Zhang, Aimei
2017-04-01
We study the photo-induced spin current injection in a hexagonal lattice with both intrinsic and Rashba spin-orbit interactions which is irradiated by a polarized light beam. It is found that the spin current injection rate could be enhanced as the graphene lattice is in the topological insulator state. Furthermore, the spin current injection rate could be remarkably modulated by the degree of polarization of light and its frequency.
Vector Lattice Vortex Solitons
Institute of Scientific and Technical Information of China (English)
WANG Jian-Dong; YE Fang-Wei; DONG Liang-Wei; LI Yong-Ping
2005-01-01
@@ Two-dimensional vector vortex solitons in harmonic optical lattices are investigated. The stability properties of such solitons are closely connected to the lattice depth Vo. For small Vo, vector vortex solitons with the total zero-angular momentum are more stable than those with the total nonzero-angular momentum, while for large Vo, this case is inversed. If Vo is large enough, both the types of such solitons are stable.
Li, Yanlu; Fan, Weiliu; Sun, Honggang; Cheng, Xiufeng; Li, Pan; Zhao, Xian
2011-06-01
Li2CdGeS4 and Li2CdSnS4 are novel quaternary diamond-like semiconductors (DLSs) which have been synthesized recently. We present first-principles calculations of their electronic, optical and lattice dynamic properties with the plane-wave pseudopotential method. We have found an indirect band gap of 2.78 eV for Li2CdGeS4 and a direct band gap of 2.50 eV for Li2CdSnS4. The serious stretching vibrations of the Ge/Sn-S and Li-S bonds may enhance their phonon energies, and cause them to exhibit high heat capacities and Debye temperatures, which are promising for nonlinear optical applications. Compared with Cu-based DLSs, Li plays a key role in enlarging the band gaps and increasing the lattice phonon energies, which would increase the thermal conductivity accompanied by an increase of the optical damage threshold.
Chakrabarti, J; Bagchi, B; Chakrabarti, Jayprokas; Basu, Asis; Bagchi, Bijon
2000-01-01
Fermions on the lattice have bosonic excitations generated from the underlying periodic background. These, the lattice bosons, arise near the empty band or when the bands are nearly full. They do not depend on the nature of the interactions and exist for any fermion-fermion coupling. We discuss these lattice boson solutions for the Dirac Hamiltonian.
Workman, J.; Wark, J. S.
2005-10-01
An experiment to study the structural dynamics at the ultra-fast time scale in optically-pumped samples is presented. Measurements of lattice dynamics in LuMnO3 are presented and compared to calculations using dynamical diffraction theory modified for hexagonal crystal structure. Ultra-fast x-ray emission is used to measure Bragg peak shifts using diffraction and compared to calculations. Results are presented for optical pump energy densities of 8 and 20-mJ/cm^2. The experiment uses ˜150 mJ of a 100fs Ti:Sapphire laser to excite K-alpha x-ray emission in an aluminum wire with ˜1-2% split off for the material pump. The x-ray emission is relayed using a spherical Quartz crystal to the sample target. Plans for experiments using Cu K-alpha emission to probe Fe samples will also be described.
Im, Song-Jin; Husakou, Anton; Herrmann, Joachim
2010-08-01
We study the delivery of few-cycle soliton-like pulses at 800 nm with gigawatt power or microjoule energy through a hollow-core kagome-lattice photonic crystal fiber over 1 m with preserved temporal and spectral shape. We show that with optimized pressure of the argon filling, 5 fs input pulses are compressed up to 2.5 fs after 20 cm and restore their shape after 1 m propagation.
Haerer, Bastian; Prof. Dr. Schmidt, Ruediger; Dr. Holzer, Bernhard
Following the recommendations of the European Strategy Group for High Energy Physics, CERN launched the Future Circular Collider Study (FCC) to investigate the feasibility of large-scale circular colliders for future high energy physics research. This thesis presents the considerations taken into account during the design process of the magnetic lattice in the arc sections of the electron-positron version FCC-ee. The machine is foreseen to operate at four different centre-of-mass energies in the range of 90 to 350 GeV. Different beam parameters need to be achieved for every energy, which requires a flexible lattice design in the arc sections. Therefore methods to tune the horizontal beam emittance without re-positioning machine components are implemented. In combination with damping and excitation wigglers a precise adjustment of the emittance can be achieved. A very first estimation of the vertical emittance arising from lattice imperfections is performed. Special emphasis is put on the optimisation of the ...
Bielecki, J.; Rata, A. D.; Börjesson, L.
2014-01-01
We present results on the temperature dependence of ultrafast electron and lattice dynamics, measured with pump-probe transient reflectivity experiments, of an epitaxially grown LaCoO3 thin film under tensile strain. Probing spin-polarized transitions into the antibonding eg band provides a measure of the low-spin fraction, both as a function of temperature and time after photoexcitation. It is observed that femtosecond laser pulses destabilize the constant low-spin fraction (˜63%-64%) in equilibrium into a thermally activated state, driven by a subpicosecond change in spin gap Δ. From the time evolution of the low-spin fraction, it is possible to disentangle the thermal and lattice contributions to the spin state. A lattice mediated spin repulsion, identified as the governing factor determining the equilibrium spin state in thin-film LaCoO3, is observed. These results suggests that time-resolved spectroscopy is a sensitive probe of the spin state in LaCoO3 thin films, with the potential to bring forward quantitative insight into the complicated interplay between structure and spin state in LaCoO3.
Kumar, Ajit; Verma, Sanjay K.; Alvi, P. A.; Jasrotia, Dinesh
2016-04-01
The nanospatial morphological features of [ZnCl]- [C5H4NCH3]+ hybrid derivative depicts 28 nm granular size and 3D spreader shape packing pattern as analyzed by FESEM and single crystal XRD structural studies. The organic moiety connect the inorganic components through N-H+…Cl- hydrogen bond to form a hybrid composite, the replacement of organic derivatives from 2-methylpyridine to 2-Amino-5-choloropyridine results the increase in granular size from 28nm to 60nm and unit cell packing pattern from 3D-2D lattice dimensionality along ac plane. The change in optical energy direct band gap value from 3.01eV for [ZnCl]- [C5H4NCH3]+ (HM1) to 3.42eV for [ZnCl]- [C5H5ClN2]+ (HM2) indicates the role of organic moiety in optical properties of hybrid materials. The photoluminescence emission spectra is observed in the wavelength range of 370 to 600 nm with maximum peak intensity of 9.66a.u. at 438 nm for (HM1) and 370 to 600 nm with max peak intensity of 9.91 a.u. at 442 nm for (HM2), indicating that the emission spectra lies in visible range. PL excitation spectra depicts the maximum excitation intensity [9.8] at 245.5 nm for (HM1) and its value of 9.9 a.u. at 294 nm, specify the excitation spectra lies in UV range. Photoluminescence excitation spectra is observed in the wavelength range of 280 to 350 nm with maximum peak intensity of 9.4 a.u. at 285.5 nm and 9.9 a.u. at 294 and 297 nm, indicating excitation in the UV spectrum. Single crystal growth process and detailed physiochemical characterization such as XRD, FESEM image analysis photoluminescence property reveals the structure stability with non-covalent interactions, lattice dimensionality (3D-2D) correlations interweaving into the design of inorganic-organic hybrid materials.
Michael Sukop,; Cunningham, Kevin J.
2014-01-01
Digital optical borehole images at approximately 2 mm vertical resolution and borehole caliper data were used to create three-dimensional renderings of the distribution of (1) matrix porosity and (2) vuggy megaporosity for the karst carbonate Biscayne aquifer in southeastern Florida. The renderings based on the borehole data were used as input into Lattice Boltzmann methods to obtain intrinsic permeability estimates for this extremely transmissive aquifer, where traditional aquifer test methods may fail due to very small drawdowns and non-Darcian flow that can reduce apparent hydraulic conductivity. Variogram analysis of the borehole data suggests a nearly isotropic rock structure at lag lengths up to the nominal borehole diameter. A strong correlation between the diameter of the borehole and the presence of vuggy megaporosity in the data set led to a bias in the variogram where the computed horizontal spatial autocorrelation is strong at lag distances greater than the nominal borehole size. Lattice Boltzmann simulation of flow across a 0.4 × 0.4 × 17 m (2.72 m3 volume) parallel-walled column of rendered matrix and vuggy megaporosity indicates a high hydraulic conductivity of 53 m s−1. This value is similar to previous Lattice Boltzmann calculations of hydraulic conductivity in smaller limestone samples of the Biscayne aquifer. The development of simulation methods that reproduce dual-porosity systems with higher resolution and fidelity and that consider flow through horizontally longer renderings could provide improved estimates of the hydraulic conductivity and help to address questions about the importance of scale.
(2 kF , 2 kF) density-wave orders of interacting p-orbital fermions in square optical lattice
Zhang, Zixu; Liu, W. Vincent
2011-03-01
We study instabilities of spinless fermionic atoms in the p- orbital bands in two dimensional optical lattices at non- integer filling against interactions. Stripe charge-density- wave or orbital-density-wave orders are found for attractive and repulsive interactions, respectively. A surprising result is that the superfluid phase, usually expected of attractively interacting fermions, is less energetically favored. Nesting quasi-one-dimensional Fermi surfaces in such systems are independent of filling, which ensures that the stripe density- wave orders occur in a large parameter regime. This work is supported by ARO (W911NF-07-1-0293) and ARO-DARPA-OLE (W911NF-07-1-0464). We also thank the KITP at UCSB for its hospitality where this research is supported in part by NSF Grant No. PHY05-51164.
Wang, Da-Wei; Zhu, Shi-Yao; Scully, Marlan O
2014-01-01
We show that the timed Dicke states of a collection of three-level atoms can form a tight-binding lattice in the momentum space. This lattice, coined the superradiance lattice (SL), can be constructed based on an electromagnetically induced transparency (EIT) system. For a one-dimensional SL, we need the coupling field of the EIT system to be a standing wave. The detuning between the two components of the standing wave introduces an effective electric field. The quantum behaviours of electrons in lattices, such as Bloch oscillations, Wannier-Stark ladders, Bloch band collapsing and dynamic localization can be observed in the SL. The SL can be extended to two, three and even higher dimensions where no analogous real space lattices exist and new physics are waiting to be explored.
Optical reflection from the Bragg lattice of AsSb metal nanoinclusions in an AlGaAs matrix
Energy Technology Data Exchange (ETDEWEB)
Ushanov, V. I.; Chaldyshev, V. V., E-mail: chald.gvg@mail.ioffe.ru [Russian Academy of Sciences, Ioffe Physical-Technical Institute (Russian Federation); Preobrazhenskii, V. V.; Putyato, M. A.; Semyagin, B. R. [Russian Academy of Sciences, Institute of Semiconductor Physics, Siberian Branch (Russian Federation)
2013-08-15
The optical properties of metal-semiconductor metamaterials based on an AlGaAs matrix are studied. The specific feature of these materials is that there are As and AsSb nanoinclusion arrays which modify the dielectric properties of the material. These nanoinclusions are randomly arranged in the medium or form a Bragg structure with a reflectance peak at a wavelength close to 750 nm, corresponding to the transparency region of the matrix. The reflectance spectra are studied for s- and p-polarized light at different angles of incidence. It is shown that (i) As nanoinclusion arrays only slightly influence the optical properties of the medium in the wavelength range 700-900 nm, (ii) chaotic AsSb nanoinclusion arrays cause strong scattering of light, and (iii) the spatial periodicity in the arrangement of AsSb nanoinclusions is responsible for Bragg resonance in the optical reflection.
Digital lattice gauge theories
Zohar, Erez; Reznik, Benni; Cirac, J Ignacio
2016-01-01
We propose a general scheme for a digital construction of lattice gauge theories with dynamical fermions. In this method, the four-body interactions arising in models with $2+1$ dimensions and higher, are obtained stroboscopically, through a sequence of two-body interactions with ancillary degrees of freedom. This yields stronger interactions than the ones obtained through pertubative methods, as typically done in previous proposals, and removes an important bottleneck in the road towards experimental realizations. The scheme applies to generic gauge theories with Lie or finite symmetry groups, both Abelian and non-Abelian. As a concrete example, we present the construction of a digital quantum simulator for a $\\mathbb{Z}_{3}$ lattice gauge theory with dynamical fermionic matter in $2+1$ dimensions, using ultracold atoms in optical lattices, involving three atomic species, representing the matter, gauge and auxiliary degrees of freedom, that are separated in three different layers. By moving the ancilla atoms...
Energy Technology Data Exchange (ETDEWEB)
Bharatan, S. [North Carolina A& T State University; Iyer, Prof Shanthi [North Carolina A& T State University; Nunna, K. [North Carolina A& T State University; Collis, W J [North Carolina A& T State University; Matney, K. [Bede Scientific Inc, Englewood, Colorado; Reppert, J. [Clemson University; Rao, A. M. [Clemson University; Kent, Paul R [ORNL
2007-01-01
The structural, optical, and vibrational properties of a GaAsSbN epilayer lattice matched to GaAs with a band gap of 1 eV have been investigated using a variety of characterization techniques. These layers have potential applications in GaAs based tandem solar cells that utilize the near infrared region of the solar spectrum. The epilayers were grown in an elemental solid source molecular beam epitaxy system with a rf plasma nitrogen source. The Sb and N compositions of the nearly lattice-matched layers are 6.8% and 2.6%, respectively, as determined by high resolution x-ray diffraction and secondary ion mass spectroscopy (SIMS) analysis. The high crystalline quality of the layers is attested by the presence of well resolved Pendellosung fringes on a triple axis (004) x-ray scan and dynamical truncation rods observed on the corresponding (004) reciprocal space map. The effects of in situ annealing in As ambient and ex situ annealing in N ambient on the low temperature photoluminescence (PL) characteristics are discussed. Ex situ (in situ) annealed samples display an 8 K PL peak energy of 1 eV with a full width at half maximum of 18 meV (26 meV). Raman spectral analysis, the temperature dependence of the PL peak energy, and SIMS profiles indicate that outdiffusions of N and As are suppressed in the in situ annealed samples and improvement in Ga-N bonding is observed, leading to higher PL intensities in these samples. In addition, indirect evidence of atomic scale ordering has been observed. The stability of these structures appears to be dependent on the annealing conditions.
Matter-wave bright solitons in effective bichromatic lattice potentials
Indian Academy of Sciences (India)
Golam Ali Sekh
2013-08-01
Matter-wave bright solitons in bichromatic lattice potentials are considered and their dynamics for different lattice environments are studied. Bichromatic potentials are created from superpositions of (i) two linear optical lattices and (ii) a linear and a nonlinear optical lattice. Effective potentials are found for the solitons in both bichromatic lattices and a comparative study is done on the dynamics of solitons with respect to the effective potentials. The effects of dispersion on solitons in bichromatic lattices are studied and it is found that the dispersive spreading can be minimized by appropriate combinations of lattice and interaction parameters. Stability of nondispersive matter-wave solitons is checked from phase portrait analysis.
Solitons in nonlinear lattices
Kartashov, Yaroslav V; Torner, Lluis
2010-01-01
This article offers a comprehensive survey of results obtained for solitons and complex nonlinear wave patterns supported by purely nonlinear lattices (NLs), which represent a spatially periodic modulation of the local strength and sign of the nonlinearity, and their combinations with linear lattices. A majority of the results obtained, thus far, in this field and reviewed in this article are theoretical. Nevertheless, relevant experimental settings are surveyed too, with emphasis on perspectives for implementation of the theoretical predictions in the experiment. Physical systems discussed in the review belong to the realms of nonlinear optics (including artificial optical media, such as photonic crystals, and plasmonics) and Bose-Einstein condensation (BEC). The solitons are considered in one, two, and three dimensions (1D, 2D, and 3D). Basic properties of the solitons presented in the review are their existence, stability, and mobility. Although the field is still far from completion, general conclusions c...
Sakhel, Asaad R.
2016-09-01
The sensitivity of the pinning transition (PT) as described by the sine-Gordon model of strongly interacting bosons confined in a shallow, one-dimensional, periodic optical lattice (OL), is examined against perturbations of the OL. The PT has been recently realized experimentally by Haller et al. [Nature (London) 466, 597 (2010), 10.1038/nature09259] and is the exact opposite of the superfluid-to-Mott-insulator transition in a deep OL with weakly interacting bosons. The continuous-space worm-algorithm (WA) Monte Carlo method [Boninsegni et al., Phys. Rev. E 74, 036701 (2006), 10.1103/PhysRevE.74.036701] is applied for the present examination. It is found that the WA is able to reproduce the PT, which is another manifestation of the power of continuous-space WA methods in capturing the physics of phase transitions. In order to examine the sensitivity of the PT, it is tweaked by the addition of the secondary OL. The resulting bichromatic optical lattice (BCOL) is considered with a rational ratio of the constituting wavelengths λ1 and λ2 in contrast to the commonly used irrational ratio. For a weak BCOL, it is chiefly demonstrated that this PT is robust against the introduction of a weaker, secondary OL. The system is explored numerically by scanning its properties in a range of the Lieb-Liniger interaction parameter γ in the regime of the PT. It is argued that there should not be much difference in the results between those due to an irrational ratio λ1/λ2 and those due to a rational approximation of the latter, bringing this in line with a recent statement by Boers et al. [Phys. Rev. A 75, 063404 (2007), 10.1103/PhysRevA.75.063404]. The correlation function, Matsubara Green's function (MGF), and the single-particle density matrix do not respond to changes in the depth of the secondary OL V1. For a stronger BCOL, however, a response is observed because of changes in V1. In the regime where the bosons are fermionized, the MGF reveals that hole excitations are
Wall, Michael
2014-03-01
Experimental progress in generating and manipulating synthetic quantum systems, such as ultracold atoms and molecules in optical lattices, has revolutionized our understanding of quantum many-body phenomena and posed new challenges for modern numerical techniques. Ultracold molecules, in particular, feature long-range dipole-dipole interactions and a complex and selectively accessible internal structure of rotational and hyperfine states, leading to many-body models with long range interactions and many internal degrees of freedom. Additionally, the many-body physics of ultracold molecules is often probed far from equilibrium, and so algorithms which simulate quantum many-body dynamics are essential. Numerical methods which are to have significant impact in the design and understanding of such synthetic quantum materials must be able to adapt to a variety of different interactions, physical degrees of freedom, and out-of-equilibrium dynamical protocols. Matrix product state (MPS)-based methods, such as the density-matrix renormalization group (DMRG), have become the de facto standard for strongly interacting low-dimensional systems. Moreover, the flexibility of MPS-based methods makes them ideally suited both to generic, open source implementation as well as to studies of the quantum many-body dynamics of ultracold molecules. After introducing MPSs and variational algorithms using MPSs generally, I will discuss my own research using MPSs for many-body dynamics of long-range interacting systems. In addition, I will describe two open source implementations of MPS-based algorithms in which I was involved, as well as educational materials designed to help undergraduates and graduates perform research in computational quantum many-body physics using a variety of numerical methods including exact diagonalization and static and dynamic variational MPS methods. Finally, I will mention present research on ultracold molecules in optical lattices, such as the exploration of
Energy Technology Data Exchange (ETDEWEB)
Dhanasekaran, V., E-mail: v.j.dhanasekaran@gmail.com [Department of Physics, Alagappa University, Karaikudi 630003 (India); Mahalingam, T. [Department of Physics, School of Science and Humanities, Karunya University, Coimbatore 641114 (India)
2013-09-01
Graphical abstract: - Highlights: • The films are grown using a low cost SILAR method. • The pH value is found to play a significant role in the property of the resulting films. • The fabrication of band pass filters between 450 nm and 1000 nm is envisaged. • Electrical conductivity and optical band gap values were found to be 68.1 × 10{sup −3} Ω{sup −1} cm{sup −1} and 1.08 eV. • Coating may aid the small band of frequencies could pave way for enhancing the efficiency. - Abstract: This paper reports on the preparation and characterization of Successive Ionic Layer by Adsorption and Reaction (SILAR) grown CuO thin films. The films were deposited onto glass substrates at various solution pH values. The thickness of the film is increased with increase of solution pH values. X-ray diffraction analysis revealed that the prepared films exhibited the monoclinic structure with (−1 1 1) predominant orientation. The optimized pH value is 11 ± 0.1. The microstructure, morphology, optical and electrical properties are studied and reported. The transmission spectra (T) at normal incidence revealed that the films exhibit indirect transitions and may be tailored for passing selected bands of frequencies in visible near IR range. The activation energy is estimated to be about 0.29 eV.
Directory of Open Access Journals (Sweden)
R. Mankowsky
2017-07-01
Full Text Available Resonant optical excitation of apical oxygen vibrational modes in the normal state of underdoped YBa2Cu3O6+x induces a transient state with optical properties similar to those of the equilibrium superconducting state. Amongst these, a divergent imaginary conductivity and a plasma edge are transiently observed in the photo-stimulated state. Femtosecond hard x-ray diffraction experiments have been used in the past to identify the transient crystal structure in this non-equilibrium state. Here, we start from these crystallographic features and theoretically predict the corresponding electronic rearrangements that accompany these structural deformations. Using density functional theory, we predict enhanced hole-doping of the CuO2 planes. The empty chain Cu dy2-z2 orbital is calculated to strongly reduce in energy, which would increase c-axis transport and potentially enhance the interlayer Josephson coupling as observed in the THz-frequency response. From these results, we calculate changes in the soft x-ray absorption spectra at the Cu L-edge. Femtosecond x-ray pulses from a free electron laser are used to probe changes in absorption at two photon energies along this spectrum and provide data consistent with these predictions.
Donnellan, Thomas; Maxwell, E A; Plumpton, C
1968-01-01
Lattice Theory presents an elementary account of a significant branch of contemporary mathematics concerning lattice theory. This book discusses the unusual features, which include the presentation and exploitation of partitions of a finite set. Organized into six chapters, this book begins with an overview of the concept of several topics, including sets in general, the relations and operations, the relation of equivalence, and the relation of congruence. This text then defines the relation of partial order and then partially ordered sets, including chains. Other chapters examine the properti
Localized structures in Kagome lattices
Energy Technology Data Exchange (ETDEWEB)
Saxena, Avadh B [Los Alamos National Laboratory; Bishop, Alan R [Los Alamos National Laboratory; Law, K J H [UNIV OF MASSACHUSETTS; Kevrekidis, P G [UNIV OF MASSACHUSETTS
2009-01-01
We investigate the existence and stability of gap vortices and multi-pole gap solitons in a Kagome lattice with a defocusing nonlinearity both in a discrete case and in a continuum one with periodic external modulation. In particular, predictions are made based on expansion around a simple and analytically tractable anti-continuum (zero coupling) limit. These predictions are then confirmed for a continuum model of an optically-induced Kagome lattice in a photorefractive crystal obtained by a continuous transformation of a honeycomb lattice.
Borwein, J M; McPhedran, R C
2013-01-01
The study of lattice sums began when early investigators wanted to go from mechanical properties of crystals to the properties of the atoms and ions from which they were built (the literature of Madelung's constant). A parallel literature was built around the optical properties of regular lattices of atoms (initiated by Lord Rayleigh, Lorentz and Lorenz). For over a century many famous scientists and mathematicians have delved into the properties of lattices, sometimes unwittingly duplicating the work of their predecessors. Here, at last, is a comprehensive overview of the substantial body of
Mintairov, A. M.; He, Y.; Merz, J. L.; Jin, Y.; Goldman, R. S.; Kudrawiec, R.; Misiewicz, J.; Akimov, I. A.; Yakovlev, D. R.; Bayer, M.
2016-09-01
Using optical spectroscopy experiments, including conventional low-temperature photo-reflectance and photoluminescence (PL) together with time-resolved PL and near-field magneto PL, we distinguish between statistical composition fluctuations (CFs) and nitrogen clusters (Ncl) in i- and n-type GaAs1-x N x alloys (x = 0.01-0.03). We measured the size (l = 3-24 nm), activation energy (E a = 15-30 meV) and density (n l ˜ 1011 cm-2) of CFs in i-type material. In n-type material we resolved the emission of nitrogen clusters (Ncl) having activation energy ˜70 meV and density n cl ˜ 1012 cm-2. Analysis of l and E a values in i-GaAs1-x N x revealed a strong interaction between substitutional (Ns) and interstitial (Ni) nitrogen, which results in band gap splitting accompanied by activation of the heavy-hole exciton and Ncl emission. In the optical spectra of i-GaAs1-x N x , we suggest the identification of different Ni species and Ni-Ns arrangements, and in n-GaAs1-x N x we observed activation/suppression of Ncl/CF emission and interference between CFs and ionized donors. Using numerical analysis of amplitude, size and density of CFs we revealed unexpected quasi-ordering which results in modulation of CFs having period 2l. This is consistent with the high n l values observed. We show that this quasi-ordering, arising from statistical non-uniformity of the CFs, creates a set of latent states, which allows us to probe exciton properties, defect density and the structural homogeneity in GaAs1-x N x .
Webster, P. T.; Shalindar, A. J.; Riordan, N. A.; Gogineni, C.; Liang, H.; Sharma, A. R.; Johnson, S. R.
2016-06-01
The optical properties of bulk InAs0.936Bi0.064 grown by molecular beam epitaxy on a (100)-oriented GaSb substrate are measured using spectroscopic ellipsometry. The index of refraction and absorption coefficient are measured over photon energies ranging from 44 meV to 4.4 eV and are used to identify the room temperature bandgap energy of bulk InAs0.936Bi0.064 as 60.6 meV. The bandgap of InAsBi is expressed as a function of Bi mole fraction using the band anticrossing model and a characteristic coupling strength of 1.529 eV between the Bi impurity state and the InAs valence band. These results are programmed into a software tool that calculates the miniband structure of semiconductor superlattices and identifies optimal designs in terms of maximizing the electron-hole wavefunction overlap as a function of transition energy. These functionalities are demonstrated by mapping the design spaces of lattice-matched GaSb/InAs0.911Sb0.089 and GaSb/InAs0.932Bi0.068 and strain-balanced InAs/InAsSb, InAs/GaInSb, and InAs/InAsBi superlattices on GaSb. The absorption properties of each of these material systems are directly compared by relating the wavefunction overlap square to the absorption coefficient of each optimized design. Optimal design criteria are provided for key detector wavelengths for each superlattice system. The optimal design mid-wave infrared InAs/InAsSb superlattice is grown using molecular beam epitaxy, and its optical properties are evaluated using spectroscopic ellipsometry and photoluminescence spectroscopy.
Stable kagome lattices from group IV elements
Leenaerts, O.; Schoeters, B.; Partoens, B.
2015-03-01
A thorough investigation of three-dimensional kagome lattices of group IV elements is performed with first-principles calculations. The investigated kagome lattices of silicon and germanium are found to be of similar stability as the recently proposed carbon kagome lattice. Carbon and silicon kagome lattices are both direct-gap semiconductors but they have qualitatively different electronic band structures. While direct optical transitions between the valence and conduction bands are allowed in the carbon case, no such transitions can be observed for silicon. The kagome lattice of germanium exhibits semimetallic behavior but can be transformed into a semiconductor after compression.
Manipulation and control of a bichromatic lattice
Thomas, Claire; Barter, Thomas; Daiss, Severin; Leung, Zephy; Stamper-Kurn, Dan
2015-05-01
Recent experiments with ultracold atoms in optical lattices have had great success emulating the simple models of condensed matter systems. These experiments are typically performed with a single site per unit cell. We realize a lattice with up to four sites per unit cell by overlaying an attractive triangular lattice with a repulsive one at twice the wavelength. The relative displacement of the two lattices determines the particular structure. One available configuration is the kagome lattice, which has a flat energy band. In the flat band all kinetic energy states are degenerate, so we have the opportunity to explore a regime where interactions dominate. This bichromatic lattice requires careful stabilization, but offers an opportunity to manipulate the unit cell and band structure by perturbing the lattices relative to one another. I will discuss recent progress.
Energy Technology Data Exchange (ETDEWEB)
Schaefer, Stefan [DESY (Germany). Neumann Inst. for Computing
2016-11-01
These configurations are currently in use in many on-going projects carried out by researchers throughout Europe. In particular this data will serve as an essential input into the computation of the coupling constant of QCD, where some of the simulations are still on-going. But also projects computing the masses of hadrons and investigating their structure are underway as well as activities in the physics of heavy quarks. As this initial project of gauge field generation has been successful, it is worthwhile to extend the currently available ensembles with further points in parameter space. These will allow to further study and control systematic effects like the ones introduced by the finite volume, the non-physical quark masses and the finite lattice spacing. In particular certain compromises have still been made in the region where pion masses and lattice spacing are both small. This is because physical pion masses require larger lattices to keep the effects of the finite volume under control. At light pion masses, a precise control of the continuum extrapolation is therefore difficult, but certainly a main goal of future simulations. To reach this goal, algorithmic developments as well as faster hardware will be needed.
Ma, Xiaoyang; Li, Dechun; Zhao, Shengzhi; Li, Guiqiu; Yang, Kejian
2014-01-01
First-principles calculations based on density functional theory have been performed for the quaternary GaAs1-x-y N x Bi y alloy lattice-matched to GaAs. Using the state-of-the-art computational method with the Heyd-Scuseria-Ernzerhof (HSE) hybrid functional, electronic, and optical properties were obtained, including band structures, density of states (DOSs), dielectric function, absorption coefficient, refractive index, energy loss function, and reflectivity. It is found that the lattice constant of GaAs1-x-y N x Bi y alloy with y/x =1.718 can match to GaAs. With the incorporation of N and Bi into GaAs, the band gap of GaAs1-x-y N x Bi y becomes small and remains direct. The calculated optical properties indicate that GaAs1-x-y N x Bi y has higher optical efficiency as it has less energy loss than GaAs. In addition, it is also found that the electronic and optical properties of GaAs1-x-y N x Bi y alloy can be further controlled by tuning the N and Bi compositions in this alloy. These results suggest promising applications of GaAs1-x-y N x Bi y quaternary alloys in optoelectronic devices.
Digital lattice gauge theories
Zohar, Erez; Farace, Alessandro; Reznik, Benni; Cirac, J. Ignacio
2017-02-01
We propose a general scheme for a digital construction of lattice gauge theories with dynamical fermions. In this method, the four-body interactions arising in models with 2 +1 dimensions and higher are obtained stroboscopically, through a sequence of two-body interactions with ancillary degrees of freedom. This yields stronger interactions than the ones obtained through perturbative methods, as typically done in previous proposals, and removes an important bottleneck in the road towards experimental realizations. The scheme applies to generic gauge theories with Lie or finite symmetry groups, both Abelian and non-Abelian. As a concrete example, we present the construction of a digital quantum simulator for a Z3 lattice gauge theory with dynamical fermionic matter in 2 +1 dimensions, using ultracold atoms in optical lattices, involving three atomic species, representing the matter, gauge, and auxiliary degrees of freedom, that are separated in three different layers. By moving the ancilla atoms with a proper sequence of steps, we show how we can obtain the desired evolution in a clean, controlled way.
Ultracold Atoms in Optical Lattices
2006-08-15
Morbidelli, A. & Vokrouhlický, D. The Yarkovsky-driven origin of near-Earth asteroids. Icarus 163, 120–134 (2003). 22. Marti , K. & Graf, T. Cosmic-ray...nanotubes Pablo Jarillo- Herrero , Jing Kong*, Herre S.J. van der Zant, Cees Dekker, Leo P. Kouwenhoven & Silvano De Franceschi* Kavli Institute of
Cooperative Ordering in Lattices of Interacting Dipoles
Bettles, Robert J; Adams, Charles S
2014-01-01
Using classical electrodynamics simulations we investigate the cooperative behavior of regular monolayers of induced two-level dipoles, including their cooperative decays and shifts. For the particular case of the kagome lattice we observe behavior akin to EIT for lattice spacings less than the probe wavelength. Within this region the dipoles exhibit ferroelectric and anti-ferroelectric ordering. We also model how the cooperative response is manifested in the optical transmission through the kagome lattice, with sharp changes in transmission from 10% to 80% for small changes in lattice spacing.
Dual Lattice of ℤ-module Lattice
Directory of Open Access Journals (Sweden)
Futa Yuichi
2017-07-01
Full Text Available In this article, we formalize in Mizar [5] the definition of dual lattice and their properties. We formally prove that a set of all dual vectors in a rational lattice has the construction of a lattice. We show that a dual basis can be calculated by elements of an inverse of the Gram Matrix. We also formalize a summation of inner products and their properties. Lattice of ℤ-module is necessary for lattice problems, LLL(Lenstra, Lenstra and Lovász base reduction algorithm and cryptographic systems with lattice [20], [10] and [19].
Energy Technology Data Exchange (ETDEWEB)
Le Targat, R
2007-07-15
Atomic fountains, based on a microwave transition of Cesium or Rubidium, constitute the state of the art atomic clocks, with a relative accuracy close to 10{sup -16}. It nevertheless appears today that it will be difficult to go significantly beyond this level with this kind of device. The use of an optical transition, the other parameters being unchanged, gives hope for a 4 or 5 orders of magnitude improvement of the stability and of the relative uncertainty on most systematic effects. As for motional effects on the atoms, they can be controlled on a very different manner if they are trapped in an optical lattice instead of experiencing a free ballistic flight stage, characteristic of fountains. The key point of this approach lies in the fact that the trap can be operated in such a way that a well chosen, weakly allowed, J=0 {yields} J=0 clock transition can be free from light shift effects. In this respect, the strontium atom is one of the most promising candidate, the 1S{sub 0} {yields} 3P{sub 0} transition has a natural width of 1 mHz, and several other easily accessible transitions can be used to efficiently laser cool atoms down to 10 {mu}K. This thesis demonstrates the experimental feasibility of an optical lattice clock based on the strontium atom, and reports on a preliminary evaluation of the relative accuracy with the fermionic isotope {sup 87}Sr, at a level of a few 10{sup -15}. (author)
Multiband Optical Absorption Controlled by Lattice Strain in Thin-Film {\mathrm{LaCrO}}_{3}
Energy Technology Data Exchange (ETDEWEB)
Sushko, Peter V.; Qiao, Liang; Bowden, Mark; Varga, Tamas; Exarhos, Gregory J.; Urban, Frank K.; Barton, David; Chambers, Scott A.
2013-02-01
Experimental measurements and ab initio modeling of the optical transitions in strained G-type antiferromagnetic LaCrO_{3} resolve two decades of debate regarding the magnitude of the optical band gap and the character of the corresponding transitions in this material. Using time-dependent density functional theory and accounting for thermal disorder effects, we demonstrate that the fourmost prominent low-energy absorption features are due to intra-Cr t_{2g} {eg (2.4, 3.6 eV), inter-Crt_{2}g {t_{2g} (4.4 eV), and inter-ion O 2p { Cr 3d (from 5 eV) transitions and show that the excitation energies of the latter type can be strongly affected by the lattice strain.
Senior, Lisa A.; Bird, Philip H.
2010-01-01
As part of technical assistance to the U.S. Environmental Protection Agency (USEPA) in the remediation of properties on the North Penn Area 6 Superfund Site in Lansdale, Pa., the U.S. Geological Survey (USGS) in 2006-07 collected data in four monitor wells at the Rogers Mechanical (former Tate Andale) property. During this period, USGS collected and analyzed borehole geophysical and video logs of three new monitor wells (Rogers 4, Rogers 5, and Rogers 6) ranging in depth from 80 to 180 feet, a borehole video log and additional heatpulse-flowmeter measurements (to quantify vertical borehole flow) in one existing 100-foot deep well (Rogers 3S), and water-level data during development of two wells (Rogers 5 and Rogers 6) to determine specific capacity. USGS also summarized results of passive-diffusion bag sampling for volatile organic compounds (VOCs) in the four wells. These data were intended to help understand the groundwater system and the distribution of VOC contaminants in groundwater at the property.
DEFF Research Database (Denmark)
Santocanale, Luigi
2002-01-01
A μ-lattice is a lattice with the property that every unary polynomial has both a least and a greatest fix-point. In this paper we define the quasivariety of μ-lattices and, for a given partially ordered set P, we construct a μ-lattice JP whose elements are equivalence classes of games in a preor...
Ultracold Quantum Gases and Lattice Systems: Quantum Simulation of Lattice Gauge Theories
Wiese, U -J
2013-01-01
Abelian and non-Abelian gauge theories are of central importance in many areas of physics. In condensed matter physics, Abelian U(1) lattice gauge theories arise in the description of certain quantum spin liquids. In quantum information theory, Kitaev's toric code is a Z(2) lattice gauge theory. In particle physics, Quantum Chromodynamics (QCD), the non-Abelian SU(3) gauge theory of the strong interactions between quarks and gluons, is non-perturbatively regularized on a lattice. Quantum link models extend the concept of lattice gauge theories beyond the Wilson formulation, and are well suited for both digital and analog quantum simulation using ultracold atomic gases in optical lattices. Since quantum simulators do not suffer from the notorious sign problem, they open the door to studies of the real-time evolution of strongly coupled quantum systems, which are impossible with classical simulation methods. A plethora of interesting lattice gauge theories suggests itself for quantum simulation, which should al...
Electronic properties of graphene antidot lattices
DEFF Research Database (Denmark)
Fürst, Joachim Alexander; Pedersen, Jesper Goor; Flindt, C.
2009-01-01
Graphene antidot lattices constitute a novel class of nano-engineered graphene devices with controllable electronic and optical properties. An antidot lattice consists of a periodic array of holes that causes a band gap to open up around the Fermi level, turning graphene from a semimetal...... into a semiconductor. We calculate the electronic band structure of graphene antidot lattices using three numerical approaches with different levels of computational complexity, efficiency and accuracy. Fast finite-element solutions of the Dirac equation capture qualitative features of the band structure, while full...
2003-01-01
The growth mode of ZnO thin films can be well regulated in a molecular layer-by-layer growth by employing a ZnO buffer layer deposited on a lattice-matched ScAlMgO4 substrate and annealed at high temperature. The annealed buffer layer has atomically flat surface and relaxed (strain-free) crystal structure. The intensity oscillation of reflection high-energy electron diffraction persisted for more than a 100-nm film deposition under optimized conditions on such a buffer layer. Thus prepared th...
Institute of Scientific and Technical Information of China (English)
朱博; 林娟萍; 钟宏华
2015-01-01
The chaotic dynamic behavior of single particle in the tilted optical lattice with periodical modu‐lation is explored ,and the effect of chaos on quantum transport is studied under the strong modulating case .The chaos is found to assist quantum tunneling only when the modulation frequency matches with the gradient of lattice ;otherwise ,the chaos promotes localization .Therefore ,the quantum transport of the particle can be manipulated via adjusting periodical modulation .%研究周期调制倾斜光晶格中单粒子的混沌动力学行为，在强调制强度情形下探讨了混沌对粒子量子输运的影响。仿真分析结果表明，只有当调制频率与晶格倾斜度相匹配时，才会发生混沌帮助量子隧穿现象，否则混沌帮助局域化。外场调制方法能有效地操控粒子的量子输运。
Campos, R G; Campos, Rafael G.; Tututi, Eduardo S.
2002-01-01
It is shown that the nonlocal Dirac operator yielded by a lattice model that preserves chiral symmetry and uniqueness of fields, approaches to an ultralocal and invariant under translations operator when the size of the lattice tends to zero.
New integrable lattice hierarchies
Energy Technology Data Exchange (ETDEWEB)
Pickering, Andrew [Area de Matematica Aplicada, ESCET, Universidad Rey Juan Carlos, c/ Tulipan s/n, 28933 Mostoles, Madrid (Spain); Zhu Zuonong [Departamento de Matematicas, Universidad de Salamanca, Plaza de la Merced 1, 37008 Salamanca (Spain) and Department of Mathematics, Shanghai Jiao Tong University, Shanghai 200030 (China)]. E-mail: znzhu2@yahoo.com.cn
2006-01-23
In this Letter we give a new integrable four-field lattice hierarchy, associated to a new discrete spectral problem. We obtain our hierarchy as the compatibility condition of this spectral problem and an associated equation, constructed herein, for the time-evolution of eigenfunctions. We consider reductions of our hierarchy, which also of course admit discrete zero curvature representations, in detail. We find that our hierarchy includes many well-known integrable hierarchies as special cases, including the Toda lattice hierarchy, the modified Toda lattice hierarchy, the relativistic Toda lattice hierarchy, and the Volterra lattice hierarchy. We also obtain here a new integrable two-field lattice hierarchy, to which we give the name of Suris lattice hierarchy, since the first equation of this hierarchy has previously been given by Suris. The Hamiltonian structure of the Suris lattice hierarchy is obtained by means of a trace identity formula.
光学格点中玻色-爱因斯坦凝聚的自旋孤子%Solitons of spinor Bose-Einstein condensates in an optical lattice
Institute of Scientific and Technical Information of China (English)
谢元栋
2007-01-01
An improved nonlinear equation different from usual and an improved soliton solution of spinor Bose-Einstein condensates (BES) in an optical lattice are obtained by taking into account a nonlinear term in the equation of motion for probability amplitude of spins carefully. The width,peak and energy of soliton are also found.%得到了一个有关光学格点中的玻色-爱因斯坦凝聚的改进的非线性薛定谔方程,并且通过仔细考察自旋概率幅方程的高阶非线性项,求得了一个改进孤子解.并求出了孤子的宽度、峰值和能量.
Sober Topological Molecular Lattices
Institute of Scientific and Technical Information of China (English)
张德学; 李永明
2003-01-01
A topological molecular lattice (TML) is a pair (L, T), where L is a completely distributive lattice and r is a subframe of L. There is an obvious forgetful functor from the category TML of TML's to the category Loc of locales. In this note,it is showed that this forgetful functor has a right adjoint. Then, by this adjunction,a special kind of topological molecular lattices called sober topological molecular lattices is introduced and investigated.
Atkinson, D; van Steenwijk, F.J.
The resistance between two arbitrary nodes in an infinite square lattice of:identical resistors is calculated, The method is generalized to infinite triangular and hexagonal lattices in two dimensions, and also to infinite cubic and hypercubic lattices in three and more dimensions. (C) 1999 American
Lattice Regularization and Symmetries
Hasenfratz, Peter; Von Allmen, R; Allmen, Reto von; Hasenfratz, Peter; Niedermayer, Ferenc
2006-01-01
Finding the relation between the symmetry transformations in the continuum and on the lattice might be a nontrivial task as illustrated by the history of chiral symmetry. Lattice actions induced by a renormalization group procedure inherit all symmetries of the continuum theory. We give a general procedure which gives the corresponding symmetry transformations on the lattice.
Jacobi photonic lattices and their SUSY partners.
Zúñiga-Segundo, A; Rodríguez-Lara, B M; Fernández C, David J; Moya-Cessa, H M
2014-01-13
We present a classical analog of quantum optical deformed oscillators in arrays of waveguides. The normal modes of these one-dimensional photonic crystals are given in terms of Jacobi polynomials. We show that it is possible to attack the problem via factorization by exploiting the corresponding quantum optical model. This allows us to provide an unbroken supersymmetric partner of the proposed Jacobi lattices. Thanks to the underlying SU(1, 1) group symmetry of the lattices, we present the analytic propagators and impulse functions for these one-dimensional photonic crystals.
Fincham, W H A
2013-01-01
Optics: Ninth Edition Optics: Ninth Edition covers the work necessary for the specialization in such subjects as ophthalmic optics, optical instruments and lens design. The text includes topics such as the propagation and behavior of light; reflection and refraction - their laws and how different media affect them; lenses - thick and thin, cylindrical and subcylindrical; photometry; dispersion and color; interference; and polarization. Also included are topics such as diffraction and holography; the limitation of beams in optical systems and its effects; and lens systems. The book is recommen
Topological phase transitions in superradiance lattices
Wang, Da-Wei; Yuan, Luqi; Liu, Ren-Bao; Zhu, Shi-Yao
2015-01-01
The discovery of the quantum Hall effect (QHE) reveals a new class of matter phases, topological insulators (TI's), which have been extensively studied in solid-state materials and recently in photonic structures, time-periodic systems and optical lattices of cold atoms. All these topological systems are lattices in real space. Our recent study shows that Scully's timed Dicke states (TDS) can form a superradiance lattice (SL) in momentum space. Here we report the discovery of topological phase transitions in a two-dimensional SL in electromagnetically induced transparency (EIT). By periodically modulating the three EIT coupling fields, we can create a Haldane model with in-situ tunable topological properties. The Chern numbers of the energy bands and hence the topological properties of the SL manifest themselves in the contrast between diffraction signals emitted by superradiant TDS. The topological superradiance lattices (TSL) provide a controllable platform for simulating exotic phenomena in condensed matte...
Falin, M L; Latypov, V A; Leushin, A M
2003-01-01
SrF sub 2 and BaF sub 2 crystals, doped with the Yb sup 3 sup + ions, have been investigated by electron paramagnetic resonance and optical spectroscopy. As-grown crystals of SrF sub 2 and BaF sub 2 show the two paramagnetic centres for the cubic (T sub c) and trigonal (T sub 4) symmetries of the Yb sup 3 sup + ions. Empirical diagrams of the energy levels were established and the potentials of the crystal field were determined. Information was obtained on the SrF sub 2 and BaF sub 2 phonon spectra from the electron-vibrational structure of the optical spectra. The crystal field parameters were used to analyse the crystal lattice distortions in the vicinity of the impurity ion and the F sup - ion compensating for the excess positive charge in T sub 4. Within the frames of a superposition model, it is shown that three F sup - ions from the nearest surrounding cube, located symmetrically with respect to the C sub 3 axis from the side of the ion-compensator, approach the impurity ion and cling to the axis of the...
Abdel-Aal, Seham K.; Kocher-Oberlehner, Gudrun; Ionov, Andrei; Mozhchil, R. N.
2017-08-01
Diammonium series of Cu hybrid perovskites of the formula [(NH3)(CH2) n (NH3)]CuCl4, n = 6-9 are prepared from an ethanolic solution in stoichiometric ratio 1:1 (organic/inorganic). Formation of the desired material was confirmed and characterizes by microchemical analysis, FTIR, XRD and XPS spectra. The structure consists of corner-shared octahedron [CuCl4]2- anion alternative by organic [(NH3)(CH2) n (NH3)]2+ cations. The organic and inorganic layers form infinite 2D sheet that are connected via NH···Cl hydrogen bond. The calculated lattice potential energy U pot (kJ/mol) and lattice enthalpy Δ H L (kJ/mol) are inversely proportional to the molecular volume V m (nm3) and organic chain length. Optical properties show strong absorption peak at UV-visible range. The band gap energy calculated using Kubelka-Munk equation shows the decrease of the energy gap as organic chain length increases. The introduction of bromide ion to [(NH3)(CH2) n (NH3)]CuCl2Br2 denoted 2C7CuCB hybrid has shifted the energy gap to lower values from 2.6 to 2.18 eV for 2C7CuCl (yellow) and 2C7CuCB (brown), respectively, at the same organic chain length. All elements of [(NH3)(CH2)9(NH3)]CuCl4 and [(NH3)(CH2)7(NH3)]CuCl2Br2 were found in XPS spectra, as well as valence band spectra.
Sakhel, Asaad R.
2015-01-01
The properties of interacting bosons in a weak, one-dimensional, and bichromatic optical with a rational ratio of the constituting wavelengths $\\lambda_1$ and $\\lambda_2$ are numerically examined along a broad range of the Lieb-Liniger interaction parameter $\\gamma$ passing through the Sine-Gordon transition. It is argued that there should not be much difference in the results between those due to an irrational ratio $\\lambda_1/\\lambda_2$ and due to a rational approximation of the latter. For...
Energy Technology Data Exchange (ETDEWEB)
Moszkowica, Viktor Nigri [Pontificia Univ. Catolica do Rio de Janeiro, RJ (Brazil)]. E-mail: vnigri@bol.com.br
2002-06-01
In the petroleum sector there is a growing need for the use of pipelines as well as for their monitoring. A way to avoid leaks that can cause great damage to the environment is by the monitoring of deformations. In case failures can not be avoided through operational procedures, the monitoring of deformations can identify the initial moment and location of the leak, allowing for quick action on the part of the cleaning and depollution teams. Also important is the monitoring of slopes and soil movements. The same thing applies to production and transfer submarine pipelines subject to complex dynamic loadings that combine internal and external pressure, torsion, axial stress and, the most common of all, flexion loading. For this type of application, optical fiber sensors present a number of interesting features. Multiplexing, remote operation and long distance distribution of sensors are characteristics that attract their use in deformation monitoring systems. Presented herein are the research results of works that had the objective of developing deformation monitoring techniques in pipelines using optical fiber sensors based on Bragg grating. The technical feasibility of this technology is demonstrated through laboratorial tests. Also discussed herein are methods for field implementation of sensors, optical signal multiplexing techniques and potential advantages of applying this technology. (author)
Shaking the entropy out of a lattice
DEFF Research Database (Denmark)
C. Tichy, Malte; Mølmer, Klaus; F. Sherson, Jacob
2012-01-01
We present a simple and efficient scheme to reduce atom-number fluctuations in optical lattices. The interaction-energy difference for atoms in different vibrational states is used to remove excess atomic occupation. The remaining vacant sites are then filled with atoms by merging adjacent wells,...
Fincham, W H A
2013-01-01
Optics: Eighth Edition covers the work necessary for the specialization in such subjects as ophthalmic optics, optical instruments and lens design. The text includes topics such as the propagation and behavior of light; reflection and refraction - their laws and how different media affect them; lenses - thick and thin, cylindrical and subcylindrical; photometry; dispersion and color; interference; and polarization. Also included are topics such as diffraction and holography; the limitation of beams in optical systems and its effects; and lens systems. The book is recommended for engineering st
Jammed lattice sphere packings
Kallus, Yoav; Marcotte, Étienne; Torquato, Salvatore
2013-01-01
We generate and study an ensemble of isostatic jammed hard-sphere lattices. These lattices are obtained by compression of a periodic system with an adaptive unit cell containing a single sphere until the point of mechanical stability. We present detailed numerical data about the densities, pair correlations, force distributions, and structure factors of such lattices. We show that this model retains many of the crucial structural features of the classical hard-sphere model and propose it as a...
On Traveling Waves in Lattices: The Case of Riccati Lattices
Dimitrova, Zlatinka
2012-09-01
The method of simplest equation is applied for analysis of a class of lattices described by differential-difference equations that admit traveling-wave solutions constructed on the basis of the solution of the Riccati equation. We denote such lattices as Riccati lattices. We search for Riccati lattices within two classes of lattices: generalized Lotka-Volterra lattices and generalized Holling lattices. We show that from the class of generalized Lotka-Volterra lattices only the Wadati lattice belongs to the class of Riccati lattices. Opposite to this many lattices from the Holling class are Riccati lattices. We construct exact traveling wave solutions on the basis of the solution of Riccati equation for three members of the class of generalized Holling lattices.
Energy Technology Data Exchange (ETDEWEB)
Shindler, A. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC
2007-07-15
I review the theoretical foundations, properties as well as the simulation results obtained so far of a variant of the Wilson lattice QCD formulation: Wilson twisted mass lattice QCD. Emphasis is put on the discretization errors and on the effects of these discretization errors on the phase structure for Wilson-like fermions in the chiral limit. The possibility to use in lattice simulations different lattice actions for sea and valence quarks to ease the renormalization patterns of phenomenologically relevant local operators, is also discussed. (orig.)
Directory of Open Access Journals (Sweden)
Epelbaum E.
2010-04-01
Full Text Available We review recent progress on nuclear lattice simulations using chiral eﬀective ﬁeld theory. We discuss lattice results for dilute neutron matter at next-to-leading order, three-body forces at next-to-next-toleading order, isospin-breaking and Coulomb eﬀects, and the binding energy of light nuclei.
Lorenz, K.
2010-09-16
Eu-doped GaN was grown by organometallic vapor phase epitaxy at temperatures from 900 to 1100 °C. Eu incorporation is influenced by temperature with the highest concentration found for growth at 1000 °C. In all samples, Eu is incorporated entirely on substitutional Ga sites with a slight displacement which is highest (∼0.2 Å) in the sample grown at 900 °C and mainly directed along the c-axis. The major optical Eu3+ centers are identical for in situdoped and ion-implanted samples after high temperature and pressure annealing. The dominant Eu3+luminescence lines are attributed to isolated, substitutional Eu.
Lattice thermal conductivity in layered BiCuSeO
Kumar, S.
2016-06-30
We quantify the low lattice thermal conductivity in layered BiCuSeO (the oxide with the highest known figure of merit). It turns out that the scattering of acoustical into optical phonons is strongly enhanced in the material because of the special structure of the phonon dispersion. For example, at room temperature the optical phonons account for an enormous 42% of the lattice thermal conductivity. We also quantify the anisotropy of the lattice thermal conductivity and determine the distribution of the mean free path of the phonons at different temperatures to provide a guide for tuning the thermal properties. © the Owner Societies 2016.
Institute of Scientific and Technical Information of China (English)
刘璐; 谷开慧; 孙晓冰
2016-01-01
The synchronization of spatiotemporal chaos is realized by using Function drive techniques in cou-pled electrical-optical bistable map lattice systems. We obtain a formula of deviation for two spatiotemporal cha-os systems. We draw Lyapunov exponent. Numerical simulations indicate that two spatiotemporal chaos system could be synchronized by using suitable parameter. We draw global error curve with reaction time. So,function driven method can be widely used in secure communication.%中函数驱动技术实现了耦合双稳映象格子模型的时空混沌同步。通过理论计算可以得到两个时空混沌系统的误差表达式。画出李雅普诺夫指数。数值模拟结果表明，采用适当的参数，可以将两个耦合双稳映象格子模型实现时空混沌的同步。画出整体误差随反应时间的变化曲线。因此，函数驱动的方法可广泛用于保密通信中。
Institute of Scientific and Technical Information of China (English)
方见树
2005-01-01
运用直接微扰方法求得一维斜光格子势阱中囚禁Bose-Einstein凝聚体的混沌解,并绘出和研究了该系统的动力学相图.理论解析和相应的数值结果都表明此Bose-Einstein凝聚体系统的混沌行为.通过改变入射激光的波长或调节系统参数,可以控制Bose-Einstein凝聚体的混沌.%Using the direct perturbation technique, a general unstable chaotic solution was obtained of the Bose-Einstein condensates trapped in one-dimensional tilted optical lattice potential. The dynamical phase diagram of this system was studied. Theoretical analysis results and the corresponding numerical results showed the chaotic behavior of the system. It was found that Bose-Einstein condensate chaos could be controlled by changing the wave length of the incident laser light or adjusting the system parameters.
梯状光晶格中自旋轨道耦合的排斥费米气体%Spin-orbit coupled Fermi atoms loaded in an optical ladder lattice
Institute of Scientific and Technical Information of China (English)
郭飞翔; 周晓凡; 赵华
2015-01-01
采用密度矩阵重整化群 ( density-matrix-renormalization-group, DMRG) 方法, 研究梯状光晶格中排斥相互作用费米气体的基态属性. 研究表明, Zeeman场能够激发系统的相分离 (完全极化相和部分极化相), 而自旋轨道耦合效应能抑制相分离, 使整个晶格处于部分极化相, 在不同的强弱排斥相互作用系统中, 极化率会随自旋轨道耦合改变表现出不同的变化规律.%The density-matrix-renormalization-group ( DMRG ) method is used to numerically calculate the ground state of repulsively interacting Fermi atoms loaded in optical ladder lattices. It is found that the system exhibits the spatial separation of a fully spin-polarized phase from the partially polarized phase for the suitable intensity of Zeeman field without the effect of spin-orbit coupled atoms. The spin-orbit coupling drives the fully spin-polarized phase to the partially spin-polarized phase in the whole system. The spin polarizations of weak and strong repulsively interac-ting systems vary differently with spin-orbit interaction strength.
The next linear collider damping ring lattices
Energy Technology Data Exchange (ETDEWEB)
Wolski, Andrzej; Corlett, John N.
2001-06-20
We report on the lattice design of the Next Linear Collider (NLC) damping rings. The damping rings are required to provide low emittance electron and positron bunch trains to the NLC linacs, at a rate of 120 Hz. We present an optical design, based on a theoretical minimum emittance (TME) lattice, to produce the required normalized extracted beam emittances gex = 3 mm-mrad and gey = 0.02 mm mrad. An assessment of dynamic aperture and non-linear effects is given. The positron pre-damping ring, required to reduce the emittance of the positron beam such that it may be accepted by a main damping ring, is also described.
Few quantum particles on one dimensional lattices
Energy Technology Data Exchange (ETDEWEB)
Valiente Cifuentes, Manuel
2010-06-18
There is currently a great interest in the physics of degenerate quantum gases and low-energy few-body scattering due to the recent experimental advances in manipulation of ultracold atoms by light. In particular, almost perfect periodic potentials, called optical lattices, can be generated. The lattice spacing is fixed by the wavelength of the laser field employed and the angle betwen the pair of laser beams; the lattice depth, defining the magnitude of the different band gaps, is tunable within a large interval of values. This flexibility permits the exploration of different regimes, ranging from the ''free-electron'' picture, modified by the effective mass for shallow optical lattices, to the tight-binding regime of a very deep periodic potential. In the latter case, effective single-band theories, widely used in condensed matter physics, can be implemented with unprecedent accuracy. The tunability of the lattice depth is nowadays complemented by the use of magnetic Feshbach resonances which, at very low temperatures, can vary the relevant atom-atom scattering properties at will. Moreover, optical lattices loaded with gases of effectively reduced dimensionality are experimentally accessible. This is especially important for one spatial dimension, since most of the exactly solvable models in many-body quantum mechanics deal with particles on a line; therefore, experiments with one-dimensional gases serve as a testing ground for many old and new theories which were regarded as purely academic not so long ago. The physics of few quantum particles on a one-dimensional lattice is the topic of this thesis. Most of the results are obtained in the tight-binding approximation, which is amenable to exact numerical or analytical treatment. For the two-body problem, theoretical methods for calculating the stationary scattering and bound states are developed. These are used to obtain, in closed form, the two-particle solutions of both the Hubbard and
Von Smekal, L; Sternbeck, A; Williams, A G
2007-01-01
We propose a modified lattice Landau gauge based on stereographically projecting the link variables on the circle S^1 -> R for compact U(1) or the 3-sphere S^3 -> R^3 for SU(2) before imposing the Landau gauge condition. This can reduce the number of Gribov copies exponentially and solves the Gribov problem in compact U(1) where it is a lattice artifact. Applied to the maximal Abelian subgroup this might be just enough to avoid the perfect cancellation amongst the Gribov copies in a lattice BRST formulation for SU(N), and thus to avoid the Neuberger 0/0 problem. The continuum limit of the Landau gauge remains unchanged.
Jammed lattice sphere packings.
Kallus, Yoav; Marcotte, Étienne; Torquato, Salvatore
2013-12-01
We generate and study an ensemble of isostatic jammed hard-sphere lattices. These lattices are obtained by compression of a periodic system with an adaptive unit cell containing a single sphere until the point of mechanical stability. We present detailed numerical data about the densities, pair correlations, force distributions, and structure factors of such lattices. We show that this model retains many of the crucial structural features of the classical hard-sphere model and propose it as a model for the jamming and glass transitions that enables exploration of much higher dimensions than are usually accessible.
Jammed lattice sphere packings
Kallus, Yoav; Marcotte, Étienne; Torquato, Salvatore
2013-12-01
We generate and study an ensemble of isostatic jammed hard-sphere lattices. These lattices are obtained by compression of a periodic system with an adaptive unit cell containing a single sphere until the point of mechanical stability. We present detailed numerical data about the densities, pair correlations, force distributions, and structure factors of such lattices. We show that this model retains many of the crucial structural features of the classical hard-sphere model and propose it as a model for the jamming and glass transitions that enables exploration of much higher dimensions than are usually accessible.
Lipstein, Arthur E
2014-01-01
We formulate the theory of a 2-form gauge field on a Euclidean spacetime lattice. In this approach, the fundamental degrees of freedom live on the faces of the lattice, and the action can be constructed from the sum over Wilson surfaces associated with each fundamental cube of the lattice. If we take the gauge group to be $U(1)$, the theory reduces to the well-known abelian gerbe theory in the continuum limit. We also propose a very simple and natural non-abelian generalization with gauge group $U(N) \\times U(N)$, which gives rise to $U(N)$ Yang-Mills theory upon dimensional reduction. Formulating the theory on a lattice has several other advantages. In particular, it is possible to compute many observables, such as the expectation value of Wilson surfaces, analytically at strong coupling and numerically for any value of the coupling.
Root lattices and quasicrystals
Baake, M.; Joseph, D.; Kramer, P.; Schlottmann, M.
1990-10-01
It is shown that root lattices and their reciprocals might serve as the right pool for the construction of quasicrystalline structure models. All noncrystallographic symmetries observed so far are covered in minimal embedding with maximal symmetry.
Energy Technology Data Exchange (ETDEWEB)
ORGINOS,K.
2003-01-07
I review the current status of hadronic structure computations on the lattice. I describe the basic lattice techniques and difficulties and present some of the latest lattice results; in particular recent results of the RBC group using domain wall fermions are also discussed. In conclusion, lattice computations can play an important role in understanding the hadronic structure and the fundamental properties of Quantum Chromodynamics (QCD). Although some difficulties still exist, several significant steps have been made. Advances in computer technology are expected to play a significant role in pushing these computations closer to the chiral limit and in including dynamical fermions. RBC has already begun preliminary dynamical domain wall fermion computations [49] which we expect to be pushed forward with the arrival of QCD0C. In the near future, we also expect to complete the non-perturbative renormalization of the relevant derivative operators in quenched QCD.
Superalloy Lattice Block Structures
Nathal, M. V.; Whittenberger, J. D.; Hebsur, M. G.; Kantzos, P. T.; Krause, D. L.
2004-01-01
Initial investigations of investment cast superalloy lattice block suggest that this technology will yield a low cost approach to utilize the high temperature strength and environmental resistance of superalloys in lightweight, damage tolerant structural configurations. Work to date has demonstrated that relatively large superalloy lattice block panels can be successfully investment cast from both IN-718 and Mar-M247. These castings exhibited mechanical properties consistent with the strength of the same superalloys measured from more conventional castings. The lattice block structure also accommodates significant deformation without failure, and is defect tolerant in fatigue. The potential of lattice block structures opens new opportunities for the use of superalloys in future generations of aircraft applications that demand strength and environmental resistance at elevated temperatures along with low weight.
Pica, C; Lucini, B; Patella, A; Rago, A
2009-01-01
Technicolor theories provide an elegant mechanism for dynamical electroweak symmetry breaking. We will discuss the use of lattice simulations to study the strongly-interacting dynamics of some of the candidate theories, with matter fields in representations other than the fundamental. To be viable candidates for phenomenology, such theories need to be different from a scaled-up version of QCD, which were ruled out by LEP precision measurements, and represent a challenge for modern lattice computations.
Automated Lattice Perturbation Theory
Energy Technology Data Exchange (ETDEWEB)
Monahan, Christopher
2014-11-01
I review recent developments in automated lattice perturbation theory. Starting with an overview of lattice perturbation theory, I focus on the three automation packages currently "on the market": HiPPy/HPsrc, Pastor and PhySyCAl. I highlight some recent applications of these methods, particularly in B physics. In the final section I briefly discuss the related, but distinct, approach of numerical stochastic perturbation theory.
Kiefel, Martin; Jampani, Varun; Gehler, Peter V.
2014-01-01
This paper presents a convolutional layer that is able to process sparse input features. As an example, for image recognition problems this allows an efficient filtering of signals that do not lie on a dense grid (like pixel position), but of more general features (such as color values). The presented algorithm makes use of the permutohedral lattice data structure. The permutohedral lattice was introduced to efficiently implement a bilateral filter, a commonly used image processing operation....
Surface solitons in trilete lattices
Stojanovic, M; Hadzievski, Lj; Malomed, B A
2011-01-01
Fundamental solitons pinned to the interface between three semi-infinite one-dimensional nonlinear dynamical chains, coupled at a single site, are investigated. The light propagation in the respective system with the self-attractive on-site cubic nonlinearity, which can be implemented as an array of nonlinear optical waveguides, is modeled by the system of three discrete nonlinear Schr\\"{o}dinger equations. The formation, stability and dynamics of symmetric and asymmetric fundamental solitons centered at the interface are investigated analytically by means of the variational approximation (VA) and in a numerical form. The VA predicts that two asymmetric and two antisymmetric branches exist in the entire parameter space, while four asymmetric modes and the symmetric one can be found below some critical value of the inter-lattice coupling parameter -- actually, past the symmetry-breaking bifurcation. At this bifurcation point, the symmetric branch is destabilized and two new asymmetric soliton branches appear, ...
Chiral near fields generated from plasmonic lattices
Canaguier-Durand, Antoine
2014-01-01
Plasmonic fields are usually considered non-chiral because of the transverse magnetic polarization of surface plasmon modes. We however show here that plasmonic lattices built from coherent superpositions of surface plasmons can generate optical chirality in the interfering near field. We reveal in particular the emergence of plasmonic potentials relevant to the generation of near-field chiral forces. This draws promising perspectives for performing enantiomeric separation schemes within the near field.
A Bijection between Lattice-Valued Filters and Lattice-Valued Congruences in Residuated Lattices
Directory of Open Access Journals (Sweden)
Wei Wei
2013-01-01
Full Text Available The aim of this paper is to study relations between lattice-valued filters and lattice-valued congruences in residuated lattices. We introduce a new definition of congruences which just depends on the meet ∧ and the residuum →. Then it is shown that each of these congruences is automatically a universal-algebra-congruence. Also, lattice-valued filters and lattice-valued congruences are studied, and it is shown that there is a one-to-one correspondence between the set of all (lattice-valued filters and the set of all (lattice-valued congruences.
Knuth, Kevin H.
2009-12-01
Previous derivations of the sum and product rules of probability theory relied on the algebraic properties of Boolean logic. Here they are derived within a more general framework based on lattice theory. The result is a new foundation of probability theory that encompasses and generalizes both the Cox and Kolmogorov formulations. In this picture probability is a bi-valuation defined on a lattice of statements that quantifies the degree to which one statement implies another. The sum rule is a constraint equation that ensures that valuations are assigned so as to not violate associativity of the lattice join and meet. The product rule is much more interesting in that there are actually two product rules: one is a constraint equation arises from associativity of the direct products of lattices, and the other a constraint equation derived from associativity of changes of context. The generality of this formalism enables one to derive the traditionally assumed condition of additivity in measure theory, as well introduce a general notion of product. To illustrate the generic utility of this novel lattice-theoretic foundation of measure, the sum and product rules are applied to number theory. Further application of these concepts to understand the foundation of quantum mechanics is described in a joint paper in this proceedings.
Realizing a lattice spin model with polar molecules
Yan, Bo; Gadway, Bryce; Covey, Jacob P; Hazzard, Kaden R A; Rey, Ana Maria; Jin, Deborah S; Ye, Jun
2013-01-01
With the recent production of polar molecules in the quantum regime, long-range dipolar interactions are expected to facilitate the understanding of strongly interacting many-body quantum systems and to realize lattice spin models for exploring quantum magnetism. In atomic systems, where interactions require wave function overlap, effective spin interactions on a lattice can be realized via superexchange; however, the coupling is weak and limited to nearest-neighbor interactions. In contrast, dipolar interactions exist in the absence of tunneling and extend beyond nearest neighbors. This allows coherent spin dynamics to persist even at high entropy and low lattice filling. Effects of dipolar interactions in ultracold molecular gases have so far been limited to the modification of chemical reactions. We now report the observation of dipolar interactions of polar molecules pinned in a 3D optical lattice. We realize a lattice spin model with spin encoded in rotational states, prepared and probed by microwaves. T...
Precise determination of lattice phase shifts and mixing angles
Lu, Bing-Nan; Lähde, Timo A.; Lee, Dean; Meißner, Ulf-G.
2016-09-01
We introduce a general and accurate method for determining lattice phase shifts and mixing angles, which is applicable to arbitrary, non-cubic lattices. Our method combines angular momentum projection, spherical wall boundaries and an adjustable auxiliary potential. This allows us to construct radial lattice wave functions and to determine phase shifts at arbitrary energies. For coupled partial waves, we use a complex-valued auxiliary potential that breaks time-reversal invariance. We benchmark our method using a system of two spin-1/2 particles interacting through a finite-range potential with a strong tensor component. We are able to extract phase shifts and mixing angles for all angular momenta and energies, with precision greater than that of extant methods. We discuss a wide range of applications from nuclear lattice simulations to optical lattice experiments.
Light propagation and localization in modulated photonic lattices and waveguides
Garanovich, Ivan L; Sukhorukov, Andrey A; Kivshar, Yuri S
2011-01-01
We review both theoretical and experimental advances in the recently emerged physics of modulated photonic lattices. Artificial periodic dielectric media, such as photonic crystals and photonic lattices, provide a powerful tool for the control of the fundamental properties of light propagation in photonic structures. Photonic lattices are arrays of coupled optical waveguides, where the light propagation becomes effectively discretized. Such photonic structures allow one to study many useful optical analogies with other fields, such as the physics of solid state and electron theory. In particular, the light propagation in periodic photonic structures resembles the motion of electrons in a crystalline lattice of semiconductor materials. The discretized nature of light propagation gives rise to many new phenomena which are not possible in homogeneous bulk media, such as discrete diffraction and diffraction management, discrete and gap solitons, and discrete surface waves. Recently, it was discovered that applyin...
Lattice Boltzmann Stokesian dynamics.
Ding, E J
2015-11-01
Lattice Boltzmann Stokesian dynamics (LBSD) is presented for simulation of particle suspension in Stokes flows. This method is developed from Stokesian dynamics (SD) with resistance and mobility matrices calculated using the time-independent lattice Boltzmann algorithm (TILBA). TILBA is distinguished from the traditional lattice Boltzmann method (LBM) in that a background matrix is generated prior to the calculation. The background matrix, once generated, can be reused for calculations for different scenarios, thus the computational cost for each such subsequent calculation is significantly reduced. The LBSD inherits the merits of the SD where both near- and far-field interactions are considered. It also inherits the merits of the LBM that the computational cost is almost independent of the particle shape.
Weisz, Peter; Majumdar, Pushan
2012-03-01
Lattice gauge theory is a formulation of quantum field theory with gauge symmetries on a space-time lattice. This formulation is particularly suitable for describing hadronic phenomena. In this article we review the present status of lattice QCD. We outline some of the computational methods, discuss some phenomenological applications and a variety of non-perturbative topics. The list of references is severely incomplete, the ones we have included are text books or reviews and a few subjectively selected papers. Kronfeld and Quigg (2010) supply a reasonably comprehensive set of QCD references. We apologize for the fact that have not covered many important topics such as QCD at finite density and heavy quark effective theory adequately, and mention some of them only in the last section "In Brief". These topics should be considered in further Scholarpedia articles.
Improved Lattice Radial Quantization
Brower, Richard C; Fleming, George T
2014-01-01
Lattice radial quantization was proposed in a recent paper by Brower, Fleming and Neuberger[1] as a nonperturbative method especially suited to numerically solve Euclidean conformal field theories. The lessons learned from the lattice radial quantization of the 3D Ising model on a longitudinal cylinder with 2D Icosahedral cross-section suggested the need for an improved discretization. We consider here the use of the Finite Element Methods(FEM) to descretize the universally-equivalent $\\phi^4$ Lagrangian on $\\mathbb R \\times \\mathbb S^2$. It is argued that this lattice regularization will approach the exact conformal theory at the Wilson-Fisher fixed point in the continuum. Numerical tests are underway to support this conjecture.
Graphene antidot lattice waveguides
DEFF Research Database (Denmark)
Pedersen, Jesper Goor; Gunst, Tue; Markussen, Troels
2012-01-01
We introduce graphene antidot lattice waveguides: nanostructured graphene where a region of pristine graphene is sandwiched between regions of graphene antidot lattices. The band gaps in the surrounding antidot lattices enable localized states to emerge in the central waveguide region. We model...... the waveguides via a position-dependent mass term in the Dirac approximation of graphene and arrive at analytical results for the dispersion relation and spinor eigenstates of the localized waveguide modes. To include atomistic details we also use a tight-binding model, which is in excellent agreement...... with the analytical results. The waveguides resemble graphene nanoribbons, but without the particular properties of ribbons that emerge due to the details of the edge. We show that electrons can be guided through kinks without additional resistance and that transport through the waveguides is robust against...
Energy Technology Data Exchange (ETDEWEB)
Catterall, Simon; Kaplan, David B.; Unsal, Mithat
2009-03-31
We provide an introduction to recent lattice formulations of supersymmetric theories which are invariant under one or more real supersymmetries at nonzero lattice spacing. These include the especially interesting case of N = 4 SYM in four dimensions. We discuss approaches based both on twisted supersymmetry and orbifold-deconstruction techniques and show their equivalence in the case of gauge theories. The presence of an exact supersymmetry reduces and in some cases eliminates the need for fine tuning to achieve a continuum limit invariant under the full supersymmetry of the target theory. We discuss open problems.
Grabisch, Michel
2008-01-01
We extend the notion of belief function to the case where the underlying structure is no more the Boolean lattice of subsets of some universal set, but any lattice, which we will endow with a minimal set of properties according to our needs. We show that all classical constructions and definitions (e.g., mass allocation, commonality function, plausibility functions, necessity measures with nested focal elements, possibility distributions, Dempster rule of combination, decomposition w.r.t. simple support functions, etc.) remain valid in this general setting. Moreover, our proof of decomposition of belief functions into simple support functions is much simpler and general than the original one by Shafer.
Fermionic Optical Lattices: A Computational Study
2014-10-22
Kevin Schmidt, Shiwei Zhang. Auxiliary-field quantum Monte Carlo method for strongly paired fermions, Physical Review A, (12 2011): 0. doi...10.1103/PhysRevA.84.061602 A. Euverte, F. Hébert, S. Chiesa, R. Scalettar, G. Batrouni. Kondo Screening and Magnetism at Interfaces, Physical Review Letters...contact interaction: Magnetic properties in a dilute Hubbard model, Physical Review A, (12 2010): 0. doi: 10.1103/PhysRevA.82.061603 S. Zhou, D
New Forms of Matter in Optical Lattices
2016-05-19
particles flow between two reservoirs connected by a constriction with a tunable number of channels and transmission coefficient. The suggested...2 kHz modulation of the applied field to prevent ionic buildup. This modulation produces an observable residual modulation of the retardance which
Topological Varma superfluid in optical lattices
Liberto, M. Di; Hemmerich, A.; de Morais Smith, C.
2016-01-01
Topological states of matter are peculiar quantum phases showing different edge and bulk transport properties connected by the bulk-boundary correspondence. While non-interacting fermionic topological insulators are well established by now and have been classified according to a ten-fold scheme, the
Inhomogeneous atomic Bose-Fermi mixtures in cubic lattices.
Cramer, M; Eisert, J; Illuminati, F
2004-11-05
We determine the ground state properties of inhomogeneous mixtures of bosons and fermions in cubic lattices and parabolic confining potentials. For finite hopping we determine the domain boundaries between Mott-insulator plateaux and hopping-dominated regions for lattices of arbitrary dimension within mean-field and perturbation theory. The results are compared with a new numerical method that is based on a Gutzwiller variational approach for the bosons and an exact treatment for the fermions. The findings can be applied as a guideline for future experiments with trapped atomic Bose-Fermi mixtures in optical lattices.
Directory of Open Access Journals (Sweden)
Futa Yuichi
2016-03-01
Full Text Available In this article, we formalize the definition of lattice of ℤ-module and its properties in the Mizar system [5].We formally prove that scalar products in lattices are bilinear forms over the field of real numbers ℝ. We also formalize the definitions of positive definite and integral lattices and their properties. Lattice of ℤ-module is necessary for lattice problems, LLL (Lenstra, Lenstra and Lovász base reduction algorithm [14], and cryptographic systems with lattices [15] and coding theory [9].
An Algorithm on Generating Lattice Based on Layered Concept Lattice
Directory of Open Access Journals (Sweden)
Zhang Chang-sheng
2013-08-01
Full Text Available Concept lattice is an effective tool for data analysis and rule extraction, a bottleneck factor on impacting the applications of concept lattice is how to generate lattice efficiently. In this paper, an algorithm LCLG on generating lattice in batch processing based on layered concept lattice is developed, this algorithm is based on layered concept lattice, the lattice is generated downward layer by layer through concept nodes and provisional nodes in current layer; the concept nodes are found parent-child relationships upward layer by layer, then the Hasse diagram of inter-layer connection is generated; in the generated process of the lattice nodes in each layer, we do the pruning operations dynamically according to relevant properties, and delete some unnecessary nodes, such that the generating speed is improved greatly; the experimental results demonstrate that the proposed algorithm has good performance.
Shigaki, Kenta; Noda, Fumiaki; Yamamoto, Kazami; Machida, Shinji; Molodojentsev, Alexander; Ishi, Yoshihiro
2002-12-01
The JKJ high-intensity proton accelerator facility consists of a 400-MeV linac, a 3-GeV 1-MW rapid-cycling synchrotron and a 50-GeV 0.75-MW synchrotron. The lattice and beam dynamics design of the two synchrotrons are reported.
de Raedt, Hans; von der Linden, W.; Binder, K
1995-01-01
In this chapter we review methods currently used to perform Monte Carlo calculations for quantum lattice models. A detailed exposition is given of the formalism underlying the construction of the simulation algorithms. We discuss the fundamental and technical difficulties that are encountered and gi
Knuth, Kevin H
2009-01-01
Previous derivations of the sum and product rules of probability theory relied on the algebraic properties of Boolean logic. Here they are derived within a more general framework based on lattice theory. The result is a new foundation of probability theory that encompasses and generalizes both the Cox and Kolmogorov formulations. In this picture probability is a bi-valuation defined on a lattice of statements that quantifies the degree to which one statement implies another. The sum rule is a constraint equation that ensures that valuations are assigned so as to not violate associativity of the lattice join and meet. The product rule is much more interesting in that there are actually two product rules: one is a constraint equation arises from associativity of the direct products of lattices, and the other a constraint equation derived from associativity of changes of context. The generality of this formalism enables one to derive the traditionally assumed condition of additivity in measure theory, as well in...
Williamson, S. Gill
2010-01-01
Will the cosmological multiverse, when described mathematically, have easily stated properties that are impossible to prove or disprove using mathematical physics? We explore this question by constructing lattice multiverses which exhibit such behavior even though they are much simpler mathematically than any likely cosmological multiverse.
Phenomenology from lattice QCD
Lellouch, L P
2003-01-01
After a short presentation of lattice QCD and some of its current practical limitations, I review recent progress in applications to phenomenology. Emphasis is placed on heavy-quark masses and on hadronic weak matrix elements relevant for constraining the CKM unitarity triangle. The main numerical results are highlighted in boxes.
Noetherian and Artinian Lattices
Directory of Open Access Journals (Sweden)
Derya Keskin Tütüncü
2012-01-01
Full Text Available It is proved that if L is a complete modular lattice which is compactly generated, then Rad(L/0 is Artinian if, and only if for every small element a of L, the sublattice a/0 is Artinian if, and only if L satisfies DCC on small elements.
Basis reduction for layered lattices
Torreão Dassen, Erwin
2011-01-01
We develop the theory of layered Euclidean spaces and layered lattices. We present algorithms to compute both Gram-Schmidt and reduced bases in this generalized setting. A layered lattice can be seen as lattices where certain directions have infinite weight. It can also be interpre
Spin qubits in antidot lattices
DEFF Research Database (Denmark)
Pedersen, Jesper Goor; Flindt, Christian; Mortensen, Niels Asger;
2008-01-01
and density of states for a periodic potential modulation, referred to as an antidot lattice, and find that localized states appear, when designed defects are introduced in the lattice. Such defect states may form the building blocks for quantum computing in a large antidot lattice, allowing for coherent...
Hofstadter butterfly evolution in the space of two-dimensional Bravais lattices
Yılmaz, F.; Oktel, M. Ö.
2017-06-01
The self-similar energy spectrum of a particle in a periodic potential under a magnetic field, known as the Hofstadter butterfly, is determined by the lattice geometry as well as the external field. Recent realizations of artificial gauge fields and adjustable optical lattices in cold-atom experiments necessitate the consideration of these self-similar spectra for the most general two-dimensional lattice. In a previous work [F. Yılmaz et al., Phys. Rev. A 91, 063628 (2015), 10.1103/PhysRevA.91.063628], we investigated the evolution of the spectrum for an experimentally realized lattice which was tuned by changing the unit-cell structure but keeping the square Bravais lattice fixed. We now consider all possible Bravais lattices in two dimensions and investigate the structure of the Hofstadter butterfly as the lattice is deformed between lattices with different point-symmetry groups. We model the optical lattice with a sinusoidal real-space potential and obtain the tight-binding model for any lattice geometry by calculating the Wannier functions. We introduce the magnetic field via Peierls substitution and numerically calculate the energy spectrum. The transition between the two most symmetric lattices, i.e., the triangular and the square lattices, displays the importance of bipartite symmetry featuring deformation as well as closing of some of the major energy gaps. The transitions from the square to rectangular lattice and from the triangular to centered rectangular lattices are analyzed in terms of coupling of one-dimensional chains. We calculate the Chern numbers of the major gaps and Chern number transfer between bands during the transitions. We use gap Chern numbers to identify distinct topological regions in the space of Bravais lattices.
Energy Technology Data Exchange (ETDEWEB)
Gupta, R.
1998-12-31
The goal of the lectures on lattice QCD (LQCD) is to provide an overview of both the technical issues and the progress made so far in obtaining phenomenologically useful numbers. The lectures consist of three parts. The author`s charter is to provide an introduction to LQCD and outline the scope of LQCD calculations. In the second set of lectures, Guido Martinelli will discuss the progress they have made so far in obtaining results, and their impact on Standard Model phenomenology. Finally, Martin Luescher will discuss the topical subjects of chiral symmetry, improved formulation of lattice QCD, and the impact these improvements will have on the quality of results expected from the next generation of simulations.
Lattice Quantum Chromodynamics
Sachrajda, C. T.
2016-10-01
I review the the application of the lattice formulation of QCD and large-scale numerical simulations to the evaluation of non-perturbative hadronic effects in Standard Model Phenomenology. I present an introduction to the elements of the calculations and discuss the limitations both in the range of quantities which can be studied and in the precision of the results. I focus particularly on the extraction of the QCD parameters, i.e. the quark masses and the strong coupling constant, and on important quantities in flavour physics. Lattice QCD is playing a central role in quantifying the hadronic effects necessary for the development of precision flavour physics and its use in exploring the limits of the Standard Model and in searches for inconsistencies which would signal the presence of new physics.
Lattices of dielectric resonators
Trubin, Alexander
2016-01-01
This book provides the analytical theory of complex systems composed of a large number of high-Q dielectric resonators. Spherical and cylindrical dielectric resonators with inferior and also whispering gallery oscillations allocated in various lattices are considered. A new approach to S-matrix parameter calculations based on perturbation theory of Maxwell equations, developed for a number of high-Q dielectric bodies, is introduced. All physical relationships are obtained in analytical form and are suitable for further computations. Essential attention is given to a new unified formalism of the description of scattering processes. The general scattering task for coupled eigen oscillations of the whole system of dielectric resonators is described. The equations for the expansion coefficients are explained in an applicable way. The temporal Green functions for the dielectric resonator are presented. The scattering process of short pulses in dielectric filter structures, dielectric antennas and lattices of d...
Fractional lattice charge transport
Flach, Sergej; Khomeriki, Ramaz
2017-01-01
We consider the dynamics of noninteracting quantum particles on a square lattice in the presence of a magnetic flux α and a dc electric field E oriented along the lattice diagonal. In general, the adiabatic dynamics will be characterized by Bloch oscillations in the electrical field direction and dispersive ballistic transport in the perpendicular direction. For rational values of α and a corresponding discrete set of values of E(α) vanishing gaps in the spectrum induce a fractionalization of the charge in the perpendicular direction - while left movers are still performing dispersive ballistic transport, the complementary fraction of right movers is propagating in a dispersionless relativistic manner in the opposite direction. Generalizations and the possible probing of the effect with atomic Bose-Einstein condensates and photonic networks are discussed. Zak phase of respective band associated with gap closing regime has been computed and it is found converging to π/2 value. PMID:28102302
Borsanyi, Sz; Kampert, K H; Katz, S D; Kawanai, T; Kovacs, T G; Mages, S W; Pasztor, A; Pittler, F; Redondo, J; Ringwald, A; Szabo, K K
2016-01-01
We present a full result for the equation of state (EoS) in 2+1+1 (up/down, strange and charm quarks are present) flavour lattice QCD. We extend this analysis and give the equation of state in 2+1+1+1 flavour QCD. In order to describe the evolution of the universe from temperatures several hundreds of GeV to several tens of MeV we also include the known effects of the electroweak theory and give the effective degree of freedoms. As another application of lattice QCD we calculate the topological susceptibility (chi) up to the few GeV temperature region. These two results, EoS and chi, can be used to predict the dark matter axion's mass in the post-inflation scenario and/or give the relationship between the axion's mass and the universal axionic angle, which acts as a initial condition of our universe.
Parametric lattice Boltzmann method
Shim, Jae Wan
2017-06-01
The discretized equilibrium distributions of the lattice Boltzmann method are presented by using the coefficients of the Lagrange interpolating polynomials that pass through the points related to discrete velocities and using moments of the Maxwell-Boltzmann distribution. The ranges of flow velocity and temperature providing positive valued distributions vary with regulating discrete velocities as parameters. New isothermal and thermal compressible models are proposed for flows of the level of the isothermal and thermal compressible Navier-Stokes equations. Thermal compressible shock tube flows are simulated by only five on-lattice discrete velocities. Two-dimensional isothermal and thermal vortices provoked by the Kelvin-Helmholtz instability are simulated by the parametric models.
Jipsen, Peter
1992-01-01
The study of lattice varieties is a field that has experienced rapid growth in the last 30 years, but many of the interesting and deep results discovered in that period have so far only appeared in research papers. The aim of this monograph is to present the main results about modular and nonmodular varieties, equational bases and the amalgamation property in a uniform way. The first chapter covers preliminaries that make the material accessible to anyone who has had an introductory course in universal algebra. Each subsequent chapter begins with a short historical introduction which sites the original references and then presents the results with complete proofs (in nearly all cases). Numerous diagrams illustrate the beauty of lattice theory and aid in the visualization of many proofs. An extensive index and bibliography also make the monograph a useful reference work.
Lattice Quantum Chromodynamics
Sachrajda, C T
2016-01-01
I review the the application of the lattice formulation of QCD and large-scale numerical simulations to the evaluation of non-perturbative hadronic effects in Standard Model Phenomenology. I present an introduction to the elements of the calculations and discuss the limitations both in the range of quantities which can be studied and in the precision of the results. I focus particularly on the extraction of the QCD parameters, i.e. the quark masses and the strong coupling constant, and on important quantities in flavour physics. Lattice QCD is playing a central role in quantifying the hadronic effects necessary for the development of precision flavour physics and its use in exploring the limits of the Standard Model and in searches for inconsistencies which would signal the presence of new physics.
International Lattice Data Grid
Davies, C T H; Kenway, R D; Maynard, C M
2002-01-01
We propose the co-ordination of lattice QCD grid developments in different countries to allow transparent exchange of gauge configurations in future, should participants wish to do so. We describe briefly UKQCD's XML schema for labelling and cataloguing the data. A meeting to further develop these ideas will be held in Edinburgh on 19/20 December 2002, and will be available over AccessGrid.
Weakly deformed soliton lattices
Energy Technology Data Exchange (ETDEWEB)
Dubrovin, B. (Moskovskij Gosudarstvennyj Univ., Moscow (USSR). Dept. of Mechanics and Mathematics)
1990-12-01
In this lecture the author discusses periodic and quasiperiodic solutions of nonlinear evolution equations of phi{sub t}=K (phi, phi{sub x},..., phi{sup (n)}), the so-called soliton lattices. After introducing the theory of integrable systems of hydrodynamic type he discusses their Hamiltonian formalism, i.e. the theory of Poisson brackets of hydrodynamic type. Then he describes the application of algebraic geometry to the effective integration of such equations. (HSI).