Parallel and series 4 switch Z-source converters in induction motor drives
DEFF Research Database (Denmark)
Baba, Mircea; Lascu, Cristian; Boldea, Ion
2014-01-01
This paper presents a control strategy for four switch three-phase Z-source Inverter with parallel and series Z-source network fed 0.5 kW induction motor drive with V/f control and the algorithm to control the dc boost, split capacitor voltage balance and the ac output voltage. The proposed control...... algorithm is validated through simulation and experiment....
On the stability of four-legged tables
Martin, André Jean
2007-01-01
We prove that a perfect square table with four legs, placed on continuous irregular ground with a local slope of at most 14.4 degrees and later 35 degrees, can be put into equilibrium on the ground by a "rotation" of less than 90 degrees. We also discuss the case of non-square tables and make the conjecture that equilibrium can be found if the four feet lie on a circle.
Modulation Schemes of Multi-phase Three-Level Z-Source Inverters
DEFF Research Database (Denmark)
Gao, F.; Loh, P.C.; Blaabjerg, Frede
2007-01-01
different modulation requirement and output performance. For clearly illustrating the detailed modulation process, time domain analysis instead of the traditional multi-dimensional space vector demonstration is assumed which reveals the right way to insert shoot-through durations in the switching sequence...... with minimal commutation count. Lastly, the theoretical findings are verified in Matlab/PLECS simulation and experimentally using constructed laboratory prototypes.......This paper investigates the modulation schemes of three-level multiphase Z-source inverters with either two Z-source networks or single Z-source network connected between the dc sources and inverter circuitry. With the proper offset added for achieving both desired four-leg operation and optimized...
Operational analysis and comparative evaluation of embedded Z-Source inverters
DEFF Research Database (Denmark)
Blaabjerg, Frede; Gao, F.; Loh, P.C.
2008-01-01
) circuitry connected instead of the generic voltage source inverter (VSI) circuitry. Further proceeding on to the topological variation, parallel embedded Z-source inverters are presented with the detailed analysis of topological configuration and operational principles showing that they are the superior......This paper presents various embedded Z-source (EZ-source) inverters broadly classified as shunt or parallel embedded Z-source inverter. Being different from the traditional Z-source inverter, EZ-source inverters are constructed by inserting dc sources into the X-shaped impedance network so...... that the dc input current flows smoothly during the whole switching period unlike the traditional Z-source inverter. This feature is interesting when PV panels or fuel cells are assumed to power load since the continuous input current flow reduces control complexity of dc source and system design burden...
Influence of the cognitive workload on bicycle safety at four-legged intersections
DEFF Research Database (Denmark)
Kveladze, Irma; Agerholm, Niels
2018-01-01
is the influence of workload capacity on bicyclists spatial behaviour in a natural environment of four-legged intersections. Method: Due to the traffic safety of test participants, the study is divided in two phases. In the first phase, the actual physical environment of the four-legged intersection and bicyclists......-legged intersection. The eye tracking glasses will be used to make video and audio recording of visible field of where or how long bicyclists are allocating their visual attention while riding a bicycle and facing obstacles when crossing the four-legged intersection. On the second phase, a bicycle riding simulator...... riding task. This will allow to understand the allocation of bicyclists attention between primary and secondary tasks, to reveal the limit of the information processing capacity during biking. Results expected: Two experimental results will be incorporated to gain in-depth knowledge on bicycle accidents...
Performance analyses of Z-source and quasi Z-source inverter for photovoltaic applications
Himabind, S.; Priya, T. Hari; Manjeera, Ch.
2018-04-01
This paper presents the comparative analysis of Z-source and Quasi Z-source converter for renewable energy applications. Due to the dependency of renewable energy sources on external weather conditions the output voltage, current changes accordingly which effects the performance of traditional voltage source and current source inverters connected across it. To overcome the drawbacks of VSI and CSI, Z-source and Quasi Z-source inverter (QZSI) are used, which can perform multiple tasks like ac-to-dc, dc-to-ac, ac-to-ac, dc-to-dc conversion. They can be used for both buck and boost operations, by utilizing the shoot-through zero state. The QZSI is derived from the ZSI topology, with a slight change in the impedance network and it overcomes the drawbacks of ZSI. The QZSI draws a constant current from the source when compared to ZSI. A comparative analysis is performed between Z-source and Quasi Z-source inverter, simulation is performed in MATLAB/Simulink environment.
Modulation Technique for Four-Leg Voltage Source Inverter without a Look-Up Table
DEFF Research Database (Denmark)
Ebrahimzadeh, Esmaeil; Farhangi, Shahrokh; Iman-Eini, Hossein
2016-01-01
Three-dimensional space-vector modulation (3D SVM) has more popularity among the other modulation techniques of the four-leg inverter due to higher DC-link voltage utilisation. Sequencing schemes of the switching vectors in the 3D SVM are divided into Class I and II categories. Each of these clas...
A laboratory grid simulator based on three-phase four-leg inverter
DEFF Research Database (Denmark)
Li, Fei; Wang, Xiongfei; Chen, Zhe
2011-01-01
This paper presents the design and implementation of a laboratory grid simulator which is used to test the grid-connected devices according to the strict standards. Three-phase four-leg inverter with direct voltage control in Natural Frame is adopted in this grid simulator, which significantly...
Dynamics and Optimal Feet Force Distributions of a Realistic Four-legged Robot
Directory of Open Access Journals (Sweden)
Saurav Agarwal
2012-08-01
Full Text Available This paper presents a detailed dynamic modeling of realistic four-legged robot. The direct and inverse kinematic analysis for each leg has been considered in order to develop an overall kinematic model of the robot, when it follows a straight path. This study also aims to estimate optimal feet force distributions of the said robot, which is necessary for its real-time control. Three different approaches namely, minimization of norm of feet forces (approach 1, minimization of norm of joint torques (approach 2 and minimization of norm of joint power (approach 3 have been developed. Simulation result shows that approach 3 is more energy efficient foot force formulation than other two approaches. Lagrange-Euler formulation has been utilized to determine the joint torques. The developed dynamic models have been examined through computer simulation of continuous gait of the four-legged robot.
Trans-Z-source and Γ-Z-source neutral-point-clamped inverters
DEFF Research Database (Denmark)
Wei, Mo; Loh, Poh Chiang; Blaabjerg, Frede
2015-01-01
Z-source neutral-point-clamped (NPC) inverters are earlier proposed for obtaining voltage buck-boost and three-level switching simultaneously. Their performances are, however, constrained by a trade-off between their input-to-output gain and modulation ratio. This trade-off can lead to high...
On Graceful Spider Graphs with at Most Four Legs of Lengths Greater than One
Directory of Open Access Journals (Sweden)
A. Panpa
2016-01-01
Full Text Available A graceful labeling of a tree T with n edges is a bijection f:V(T→{0,1,2,…,n} such that {|f(u-f(v|:uv∈E(T} equal to {1,2,…,n}. A spider graph is a tree with at most one vertex of degree greater than 2. We show that all spider graphs with at most four legs of lengths greater than one admit graceful labeling.
Trans-Z-source Neutral Point Clamped inverter
DEFF Research Database (Denmark)
Mo, W.; Loh, P. C.; Li, D.
2012-01-01
Transformer based Z-source (trans-Z-source) inverters are recently proposed by extending the traditional Z-source inverter with higher buck-boost capability as well as reducing the passive components at the same time. Multi-Level Z-source inverters are single-stage topological solutions used...... for buck-boost energy conversion with all the favourable advantages of multi-level switching retained. This paper presents three-level trans-Z-source Neutral Point Clamped (NPC) inverter topology, which achieves both the advantages of trans-Z-source and three-level NPC inverter configuration. With proper...... modulation scheme, the three-level trans-Z-source inverter can function with minimum of six device commutations per half carrier cycle (same as the traditional buck NPC inverter), while maintaining to produce the designed volt-sec average and inductive voltage boosting at ac output terminals. The designed...
Leakage Current Elimination of Four-Leg Inverter for Transformerless Three-Phase PV Systems
DEFF Research Database (Denmark)
Guo, Xiaoqiang; He, Ran; Jian, Jiamin
2016-01-01
Eliminating the leakage current is one of the most important issues for transformerless three phase photovoltaic (PV) systems. In this paper, the leakage current elimination of a three-phase four-leg PV inverter is investigated. With the common mode loop model established, the generation mechanism...... of the leakage current is clearly identified. Different typical carrier-based modulation methods and their corresponding common mode voltages are discussed. A new modulation strategy with Boolean logic function is proposed to achieve the constant common mode voltage for the leakage current reduction. Finally...
Five-level Z-source diode-clamped inverter
DEFF Research Database (Denmark)
Gao, F.; Loh, Poh Chiang; Blaabjerg, Frede
2010-01-01
This study proposes a five-level Z-source diode-clamped inverter designed with two intermediate Z-source networks connected between the dc input sources and rear-end inverter circuitry. By partially shorting the Z-source networks, new operating states not previously reported for two-level Z......-source inverter are introduced here for operating the proposed inverter with voltage buck–boost energy conversion ability and five-level phase voltage switching. These characteristic features are in fact always ensured at the inverter terminal output by simply adopting a properly designed carrier modulation...
Model predictive control for Z-source power converter
DEFF Research Database (Denmark)
Mo, W.; Loh, P.C.; Blaabjerg, Frede
2011-01-01
This paper presents Model Predictive Control (MPC) of impedance-source (commonly known as Z-source) power converter. Output voltage control and current control for Z-source inverter are analyzed and simulated. With MPC's ability of multi- system variables regulation, load current and voltage...
Magnetization plateaux and jumps in frustrated four-leg spin tubes in magnetic fields
International Nuclear Information System (INIS)
Rosales, H D; Arlego, M; Albarracín, F A Gómez
2014-01-01
We study the ground state phase diagram of a frustrated spin-1/2 four-leg tube in an external magnetic field. We explore the parameter space of this model in the regime of all-antiferromagnetic exchange couplings by means of three different approaches: density matrix renormalization group (DMRG), a low-energy effective Hamiltonian (LEH) and a Hartree variational approach (HVA). We find that in the limit of weakly interacting plaquettes, singlet and triplet states play an important role in the formation of magnetization plateaux. We study the transition regions numerically and analytically, and find that they are described, at first order in a strong- coupling expansion, by an XXZ spin-1/2 chain in a magnetic field. These results are consistent with the DMRG and HVA calculations
Control method of Three-phase Four-leg converter based on repetitive control
Hui, Wang
2018-03-01
The research chose the magnetic levitation force of wind power generation system as the object. In order to improve the power quality problem caused by unbalanced load in power supply system, we combined the characteristics and repetitive control principle of magnetic levitation wind power generation system, and then an independent control strategy for three-phase four-leg converter was proposed. In this paper, based on the symmetric component method, the second order generalized integrator was used to generate the positive and negative sequence of signals, and the decoupling control was carried out under the synchronous rotating reference frame, in which the positive and negative sequence voltage is PI double closed loop, and a PI regulator with repetitive control was introduced to eliminate the static error regarding the fundamental frequency fluctuation characteristic of zero sequence component. The simulation results based on Matlab/Simulink show that the proposed control project can effectively suppress the disturbance caused by unbalanced loads and maintain the load voltage balance. The project is easy to be achieved and remarkably improves the quality of the independent power supply system.
Design and control of a three-phase four-leg inverter for solid-state transformer applications
Shri, A.; Popovic, J.; Ferreira, J.A.; Gerber, M.B.
2013-01-01
This paper proposes the use of a three-phase four-leg (3P4L) converter in combination with an LCL filter for the inverter stage of a solid state transformer (SST). This configuration gives full control over the line-to-line, as well as the line-to-neutral voltage and currents, while providing
Extended topologies of tapped-inductor Z-source inverters
DEFF Research Database (Denmark)
Zhu, Miao; Li, Ding; Gao, Feng
2011-01-01
In this paper, two distinct types of tapped-inductor Z-source impedance networks are proposed for implementing high performance voltage-type inverters topologies with strong voltage boost inversion abilities and less components' stresses. All proposed topologies can in principle be unified...... into a generic network entity, which is termed hybrid-source tapped-inductor impedance network. The resulting novel Z-source inverters would have a higher output voltage gain and other unique advantages that currently have not yet been investigated. Theoretical analysis for explaining these operating features...
Six transformer based asymmetrical embedded Z-source inverters
DEFF Research Database (Denmark)
Wei, Mo; Poh Chiang, Loh; Chi, Jin
2013-01-01
Embedded/Asymmetrical embedded Z-source inverters were proposed to maintain smooth input current/voltage across the dc source and within the impedance network, remain the shoot-through feature used to boost up the dc-link voltage without adding bulky filter at input side. This paper introduces a ...... a class of transformer based asymmetrical embedded Z-source inverters which keep the smooth input current and voltage while achieving enhanced voltage boost capability. The presented inverters are verified by laboratory prototypes experimentally....
Analysis of Extended Z-source Inverter for Photovoltaic System
Prakash, G.; Subramani, C.; Dhineshkumar, K.; Rayavel, P.
2018-04-01
The Z-source inverter has picked up prominence as a solitary stage buck-support inverter topology among numerous specialists. Notwithstanding, its boosting capacity could be constrained, and in this manner, it may not be reasonable for a few applications requiring high lift request of falling other dc-dc help converters. The Z-source inverter is a recent converter topology that exhibits both voltage-buck and voltage-boost capability This could lose the effectiveness and request all the more detecting for controlling the additional new stages. This paper is proposing another group of broadened help semi Z - source inverter (ZSI) to fill the exploration hole left in the improvement of ZSI. These new topologies can be worked with same regulation strategies that were produced for unique ZSI. Likewise, they have a similar number of dynamic switches as unique ZSI saving the single-organize nature of ZSI. Proposed topologies are dissected in the enduring state and their exhibitions are approved utilizing recreated comes about acquired in MATLAB/Simulink. Besides, they are tentatively approved with comes about acquired from a model created in the research facility. The trend of fast increase of the PV energy use is related to the increasing efficiency of solar cells as well as the improvements of manufacturing technology of solar panels.
Five-Level Z-Source Neutral Point-Clamped Inverter
DEFF Research Database (Denmark)
Gao, F.; Loh, P.C.; Blaabjerg, Frede
2007-01-01
This paper proposes a five-level Z-source neutralpoint- clamped (NPC) inverter with two Z-source networks functioning as intermediate energy storages coupled between dc sources and NPC inverter circuitry. Analyzing the operational principles of Z-source network with partial dclink shoot......-through scheme reveals the hidden theories in the five-level Z-source NPC inverter unlike the operational principle appeared in the general two-level Z-source inverter, so that the five-level Z-source NPC inverter can be designed with the modulation of carrier-based phase disposition (PD) or alternative phase...
Asymmetrical and symmetrical embedded Z-source inverters
DEFF Research Database (Denmark)
Gao, F.; Loh, P.C.; Li, D.
2011-01-01
ends, which indirectly translates to a lowering of overall system cost. These noted advantages are indeed appropriate for applications like photovoltaic and fuel cell energy harnessing, and have already been confirmed in simulation and experimentally using a laboratory-implemented inverter prototype.......This study presents two types of embedded Z-source inverters with each type further divided into asymmetrical and symmetrical realisations. Being different from their traditional counterparts, the presented inverters have their dc sources inserted within their X-shaped impedance networks so...
Directory of Open Access Journals (Sweden)
F. Hasanzad
2017-06-01
Full Text Available Photovoltaic systems integrated to the grid have received considerable attention around the world. They can be connected to the electrical grid via galvanic isolation (transformer or without it (transformerless. Despite making galvanic isolation, low frequency transformer increases size, cost and losses. On the other hand, transformerless PV systems increase the leakage current (common-mode current, (CMC through the parasitic capacitors of the PV array. Inverter topology and switching technique are the most important parameters the leakage current depends on. As there is no need to extra hardware for switching scheme modification, it's an economical method for reducing leakage current. This paper evaluates the effect of different space vector modulation techniques on leakage current for a two-level three-phase four-leg inverter used in PV system. It proposes an efficient space vector modulation method which decreases the leakage current to below the quantity specified in VDE-0126-1-1 standard. furthermore, some other characteristics of the space vector modulation schemes that have not been significantly discussed for four-leg inverter, are considered, such as, modulation index, switching actions per period, common-mode voltage (CMV, and total harmonic distortion (THD. An extend software simulation using MATLAB/Simulink is performed to verify the effectiveness of the modulation technique.
DEFF Research Database (Denmark)
Ghoreishy, Hoda; Zhang, Zhe; Thomsen, Ole Cornelius
2012-01-01
In this paper, a modulation strategy based on the circuit-level decoupling concept is proposed and investigated for the three-level four-leg neutral-point-clamped (NPC) inverter,with the aim of delivering power to all sorts of loads, linear/nonlinear and balanced/unbalanced. By applying the propo......In this paper, a modulation strategy based on the circuit-level decoupling concept is proposed and investigated for the three-level four-leg neutral-point-clamped (NPC) inverter,with the aim of delivering power to all sorts of loads, linear/nonlinear and balanced/unbalanced. By applying...... the proposed modulation strategy, the four-leg NPC inverter can be decoupled into three three-level Buck converters in each defined operating section. This makes the controller design much simpler compared to the conventional four-leg NPC inverter controllers. Also, this technique can be implemented...
Control for the Three-Phase Four-Wire Four-Leg APF Based on SVPWM and Average Current Method
Directory of Open Access Journals (Sweden)
Xiangshun Li
2015-01-01
Full Text Available A novel control method is proposed for the three-phase four-wire four-leg active power filter (APF to realize the accurate and real-time compensation of harmonic of power system, which combines space vector pulse width modulation (SVPWM with triangle modulation strategy. Firstly, the basic principle of the APF is briefly described. Then the harmonic and reactive currents are derived by the instantaneous reactive power theory. Finally simulation and experiment are built to verify the validity and effectiveness of the proposed method. The simulation results show that the response time for compensation is about 0.025 sec and the total harmonic distortion (THD of the source current of phase A is reduced from 33.38% before compensation to 3.05% with APF.
Extended SVM algorithms for multilevel trans-Z-source inverter
Directory of Open Access Journals (Sweden)
Aida Baghbany Oskouei
2016-03-01
Full Text Available This paper suggests extended algorithms for multilevel trans-Z-source inverter. These algorithms are based on space vector modulation (SVM, which works with high switching frequency and does not generate the mean value of the desired load voltage in every switching interval. In this topology the output voltage is not limited to dc voltage source similar to traditional cascaded multilevel inverter and can be increased with trans-Z-network shoot-through state control. Besides, it is more reliable against short circuit, and due to several number of dc sources in each phase of this topology, it is possible to use it in hybrid renewable energy. Proposed SVM algorithms include the following: Combined modulation algorithm (SVPWM and shoot-through implementation in dwell times of voltage vectors algorithm. These algorithms are compared from viewpoint of simplicity, accuracy, number of switching, and THD. Simulation and experimental results are presented to demonstrate the expected representations.
International Nuclear Information System (INIS)
Mackie, R.I.; Van der Walt, J.G.
1982-01-01
Insight into how ruminants utilise plant material, converting what is essentially waste into food, wool and draught power for Man is being sought by Animal Scientists using isotopic tracer techniques. Answers to cost-effectice biological conversion lie in the complex interactions of the rumen's microbial fermentation factory and the host animal's diet and metabolism
O'Donovan, Rhona; Kennedy, Norelee
2015-01-01
Nordic Walking (NW) is growing in popularity among people with arthritis. The aim of this study was to explore the perspectives of participants with arthritis on a NW-based walking programme including factors contributing to sustained participation in the programme. Three semi-structured focus groups were conducted with a total of 27 participants with various types of arthritis. The groups consisted of participants who completed a NW-based walking programme in the previous 4 years. Only participants who had sustained involvement in the walking group were included. Groups were audio-recorded, transcribed verbatim and thematic analysis was performed. Participants reported that the walking programme offered numerous benefits. Two distinct themes emerged: (1) "four legs instead of two legs" and (2) "a support group". Theme 1 incorporates the physical, psychological and educational benefits that stem from involvement in a walking group while Theme 2 incorporates the benefits of social support in group-based activity. Several benefits of a NW-based walking programme from the perspectives of individuals with arthritis who engage in group-based walking programmes were identified. The benefits may encourage sustained participation and justify the promotion of NW as an intervention for people with arthritis. Considering how to sustain exercise participation is important to ensure continued benefits from physical activity participation. A community-based Nordic walking-based walking programme for people with arthritis improved exercise knowledge and confidence to exercise. Group exercise is valuable in providing support and motivation to continue exercising.
Novel T-Z source inverter with high voltage gain and reduced transformer turn ratio
DEFF Research Database (Denmark)
Mostaan, Ali; Sharifi Malfejani, Saeed; Soltani, Mohsen
2015-01-01
Novel voltage source inverter based on the Z source inverter structure is introduced in this paper. In this new inverter, two inductors of the impedance network in conventional Z source inverter are replaced with two transformers or coupled inductors, but unlike the T-Z source inverter that it......'s voltage gain is raised with increasing the transformers turn ratio, the voltage gain in the proposed inverter is raised with lowering the transformer turn ratio. Therefore, transformers with lower turn ratio are required in the proposed inverter in compare with T- Z source inverter that can lead to lower...
Model Predictive Control of Z-source Neutral Point Clamped Inverter
DEFF Research Database (Denmark)
Mo, Wei; Loh, Poh Chiang; Blaabjerg, Frede
2011-01-01
This paper presents Model Predictive Control (MPC) of Z-source Neutral Point Clamped (NPC) inverter. For illustration, current control of Z-source NPC grid-connected inverter is analyzed and simulated. With MPC’s advantage of easily including system constraints, load current, impedance network...... response are obtained at the same time with a formulated Z-source NPC inverter network model. Operation steady state and transient state simulation results of MPC are going to be presented, which shows good reference tracking ability of this method. It provides new control method for Z-source NPC inverter...
Fault Ride-Through of a Grid-connected Photovoltaic System with Quasi Z Source Inverter
DEFF Research Database (Denmark)
Al-Durra, Ahmed; Fayyad, Yara; Muyeen, S.M.
2016-01-01
This article presents fault ride-through schemes for a three-phase quasi Z source single-stage photovoltaic (PV) inverter that is connected to the grid after the distribution network. The quasi Z source inverter employs a unique LC network to couple the inverter main circuit to the input of the PV...... the grid side so that the grid fault ride-through requirements can be fulfilled. Scheme A involves control modification in the system; Schemes B and C involve hardware modification in the circuit topology by adding a chopper circuit across the DC link in Scheme B and across the quasi Z source inverter...
DEFF Research Database (Denmark)
Loh, P.C.; Blaabjerg, Frede; Wong, C.P.
2007-01-01
modulation (PWM) strategies for controlling the Z-source NPC inverter. While developing the PWM techniques, attention has been devoted to carefully derive them from a common generic basis for improved portability, easier implementation, and most importantly, assisting readers in understanding all concepts......Z-source neutral-point-clamped (NPC) inverter has recently been proposed as an alternative three-level buck-boost power conversion solution with an improved output waveform quality. In principle, the designed Z-source inverter functions by selectively "shooting through" its power sources, coupled...... to the inverter using two unique Z-source impedance networks, to boost the inverter three-level output waveform. Proper modulation of the new inverter would therefore require careful integration of the selective shoot-through process to the basic switching concepts to achieve maximal voltage-boost, minimal...
Performance Evaluation of Three-Level Z-Source Inverters Under Semiconductor Failure Conditions
DEFF Research Database (Denmark)
Gao, Feng; Loh, P.C.; Vilathgamuwa, D.M.
2007-01-01
reconfigure the gating signals in order to tolerate the failed semiconductor devices without significantly decreasing the ac output quality and amplitude by properly using the inherent boost characteristic of Z-source network. In addition, the Z-source dual inverters can maintain the zero common mode voltage...... under semiconductor failure conditions, which is the unique characteristic attained by the dual inverters only. Lastly, all theoretical findings are verified in PLECS simulations....
Energy Technology Data Exchange (ETDEWEB)
Zhou Youzong; Cao Baozhen [Ministry of Coal Industry (China). Geological Exploration Machinery Factory
1996-12-31
According to the meditation of assembling headframes from upper to lower instead of that from lower to upper, the authors created successfully a new type of machine for assembling and disassembling headframes as well as a type of machine-assembled headframe. The new type of headframe not only has the merits of old type of headframe with four legs, but also can keep people away from dangers of working in high space and save the workers much labour. The new technology has good effect on raising productive efficiency. 2 figs.
A New Configuration for Power Sharing of Two Z-Source Inverters
Directory of Open Access Journals (Sweden)
M. Ghani varzaneh
2017-09-01
Full Text Available This paper presents a new structure to provide the ability for power sharing of two Z-source inverters. According to the operation principles of Z-source inverters, only one input source supplies the circuit, which is a limitation particularly for the stand alone systems feeded by limited output power such as photovoltaics and feul cells. Furthermore; if one source fails to supply, the load can't be supplied. This paper covers those via interconnection of impedance network of two Z-source inverters. The operating principles of the proposed topology for the stand-alone and power sharing conditions are described and the relations are derived. The topology is simulated, which the results verify the theoretical analysis and well performance of the system.
Dual Z-Source Inverter With Three-Level Reduced Common-Mode Switching
DEFF Research Database (Denmark)
Gao, Feng; Loh, Poh Chiang; Blaabjerg, Frede
2007-01-01
This paper presents the design of a dual Z-source inverter that can be used with either a single dc source or two isolated dc sources. Unlike traditional inverters, the integration of a properly designed Z-source network and semiconductor switches to the proposed dual inverter allows buck......-boost power conversion to be performed over a wide modulation range, with three-level output waveforms generated. The connection of an additional transformer to the inverter ac output also allows all generic wye-or delta-connected loads with three-wire or four-wire configuration to be supplied by the inverter....... Modulationwise, the dual inverter can be controlled using a carefully designed carrier-based pulsewidth-modulation (PWM) scheme that will always ensure balanced voltage boosting of the Z-source network while simultaneously achieving reduced common-mode switching. Because of the omission of dead-time delays...
An improved modulation strategy for the three-phase Z-source inverters (ZSIs)
DEFF Research Database (Denmark)
Abdelhakim, Ahmed; Davari, Pooya; Blaabjerg, Frede
2017-01-01
Z-source inverters (ZSIs), compared to the two-stage architecture, i.e. boost-converter (BC)-fed voltage source inverter (VSI), embrace some interesting features, like the reduced size and complexity of the entire conversion system. Several research activities have been established to improve...
Investigation of Pseudo-Active State in Z-Source Inverter
DEFF Research Database (Denmark)
Schaltz, Erik; Oprea, Octavian; Larsen, Lasse
2005-01-01
This paper introduces a new operating state of the Z-source inverter denoted the pseudo-active state. The pseudoactive state is a state that may boost the output voltage of the Zsource inverter to a level higher than expected. The influence of the pseudo-active state is investigated and an equation...
Generalized Multi-Cell Switched-Inductor and Switched-Capacitor Z-source Inverters
DEFF Research Database (Denmark)
Li, Ding; Chiang Loh, Poh; Zhu, Miao
2013-01-01
. Their boosting gains are, therefore, limited in practice. To overcome these shortcomings, the generalized switched-inductor and switched-capacitor Z-source inverters are proposed, whose extra boosting abilities and other advantages have already been verified in simulation and experiment....
Novel family of quasi-Z-source DC/DC converters derived from current-fed push-pull converters
DEFF Research Database (Denmark)
Chub, Andrii; Husev, Oleksandr; Vinnikov, Dmitri
2014-01-01
This paper is devoted to the step-up quasi-Z-source dc/dc push-pull converter family. The topologies in the family are derived from the isolated boost converter family by replacing input inductors with the quasi-Z-source network. Two new topologies are proposed, analyzed and compared. Theoretical...
Performance Evaluation of Three-Level Z-Source Inverters Under Semiconductor-Failure Conditions
DEFF Research Database (Denmark)
Gao, Feng; Loh, Poh Chiang; Blaabjerg, Frede
2009-01-01
This paper evaluates and proposes various compensation methods for three-level Z-source inverters under semiconductor-failure conditions. Unlike the fault-tolerant techniques used in traditional three-level inverters, where either an extra phase-leg or collective switching states are used......, the proposed methods for three-level Z-source inverters simply reconfigure their relevant gating signals so as to ride-through the failed semiconductor conditions smoothly without any significant decrease in their ac-output quality and amplitude. These features are partly attributed to the inherent boost...... under semiconductor-failure conditions. For verifying these described performance features, PLECS simulation and experimental testing were performed with some results captured and shown in a later section for visual confirmation....
Novel, Four-Switch, Z-Source Three-Phase Inverter
DEFF Research Database (Denmark)
Antal, Robert; Muntean, Nicolae; Boldea, Ion
2010-01-01
This paper presents a new z-source three phase inverter topology. The proposed topology combines the advantages of a traditional four-switch three-phase inverter with the advantages of the z impedance network (one front-end diode, two inductors and two X connected capacitors). This new topology......, besides the self-boost property, has low switch count and it can operate as a buck-boost inverter. In contrast to standard four-switch three-phase inverter which operates at half dc input voltage the proposed four-switch z-source inverter, by self boosting, brings the output voltage at same (or higher......) value as in six switch standard three-phase inverter. The article presents the derivation of the equations describing the operation of the converter based on space vector analysis, validation through digital simulations in PSIM and preliminary experimental results on a laboratory setup with a dsPIC30F...
Evaluation of Resonant Damping Techniques for Z-Source Current-Type Inverter
DEFF Research Database (Denmark)
Blaabjerg, Frede; Loh, Poh Chiang; Gajanayake, C.J.
2008-01-01
For the renewable energy sources whose outputs vary continuously, a Z-source current-type inverter has been proposed as a possible buck-boost alternative for grid-interfacing. With a unique X-shaped LC network connected between its dc power source and inverter topology, Z-source current......-type inverter is however expected to suffer from compounded resonant complications in addition to those associated with its second-order output filter. To improve its damping performance, this paper proposes the careful integration of Posicast or three-step compensators before the inverter pulse-width modulator...... for damping triggered resonant oscillations. In total, two compensators are needed for wave-shaping the inverter boost factor and modulation ratio, and they can conveniently be implemented using first-in first-out stacks and embedded timers of modern digital signal processors widely used in motion control...
Quasi-Z-Source Half-Bridge DC-DC Converter for Photovoltaic Applications
Vinnikov, D; Chub, A; Husev, O; Zaķis, J
2015-01-01
This paper presents a novel quasi-Z-source halfbridge galvanically isolated DC-DC converter intended for the photovoltaic applications. The topology could be envisioned as an alternative to the boost half-bridge DC-DC converter but the benefit of its symmetric structure reduces the threat of transformer saturation due to the dc flux. The proposed converter features the continuous input current and could be used either with one or two input voltage sources.
CLOSED LOOP CONTROL OF EMBEDDED Z-SOURCE INVERTER WITH FUZZY CONTROLLER FOR SOLAR PV APPLICATIONS
Midde Mahesh*, K. Leleedhar Rao
2017-01-01
This paper proposes the use of Embedded Z –source inverter system with fuzzy controller for Solar Photo Voltaic (PV) applications with adjustable speed drives. Closed loop operation FUZZY control strategies of EZSI system are proposed. EZSI produces the same voltage gain as Z-source inverter (ZSI) but due to the DC sources embedded within the X- shaped impedance network, it has the added advantage of inherent source filtering capability and also reduced capacitor sizing. This can be achiev...
Induced over voltage test on transformers using enhanced Z-source inverter based circuit
Peter, Geno; Sherine, Anli
2017-09-01
The normal life of a transformer is well above 25 years. The economical operation of the distribution system has its roots in the equipments being used. The economy being such, that it is financially advantageous to replace transformers with more than 15 years of service in the second perennial market. Testing of transformer is required, as its an indication of the extent to which a transformer can comply with the customers specified requirements and the respective standards (IEC 60076-3). In this paper, induced over voltage testing on transformers using enhanced Z source inverter is discussed. Power electronic circuits are now essential for a whole array of industrial electronic products. The bulky motor generator set, which is used to generate the required frequency to conduct the induced over voltage testing of transformers is nowadays replaced by static frequency converter. First conventional Z-source inverter, and second an enhanced Z source inverter is being used to generate the required voltage and frequency to test the transformer for induced over voltage test, and its characteristics is analysed.
Directory of Open Access Journals (Sweden)
Abdul Mannan Dadu
2017-12-01
Full Text Available A high computational burden is required in conventional model predictive control, as all of the voltage vectors of a power inverter are used to predict the future behavior of the system. Apart from that, the common mode voltage (CMV of a three-phase four-leg inverter utilizes up to half of the DC-link voltage due to the use of all of the available voltage vectors. Thus, this paper proposes a near state vector selection-based model predictive control (NSV-MPC scheme to mitigate the CMV and reduce computational burden. In the proposed technique, only six active voltage vectors are used in the predictive model, and the vectors are selected based on the position of the future reference vector. In every sampling period, the position of the reference current is used to detect the voltage vectors surrounding the reference voltage vector. Besides the six active vectors, one of the zero vectors is also used. The proposed technique is compared with the conventional control scheme in terms of execution time, CMV variation, and load current ripple in both simulation and an experimental setup. The LabVIEW Field programmable gate array rapid prototyping controller is used to validate the proposed control scheme experimentally, and demonstrate that the CMV can be bounded within one-fourth of the DC-link voltage.
Zhang, Qianfan; Dong, Shuai; Xue, Ping; Zhou, Chaowei; Cheng, ShuKang
2014-01-01
A novel modified space vector pulse width modulation (MSVPWM) strategy for Z-Source inverter is presented. By rearranging the position of shoot-through states, the frequency of inductor current ripple is kept constant. Compared with existing MSVPWM strategies, the proposed approach can reduce the maximum inductor current ripple. So the volume of Z-source network inductor can be designed smaller, which brings the beneficial effect on the miniaturization of the electric vehicle controller. Theoretical findings in the novel MSVPWM for Z-Source inverter have been verified by experiment results.
A high voltage gain quasi Z-source isolated DC/DC converter
DEFF Research Database (Denmark)
Siwakoti, Yam P.; Blaabjerg, Frede; Loh, Poh Chiang
2014-01-01
A compact quasi-Z-source DC/DC converter is presented with high voltage gain, isolated output, and improved efficiency. The improvements in size and performance were achieved by using a square wave inverter with only two output switches driving an isolating transformer in push-pull mode, followed...... by a voltage doubling output rectifier. The converter is well-suited to applications requiring a high voltage gain, especially renewable energy sources such as photovoltaic and fuel-cell power supplies. To demonstrate the converter's performance a prototype designed to output 400 V at 500 W was constructed...
DEFF Research Database (Denmark)
Blaabjerg, Frede; Vilathgamuwa, D. M.; Loh, Poh Chiang
2009-01-01
Distributed generation (DG) systems are usually connected to the grid using power electronic converters. Power delivered from such DG sources depends on factors like energy availability and load demand. The converters used in power conversion do not operate with their full capacity all the time......-stage buck-boost inverter, recently proposed Z-source inverter (ZSI) is a good candidate for future DG systems. This paper presents a controller design for a ZSI-based DG system to improve power quality of distribution systems. The proposed control method is tested with simulation results obtained using...
Three-Level Z-Source Inverters Using a Single LC Impedance Network
DEFF Research Database (Denmark)
Loh, Poh Chiang; Lim, Sok Wei; Gao, Feng
2007-01-01
two LC impedance networks and two isolated dc sources, which can significantly increase the overall system cost and require a more complex modulator for balancing the network inductive voltage boosting. Offering a number of less costly alternatives, this letter presents the design and control of two...... three-level Z-source inverters, whose output voltage can be stepped down or up using only a single LC impedance network connected between the dc input source and either a neutral-point-clamped (NPC) or dc-link cascaded inverter circuitry. Through careful design of their modulation scheme, both inverters...
Three-Level AC-DC-AC Z-Source Converter Using Reduced Passive Component Count
DEFF Research Database (Denmark)
Loh, Poh Chiang; Gao, Feng; Tan, Pee-Chin
2009-01-01
This paper presents a three-level ac-dc-ac Z-source converter with output voltage buck-boost capability. The converter is implemented by connecting a low-cost front-end diode rectifier to a neutral-point-clamped inverter through a single X-shaped LC impedance network. The inverter is controlled...... to switch with a three-level output voltage, where the middle neutral potential is uniquely tapped from the star-point of a wye-connected capacitive filter placed before the front-end diode rectifier for input current filtering. Through careful control, the resulting converter can produce the correct volt...
Modeling and reliability analysis of three phase z-source AC-AC converter
Directory of Open Access Journals (Sweden)
Prasad Hanuman
2017-12-01
Full Text Available This paper presents the small signal modeling using the state space averaging technique and reliability analysis of a three-phase z-source ac-ac converter. By controlling the shoot-through duty ratio, it can operate in buck-boost mode and maintain desired output voltage during voltage sag and surge condition. It has faster dynamic response and higher efficiency as compared to the traditional voltage regulator. Small signal analysis derives different control transfer functions and this leads to design a suitable controller for a closed loop system during supply voltage variation. The closed loop system of the converter with a PID controller eliminates the transients in output voltage and provides steady state regulated output. The proposed model designed in the RT-LAB and executed in a field programming gate array (FPGA-based real-time digital simulator at a fixedtime step of 10 μs and a constant switching frequency of 10 kHz. The simulator was developed using very high speed integrated circuit hardware description language (VHDL, making it versatile and moveable. Hardware-in-the-loop (HIL simulation results are presented to justify the MATLAB simulation results during supply voltage variation of the three phase z-source ac-ac converter. The reliability analysis has been applied to the converter to find out the failure rate of its different components.
A single-phase embedded Z-source DC-AC inverter.
Kim, Se-Jin; Lim, Young-Cheol
2014-01-01
In the conventional DC-AC inverter consisting of two DC-DC converters with unipolar output capacitors, the output capacitor voltages of the DC-DC converters must be higher than the DC input voltage. To overcome this weakness, this paper proposes a single-phase DC-AC inverter consisting of two embedded Z-source converters with bipolar output capacitors. The proposed inverter is composed of two embedded Z-source converters with a common DC source and output AC load. Though the output capacitor voltages of the converters are relatively low compared to those of a conventional inverter, an equivalent level of AC output voltages can be obtained. Moreover, by controlling the output capacitor voltages asymmetrically, the AC output voltage of the proposed inverter can be higher than the DC input voltage. To verify the validity of the proposed inverter, experiments were performed with a DC source voltage of 38 V. By controlling the output capacitor voltages of the converters symmetrically or asymmetrically, the proposed inverter can produce sinusoidal AC output voltages. The experiments show that efficiencies of up to 95% and 97% can be achieved with the proposed inverter using symmetric and asymmetric control, respectively.
DEFF Research Database (Denmark)
Gadalla, Brwene Salah Abdelkarim; Schaltz, Erik; Siwakoti, Yam Prasad
2016-01-01
Boost converters are needed in many applications that require the output voltage to be higher than the input voltage. Recently, boost type converters have been attracted by the industrial applications, and hence it has become an extremely hot topic of research. Recently, many researchers proposed...... the impedance source converters with their unique advantages as having a high voltage gain in a small range of duty cycle ratio. However, the thermal behaviour of the semiconductor devices and passive elements in the impedance source converter is an important issue from a reliability point of view and has...... not been investigated yet. Therefore this paper presents a comparison between the conventional boost, the Z-source, and the Y-source converters based on the thermal evaluation of semiconductors. In addition, the three topologies are also compared with respect to their efficiency. The operational principle...
Comparison of VSC and Z-Source Converter: Power System Application Approach
Directory of Open Access Journals (Sweden)
Masoud Jokar Kouhanjani
2017-01-01
Full Text Available Application of equipment with power electronic converter interface such as distributed generation, FACTS and HVDC, is growing up intensively. On the other hand, various types of topologies have been proposed and each of them has some advantages. Therefore, appropriateness of each converter regarding to the application is a main question for designers and engineers. In this paper, a part of this challenge is responded by comparing a typical Voltage-Source Converter (VSC and Z-Source Converter (ZSC, through high power electronic-based equipment used in power systems. Dynamic response, stability margin, Total Harmonic Distortion (THD of grid current and fault tolerant are considered as assessment criteria. In order to meet this evaluation, dynamic models of two converters are presented, a proper control system is designed, a small signal stability method is applied and responses of converters to small and large perturbations are obtained and analysed by PSCAD/EMTDC.
Z-Source Inverter Based Power Quality Compensator with Enhanced Ride-Through Capability
DEFF Research Database (Denmark)
Gajanayake, C.J.; Vilathgamuwa, D.M.; Loh, P.C.
2007-01-01
Distributed generation has been gaining acceptance over the years and it has the potential to provide reliable power to sensitive loads. However, distributed networks are prone to unbalanced faults conditions. This makes single inverter DG systems unsuitable as UPS systems. This paper proposes...... a Zsource inverter based power quality compensator and a control structure that supplies high quality voltage to the connected sensitive load in the presence of other non linear loads. The proposed topology consists of combination of shunt and series inverters connected to a common Z-source impedance...... network. The shunt inverter is controlled to maintain a quality voltage waveform at the load bus. Whereas the series inverter enhances the ride-through capability during grid faults, protects the shunt inverter by limiting the current and also controls the power delivered to the grid. The performance...
Directory of Open Access Journals (Sweden)
Abolfazl Kazemdehdashti
2013-01-01
Full Text Available In this paper, dynamic voltage restorer (DVR compensation methods are compared to each other for the load side connected shunt converter topology of z-source inverter based DVR to choose the best method. Four different topologies are recognized for DVR that two of them have energy storage devices, and two topologies have no energy storage that take ener\\-gy from the grid during the period of compensation. Here the load side connected shunt converter topology that takes necessary energy from the grid is used. Pre-sag compensation, in-phase compensation, energy-optimized methods are the three DVR compensation methods that studied and compared. A deep analysis through different diagrams would show the advantages or disadvantages of each compensation method. Equations for all methods are derived and the characteristics of algorithms are compared with each other. The simulation results done by SIMULINK/ MATLAB shows compensating by this topology based on the compensation methods.
A strongly heated neutron star in the transient z source MAXI J0556-332
Energy Technology Data Exchange (ETDEWEB)
Homan, Jeroen; Remillard, Ronald A. [MIT Kavli Institute for Astrophysics and Space Research, 77 Massachusetts Avenue 37-582D, Cambridge, MA 02139 (United States); Fridriksson, Joel K.; Wijnands, Rudy [Anton Pannekoek Institute for Astronomy, University of Amsterdam, Postbus 94249, 1090 GE Amsterdam (Netherlands); Cackett, Edward M. [Department of Physics and Astronomy, Wayne State University, 666 W. Hancock St., Detroit, MI 48201 (United States); Degenaar, Nathalie [Department of Astronomy, University of Michigan, 500 Church Street, Ann Arbor, MI 48109 (United States); Linares, Manuel [Instituto de Astrofísica de Canarias, c/ Vía Láctea s/n, E-38205 La Laguna, Tenerife (Spain); Lin, Dacheng, E-mail: jeroen@space.mit.edu [Space Science Center, University of New Hampshire, Durham, NH 03824 (United States)
2014-11-10
We present Chandra, XMM-Newton, and Swift observations of the quiescent neutron star in the transient low-mass X-ray binary MAXI J0556-332. Observations of the source made during outburst (with the Rossi X-ray Timing Explorer) reveal tracks in its X-ray color-color and hardness-intensity diagrams that closely resemble those of the neutron-star Z sources, suggesting that MAXI J0556-332 had near- or super-Eddington luminosities for a large part of its ∼16 month outburst. A comparison of these diagrams with those of other Z sources suggests a source distance of 46 ± 15 kpc. Fits to the quiescent spectra of MAXI J0556-332 with a neutron-star atmosphere model (with or without a power-law component) result in distance estimates of 45 ± 3 kpc, for a neutron-star radius of 10 km and a mass of 1.4 M {sub ☉}. The spectra show the effective surface temperature of the neutron star decreasing monotonically over the first ∼500 days of quiescence, except for two observations that were likely affected by enhanced low-level accretion. The temperatures we obtain for the fits that include a power law (kT{sub eff}{sup ∞} = 184-308 eV) are much higher than those seen for any other neutron star heated by accretion, while the inferred cooling (e-folding) timescale (∼200 days) is similar to other sources. Fits without a power law yield higher temperatures (kT{sub eff}{sup ∞} = 190-336 eV) and a shorter e-folding time (∼160 days). Our results suggest that the heating of the neutron-star crust in MAXI J0556-332 was considerably more efficient than for other systems, possibly indicating additional or more efficient shallow heat sources in its crust.
Galvanically Isolated Quasi-Z-Source DC–DC Converter With a Novel ZVS and ZCS Technique
DEFF Research Database (Denmark)
Husev, Oleksandr; Liivik, Liisa; Blaabjerg, Frede
2015-01-01
This paper focuses on the galvanically isolated quasi-Z-source dc-dc converter with a novel zero voltage and zero current switching technique. The unique feature of the impedance network lies in combining the buck-boost operation capability with the short- and open-circuit immunity of transistors......; at the same time, it can perform zero voltage and zero current switching on the primary side. The boundary conduction mode of the current in the second inductor of the quasi-Z-source network was used along with snubber capacitors in the two out of four transistors and a special control algorithm to achieve...
Voltage control in Z-source inverter using low cost microcontroller for undergraduate approach
Zulkifli, Shamsul Aizam; Sewang, Mohd Rizal; Salimin, Suriana; Shah, Noor Mazliza Badrul
2017-09-01
This paper is focussing on controlling the output voltage of Z-Source Inverter (ZSI) using a low cost microcontroller with MATLAB-Simulink that has been used for interfacing the voltage control at the output of ZSI. The key advantage of this system is the ability of a low cost microcontroller to process the voltage control blocks based on the mathematical equations created in MATLAB-Simulink. The Proportional Integral (PI) control equations are been applied and then, been downloaded to the microcontroller for observing the changes on the voltage output regarding to the changes on the reference on the PI. The system has been simulated in MATLAB and been verified with the hardware setup. As the results, the Raspberry Pi and Arduino that have been used in this work are able to respond well when there is a change of ZSI output. It proofed that, by applying/introducing this method to student in undergraduate level, it will help the student to understand more on the process of the power converter combine with a control feedback function that can be applied at low cost microcontroller.
Stator Current Harmonic Reduction in a Novel Half Quasi-Z-Source Wind Power Generation System
Directory of Open Access Journals (Sweden)
Shoudao Huang
2016-09-01
Full Text Available The generator stator current gets distorted with unacceptable levels of total harmonic distortion (THD because impedance-source wind power generation systems use three-phase diode rectifiers. The stator current harmonics will cause increasing losses and torque ripple, which reduce the efficiency and stability of the system. This paper proposes a novel half quasi-Z-source inverter (H-qZSI for grid-connected wind power generation systems, which can reduce the generator stator current harmonics a great deal. When H-qZSI operates in the shoot-through zero state, the derivative of the generator stator current is only determined by the instantaneous value of the generator stator voltage, so the nonlinear relationship between generator stator current and stator voltage is improved compared with the traditional impedance-source inverter. Theoretically, it is indicated that the stator current harmonics can be reduced effectively by means of the proposed H-qZSI. Finally, simulation and experimental results are given to verify the theoretical analysis.
DEFF Research Database (Denmark)
Li, Kerui; Shen, Yanfeng; Yang, Yongheng
2018-01-01
and thus low leakage currents in PV applications. The symmetric Z-source HERIC inverter requires two extra active switches. Nevertheless, the operation frequency of the two switches is the line frequency, leading to negligible losses. More importantly, the performance in terms of low leakage currents...... and harmonics is improved. Experimental tests are performed to validate the analysis and performance of the proposed system....
DEFF Research Database (Denmark)
Mo, W.; Loh, Poh Chiang; Blaabjerg, Frede
2013-01-01
Z-source Neutral Point Clamped (NPC) inverters were introduced to integrate both the advantages of Z-source inverters and NPC inverters. However, traditional Z-source inverters suffer from high voltage stress and chopping input current. This paper proposes six types transformer-based impedance-so......-source NPC inverters which have enhanced voltage boost capability and continuous input current by utilizing of transformer and embedded dc source configuration. Experimental results are presented to verify the theory validation....
Analysis of High Switching Frequency Quasi-Z-Source Photovoltaic Inverter Using Wide Bandgap Devices
Kayiranga, Thierry
Power inverters continue to play a key role in todays electrical system more than ever. Power inverters employ power semiconductors to converter direct current (DC) into alternating current (AC). The performance of the semiconductors is based on speed and efficiency. Until recently, Silicon (Si) semiconductors had been established as mature. However, the continuous optimization and improvements in the production process of Si to meet today technology requirements have pushed Si materials to their theoretical limits. In an effort to find a suitable replacement, wide bandgap devices mainly Gallium Nitride (GaN) and Silicon Carbide (SiC), have proved to be excellent candidates offering high operation temperature, high blocking voltage and high switching frequency; of which the latter makes GaN a better candidate in high switching low voltage in Distributed Generations (DG). The single stage Quasi-Z-Source Inverter (qZSI) is also able to draw continuous and constant current from the source making ideal for PV applications in addition to allowing shoot-through states. The qZSI find best applications in medium level ranges where multiples qZS inverters can be cascaded (qZS-CMI) by combining the benefit of the qZSI, boost capabilities and continuous and constant input current, and those of the CMI, low output harmonic content and independent MPPT. When used with GaN devices operating at very high frequency, the qZS network impedance can be significantly reduced. However, the impedance network becomes asymmetric. The asymmetric impedance network (AIN-qZSI) has several advantages such as increased power density, increases system lifetime, small size volume and size making it more attractive for module integrated converter (MIC) concepts. However, there are technical challenges. With asymmetric component, resonance is introduced in the system leading to more losses and audible noise. With small inductances, new operation states become available further increasing the system
Directory of Open Access Journals (Sweden)
H. Torkaman
2018-03-01
Full Text Available This paper introduces a novel two transistors forward topology employing a z-source to achieve ZVZCS and power transformer resetting for various applications. Comparing with the forward converter, this topology has the advantage of displaying ZCS condition with an added Z-Source and no additional switches when the switches turn on, and that ZVS condition happens when the switches turn off. Duty cycle of the topology can exceed 50 percent. As a result, these converters are suitable for applications with high efficiency. In this paper, structure and properties of the topology will be discussed in details. Then the design principles will be presented. Finally, the benefits aforementioned will be approved in practice through a simple forward converter.
Directory of Open Access Journals (Sweden)
Tofael Ahmed
2014-06-01
Full Text Available In this paper, a single phase doubly grounded semi-Z-source inverter with maximum power point tracking (MPPT is proposed for photovoltaic (PV systems. This proposed system utilizes a single-ended primary inductor (SEPIC converter as DC-DC converter to implement the MPPT algorithm for tracking the maximum power from a PV array and a single phase semi-Z-source inverter for integrating the PV with AC power utilities. The MPPT controller utilizes a fast-converging algorithm to track the maximum power point (MPP and the semi-Z-source inverter utilizes a nonlinear SPWM to produce sinusoidal voltage at the output. The proposed system is able to track the MPP of PV arrays and produce an AC voltage at its output by utilizing only three switches. Experimental results show that the fast-converging MPPT algorithm has fast tracking response with appreciable MPP efficiency. In addition, the inverter shows the minimization of common mode leakage current with its ground sharing feature and reduction of the THD as well as DC current components at the output during DC-AC conversion.
Four Legged Healers: Horse Culture as Medicine
White Plume, Jessica
2016-01-01
For tribal communities to overcome the health disparities that plague them, they need to honor Indigenous healthcare paradigms. The Horse Nation Initiative at Nueta Hidatsa Sahnish College embraces the people's historical connection to the horse as an avenue to wellness.
DEFF Research Database (Denmark)
Abdelhakim, Ahmed; Davari, Pooya; Blaabjerg, Frede
2018-01-01
Several single-stage topologies have been introduced since kicking off the three-phase Z-source inverter (ZSI), and among these topologies, the quasi-ZSI (qZSI) is the most common one due to its simple structure and continuous input current. Furthermore, different modulation strategies, utilizing...... multiple reference signals, have been developed as well. However, prior art modulation methods have some demerits, such as the complexity of generating the gate signals, the increased number of switch commutations with continuous commutation at high current level during the entire fundamental cycle...... the generation of the gate signals by utilizing only three reference signals, and achieving a single switch commutation at a time. These modulation strategies are analyzed and compared to the conventional ones, where a reduced-scale 1 kVA three-phase qZSI is designed and simulated using these different...
Cao, Dong
-isolated or isolated PV inverter. For the non-isolated transformer-less solution, a semi-Z-source inverter for single phase photovoltaic systems has been proposed. The proposed semi-Z-source inverter utilizes only two switching devices with doubly grounded feature. The total cost have been reduced, the safety and EMI issues caused by the high frequency ground current are solved. For the transformer isolated solution, a boost half-bridge dc-ac micro-inverter has been proposed. The proposed boost half-bridge dc-dc converter utilizes only two switching devices with zero voltage switching features which is able to reduce the total system cost and power loss.
DEFF Research Database (Denmark)
Panfilov, Dmitry; Husev, Oleksandr; Blaabjerg, Frede
2016-01-01
This study compares a three-phase three-level voltage source inverter with an intermediate dc-dc boost converter and a quasi-Z-source inverter in terms of passive elements values and dimensions, semiconductor stresses, and overall efficiency. A comparative analysis was conducted with relative...
Directory of Open Access Journals (Sweden)
Seyed Sina Sebtahmadi
2016-11-01
Full Text Available A rotational d-q current control scheme based on a Particle Swarm Optimization- Proportional-Integral (PSO-PI controller, is used to drive an induction motor (IM through an Ultra Sparse Z-source Matrix Converter (USZSMC. To minimize the overall size of the system, the lowest feasible values of Z-source elements are calculated by considering the both timing and aspects of the circuit. A meta-heuristic method is integrated to the control system in order to find optimal coefficient values in a single multimodal problem. Henceforth, the effect of all coefficients in minimizing the total harmonic distortion (THD and balancing the stator current are considered simultaneously. Through changing the reference point of magnitude or frequency, the modulation index can be automatically adjusted and respond to changes without heavy computational cost. The focus of this research is on a reliable and lightweight system with low computational resources. The proposed scheme is validated through both simulation and experimental results.
Crockett, Thomas W.
1995-01-01
This article provides a broad introduction to the subject of parallel rendering, encompassing both hardware and software systems. The focus is on the underlying concepts and the issues which arise in the design of parallel rendering algorithms and systems. We examine the different types of parallelism and how they can be applied in rendering applications. Concepts from parallel computing, such as data decomposition, task granularity, scalability, and load balancing, are considered in relation to the rendering problem. We also explore concepts from computer graphics, such as coherence and projection, which have a significant impact on the structure of parallel rendering algorithms. Our survey covers a number of practical considerations as well, including the choice of architectural platform, communication and memory requirements, and the problem of image assembly and display. We illustrate the discussion with numerous examples from the parallel rendering literature, representing most of the principal rendering methods currently used in computer graphics.
1982-01-01
Parallel Computations focuses on parallel computation, with emphasis on algorithms used in a variety of numerical and physical applications and for many different types of parallel computers. Topics covered range from vectorization of fast Fourier transforms (FFTs) and of the incomplete Cholesky conjugate gradient (ICCG) algorithm on the Cray-1 to calculation of table lookups and piecewise functions. Single tridiagonal linear systems and vectorized computation of reactive flow are also discussed.Comprised of 13 chapters, this volume begins by classifying parallel computers and describing techn
DEFF Research Database (Denmark)
Gadalla, Brwene Salah Abdelkarim; Schaltz, Erik; Siwakoti, Yam Prasad
2017-01-01
Boost converters are needed in many applications which require the output voltage to be higher than the input voltage. Recently, boost type converters have been applied for industrial applications, and hence it has become an interesting topic of research. Many researchers proposed different...... impedance source converters with their unique advantages as having a high voltage gain in a small range of duty cycle ratio. However, the thermal behaviour of the semiconductor devices and passive elements in the impedance source converter is an important issue from a reliability point of view and it has...... not been investigated yet. Therefore, this paper presents a comparison between the conventional boost, the Z-source, and the Y-source converters based on a thermal evaluation of the semiconductors. In addition, the three topologies are also compared with respect to their efficiency. In this study...
Energy Technology Data Exchange (ETDEWEB)
Bu, Qingcui; Chen, Li [Department of Astronomy, Beijing Normal University, Beijing 100875 (China); Belloni, T. M. [INAF-Osservatorio Astronomico di Brera, Via E, Bianchi 46, I-23807 Merate (Italy); Qu, Jinlu, E-mail: buqc@mail.bnu.edu.cn, E-mail: tomaso.belloni@brera.inaf.it, E-mail: chenli@bnu.edu.cn, E-mail: qujl@ihep.ac.cn [Laboratory for Particle Astrophysics, CAS, Beijing 100049 (China)
2017-06-01
Using archival Rossi X-ray Timing Explorer ( RXTE ) data, we studied the low-frequency quasi-periodic oscillations (LFQPOs) in the neutron star low-mass X-ray binary (LMXB) Cir X-1 and examined their contribution to frequency–frequency correlations for Z sources. We also studied the orbital phase effects on the LFQPO properties and found them to be phase independent. Comparing LFQPO frequencies in different classes of LMXBs, we found that systems that show both Z and atoll states form a common track with atoll/BH sources in the so-called WK correlation, while persistent Z systems are offset by a factor of about two. We found that neither source luminosity nor mass accretion rate is related to the shift of persistent Z systems. We discuss the possibility of a misidentification of fundamental frequency for horizontal branch oscillations from persistent Z systems and interpreted the oscillations in terms of models based on relativistic precession.
Casanova, Henri; Robert, Yves
2008-01-01
""…The authors of the present book, who have extensive credentials in both research and instruction in the area of parallelism, present a sound, principled treatment of parallel algorithms. … This book is very well written and extremely well designed from an instructional point of view. … The authors have created an instructive and fascinating text. The book will serve researchers as well as instructors who need a solid, readable text for a course on parallelism in computing. Indeed, for anyone who wants an understandable text from which to acquire a current, rigorous, and broad vi
Homan, Jeroen; van der Klis, Michiel; Wijnands, Rudy; Belloni, Tomaso; Fender, Rob; Klein-Wolt, Marc; Casella, Piergiorgio; Méndez, Mariano; Gallo, Elena; Lewin, Walter H. G.; Gehrels, Neil
2007-02-01
We report on the first 10 weeks of RXTE observations of the X-ray transient XTE J1701-462 and conclude that it had all the characteristics of the neutron star Z sources, i.e., the brightest persistent neutron star low-mass X-ray binaries. These include the typical Z-shaped tracks traced out in X-ray color diagrams and the variability components detected in the power spectra, such as kHz QPOs and normal and horizontal branch oscillations. XTE J1701-462 is the first transient Z source and provides unique insights into mass accretion rate (m˙) and luminosity dependencies in neutron star X-ray binaries. As its overall luminosity decreased, we observed a switch between two types of Z source behavior, with the branches of the Z track changing their shape and/or orientation. We interpret this as an extreme case of the more moderate long-term changes seen in the persistent Z sources and suggest that they result from changes in m˙. We also suggest that the Cyg-like Z sources (Cyg X-2, GX 5-1, and GX 340+0) are substantially more luminous (>50%) than the Sco-like Z sources (Sco X-1, GX 17+2, and GX 349+2). Adopting a possible explanation for the behavior of kHz QPOs, which involves a prompt as well as a filtered response to changes in m˙, we further propose that changes in m˙ can explain both movement along the Z track and changes in the shape of the Z track. We discuss some consequences of this and consider the possibility that the branches of the Z will smoothly evolve into the branches observed in X-ray color diagrams of the less luminous atoll sources, although not in a way that was previously suggested.
Directory of Open Access Journals (Sweden)
Kosenko Roman
2015-07-01
Full Text Available This paper compares semiconductor losses of the galvanically isolated quasi-Z-source converter and full-bridge boost DC-DC converter with active clamping circuit. Operation principle of both converters is described. Short design guidelines are provided as well. Results of steady state analysis are used to calculate semiconductor power losses for both converters. Analytical expressions are derived for all types of semiconductor power losses present in these converters. The theoretical results were verified by means of numerical simulation performed in the PSIM simulation software. Its add-on module “Thermal module” was used to estimate semiconductor power losses using the datasheet parameters of the selected semiconductor devices. Results of calculations and simulation study were obtained for four operating points with different input voltage and constant input current to compare performance of the converters in renewable applications, like photovoltaic, where input voltage and power can vary significantly. Power loss breakdown is detailed and its dependence on the converter output power is analyzed. Recommendations are given for the use of the converter topologies in applications with low input voltage and relatively high input current.
International Nuclear Information System (INIS)
Jejcic, A.; Maillard, J.; Maurel, G.; Silva, J.; Wolff-Bacha, F.
1997-01-01
The work in the field of parallel processing has developed as research activities using several numerical Monte Carlo simulations related to basic or applied current problems of nuclear and particle physics. For the applications utilizing the GEANT code development or improvement works were done on parts simulating low energy physical phenomena like radiation, transport and interaction. The problem of actinide burning by means of accelerators was approached using a simulation with the GEANT code. A program of neutron tracking in the range of low energies up to the thermal region has been developed. It is coupled to the GEANT code and permits in a single pass the simulation of a hybrid reactor core receiving a proton burst. Other works in this field refers to simulations for nuclear medicine applications like, for instance, development of biological probes, evaluation and characterization of the gamma cameras (collimators, crystal thickness) as well as the method for dosimetric calculations. Particularly, these calculations are suited for a geometrical parallelization approach especially adapted to parallel machines of the TN310 type. Other works mentioned in the same field refer to simulation of the electron channelling in crystals and simulation of the beam-beam interaction effect in colliders. The GEANT code was also used to simulate the operation of germanium detectors designed for natural and artificial radioactivity monitoring of environment
McCallum, Ethan
2011-01-01
It's tough to argue with R as a high-quality, cross-platform, open source statistical software product-unless you're in the business of crunching Big Data. This concise book introduces you to several strategies for using R to analyze large datasets. You'll learn the basics of Snow, Multicore, Parallel, and some Hadoop-related tools, including how to find them, how to use them, when they work well, and when they don't. With these packages, you can overcome R's single-threaded nature by spreading work across multiple CPUs, or offloading work to multiple machines to address R's memory barrier.
International Nuclear Information System (INIS)
Mozaffari Niapour, S.A.KH.; Danyali, S.; Sharifian, M.B.B.; Feyzi, M.R.
2011-01-01
Highlights: → Employing the BLDC motor in water pumping systems. → Utilizing the ZSI as a single-stage power converter in the PV water pumping systems based on BLDC motor. → Improvement of the conventional IC MPPT method with the fuzzy logic control scheme to save more energy from the PV array. → Taking the advantages of the DTC drive of the BLDC motor. → Optimizing the water pumping system speed response characteristic by PSO. - Abstract: This paper discusses operation performance of a water pumping system consist of a brushless dc (BLDC) motor coupled a centrifugal pump and accompanying a Z-source inverter (ZSI) fed by a photovoltaic (PV) array, to be improved. Despite conventional double-stage power converters, this paper proposes utilizing a single-stage ZSI to extract the maximum power of the PV array and supply the BLDC motor simultaneously. Utilizing the ZSI provides some inherent advantages such as high efficiency and low cost, which is very promising for PV systems due to its novel voltage buck/boost capability. In addition, in order to precisely perform the maximum power point tracking (MPPT) of the PV array the fuzzy logic-incremental conductance (FL-IC) MPPT scheme is proposed. The proposed FL-IC MPPT scheme provides enough modification to the conventional IC method to enjoy an appropriate variable step size MPPT control signal for the ZSI. Moreover, direct torque control (DTC) is found more effective in comparison with hysteresis current control with current shaping to drive the BLDC motor, because it benefits from faster torque response, reduced torque ripple, less sensitivity to parameters variations, and simple implementation. In the mean time, due to the frequently variations of the PV power generation; delivered mechanical power to the centrifugal pump is variable. Thus, the BLDC motor should be driven with variable reference speed. In order to improve the speed transient response of the BLDC motor and enhance the energy saving aspect of
Directory of Open Access Journals (Sweden)
James G. Worner
2017-05-01
Full Text Available James Worner is an Australian-based writer and scholar currently pursuing a PhD at the University of Technology Sydney. His research seeks to expose masculinities lost in the shadow of Australia’s Anzac hegemony while exploring new opportunities for contemporary historiography. He is the recipient of the Doctoral Scholarship in Historical Consciousness at the university’s Australian Centre of Public History and will be hosted by the University of Bologna during 2017 on a doctoral research writing scholarship. ‘Parallel Lines’ is one of a collection of stories, The Shapes of Us, exploring liminal spaces of modern life: class, gender, sexuality, race, religion and education. It looks at lives, like lines, that do not meet but which travel in proximity, simultaneously attracted and repelled. James’ short stories have been published in various journals and anthologies.
Parallel Programming with Intel Parallel Studio XE
Blair-Chappell , Stephen
2012-01-01
Optimize code for multi-core processors with Intel's Parallel Studio Parallel programming is rapidly becoming a "must-know" skill for developers. Yet, where to start? This teach-yourself tutorial is an ideal starting point for developers who already know Windows C and C++ and are eager to add parallelism to their code. With a focus on applying tools, techniques, and language extensions to implement parallelism, this essential resource teaches you how to write programs for multicore and leverage the power of multicore in your programs. Sharing hands-on case studies and real-world examples, the
Morse, H Stephen
1994-01-01
Practical Parallel Computing provides information pertinent to the fundamental aspects of high-performance parallel processing. This book discusses the development of parallel applications on a variety of equipment.Organized into three parts encompassing 12 chapters, this book begins with an overview of the technology trends that converge to favor massively parallel hardware over traditional mainframes and vector machines. This text then gives a tutorial introduction to parallel hardware architectures. Other chapters provide worked-out examples of programs using several parallel languages. Thi
Akl, Selim G
1985-01-01
Parallel Sorting Algorithms explains how to use parallel algorithms to sort a sequence of items on a variety of parallel computers. The book reviews the sorting problem, the parallel models of computation, parallel algorithms, and the lower bounds on the parallel sorting problems. The text also presents twenty different algorithms, such as linear arrays, mesh-connected computers, cube-connected computers. Another example where algorithm can be applied is on the shared-memory SIMD (single instruction stream multiple data stream) computers in which the whole sequence to be sorted can fit in the
Introduction to parallel programming
Brawer, Steven
1989-01-01
Introduction to Parallel Programming focuses on the techniques, processes, methodologies, and approaches involved in parallel programming. The book first offers information on Fortran, hardware and operating system models, and processes, shared memory, and simple parallel programs. Discussions focus on processes and processors, joining processes, shared memory, time-sharing with multiple processors, hardware, loops, passing arguments in function/subroutine calls, program structure, and arithmetic expressions. The text then elaborates on basic parallel programming techniques, barriers and race
Fox, Geoffrey C; Messina, Guiseppe C
2014-01-01
A clear illustration of how parallel computers can be successfully appliedto large-scale scientific computations. This book demonstrates how avariety of applications in physics, biology, mathematics and other scienceswere implemented on real parallel computers to produce new scientificresults. It investigates issues of fine-grained parallelism relevant forfuture supercomputers with particular emphasis on hypercube architecture. The authors describe how they used an experimental approach to configuredifferent massively parallel machines, design and implement basic systemsoftware, and develop
Parallel Atomistic Simulations
Energy Technology Data Exchange (ETDEWEB)
HEFFELFINGER,GRANT S.
2000-01-18
Algorithms developed to enable the use of atomistic molecular simulation methods with parallel computers are reviewed. Methods appropriate for bonded as well as non-bonded (and charged) interactions are included. While strategies for obtaining parallel molecular simulations have been developed for the full variety of atomistic simulation methods, molecular dynamics and Monte Carlo have received the most attention. Three main types of parallel molecular dynamics simulations have been developed, the replicated data decomposition, the spatial decomposition, and the force decomposition. For Monte Carlo simulations, parallel algorithms have been developed which can be divided into two categories, those which require a modified Markov chain and those which do not. Parallel algorithms developed for other simulation methods such as Gibbs ensemble Monte Carlo, grand canonical molecular dynamics, and Monte Carlo methods for protein structure determination are also reviewed and issues such as how to measure parallel efficiency, especially in the case of parallel Monte Carlo algorithms with modified Markov chains are discussed.
New Magnetically Coupled Impedance (Z-) Source Networks
DEFF Research Database (Denmark)
Siwakoti, Yam Prasad; Blaabjerg, Frede; Loh, Poh Chiang
2016-01-01
Various Magnetically Coupled Impedance Source (MCIS) networks have been proposed in the literature for increasing voltage gain and modulation index simultaneously, while reducing the number of passive components used in the converter. However, applications of such networks have been limited...
CERN. Geneva
2016-01-01
The traditionally used and well established parallel programming models OpenMP and MPI are both targeting lower level parallelism and are meant to be as language agnostic as possible. For a long time, those models were the only widely available portable options for developing parallel C++ applications beyond using plain threads. This has strongly limited the optimization capabilities of compilers, has inhibited extensibility and genericity, and has restricted the use of those models together with other, modern higher level abstractions introduced by the C++11 and C++14 standards. The recent revival of interest in the industry and wider community for the C++ language has also spurred a remarkable amount of standardization proposals and technical specifications being developed. Those efforts however have so far failed to build a vision on how to seamlessly integrate various types of parallelism, such as iterative parallel execution, task-based parallelism, asynchronous many-task execution flows, continuation s...
Parallelism in matrix computations
Gallopoulos, Efstratios; Sameh, Ahmed H
2016-01-01
This book is primarily intended as a research monograph that could also be used in graduate courses for the design of parallel algorithms in matrix computations. It assumes general but not extensive knowledge of numerical linear algebra, parallel architectures, and parallel programming paradigms. The book consists of four parts: (I) Basics; (II) Dense and Special Matrix Computations; (III) Sparse Matrix Computations; and (IV) Matrix functions and characteristics. Part I deals with parallel programming paradigms and fundamental kernels, including reordering schemes for sparse matrices. Part II is devoted to dense matrix computations such as parallel algorithms for solving linear systems, linear least squares, the symmetric algebraic eigenvalue problem, and the singular-value decomposition. It also deals with the development of parallel algorithms for special linear systems such as banded ,Vandermonde ,Toeplitz ,and block Toeplitz systems. Part III addresses sparse matrix computations: (a) the development of pa...
DEFF Research Database (Denmark)
Sitchinava, Nodar; Zeh, Norbert
2012-01-01
We present the parallel buffer tree, a parallel external memory (PEM) data structure for batched search problems. This data structure is a non-trivial extension of Arge's sequential buffer tree to a private-cache multiprocessor environment and reduces the number of I/O operations by the number of...... in the optimal OhOf(psortN + K/PB) parallel I/O complexity, where K is the size of the output reported in the process and psortN is the parallel I/O complexity of sorting N elements using P processors....
Deshmane, Anagha; Gulani, Vikas; Griswold, Mark A; Seiberlich, Nicole
2012-07-01
Parallel imaging is a robust method for accelerating the acquisition of magnetic resonance imaging (MRI) data, and has made possible many new applications of MR imaging. Parallel imaging works by acquiring a reduced amount of k-space data with an array of receiver coils. These undersampled data can be acquired more quickly, but the undersampling leads to aliased images. One of several parallel imaging algorithms can then be used to reconstruct artifact-free images from either the aliased images (SENSE-type reconstruction) or from the undersampled data (GRAPPA-type reconstruction). The advantages of parallel imaging in a clinical setting include faster image acquisition, which can be used, for instance, to shorten breath-hold times resulting in fewer motion-corrupted examinations. In this article the basic concepts behind parallel imaging are introduced. The relationship between undersampling and aliasing is discussed and two commonly used parallel imaging methods, SENSE and GRAPPA, are explained in detail. Examples of artifacts arising from parallel imaging are shown and ways to detect and mitigate these artifacts are described. Finally, several current applications of parallel imaging are presented and recent advancements and promising research in parallel imaging are briefly reviewed. Copyright © 2012 Wiley Periodicals, Inc.
Parallel Algorithms and Patterns
Energy Technology Data Exchange (ETDEWEB)
Robey, Robert W. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2016-06-16
This is a powerpoint presentation on parallel algorithms and patterns. A parallel algorithm is a well-defined, step-by-step computational procedure that emphasizes concurrency to solve a problem. Examples of problems include: Sorting, searching, optimization, matrix operations. A parallel pattern is a computational step in a sequence of independent, potentially concurrent operations that occurs in diverse scenarios with some frequency. Examples are: Reductions, prefix scans, ghost cell updates. We only touch on parallel patterns in this presentation. It really deserves its own detailed discussion which Gabe Rockefeller would like to develop.
Application Portable Parallel Library
Cole, Gary L.; Blech, Richard A.; Quealy, Angela; Townsend, Scott
1995-01-01
Application Portable Parallel Library (APPL) computer program is subroutine-based message-passing software library intended to provide consistent interface to variety of multiprocessor computers on market today. Minimizes effort needed to move application program from one computer to another. User develops application program once and then easily moves application program from parallel computer on which created to another parallel computer. ("Parallel computer" also include heterogeneous collection of networked computers). Written in C language with one FORTRAN 77 subroutine for UNIX-based computers and callable from application programs written in C language or FORTRAN 77.
Parallel discrete event simulation
Overeinder, B.J.; Hertzberger, L.O.; Sloot, P.M.A.; Withagen, W.J.
1991-01-01
In simulating applications for execution on specific computing systems, the simulation performance figures must be known in a short period of time. One basic approach to the problem of reducing the required simulation time is the exploitation of parallelism. However, in parallelizing the simulation
Parallel reservoir simulator computations
International Nuclear Information System (INIS)
Hemanth-Kumar, K.; Young, L.C.
1995-01-01
The adaptation of a reservoir simulator for parallel computations is described. The simulator was originally designed for vector processors. It performs approximately 99% of its calculations in vector/parallel mode and relative to scalar calculations it achieves speedups of 65 and 81 for black oil and EOS simulations, respectively on the CRAY C-90
Totally parallel multilevel algorithms
Frederickson, Paul O.
1988-01-01
Four totally parallel algorithms for the solution of a sparse linear system have common characteristics which become quite apparent when they are implemented on a highly parallel hypercube such as the CM2. These four algorithms are Parallel Superconvergent Multigrid (PSMG) of Frederickson and McBryan, Robust Multigrid (RMG) of Hackbusch, the FFT based Spectral Algorithm, and Parallel Cyclic Reduction. In fact, all four can be formulated as particular cases of the same totally parallel multilevel algorithm, which are referred to as TPMA. In certain cases the spectral radius of TPMA is zero, and it is recognized to be a direct algorithm. In many other cases the spectral radius, although not zero, is small enough that a single iteration per timestep keeps the local error within the required tolerance.
Energy Technology Data Exchange (ETDEWEB)
1991-10-23
An account of the Caltech Concurrent Computation Program (C{sup 3}P), a five year project that focused on answering the question: Can parallel computers be used to do large-scale scientific computations '' As the title indicates, the question is answered in the affirmative, by implementing numerous scientific applications on real parallel computers and doing computations that produced new scientific results. In the process of doing so, C{sup 3}P helped design and build several new computers, designed and implemented basic system software, developed algorithms for frequently used mathematical computations on massively parallel machines, devised performance models and measured the performance of many computers, and created a high performance computing facility based exclusively on parallel computers. While the initial focus of C{sup 3}P was the hypercube architecture developed by C. Seitz, many of the methods developed and lessons learned have been applied successfully on other massively parallel architectures.
Massively parallel mathematical sieves
Energy Technology Data Exchange (ETDEWEB)
Montry, G.R.
1989-01-01
The Sieve of Eratosthenes is a well-known algorithm for finding all prime numbers in a given subset of integers. A parallel version of the Sieve is described that produces computational speedups over 800 on a hypercube with 1,024 processing elements for problems of fixed size. Computational speedups as high as 980 are achieved when the problem size per processor is fixed. The method of parallelization generalizes to other sieves and will be efficient on any ensemble architecture. We investigate two highly parallel sieves using scattered decomposition and compare their performance on a hypercube multiprocessor. A comparison of different parallelization techniques for the sieve illustrates the trade-offs necessary in the design and implementation of massively parallel algorithms for large ensemble computers.
Algorithms for parallel computers
International Nuclear Information System (INIS)
Churchhouse, R.F.
1985-01-01
Until relatively recently almost all the algorithms for use on computers had been designed on the (usually unstated) assumption that they were to be run on single processor, serial machines. With the introduction of vector processors, array processors and interconnected systems of mainframes, minis and micros, however, various forms of parallelism have become available. The advantage of parallelism is that it offers increased overall processing speed but it also raises some fundamental questions, including: (i) which, if any, of the existing 'serial' algorithms can be adapted for use in the parallel mode. (ii) How close to optimal can such adapted algorithms be and, where relevant, what are the convergence criteria. (iii) How can we design new algorithms specifically for parallel systems. (iv) For multi-processor systems how can we handle the software aspects of the interprocessor communications. Aspects of these questions illustrated by examples are considered in these lectures. (orig.)
Parallelism and array processing
International Nuclear Information System (INIS)
Zacharov, V.
1983-01-01
Modern computing, as well as the historical development of computing, has been dominated by sequential monoprocessing. Yet there is the alternative of parallelism, where several processes may be in concurrent execution. This alternative is discussed in a series of lectures, in which the main developments involving parallelism are considered, both from the standpoint of computing systems and that of applications that can exploit such systems. The lectures seek to discuss parallelism in a historical context, and to identify all the main aspects of concurrency in computation right up to the present time. Included will be consideration of the important question as to what use parallelism might be in the field of data processing. (orig.)
Parallel magnetic resonance imaging
International Nuclear Information System (INIS)
Larkman, David J; Nunes, Rita G
2007-01-01
Parallel imaging has been the single biggest innovation in magnetic resonance imaging in the last decade. The use of multiple receiver coils to augment the time consuming Fourier encoding has reduced acquisition times significantly. This increase in speed comes at a time when other approaches to acquisition time reduction were reaching engineering and human limits. A brief summary of spatial encoding in MRI is followed by an introduction to the problem parallel imaging is designed to solve. There are a large number of parallel reconstruction algorithms; this article reviews a cross-section, SENSE, SMASH, g-SMASH and GRAPPA, selected to demonstrate the different approaches. Theoretical (the g-factor) and practical (coil design) limits to acquisition speed are reviewed. The practical implementation of parallel imaging is also discussed, in particular coil calibration. How to recognize potential failure modes and their associated artefacts are shown. Well-established applications including angiography, cardiac imaging and applications using echo planar imaging are reviewed and we discuss what makes a good application for parallel imaging. Finally, active research areas where parallel imaging is being used to improve data quality by repairing artefacted images are also reviewed. (invited topical review)
The STAPL Parallel Graph Library
Harshvardhan,; Fidel, Adam; Amato, Nancy M.; Rauchwerger, Lawrence
2013-01-01
This paper describes the stapl Parallel Graph Library, a high-level framework that abstracts the user from data-distribution and parallelism details and allows them to concentrate on parallel graph algorithm development. It includes a customizable
Massively parallel multicanonical simulations
Gross, Jonathan; Zierenberg, Johannes; Weigel, Martin; Janke, Wolfhard
2018-03-01
Generalized-ensemble Monte Carlo simulations such as the multicanonical method and similar techniques are among the most efficient approaches for simulations of systems undergoing discontinuous phase transitions or with rugged free-energy landscapes. As Markov chain methods, they are inherently serial computationally. It was demonstrated recently, however, that a combination of independent simulations that communicate weight updates at variable intervals allows for the efficient utilization of parallel computational resources for multicanonical simulations. Implementing this approach for the many-thread architecture provided by current generations of graphics processing units (GPUs), we show how it can be efficiently employed with of the order of 104 parallel walkers and beyond, thus constituting a versatile tool for Monte Carlo simulations in the era of massively parallel computing. We provide the fully documented source code for the approach applied to the paradigmatic example of the two-dimensional Ising model as starting point and reference for practitioners in the field.
SPINning parallel systems software
International Nuclear Information System (INIS)
Matlin, O.S.; Lusk, E.; McCune, W.
2002-01-01
We describe our experiences in using Spin to verify parts of the Multi Purpose Daemon (MPD) parallel process management system. MPD is a distributed collection of processes connected by Unix network sockets. MPD is dynamic processes and connections among them are created and destroyed as MPD is initialized, runs user processes, recovers from faults, and terminates. This dynamic nature is easily expressible in the Spin/Promela framework but poses performance and scalability challenges. We present here the results of expressing some of the parallel algorithms of MPD and executing both simulation and verification runs with Spin
Parallel programming with Python
Palach, Jan
2014-01-01
A fast, easy-to-follow and clear tutorial to help you develop Parallel computing systems using Python. Along with explaining the fundamentals, the book will also introduce you to slightly advanced concepts and will help you in implementing these techniques in the real world. If you are an experienced Python programmer and are willing to utilize the available computing resources by parallelizing applications in a simple way, then this book is for you. You are required to have a basic knowledge of Python development to get the most of this book.
Expressing Parallelism with ROOT
Energy Technology Data Exchange (ETDEWEB)
Piparo, D. [CERN; Tejedor, E. [CERN; Guiraud, E. [CERN; Ganis, G. [CERN; Mato, P. [CERN; Moneta, L. [CERN; Valls Pla, X. [CERN; Canal, P. [Fermilab
2017-11-22
The need for processing the ever-increasing amount of data generated by the LHC experiments in a more efficient way has motivated ROOT to further develop its support for parallelism. Such support is being tackled both for shared-memory and distributed-memory environments. The incarnations of the aforementioned parallelism are multi-threading, multi-processing and cluster-wide executions. In the area of multi-threading, we discuss the new implicit parallelism and related interfaces, as well as the new building blocks to safely operate with ROOT objects in a multi-threaded environment. Regarding multi-processing, we review the new MultiProc framework, comparing it with similar tools (e.g. multiprocessing module in Python). Finally, as an alternative to PROOF for cluster-wide executions, we introduce the efforts on integrating ROOT with state-of-the-art distributed data processing technologies like Spark, both in terms of programming model and runtime design (with EOS as one of the main components). For all the levels of parallelism, we discuss, based on real-life examples and measurements, how our proposals can increase the productivity of scientists.
Expressing Parallelism with ROOT
Piparo, D.; Tejedor, E.; Guiraud, E.; Ganis, G.; Mato, P.; Moneta, L.; Valls Pla, X.; Canal, P.
2017-10-01
The need for processing the ever-increasing amount of data generated by the LHC experiments in a more efficient way has motivated ROOT to further develop its support for parallelism. Such support is being tackled both for shared-memory and distributed-memory environments. The incarnations of the aforementioned parallelism are multi-threading, multi-processing and cluster-wide executions. In the area of multi-threading, we discuss the new implicit parallelism and related interfaces, as well as the new building blocks to safely operate with ROOT objects in a multi-threaded environment. Regarding multi-processing, we review the new MultiProc framework, comparing it with similar tools (e.g. multiprocessing module in Python). Finally, as an alternative to PROOF for cluster-wide executions, we introduce the efforts on integrating ROOT with state-of-the-art distributed data processing technologies like Spark, both in terms of programming model and runtime design (with EOS as one of the main components). For all the levels of parallelism, we discuss, based on real-life examples and measurements, how our proposals can increase the productivity of scientists.
Parallel Fast Legendre Transform
Alves de Inda, M.; Bisseling, R.H.; Maslen, D.K.
1998-01-01
We discuss a parallel implementation of a fast algorithm for the discrete polynomial Legendre transform We give an introduction to the DriscollHealy algorithm using polynomial arithmetic and present experimental results on the eciency and accuracy of our implementation The algorithms were
Practical parallel programming
Bauer, Barr E
2014-01-01
This is the book that will teach programmers to write faster, more efficient code for parallel processors. The reader is introduced to a vast array of procedures and paradigms on which actual coding may be based. Examples and real-life simulations using these devices are presented in C and FORTRAN.
Parallel hierarchical radiosity rendering
Energy Technology Data Exchange (ETDEWEB)
Carter, Michael [Iowa State Univ., Ames, IA (United States)
1993-07-01
In this dissertation, the step-by-step development of a scalable parallel hierarchical radiosity renderer is documented. First, a new look is taken at the traditional radiosity equation, and a new form is presented in which the matrix of linear system coefficients is transformed into a symmetric matrix, thereby simplifying the problem and enabling a new solution technique to be applied. Next, the state-of-the-art hierarchical radiosity methods are examined for their suitability to parallel implementation, and scalability. Significant enhancements are also discovered which both improve their theoretical foundations and improve the images they generate. The resultant hierarchical radiosity algorithm is then examined for sources of parallelism, and for an architectural mapping. Several architectural mappings are discussed. A few key algorithmic changes are suggested during the process of making the algorithm parallel. Next, the performance, efficiency, and scalability of the algorithm are analyzed. The dissertation closes with a discussion of several ideas which have the potential to further enhance the hierarchical radiosity method, or provide an entirely new forum for the application of hierarchical methods.
Parallel universes beguile science
2007-01-01
A staple of mind-bending science fiction, the possibility of multiple universes has long intrigued hard-nosed physicists, mathematicians and cosmologists too. We may not be able -- as least not yet -- to prove they exist, many serious scientists say, but there are plenty of reasons to think that parallel dimensions are more than figments of eggheaded imagination.
Energy Technology Data Exchange (ETDEWEB)
2017-04-04
A parallelization of the k-means++ seed selection algorithm on three distinct hardware platforms: GPU, multicore CPU, and multithreaded architecture. K-means++ was developed by David Arthur and Sergei Vassilvitskii in 2007 as an extension of the k-means data clustering technique. These algorithms allow people to cluster multidimensional data, by attempting to minimize the mean distance of data points within a cluster. K-means++ improved upon traditional k-means by using a more intelligent approach to selecting the initial seeds for the clustering process. While k-means++ has become a popular alternative to traditional k-means clustering, little work has been done to parallelize this technique. We have developed original C++ code for parallelizing the algorithm on three unique hardware architectures: GPU using NVidia's CUDA/Thrust framework, multicore CPU using OpenMP, and the Cray XMT multithreaded architecture. By parallelizing the process for these platforms, we are able to perform k-means++ clustering much more quickly than it could be done before.
International Nuclear Information System (INIS)
Gardes, D.; Volkov, P.
1981-01-01
A 5x3cm 2 (timing only) and a 15x5cm 2 (timing and position) parallel plate avalanche counters (PPAC) are considered. The theory of operation and timing resolution is given. The measurement set-up and the curves of experimental results illustrate the possibilities of the two counters [fr
Parallel hierarchical global illumination
Energy Technology Data Exchange (ETDEWEB)
Snell, Quinn O. [Iowa State Univ., Ames, IA (United States)
1997-10-08
Solving the global illumination problem is equivalent to determining the intensity of every wavelength of light in all directions at every point in a given scene. The complexity of the problem has led researchers to use approximation methods for solving the problem on serial computers. Rather than using an approximation method, such as backward ray tracing or radiosity, the authors have chosen to solve the Rendering Equation by direct simulation of light transport from the light sources. This paper presents an algorithm that solves the Rendering Equation to any desired accuracy, and can be run in parallel on distributed memory or shared memory computer systems with excellent scaling properties. It appears superior in both speed and physical correctness to recent published methods involving bidirectional ray tracing or hybrid treatments of diffuse and specular surfaces. Like progressive radiosity methods, it dynamically refines the geometry decomposition where required, but does so without the excessive storage requirements for ray histories. The algorithm, called Photon, produces a scene which converges to the global illumination solution. This amounts to a huge task for a 1997-vintage serial computer, but using the power of a parallel supercomputer significantly reduces the time required to generate a solution. Currently, Photon can be run on most parallel environments from a shared memory multiprocessor to a parallel supercomputer, as well as on clusters of heterogeneous workstations.
Wald, Ingo; Ize, Santiago
2015-07-28
Parallel population of a grid with a plurality of objects using a plurality of processors. One example embodiment is a method for parallel population of a grid with a plurality of objects using a plurality of processors. The method includes a first act of dividing a grid into n distinct grid portions, where n is the number of processors available for populating the grid. The method also includes acts of dividing a plurality of objects into n distinct sets of objects, assigning a distinct set of objects to each processor such that each processor determines by which distinct grid portion(s) each object in its distinct set of objects is at least partially bounded, and assigning a distinct grid portion to each processor such that each processor populates its distinct grid portion with any objects that were previously determined to be at least partially bounded by its distinct grid portion.
Ultrascalable petaflop parallel supercomputer
Blumrich, Matthias A [Ridgefield, CT; Chen, Dong [Croton On Hudson, NY; Chiu, George [Cross River, NY; Cipolla, Thomas M [Katonah, NY; Coteus, Paul W [Yorktown Heights, NY; Gara, Alan G [Mount Kisco, NY; Giampapa, Mark E [Irvington, NY; Hall, Shawn [Pleasantville, NY; Haring, Rudolf A [Cortlandt Manor, NY; Heidelberger, Philip [Cortlandt Manor, NY; Kopcsay, Gerard V [Yorktown Heights, NY; Ohmacht, Martin [Yorktown Heights, NY; Salapura, Valentina [Chappaqua, NY; Sugavanam, Krishnan [Mahopac, NY; Takken, Todd [Brewster, NY
2010-07-20
A massively parallel supercomputer of petaOPS-scale includes node architectures based upon System-On-a-Chip technology, where each processing node comprises a single Application Specific Integrated Circuit (ASIC) having up to four processing elements. The ASIC nodes are interconnected by multiple independent networks that optimally maximize the throughput of packet communications between nodes with minimal latency. The multiple networks may include three high-speed networks for parallel algorithm message passing including a Torus, collective network, and a Global Asynchronous network that provides global barrier and notification functions. These multiple independent networks may be collaboratively or independently utilized according to the needs or phases of an algorithm for optimizing algorithm processing performance. The use of a DMA engine is provided to facilitate message passing among the nodes without the expenditure of processing resources at the node.
DEFF Research Database (Denmark)
Gregersen, Frans; Josephson, Olle; Kristoffersen, Gjert
of departure that English may be used in parallel with the various local, in this case Nordic, languages. As such, the book integrates the challenge of internationalization faced by any university with the wish to improve quality in research, education and administration based on the local language......Abstract [en] More parallel, please is the result of the work of an Inter-Nordic group of experts on language policy financed by the Nordic Council of Ministers 2014-17. The book presents all that is needed to plan, practice and revise a university language policy which takes as its point......(s). There are three layers in the text: First, you may read the extremely brief version of the in total 11 recommendations for best practice. Second, you may acquaint yourself with the extended version of the recommendations and finally, you may study the reasoning behind each of them. At the end of the text, we give...
PARALLEL MOVING MECHANICAL SYSTEMS
Directory of Open Access Journals (Sweden)
Florian Ion Tiberius Petrescu
2014-09-01
Full Text Available Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 Moving mechanical systems parallel structures are solid, fast, and accurate. Between parallel systems it is to be noticed Stewart platforms, as the oldest systems, fast, solid and precise. The work outlines a few main elements of Stewart platforms. Begin with the geometry platform, kinematic elements of it, and presented then and a few items of dynamics. Dynamic primary element on it means the determination mechanism kinetic energy of the entire Stewart platforms. It is then in a record tail cinematic mobile by a method dot matrix of rotation. If a structural mottoelement consists of two moving elements which translates relative, drive train and especially dynamic it is more convenient to represent the mottoelement as a single moving components. We have thus seven moving parts (the six motoelements or feet to which is added mobile platform 7 and one fixed.
Xyce parallel electronic simulator.
Energy Technology Data Exchange (ETDEWEB)
Keiter, Eric R; Mei, Ting; Russo, Thomas V.; Rankin, Eric Lamont; Schiek, Richard Louis; Thornquist, Heidi K.; Fixel, Deborah A.; Coffey, Todd S; Pawlowski, Roger P; Santarelli, Keith R.
2010-05-01
This document is a reference guide to the Xyce Parallel Electronic Simulator, and is a companion document to the Xyce Users Guide. The focus of this document is (to the extent possible) exhaustively list device parameters, solver options, parser options, and other usage details of Xyce. This document is not intended to be a tutorial. Users who are new to circuit simulation are better served by the Xyce Users Guide.
Betchov, R
2012-01-01
Stability of Parallel Flows provides information pertinent to hydrodynamical stability. This book explores the stability problems that occur in various fields, including electronics, mechanics, oceanography, administration, economics, as well as naval and aeronautical engineering. Organized into two parts encompassing 10 chapters, this book starts with an overview of the general equations of a two-dimensional incompressible flow. This text then explores the stability of a laminar boundary layer and presents the equation of the inviscid approximation. Other chapters present the general equation
Algorithmically specialized parallel computers
Snyder, Lawrence; Gannon, Dennis B
1985-01-01
Algorithmically Specialized Parallel Computers focuses on the concept and characteristics of an algorithmically specialized computer.This book discusses the algorithmically specialized computers, algorithmic specialization using VLSI, and innovative architectures. The architectures and algorithms for digital signal, speech, and image processing and specialized architectures for numerical computations are also elaborated. Other topics include the model for analyzing generalized inter-processor, pipelined architecture for search tree maintenance, and specialized computer organization for raster
Resistor Combinations for Parallel Circuits.
McTernan, James P.
1978-01-01
To help simplify both teaching and learning of parallel circuits, a high school electricity/electronics teacher presents and illustrates the use of tables of values for parallel resistive circuits in which total resistances are whole numbers. (MF)
SOFTWARE FOR DESIGNING PARALLEL APPLICATIONS
Directory of Open Access Journals (Sweden)
M. K. Bouza
2017-01-01
Full Text Available The object of research is the tools to support the development of parallel programs in C/C ++. The methods and software which automates the process of designing parallel applications are proposed.
Parallel External Memory Graph Algorithms
DEFF Research Database (Denmark)
Arge, Lars Allan; Goodrich, Michael T.; Sitchinava, Nodari
2010-01-01
In this paper, we study parallel I/O efficient graph algorithms in the Parallel External Memory (PEM) model, one o f the private-cache chip multiprocessor (CMP) models. We study the fundamental problem of list ranking which leads to efficient solutions to problems on trees, such as computing lowest...... an optimal speedup of Â¿(P) in parallel I/O complexity and parallel computation time, compared to the single-processor external memory counterparts....
Parallel inter channel interaction mechanisms
International Nuclear Information System (INIS)
Jovic, V.; Afgan, N.; Jovic, L.
1995-01-01
Parallel channels interactions are examined. For experimental researches of nonstationary regimes flow in three parallel vertical channels results of phenomenon analysis and mechanisms of parallel channel interaction for adiabatic condition of one-phase fluid and two-phase mixture flow are shown. (author)
On the development a pneumatic four-legged mechanism autonomous vertical wall climbing robot
International Nuclear Information System (INIS)
Mohamad Shukri Zainal Abidin; Shamsudin H.M. Amin . shukri@suria.fke.utm.my
1999-01-01
The paper describes the design of a prototype legged mechanism together with suction mechanism, the mechanical design, on-board controller and an initial performance test. The design is implemented in the form of a pneumatically powered multi-legged robot equipped with suction pads at the sole of the feet for wall climbing purpose. The whole mechanism and suction system is controlled by controller which is housed on-board the robot. The gait of the motion depended on the logic control patterns as dictated by the controller. The robot is equipped with sensors both at the front and rear ends that function as an obstacle avoidance facility. Once objects are detected, signals are sent to the controller to start an evasive action that is to move in the opposite direction. The mechanism has been tested and initial results have shown promising potential for an autonomous mobile. (Author)
EVOLUTION. A four-legged snake from the Early Cretaceous of Gondwana.
Martill, David M; Tischlinger, Helmut; Longrich, Nicholas R
2015-07-24
Snakes are a remarkably diverse and successful group today, but their evolutionary origins are obscure. The discovery of snakes with two legs has shed light on the transition from lizards to snakes, but no snake has been described with four limbs, and the ecology of early snakes is poorly known. We describe a four-limbed snake from the Early Cretaceous (Aptian) Crato Formation of Brazil. The snake has a serpentiform body plan with an elongate trunk, short tail, and large ventral scales suggesting characteristic serpentine locomotion, yet retains small prehensile limbs. Skull and body proportions as well as reduced neural spines indicate fossorial adaptation, suggesting that snakes evolved from burrowing rather than marine ancestors. Hooked teeth, an intramandibular joint, a flexible spine capable of constricting prey, and the presence of vertebrate remains in the guts indicate that this species preyed on vertebrates and that snakes made the transition to carnivory early in their history. The structure of the limbs suggests that they were adapted for grasping, either to seize prey or as claspers during mating. Together with a diverse fauna of basal snakes from the Cretaceous of South America, Africa, and India, this snake suggests that crown Serpentes originated in Gondwana. Copyright © 2015, American Association for the Advancement of Science.
Four-legged friend or foe? Dog walking displaces native birds from natural areas
Banks, Peter B; Bryant, Jessica V
2007-01-01
Dog walking is among the world's most popular recreational activities, attracting millions of people to natural areas each year with diverse benefits to human and canine health. But conservation managers often ban dog walking from natural areas fearing that wildlife will see dogs as potential predators and abandon their natural habitats, resulting in outcry at the restricted access to public land. Arguments are passionate on both sides and debate has remained subjective and unresolved because...
Consider the Four-Legged Stool as You Plan for Information Technology.
Baltzer, Jan A.
2000-01-01
Discusses the need for strategic planning in libraries for the use of information technology that will add value to the library and better serve the users. Explains a model for developing information technology strategic plans that includes vision statements, goals and strategies, and an implementation timeline. (LRW)
ANN based controller for three phase four leg shunt active filter for power quality improvement
Directory of Open Access Journals (Sweden)
J. Jayachandran
2016-03-01
Full Text Available In this paper, an artificial neural network (ANN based one cycle control (OCC strategy is proposed for the DSTATCOM shunted across the load in three phase four wire distribution system. The proposed control strategy mitigates harmonic/reactive currents, ensures balanced and sinusoidal source current from the supply mains that are nearly in phase with the supply voltage and compensates neutral current under varying source and load conditions. The proposed control strategy is superior over conventional methods as it eliminates, the sensors needed for sensing load current and coupling inductor current, in addition to the multipliers and the calculation of reference currents. ANN controllers are implemented to maintain voltage across the capacitor and as a compensator to compensate neutral current. The DSTATCOM performance is validated for all possible conditions of source and load by simulation using MATLAB software and simulation results prove the efficacy of the proposed control over conventional control strategy.
International Nuclear Information System (INIS)
Soltz, R; Vranas, P; Blumrich, M; Chen, D; Gara, A; Giampap, M; Heidelberger, P; Salapura, V; Sexton, J; Bhanot, G
2007-01-01
The theory of the strong nuclear force, Quantum Chromodynamics (QCD), can be numerically simulated from first principles on massively-parallel supercomputers using the method of Lattice Gauge Theory. We describe the special programming requirements of lattice QCD (LQCD) as well as the optimal supercomputer hardware architectures that it suggests. We demonstrate these methods on the BlueGene massively-parallel supercomputer and argue that LQCD and the BlueGene architecture are a natural match. This can be traced to the simple fact that LQCD is a regular lattice discretization of space into lattice sites while the BlueGene supercomputer is a discretization of space into compute nodes, and that both are constrained by requirements of locality. This simple relation is both technologically important and theoretically intriguing. The main result of this paper is the speedup of LQCD using up to 131,072 CPUs on the largest BlueGene/L supercomputer. The speedup is perfect with sustained performance of about 20% of peak. This corresponds to a maximum of 70.5 sustained TFlop/s. At these speeds LQCD and BlueGene are poised to produce the next generation of strong interaction physics theoretical results
A Parallel Butterfly Algorithm
Poulson, Jack; Demanet, Laurent; Maxwell, Nicholas; Ying, Lexing
2014-01-01
The butterfly algorithm is a fast algorithm which approximately evaluates a discrete analogue of the integral transform (Equation Presented.) at large numbers of target points when the kernel, K(x, y), is approximately low-rank when restricted to subdomains satisfying a certain simple geometric condition. In d dimensions with O(Nd) quasi-uniformly distributed source and target points, when each appropriate submatrix of K is approximately rank-r, the running time of the algorithm is at most O(r2Nd logN). A parallelization of the butterfly algorithm is introduced which, assuming a message latency of α and per-process inverse bandwidth of β, executes in at most (Equation Presented.) time using p processes. This parallel algorithm was then instantiated in the form of the open-source DistButterfly library for the special case where K(x, y) = exp(iΦ(x, y)), where Φ(x, y) is a black-box, sufficiently smooth, real-valued phase function. Experiments on Blue Gene/Q demonstrate impressive strong-scaling results for important classes of phase functions. Using quasi-uniform sources, hyperbolic Radon transforms, and an analogue of a three-dimensional generalized Radon transform were, respectively, observed to strong-scale from 1-node/16-cores up to 1024-nodes/16,384-cores with greater than 90% and 82% efficiency, respectively. © 2014 Society for Industrial and Applied Mathematics.
A Parallel Butterfly Algorithm
Poulson, Jack
2014-02-04
The butterfly algorithm is a fast algorithm which approximately evaluates a discrete analogue of the integral transform (Equation Presented.) at large numbers of target points when the kernel, K(x, y), is approximately low-rank when restricted to subdomains satisfying a certain simple geometric condition. In d dimensions with O(Nd) quasi-uniformly distributed source and target points, when each appropriate submatrix of K is approximately rank-r, the running time of the algorithm is at most O(r2Nd logN). A parallelization of the butterfly algorithm is introduced which, assuming a message latency of α and per-process inverse bandwidth of β, executes in at most (Equation Presented.) time using p processes. This parallel algorithm was then instantiated in the form of the open-source DistButterfly library for the special case where K(x, y) = exp(iΦ(x, y)), where Φ(x, y) is a black-box, sufficiently smooth, real-valued phase function. Experiments on Blue Gene/Q demonstrate impressive strong-scaling results for important classes of phase functions. Using quasi-uniform sources, hyperbolic Radon transforms, and an analogue of a three-dimensional generalized Radon transform were, respectively, observed to strong-scale from 1-node/16-cores up to 1024-nodes/16,384-cores with greater than 90% and 82% efficiency, respectively. © 2014 Society for Industrial and Applied Mathematics.
Fast parallel event reconstruction
CERN. Geneva
2010-01-01
On-line processing of large data volumes produced in modern HEP experiments requires using maximum capabilities of modern and future many-core CPU and GPU architectures.One of such powerful feature is a SIMD instruction set, which allows packing several data items in one register and to operate on all of them, thus achievingmore operations per clock cycle. Motivated by the idea of using the SIMD unit ofmodern processors, the KF based track fit has been adapted for parallelism, including memory optimization, numerical analysis, vectorization with inline operator overloading, and optimization using SDKs. The speed of the algorithm has been increased in 120000 times with 0.1 ms/track, running in parallel on 16 SPEs of a Cell Blade computer. Running on a Nehalem CPU with 8 cores it shows the processing speed of 52 ns/track using the Intel Threading Building Blocks. The same KF algorithm running on an Nvidia GTX 280 in the CUDA frameworkprovi...
International Nuclear Information System (INIS)
DeHart, Mark D.; Williams, Mark L.; Bowman, Stephen M.
2010-01-01
The SCALE computational architecture has remained basically the same since its inception 30 years ago, although constituent modules and capabilities have changed significantly. This SCALE concept was intended to provide a framework whereby independent codes can be linked to provide a more comprehensive capability than possible with the individual programs - allowing flexibility to address a wide variety of applications. However, the current system was designed originally for mainframe computers with a single CPU and with significantly less memory than today's personal computers. It has been recognized that the present SCALE computation system could be restructured to take advantage of modern hardware and software capabilities, while retaining many of the modular features of the present system. Preliminary work is being done to define specifications and capabilities for a more advanced computational architecture. This paper describes the state of current SCALE development activities and plans for future development. With the release of SCALE 6.1 in 2010, a new phase of evolutionary development will be available to SCALE users within the TRITON and NEWT modules. The SCALE (Standardized Computer Analyses for Licensing Evaluation) code system developed by Oak Ridge National Laboratory (ORNL) provides a comprehensive and integrated package of codes and nuclear data for a wide range of applications in criticality safety, reactor physics, shielding, isotopic depletion and decay, and sensitivity/uncertainty (S/U) analysis. Over the last three years, since the release of version 5.1 in 2006, several important new codes have been introduced within SCALE, and significant advances applied to existing codes. Many of these new features became available with the release of SCALE 6.0 in early 2009. However, beginning with SCALE 6.1, a first generation of parallel computing is being introduced. In addition to near-term improvements, a plan for longer term SCALE enhancement
Parallel Polarization State Generation.
She, Alan; Capasso, Federico
2016-05-17
The control of polarization, an essential property of light, is of wide scientific and technological interest. The general problem of generating arbitrary time-varying states of polarization (SOP) has always been mathematically formulated by a series of linear transformations, i.e. a product of matrices, imposing a serial architecture. Here we show a parallel architecture described by a sum of matrices. The theory is experimentally demonstrated by modulating spatially-separated polarization components of a laser using a digital micromirror device that are subsequently beam combined. This method greatly expands the parameter space for engineering devices that control polarization. Consequently, performance characteristics, such as speed, stability, and spectral range, are entirely dictated by the technologies of optical intensity modulation, including absorption, reflection, emission, and scattering. This opens up important prospects for polarization state generation (PSG) with unique performance characteristics with applications in spectroscopic ellipsometry, spectropolarimetry, communications, imaging, and security.
Parallel imaging microfluidic cytometer.
Ehrlich, Daniel J; McKenna, Brian K; Evans, James G; Belkina, Anna C; Denis, Gerald V; Sherr, David H; Cheung, Man Ching
2011-01-01
By adding an additional degree of freedom from multichannel flow, the parallel microfluidic cytometer (PMC) combines some of the best features of fluorescence-activated flow cytometry (FCM) and microscope-based high-content screening (HCS). The PMC (i) lends itself to fast processing of large numbers of samples, (ii) adds a 1D imaging capability for intracellular localization assays (HCS), (iii) has a high rare-cell sensitivity, and (iv) has an unusual capability for time-synchronized sampling. An inability to practically handle large sample numbers has restricted applications of conventional flow cytometers and microscopes in combinatorial cell assays, network biology, and drug discovery. The PMC promises to relieve a bottleneck in these previously constrained applications. The PMC may also be a powerful tool for finding rare primary cells in the clinic. The multichannel architecture of current PMC prototypes allows 384 unique samples for a cell-based screen to be read out in ∼6-10 min, about 30 times the speed of most current FCM systems. In 1D intracellular imaging, the PMC can obtain protein localization using HCS marker strategies at many times for the sample throughput of charge-coupled device (CCD)-based microscopes or CCD-based single-channel flow cytometers. The PMC also permits the signal integration time to be varied over a larger range than is practical in conventional flow cytometers. The signal-to-noise advantages are useful, for example, in counting rare positive cells in the most difficult early stages of genome-wide screening. We review the status of parallel microfluidic cytometry and discuss some of the directions the new technology may take. Copyright © 2011 Elsevier Inc. All rights reserved.
About Parallel Programming: Paradigms, Parallel Execution and Collaborative Systems
Directory of Open Access Journals (Sweden)
Loredana MOCEAN
2009-01-01
Full Text Available In the last years, there were made efforts for delineation of a stabile and unitary frame, where the problems of logical parallel processing must find solutions at least at the level of imperative languages. The results obtained by now are not at the level of the made efforts. This paper wants to be a little contribution at these efforts. We propose an overview in parallel programming, parallel execution and collaborative systems.
Parallel Framework for Cooperative Processes
Directory of Open Access Journals (Sweden)
Mitică Craus
2005-01-01
Full Text Available This paper describes the work of an object oriented framework designed to be used in the parallelization of a set of related algorithms. The idea behind the system we are describing is to have a re-usable framework for running several sequential algorithms in a parallel environment. The algorithms that the framework can be used with have several things in common: they have to run in cycles and the work should be possible to be split between several "processing units". The parallel framework uses the message-passing communication paradigm and is organized as a master-slave system. Two applications are presented: an Ant Colony Optimization (ACO parallel algorithm for the Travelling Salesman Problem (TSP and an Image Processing (IP parallel algorithm for the Symmetrical Neighborhood Filter (SNF. The implementations of these applications by means of the parallel framework prove to have good performances: approximatively linear speedup and low communication cost.
Parallel Monte Carlo reactor neutronics
International Nuclear Information System (INIS)
Blomquist, R.N.; Brown, F.B.
1994-01-01
The issues affecting implementation of parallel algorithms for large-scale engineering Monte Carlo neutron transport simulations are discussed. For nuclear reactor calculations, these include load balancing, recoding effort, reproducibility, domain decomposition techniques, I/O minimization, and strategies for different parallel architectures. Two codes were parallelized and tested for performance. The architectures employed include SIMD, MIMD-distributed memory, and workstation network with uneven interactive load. Speedups linear with the number of nodes were achieved
DEFF Research Database (Denmark)
Kosbar, Tamer R.; Sofan, Mamdouh A.; Waly, Mohamed A.
2015-01-01
about 6.1 °C when the TFO strand was modified with Z and the Watson-Crick strand with adenine-LNA (AL). The molecular modeling results showed that, in case of nucleobases Y and Z a hydrogen bond (1.69 and 1.72 Å, respectively) was formed between the protonated 3-aminopropyn-1-yl chain and one...... of the phosphate groups in Watson-Crick strand. Also, it was shown that the nucleobase Y made a good stacking and binding with the other nucleobases in the TFO and Watson-Crick duplex, respectively. In contrast, the nucleobase Z with LNA moiety was forced to twist out of plane of Watson-Crick base pair which......The phosphoramidites of DNA monomers of 7-(3-aminopropyn-1-yl)-8-aza-7-deazaadenine (Y) and 7-(3-aminopropyn-1-yl)-8-aza-7-deazaadenine LNA (Z) are synthesized, and the thermal stability at pH 7.2 and 8.2 of anti-parallel triplexes modified with these two monomers is determined. When, the anti...
Parallel consensual neural networks.
Benediktsson, J A; Sveinsson, J R; Ersoy, O K; Swain, P H
1997-01-01
A new type of a neural-network architecture, the parallel consensual neural network (PCNN), is introduced and applied in classification/data fusion of multisource remote sensing and geographic data. The PCNN architecture is based on statistical consensus theory and involves using stage neural networks with transformed input data. The input data are transformed several times and the different transformed data are used as if they were independent inputs. The independent inputs are first classified using the stage neural networks. The output responses from the stage networks are then weighted and combined to make a consensual decision. In this paper, optimization methods are used in order to weight the outputs from the stage networks. Two approaches are proposed to compute the data transforms for the PCNN, one for binary data and another for analog data. The analog approach uses wavelet packets. The experimental results obtained with the proposed approach show that the PCNN outperforms both a conjugate-gradient backpropagation neural network and conventional statistical methods in terms of overall classification accuracy of test data.
A Parallel Particle Swarm Optimizer
National Research Council Canada - National Science Library
Schutte, J. F; Fregly, B .J; Haftka, R. T; George, A. D
2003-01-01
.... Motivated by a computationally demanding biomechanical system identification problem, we introduce a parallel implementation of a stochastic population based global optimizer, the Particle Swarm...
Patterns for Parallel Software Design
Ortega-Arjona, Jorge Luis
2010-01-01
Essential reading to understand patterns for parallel programming Software patterns have revolutionized the way we think about how software is designed, built, and documented, and the design of parallel software requires you to consider other particular design aspects and special skills. From clusters to supercomputers, success heavily depends on the design skills of software developers. Patterns for Parallel Software Design presents a pattern-oriented software architecture approach to parallel software design. This approach is not a design method in the classic sense, but a new way of managin
DEFF Research Database (Denmark)
Christensen, Mark Schram; Ehrsson, H Henrik; Nielsen, Jens Bo
2013-01-01
a different network, involving bilateral dorsal premotor cortex (PMd), primary motor cortex, and SMA, was more active when subjects viewed parallel movements while performing either symmetrical or parallel movements. Correlations between behavioral instability and brain activity were present in right lateral...... adduction-abduction movements symmetrically or in parallel with real-time congruent or incongruent visual feedback of the movements. One network, consisting of bilateral superior and middle frontal gyrus and supplementary motor area (SMA), was more active when subjects performed parallel movements, whereas...
PARALLEL IMPORT: REALITY FOR RUSSIA
Directory of Open Access Journals (Sweden)
Т. А. Сухопарова
2014-01-01
Full Text Available Problem of parallel import is urgent question at now. Parallel import legalization in Russia is expedient. Such statement based on opposite experts opinion analysis. At the same time it’s necessary to negative consequences consider of this decision and to apply remedies to its minimization.Purchase on Elibrary.ru > Buy now
The Galley Parallel File System
Nieuwejaar, Nils; Kotz, David
1996-01-01
Most current multiprocessor file systems are designed to use multiple disks in parallel, using the high aggregate bandwidth to meet the growing I/0 requirements of parallel scientific applications. Many multiprocessor file systems provide applications with a conventional Unix-like interface, allowing the application to access multiple disks transparently. This interface conceals the parallelism within the file system, increasing the ease of programmability, but making it difficult or impossible for sophisticated programmers and libraries to use knowledge about their I/O needs to exploit that parallelism. In addition to providing an insufficient interface, most current multiprocessor file systems are optimized for a different workload than they are being asked to support. We introduce Galley, a new parallel file system that is intended to efficiently support realistic scientific multiprocessor workloads. We discuss Galley's file structure and application interface, as well as the performance advantages offered by that interface.
Parallelization of the FLAPW method
International Nuclear Information System (INIS)
Canning, A.; Mannstadt, W.; Freeman, A.J.
1999-01-01
The FLAPW (full-potential linearized-augmented plane-wave) method is one of the most accurate first-principles methods for determining electronic and magnetic properties of crystals and surfaces. Until the present work, the FLAPW method has been limited to systems of less than about one hundred atoms due to a lack of an efficient parallel implementation to exploit the power and memory of parallel computers. In this work we present an efficient parallelization of the method by division among the processors of the plane-wave components for each state. The code is also optimized for RISC (reduced instruction set computer) architectures, such as those found on most parallel computers, making full use of BLAS (basic linear algebra subprograms) wherever possible. Scaling results are presented for systems of up to 686 silicon atoms and 343 palladium atoms per unit cell, running on up to 512 processors on a CRAY T3E parallel computer
Parallelization of the FLAPW method
Canning, A.; Mannstadt, W.; Freeman, A. J.
2000-08-01
The FLAPW (full-potential linearized-augmented plane-wave) method is one of the most accurate first-principles methods for determining structural, electronic and magnetic properties of crystals and surfaces. Until the present work, the FLAPW method has been limited to systems of less than about a hundred atoms due to the lack of an efficient parallel implementation to exploit the power and memory of parallel computers. In this work, we present an efficient parallelization of the method by division among the processors of the plane-wave components for each state. The code is also optimized for RISC (reduced instruction set computer) architectures, such as those found on most parallel computers, making full use of BLAS (basic linear algebra subprograms) wherever possible. Scaling results are presented for systems of up to 686 silicon atoms and 343 palladium atoms per unit cell, running on up to 512 processors on a CRAY T3E parallel supercomputer.
Is Monte Carlo embarrassingly parallel?
Energy Technology Data Exchange (ETDEWEB)
Hoogenboom, J. E. [Delft Univ. of Technology, Mekelweg 15, 2629 JB Delft (Netherlands); Delft Nuclear Consultancy, IJsselzoom 2, 2902 LB Capelle aan den IJssel (Netherlands)
2012-07-01
Monte Carlo is often stated as being embarrassingly parallel. However, running a Monte Carlo calculation, especially a reactor criticality calculation, in parallel using tens of processors shows a serious limitation in speedup and the execution time may even increase beyond a certain number of processors. In this paper the main causes of the loss of efficiency when using many processors are analyzed using a simple Monte Carlo program for criticality. The basic mechanism for parallel execution is MPI. One of the bottlenecks turn out to be the rendez-vous points in the parallel calculation used for synchronization and exchange of data between processors. This happens at least at the end of each cycle for fission source generation in order to collect the full fission source distribution for the next cycle and to estimate the effective multiplication factor, which is not only part of the requested results, but also input to the next cycle for population control. Basic improvements to overcome this limitation are suggested and tested. Also other time losses in the parallel calculation are identified. Moreover, the threading mechanism, which allows the parallel execution of tasks based on shared memory using OpenMP, is analyzed in detail. Recommendations are given to get the maximum efficiency out of a parallel Monte Carlo calculation. (authors)
Is Monte Carlo embarrassingly parallel?
International Nuclear Information System (INIS)
Hoogenboom, J. E.
2012-01-01
Monte Carlo is often stated as being embarrassingly parallel. However, running a Monte Carlo calculation, especially a reactor criticality calculation, in parallel using tens of processors shows a serious limitation in speedup and the execution time may even increase beyond a certain number of processors. In this paper the main causes of the loss of efficiency when using many processors are analyzed using a simple Monte Carlo program for criticality. The basic mechanism for parallel execution is MPI. One of the bottlenecks turn out to be the rendez-vous points in the parallel calculation used for synchronization and exchange of data between processors. This happens at least at the end of each cycle for fission source generation in order to collect the full fission source distribution for the next cycle and to estimate the effective multiplication factor, which is not only part of the requested results, but also input to the next cycle for population control. Basic improvements to overcome this limitation are suggested and tested. Also other time losses in the parallel calculation are identified. Moreover, the threading mechanism, which allows the parallel execution of tasks based on shared memory using OpenMP, is analyzed in detail. Recommendations are given to get the maximum efficiency out of a parallel Monte Carlo calculation. (authors)
Parallel integer sorting with medium and fine-scale parallelism
Dagum, Leonardo
1993-01-01
Two new parallel integer sorting algorithms, queue-sort and barrel-sort, are presented and analyzed in detail. These algorithms do not have optimal parallel complexity, yet they show very good performance in practice. Queue-sort designed for fine-scale parallel architectures which allow the queueing of multiple messages to the same destination. Barrel-sort is designed for medium-scale parallel architectures with a high message passing overhead. The performance results from the implementation of queue-sort on a Connection Machine CM-2 and barrel-sort on a 128 processor iPSC/860 are given. The two implementations are found to be comparable in performance but not as good as a fully vectorized bucket sort on the Cray YMP.
Template based parallel checkpointing in a massively parallel computer system
Archer, Charles Jens [Rochester, MN; Inglett, Todd Alan [Rochester, MN
2009-01-13
A method and apparatus for a template based parallel checkpoint save for a massively parallel super computer system using a parallel variation of the rsync protocol, and network broadcast. In preferred embodiments, the checkpoint data for each node is compared to a template checkpoint file that resides in the storage and that was previously produced. Embodiments herein greatly decrease the amount of data that must be transmitted and stored for faster checkpointing and increased efficiency of the computer system. Embodiments are directed to a parallel computer system with nodes arranged in a cluster with a high speed interconnect that can perform broadcast communication. The checkpoint contains a set of actual small data blocks with their corresponding checksums from all nodes in the system. The data blocks may be compressed using conventional non-lossy data compression algorithms to further reduce the overall checkpoint size.
Parallel education: what is it?
Amos, Michelle Peta
2017-01-01
In the history of education it has long been discussed that single-sex and coeducation are the two models of education present in schools. With the introduction of parallel schools over the last 15 years, there has been very little research into this 'new model'. Many people do not understand what it means for a school to be parallel or they confuse a parallel model with co-education, due to the presence of both boys and girls within the one institution. Therefore, the main obj...
Balanced, parallel operation of flashlamps
International Nuclear Information System (INIS)
Carder, B.M.; Merritt, B.T.
1979-01-01
A new energy store, the Compensated Pulsed Alternator (CPA), promises to be a cost effective substitute for capacitors to drive flashlamps that pump large Nd:glass lasers. Because the CPA is large and discrete, it will be necessary that it drive many parallel flashlamp circuits, presenting a problem in equal current distribution. Current division to +- 20% between parallel flashlamps has been achieved, but this is marginal for laser pumping. A method is presented here that provides equal current sharing to about 1%, and it includes fused protection against short circuit faults. The method was tested with eight parallel circuits, including both open-circuit and short-circuit fault tests
Workspace Analysis for Parallel Robot
Directory of Open Access Journals (Sweden)
Ying Sun
2013-05-01
Full Text Available As a completely new-type of robot, the parallel robot possesses a lot of advantages that the serial robot does not, such as high rigidity, great load-carrying capacity, small error, high precision, small self-weight/load ratio, good dynamic behavior and easy control, hence its range is extended in using domain. In order to find workspace of parallel mechanism, the numerical boundary-searching algorithm based on the reverse solution of kinematics and limitation of link length has been introduced. This paper analyses position workspace, orientation workspace of parallel robot of the six degrees of freedom. The result shows: It is a main means to increase and decrease its workspace to change the length of branch of parallel mechanism; The radius of the movement platform has no effect on the size of workspace, but will change position of workspace.
"Feeling" Series and Parallel Resistances.
Morse, Robert A.
1993-01-01
Equipped with drinking straws and stirring straws, a teacher can help students understand how resistances in electric circuits combine in series and in parallel. Follow-up suggestions are provided. (ZWH)
Parallel encoders for pixel detectors
International Nuclear Information System (INIS)
Nikityuk, N.M.
1991-01-01
A new method of fast encoding and determining the multiplicity and coordinates of fired pixels is described. A specific example construction of parallel encodes and MCC for n=49 and t=2 is given. 16 refs.; 6 figs.; 2 tabs
Massively Parallel Finite Element Programming
Heister, Timo
2010-01-01
Today\\'s large finite element simulations require parallel algorithms to scale on clusters with thousands or tens of thousands of processor cores. We present data structures and algorithms to take advantage of the power of high performance computers in generic finite element codes. Existing generic finite element libraries often restrict the parallelization to parallel linear algebra routines. This is a limiting factor when solving on more than a few hundreds of cores. We describe routines for distributed storage of all major components coupled with efficient, scalable algorithms. We give an overview of our effort to enable the modern and generic finite element library deal.II to take advantage of the power of large clusters. In particular, we describe the construction of a distributed mesh and develop algorithms to fully parallelize the finite element calculation. Numerical results demonstrate good scalability. © 2010 Springer-Verlag.
Event monitoring of parallel computations
Directory of Open Access Journals (Sweden)
Gruzlikov Alexander M.
2015-06-01
Full Text Available The paper considers the monitoring of parallel computations for detection of abnormal events. It is assumed that computations are organized according to an event model, and monitoring is based on specific test sequences
Massively Parallel Finite Element Programming
Heister, Timo; Kronbichler, Martin; Bangerth, Wolfgang
2010-01-01
Today's large finite element simulations require parallel algorithms to scale on clusters with thousands or tens of thousands of processor cores. We present data structures and algorithms to take advantage of the power of high performance computers in generic finite element codes. Existing generic finite element libraries often restrict the parallelization to parallel linear algebra routines. This is a limiting factor when solving on more than a few hundreds of cores. We describe routines for distributed storage of all major components coupled with efficient, scalable algorithms. We give an overview of our effort to enable the modern and generic finite element library deal.II to take advantage of the power of large clusters. In particular, we describe the construction of a distributed mesh and develop algorithms to fully parallelize the finite element calculation. Numerical results demonstrate good scalability. © 2010 Springer-Verlag.
The STAPL Parallel Graph Library
Harshvardhan,
2013-01-01
This paper describes the stapl Parallel Graph Library, a high-level framework that abstracts the user from data-distribution and parallelism details and allows them to concentrate on parallel graph algorithm development. It includes a customizable distributed graph container and a collection of commonly used parallel graph algorithms. The library introduces pGraph pViews that separate algorithm design from the container implementation. It supports three graph processing algorithmic paradigms, level-synchronous, asynchronous and coarse-grained, and provides common graph algorithms based on them. Experimental results demonstrate improved scalability in performance and data size over existing graph libraries on more than 16,000 cores and on internet-scale graphs containing over 16 billion vertices and 250 billion edges. © Springer-Verlag Berlin Heidelberg 2013.
Writing parallel programs that work
CERN. Geneva
2012-01-01
Serial algorithms typically run inefficiently on parallel machines. This may sound like an obvious statement, but it is the root cause of why parallel programming is considered to be difficult. The current state of the computer industry is still that almost all programs in existence are serial. This talk will describe the techniques used in the Intel Parallel Studio to provide a developer with the tools necessary to understand the behaviors and limitations of the existing serial programs. Once the limitations are known the developer can refactor the algorithms and reanalyze the resulting programs with the tools in the Intel Parallel Studio to create parallel programs that work. About the speaker Paul Petersen is a Sr. Principal Engineer in the Software and Solutions Group (SSG) at Intel. He received a Ph.D. degree in Computer Science from the University of Illinois in 1993. After UIUC, he was employed at Kuck and Associates, Inc. (KAI) working on auto-parallelizing compiler (KAP), and was involved in th...
Exploiting Symmetry on Parallel Architectures.
Stiller, Lewis Benjamin
1995-01-01
This thesis describes techniques for the design of parallel programs that solve well-structured problems with inherent symmetry. Part I demonstrates the reduction of such problems to generalized matrix multiplication by a group-equivariant matrix. Fast techniques for this multiplication are described, including factorization, orbit decomposition, and Fourier transforms over finite groups. Our algorithms entail interaction between two symmetry groups: one arising at the software level from the problem's symmetry and the other arising at the hardware level from the processors' communication network. Part II illustrates the applicability of our symmetry -exploitation techniques by presenting a series of case studies of the design and implementation of parallel programs. First, a parallel program that solves chess endgames by factorization of an associated dihedral group-equivariant matrix is described. This code runs faster than previous serial programs, and discovered it a number of results. Second, parallel algorithms for Fourier transforms for finite groups are developed, and preliminary parallel implementations for group transforms of dihedral and of symmetric groups are described. Applications in learning, vision, pattern recognition, and statistics are proposed. Third, parallel implementations solving several computational science problems are described, including the direct n-body problem, convolutions arising from molecular biology, and some communication primitives such as broadcast and reduce. Some of our implementations ran orders of magnitude faster than previous techniques, and were used in the investigation of various physical phenomena.
Parallel algorithms for continuum dynamics
International Nuclear Information System (INIS)
Hicks, D.L.; Liebrock, L.M.
1987-01-01
Simply porting existing parallel programs to a new parallel processor may not achieve the full speedup possible; to achieve the maximum efficiency may require redesigning the parallel algorithms for the specific architecture. The authors discuss here parallel algorithms that were developed first for the HEP processor and then ported to the CRAY X-MP/4, the ELXSI/10, and the Intel iPSC/32. Focus is mainly on the most recent parallel processing results produced, i.e., those on the Intel Hypercube. The applications are simulations of continuum dynamics in which the momentum and stress gradients are important. Examples of these are inertial confinement fusion experiments, severe breaks in the coolant system of a reactor, weapons physics, shock-wave physics. Speedup efficiencies on the Intel iPSC Hypercube are very sensitive to the ratio of communication to computation. Great care must be taken in designing algorithms for this machine to avoid global communication. This is much more critical on the iPSC than it was on the three previous parallel processors
Archer, Charles J.; Blocksome, Michael A.; Ratterman, Joseph D.; Smith, Brian E.
2014-08-12
Endpoint-based parallel data processing in a parallel active messaging interface (`PAMI`) of a parallel computer, the PAMI composed of data communications endpoints, each endpoint including a specification of data communications parameters for a thread of execution on a compute node, including specifications of a client, a context, and a task, the compute nodes coupled for data communications through the PAMI, including establishing a data communications geometry, the geometry specifying, for tasks representing processes of execution of the parallel application, a set of endpoints that are used in collective operations of the PAMI including a plurality of endpoints for one of the tasks; receiving in endpoints of the geometry an instruction for a collective operation; and executing the instruction for a collective operation through the endpoints in dependence upon the geometry, including dividing data communications operations among the plurality of endpoints for one of the tasks.
Parallel Implicit Algorithms for CFD
Keyes, David E.
1998-01-01
The main goal of this project was efficient distributed parallel and workstation cluster implementations of Newton-Krylov-Schwarz (NKS) solvers for implicit Computational Fluid Dynamics (CFD.) "Newton" refers to a quadratically convergent nonlinear iteration using gradient information based on the true residual, "Krylov" to an inner linear iteration that accesses the Jacobian matrix only through highly parallelizable sparse matrix-vector products, and "Schwarz" to a domain decomposition form of preconditioning the inner Krylov iterations with primarily neighbor-only exchange of data between the processors. Prior experience has established that Newton-Krylov methods are competitive solvers in the CFD context and that Krylov-Schwarz methods port well to distributed memory computers. The combination of the techniques into Newton-Krylov-Schwarz was implemented on 2D and 3D unstructured Euler codes on the parallel testbeds that used to be at LaRC and on several other parallel computers operated by other agencies or made available by the vendors. Early implementations were made directly in Massively Parallel Integration (MPI) with parallel solvers we adapted from legacy NASA codes and enhanced for full NKS functionality. Later implementations were made in the framework of the PETSC library from Argonne National Laboratory, which now includes pseudo-transient continuation Newton-Krylov-Schwarz solver capability (as a result of demands we made upon PETSC during our early porting experiences). A secondary project pursued with funding from this contract was parallel implicit solvers in acoustics, specifically in the Helmholtz formulation. A 2D acoustic inverse problem has been solved in parallel within the PETSC framework.
Second derivative parallel block backward differentiation type ...
African Journals Online (AJOL)
Second derivative parallel block backward differentiation type formulas for Stiff ODEs. ... Log in or Register to get access to full text downloads. ... and the methods are inherently parallel and can be distributed over parallel processors. They are ...
A Parallel Approach to Fractal Image Compression
Lubomir Dedera
2004-01-01
The paper deals with a parallel approach to coding and decoding algorithms in fractal image compressionand presents experimental results comparing sequential and parallel algorithms from the point of view of achieved bothcoding and decoding time and effectiveness of parallelization.
Parallel fabrication of macroporous scaffolds.
Dobos, Andrew; Grandhi, Taraka Sai Pavan; Godeshala, Sudhakar; Meldrum, Deirdre R; Rege, Kaushal
2018-07-01
Scaffolds generated from naturally occurring and synthetic polymers have been investigated in several applications because of their biocompatibility and tunable chemo-mechanical properties. Existing methods for generation of 3D polymeric scaffolds typically cannot be parallelized, suffer from low throughputs, and do not allow for quick and easy removal of the fragile structures that are formed. Current molds used in hydrogel and scaffold fabrication using solvent casting and porogen leaching are often single-use and do not facilitate 3D scaffold formation in parallel. Here, we describe a simple device and related approaches for the parallel fabrication of macroporous scaffolds. This approach was employed for the generation of macroporous and non-macroporous materials in parallel, in higher throughput and allowed for easy retrieval of these 3D scaffolds once formed. In addition, macroporous scaffolds with interconnected as well as non-interconnected pores were generated, and the versatility of this approach was employed for the generation of 3D scaffolds from diverse materials including an aminoglycoside-derived cationic hydrogel ("Amikagel"), poly(lactic-co-glycolic acid) or PLGA, and collagen. Macroporous scaffolds generated using the device were investigated for plasmid DNA binding and cell loading, indicating the use of this approach for developing materials for different applications in biotechnology. Our results demonstrate that the device-based approach is a simple technology for generating scaffolds in parallel, which can enhance the toolbox of current fabrication techniques. © 2018 Wiley Periodicals, Inc.
Parallel plasma fluid turbulence calculations
International Nuclear Information System (INIS)
Leboeuf, J.N.; Carreras, B.A.; Charlton, L.A.; Drake, J.B.; Lynch, V.E.; Newman, D.E.; Sidikman, K.L.; Spong, D.A.
1994-01-01
The study of plasma turbulence and transport is a complex problem of critical importance for fusion-relevant plasmas. To this day, the fluid treatment of plasma dynamics is the best approach to realistic physics at the high resolution required for certain experimentally relevant calculations. Core and edge turbulence in a magnetic fusion device have been modeled using state-of-the-art, nonlinear, three-dimensional, initial-value fluid and gyrofluid codes. Parallel implementation of these models on diverse platforms--vector parallel (National Energy Research Supercomputer Center's CRAY Y-MP C90), massively parallel (Intel Paragon XP/S 35), and serial parallel (clusters of high-performance workstations using the Parallel Virtual Machine protocol)--offers a variety of paths to high resolution and significant improvements in real-time efficiency, each with its own advantages. The largest and most efficient calculations have been performed at the 200 Mword memory limit on the C90 in dedicated mode, where an overlap of 12 to 13 out of a maximum of 16 processors has been achieved with a gyrofluid model of core fluctuations. The richness of the physics captured by these calculations is commensurate with the increased resolution and efficiency and is limited only by the ingenuity brought to the analysis of the massive amounts of data generated
Evaluating parallel optimization on transputers
Directory of Open Access Journals (Sweden)
A.G. Chalmers
2003-12-01
Full Text Available The faster processing power of modern computers and the development of efficient algorithms have made it possible for operations researchers to tackle a much wider range of problems than ever before. Further improvements in processing speed can be achieved utilising relatively inexpensive transputers to process components of an algorithm in parallel. The Davidon-Fletcher-Powell method is one of the most successful and widely used optimisation algorithms for unconstrained problems. This paper examines the algorithm and identifies the components that can be processed in parallel. The results of some experiments with these components are presented which indicates under what conditions parallel processing with an inexpensive configuration is likely to be faster than the traditional sequential implementations. The performance of the whole algorithm with its parallel components is then compared with the original sequential algorithm. The implementation serves to illustrate the practicalities of speeding up typical OR algorithms in terms of difficulty, effort and cost. The results give an indication of the savings in time a given parallel implementation can be expected to yield.
Pattern-Driven Automatic Parallelization
Directory of Open Access Journals (Sweden)
Christoph W. Kessler
1996-01-01
Full Text Available This article describes a knowledge-based system for automatic parallelization of a wide class of sequential numerical codes operating on vectors and dense matrices, and for execution on distributed memory message-passing multiprocessors. Its main feature is a fast and powerful pattern recognition tool that locally identifies frequently occurring computations and programming concepts in the source code. This tool also works for dusty deck codes that have been "encrypted" by former machine-specific code transformations. Successful pattern recognition guides sophisticated code transformations including local algorithm replacement such that the parallelized code need not emerge from the sequential program structure by just parallelizing the loops. It allows access to an expert's knowledge on useful parallel algorithms, available machine-specific library routines, and powerful program transformations. The partially restored program semantics also supports local array alignment, distribution, and redistribution, and allows for faster and more exact prediction of the performance of the parallelized target code than is usually possible.
Parallel artificial liquid membrane extraction
DEFF Research Database (Denmark)
Gjelstad, Astrid; Rasmussen, Knut Einar; Parmer, Marthe Petrine
2013-01-01
This paper reports development of a new approach towards analytical liquid-liquid-liquid membrane extraction termed parallel artificial liquid membrane extraction. A donor plate and acceptor plate create a sandwich, in which each sample (human plasma) and acceptor solution is separated by an arti......This paper reports development of a new approach towards analytical liquid-liquid-liquid membrane extraction termed parallel artificial liquid membrane extraction. A donor plate and acceptor plate create a sandwich, in which each sample (human plasma) and acceptor solution is separated...... by an artificial liquid membrane. Parallel artificial liquid membrane extraction is a modification of hollow-fiber liquid-phase microextraction, where the hollow fibers are replaced by flat membranes in a 96-well plate format....
Parallel algorithms for mapping pipelined and parallel computations
Nicol, David M.
1988-01-01
Many computational problems in image processing, signal processing, and scientific computing are naturally structured for either pipelined or parallel computation. When mapping such problems onto a parallel architecture it is often necessary to aggregate an obvious problem decomposition. Even in this context the general mapping problem is known to be computationally intractable, but recent advances have been made in identifying classes of problems and architectures for which optimal solutions can be found in polynomial time. Among these, the mapping of pipelined or parallel computations onto linear array, shared memory, and host-satellite systems figures prominently. This paper extends that work first by showing how to improve existing serial mapping algorithms. These improvements have significantly lower time and space complexities: in one case a published O(nm sup 3) time algorithm for mapping m modules onto n processors is reduced to an O(nm log m) time complexity, and its space requirements reduced from O(nm sup 2) to O(m). Run time complexity is further reduced with parallel mapping algorithms based on these improvements, which run on the architecture for which they create the mappings.
Cellular automata a parallel model
Mazoyer, J
1999-01-01
Cellular automata can be viewed both as computational models and modelling systems of real processes. This volume emphasises the first aspect. In articles written by leading researchers, sophisticated massive parallel algorithms (firing squad, life, Fischer's primes recognition) are treated. Their computational power and the specific complexity classes they determine are surveyed, while some recent results in relation to chaos from a new dynamic systems point of view are also presented. Audience: This book will be of interest to specialists of theoretical computer science and the parallelism challenge.
Parallel Sparse Matrix - Vector Product
DEFF Research Database (Denmark)
Alexandersen, Joe; Lazarov, Boyan Stefanov; Dammann, Bernd
This technical report contains a case study of a sparse matrix-vector product routine, implemented for parallel execution on a compute cluster with both pure MPI and hybrid MPI-OpenMP solutions. C++ classes for sparse data types were developed and the report shows how these class can be used...
[Falsified medicines in parallel trade].
Muckenfuß, Heide
2017-11-01
The number of falsified medicines on the German market has distinctly increased over the past few years. In particular, stolen pharmaceutical products, a form of falsified medicines, have increasingly been introduced into the legal supply chain via parallel trading. The reasons why parallel trading serves as a gateway for falsified medicines are most likely the complex supply chains and routes of transport. It is hardly possible for national authorities to trace the history of a medicinal product that was bought and sold by several intermediaries in different EU member states. In addition, the heterogeneous outward appearance of imported and relabelled pharmaceutical products facilitates the introduction of illegal products onto the market. Official batch release at the Paul-Ehrlich-Institut offers the possibility of checking some aspects that might provide an indication of a falsified medicine. In some circumstances, this may allow the identification of falsified medicines before they come onto the German market. However, this control is only possible for biomedicinal products that have not received a waiver regarding official batch release. For improved control of parallel trade, better networking among the EU member states would be beneficial. European-wide regulations, e. g., for disclosure of the complete supply chain, would help to minimise the risks of parallel trading and hinder the marketing of falsified medicines.
The parallel adult education system
DEFF Research Database (Denmark)
Wahlgren, Bjarne
2015-01-01
for competence development. The Danish university educational system includes two parallel programs: a traditional academic track (candidatus) and an alternative practice-based track (master). The practice-based program was established in 2001 and organized as part time. The total program takes half the time...
Where are the parallel algorithms?
Voigt, R. G.
1985-01-01
Four paradigms that can be useful in developing parallel algorithms are discussed. These include computational complexity analysis, changing the order of computation, asynchronous computation, and divide and conquer. Each is illustrated with an example from scientific computation, and it is shown that computational complexity must be used with great care or an inefficient algorithm may be selected.
Parallel imaging with phase scrambling.
Zaitsev, Maxim; Schultz, Gerrit; Hennig, Juergen; Gruetter, Rolf; Gallichan, Daniel
2015-04-01
Most existing methods for accelerated parallel imaging in MRI require additional data, which are used to derive information about the sensitivity profile of each radiofrequency (RF) channel. In this work, a method is presented to avoid the acquisition of separate coil calibration data for accelerated Cartesian trajectories. Quadratic phase is imparted to the image to spread the signals in k-space (aka phase scrambling). By rewriting the Fourier transform as a convolution operation, a window can be introduced to the convolved chirp function, allowing a low-resolution image to be reconstructed from phase-scrambled data without prominent aliasing. This image (for each RF channel) can be used to derive coil sensitivities to drive existing parallel imaging techniques. As a proof of concept, the quadratic phase was applied by introducing an offset to the x(2) - y(2) shim and the data were reconstructed using adapted versions of the image space-based sensitivity encoding and GeneRalized Autocalibrating Partially Parallel Acquisitions algorithms. The method is demonstrated in a phantom (1 × 2, 1 × 3, and 2 × 2 acceleration) and in vivo (2 × 2 acceleration) using a 3D gradient echo acquisition. Phase scrambling can be used to perform parallel imaging acceleration without acquisition of separate coil calibration data, demonstrated here for a 3D-Cartesian trajectory. Further research is required to prove the applicability to other 2D and 3D sampling schemes. © 2014 Wiley Periodicals, Inc.
Default Parallels Plesk Panel Page
services that small businesses want and need. Our software includes key building blocks of cloud service virtualized servers Service Provider Products ParallelsÂ® Automation Hosting, SaaS, and cloud computing , the leading hosting automation software. You see this page because there is no Web site at this
Parallel plate transmission line transformer
Voeten, S.J.; Brussaard, G.J.H.; Pemen, A.J.M.
2011-01-01
A Transmission Line Transformer (TLT) can be used to transform high-voltage nanosecond pulses. These transformers rely on the fact that the length of the pulse is shorter than the transmission lines used. This allows connecting the transmission lines in parallel at the input and in series at the
Matpar: Parallel Extensions for MATLAB
Springer, P. L.
1998-01-01
Matpar is a set of client/server software that allows a MATLAB user to take advantage of a parallel computer for very large problems. The user can replace calls to certain built-in MATLAB functions with calls to Matpar functions.
Massively parallel quantum computer simulator
De Raedt, K.; Michielsen, K.; De Raedt, H.; Trieu, B.; Arnold, G.; Richter, M.; Lippert, Th.; Watanabe, H.; Ito, N.
2007-01-01
We describe portable software to simulate universal quantum computers on massive parallel Computers. We illustrate the use of the simulation software by running various quantum algorithms on different computer architectures, such as a IBM BlueGene/L, a IBM Regatta p690+, a Hitachi SR11000/J1, a Cray
Parallel computing: numerics, applications, and trends
National Research Council Canada - National Science Library
Trobec, Roman; Vajteršic, Marián; Zinterhof, Peter
2009-01-01
... and/or distributed systems. The contributions to this book are focused on topics most concerned in the trends of today's parallel computing. These range from parallel algorithmics, programming, tools, network computing to future parallel computing. Particular attention is paid to parallel numerics: linear algebra, differential equations, numerica...
Experiments with parallel algorithms for combinatorial problems
G.A.P. Kindervater (Gerard); H.W.J.M. Trienekens
1985-01-01
textabstractIn the last decade many models for parallel computation have been proposed and many parallel algorithms have been developed. However, few of these models have been realized and most of these algorithms are supposed to run on idealized, unrealistic parallel machines. The parallel machines
International Nuclear Information System (INIS)
Heggarty, J.W.
1999-06-01
For almost thirty years, sequential R-matrix computation has been used by atomic physics research groups, from around the world, to model collision phenomena involving the scattering of electrons or positrons with atomic or molecular targets. As considerable progress has been made in the understanding of fundamental scattering processes, new data, obtained from more complex calculations, is of current interest to experimentalists. Performing such calculations, however, places considerable demands on the computational resources to be provided by the target machine, in terms of both processor speed and memory requirement. Indeed, in some instances the computational requirements are so great that the proposed R-matrix calculations are intractable, even when utilising contemporary classic supercomputers. Historically, increases in the computational requirements of R-matrix computation were accommodated by porting the problem codes to a more powerful classic supercomputer. Although this approach has been successful in the past, it is no longer considered to be a satisfactory solution due to the limitations of current (and future) Von Neumann machines. As a consequence, there has been considerable interest in the high performance multicomputers, that have emerged over the last decade which appear to offer the computational resources required by contemporary R-matrix research. Unfortunately, developing codes for these machines is not as simple a task as it was to develop codes for successive classic supercomputers. The difficulty arises from the considerable differences in the computing models that exist between the two types of machine and results in the programming of multicomputers to be widely acknowledged as a difficult, time consuming and error-prone task. Nevertheless, unless parallel R-matrix computation is realised, important theoretical and experimental atomic physics research will continue to be hindered. This thesis describes work that was undertaken in
The numerical parallel computing of photon transport
International Nuclear Information System (INIS)
Huang Qingnan; Liang Xiaoguang; Zhang Lifa
1998-12-01
The parallel computing of photon transport is investigated, the parallel algorithm and the parallelization of programs on parallel computers both with shared memory and with distributed memory are discussed. By analyzing the inherent law of the mathematics and physics model of photon transport according to the structure feature of parallel computers, using the strategy of 'to divide and conquer', adjusting the algorithm structure of the program, dissolving the data relationship, finding parallel liable ingredients and creating large grain parallel subtasks, the sequential computing of photon transport into is efficiently transformed into parallel and vector computing. The program was run on various HP parallel computers such as the HY-1 (PVP), the Challenge (SMP) and the YH-3 (MPP) and very good parallel speedup has been gotten
Automatic Parallelization Tool: Classification of Program Code for Parallel Computing
Directory of Open Access Journals (Sweden)
Mustafa Basthikodi
2016-04-01
Full Text Available Performance growth of single-core processors has come to a halt in the past decade, but was re-enabled by the introduction of parallelism in processors. Multicore frameworks along with Graphical Processing Units empowered to enhance parallelism broadly. Couples of compilers are updated to developing challenges forsynchronization and threading issues. Appropriate program and algorithm classifications will have advantage to a great extent to the group of software engineers to get opportunities for effective parallelization. In present work we investigated current species for classification of algorithms, in that related work on classification is discussed along with the comparison of issues that challenges the classification. The set of algorithms are chosen which matches the structure with different issues and perform given task. We have tested these algorithms utilizing existing automatic species extraction toolsalong with Bones compiler. We have added functionalities to existing tool, providing a more detailed characterization. The contributions of our work include support for pointer arithmetic, conditional and incremental statements, user defined types, constants and mathematical functions. With this, we can retain significant data which is not captured by original speciesof algorithms. We executed new theories into the device, empowering automatic characterization of program code.
Structural synthesis of parallel robots
Gogu, Grigore
This book represents the fifth part of a larger work dedicated to the structural synthesis of parallel robots. The originality of this work resides in the fact that it combines new formulae for mobility, connectivity, redundancy and overconstraints with evolutionary morphology in a unified structural synthesis approach that yields interesting and innovative solutions for parallel robotic manipulators. This is the first book on robotics that presents solutions for coupled, decoupled, uncoupled, fully-isotropic and maximally regular robotic manipulators with Schönflies motions systematically generated by using the structural synthesis approach proposed in Part 1. Overconstrained non-redundant/overactuated/redundantly actuated solutions with simple/complex limbs are proposed. Many solutions are presented here for the first time in the literature. The author had to make a difficult and challenging choice between protecting these solutions through patents and releasing them directly into the public domain. T...
GPU Parallel Bundle Block Adjustment
Directory of Open Access Journals (Sweden)
ZHENG Maoteng
2017-09-01
Full Text Available To deal with massive data in photogrammetry, we introduce the GPU parallel computing technology. The preconditioned conjugate gradient and inexact Newton method are also applied to decrease the iteration times while solving the normal equation. A brand new workflow of bundle adjustment is developed to utilize GPU parallel computing technology. Our method can avoid the storage and inversion of the big normal matrix, and compute the normal matrix in real time. The proposed method can not only largely decrease the memory requirement of normal matrix, but also largely improve the efficiency of bundle adjustment. It also achieves the same accuracy as the conventional method. Preliminary experiment results show that the bundle adjustment of a dataset with about 4500 images and 9 million image points can be done in only 1.5 minutes while achieving sub-pixel accuracy.
A tandem parallel plate analyzer
International Nuclear Information System (INIS)
Hamada, Y.; Fujisawa, A.; Iguchi, H.; Nishizawa, A.; Kawasumi, Y.
1996-11-01
By a new modification of a parallel plate analyzer the second-order focus is obtained in an arbitrary injection angle. This kind of an analyzer with a small injection angle will have an advantage of small operational voltage, compared to the Proca and Green analyzer where the injection angle is 30 degrees. Thus, the newly proposed analyzer will be very useful for the precise energy measurement of high energy particles in MeV range. (author)
International Nuclear Information System (INIS)
Gus'kov, B.N.; Kalinnikov, V.A.; Krastev, V.R.; Maksimov, A.N.; Nikityuk, N.M.
1985-01-01
This paper describes a high-speed parallel counter that contains 31 inputs and 15 outputs and is implemented by integrated circuits of series 500. The counter is designed for fast sampling of events according to the number of particles that pass simultaneously through the hodoscopic plane of the detector. The minimum delay of the output signals relative to the input is 43 nsec. The duration of the output signals can be varied from 75 to 120 nsec
An anthropologist in parallel structure
Directory of Open Access Journals (Sweden)
Noelle Molé Liston
2016-08-01
Full Text Available The essay examines the parallels between Molé Liston’s studies on labor and precarity in Italy and the United States’ anthropology job market. Probing the way economic shift reshaped the field of anthropology of Europe in the late 2000s, the piece explores how the neoliberalization of the American academy increased the value in studying the hardships and daily lives of non-western populations in Europe.
Combinatorics of spreads and parallelisms
Johnson, Norman
2010-01-01
Partitions of Vector Spaces Quasi-Subgeometry Partitions Finite Focal-SpreadsGeneralizing André SpreadsThe Going Up Construction for Focal-SpreadsSubgeometry Partitions Subgeometry and Quasi-Subgeometry Partitions Subgeometries from Focal-SpreadsExtended André SubgeometriesKantor's Flag-Transitive DesignsMaximal Additive Partial SpreadsSubplane Covered Nets and Baer Groups Partial Desarguesian t-Parallelisms Direct Products of Affine PlanesJha-Johnson SL(2,
New algorithms for parallel MRI
International Nuclear Information System (INIS)
Anzengruber, S; Ramlau, R; Bauer, F; Leitao, A
2008-01-01
Magnetic Resonance Imaging with parallel data acquisition requires algorithms for reconstructing the patient's image from a small number of measured lines of the Fourier domain (k-space). In contrast to well-known algorithms like SENSE and GRAPPA and its flavors we consider the problem as a non-linear inverse problem. However, in order to avoid cost intensive derivatives we will use Landweber-Kaczmarz iteration and in order to improve the overall results some additional sparsity constraints.
Wakefield calculations on parallel computers
International Nuclear Information System (INIS)
Schoessow, P.
1990-01-01
The use of parallelism in the solution of wakefield problems is illustrated for two different computer architectures (SIMD and MIMD). Results are given for finite difference codes which have been implemented on a Connection Machine and an Alliant FX/8 and which are used to compute wakefields in dielectric loaded structures. Benchmarks on code performance are presented for both cases. 4 refs., 3 figs., 2 tabs
Aspects of computation on asynchronous parallel processors
International Nuclear Information System (INIS)
Wright, M.
1989-01-01
The increasing availability of asynchronous parallel processors has provided opportunities for original and useful work in scientific computing. However, the field of parallel computing is still in a highly volatile state, and researchers display a wide range of opinion about many fundamental questions such as models of parallelism, approaches for detecting and analyzing parallelism of algorithms, and tools that allow software developers and users to make effective use of diverse forms of complex hardware. This volume collects the work of researchers specializing in different aspects of parallel computing, who met to discuss the framework and the mechanics of numerical computing. The far-reaching impact of high-performance asynchronous systems is reflected in the wide variety of topics, which include scientific applications (e.g. linear algebra, lattice gauge simulation, ordinary and partial differential equations), models of parallelism, parallel language features, task scheduling, automatic parallelization techniques, tools for algorithm development in parallel environments, and system design issues
Parallel processing of genomics data
Agapito, Giuseppe; Guzzi, Pietro Hiram; Cannataro, Mario
2016-10-01
The availability of high-throughput experimental platforms for the analysis of biological samples, such as mass spectrometry, microarrays and Next Generation Sequencing, have made possible to analyze a whole genome in a single experiment. Such platforms produce an enormous volume of data per single experiment, thus the analysis of this enormous flow of data poses several challenges in term of data storage, preprocessing, and analysis. To face those issues, efficient, possibly parallel, bioinformatics software needs to be used to preprocess and analyze data, for instance to highlight genetic variation associated with complex diseases. In this paper we present a parallel algorithm for the parallel preprocessing and statistical analysis of genomics data, able to face high dimension of data and resulting in good response time. The proposed system is able to find statistically significant biological markers able to discriminate classes of patients that respond to drugs in different ways. Experiments performed on real and synthetic genomic datasets show good speed-up and scalability.
Overview of the Force Scientific Parallel Language
Directory of Open Access Journals (Sweden)
Gita Alaghband
1994-01-01
Full Text Available The Force parallel programming language designed for large-scale shared-memory multiprocessors is presented. The language provides a number of parallel constructs as extensions to the ordinary Fortran language and is implemented as a two-level macro preprocessor to support portability across shared memory multiprocessors. The global parallelism model on which the Force is based provides a powerful parallel language. The parallel constructs, generic synchronization, and freedom from process management supported by the Force has resulted in structured parallel programs that are ported to the many multiprocessors on which the Force is implemented. Two new parallel constructs for looping and functional decomposition are discussed. Several programming examples to illustrate some parallel programming approaches using the Force are also presented.
Automatic Loop Parallelization via Compiler Guided Refactoring
DEFF Research Database (Denmark)
Larsen, Per; Ladelsky, Razya; Lidman, Jacob
For many parallel applications, performance relies not on instruction-level parallelism, but on loop-level parallelism. Unfortunately, many modern applications are written in ways that obstruct automatic loop parallelization. Since we cannot identify sufficient parallelization opportunities...... for these codes in a static, off-line compiler, we developed an interactive compilation feedback system that guides the programmer in iteratively modifying application source, thereby improving the compiler’s ability to generate loop-parallel code. We use this compilation system to modify two sequential...... benchmarks, finding that the code parallelized in this way runs up to 8.3 times faster on an octo-core Intel Xeon 5570 system and up to 12.5 times faster on a quad-core IBM POWER6 system. Benchmark performance varies significantly between the systems. This suggests that semi-automatic parallelization should...
Parallel kinematics type, kinematics, and optimal design
Liu, Xin-Jun
2014-01-01
Parallel Kinematics- Type, Kinematics, and Optimal Design presents the results of 15 year's research on parallel mechanisms and parallel kinematics machines. This book covers the systematic classification of parallel mechanisms (PMs) as well as providing a large number of mechanical architectures of PMs available for use in practical applications. It focuses on the kinematic design of parallel robots. One successful application of parallel mechanisms in the field of machine tools, which is also called parallel kinematics machines, has been the emerging trend in advanced machine tools. The book describes not only the main aspects and important topics in parallel kinematics, but also references novel concepts and approaches, i.e. type synthesis based on evolution, performance evaluation and optimization based on screw theory, singularity model taking into account motion and force transmissibility, and others. This book is intended for researchers, scientists, engineers and postgraduates or above with interes...
Applied Parallel Computing Industrial Computation and Optimization
DEFF Research Database (Denmark)
Madsen, Kaj; NA NA NA Olesen, Dorte
Proceedings and the Third International Workshop on Applied Parallel Computing in Industrial Problems and Optimization (PARA96)......Proceedings and the Third International Workshop on Applied Parallel Computing in Industrial Problems and Optimization (PARA96)...
Parallel algorithms and cluster computing
Hoffmann, Karl Heinz
2007-01-01
This book presents major advances in high performance computing as well as major advances due to high performance computing. It contains a collection of papers in which results achieved in the collaboration of scientists from computer science, mathematics, physics, and mechanical engineering are presented. From the science problems to the mathematical algorithms and on to the effective implementation of these algorithms on massively parallel and cluster computers we present state-of-the-art methods and technology as well as exemplary results in these fields. This book shows that problems which seem superficially distinct become intimately connected on a computational level.
Parallel computation of rotating flows
DEFF Research Database (Denmark)
Lundin, Lars Kristian; Barker, Vincent A.; Sørensen, Jens Nørkær
1999-01-01
This paper deals with the simulation of 3‐D rotating flows based on the velocity‐vorticity formulation of the Navier‐Stokes equations in cylindrical coordinates. The governing equations are discretized by a finite difference method. The solution is advanced to a new time level by a two‐step process...... is that of solving a singular, large, sparse, over‐determined linear system of equations, and the iterative method CGLS is applied for this purpose. We discuss some of the mathematical and numerical aspects of this procedure and report on the performance of our software on a wide range of parallel computers. Darbe...
The parallel volume at large distances
DEFF Research Database (Denmark)
Kampf, Jürgen
In this paper we examine the asymptotic behavior of the parallel volume of planar non-convex bodies as the distance tends to infinity. We show that the difference between the parallel volume of the convex hull of a body and the parallel volume of the body itself tends to . This yields a new proof...... for the fact that a planar body can only have polynomial parallel volume, if it is convex. Extensions to Minkowski spaces and random sets are also discussed....
The parallel volume at large distances
DEFF Research Database (Denmark)
Kampf, Jürgen
In this paper we examine the asymptotic behavior of the parallel volume of planar non-convex bodies as the distance tends to infinity. We show that the difference between the parallel volume of the convex hull of a body and the parallel volume of the body itself tends to 0. This yields a new proof...... for the fact that a planar body can only have polynomial parallel volume, if it is convex. Extensions to Minkowski spaces and random sets are also discussed....
A Parallel Approach to Fractal Image Compression
Directory of Open Access Journals (Sweden)
Lubomir Dedera
2004-01-01
Full Text Available The paper deals with a parallel approach to coding and decoding algorithms in fractal image compressionand presents experimental results comparing sequential and parallel algorithms from the point of view of achieved bothcoding and decoding time and effectiveness of parallelization.
Parallel Computing Using Web Servers and "Servlets".
Lo, Alfred; Bloor, Chris; Choi, Y. K.
2000-01-01
Describes parallel computing and presents inexpensive ways to implement a virtual parallel computer with multiple Web servers. Highlights include performance measurement of parallel systems; models for using Java and intranet technology including single server, multiple clients and multiple servers, single client; and a comparison of CGI (common…
An Introduction to Parallel Computation R
Indian Academy of Sciences (India)
How are they programmed? This article provides an introduction. A parallel computer is a network of processors built for ... and have been used to solve problems much faster than a single ... in parallel computer design is to select an organization which ..... The most ambitious approach to parallel computing is to develop.
Comparison of parallel viscosity with neoclassical theory
International Nuclear Information System (INIS)
Ida, K.; Nakajima, N.
1996-04-01
Toroidal rotation profiles are measured with charge exchange spectroscopy for the plasma heated with tangential NBI in CHS heliotron/torsatron device to estimate parallel viscosity. The parallel viscosity derived from the toroidal rotation velocity shows good agreement with the neoclassical parallel viscosity plus the perpendicular viscosity. (μ perpendicular = 2 m 2 /s). (author)
Advances in randomized parallel computing
Rajasekaran, Sanguthevar
1999-01-01
The technique of randomization has been employed to solve numerous prob lems of computing both sequentially and in parallel. Examples of randomized algorithms that are asymptotically better than their deterministic counterparts in solving various fundamental problems abound. Randomized algorithms have the advantages of simplicity and better performance both in theory and often in practice. This book is a collection of articles written by renowned experts in the area of randomized parallel computing. A brief introduction to randomized algorithms In the aflalysis of algorithms, at least three different measures of performance can be used: the best case, the worst case, and the average case. Often, the average case run time of an algorithm is much smaller than the worst case. 2 For instance, the worst case run time of Hoare's quicksort is O(n ), whereas its average case run time is only O( n log n). The average case analysis is conducted with an assumption on the input space. The assumption made to arrive at t...
Xyce parallel electronic simulator design.
Energy Technology Data Exchange (ETDEWEB)
Thornquist, Heidi K.; Rankin, Eric Lamont; Mei, Ting; Schiek, Richard Louis; Keiter, Eric Richard; Russo, Thomas V.
2010-09-01
This document is the Xyce Circuit Simulator developer guide. Xyce has been designed from the 'ground up' to be a SPICE-compatible, distributed memory parallel circuit simulator. While it is in many respects a research code, Xyce is intended to be a production simulator. As such, having software quality engineering (SQE) procedures in place to insure a high level of code quality and robustness are essential. Version control, issue tracking customer support, C++ style guildlines and the Xyce release process are all described. The Xyce Parallel Electronic Simulator has been under development at Sandia since 1999. Historically, Xyce has mostly been funded by ASC, the original focus of Xyce development has primarily been related to circuits for nuclear weapons. However, this has not been the only focus and it is expected that the project will diversify. Like many ASC projects, Xyce is a group development effort, which involves a number of researchers, engineers, scientists, mathmaticians and computer scientists. In addition to diversity of background, it is to be expected on long term projects for there to be a certain amount of staff turnover, as people move on to different projects. As a result, it is very important that the project maintain high software quality standards. The point of this document is to formally document a number of the software quality practices followed by the Xyce team in one place. Also, it is hoped that this document will be a good source of information for new developers.
PDDP, A Data Parallel Programming Model
Directory of Open Access Journals (Sweden)
Karen H. Warren
1996-01-01
Full Text Available PDDP, the parallel data distribution preprocessor, is a data parallel programming model for distributed memory parallel computers. PDDP implements high-performance Fortran-compatible data distribution directives and parallelism expressed by the use of Fortran 90 array syntax, the FORALL statement, and the WHERE construct. Distributed data objects belong to a global name space; other data objects are treated as local and replicated on each processor. PDDP allows the user to program in a shared memory style and generates codes that are portable to a variety of parallel machines. For interprocessor communication, PDDP uses the fastest communication primitives on each platform.
Parallelization of quantum molecular dynamics simulation code
International Nuclear Information System (INIS)
Kato, Kaori; Kunugi, Tomoaki; Shibahara, Masahiko; Kotake, Susumu
1998-02-01
A quantum molecular dynamics simulation code has been developed for the analysis of the thermalization of photon energies in the molecule or materials in Kansai Research Establishment. The simulation code is parallelized for both Scalar massively parallel computer (Intel Paragon XP/S75) and Vector parallel computer (Fujitsu VPP300/12). Scalable speed-up has been obtained with a distribution to processor units by division of particle group in both parallel computers. As a result of distribution to processor units not only by particle group but also by the particles calculation that is constructed with fine calculations, highly parallelization performance is achieved in Intel Paragon XP/S75. (author)
Implementation and performance of parallelized elegant
International Nuclear Information System (INIS)
Wang, Y.; Borland, M.
2008-01-01
The program elegant is widely used for design and modeling of linacs for free-electron lasers and energy recovery linacs, as well as storage rings and other applications. As part of a multi-year effort, we have parallelized many aspects of the code, including single-particle dynamics, wakefields, and coherent synchrotron radiation. We report on the approach used for gradual parallelization, which proved very beneficial in getting parallel features into the hands of users quickly. We also report details of parallelization of collective effects. Finally, we discuss performance of the parallelized code in various applications.
Parallelization of 2-D lattice Boltzmann codes
International Nuclear Information System (INIS)
Suzuki, Soichiro; Kaburaki, Hideo; Yokokawa, Mitsuo.
1996-03-01
Lattice Boltzmann (LB) codes to simulate two dimensional fluid flow are developed on vector parallel computer Fujitsu VPP500 and scalar parallel computer Intel Paragon XP/S. While a 2-D domain decomposition method is used for the scalar parallel LB code, a 1-D domain decomposition method is used for the vector parallel LB code to be vectorized along with the axis perpendicular to the direction of the decomposition. High parallel efficiency of 95.1% by the vector parallel calculation on 16 processors with 1152x1152 grid and 88.6% by the scalar parallel calculation on 100 processors with 800x800 grid are obtained. The performance models are developed to analyze the performance of the LB codes. It is shown by our performance models that the execution speed of the vector parallel code is about one hundred times faster than that of the scalar parallel code with the same number of processors up to 100 processors. We also analyze the scalability in keeping the available memory size of one processor element at maximum. Our performance model predicts that the execution time of the vector parallel code increases about 3% on 500 processors. Although the 1-D domain decomposition method has in general a drawback in the interprocessor communication, the vector parallel LB code is still suitable for the large scale and/or high resolution simulations. (author)
Parallelization of 2-D lattice Boltzmann codes
Energy Technology Data Exchange (ETDEWEB)
Suzuki, Soichiro; Kaburaki, Hideo; Yokokawa, Mitsuo
1996-03-01
Lattice Boltzmann (LB) codes to simulate two dimensional fluid flow are developed on vector parallel computer Fujitsu VPP500 and scalar parallel computer Intel Paragon XP/S. While a 2-D domain decomposition method is used for the scalar parallel LB code, a 1-D domain decomposition method is used for the vector parallel LB code to be vectorized along with the axis perpendicular to the direction of the decomposition. High parallel efficiency of 95.1% by the vector parallel calculation on 16 processors with 1152x1152 grid and 88.6% by the scalar parallel calculation on 100 processors with 800x800 grid are obtained. The performance models are developed to analyze the performance of the LB codes. It is shown by our performance models that the execution speed of the vector parallel code is about one hundred times faster than that of the scalar parallel code with the same number of processors up to 100 processors. We also analyze the scalability in keeping the available memory size of one processor element at maximum. Our performance model predicts that the execution time of the vector parallel code increases about 3% on 500 processors. Although the 1-D domain decomposition method has in general a drawback in the interprocessor communication, the vector parallel LB code is still suitable for the large scale and/or high resolution simulations. (author).
Arkin, Ethem; Tekinerdogan, Bedir; Imre, Kayhan M.
2017-01-01
The need for high-performance computing together with the increasing trend from single processor to parallel computer architectures has leveraged the adoption of parallel computing. To benefit from parallel computing power, usually parallel algorithms are defined that can be mapped and executed
Experiences in Data-Parallel Programming
Directory of Open Access Journals (Sweden)
Terry W. Clark
1997-01-01
Full Text Available To efficiently parallelize a scientific application with a data-parallel compiler requires certain structural properties in the source program, and conversely, the absence of others. A recent parallelization effort of ours reinforced this observation and motivated this correspondence. Specifically, we have transformed a Fortran 77 version of GROMOS, a popular dusty-deck program for molecular dynamics, into Fortran D, a data-parallel dialect of Fortran. During this transformation we have encountered a number of difficulties that probably are neither limited to this particular application nor do they seem likely to be addressed by improved compiler technology in the near future. Our experience with GROMOS suggests a number of points to keep in mind when developing software that may at some time in its life cycle be parallelized with a data-parallel compiler. This note presents some guidelines for engineering data-parallel applications that are compatible with Fortran D or High Performance Fortran compilers.
Streaming for Functional Data-Parallel Languages
DEFF Research Database (Denmark)
Madsen, Frederik Meisner
In this thesis, we investigate streaming as a general solution to the space inefficiency commonly found in functional data-parallel programming languages. The data-parallel paradigm maps well to parallel SIMD-style hardware. However, the traditional fully materializing execution strategy...... by extending two existing data-parallel languages: NESL and Accelerate. In the extensions we map bulk operations to data-parallel streams that can evaluate fully sequential, fully parallel or anything in between. By a dataflow, piecewise parallel execution strategy, the runtime system can adjust to any target...... flattening necessitates all sub-computations to materialize at the same time. For example, naive n by n matrix multiplication requires n^3 space in NESL because the algorithm contains n^3 independent scalar multiplications. For large values of n, this is completely unacceptable. We address the problem...
Dade County Public Schools, Miami, FL.
This instructional package contains three animal life units developed for the Dade County Florida Quinmester Program. "The World of Animals" is a survey course of the animal kingdom (excluding man) and involves the students in many laboratory investigations and group activities. Typical animals of South Florida and unusual animals of the…
Massively parallel diffuse optical tomography
Energy Technology Data Exchange (ETDEWEB)
Sandusky, John V.; Pitts, Todd A.
2017-09-05
Diffuse optical tomography systems and methods are described herein. In a general embodiment, the diffuse optical tomography system comprises a plurality of sensor heads, the plurality of sensor heads comprising respective optical emitter systems and respective sensor systems. A sensor head in the plurality of sensors heads is caused to act as an illuminator, such that its optical emitter system transmits a transillumination beam towards a portion of a sample. Other sensor heads in the plurality of sensor heads act as observers, detecting portions of the transillumination beam that radiate from the sample in the fields of view of the respective sensory systems of the other sensor heads. Thus, sensor heads in the plurality of sensors heads generate sensor data in parallel.
Embodied and Distributed Parallel DJing.
Cappelen, Birgitta; Andersson, Anders-Petter
2016-01-01
Everyone has a right to take part in cultural events and activities, such as music performances and music making. Enforcing that right, within Universal Design, is often limited to a focus on physical access to public areas, hearing aids etc., or groups of persons with special needs performing in traditional ways. The latter might be people with disabilities, being musicians playing traditional instruments, or actors playing theatre. In this paper we focus on the innovative potential of including people with special needs, when creating new cultural activities. In our project RHYME our goal was to create health promoting activities for children with severe disabilities, by developing new musical and multimedia technologies. Because of the users' extreme demands and rich contribution, we ended up creating both a new genre of musical instruments and a new art form. We call this new art form Embodied and Distributed Parallel DJing, and the new genre of instruments for Empowering Multi-Sensorial Things.
Device for balancing parallel strings
Mashikian, Matthew S.
1985-01-01
A battery plant is described which features magnetic circuit means in association with each of the battery strings in the battery plant for balancing the electrical current flow through the battery strings by equalizing the voltage across each of the battery strings. Each of the magnetic circuit means generally comprises means for sensing the electrical current flow through one of the battery strings, and a saturable reactor having a main winding connected electrically in series with the battery string, a bias winding connected to a source of alternating current and a control winding connected to a variable source of direct current controlled by the sensing means. Each of the battery strings is formed by a plurality of batteries connected electrically in series, and these battery strings are connected electrically in parallel across common bus conductors.
Linear parallel processing machines I
Energy Technology Data Exchange (ETDEWEB)
Von Kunze, M
1984-01-01
As is well-known, non-context-free grammars for generating formal languages happen to be of a certain intrinsic computational power that presents serious difficulties to efficient parsing algorithms as well as for the development of an algebraic theory of contextsensitive languages. In this paper a framework is given for the investigation of the computational power of formal grammars, in order to start a thorough analysis of grammars consisting of derivation rules of the form aB ..-->.. A/sub 1/ ... A /sub n/ b/sub 1/...b /sub m/ . These grammars may be thought of as automata by means of parallel processing, if one considers the variables as operators acting on the terminals while reading them right-to-left. This kind of automata and their 2-dimensional programming language prove to be useful by allowing a concise linear-time algorithm for integer multiplication. Linear parallel processing machines (LP-machines) which are, in their general form, equivalent to Turing machines, include finite automata and pushdown automata (with states encoded) as special cases. Bounded LP-machines yield deterministic accepting automata for nondeterministic contextfree languages, and they define an interesting class of contextsensitive languages. A characterization of this class in terms of generating grammars is established by using derivation trees with crossings as a helpful tool. From the algebraic point of view, deterministic LP-machines are effectively represented semigroups with distinguished subsets. Concerning the dualism between generating and accepting devices of formal languages within the algebraic setting, the concept of accepting automata turns out to reduce essentially to embeddability in an effectively represented extension monoid, even in the classical cases.
Parallel computing in enterprise modeling.
Energy Technology Data Exchange (ETDEWEB)
Goldsby, Michael E.; Armstrong, Robert C.; Shneider, Max S.; Vanderveen, Keith; Ray, Jaideep; Heath, Zach; Allan, Benjamin A.
2008-08-01
This report presents the results of our efforts to apply high-performance computing to entity-based simulations with a multi-use plugin for parallel computing. We use the term 'Entity-based simulation' to describe a class of simulation which includes both discrete event simulation and agent based simulation. What simulations of this class share, and what differs from more traditional models, is that the result sought is emergent from a large number of contributing entities. Logistic, economic and social simulations are members of this class where things or people are organized or self-organize to produce a solution. Entity-based problems never have an a priori ergodic principle that will greatly simplify calculations. Because the results of entity-based simulations can only be realized at scale, scalable computing is de rigueur for large problems. Having said that, the absence of a spatial organizing principal makes the decomposition of the problem onto processors problematic. In addition, practitioners in this domain commonly use the Java programming language which presents its own problems in a high-performance setting. The plugin we have developed, called the Parallel Particle Data Model, overcomes both of these obstacles and is now being used by two Sandia frameworks: the Decision Analysis Center, and the Seldon social simulation facility. While the ability to engage U.S.-sized problems is now available to the Decision Analysis Center, this plugin is central to the success of Seldon. Because Seldon relies on computationally intensive cognitive sub-models, this work is necessary to achieve the scale necessary for realistic results. With the recent upheavals in the financial markets, and the inscrutability of terrorist activity, this simulation domain will likely need a capability with ever greater fidelity. High-performance computing will play an important part in enabling that greater fidelity.
Compiler Technology for Parallel Scientific Computation
Directory of Open Access Journals (Sweden)
Can Özturan
1994-01-01
Full Text Available There is a need for compiler technology that, given the source program, will generate efficient parallel codes for different architectures with minimal user involvement. Parallel computation is becoming indispensable in solving large-scale problems in science and engineering. Yet, the use of parallel computation is limited by the high costs of developing the needed software. To overcome this difficulty we advocate a comprehensive approach to the development of scalable architecture-independent software for scientific computation based on our experience with equational programming language (EPL. Our approach is based on a program decomposition, parallel code synthesis, and run-time support for parallel scientific computation. The program decomposition is guided by the source program annotations provided by the user. The synthesis of parallel code is based on configurations that describe the overall computation as a set of interacting components. Run-time support is provided by the compiler-generated code that redistributes computation and data during object program execution. The generated parallel code is optimized using techniques of data alignment, operator placement, wavefront determination, and memory optimization. In this article we discuss annotations, configurations, parallel code generation, and run-time support suitable for parallel programs written in the functional parallel programming language EPL and in Fortran.
Computer-Aided Parallelizer and Optimizer
Jin, Haoqiang
2011-01-01
The Computer-Aided Parallelizer and Optimizer (CAPO) automates the insertion of compiler directives (see figure) to facilitate parallel processing on Shared Memory Parallel (SMP) machines. While CAPO currently is integrated seamlessly into CAPTools (developed at the University of Greenwich, now marketed as ParaWise), CAPO was independently developed at Ames Research Center as one of the components for the Legacy Code Modernization (LCM) project. The current version takes serial FORTRAN programs, performs interprocedural data dependence analysis, and generates OpenMP directives. Due to the widely supported OpenMP standard, the generated OpenMP codes have the potential to run on a wide range of SMP machines. CAPO relies on accurate interprocedural data dependence information currently provided by CAPTools. Compiler directives are generated through identification of parallel loops in the outermost level, construction of parallel regions around parallel loops and optimization of parallel regions, and insertion of directives with automatic identification of private, reduction, induction, and shared variables. Attempts also have been made to identify potential pipeline parallelism (implemented with point-to-point synchronization). Although directives are generated automatically, user interaction with the tool is still important for producing good parallel codes. A comprehensive graphical user interface is included for users to interact with the parallelization process.
Parallel processing for fluid dynamics applications
International Nuclear Information System (INIS)
Johnson, G.M.
1989-01-01
The impact of parallel processing on computational science and, in particular, on computational fluid dynamics is growing rapidly. In this paper, particular emphasis is given to developments which have occurred within the past two years. Parallel processing is defined and the reasons for its importance in high-performance computing are reviewed. Parallel computer architectures are classified according to the number and power of their processing units, their memory, and the nature of their connection scheme. Architectures which show promise for fluid dynamics applications are emphasized. Fluid dynamics problems are examined for parallelism inherent at the physical level. CFD algorithms and their mappings onto parallel architectures are discussed. Several example are presented to document the performance of fluid dynamics applications on present-generation parallel processing devices
Design considerations for parallel graphics libraries
Crockett, Thomas W.
1994-01-01
Applications which run on parallel supercomputers are often characterized by massive datasets. Converting these vast collections of numbers to visual form has proven to be a powerful aid to comprehension. For a variety of reasons, it may be desirable to provide this visual feedback at runtime. One way to accomplish this is to exploit the available parallelism to perform graphics operations in place. In order to do this, we need appropriate parallel rendering algorithms and library interfaces. This paper provides a tutorial introduction to some of the issues which arise in designing parallel graphics libraries and their underlying rendering algorithms. The focus is on polygon rendering for distributed memory message-passing systems. We illustrate our discussion with examples from PGL, a parallel graphics library which has been developed on the Intel family of parallel systems.
Synchronization Techniques in Parallel Discrete Event Simulation
Lindén, Jonatan
2018-01-01
Discrete event simulation is an important tool for evaluating system models in many fields of science and engineering. To improve the performance of large-scale discrete event simulations, several techniques to parallelize discrete event simulation have been developed. In parallel discrete event simulation, the work of a single discrete event simulation is distributed over multiple processing elements. A key challenge in parallel discrete event simulation is to ensure that causally dependent ...
Parallel processing from applications to systems
Moldovan, Dan I
1993-01-01
This text provides one of the broadest presentations of parallelprocessing available, including the structure of parallelprocessors and parallel algorithms. The emphasis is on mappingalgorithms to highly parallel computers, with extensive coverage ofarray and multiprocessor architectures. Early chapters provideinsightful coverage on the analysis of parallel algorithms andprogram transformations, effectively integrating a variety ofmaterial previously scattered throughout the literature. Theory andpractice are well balanced across diverse topics in this concisepresentation. For exceptional cla
Parallel processing for artificial intelligence 1
Kanal, LN; Kumar, V; Suttner, CB
1994-01-01
Parallel processing for AI problems is of great current interest because of its potential for alleviating the computational demands of AI procedures. The articles in this book consider parallel processing for problems in several areas of artificial intelligence: image processing, knowledge representation in semantic networks, production rules, mechanization of logic, constraint satisfaction, parsing of natural language, data filtering and data mining. The publication is divided into six sections. The first addresses parallel computing for processing and understanding images. The second discus
A survey of parallel multigrid algorithms
Chan, Tony F.; Tuminaro, Ray S.
1987-01-01
A typical multigrid algorithm applied to well-behaved linear-elliptic partial-differential equations (PDEs) is described. Criteria for designing and evaluating parallel algorithms are presented. Before evaluating the performance of some parallel multigrid algorithms, consideration is given to some theoretical complexity results for solving PDEs in parallel and for executing the multigrid algorithm. The effect of mapping and load imbalance on the partial efficiency of the algorithm is studied.
Refinement of Parallel and Reactive Programs
Back, R. J. R.
1992-01-01
We show how to apply the refinement calculus to stepwise refinement of parallel and reactive programs. We use action systems as our basic program model. Action systems are sequential programs which can be implemented in a parallel fashion. Hence refinement calculus methods, originally developed for sequential programs, carry over to the derivation of parallel programs. Refinement of reactive programs is handled by data refinement techniques originally developed for the sequential refinement c...
Parallel Prediction of Stock Volatility
Directory of Open Access Journals (Sweden)
Priscilla Jenq
2017-10-01
Full Text Available Volatility is a measurement of the risk of financial products. A stock will hit new highs and lows over time and if these highs and lows fluctuate wildly, then it is considered a high volatile stock. Such a stock is considered riskier than a stock whose volatility is low. Although highly volatile stocks are riskier, the returns that they generate for investors can be quite high. Of course, with a riskier stock also comes the chance of losing money and yielding negative returns. In this project, we will use historic stock data to help us forecast volatility. Since the financial industry usually uses S&P 500 as the indicator of the market, we will use S&P 500 as a benchmark to compute the risk. We will also use artificial neural networks as a tool to predict volatilities for a specific time frame that will be set when we configure this neural network. There have been reports that neural networks with different numbers of layers and different numbers of hidden nodes may generate varying results. In fact, we may be able to find the best configuration of a neural network to compute volatilities. We will implement this system using the parallel approach. The system can be used as a tool for investors to allocating and hedging assets.
Vectoring of parallel synthetic jets
Berk, Tim; Ganapathisubramani, Bharathram; Gomit, Guillaume
2015-11-01
A pair of parallel synthetic jets can be vectored by applying a phase difference between the two driving signals. The resulting jet can be merged or bifurcated and either vectored towards the actuator leading in phase or the actuator lagging in phase. In the present study, the influence of phase difference and Strouhal number on the vectoring behaviour is examined experimentally. Phase-locked vorticity fields, measured using Particle Image Velocimetry (PIV), are used to track vortex pairs. The physical mechanisms that explain the diversity in vectoring behaviour are observed based on the vortex trajectories. For a fixed phase difference, the vectoring behaviour is shown to be primarily influenced by pinch-off time of vortex rings generated by the synthetic jets. Beyond a certain formation number, the pinch-off timescale becomes invariant. In this region, the vectoring behaviour is determined by the distance between subsequent vortex rings. We acknowledge the financial support from the European Research Council (ERC grant agreement no. 277472).
A Soft Parallel Kinematic Mechanism.
White, Edward L; Case, Jennifer C; Kramer-Bottiglio, Rebecca
2018-02-01
In this article, we describe a novel holonomic soft robotic structure based on a parallel kinematic mechanism. The design is based on the Stewart platform, which uses six sensors and actuators to achieve full six-degree-of-freedom motion. Our design is much less complex than a traditional platform, since it replaces the 12 spherical and universal joints found in a traditional Stewart platform with a single highly deformable elastomer body and flexible actuators. This reduces the total number of parts in the system and simplifies the assembly process. Actuation is achieved through coiled-shape memory alloy actuators. State observation and feedback is accomplished through the use of capacitive elastomer strain gauges. The main structural element is an elastomer joint that provides antagonistic force. We report the response of the actuators and sensors individually, then report the response of the complete assembly. We show that the completed robotic system is able to achieve full position control, and we discuss the limitations associated with using responsive material actuators. We believe that control demonstrated on a single body in this work could be extended to chains of such bodies to create complex soft robots.
Productive Parallel Programming: The PCN Approach
Directory of Open Access Journals (Sweden)
Ian Foster
1992-01-01
Full Text Available We describe the PCN programming system, focusing on those features designed to improve the productivity of scientists and engineers using parallel supercomputers. These features include a simple notation for the concise specification of concurrent algorithms, the ability to incorporate existing Fortran and C code into parallel applications, facilities for reusing parallel program components, a portable toolkit that allows applications to be developed on a workstation or small parallel computer and run unchanged on supercomputers, and integrated debugging and performance analysis tools. We survey representative scientific applications and identify problem classes for which PCN has proved particularly useful.
Prabhat
2014-01-01
Gain Critical Insight into the Parallel I/O EcosystemParallel I/O is an integral component of modern high performance computing (HPC), especially in storing and processing very large datasets to facilitate scientific discovery. Revealing the state of the art in this field, High Performance Parallel I/O draws on insights from leading practitioners, researchers, software architects, developers, and scientists who shed light on the parallel I/O ecosystem.The first part of the book explains how large-scale HPC facilities scope, configure, and operate systems, with an emphasis on choices of I/O har
Parallel, Rapid Diffuse Optical Tomography of Breast
National Research Council Canada - National Science Library
Yodh, Arjun
2001-01-01
During the last year we have experimentally and computationally investigated rapid acquisition and analysis of informationally dense diffuse optical data sets in the parallel plate compressed breast geometry...
Parallel, Rapid Diffuse Optical Tomography of Breast
National Research Council Canada - National Science Library
Yodh, Arjun
2002-01-01
During the last year we have experimentally and computationally investigated rapid acquisition and analysis of informationally dense diffuse optical data sets in the parallel plate compressed breast geometry...
Parallel auto-correlative statistics with VTK.
Energy Technology Data Exchange (ETDEWEB)
Pebay, Philippe Pierre; Bennett, Janine Camille
2013-08-01
This report summarizes existing statistical engines in VTK and presents both the serial and parallel auto-correlative statistics engines. It is a sequel to [PT08, BPRT09b, PT09, BPT09, PT10] which studied the parallel descriptive, correlative, multi-correlative, principal component analysis, contingency, k-means, and order statistics engines. The ease of use of the new parallel auto-correlative statistics engine is illustrated by the means of C++ code snippets and algorithm verification is provided. This report justifies the design of the statistics engines with parallel scalability in mind, and provides scalability and speed-up analysis results for the autocorrelative statistics engine.
Conformal pure radiation with parallel rays
International Nuclear Information System (INIS)
Leistner, Thomas; Paweł Nurowski
2012-01-01
We define pure radiation metrics with parallel rays to be n-dimensional pseudo-Riemannian metrics that admit a parallel null line bundle K and whose Ricci tensor vanishes on vectors that are orthogonal to K. We give necessary conditions in terms of the Weyl, Cotton and Bach tensors for a pseudo-Riemannian metric to be conformal to a pure radiation metric with parallel rays. Then, we derive conditions in terms of the tractor calculus that are equivalent to the existence of a pure radiation metric with parallel rays in a conformal class. We also give analogous results for n-dimensional pseudo-Riemannian pp-waves. (paper)
Compiling Scientific Programs for Scalable Parallel Systems
National Research Council Canada - National Science Library
Kennedy, Ken
2001-01-01
...). The research performed in this project included new techniques for recognizing implicit parallelism in sequential programs, a powerful and precise set-based framework for analysis and transformation...
Parallel thermal radiation transport in two dimensions
International Nuclear Information System (INIS)
Smedley-Stevenson, R.P.; Ball, S.R.
2003-01-01
This paper describes the distributed memory parallel implementation of a deterministic thermal radiation transport algorithm in a 2-dimensional ALE hydrodynamics code. The parallel algorithm consists of a variety of components which are combined in order to produce a state of the art computational capability, capable of solving large thermal radiation transport problems using Blue-Oak, the 3 Tera-Flop MPP (massive parallel processors) computing facility at AWE (United Kingdom). Particular aspects of the parallel algorithm are described together with examples of the performance on some challenging applications. (author)
Parallel Algorithms for the Exascale Era
Energy Technology Data Exchange (ETDEWEB)
Robey, Robert W. [Los Alamos National Laboratory
2016-10-19
New parallel algorithms are needed to reach the Exascale level of parallelism with millions of cores. We look at some of the research developed by students in projects at LANL. The research blends ideas from the early days of computing while weaving in the fresh approach brought by students new to the field of high performance computing. We look at reproducibility of global sums and why it is important to parallel computing. Next we look at how the concept of hashing has led to the development of more scalable algorithms suitable for next-generation parallel computers. Nearly all of this work has been done by undergraduates and published in leading scientific journals.
Parallel thermal radiation transport in two dimensions
Energy Technology Data Exchange (ETDEWEB)
Smedley-Stevenson, R.P.; Ball, S.R. [AWE Aldermaston (United Kingdom)
2003-07-01
This paper describes the distributed memory parallel implementation of a deterministic thermal radiation transport algorithm in a 2-dimensional ALE hydrodynamics code. The parallel algorithm consists of a variety of components which are combined in order to produce a state of the art computational capability, capable of solving large thermal radiation transport problems using Blue-Oak, the 3 Tera-Flop MPP (massive parallel processors) computing facility at AWE (United Kingdom). Particular aspects of the parallel algorithm are described together with examples of the performance on some challenging applications. (author)
Structured Parallel Programming Patterns for Efficient Computation
McCool, Michael; Robison, Arch
2012-01-01
Programming is now parallel programming. Much as structured programming revolutionized traditional serial programming decades ago, a new kind of structured programming, based on patterns, is relevant to parallel programming today. Parallel computing experts and industry insiders Michael McCool, Arch Robison, and James Reinders describe how to design and implement maintainable and efficient parallel algorithms using a pattern-based approach. They present both theory and practice, and give detailed concrete examples using multiple programming models. Examples are primarily given using two of th
Parallel Computing for Brain Simulation.
Pastur-Romay, L A; Porto-Pazos, A B; Cedron, F; Pazos, A
2017-01-01
The human brain is the most complex system in the known universe, it is therefore one of the greatest mysteries. It provides human beings with extraordinary abilities. However, until now it has not been understood yet how and why most of these abilities are produced. For decades, researchers have been trying to make computers reproduce these abilities, focusing on both understanding the nervous system and, on processing data in a more efficient way than before. Their aim is to make computers process information similarly to the brain. Important technological developments and vast multidisciplinary projects have allowed creating the first simulation with a number of neurons similar to that of a human brain. This paper presents an up-to-date review about the main research projects that are trying to simulate and/or emulate the human brain. They employ different types of computational models using parallel computing: digital models, analog models and hybrid models. This review includes the current applications of these works, as well as future trends. It is focused on various works that look for advanced progress in Neuroscience and still others which seek new discoveries in Computer Science (neuromorphic hardware, machine learning techniques). Their most outstanding characteristics are summarized and the latest advances and future plans are presented. In addition, this review points out the importance of considering not only neurons: Computational models of the brain should also include glial cells, given the proven importance of astrocytes in information processing. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
von Davier, Matthias
2016-01-01
This report presents results on a parallel implementation of the expectation-maximization (EM) algorithm for multidimensional latent variable models. The developments presented here are based on code that parallelizes both the E step and the M step of the parallel-E parallel-M algorithm. Examples presented in this report include item response…
The language parallel Pascal and other aspects of the massively parallel processor
Reeves, A. P.; Bruner, J. D.
1982-01-01
A high level language for the Massively Parallel Processor (MPP) was designed. This language, called Parallel Pascal, is described in detail. A description of the language design, a description of the intermediate language, Parallel P-Code, and details for the MPP implementation are included. Formal descriptions of Parallel Pascal and Parallel P-Code are given. A compiler was developed which converts programs in Parallel Pascal into the intermediate Parallel P-Code language. The code generator to complete the compiler for the MPP is being developed independently. A Parallel Pascal to Pascal translator was also developed. The architecture design for a VLSI version of the MPP was completed with a description of fault tolerant interconnection networks. The memory arrangement aspects of the MPP are discussed and a survey of other high level languages is given.
Parallel Boltzmann machines : a mathematical model
Zwietering, P.J.; Aarts, E.H.L.
1991-01-01
A mathematical model is presented for the description of parallel Boltzmann machines. The framework is based on the theory of Markov chains and combines a number of previously known results into one generic model. It is argued that parallel Boltzmann machines maximize a function consisting of a
The convergence of parallel Boltzmann machines
Zwietering, P.J.; Aarts, E.H.L.; Eckmiller, R.; Hartmann, G.; Hauske, G.
1990-01-01
We discuss the main results obtained in a study of a mathematical model of synchronously parallel Boltzmann machines. We present supporting evidence for the conjecture that a synchronously parallel Boltzmann machine maximizes a consensus function that consists of a weighted sum of the regular
Customizable Memory Schemes for Data Parallel Architectures
Gou, C.
2011-01-01
Memory system efficiency is crucial for any processor to achieve high performance, especially in the case of data parallel machines. Processing capabilities of parallel lanes will be wasted, when data requests are not accomplished in a sustainable and timely manner. Irregular vector memory accesses
Parallel Narrative Structure in Paul Harding's "Tinkers"
Çirakli, Mustafa Zeki
2014-01-01
The present paper explores the implications of parallel narrative structure in Paul Harding's "Tinkers" (2009). Besides primarily recounting the two sets of parallel narratives, "Tinkers" also comprises of seemingly unrelated fragments such as excerpts from clock repair manuals and diaries. The main stories, however, told…
Streaming nested data parallelism on multicores
DEFF Research Database (Denmark)
Madsen, Frederik Meisner; Filinski, Andrzej
2016-01-01
The paradigm of nested data parallelism (NDP) allows a variety of semi-regular computation tasks to be mapped onto SIMD-style hardware, including GPUs and vector units. However, some care is needed to keep down space consumption in situations where the available parallelism may vastly exceed...
Bayer image parallel decoding based on GPU
Hu, Rihui; Xu, Zhiyong; Wei, Yuxing; Sun, Shaohua
2012-11-01
In the photoelectrical tracking system, Bayer image is decompressed in traditional method, which is CPU-based. However, it is too slow when the images become large, for example, 2K×2K×16bit. In order to accelerate the Bayer image decoding, this paper introduces a parallel speedup method for NVIDA's Graphics Processor Unit (GPU) which supports CUDA architecture. The decoding procedure can be divided into three parts: the first is serial part, the second is task-parallelism part, and the last is data-parallelism part including inverse quantization, inverse discrete wavelet transform (IDWT) as well as image post-processing part. For reducing the execution time, the task-parallelism part is optimized by OpenMP techniques. The data-parallelism part could advance its efficiency through executing on the GPU as CUDA parallel program. The optimization techniques include instruction optimization, shared memory access optimization, the access memory coalesced optimization and texture memory optimization. In particular, it can significantly speed up the IDWT by rewriting the 2D (Tow-dimensional) serial IDWT into 1D parallel IDWT. Through experimenting with 1K×1K×16bit Bayer image, data-parallelism part is 10 more times faster than CPU-based implementation. Finally, a CPU+GPU heterogeneous decompression system was designed. The experimental result shows that it could achieve 3 to 5 times speed increase compared to the CPU serial method.
Parallelization of TMVA Machine Learning Algorithms
Hajili, Mammad
2017-01-01
This report reflects my work on Parallelization of TMVA Machine Learning Algorithms integrated to ROOT Data Analysis Framework during summer internship at CERN. The report consists of 4 impor- tant part - data set used in training and validation, algorithms that multiprocessing applied on them, parallelization techniques and re- sults of execution time changes due to number of workers.
17 CFR 12.24 - Parallel proceedings.
2010-04-01
...) Definition. For purposes of this section, a parallel proceeding shall include: (1) An arbitration proceeding... the receivership includes the resolution of claims made by customers; or (3) A petition filed under... any of the foregoing with knowledge of a parallel proceeding shall promptly notify the Commission, by...
Parallel S/sub n/ iteration schemes
International Nuclear Information System (INIS)
Wienke, B.R.; Hiromoto, R.E.
1986-01-01
The iterative, multigroup, discrete ordinates (S/sub n/) technique for solving the linear transport equation enjoys widespread usage and appeal. Serial iteration schemes and numerical algorithms developed over the years provide a timely framework for parallel extension. On the Denelcor HEP, the authors investigate three parallel iteration schemes for solving the one-dimensional S/sub n/ transport equation. The multigroup representation and serial iteration methods are also reviewed. This analysis represents a first attempt to extend serial S/sub n/ algorithms to parallel environments and provides good baseline estimates on ease of parallel implementation, relative algorithm efficiency, comparative speedup, and some future directions. The authors examine ordered and chaotic versions of these strategies, with and without concurrent rebalance and diffusion acceleration. Two strategies efficiently support high degrees of parallelization and appear to be robust parallel iteration techniques. The third strategy is a weaker parallel algorithm. Chaotic iteration, difficult to simulate on serial machines, holds promise and converges faster than ordered versions of the schemes. Actual parallel speedup and efficiency are high and payoff appears substantial
Parallel Computing Strategies for Irregular Algorithms
Biswas, Rupak; Oliker, Leonid; Shan, Hongzhang; Biegel, Bryan (Technical Monitor)
2002-01-01
Parallel computing promises several orders of magnitude increase in our ability to solve realistic computationally-intensive problems, but relies on their efficient mapping and execution on large-scale multiprocessor architectures. Unfortunately, many important applications are irregular and dynamic in nature, making their effective parallel implementation a daunting task. Moreover, with the proliferation of parallel architectures and programming paradigms, the typical scientist is faced with a plethora of questions that must be answered in order to obtain an acceptable parallel implementation of the solution algorithm. In this paper, we consider three representative irregular applications: unstructured remeshing, sparse matrix computations, and N-body problems, and parallelize them using various popular programming paradigms on a wide spectrum of computer platforms ranging from state-of-the-art supercomputers to PC clusters. We present the underlying problems, the solution algorithms, and the parallel implementation strategies. Smart load-balancing, partitioning, and ordering techniques are used to enhance parallel performance. Overall results demonstrate the complexity of efficiently parallelizing irregular algorithms.
Parallel fuzzy connected image segmentation on GPU
Zhuge, Ying; Cao, Yong; Udupa, Jayaram K.; Miller, Robert W.
2011-01-01
Purpose: Image segmentation techniques using fuzzy connectedness (FC) principles have shown their effectiveness in segmenting a variety of objects in several large applications. However, one challenge in these algorithms has been their excessive computational requirements when processing large image datasets. Nowadays, commodity graphics hardware provides a highly parallel computing environment. In this paper, the authors present a parallel fuzzy connected image segmentation algorithm impleme...
Non-Cartesian parallel imaging reconstruction.
Wright, Katherine L; Hamilton, Jesse I; Griswold, Mark A; Gulani, Vikas; Seiberlich, Nicole
2014-11-01
Non-Cartesian parallel imaging has played an important role in reducing data acquisition time in MRI. The use of non-Cartesian trajectories can enable more efficient coverage of k-space, which can be leveraged to reduce scan times. These trajectories can be undersampled to achieve even faster scan times, but the resulting images may contain aliasing artifacts. Just as Cartesian parallel imaging can be used to reconstruct images from undersampled Cartesian data, non-Cartesian parallel imaging methods can mitigate aliasing artifacts by using additional spatial encoding information in the form of the nonhomogeneous sensitivities of multi-coil phased arrays. This review will begin with an overview of non-Cartesian k-space trajectories and their sampling properties, followed by an in-depth discussion of several selected non-Cartesian parallel imaging algorithms. Three representative non-Cartesian parallel imaging methods will be described, including Conjugate Gradient SENSE (CG SENSE), non-Cartesian generalized autocalibrating partially parallel acquisition (GRAPPA), and Iterative Self-Consistent Parallel Imaging Reconstruction (SPIRiT). After a discussion of these three techniques, several potential promising clinical applications of non-Cartesian parallel imaging will be covered. © 2014 Wiley Periodicals, Inc.
Parallel Algorithms for Groebner-Basis Reduction
1987-09-25
22209 ELEMENT NO. NO. NO. ACCESSION NO. 11. TITLE (Include Security Classification) * PARALLEL ALGORITHMS FOR GROEBNER -BASIS REDUCTION 12. PERSONAL...All other editions are obsolete. Productivity Engineering in the UNIXt Environment p Parallel Algorithms for Groebner -Basis Reduction Technical Report
Parallel knock-out schemes in networks
Broersma, H.J.; Fomin, F.V.; Woeginger, G.J.
2004-01-01
We consider parallel knock-out schemes, a procedure on graphs introduced by Lampert and Slater in 1997 in which each vertex eliminates exactly one of its neighbors in each round. We are considering cases in which after a finite number of rounds, where the minimimum number is called the parallel
Building a parallel file system simulator
International Nuclear Information System (INIS)
Molina-Estolano, E; Maltzahn, C; Brandt, S A; Bent, J
2009-01-01
Parallel file systems are gaining in popularity in high-end computing centers as well as commercial data centers. High-end computing systems are expected to scale exponentially and to pose new challenges to their storage scalability in terms of cost and power. To address these challenges scientists and file system designers will need a thorough understanding of the design space of parallel file systems. Yet there exist few systematic studies of parallel file system behavior at petabyte- and exabyte scale. An important reason is the significant cost of getting access to large-scale hardware to test parallel file systems. To contribute to this understanding we are building a parallel file system simulator that can simulate parallel file systems at very large scale. Our goal is to simulate petabyte-scale parallel file systems on a small cluster or even a single machine in reasonable time and fidelity. With this simulator, file system experts will be able to tune existing file systems for specific workloads, scientists and file system deployment engineers will be able to better communicate workload requirements, file system designers and researchers will be able to try out design alternatives and innovations at scale, and instructors will be able to study very large-scale parallel file system behavior in the class room. In this paper we describe our approach and provide preliminary results that are encouraging both in terms of fidelity and simulation scalability.
Broadcasting a message in a parallel computer
Berg, Jeremy E [Rochester, MN; Faraj, Ahmad A [Rochester, MN
2011-08-02
Methods, systems, and products are disclosed for broadcasting a message in a parallel computer. The parallel computer includes a plurality of compute nodes connected together using a data communications network. The data communications network optimized for point to point data communications and is characterized by at least two dimensions. The compute nodes are organized into at least one operational group of compute nodes for collective parallel operations of the parallel computer. One compute node of the operational group assigned to be a logical root. Broadcasting a message in a parallel computer includes: establishing a Hamiltonian path along all of the compute nodes in at least one plane of the data communications network and in the operational group; and broadcasting, by the logical root to the remaining compute nodes, the logical root's message along the established Hamiltonian path.
Advanced parallel processing with supercomputer architectures
International Nuclear Information System (INIS)
Hwang, K.
1987-01-01
This paper investigates advanced parallel processing techniques and innovative hardware/software architectures that can be applied to boost the performance of supercomputers. Critical issues on architectural choices, parallel languages, compiling techniques, resource management, concurrency control, programming environment, parallel algorithms, and performance enhancement methods are examined and the best answers are presented. The authors cover advanced processing techniques suitable for supercomputers, high-end mainframes, minisupers, and array processors. The coverage emphasizes vectorization, multitasking, multiprocessing, and distributed computing. In order to achieve these operation modes, parallel languages, smart compilers, synchronization mechanisms, load balancing methods, mapping parallel algorithms, operating system functions, application library, and multidiscipline interactions are investigated to ensure high performance. At the end, they assess the potentials of optical and neural technologies for developing future supercomputers
Differences Between Distributed and Parallel Systems
Energy Technology Data Exchange (ETDEWEB)
Brightwell, R.; Maccabe, A.B.; Rissen, R.
1998-10-01
Distributed systems have been studied for twenty years and are now coming into wider use as fast networks and powerful workstations become more readily available. In many respects a massively parallel computer resembles a network of workstations and it is tempting to port a distributed operating system to such a machine. However, there are significant differences between these two environments and a parallel operating system is needed to get the best performance out of a massively parallel system. This report characterizes the differences between distributed systems, networks of workstations, and massively parallel systems and analyzes the impact of these differences on operating system design. In the second part of the report, we introduce Puma, an operating system specifically developed for massively parallel systems. We describe Puma portals, the basic building blocks for message passing paradigms implemented on top of Puma, and show how the differences observed in the first part of the report have influenced the design and implementation of Puma.
Parallel-In-Time For Moving Meshes
Energy Technology Data Exchange (ETDEWEB)
Falgout, R. D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Manteuffel, T. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Southworth, B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Schroder, J. B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
2016-02-04
With steadily growing computational resources available, scientists must develop e ective ways to utilize the increased resources. High performance, highly parallel software has be- come a standard. However until recent years parallelism has focused primarily on the spatial domain. When solving a space-time partial di erential equation (PDE), this leads to a sequential bottleneck in the temporal dimension, particularly when taking a large number of time steps. The XBraid parallel-in-time library was developed as a practical way to add temporal parallelism to existing se- quential codes with only minor modi cations. In this work, a rezoning-type moving mesh is applied to a di usion problem and formulated in a parallel-in-time framework. Tests and scaling studies are run using XBraid and demonstrate excellent results for the simple model problem considered herein.
Parallel programming with Easy Java Simulations
Esquembre, F.; Christian, W.; Belloni, M.
2018-01-01
Nearly all of today's processors are multicore, and ideally programming and algorithm development utilizing the entire processor should be introduced early in the computational physics curriculum. Parallel programming is often not introduced because it requires a new programming environment and uses constructs that are unfamiliar to many teachers. We describe how we decrease the barrier to parallel programming by using a java-based programming environment to treat problems in the usual undergraduate curriculum. We use the easy java simulations programming and authoring tool to create the program's graphical user interface together with objects based on those developed by Kaminsky [Building Parallel Programs (Course Technology, Boston, 2010)] to handle common parallel programming tasks. Shared-memory parallel implementations of physics problems, such as time evolution of the Schrödinger equation, are available as source code and as ready-to-run programs from the AAPT-ComPADRE digital library.
Arkin, Ethem; Tekinerdogan, Bedir
2016-01-01
Mapping parallel algorithms to parallel computing platforms requires several activities such as the analysis of the parallel algorithm, the definition of the logical configuration of the platform, the mapping of the algorithm to the logical configuration platform and the implementation of the
Portable parallel programming in a Fortran environment
International Nuclear Information System (INIS)
May, E.N.
1989-01-01
Experience using the Argonne-developed PARMACs macro package to implement a portable parallel programming environment is described. Fortran programs with intrinsic parallelism of coarse and medium granularity are easily converted to parallel programs which are portable among a number of commercially available parallel processors in the class of shared-memory bus-based and local-memory network based MIMD processors. The parallelism is implemented using standard UNIX (tm) tools and a small number of easily understood synchronization concepts (monitors and message-passing techniques) to construct and coordinate multiple cooperating processes on one or many processors. Benchmark results are presented for parallel computers such as the Alliant FX/8, the Encore MultiMax, the Sequent Balance, the Intel iPSC/2 Hypercube and a network of Sun 3 workstations. These parallel machines are typical MIMD types with from 8 to 30 processors, each rated at from 1 to 10 MIPS processing power. The demonstration code used for this work is a Monte Carlo simulation of the response to photons of a ''nearly realistic'' lead, iron and plastic electromagnetic and hadronic calorimeter, using the EGS4 code system. 6 refs., 2 figs., 2 tabs
Performance of the Galley Parallel File System
Nieuwejaar, Nils; Kotz, David
1996-01-01
As the input/output (I/O) needs of parallel scientific applications increase, file systems for multiprocessors are being designed to provide applications with parallel access to multiple disks. Many parallel file systems present applications with a conventional Unix-like interface that allows the application to access multiple disks transparently. This interface conceals the parallism within the file system, which increases the ease of programmability, but makes it difficult or impossible for sophisticated programmers and libraries to use knowledge about their I/O needs to exploit that parallelism. Furthermore, most current parallel file systems are optimized for a different workload than they are being asked to support. We introduce Galley, a new parallel file system that is intended to efficiently support realistic parallel workloads. Initial experiments, reported in this paper, indicate that Galley is capable of providing high-performance 1/O to applications the applications that rely on them. In Section 3 we describe that access data in patterns that have been observed to be common.
The kpx, a program analyzer for parallelization
International Nuclear Information System (INIS)
Matsuyama, Yuji; Orii, Shigeo; Ota, Toshiro; Kume, Etsuo; Aikawa, Hiroshi.
1997-03-01
The kpx is a program analyzer, developed as a common technological basis for promoting parallel processing. The kpx consists of three tools. The first is ktool, that shows how much execution time is spent in program segments. The second is ptool, that shows parallelization overhead on the Paragon system. The last is xtool, that shows parallelization overhead on the VPP system. The kpx, designed to work for any FORTRAN cord on any UNIX computer, is confirmed to work well after testing on Paragon, SP2, SR2201, VPP500, VPP300, Monte-4, SX-4 and T90. (author)
Synchronization Of Parallel Discrete Event Simulations
Steinman, Jeffrey S.
1992-01-01
Adaptive, parallel, discrete-event-simulation-synchronization algorithm, Breathing Time Buckets, developed in Synchronous Parallel Environment for Emulation and Discrete Event Simulation (SPEEDES) operating system. Algorithm allows parallel simulations to process events optimistically in fluctuating time cycles that naturally adapt while simulation in progress. Combines best of optimistic and conservative synchronization strategies while avoiding major disadvantages. Algorithm processes events optimistically in time cycles adapting while simulation in progress. Well suited for modeling communication networks, for large-scale war games, for simulated flights of aircraft, for simulations of computer equipment, for mathematical modeling, for interactive engineering simulations, and for depictions of flows of information.
Multistage parallel-serial time averaging filters
International Nuclear Information System (INIS)
Theodosiou, G.E.
1980-01-01
Here, a new time averaging circuit design, the 'parallel filter' is presented, which can reduce the time jitter, introduced in time measurements using counters of large dimensions. This parallel filter could be considered as a single stage unit circuit which can be repeated an arbitrary number of times in series, thus providing a parallel-serial filter type as a result. The main advantages of such a filter over a serial one are much less electronic gate jitter and time delay for the same amount of total time uncertainty reduction. (orig.)
Implementations of BLAST for parallel computers.
Jülich, A
1995-02-01
The BLAST sequence comparison programs have been ported to a variety of parallel computers-the shared memory machine Cray Y-MP 8/864 and the distributed memory architectures Intel iPSC/860 and nCUBE. Additionally, the programs were ported to run on workstation clusters. We explain the parallelization techniques and consider the pros and cons of these methods. The BLAST programs are very well suited for parallelization for a moderate number of processors. We illustrate our results using the program blastp as an example. As input data for blastp, a 799 residue protein query sequence and the protein database PIR were used.
Speedup predictions on large scientific parallel programs
International Nuclear Information System (INIS)
Williams, E.; Bobrowicz, F.
1985-01-01
How much speedup can we expect for large scientific parallel programs running on supercomputers. For insight into this problem we extend the parallel processing environment currently existing on the Cray X-MP (a shared memory multiprocessor with at most four processors) to a simulated N-processor environment, where N greater than or equal to 1. Several large scientific parallel programs from Los Alamos National Laboratory were run in this simulated environment, and speedups were predicted. A speedup of 14.4 on 16 processors was measured for one of the three most used codes at the Laboratory
Language constructs for modular parallel programs
Energy Technology Data Exchange (ETDEWEB)
Foster, I.
1996-03-01
We describe programming language constructs that facilitate the application of modular design techniques in parallel programming. These constructs allow us to isolate resource management and processor scheduling decisions from the specification of individual modules, which can themselves encapsulate design decisions concerned with concurrence, communication, process mapping, and data distribution. This approach permits development of libraries of reusable parallel program components and the reuse of these components in different contexts. In particular, alternative mapping strategies can be explored without modifying other aspects of program logic. We describe how these constructs are incorporated in two practical parallel programming languages, PCN and Fortran M. Compilers have been developed for both languages, allowing experimentation in substantial applications.
Distributed parallel messaging for multiprocessor systems
Chen, Dong; Heidelberger, Philip; Salapura, Valentina; Senger, Robert M; Steinmacher-Burrow, Burhard; Sugawara, Yutaka
2013-06-04
A method and apparatus for distributed parallel messaging in a parallel computing system. The apparatus includes, at each node of a multiprocessor network, multiple injection messaging engine units and reception messaging engine units, each implementing a DMA engine and each supporting both multiple packet injection into and multiple reception from a network, in parallel. The reception side of the messaging unit (MU) includes a switch interface enabling writing of data of a packet received from the network to the memory system. The transmission side of the messaging unit, includes switch interface for reading from the memory system when injecting packets into the network.
Massively parallel Fokker-Planck code ALLAp
International Nuclear Information System (INIS)
Batishcheva, A.A.; Krasheninnikov, S.I.; Craddock, G.G.; Djordjevic, V.
1996-01-01
The recently developed for workstations Fokker-Planck code ALLA simulates the temporal evolution of 1V, 2V and 1D2V collisional edge plasmas. In this work we present the results of code parallelization on the CRI T3D massively parallel platform (ALLAp version). Simultaneously we benchmark the 1D2V parallel vesion against an analytic self-similar solution of the collisional kinetic equation. This test is not trivial as it demands a very strong spatial temperature and density variation within the simulation domain. (orig.)
Massively Parallel Computing: A Sandia Perspective
Energy Technology Data Exchange (ETDEWEB)
Dosanjh, Sudip S.; Greenberg, David S.; Hendrickson, Bruce; Heroux, Michael A.; Plimpton, Steve J.; Tomkins, James L.; Womble, David E.
1999-05-06
The computing power available to scientists and engineers has increased dramatically in the past decade, due in part to progress in making massively parallel computing practical and available. The expectation for these machines has been great. The reality is that progress has been slower than expected. Nevertheless, massively parallel computing is beginning to realize its potential for enabling significant break-throughs in science and engineering. This paper provides a perspective on the state of the field, colored by the authors' experiences using large scale parallel machines at Sandia National Laboratories. We address trends in hardware, system software and algorithms, and we also offer our view of the forces shaping the parallel computing industry.
Parallel generation of architecture on the GPU
Steinberger, Markus; Kenzel, Michael; Kainz, Bernhard K.; Mü ller, Jö rg; Wonka, Peter; Schmalstieg, Dieter
2014-01-01
they can take advantage of, or both, our method supports state of the art procedural modeling including stochasticity and context-sensitivity. To increase parallelism, we explicitly express independence in the grammar, reduce inter-rule dependencies
New high voltage parallel plate analyzer
International Nuclear Information System (INIS)
Hamada, Y.; Kawasumi, Y.; Masai, K.; Iguchi, H.; Fujisawa, A.; Abe, Y.
1992-01-01
A new modification on the parallel plate analyzer for 500 keV heavy ions to eliminate the effect of the intense UV and visible radiations, is successfully conducted. Its principle and results are discussed. (author)
Parallel data encryption with RSA algorithm
Неретин, А. А.
2016-01-01
In this paper a parallel RSA algorithm with preliminary shuffling of source text was presented.Dependence of an encryption speed on the number of encryption nodes has been analysed, The proposed algorithm was implemented on C# language.
Data parallel sorting for particle simulation
Dagum, Leonardo
1992-01-01
Sorting on a parallel architecture is a communications intensive event which can incur a high penalty in applications where it is required. In the case of particle simulation, only integer sorting is necessary, and sequential implementations easily attain the minimum performance bound of O (N) for N particles. Parallel implementations, however, have to cope with the parallel sorting problem which, in addition to incurring a heavy communications cost, can make the minimun performance bound difficult to attain. This paper demonstrates how the sorting problem in a particle simulation can be reduced to a merging problem, and describes an efficient data parallel algorithm to solve this merging problem in a particle simulation. The new algorithm is shown to be optimal under conditions usual for particle simulation, and its fieldwise implementation on the Connection Machine is analyzed in detail. The new algorithm is about four times faster than a fieldwise implementation of radix sort on the Connection Machine.
Parallel debt in the Serbian finance law
Directory of Open Access Journals (Sweden)
Kuzman Miloš
2014-01-01
Full Text Available The purpose of this paper is to present the mechanism of parallel debt in the Serbian financial law. While considering whether the mechanism of parallel debt exists under the Serbian law, the Anglo-Saxon mechanism of trust is represented. Hence it is explained why the mechanism of trust is not allowed under the Serbian law. Further on, the mechanism of parallel debt is introduced as well as a debate on permissibility of its cause in the Serbian law. Comparative legal arguments about this issue are also presented in this paper. In conclusion, the author suggests that on the basis of the conclusions drawn in this paper, the parallel debt mechanism is to be declared admissible if it is ever taken into consideration by the Serbian courts.
Parallel Monte Carlo simulation of aerosol dynamics
Zhou, K.; He, Z.; Xiao, M.; Zhang, Z.
2014-01-01
is simulated with a stochastic method (Marcus-Lushnikov stochastic process). Operator splitting techniques are used to synthesize the deterministic and stochastic parts in the algorithm. The algorithm is parallelized using the Message Passing Interface (MPI
Stranger than fiction: parallel universes beguile science
2007-01-01
We may not be able - at least not yet - to prove they exist, many serious scientists say, but there are plenty of reasons to think that parallel dimensions are more than figments of effeaded imagination. (1/2 page)
Parallel computation of nondeterministic algorithms in VLSI
Energy Technology Data Exchange (ETDEWEB)
Hortensius, P D
1987-01-01
This work examines parallel VLSI implementations of nondeterministic algorithms. It is demonstrated that conventional pseudorandom number generators are unsuitable for highly parallel applications. Efficient parallel pseudorandom sequence generation can be accomplished using certain classes of elementary one-dimensional cellular automata. The pseudorandom numbers appear in parallel on each clock cycle. Extensive study of the properties of these new pseudorandom number generators is made using standard empirical random number tests, cycle length tests, and implementation considerations. Furthermore, it is shown these particular cellular automata can form the basis of efficient VLSI architectures for computations involved in the Monte Carlo simulation of both the percolation and Ising models from statistical mechanics. Finally, a variation on a Built-In Self-Test technique based upon cellular automata is presented. These Cellular Automata-Logic-Block-Observation (CALBO) circuits improve upon conventional design for testability circuitry.
Adapting algorithms to massively parallel hardware
Sioulas, Panagiotis
2016-01-01
In the recent years, the trend in computing has shifted from delivering processors with faster clock speeds to increasing the number of cores per processor. This marks a paradigm shift towards parallel programming in which applications are programmed to exploit the power provided by multi-cores. Usually there is gain in terms of the time-to-solution and the memory footprint. Specifically, this trend has sparked an interest towards massively parallel systems that can provide a large number of processors, and possibly computing nodes, as in the GPUs and MPPAs (Massively Parallel Processor Arrays). In this project, the focus was on two distinct computing problems: k-d tree searches and track seeding cellular automata. The goal was to adapt the algorithms to parallel systems and evaluate their performance in different cases.
Implementing Shared Memory Parallelism in MCBEND
Directory of Open Access Journals (Sweden)
Bird Adam
2017-01-01
Full Text Available MCBEND is a general purpose radiation transport Monte Carlo code from AMEC Foster Wheelers’s ANSWERS® Software Service. MCBEND is well established in the UK shielding community for radiation shielding and dosimetry assessments. The existing MCBEND parallel capability effectively involves running the same calculation on many processors. This works very well except when the memory requirements of a model restrict the number of instances of a calculation that will fit on a machine. To more effectively utilise parallel hardware OpenMP has been used to implement shared memory parallelism in MCBEND. This paper describes the reasoning behind the choice of OpenMP, notes some of the challenges of multi-threading an established code such as MCBEND and assesses the performance of the parallel method implemented in MCBEND.
Domain decomposition methods and parallel computing
International Nuclear Information System (INIS)
Meurant, G.
1991-01-01
In this paper, we show how to efficiently solve large linear systems on parallel computers. These linear systems arise from discretization of scientific computing problems described by systems of partial differential equations. We show how to get a discrete finite dimensional system from the continuous problem and the chosen conjugate gradient iterative algorithm is briefly described. Then, the different kinds of parallel architectures are reviewed and their advantages and deficiencies are emphasized. We sketch the problems found in programming the conjugate gradient method on parallel computers. For this algorithm to be efficient on parallel machines, domain decomposition techniques are introduced. We give results of numerical experiments showing that these techniques allow a good rate of convergence for the conjugate gradient algorithm as well as computational speeds in excess of a billion of floating point operations per second. (author). 5 refs., 11 figs., 2 tabs., 1 inset
6th International Parallel Tools Workshop
Brinkmann, Steffen; Gracia, José; Resch, Michael; Nagel, Wolfgang
2013-01-01
The latest advances in the High Performance Computing hardware have significantly raised the level of available compute performance. At the same time, the growing hardware capabilities of modern supercomputing architectures have caused an increasing complexity of the parallel application development. Despite numerous efforts to improve and simplify parallel programming, there is still a lot of manual debugging and tuning work required. This process is supported by special software tools, facilitating debugging, performance analysis, and optimization and thus making a major contribution to the development of robust and efficient parallel software. This book introduces a selection of the tools, which were presented and discussed at the 6th International Parallel Tools Workshop, held in Stuttgart, Germany, 25-26 September 2012.
Parallel processor programs in the Federal Government
Schneck, P. B.; Austin, D.; Squires, S. L.; Lehmann, J.; Mizell, D.; Wallgren, K.
1985-01-01
In 1982, a report dealing with the nation's research needs in high-speed computing called for increased access to supercomputing resources for the research community, research in computational mathematics, and increased research in the technology base needed for the next generation of supercomputers. Since that time a number of programs addressing future generations of computers, particularly parallel processors, have been started by U.S. government agencies. The present paper provides a description of the largest government programs in parallel processing. Established in fiscal year 1985 by the Institute for Defense Analyses for the National Security Agency, the Supercomputing Research Center will pursue research to advance the state of the art in supercomputing. Attention is also given to the DOE applied mathematical sciences research program, the NYU Ultracomputer project, the DARPA multiprocessor system architectures program, NSF research on multiprocessor systems, ONR activities in parallel computing, and NASA parallel processor projects.
Density functional theory and parallel processing
International Nuclear Information System (INIS)
Ward, R.C.; Geist, G.A.; Butler, W.H.
1987-01-01
The authors demonstrate a method for obtaining the ground state energies and charge densities of a system of atoms described within density functional theory using simulated annealing on a parallel computer
High performance parallel computers for science
International Nuclear Information System (INIS)
Nash, T.; Areti, H.; Atac, R.; Biel, J.; Cook, A.; Deppe, J.; Edel, M.; Fischler, M.; Gaines, I.; Hance, R.
1989-01-01
This paper reports that Fermilab's Advanced Computer Program (ACP) has been developing cost effective, yet practical, parallel computers for high energy physics since 1984. The ACP's latest developments are proceeding in two directions. A Second Generation ACP Multiprocessor System for experiments will include $3500 RISC processors each with performance over 15 VAX MIPS. To support such high performance, the new system allows parallel I/O, parallel interprocess communication, and parallel host processes. The ACP Multi-Array Processor, has been developed for theoretical physics. Each $4000 node is a FORTRAN or C programmable pipelined 20 Mflops (peak), 10 MByte single board computer. These are plugged into a 16 port crossbar switch crate which handles both inter and intra crate communication. The crates are connected in a hypercube. Site oriented applications like lattice gauge theory are supported by system software called CANOPY, which makes the hardware virtually transparent to users. A 256 node, 5 GFlop, system is under construction
Massively parallel evolutionary computation on GPGPUs
Tsutsui, Shigeyoshi
2013-01-01
Evolutionary algorithms (EAs) are metaheuristics that learn from natural collective behavior and are applied to solve optimization problems in domains such as scheduling, engineering, bioinformatics, and finance. Such applications demand acceptable solutions with high-speed execution using finite computational resources. Therefore, there have been many attempts to develop platforms for running parallel EAs using multicore machines, massively parallel cluster machines, or grid computing environments. Recent advances in general-purpose computing on graphics processing units (GPGPU) have opened u
Freeman, Bryan
2013-01-01
This book contains practical recipes on everything you will need to create task-based parallel programs using C#, .NET 4.5, and Visual Studio. The book is packed with illustrated code examples to create scalable programs.This book is intended to help experienced C# developers write applications that leverage the power of modern multicore processors. It provides the necessary knowledge for an experienced C# developer to work with .NET parallelism APIs. Previous experience of writing multithreaded applications is not necessary.
Simulation Exploration through Immersive Parallel Planes: Preprint
Energy Technology Data Exchange (ETDEWEB)
Brunhart-Lupo, Nicholas; Bush, Brian W.; Gruchalla, Kenny; Smith, Steve
2016-03-01
We present a visualization-driven simulation system that tightly couples systems dynamics simulations with an immersive virtual environment to allow analysts to rapidly develop and test hypotheses in a high-dimensional parameter space. To accomplish this, we generalize the two-dimensional parallel-coordinates statistical graphic as an immersive 'parallel-planes' visualization for multivariate time series emitted by simulations running in parallel with the visualization. In contrast to traditional parallel coordinate's mapping the multivariate dimensions onto coordinate axes represented by a series of parallel lines, we map pairs of the multivariate dimensions onto a series of parallel rectangles. As in the case of parallel coordinates, each individual observation in the dataset is mapped to a polyline whose vertices coincide with its coordinate values. Regions of the rectangles can be 'brushed' to highlight and select observations of interest: a 'slider' control allows the user to filter the observations by their time coordinate. In an immersive virtual environment, users interact with the parallel planes using a joystick that can select regions on the planes, manipulate selection, and filter time. The brushing and selection actions are used to both explore existing data as well as to launch additional simulations corresponding to the visually selected portions of the input parameter space. As soon as the new simulations complete, their resulting observations are displayed in the virtual environment. This tight feedback loop between simulation and immersive analytics accelerates users' realization of insights about the simulation and its output.
Alternative derivation of the parallel ion viscosity
International Nuclear Information System (INIS)
Bravenec, R.V.; Berk, H.L.; Hammer, J.H.
1982-01-01
A set of double-adiabatic fluid equations with additional collisional relaxation between the ion temperatures parallel and perpendicular to a magnetic field are shown to reduce to a set involving a single temperature and a parallel viscosity. This result is applied to a recently published paper [R. V. Bravenec, A. J. Lichtenberg, M. A. Leiberman, and H. L. Berk, Phys. Fluids 24, 1320 (1981)] on viscous flow in a multiple-mirror configuration
Acoustic simulation in architecture with parallel algorithm
Li, Xiaohong; Zhang, Xinrong; Li, Dan
2004-03-01
In allusion to complexity of architecture environment and Real-time simulation of architecture acoustics, a parallel radiosity algorithm was developed. The distribution of sound energy in scene is solved with this method. And then the impulse response between sources and receivers at frequency segment, which are calculated with multi-process, are combined into whole frequency response. The numerical experiment shows that parallel arithmetic can improve the acoustic simulating efficiency of complex scene.
PARALLEL SOLUTION METHODS OF PARTIAL DIFFERENTIAL EQUATIONS
Directory of Open Access Journals (Sweden)
Korhan KARABULUT
1998-03-01
Full Text Available Partial differential equations arise in almost all fields of science and engineering. Computer time spent in solving partial differential equations is much more than that of in any other problem class. For this reason, partial differential equations are suitable to be solved on parallel computers that offer great computation power. In this study, parallel solution to partial differential equations with Jacobi, Gauss-Siedel, SOR (Succesive OverRelaxation and SSOR (Symmetric SOR algorithms is studied.
Simulation Exploration through Immersive Parallel Planes
Energy Technology Data Exchange (ETDEWEB)
Brunhart-Lupo, Nicholas J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Bush, Brian W [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Gruchalla, Kenny M [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Smith, Steve [Los Alamos Visualization Associates
2017-05-25
We present a visualization-driven simulation system that tightly couples systems dynamics simulations with an immersive virtual environment to allow analysts to rapidly develop and test hypotheses in a high-dimensional parameter space. To accomplish this, we generalize the two-dimensional parallel-coordinates statistical graphic as an immersive 'parallel-planes' visualization for multivariate time series emitted by simulations running in parallel with the visualization. In contrast to traditional parallel coordinate's mapping the multivariate dimensions onto coordinate axes represented by a series of parallel lines, we map pairs of the multivariate dimensions onto a series of parallel rectangles. As in the case of parallel coordinates, each individual observation in the dataset is mapped to a polyline whose vertices coincide with its coordinate values. Regions of the rectangles can be 'brushed' to highlight and select observations of interest: a 'slider' control allows the user to filter the observations by their time coordinate. In an immersive virtual environment, users interact with the parallel planes using a joystick that can select regions on the planes, manipulate selection, and filter time. The brushing and selection actions are used to both explore existing data as well as to launch additional simulations corresponding to the visually selected portions of the input parameter space. As soon as the new simulations complete, their resulting observations are displayed in the virtual environment. This tight feedback loop between simulation and immersive analytics accelerates users' realization of insights about the simulation and its output.
Current distribution characteristics of superconducting parallel circuits
International Nuclear Information System (INIS)
Mori, K.; Suzuki, Y.; Hara, N.; Kitamura, M.; Tominaka, T.
1994-01-01
In order to increase the current carrying capacity of the current path of the superconducting magnet system, the portion of parallel circuits such as insulated multi-strand cables or parallel persistent current switches (PCS) are made. In superconducting parallel circuits of an insulated multi-strand cable or a parallel persistent current switch (PCS), the current distribution during the current sweep, the persistent mode, and the quench process were investigated. In order to measure the current distribution, two methods were used. (1) Each strand was surrounded with a pure iron core with the air gap. In the air gap, a Hall probe was located. The accuracy of this method was deteriorated by the magnetic hysteresis of iron. (2) The Rogowski coil without iron was used for the current measurement of each path in a 4-parallel PCS. As a result, it was shown that the current distribution characteristics of a parallel PCS is very similar to that of an insulated multi-strand cable for the quench process
Parallel processing of structural integrity analysis codes
International Nuclear Information System (INIS)
Swami Prasad, P.; Dutta, B.K.; Kushwaha, H.S.
1996-01-01
Structural integrity analysis forms an important role in assessing and demonstrating the safety of nuclear reactor components. This analysis is performed using analytical tools such as Finite Element Method (FEM) with the help of digital computers. The complexity of the problems involved in nuclear engineering demands high speed computation facilities to obtain solutions in reasonable amount of time. Parallel processing systems such as ANUPAM provide an efficient platform for realising the high speed computation. The development and implementation of software on parallel processing systems is an interesting and challenging task. The data and algorithm structure of the codes plays an important role in exploiting the parallel processing system capabilities. Structural analysis codes based on FEM can be divided into two categories with respect to their implementation on parallel processing systems. The first category codes such as those used for harmonic analysis, mechanistic fuel performance codes need not require the parallelisation of individual modules of the codes. The second category of codes such as conventional FEM codes require parallelisation of individual modules. In this category, parallelisation of equation solution module poses major difficulties. Different solution schemes such as domain decomposition method (DDM), parallel active column solver and substructuring method are currently used on parallel processing systems. Two codes, FAIR and TABS belonging to each of these categories have been implemented on ANUPAM. The implementation details of these codes and the performance of different equation solvers are highlighted. (author). 5 refs., 12 figs., 1 tab
Parallel Architectures and Parallel Algorithms for Integrated Vision Systems. Ph.D. Thesis
Choudhary, Alok Nidhi
1989-01-01
Computer vision is regarded as one of the most complex and computationally intensive problems. An integrated vision system (IVS) is a system that uses vision algorithms from all levels of processing to perform for a high level application (e.g., object recognition). An IVS normally involves algorithms from low level, intermediate level, and high level vision. Designing parallel architectures for vision systems is of tremendous interest to researchers. Several issues are addressed in parallel architectures and parallel algorithms for integrated vision systems.
Concurrent computation of attribute filters on shared memory parallel machines
Wilkinson, Michael H.F.; Gao, Hui; Hesselink, Wim H.; Jonker, Jan-Eppo; Meijster, Arnold
2008-01-01
Morphological attribute filters have not previously been parallelized mainly because they are both global and nonseparable. We propose a parallel algorithm that achieves efficient parallelism for a large class of attribute filters, including attribute openings, closings, thinnings, and thickenings,
A task parallel implementation of fast multipole methods
Taura, Kenjiro; Nakashima, Jun; Yokota, Rio; Maruyama, Naoya
2012-01-01
This paper describes a task parallel implementation of ExaFMM, an open source implementation of fast multipole methods (FMM), using a lightweight task parallel library MassiveThreads. Although there have been many attempts on parallelizing FMM
Parallel phase model : a programming model for high-end parallel machines with manycores.
Energy Technology Data Exchange (ETDEWEB)
Wu, Junfeng (Syracuse University, Syracuse, NY); Wen, Zhaofang; Heroux, Michael Allen; Brightwell, Ronald Brian
2009-04-01
This paper presents a parallel programming model, Parallel Phase Model (PPM), for next-generation high-end parallel machines based on a distributed memory architecture consisting of a networked cluster of nodes with a large number of cores on each node. PPM has a unified high-level programming abstraction that facilitates the design and implementation of parallel algorithms to exploit both the parallelism of the many cores and the parallelism at the cluster level. The programming abstraction will be suitable for expressing both fine-grained and coarse-grained parallelism. It includes a few high-level parallel programming language constructs that can be added as an extension to an existing (sequential or parallel) programming language such as C; and the implementation of PPM also includes a light-weight runtime library that runs on top of an existing network communication software layer (e.g. MPI). Design philosophy of PPM and details of the programming abstraction are also presented. Several unstructured applications that inherently require high-volume random fine-grained data accesses have been implemented in PPM with very promising results.
Parallel evolutionary computation in bioinformatics applications.
Pinho, Jorge; Sobral, João Luis; Rocha, Miguel
2013-05-01
A large number of optimization problems within the field of Bioinformatics require methods able to handle its inherent complexity (e.g. NP-hard problems) and also demand increased computational efforts. In this context, the use of parallel architectures is a necessity. In this work, we propose ParJECoLi, a Java based library that offers a large set of metaheuristic methods (such as Evolutionary Algorithms) and also addresses the issue of its efficient execution on a wide range of parallel architectures. The proposed approach focuses on the easiness of use, making the adaptation to distinct parallel environments (multicore, cluster, grid) transparent to the user. Indeed, this work shows how the development of the optimization library can proceed independently of its adaptation for several architectures, making use of Aspect-Oriented Programming. The pluggable nature of parallelism related modules allows the user to easily configure its environment, adding parallelism modules to the base source code when needed. The performance of the platform is validated with two case studies within biological model optimization. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Parallelization of Subchannel Analysis Code MATRA
International Nuclear Information System (INIS)
Kim, Seongjin; Hwang, Daehyun; Kwon, Hyouk
2014-01-01
A stand-alone calculation of MATRA code used up pertinent computing time for the thermal margin calculations while a relatively considerable time is needed to solve the whole core pin-by-pin problems. In addition, it is strongly required to improve the computation speed of the MATRA code to satisfy the overall performance of the multi-physics coupling calculations. Therefore, a parallel approach to improve and optimize the computability of the MATRA code is proposed and verified in this study. The parallel algorithm is embodied in the MATRA code using the MPI communication method and the modification of the previous code structure was minimized. An improvement is confirmed by comparing the results between the single and multiple processor algorithms. The speedup and efficiency are also evaluated when increasing the number of processors. The parallel algorithm was implemented to the subchannel code MATRA using the MPI. The performance of the parallel algorithm was verified by comparing the results with those from the MATRA with the single processor. It is also noticed that the performance of the MATRA code was greatly improved by implementing the parallel algorithm for the 1/8 core and whole core problems
Improvement of Parallel Algorithm for MATRA Code
International Nuclear Information System (INIS)
Kim, Seong-Jin; Seo, Kyong-Won; Kwon, Hyouk; Hwang, Dae-Hyun
2014-01-01
The feasibility study to parallelize the MATRA code was conducted in KAERI early this year. As a result, a parallel algorithm for the MATRA code has been developed to decrease a considerably required computing time to solve a bigsize problem such as a whole core pin-by-pin problem of a general PWR reactor and to improve an overall performance of the multi-physics coupling calculations. It was shown that the performance of the MATRA code was greatly improved by implementing the parallel algorithm using MPI communication. For problems of a 1/8 core and whole core for SMART reactor, a speedup was evaluated as about 10 when the numbers of used processor were 25. However, it was also shown that the performance deteriorated as the axial node number increased. In this paper, the procedure of a communication between processors is optimized to improve the previous parallel algorithm.. To improve the performance deterioration of the parallelized MATRA code, the communication algorithm between processors was newly presented. It was shown that the speedup was improved and stable regardless of the axial node number
Iteration schemes for parallelizing models of superconductivity
Energy Technology Data Exchange (ETDEWEB)
Gray, P.A. [Michigan State Univ., East Lansing, MI (United States)
1996-12-31
The time dependent Lawrence-Doniach model, valid for high fields and high values of the Ginzburg-Landau parameter, is often used for studying vortex dynamics in layered high-T{sub c} superconductors. When solving these equations numerically, the added degrees of complexity due to the coupling and nonlinearity of the model often warrant the use of high-performance computers for their solution. However, the interdependence between the layers can be manipulated so as to allow parallelization of the computations at an individual layer level. The reduced parallel tasks may then be solved independently using a heterogeneous cluster of networked workstations connected together with Parallel Virtual Machine (PVM) software. Here, this parallelization of the model is discussed and several computational implementations of varying degrees of parallelism are presented. Computational results are also given which contrast properties of convergence speed, stability, and consistency of these implementations. Included in these results are models involving the motion of vortices due to an applied current and pinning effects due to various material properties.
Parallel visualization on leadership computing resources
Energy Technology Data Exchange (ETDEWEB)
Peterka, T; Ross, R B [Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Shen, H-W [Department of Computer Science and Engineering, Ohio State University, Columbus, OH 43210 (United States); Ma, K-L [Department of Computer Science, University of California at Davis, Davis, CA 95616 (United States); Kendall, W [Department of Electrical Engineering and Computer Science, University of Tennessee at Knoxville, Knoxville, TN 37996 (United States); Yu, H, E-mail: tpeterka@mcs.anl.go [Sandia National Laboratories, California, Livermore, CA 94551 (United States)
2009-07-01
Changes are needed in the way that visualization is performed, if we expect the analysis of scientific data to be effective at the petascale and beyond. By using similar techniques as those used to parallelize simulations, such as parallel I/O, load balancing, and effective use of interprocess communication, the supercomputers that compute these datasets can also serve as analysis and visualization engines for them. Our team is assessing the feasibility of performing parallel scientific visualization on some of the most powerful computational resources of the U.S. Department of Energy's National Laboratories in order to pave the way for analyzing the next generation of computational results. This paper highlights some of the conclusions of that research.
Parallelization of ITOUGH2 using PVM
International Nuclear Information System (INIS)
Finsterle, Stefan
1998-01-01
ITOUGH2 inversions are computationally intensive because the forward problem must be solved many times to evaluate the objective function for different parameter combinations or to numerically calculate sensitivity coefficients. Most of these forward runs are independent from each other and can therefore be performed in parallel. Message passing based on the Parallel Virtual Machine (PVM) system has been implemented into ITOUGH2 to enable parallel processing of ITOUGH2 jobs on a heterogeneous network of Unix workstations. This report describes the PVM system and its implementation into ITOUGH2. Instructions are given for installing PVM, compiling ITOUGH2-PVM for use on a workstation cluster, the preparation of an 1.TOUGH2 input file under PVM, and the execution of an ITOUGH2-PVM application. Examples are discussed, demonstrating the use of ITOUGH2-PVM
Distributed Parallel Architecture for "Big Data"
Directory of Open Access Journals (Sweden)
Catalin BOJA
2012-01-01
Full Text Available This paper is an extension to the "Distributed Parallel Architecture for Storing and Processing Large Datasets" paper presented at the WSEAS SEPADS’12 conference in Cambridge. In its original version the paper went over the benefits of using a distributed parallel architecture to store and process large datasets. This paper analyzes the problem of storing, processing and retrieving meaningful insight from petabytes of data. It provides a survey on current distributed and parallel data processing technologies and, based on them, will propose an architecture that can be used to solve the analyzed problem. In this version there is more emphasis put on distributed files systems and the ETL processes involved in a distributed environment.
Java parallel secure stream for grid computing
International Nuclear Information System (INIS)
Chen, J.; Akers, W.; Chen, Y.; Watson, W.
2001-01-01
The emergence of high speed wide area networks makes grid computing a reality. However grid applications that need reliable data transfer still have difficulties to achieve optimal TCP performance due to network tuning of TCP window size to improve the bandwidth and to reduce latency on a high speed wide area network. The authors present a pure Java package called JPARSS (Java Parallel Secure Stream) that divides data into partitions that are sent over several parallel Java streams simultaneously and allows Java or Web applications to achieve optimal TCP performance in a gird environment without the necessity of tuning the TCP window size. Several experimental results are provided to show that using parallel stream is more effective than tuning TCP window size. In addition X.509 certificate based single sign-on mechanism and SSL based connection establishment are integrated into this package. Finally a few applications using this package will be discussed
Applications of Parallel Processing in Mobile Banking
Directory of Open Access Journals (Sweden)
2007-01-01
Full Text Available The future of mobile banking will be represented by such applications that support mobile, Internet banking and EFT (Electronic Funds Transfer transactions in a single user interface. In such a way, the mobile banking will be able to cover all the types of applications demanded at the market level. The parallel processing of credit card bank transactions could be performed with the help of a grid network. Excluding some limitations, the grid processing offers huge opportunities to exploit the parallelism. For this reason, a lot of applications of waiting queues in grid processing were developed in the last years. Grid networks represent a distinctive and very modern field of the parallel and distributed processing.
Parallel optoelectronic trinary signed-digit division
Alam, Mohammad S.
1999-03-01
The trinary signed-digit (TSD) number system has been found to be very useful for parallel addition and subtraction of any arbitrary length operands in constant time. Using the TSD addition and multiplication modules as the basic building blocks, we develop an efficient algorithm for performing parallel TSD division in constant time. The proposed division technique uses one TSD subtraction and two TSD multiplication steps. An optoelectronic correlator based architecture is suggested for implementation of the proposed TSD division algorithm, which fully exploits the parallelism and high processing speed of optics. An efficient spatial encoding scheme is used to ensure better utilization of space bandwidth product of the spatial light modulators used in the optoelectronic implementation.
Parallel computational in nuclear group constant calculation
International Nuclear Information System (INIS)
Su'ud, Zaki; Rustandi, Yaddi K.; Kurniadi, Rizal
2002-01-01
In this paper parallel computational method in nuclear group constant calculation using collision probability method will be discuss. The main focus is on the calculation of collision matrix which need large amount of computational time. The geometry treated here is concentric cylinder. The calculation of collision probability matrix is carried out using semi analytic method using Beckley Naylor Function. To accelerate computation speed some computer parallel used to solve the problem. We used LINUX based parallelization using PVM software with C or fortran language. While in windows based we used socket programming using DELPHI or C builder. The calculation results shows the important of optimal weight for each processor in case there area many type of processor speed
Abstract Level Parallelization of Finite Difference Methods
Directory of Open Access Journals (Sweden)
Edwin Vollebregt
1997-01-01
Full Text Available A formalism is proposed for describing finite difference calculations in an abstract way. The formalism consists of index sets and stencils, for characterizing the structure of sets of data items and interactions between data items (“neighbouring relations”. The formalism provides a means for lifting programming to a more abstract level. This simplifies the tasks of performance analysis and verification of correctness, and opens the way for automaticcode generation. The notation is particularly useful in parallelization, for the systematic construction of parallel programs in a process/channel programming paradigm (e.g., message passing. This is important because message passing, unfortunately, still is the only approach that leads to acceptable performance for many more unstructured or irregular problems on parallel computers that have non-uniform memory access times. It will be shown that the use of index sets and stencils greatly simplifies the determination of which data must be exchanged between different computing processes.
Parallel visualization on leadership computing resources
International Nuclear Information System (INIS)
Peterka, T; Ross, R B; Shen, H-W; Ma, K-L; Kendall, W; Yu, H
2009-01-01
Changes are needed in the way that visualization is performed, if we expect the analysis of scientific data to be effective at the petascale and beyond. By using similar techniques as those used to parallelize simulations, such as parallel I/O, load balancing, and effective use of interprocess communication, the supercomputers that compute these datasets can also serve as analysis and visualization engines for them. Our team is assessing the feasibility of performing parallel scientific visualization on some of the most powerful computational resources of the U.S. Department of Energy's National Laboratories in order to pave the way for analyzing the next generation of computational results. This paper highlights some of the conclusions of that research.
A possibility of parallel and anti-parallel diffraction measurements on ...
Indian Academy of Sciences (India)
However, a bent perfect crystal (BPC) monochromator at monochromatic focusing condition can provide a quite flat and equal resolution property at both parallel and anti-parallel positions and thus one can have a chance to use both sides for the diffraction experiment. From the data of the FWHM and the / measured ...
International Nuclear Information System (INIS)
Ishizuki, Shigeru; Kawai, Wataru; Nemoto, Toshiyuki; Ogasawara, Shinobu; Kume, Etsuo; Adachi, Masaaki; Kawasaki, Nobuo; Yatake, Yo-ichi
2000-03-01
Several computer codes in the nuclear field have been vectorized, parallelized and transported on the FUJITSU VPP500 system, the AP3000 system and the Paragon system at Center for Promotion of Computational Science and Engineering in Japan Atomic Energy Research Institute. We dealt with 12 codes in fiscal 1998. These results are reported in 3 parts, i.e., the vectorization and parallelization on vector processors part, the parallelization on scalar processors part and the porting part. In this report, we describe the vectorization and parallelization on vector processors. In this vectorization and parallelization on vector processors part, the vectorization of General Tokamak Circuit Simulation Program code GTCSP, the vectorization and parallelization of Molecular Dynamics NTV (n-particle, Temperature and Velocity) Simulation code MSP2, Eddy Current Analysis code EDDYCAL, Thermal Analysis Code for Test of Passive Cooling System by HENDEL T2 code THANPACST2 and MHD Equilibrium code SELENEJ on the VPP500 are described. In the parallelization on scalar processors part, the parallelization of Monte Carlo N-Particle Transport code MCNP4B2, Plasma Hydrodynamics code using Cubic Interpolated Propagation Method PHCIP and Vectorized Monte Carlo code (continuous energy model / multi-group model) MVP/GMVP on the Paragon are described. In the porting part, the porting of Monte Carlo N-Particle Transport code MCNP4B2 and Reactor Safety Analysis code RELAP5 on the AP3000 are described. (author)
A SPECT reconstruction method for extending parallel to non-parallel geometries
International Nuclear Information System (INIS)
Wen Junhai; Liang Zhengrong
2010-01-01
Due to its simplicity, parallel-beam geometry is usually assumed for the development of image reconstruction algorithms. The established reconstruction methodologies are then extended to fan-beam, cone-beam and other non-parallel geometries for practical application. This situation occurs for quantitative SPECT (single photon emission computed tomography) imaging in inverting the attenuated Radon transform. Novikov reported an explicit parallel-beam formula for the inversion of the attenuated Radon transform in 2000. Thereafter, a formula for fan-beam geometry was reported by Bukhgeim and Kazantsev (2002 Preprint N. 99 Sobolev Institute of Mathematics). At the same time, we presented a formula for varying focal-length fan-beam geometry. Sometimes, the reconstruction formula is so implicit that we cannot obtain the explicit reconstruction formula in the non-parallel geometries. In this work, we propose a unified reconstruction framework for extending parallel-beam geometry to any non-parallel geometry using ray-driven techniques. Studies by computer simulations demonstrated the accuracy of the presented unified reconstruction framework for extending parallel-beam to non-parallel geometries in inverting the attenuated Radon transform.
Programming massively parallel processors a hands-on approach
Kirk, David B
2010-01-01
Programming Massively Parallel Processors discusses basic concepts about parallel programming and GPU architecture. ""Massively parallel"" refers to the use of a large number of processors to perform a set of computations in a coordinated parallel way. The book details various techniques for constructing parallel programs. It also discusses the development process, performance level, floating-point format, parallel patterns, and dynamic parallelism. The book serves as a teaching guide where parallel programming is the main topic of the course. It builds on the basics of C programming for CUDA, a parallel programming environment that is supported on NVI- DIA GPUs. Composed of 12 chapters, the book begins with basic information about the GPU as a parallel computer source. It also explains the main concepts of CUDA, data parallelism, and the importance of memory access efficiency using CUDA. The target audience of the book is graduate and undergraduate students from all science and engineering disciplines who ...
Parallelization of Reversible Ripple-carry Adders
DEFF Research Database (Denmark)
Thomsen, Michael Kirkedal; Axelsen, Holger Bock
2009-01-01
The design of fast arithmetic logic circuits is an important research topic for reversible and quantum computing. A special challenge in this setting is the computation of standard arithmetical functions without the generation of \\emph{garbage}. Here, we present a novel parallelization scheme...... wherein $m$ parallel $k$-bit reversible ripple-carry adders are combined to form a reversible $mk$-bit \\emph{ripple-block carry adder} with logic depth $\\mathcal{O}(m+k)$ for a \\emph{minimal} logic depth $\\mathcal{O}(\\sqrt{mk})$, thus improving on the $mk$-bit ripple-carry adder logic depth $\\mathcal...
Parallel algorithms for numerical linear algebra
van der Vorst, H
1990-01-01
This is the first in a new series of books presenting research results and developments concerning the theory and applications of parallel computers, including vector, pipeline, array, fifth/future generation computers, and neural computers.All aspects of high-speed computing fall within the scope of the series, e.g. algorithm design, applications, software engineering, networking, taxonomy, models and architectural trends, performance, peripheral devices.Papers in Volume One cover the main streams of parallel linear algebra: systolic array algorithms, message-passing systems, algorithms for p
Keldysh formalism for multiple parallel worlds
International Nuclear Information System (INIS)
Ansari, M.; Nazarov, Y. V.
2016-01-01
We present a compact and self-contained review of the recently developed Keldysh formalism for multiple parallel worlds. The formalism has been applied to consistent quantum evaluation of the flows of informational quantities, in particular, to the evaluation of Renyi and Shannon entropy flows. We start with the formulation of the standard and extended Keldysh techniques in a single world in a form convenient for our presentation. We explain the use of Keldysh contours encompassing multiple parallel worlds. In the end, we briefly summarize the concrete results obtained with the method.
Keldysh formalism for multiple parallel worlds
Ansari, M.; Nazarov, Y. V.
2016-03-01
We present a compact and self-contained review of the recently developed Keldysh formalism for multiple parallel worlds. The formalism has been applied to consistent quantum evaluation of the flows of informational quantities, in particular, to the evaluation of Renyi and Shannon entropy flows. We start with the formulation of the standard and extended Keldysh techniques in a single world in a form convenient for our presentation. We explain the use of Keldysh contours encompassing multiple parallel worlds. In the end, we briefly summarize the concrete results obtained with the method.
A Massively Parallel Face Recognition System
Directory of Open Access Journals (Sweden)
Lahdenoja Olli
2007-01-01
Full Text Available We present methods for processing the LBPs (local binary patterns with a massively parallel hardware, especially with CNN-UM (cellular nonlinear network-universal machine. In particular, we present a framework for implementing a massively parallel face recognition system, including a dedicated highly accurate algorithm suitable for various types of platforms (e.g., CNN-UM and digital FPGA. We study in detail a dedicated mixed-mode implementation of the algorithm and estimate its implementation cost in the view of its performance and accuracy restrictions.
Xyce parallel electronic simulator release notes.
Energy Technology Data Exchange (ETDEWEB)
Keiter, Eric R; Hoekstra, Robert John; Mei, Ting; Russo, Thomas V.; Schiek, Richard Louis; Thornquist, Heidi K.; Rankin, Eric Lamont; Coffey, Todd S; Pawlowski, Roger P; Santarelli, Keith R.
2010-05-01
The Xyce Parallel Electronic Simulator has been written to support, in a rigorous manner, the simulation needs of the Sandia National Laboratories electrical designers. Specific requirements include, among others, the ability to solve extremely large circuit problems by supporting large-scale parallel computing platforms, improved numerical performance and object-oriented code design and implementation. The Xyce release notes describe: Hardware and software requirements New features and enhancements Any defects fixed since the last release Current known defects and defect workarounds For up-to-date information not available at the time these notes were produced, please visit the Xyce web page at http://www.cs.sandia.gov/xyce.
Parallel transposition of sparse data structures
DEFF Research Database (Denmark)
Wang, Hao; Liu, Weifeng; Hou, Kaixi
2016-01-01
Many applications in computational sciences and social sciences exploit sparsity and connectivity of acquired data. Even though many parallel sparse primitives such as sparse matrix-vector (SpMV) multiplication have been extensively studied, some other important building blocks, e.g., parallel tr...... transposition in the latest vendor-supplied library on an Intel multicore CPU platform, and the MergeTrans approach achieves on average of 3.4-fold (up to 11.7-fold) speedup on an Intel Xeon Phi many-core processor....
Temporal fringe pattern analysis with parallel computing
International Nuclear Information System (INIS)
Tuck Wah Ng; Kar Tien Ang; Argentini, Gianluca
2005-01-01
Temporal fringe pattern analysis is invaluable in transient phenomena studies but necessitates long processing times. Here we describe a parallel computing strategy based on the single-program multiple-data model and hyperthreading processor technology to reduce the execution time. In a two-node cluster workstation configuration we found that execution periods were reduced by 1.6 times when four virtual processors were used. To allow even lower execution times with an increasing number of processors, the time allocated for data transfer, data read, and waiting should be minimized. Parallel computing is found here to present a feasible approach to reduce execution times in temporal fringe pattern analysis
On radial flow between parallel disks
International Nuclear Information System (INIS)
Wee, A Y L; Gorin, A
2015-01-01
Approximate analytical solutions are presented for converging flow in between two parallel non rotating disks. The static pressure distribution and radial component of the velocity are developed by averaging the inertial term across the gap in between parallel disks. The predicted results from the first approximation are favourable to experimental results as well as results presented by other authors. The second approximation shows that as the fluid approaches the center, the velocity at the mid channel slows down which is due to the struggle between the inertial term and the flowrate. (paper)
Logical inference techniques for loop parallelization
DEFF Research Database (Denmark)
Oancea, Cosmin Eugen; Rauchwerger, Lawrence
2012-01-01
the parallelization transformation by verifying the independence of the loop's memory references. To this end it represents array references using the USR (uniform set representation) language and expresses the independence condition as an equation, S={}, where S is a set expression representing array indexes. Using...... of their estimated complexities. We evaluate our automated solution on 26 benchmarks from PERFECT-CLUB and SPEC suites and show that our approach is effective in parallelizing large, complex loops and obtains much better full program speedups than the Intel and IBM Fortran compilers....
A PARALLEL EXTENSION OF THE UAL ENVIRONMENT
International Nuclear Information System (INIS)
MALITSKY, N.; SHISHLO, A.
2001-01-01
The deployment of the Unified Accelerator Library (UAL) environment on the parallel cluster is presented. The approach is based on the Message-Passing Interface (MPI) library and the Perl adapter that allows one to control and mix together the existing conventional UAL components with the new MPI-based parallel extensions. In the paper, we provide timing results and describe the application of the new environment to the SNS Ring complex beam dynamics studies, particularly, simulations of several physical effects, such as space charge, field errors, fringe fields, and others
Analysis of a parallel multigrid algorithm
Chan, Tony F.; Tuminaro, Ray S.
1989-01-01
The parallel multigrid algorithm of Frederickson and McBryan (1987) is considered. This algorithm uses multiple coarse-grid problems (instead of one problem) in the hope of accelerating convergence and is found to have a close relationship to traditional multigrid methods. Specifically, the parallel coarse-grid correction operator is identical to a traditional multigrid coarse-grid correction operator, except that the mixing of high and low frequencies caused by aliasing error is removed. Appropriate relaxation operators can be chosen to take advantage of this property. Comparisons between the standard multigrid and the new method are made.
Parallel processing for artificial intelligence 2
Kumar, V; Suttner, CB
1994-01-01
With the increasing availability of parallel machines and the raising of interest in large scale and real world applications, research on parallel processing for Artificial Intelligence (AI) is gaining greater importance in the computer science environment. Many applications have been implemented and delivered but the field is still considered to be in its infancy. This book assembles diverse aspects of research in the area, providing an overview of the current state of technology. It also aims to promote further growth across the discipline. Contributions have been grouped according to their
Configuration affects parallel stent grafting results.
Tanious, Adam; Wooster, Mathew; Armstrong, Paul A; Zwiebel, Bruce; Grundy, Shane; Back, Martin R; Shames, Murray L
2018-05-01
A number of adjunctive "off-the-shelf" procedures have been described to treat complex aortic diseases. Our goal was to evaluate parallel stent graft configurations and to determine an optimal formula for these procedures. This is a retrospective review of all patients at a single medical center treated with parallel stent grafts from January 2010 to September 2015. Outcomes were evaluated on the basis of parallel graft orientation, type, and main body device. Primary end points included parallel stent graft compromise and overall endovascular aneurysm repair (EVAR) compromise. There were 78 patients treated with a total of 144 parallel stents for a variety of pathologic processes. There was a significant correlation between main body oversizing and snorkel compromise (P = .0195) and overall procedural complication (P = .0019) but not with endoleak rates. Patients were organized into the following oversizing groups for further analysis: 0% to 10%, 10% to 20%, and >20%. Those oversized into the 0% to 10% group had the highest rate of overall EVAR complication (73%; P = .0003). There were no significant correlations between any one particular configuration and overall procedural complication. There was also no significant correlation between total number of parallel stents employed and overall complication. Composite EVAR configuration had no significant correlation with individual snorkel compromise, endoleak, or overall EVAR or procedural complication. The configuration most prone to individual snorkel compromise and overall EVAR complication was a four-stent configuration with two stents in an antegrade position and two stents in a retrograde position (60% complication rate). The configuration most prone to endoleak was one or two stents in retrograde position (33% endoleak rate), followed by three stents in an all-antegrade position (25%). There was a significant correlation between individual stent configuration and stent compromise (P = .0385), with 31
Keldysh formalism for multiple parallel worlds
Energy Technology Data Exchange (ETDEWEB)
Ansari, M.; Nazarov, Y. V., E-mail: y.v.nazarov@tudelft.nl [Delft University of Technology, Kavli Institute of Nanoscience (Netherlands)
2016-03-15
We present a compact and self-contained review of the recently developed Keldysh formalism for multiple parallel worlds. The formalism has been applied to consistent quantum evaluation of the flows of informational quantities, in particular, to the evaluation of Renyi and Shannon entropy flows. We start with the formulation of the standard and extended Keldysh techniques in a single world in a form convenient for our presentation. We explain the use of Keldysh contours encompassing multiple parallel worlds. In the end, we briefly summarize the concrete results obtained with the method.
Use of parallel counters for triggering
International Nuclear Information System (INIS)
Nikityuk, N.M.
1991-01-01
Results of investigation of using parallel counters, majority coincidence schemes, parallel compressors for triggering in multichannel high energy spectrometers are described. Concrete examples of methods of constructing fast and economic new devices used to determine multiplicity hits t>900 registered in a hodoscopic plane and a pixel detector are given. For this purpose the author uses the syndrome coding method and cellular arrays. In addition, an effective coding matrix has been created which can be used for light signal coding. For example, such signals are supplied from scintillators to photomultipliers. 23 refs.; 21 figs
A Massively Parallel Face Recognition System
Directory of Open Access Journals (Sweden)
Ari Paasio
2006-12-01
Full Text Available We present methods for processing the LBPs (local binary patterns with a massively parallel hardware, especially with CNN-UM (cellular nonlinear network-universal machine. In particular, we present a framework for implementing a massively parallel face recognition system, including a dedicated highly accurate algorithm suitable for various types of platforms (e.g., CNN-UM and digital FPGA. We study in detail a dedicated mixed-mode implementation of the algorithm and estimate its implementation cost in the view of its performance and accuracy restrictions.
Parallel processor for fast event analysis
International Nuclear Information System (INIS)
Hensley, D.C.
1983-01-01
Current maximum data rates from the Spin Spectrometer of approx. 5000 events/s (up to 1.3 MBytes/s) and minimum analysis requiring at least 3000 operations/event require a CPU cycle time near 70 ns. In order to achieve an effective cycle time of 70 ns, a parallel processing device is proposed where up to 4 independent processors will be implemented in parallel. The individual processors are designed around the Am2910 Microsequencer, the AM29116 μP, and the Am29517 Multiplier. Satellite histogramming in a mass memory system will be managed by a commercial 16-bit μP system
Parallel adaptive simulations on unstructured meshes
International Nuclear Information System (INIS)
Shephard, M S; Jansen, K E; Sahni, O; Diachin, L A
2007-01-01
This paper discusses methods being developed by the ITAPS center to support the execution of parallel adaptive simulations on unstructured meshes. The paper first outlines the ITAPS approach to the development of interoperable mesh, geometry and field services to support the needs of SciDAC application in these areas. The paper then demonstrates the ability of unstructured adaptive meshing methods built on such interoperable services to effectively solve important physics problems. Attention is then focused on ITAPs' developing ability to solve adaptive unstructured mesh problems on massively parallel computers
Structured building model reduction toward parallel simulation
Energy Technology Data Exchange (ETDEWEB)
Dobbs, Justin R. [Cornell University; Hencey, Brondon M. [Cornell University
2013-08-26
Building energy model reduction exchanges accuracy for improved simulation speed by reducing the number of dynamical equations. Parallel computing aims to improve simulation times without loss of accuracy but is poorly utilized by contemporary simulators and is inherently limited by inter-processor communication. This paper bridges these disparate techniques to implement efficient parallel building thermal simulation. We begin with a survey of three structured reduction approaches that compares their performance to a leading unstructured method. We then use structured model reduction to find thermal clusters in the building energy model and allocate processing resources. Experimental results demonstrate faster simulation and low error without any interprocessor communication.
Parallel preconditioning techniques for sparse CG solvers
Energy Technology Data Exchange (ETDEWEB)
Basermann, A.; Reichel, B.; Schelthoff, C. [Central Institute for Applied Mathematics, Juelich (Germany)
1996-12-31
Conjugate gradient (CG) methods to solve sparse systems of linear equations play an important role in numerical methods for solving discretized partial differential equations. The large size and the condition of many technical or physical applications in this area result in the need for efficient parallelization and preconditioning techniques of the CG method. In particular for very ill-conditioned matrices, sophisticated preconditioner are necessary to obtain both acceptable convergence and accuracy of CG. Here, we investigate variants of polynomial and incomplete Cholesky preconditioners that markedly reduce the iterations of the simply diagonally scaled CG and are shown to be well suited for massively parallel machines.
Data communications in a parallel active messaging interface of a parallel computer
Archer, Charles J; Blocksome, Michael A; Ratterman, Joseph D; Smith, Brian E
2013-11-12
Data communications in a parallel active messaging interface (`PAMI`) of a parallel computer composed of compute nodes that execute a parallel application, each compute node including application processors that execute the parallel application and at least one management processor dedicated to gathering information regarding data communications. The PAMI is composed of data communications endpoints, each endpoint composed of a specification of data communications parameters for a thread of execution on a compute node, including specifications of a client, a context, and a task, the compute nodes and the endpoints coupled for data communications through the PAMI and through data communications resources. Embodiments function by gathering call site statistics describing data communications resulting from execution of data communications instructions and identifying in dependence upon the call cite statistics a data communications algorithm for use in executing a data communications instruction at a call site in the parallel application.
Murni, Bustamam, A.; Ernastuti, Handhika, T.; Kerami, D.
2017-07-01
Calculation of the matrix-vector multiplication in the real-world problems often involves large matrix with arbitrary size. Therefore, parallelization is needed to speed up the calculation process that usually takes a long time. Graph partitioning techniques that have been discussed in the previous studies cannot be used to complete the parallelized calculation of matrix-vector multiplication with arbitrary size. This is due to the assumption of graph partitioning techniques that can only solve the square and symmetric matrix. Hypergraph partitioning techniques will overcome the shortcomings of the graph partitioning technique. This paper addresses the efficient parallelization of matrix-vector multiplication through hypergraph partitioning techniques using CUDA GPU-based parallel computing. CUDA (compute unified device architecture) is a parallel computing platform and programming model that was created by NVIDIA and implemented by the GPU (graphics processing unit).
Parallelizing More Loops with Compiler Guided Refactoring
DEFF Research Database (Denmark)
Larsen, Per; Ladelsky, Razya; Lidman, Jacob
2012-01-01
an interactive compilation feedback system that guides programmers in iteratively modifying their application source code. This helps leverage the compiler’s ability to generate loop-parallel code. We employ our system to modify two sequential benchmarks dealing with image processing and edge detection...
Parallel and Distributed Systems for Probabilistic Reasoning
2012-12-01
Ranganathan "et"al...typically a random permutation over the vertices. Advances by Elidan et al. [2006] and Ranganathan et al. [2007] have focused on dynamic asynchronous...Wildfire algorithm shown in Alg. 3.6 is a direct parallelization of the algorithm proposed by [ Ranganathan et al., 2007]. The Wildfire algorithm
Lock-free parallel garbage collection
H. Gao; J.F. Groote (Jan Friso); W.H. Hesselink (Wim)
2005-01-01
htmlabstract This paper presents a lock-free parallel algorithm for mark&sweep garbage collection (GC) in a realistic model using synchronization primitives compare-and-swap (CAS) and load-linked/store-conditional (LL/SC) offered by machine architectures. Mutators and collectors can simultaneously
Parallel Monte Carlo simulation of aerosol dynamics
Zhou, K.
2014-01-01
A highly efficient Monte Carlo (MC) algorithm is developed for the numerical simulation of aerosol dynamics, that is, nucleation, surface growth, and coagulation. Nucleation and surface growth are handled with deterministic means, while coagulation is simulated with a stochastic method (Marcus-Lushnikov stochastic process). Operator splitting techniques are used to synthesize the deterministic and stochastic parts in the algorithm. The algorithm is parallelized using the Message Passing Interface (MPI). The parallel computing efficiency is investigated through numerical examples. Near 60% parallel efficiency is achieved for the maximum testing case with 3.7 million MC particles running on 93 parallel computing nodes. The algorithm is verified through simulating various testing cases and comparing the simulation results with available analytical and/or other numerical solutions. Generally, it is found that only small number (hundreds or thousands) of MC particles is necessary to accurately predict the aerosol particle number density, volume fraction, and so forth, that is, low order moments of the Particle Size Distribution (PSD) function. Accurately predicting the high order moments of the PSD needs to dramatically increase the number of MC particles. 2014 Kun Zhou et al.
Parallel Education and Defining the Fourth Sector.
Chessell, Diana
1996-01-01
Parallel to the primary, secondary, postsecondary, and adult/community education sectors is education not associated with formal programs--learning in arts and cultural sites. The emergence of cultural and educational tourism is an opportunity for adult/community education to define itself by extending lifelong learning opportunities into parallel…
Evidence of Parallel Processing During Translation
DEFF Research Database (Denmark)
Balling, Laura Winther; Hvelplund, Kristian Tangsgaard; Sjørup, Annette Camilla
2014-01-01
conclude that translation is a parallel process and that literal translation is likely to be a universal initial default strategy in translation. This conclusion is strengthened by the fact that all three experiments were relatively naturalistic, due to the combination of remote eye tracking and mixed...
Vector and parallel processors in computational science
International Nuclear Information System (INIS)
Duff, I.S.; Reid, J.K.
1985-01-01
These proceedings contain the articles presented at the named conference. These concern hardware and software for vector and parallel processors, numerical methods and algorithms for the computation on such processors, as well as applications of such methods to different fields of physics and related sciences. See hints under the relevant topics. (HSI)
Message passing with parallel queue traversal
Underwood, Keith D [Albuquerque, NM; Brightwell, Ronald B [Albuquerque, NM; Hemmert, K Scott [Albuquerque, NM
2012-05-01
In message passing implementations, associative matching structures are used to permit list entries to be searched in parallel fashion, thereby avoiding the delay of linear list traversal. List management capabilities are provided to support list entry turnover semantics and priority ordering semantics.
Parallel Volunteer Learning during Youth Programs
Lesmeister, Marilyn K.; Green, Jeremy; Derby, Amy; Bothum, Candi
2012-01-01
Lack of time is a hindrance for volunteers to participate in educational opportunities, yet volunteer success in an organization is tied to the orientation and education they receive. Meeting diverse educational needs of volunteers can be a challenge for program managers. Scheduling a Volunteer Learning Track for chaperones that is parallel to a…
Parallel electric fields from ionospheric winds
International Nuclear Information System (INIS)
Nakada, M.P.
1987-01-01
The possible production of electric fields parallel to the magnetic field by dynamo winds in the E region is examined, using a jet stream wind model. Current return paths through the F region above the stream are examined as well as return paths through the conjugate ionosphere. The Wulf geometry with horizontal winds moving in opposite directions one above the other is also examined. Parallel electric fields are found to depend strongly on the width of current sheets at the edges of the jet stream. If these are narrow enough, appreciable parallel electric fields are produced. These appear to be sufficient to heat the electrons which reduces the conductivity and produces further increases in parallel electric fields and temperatures. Calculations indicate that high enough temperatures for optical emission can be produced in less than 0.3 s. Some properties of auroras that might be produced by dynamo winds are examined; one property is a time delay in brightening at higher and lower altitudes
Kalman Filter Tracking on Parallel Architectures
International Nuclear Information System (INIS)
Cerati, Giuseppe; Elmer, Peter; Krutelyov, Slava; Lantz, Steven; Lefebvre, Matthieu; McDermott, Kevin; Riley, Daniel; Tadel, Matevž; Wittich, Peter; Würthwein, Frank; Yagil, Avi
2016-01-01
Power density constraints are limiting the performance improvements of modern CPUs. To address this we have seen the introduction of lower-power, multi-core processors such as GPGPU, ARM and Intel MIC. In order to achieve the theoretical performance gains of these processors, it will be necessary to parallelize algorithms to exploit larger numbers of lightweight cores and specialized functions like large vector units. Track finding and fitting is one of the most computationally challenging problems for event reconstruction in particle physics. At the High-Luminosity Large Hadron Collider (HL-LHC), for example, this will be by far the dominant problem. The need for greater parallelism has driven investigations of very different track finding techniques such as Cellular Automata or Hough Transforms. The most common track finding techniques in use today, however, are those based on a Kalman filter approach. Significant experience has been accumulated with these techniques on real tracking detector systems, both in the trigger and offline. They are known to provide high physics performance, are robust, and are in use today at the LHC. Given the utility of the Kalman filter in track finding, we have begun to port these algorithms to parallel architectures, namely Intel Xeon and Xeon Phi. We report here on our progress towards an end-to-end track reconstruction algorithm fully exploiting vectorization and parallelization techniques in a simplified experimental environment
Bessel functions: parallel display and processing.
Lohmann, A W; Ojeda-Castañeda, J; Serrano-Heredia, A
1994-01-01
We present an optical setup that converts planar binary curves into two-dimensional amplitude distributions, which are proportional, along one axis, to the Bessel function of order n, whereas along the other axis the order n increases. This Bessel displayer can be used for parallel Bessel transformation of a signal. Experimental verifications are included.
Hypercube Expert System Shell - Applying Production Parallelism.
1989-12-01
possible processor organizations, or int( rconntction n thod,, for par- allel architetures . The following are examples of commonlv used interconnection...this timing analysis because match speed-up avaiiah& from production parallelism is proportional to the average number of affected produclions1 ( 11:5
Efficient Parallel Algorithms for Unsteady Incompressible Flows
Guermond, Jean-Luc; Minev, Peter D.
2013-01-01
The objective of this paper is to give an overview of recent developments on splitting schemes for solving the time-dependent incompressible Navier–Stokes equations and to discuss possible extensions to the variable density/viscosity case. A particular attention is given to algorithms that can be implemented efficiently on large parallel clusters.
Stranger than fiction parallel universes beguile science
2007-01-01
A staple of mind-bending science fiction, the possibility of multiple universes has long intrigued hard-nosed physicists, mathematicians and cosmologists too. We may not be able -- at least not yet -- to prove they exist, many serious scientists say, but there are plenty of reasons to think that parallel dimensions are more than figments of eggheaded imagination.
Stranger that fiction parallel universes beguile science
2007-01-01
Is the universe -- correction: 'our' universe -- no more than a speck of cosmic dust amid an infinite number of parallel worlds? A staple of mind-bending science fiction, the possibility of multiple universes has long intrigued hard-nosed physicists, mathematicians and cosmologists too.
Stranger than fiction: parallel universes beguile science
Hautefeuille, Annie
2007-01-01
Is the universe-correction: 'our' universe-no more than a speck of cosmic dust amid an infinite number of parallel worlds? A staple of mind-bending science fiction, the possibility of multiple universes has long intrigued hard-nosed physicists, mathematicians and cosmologists too.
Logical inference techniques for loop parallelization
Oancea, Cosmin E.; Rauchwerger, Lawrence
2012-01-01
This paper presents a fully automatic approach to loop parallelization that integrates the use of static and run-time analysis and thus overcomes many known difficulties such as nonlinear and indirect array indexing and complex control flow. Our hybrid analysis framework validates the parallelization transformation by verifying the independence of the loop's memory references. To this end it represents array references using the USR (uniform set representation) language and expresses the independence condition as an equation, S = Ø, where S is a set expression representing array indexes. Using a language instead of an array-abstraction representation for S results in a smaller number of conservative approximations but exhibits a potentially-high runtime cost. To alleviate this cost we introduce a language translation F from the USR set-expression language to an equally rich language of predicates (F(S) ⇒ S = Ø). Loop parallelization is then validated using a novel logic inference algorithm that factorizes the obtained complex predicates (F(S)) into a sequence of sufficient-independence conditions that are evaluated first statically and, when needed, dynamically, in increasing order of their estimated complexities. We evaluate our automated solution on 26 benchmarks from PERFECTCLUB and SPEC suites and show that our approach is effective in parallelizing large, complex loops and obtains much better full program speedups than the Intel and IBM Fortran compilers. Copyright © 2012 ACM.
Performance studies of the parallel VIM code
International Nuclear Information System (INIS)
Shi, B.; Blomquist, R.N.
1996-01-01
In this paper, the authors evaluate the performance of the parallel version of the VIM Monte Carlo code on the IBM SPx at the High Performance Computing Research Facility at ANL. Three test problems with contrasting computational characteristics were used to assess effects in performance. A statistical method for estimating the inefficiencies due to load imbalance and communication is also introduced. VIM is a large scale continuous energy Monte Carlo radiation transport program and was parallelized using history partitioning, the master/worker approach, and p4 message passing library. Dynamic load balancing is accomplished when the master processor assigns chunks of histories to workers that have completed a previously assigned task, accommodating variations in the lengths of histories, processor speeds, and worker loads. At the end of each batch (generation), the fission sites and tallies are sent from each worker to the master process, contributing to the parallel inefficiency. All communications are between master and workers, and are serial. The SPx is a scalable 128-node parallel supercomputer with high-performance Omega switches of 63 microsec latency and 35 MBytes/sec bandwidth. For uniform and reproducible performance, they used only the 120 identical regular processors (IBM RS/6000) and excluded the remaining eight planet nodes, which may be loaded by other's jobs
Design strategies for irregularly adapting parallel applications
International Nuclear Information System (INIS)
Oliker, Leonid; Biswas, Rupak; Shan, Hongzhang; Sing, Jaswinder Pal
2000-01-01
Achieving scalable performance for dynamic irregular applications is eminently challenging. Traditional message-passing approaches have been making steady progress towards this goal; however, they suffer from complex implementation requirements. The use of a global address space greatly simplifies the programming task, but can degrade the performance of dynamically adapting computations. In this work, we examine two major classes of adaptive applications, under five competing programming methodologies and four leading parallel architectures. Results indicate that it is possible to achieve message-passing performance using shared-memory programming techniques by carefully following the same high level strategies. Adaptive applications have computational work loads and communication patterns which change unpredictably at runtime, requiring dynamic load balancing to achieve scalable performance on parallel machines. Efficient parallel implementations of such adaptive applications are therefore a challenging task. This work examines the implementation of two typical adaptive applications, Dynamic Remeshing and N-Body, across various programming paradigms and architectural platforms. We compare several critical factors of the parallel code development, including performance, programmability, scalability, algorithmic development, and portability
Learning and Parallelization Boost Constraint Search
Yun, Xi
2013-01-01
Constraint satisfaction problems are a powerful way to abstract and represent academic and real-world problems from both artificial intelligence and operations research. A constraint satisfaction problem is typically addressed by a sequential constraint solver running on a single processor. Rather than construct a new, parallel solver, this work…
Impedance Control of a Redundant Parallel Manipulator
DEFF Research Database (Denmark)
Méndez, Juan de Dios Flores; Schiøler, Henrik; Madsen, Ole
2017-01-01
This paper presents the design of Impedance Control to a redundantly actuated Parallel Kinematic Manipulator. The proposed control is based on treating each limb as a single system and their connection through the internal interaction forces. The controller introduces a stiffness and damping...
Gestalt and Adventure Therapy: Parallels and Perspectives.
Gilsdorf, Rudiger
This paper calls attention to parallels in the literature of adventure education and that of Gestalt therapy, demonstrating that both are rooted in an experiential tradition. The philosophies of adventure or experiential education and Gestalt therapy have the following areas in common: (1) emphasis on personal growth and the development of present…
Parallel single-cell analysis microfluidic platform
van den Brink, Floris Teunis Gerardus; Gool, Elmar; Frimat, Jean-Philippe; Bomer, Johan G.; van den Berg, Albert; le Gac, Severine
2011-01-01
We report a PDMS microfluidic platform for parallel single-cell analysis (PaSCAl) as a powerful tool to decipher the heterogeneity found in cell populations. Cells are trapped individually in dedicated pockets, and thereafter, a number of invasive or non-invasive analysis schemes are performed.
Vector and parallel processors in computational science
International Nuclear Information System (INIS)
Duff, I.S.; Reid, J.K.
1985-01-01
This book presents the papers given at a conference which reviewed the new developments in parallel and vector processing. Topics considered at the conference included hardware (array processors, supercomputers), programming languages, software aids, numerical methods (e.g., Monte Carlo algorithms, iterative methods, finite elements, optimization), and applications (e.g., neutron transport theory, meteorology, image processing)
An interactive parallel processor for data analysis
International Nuclear Information System (INIS)
Mong, J.; Logan, D.; Maples, C.; Rathbun, W.; Weaver, D.
1984-01-01
A parallel array of eight minicomputers has been assembled in an attempt to deal with kiloparameter data events. By exporting computer system functions to a separate processor, the authors have been able to achieve computer amplification linearly proportional to the number of executing processors
Partitions in languages and parallel computations
Energy Technology Data Exchange (ETDEWEB)
Burgin, M S; Burgina, E S
1982-05-01
Partitions of entries (linguistic structures) are studied that are intended for parallel data processing. The representations of formal languages with the aid of such structures is examined, and the relationships are considered between partitions of entries and abstract families of languages and automata. 18 references.
Contributions to computational stereology and parallel programming
DEFF Research Database (Denmark)
Rasmusson, Allan
rotator, even without the need for isotropic sections. To meet the need for computational power to perform image restoration of virtual tissue sections, parallel programming on GPUs has also been part of the project. This has lead to a significant change in paradigm for a previously developed surgical...
Parallel generation of architecture on the GPU
Steinberger, Markus
2014-05-01
In this paper, we present a novel approach for the parallel evaluation of procedural shape grammars on the graphics processing unit (GPU). Unlike previous approaches that are either limited in the kind of shapes they allow, the amount of parallelism they can take advantage of, or both, our method supports state of the art procedural modeling including stochasticity and context-sensitivity. To increase parallelism, we explicitly express independence in the grammar, reduce inter-rule dependencies required for context-sensitive evaluation, and introduce intra-rule parallelism. Our rule scheduling scheme avoids unnecessary back and forth between CPU and GPU and reduces round trips to slow global memory by dynamically grouping rules in on-chip shared memory. Our GPU shape grammar implementation is multiple orders of magnitude faster than the standard in CPU-based rule evaluation, while offering equal expressive power. In comparison to the state of the art in GPU shape grammar derivation, our approach is nearly 50 times faster, while adding support for geometric context-sensitivity. © 2014 The Author(s) Computer Graphics Forum © 2014 The Eurographics Association and John Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.
Heuristic framework for parallel sorting computations | Nwanze ...
African Journals Online (AJOL)
Parallel sorting techniques have become of practical interest with the advent of new multiprocessor architectures. The decreasing cost of these processors will probably in the future, make the solutions that are derived thereof to be more appealing. Efficient algorithms for sorting scheme that are encountered in a number of ...
Algorithms for parallel and vector computations
Ortega, James M.
1995-01-01
This is a final report on work performed under NASA grant NAG-1-1112-FOP during the period March, 1990 through February 1995. Four major topics are covered: (1) solution of nonlinear poisson-type equations; (2) parallel reduced system conjugate gradient method; (3) orderings for conjugate gradient preconditioners, and (4) SOR as a preconditioner.
Parallel algorithms on the ASTRA SIMD machine
International Nuclear Information System (INIS)
Odor, G.; Rohrbach, F.; Vesztergombi, G.; Varga, G.; Tatrai, F.
1996-01-01
In view of the tremendous computing power jump of modern RISC processors the interest in parallel computing seems to be thinning out. Why use a complicated system of parallel processors, if the problem can be solved by a single powerful micro-chip. It is a general law, however, that exponential growth will always end by some kind of a saturation, and then parallelism will again become a hot topic. We try to prepare ourselves for this eventuality. The MPPC project started in 1990 in the keydeys of parallelism and produced four ASTRA machines (presented at CHEP's 92) with 4k processors (which are expandable to 16k) based on yesterday's chip-technology (chip presented at CHEP'91). These machines now provide excellent test-beds for algorithmic developments in a complete, real environment. We are developing for example fast-pattern recognition algorithms which could be used in high-energy physics experiments at the LHC (planned to be operational after 2004 at CERN) for triggering and data reduction. The basic feature of our ASP (Associate String Processor) approach is to use extremely simple (thus very cheap) processor elements but in huge quantities (up to millions of processors) connected together by a very simple string-like communication chain. In this paper we present powerful algorithms based on this architecture indicating the performance perspectives if the hardware quality reaches present or even future technology levels. (author)
Parallel object-oriented specification language
Florescu, O.; Voeten, J.P.M.; Theelen, B.D.; Geilen, M.C.W.; Corporaal, H.; Burns, Alan
2008-01-01
The Parallel Object-Oriented Specification Language (POOSL) is an expressive modelling language for hardware/software systems [10]. It was originally defined in [7] as an object-oriented extension of process algebra CCS [6], supporting (conditional) synchronous message passing between
Massively parallel sequencing of forensic STRs
DEFF Research Database (Denmark)
Parson, Walther; Ballard, David; Budowle, Bruce
2016-01-01
The DNA Commission of the International Society for Forensic Genetics (ISFG) is reviewing factors that need to be considered ahead of the adoption by the forensic community of short tandem repeat (STR) genotyping by massively parallel sequencing (MPS) technologies. MPS produces sequence data that...
A Model for Speedup of Parallel Programs
1997-01-01
Sanjeev. K Setia . The interaction between mem- ory allocation and adaptive partitioning in message- passing multicomputers. In IPPS Workshop on Job...Scheduling Strategies for Parallel Processing, pages 89{99, 1995. [15] Sanjeev K. Setia and Satish K. Tripathi. A compar- ative analysis of static
Parallel computing, failure recovery, and extreme values
DEFF Research Database (Denmark)
Andersen, Lars Nørvang; Asmussen, Søren
A task of random size T is split into M subtasks of lengths T1, . . . , TM, each of which is sent to one out of M parallel processors. Each processor may fail at a random time before completing its allocated task, and then has to restart it from the beginning. If X1, . . . ,XM are the total task ...
Experience with a clustered parallel reduction machine
Beemster, M.; Hartel, Pieter H.; Hertzberger, L.O.; Hofman, R.F.H.; Langendoen, K.G.; Li, L.L.; Milikowski, R.; Vree, W.G.; Barendregt, H.P.; Mulder, J.C.
A clustered architecture has been designed to exploit divide and conquer parallelism in functional programs. The programming methodology developed for the machine is based on explicit annotations and program transformations. It has been successfully applied to a number of algorithms resulting in a
Logical inference techniques for loop parallelization
Oancea, Cosmin E.
2012-01-01
This paper presents a fully automatic approach to loop parallelization that integrates the use of static and run-time analysis and thus overcomes many known difficulties such as nonlinear and indirect array indexing and complex control flow. Our hybrid analysis framework validates the parallelization transformation by verifying the independence of the loop\\'s memory references. To this end it represents array references using the USR (uniform set representation) language and expresses the independence condition as an equation, S = Ø, where S is a set expression representing array indexes. Using a language instead of an array-abstraction representation for S results in a smaller number of conservative approximations but exhibits a potentially-high runtime cost. To alleviate this cost we introduce a language translation F from the USR set-expression language to an equally rich language of predicates (F(S) ⇒ S = Ø). Loop parallelization is then validated using a novel logic inference algorithm that factorizes the obtained complex predicates (F(S)) into a sequence of sufficient-independence conditions that are evaluated first statically and, when needed, dynamically, in increasing order of their estimated complexities. We evaluate our automated solution on 26 benchmarks from PERFECTCLUB and SPEC suites and show that our approach is effective in parallelizing large, complex loops and obtains much better full program speedups than the Intel and IBM Fortran compilers. Copyright © 2012 ACM.
Researching the Parallel Process in Supervision and Psychotherapy
DEFF Research Database (Denmark)
Jacobsen, Claus Haugaard
Reflects upon how to do process research in supervision and in the parallel process. A single case study is presented illustrating how a study on parallel process can be carried out.......Reflects upon how to do process research in supervision and in the parallel process. A single case study is presented illustrating how a study on parallel process can be carried out....
3D printed soft parallel actuator
Zolfagharian, Ali; Kouzani, Abbas Z.; Khoo, Sui Yang; Noshadi, Amin; Kaynak, Akif
2018-04-01
This paper presents a 3-dimensional (3D) printed soft parallel contactless actuator for the first time. The actuator involves an electro-responsive parallel mechanism made of two segments namely active chain and passive chain both 3D printed. The active chain is attached to the ground from one end and constitutes two actuator links made of responsive hydrogel. The passive chain, on the other hand, is attached to the active chain from one end and consists of two rigid links made of polymer. The actuator links are printed using an extrusion-based 3D-Bioplotter with polyelectrolyte hydrogel as printer ink. The rigid links are also printed by a 3D fused deposition modelling (FDM) printer with acrylonitrile butadiene styrene (ABS) as print material. The kinematics model of the soft parallel actuator is derived via transformation matrices notations to simulate and determine the workspace of the actuator. The printed soft parallel actuator is then immersed into NaOH solution with specific voltage applied to it via two contactless electrodes. The experimental data is then collected and used to develop a parametric model to estimate the end-effector position and regulate kinematics model in response to specific input voltage over time. It is observed that the electroactive actuator demonstrates expected behaviour according to the simulation of its kinematics model. The use of 3D printing for the fabrication of parallel soft actuators opens a new chapter in manufacturing sophisticated soft actuators with high dexterity and mechanical robustness for biomedical applications such as cell manipulation and drug release.
Effects of parallel planning on agreement production.
Veenstra, Alma; Meyer, Antje S; Acheson, Daniel J
2015-11-01
An important issue in current psycholinguistics is how the time course of utterance planning affects the generation of grammatical structures. The current study investigated the influence of parallel activation of the components of complex noun phrases on the generation of subject-verb agreement. Specifically, the lexical interference account (Gillespie & Pearlmutter, 2011b; Solomon & Pearlmutter, 2004) predicts more agreement errors (i.e., attraction) for subject phrases in which the head and local noun mismatch in number (e.g., the apple next to the pears) when nouns are planned in parallel than when they are planned in sequence. We used a speeded picture description task that yielded sentences such as the apple next to the pears is red. The objects mentioned in the noun phrase were either semantically related or unrelated. To induce agreement errors, pictures sometimes mismatched in number. In order to manipulate the likelihood of parallel processing of the objects and to test the hypothesized relationship between parallel processing and the rate of agreement errors, the pictures were either placed close together or far apart. Analyses of the participants' eye movements and speech onset latencies indicated slower processing of the first object and stronger interference from the related (compared to the unrelated) second object in the close than in the far condition. Analyses of the agreement errors yielded an attraction effect, with more errors in mismatching than in matching conditions. However, the magnitude of the attraction effect did not differ across the close and far conditions. Thus, spatial proximity encouraged parallel processing of the pictures, which led to interference of the associated conceptual and/or lexical representation, but, contrary to the prediction, it did not lead to more attraction errors. Copyright © 2015 Elsevier B.V. All rights reserved.
Collectively loading an application in a parallel computer
Aho, Michael E.; Attinella, John E.; Gooding, Thomas M.; Miller, Samuel J.; Mundy, Michael B.
2016-01-05
Collectively loading an application in a parallel computer, the parallel computer comprising a plurality of compute nodes, including: identifying, by a parallel computer control system, a subset of compute nodes in the parallel computer to execute a job; selecting, by the parallel computer control system, one of the subset of compute nodes in the parallel computer as a job leader compute node; retrieving, by the job leader compute node from computer memory, an application for executing the job; and broadcasting, by the job leader to the subset of compute nodes in the parallel computer, the application for executing the job.
On synchronous parallel computations with independent probabilistic choice
International Nuclear Information System (INIS)
Reif, J.H.
1984-01-01
This paper introduces probabilistic choice to synchronous parallel machine models; in particular parallel RAMs. The power of probabilistic choice in parallel computations is illustrate by parallelizing some known probabilistic sequential algorithms. The authors characterize the computational complexity of time, space, and processor bounded probabilistic parallel RAMs in terms of the computational complexity of probabilistic sequential RAMs. They show that parallelism uniformly speeds up time bounded probabilistic sequential RAM computations by nearly a quadratic factor. They also show that probabilistic choice can be eliminated from parallel computations by introducing nonuniformity
Multitasking TORT Under UNICOS: Parallel Performance Models and Measurements
International Nuclear Information System (INIS)
Azmy, Y.Y.; Barnett, D.A.
1999-01-01
The existing parallel algorithms in the TORT discrete ordinates were updated to function in a UNI-COS environment. A performance model for the parallel overhead was derived for the existing algorithms. The largest contributors to the parallel overhead were identified and a new algorithm was developed. A parallel overhead model was also derived for the new algorithm. The results of the comparison of parallel performance models were compared to applications of the code to two TORT standard test problems and a large production problem. The parallel performance models agree well with the measured parallel overhead
Multitasking TORT under UNICOS: Parallel performance models and measurements
International Nuclear Information System (INIS)
Barnett, A.; Azmy, Y.Y.
1999-01-01
The existing parallel algorithms in the TORT discrete ordinates code were updated to function in a UNICOS environment. A performance model for the parallel overhead was derived for the existing algorithms. The largest contributors to the parallel overhead were identified and a new algorithm was developed. A parallel overhead model was also derived for the new algorithm. The results of the comparison of parallel performance models were compared to applications of the code to two TORT standard test problems and a large production problem. The parallel performance models agree well with the measured parallel overhead
Parallelization for first principles electronic state calculation program
International Nuclear Information System (INIS)
Watanabe, Hiroshi; Oguchi, Tamio.
1997-03-01
In this report we study the parallelization for First principles electronic state calculation program. The target machines are NEC SX-4 for shared memory type parallelization and FUJITSU VPP300 for distributed memory type parallelization. The features of each parallel machine are surveyed, and the parallelization methods suitable for each are proposed. It is shown that 1.60 times acceleration is achieved with 2 CPU parallelization by SX-4 and 4.97 times acceleration is achieved with 12 PE parallelization by VPP 300. (author)
Analysis of parallel computing performance of the code MCNP
International Nuclear Information System (INIS)
Wang Lei; Wang Kan; Yu Ganglin
2006-01-01
Parallel computing can reduce the running time of the code MCNP effectively. With the MPI message transmitting software, MCNP5 can achieve its parallel computing on PC cluster with Windows operating system. Parallel computing performance of MCNP is influenced by factors such as the type, the complexity level and the parameter configuration of the computing problem. This paper analyzes the parallel computing performance of MCNP regarding with these factors and gives measures to improve the MCNP parallel computing performance. (authors)
PSHED: a simplified approach to developing parallel programs
International Nuclear Information System (INIS)
Mahajan, S.M.; Ramesh, K.; Rajesh, K.; Somani, A.; Goel, M.
1992-01-01
This paper presents a simplified approach in the forms of a tree structured computational model for parallel application programs. An attempt is made to provide a standard user interface to execute programs on BARC Parallel Processing System (BPPS), a scalable distributed memory multiprocessor. The interface package called PSHED provides a basic framework for representing and executing parallel programs on different parallel architectures. The PSHED package incorporates concepts from a broad range of previous research in programming environments and parallel computations. (author). 6 refs
DEFF Research Database (Denmark)
Li, Helong; Zhou, Wei; Wang, Xiongfei
2018-01-01
This paper addresses the transient current distribution in the multichip half-bridge power modules, where two types of paralleling connections with different current commutation mechanisms are considered: paralleling dies and paralleling half-bridges. It reveals that with paralleling dies, both t...
Data communications in a parallel active messaging interface of a parallel computer
Archer, Charles J; Blocksome, Michael A; Ratterman, Joseph D; Smith, Brian E
2013-10-29
Data communications in a parallel active messaging interface (`PAMI`) of a parallel computer, the parallel computer including a plurality of compute nodes that execute a parallel application, the PAMI composed of data communications endpoints, each endpoint including a specification of data communications parameters for a thread of execution on a compute node, including specifications of a client, a context, and a task, the compute nodes and the endpoints coupled for data communications through the PAMI and through data communications resources, including receiving in an origin endpoint of the PAMI a data communications instruction, the instruction characterized by an instruction type, the instruction specifying a transmission of transfer data from the origin endpoint to a target endpoint and transmitting, in accordance with the instruction type, the transfer data from the origin endpoint to the target endpoint.
A possibility of parallel and anti-parallel diffraction measurements on ...
Indian Academy of Sciences (India)
resolution property of the other one, anti-parallel position, is very poor. .... in a wide angular region using BPC mochromator at the MF condition by showing ... and N Nimura, Proceedings of the 7th World Conference on Neutron Radiography,.
Parallel scalability of Hartree-Fock calculations
Chow, Edmond; Liu, Xing; Smelyanskiy, Mikhail; Hammond, Jeff R.
2015-03-01
Quantum chemistry is increasingly performed using large cluster computers consisting of multiple interconnected nodes. For a fixed molecular problem, the efficiency of a calculation usually decreases as more nodes are used, due to the cost of communication between the nodes. This paper empirically investigates the parallel scalability of Hartree-Fock calculations. The construction of the Fock matrix and the density matrix calculation are analyzed separately. For the former, we use a parallelization of Fock matrix construction based on a static partitioning of work followed by a work stealing phase. For the latter, we use density matrix purification from the linear scaling methods literature, but without using sparsity. When using large numbers of nodes for moderately sized problems, density matrix computations are network-bandwidth bound, making purification methods potentially faster than eigendecomposition methods.
Locating hardware faults in a parallel computer
Archer, Charles J.; Megerian, Mark G.; Ratterman, Joseph D.; Smith, Brian E.
2010-04-13
Locating hardware faults in a parallel computer, including defining within a tree network of the parallel computer two or more sets of non-overlapping test levels of compute nodes of the network that together include all the data communications links of the network, each non-overlapping test level comprising two or more adjacent tiers of the tree; defining test cells within each non-overlapping test level, each test cell comprising a subtree of the tree including a subtree root compute node and all descendant compute nodes of the subtree root compute node within a non-overlapping test level; performing, separately on each set of non-overlapping test levels, an uplink test on all test cells in a set of non-overlapping test levels; and performing, separately from the uplink tests and separately on each set of non-overlapping test levels, a downlink test on all test cells in a set of non-overlapping test levels.
Parallel interactive data analysis with PROOF
International Nuclear Information System (INIS)
Ballintijn, Maarten; Biskup, Marek; Brun, Rene; Canal, Philippe; Feichtinger, Derek; Ganis, Gerardo; Kickinger, Guenter; Peters, Andreas; Rademakers, Fons
2006-01-01
The Parallel ROOT Facility, PROOF, enables the analysis of much larger data sets on a shorter time scale. It exploits the inherent parallelism in data of uncorrelated events via a multi-tier architecture that optimizes I/O and CPU utilization in heterogeneous clusters with distributed storage. The system provides transparent and interactive access to gigabytes today. Being part of the ROOT framework PROOF inherits the benefits of a performant object storage system and a wealth of statistical and visualization tools. This paper describes the data analysis model of ROOT and the latest developments on closer integration of PROOF into that model and the ROOT user environment, e.g. support for PROOF-based browsing of trees stored remotely, and the popular TTree::Draw() interface. We also outline the ongoing developments aimed to improve the flexibility and user-friendliness of the system
Electromagnetic Physics Models for Parallel Computing Architectures
International Nuclear Information System (INIS)
Amadio, G; Bianchini, C; Iope, R; Ananya, A; Apostolakis, J; Aurora, A; Bandieramonte, M; Brun, R; Carminati, F; Gheata, A; Gheata, M; Goulas, I; Nikitina, T; Bhattacharyya, A; Mohanty, A; Canal, P; Elvira, D; Jun, S Y; Lima, G; Duhem, L
2016-01-01
The recent emergence of hardware architectures characterized by many-core or accelerated processors has opened new opportunities for concurrent programming models taking advantage of both SIMD and SIMT architectures. GeantV, a next generation detector simulation, has been designed to exploit both the vector capability of mainstream CPUs and multi-threading capabilities of coprocessors including NVidia GPUs and Intel Xeon Phi. The characteristics of these architectures are very different in terms of the vectorization depth and type of parallelization needed to achieve optimal performance. In this paper we describe implementation of electromagnetic physics models developed for parallel computing architectures as a part of the GeantV project. Results of preliminary performance evaluation and physics validation are presented as well. (paper)
Electromagnetic Physics Models for Parallel Computing Architectures
Amadio, G.; Ananya, A.; Apostolakis, J.; Aurora, A.; Bandieramonte, M.; Bhattacharyya, A.; Bianchini, C.; Brun, R.; Canal, P.; Carminati, F.; Duhem, L.; Elvira, D.; Gheata, A.; Gheata, M.; Goulas, I.; Iope, R.; Jun, S. Y.; Lima, G.; Mohanty, A.; Nikitina, T.; Novak, M.; Pokorski, W.; Ribon, A.; Seghal, R.; Shadura, O.; Vallecorsa, S.; Wenzel, S.; Zhang, Y.
2016-10-01
The recent emergence of hardware architectures characterized by many-core or accelerated processors has opened new opportunities for concurrent programming models taking advantage of both SIMD and SIMT architectures. GeantV, a next generation detector simulation, has been designed to exploit both the vector capability of mainstream CPUs and multi-threading capabilities of coprocessors including NVidia GPUs and Intel Xeon Phi. The characteristics of these architectures are very different in terms of the vectorization depth and type of parallelization needed to achieve optimal performance. In this paper we describe implementation of electromagnetic physics models developed for parallel computing architectures as a part of the GeantV project. Results of preliminary performance evaluation and physics validation are presented as well.
Vacuum Large Current Parallel Transfer Numerical Analysis
Directory of Open Access Journals (Sweden)
Enyuan Dong
2014-01-01
Full Text Available The stable operation and reliable breaking of large generator current are a difficult problem in power system. It can be solved successfully by the parallel interrupters and proper timing sequence with phase-control technology, in which the strategy of breaker’s control is decided by the time of both the first-opening phase and second-opening phase. The precise transfer current’s model can provide the proper timing sequence to break the generator circuit breaker. By analysis of the transfer current’s experiments and data, the real vacuum arc resistance and precise correctional model in the large transfer current’s process are obtained in this paper. The transfer time calculated by the correctional model of transfer current is very close to the actual transfer time. It can provide guidance for planning proper timing sequence and breaking the vacuum generator circuit breaker with the parallel interrupters.
Complementarity beyond physics Niels Bohr's parallels
Bala, Arun
2017-01-01
In this study Arun Bala examines the implications that Niels Bohr’s principle of complementarity holds for fields beyond physics. Bohr, one of the founding figures of modern quantum physics, argued that the principle of complementarity he proposed for understanding atomic processes has parallels in psychology, biology, and social science, as well as in Buddhist and Taoist thought. But Bohr failed to offer any explanation for why complementarity might extend beyond physics, and his claims have been widely rejected by scientists as empty speculation. Scientific scepticism has only been reinforced by the naïve enthusiasm of postmodern relativists and New Age intuitionists, who seize upon Bohr’s ideas to justify anti-realist and mystical positions. Arun Bala offers a detailed defence of Bohr’s claim that complementarity has far-reaching implications for the biological and social sciences, as well as for comparative philosophies of science, by explaining Bohr’s parallels as responses to the omnipresence...
Flexibility and Performance of Parallel File Systems
Kotz, David; Nieuwejaar, Nils
1996-01-01
As we gain experience with parallel file systems, it becomes increasingly clear that a single solution does not suit all applications. For example, it appears to be impossible to find a single appropriate interface, caching policy, file structure, or disk-management strategy. Furthermore, the proliferation of file-system interfaces and abstractions make applications difficult to port. We propose that the traditional functionality of parallel file systems be separated into two components: a fixed core that is standard on all platforms, encapsulating only primitive abstractions and interfaces, and a set of high-level libraries to provide a variety of abstractions and application-programmer interfaces (API's). We present our current and next-generation file systems as examples of this structure. Their features, such as a three-dimensional file structure, strided read and write interfaces, and I/O-node programs, are specifically designed with the flexibility and performance necessary to support a wide range of applications.
(Nearly) portable PIC code for parallel computers
International Nuclear Information System (INIS)
Decyk, V.K.
1993-01-01
As part of the Numerical Tokamak Project, the author has developed a (nearly) portable, one dimensional version of the GCPIC algorithm for particle-in-cell codes on parallel computers. This algorithm uses a spatial domain decomposition for the fields, and passes particles from one domain to another as the particles move spatially. With only minor changes, the code has been run in parallel on the Intel Delta, the Cray C-90, the IBM ES/9000 and a cluster of workstations. After a line by line translation into cmfortran, the code was also run on the CM-200. Impressive speeds have been achieved, both on the Intel Delta and the Cray C-90, around 30 nanoseconds per particle per time step. In addition, the author was able to isolate the data management modules, so that the physics modules were not changed much from their sequential version, and the data management modules can be used as open-quotes black boxes.close quotes
Parallel Jacobi EVD Methods on Integrated Circuits
Directory of Open Access Journals (Sweden)
Chi-Chia Sun
2014-01-01
Full Text Available Design strategies for parallel iterative algorithms are presented. In order to further study different tradeoff strategies in design criteria for integrated circuits, A 10 × 10 Jacobi Brent-Luk-EVD array with the simplified μ-CORDIC processor is used as an example. The experimental results show that using the μ-CORDIC processor is beneficial for the design criteria as it yields a smaller area, faster overall computation time, and less energy consumption than the regular CORDIC processor. It is worth to notice that the proposed parallel EVD method can be applied to real-time and low-power array signal processing algorithms performing beamforming or DOA estimation.
Large amplitude parallel propagating electromagnetic oscillitons
International Nuclear Information System (INIS)
Cattaert, Tom; Verheest, Frank
2005-01-01
Earlier systematic nonlinear treatments of parallel propagating electromagnetic waves have been given within a fluid dynamic approach, in a frame where the nonlinear structures are stationary and various constraining first integrals can be obtained. This has lead to the concept of oscillitons that has found application in various space plasmas. The present paper differs in three main aspects from the previous studies: first, the invariants are derived in the plasma frame, as customary in the Sagdeev method, thus retaining in Maxwell's equations all possible effects. Second, a single differential equation is obtained for the parallel fluid velocity, in a form reminiscent of the Sagdeev integrals, hence allowing a fully nonlinear discussion of the oscilliton properties, at such amplitudes as the underlying Mach number restrictions allow. Third, the transition to weakly nonlinear whistler oscillitons is done in an analytical rather than a numerical fashion
Oxytocin: parallel processing in the social brain?
Dölen, Gül
2015-06-01
Early studies attempting to disentangle the network complexity of the brain exploited the accessibility of sensory receptive fields to reveal circuits made up of synapses connected both in series and in parallel. More recently, extension of this organisational principle beyond the sensory systems has been made possible by the advent of modern molecular, viral and optogenetic approaches. Here, evidence supporting parallel processing of social behaviours mediated by oxytocin is reviewed. Understanding oxytocinergic signalling from this perspective has significant implications for the design of oxytocin-based therapeutic interventions aimed at disorders such as autism, where disrupted social function is a core clinical feature. Moreover, identification of opportunities for novel technology development will require a better appreciation of the complexity of the circuit-level organisation of the social brain. © 2015 The Authors. Journal of Neuroendocrinology published by John Wiley & Sons Ltd on behalf of British Society for Neuroendocrinology.
The new landscape of parallel computer architecture
Energy Technology Data Exchange (ETDEWEB)
Shalf, John [NERSC Division, Lawrence Berkeley National Laboratory 1 Cyclotron Road, Berkeley California, 94720 (United States)
2007-07-15
The past few years has seen a sea change in computer architecture that will impact every facet of our society as every electronic device from cell phone to supercomputer will need to confront parallelism of unprecedented scale. Whereas the conventional multicore approach (2, 4, and even 8 cores) adopted by the computing industry will eventually hit a performance plateau, the highest performance per watt and per chip area is achieved using manycore technology (hundreds or even thousands of cores). However, fully unleashing the potential of the manycore approach to ensure future advances in sustained computational performance will require fundamental advances in computer architecture and programming models that are nothing short of reinventing computing. In this paper we examine the reasons behind the movement to exponentially increasing parallelism, and its ramifications for system design, applications and programming models.
Parallel Evolutionary Optimization for Neuromorphic Network Training
Energy Technology Data Exchange (ETDEWEB)
Schuman, Catherine D [ORNL; Disney, Adam [University of Tennessee (UT); Singh, Susheela [North Carolina State University (NCSU), Raleigh; Bruer, Grant [University of Tennessee (UT); Mitchell, John Parker [University of Tennessee (UT); Klibisz, Aleksander [University of Tennessee (UT); Plank, James [University of Tennessee (UT)
2016-01-01
One of the key impediments to the success of current neuromorphic computing architectures is the issue of how best to program them. Evolutionary optimization (EO) is one promising programming technique; in particular, its wide applicability makes it especially attractive for neuromorphic architectures, which can have many different characteristics. In this paper, we explore different facets of EO on a spiking neuromorphic computing model called DANNA. We focus on the performance of EO in the design of our DANNA simulator, and on how to structure EO on both multicore and massively parallel computing systems. We evaluate how our parallel methods impact the performance of EO on Titan, the U.S.'s largest open science supercomputer, and BOB, a Beowulf-style cluster of Raspberry Pi's. We also focus on how to improve the EO by evaluating commonality in higher performing neural networks, and present the result of a study that evaluates the EO performed by Titan.
Parallelization of a blind deconvolution algorithm
Matson, Charles L.; Borelli, Kathy J.
2006-09-01
Often it is of interest to deblur imagery in order to obtain higher-resolution images. Deblurring requires knowledge of the blurring function - information that is often not available separately from the blurred imagery. Blind deconvolution algorithms overcome this problem by jointly estimating both the high-resolution image and the blurring function from the blurred imagery. Because blind deconvolution algorithms are iterative in nature, they can take minutes to days to deblur an image depending how many frames of data are used for the deblurring and the platforms on which the algorithms are executed. Here we present our progress in parallelizing a blind deconvolution algorithm to increase its execution speed. This progress includes sub-frame parallelization and a code structure that is not specialized to a specific computer hardware architecture.
Capacity Bounds for Parallel Optical Wireless Channels
Chaaban, Anas; Rezki, Zouheir; Alouini, Mohamed-Slim
2016-01-01
A system consisting of parallel optical wireless channels with a total average intensity constraint is studied. Capacity upper and lower bounds for this system are derived. Under perfect channel-state information at the transmitter (CSIT), the bounds have to be optimized with respect to the power allocation over the parallel channels. The optimization of the lower bound is non-convex, however, the KKT conditions can be used to find a list of possible solutions one of which is optimal. The optimal solution can then be found by an exhaustive search algorithm, which is computationally expensive. To overcome this, we propose low-complexity power allocation algorithms which are nearly optimal. The optimized capacity lower bound nearly coincides with the capacity at high SNR. Without CSIT, our capacity bounds lead to upper and lower bounds on the outage probability. The outage probability bounds meet at high SNR. The system with average and peak intensity constraints is also discussed.
Parallel algorithms for boundary value problems
Lin, Avi
1991-01-01
A general approach to solve boundary value problems numerically in a parallel environment is discussed. The basic algorithm consists of two steps: the local step where all the P available processors work in parallel, and the global step where one processor solves a tridiagonal linear system of the order P. The main advantages of this approach are twofold. First, this suggested approach is very flexible, especially in the local step and thus the algorithm can be used with any number of processors and with any of the SIMD or MIMD machines. Secondly, the communication complexity is very small and thus can be used as easily with shared memory machines. Several examples for using this strategy are discussed.
Parallel GPU implementation of iterative PCA algorithms.
Andrecut, M
2009-11-01
Principal component analysis (PCA) is a key statistical technique for multivariate data analysis. For large data sets, the common approach to PCA computation is based on the standard NIPALS-PCA algorithm, which unfortunately suffers from loss of orthogonality, and therefore its applicability is usually limited to the estimation of the first few components. Here we present an algorithm based on Gram-Schmidt orthogonalization (called GS-PCA), which eliminates this shortcoming of NIPALS-PCA. Also, we discuss the GPU (Graphics Processing Unit) parallel implementation of both NIPALS-PCA and GS-PCA algorithms. The numerical results show that the GPU parallel optimized versions, based on CUBLAS (NVIDIA), are substantially faster (up to 12 times) than the CPU optimized versions based on CBLAS (GNU Scientific Library).
Frontiers of massively parallel scientific computation
International Nuclear Information System (INIS)
Fischer, J.R.
1987-07-01
Practical applications using massively parallel computer hardware first appeared during the 1980s. Their development was motivated by the need for computing power orders of magnitude beyond that available today for tasks such as numerical simulation of complex physical and biological processes, generation of interactive visual displays, satellite image analysis, and knowledge based systems. Representative of the first generation of this new class of computers is the Massively Parallel Processor (MPP). A team of scientists was provided the opportunity to test and implement their algorithms on the MPP. The first results are presented. The research spans a broad variety of applications including Earth sciences, physics, signal and image processing, computer science, and graphics. The performance of the MPP was very good. Results obtained using the Connection Machine and the Distributed Array Processor (DAP) are presented
Computation and parallel implementation for early vision
Gualtieri, J. Anthony
1990-01-01
The problem of early vision is to transform one or more retinal illuminance images-pixel arrays-to image representations built out of such primitive visual features such as edges, regions, disparities, and clusters. These transformed representations form the input to later vision stages that perform higher level vision tasks including matching and recognition. Researchers developed algorithms for: (1) edge finding in the scale space formulation; (2) correlation methods for computing matches between pairs of images; and (3) clustering of data by neural networks. These algorithms are formulated for parallel implementation of SIMD machines, such as the Massively Parallel Processor, a 128 x 128 array processor with 1024 bits of local memory per processor. For some cases, researchers can show speedups of three orders of magnitude over serial implementations.
A parallel robot to assist vitreoretinal surgery
Energy Technology Data Exchange (ETDEWEB)
Nakano, Taiga; Sugita, Naohiko; Mitsuishi, Mamoru [University of Tokyo, School of Engineering, Tokyo (Japan); Ueta, Takashi; Tamaki, Yasuhiro [University of Tokyo, Graduate School of Medicine, Tokyo (Japan)
2009-11-15
This paper describes the development and evaluation of a parallel prototype robot for vitreoretinal surgery where physiological hand tremor limits performance. The manipulator was specifically designed to meet requirements such as size, precision, and sterilization; this has six-degree-of-freedom parallel architecture and provides positioning accuracy with micrometer resolution within the eye. The manipulator is controlled by an operator with a ''master manipulator'' consisting of multiple joints. Results of the in vitro experiments revealed that when compared to the manual procedure, a higher stability and accuracy of tool positioning could be achieved using the prototype robot. This microsurgical system that we have developed has superior operability as compared to traditional manual procedure and has sufficient potential to be used clinically for vitreoretinal surgery. (orig.)
Impact analysis on a massively parallel computer
International Nuclear Information System (INIS)
Zacharia, T.; Aramayo, G.A.
1994-01-01
Advanced mathematical techniques and computer simulation play a major role in evaluating and enhancing the design of beverage cans, industrial, and transportation containers for improved performance. Numerical models are used to evaluate the impact requirements of containers used by the Department of Energy (DOE) for transporting radioactive materials. Many of these models are highly compute-intensive. An analysis may require several hours of computational time on current supercomputers despite the simplicity of the models being studied. As computer simulations and materials databases grow in complexity, massively parallel computers have become important tools. Massively parallel computational research at the Oak Ridge National Laboratory (ORNL) and its application to the impact analysis of shipping containers is briefly described in this paper
The new landscape of parallel computer architecture
International Nuclear Information System (INIS)
Shalf, John
2007-01-01
The past few years has seen a sea change in computer architecture that will impact every facet of our society as every electronic device from cell phone to supercomputer will need to confront parallelism of unprecedented scale. Whereas the conventional multicore approach (2, 4, and even 8 cores) adopted by the computing industry will eventually hit a performance plateau, the highest performance per watt and per chip area is achieved using manycore technology (hundreds or even thousands of cores). However, fully unleashing the potential of the manycore approach to ensure future advances in sustained computational performance will require fundamental advances in computer architecture and programming models that are nothing short of reinventing computing. In this paper we examine the reasons behind the movement to exponentially increasing parallelism, and its ramifications for system design, applications and programming models
Parallel magnetotransport in multiple quantum well structures
International Nuclear Information System (INIS)
Sheregii, E.M.; Ploch, D.; Marchewka, M.; Tomaka, G.; Kolek, A.; Stadler, A.; Mleczko, K.; Strupinski, W.; Jasik, A.; Jakiela, R.
2004-01-01
The results of investigations of parallel magnetotransport in AlGaAs/GaAs and InGaAs/InAlAs/InP multiple quantum wells structures (MQW's) are presented in this paper. The MQW's were obtained by metalorganic vapour phase epitaxy with different shapes of QW, numbers of QW and levels of doping. The magnetotransport measurements were performed in wide region of temperatures (0.5-300 K) and at high magnetic fields up to 30 T (B is perpendicular and current is parallel to the plane of the QW). Three types of observed effects are analyzed: quantum Hall effect and Shubnikov-de Haas oscillations at low temperatures (0.5-6 K) as well as magnetophonon resonance at higher temperatures (77-300 K)
Multi-petascale highly efficient parallel supercomputer
Asaad, Sameh; Bellofatto, Ralph E.; Blocksome, Michael A.; Blumrich, Matthias A.; Boyle, Peter; Brunheroto, Jose R.; Chen, Dong; Cher, Chen-Yong; Chiu, George L.; Christ, Norman; Coteus, Paul W.; Davis, Kristan D.; Dozsa, Gabor J.; Eichenberger, Alexandre E.; Eisley, Noel A.; Ellavsky, Matthew R.; Evans, Kahn C.; Fleischer, Bruce M.; Fox, Thomas W.; Gara, Alan; Giampapa, Mark E.; Gooding, Thomas M.; Gschwind, Michael K.; Gunnels, John A.; Hall, Shawn A.; Haring, Rudolf A.; Heidelberger, Philip; Inglett, Todd A.; Knudson, Brant L.; Kopcsay, Gerard V.; Kumar, Sameer; Mamidala, Amith R.; Marcella, James A.; Megerian, Mark G.; Miller, Douglas R.; Miller, Samuel J.; Muff, Adam J.; Mundy, Michael B.; O'Brien, John K.; O'Brien, Kathryn M.; Ohmacht, Martin; Parker, Jeffrey J.; Poole, Ruth J.; Ratterman, Joseph D.; Salapura, Valentina; Satterfield, David L.; Senger, Robert M.; Steinmacher-Burow, Burkhard; Stockdell, William M.; Stunkel, Craig B.; Sugavanam, Krishnan; Sugawara, Yutaka; Takken, Todd E.; Trager, Barry M.; Van Oosten, James L.; Wait, Charles D.; Walkup, Robert E.; Watson, Alfred T.; Wisniewski, Robert W.; Wu, Peng
2018-05-15
A Multi-Petascale Highly Efficient Parallel Supercomputer of 100 petaflop-scale includes node architectures based upon System-On-a-Chip technology, where each processing node comprises a single Application Specific Integrated Circuit (ASIC). The ASIC nodes are interconnected by a five dimensional torus network that optimally maximize the throughput of packet communications between nodes and minimize latency. The network implements collective network and a global asynchronous network that provides global barrier and notification functions. Integrated in the node design include a list-based prefetcher. The memory system implements transaction memory, thread level speculation, and multiversioning cache that improves soft error rate at the same time and supports DMA functionality allowing for parallel processing message-passing.
Neural nets for massively parallel optimization
Dixon, Laurence C. W.; Mills, David
1992-07-01
To apply massively parallel processing systems to the solution of large scale optimization problems it is desirable to be able to evaluate any function f(z), z (epsilon) Rn in a parallel manner. The theorem of Cybenko, Hecht Nielsen, Hornik, Stinchcombe and White, and Funahasi shows that this can be achieved by a neural network with one hidden layer. In this paper we address the problem of the number of nodes required in the layer to achieve a given accuracy in the function and gradient values at all points within a given n dimensional interval. The type of activation function needed to obtain nonsingular Hessian matrices is described and a strategy for obtaining accurate minimal networks presented.
Parallel channel effects under BWR LOCA conditions
International Nuclear Information System (INIS)
Suzuki, H.; Hatamiya, S.; Murase, M.
1988-01-01
Due to parallel channel effects, different flow patterns such as liquid down-flow and gas up-flow appear simultaneously in fuel bundles of a BWR core during postulated LOCAs. Applying the parallel channel effects to the fuel bundle, water drain tubes with a restricted bottom end have been developed in order to mitigate counter-current flow limiting and to increase the falling water flow rate at the upper tie plate. The upper tie plate with water drain tubes is an especially effective means of increasing the safety margin of a reactor with narrow gaps between fuel rods and high steam velocity at the upper tie plate. The characteristics of the water drain tubes have been experimentally investigated using a small-scaled steam-water system simulating a BWR core. Then, their effect on the fuel cladding temperature was evaluated using the LOCA analysis program SAFER. (orig.)
Parallel Relational Universes – experiments in modularity
DEFF Research Database (Denmark)
Pagliarini, Luigi; Lund, Henrik Hautop
2015-01-01
: We here describe Parallel Relational Universes, an artistic method used for the psychological analysis of group dynamics. The design of the artistic system, which mediates group dynamics, emerges from our studies of modular playware and remixing playware. Inspired from remixing modular playware......, where users remix samples in the form of physical and functional modules, we created an artistic instantiation of such a concept with the Parallel Relational Universes, allowing arts alumni to remix artistic expressions. Here, we report the data emerged from a first pre-test, run with gymnasium’s alumni....... We then report both the artistic and the psychological findings. We discuss possible variations of such an instrument. Between an art piece and a psychological test, at a first cognitive analysis, it seems to be a promising research tool...
SNSPD with parallel nanowires (Conference Presentation)
Ejrnaes, Mikkel; Parlato, Loredana; Gaggero, Alessandro; Mattioli, Francesco; Leoni, Roberto; Pepe, Giampiero; Cristiano, Roberto
2017-05-01
Superconducting nanowire single-photon detectors (SNSPDs) have shown to be promising in applications such as quantum communication and computation, quantum optics, imaging, metrology and sensing. They offer the advantages of a low dark count rate, high efficiency, a broadband response, a short time jitter, a high repetition rate, and no need for gated-mode operation. Several SNSPD designs have been proposed in literature. Here, we discuss the so-called parallel nanowires configurations. They were introduced with the aim of improving some SNSPD property like detection efficiency, speed, signal-to-noise ratio, or photon number resolution. Although apparently similar, the various parallel designs are not the same. There is no one design that can improve the mentioned properties all together. In fact, each design presents its own characteristics with specific advantages and drawbacks. In this work, we will discuss the various designs outlining peculiarities and possible improvements.
Energy Technology Data Exchange (ETDEWEB)
Nishioka, K.; Nakamura, Y. [Graduate School of Energy Science, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Nishimura, S. [National Institute for Fusion Science, 322-6 Oroshi-cho, Toki, Gifu 509-5292 (Japan); Lee, H. Y. [Korea Advanced Institute of Science and Technology, Daejeon 305-701 (Korea, Republic of); Kobayashi, S.; Mizuuchi, T.; Nagasaki, K.; Okada, H.; Minami, T.; Kado, S.; Yamamoto, S.; Ohshima, S.; Konoshima, S.; Sano, F. [Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan)
2016-03-15
A moment approach to calculate neoclassical transport in non-axisymmetric torus plasmas composed of multiple ion species is extended to include the external parallel momentum sources due to unbalanced tangential neutral beam injections (NBIs). The momentum sources that are included in the parallel momentum balance are calculated from the collision operators of background particles with fast ions. This method is applied for the clarification of the physical mechanism of the neoclassical parallel ion flows and the multi-ion species effect on them in Heliotron J NBI plasmas. It is found that parallel ion flow can be determined by the balance between the parallel viscosity and the external momentum source in the region where the external source is much larger than the thermodynamic force driven source in the collisional plasmas. This is because the friction between C{sup 6+} and D{sup +} prevents a large difference between C{sup 6+} and D{sup +} flow velocities in such plasmas. The C{sup 6+} flow velocities, which are measured by the charge exchange recombination spectroscopy system, are numerically evaluated with this method. It is shown that the experimentally measured C{sup 6+} impurity flow velocities do not contradict clearly with the neoclassical estimations, and the dependence of parallel flow velocities on the magnetic field ripples is consistent in both results.
Energy Technology Data Exchange (ETDEWEB)
Lober, R.R.; Tautges, T.J.; Vaughan, C.T.
1997-03-01
Paving is an automated mesh generation algorithm which produces all-quadrilateral elements. It can additionally generate these elements in varying sizes such that the resulting mesh adapts to a function distribution, such as an error function. While powerful, conventional paving is a very serial algorithm in its operation. Parallel paving is the extension of serial paving into parallel environments to perform the same meshing functions as conventional paving only on distributed, discretized models. This extension allows large, adaptive, parallel finite element simulations to take advantage of paving`s meshing capabilities for h-remap remeshing. A significantly modified version of the CUBIT mesh generation code has been developed to host the parallel paving algorithm and demonstrate its capabilities on both two dimensional and three dimensional surface geometries and compare the resulting parallel produced meshes to conventionally paved meshes for mesh quality and algorithm performance. Sandia`s {open_quotes}tiling{close_quotes} dynamic load balancing code has also been extended to work with the paving algorithm to retain parallel efficiency as subdomains undergo iterative mesh refinement.
Neural Parallel Engine: A toolbox for massively parallel neural signal processing.
Tam, Wing-Kin; Yang, Zhi
2018-05-01
Large-scale neural recordings provide detailed information on neuronal activities and can help elicit the underlying neural mechanisms of the brain. However, the computational burden is also formidable when we try to process the huge data stream generated by such recordings. In this study, we report the development of Neural Parallel Engine (NPE), a toolbox for massively parallel neural signal processing on graphical processing units (GPUs). It offers a selection of the most commonly used routines in neural signal processing such as spike detection and spike sorting, including advanced algorithms such as exponential-component-power-component (EC-PC) spike detection and binary pursuit spike sorting. We also propose a new method for detecting peaks in parallel through a parallel compact operation. Our toolbox is able to offer a 5× to 110× speedup compared with its CPU counterparts depending on the algorithms. A user-friendly MATLAB interface is provided to allow easy integration of the toolbox into existing workflows. Previous efforts on GPU neural signal processing only focus on a few rudimentary algorithms, are not well-optimized and often do not provide a user-friendly programming interface to fit into existing workflows. There is a strong need for a comprehensive toolbox for massively parallel neural signal processing. A new toolbox for massively parallel neural signal processing has been created. It can offer significant speedup in processing signals from large-scale recordings up to thousands of channels. Copyright © 2018 Elsevier B.V. All rights reserved.
Aspects of parallel processing and control engineering
McKittrick, Brendan J
1991-01-01
The concept of parallel processing is not a new one, but the application of it to control engineering tasks is a relatively recent development, made possible by contemporary hardware and software innovation. It has long been accepted that, if properly orchestrated several processors/CPUs when combined can form a powerful processing entity. What prevented this from being implemented in commercial systems was the adequacy of the microprocessor for most tasks and hence the expense of a multi-pro...
Program For Parallel Discrete-Event Simulation
Beckman, Brian C.; Blume, Leo R.; Geiselman, John S.; Presley, Matthew T.; Wedel, John J., Jr.; Bellenot, Steven F.; Diloreto, Michael; Hontalas, Philip J.; Reiher, Peter L.; Weiland, Frederick P.
1991-01-01
User does not have to add any special logic to aid in synchronization. Time Warp Operating System (TWOS) computer program is special-purpose operating system designed to support parallel discrete-event simulation. Complete implementation of Time Warp mechanism. Supports only simulations and other computations designed for virtual time. Time Warp Simulator (TWSIM) subdirectory contains sequential simulation engine interface-compatible with TWOS. TWOS and TWSIM written in, and support simulations in, C programming language.
Parallel Hybrid Vehicle Optimal Storage System
Bloomfield, Aaron P.
2009-01-01
A paper reports the results of a Hybrid Diesel Vehicle Project focused on a parallel hybrid configuration suitable for diesel-powered, medium-sized, commercial vehicles commonly used for parcel delivery and shuttle buses, as the missions of these types of vehicles require frequent stops. During these stops, electric hybridization can effectively recover the vehicle's kinetic energy during the deceleration, store it onboard, and then use that energy to assist in the subsequent acceleration.
Asynchronous Parallelization of a CFD Solver
Abdi, Daniel S.; Bitsuamlak, Girma T.
2015-01-01
The article of record as published may be found at http://dx.doi.org/10.1155/2015/295393 A Navier-Stokes equations solver is parallelized to run on a cluster of computers using the domain decomposition method. Two approaches of communication and computation are investigated, namely, synchronous and asynchronous methods. Asynchronous communication between subdomains is not commonly used inCFDcodes; however, it has a potential to alleviate scaling bottlenecks incurred due to process...
Parallel computing techniques for rotorcraft aerodynamics
Ekici, Kivanc
The modification of unsteady three-dimensional Navier-Stokes codes for application on massively parallel and distributed computing environments is investigated. The Euler/Navier-Stokes code TURNS (Transonic Unsteady Rotor Navier-Stokes) was chosen as a test bed because of its wide use by universities and industry. For the efficient implementation of TURNS on parallel computing systems, two algorithmic changes are developed. First, main modifications to the implicit operator, Lower-Upper Symmetric Gauss Seidel (LU-SGS) originally used in TURNS, is performed. Second, application of an inexact Newton method, coupled with a Krylov subspace iterative method (Newton-Krylov method) is carried out. Both techniques have been tried previously for the Euler equations mode of the code. In this work, we have extended the methods to the Navier-Stokes mode. Several new implicit operators were tried because of convergence problems of traditional operators with the high cell aspect ratio (CAR) grids needed for viscous calculations on structured grids. Promising results for both Euler and Navier-Stokes cases are presented for these operators. For the efficient implementation of Newton-Krylov methods to the Navier-Stokes mode of TURNS, efficient preconditioners must be used. The parallel implicit operators used in the previous step are employed as preconditioners and the results are compared. The Message Passing Interface (MPI) protocol has been used because of its portability to various parallel architectures. It should be noted that the proposed methodology is general and can be applied to several other CFD codes (e.g. OVERFLOW).
A position sensitive parallel plate avalanche counter
International Nuclear Information System (INIS)
Lombardi, M.; Tan Jilian; Potenza, R.; D'amico, V.
1986-01-01
A position sensitive parallel plate avalanche counter with a distributed constant delay-line-cathode (PSAC) is described. The strips formed on the printed board were served as the cathode and the delay line for readout of signals. The detector (PSAC) was operated in isobutane gas at the pressure range from 10 to 20 torr. The position resolution is better than 1 mm and the time resolution is about 350 ps, for 252 Cf fission-spectrum source
Parallel fuzzy connected image segmentation on GPU.
Zhuge, Ying; Cao, Yong; Udupa, Jayaram K; Miller, Robert W
2011-07-01
Image segmentation techniques using fuzzy connectedness (FC) principles have shown their effectiveness in segmenting a variety of objects in several large applications. However, one challenge in these algorithms has been their excessive computational requirements when processing large image datasets. Nowadays, commodity graphics hardware provides a highly parallel computing environment. In this paper, the authors present a parallel fuzzy connected image segmentation algorithm implementation on NVIDIA's compute unified device Architecture (CUDA) platform for segmenting medical image data sets. In the FC algorithm, there are two major computational tasks: (i) computing the fuzzy affinity relations and (ii) computing the fuzzy connectedness relations. These two tasks are implemented as CUDA kernels and executed on GPU. A dramatic improvement in speed for both tasks is achieved as a result. Our experiments based on three data sets of small, medium, and large data size demonstrate the efficiency of the parallel algorithm, which achieves a speed-up factor of 24.4x, 18.1x, and 10.3x, correspondingly, for the three data sets on the NVIDIA Tesla C1060 over the implementation of the algorithm on CPU, and takes 0.25, 0.72, and 15.04 s, correspondingly, for the three data sets. The authors developed a parallel algorithm of the widely used fuzzy connected image segmentation method on the NVIDIA GPUs, which are far more cost- and speed-effective than both cluster of workstations and multiprocessing systems. A near-interactive speed of segmentation has been achieved, even for the large data set.
Base drive for paralleled inverter systems
Nagano, S. (Inventor)
1980-01-01
In a paralleled inverter system, a positive feedback current derived from the total current from all of the modules of the inverter system is applied to the base drive of each of the power transistors of all modules, thereby to provide all modules protection against open or short circuit faults occurring in any of the modules, and force equal current sharing among the modules during turn on of the power transistors.
A Topological Model for Parallel Algorithm Design
1991-09-01
effort should be directed to planning, requirements analysis, specification and design, with 20% invested into the actual coding, and then the final 40...be olle more language to learn. And by investing the effort into improving the utility of ai, existing language instead of creating a new one, this...193) it abandons the notion of a process as a fundemental concept of parallel program design and that it facilitates program derivation by rigorously
Shared Variable Oriented Parallel Precompiler for SPMD Model
Institute of Scientific and Technical Information of China (English)
无
1995-01-01
For the moment,commercial parallel computer systems with distributed memory architecture are usually provided with parallel FORTRAN or parallel C compliers,which are just traditional sequential FORTRAN or C compilers expanded with communication statements.Programmers suffer from writing parallel programs with communication statements. The Shared Variable Oriented Parallel Precompiler (SVOPP) proposed in this paper can automatically generate appropriate communication statements based on shared variables for SPMD(Single Program Multiple Data) computation model and greatly ease the parallel programming with high communication efficiency.The core function of parallel C precompiler has been successfully verified on a transputer-based parallel computer.Its prominent performance shows that SVOPP is probably a break-through in parallel programming technique.
A Tutorial on Parallel and Concurrent Programming in Haskell
Peyton Jones, Simon; Singh, Satnam
This practical tutorial introduces the features available in Haskell for writing parallel and concurrent programs. We first describe how to write semi-explicit parallel programs by using annotations to express opportunities for parallelism and to help control the granularity of parallelism for effective execution on modern operating systems and processors. We then describe the mechanisms provided by Haskell for writing explicitly parallel programs with a focus on the use of software transactional memory to help share information between threads. Finally, we show how nested data parallelism can be used to write deterministically parallel programs which allows programmers to use rich data types in data parallel programs which are automatically transformed into flat data parallel versions for efficient execution on multi-core processors.
Massive hybrid parallelism for fully implicit multiphysics
International Nuclear Information System (INIS)
Gaston, D. R.; Permann, C. J.; Andrs, D.; Peterson, J. W.
2013-01-01
As hardware advances continue to modify the supercomputing landscape, traditional scientific software development practices will become more outdated, ineffective, and inefficient. The process of rewriting/retooling existing software for new architectures is a Sisyphean task, and results in substantial hours of development time, effort, and money. Software libraries which provide an abstraction of the resources provided by such architectures are therefore essential if the computational engineering and science communities are to continue to flourish in this modern computing environment. The Multiphysics Object Oriented Simulation Environment (MOOSE) framework enables complex multiphysics analysis tools to be built rapidly by scientists, engineers, and domain specialists, while also allowing them to both take advantage of current HPC architectures, and efficiently prepare for future supercomputer designs. MOOSE employs a hybrid shared-memory and distributed-memory parallel model and provides a complete and consistent interface for creating multiphysics analysis tools. In this paper, a brief discussion of the mathematical algorithms underlying the framework and the internal object-oriented hybrid parallel design are given. Representative massively parallel results from several applications areas are presented, and a brief discussion of future areas of research for the framework are provided. (authors)
Mathematical Abstraction: Constructing Concept of Parallel Coordinates
Nurhasanah, F.; Kusumah, Y. S.; Sabandar, J.; Suryadi, D.
2017-09-01
Mathematical abstraction is an important process in teaching and learning mathematics so pre-service mathematics teachers need to understand and experience this process. One of the theoretical-methodological frameworks for studying this process is Abstraction in Context (AiC). Based on this framework, abstraction process comprises of observable epistemic actions, Recognition, Building-With, Construction, and Consolidation called as RBC + C model. This study investigates and analyzes how pre-service mathematics teachers constructed and consolidated concept of Parallel Coordinates in a group discussion. It uses AiC framework for analyzing mathematical abstraction of a group of pre-service teachers consisted of four students in learning Parallel Coordinates concepts. The data were collected through video recording, students’ worksheet, test, and field notes. The result shows that the students’ prior knowledge related to concept of the Cartesian coordinate has significant role in the process of constructing Parallel Coordinates concept as a new knowledge. The consolidation process is influenced by the social interaction between group members. The abstraction process taken place in this group were dominated by empirical abstraction that emphasizes on the aspect of identifying characteristic of manipulated or imagined object during the process of recognizing and building-with.
Parallel Ada benchmarks for the SVMS
Collard, Philippe E.
1990-01-01
The use of parallel processing paradigm to design and develop faster and more reliable computers appear to clearly mark the future of information processing. NASA started the development of such an architecture: the Spaceborne VHSIC Multi-processor System (SVMS). Ada will be one of the languages used to program the SVMS. One of the unique characteristics of Ada is that it supports parallel processing at the language level through the tasking constructs. It is important for the SVMS project team to assess how efficiently the SVMS architecture will be implemented, as well as how efficiently Ada environment will be ported to the SVMS. AUTOCLASS II, a Bayesian classifier written in Common Lisp, was selected as one of the benchmarks for SVMS configurations. The purpose of the R and D effort was to provide the SVMS project team with the version of AUTOCLASS II, written in Ada, that would make use of Ada tasking constructs as much as possible so as to constitute a suitable benchmark. Additionally, a set of programs was developed that would measure Ada tasking efficiency on parallel architectures as well as determine the critical parameters influencing tasking efficiency. All this was designed to provide the SVMS project team with a set of suitable tools in the development of the SVMS architecture.
Intelligent spatial ecosystem modeling using parallel processors
International Nuclear Information System (INIS)
Maxwell, T.; Costanza, R.
1993-01-01
Spatial modeling of ecosystems is essential if one's modeling goals include developing a relatively realistic description of past behavior and predictions of the impacts of alternative management policies on future ecosystem behavior. Development of these models has been limited in the past by the large amount of input data required and the difficulty of even large mainframe serial computers in dealing with large spatial arrays. These two limitations have begun to erode with the increasing availability of remote sensing data and GIS systems to manipulate it, and the development of parallel computer systems which allow computation of large, complex, spatial arrays. Although many forms of dynamic spatial modeling are highly amenable to parallel processing, the primary focus in this project is on process-based landscape models. These models simulate spatial structure by first compartmentalizing the landscape into some geometric design and then describing flows within compartments and spatial processes between compartments according to location-specific algorithms. The authors are currently building and running parallel spatial models at the regional scale for the Patuxent River region in Maryland, the Everglades in Florida, and Barataria Basin in Louisiana. The authors are also planning a project to construct a series of spatially explicit linked ecological and economic simulation models aimed at assessing the long-term potential impacts of global climate change
Multibus-based parallel processor for simulation
Ogrady, E. P.; Wang, C.-H.
1983-01-01
A Multibus-based parallel processor simulation system is described. The system is intended to serve as a vehicle for gaining hands-on experience, testing system and application software, and evaluating parallel processor performance during development of a larger system based on the horizontal/vertical-bus interprocessor communication mechanism. The prototype system consists of up to seven Intel iSBC 86/12A single-board computers which serve as processing elements, a multiple transmission controller (MTC) designed to support system operation, and an Intel Model 225 Microcomputer Development System which serves as the user interface and input/output processor. All components are interconnected by a Multibus/IEEE 796 bus. An important characteristic of the system is that it provides a mechanism for a processing element to broadcast data to other selected processing elements. This parallel transfer capability is provided through the design of the MTC and a minor modification to the iSBC 86/12A board. The operation of the MTC, the basic hardware-level operation of the system, and pertinent details about the iSBC 86/12A and the Multibus are described.
New Parallel Algorithms for Landscape Evolution Model
Jin, Y.; Zhang, H.; Shi, Y.
2017-12-01
Most landscape evolution models (LEM) developed in the last two decades solve the diffusion equation to simulate the transportation of surface sediments. This numerical approach is difficult to parallelize due to the computation of drainage area for each node, which needs huge amount of communication if run in parallel. In order to overcome this difficulty, we developed two parallel algorithms for LEM with a stream net. One algorithm handles the partition of grid with traditional methods and applies an efficient global reduction algorithm to do the computation of drainage areas and transport rates for the stream net; the other algorithm is based on a new partition algorithm, which partitions the nodes in catchments between processes first, and then partitions the cells according to the partition of nodes. Both methods focus on decreasing communication between processes and take the advantage of massive computing techniques, and numerical experiments show that they are both adequate to handle large scale problems with millions of cells. We implemented the two algorithms in our program based on the widely used finite element library deal.II, so that it can be easily coupled with ASPECT.
Parallel Robot for Lower Limb Rehabilitation Exercises
Directory of Open Access Journals (Sweden)
Alireza Rastegarpanah
2016-01-01
Full Text Available The aim of this study is to investigate the capability of a 6-DoF parallel robot to perform various rehabilitation exercises. The foot trajectories of twenty healthy participants have been measured by a Vicon system during the performing of four different exercises. Based on the kinematics and dynamics of a parallel robot, a MATLAB program was developed in order to calculate the length of the actuators, the actuators’ forces, workspace, and singularity locus of the robot during the performing of the exercises. The calculated length of the actuators and the actuators’ forces were used by motion analysis in SolidWorks in order to simulate different foot trajectories by the CAD model of the robot. A physical parallel robot prototype was built in order to simulate and execute the foot trajectories of the participants. Kinect camera was used to track the motion of the leg’s model placed on the robot. The results demonstrate the robot’s capability to perform a full range of various rehabilitation exercises.
Parallel Monte Carlo Search for Hough Transform
Lopes, Raul H. C.; Franqueira, Virginia N. L.; Reid, Ivan D.; Hobson, Peter R.
2017-10-01
We investigate the problem of line detection in digital image processing and in special how state of the art algorithms behave in the presence of noise and whether CPU efficiency can be improved by the combination of a Monte Carlo Tree Search, hierarchical space decomposition, and parallel computing. The starting point of the investigation is the method introduced in 1962 by Paul Hough for detecting lines in binary images. Extended in the 1970s to the detection of space forms, what came to be known as Hough Transform (HT) has been proposed, for example, in the context of track fitting in the LHC ATLAS and CMS projects. The Hough Transform transfers the problem of line detection, for example, into one of optimization of the peak in a vote counting process for cells which contain the possible points of candidate lines. The detection algorithm can be computationally expensive both in the demands made upon the processor and on memory. Additionally, it can have a reduced effectiveness in detection in the presence of noise. Our first contribution consists in an evaluation of the use of a variation of the Radon Transform as a form of improving theeffectiveness of line detection in the presence of noise. Then, parallel algorithms for variations of the Hough Transform and the Radon Transform for line detection are introduced. An algorithm for Parallel Monte Carlo Search applied to line detection is also introduced. Their algorithmic complexities are discussed. Finally, implementations on multi-GPU and multicore architectures are discussed.
Semantics, contrastive linguistics and parallel corpora
Directory of Open Access Journals (Sweden)
Violetta Koseska
2014-09-01
Full Text Available Semantics, contrastive linguistics and parallel corpora In view of the ambiguity of the term “semantics”, the author shows the differences between the traditional lexical semantics and the contemporary semantics in the light of various semantic schools. She examines semantics differently in connection with contrastive studies where the description must necessary go from the meaning towards the linguistic form, whereas in traditional contrastive studies the description proceeded from the form towards the meaning. This requirement regarding theoretical contrastive studies necessitates construction of a semantic interlanguage, rather than only singling out universal semantic categories expressed with various language means. Such studies can be strongly supported by parallel corpora. However, in order to make them useful for linguists in manual and computer translations, as well as in the development of dictionaries, including online ones, we need not only formal, often automatic, annotation of texts, but also semantic annotation - which is unfortunately manual. In the article we focus on semantic annotation concerning time, aspect and quantification of names and predicates in the whole semantic structure of the sentence on the example of the “Polish-Bulgarian-Russian parallel corpus”.
Massive hybrid parallelism for fully implicit multiphysics
Energy Technology Data Exchange (ETDEWEB)
Gaston, D. R.; Permann, C. J.; Andrs, D.; Peterson, J. W. [Idaho National Laboratory, 2525 N. Fremont Ave., Idaho Falls, ID 83415 (United States)
2013-07-01
As hardware advances continue to modify the supercomputing landscape, traditional scientific software development practices will become more outdated, ineffective, and inefficient. The process of rewriting/retooling existing software for new architectures is a Sisyphean task, and results in substantial hours of development time, effort, and money. Software libraries which provide an abstraction of the resources provided by such architectures are therefore essential if the computational engineering and science communities are to continue to flourish in this modern computing environment. The Multiphysics Object Oriented Simulation Environment (MOOSE) framework enables complex multiphysics analysis tools to be built rapidly by scientists, engineers, and domain specialists, while also allowing them to both take advantage of current HPC architectures, and efficiently prepare for future supercomputer designs. MOOSE employs a hybrid shared-memory and distributed-memory parallel model and provides a complete and consistent interface for creating multiphysics analysis tools. In this paper, a brief discussion of the mathematical algorithms underlying the framework and the internal object-oriented hybrid parallel design are given. Representative massively parallel results from several applications areas are presented, and a brief discussion of future areas of research for the framework are provided. (authors)
A multitransputer parallel processing system (MTPPS)
International Nuclear Information System (INIS)
Jethra, A.K.; Pande, S.S.; Borkar, S.P.; Khare, A.N.; Ghodgaonkar, M.D.; Bairi, B.R.
1993-01-01
This report describes the design and implementation of a 16 node Multi Transputer Parallel Processing System(MTPPS) which is a platform for parallel program development. It is a MIMD machine based on message passing paradigm. The basic compute engine is an Inmos Transputer Ims T800-20. Transputer with local memory constitutes the processing element (NODE) of this MIMD architecture. Multiple NODES can be connected to each other in an identifiable network topology through the high speed serial links of the transputer. A Network Configuration Unit (NCU) incorporates the necessary hardware to provide software controlled network configuration. System is modularly expandable and more NODES can be added to the system to achieve the required processing power. The system is backend to the IBM-PC which has been integrated into the system to provide user I/O interface. PC resources are available to the programmer. Interface hardware between the PC and the network of transputers is INMOS compatible. Therefore, all the commercially available development software compatible to INMOS products can run on this system. While giving the details of design and implementation, this report briefly summarises MIMD Architectures, Transputer Architecture and Parallel Processing Software Development issues. LINPACK performance evaluation of the system and solutions of neutron physics and plasma physics problem have been discussed along with results. (author). 12 refs., 22 figs., 3 tabs., 3 appendixes
Fast image processing on parallel hardware
International Nuclear Information System (INIS)
Bittner, U.
1988-01-01
Current digital imaging modalities in the medical field incorporate parallel hardware which is heavily used in the stage of image formation like the CT/MR image reconstruction or in the DSA real time subtraction. In order to image post-processing as efficient as image acquisition, new software approaches have to be found which take full advantage of the parallel hardware architecture. This paper describes the implementation of two-dimensional median filter which can serve as an example for the development of such an algorithm. The algorithm is analyzed by viewing it as a complete parallel sort of the k pixel values in the chosen window which leads to a generalization to rank order operators and other closely related filters reported in literature. A section about the theoretical base of the algorithm gives hints for how to characterize operations suitable for implementations on pipeline processors and the way to find the appropriate algorithms. Finally some results that computation time and usefulness of medial filtering in radiographic imaging are given
Power stability methods for parallel systems
International Nuclear Information System (INIS)
Wallach, Y.
1988-01-01
Parallel-Processing Systems are already commercially available. This paper shows that if one of them - the Alternating Sequential Parallel, or ASP system - is applied to network stability calculations it will lead to a higher speed of solution. The ASP system is first described and is then shown to be cheaper, more reliable and available than other parallel systems. Also, no deadlock need be feared and the speedup is normally very high. A number of ASP systems were already assembled (the SMS systems, Topps, DIRMU etc.). At present, an IBM Local Area Network is being modified so that it too can work in the ASP mode. Existing ASP systems were programmed in Fortran or assembly language. Since newer systems (e.g. DIRMU) are programmed in Modula-2, this language can be used. Stability analysis is based on solving nonlinear differential and algebraic equations. The algorithm for solving the nonlinear differential equations on ASP, is described and programmed in Modula-2. The speedup is computed and is shown to be almost optimal
MASSIVE HYBRID PARALLELISM FOR FULLY IMPLICIT MULTIPHYSICS
Energy Technology Data Exchange (ETDEWEB)
Cody J. Permann; David Andrs; John W. Peterson; Derek R. Gaston
2013-05-01
As hardware advances continue to modify the supercomputing landscape, traditional scientific software development practices will become more outdated, ineffective, and inefficient. The process of rewriting/retooling existing software for new architectures is a Sisyphean task, and results in substantial hours of development time, effort, and money. Software libraries which provide an abstraction of the resources provided by such architectures are therefore essential if the computational engineering and science communities are to continue to flourish in this modern computing environment. The Multiphysics Object Oriented Simulation Environment (MOOSE) framework enables complex multiphysics analysis tools to be built rapidly by scientists, engineers, and domain specialists, while also allowing them to both take advantage of current HPC architectures, and efficiently prepare for future supercomputer designs. MOOSE employs a hybrid shared-memory and distributed-memory parallel model and provides a complete and consistent interface for creating multiphysics analysis tools. In this paper, a brief discussion of the mathematical algorithms underlying the framework and the internal object-oriented hybrid parallel design are given. Representative massively parallel results from several applications areas are presented, and a brief discussion of future areas of research for the framework are provided.
Xyce parallel electronic simulator : reference guide.
Energy Technology Data Exchange (ETDEWEB)
Mei, Ting; Rankin, Eric Lamont; Thornquist, Heidi K.; Santarelli, Keith R.; Fixel, Deborah A.; Coffey, Todd Stirling; Russo, Thomas V.; Schiek, Richard Louis; Warrender, Christina E.; Keiter, Eric Richard; Pawlowski, Roger Patrick
2011-05-01
This document is a reference guide to the Xyce Parallel Electronic Simulator, and is a companion document to the Xyce Users Guide. The focus of this document is (to the extent possible) exhaustively list device parameters, solver options, parser options, and other usage details of Xyce. This document is not intended to be a tutorial. Users who are new to circuit simulation are better served by the Xyce Users Guide. The Xyce Parallel Electronic Simulator has been written to support, in a rigorous manner, the simulation needs of the Sandia National Laboratories electrical designers. It is targeted specifically to run on large-scale parallel computing platforms but also runs well on a variety of architectures including single processor workstations. It also aims to support a variety of devices and models specific to Sandia needs. This document is intended to complement the Xyce Users Guide. It contains comprehensive, detailed information about a number of topics pertinent to the usage of Xyce. Included in this document is a netlist reference for the input-file commands and elements supported within Xyce; a command line reference, which describes the available command line arguments for Xyce; and quick-references for users of other circuit codes, such as Orcad's PSpice and Sandia's ChileSPICE.
Parallelization Issues and Particle-In Codes.
Elster, Anne Cathrine
1994-01-01
"Everything should be made as simple as possible, but not simpler." Albert Einstein. The field of parallel scientific computing has concentrated on parallelization of individual modules such as matrix solvers and factorizers. However, many applications involve several interacting modules. Our analyses of a particle-in-cell code modeling charged particles in an electric field, show that these accompanying dependencies affect data partitioning and lead to new parallelization strategies concerning processor, memory and cache utilization. Our test-bed, a KSR1, is a distributed memory machine with a globally shared addressing space. However, most of the new methods presented hold generally for hierarchical and/or distributed memory systems. We introduce a novel approach that uses dual pointers on the local particle arrays to keep the particle locations automatically partially sorted. Complexity and performance analyses with accompanying KSR benchmarks, have been included for both this scheme and for the traditional replicated grids approach. The latter approach maintains load-balance with respect to particles. However, our results demonstrate it fails to scale properly for problems with large grids (say, greater than 128-by-128) running on as few as 15 KSR nodes, since the extra storage and computation time associated with adding the grid copies, becomes significant. Our grid partitioning scheme, although harder to implement, does not need to replicate the whole grid. Consequently, it scales well for large problems on highly parallel systems. It may, however, require load balancing schemes for non-uniform particle distributions. Our dual pointer approach may facilitate this through dynamically partitioned grids. We also introduce hierarchical data structures that store neighboring grid-points within the same cache -line by reordering the grid indexing. This alignment produces a 25% savings in cache-hits for a 4-by-4 cache. A consideration of the input data's effect on
Performance Analysis of Parallel Mathematical Subroutine library PARCEL
International Nuclear Information System (INIS)
Yamada, Susumu; Shimizu, Futoshi; Kobayashi, Kenichi; Kaburaki, Hideo; Kishida, Norio
2000-01-01
The parallel mathematical subroutine library PARCEL (Parallel Computing Elements) has been developed by Japan Atomic Energy Research Institute for easy use of typical parallelized mathematical codes in any application problems on distributed parallel computers. The PARCEL includes routines for linear equations, eigenvalue problems, pseudo-random number generation, and fast Fourier transforms. It is shown that the results of performance for linear equations routines exhibit good parallelization efficiency on vector, as well as scalar, parallel computers. A comparison of the efficiency results with the PETSc (Portable Extensible Tool kit for Scientific Computations) library has been reported. (author)
Applications of the parallel computing system using network
International Nuclear Information System (INIS)
Ido, Shunji; Hasebe, Hiroki
1994-01-01
Parallel programming is applied to multiple processors connected in Ethernet. Data exchanges between tasks located in each processing element are realized by two ways. One is socket which is standard library on recent UNIX operating systems. Another is a network connecting software, named as Parallel Virtual Machine (PVM) which is a free software developed by ORNL, to use many workstations connected to network as a parallel computer. This paper discusses the availability of parallel computing using network and UNIX workstations and comparison between specialized parallel systems (Transputer and iPSC/860) in a Monte Carlo simulation which generally shows high parallelization ratio. (author)
Parallelism and Scalability in an Image Processing Application
DEFF Research Database (Denmark)
Rasmussen, Morten Sleth; Stuart, Matthias Bo; Karlsson, Sven
2008-01-01
parallel programs. This paper investigates parallelism and scalability of an embedded image processing application. The major challenges faced when parallelizing the application were to extract enough parallelism from the application and to reduce load imbalance. The application has limited immediately......The recent trends in processor architecture show that parallel processing is moving into new areas of computing in the form of many-core desktop processors and multi-processor system-on-chip. This means that parallel processing is required in application areas that traditionally have not used...
Parallelism and Scalability in an Image Processing Application
DEFF Research Database (Denmark)
Rasmussen, Morten Sleth; Stuart, Matthias Bo; Karlsson, Sven
2009-01-01
parallel programs. This paper investigates parallelism and scalability of an embedded image processing application. The major challenges faced when parallelizing the application were to extract enough parallelism from the application and to reduce load imbalance. The application has limited immediately......The recent trends in processor architecture show that parallel processing is moving into new areas of computing in the form of many-core desktop processors and multi-processor system-on-chips. This means that parallel processing is required in application areas that traditionally have not used...
Parallel computing in plasma physics: Nonlinear instabilities
International Nuclear Information System (INIS)
Pohn, E.; Kamelander, G.; Shoucri, M.
2000-01-01
A Vlasov-Poisson-system is used for studying the time evolution of the charge-separation at a spatial one- as well as a two-dimensional plasma-edge. Ions are advanced in time using the Vlasov-equation. The whole three-dimensional velocity-space is considered leading to very time-consuming four-resp. five-dimensional fully kinetic simulations. In the 1D simulations electrons are assumed to behave adiabatic, i.e. they are Boltzmann-distributed, leading to a nonlinear Poisson-equation. In the 2D simulations a gyro-kinetic approximation is used for the electrons. The plasma is assumed to be initially neutral. The simulations are performed at an equidistant grid. A constant time-step is used for advancing the density-distribution function in time. The time-evolution of the distribution function is performed using a splitting scheme. Each dimension (x, y, υ x , υ y , υ z ) of the phase-space is advanced in time separately. The value of the distribution function for the next time is calculated from the value of an - in general - interstitial point at the present time (fractional shift). One-dimensional cubic-spline interpolation is used for calculating the interstitial function values. After the fractional shifts are performed for each dimension of the phase-space, a whole time-step for advancing the distribution function is finished. Afterwards the charge density is calculated, the Poisson-equation is solved and the electric field is calculated before the next time-step is performed. The fractional shift method sketched above was parallelized for p processors as follows. Considering first the shifts in y-direction, a proper parallelization strategy is to split the grid into p disjoint υ z -slices, which are sub-grids, each containing a different 1/p-th part of the υ z range but the whole range of all other dimensions. Each processor is responsible for performing the y-shifts on a different slice, which can be done in parallel without any communication between
International Nuclear Information System (INIS)
Baron, E.; Hauschildt, Peter H.
1998-01-01
We describe an important addition to the parallel implementation of our generalized nonlocal thermodynamic equilibrium (NLTE) stellar atmosphere and radiative transfer computer program PHOENIX. In a previous paper in this series we described data and task parallel algorithms we have developed for radiative transfer, spectral line opacity, and NLTE opacity and rate calculations. These algorithms divided the work spatially or by spectral lines, that is, distributing the radial zones, individual spectral lines, or characteristic rays among different processors and employ, in addition, task parallelism for logically independent functions (such as atomic and molecular line opacities). For finite, monotonic velocity fields, the radiative transfer equation is an initial value problem in wavelength, and hence each wavelength point depends upon the previous one. However, for sophisticated NLTE models of both static and moving atmospheres needed to accurately describe, e.g., novae and supernovae, the number of wavelength points is very large (200,000 - 300,000) and hence parallelization over wavelength can lead both to considerable speedup in calculation time and the ability to make use of the aggregate memory available on massively parallel supercomputers. Here, we describe an implementation of a pipelined design for the wavelength parallelization of PHOENIX, where the necessary data from the processor working on a previous wavelength point is sent to the processor working on the succeeding wavelength point as soon as it is known. Our implementation uses a MIMD design based on a relatively small number of standard message passing interface (MPI) library calls and is fully portable between serial and parallel computers. copyright 1998 The American Astronomical Society
Parallel computing of physical maps--a comparative study in SIMD and MIMD parallelism.
Bhandarkar, S M; Chirravuri, S; Arnold, J
1996-01-01
Ordering clones from a genomic library into physical maps of whole chromosomes presents a central computational problem in genetics. Chromosome reconstruction via clone ordering is usually isomorphic to the NP-complete Optimal Linear Arrangement problem. Parallel SIMD and MIMD algorithms for simulated annealing based on Markov chain distribution are proposed and applied to the problem of chromosome reconstruction via clone ordering. Perturbation methods and problem-specific annealing heuristics are proposed and described. The SIMD algorithms are implemented on a 2048 processor MasPar MP-2 system which is an SIMD 2-D toroidal mesh architecture whereas the MIMD algorithms are implemented on an 8 processor Intel iPSC/860 which is an MIMD hypercube architecture. A comparative analysis of the various SIMD and MIMD algorithms is presented in which the convergence, speedup, and scalability characteristics of the various algorithms are analyzed and discussed. On a fine-grained, massively parallel SIMD architecture with a low synchronization overhead such as the MasPar MP-2, a parallel simulated annealing algorithm based on multiple periodically interacting searches performs the best. For a coarse-grained MIMD architecture with high synchronization overhead such as the Intel iPSC/860, a parallel simulated annealing algorithm based on multiple independent searches yields the best results. In either case, distribution of clonal data across multiple processors is shown to exacerbate the tendency of the parallel simulated annealing algorithm to get trapped in a local optimum.
Energy Technology Data Exchange (ETDEWEB)
Adachi, Masaaki; Ogasawara, Shinobu; Kume, Etsuo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Ishizuki, Shigeru; Nemoto, Toshiyuki; Kawasaki, Nobuo; Kawai, Wataru [Fujitsu Ltd., Tokyo (Japan); Yatake, Yo-ichi [Hitachi Ltd., Tokyo (Japan)
2001-02-01
Several computer codes in the nuclear field have been vectorized, parallelized and trans-ported on the FUJITSU VPP500 system, the AP3000 system, the SX-4 system and the Paragon system at Center for Promotion of Computational Science and Engineering in Japan Atomic Energy Research Institute. We dealt with 18 codes in fiscal 1999. These results are reported in 3 parts, i.e., the vectorization and the parallelization part on vector processors, the parallelization part on scalar processors and the porting part. In this report, we describe the vectorization and parallelization on vector processors. In this vectorization and parallelization on vector processors part, the vectorization of Relativistic Molecular Orbital Calculation code RSCAT, a microscopic transport code for high energy nuclear collisions code JAM, three-dimensional non-steady thermal-fluid analysis code STREAM, Relativistic Density Functional Theory code RDFT and High Speed Three-Dimensional Nodal Diffusion code MOSRA-Light on the VPP500 system and the SX-4 system are described. (author)
Fringe Capacitance of a Parallel-Plate Capacitor.
Hale, D. P.
1978-01-01
Describes an experiment designed to measure the forces between charged parallel plates, and determines the relationship among the effective electrode area, the measured capacitance values, and the electrode spacing of a parallel plate capacitor. (GA)
Engineering-Based Thermal CFD Simulations on Massive Parallel Systems
Frisch, Jé rô me; Mundani, Ralf-Peter; Rank, Ernst; van Treeck, Christoph
2015-01-01
The development of parallel Computational Fluid Dynamics (CFD) codes is a challenging task that entails efficient parallelization concepts and strategies in order to achieve good scalability values when running those codes on modern supercomputers
Massively Parallel Algorithms for Solution of Schrodinger Equation
Fijany, Amir; Barhen, Jacob; Toomerian, Nikzad
1994-01-01
In this paper massively parallel algorithms for solution of Schrodinger equation are developed. Our results clearly indicate that the Crank-Nicolson method, in addition to its excellent numerical properties, is also highly suitable for massively parallel computation.
Parallel Aircraft Trajectory Optimization with Analytic Derivatives
Falck, Robert D.; Gray, Justin S.; Naylor, Bret
2016-01-01
Trajectory optimization is an integral component for the design of aerospace vehicles, but emerging aircraft technologies have introduced new demands on trajectory analysis that current tools are not well suited to address. Designing aircraft with technologies such as hybrid electric propulsion and morphing wings requires consideration of the operational behavior as well as the physical design characteristics of the aircraft. The addition of operational variables can dramatically increase the number of design variables which motivates the use of gradient based optimization with analytic derivatives to solve the larger optimization problems. In this work we develop an aircraft trajectory analysis tool using a Legendre-Gauss-Lobatto based collocation scheme, providing analytic derivatives via the OpenMDAO multidisciplinary optimization framework. This collocation method uses an implicit time integration scheme that provides a high degree of sparsity and thus several potential options for parallelization. The performance of the new implementation was investigated via a series of single and multi-trajectory optimizations using a combination of parallel computing and constraint aggregation. The computational performance results show that in order to take full advantage of the sparsity in the problem it is vital to parallelize both the non-linear analysis evaluations and the derivative computations themselves. The constraint aggregation results showed a significant numerical challenge due to difficulty in achieving tight convergence tolerances. Overall, the results demonstrate the value of applying analytic derivatives to trajectory optimization problems and lay the foundation for future application of this collocation based method to the design of aircraft with where operational scheduling of technologies is key to achieving good performance.
SPRINT: A new parallel framework for R
Directory of Open Access Journals (Sweden)
Scharinger Florian
2008-12-01
Full Text Available Abstract Background Microarray analysis allows the simultaneous measurement of thousands to millions of genes or sequences across tens to thousands of different samples. The analysis of the resulting data tests the limits of existing bioinformatics computing infrastructure. A solution to this issue is to use High Performance Computing (HPC systems, which contain many processors and more memory than desktop computer systems. Many biostatisticians use R to process the data gleaned from microarray analysis and there is even a dedicated group of packages, Bioconductor, for this purpose. However, to exploit HPC systems, R must be able to utilise the multiple processors available on these systems. There are existing modules that enable R to use multiple processors, but these are either difficult to use for the HPC novice or cannot be used to solve certain classes of problems. A method of exploiting HPC systems, using R, but without recourse to mastering parallel programming paradigms is therefore necessary to analyse genomic data to its fullest. Results We have designed and built a prototype framework that allows the addition of parallelised functions to R to enable the easy exploitation of HPC systems. The Simple Parallel R INTerface (SPRINT is a wrapper around such parallelised functions. Their use requires very little modification to existing sequential R scripts and no expertise in parallel computing. As an example we created a function that carries out the computation of a pairwise calculated correlation matrix. This performs well with SPRINT. When executed using SPRINT on an HPC resource of eight processors this computation reduces by more than three times the time R takes to complete it on one processor. Conclusion SPRINT allows the biostatistician to concentrate on the research problems rather than the computation, while still allowing exploitation of HPC systems. It is easy to use and with further development will become more useful as more
Parallelizing AT with MatlabMPI
International Nuclear Information System (INIS)
2011-01-01
The Accelerator Toolbox (AT) is a high-level collection of tools and scripts specifically oriented toward solving problems dealing with computational accelerator physics. It is integrated into the MATLAB environment, which provides an accessible, intuitive interface for accelerator physicists, allowing researchers to focus the majority of their efforts on simulations and calculations, rather than programming and debugging difficulties. Efforts toward parallelization of AT have been put in place to upgrade its performance to modern standards of computing. We utilized the packages MatlabMPI and pMatlab, which were developed by MIT Lincoln Laboratory, to set up a message-passing environment that could be called within MATLAB, which set up the necessary pre-requisites for multithread processing capabilities. On local quad-core CPUs, we were able to demonstrate processor efficiencies of roughly 95% and speed increases of nearly 380%. By exploiting the efficacy of modern-day parallel computing, we were able to demonstrate incredibly efficient speed increments per processor in AT's beam-tracking functions. Extrapolating from prediction, we can expect to reduce week-long computation runtimes to less than 15 minutes. This is a huge performance improvement and has enormous implications for the future computing power of the accelerator physics group at SSRL. However, one of the downfalls of parringpass is its current lack of transparency; the pMatlab and MatlabMPI packages must first be well-understood by the user before the system can be configured to run the scripts. In addition, the instantiation of argument parameters requires internal modification of the source code. Thus, parringpass, cannot be directly run from the MATLAB command line, which detracts from its flexibility and user-friendliness. Future work in AT's parallelization will focus on development of external functions and scripts that can be called from within MATLAB and configured on multiple nodes, while
A Massively Parallel Code for Polarization Calculations
Akiyama, Shizuka; Höflich, Peter
2001-03-01
We present an implementation of our Monte-Carlo radiation transport method for rapidly expanding, NLTE atmospheres for massively parallel computers which utilizes both the distributed and shared memory models. This allows us to take full advantage of the fast communication and low latency inherent to nodes with multiple CPUs, and to stretch the limits of scalability with the number of nodes compared to a version which is based on the shared memory model. Test calculations on a local 20-node Beowulf cluster with dual CPUs showed an improved scalability by about 40%.
Parallel beam dynamics simulation of linear accelerators
International Nuclear Information System (INIS)
Qiang, Ji; Ryne, Robert D.
2002-01-01
In this paper we describe parallel particle-in-cell methods for the large scale simulation of beam dynamics in linear accelerators. These techniques have been implemented in the IMPACT (Integrated Map and Particle Accelerator Tracking) code. IMPACT is being used to study the behavior of intense charged particle beams and as a tool for the design of next-generation linear accelerators. As examples, we present applications of the code to the study of emittance exchange in high intensity beams and to the study of beam transport in a proposed accelerator for the development of accelerator-driven waste transmutation technologies
Lattice gauge theory using parallel processors
International Nuclear Information System (INIS)
Lee, T.D.; Chou, K.C.; Zichichi, A.
1987-01-01
The book's contents include: Lattice Gauge Theory Lectures: Introduction and Current Fermion Simulations; Monte Carlo Algorithms for Lattice Gauge Theory; Specialized Computers for Lattice Gauge Theory; Lattice Gauge Theory at Finite Temperature: A Monte Carlo Study; Computational Method - An Elementary Introduction to the Langevin Equation, Present Status of Numerical Quantum Chromodynamics; Random Lattice Field Theory; The GF11 Processor and Compiler; and The APE Computer and First Physics Results; Columbia Supercomputer Project: Parallel Supercomputer for Lattice QCD; Statistical and Systematic Errors in Numerical Simulations; Monte Carlo Simulation for LGT and Programming Techniques on the Columbia Supercomputer; Food for Thought: Five Lectures on Lattice Gauge Theory
Parallelized Seeded Region Growing Using CUDA
Directory of Open Access Journals (Sweden)
Seongjin Park
2014-01-01
Full Text Available This paper presents a novel method for parallelizing the seeded region growing (SRG algorithm using Compute Unified Device Architecture (CUDA technology, with intention to overcome the theoretical weakness of SRG algorithm of its computation time being directly proportional to the size of a segmented region. The segmentation performance of the proposed CUDA-based SRG is compared with SRG implementations on single-core CPUs, quad-core CPUs, and shader language programming, using synthetic datasets and 20 body CT scans. Based on the experimental results, the CUDA-based SRG outperforms the other three implementations, advocating that it can substantially assist the segmentation during massive CT screening tests.
Parallel Monitors for Self-adaptive Sessions
Directory of Open Access Journals (Sweden)
Mario Coppo
2016-06-01
Full Text Available The paper presents a data-driven model of self-adaptivity for multiparty sessions. System choreography is prescribed by a global type. Participants are incarnated by processes associated with monitors, which control their behaviour. Each participant can access and modify a set of global data, which are able to trigger adaptations in the presence of critical changes of values. The use of the parallel composition for building global types, monitors and processes enables a significant degree of flexibility: an adaptation step can dynamically reconfigure a set of participants only, without altering the remaining participants, even if the two groups communicate.
A parallel input composite transimpedance amplifier
Kim, D. J.; Kim, C.
2018-01-01
A new approach to high performance current to voltage preamplifier design is presented. The design using multiple operational amplifiers (op-amps) has a parasitic capacitance compensation network and a composite amplifier topology for fast, precision, and low noise performance. The input stage consisting of a parallel linked JFET op-amps and a high-speed bipolar junction transistor (BJT) gain stage driving the output in the composite amplifier topology, cooperating with the capacitance compensation feedback network, ensures wide bandwidth stability in the presence of input capacitance above 40 nF. The design is ideal for any two-probe measurement, including high impedance transport and scanning tunneling microscopy measurements.
Parallel strategy for optimal learning in perceptrons
International Nuclear Information System (INIS)
Neirotti, J P
2010-01-01
We developed a parallel strategy for learning optimally specific realizable rules by perceptrons, in an online learning scenario. Our result is a generalization of the Caticha-Kinouchi (CK) algorithm developed for learning a perceptron with a synaptic vector drawn from a uniform distribution over the N-dimensional sphere, so called the typical case. Our method outperforms the CK algorithm in almost all possible situations, failing only in a denumerable set of cases. The algorithm is optimal in the sense that it saturates Bayesian bounds when it succeeds.
Fast parallel algorithm for CT image reconstruction.
Flores, Liubov A; Vidal, Vicent; Mayo, Patricia; Rodenas, Francisco; Verdú, Gumersindo
2012-01-01
In X-ray computed tomography (CT) the X rays are used to obtain the projection data needed to generate an image of the inside of an object. The image can be generated with different techniques. Iterative methods are more suitable for the reconstruction of images with high contrast and precision in noisy conditions and from a small number of projections. Their use may be important in portable scanners for their functionality in emergency situations. However, in practice, these methods are not widely used due to the high computational cost of their implementation. In this work we analyze iterative parallel image reconstruction with the Portable Extensive Toolkit for Scientific computation (PETSc).
Compressing Data Cube in Parallel OLAP Systems
Directory of Open Access Journals (Sweden)
Frank Dehne
2007-03-01
Full Text Available This paper proposes an efficient algorithm to compress the cubes in the progress of the parallel data cube generation. This low overhead compression mechanism provides block-by-block and record-by-record compression by using tuple difference coding techniques, thereby maximizing the compression ratio and minimizing the decompression penalty at run-time. The experimental results demonstrate that the typical compression ratio is about 30:1 without sacrificing running time. This paper also demonstrates that the compression method is suitable for Hilbert Space Filling Curve, a mechanism widely used in multi-dimensional indexing.
From sequential to parallel programming with patterns
CERN. Geneva
2018-01-01
To increase in both performance and efficiency, our programming models need to adapt to better exploit modern processors. The classic idioms and patterns for programming such as loops, branches or recursion are the pillars of almost every code and are well known among all programmers. These patterns all have in common that they are sequential in nature. Embracing parallel programming patterns, which allow us to program for multi- and many-core hardware in a natural way, greatly simplifies the task of designing a program that scales and performs on modern hardware, independently of the used programming language, and in a generic way.
Parallel heater system for subsurface formations
Harris, Christopher Kelvin [Houston, TX; Karanikas, John Michael [Houston, TX; Nguyen, Scott Vinh [Houston, TX
2011-10-25
A heating system for a subsurface formation is disclosed. The system includes a plurality of substantially horizontally oriented or inclined heater sections located in a hydrocarbon containing layer in the formation. At least a portion of two of the heater sections are substantially parallel to each other. The ends of at least two of the heater sections in the layer are electrically coupled to a substantially horizontal, or inclined, electrical conductor oriented substantially perpendicular to the ends of the at least two heater sections.
Efficient Parallel Engineering Computing on Linux Workstations
Lou, John Z.
2010-01-01
A C software module has been developed that creates lightweight processes (LWPs) dynamically to achieve parallel computing performance in a variety of engineering simulation and analysis applications to support NASA and DoD project tasks. The required interface between the module and the application it supports is simple, minimal and almost completely transparent to the user applications, and it can achieve nearly ideal computing speed-up on multi-CPU engineering workstations of all operating system platforms. The module can be integrated into an existing application (C, C++, Fortran and others) either as part of a compiled module or as a dynamically linked library (DLL).
Partitioning sparse rectangular matrices for parallel processing
Energy Technology Data Exchange (ETDEWEB)
Kolda, T.G.
1998-05-01
The authors are interested in partitioning sparse rectangular matrices for parallel processing. The partitioning problem has been well-studied in the square symmetric case, but the rectangular problem has received very little attention. They will formalize the rectangular matrix partitioning problem and discuss several methods for solving it. They will extend the spectral partitioning method for symmetric matrices to the rectangular case and compare this method to three new methods -- the alternating partitioning method and two hybrid methods. The hybrid methods will be shown to be best.
Massive Asynchronous Parallelization of Sparse Matrix Factorizations
Energy Technology Data Exchange (ETDEWEB)
Chow, Edmond [Georgia Inst. of Technology, Atlanta, GA (United States)
2018-01-08
Solving sparse problems is at the core of many DOE computational science applications. We focus on the challenge of developing sparse algorithms that can fully exploit the parallelism in extreme-scale computing systems, in particular systems with massive numbers of cores per node. Our approach is to express a sparse matrix factorization as a large number of bilinear constraint equations, and then solving these equations via an asynchronous iterative method. The unknowns in these equations are the matrix entries of the factorization that is desired.
Pattern recognition with parallel associative memory
Toth, Charles K.; Schenk, Toni
1990-01-01
An examination is conducted of the feasibility of searching targets in aerial photographs by means of a parallel associative memory (PAM) that is based on the nearest-neighbor algorithm; the Hamming distance is used as a measure of closeness, in order to discriminate patterns. Attention has been given to targets typically used for ground-control points. The method developed sorts out approximate target positions where precise localizations are needed, in the course of the data-acquisition process. The majority of control points in different images were correctly identified.
Optimisation of a parallel ocean general circulation model
M. I. Beare; D. P. Stevens
1997-01-01
International audience; This paper presents the development of a general-purpose parallel ocean circulation model, for use on a wide range of computer platforms, from traditional scalar machines to workstation clusters and massively parallel processors. Parallelism is provided, as a modular option, via high-level message-passing routines, thus hiding the technical intricacies from the user. An initial implementation highlights that the parallel efficiency of the model is adversely affected by...
Introduction to parallel algorithms and architectures arrays, trees, hypercubes
Leighton, F Thomson
1991-01-01
Introduction to Parallel Algorithms and Architectures: Arrays Trees Hypercubes provides an introduction to the expanding field of parallel algorithms and architectures. This book focuses on parallel computation involving the most popular network architectures, namely, arrays, trees, hypercubes, and some closely related networks.Organized into three chapters, this book begins with an overview of the simplest architectures of arrays and trees. This text then presents the structures and relationships between the dominant network architectures, as well as the most efficient parallel algorithms for
Iterative algorithms for large sparse linear systems on parallel computers
Adams, L. M.
1982-01-01
Algorithms for assembling in parallel the sparse system of linear equations that result from finite difference or finite element discretizations of elliptic partial differential equations, such as those that arise in structural engineering are developed. Parallel linear stationary iterative algorithms and parallel preconditioned conjugate gradient algorithms are developed for solving these systems. In addition, a model for comparing parallel algorithms on array architectures is developed and results of this model for the algorithms are given.