WorldWideScience

Sample records for four-dimensional calculations

  1. SU-F-J-133: Adaptive Radiation Therapy with a Four-Dimensional Dose Calculation Algorithm That Optimizes Dose Distribution Considering Breathing Motion

    Energy Technology Data Exchange (ETDEWEB)

    Ali, I; Algan, O; Ahmad, S [University of Oklahoma Health Sciences, Oklahoma City, OK (United States); Alsbou, N [University of Central Oklahoma, Edmond, OK (United States)

    2016-06-15

    Purpose: To model patient motion and produce four-dimensional (4D) optimized dose distributions that consider motion-artifacts in the dose calculation during the treatment planning process. Methods: An algorithm for dose calculation is developed where patient motion is considered in dose calculation at the stage of the treatment planning. First, optimal dose distributions are calculated for the stationary target volume where the dose distributions are optimized considering intensity-modulated radiation therapy (IMRT). Second, a convolution-kernel is produced from the best-fitting curve which matches the motion trajectory of the patient. Third, the motion kernel is deconvolved with the initial dose distribution optimized for the stationary target to produce a dose distribution that is optimized in four-dimensions. This algorithm is tested with measured doses using a mobile phantom that moves with controlled motion patterns. Results: A motion-optimized dose distribution is obtained from the initial dose distribution of the stationary target by deconvolution with the motion-kernel of the mobile target. This motion-optimized dose distribution is equivalent to that optimized for the stationary target using IMRT. The motion-optimized and measured dose distributions are tested with the gamma index with a passing rate of >95% considering 3% dose-difference and 3mm distance-to-agreement. If the dose delivery per beam takes place over several respiratory cycles, then the spread-out of the dose distributions is only dependent on the motion amplitude and not affected by motion frequency and phase. This algorithm is limited to motion amplitudes that are smaller than the length of the target along the direction of motion. Conclusion: An algorithm is developed to optimize dose in 4D. Besides IMRT that provides optimal dose coverage for a stationary target, it extends dose optimization to 4D considering target motion. This algorithm provides alternative to motion management

  2. Four Dimensional Trace Space Measurement

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez, M.

    2005-02-10

    Future high energy colliders and FELs (Free Electron Lasers) such as the proposed LCLS (Linac Coherent Light Source) at SLAC require high brightness electron beams. In general a high brightness electron beam will contain a large number of electrons that occupy a short longitudinal duration, can be focused to a small transverse area while having small transverse divergences. Therefore the beam must have a high peak current and occupy small areas in transverse phase space and so have small transverse emittances. Additionally the beam should propagate at high energy and have a low energy spread to reduce chromatic effects. The requirements of the LCLS for example are pulses which contain 10{sup 10} electrons in a temporal duration of 10 ps FWHM with projected normalized transverse emittances of 1{pi} mm mrad[1]. Currently the most promising method of producing such a beam is the RF photoinjector. The GTF (Gun Test Facility) at SLAC was constructed to produce and characterize laser and electron beams which fulfill the LCLS requirements. Emittance measurements of the electron beam at the GTF contain evidence of strong coupling between the transverse dimensions of the beam. This thesis explores the effects of this coupling on the determination of the projected emittances of the electron beam. In the presence of such a coupling the projected normalized emittance is no longer a conserved quantity. The conserved quantity is the normalized full four dimensional phase space occupied by the beam. A method to determine the presence and evaluate the strength of the coupling in emittance measurements made in the laboratory is developed. A method to calculate the four dimensional volume the beam occupies in phase space using quantities available in the laboratory environment is also developed. Results of measurements made of the electron beam at the GTF that demonstrate these concepts are presented and discussed.

  3. On four dimensional mirror symmetry

    International Nuclear Information System (INIS)

    Losev, A.; Nekrasov, N.; Shatashvili, S.

    2000-01-01

    A conjecture relating instanton calculus in four dimensional supersymmetric theories and the deformation theory of Lagrangian submanifolds in C 2r invariant under a (subgroup of) Sp(2r,Z) is formulated. This is a four dimensional counterpart of the mirror symmetry of topological strings (relating Gromov-Witten invariants and generalized variations of Hodge structure). (orig.)

  4. A Four-Dimensional Approach

    African Journals Online (AJOL)

    ... of East Asian Students in English-speaking Countries: A Four-Dimensional ... country's language greatly shapes all aspects of the student's international education ... Taking this ecological approach will help clearly define the role that home ...

  5. New four-dimensional symmetry

    International Nuclear Information System (INIS)

    Hsu, J.P.

    1976-01-01

    A new picture of nature is proposed in which there are only two fundamental universal constants anti e (identical with e/c) and dirac constant (identical with dirac constant/c). The theory is developed within the framework of a new four-dimensional symmetry which is constructed on the basis of the Poincare--Einstein principle of relativity for the laws of physics and the Newtonian concept of time. One obtains a new space--light transformation law, a velocity-addition law, and so on. In this symmetry scheme, the speed of light is constant and is completely relative. The new theory is logically self-consistent, and it moreover is in agreement with all previously established experimental facts, such as the ''lifetime dilatation'' of unstable particles, the Michelson--Morley experiment, etc. There is a difference relative to the usual theory, though, in that our theory predicts a new law for the Doppler frequency shift, which can be tested experimentally by measuring the second-order frequency shift

  6. Super integrable four-dimensional autonomous mappings

    International Nuclear Information System (INIS)

    Capel, H W; Sahadevan, R; Rajakumar, S

    2007-01-01

    A systematic investigation of the complete integrability of a fourth-order autonomous difference equation of the type w(n + 4) = w(n)F(w(n + 1), w(n + 2), w(n + 3)) is presented. We identify seven distinct families of four-dimensional mappings which are super integrable and have three (independent) integrals via a duality relation as introduced in a recent paper by Quispel, Capel and Roberts (2005 J. Phys. A: Math. Gen. 38 3965-80). It is observed that these seven families can be related to the four-dimensional symplectic mappings with two integrals including all the four-dimensional periodic reductions of the integrable double-discrete modified Korteweg-deVries and sine-Gordon equations treated in an earlier paper by two of us (Capel and Sahadevan 2001 Physica A 289 86-106)

  7. Extended supersymmetry in four-dimensional Euclidean space

    International Nuclear Information System (INIS)

    McKeon, D.G.C.; Sherry, T.N.

    2000-01-01

    Since the generators of the two SU(2) groups which comprise SO(4) are not Hermitian conjugates of each other, the simplest supersymmetry algebra in four-dimensional Euclidean space more closely resembles the N=2 than the N=1 supersymmetry algebra in four-dimensional Minkowski space. An extended supersymmetry algebra in four-dimensional Euclidean space is considered in this paper; its structure resembles that of N=4 supersymmetry in four-dimensional Minkowski space. The relationship of this algebra to the algebra found by dimensionally reducing the N=1 supersymmetry algebra in ten-dimensional Euclidean space to four-dimensional Euclidean space is examined. The dimensional reduction of N=1 super Yang-Mills theory in ten-dimensional Minkowski space to four-dimensional Euclidean space is also considered

  8. Unmanned Aerial System Four-Dimensional Gunnery Training Device Development

    Science.gov (United States)

    2017-10-01

    Aerial System (UAS) Four-Dimensional Gunnery Training Device: Training Effectiveness Assessment (James & Miller, in press). 31 Technical ...Research Product 2018-05 Unmanned Aerial System Four-Dimensional Gunnery Training Device Development David R. James...for the Department of the Army by Northrop Grumman Corporation. Technical review by Thomas Rhett Graves, Ph.D., U.S. Army Research Institute

  9. Inverse Operation of Four-dimensional Vector Matrix

    OpenAIRE

    H J Bao; A J Sang; H X Chen

    2011-01-01

    This is a new series of study to define and prove multidimensional vector matrix mathematics, which includes four-dimensional vector matrix determinant, four-dimensional vector matrix inverse and related properties. There are innovative concepts of multi-dimensional vector matrix mathematics created by authors with numerous applications in engineering, math, video conferencing, 3D TV, and other fields.

  10. Four-dimensional strings: Phenomenology and model building

    International Nuclear Information System (INIS)

    Quiros, M.

    1989-01-01

    In these lectures we will review some of the last developments in string theories leading to the construction of realistic four-dimensional string models. Special attention will be paid to world-sheet and space-time supersymmetry, modular invariance and model building for supersymmetric and (tachyon-free) nonsupersymmetric ten and four-dimensional models. (orig.)

  11. EIT image reconstruction with four dimensional regularization.

    Science.gov (United States)

    Dai, Tao; Soleimani, Manuchehr; Adler, Andy

    2008-09-01

    Electrical impedance tomography (EIT) reconstructs internal impedance images of the body from electrical measurements on body surface. The temporal resolution of EIT data can be very high, although the spatial resolution of the images is relatively low. Most EIT reconstruction algorithms calculate images from data frames independently, although data are actually highly correlated especially in high speed EIT systems. This paper proposes a 4-D EIT image reconstruction for functional EIT. The new approach is developed to directly use prior models of the temporal correlations among images and 3-D spatial correlations among image elements. A fast algorithm is also developed to reconstruct the regularized images. Image reconstruction is posed in terms of an augmented image and measurement vector which are concatenated from a specific number of previous and future frames. The reconstruction is then based on an augmented regularization matrix which reflects the a priori constraints on temporal and 3-D spatial correlations of image elements. A temporal factor reflecting the relative strength of the image correlation is objectively calculated from measurement data. Results show that image reconstruction models which account for inter-element correlations, in both space and time, show improved resolution and noise performance, in comparison to simpler image models.

  12. Oscillator potential for the four-dimensional Hall effect

    International Nuclear Information System (INIS)

    Mardoyan, Levon; Nersessian, Armen

    2005-01-01

    We suggest an exactly solvable model of an oscillator on a four-dimensional sphere interacting with an SU(2) Yang monopole. We show that the properties of the model essentially depend on the monopole charge

  13. Commutative curvature operators over four-dimensional generalized symmetric

    Directory of Open Access Journals (Sweden)

    Ali Haji-Badali

    2014-12-01

    Full Text Available Commutative properties of four-dimensional generalized symmetric pseudo-Riemannian manifolds were considered. Specially, in this paper, we studied Skew-Tsankov and Jacobi-Tsankov conditions in 4-dimensional pseudo-Riemannian generalized symmetric manifolds.

  14. Massive supermultiplets in four-dimensional superstring theory

    International Nuclear Information System (INIS)

    Feng Wanzhe; Lüst, Dieter; Schlotterer, Oliver

    2012-01-01

    We extend the discussion of Feng et al. (2011) on massive Regge excitations on the first mass level of four-dimensional superstring theory. For the lightest massive modes of the open string sector, universal supermultiplets common to all four-dimensional compactifications with N=1,2 and N=4 spacetime supersymmetry are constructed respectively - both their vertex operators and their supersymmetry variations. Massive spinor helicity methods shed light on the interplay between individual polarization states.

  15. Renormalization of period doubling in symmetric four-dimensional volume-preserving maps

    International Nuclear Information System (INIS)

    Mao, J.; Greene, J.M.

    1987-01-01

    We have determined three maps (truncated at quadratic terms) that are fixed under the renormalization operator of pitchfork period doubling in symmetric four-dimensional volume-preserving maps. Each of these contains the previously known two-dimensional area-preserving map that is fixed under the period-doubling operator. One of these three fixed maps consists of two uncoupled two-dimensional (nonlinear) area-preserving fixed maps. The other two contain also the two-dimensional area-preserving fixed map coupled (in general) with a linear two-dimensional map. The renormalization calculation recovers all numerical results for the pitchfork period doubling in the symmetric four-dimensional volume-preserving maps, reported by Mao and Helleman [Phys. Rev. A 35, 1847 (1987)]. For a large class of nonsymmetric four-dimensional volume-preserving maps, we found that the fixed maps are the same as those for the symmetric maps

  16. Four-dimensional hilbert curves for R-trees

    DEFF Research Database (Denmark)

    Haverkort, Herman; Walderveen, Freek van

    2011-01-01

    Two-dimensional R-trees are a class of spatial index structures in which objects are arranged to enable fast window queries: report all objects that intersect a given query window. One of the most successful methods of arranging the objects in the index structure is based on sorting the objects...... according to the positions of their centers along a two-dimensional Hilbert space-filling curve. Alternatively, one may use the coordinates of the objects' bounding boxes to represent each object by a four-dimensional point, and sort these points along a four-dimensional Hilbert-type curve. In experiments...

  17. Lattice classification of the four-dimensional heterotic strings

    International Nuclear Information System (INIS)

    Balog, J.; Forgacs, P.; Vecsernyes, P.; Horvath, Z.

    1987-06-01

    A lattice slicing procedure is proposed which leads to the classification of all four-dimensional chiral heterotic strings based on Conway and Sloane's 22-dimensional self-dual Euclidean lattices. By reversing this procedure it is possible to construct all these theories. (author)

  18. The scalar curvature problem on the four dimensional half sphere

    CERN Document Server

    Ben-Ayed, M; El-Mehdi, K

    2003-01-01

    In this paper, we consider the problem of prescribing the scalar curvature under minimal boundary conditions on the standard four dimensional half sphere. We provide an Euler-Hopf type criterion for a given function to be a scalar curvature for some metric conformal to the standard one. Our proof involves the study of critical points at infinity of the associated variational problem.

  19. Statistical Entropy of Four-Dimensional Extremal Black Holes

    International Nuclear Information System (INIS)

    Maldacena, J.M.; Strominger, A.

    1996-01-01

    String theory is used to count microstates of four-dimensional extremal black holes in compactifications with N=4 and N=8 supersymmetry. The result agrees for large charges with the Bekenstein-Hawking entropy. copyright 1996 The American Physical Society

  20. Four-dimensional conversion for spiritual leadership development: A ...

    African Journals Online (AJOL)

    The process of a four-dimensional conversion and/or transformation strives in helping the leadership of an organisation, especially such as the church, with practical ways that may lead to the development of an effective leadership by observing the four important aspects of human spirituality as elaborated on in the article.

  1. Variability of four-dimensional computed tomography patient models

    NARCIS (Netherlands)

    Sonke, Jan-Jakob; Lebesque, Joos; van Herk, Marcel

    2008-01-01

    PURPOSE: To quantify the interfractional variability in lung tumor trajectory and mean position during the course of radiation therapy. METHODS AND MATERIALS: Repeat four-dimensional (4D) cone-beam computed tomography (CBCT) scans (median, nine scans/patient) routinely acquired during the course of

  2. Identification of Architectural Functions in A Four-Dimensional Space

    Directory of Open Access Journals (Sweden)

    Firza Utama

    2012-06-01

    Full Text Available This research has explored the possibilities and concept of architectural space in a virtual environment. The virtual environment exists as a different concept, and challenges the constraints of the physical world. One of the possibilities in a virtual environment is that it is able to extend the spatial dimension higher than the physical three-dimension. To take the advantage of this possibility, this research has applied some geometrical four-dimensional (4D methods to define virtual architectural space. The spatial characteristics of 4D space is established by analyzing the four-dimensional structure that can be comprehended by human participant for its spatial quality, and by developing a system to control the fourth axis of movement. Multiple three-dimensional spaces that fluidly change their volume have been defined as one of the possibilities of virtual architecturalspace concept in order to enrich our understanding of virtual spatial experience.

  3. Common time in a four-dimensional symmetry framework

    International Nuclear Information System (INIS)

    Hsu, J.P.; Sherry, T.N.

    1980-01-01

    Following the ideas of Poincare, Reichenbach, and Grunbaum concerning the convention of setting up clock systems, we analyze clock systems and light propagation within the framework of four-dimensional symmetry. It is possible to construct a new four-dimensional symmetry framework incorporating common time: observers in different inertial frames of reference use one and the same clock system, which is located in any one of the frames. Consequently, simultaneity has a meaning independent of position and independent of frame of reference. A further consequence is that the two-way speeds of light alone are isotropic in any frame. By the choice of clock system there will be one frame in which the one-way speed of light is isotropic. This frame can be arbitrarily chosen. The difference between one-way speeds an two-way speeds of light signals is considered in detail

  4. Supergravity duals of supersymmetric four dimensional gauge theories

    Energy Technology Data Exchange (ETDEWEB)

    Bigazzi, F [Abdus Salam International Centre for Theoretical Physics, Trieste (Italy); Cotrone, A L [Centre de Physique Theorique, Ecole Polytechnique, Palaiseau Cedex (France); [INFN, Rome (Italy); Petrini, M [Centre de Physique Theorique, Ecole Polytechnique, Palaiseau (France); Zaffaroni, A [Universita di Milano-Bicocca and INFN, Milan (Italy)

    2002-03-01

    This article contains an overview of some recent attempts of understanding supergravity and string duals of four dimensional gauge theories using the AdS/CFT correspondence. We discuss the general philosophy underlying the various ways to realize Super Yang-Mills theories in terms of systems of branes. We then review some of the existing duals for N=2 and N=1 theories. We also discuss differences and similarities with realistic theories. (author)

  5. Four dimensional sigma model coupled to the metric tensor field

    International Nuclear Information System (INIS)

    Ghika, G.; Visinescu, M.

    1980-02-01

    We discuss the four dimensional nonlinear sigma model with an internal O(n) invariance coupled to the metric tensor field satisfying Einstein equations. We derive a bound on the coupling constant between the sigma field and the metric tensor using the theory of harmonic maps. A special attention is paid to Einstein spaces and some new explicit solutions of the model are constructed. (author)

  6. Feasibility of four-dimensional preoperative simulation for elbow debridement arthroplasty.

    Science.gov (United States)

    Yamamoto, Michiro; Murakami, Yukimi; Iwatsuki, Katsuyuki; Kurimoto, Shigeru; Hirata, Hitoshi

    2016-04-02

    Recent advances in imaging modalities have enabled three-dimensional preoperative simulation. A four-dimensional preoperative simulation system would be useful for debridement arthroplasty of primary degenerative elbow osteoarthritis because it would be able to detect the impingement lesions. We developed a four-dimensional simulation system by adding the anatomical axis to the three-dimensional computed tomography scan data of the affected arm in one position. Eleven patients with primary degenerative elbow osteoarthritis were included. A "two rings" method was used to calculate the flexion-extension axis of the elbow by converting the surface of the trochlea and capitellum into two rings. A four-dimensional simulation movie was created and showed the optimal range of motion and the impingement area requiring excision. To evaluate the reliability of the flexion-extension axis, interobserver and intraobserver reliabilities regarding the assessment of bony overlap volumes were calculated twice for each patient by two authors. Patients were treated by open or arthroscopic debridement arthroplasties. Pre- and postoperative examinations included elbow range of motion measurement, and completion of the patient-rated questionnaire Hand20, Japanese Orthopaedic Association-Japan Elbow Society Elbow Function Score, and the Mayo Elbow Performance Score. Measurement of the bony overlap volume showed an intraobserver intraclass correlation coefficient of 0.93 and 0.90, and an interobserver intraclass correlation coefficient of 0.94. The mean elbow flexion-extension arc significantly improved from 101° to 125°. The mean Hand20 score significantly improved from 52 to 22. The mean Japanese Orthopaedic Association-Japan Elbow Society Elbow Function Score significantly improved from 67 to 88. The mean Mayo Elbow Performance Score significantly improved from 71 to 91 at the final follow-up evaluation. We showed that four-dimensional, preoperative simulation can be generated by

  7. Spinors and supersymmetry in four-dimensional Euclidean space

    International Nuclear Information System (INIS)

    McKeon, D.G.C.; Sherry, T.N.

    2001-01-01

    Spinors in four-dimensional Euclidean space are treated using the decomposition of the Euclidean space SO(4) symmetry group into SU(2)xSU(2). Both 2- and 4-spinor representations of this SO(4) symmetry group are shown to differ significantly from the corresponding spinor representations of the SO(3, 1) symmetry group in Minkowski space. The simplest self conjugate supersymmetry algebra allowed in four-dimensional Euclidean space is demonstrated to be an N=2 supersymmetry algebra which resembles the N=2 supersymmetry algebra in four-dimensional Minkowski space. The differences between the two supersymmetry algebras gives rise to different representations; in particular an analysis of the Clifford algebra structure shows that the momentum invariant is bounded above by the central charges in 4dE, while in 4dM the central charges bound the momentum invariant from below. Dimensional reduction of the N=1 SUSY algebra in six-dimensional Minkowski space (6dM) to 4dE reproduces our SUSY algebra in 4dE. This dimensional reduction can be used to introduce additional generators into the SUSY algebra in 4dE. Well known interpolating maps are used to relate the N=2 SUSY algebra in 4dE derived in this paper to the N=2 SUSY algebra in 4dM. The nature of the spinors in 4dE allows us to write an axially gauge invariant model which is shown to be both Hermitian and anomaly-free. No equivalent model exists in 4dM. Useful formulae in 4dE are collected together in two appendixes

  8. On 'Common time' in the four-dimensional symmetry framework

    International Nuclear Information System (INIS)

    Gulati, Shobha

    1980-01-01

    Recently Hsu has advanced a 'Four-Dimensional Symmetry Theory' with a 'Common time' for all inertial frames. He believes that such a 'Common time' is physically possible. However, as a consequence of 'Common time', Hsu asserts that the speed of light in some inertial frames is not necessarily invariant and isotropic - a result, quite contrary to Einstein's Principle of the constancy of the velocity of light. In the present paper, taking Hsu's 'Common time' at its face value, the author has demonstrated that his formulation itself leads to physically absurd results. A 'Common time' for all inertial frames is just not possible. (author)

  9. Naked singularities in four-dimensional string backgrounds

    International Nuclear Information System (INIS)

    Mohammedi, N.

    1993-04-01

    It is shown that gauged nonlinear sigma models can be always deformed by terms proportional to the field strength of the gauge fields (nonminimal gauging). These deformations can be interpreted as perturbations, by marginal operators, of conformal coset models. When applied to the SL(2, R)xSU(2)/U(1)xU(1)) WZWN model, a large class of four-dimensional curved spacetime backgrounds are obtained. In particular, a naked singularity may form at a time when the volume of the universe is different from zero. (orig.)

  10. Quantum walk with a four-dimensional coin

    International Nuclear Information System (INIS)

    Hamilton, Craig S; Gabris, Aurel; Jex, Igor; Barnett, Stephen M

    2011-01-01

    We examine the physical implementation of a discrete time quantum walk with a four-dimensional coin. Our quantum walker is a photon moving repeatedly through a time delay loop, with time being our position space. The quantum coin is implemented using the internal states of the photon: the polarization and two of the orbital angular momentum states. We demonstrate how to implement this physically and what components would be needed. We then illustrate some of the results that could be obtained by performing the experiment.

  11. Four-dimensional optical manipulation of colloidal particles

    DEFF Research Database (Denmark)

    Rodrigo, P.J.; Daria, V.R.; Glückstad, J.

    2005-01-01

    We transform a TEM00 laser mode into multiple counterpropagating optical traps to achieve four-dimensional simultaneous manipulation of multiple particles. Efficient synthesis and dynamic control of the counterpropagating-beam traps is carried out via the generalized phase contrast method......, and a spatial polarization-encoding scheme. Our experiments genuinely demonstrate real-time, interactive particle-position control for forming arbitrary volumetric constellations and complex three-dimensional trajectories of multiple particles. This opens up doors for cross-disciplinary cutting-edge research...

  12. Four-dimensional maps of the human somatosensory system.

    Science.gov (United States)

    Avanzini, Pietro; Abdollahi, Rouhollah O; Sartori, Ivana; Caruana, Fausto; Pelliccia, Veronica; Casaceli, Giuseppe; Mai, Roberto; Lo Russo, Giorgio; Rizzolatti, Giacomo; Orban, Guy A

    2016-03-29

    A fine-grained description of the spatiotemporal dynamics of human brain activity is a major goal of neuroscientific research. Limitations in spatial and temporal resolution of available noninvasive recording and imaging techniques have hindered so far the acquisition of precise, comprehensive four-dimensional maps of human neural activity. The present study combines anatomical and functional data from intracerebral recordings of nearly 100 patients, to generate highly resolved four-dimensional maps of human cortical processing of nonpainful somatosensory stimuli. These maps indicate that the human somatosensory system devoted to the hand encompasses a widespread network covering more than 10% of the cortical surface of both hemispheres. This network includes phasic components, centered on primary somatosensory cortex and neighboring motor, premotor, and inferior parietal regions, and tonic components, centered on opercular and insular areas, and involving human parietal rostroventral area and ventral medial-superior-temporal area. The technique described opens new avenues for investigating the neural basis of all levels of cortical processing in humans.

  13. Four-dimensional gravity as an almost-Poisson system

    Science.gov (United States)

    Ita, Eyo Eyo

    2015-04-01

    In this paper, we examine the phase space structure of a noncanonical formulation of four-dimensional gravity referred to as the Instanton representation of Plebanski gravity (IRPG). The typical Hamiltonian (symplectic) approach leads to an obstruction to the definition of a symplectic structure on the full phase space of the IRPG. We circumvent this obstruction, using the Lagrange equations of motion, to find the appropriate generalization of the Poisson bracket. It is shown that the IRPG does not support a Poisson bracket except on the vector constraint surface. Yet there exists a fundamental bilinear operation on its phase space which produces the correct equations of motion and induces the correct transformation properties of the basic fields. This bilinear operation is known as the almost-Poisson bracket, which fails to satisfy the Jacobi identity and in this case also the condition of antisymmetry. We place these results into the overall context of nonsymplectic systems.

  14. Twistors and four-dimensional conformal field theory

    International Nuclear Information System (INIS)

    Singer, M.A.

    1990-01-01

    This is a report (with technical details omitted) on work concerned with generalizations to four dimensions of two-dimensional Conformed Field Theory. Accounts of this and related material are contained elsewhere. The Hilbert space of the four-dimensional theory has a natural interpretation in terms of massless spinor fields on real Minkowski space. From the twistor point of view this follows from the boundary CR-manifold P being precisely the space of light rays in real compactified Minkowski space. All the amplitudes can therefore be regarded as defined on Hilbert spaces built from Lorentzian spinor fields. Thus the twistor picture provides a kind of halfway house between the Lorentzian and Euclidean field theories. (author)

  15. Four-dimensional Printing of Liquid Crystal Elastomers.

    Science.gov (United States)

    Ambulo, Cedric P; Burroughs, Julia J; Boothby, Jennifer M; Kim, Hyun; Shankar, M Ravi; Ware, Taylor H

    2017-10-25

    Three-dimensional structures capable of reversible changes in shape, i.e., four-dimensional-printed structures, may enable new generations of soft robotics, implantable medical devices, and consumer products. Here, thermally responsive liquid crystal elastomers (LCEs) are direct-write printed into 3D structures with a controlled molecular order. Molecular order is locally programmed by controlling the print path used to build the 3D object, and this order controls the stimulus response. Each aligned LCE filament undergoes 40% reversible contraction along the print direction on heating. By printing objects with controlled geometry and stimulus response, magnified shape transformations, for example, volumetric contractions or rapid, repetitive snap-through transitions, are realized.

  16. Raman scattering in air: four-dimensional analysis

    International Nuclear Information System (INIS)

    Lin, Y.; Kessler, T.J.; Lawrence, G.N.

    1994-01-01

    Inertial confinement fusion requires propagation of high-intensity, pulse-shaped IR and UV laser beams through long air paths. Such beams are subject to energy losses and decreased beam quality as a result by stimulated rotational Raman scattering (SRRS). In this paper we describe how quantum fluctuations, stimulated Raman amplification, diffraction propagation, and optical aberrations interact during the propagation of short, high-power laser pulses using a four-dimensional (4-D) model of the optical beams and the medium. The 4-D model has been incorporated into a general optical-propagation computer program that allows the entire optical system to be modeled and that is implemented on high-end personal computers, workstations, and supercomputers. The numerical model is used to illustrate important phenomena in the evolution of the optical beams. In addition, the OMEGA Upgrade laser system is used as a design case to illustrate the various considerations for inertial confinement fusion laser design

  17. Post-Newtonian approximation of the maximum four-dimensional Yang-Mills gauge theory

    International Nuclear Information System (INIS)

    Smalley, L.L.

    1982-01-01

    We have calculated the post-Newtonian approximation of the maximum four-dimensional Yang-Mills theory proposed by Hsu. The theory contains torsion; however, torsion is not active at the level of the post-Newtonian approximation of the metric. Depending on the nature of the approximation, we obtain the general-relativistic values for the classical Robertson parameters (γ = β = 1), but deviations for the Nordtvedt effect and violations of post-Newtonian conservation laws. We conclude that in its present form the theory is not a viable theory of gravitation

  18. Finite-temperature symmetry restoration in the four-dimensional Φ4 model with four components

    International Nuclear Information System (INIS)

    Jansen, K.

    1990-01-01

    The finite-temperature symmetry restoration in the four-dimensional φ 4 theory with four components and with an infinite self-coupling is studied by means of Monte Carlo simulations on lattices with time extensions L t =4,5,6 and space extensions 12 3 -28 3 . The numerical calculations are done by means of the Wolff cluster algorithm which is very efficient for simulations near a phase transition. The numerical results are in good agreement with an improved one-loop expansion and with the 1/N-expansion, indicating that in the electroweak theory the symmetry restoration temperature T sr is about 350 GeV. (orig.)

  19. Four-dimensional dose evaluation using deformable image registration in radiotherapy for liver cancer

    Energy Technology Data Exchange (ETDEWEB)

    Hoon Jung, Sang; Min Yoon, Sang; Ho Park, Sung; Cho, Byungchul; Won Park, Jae; Jung, Jinhong; Park, Jin-hong; Hoon Kim, Jong; Do Ahn, Seung [Departments of Radiation Oncology, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul 138-736 (Korea, Republic of)

    2013-01-15

    Purpose: In order to evaluate the dosimetric impact of respiratory motion on the dose delivered to the target volume and critical organs during free-breathing radiotherapy, a four-dimensional dose was evaluated using deformable image registration (DIR). Methods: Four-dimensional computed tomography (4DCT) images were acquired for 11 patients who were treated for liver cancer. Internal target volume-based treatment planning and dose calculation (3D dose) were performed using the end-exhalation phase images. The four-dimensional dose (4D dose) was calculated based on DIR of all phase images from 4DCT to the planned image. Dosimetric parameters from the 4D dose, were calculated and compared with those from the 3D dose. Results: There was no significant change of the dosimetric parameters for gross tumor volume (p > 0.05). The increase D{sub mean} and generalized equivalent uniform dose (gEUD) for liver were by 3.1%{+-} 3.3% (p= 0.003) and 2.8%{+-} 3.3% (p= 0.008), respectively, and for duodenum, they were decreased by 15.7%{+-} 11.2% (p= 0.003) and 15.1%{+-} 11.0% (p= 0.003), respectively. The D{sub max} and gEUD for stomach was decreased by 5.3%{+-} 5.8% (p= 0.003) and 9.7%{+-} 8.7% (p= 0.003), respectively. The D{sub max} and gEUD for right kidney was decreased by 11.2%{+-} 16.2% (p= 0.003) and 14.9%{+-} 16.8% (p= 0.005), respectively. For left kidney, D{sub max} and gEUD were decreased by 11.4%{+-} 11.0% (p= 0.003) and 12.8%{+-} 12.1% (p= 0.005), respectively. The NTCP values for duodenum and stomach were decreased by 8.4%{+-} 5.8% (p= 0.003) and 17.2%{+-} 13.7% (p= 0.003), respectively. Conclusions: The four-dimensional dose with a more realistic dose calculation accounting for respiratory motion revealed no significant difference in target coverage and potentially significant change in the physical and biological dosimetric parameters in normal organs during free-breathing treatment.

  20. Four-Dimensional Data Assimilation Using the Adjoint Method

    Science.gov (United States)

    Bao, Jian-Wen

    The calculus of variations is used to confirm that variational four-dimensional data assimilation (FDDA) using the adjoint method can be implemented when the numerical model equations have a finite number of first-order discontinuous points. These points represent the on/off switches associated with physical processes, for which the Jacobian matrix of the model equation does not exist. Numerical evidence suggests that, in some situations when the adjoint method is used for FDDA, the temperature field retrieved using horizontal wind data is numerically not unique. A physical interpretation of this type of non-uniqueness of the retrieval is proposed in terms of energetics. The adjoint equations of a numerical model can also be used for model-parameter estimation. A general computational procedure is developed to determine the size and distribution of any internal model parameter. The procedure is then applied to a one-dimensional shallow -fluid model in the context of analysis-nudging FDDA: the weighting coefficients used by the Newtonian nudging technique are determined. The sensitivity of these nudging coefficients to the optimal objectives and constraints is investigated. Experiments of FDDA using the adjoint method are conducted using the dry version of the hydrostatic Penn State/NCAR mesoscale model (MM4) and its adjoint. The minimization procedure converges and the initialization experiment is successful. Temperature-retrieval experiments involving an assimilation of the horizontal wind are also carried out using the adjoint of MM4.

  1. Semiautomated four-dimensional computed tomography segmentation using deformable models

    International Nuclear Information System (INIS)

    Ragan, Dustin; Starkschall, George; McNutt, Todd; Kaus, Michael; Guerrero, Thomas; Stevens, Craig W.

    2005-01-01

    The purpose of this work is to demonstrate a proof of feasibility of the application of a commercial prototype deformable model algorithm to the problem of delineation of anatomic structures on four-dimensional (4D) computed tomography (CT) image data sets. We acquired a 4D CT image data set of a patient's thorax that consisted of three-dimensional (3D) image data sets from eight phases in the respiratory cycle. The contours of the right and left lungs, cord, heart, and esophagus were manually delineated on the end inspiration data set. An interactive deformable model algorithm, originally intended for deforming an atlas-based model surface to a 3D CT image data set, was applied in an automated fashion. Triangulations based on the contours generated on each phase were deformed to the CT data set on the succeeding phase to generate the contours on that phase. Deformation was propagated through the eight phases, and the contours obtained on the end inspiration data set were compared with the original manually delineated contours. Structures defined by high-density gradients, such as lungs, cord, and heart, were accurately reproduced, except in regions where other gradient boundaries may have confused the algorithm, such as near bronchi. The algorithm failed to accurately contour the esophagus, a soft-tissue structure completely surrounded by tissue of similar density, without manual interaction. This technique has the potential to facilitate contour delineation in 4D CT image data sets; and future evolution of the software is expected to improve the process

  2. Model-based image reconstruction for four-dimensional PET

    International Nuclear Information System (INIS)

    Li Tianfang; Thorndyke, Brian; Schreibmann, Eduard; Yang Yong; Xing Lei

    2006-01-01

    Positron emission tonography (PET) is useful in diagnosis and radiation treatment planning for a variety of cancers. For patients with cancers in thoracic or upper abdominal region, the respiratory motion produces large distortions in the tumor shape and size, affecting the accuracy in both diagnosis and treatment. Four-dimensional (4D) (gated) PET aims to reduce the motion artifacts and to provide accurate measurement of the tumor volume and the tracer concentration. A major issue in 4D PET is the lack of statistics. Since the collected photons are divided into several frames in the 4D PET scan, the quality of each reconstructed frame degrades as the number of frames increases. The increased noise in each frame heavily degrades the quantitative accuracy of the PET imaging. In this work, we propose a method to enhance the performance of 4D PET by developing a new technique of 4D PET reconstruction with incorporation of an organ motion model derived from 4D-CT images. The method is based on the well-known maximum-likelihood expectation-maximization (ML-EM) algorithm. During the processes of forward- and backward-projection in the ML-EM iterations, all projection data acquired at different phases are combined together to update the emission map with the aid of deformable model, the statistics is therefore greatly improved. The proposed algorithm was first evaluated with computer simulations using a mathematical dynamic phantom. Experiment with a moving physical phantom was then carried out to demonstrate the accuracy of the proposed method and the increase of signal-to-noise ratio over three-dimensional PET. Finally, the 4D PET reconstruction was applied to a patient case

  3. A novel four-dimensional analytical approach for analysis of complex samples.

    Science.gov (United States)

    Stephan, Susanne; Jakob, Cornelia; Hippler, Jörg; Schmitz, Oliver J

    2016-05-01

    A two-dimensional LC (2D-LC) method, based on the work of Erni and Frei in 1978, was developed and coupled to an ion mobility-high-resolution mass spectrometer (IM-MS), which enabled the separation of complex samples in four dimensions (2D-LC, ion mobility spectrometry (IMS), and mass spectrometry (MS)). This approach works as a continuous multiheart-cutting LC system, using a long modulation time of 4 min, which allows the complete transfer of most of the first - dimension peaks to the second - dimension column without fractionation, in comparison to comprehensive two-dimensional liquid chromatography. Hence, each compound delivers only one peak in the second dimension, which simplifies the data handling even when ion mobility spectrometry as a third and mass spectrometry as a fourth dimension are introduced. The analysis of a plant extract from Ginkgo biloba shows the separation power of this four-dimensional separation method with a calculated total peak capacity of more than 8700. Furthermore, the advantage of ion mobility for characterizing unknown compounds by their collision cross section (CCS) and accurate mass in a non-target approach is shown for different matrices like plant extracts and coffee. Graphical abstract Principle of the four-dimensional separation.

  4. Estimation of four-dimensional dose distribution using electronic portal imaging device in radiation therapy

    International Nuclear Information System (INIS)

    Mizoguchi, Asumi; Arimura, Hidetaka; Shioyama, Yoshiyuki

    2013-01-01

    We are developing a method to evaluate four-dimensional radiation dose distribution in a patient body based upon the animated image of EPID (electronic portal imaging device) which is an image of beam-direction at the irradiation. In the first place, we have obtained the image of the dose which is emitted from patient body at therapy planning using therapy planning CT image and dose evaluation algorism. In the second place, we have estimated the emission dose image at the irradiation using EPID animated image which is obtained at the irradiation. In the third place, we have got an affine transformation matrix including respiratory movement in the body by performing linear registration on the emission dose image at therapy planning to get the one at the irradiation. In the fourth place, we have applied the affine transformation matrix on the therapy planning CT image and estimated the CT image 'at irradiation'. Finally we have evaluated four-dimensional dose distribution by calculating dose distribution in the CT image 'at irradiation' which has been estimated for each frame of the EPID animated-image. This scheme may be useful for evaluating therapy results and risk management. (author)

  5. Performance studies of four-dimensional cone beam computed tomography

    International Nuclear Information System (INIS)

    Qi Zhihua; Chen Guanghong

    2011-01-01

    Four-dimensional cone beam computed tomography (4DCBCT) has been proposed to characterize the breathing motion of tumors before radiotherapy treatment. However, when the acquired cone beam projection data are retrospectively gated into several respiratory phases, the available data to reconstruct each phase is under-sampled and thus causes streaking artifacts in the reconstructed images. To solve the under-sampling problem and improve image quality in 4DCBCT, various methods have been developed. This paper presents performance studies of three different 4DCBCT methods based on different reconstruction algorithms. The aims of this paper are to study (1) the relationship between the accuracy of the extracted motion trajectories and the data acquisition time of a 4DCBCT scan and (2) the relationship between the accuracy of the extracted motion trajectories and the number of phase bins used to sort projection data. These aims will be applied to three different 4DCBCT methods: conventional filtered backprojection reconstruction (FBP), FBP with McKinnon-Bates correction (MB) and prior image constrained compressed sensing (PICCS) reconstruction. A hybrid phantom consisting of realistic chest anatomy and a moving elliptical object with known 3D motion trajectories was constructed by superimposing the analytical projection data of the moving object to the simulated projection data from a chest CT volume dataset. CBCT scans with gantry rotation times from 1 to 4 min were simulated, and the generated projection data were sorted into 5, 10 and 20 phase bins before different methods were used to reconstruct 4D images. The motion trajectories of the moving object were extracted using a fast free-form deformable registration algorithm. The root mean square errors (RMSE) of the extracted motion trajectories were evaluated for all simulated cases to quantitatively study the performance. The results demonstrate (1) longer acquisition times result in more accurate motion delineation

  6. Four-dimensional computed tomography angiographic evaluation of cranial dural arteriovenous fistula before and after embolization.

    Science.gov (United States)

    Tian, Bing; Xu, Bing; Lu, Jianping; Liu, Qi; Wang, Li; Wang, Minjie

    2015-06-01

    This study aimed to evaluate the usefulness of four-dimensional CTA before and after embolization treatment with ONYX-18 in eleven patients with cranial dural arteriovenous fistulas, and to compare the results with those of the reference standard DSA. Eleven patients with cranial dural arteriovenous fistulas detected on DSA underwent transarterial embolization with ONYX-18. Four-dimensional CTA was performed an average of 2 days before and 4 days after DSA. Four-dimensional CTA and DSA images were reviewed by two neuroradiologists for identification of feeding arteries and drainage veins and for determining treatment effects. Interobserver and intermodality agreement between four-dimensional CTA and DSA were assessed. Forty-two feeding arteries were identified for 14 fistulas in the 11 patients. Of these, 36 (85.71%) were detected on four-dimensional CTA. After transarterial embolization, one patient got partly embolized, and the fistulas in the remaining 10 patients were completely occluded. The interobserver agreement for four-dimensional CTA and intermodality agreement between four-dimensional CTA and DSA were excellent (κ=1) for shunt location, identification of drainage veins, and fistula occlusion after treatment. Four-dimensional CTA images are highly accurate when compared with DSA images both before and after transarterial embolization treatment. Four-dimensional CTA can be used for diagnosis as well as follow-up of cranial dural arteriovenous fistulas in clinical settings. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  7. A covariant form of the Maxwell's equations in four-dimensional spaces with an arbitrary signature

    International Nuclear Information System (INIS)

    Lukac, I.

    1991-01-01

    The concept of duality in the four-dimensional spaces with the arbitrary constant metric is strictly mathematically formulated. A covariant model for covariant and contravariant bivectors in this space based on three four-dimensional vectors is proposed. 14 refs

  8. False vacuum decay in quantum mechanics and four dimensional scalar field theory

    Science.gov (United States)

    Bezuglov, Maxim

    2018-04-01

    When the Higgs boson was discovered in 2012 it was realized that electroweak vacuum may suffer a possible metastability on the Planck scale and can eventually decay. To understand this problem it is important to have reliable predictions for the vacuum decay rate within the framework of quantum field theory. For now, it can only be done at one loop level, which is apparently is not enough. The aim of this work is to develop a technique for the calculation of two and higher order radiative corrections to the false vacuum decay rate in the framework of four dimensional scalar quantum field theory and then apply it to the case of the Standard Model. To achieve this goal, we first start from the case of d=1 dimensional QFT i.e. quantum mechanics. We show that for some potentials two and three loop corrections can be very important and must be taken into account. Next, we use quantum mechanical example as a template for the general d=4 dimensional theory. In it we are concentrating on the calculations of bounce solution and corresponding Green function in so called thin wall approximation. The obtained Green function is then used as a main ingredient for the calculation of two loop radiative corrections to the false vacuum decay rate.

  9. Four-dimensional computed tomography angiographic evaluation of cranial dural arteriovenous fistula before and after embolization

    International Nuclear Information System (INIS)

    Tian, Bing; Xu, Bing; Lu, Jianping; Liu, Qi; Wang, Li; Wang, Minjie

    2015-01-01

    Highlights: • 4D CTA showed excellent agreement with DSA with regard to identification of feeding arteries and drainage veins. • The most important finding was 4D CTA in determining the impact of DAVF treatment with transarterial embolization. • 4D CTA provides images similar to those obtained with DSA both before and after treatment. - Abstract: Purpose: This study aimed to evaluate the usefulness of four-dimensional CTA before and after embolization treatment with ONYX-18 in eleven patients with cranial dural arteriovenous fistulas, and to compare the results with those of the reference standard DSA. Patients and Methods: Eleven patients with cranial dural arteriovenous fistulas detected on DSA underwent transarterial embolization with ONYX-18. Four-dimensional CTA was performed an average of 2 days before and 4 days after DSA. Four-dimensional CTA and DSA images were reviewed by two neuroradiologists for identification of feeding arteries and drainage veins and for determining treatment effects. Interobserver and intermodality agreement between four-dimensional CTA and DSA were assessed. Results: Forty-two feeding arteries were identified for 14 fistulas in the 11 patients. Of these, 36 (85.71%) were detected on four-dimensional CTA. After transarterial embolization, one patient got partly embolized, and the fistulas in the remaining 10 patients were completely occluded. The interobserver agreement for four-dimensional CTA and intermodality agreement between four-dimensional CTA and DSA were excellent (κ = 1) for shunt location, identification of drainage veins, and fistula occlusion after treatment. Conclusion: Four-dimensional CTA images are highly accurate when compared with DSA images both before and after transarterial embolization treatment. Four-dimensional CTA can be used for diagnosis as well as follow-up of cranial dural arteriovenous fistulas in clinical settings

  10. New four-dimensional integrals by Mellin-Barnes transform

    International Nuclear Information System (INIS)

    Allendes, Pedro; Guerrero, Natanael; Kondrashuk, Igor; Notte Cuello, Eduardo A.

    2010-01-01

    This paper is devoted to the calculation of a special class of integrals by Mellin-Barnes transform. It contains double integrals in the position space in d=4-2ε dimensions, where ε is parameter of dimensional regularization. These integrals contribute to the effective action of the N=4 supersymmetric Yang-Mills theory. The integrand is a fraction in which the numerator is the logarithm of the ratio of space-time intervals, and the denominator is the product of powers of space-time intervals. According to the method developed in the previous papers, in order to make use of the uniqueness technique for one of two integrations, we shift exponents in powers in the denominator of integrands by some multiples of ε. As the next step, the second integration in the position space is done by Mellin-Barnes transform. For normalizing procedure, we reproduce first the known result obtained earlier by Gegenbauer polynomial technique. Then, we make another shift of exponents in powers in the denominator to create the logarithm in the numerator as the derivative with respect to the shift parameter δ. We show that the technique of work with the contour of the integral modified in this way by using Mellin-Barnes transform repeats the technique of work with the contour of the integral without such a modification. In particular, all the operations with a shift of contour of integration over complex variables of twofold Mellin-Barnes transform are the same as before the δ modification of indices, and even the poles of residues coincide. This confirms the observation made in the previous papers that in the position space all the Green's function of N=4 supersymmetric Yang-Mills theory can be expressed in terms of Usyukina-Davydychev functions.

  11. Feasibility of four-dimensional conformal planning for robotic radiosurgery

    International Nuclear Information System (INIS)

    Schlaefer, A.; Fisseler, J.; Dieterich, S.; Shiomi, H.; Cleary, K.; Schweikard, A.

    2005-01-01

    Organ motion can have a severe impact on the dose delivered by radiation therapy, and different procedures have been developed to address its effects. Conventional techniques include breath hold methods and gating. A different approach is the compensation for target motion by moving the treatment beams synchronously. Practical results have been reported for robot based radiosurgery, where a linear accelerator mounted on a robotic arm delivers the dose. However, not all organs move in the same way, which results in a relative motion of the beams with respect to the body and the tissues in the proximity of the tumor. This relative motion can severely effect the dose delivered to critical structures. We propose a method to incorporate motion in the treatment planning for robotic radiosurgery to avoid potential overdosing of organs surrounding the target. The method takes into account the motion of all considered volumes, which is discretized for dose calculations. Similarly, the beam motion is taken into account and the aggregated dose coefficient over all discrete steps is used for planning. We simulated the treatment of a moving target with three different planning methods. First, we computed beam weights based on a 3D planning situation and simulated treatment with organ motion and the beams moving synchronously to the target. Second, beam weights were computed by the 4D planning method incorporating the organ and beam motion and treatment was simulated for beams moving synchronously to the target. Third, the beam weights were determined by the 4D planning method with the beams fixed during planning and simulation. For comparison we also give results for the 3D treatment plan if there was no organ motion and when the plan is delivered by fixed beams in the presence of organ motion. The results indicate that the new 4D method is preferable and can further improve the overall conformality of motion compensated robotic radiosurgery

  12. Comment on non-renormalization theorem in the four dimensional superstrings

    International Nuclear Information System (INIS)

    Soda, Jiro; Nakazawa, Naohito; Sakai, Kenji; Ojima, Shuichi.

    1987-10-01

    We discuss non-renormalization theorem in the context of the four dimensional superstrings. We explicitly demonstrate that the graviton 3-point one-loop amplitude does not vanish in contrast to the ten dimensional superstring theories. (author)

  13. Four-Dimensional Ultrafast Electron Microscopy: Insights into an Emerging Technique

    KAUST Repository

    Adhikari, Aniruddha; Eliason, Jeffrey K.; Sun, Jingya; Bose, Riya; Flannigan, David J.; Mohammed, Omar F.

    2016-01-01

    Four-dimensional ultrafast electron microscopy (4D-UEM) is a novel analytical technique that aims to fulfill the long-held dream of researchers to investigate materials at extremely short spatial and temporal resolutions by integrating the excellent

  14. Ultra high speed optical transmission using subcarrier-multiplexed four-dimensional LDPC-coded modulation.

    Science.gov (United States)

    Batshon, Hussam G; Djordjevic, Ivan; Schmidt, Ted

    2010-09-13

    We propose a subcarrier-multiplexed four-dimensional LDPC bit-interleaved coded modulation scheme that is capable of achieving beyond 480 Gb/s single-channel transmission rate over optical channels. Subcarrier-multiplexed four-dimensional LDPC coded modulation scheme outperforms the corresponding dual polarization schemes by up to 4.6 dB in OSNR at BER 10(-8).

  15. Four-dimensional Hall mechanics as a particle on CP3

    International Nuclear Information System (INIS)

    Bellucci, Stefano; Casteill, Pierre-Yves; Nersessian, Armen

    2003-01-01

    In order to establish an explicit connection between four-dimensional Hall effect on S 4 and six-dimensional Hall effect on CP 3 , we perform the Hamiltonian reduction of a particle moving on CP 3 in a constant magnetic field to the four-dimensional Hall mechanics (i.e., a-bar particle on S 4 in a SU(2) instanton field). This reduction corresponds to fixing the isospin of the latter system

  16. Hawking radiation from four-dimensional Schwarzschild black holes in M theory

    International Nuclear Information System (INIS)

    Das, S.R.; Mathur, S.D.; Ramadevi, P.

    1999-01-01

    Recently a method has been developed for relating four dimensional Schwarzschild black holes in M theory to near-extremal black holes in string theory with four charges, using suitably defined open-quotes boostsclose quotes and T dualities. We show that this method can be extended to obtain the emission rate of low energy massless scalars for the four dimensional Schwarzschild hole from the microscopic picture of radiation from the near extremal hole. copyright 1999 The American Physical Society

  17. Definition of internal target volume and domestric study for hepatocellular carcinoma using four-dimensional CT

    International Nuclear Information System (INIS)

    Xi Mian; Liu Mengzhong; Deng Xiaowu; Zhang Li; Huang Xiaoyan; Cai Ling

    2009-01-01

    Objective: To define individualized internal target volume (ITV) for hepatocellular carcinoma using four-dimensional (4D) CT, and to compare the differences in target volume definition and dose distribution among 3D, 4D and respiratory-gated plans. Methods: 4DCT scanning was obtained for 12 patients with hepatocellular. Gross tumor volume (GTV), clinical target volume (CTV) and normal tissues were contoured on all 10 respiratory phases of 4DCT images. The 3D, 4D and gated treatment plans were prepared for each patient using three different planning target volumes (PTVs): 1) PTV 3D was derived from a single CTV plus conventional margins; 2) PTV 4D was derived from ITV 4D , which encompassed all 10 CTVs plus setup margins (SMs); 3) PT Gating was derived from ITV Gating , which encompassed 3 CTVs within gating-window at end-expiration plus SMs. The PTV volume and dose distribution were compared among different plans. Results: The PTV3D was the largest in all 12 patients, but still missed partial target volume in 5 patients when comparing with PTV4D. Both the 4D plans and the gated plans spared more normal tissues than the 3D plans, especially the liver. Without increasing normal tissue dose, the 4D plans allowed for increasing the calculated dose from (50.8 ± 2.0) Gy (3D plans) to (54.7 ± 3.3) Gy, and the gated plans could further increase the dose to (58.0 ± 3.9) Gy. Conclusions: The 4DCT-based plans can ensure optimal target coverage with less irradiation of normal tissues and allow dose escalation when compared with 3D plans. Respiratory gated radiotherapy can further reduce the target volumes to spare more surrounding tissues, especially for patients with large extent of respiratory mobility. (authors)

  18. Defining internal target volume (ITV) for hepatocellular carcinoma using four-dimensional CT

    International Nuclear Information System (INIS)

    X, Mian; Liu Mengzhong; Deng Xiaowu; Zhang Li; Huang Xiaoyan; Liu Hui; Li Qiaoqiao; Hu Yonghong; Cai Ling; Cui Nianji

    2007-01-01

    Background and purpose: To define individualized internal target volume (ITV) for hepatocellular carcinoma using four-dimensional computed tomography (4DCT). Materials and methods: Gross tumor volumes (GTVs) and clinical target volumes (CTVs) were contoured on all 10 respiratory phases of 4DCT scans in 10 patients with hepatocellular carcinoma. The 3D and 4D treatment plans were performed for each patient using two different planning target volumes (PTVs): (1) PTV 3D was derived from a single CTV plus conventional margins; (2) PTV 4D was derived from ITV 4D , which encompassed all 10 CTVs plus setup margins (SMs). The volumes of PTVs and dose distribution were compared between the two plans. Results: The average PTV volume of the 4D plans (328.4 ± 152.2 cm 3 ) was less than 3D plans (407.0 ± 165.6 cm 3 ). The 4D plans spared more surrounding normal tissues than 3D plans, especially normal liver. Compared with 3D plans, the mean dose to normal liver (MDTNL) decreased from 22.7 to 20.3 Gy. Without increasing the normal tissue complication probability (NTCP), the 4D plans allowed for increasing the calculated dose from 50.4 ± 1.3 to 54.2 ± 2.6 Gy, an average increase of 7.5% (range 4.0-16.0%). Conclusions: The conventional 3D plans can result in geometric miss and include excess normal tissues. The 4DCT-based plans can reduce the target volumes to spare more normal tissues and allow dose escalation compared with 3D plans

  19. A validation study of the Four-Dimensional Symptom Questionnaire (4DSQ) in insurance medicine

    NARCIS (Netherlands)

    Langerak, W.; Langeland, W.; van Balkom, A.J.L.M.; Draisma, S.; Terluin, B.; Draijer, P.J.

    2012-01-01

    Objective: This study aimed to evaluate the criterion validity and the diagnostic accuracy of the Four-Dimensional Symptom Questionnaire (4DSQ) regarding the identification of depressive and anxiety disorders in an insurance medicine setting. Participants: Our sample consisted of 230 individuals who

  20. Bosonisation of four dimensional real fermionic string models and asymmetric orbifolds

    International Nuclear Information System (INIS)

    Bailin, D.; Dunbar, D.C.; Love, A.

    1990-01-01

    Models of four dimensional strings based on internal world-sheet fermions are bosonised and the partition functions are compared with the partition functions of asymmetric Z 2 M orbifold models. Selection rules and couplings are also compared between the two formations. (orig.)

  1. Energy and angular-momentum non-conservation in four-dimensional gauge theories

    International Nuclear Information System (INIS)

    Manohar, A.

    1985-01-01

    We study energy and angular-momentum non-conservation on four-dimensional chiral gauge theories using Landau levels. These effects are physical manifestations of the usual gauge anomaly, and enable us to understand in a semi-classical approximation why anomaly cancellation is required for a consistent field theory. (orig.)

  2. Quantum theory of string in the four-dimensional space-time

    International Nuclear Information System (INIS)

    Pron'ko, G.P.

    1986-01-01

    The Lorentz invariant quantum theory of string is constructed in four-dimensional space-time. Unlike the traditional approach whose result was breaking of Lorentz invariance, our method is based on the usage of other variables for description of string configurations. The method of an auxiliary spectral problem for periodic potentials is the main tool in construction of these new variables

  3. Four-dimensional computed tomographic analysis of esophageal mobility during normal respiration

    NARCIS (Netherlands)

    Dieleman, Edith M. T.; Senan, Suresh; Vincent, Andrew; Lagerwaard, Frank J.; Slotman, Ben J.; van Sörnsen de Koste, John R.

    2007-01-01

    BACKGROUND: Chemo-radiotherapy for thoracic tumors can result in high-grade radiation esophagitis. Treatment planning to reduce esophageal irradiation requires organ motion to be accounted for. In this study, esophageal mobility was assessed using four-dimensional computed tomography (4DCT). METHODS

  4. Registration-based Reconstruction of Four-dimensional Cone Beam Computed Tomography

    DEFF Research Database (Denmark)

    Christoffersen, Christian; Hansen, David Christoffer; Poulsen, Per Rugaard

    2013-01-01

    We present a new method for reconstruction of four-dimensional (4D) cone beam computed tomography from an undersampled set of X-ray projections. The novelty of the proposed method lies in utilizing optical flow based registration to facilitate that each temporal phase is reconstructed from the full...

  5. Spontaneous transition to a stochastic state in a four-dimensional Yang-Mills quantum theory

    International Nuclear Information System (INIS)

    Semikhatov, A.M.

    1983-01-01

    The quantum expectation values in a four-dimensional Yang-Mills theory are represented in each topological sector as expectation values over the diffusion which develops in the ''fourth'' Euclidean time. The Langevin equations of this diffusion are stochastic duality equations in the A 4 = 0 gauge

  6. Adding Four- Dimensional Data Assimilation (a.k.a. grid nudging) to MPAS

    Science.gov (United States)

    Adding four-dimensional data assimilation (a.k.a. grid nudging) to MPAS.The U.S. Environmental Protection Agency is investigating the use of MPAS as the meteorological driver for its next-generation air quality model. To function as such, MPAS needs to operate in a diagnostic mod...

  7. Nonrenormalizable quantum field models in four-dimensional space-time

    International Nuclear Information System (INIS)

    Raczka, R.

    1978-01-01

    The construction of no-cutoff Euclidean Green's functions for nonrenormalizable interactions L/sub I/(phi) = lambda∫ddelta (epsilon): expepsilonphi: in four-dimensional space-time is carried out. It is shown that all axioms for the generating functional of the Euclidean Green's function are satisfied except perhaps SO(4) invariance

  8. Four-dimensional optical coherence tomography imaging of total liquid ventilated rats

    Science.gov (United States)

    Kirsten, Lars; Schnabel, Christian; Gaertner, Maria; Koch, Edmund

    2013-06-01

    Optical coherence tomography (OCT) can be utilized for the spatially and temporally resolved visualization of alveolar tissue and its dynamics in rodent models, which allows the investigation of lung dynamics on the microscopic scale of single alveoli. The findings could provide experimental input data for numerical simulations of lung tissue mechanics and could support the development of protective ventilation strategies. Real four-dimensional OCT imaging permits the acquisition of several OCT stacks within one single ventilation cycle. Thus, the entire four-dimensional information is directly obtained. Compared to conventional virtual four-dimensional OCT imaging, where the image acquisition is extended over many ventilation cycles and is triggered on pressure levels, real four-dimensional OCT is less vulnerable against motion artifacts and non-reproducible movement of the lung tissue over subsequent ventilation cycles, which widely reduces image artifacts. However, OCT imaging of alveolar tissue is affected by refraction and total internal reflection at air-tissue interfaces. Thus, only the first alveolar layer beneath the pleura is visible. To circumvent this effect, total liquid ventilation can be carried out to match the refractive indices of lung tissue and the breathing medium, which improves the visibility of the alveolar structure, the image quality and the penetration depth and provides the real structure of the alveolar tissue. In this study, a combination of four-dimensional OCT imaging with total liquid ventilation allowed the visualization of the alveolar structure in rat lung tissue benefiting from the improved depth range beneath the pleura and from the high spatial and temporal resolution.

  9. The four-dimensional mouse whole-body phantoms and its application in medical imaging research

    International Nuclear Information System (INIS)

    Li Chongguo; Wu Dake

    2012-01-01

    Medical imaging simulation is a powerful tool for characterizing,evaluating,and optimizing medical imaging devices and techniques. A vital aspect of simulation is to have a realistic phantom or model of the subject's anatomy. Four-dimensional mouse whole-body phantoms provide realistic models of the mouse anatomy and physiology for imaging studies. When combined with accurate models for the imaging process,are capable of providing a wealth of realistic imaging data from subjects with various anatomies and motions (cardiac and respiratory) in health and disease. With this ability, the four-dimensional mouse whole-body phantoms have enormous potential to study the effects of anatomical, physiological and physical factors on medical and small animal imaging and to research new instrumentation, image acquisition strategies, image processing, reconstruction methods, image visualization and interpretation techniques. (authors)

  10. String propagation in an exact four-dimensional black hole background

    International Nuclear Information System (INIS)

    Mahapatra, S.

    1997-01-01

    We study string propagation in an exact, stringy, four-dimensional dyonic black hole background. The exact solutions in terms of elliptic functions describing string configurations in the J=0 limit are obtained by solving the string equations of motion and constraints. By using the covariant formalism, we also investigate the propagation of physical perturbations along the string in the given curved background. copyright 1997 The American Physical Society

  11. Statistical Entropy of Nonextremal Four-Dimensional Black Holes and U-Duality

    International Nuclear Information System (INIS)

    Horowitz, G.T.; Lowe, D.A.; Maldacena, J.M.

    1996-01-01

    We identify the states in string theory which are responsible for the entropy of near-extremal rotating four-dimensional black holes in N=8 supergravity. For black holes far from extremality (with no rotation), the Bekenstein-Hawking entropy is exactly matched by a mysterious duality invariant extension of the formulas derived for near-extremal black holes states. copyright 1996 The American Physical Society

  12. Four-dimensional Microscope-Integrated Optical Coherence Tomography to Visualize Suture Depth in Strabismus Surgery.

    Science.gov (United States)

    Pasricha, Neel D; Bhullar, Paramjit K; Shieh, Christine; Carrasco-Zevallos, Oscar M; Keller, Brenton; Izatt, Joseph A; Toth, Cynthia A; Freedman, Sharon F; Kuo, Anthony N

    2017-02-14

    The authors report the use of swept-source microscope-integrated optical coherence tomography (SS-MIOCT), capable of live four-dimensional (three-dimensional across time) intraoperative imaging, to directly visualize suture depth during lateral rectus resection. Key surgical steps visualized in this report included needle depth during partial and full-thickness muscle passes along with scleral passes. [J Pediatr Ophthalmol Strabismus. 2017;54:e1-e5.]. Copyright 2017, SLACK Incorporated.

  13. Haunted Kaluza universe with four-dimensional Lorentzian flat, Kerr, and Taub-NUT slices

    International Nuclear Information System (INIS)

    Ivanov, Rossen I.; Prodanov, Emil M.

    2005-01-01

    The duality between the original Kaluza's theory and Klein's subsequent modification is duality between slicing and threading decomposition of the five-dimensional spacetime. The field equations of the original Kaluza's theory lead to the interpretation of the four-dimensional Lorentzian Kerr and Taub-NUT solutions as resulting from static electric and magnetic charges and dipoles in the presence of ghost matter and constant dilaton, which models Newton's constant

  14. Nonperturbative construction of nonrenormalizable models of quantum field theory in four-dimensional space-time

    International Nuclear Information System (INIS)

    Raczka, R.

    1979-01-01

    Construction of non-cutoff Euclidean Green's functions for nonrenormalizable interactions Lsub(I)(phi)=lambda∫dσ(epsilon):expepsilonphi: in four-dimensional space-time is presented. It is shown that all axioms for the generating functional of E.G.F. are satisfied except perhaps the SO(4) invariance. It is shown that the singularities of E.G.F. for coinciding points are not worse than those of the free theory. (author)

  15. Higher-order gravity in higher dimensions: geometrical origins of four-dimensional cosmology?

    Energy Technology Data Exchange (ETDEWEB)

    Troisi, Antonio [Universita degli Studi di Salerno, Dipartimento di Fisica ' ' E.R. Caianiello' ' , Salerno (Italy)

    2017-03-15

    Determining the cosmological field equations is still very much debated and led to a wide discussion around different theoretical proposals. A suitable conceptual scheme could be represented by gravity models that naturally generalize Einstein theory like higher-order gravity theories and higher-dimensional ones. Both of these two different approaches allow one to define, at the effective level, Einstein field equations equipped with source-like energy-momentum tensors of geometrical origin. In this paper, the possibility is discussed to develop a five-dimensional fourth-order gravity model whose lower-dimensional reduction could provide an interpretation of cosmological four-dimensional matter-energy components. We describe the basic concepts of the model, the complete field equations formalism and the 5-D to 4-D reduction procedure. Five-dimensional f(R) field equations turn out to be equivalent, on the four-dimensional hypersurfaces orthogonal to the extra coordinate, to an Einstein-like cosmological model with three matter-energy tensors related with higher derivative and higher-dimensional counter-terms. By considering the gravity model with f(R) = f{sub 0}R{sup n} the possibility is investigated to obtain five-dimensional power law solutions. The effective four-dimensional picture and the behaviour of the geometrically induced sources are finally outlined in correspondence to simple cases of such higher-dimensional solutions. (orig.)

  16. Use of Respiratory-Correlated Four-Dimensional Computed Tomography to Determine Acceptable Treatment Margins for Locally Advanced Pancreatic Adenocarcinoma

    International Nuclear Information System (INIS)

    Goldstein, Seth D.; Ford, Eric C.; Duhon, Mario; McNutt, Todd; Wong, John; Herman, Joseph M.

    2010-01-01

    Purpose: Respiratory-induced excursions of locally advanced pancreatic adenocarcinoma could affect dose delivery. This study quantified tumor motion and evaluated standard treatment margins. Methods and Materials: Respiratory-correlated four-dimensional computed tomography images were obtained on 30 patients with locally advanced pancreatic adenocarcinoma; 15 of whom underwent repeat scanning before cone-down treatment. Treatment planning software was used to contour the gross tumor volume (GTV), bilateral kidneys, and biliary stent. Excursions were calculated according to the centroid of the contoured volumes. Results: The mean ± standard deviation GTV excursion in the superoinferior (SI) direction was 0.55 ± 0.23 cm; an expansion of 1.0 cm adequately accounted for the GTV motion in 97% of locally advanced pancreatic adenocarcinoma patients. Motion GTVs were generated and resulted in a 25% average volume increase compared with the static GTV. Of the 30 patients, 17 had biliary stents. The mean SI stent excursion was 0.84 ± 0.32 cm, significantly greater than the GTV motion. The xiphoid process moved an average of 0.35 ± 0.12 cm, significantly less than the GTV. The mean SI motion of the left and right kidneys was 0.65 ± 0.27 cm and 0.77 ± 0.30 cm, respectively. At repeat scanning, no significant changes were seen in the mean GTV size (p = .8) or excursion (p = .3). Conclusion: These data suggest that an asymmetric expansion of 1.0, 0.7, and 0.6 cm along the respective SI, anteroposterior, and medial-lateral directions is recommended if a respiratory-correlated four-dimensional computed tomography scan is not available to evaluate the tumor motion during treatment planning. Surrogates of tumor motion, such as biliary stents or external markers, should be used with caution.

  17. Effect of Novel Amplitude/Phase Binning Algorithm on Commercial Four-Dimensional Computed Tomography Quality

    International Nuclear Information System (INIS)

    Olsen, Jeffrey R.; Lu Wei; Hubenschmidt, James P.; Nystrom, Michelle M.; Klahr, Paul; Bradley, Jeffrey D.; Low, Daniel A.; Parikh, Parag J.

    2008-01-01

    Purpose: Respiratory motion is a significant source of anatomic uncertainty in radiotherapy planning and can result in errors of portal size and the subsequent radiation dose. Although four-dimensional computed tomography allows for more accurate analysis of the respiratory cycle, breathing irregularities during data acquisition can cause considerable image distortions. The aim of this study was to examine the effect of respiratory irregularities on four-dimensional computed tomography, and to evaluate a novel image reconstruction algorithm using percentile-based tagging of the respiratory cycle. Methods and Materials: Respiratory-correlated helical computed tomography scans were acquired for 11 consecutive patients. The inspiration and expiration data sets were reconstructed using the default phase-based method, as well as a novel respiration percentile-based method with patient-specific metrics to define the ranges of the reconstruction. The image output was analyzed in a blinded fashion for the phase- and percentile-based reconstructions to determine the prevalence and severity of the image artifacts. Results: The percentile-based algorithm resulted in a significant reduction in artifact severity compared with the phase-based algorithm, although the overall artifact prevalence did not differ between the two algorithms. The magnitude of differences in respiratory tag placement between the phase- and percentile-based algorithms correlated with the presence of image artifacts. Conclusion: The results of our study have indicated that our novel four-dimensional computed tomography reconstruction method could be useful in detecting clinically relevant image distortions that might otherwise go unnoticed and to reduce the image distortion associated with some respiratory irregularities. Additional work is necessary to assess the clinical impact on areas of possible irregular breathing

  18. A four-dimensional variational chemistry data assimilation scheme for Eulerian chemistry transport modeling

    Science.gov (United States)

    Eibern, Hendrik; Schmidt, Hauke

    1999-08-01

    The inverse problem of data assimilation of tropospheric trace gas observations into an Eulerian chemistry transport model has been solved by the four-dimensional variational technique including chemical reactions, transport, and diffusion. The University of Cologne European Air Pollution Dispersion Chemistry Transport Model 2 with the Regional Acid Deposition Model 2 gas phase mechanism is taken as the basis for developing a full four-dimensional variational data assimilation package, on the basis of the adjoint model version, which includes the adjoint operators of horizontal and vertical advection, implicit vertical diffusion, and the adjoint gas phase mechanism. To assess the potential and limitations of the technique without degrading the impact of nonperfect meteorological analyses and statistically not established error covariance estimates, artificial meteorological data and observations are used. The results are presented on the basis of a suite of experiments, where reduced records of artificial "observations" are provided to the assimilation procedure, while other "data" is retained for performance control of the analysis. The paper demonstrates that the four-dimensional variational technique is applicable for a comprehensive chemistry transport model in terms of computational and storage requirements on advanced parallel platforms. It is further shown that observed species can generally be analyzed, even if the "measurements" have unbiased random errors. More challenging experiments are presented, aiming to tax the skill of the method (1) by restricting available observations mostly to surface ozone observations for a limited assimilation interval of 6 hours and (2) by starting with poorly chosen first guess values. In this first such application to a three-dimensional chemistry transport model, success was also achieved in analyzing not only observed but also chemically closely related unobserved constituents.

  19. Acquiring a four-dimensional computed tomography dataset using an external respiratory signal

    International Nuclear Information System (INIS)

    Vedam, S S; Keall, P J; Kini, V R; Mostafavi, H; Shukla, H P; Mohan, R

    2003-01-01

    Four-dimensional (4D) methods strive to achieve highly conformal radiotherapy, particularly for lung and breast tumours, in the presence of respiratory-induced motion of tumours and normal tissues. Four-dimensional radiotherapy accounts for respiratory motion during imaging, planning and radiation delivery, and requires a 4D CT image in which the internal anatomy motion as a function of the respiratory cycle can be quantified. The aims of our research were (a) to develop a method to acquire 4D CT images from a spiral CT scan using an external respiratory signal and (b) to examine the potential utility of 4D CT imaging. A commercially available respiratory motion monitoring system provided an 'external' tracking signal of the patient's breathing. Simultaneous recording of a TTL 'X-Ray ON' signal from the CT scanner indicated the start time of CT image acquisition, thus facilitating time stamping of all subsequent images. An over-sampled spiral CT scan was acquired using a pitch of 0.5 and scanner rotation time of 1.5 s. Each image from such a scan was sorted into an image bin that corresponded with the phase of the respiratory cycle in which the image was acquired. The complete set of such image bins accumulated over a respiratory cycle constitutes a 4D CT dataset. Four-dimensional CT datasets of a mechanical oscillator phantom and a patient undergoing lung radiotherapy were acquired. Motion artefacts were significantly reduced in the images in the 4D CT dataset compared to the three-dimensional (3D) images, for which respiratory motion was not accounted. Accounting for respiratory motion using 4D CT imaging is feasible and yields images with less distortion than 3D images. 4D images also contain respiratory motion information not available in a 3D CT image

  20. Four dimensional magnetic resonance imaging with retrospective k-space reordering: A feasibility study

    International Nuclear Information System (INIS)

    Liu, Yilin; Yin, Fang-Fang; Cai, Jing; Chen, Nan-kuei; Chu, Mei-Lan

    2015-01-01

    Purpose: Current four dimensional magnetic resonance imaging (4D-MRI) techniques lack sufficient temporal/spatial resolution and consistent tumor contrast. To overcome these limitations, this study presents the development and initial evaluation of a new strategy for 4D-MRI which is based on retrospective k-space reordering. Methods: We simulated a k-space reordered 4D-MRI on a 4D digital extended cardiac-torso (XCAT) human phantom. A 2D echo planar imaging MRI sequence [frame rate (F) = 0.448 Hz; image resolution (R) = 256 × 256; number of k-space segments (N KS ) = 4] with sequential image acquisition mode was assumed for the simulation. Image quality of the simulated “4D-MRI” acquired from the XCAT phantom was qualitatively evaluated, and tumor motion trajectories were compared to input signals. In particular, mean absolute amplitude differences (D) and cross correlation coefficients (CC) were calculated. Furthermore, to evaluate the data sufficient condition for the new 4D-MRI technique, a comprehensive simulation study was performed using 30 cancer patients’ respiratory profiles to study the relationships between data completeness (C p ) and a number of impacting factors: the number of repeated scans (N R ), number of slices (N S ), number of respiratory phase bins (N P ), N KS , F, R, and initial respiratory phase at image acquisition (P 0 ). As a proof-of-concept, we implemented the proposed k-space reordering 4D-MRI technique on a T2-weighted fast spin echo MR sequence and tested it on a healthy volunteer. Results: The simulated 4D-MRI acquired from the XCAT phantom matched closely to the original XCAT images. Tumor motion trajectories measured from the simulated 4D-MRI matched well with input signals (D = 0.83 and 0.83 mm, and CC = 0.998 and 0.992 in superior–inferior and anterior–posterior directions, respectively). The relationship between C p and N R was found best represented by an exponential function (C P =100(1−e −0.18N R ), when N S

  1. Four-dimensional imaging of the initial stage of fast evolving plasmas

    International Nuclear Information System (INIS)

    Zhu Pengfei; Wang Weimin; Zhang Zhongchao; Chen Long; Zheng Jun; Li Runze; Qian Dong; Li Junjie; Wang Xuan; Cao Jianming; Sheng Zhengming; Zhang Jie

    2010-01-01

    Using an ultrafast electron probe capable of four-dimensional diagnosis, the initial stage of fast evolving plasmas produced by a 10 14 W/cm 2 laser irradiation of a metal target was investigated in real time with picosecond time resolution. The associated strong transient electric field was identified to have two components, which either focus or defocus the probe electron beam. The effects of this field on the probe electron beam can be reproduced by a self-expanding charge cloud containing about 5x10 7 suprathermal electrons with the outermost layer expanding at an average speed of 1.2x10 7 m/s.

  2. Non-critical string duals of four-dimensional CFTs with fundamental matter

    International Nuclear Information System (INIS)

    Bigazzi, F.; Casero, R.; Paredes, A.; Cotrone, A.L.

    2006-01-01

    The two-derivative approximation to non-critical strings is used as a qualitative tool to find solutions dual to four dimensional CFTs with matter in the fundamental. Two solutions are discussed: an AdS 5 x S 3 , which is dual to an N=1 SCFT only for a ratio of N f /N c and an AdS 5 which is proposed to be dual to N=0 QCD in the conformal window. All solutions have curvatures of the order of the string scale. (Abstract Copyright [2006], Wiley Periodicals, Inc.)

  3. Bifurcation structures and transient chaos in a four-dimensional Chua model

    Energy Technology Data Exchange (ETDEWEB)

    Hoff, Anderson, E-mail: hoffande@gmail.com; Silva, Denilson T. da; Manchein, Cesar, E-mail: cesar.manchein@udesc.br; Albuquerque, Holokx A., E-mail: holokx.albuquerque@udesc.br

    2014-01-10

    A four-dimensional four-parameter Chua model with cubic nonlinearity is studied applying numerical continuation and numerical solutions methods. Regarding numerical solution methods, its dynamics is characterized on Lyapunov and isoperiodic diagrams and regarding numerical continuation method, the bifurcation curves are obtained. Combining both methods the bifurcation structures of the model were obtained with the possibility to describe the shrimp-shaped domains and their endoskeletons. We study the effect of a parameter that controls the dimension of the system leading the model to present transient chaos with its corresponding basin of attraction being riddled.

  4. Four-dimensional (4D) tracking of high-temperature microparticles

    International Nuclear Information System (INIS)

    Wang, Zhehui; Liu, Q.; Waganaar, W.; Fontanese, J.; James, D.; Munsat, T.

    2016-01-01

    High-speed tracking of hot and molten microparticles in motion provides rich information about burning plasmas in magnetic fusion. An exploding-wire apparatus is used to produce moving high-temperature metallic microparticles and to develop four-dimensional (4D) or time-resolved 3D particle tracking techniques. The pinhole camera model and algorithms developed for computer vision are used for scene calibration and 4D reconstructions. 3D positions and velocities are then derived for different microparticles. Velocity resolution approaches 0.1 m/s by using the local constant velocity approximation.

  5. Quasinormal modes of four-dimensional topological nonlinear charged Lifshitz black holes

    Energy Technology Data Exchange (ETDEWEB)

    Becar, Ramon [Universidad Cato lica de Temuco, Departamento de Ciencias Matematicas y Fisicas, Temuco (Chile); Gonzalez, P.A. [Universidad Diego Portales, Facultad de Ingenieria, Santiago (Chile); Vasquez, Yerko [Universidad de La Serena, Departamento de Fisica, Facultad de Ciencias, La Serena (Chile)

    2016-02-15

    We study scalar perturbations of four- dimensional topological nonlinear charged Lifshitz black holes with spherical and plane transverse sections, and we find numerically the quasinormal modes for scalar fields. Then we study the stability of these black holes under massive and massless scalar field perturbations. We focus our study on the dependence of the dynamical exponent, the nonlinear exponent, the angular momentum, and the mass of the scalar field in the modes. It is found that the modes are overdamped, depending strongly on the dynamical exponent and the angular momentum of the scalar field for a spherical transverse section. In contrast, for plane transverse sections the modes are always overdamped. (orig.)

  6. An accessible four-dimensional treatment of Maxwell's equations in terms of differential forms

    Science.gov (United States)

    Sá, Lucas

    2017-03-01

    Maxwell’s equations are derived in terms of differential forms in the four-dimensional Minkowski representation, starting from the three-dimensional vector calculus differential version of these equations. Introducing all the mathematical and physical concepts needed (including the tool of differential forms), using only knowledge of elementary vector calculus and the local vector version of Maxwell’s equations, the equations are reduced to a simple and elegant set of two equations for a unified quantity, the electromagnetic field. The treatment should be accessible for students taking a first course on electromagnetism.

  7. Analysis of interfractional variations in pancreatic position based on four-dimensional computed tomography

    International Nuclear Information System (INIS)

    Shiinoki, Takehiro; Itoh, Akio; Shibuya, Keiko; Nakamura, Mitsuhiro; Nakamura, Akira; Matsuo, Yukinori; Sawada, Akira; Mizowaki, Takashi; Hiraoka, Masahiro

    2010-01-01

    The purpose of this study was to assess inter-fractional variations in pancreatic position using four-dimensional computed tomography (4D-CT) and to find the suitable phase of respiration for breath-holding. The variations in respiratory motion range during treatment course and inter-fractional variations in pancreatic positions were not negligible; however, our study suggested that breath-holding at end-exhalation with some coaching techniques might be considerable one of the non-invasive approaches to get higher positional reproducibility of pancreatic tumors. (author)

  8. Four-dimensional Hooke's law can encompass linear elasticity and inertia

    International Nuclear Information System (INIS)

    Antoci, S.; Mihich, L.

    1999-01-01

    The question is examined whether the formally straightforward extension of Hooke's time-honoured stress-strain relation to the four dimensions of special and of general relativity can make physical sense. The four-dimensional Hooke law is found able to account for the inertia of matter; in the flat-space, slow-motion approximation the field equations for the displacement four-vector field ξ i can encompass both linear elasticity and inertia. In this limit one just recovers the equations of motion of the classical theory of elasticity

  9. One-way quantum computation with four-dimensional photonic qudits

    International Nuclear Information System (INIS)

    Joo, Jaewoo; Knight, Peter L.; O'Brien, Jeremy L.; Rudolph, Terry

    2007-01-01

    We consider the possibility of performing linear optical quantum computations making use of extra photonic degrees of freedom. In particular, we focus on the case where we use photons as quadbits, four-dimensional photonic qudits. The basic 2-quadbit cluster state is a hyperentangled state across polarization and two spatial mode degrees of freedom. We examine the nondeterministic methods whereby such states can be created from single photons and/or Bell pairs and then give some mechanisms for performing higher-dimensional fusion gates

  10. Gravitational matter-antimatter asymmetry and four-dimensional Yang-Mills gauge symmetry

    Science.gov (United States)

    Hsu, J. P.

    1981-01-01

    A formulation of gravity based on the maximum four-dimensional Yang-Mills gauge symmetry is studied. The theory predicts that the gravitational force inside matter (fermions) is different from that inside antimatter. This difference could lead to the cosmic separation of matter and antimatter in the evolution of the universe. Moreover, a new gravitational long-range spin-force between two fermions is predicted, in addition to the usual Newtonian force. The geometrical foundation of such a gravitational theory is the Riemann-Cartan geometry, in which there is a torsion. The results of the theory for weak fields are consistent with previous experiments.

  11. On the four-dimensional character of micro-physical phenomena

    International Nuclear Information System (INIS)

    Rietdijk, C.W.

    1984-01-01

    It is proved that retroactive effects exist in Nature. This emphasizes the fact that micro-processes constitute integrated wholes so much that it is no longer far-fetched to posit the hypothesis that events, that is, action, rather than objects, constitute the proper stuff of the (four-dimensional) Universe. Mind here, too, that retroactivity implies that the future and future parts of events 'exist already'. Then, distances between (e.g., alternative) events A and B have to be measured by the quantity of 'occurring' or action that is needed in order to transform event A into event B. The action metric so introduced appears to be in a position to solve the nonlocality paradoxes of quantum mechanics such as wave-particle 'duality' and the EPR paradox. In this connection, the Minkowski metric corresponds to a macro scheme which cannot be 'interpolated' to within a micro-process, i.e., to within action quanta, without producing serious metrical distortions. Generally, metric is considered to be a property of events, it having no existence independent of them as a 'pre-existing scheme'. Planck's elementary quantities of action h are seen as real entities in the four-dimensional world, i.e., as the 'atoms of occurring'. By intersecting (dilated) series of them with a now-hyperplane we in an imaginable way get the wave patterns satisfying the relevant wave equation. (Auth.)

  12. Decision-making for supplying energy projects: A four-dimensional model

    International Nuclear Information System (INIS)

    Smith Stegen, Karen; Palovic, Martin

    2014-01-01

    Highlights: • Extant pipeline evaluation models offer insufficient supplier analysis tools. • We offer a four-dimensional decision-making tool to augment extant models. • Model employs four filters to help decision makers eliminate unsuitable suppliers. • Aids in prioritization of best courses of action for overcoming obstacles. • Case study of Nabucco pipeline shows Azerbaijan would have been best supply option. - Abstract: Importing states and regions employ myriad strategies to enhance energy security, from stockpiling to diversification to efficiency programs. As has occurred in recent years, importers can seek diversification by initiating pipeline and liquefied natural gas projects, meaning they may also have to select suppliers. However, most extant pipeline evaluation models erroneously assume suppliers are known and thus neglect supplier selection. We propose a decision-making tool to augment these older models: a systematic and replicable four-dimensional model to help policymakers and managers identify suitable suppliers and prioritize the best courses of action for overcoming obstacles. The first three dimensions—timeframe, supply availability and infrastructure constraints—filter out unsuitable suppliers. The fourth dimension then assesses the political, geopolitical and commercial stability of the remaining candidates. To demonstrate the model in practice, we assess the original Nabucco pipeline proposal, which was designed to transport gas from the Caspian and Middle East regions to Europe

  13. Cardiac imaging using 256-detector row four-dimensional CT. Preliminary clinical report

    International Nuclear Information System (INIS)

    Kido, Teruhito; Kurata, Akira; Higashino, Hiroshi

    2007-01-01

    Along with the increase of detector rows on the z-axis and a faster gantry rotation speed, the spatial and temporal resolutions of the multislice computed tomography (CT) have been improved for noninvasive coronary artery imaging. We investigated the feasibility of the second specification prototype 256-detector row four-dimensional CT for assessing coronary artery and cardiac function. The subjects were five patients with coronary artery disease. Contrast medium (40-60 ml) was intravenously administered at the rate of 3-4 ml/s. The patient's whole heart was scanned for 1.5 s to cover at least one cardiac cycle during breathholding without electrocardiographic gating. Parameters used were 0.5 mm slice thickness, 0.5 s/rotation, 120 Kv, and 350 mA, with a half-scan reconstruction algorithm (temporal resolution 250 ms). Twenty-six transaxial datasets were reconstructed at intervals of 50 ms. The assessability of the coronary arteries in American Heart Association (AHA) segments 1, 2, 3, 5, 6, 7, 9, and 11 was visually evaluated, resulting in 29 of 32 (90.9%) segments being assessable. Functional assessment was also performed using animated movies without banding artifacts in all cases. The 256-detector row four-dimensional CT can assess the coronary artery and cardiac function using data during 1.5 s without banding artifacts. (author)

  14. Four-dimensional conversion for spiritual leadership development: A missiological approach for African churches

    Directory of Open Access Journals (Sweden)

    Kalemba Mwambazambi

    2014-02-01

    Full Text Available The process of a four-dimensional conversion and/or transformation strives in helping the leadership of an organisation, especially such as the church, with practical ways that may lead to the development of an effective leadership by observing the four important aspects of human spirituality as elaborated on in the article. The spiritual, intellectual, moral and socio-political dimensions of the transformation can be catered for so that the complete inner being of humans, as well as their social and political attitudes and behaviours, can equally be transformed to maximum spiritual, personal and socio-political profitability. Mutombo-Mukendi demonstrates that the need for a spiritual leadership that can contribute to an effective transformation of Africa is dire, both for the church and the larger community. The real challenge is how to develop such leadership. This article provides intentional and practical ways that may lead to the development of the needed leadership. Four-dimensional transformation of people can be planned and carried out both in the church arena and in the surrounding communities. Skills development and transfer can also take place when skilled people from the church work with unskilled people from the community.

  15. Four dimensional chaos and intermittency in a mesoscopic model of the electroencephalogram.

    Science.gov (United States)

    Dafilis, Mathew P; Frascoli, Federico; Cadusch, Peter J; Liley, David T J

    2013-06-01

    The occurrence of so-called four dimensional chaos in dynamical systems represented by coupled, nonlinear, ordinary differential equations is rarely reported in the literature. In this paper, we present evidence that Liley's mesoscopic theory of the electroencephalogram (EEG), which has been used to describe brain activity in a variety of clinically relevant contexts, possesses a chaotic attractor with a Kaplan-Yorke dimension significantly larger than three. This accounts for simple, high order chaos for a physiologically admissible parameter set. Whilst the Lyapunov spectrum of the attractor has only one positive exponent, the contracting dimensions are such that the integer part of the Kaplan-Yorke dimension is three, thus giving rise to four dimensional chaos. A one-parameter bifurcation analysis with respect to the parameter corresponding to extracortical input is conducted, with results indicating that the origin of chaos is due to an inverse period doubling cascade. Hence, in the vicinity of the high order, strange attractor, the model is shown to display intermittent behavior, with random alternations between oscillatory and chaotic regimes. This phenomenon represents a possible dynamical justification of some of the typical features of clinically established EEG traces, which can arise in the case of burst suppression in anesthesia and epileptic encephalopathies in early infancy.

  16. Charged rotating black holes in four-dimensional gauged and ungauged supergravities

    International Nuclear Information System (INIS)

    Chong, Z.-W.; Cvetic, M.; Lue, H.; Pope, C.N.

    2005-01-01

    We study four-dimensional non-extremal charged rotating black holes in ungauged and gauged supergravity. In the ungauged case, we obtain rotating black holes with four independent charges, as solutions of N=2 supergravity coupled to three Abelian vector multiplets. This is done by reducing the theory along the time direction to three dimensions, where it has an O(4,4) global symmetry. Applied to the reduction of the uncharged Kerr metric, O(1,1) 4 is a subject of O(4,4) transformations generate new solutions that correspond, after lifting back to four dimensions, to the introduction of four independent electromagnetic charges. In the case where these charges are set pairwise equal, we then generalise the four-dimensional rotating black holes to solutions of gauged N=4 supergravity, with mass, angular momentum and two independent electromagnetic charges. The dilaton and axion fields are non-constant. We also find generalisations of the gauged and ungauged solutions to include the NUT parameter, and for the ungauged solutions, the acceleration parameter too. The solutions in gauged supergravity provide new gravitational backgrounds for a further study of the AdS 4 /CFT 3 correspondence at non-zero temperature

  17. Mass, angular momentum and thermodynamics in four-dimensional Kerr-AdS black holes

    Energy Technology Data Exchange (ETDEWEB)

    Olea, Rodrigo [Departamento de Fisica, Pontificia Universidad Catolica de Chile, Casilla 306, Santiago 22 (Chile)

    2005-06-01

    In this paper, the connection between the Lorentz-covariant counterterms that regularize the four-dimensional AdS gravity action and topological invariants is explored. It is shown that demanding the spacetime to have a negative constant curvature in the asymptotic region permits the explicit construction of such series of boundary terms. The orthonormal frame is adapted to appropriately describe the boundary geometry and, as a result, the boundary term can be expressed as a functional of the boundary metric, extrinsic curvature and intrinsic curvature. This choice also allows to write down the background-independent Noether charges associated to asymptotic symmetries in standard tensorial formalism. The absence of the Gibbons-Hawking term is a consequence of an action principle based on a boundary condition different than Dirichlet on the metric. This argument makes plausible the idea of regarding this approach as an alternative regularization scheme for AdS gravity in all even dimensions, different than the standard counterterms prescription. As an illustration of the finiteness of the charges and the euclidean action in this framework, the conserved quantities and black hole entropy for four-dimensional Kerr-AdS are computed.

  18. Dissipation of the tilting degree of freedom in heavy-ion-induced fission from four-dimensional Langevin dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Nadtochy, P.N. [Omsk State Technical University, Omsk (Russian Federation); Ryabov, E.G.; Cheredov, A.V.; Adeev, G.D. [Omsk State University, Omsk (Russian Federation)

    2016-10-15

    A stochastic approach based on four-dimensional Langevin fission dynamics is applied to the calculation of a wide set of experimental observables of excited compound nuclei from {sup 199}Pb to {sup 248}Cf formed in reactions induced by heavy ions. In the model under investigation, the tilting degree of freedom (K coordinate) representing the projection of the total angular momentum onto the symmetry axis of the nucleus is taken into account in addition to three collective shape coordinates introduced on the basis of {c,h,α} parametrization. The evolution of the K coordinate is described by means of the Langevin equation in the overdamped regime. The friction tensor for the shape collective coordinates is calculated under the assumption of the modified version of the one-body dissipation mechanism, where the reduction coefficient k{sub s} of the contribution from the ''wall'' formula is introduced. The calculations are performed both for the constant values of the coefficient k{sub s} and for the coordinate-dependent reduction coefficient k{sub s}(q) which is found on the basis of the ''chaos-weighted wall formula''. Different possibilities of the deformation-dependent dissipation coefficient (γ{sub K}) for the K coordinate are investigated. The presented results demonstrate that an impact of the k{sub s} and γ{sub K} parameters on the calculated observable fission characteristics can be selectively probed. It was found that it is possible to describe the experimental data consistently with the deformation-dependent γ{sub K}(q) coefficient for shapes featuring a neck, which predicts quite small values of γ{sub K} = 0.0077 (MeV zs){sup -1/2} and constant γ{sub K} = 0.1 -0.4 (MeV zs){sup -1/2} for compact shapes featuring no neck. (orig.)

  19. Comparison of spirometry and abdominal height as four-dimensional computed tomography metrics in lung

    International Nuclear Information System (INIS)

    Lu Wei; Low, Daniel A.; Parikh, Parag J.; Nystrom, Michelle M.; El Naqa, Issam M.; Wahab, Sasha H.; Handoko, Maureen; Fooshee, David; Bradley, Jeffrey D.

    2005-01-01

    An important consideration in four-dimensional CT scanning is the selection of a breathing metric for sorting the CT data and modeling internal motion. This study compared two noninvasive breathing metrics, spirometry and abdominal height, against internal air content, used as a surrogate for internal motion. Both metrics were shown to be accurate, but the spirometry showed a stronger and more reproducible relationship than the abdominal height in the lung. The abdominal height was known to be affected by sensor placement and patient positioning while the spirometer exhibited signal drift. By combining these two, a normalization of the drift-free metric to tidal volume may be generated and the overall metric precision may be improved

  20. Galactic Cosmic-ray Transport in the Global Heliosphere: A Four-Dimensional Stochastic Model

    Science.gov (United States)

    Florinski, V.

    2009-04-01

    We study galactic cosmic-ray transport in the outer heliosphere and heliosheath using a newly developed transport model based on stochastic integration of the phase-space trajectories of Parker's equation. The model employs backward integration of the diffusion-convection transport equation using Ito calculus and is four-dimensional in space+momentum. We apply the model to the problem of galactic proton transport in the heliosphere during a negative solar minimum. Model results are compared with the Voyager measurements of galactic proton radial gradients and spectra in the heliosheath. We show that the heliosheath is not as efficient in diverting cosmic rays during solar minima as predicted by earlier two-dimensional models.

  1. Quantum theory of spinor field in four-dimensional Riemannian space-time

    International Nuclear Information System (INIS)

    Shavokhina, N.S.

    1996-01-01

    The review deals with the spinor field in the four-dimensional Riemannian space-time. The field beys the Dirac-Fock-Ivanenko equation. Principles of quantization of the spinor field in the Riemannian space-time are formulated which in a particular case of the plane space-time are equivalent to the canonical rules of quantization. The formulated principles are exemplified by the De Sitter space-time. The study of quantum field theory in the De Sitter space-time is interesting because it itself leads to a method of an invariant well for plane space-time. However, the study of the quantum spinor field theory in an arbitrary Riemannian space-time allows one to take into account the influence of the external gravitational field on the quantized spinor field. 60 refs

  2. Euler numbers of four-dimensional rotating black holes with the Euclidean signature

    International Nuclear Information System (INIS)

    Ma Zhengze

    2003-01-01

    For a black hole's spacetime manifold in the Euclidean signature, its metric is positive definite and therefore a Riemannian manifold. It can be regarded as a gravitational instanton and a topological characteristic which is the Euler number to which it is associated. In this paper we derive a formula for the Euler numbers of four-dimensional rotating black holes by the integral of the Euler density on the spacetime manifolds of black holes. Using this formula, we obtain that the Euler numbers of Kerr and Kerr-Newman black holes are 2. We also obtain that the Euler number of the Kerr-Sen metric in the heterotic string theory with one boost angle nonzero is 2, which is in accordance with its topology

  3. Four-dimensional Yang-Mills theory, gauge invariant mass and fluctuating three-branes

    International Nuclear Information System (INIS)

    Niemi, Antti J; Slizovskiy, Sergey

    2010-01-01

    We are interested in a gauge invariant coupling between four-dimensional Yang-Mills field and a three-brane that can fluctuate into higher dimensions. For this we interpret the Yang-Mills theory as a higher dimensional bulk gravity theory with dynamics that is governed by the Einstein action, and with a metric tensor constructed from the gauge field in a manner that displays the original gauge symmetry as an isometry. The brane moves in this higher dimensional spacetime under the influence of its bulk gravity, with dynamics determined by the Nambu action. This introduces the desired interaction between the brane and the gauge field in a way that preserves the original gauge invariance as an isometry of the induced metric. After a prudent change of variables the result can be interpreted as a gauge invariant and massive vector field that propagates in the original spacetime R 4 . The presence of the brane becomes entirely invisible, expect for the mass.

  4. New classes of bi-axially symmetric solutions to four-dimensional Vasiliev higher spin gravity

    Energy Technology Data Exchange (ETDEWEB)

    Sundell, Per; Yin, Yihao [Departamento de Ciencias Físicas, Universidad Andres Bello,Republica 220, Santiago de Chile (Chile)

    2017-01-11

    We present new infinite-dimensional spaces of bi-axially symmetric asymptotically anti-de Sitter solutions to four-dimensional Vasiliev higher spin gravity, obtained by modifications of the Ansatz used in https://arxiv.org/abs/1107.1217, which gave rise to a Type-D solution space. The current Ansatz is based on internal semigroup algebras (without identity) generated by exponentials formed out of the bi-axial symmetry generators. After having switched on the vacuum gauge function, the resulting generalized Weyl tensor is given by a sum of generalized Petrov type-D tensors that are Kerr-like or 2-brane-like in the asymptotic AdS{sub 4} region, and the twistor space connection is smooth in twistor space over finite regions of spacetime. We provide evidence for that the linearized twistor space connection can be brought to Vasiliev gauge.

  5. All the Four-Dimensional Static, Spherically Symmetric Solutions of Abelian Kaluza-Klein Theory

    International Nuclear Information System (INIS)

    Cvetic, M.; Youm, D.

    1995-01-01

    We present the explicit form for all the four-dimensional, static, spherically symmetric solutions in (4+n)-d Abelian Kaluza-Klein theory by performing a subset of SO(2,n) transformations corresponding to four SO(1,1) boosts on the Schwarzschild solution, supplemented by SO(n)/SO(n-2) transformations. The solutions are parametrized by the mass M, Taub-NUT charge a, and n electric rvec Q and n magnetic rvec P charges. Nonextreme black holes (with zero Taub-NUT charge) have either the Reissner-Nordstroem or Schwarzschild global space-time. Supersymmetric extreme black holes have a null or naked singularity, while nonsupersymmetric extreme ones have a global space-time of extreme Reissner-Nordstroem black holes. copyright 1995 The American Physical Society

  6. Structures of larger proteins in solution: Three- and four-dimensional heteronuclear NMR spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Gronenborn, A.M.; Clore, G.M. [National Institutes of Health, Bethesda, MD (United States)

    1994-12-01

    Complete understanding of a protein`s function and mechanism of action can only be achieved with a knowledge of its three-dimensional structure at atomic resolution. At present, there are two methods available for determining such structures. The first method, which has been established for many years, is x-ray diffraction of protein single crystals. The second method has blossomed only in the last 5 years and is based on the application of nuclear magnetic resonance (NMR) spectroscopy to proteins in solution. This review paper describes three- and four-dimensional NMR methods applied to protein structure determination and was adapted from Clore and Gronenborn. The review focuses on the underlying principals and practice of multidimensional NMR and the structural information obtained.

  7. No-go theorems for R symmetries in four-dimensional GUTs

    CERN Document Server

    Fallbacher, Maximilian; Vaudrevange, Patrick K S

    2011-01-01

    We prove that it is impossible to construct a grand unified model, based on a simple gauge group, in four dimensions that leads to the exact MSSM, nor to a singlet extension, and possesses an unbroken R symmetry. This implies that no MSSM model with either a Z_{M>=3}^R or U(1)_R symmetry can be completed by a four-dimensional GUT in the ultraviolet. However, our no-go theorem does not apply to GUT models with extra dimensions. We also show that it is impossible to construct a 4D GUT that leads to the MSSM plus an additional anomaly-free symmetry that forbids the mu term.

  8. Automated four-dimensional Monte Carlo workflow using log files and real-time motion monitoring

    International Nuclear Information System (INIS)

    Sibolt, P; Andersen, C E; Cronholm, R O; Heath, E; Behrens, C F

    2017-01-01

    With emerging techniques for tracking and gating methods in radiotherapy of lung cancer patients, there is an increasing need for efficient four-dimensional Monte Carlo (4DMC) based quality assurance (QA). An automated and flexible workflow for 4DMC QA, based on the 4DdefDOSXYZnrc user code, has been developed in python. The workflow has been tested and verified using an in-house developed dosimetry system comprised of a dynamic thorax phantom constructed for plastic scintillator dosimetry. The workflow is directly compatible with any treatment planning system and can also be triggered by the appearance of linac log files. It has minimum user interaction and, with the use of linac log files, it provides a method for verification of the actually delivered dose in the patient geometry. (paper)

  9. Universal time versus relativistic time in four-dimensional symmetry framework

    International Nuclear Information System (INIS)

    Chiu, C.B.; Hsu, J.P.; Sherry, T.N.

    1976-12-01

    A new four-dimensional symmetry framework with a universal time is investigated which can be realized by a radioactive clock--the measured survival fraction of unstable particles gives the elapsed time. The world picture turns out to be quite different from that in special relativity. The general space-light transformation and the nonuniversal speed of light in this framework are discussed. The difference between the one-way speed and the two-way speed of a light signal is considered in detail. Moreover, the discussion sheds light on the connection between the universality of the light speed and the clock which does not read universal time. The relation with special relativity theory is examined in a few cases

  10. Four-dimensional optoacoustic temperature mapping in laser-induced thermotherapy

    Science.gov (United States)

    Oyaga Landa, Francisco Javier; Deán-Ben, Xosé Luís.; Sroka, Ronald; Razansky, Daniel

    2018-02-01

    Photoablative laser therapy is in common use for selective destruction of malignant masses, vascular and brain abnormalities. Tissue ablation and coagulation are irreversible processes occurring shortly after crossing a certain thermal exposure threshold. As a result, accurate mapping of the temperature field is essential for optimizing the outcome of these clinical interventions. Here we demonstrate four-dimensional optoacoustic temperature mapping of the entire photoablated region. Accuracy of the method is investigated in tissue-mimicking phantom experiments. Deviations of the volumetric optoacoustic temperature readings provided at 40ms intervals remained below 10% for temperature elevations above 3°C, as validated by simultaneous thermocouple measurements. The excellent spatio-temporal resolution of the new temperature monitoring approach aims at improving safety and efficacy of laser-based photothermal procedures.

  11. Power Doppler flow mapping and four-dimensional ultrasound for evaluating tubal patency compared with laparoscopy.

    Science.gov (United States)

    Soliman, Amr A; Shaalan, Waleed; Abdel-Dayem, Tamer; Awad, Elsayed Elbadawy; Elkassar, Yasser; Lüdders, Dörte; Malik, Eduard; Sallam, Hassan N

    2015-12-01

    To study the accuracy of four-dimensional (4D) ultrasound and power Doppler flow mapping in detecting tubal patency in women with sub-/infertility, and compare it with laparoscopy and chromopertubation. A prospective study. The study was performed in the outpatient clinic and infertility unit of a university hospital. The sonographic team and laparoscopic team were blinded to the results of each other. Women aged younger than 43 years seeking medical advice due to primary or secondary infertility and who planned to have a diagnostic laparoscopy performed, were recruited to the study after signing an informed consent. All of the recruited patients had power Doppler flow mapping and 4D hysterosalpingo-sonography by injecting sterile saline into the fallopian tubes 1 day before surgery. Registering Doppler signals, while using power Doppler, both at the tubal ostia and fimbrial end and the ability to demonstrate the course of the tube especially the isthmus and fimbrial end, while using 4D mode, was considered a patent tube. Out of 50 recruited patients, 33 women had bilateral patent tubes and five had unilateral patent tubes as shown by chromopertubation during diagnostic laparoscopy. Sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and accuracy for two-dimensional power Doppler hysterosalpingography were 94.4%, 100%, 100%, 89.2%, and 96.2%, respectively and for 4D ultrasound were 70.4%, 100%, 100%, 70.4%, and 82.6%, respectively. Four-dimensional saline hysterosalpingography has acceptable accuracy in detecting tubal patency, but is surpassed by power Doppler saline hysterosalpingography. Power Doppler saline hysterosalpingography could be incorporated into the routine sub-/infertility workup. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  12. Four-Dimensional CT of the Diaphragm in Children: Initial Experience

    Science.gov (United States)

    2018-01-01

    Objective To evaluate the technical feasibility of four-dimensional (4D) CT for the functional evaluation of the pediatric diaphragm. Materials and Methods In 22 consecutive children (median age 3.5 months, age range 3 days–3 years), 4D CT was performed to assess diaphragm motion. Diaphragm abnormalities were qualitatively evaluated and diaphragm motion was quantitatively measured on 4D CT. Lung density changes between peak inspiration and expiration were measured in the basal lung parenchyma. The diaphragm motions and lung density changes measured on 4D CT were compared between various diaphragm conditions. In 11 of the 22 children, chest sonography was available for comparison. Results Four-dimensional CT demonstrated normal diaphragm (n = 8), paralysis (n = 10), eventration (n = 3), and diffusely decreased motion (n = 1). Chest sonography demonstrated normal diaphragm (n = 2), paralysis (n = 6), eventration (n = 2), and right pleural effusion (n = 1). The sonographic findings were concordant with the 4D CT findings in 90.9% (10/11) of the patients. In diaphragm paralysis, the affected diaphragm motion was significantly decreased compared with the contralateral normal diaphragm motion (−1.1 ± 2.2 mm vs. 7.6 ± 3.8 mm, p = 0.005). The normal diaphragms showed significantly greater motion than the paralyzed diaphragms (4.5 ± 2.1 mm vs. −1.1 ± 2.2 mm, p Hounsfield units [HU] vs. 180 ± 71 HU, p = 0.03), while no significant differences were found between the normal diaphragms and the paralyzed diaphragms (136 ± 66 HU vs. 89 ± 73 HU, p = 0.1) or between the normal diaphragms and the contralateral normal diaphragms in paralysis (136 ± 66 HU vs. 180 ± 71 HU, p = 0.1). Conclusion The functional evaluation of the pediatric diaphragm is feasible with 4D CT in select children. PMID:29354007

  13. Study of fission dynamics of the excited nuclei produced in fusion reactions in the framework of the four-dimensional Langevin equations

    Energy Technology Data Exchange (ETDEWEB)

    Eslamizadeh, H. [Persian Gulf University, Department of Physics, Bushehr (Iran, Islamic Republic of)

    2014-12-01

    The dynamics of fission of excited nuclei has been studied by solving four-dimensional Langevin equations with dissipation generated through the chaos-weighted wall and window friction formula. The projection of the total spin of the compound nucleus to the symmetry axis, K, was considered as the fourth dimension in Langevin dynamical calculations. The average pre-scission neutron multiplicities, mean kinetic energy of fission fragments and the variances of the mass and kinetic energy have been calculated in a wide range of fissile parameter for compound nuclei {sup 162}Yb, {sup 172}Yb, {sup 215}Fr, {sup 224}Th, {sup 248}Cf, {sup 260}Rf and results compared with the experimental data. Calculations were performed with a constant dissipation coefficient of K, {sub γK} (MeV zs){sup -1/2}, and with a non-constant dissipation coefficient. Comparison of the theoretical results for the average pre-scission neutron multiplicities, mean kinetic energy of fission fragments and the variances of the mass and kinetic energy with the experimental data showed that the results of four-dimensional Langevin equations with a non-constant dissipation coefficient are in better agreement with the experimental data. Furthermore, the difference between the results of two models for compound nuclei with low fissile parameter is low whereas, for heavy compound nuclei, is high. (orig.)

  14. Dosimetric variation due to CT inter-slice spacing in four-dimensional carbon beam lung therapy

    International Nuclear Information System (INIS)

    Kumagai, Motoki; Mori, Shinichiro; Kandatsu, Susumu; Baba, Masayuki; Sharp, Gregory C; Asakura, Hiroshi; Endo, Masahiro

    2009-01-01

    When CT data with thick slice thickness are used in treatment planning, geometrical uncertainty may induce dosimetric errors. We evaluated carbon ion dose variations due to different CT slice thicknesses using a four-dimensional (4D) carbon ion beam dose calculation, and compared results between ungated and gated respiratory strategies. Seven lung patients were scanned in 4D mode with a 0.5 mm slice thickness using a 256-multi-slice CT scanner. CT images were averaged with various numbers of images to simulate reconstructed images with various slice thicknesses (0.5-5.0 mm). Two scenarios were studied (respiratory-ungated and -gated strategies). Range compensators were designed for each of the CT volumes with coarse inter-slice spacing to cover the internal target volume (ITV), as defined from 4DCT. Carbon ion dose distribution was computed for each resulting ITV on the 0.5 mm slice 4DCT data. The accumulated dose distribution was then calculated using deformable registration for 4D dose assessment. The magnitude of over- and under-dosage was found to be larger with the use of range compensators designed with a coarser inter-slice spacing than those obtained with a 0.5 mm slice thickness. Although no under-dosage was observed within the clinical target volume (CTV) region, D95 remained at over 97% of the prescribed dose for the ungated strategy and 95% for the gated strategy for all slice thicknesses. An inter-slice spacing of less than 3 mm may be able to minimize dose variation between the ungated and gated strategies. Although volumes with increased inter-slice spacing may reduce geometrical accuracy at a certain respiratory phase, this does not significantly affect delivery of the accumulated dose to the target during the treatment course.

  15. Four-dimensional reconstruction of cultural heritage sites based on photogrammetry and clustering

    Science.gov (United States)

    Voulodimos, Athanasios; Doulamis, Nikolaos; Fritsch, Dieter; Makantasis, Konstantinos; Doulamis, Anastasios; Klein, Michael

    2017-01-01

    A system designed and developed for the three-dimensional (3-D) reconstruction of cultural heritage (CH) assets is presented. Two basic approaches are presented. The first one, resulting in an "approximate" 3-D model, uses images retrieved in online multimedia collections; it employs a clustering-based technique to perform content-based filtering and eliminate outliers that significantly reduce the performance of 3-D reconstruction frameworks. The second one is based on input image data acquired through terrestrial laser scanning, as well as close range and airborne photogrammetry; it follows a sophisticated multistep strategy, which leads to a "precise" 3-D model. Furthermore, the concept of change history maps is proposed to address the computational limitations involved in four-dimensional (4-D) modeling, i.e., capturing 3-D models of a CH landmark or site at different time instances. The system also comprises a presentation viewer, which manages the display of the multifaceted CH content collected and created. The described methods have been successfully applied and evaluated in challenging real-world scenarios, including the 4-D reconstruction of the historic Market Square of the German city of Calw in the context of the 4-D-CH-World EU project.

  16. Quantum Mechanics and Black Holes in Four-Dimensional String Theory

    CERN Document Server

    Ellis, Jonathan Richard; Nanopoulos, Dimitri V

    1992-01-01

    In previous papers we have shown how strings in a two-dimensional target space reconcile quantum mechanics with general relativity, thanks to an infinite set of conserved quantum numbers, ``W-hair'', associated with topological soliton-like states. In this paper we extend these arguments to four dimensions, by considering explicitly the case of string black holes with radial symmetry. The key infinite-dimensional W-symmetry is associated with the $\\frac{SU(1,1)}{U(1)}$ coset structure of the dilaton-graviton sector that is a model-independent feature of spherically symmetric four-dimensional strings. Arguments are also given that the enormous number of string {\\it discrete (topological)} states account for the maintenance of quantum coherence during the (non-thermal) stringy evaporation process, as well as quenching the large Hawking-Bekenstein entropy associated with the black hole. Defining the latter as the measure of the loss of information for an observer at infinity, who - ignoring the higher string qua...

  17. A four-dimensional virtual hand brain-machine interface using active dimension selection.

    Science.gov (United States)

    Rouse, Adam G

    2016-06-01

    Brain-machine interfaces (BMI) traditionally rely on a fixed, linear transformation from neural signals to an output state-space. In this study, the assumption that a BMI must control a fixed, orthogonal basis set was challenged and a novel active dimension selection (ADS) decoder was explored. ADS utilizes a two stage decoder by using neural signals to both (i) select an active dimension being controlled and (ii) control the velocity along the selected dimension. ADS decoding was tested in a monkey using 16 single units from premotor and primary motor cortex to successfully control a virtual hand avatar to move to eight different postures. Following training with the ADS decoder to control 2, 3, and then 4 dimensions, each emulating a grasp shape of the hand, performance reached 93% correct with a bit rate of 2.4 bits s(-1) for eight targets. Selection of eight targets using ADS control was more efficient, as measured by bit rate, than either full four-dimensional control or computer assisted one-dimensional control. ADS decoding allows a user to quickly and efficiently select different hand postures. This novel decoding scheme represents a potential method to reduce the complexity of high-dimension BMI control of the hand.

  18. Quantification of Artifact Reduction With Real-Time Cine Four-Dimensional Computed Tomography Acquisition Methods

    International Nuclear Information System (INIS)

    Langner, Ulrich W.; Keall, Paul J.

    2010-01-01

    Purpose: To quantify the magnitude and frequency of artifacts in simulated four-dimensional computed tomography (4D CT) images using three real-time acquisition methods- direction-dependent displacement acquisition, simultaneous displacement and phase acquisition, and simultaneous displacement and velocity acquisition- and to compare these methods with commonly used retrospective phase sorting. Methods and Materials: Image acquisition for the four 4D CT methods was simulated with different displacement and velocity tolerances for spheres with radii of 0.5 cm, 1.5 cm, and 2.5 cm, using 58 patient-measured tumors and respiratory motion traces. The magnitude and frequency of artifacts, CT doses, and acquisition times were computed for each method. Results: The mean artifact magnitude was 50% smaller for the three real-time methods than for retrospective phase sorting. The dose was ∼50% lower, but the acquisition time was 20% to 100% longer for the real-time methods than for retrospective phase sorting. Conclusions: Real-time acquisition methods can reduce the frequency and magnitude of artifacts in 4D CT images, as well as the imaging dose, but they increase the image acquisition time. The results suggest that direction-dependent displacement acquisition is the preferred real-time 4D CT acquisition method, because on average, the lowest dose is delivered to the patient and the acquisition time is the shortest for the resulting number and magnitude of artifacts.

  19. N = 1 supersymmetric indices and the four-dimensional A-model

    Science.gov (United States)

    Closset, Cyril; Kim, Heeyeon; Willett, Brian

    2017-08-01

    We compute the supersymmetric partition function of N = 1 supersymmetric gauge theories with an R-symmetry on M_4\\cong M_{g,p}× {S}^1 , a principal elliptic fiber bundle of degree p over a genus- g Riemann surface, Σ g . Equivalently, we compute the generalized supersymmetric index I_{M}{_{g,p}, with the supersymmetric three-manifold M_{g,p} as the spatial slice. The ordinary N = 1 supersymmetric index on the round three-sphere is recovered as a special case. We approach this computation from the point of view of a topological A-model for the abelianized gauge fields on the base Σ g . This A-model — or A-twisted two-dimensional N = (2 , 2) gauge theory — encodes all the information about the generalized indices, which are viewed as expectations values of some canonically-defined surface defects wrapped on T 2 inside Σ g × T 2. Being defined by compactification on the torus, the A-model also enjoys natural modular properties, governed by the four-dimensional 't Hooft anomalies. As an application of our results, we provide new tests of Seiberg duality. We also present a new evaluation formula for the three-sphere index as a sum over two-dimensional vacua.

  20. Diagnosis of fetal syndromes by three- and four-dimensional ultrasound: is there any improvement?

    Science.gov (United States)

    Barišić, Lara Spalldi; Stanojević, Milan; Kurjak, Asim; Porović, Selma; Gaber, Ghalia

    2017-08-28

    With all of our present knowledge, high technology diagnostic equipment, electronic databases and other available supporting resources, detection of fetal syndromes is still a challenge for healthcare providers in prenatal as well as in the postnatal period. Prenatal diagnosis of fetal syndromes is not straightforward, and it is a difficult puzzle that needs to be assembled and solved. Detection of one anomaly should always raise a suspicion of the existence of more anomalies, and can be a trigger to investigate further and raise awareness of possible syndromes. Highly specialized software systems for three- and four-dimensional ultrasound (3D/4D US) enabled detailed depiction of fetal anatomy and assessment of the dynamics of fetal structural and functional development in real time. With recent advances in 3D/4D US technology, antenatal diagnosis of fetal anomalies and syndromes shifted from the 2nd to the 1st trimester of pregnancy. It is questionable what can and should be done after the prenatal diagnosis of fetal syndrome. The 3D and 4D US techniques improved detection accuracy of fetal abnormalities and syndromes from early pregnancy onwards. It is not easy to make prenatal diagnosis of fetal syndromes, so tools which help like online integrated databases are needed to increase diagnostic precision. The aim of this paper is to present the possibilities of different US techniques in the detection of some fetal syndromes prenatally.

  1. N=12 supersymmetric four-dimensional nonlinear σ-models from nonanticommutative superspace

    International Nuclear Information System (INIS)

    Hatanaka, Tomoya; Ketov, Sergei V.; Kobayashi, Yoshishige; Sasaki, Shin

    2005-01-01

    The component structure of a generic N=1/2 supersymmetric nonlinear sigma-model (NLSM) defined in the four-dimensional (Euclidean) nonanticommutative (NAC) superspace is investigated in detail. The most general NLSM is described in terms of arbitrary Kahler potential, and chiral and antichiral superpotentials. The case of a single chiral superfield gives rise to splitting of the NLSM potentials, whereas the case of several chiral superfields results in smearing (or fuzziness) of the NLSM potentials, while both effects are controlled by the auxiliary fields. We eliminate the auxiliary fields by solving their algebraic equations of motion, and demonstrate that the results are dependent upon whether the auxiliary integrations responsible for the fuzziness are performed before or after elimination of the auxiliary fields. There is no ambiguity in the case of splitting, i.e., for a single chiral superfield. Fully explicit results are derived in the case of the N=1/2 supersymmetric NAC-deformed CP n NLSM in four dimensions. Here we find another surprise that our results differ from the N=1/2 supersymmetric CP n NLSM derived by the quotient construction from the N=1/2 supersymmetric NAC-deformed gauge theory. We conclude that an N=1/2 supersymmetric deformation of a generic NLSM from the NAC superspace is not unique

  2. Simulations of four-dimensional simplicial quantum gravity as dynamical triangulation

    International Nuclear Information System (INIS)

    Agishtein, M.E.; Migdal, A.A.

    1992-01-01

    In this paper, Four-Dimensional Simplicial Quantum Gravity is simulated using the dynamical triangulation approach. The authors studied simplicial manifolds of spherical topology and found the critical line for the cosmological constant as a function of the gravitational one, separating the phases of opened and closed Universe. When the bare cosmological constant approaches this line from above, the four-volume grows: the authors reached about 5 x 10 4 simplexes, which proved to be sufficient for the statistical limit of infinite volume. However, for the genuine continuum theory of gravity, the parameters of the lattice model should be further adjusted to reach the second order phase transition point, where the correlation length grows to infinity. The authors varied the gravitational constant, and they found the first order phase transition, similar to the one found in three-dimensional model, except in 4D the fluctuations are rather large at the transition point, so that this is close to the second order phase transition. The average curvature in cutoff units is large and positive in one phase (gravity), and small negative in another (antigravity). The authors studied the fractal geometry of both phases, using the heavy particle propagator to define the geodesic map, as well as with the old approach using the shortest lattice paths

  3. Assessment of turbulent flow effects on the vessel wall using four-dimensional flow MRI.

    Science.gov (United States)

    Ziegler, Magnus; Lantz, Jonas; Ebbers, Tino; Dyverfeldt, Petter

    2017-06-01

    To explore the use of MR-estimated turbulence quantities for the assessment of turbulent flow effects on the vessel wall. Numerical velocity data for two patient-derived models was obtained using computational fluid dynamics (CFD) for two physiological flow rates. The four-dimensional (4D) Flow MRI measurements were simulated at three different spatial resolutions and used to investigate the estimation of turbulent wall shear stress (tWSS) using the intravoxel standard deviation (IVSD) of velocity and turbulent kinetic energy (TKE) estimated near the vessel wall. Accurate estimation of tWSS using the IVSD is limited by the spatial resolution achievable with 4D Flow MRI. TKE, estimated near the wall, has a strong linear relationship to the tWSS (mean R 2  = 0.84). Near-wall TKE estimates from MR simulations have good agreement to CFD-derived ground truth (mean R 2  = 0.90). Maps of near-wall TKE have strong visual correspondence to tWSS. Near-wall estimation of TKE permits assessment of relative maps of tWSS, but direct estimation of tWSS is challenging due to limitations in spatial resolution. Assessment of tWSS and near-wall TKE may open new avenues for analysis of different pathologies. Magn Reson Med 77:2310-2319, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  4. Four-dimensional parameter estimation of plane waves using swarming intelligence

    International Nuclear Information System (INIS)

    Zaman Fawad; Munir Fahad; Khan Zafar Ullah; Qureshi Ijaz Mansoor

    2014-01-01

    This paper proposes an efficient approach for four-dimensional (4D) parameter estimation of plane waves impinging on a 2-L shape array. The 4D parameters include amplitude, frequency and the two-dimensional (2D) direction of arrival, namely, azimuth and elevation angles. The proposed approach is based on memetic computation, in which the global optimizer, particle swarm optimization is hybridized with a rapid local search technique, pattern search. For this purpose, a new multi-objective fitness function is used. This fitness function is the combination of mean square error and the correlation between the normalized desired and estimated vectors. The proposed hybrid scheme is not only compared with individual performances of particle swarm optimization and pattern search, but also with the performance of the hybrid genetic algorithm and that of the traditional approach. A large number of Monte—Carlo simulations are carried out to validate the performance of the proposed scheme. It gives promising results in terms of estimation accuracy, convergence rate, proximity effect and robustness against noise. (interdisciplinary physics and related areas of science and technology)

  5. Four-dimensional microscope- integrated optical coherence tomography to enhance visualization in glaucoma surgeries.

    Science.gov (United States)

    Pasricha, Neel Dave; Bhullar, Paramjit Kaur; Shieh, Christine; Viehland, Christian; Carrasco-Zevallos, Oscar Mijail; Keller, Brenton; Izatt, Joseph Adam; Toth, Cynthia Ann; Challa, Pratap; Kuo, Anthony Nanlin

    2017-01-01

    We report the first use of swept-source microscope-integrated optical coherence tomography (SS-MIOCT) capable of live four-dimensional (4D) (three-dimensional across time) imaging intraoperatively to directly visualize tube shunt placement and trabeculectomy surgeries in two patients with severe open-angle glaucoma and elevated intraocular pressure (IOP) that was not adequately managed by medical intervention or prior surgery. We performed tube shunt placement and trabeculectomy surgery and used SS-MIOCT to visualize and record surgical steps that benefitted from the enhanced visualization. In the case of tube shunt placement, SS-MIOCT successfully visualized the scleral tunneling, tube shunt positioning in the anterior chamber, and tube shunt suturing. For the trabeculectomy, SS-MIOCT successfully visualized the scleral flap creation, sclerotomy, and iridectomy. Postoperatively, both patients did well, with IOPs decreasing to the target goal. We found the benefit of SS-MIOCT was greatest in surgical steps requiring depth-based assessments. This technology has the potential to improve clinical outcomes.

  6. Four-Dimensional Ultrafast Electron Microscopy: Insights into an Emerging Technique

    KAUST Repository

    Adhikari, Aniruddha

    2016-12-15

    Four-dimensional ultrafast electron microscopy (4D-UEM) is a novel analytical technique that aims to fulfill the long-held dream of researchers to investigate materials at extremely short spatial and temporal resolutions by integrating the excellent spatial resolution of electron microscopes with the temporal resolution of ultrafast femtosecond laser-based spectroscopy. The ingenious use of pulsed photoelectrons to probe surfaces and volumes of materials enables time-resolved snapshots of the dynamics to be captured in a way hitherto impossible by other conventional techniques. The flexibility of 4D-UEM lies in the fact that it can be used in both the scanning (S-UEM) and transmission (UEM) modes depending upon the type of electron microscope involved. While UEM can be employed to monitor elementary structural changes and phase transitions in samples using real-space mapping, diffraction, electron energy-loss spectroscopy, and tomography, S-UEM is well suited to map ultrafast dynamical events on materials surfaces in space and time. This review provides an overview of the unique features that distinguish these techniques and also illustrates the applications of both S-UEM and UEM to a multitude of problems relevant to materials science and chemistry.

  7. Two-dimensional topological field theories coupled to four-dimensional BF theory

    International Nuclear Information System (INIS)

    Montesinos, Merced; Perez, Alejandro

    2008-01-01

    Four-dimensional BF theory admits a natural coupling to extended sources supported on two-dimensional surfaces or string world sheets. Solutions of the theory are in one to one correspondence with solutions of Einstein equations with distributional matter (cosmic strings). We study new (topological field) theories that can be constructed by adding extra degrees of freedom to the two-dimensional world sheet. We show how two-dimensional Yang-Mills degrees of freedom can be added on the world sheet, producing in this way, an interactive (topological) theory of Yang-Mills fields with BF fields in four dimensions. We also show how a world sheet tetrad can be naturally added. As in the previous case the set of solutions of these theories are contained in the set of solutions of Einstein's equations if one allows distributional matter supported on two-dimensional surfaces. These theories are argued to be exactly quantizable. In the context of quantum gravity, one important motivation to study these models is to explore the possibility of constructing a background-independent quantum field theory where local degrees of freedom at low energies arise from global topological (world sheet) degrees of freedom at the fundamental level

  8. Outcome of four-dimensional stereotactic radiotherapy for centrally located lung tumors

    International Nuclear Information System (INIS)

    Nuyttens, Joost J.; Voort van Zyp, Noelle C. van der; Praag, John; Aluwini, Shafak; Klaveren, Rob J. van; Verhoef, Cornelis; Pattynama, Peter M.; Hoogeman, Mischa S.

    2012-01-01

    Purpose: To assess local control, overall survival, and toxicity of four-dimensional, risk-adapted stereotactic body radiotherapy (SBRT) delivered while tracking respiratory motion in patients with primary and metastatic lung cancer located in the central chest. Methods: Fifty-eight central lesions of 56 patients (39 with primary, 17 with metastatic tumors) were treated. Fifteen tumors located near the esophagus were treated with 6 fractions of 8 Gy. Other tumors were treated according to the following dose escalation scheme: 5 fractions of 9 Gy (n = 6), then 5 fractions of 10 Gy (n = 15), and finally 5 fractions of 12 Gy (n = 22). Results: Dose constraints for critical structures were generally achieved; in 21 patients the coverage of the PTV was reduced below 95% to protect adjacent organs at risk. At a median follow-up of 23 months, the actuarial 2-years local tumor control was 85% for tumors treated with a BED >100 Gy compared to 60% for tumors treated with a BED ⩽100 Gy. No grade 4 or 5 toxicity was observed. Acute grade 1–2 esophagitis was observed in 11% of patients. Conclusion: SBRT of central lung lesions can be safely delivered, with promising early tumor control in patients many of whom have severe comorbid conditions.

  9. Airflow and air quality simulations over the western mountainous region with a four-dimensional data assimilation technique

    Science.gov (United States)

    Yamada, Tetsuji; Kao, Chih-Yue; Bunker, Susan

    We apply a three-dimensional meteorological model with a four-dimensional data assimilation (4-DDA) technique to simulate diurnal variations of wind, temperature, water vapor, and turbulence in a region extending from the west coast to east of the Rockies and from northern Mexico to Wyoming. The wind data taken during the 1985 SCENES ( Subregional Cooperative Electric Utility, Dept. of Defense, National Park Service, and Environmental Protection Agency Study on Visibility) field experiments are successfully assimilated into the model through the 4-DDA technique by 'nudging' the modeled winds toward the observed winds. The modeled winds and turbulence fields are then used in a Lagrangian random-particle statistical model to investigate how pollutants from potential sources are transported and diffused. Finally, we calculate the ground concentrations through a kernel density estimator. Two scenarios in different weather patterns are investigated with simulation periods up to 6 days. One is associated with the evolution of a surface cold front and the other under a high-pressure stagnant condition. In the frontal case, the impact of air-mass movement on the ground concentrations of pollutants released from the Los Angeles area is well depicted by the model. Also, the pollutants produced from Los Angeles can be transported to the Grand Canyon area within 24 h. However, if we use only the data that were obtained from the regular NWS rawinsonde network, whose temporal and spatial resolutions are coarser than those of the special network, the plume goes north-northeast and never reaches the Grand Canyon area. In the stagnant case, the pollutants meander around the source area and can have significant impact on local air quality.

  10. A priori motion models for four-dimensional reconstruction in gated cardiac SPECT

    International Nuclear Information System (INIS)

    Lalush, D.S.; Tsui, B.M.W.; Cui, Lin

    1996-01-01

    We investigate the benefit of incorporating a priori assumptions about cardiac motion in a fully four-dimensional (4D) reconstruction algorithm for gated cardiac SPECT. Previous work has shown that non-motion-specific 4D Gibbs priors enforcing smoothing in time and space can control noise while preserving resolution. In this paper, we evaluate methods for incorporating known heart motion in the Gibbs prior model. The new model is derived by assigning motion vectors to each 4D voxel, defining the movement of that volume of activity into the neighboring time frames. Weights for the Gibbs cliques are computed based on these open-quotes most likelyclose quotes motion vectors. To evaluate, we employ the mathematical cardiac-torso (MCAT) phantom with a new dynamic heart model that simulates the beating and twisting motion of the heart. Sixteen realistically-simulated gated datasets were generated, with noise simulated to emulate a real Tl-201 gated SPECT study. Reconstructions were performed using several different reconstruction algorithms, all modeling nonuniform attenuation and three-dimensional detector response. These include ML-EM with 4D filtering, 4D MAP-EM without prior motion assumption, and 4D MAP-EM with prior motion assumptions. The prior motion assumptions included both the correct motion model and incorrect models. Results show that reconstructions using the 4D prior model can smooth noise and preserve time-domain resolution more effectively than 4D linear filters. We conclude that modeling of motion in 4D reconstruction algorithms can be a powerful tool for smoothing noise and preserving temporal resolution in gated cardiac studies

  11. Evaluating four-dimensional time-lapse electrical resistivity tomography for monitoring DNAPL source zone remediation.

    Science.gov (United States)

    Power, Christopher; Gerhard, Jason I; Karaoulis, Marios; Tsourlos, Panagiotis; Giannopoulos, Antonios

    2014-07-01

    Practical, non-invasive tools do not currently exist for mapping the remediation of dense non-aqueous phase liquids (DNAPLs). Electrical resistivity tomography (ERT) exhibits significant potential but has not yet become a practitioner's tool due to challenges in interpreting the survey results at real sites. This study explores the effectiveness of recently developed four-dimensional (4D, i.e., 3D space plus time) time-lapse surface ERT to monitor DNAPL source zone remediation. A laboratory experiment demonstrated the approach for mapping a changing NAPL distribution over time. A recently developed DNAPL-ERT numerical model was then employed to independently simulate the experiment, providing confidence that the DNAPL-ERT model is a reliable tool for simulating real systems. The numerical model was then used to evaluate the potential for this approach at the field scale. Four DNAPL source zones, exhibiting a range of complexity, were initially simulated, followed by modeled time-lapse ERT monitoring of complete DNAPL remediation by enhanced dissolution. 4D ERT inversion provided estimates of the regions of the source zone experiencing mass reduction with time. Results show that 4D time-lapse ERT has significant potential to map both the outline and the center of mass of the evolving treated portion of the source zone to within a few meters in each direction. In addition, the technique can provide a reasonable, albeit conservative, estimate of the DNAPL volume remediated with time: 25% underestimation in the upper 2m and up to 50% underestimation at late time between 2 and 4m depth. The technique is less reliable for identifying cleanup of DNAPL stringers outside the main DNAPL body. Overall, this study demonstrates that 4D time-lapse ERT has potential for mapping where and how quickly DNAPL mass changes in real time during site remediation. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Determination of Respiratory Motion for Distal Esophagus Cancer Using Four-Dimensional Computed Tomography

    International Nuclear Information System (INIS)

    Yaremko, Brian P.; Guerrero, Thomas M.; McAleer, Mary F.; Bucci, M. Kara; Noyola-Martinez, Josue M.S.; Nguyen, Linda T. C.; Balter, Peter A.; Guerra, Rudy; Komaki, Ritsuko; Liao Zhongxing

    2008-01-01

    Purpose: To investigate the motion characteristics of distal esophagus cancer primary tumors using four-dimensional computed tomography (4D CT). Methods and Materials: Thirty-one consecutive patients treated for esophagus cancer who received respiratory-gated 4D CT imaging for treatment planning were selected. Deformable image registration was used to map the full expiratory motion gross tumor volume (GTV) to the full-inspiratory CT image, allowing quantitative assessment of each voxel's displacement. These displacements were correlated with patient tumor and respiratory characteristics. Results: The mean (SE) tidal volume was 608 (73) mL. The mean GTV volume was 64.3 (10.7) mL on expiration and 64.1 (10.7) mL on inspiration (no significant difference). The mean tumor motion in the x-direction was 0.13 (0.006) cm (average of absolute values), in the y-direction 0.23 (0.01) cm (anteriorly), and in the z-direction 0.71 (0.02) cm (inferiorly). Tumor motion correlated with tidal volume. Comparison of tumor motion above vs. below the diaphragm was significant for the average net displacement (p = 0.014), motion below the diaphragm was greater than above. From the cumulative distribution 95% of the tumors moved less than 0.80 cm radially and 1.75 cm inferiorly. Conclusions: Primary esophagus tumor motion was evaluated with 4D CT. According to the results of this study, when 4D CT is not available, a radial margin of 0.8 cm and axial margin of ±1.8 cm would provide tumor motion coverage for 95% of the cases in our study population

  13. Stable de Sitter vacua in four-dimensional supergravity originating from five dimensions

    International Nuclear Information System (INIS)

    Oegetbil, O.

    2008-01-01

    The five-dimensional stable de Sitter ground states in N=2 supergravity obtained by gauging SO(1,1) symmetry of the real symmetric scalar manifold (in particular, a generic Jordan family manifold of the vector multiplets) simultaneously with a subgroup R s of the R-symmetry group descend to four-dimensional de Sitter ground states under certain conditions. First, the holomorphic section in four dimensions has to be chosen carefully by using the symplectic freedom in four dimensions; second, a group contraction is necessary to bring the potential into a desired form. Under these conditions, stable de Sitter vacua can be obtained in dimensionally reduced theories (from 5D to 4D) if the semidirect product of SO(1,1) with R (1,1) together with a simultaneous R s is gauged. We review the stable de Sitter vacua in four dimensions found in earlier literature for N=2 Yang-Mills Einstein supergravity with the SO(2,1)xR s gauge group in a symplectic basis that comes naturally after dimensional reduction. Although this particular gauge group does not descend directly from five dimensions, we show that its contraction does. Hence, two different theories overlap in certain limits. Examples of stable de Sitter vacua are given for the cases: (i) R s =U(1) R , (ii) R s =SU(2) R , and (iii) N=2 Yang-Mills/Einstein supergravity theory coupled to a universal hypermultiplet. We conclude with a discussion regarding the extension of our results to supergravity theories with more general homogeneous scalar manifolds.

  14. Four-dimensional computed tomographic analysis of esophageal mobility during normal respiration

    International Nuclear Information System (INIS)

    Dieleman, Edith; Senan, Suresh; Vincent, Andrew; Lagerwaard, Frank J.; Slotman, Ben J.; Soernsen de Koste, John R. van

    2007-01-01

    Background: Chemo-radiotherapy for thoracic tumors can result in high-grade radiation esophagitis. Treatment planning to reduce esophageal irradiation requires organ motion to be accounted for. In this study, esophageal mobility was assessed using four-dimensional computed tomography (4DCT). Methods and Materials: Thoracic 4DCT scans were acquired on a 16-slice CT scanner in 29 patients. The outer esophageal wall was contoured in two extreme phases of respiration in 9 patients with nonesophageal malignancies. The displacement of the center of contour was measured at 2-cm intervals. In 20 additional patients with Stage I lung cancer, the esophagus was contoured in all 10 phases of each 4DCT at five defined anatomic levels. Both approaches were then applied to 4DCT scans of 4 patients who each had two repeat scans performed. A linear mixed effects model was constructed with fixed effects: measurement direction, measurement type, and measurement location along the cranio-caudal axis. Results: Measurement location and direction were significant descriptive parameters (Wald F-tests, p < 0.001), and the interaction term between the two was significant (p = 0.02). Medio-lateral mobility exceeded dorso-ventral mobility in the lower half of the esophagus but was of a similar magnitude in the upper half. Margins that would have incorporated all movement in medio-lateral and dorso-ventral directions were 5 mm proximally, 7 mm and 6 mm respectively in the mid-esophagus, and 9 mm and 8 mm respectively in the distal esophagus. Conclusions: The distal esophagus shows more mobility. Margins for mobility that can encompass all movement were derived for use in treatment planning, particularly for stereotactic radiotherapy

  15. Conceptual formulation on four-dimensional inverse planning for intensity modulated radiation therapy

    International Nuclear Information System (INIS)

    Lee, Louis; Ma Yunzhi; Xing Lei; Ye Yinyu

    2009-01-01

    Four-dimensional computed tomography (4DCT) offers an extra dimension of 'time' on the three-dimensional patient model with which we can incorporate target motion in radiation treatment (RT) planning and delivery in various ways such as in the concept of internal target volume, in gated treatment or in target tracking. However, for all these methodologies, different phases are essentially considered as non-interconnected independent phases for the purpose of optimization, in other words, the 'time' dimension has yet to be incorporated explicitly in the optimization algorithm and fully exploited. In this note, we have formulated a new 4D inverse planning technique that treats all the phases in the 4DCT as one single entity in the optimization. The optimization is formulated as a quadratic problem for disciplined convex programming that enables the problem to be analyzed and solved efficiently. In the proof-of-principle examples illustrated, we show that the temporal information of the spatial relation of the target and organs at risk could be 'exchanged' amongst different phases so that an appropriate weighting of dose deposition could be allocated to each phase, thus enabling a treatment with a tight target margin and a full duty cycle otherwise not achievable by either of the aforementioned methodologies. Yet there are practical issues to be solved in the 4D RT planning and delivery. The 4D concept in the optimization we have formulated here does provide insight on how the 'time' dimension can be exploited in the 4D optimization process. (note)

  16. Novel Assessment of Renal Motion in Children as Measured via Four-Dimensional Computed Tomography

    International Nuclear Information System (INIS)

    Pai Panandiker, Atmaram S.; Sharma, Shelly; Naik, Mihir H.; Wu, Shengjie; Hua, Chiaho; Beltran, Chris; Krasin, Matthew J.; Merchant, Thomas E.

    2012-01-01

    Objectives: Abdominal intensity-modulated radiation therapy and proton therapy require quantification of target and organ motion to optimize localization and treatment. Although addressed in adults, there is no available literature on this issue in pediatric patients. We assessed physiologic renal motion in pediatric patients. Methods and Materials: Twenty free-breathing pediatric patients at a median age of 8 years (range, 2–18 years) with intra-abdominal tumors underwent computed tomography simulation and four-dimensional computed tomography acquisition (slice thickness, 3 mm). Kidneys and diaphragms were contoured during eight phases of respiration to estimate center-of-mass motion. We quantified center of kidney mass mobility vectors in three dimensions: anteroposterior (AP), mediolateral (ML), and superoinferior (SI). Results: Kidney motion decreases linearly with decreasing age and height. The 95% confidence interval for the averaged minima and maxima of renal motion in children younger than 9 years was 5–9 mm in the ML direction, 4–11 mm in the AP direction, and 12–25 mm in the SI dimension for both kidneys. In children older than 9 years, the same confidence interval reveals a widening range of motion that was 5–16 mm in the ML direction, 6–17 mm in the AP direction, and 21–52 mm in the SI direction. Although not statistically significant, renal motion correlated with diaphragm motion in older patients. The correlation between diaphragm motion and body mass index was borderline (r = 0.52, p = 0.0816) in younger patients. Conclusions: Renal motion is age and height dependent. Measuring diaphragmatic motion alone does not reliably quantify pediatric renal motion. Renal motion in young children ranges from 5 to 25 mm in orientation-specific directions. The vectors of motion range from 5 to 52 mm in older children. These preliminary data represent novel analyses of pediatric intra-abdominal organ motion.

  17. Four-dimensional cone beam CT with adaptive gantry rotation and adaptive data sampling

    International Nuclear Information System (INIS)

    Lu Jun; Guerrero, Thomas M.; Munro, Peter; Jeung, Andrew; Chi, P.-C. M.; Balter, Peter; Zhu, X. Ronald; Mohan, Radhe; Pan Tinsu

    2007-01-01

    We have developed a new four-dimensional cone beam CT (4D-CBCT) on a Varian image-guided radiation therapy system, which has radiation therapy treatment and cone beam CT imaging capabilities. We adapted the speed of gantry rotation time of the CBCT to the average breath cycle of the patient to maintain the same level of image quality and adjusted the data sampling frequency to keep a similar level of radiation exposure to the patient. Our design utilized the real-time positioning and monitoring system to record the respiratory signal of the patient during the acquisition of the CBCT data. We used the full-fan bowtie filter during data acquisition, acquired the projection data over 200 deg of gantry rotation, and reconstructed the images with a half-scan cone beam reconstruction. The scan time for a 200-deg gantry rotation per patient ranged from 3.3 to 6.6 min for the average breath cycle of 3-6 s. The radiation dose of the 4D-CBCT was about 1-2 times the radiation dose of the 4D-CT on a multislice CT scanner. We evaluated the 4D-CBCT in scanning, data processing and image quality with phantom studies. We demonstrated the clinical applicability of the 4D-CBCT and compared the 4D-CBCT and the 4D-CT scans in four patient studies. The contrast-to-noise ratio of the 4D-CT was 2.8-3.5 times of the contrast-to-noise ratio of the 4D-CBCT in the four patient studies

  18. Four-Dimensional (4D) Printing: Applying Soft Adaptive Materials to Additive Manufacturing

    Science.gov (United States)

    Li, Zibiao; Loh, Xian Jun

    Four-dimensional (4D) printing is an up-and-coming technology for the creation of dynamic devices which have shape changing capabilities or on-demand capabilities over time. Through the printing of adaptive 3D structures, the concept of 4D printing can be realized. Modern manufacturing primarily utilizes direct assembly techniques, limiting the possibility of error correction or instant modification of a structure. Self-building, programmable physical materials are interesting for the automatic and remote construction of structures. Adaptive materials are programmable physical or biological materials which possess shape changing properties or can be made to have simple logic responses. There is immense potential in having disorganized fragments form an ordered construct through physical interactions. However, these are currently limited to only self-assembly at the smallest scale, typically at the nanoscale. The answer to customizable macro-structures is in additive manufacturing, or 3D printing. 3D printing is a 30 years old technology which is beginning to be widely used by consumers. However, the main gripes about this technology are that it is too inefficient, inaccessible, and slow. Cost is also a significant factor in the adoption of this technology. 3D printing has the potential to transform and disrupt the manufacturing landscape as well as our lives. 4D printing seeks to use multi-functional materials in 3D printing so that the printed structure has multiple response capabilities and able to self-assemble on the macroscale. In this paper, we will analyze the early promise of this technology as well as to highlight potential challenges that adopters could face. The primary focus will be to have a look at the application of materials to 3D printing and to show how these materials can be tailored to create responsive customized 4D structures.

  19. Muon borehole detector development for use in four-dimensional tomographic density monitoring

    Science.gov (United States)

    Flygare, Joshua

    The increase of CO2 concentrations in the atmosphere and the correlated temperature rise has initiated research into methods of carbon sequestration. One promising possibility is to store CO2 in subsurface reservoirs of porous rock. After injection, the monitoring of the injected CO2 is of paramount importance because the CO2 plume, if escaped, poses health and environmental risks. Traditionally, seismic reflection methods are the chosen method of determining changes in the reservoir density due to CO2 injection, but this is expensive and not continuous. A potential and promising alternative is to use cosmic muon tomography to determine density changes in the reservoir over a period of time. The work I have completed was the development of a muon detector that will be capable of being deployed in boreholes and perform long-term tomography of the reservoir of interest. The detector has the required dimensions, an angular resolution of approximately 2 degrees, and is robust enough to survive the caustic nature of the fluids in boreholes, as well as temperature and pressure fluctuations. The detector design is based on polystyrene scintillating rods arrayed in alternating layers. The layers, as arranged, can provide four-dimensional (4D) tomographic data to detect small changes in density at depths up to approximately 2 kilometers. Geant4, a Monte Carlo simulation code, was used to develop and optimize the detector design. Additionally, I developed a method of determining the muon flux at depth, including CO2 saturation changes in subsurface reservoirs. Preliminary experiments were performed at Pacific Northwest National Laboratory. This thesis will show the simulations I performed to determine the angular resolution and background discrimination required of the detector, the experiments to determine light transport through the polystyrene scintillating rods and fibers, and the method developed to predict muon flux changes at depth expected after injection.

  20. Novel Assessment of Renal Motion in Children as Measured via Four-Dimensional Computed Tomography

    Energy Technology Data Exchange (ETDEWEB)

    Pai Panandiker, Atmaram S., E-mail: atmaram.pai-panandiker@stjude.org [Department of Radiological Sciences, St. Jude Children' s Research Hospital, Memphis, TN (United States); Sharma, Shelly; Naik, Mihir H. [Department of Radiological Sciences, St. Jude Children' s Research Hospital, Memphis, TN (United States); Wu, Shengjie [Department of Biostatistics, St. Jude Children' s Research Hospital, Memphis, TN (United States); Hua, Chiaho; Beltran, Chris; Krasin, Matthew J.; Merchant, Thomas E. [Department of Radiological Sciences, St. Jude Children' s Research Hospital, Memphis, TN (United States)

    2012-04-01

    Objectives: Abdominal intensity-modulated radiation therapy and proton therapy require quantification of target and organ motion to optimize localization and treatment. Although addressed in adults, there is no available literature on this issue in pediatric patients. We assessed physiologic renal motion in pediatric patients. Methods and Materials: Twenty free-breathing pediatric patients at a median age of 8 years (range, 2-18 years) with intra-abdominal tumors underwent computed tomography simulation and four-dimensional computed tomography acquisition (slice thickness, 3 mm). Kidneys and diaphragms were contoured during eight phases of respiration to estimate center-of-mass motion. We quantified center of kidney mass mobility vectors in three dimensions: anteroposterior (AP), mediolateral (ML), and superoinferior (SI). Results: Kidney motion decreases linearly with decreasing age and height. The 95% confidence interval for the averaged minima and maxima of renal motion in children younger than 9 years was 5-9 mm in the ML direction, 4-11 mm in the AP direction, and 12-25 mm in the SI dimension for both kidneys. In children older than 9 years, the same confidence interval reveals a widening range of motion that was 5-16 mm in the ML direction, 6-17 mm in the AP direction, and 21-52 mm in the SI direction. Although not statistically significant, renal motion correlated with diaphragm motion in older patients. The correlation between diaphragm motion and body mass index was borderline (r = 0.52, p = 0.0816) in younger patients. Conclusions: Renal motion is age and height dependent. Measuring diaphragmatic motion alone does not reliably quantify pediatric renal motion. Renal motion in young children ranges from 5 to 25 mm in orientation-specific directions. The vectors of motion range from 5 to 52 mm in older children. These preliminary data represent novel analyses of pediatric intra-abdominal organ motion.

  1. Gauge constructs and immersions of four-dimensional spacetimes in (4 + k)-dimensional flat spaces: algebraic evaluation of gravity fields

    International Nuclear Information System (INIS)

    Edelen, Dominic G B

    2003-01-01

    Local action of the fundamental group SO(a, 4 + k - a) is used to show that any solution of an algebraically closed differential system, that is generated from matrix Lie algebra valued 1-forms on a four-dimensional parameter space, will generate families of immersions of four-dimensional spacetimes R 4 in flat (4 + k)-dimensional spaces M 4+k with compatible signature. The algorithm is shown to work with local action of SO(a, 4 + k - a) replaced by local action of GL(4 + k). Immersions generated by local action of the Poincare group on the target spacetime are also obtained. Evaluations of the line elements, immersion loci and connection and curvature forms of these immersions are algebraic. Families of immersions that depend on one or more arbitrary functions are calculated for 1 ≤ k ≤ 4. Appropriate sections of graphs of the conformal factor for two and three interacting line singularities immersed in M 6 are given in appendix A. The local immersion theorem given in appendix B shows that all local solutions of the immersion problem are obtained by use of this method and an algebraic extension in exceptional cases

  2. Improving left ventricular segmentation in four-dimensional flow MRI using intramodality image registration for cardiac blood flow analysis.

    Science.gov (United States)

    Gupta, Vikas; Bustamante, Mariana; Fredriksson, Alexandru; Carlhäll, Carl-Johan; Ebbers, Tino

    2018-01-01

    Assessment of blood flow in the left ventricle using four-dimensional flow MRI requires accurate left ventricle segmentation that is often hampered by the low contrast between blood and the myocardium. The purpose of this work is to improve left-ventricular segmentation in four-dimensional flow MRI for reliable blood flow analysis. The left ventricle segmentations are first obtained using morphological cine-MRI with better in-plane resolution and contrast, and then aligned to four-dimensional flow MRI data. This alignment is, however, not trivial due to inter-slice misalignment errors caused by patient motion and respiratory drift during breath-hold based cine-MRI acquisition. A robust image registration based framework is proposed to mitigate such errors automatically. Data from 20 subjects, including healthy volunteers and patients, was used to evaluate its geometric accuracy and impact on blood flow analysis. High spatial correspondence was observed between manually and automatically aligned segmentations, and the improvements in alignment compared to uncorrected segmentations were significant (P  0.05). Our results demonstrate the efficacy of the proposed approach in improving left-ventricular segmentation in four-dimensional flow MRI, and its potential for reliable blood flow analysis. Magn Reson Med 79:554-560, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  3. A method for the reconstruction of four-dimensional synchronized CT scans acquired during free breathing

    International Nuclear Information System (INIS)

    Low, Daniel A.; Nystrom, Michelle; Kalinin, Eugene; Parikh, Parag; Dempsey, James F.; Bradley, Jeffrey D.; Mutic, Sasa; Wahab, Sasha H.; Islam, Tareque; Christensen, Gary; Politte, David G.; Whiting, Bruce R.

    2003-01-01

    Breathing motion is a significant source of error in radiotherapy treatment planning for the thorax and upper abdomen. Accounting for breathing motion has a profound effect on the size of conformal radiation portals employed in these sites. Breathing motion also causes artifacts and distortions in treatment planning computed tomography (CT) scans acquired during free breathing and also causes a breakdown of the assumption of the superposition of radiation portals in intensity-modulated radiation therapy, possibly leading to significant dose delivery errors. Proposed voluntary and involuntary breath-hold techniques have the potential for reducing or eliminating the effects of breathing motion, however, they are limited in practice, by the fact that many lung cancer patients cannot tolerate holding their breath. We present an alternative solution to accounting for breathing motion in radiotherapy treatment planning, where multislice CT scans are collected simultaneously with digital spirometry over many free breathing cycles to create a four-dimensional (4-D) image set, where tidal lung volume is the additional dimension. An analysis of this 4-D data leads to methods for digital-spirometry, based elimination or accounting of breathing motion artifacts in radiotherapy treatment planning for free breathing patients. The 4-D image set is generated by sorting free-breathing multislice CT scans according to user-defined tidal-volume bins. A multislice CT scanner is operated in the cine mode, acquiring 15 scans per couch position, while the patient undergoes simultaneous digital-spirometry measurements. The spirometry is used to retrospectively sort the CT scans by their correlated tidal lung volume within the patient's normal breathing cycle. This method has been prototyped using data from three lung cancer patients. The actual tidal lung volumes agreed with the specified bin volumes within standard deviations ranging between 22 and 33 cm 3 . An analysis of sagittal and

  4. Four-dimensional ultrasonography of the fetal heart with spatiotemporal image correlation.

    Science.gov (United States)

    Gonçalves, Luís F; Lee, Wesley; Chaiworapongsa, Tinnakorn; Espinoza, Jimmy; Schoen, Mary Lou; Falkensammer, Peter; Treadwell, Marjorie; Romero, Roberto

    2003-12-01

    This study was undertaken to describe a new technique for the examination of the fetal heart using four-dimensional ultrasonography with spatiotemporal image correlation (STIC). Volume data sets of the fetal heart were acquired with a new cardiac gating technique (STIC), which uses automated transverse and longitudinal sweeps of the anterior chest wall. These volumes were obtained from 69 fetuses: 35 normal, 16 with congenital anomalies not affecting the cardiovascular system, and 18 with cardiac abnormalities. Dynamic multiplanar slicing and surface rendering of cardiac structures were performed. To illustrate the STIC technique, two representative volumes from a normal fetus were compared with volumes obtained from fetuses with the following congenital heart anomalies: atrioventricular septal defect, tricuspid stenosis, tricuspid atresia, and interrupted inferior vena cava with abnormal venous drainage. Volume datasets obtained with a transverse sweep were utilized to demonstrate the cardiac chambers, moderator band, interatrial and interventricular septae, atrioventricular valves, pulmonary veins, and outflow tracts. With the use of a reference dot to navigate the four-chamber view, intracardiac structures could be simultaneously studied in three orthogonal planes. The same volume dataset was used for surface rendering of the atrioventricular valves. The aortic and ductal arches were best visualized when the original plane of acquisition was sagittal. Volumes could be interactively manipulated to simultaneously visualize both outflow tracts, in addition to the aortic and ductal arches. Novel views of specific structures were generated. For example, the location and extent of a ventricular septal defect was imaged in a sagittal view of the interventricular septum. Furthermore, surface-rendered images of the atrioventricular valves were employed to distinguish between normal and pathologic conditions. Representative video clips were posted on the Journal's Web

  5. Four dimensional digital tomosynthesis using on-board imager for the verification of respiratory motion.

    Directory of Open Access Journals (Sweden)

    Justin C Park

    Full Text Available PURPOSE: To evaluate respiratory motion of a patient by generating four-dimensional digital tomosynthesis (4D DTS, extracting respiratory signal from patients' on-board projection data, and ensuring the feasibility of 4D DTS as a localization tool for the targets which have respiratory movement. METHODS AND MATERIALS: Four patients with lung and liver cancer were included to verify the feasibility of 4D-DTS with an on-board imager. CBCT acquisition (650-670 projections was used to reconstruct 4D DTS images and the breath signal of the patients was generated by extracting the motion of diaphragm during data acquisition. Based on the extracted signal, the projection data was divided into four phases: peak-exhale phase, mid-inhale phase, peak-inhale phase, and mid-exhale phase. The binned projection data was then used to generate 4D DTS, where the total scan angle was assigned as ±22.5° from rotation center, centered on 0° and 180° for coronal "half-fan" 4D DTS, and 90° and 270° for sagittal "half-fan" 4D DTS. The result was then compared with 4D CBCT which we have also generated with the same phase distribution. RESULTS: The motion of the diaphragm was evident from the 4D DTS results for peak-exhale, mid-inhale, peak-inhale and mid-exhale phase assignment which was absent in 3D DTS. Compared to the result of 4D CBCT, the view aliasing effect due to arbitrary angle reconstruction was less severe. In addition, the severity of metal artifacts, the image distortion due to presence of metal, was less than that of the 4D CBCT results. CONCLUSION: We have implemented on-board 4D DTS on patients data to visualize the movement of anatomy due to respiratory motion. The results indicate that 4D-DTS could be a promising alternative to 4D CBCT for acquiring the respiratory motion of internal organs just prior to radiotherapy treatment.

  6. Four-dimensional dose reconstruction through in vivo phase matching of cine images of electronic portal imaging device.

    Science.gov (United States)

    Yoon, Jihyung; Jung, Jae Won; Kim, Jong Oh; Yi, Byong Yong; Yeo, Inhwan

    2016-07-01

    A method is proposed to reconstruct a four-dimensional (4D) dose distribution using phase matching of measured cine images to precalculated images of electronic portal imaging device (EPID). (1) A phantom, designed to simulate a tumor in lung (a polystyrene block with a 3 cm diameter embedded in cork), was placed on a sinusoidally moving platform with an amplitude of 1 cm and a period of 4 s. Ten-phase 4D computed tomography (CT) images of the phantom were acquired. A planning target volume (PTV) was created by adding a margin of 1 cm around the internal target volume of the tumor. (2) Three beams were designed, which included a static beam, a theoretical dynamic beam, and a planning-optimized dynamic beam (PODB). While the theoretical beam was made by manually programming a simplistic sliding leaf motion, the planning-optimized beam was obtained from treatment planning. From the three beams, three-dimensional (3D) doses on the phantom were calculated; 4D dose was calculated by means of the ten phase images (integrated over phases afterward); serving as "reference" images, phase-specific EPID dose images under the lung phantom were also calculated for each of the ten phases. (3) Cine EPID images were acquired while the beams were irradiated to the moving phantom. (4) Each cine image was phase-matched to a phase-specific CT image at which common irradiation occurred by intercomparing the cine image with the reference images. (5) Each cine image was used to reconstruct dose in the phase-matched CT image, and the reconstructed doses were summed over all phases. (6) The summation was compared with forwardly calculated 4D and 3D dose distributions. Accounting for realistic situations, intratreatment breathing irregularity was simulated by assuming an amplitude of 0.5 cm for the phantom during a portion of breathing trace in which the phase matching could not be performed. Intertreatment breathing irregularity between the time of treatment and the time of planning CT was

  7. Four-dimensional dose reconstruction through in vivo phase matching of cine images of electronic portal imaging device

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Jihyung; Jung, Jae Won, E-mail: jungj@ecu.edu [Department of Physics, East Carolina University, Greenville, North Carolina 27858 (United States); Kim, Jong Oh [Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania 15232 (United States); Yi, Byong Yong [Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland 21201 (United States); Yeo, Inhwan [Department of Radiation Medicine, Loma Linda University Medical Center, Loma Linda, California 92354 (United States)

    2016-07-15

    Purpose: A method is proposed to reconstruct a four-dimensional (4D) dose distribution using phase matching of measured cine images to precalculated images of electronic portal imaging device (EPID). Methods: (1) A phantom, designed to simulate a tumor in lung (a polystyrene block with a 3 cm diameter embedded in cork), was placed on a sinusoidally moving platform with an amplitude of 1 cm and a period of 4 s. Ten-phase 4D computed tomography (CT) images of the phantom were acquired. A planning target volume (PTV) was created by adding a margin of 1 cm around the internal target volume of the tumor. (2) Three beams were designed, which included a static beam, a theoretical dynamic beam, and a planning-optimized dynamic beam (PODB). While the theoretical beam was made by manually programming a simplistic sliding leaf motion, the planning-optimized beam was obtained from treatment planning. From the three beams, three-dimensional (3D) doses on the phantom were calculated; 4D dose was calculated by means of the ten phase images (integrated over phases afterward); serving as “reference” images, phase-specific EPID dose images under the lung phantom were also calculated for each of the ten phases. (3) Cine EPID images were acquired while the beams were irradiated to the moving phantom. (4) Each cine image was phase-matched to a phase-specific CT image at which common irradiation occurred by intercomparing the cine image with the reference images. (5) Each cine image was used to reconstruct dose in the phase-matched CT image, and the reconstructed doses were summed over all phases. (6) The summation was compared with forwardly calculated 4D and 3D dose distributions. Accounting for realistic situations, intratreatment breathing irregularity was simulated by assuming an amplitude of 0.5 cm for the phantom during a portion of breathing trace in which the phase matching could not be performed. Intertreatment breathing irregularity between the time of treatment and the

  8. T2-weighted four dimensional magnetic resonance imaging with result-driven phase sorting

    International Nuclear Information System (INIS)

    Liu, Yilin; Yin, Fang-Fang; Cai, Jing; Czito, Brian G.; Bashir, Mustafa R.

    2015-01-01

    Purpose: T2-weighted MRI provides excellent tumor-to-tissue contrast for target volume delineation in radiation therapy treatment planning. This study aims at developing a novel T2-weighted retrospective four dimensional magnetic resonance imaging (4D-MRI) phase sorting technique for imaging organ/tumor respiratory motion. Methods: A 2D fast T2-weighted half-Fourier acquisition single-shot turbo spin-echo MR sequence was used for image acquisition of 4D-MRI, with a frame rate of 2–3 frames/s. Respiratory motion was measured using an external breathing monitoring device. A phase sorting method was developed to sort the images by their corresponding respiratory phases. Besides, a result-driven strategy was applied to effectively utilize redundant images in the case when multiple images were allocated to a bin. This strategy, selecting the image with minimal amplitude error, will generate the most representative 4D-MRI. Since we are using a different image acquisition mode for 4D imaging (the sequential image acquisition scheme) with the conventionally used cine or helical image acquisition scheme, the 4D dataset sufficient condition was not obviously and directly predictable. An important challenge of the proposed technique was to determine the number of repeated scans (N_R) required to obtain sufficient phase information at each slice position. To tackle this challenge, the authors first conducted computer simulations using real-time position management respiratory signals of the 29 cancer patients under an IRB-approved retrospective study to derive the relationships between N_R and the following factors: number of slices (N_S), number of 4D-MRI respiratory bins (N_B), and starting phase at image acquisition (P_0). To validate the authors’ technique, 4D-MRI acquisition and reconstruction were simulated on a 4D digital extended cardiac-torso (XCAT) human phantom using simulation derived parameters. Twelve healthy volunteers were involved in an IRB-approved study

  9. Four-dimensional cone beam CT reconstruction and enhancement using a temporal nonlocal means method

    Energy Technology Data Exchange (ETDEWEB)

    Jia Xun; Tian Zhen; Lou Yifei; Sonke, Jan-Jakob; Jiang, Steve B. [Center for Advanced Radiotherapy Technologies and Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California 92037 (United States); School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia 30318 (United States); Department of Radiation Oncology, Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Plesmanlaan 121, 1066 CX Amsterdam (Netherlands); Center for Advanced Radiotherapy Technologies and Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California 92037 (United States)

    2012-09-15

    Purpose: Four-dimensional cone beam computed tomography (4D-CBCT) has been developed to provide respiratory phase-resolved volumetric imaging in image guided radiation therapy. Conventionally, it is reconstructed by first sorting the x-ray projections into multiple respiratory phase bins according to a breathing signal extracted either from the projection images or some external surrogates, and then reconstructing a 3D CBCT image in each phase bin independently using FDK algorithm. This method requires adequate number of projections for each phase, which can be achieved using a low gantry rotation or multiple gantry rotations. Inadequate number of projections in each phase bin results in low quality 4D-CBCT images with obvious streaking artifacts. 4D-CBCT images at different breathing phases share a lot of redundant information, because they represent the same anatomy captured at slightly different temporal points. Taking this redundancy along the temporal dimension into account can in principle facilitate the reconstruction in the situation of inadequate number of projection images. In this work, the authors propose two novel 4D-CBCT algorithms: an iterative reconstruction algorithm and an enhancement algorithm, utilizing a temporal nonlocal means (TNLM) method. Methods: The authors define a TNLM energy term for a given set of 4D-CBCT images. Minimization of this term favors those 4D-CBCT images such that any anatomical features at one spatial point at one phase can be found in a nearby spatial point at neighboring phases. 4D-CBCT reconstruction is achieved by minimizing a total energy containing a data fidelity term and the TNLM energy term. As for the image enhancement, 4D-CBCT images generated by the FDK algorithm are enhanced by minimizing the TNLM function while keeping the enhanced images close to the FDK results. A forward-backward splitting algorithm and a Gauss-Jacobi iteration method are employed to solve the problems. The algorithms implementation on

  10. A novel four-dimensional radiotherapy planning strategy from a tumor-tracking beam's eye view

    Science.gov (United States)

    Li, Guang; Cohen, Patrice; Xie, Huchen; Low, Daniel; Li, Diana; Rimner, Andreas

    2012-11-01

    To investigate the feasibility of four-dimensional radiotherapy (4DRT) planning from a tumor-tracking beam's eye view (ttBEV) with reliable gross tumor volume (GTV) delineation, realistic normal tissue representation, high planning accuracy and low clinical workload, we propose and validate a novel 4D conformal planning strategy based on a synthesized 3.5D computed tomographic (3.5DCT) image with a motion-compensated tumor. To recreate patient anatomy from a ttBEV in the moving tumor coordinate system for 4DRT planning (or 4D planning), the centers of delineated GTVs in all phase CT images of 4DCT were aligned, and then the aligned CTs were averaged to produce a new 3.5DCT image. This GTV-motion-compensated CT contains a motionless target (with motion artifacts minimized) and motion-blurred normal tissues (with a realistic temporal density average). Semi-automatic threshold-based segmentation of the tumor, lung and body was applied, while manual delineation was used for other organs at risk (OARs). To validate this 3.5DCT-based 4D planning strategy, five patients with peripheral lung lesions of small size (tumor and a minor beam aperture and weighting adjustment to maintain plan conformality. The dose-volume histogram (DVH) of the 4DCT plan was created with two methods: one is an integrated DVH (iDVH4D), which is defined as the temporal average of all 3D-phase-plan DVHs, and the other (DVH4D) is based on the dose distribution in a reference phase CT image by dose warping from all phase plans using the displacement vector field (DVF) from a free-form deformable image registration (DIR). The DVH3.5D (for the 3.5DCT plan) was compared with both iDVH4D and DVH4D. To quantify the DVH difference between the 3.5DCT plan and the 4DCT plan, two methods were used: relative difference (%) of the areas underneath the DVH curves and the volumes receiving more than 20% (V20) and 50% (V50) of prescribed dose of these 4D plans. The volume of the delineated GTV from different phase

  11. On the four-dimensional holoraumy of the 4D, 𝒩 = 1 complex linear supermultiplet

    Science.gov (United States)

    Caldwell, Wesley; Diaz, Alejandro N.; Friend, Isaac; Gates, S. James; Harmalkar, Siddhartha; Lambert-Brown, Tamar; Lay, Daniel; Martirosova, Karina; Meszaros, Victor A.; Omokanwaye, Mayowa; Rudman, Shaina; Shin, Daeljuck; Vershov, Anthony

    2018-04-01

    We present arguments to support the existence of weight spaces for supersymmetric field theories and identify the calculations of information about supermultiplets to define such spaces via the concept of “holoraumy.” For the first time, this is extended to the complex linear superfield by a calculation of the commutator of supercovariant derivatives on all of its component fields.

  12. Four-dimensional optical multiband-OFDM for beyond 1.4 Tb/s serial optical transmission.

    Science.gov (United States)

    Djordjevic, Ivan; Batshon, Hussam G; Xu, Lei; Wang, Ting

    2011-01-17

    We propose a four-dimensional (4D) coded multiband-OFDM scheme suitable for beyond 1.4 Tb/s serial optical transport. The proposed scheme organizes the N-dimensional (ND) signal constellation points in the form of signal matrix; employs 2D-inverse FFT and 2D-FFT to perform modulation and demodulation, respectively; and exploits both orthogonal polarizations. This scheme can fully exploit advantages of OFDM to deal with chromatic dispersion, PMD and PDL effects; and multidimensional signal constellations to improve OSNR sensitivity of conventional optical OFDM. The improvement of 4D-OFDM over corresponding polarization-multiplexed QAM (with the same number of constellation points) ranges from 1.79 dB for 16 signal constellation point-four-dimensional-OFDM (16-4D-OFDM) up to 4.53 dB for 128-4D-OFDM.

  13. Monte Carlo Study of Four-Dimensional Self-avoiding Walks of up to One Billion Steps

    Science.gov (United States)

    Clisby, Nathan

    2018-04-01

    We study self-avoiding walks on the four-dimensional hypercubic lattice via Monte Carlo simulations of walks with up to one billion steps. We study the expected logarithmic corrections to scaling, and find convincing evidence in support the scaling form predicted by the renormalization group, with an estimate for the power of the logarithmic factor of 0.2516(14), which is consistent with the predicted value of 1/4. We also characterize the behaviour of the pivot algorithm for sampling four dimensional self-avoiding walks, and conjecture that the probability of a pivot move being successful for an N-step walk is O([ log N ]^{-1/4}).

  14. On the entropy of four-dimensional near-extremal N = 2 black holes with R2-terms

    International Nuclear Information System (INIS)

    Gruss, Eyal; Oz, Yaron

    2007-01-01

    We consider the entropy of four-dimensional near-extremal N = 2 black holes. The Bekenstein-Hawking entropy formula has the structure of the extremal black holes entropy with a shift of the charges depending on the non-extremality parameter and the moduli at infinity. We construct a class of near-extremal horizon solutions with R 2 -terms, and show that the generalized Wald entropy formula exhibits the same property

  15. A Novel Four-Dimensional Energy-Saving and Emission-Reduction System and Its Linear Feedback Control

    Directory of Open Access Journals (Sweden)

    Minggang Wang

    2012-01-01

    Full Text Available This paper reports a new four-dimensional energy-saving and emission-reduction chaotic system. The system is obtained in accordance with the complicated relationship between energy saving and emission reduction, carbon emission, economic growth, and new energy development. The dynamics behavior of the system will be analyzed by means of Lyapunov exponents and equilibrium points. Linear feedback control methods are used to suppress chaos to unstable equilibrium. Numerical simulations are presented to show these results.

  16. SU-E-T-437: Four-Dimensional Treatment Planning for Lung VMAT-SBRT

    International Nuclear Information System (INIS)

    Hashimoto, M; Takashina, M; Koizumi, M; Oohira, S; Ueda, Y; Miyazaki, M; Isono, M; Masaoka, A; Teshima, T

    2015-01-01

    Purpose: To assess optimal treatment planning approach of Volumetric Modulated Arc Therapy for lung Stereotactic Body Radiation Therapy (VMAT-SBRT). Methods: Subjects were 10 patients with lung cancer who had undergone 4DCT. The internal target volume (ITV) volume ranged from 2.6 to 16.5cm 3 and the tumor motion ranged from 0 to 2cm. From 4DCT, which was binned into 10 respiratory phases, 4 image data sets were created; maximum intensity projection (MIP), average intensity projection (AIP), AIP with the ITV replaced by 0HU (RITV-AIP) and RITV-AIP with the planning target volume (PTV) minus the internal target volume was set to −200 HU (HR-AIP). VMAT-SBRT plans were generated on each image set for a patient. 48Gy was prescribed to 95% of PTV. The plans were recalculated on all phase images of 4DCT and the dose distributions were accumulated using a deformable image registration software MIM Maestro™ as the 4D calculated dose to the gross tumor volume (GTV). The planned dose to the ITV and 4D calculated dose to the GTV were compared. Results: In AIP plan, 10 patients average of all dose parameters (D1%, D-mean, and D99%) discrepancy were 1Gy or smaller. MIP and RITV-AIP plans resulted in having common tendency and larger discrepancy than AIP plan. The 4D dose was lower than the planned dose, and 10 patients average of all dose parameters discrepancy were in range 1.3 to 2.6Gy. HR-AIP plan had the largest discrepancy in our trials. 4D calculated D1%, D-mean, and D99% were resulted in 3.0, 4.1, and 6.1Gy lower than the expected in plan, respectively. Conclusion: For all patients, the dose parameters expected in AIP plan approximated to 4D calculated. Using AIP image set seems optimal treatment planning approach of VMAT-SBRT for a mobile tumor. Funding Support: This work was supported by the Japan Society for the Promotion of Science Core-to-Core program (No. 23003)

  17. Four-dimensional anti-de Sitter toroidal black holes from a three-dimensional perspective: Full complexity

    International Nuclear Information System (INIS)

    Zanchin, Vilson T.; Kleber, Antares; Lemos, Jose P.S.

    2002-01-01

    The dimensional reduction of black hole solutions in four-dimensional (4D) general relativity is performed and new 3D black hole solutions are obtained. Considering a 4D spacetime with one spacelike Killing vector, it is possible to split the Einstein-Hilbert-Maxwell action with a cosmological term in terms of 3D quantities. Definitions of quasilocal mass and charges in 3D spacetimes are reviewed. The analysis is then particularized to the toroidal charged rotating anti-de Sitter black hole. The reinterpretation of the fields and charges in terms of a three-dimensional point of view is given in each case, and the causal structure analyzed

  18. Hemodynamic measurement using four-dimensional phase-contrast MRI: Quantification of hemodynamic parameters and clinical applications

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Ho Jin; Lee, Sang Joon [POSTECH Biotech Center, Pohang University of Science and Technology, Pohang (Korea, Republic of); Kim, Guk Bae; Kweon, Ji Hoon; Kim, Young Hak; Lee, Deok Hee; Yang, Dong Hyun; KIm, Nam Kug [Asan Medical Center, University of Ulsan College of Medicine, Seoul (Korea, Republic of)

    2016-07-15

    Recent improvements have been made to the use of time-resolved, three-dimensional phase-contrast (PC) magnetic resonance imaging (MRI), which is also named four-dimensional (4D) PC-MRI or 4D flow MRI, in the investigation of spatial and temporal variations in hemodynamic features in cardiovascular blood flow. The present article reviews the principle and analytical procedures of 4D PC-MRI. Various fluid dynamic biomarkers for possible clinical usage are also described, including wall shear stress, turbulent kinetic energy, and relative pressure. Lastly, this article provides an overview of the clinical applications of 4D PC-MRI in various cardiovascular regions.

  19. Hemodynamic Measurement Using Four-Dimensional Phase-Contrast MRI: Quantification of Hemodynamic Parameters and Clinical Applications

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Hojin [POSTECH Biotech Center, Pohang University of Science and Technology, Pohang 37673 (Korea, Republic of); Kim, Guk Bae [Asan Institute of Life Science, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505 (Korea, Republic of); Kweon, Jihoon [Department of Cardiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505 (Korea, Republic of); Lee, Sang Joon [POSTECH Biotech Center, Pohang University of Science and Technology, Pohang 37673 (Korea, Republic of); Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang 37673 (Korea, Republic of); Kim, Young-Hak [Department of Cardiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505 (Korea, Republic of); Lee, Deok Hee; Yang, Dong Hyun [Department of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505 (Korea, Republic of); Kim, Namkug [Department of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505 (Korea, Republic of); Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505 (Korea, Republic of)

    2016-11-01

    Recent improvements have been made to the use of time-resolved, three-dimensional phase-contrast (PC) magnetic resonance imaging (MRI), which is also named four-dimensional (4D) PC-MRI or 4D flow MRI, in the investigation of spatial and temporal variations in hemodynamic features in cardiovascular blood flow. The present article reviews the principle and analytical procedures of 4D PC-MRI. Various fluid dynamic biomarkers for possible clinical usage are also described, including wall shear stress, turbulent kinetic energy, and relative pressure. Lastly, this article provides an overview of the clinical applications of 4D PC-MRI in various cardiovascular regions.

  20. An accessible four-dimensional treatment of Maxwell's equations in terms of differential forms

    International Nuclear Information System (INIS)

    Sá, Lucas

    2017-01-01

    Maxwell’s equations are derived in terms of differential forms in the four-dimensional Minkowski representation, starting from the three-dimensional vector calculus differential version of these equations. Introducing all the mathematical and physical concepts needed (including the tool of differential forms), using only knowledge of elementary vector calculus and the local vector version of Maxwell’s equations, the equations are reduced to a simple and elegant set of two equations for a unified quantity, the electromagnetic field. The treatment should be accessible for students taking a first course on electromagnetism. (paper)

  1. Motion of particles on a four-dimensional asymptotically AdS black hole with scalar hair

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, P.A.; Olivares, Marco [Universidad Diego Portales, Facultad de Ingenieria, Santiago (Chile); Vasquez, Yerko [Universidad de La Serena, Departamento de Fisica, Facultad de Ciencias, La Serena (Chile)

    2015-10-15

    Motivated by black hole solutions with matter fields outside their horizon, we study the effect of these matter fields on the motion of massless and massive particles. We consider as background a four-dimensional asymptotically AdS black hole with scalar hair. The geodesics are studied numerically and we discuss the differences in the motion of particles between the four-dimensional asymptotically AdS black holes with scalar hair and their no-hair limit, that is, Schwarzschild AdS black holes. Mainly, we found that there are bounded orbits like planetary orbits in this background. However, the periods associated to circular orbits are modified by the presence of the scalar hair. Besides, we found that some classical tests such as perihelion precession, deflection of light, and gravitational time delay have the standard value of general relativity plus a correction term coming from the cosmological constant and the scalar hair. Finally, we found a specific value of the parameter associated to the scalar hair, in order to explain the discrepancy between the theory and the observations, for the perihelion precession of Mercury and light deflection. (orig.)

  2. Quality Assurance Challenges for Motion-Adaptive Radiation Therapy: Gating, Breath Holding, and Four-Dimensional Computed Tomography

    International Nuclear Information System (INIS)

    Jiang, Steve B.; Wolfgang, John; Mageras, Gig S.

    2008-01-01

    Compared with conventional three-dimensional (3D) conformal radiation therapy and intensity-modulated radiation therapy treatments, quality assurance (QA) for motion-adaptive radiation therapy involves various challenges because of the added temporal dimension. Here we discuss those challenges for three specific techniques related to motion-adaptive therapy: namely respiratory gating, breath holding, and four-dimensional computed tomography. Similar to the introduction of any other new technologies in clinical practice, typical QA measures should be taken for these techniques also, including initial testing of equipment and clinical procedures, as well as frequent QA examinations during the early stage of implementation. Here, rather than covering every QA aspect in depth, we focus on some major QA challenges. The biggest QA challenge for gating and breath holding is how to ensure treatment accuracy when internal target position is predicted using external surrogates. Recommended QA measures for each component of treatment, including simulation, planning, patient positioning, and treatment delivery and verification, are discussed. For four-dimensional computed tomography, some major QA challenges have also been discussed

  3. Four-Dimensional Patient Dose Reconstruction for Scanned Ion Beam Therapy of Moving Liver Tumors

    International Nuclear Information System (INIS)

    Richter, Daniel; Saito, Nami; Chaudhri, Naved; Härtig, Martin; Ellerbrock, Malte; Jäkel, Oliver; Combs, Stephanie E.; Habermehl, Daniel; Herfarth, Klaus; Durante, Marco; Bert, Christoph

    2014-01-01

    Purpose: Estimation of the actual delivered 4-dimensional (4D) dose in treatments of patients with mobile hepatocellular cancer with scanned carbon ion beam therapy. Methods and Materials: Six patients were treated with 4 fractions to a total relative biological effectiveness (RBE)–weighted dose of 40 Gy (RBE) using a single field. Respiratory motion was addressed by dedicated margins and abdominal compression (5 patients) or gating (1 patient). 4D treatment dose reconstructions based on the treatment records and the measured motion monitoring data were performed for the single-fraction dose and a total of 17 fractions. To assess the impact of uncertainties in the temporal correlation between motion trajectory and beam delivery sequence, 3 dose distributions for varying temporal correlation were calculated per fraction. For 3 patients, the total treatment dose was formed from the fractional distributions using all possible combinations. Clinical target volume (CTV) coverage was analyzed using the volumes receiving at least 95% (V 95 ) and 107% (V 107 ) of the planned doses. Results: 4D dose reconstruction based on daily measured data is possible in a clinical setting. V 95 and V 107 values for the single fractions ranged between 72% and 100%, and 0% and 32%, respectively. The estimated total treatment dose to the CTV exhibited improved and more robust dose coverage (mean V 95 > 87%, SD < 3%) and overdose (mean V 107 < 4%, SD < 3%) with respect to the single-fraction dose for all analyzed patients. Conclusions: A considerable impact of interplay effects on the single-fraction CTV dose was found for most of the analyzed patients. However, due to the fractionated treatment, dose heterogeneities were substantially reduced for the total treatment dose. 4D treatment dose reconstruction for scanned ion beam therapy is technically feasible and may evolve into a valuable tool for dose assessment

  4. SU-G-TeP1-06: Fast GPU Framework for Four-Dimensional Monte Carlo in Adaptive Intensity Modulated Proton Therapy (IMPT) for Mobile Tumors

    Energy Technology Data Exchange (ETDEWEB)

    Botas, P [Massachusetts General Hospital and Harvard Medical School, Boston, MA (United States); Heidelberg University, Heidelberg (Germany); Grassberger, C; Sharp, G; Paganetti, H [Massachusetts General Hospital and Harvard Medical School, Boston, MA (United States); Qin, N; Jia, X; Jiang, S [UT Southwestern Medical Center, Dallas, TX (United States)

    2016-06-15

    Purpose: To demonstrate the feasibility of fast Monte Carlo (MC) treatment planning and verification using four-dimensional CT (4DCT) for adaptive IMPT for lung cancer patients. Methods: A validated GPU MC code, gPMC, has been linked to the patient database at our institution and employed to compute the dose-influence matrices (Dij) on the planning CT (pCT). The pCT is an average of the respiratory motion of the patient. The Dijs and patient structures were fed to the optimizer to calculate a treatment plan. To validate the plan against motion, a 4D dose distribution averaged over the possible starting phases is calculated using the 4DCT and a model of the time structure of the delivered spot map. The dose is accumulated using vector maps created by a GPU-accelerated deformable image registration program (DIR) from each phase of the 4DCT to the reference phase using the B-spline method. Calculation of the Dij matrices and the DIR are performed on a cluster, with each field and vector map calculated in parallel. Results: The Dij production takes ∼3.5s per beamlet for 10e6 protons, depending on the energy and the CT size. Generating a plan with 4D simulation of 1000 spots in 4 fields takes approximately 1h. To test the framework, IMPT plans for 10 lung cancer patients were generated for validation. Differences between the planned and the delivered dose of 19% in dose to some organs at risk and 1.4/21.1% in target mean dose/homogeneity with respect to the plan were observed, suggesting potential for improvement if adaptation is considered. Conclusion: A fast MC treatment planning framework has been developed that allows reliable plan design and verification for mobile targets and adaptation of treatment plans. This will significantly impact treatments for lung tumors, as 4D-MC dose calculations can now become part of planning strategies.

  5. Sensitivity of the model error parameter specification in weak-constraint four-dimensional variational data assimilation

    Science.gov (United States)

    Shaw, Jeremy A.; Daescu, Dacian N.

    2017-08-01

    This article presents the mathematical framework to evaluate the sensitivity of a forecast error aspect to the input parameters of a weak-constraint four-dimensional variational data assimilation system (w4D-Var DAS), extending the established theory from strong-constraint 4D-Var. Emphasis is placed on the derivation of the equations for evaluating the forecast sensitivity to parameters in the DAS representation of the model error statistics, including bias, standard deviation, and correlation structure. A novel adjoint-based procedure for adaptive tuning of the specified model error covariance matrix is introduced. Results from numerical convergence tests establish the validity of the model error sensitivity equations. Preliminary experiments providing a proof-of-concept are performed using the Lorenz multi-scale model to illustrate the theoretical concepts and potential benefits for practical applications.

  6. The Topological Structure of the SU(2) Chern–Simons Topological Current in the Four-Dimensional Quantum Hall Effect

    International Nuclear Information System (INIS)

    Xiu-Ming, Zhang; Yi-Shi, Duan

    2010-01-01

    In the light of the decomposition of the SU(2) gauge potential for I = 1/2, we obtain the SU(2) Chern-Simons current over S 4 , i.e. the vortex current in the effective field for the four-dimensional quantum Hall effect. Similar to the vortex excitations in the two-dimensional quantum Hall effect (2D FQH) which are generated from the zero points of the complex scalar field, in the 4D FQH, we show that the SU(2) Chern–Simons vortices are generated from the zero points of the two-component wave functions Ψ, and their topological charges are quantized in terms of the Hopf indices and Brouwer degrees of φ-mapping under the condition that the zero points of field Ψ are regular points. (condensed matter: electronicstructure, electrical, magnetic, and opticalproperties)

  7. Energy analysis of four dimensional extended hyperbolic Scarf I plus three dimensional separable trigonometric noncentral potentials using SUSY QM approach

    International Nuclear Information System (INIS)

    Suparmi, A.; Cari, C.; Deta, U. A.; Handhika, J.

    2016-01-01

    The non-relativistic energies and wave functions of extended hyperbolic Scarf I plus separable non-central shape invariant potential in four dimensions are investigated using Supersymmetric Quantum Mechanics (SUSY QM) Approach. The three dimensional separable non-central shape invariant angular potential consists of trigonometric Scarf II, Manning Rosen and Poschl-Teller potentials. The four dimensional Schrodinger equation with separable shape invariant non-central potential is reduced into four one dimensional Schrodinger equations through variable separation method. By using SUSY QM, the non-relativistic energies and radial wave functions are obtained from radial Schrodinger equation, the orbital quantum numbers and angular wave functions are obtained from angular Schrodinger equations. The extended potential means there is perturbation terms in potential and cause the decrease in energy spectra of Scarf I potential. (paper)

  8. The study of two, three and four dimensional nonlinear dynamics of nuclear fission reactors and effective parameters on its behaviour

    International Nuclear Information System (INIS)

    Tajik, M.; Ghasemizad, A.

    2008-01-01

    In this research, new physical fission reactor parameters which have very sensitive effects on the qualitative behavior of a reactor, are introduced. Therefore, the two, the nonlinear dynamics of two, three and four dimensional, considering almost the effective parameters are formulated for describing nuclear fission reactor systems. Using both analytical and numerical methods, the stability and instability of the given dynamical equations and the conditions of stability are studied in these systems. We have shown that the two parameters of the mean energy residence time in fuel and coolant and also their ratios have the most qualitative effects on the dynamical behaviour of a typical nuclear fission reactor. Increasing or decreasing of these parameters from a captain limit can lead to stability or un stability in a given system

  9. Four-dimensional symmetry from a broad viewpoint. II Invariant distribution of quantized field oscillators and questions on infinities

    Science.gov (United States)

    Hsu, J. P.

    1983-01-01

    The foundation of the quantum field theory is changed by introducing a new universal probability principle into field operators: one single inherent and invariant probability distribution P(/k/) is postulated for boson and fermion field oscillators. This can be accomplished only when one treats the four-dimensional symmetry from a broad viewpoint. Special relativity is too restrictive to allow such a universal probability principle. A radical length, R, appears in physics through the probability distribution P(/k/). The force between two point particles vanishes when their relative distance tends to zero. This appears to be a general property for all forces and resembles the property of asymptotic freedom. The usual infinities in vacuum fluctuations and in local interactions, however complicated they may be, are all removed from quantum field theories. In appendix A a simple finite and unitary theory of unified electroweak interactions is discussed without assuming Higgs scalar bosons.

  10. Boson-fermion mass splittings in four-dimensional heterotic string models with anomalous U(1) gauge groups

    International Nuclear Information System (INIS)

    Yamaguchi, Masahiro; Yamamoto, Hisashi; Onogi, Tetsuya

    1989-01-01

    In four-dimensional heterotic string models with anomalous U(1) gauge groups, space-time supersymmetry (SUSY) breaks down spontaneously at one loop. In this paper, the Ward-Takahashi identity of broken SUSY in one-loop two-point amplitudes is investigated in all generalities. The boson-fermion mass splitting of any supersymmetric pair in an arbitrary model is proportional to the product of the D-term expectation value (the sum of (chirality)x(U(1) charge) of massless fermions in the model) and the U(1) charge of the external particle. In order to give a better understanding of the results, we present some examples of the mass splittings in a simple Z 3 orbifold model. (orig.)

  11. Four-dimensional CT-based evaluation of volumetric modulated arc therapy for abdominal lymph node metastasis from hepatocellular carcinoma

    International Nuclear Information System (INIS)

    Zhang Li; Xi Mian; Deng Xiaowu; Li Qiaoqiao; Huang Xiaoyan; Liu Mengzhong

    2012-01-01

    This study aimed to identify the potential benefits and limitations of a new volumetric modulated arc therapy (VMAT) planning system in Monaco, compared with conventional intensity-modulated radiotherapy (IMRT) and three-dimensional conformal radiotherapy (3DCRT). Four-dimensional CT scans of 13 patients with abdominal lymph node metastasis from hepatocellular carcinoma were selected. Internal target volume was defined as the combined volume of clinical target volumes (CTVs) in the multiple four-dimensional computed tomography (4DCT) phases. Dose prescription was set to 45 Gy for the planning target volume (PTV) in daily 3.0-Gy fractions. The PTV dose coverage, organs at risk (OAR) doses, delivery parameters and treatment accuracy were assessed. Compared with 3DCRT, both VMAT and IMRT provided a systematic improvement in PTV coverage and homogeneity. Planning objectives were not fulfilled for the right kidney, in which the 3DCRT plans exceeded the dose constraints in two patients. Equivalent target coverage and sparing of OARs were achieved with VMAT compared with IMRT. The number of MU/fraction was 462±68 (3DCRT), 564±105 (IMRT) and 601±134 (VMAT), respectively. Effective treatment times were as follows: 1.8±0.2 min (3DCRT), 6.1±1.5 min (IMRT) and 4.8±1.0 min (VMAT). This study suggests that the VMAT plans generated in Monaco improved delivery efficiency for equivalent dosimetric quality to IMRT, and were superior to 3DCRT in target coverage and sparing of most OARs. However, the superiority of VMAT over IMRT in delivery efficiency is limited. (author)

  12. Investigation of four-dimensional computed tomography-based pulmonary ventilation imaging in patients with emphysematous lung regions

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Tokihiro; Loo, Billy W Jr; Keall, Paul J [Department of Radiation Oncology, Stanford University School of Medicine, 875 Blake Wilbur Dr, Stanford, CA 94305-5847 (United States); Kabus, Sven; Lorenz, Cristian; Von Berg, Jens; Blaffert, Thomas [Department of Digital Imaging, Philips Research Europe, Roentgenstrasse 24-26, D-22335 Hamburg (Germany); Klinder, Tobias, E-mail: Tokihiro@stanford.edu [Clinical Informatics, Interventional, and Translational Solutions, Philips Research North America, Briarcliff Manor, NY 10510 (United States)

    2011-04-07

    A pulmonary ventilation imaging technique based on four-dimensional (4D) computed tomography (CT) has advantages over existing techniques. However, physiologically accurate 4D-CT ventilation imaging has not been achieved in patients. The purpose of this study was to evaluate 4D-CT ventilation imaging by correlating ventilation with emphysema. Emphysematous lung regions are less ventilated and can be used as surrogates for low ventilation. We tested the hypothesis: 4D-CT ventilation in emphysematous lung regions is significantly lower than in non-emphysematous regions. Four-dimensional CT ventilation images were created for 12 patients with emphysematous lung regions as observed on CT, using a total of four combinations of two deformable image registration (DIR) algorithms: surface-based (DIR{sup sur}) and volumetric (DIR{sup vol}), and two metrics: Hounsfield unit (HU) change (V{sub HU}) and Jacobian determinant of deformation (V{sub Jac}), yielding four ventilation image sets per patient. Emphysematous lung regions were detected by density masking. We tested our hypothesis using the one-tailed t-test. Visually, different DIR algorithms and metrics yielded spatially variant 4D-CT ventilation images. The mean ventilation values in emphysematous lung regions were consistently lower than in non-emphysematous regions for all the combinations of DIR algorithms and metrics. V{sub HU} resulted in statistically significant differences for both DIR{sup sur} (0.14 {+-} 0.14 versus 0.29 {+-} 0.16, p = 0.01) and DIR{sup vol} (0.13 {+-} 0.13 versus 0.27 {+-} 0.15, p < 0.01). However, V{sub Jac} resulted in non-significant differences for both DIR{sup sur} (0.15 {+-} 0.07 versus 0.17 {+-} 0.08, p = 0.20) and DIR{sup vol} (0.17 {+-} 0.08 versus 0.19 {+-} 0.09, p = 0.30). This study demonstrated the strong correlation between the HU-based 4D-CT ventilation and emphysema, which indicates the potential for HU-based 4D-CT ventilation imaging to achieve high physiologic accuracy. A

  13. Four-dimensional volume-of-interest reconstruction for cone-beam computed tomography-guided radiation therapy.

    Science.gov (United States)

    Ahmad, Moiz; Balter, Peter; Pan, Tinsu

    2011-10-01

    Data sufficiency are a major problem in four-dimensional cone-beam computed tomography (4D-CBCT) on linear accelerator-integrated scanners for image-guided radiotherapy. Scan times must be in the range of 4-6 min to avoid undersampling artifacts. Various image reconstruction algorithms have been proposed to accommodate undersampled data acquisitions, but these algorithms are computationally expensive, may require long reconstruction times, and may require algorithm parameters to be optimized. The authors present a novel reconstruction method, 4D volume-of-interest (4D-VOI) reconstruction which suppresses undersampling artifacts and resolves lung tumor motion for undersampled 1-min scans. The 4D-VOI reconstruction is much less computationally expensive than other 4D-CBCT algorithms. The 4D-VOI method uses respiration-correlated projection data to reconstruct a four-dimensional (4D) image inside a VOI containing the moving tumor, and uncorrelated projection data to reconstruct a three-dimensional (3D) image outside the VOI. Anatomical motion is resolved inside the VOI and blurred outside the VOI. The authors acquired a 1-min. scan of an anthropomorphic chest phantom containing a moving water-filled sphere. The authors also used previously acquired 1-min scans for two lung cancer patients who had received CBCT-guided radiation therapy. The same raw data were used to test and compare the 4D-VOI reconstruction with the standard 4D reconstruction and the McKinnon-Bates (MB) reconstruction algorithms. Both the 4D-VOI and the MB reconstructions suppress nearly all the streak artifacts compared with the standard 4D reconstruction, but the 4D-VOI has 3-8 times greater contrast-to-noise ratio than the MB reconstruction. In the dynamic chest phantom study, the 4D-VOI and the standard 4D reconstructions both resolved a moving sphere with an 18 mm displacement. The 4D-VOI reconstruction shows a motion blur of only 3 mm, whereas the MB reconstruction shows a motion blur of 13 mm

  14. Curvature invariant characterization of event horizons of four-dimensional black holes conformal to stationary black holes

    Science.gov (United States)

    McNutt, David D.

    2017-11-01

    We introduce three approaches to generate curvature invariants that transform covariantly under a conformal transformation of a four-dimensional spacetime. For any black hole conformally related to a stationary black hole, we show how a set of conformally covariant invariants can be combined to produce a conformally covariant invariant that detects the event horizon of the conformally related black hole. As an application we consider the rotating dynamical black holes conformally related to the Kerr-Newman-Unti-Tamburino-(anti)-de Sitter spacetimes and construct an invariant that detects the conformal Killing horizon along with a second invariant that detects the conformal stationary limit surface. In addition, we present necessary conditions for a dynamical black hole to be conformally related to a stationary black hole and apply these conditions to the ingoing Kerr-Vaidya and Vaidya black hole solutions to determine if they are conformally related to stationary black holes for particular choices of the mass function. While two of the three approaches cannot be generalized to higher dimensions, we discuss the existence of a conformally covariant invariant that will detect the event horizon for any higher dimensional black hole conformally related to a stationary black hole which admits at least two conformally covariant invariants, including all vacuum spacetimes.

  15. Comparison of Volumes between Four-Dimensional Computed Tomography and Cone-Beam Computed Tomography Images using Dynamic Phantom

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seong Eun; Won, Hui Su; Hong, Joo Wan; Chang, Nam Jun; Jung, Woo Hyun; Choi, Byeong Don [Dept. of Radiation Oncology, Seoul National University Bundang Hospital, Sungnam (Korea, Republic of)

    2016-12-15

    The aim of this study was to compare the differences between the volumes acquired with four-dimensional computed tomography (4DCT)images with a reconstruction image-filtering algorithm and cone-beam computed tomography (CBCT) images with dynamic phantom. The 4DCT images were obtained from the computerized imaging reference systems (CIRS) phantom using a computed tomography (CT) simulator. We analyzed the volumes for maximum intensity projection (MIP), minimum intensity projection (MinIP) and average intensity projection (AVG) of the images obtained with the 4DCT scanner against those acquired from CBCT images with CT ranger tools. Difference in volume for node of 1, 2 and 3 cm between CBCT and 4DCT was 0.54⁓2.33, 5.16⁓8.06, 9.03⁓20.11 ml in MIP, respectively, 0.00⁓1.48, 0.00⁓8.47, 1.42⁓24.85 ml in MinIP, respectively and 0.00⁓1.17, 0.00⁓2.19, 0.04⁓3.35 ml in AVG, respectively. After a comparative analysis of the volumes for each nodal size, it was apparent that the CBCT images were similar to the AVG images acquired using 4DCT.

  16. Gross tumor volume dependency on phase sorting methods of four-dimensional computed tomography images for lung cancer

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Soo Yong; Lim, Sang Wook; Ma, Sun Young; Yu, Je Sang [Dept. of Radiation Oncology, Kosin University Gospel Hospital, Kosin University College of Medicine, Busan (Korea, Republic of)

    2017-09-15

    To see the gross tumor volume (GTV) dependency according to the phase selection and reconstruction methods, we measured and analyzed the changes of tumor volume and motion at each phase in 20 cases with lung cancer patients who underwent image-guided radiotherapy. We retrospectively analyzed four-dimensional computed tomography (4D-CT) images in 20 cases of 19 patients who underwent image-guided radiotherapy. The 4D-CT images were reconstructed by the maximum intensity projection (MIP) and the minimum intensity projection (Min-IP) method after sorting phase as 40%–60%, 30%–70%, and 0%–90%. We analyzed the relationship between the range of motion and the change of GTV according to the reconstruction method. The motion ranges of GTVs are statistically significant only for the tumor motion in craniocaudal direction. The discrepancies of GTV volume and motion between MIP and Min-IP increased rapidly as the wider ranges of duty cycles are selected. As narrow as possible duty cycle such as 40%–60% and MIP reconstruction was suitable for lung cancer if the respiration was stable. Selecting the reconstruction methods and duty cycle is important for small size and for large motion range tumors.

  17. Differences in abdominal organ movement between supine and prone positions measured using four-dimensional computed tomography

    International Nuclear Information System (INIS)

    Kim, Young Seok; Park, Sung Ho; Ahn, Seung Do; Lee, Jeong Eun; Choi, Eun Kyung; Lee, Sang-wook; Shin, Seong Soo; Yoon, Sang Min; Kim, Jong Hoon

    2007-01-01

    Background and purpose: To analyze the differences in intrafractional organ movement throughout the breathing cycles between the supine and prone positions using four-dimensional computed tomography (4D CT). Materials and methods: We performed 4D CT on nine volunteers in the supine and prone positions, with each examinee asked to breathe normally during scanning. The movement of abdominal organs in the cranio-caudal (CC), anterior-posterior (AP) and right-left (RL) directions was quantified by contouring on each phase between inspiration and expiration. Results: The mean intrafractional motions of the hepatic dome, lower tip, pancreatic head and tail, both kidneys, spleen, and celiac axis in the supine/prone position were 17.3/13.0, 14.4/11.0, 12.8/8.9, 13.0/10.0, 14.3/12.1, 12.3/12.6, 11.7/12.6 and 2.2/1.8 mm, respectively. Intrafractional movements of the liver dome and pancreatic head were reduced significantly in the prone position. The CC directional excursions were major determinants of the 3D displacements of the abdominal organs. Alteration from the supine to the prone position did not change the amount of intrafractional movements of kidneys, spleen, and celiac axis. Conclusion: There was a significant reduction in the movements of the liver and pancreas during the prone position, especially in the CC direction, suggesting possible advantage of radiotherapy to these organs in this position

  18. Evaluation of four-dimensional nonbinary LDPC-coded modulation for next-generation long-haul optical transport networks.

    Science.gov (United States)

    Zhang, Yequn; Arabaci, Murat; Djordjevic, Ivan B

    2012-04-09

    Leveraging the advanced coherent optical communication technologies, this paper explores the feasibility of using four-dimensional (4D) nonbinary LDPC-coded modulation (4D-NB-LDPC-CM) schemes for long-haul transmission in future optical transport networks. In contrast to our previous works on 4D-NB-LDPC-CM which considered amplified spontaneous emission (ASE) noise as the dominant impairment, this paper undertakes transmission in a more realistic optical fiber transmission environment, taking into account impairments due to dispersion effects, nonlinear phase noise, Kerr nonlinearities, and stimulated Raman scattering in addition to ASE noise. We first reveal the advantages of using 4D modulation formats in LDPC-coded modulation instead of conventional two-dimensional (2D) modulation formats used with polarization-division multiplexing (PDM). Then we demonstrate that 4D LDPC-coded modulation schemes with nonbinary LDPC component codes significantly outperform not only their conventional PDM-2D counterparts but also the corresponding 4D bit-interleaved LDPC-coded modulation (4D-BI-LDPC-CM) schemes, which employ binary LDPC codes as component codes. We also show that the transmission reach improvement offered by the 4D-NB-LDPC-CM over 4D-BI-LDPC-CM increases as the underlying constellation size and hence the spectral efficiency of transmission increases. Our results suggest that 4D-NB-LDPC-CM can be an excellent candidate for long-haul transmission in next-generation optical networks.

  19. Tailoring four-dimensional cone-beam CT acquisition settings for fiducial marker-based image guidance in radiation therapy.

    Science.gov (United States)

    Jin, Peng; van Wieringen, Niek; Hulshof, Maarten C C M; Bel, Arjan; Alderliesten, Tanja

    2018-04-01

    Use of four-dimensional cone-beam CT (4D-CBCT) and fiducial markers for image guidance during radiation therapy (RT) of mobile tumors is challenging due to the trade-off among image quality, imaging dose, and scanning time. This study aimed to investigate different 4D-CBCT acquisition settings for good visibility of fiducial markers in 4D-CBCT. Using these 4D-CBCTs, the feasibility of marker-based 4D registration for RT setup verification and manual respiration-induced motion quantification was investigated. For this, we applied a dynamic phantom with three different breathing motion amplitudes and included two patients with implanted markers. Irrespective of the motion amplitude, for a medium field of view (FOV), marker visibility was improved by reducing the imaging dose per projection and increasing the number of projection images; however, the scanning time was 4 to 8 min. For a small FOV, the total imaging dose and the scanning time were reduced (62.5% of the dose using a medium FOV, 2.5 min) without losing marker visibility. However, the body contour could be missing for a small FOV, which is not preferred in RT. The marker-based 4D setup verification was feasible for both the phantom and patient data. Moreover, manual marker motion quantification can achieve a high accuracy with a mean error of [Formula: see text].

  20. Optical Coherence Tomography for Retinal Surgery: Perioperative Analysis to Real-Time Four-Dimensional Image-Guided Surgery.

    Science.gov (United States)

    Carrasco-Zevallos, Oscar M; Keller, Brenton; Viehland, Christian; Shen, Liangbo; Seider, Michael I; Izatt, Joseph A; Toth, Cynthia A

    2016-07-01

    Magnification of the surgical field using the operating microscope facilitated profound innovations in retinal surgery in the 1970s, such as pars plana vitrectomy. Although surgical instrumentation and illumination techniques are continually developing, the operating microscope for vitreoretinal procedures has remained essentially unchanged and currently limits the surgeon's depth perception and assessment of subtle microanatomy. Optical coherence tomography (OCT) has revolutionized clinical management of retinal pathology, and its introduction into the operating suite may have a similar impact on surgical visualization and treatment. In this article, we review the evolution of OCT for retinal surgery, from perioperative analysis to live volumetric (four-dimensional, 4D) image-guided surgery. We begin by briefly addressing the benefits and limitations of the operating microscope, the progression of OCT technology, and OCT applications in clinical/perioperative retinal imaging. Next, we review intraoperative OCT (iOCT) applications using handheld probes during surgical pauses, two-dimensional (2D) microscope-integrated OCT (MIOCT) of live surgery, and volumetric MIOCT of live surgery. The iOCT discussion focuses on technological advancements, applications during human retinal surgery, translational difficulties and limitations, and future directions.

  1. Inflow hemodynamics evaluated by using four-dimensional flow magnetic resonance imaging and the size ratio of unruptured cerebral aneurysms

    International Nuclear Information System (INIS)

    Futami, Kazuya; Nambu, Iku; Kitabayashi, Tomohiro; Sano, Hiroki; Misaki, Kouichi; Uchiyama, Naoyuki; Nakada, Mitsutoshi

    2017-01-01

    Prediction of the rupture risk is critical for the identification of unruptured cerebral aneurysms (UCAs) eligible for invasive treatments. The size ratio (SR) is a strong morphological predictor for rupture. We investigated the relationship between the inflow hemodynamics evaluated on four-dimensional (4D) flow magnetic resonance (MR) imaging and the SR to identify specific characteristics related to UCA rupture. We evaluated the inflow jet patterns and inflow hemodynamic parameters of 70 UCAs on 4D flow MR imaging and compared them among 23 aneurysms with an SR ≥2.1 and 47 aneurysms with an SR ≤2.0. Based on the shape of inflow streamline bundles with a velocity ≥75% of the maximum flow velocity in the parent artery, the inflow jet patterns were classified as concentrated (C), diffuse (D), neck-limited (N), and unvisualized (U). The incidence of patterns C and N was significantly higher in aneurysms with an SR ≥2.1. The rate of pattern U was significantly higher in aneurysms with an SR ≤2.0. The maximum inflow rate and the inflow rate ratio were significantly higher in aneurysms with an SR ≥2.1. The SR affected the inflow jet pattern, the maximum inflow rate, and the inflow rate ratio of UCAs. In conjunction with the SR, inflow hemodynamic analysis using 4D flow MR imaging may contribute to the risk stratification for aneurysmal rupture. (orig.)

  2. Inflow hemodynamics evaluated by using four-dimensional flow magnetic resonance imaging and the size ratio of unruptured cerebral aneurysms

    Energy Technology Data Exchange (ETDEWEB)

    Futami, Kazuya [Matto-Ishikawa Central Hospital, Department of Neurosurgery, Hakusan, Ishikawa (Japan); Nambu, Iku; Kitabayashi, Tomohiro; Sano, Hiroki; Misaki, Kouichi; Uchiyama, Naoyuki; Nakada, Mitsutoshi [Kanazawa University School of Medicine, Department of Neurosurgery, Kanazawa, Ishikawa (Japan)

    2017-04-15

    Prediction of the rupture risk is critical for the identification of unruptured cerebral aneurysms (UCAs) eligible for invasive treatments. The size ratio (SR) is a strong morphological predictor for rupture. We investigated the relationship between the inflow hemodynamics evaluated on four-dimensional (4D) flow magnetic resonance (MR) imaging and the SR to identify specific characteristics related to UCA rupture. We evaluated the inflow jet patterns and inflow hemodynamic parameters of 70 UCAs on 4D flow MR imaging and compared them among 23 aneurysms with an SR ≥2.1 and 47 aneurysms with an SR ≤2.0. Based on the shape of inflow streamline bundles with a velocity ≥75% of the maximum flow velocity in the parent artery, the inflow jet patterns were classified as concentrated (C), diffuse (D), neck-limited (N), and unvisualized (U). The incidence of patterns C and N was significantly higher in aneurysms with an SR ≥2.1. The rate of pattern U was significantly higher in aneurysms with an SR ≤2.0. The maximum inflow rate and the inflow rate ratio were significantly higher in aneurysms with an SR ≥2.1. The SR affected the inflow jet pattern, the maximum inflow rate, and the inflow rate ratio of UCAs. In conjunction with the SR, inflow hemodynamic analysis using 4D flow MR imaging may contribute to the risk stratification for aneurysmal rupture. (orig.)

  3. Extracting cardiac shapes and motion of the chick embryo heart outflow tract from four-dimensional optical coherence tomography images

    Science.gov (United States)

    Yin, Xin; Liu, Aiping; Thornburg, Kent L.; Wang, Ruikang K.; Rugonyi, Sandra

    2012-09-01

    Recent advances in optical coherence tomography (OCT), and the development of image reconstruction algorithms, enabled four-dimensional (4-D) (three-dimensional imaging over time) imaging of the embryonic heart. To further analyze and quantify the dynamics of cardiac beating, segmentation procedures that can extract the shape of the heart and its motion are needed. Most previous studies analyzed cardiac image sequences using manually extracted shapes and measurements. However, this is time consuming and subject to inter-operator variability. Automated or semi-automated analyses of 4-D cardiac OCT images, although very desirable, are also extremely challenging. This work proposes a robust algorithm to semi automatically detect and track cardiac tissue layers from 4-D OCT images of early (tubular) embryonic hearts. Our algorithm uses a two-dimensional (2-D) deformable double-line model (DLM) to detect target cardiac tissues. The detection algorithm uses a maximum-likelihood estimator and was successfully applied to 4-D in vivo OCT images of the heart outflow tract of day three chicken embryos. The extracted shapes captured the dynamics of the chick embryonic heart outflow tract wall, enabling further analysis of cardiac motion.

  4. Four-dimensional variational data assimilation for inverse modelling of atmospheric methane emissions: method and comparison with synthesis inversion

    Directory of Open Access Journals (Sweden)

    J. F. Meirink

    2008-11-01

    Full Text Available A four-dimensional variational (4D-Var data assimilation system for inverse modelling of atmospheric methane emissions is presented. The system is based on the TM5 atmospheric transport model. It can be used for assimilating large volumes of measurements, in particular satellite observations and quasi-continuous in-situ observations, and at the same time it enables the optimization of a large number of model parameters, specifically grid-scale emission rates. Furthermore, the variational method allows to estimate uncertainties in posterior emissions. Here, the system is applied to optimize monthly methane emissions over a 1-year time window on the basis of surface observations from the NOAA-ESRL network. The results are rigorously compared with an analogous inversion by Bergamaschi et al. (2007, which was based on the traditional synthesis approach. The posterior emissions as well as their uncertainties obtained in both inversions show a high degree of consistency. At the same time we illustrate the advantage of 4D-Var in reducing aggregation errors by optimizing emissions at the grid scale of the transport model. The full potential of the assimilation system is exploited in Meirink et al. (2008, who use satellite observations of column-averaged methane mixing ratios to optimize emissions at high spatial resolution, taking advantage of the zooming capability of the TM5 model.

  5. SU-F-207-13: Comparison of Four Dimensional Computed Tomography (4D CT) Versus Breath Hold Images to Determine Pulmonary Nodule Elasticity

    Energy Technology Data Exchange (ETDEWEB)

    Negahdar, M; Loo, B; Maxim, P [Stanford University School of Medicine, Stanford, CA (United States)

    2015-06-15

    Purpose: Elasticity may distinguish malignant from benign pulmonary nodules. To compare determining of malignant pulmonary nodule (MPN) elasticity from four dimensional computed tomography (4D CT) images versus inhale/exhale breath-hold CT images. Methods: We analyzed phase 00 and 50 of 4D CT and deep inhale and natural exhale of breath-hold CT images of 30 MPN treated with stereotactic ablative radiotherapy (SABR). The radius of the smallest MPN was 0.3 cm while the biggest one was 2.1 cm. An intensity based deformable image registration (DIR) workflow was applied to the 4D CT and breath-hold images to determine the volumes of the MPNs and a 1 cm ring of surrounding lung tissue (ring) in each state. Next, an elasticity parameter was derived by calculating the ratio of the volume changes of MPN (exhale:inhale or phase50:phase00) to that of a 1 cm ring of lung tissue surrounding the MPN. The proposed formulation of elasticity enables us to compare volume changes of two different MPN in two different locations of lung. Results: The calculated volume ratio of MPNs from 4D CT (phase50:phase00) and breath-hold images (exhale:inhale) was 1.00±0.23 and 0.95±0.11, respectively. It shows the stiffness of MPN and comparably bigger volume changes of MPN in breath-hold images because of the deeper degree of inhalation. The calculated elasticity of MPNs from 4D CT and breath-hold images was 1.12±0.22 and 1.23±0.26, respectively. For five patients who have had two MPN in their lung, calculated elasticity of tumor A and tumor B follows same trend in both 4D CT and breath-hold images. Conclusion: We showed that 4D CT and breath-hold images are comparable in the ability to calculate the elasticity of MPN. This study has been supported by Department of Defense LCRP 2011 #W81XWH-12-1-0286.

  6. Four-dimensional echocardiography area strain combined with exercise stress echocardiography to evaluate left ventricular regional systolic function in patients with mild single vessel coronary artery stenosis.

    Science.gov (United States)

    Deng, Yan; Peng, Long; Liu, Yuan-Yuan; Yin, Li-Xue; Li, Chun-Mei; Wang, Yi; Rao, Li

    2017-09-01

    The aim of this prospective study was to assess the diagnosis value of four-dimensional echocardiography area strain (AS) combined with exercise stress echocardiography to evaluate left ventricular regional systolic function in patients with mild single vessel coronary artery stenosis. Based on treadmill exercise load status, two-dimensional conventional echocardiography and four-dimensional echocardiography area strain were performed on patients suspected coronary artery disease before coronary angiogram. Thirty patients (case group) with mild left anterior descending coronary artery stenosis (stenosis Four-dimensional echocardiography area strain combined with exercise stress echocardiography could sensitively find left ventricular regional systolic function abnormality in patients with mild single vessel coronary artery stenosis, and locate stenosis coronary artery accordingly. © 2017, Wiley Periodicals, Inc.

  7. Interfractional variability of respiration-induced esophageal tumor motion quantified using fiducial markers and four-dimensional cone-beam computed tomography.

    Science.gov (United States)

    Jin, Peng; Hulshof, Maarten C C M; van Wieringen, Niek; Bel, Arjan; Alderliesten, Tanja

    2017-07-01

    To investigate the interfractional variability of respiration-induced esophageal tumor motion using fiducial markers and four-dimensional cone-beam computed tomography (4D-CBCT) and assess if a 4D-CT is sufficient for predicting the motion during the treatment. Twenty-four patients with 63 markers visible in the retrospectively reconstructed 4D-CBCTs were included. For each marker, we calculated the amplitude and trajectory of the respiration-induced motion. Possible time trends of the amplitude over the treatment course and the interfractional variability of amplitudes and trajectory shapes were assessed. Further, the amplitudes measured in the 4D-CT were compared to those in the 4D-CBCTs. The amplitude was largest in the cranial-caudal direction of the distal esophagus (mean: 7.1mm) and proximal stomach (mean: 7.8mm). No time trend was observed in the amplitude over the treatment course. The interfractional variability of amplitudes and trajectory shapes was limited (mean: ≤1.4mm). Moreover, small and insignificant deviation was found between the amplitudes quantified in the 4D-CT and in the 4D-CBCT (mean absolute difference: ≤1.0mm). The limited interfractional variability of amplitudes and trajectory shapes and small amplitude difference between 4D-CT-based and 4D-CBCT-based measurements imply that a single 4D-CT would be sufficient for predicting the respiration-induced esophageal tumor motion during the treatment course. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Dosimetric Advantages of Four-Dimensional Adaptive Image-Guided Radiotherapy for Lung Tumors Using Online Cone-Beam Computed Tomography

    International Nuclear Information System (INIS)

    Harsolia, Asif; Hugo, Geoffrey D.; Kestin, Larry L.; Grills, Inga S.; Yan Di

    2008-01-01

    Purpose: This study compares multiple planning techniques designed to improve accuracy while allowing reduced planning target volume (PTV) margins though image-guided radiotherapy (IGRT) with four-dimensional (4D) cone-beam computed tomography (CBCT). Methods and Materials: Free-breathing planning and 4D-CBCT scans were obtained in 8 patients with lung tumors. Four plans were generated for each patient: 3D-conformal, 4D-union, 4D-offline adaptive with a single correction (offline ART), and 4D-online adaptive with daily correction (online ART). For the 4D-union plan, the union of gross tumor volumes from all phases of the 4D-CBCT was created with a 5-mm expansion applied for setup uncertainty. For offline and online ART, the gross tumor volume was delineated at the mean position of tumor motion from the 4D-CBCT. The PTV margins were calculated from the random components of tumor motion and setup uncertainty. Results: Adaptive IGRT techniques provided better PTV coverage with less irradiated normal tissues. Compared with 3D plans, mean relative decreases in PTV volumes were 15%, 39%, and 44% using 4D-union, offline ART, and online ART planning techniques, respectively. This resulted in mean lung volume receiving ≥ 20Gy (V20) relative decreases of 21%, 23%, and 31% and mean lung dose relative decreases of 16%, 26%, and 31% for the 4D-union, 4D-offline ART, and 4D-online ART, respectively. Conclusions: Adaptive IGRT using CBCT is feasible for the treatment of patients with lung tumors and significantly decreases PTV volume and dose to normal tissues, allowing for the possibility of dose escalation. All analyzed 4D planning strategies resulted in improvements over 3D plans, with 4D-online ART appearing optimal

  9. Efficient approach for determining four-dimensional computed tomography-based internal target volume in stereotactic radiotherapy of lung cancer

    International Nuclear Information System (INIS)

    Yeo, Seung Gu; Kim, Eun Seog

    2013-01-01

    This study aimed to investigate efficient approaches for determining internal target volume (ITV) from four-dimensional computed tomography (4D CT) images used in stereotactic body radiotherapy (SBRT) for patients with early-stage non-small cell lung cancer (NSCLC). 4D CT images were analyzed for 15 patients who received SBRT for stage I NSCLC. Three different ITVs were determined as follows: combining clinical target volume (CTV) from all 10 respiratory phases (ITV 10Phases ); combining CTV from four respiratory phases, including two extreme phases (0% and 50%) plus two intermediate phases (20% and 70%) (ITV 4Phases ); and combining CTV from two extreme phases (ITV 2Phases ). The matching index (MI) of ITV 4Phases and ITV 2Phases was defined as the ratio of ITV 4Phases and ITV 2Phases , respectively, to the ITV 10Phases . The tumor motion index (TMI) was defined as the ratio of ITV 10Phases to CTV mean , which was the mean of 10 CTVs delineated on 10 respiratory phases. The ITVs were significantly different in the order of ITV 10Phases , ITV 4Phases , and ITV 2Phases (all p 4Phases was significantly higher than that of ITV 2Phases (p 4Phases was inversely related to TMI (r = -0.569, p = 0.034). In a subgroup with low TMI (n = 7), ITV 4Phases was not statistically different from ITV 10Phases (p = 0.192) and its MI was significantly higher than that of ITV 2Phases (p = 0.016). The ITV 4Phases may be an efficient approach alternative to optimal ITV 10Phases in SBRT for early-stage NSCLC with less tumor motion.

  10. A correlation study on position and volume variation of primary lung cancer during respiration by four-dimensional CT

    International Nuclear Information System (INIS)

    Zhang Yingjie; Li Jianbin; Tian Shiyu; Li Fengxiang; Fan Tingyong; Shao Qian; Xu Min; Lu Jie

    2011-01-01

    Objective: To investigate the correlation of position movement of primary tumor with interested organs and skin markers, and to investigate the correlation of volume variation of primary tumors and lungs during different respiration phases for patients with lung cancer at free breath condition scanned by four-dimensional CT (4DCT) simulation. Methods: 16 patients with lung cancer were scanned at free breath condition by simulation 4DCT which connected to a respiration-monitoring system. A coordinate system was created based on image of T 5 phase,gross tumor volume (GTV) and normal tissue structures of 10 phases were contoured. The three dimensional position variation of them were measured and their correlation were analyzed, and the same for the volume variation of GTV and lungs of 10 respiratory phases. Results: Movement range of lung cancer in different lobe differed extinct: 0.8 - 5.0 mm in upper lobe, 5.7 -5.9 mm in middle lobe and 10.2 - 13.7 mm in lower lobe, respectively. Movement range of lung cancer in three dimensional direction was different: z-axis 4.3 mm ± 4.3 mm > y-axis 2.2 mm ± 1.0 mm > x-axis 1.7 mm ± 1.5 mm (χ 2 =16.22, P =0.000), respectively. There was no statistical significant correlation for movement vector of GTV and interested structures (r =-0.50 - -0.01, P =0.058 - -0.961), nor for volume variation of tumor and lung (r =0.23, P =0.520). Conclusions: Based on 4DCT, statistically significant differences of GTV centroid movement are observed at different pulmonary lobes and in three dimensional directions. So individual 4DCT measurement is necessary for definition of internal target volume margin for lung cancer. (authors)

  11. Quantification of Mediastinal and Hilar Lymph Node Movement Using Four-Dimensional Computed Tomography Scan: Implications for Radiation Treatment Planning

    International Nuclear Information System (INIS)

    Sher, David J.; Wolfgang, John A.; Niemierko, Andrzej; Choi, Noah C.

    2007-01-01

    Purpose: To quantitatively describe mediastinal and hilar lymph node movement in patients with lymph node-positive lung cancer. Methods and Materials: Twenty-four patients with lung cancer who underwent four-dimensional computed tomography scanning at Massachusetts General Hospital were included in the study. The maximum extent of superior motion of the superior border was measured, as well as the maximum inferior movement of the inferior border. The average of these two values is defined as the peak-to-peak movement. This process was repeated for mediolateral (ML) and anterior-posterior (AP) movement. Linear regression was used to determine lymph node characteristics associated with peak-to-peak movement. Various uniform expansions were investigated to determine the expansion margins necessary to ensure complete internal target volume (ITV) coverage. Results: The mean peak-to-peak displacements of paratracheal lymph nodes were 4 mm (craniocaudal [CC]), 2 mm (ML), and 2 mm (AP). For subcarinal lymph nodes, the mean peak-to-peak movements were 6 mm (CC), 4 mm (ML), and 2 mm (AP). The mean peak-to-peak displacements of hilar lymph nodes were 7 mm (CC), 1 mm (ML), and 4 mm (AP). On multivariate analysis, lymph node station and lymph node size were significantly related to peak-to-peak movement. Expansions of 8 mm for paratracheal nodes and 13 mm for subcarinal and hilar nodes would have been necessary to cover the ITV of 95% of these nodal masses. Conclusions: Subcarinal and hilar lymph nodes may move substantially throughout the respiratory cycle. In the absence of patient-specific information on nodal motion, expansions of at least 8 mm, 13 mm, and 13 mm should be considered to cover the ITV of paratracheal, subcarinal, and hilar lymph nodes, respectively

  12. A four-dimensional motion field atlas of the tongue from tagged and cine magnetic resonance imaging

    Science.gov (United States)

    Xing, Fangxu; Prince, Jerry L.; Stone, Maureen; Wedeen, Van J.; El Fakhri, Georges; Woo, Jonghye

    2017-02-01

    Representation of human tongue motion using three-dimensional vector fields over time can be used to better understand tongue function during speech, swallowing, and other lingual behaviors. To characterize the inter-subject variability of the tongue's shape and motion of a population carrying out one of these functions it is desirable to build a statistical model of the four-dimensional (4D) tongue. In this paper, we propose a method to construct a spatio-temporal atlas of tongue motion using magnetic resonance (MR) images acquired from fourteen healthy human subjects. First, cine MR images revealing the anatomical features of the tongue are used to construct a 4D intensity image atlas. Second, tagged MR images acquired to capture internal motion are used to compute a dense motion field at each time frame using a phase-based motion tracking method. Third, motion fields from each subject are pulled back to the cine atlas space using the deformation fields computed during the cine atlas construction. Finally, a spatio-temporal motion field atlas is created to show a sequence of mean motion fields and their inter-subject variation. The quality of the atlas was evaluated by deforming cine images in the atlas space. Comparison between deformed and original cine images showed high correspondence. The proposed method provides a quantitative representation to observe the commonality and variability of the tongue motion field for the first time, and shows potential in evaluation of common properties such as strains and other tensors based on motion fields.

  13. Estimation of emission adjustments from the application of four-dimensional data assimilation to photochemical air quality modeling

    International Nuclear Information System (INIS)

    Mendoza-Dominguez, A.; Russell, A.G.

    2001-01-01

    Four-dimensional data assimilation applied to photochemical air quality modeling is used to suggest adjustments to the emissions inventory of the Atlanta, Georgia metropolitan area. In this approach, a three-dimensional air quality model, coupled with direct sensitivity analysis, develops spatially and temporally varying concentration and sensitivity fields that account for chemical and physical processing, and receptor analysis is used to adjust source strengths. Proposed changes to domain-wide NO x , volatile organic compounds (VOCs) and CO emissions from anthropogenic sources and for VOC emissions from biogenic sources were estimated, as well as modifications to sources based on their spatial location (urban vs. rural areas). In general, domain-wide anthropogenic VOC emissions were increased approximately two times their base case level to best match observations, domain-wide anthropogenic NO x and biogenic VOC emissions (BEIS2 estimates) remained close to their base case value and domain-wide CO emissions were decreased. Adjustments for anthropogenic NO x emissions increased their level of uncertainty when adjustments were computed for mobile and area sources (or urban and rural sources) separately, due in part to the poor spatial resolution of the observation field of nitrogen-containing species. Estimated changes to CO emissions also suffer from poor spatial resolution of the measurements. Results suggest that rural anthropogenic VOC emissions appear to be severely underpredicted. The FDDA approach was also used to investigate the speciation profiles of VOC emissions, and results warrant revision of these profiles. In general, the results obtained here are consistent with what are viewed as the current deficiencies in emissions inventories as derived by other top-down techniques, such as tunnel studies and analysis of ambient measurements. (Author)

  14. Quantification of respiration-induced esophageal tumor motion using fiducial markers and four-dimensional computed tomography.

    Science.gov (United States)

    Jin, Peng; Hulshof, Maarten C C M; de Jong, Rianne; van Hooft, Jeanin E; Bel, Arjan; Alderliesten, Tanja

    2016-03-01

    Respiration-induced tumor motion is an important geometrical uncertainty in esophageal cancer radiation therapy. The aim of this study was to quantify this motion using fiducial markers and four-dimensional computed tomography (4DCT). Twenty esophageal cancer patients underwent endoscopy-guided marker implantation in the tumor volume and 4DCT acquisition. The 4DCT data were sorted into 10 breathing phases and the end-of-inhalation phase was selected as reference. We quantified for each visible marker (n=60) the motion in each phase and derived the peak-to-peak motion magnitude throughout the breathing cycle. The motion was quantified and analyzed for four different regions and in three orthogonal directions. The median(interquartile range) of the peak-to-peak magnitudes of the respiration-induced marker motion (left-right/anterior-posterior/cranial-caudal) was 1.5(0.5)/1.6(0.5)/2.9(1.4) mm for the proximal esophagus (n=6), 1.5(1.4)/1.4(1.3)/3.7(2.6) mm for the middle esophagus (n=12), 2.6(1.3)/3.3(1.8)/5.4(2.9) mm for the distal esophagus (n=25), and 3.7(2.1)/5.3(1.8)/8.2(3.1) mm for the proximal stomach (n=17). The variations in the results between the three directions, four regions, and patients suggest the need of individualized region-dependent anisotropic internal margins. Therefore, we recommend using markers with 4DCT to patient-specifically adapt the internal target volume (ITV). Without 4DCT, 3DCTs at the end-of-inhalation and end-of-exhalation phases could be alternatively applied for ITV individualization. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  15. Correlation of primary middle and distal esophageal cancers motion with surrounding tissues using four-dimensional computed tomography.

    Science.gov (United States)

    Wang, Wei; Li, Jianbin; Zhang, Yingjie; Shao, Qian; Xu, Min; Guo, Bing; Shang, Dongping

    2016-01-01

    To investigate the correlation of gross tumor volume (GTV) motion with the structure of interest (SOI) motion and volume variation for middle and distal esophageal cancers using four-dimensional computed tomography (4DCT). Thirty-three patients with middle or distal esophageal carcinoma underwent 4DCT simulation scan during free breathing. All image sets were registered with 0% phase, and the GTV, apex of diaphragm, lung, and heart were delineated on each phase of the 4DCT data. The position of GTV and SOI was identified in all 4DCT phases, and the volume of lung and heart was also achieved. The phase relationship between the GTV and SOI was estimated through Pearson's correlation test. The mean peak-to-peak displacement of all primary tumors in the lateral (LR), anteroposterior (AP), and superoinferior (SI) directions was 0.13 cm, 0.20 cm, and 0.30 cm, respectively. The SI peak-to-peak motion of the GTV was defined as the greatest magnitude of motion. The displacement of GTV correlated well with heart in three dimensions and significantly associated with bilateral lung in LR and SI directions. A significant correlation was found between the GTV and apex of the diaphragm in SI direction (r left=0.918 and r right=0.928). A significant inverse correlation was found between GTV motion and varying lung volume, but the correlation was not significant with heart (r LR=-0.530, r AP=-0.531, and r SI=-0.588) during respiratory cycle. For middle and distal esophageal cancers, GTV should expand asymmetric internal margins. The primary tumor motion has quite good correlation with diaphragm, heart, and lung.

  16. TH-E-17A-05: Optimizing Four Dimensional Cone Beam Computed Tomography Projection Allocation to Respiratory Bins

    International Nuclear Information System (INIS)

    OBrien, R; Shieh, C; Kipritidis, J; Keall, P

    2014-01-01

    Purpose: Four dimensional cone beam computed tomography (4DCBCT) is an emerging image guidance strategy but it can suffer from poor image quality. To avoid repeating scans it is beneficial to make the best use of the imaging data obtained. For conventional 4DCBCT the location and size of respiratory bins is fixed and projections are allocated to the respiratory bin within which it falls. Strictly adhering to this rule is unnecessary and can compromise image quality. In this study we optimize the size and location of respiratory bins and allow projections to be sourced from adjacent phases of the respiratory cycle. Methods: A mathematical optimization framework using mixed integer quadratic programming has been developed that determines when to source projections from adjacent respiratory bins and optimizes the size and location of the bins. The method, which we will call projection sharing, runs in under 2 seconds of CPU time. Five 4DCBCT datasets of stage III-IV lung cancer patients were used to test the algorithm. The standard deviation of the angular separation between projections (SD-A) and the standard deviation in the volume of the reconstructed fiducial gold coil (SD-V) were used as proxies to measure streaking artefacts and motion blur respectively. Results: The SD-A using displacement binning and projection sharing was 30%–50% smaller than conventional phase based binning and 59%–76% smaller than conventional displacement binning indicating more uniformly spaced projections and fewer streaking artefacts. The SD-V was 20–90% smaller when using projection sharing than using conventional phase based binning suggesting more uniform marker segmentation and less motion blur. Conclusion: Image quality was visibly and significantly improved with projection sharing. Projection sharing does not require any modifications to existing hardware and offers a more robust replacement to phase based binning, or, an option if phase based reconstruction is not of a

  17. Dynamic measurement of the optical properties of bovine enamel demineralization models using four-dimensional optical coherence tomography

    Science.gov (United States)

    Aden, Abdirahman; Anthony, Arthi; Brigi, Carel; Merchant, Muhammad Sabih; Siraj, Huda; Tomlins, Peter H.

    2017-07-01

    Dental enamel mineral loss is multifactorial and is consequently explored using a variety of in vitro models. Important factors include the presence of acidic pH and its specific ionic composition, which can both influence lesion characteristics. Optical coherence tomography (OCT) has been demonstrated as a promising tool for studying dental enamel demineralization. However, OCT-based characterization and comparison of demineralization model dynamics are challenging without a consistent experimental environment. Therefore, an automated four-dimensional OCT system was integrated with a multispecimen flow cell to measure and compare the optical properties of subsurface enamel demineralization in different models. This configuration was entirely automated, thus mitigating any need to disturb the specimens and ensuring spatial registration of OCT image volumes at multiple time points. Twelve bovine enamel disks were divided equally among three model groups. The model demineralization solutions were citric acid (pH 3.8), acetic acid (pH 4.0), and acetic acid with added calcium and phosphate (pH 4.4). Bovine specimens were exposed to the solution continuously for 48 h. Three-dimensional OCT data were obtained automatically from each specimen at a minimum of 1-h intervals from the same location within each specimen. Lesion dynamics were measured in terms of the depth below the surface to which the lesion extended and the attenuation coefficient. The net loss of surface enamel was also measured for comparison. Similarities between the dynamics of each model were observed, although there were also distinct characteristic differences. Notably, the attenuation coefficients showed a systematic offset and temporal shift with respect to the different models. Furthermore, the lesion depth curves displayed a discontinuous increase several hours after the initial acid challenge. This work demonstrated the capability of OCT to distinguish between different enamel demineralization

  18. Mid-ventilation CT scan construction from four-dimensional respiration-correlated CT scans for radiotherapy planning of lung cancer patients

    NARCIS (Netherlands)

    Wolthaus, Jochem W. H.; Schneider, Christoph; Sonke, Jan-Jakob; van Herk, Marcel; Belderbos, José S. A.; Rossi, Maddalena M. G.; Lebesque, Joos V.; Damen, Eugène M. F.

    2006-01-01

    PURPOSE: Four-dimensional (4D) respiration-correlated imaging techniques can be used to obtain (respiration) artifact-free computed tomography (CT) images of the thorax. Current radiotherapy planning systems, however, do not accommodate 4D-CT data. The purpose of this study was to develop a simple,

  19. Real-Space Imaging of Carrier Dynamics of Materials Surfaces by Second-Generation Four-Dimensional Scanning Ultrafast Electron Microscopy

    KAUST Repository

    Sun, Jingya; Melnikov, Vasily; Khan, Jafar Iqbal; Mohammed, Omar F.

    2015-01-01

    , we establish a second generation of four-dimensional scanning ultrafast electron microscopy (4D S-UEM) and demonstrate the ability to record time-resolved images (snapshots) of material surfaces with 650 fs and ∼5 nm temporal and spatial resolutions

  20. To what extent does the anxiety scale of the Four-Dimensional Symptom Questionnaire (4DSQ) detect specific types of anxiety disorder in primary care? A psychometric study

    NARCIS (Netherlands)

    Terluin, B.; Oosterbaan, D.B.; Brouwers, E.P.; Straten, A. van; Ven, P.M. van de; Langerak, W.; Marwijk, H.W.J. van

    2014-01-01

    BACKGROUND: Anxiety scales may help primary care physicians to detect specific anxiety disorders among the many emotionally distressed patients presenting in primary care. The anxiety scale of the Four-Dimensional Symptom Questionnaire (4DSQ) consists of an admixture of symptoms of specific anxiety

  1. To what extent does the anxiety scale of the Four-Dimensional Symptom Questionnaire (4DSQ) detect specific types of anxiety disorder in primary care?

    NARCIS (Netherlands)

    Terluin, B.; Oosterbaan, D.B.; Brouwers, E.P.; van Straten, A.; van de Ven, P.M.; Langerak, W.; van Marwijk, H.W.

    2014-01-01

    Background: Anxiety scales may help primary care physicians to detect specific anxiety disorders among the many emotionally distressed patients presenting in primary care. The anxiety scale of the Four-Dimensional Symptom Questionnaire (4DSQ) consists of an admixture of symptoms of specific anxiety

  2. The Four-Dimensional Symptom Questionnaire (4DSQ): a validation study of a multidimensional self-report questionnaire to assess distress, depression, anxiety and somatization

    NARCIS (Netherlands)

    Terluin, B.; van Marwijk, H.W.J.; Ader, H.J.; de Vet, H.C.W.; Penninx, B.W.J.H.; Hermens, M.L.M.; van Boeijen, C.A.; van Balkom, A.J.L.M.; van der Klink, J.J.L.; Stalman, W.A.B.

    2006-01-01

    Background: The Four-Dimensional Symptom Questionnaire (4DSQ) is a self-report questionnaire that has been developed in primary care to distinguish non-specific general distress from depression, anxiety and somatization. The purpose of this paper is to evaluate its criterion and construct validity.

  3. The Four-Dimensional Symptom Questionnaire (4DSQ) in the general population: scale structure, reliability, measurement invariance and normative data : A cross-sectional survey

    NARCIS (Netherlands)

    Terluin, B.; Smits, N.; Brouwers, E.P.M.; De Vet, H.C.W.

    2016-01-01

    Background The Four-Dimensional Symptom Questionnaire (4DSQ) is a self-report questionnaire measuring distress, depression, anxiety and somatization with separate scales. The 4DSQ has extensively been validated in clinical samples, especially from primary care settings. Information about measurement

  4. The Four-Dimensional Symptom Questionnaire (4DSQ) in the general population : scale structure, reliability, measurement invariance and normative data: a cross-sectional survey

    NARCIS (Netherlands)

    Terluin, B.; Smits, N.; Brouwers, E.P.M.; de Vet, H.C.W.

    2016-01-01

    Background: The Four-Dimensional Symptom Questionnaire (4DSQ) is a self-report questionnaire measuring distress, depression, anxiety and somatization with separate scales. The 4DSQ has extensively been validated in clinical samples, especially from primary care settings. Information about

  5. To what extent does the anxiety scale of the Four Dimensional Symptom Questionnaire (4DSQ) detect specific types of anxiety disorder in primary care? : A psychometric study

    NARCIS (Netherlands)

    Terluin, B.; Oosterbaan, D.B.; Brouwers, E.P.M.; van Straten, A.H.M.; van de Ven, P.; Langerak, W.; van Marwijk, H.W.J.

    2014-01-01

    Background Anxiety scales may help primary care physicians to detect specific anxiety disorders among the many emotionally distressed patients presenting in primary care. The anxiety scale of the Four-Dimensional Symptom Questionnaire (4DSQ) consists of an admixture of symptoms of specific anxiety

  6. Planning Study Comparison of Real-Time Target Tracking and Four-Dimensional Inverse Planning for Managing Patient Respiratory Motion

    International Nuclear Information System (INIS)

    Zhang Peng; Hugo, Geoffrey D.; Yan Di

    2008-01-01

    Purpose: Real-time target tracking (RT-TT) and four-dimensional inverse planning (4D-IP) are two potential methods to manage respiratory target motion. In this study, we evaluated each method using the cumulative dose-volume criteria in lung cancer radiotherapy. Methods and Materials: Respiration-correlated computed tomography scans were acquired for 4 patients. Deformable image registration was applied to generate a displacement mapping for each phase image of the respiration-correlated computed tomography images. First, the dose distribution for the organs of interest obtained from an idealized RT-TT technique was evaluated, assuming perfect knowledge of organ motion and beam tracking. Inverse planning was performed on each phase image separately. The treatment dose to the organs of interest was then accumulated from the optimized plans. Second, 4D-IP was performed using the probability density function of respiratory motion. The beam arrangement, prescription dose, and objectives were consistent in both planning methods. The dose-volume and equivalent uniform dose in the target volume, lung, heart, and spinal cord were used for the evaluation. Results: The cumulative dose in the target was similar for both techniques. The equivalent uniform dose of the lung, heart, and spinal cord was 4.6 ± 2.2, 11 ± 4.4, and 11 ± 6.6 Gy for RT-TT with a 0-mm target margin, 5.2 ± 3.1, 12 ± 5.9, and 12 ± 7.8 Gy for RT-TT with a 2-mm target margin, and 5.3 ± 2.3, 11.9 ± 5.0, and 12 ± 5.6 Gy for 4D-IP, respectively. Conclusion: The results of our study have shown that 4D-IP can achieve plans similar to those achieved by RT-TT. Considering clinical implementation, 4D-IP could be a more reliable and practical method to manage patient respiration-induced motion

  7. Motion-map constrained image reconstruction (MCIR): Application to four-dimensional cone-beam computed tomography

    International Nuclear Information System (INIS)

    Park, Justin C.; Kim, Jin Sung; Park, Sung Ho; Liu, Zhaowei; Song, Bongyong; Song, William Y.

    2013-01-01

    Purpose: Utilization of respiratory correlated four-dimensional cone-beam computed tomography (4DCBCT) has enabled verification of internal target motion and volume immediately prior to treatment. However, with current standard CBCT scan, 4DCBCT poses challenge for reconstruction due to the fact that multiple phase binning leads to insufficient number of projection data to reconstruct and thus cause streaking artifacts. The purpose of this study is to develop a novel 4DCBCT reconstruction algorithm framework called motion-map constrained image reconstruction (MCIR), that allows reconstruction of high quality and high phase resolution 4DCBCT images with no more than the imaging dose as well as projections used in a standard free breathing 3DCBCT (FB-3DCBCT) scan.Methods: The unknown 4DCBCT volume at each phase was mathematically modeled as a combination of FB-3DCBCT and phase-specific update vector which has an associated motion-map matrix. The motion-map matrix, which is the key innovation of the MCIR algorithm, was defined as the matrix that distinguishes voxels that are moving from stationary ones. This 4DCBCT model was then reconstructed with compressed sensing (CS) reconstruction framework such that the voxels with high motion would be aggressively updated by the phase-wise sorted projections and the voxels with less motion would be minimally updated to preserve the FB-3DCBCT. To evaluate the performance of our proposed MCIR algorithm, we evaluated both numerical phantoms and a lung cancer patient. The results were then compared with the (1) clinical FB-3DCBCT reconstructed using the FDK, (2) 4DCBCT reconstructed using the FDK, and (3) 4DCBCT reconstructed using the well-known prior image constrained compressed sensing (PICCS).Results: Examination of the MCIR algorithm showed that high phase-resolved 4DCBCT with sets of up to 20 phases using a typical FB-3DCBCT scan could be reconstructed without compromising the image quality. Moreover, in comparison with

  8. An analysis of respiratory induced kidney motion on four-dimensional computed tomography and its implications for stereotactic kidney radiotherapy

    International Nuclear Information System (INIS)

    Siva, Shankar; Pham, Daniel; Gill, Suki; Bressel, Mathias; Dang, Kim; Devereux, Thomas; Kron, Tomas; Foroudi, Farshad

    2013-01-01

    Stereotactic ablative body radiotherapy (SABR) is an emerging treatment modality for primary renal cell carcinoma. To account for respiratory-induced target motion, an internal target volume (ITV) concept is often used in treatment planning of SABR. The purpose of this study is to assess patterns of kidney motion and investigate potential surrogates of kidney displacement with the view of ITV verification during treatment. Datasets from 71 consecutive patients with free breathing four-dimensional computed tomography (4DCT) planning scans were included in this study. The displacement of the left and right hemi-diaphragm, liver dome and abdominal wall were measured and tested for correlation with the displacement of the both kidneys and patient breathing frequency. Nine patients were excluded due to severe banding artifact. Of 62 evaluable patients, the median age was 68 years, with 41 male patients and 21 female patients. The mean (range) of the maximum, minimum and average breathing frequency throughout the 4DCTs were 20.1 (11–38), 15.1 (9–24) and 17.3 (9–27.5) breaths per minute, respectively. The mean (interquartile range) displacement of the left and right kidneys was 0.74 cm (0.45-0.98 cm) and 0.75 cm (0.49-0.97) respectively. The amplitude of liver-dome motion was correlated with right kidney displacement (r=0.52, p<0.001), but not with left kidney displacement (p=0.796). There was a statistically significant correlation between the magnitude of right kidney displacement and that of abdominal displacement (r=0.36, p=0.004), but not the left kidney (r=0.24, p=0.056). Hemi-diaphragm displacements were correlated with kidney displacements respectively, with a weaker correlation for the left kidney/left diaphragm (r=0.45, [95% CI 0.22 to 0.63], p=<0.001) than for the right kidney/right diaphragm (r=0.57, [95% CI 0.37 to 0.72], p=<0.001). For the majority of patients, maximal left and right kidney displacement is subcentimeter in magnitude. The magnitude of

  9. Correlation of primary middle and distal esophageal cancers motion with surrounding tissues using four-dimensional computed tomography

    Directory of Open Access Journals (Sweden)

    Wang W

    2016-06-01

    Full Text Available Wei Wang,1 Jianbin Li,1 Yingjie Zhang,1 Qian Shao,1 Min Xu,1 Bing Guo,1 Dongping Shang2 1Department of Radiation Oncology, 2Department of Big Bore CT Room, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, Jinan, Shandong, People’s Republic of China Purpose: To investigate the correlation of gross tumor volume (GTV motion with the structure of interest (SOI motion and volume variation for middle and distal esophageal cancers using four-dimensional computed tomography (4DCT.Patients and methods: Thirty-three patients with middle or distal esophageal carcinoma underwent 4DCT simulation scan during free breathing. All image sets were registered with 0% phase, and the GTV, apex of diaphragm, lung, and heart were delineated on each phase of the 4DCT data. The position of GTV and SOI was identified in all 4DCT phases, and the volume of lung and heart was also achieved. The phase relationship between the GTV and SOI was estimated through Pearson’s correlation test.Results: The mean peak-to-peak displacement of all primary tumors in the lateral (LR, anteroposterior (AP, and superoinferior (SI directions was 0.13 cm, 0.20 cm, and 0.30 cm, respectively. The SI peak-to-peak motion of the GTV was defined as the greatest magnitude of motion. The displacement of GTV correlated well with heart in three dimensions and significantly associated with bilateral lung in LR and SI directions. A significant correlation was found between the GTV and apex of the diaphragm in SI direction (rleft=0.918 and rright=0.928. A significant inverse correlation was found between GTV motion and varying lung volume, but the correlation was not significant with heart (rLR=–0.530, rAP=–0.531, and rSI=–0.588 during respiratory cycle.Conclusion: For middle and distal esophageal cancers, GTV should expand asymmetric internal margins. The primary tumor motion has quite good correlation with diaphragm, heart, and lung. Keywords

  10. Improving thoracic four-dimensional cone-beam CT reconstruction with anatomical-adaptive image regularization (AAIR)

    International Nuclear Information System (INIS)

    Shieh, Chun-Chien; Kipritidis, John; O'Brien, Ricky T; Cooper, Benjamin J; Keall, Paul J; Kuncic, Zdenka

    2015-01-01

    Total-variation (TV) minimization reconstructions can significantly reduce noise and streaks in thoracic four-dimensional cone-beam computed tomography (4D CBCT) images compared to the Feldkamp–Davis–Kress (FDK) algorithm currently used in practice. TV minimization reconstructions are, however, prone to over-smoothing anatomical details and are also computationally inefficient. The aim of this study is to demonstrate a proof of concept that these disadvantages can be overcome by incorporating the general knowledge of the thoracic anatomy via anatomy segmentation into the reconstruction. The proposed method, referred as the anatomical-adaptive image regularization (AAIR) method, utilizes the adaptive-steepest-descent projection-onto-convex-sets (ASD-POCS) framework, but introduces an additional anatomy segmentation step in every iteration. The anatomy segmentation information is implemented in the reconstruction using a heuristic approach to adaptively suppress over-smoothing at anatomical structures of interest. The performance of AAIR depends on parameters describing the weighting of the anatomy segmentation prior and segmentation threshold values. A sensitivity study revealed that the reconstruction outcome is not sensitive to these parameters as long as they are chosen within a suitable range. AAIR was validated using a digital phantom and a patient scan and was compared to FDK, ASD-POCS and the prior image constrained compressed sensing (PICCS) method. For the phantom case, AAIR reconstruction was quantitatively shown to be the most accurate as indicated by the mean absolute difference and the structural similarity index. For the patient case, AAIR resulted in the highest signal-to-noise ratio (i.e. the lowest level of noise and streaking) and the highest contrast-to-noise ratios for the tumor and the bony anatomy (i.e. the best visibility of anatomical details). Overall, AAIR was much less prone to over-smoothing anatomical details compared to ASD-POCS and

  11. Motion-map constrained image reconstruction (MCIR): Application to four-dimensional cone-beam computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Park, Justin C. [Center for Advanced Radiotherapy Technologies and Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California 92093 and Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, California 92093 (United States); Kim, Jin Sung [Department of Radiation Oncology, Samsung Medical Center, Seoul 135-710 (Korea, Republic of); Park, Sung Ho [Department of Medical Physics, Asan Medical Center, College of Medicine, University of Ulsan, Seoul 138-736 (Korea, Republic of); Liu, Zhaowei [Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, California 92093 (United States); Song, Bongyong; Song, William Y. [Center for Advanced Radiotherapy Technologies and Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California 92093 (United States)

    2013-12-15

    Purpose: Utilization of respiratory correlated four-dimensional cone-beam computed tomography (4DCBCT) has enabled verification of internal target motion and volume immediately prior to treatment. However, with current standard CBCT scan, 4DCBCT poses challenge for reconstruction due to the fact that multiple phase binning leads to insufficient number of projection data to reconstruct and thus cause streaking artifacts. The purpose of this study is to develop a novel 4DCBCT reconstruction algorithm framework called motion-map constrained image reconstruction (MCIR), that allows reconstruction of high quality and high phase resolution 4DCBCT images with no more than the imaging dose as well as projections used in a standard free breathing 3DCBCT (FB-3DCBCT) scan.Methods: The unknown 4DCBCT volume at each phase was mathematically modeled as a combination of FB-3DCBCT and phase-specific update vector which has an associated motion-map matrix. The motion-map matrix, which is the key innovation of the MCIR algorithm, was defined as the matrix that distinguishes voxels that are moving from stationary ones. This 4DCBCT model was then reconstructed with compressed sensing (CS) reconstruction framework such that the voxels with high motion would be aggressively updated by the phase-wise sorted projections and the voxels with less motion would be minimally updated to preserve the FB-3DCBCT. To evaluate the performance of our proposed MCIR algorithm, we evaluated both numerical phantoms and a lung cancer patient. The results were then compared with the (1) clinical FB-3DCBCT reconstructed using the FDK, (2) 4DCBCT reconstructed using the FDK, and (3) 4DCBCT reconstructed using the well-known prior image constrained compressed sensing (PICCS).Results: Examination of the MCIR algorithm showed that high phase-resolved 4DCBCT with sets of up to 20 phases using a typical FB-3DCBCT scan could be reconstructed without compromising the image quality. Moreover, in comparison with

  12. Quality assurance device for four-dimensional IMRT or SBRT and respiratory gating using patient-specific intrafraction motion kernels.

    Science.gov (United States)

    Nelms, Benjamin E; Ehler, Eric; Bragg, Henry; Tomé, Wolfgang A

    2007-09-17

    Emerging technologies such as four-dimensional computed tomography (4D CT) and implanted beacons are expected to allow clinicians to accurately model intrafraction motion and to quantitatively estimate internal target volumes (ITVs) for radiation therapy involving moving targets. In the case of intensity-modulated (IMRT) and stereotactic body radiation therapy (SBRT) delivery, clinicians must consider the interplay between the temporal nature of the modulation and the target motion within the ITV. A need exists for a 4D IMRT/SBRT quality assurance (QA) device that can incorporate and analyze customized intrafraction motion as it relates to dose delivery and respiratory gating. We built a 4D IMRT/SBRT prototype device and entered (X, Y, Z)(T) coordinates representing a motion kernel into a software application that 1. transformed the kernel into beam-specific two-dimensional (2D) motion "projections," 2. previewed the motion in real time, and 3. drove a recision X-Y motorized device that had, atop it, a mounted planar IMRT QA measurement device. The detectors that intersected the target in the beam's-eye-view of any single phase of the breathing cycle (a small subset of all the detectors) were defined as "target detectors" to be analyzed for dose uniformity between multiple fractions. Data regarding the use of this device to quantify dose variation fraction-to-fraction resulting from target motion (for several delivery modalities and with and without gating) have been recently published. A combined software and hardware solution for patient-customized 4D IMRT/SBRT QA is an effective tool for assessing IMRT delivery under conditions of intrafraction motion. The 4D IMRT QA device accurately reproduced the projected motion kernels for all beam's-eye-view motion kernels. This device has been proved to, effectively quantify the degradation in dose uniformity resulting from a moving target within a static planning target volume, and, integrate with a commercial

  13. Four-dimensional distribution of the 2010 Eyjafjallajökull volcanic cloud over Europe observed by EARLINET

    Directory of Open Access Journals (Sweden)

    G. Pappalardo

    2013-04-01

    Full Text Available The eruption of the Icelandic volcano Eyjafjallajökull in April–May 2010 represents a "natural experiment" to study the impact of volcanic emissions on a continental scale. For the first time, quantitative data about the presence, altitude, and layering of the volcanic cloud, in conjunction with optical information, are available for most parts of Europe derived from the observations by the European Aerosol Research Lidar NETwork (EARLINET. Based on multi-wavelength Raman lidar systems, EARLINET is the only instrument worldwide that is able to provide dense time series of high-quality optical data to be used for aerosol typing and for the retrieval of particle microphysical properties as a function of altitude. In this work we show the four-dimensional (4-D distribution of the Eyjafjallajökull volcanic cloud in the troposphere over Europe as observed by EARLINET during the entire volcanic event (15 April–26 May 2010. All optical properties directly measured (backscatter, extinction, and particle linear depolarization ratio are stored in the EARLINET database available at http://www.earlinet.org. A specific relational database providing the volcanic mask over Europe, realized ad hoc for this specific event, has been developed and is available on request at http://www.earlinet.org. During the first days after the eruption, volcanic particles were detected over Central Europe within a wide range of altitudes, from the upper troposphere down to the local planetary boundary layer (PBL. After 19 April 2010, volcanic particles were detected over southern and south-eastern Europe. During the first half of May (5–15 May, material emitted by the Eyjafjallajökull volcano was detected over Spain and Portugal and then over the Mediterranean and the Balkans. The last observations of the event were recorded until 25 May in Central Europe and in the Eastern Mediterranean area. The 4-D distribution of volcanic aerosol layering and optical properties on

  14. Effect of tumor volume on the enhancement pattern of parathyroid adenoma on parathyroid four-dimensional CT

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Eun Kyoung [Seoul National University Medical Research Center, Institute of Radiation Medicine, Seoul (Korea, Republic of); Dongguk University Ilsan Hospital, Department of Radiology, Goyang-si (Korea, Republic of); Yun, Tae Jin; Kim, Ji-hoon; Kang, Koung Mi; Choi, Seung Hong; Sohn, Chul-Ho [Seoul National University Medical Research Center, Institute of Radiation Medicine, Seoul (Korea, Republic of); Seoul National University Hospital, Department of Radiology, Jongno-gu, Seoul (Korea, Republic of); Lee, Kyu Eun; Kim, Su-jin [Seoul National University Hospital, Department of Surgery, Seoul (Korea, Republic of); Won, Jae-Kyung [Seoul National University Hospital, Department of Pathology, Seoul (Korea, Republic of)

    2016-05-15

    The purpose of this study is to assess the effect of tumor volume on the enhancement pattern of parathyroid adenoma (PTA) on four-dimensional computed tomography (4D-CT). We analyzed the enhancement patterns of PTA on four-phase 4D-CT in 44 patients. Dependency of the changes of Hounsfield unit values (ΔHU) on the tumor volumes and clinical characteristics was evaluated using linear regression analyses. In addition, an unpaired t test was used to compare ΔHU of PTAs between PTA volume ≥1 cm{sup 3} and <1 cm{sup 3}, thyroid gland, and lymph node. PTA volume based on CT was the strongest factor on the ΔHU{sub Pre} {sub to} {sub Arterial} and ΔHU{sub Arterial} {sub to} {sub Venous} and ΔHU{sub Arterial} {sub to} {sub Delayed} (R {sup 2} = 0.34, 0.25, and 0.32, respectively, P < 0.001 for both). PTA ≥1 cm {sup 3} had statistically significant greater enhancement between the unenhanced phase and the arterial phase than PTA <1 cm {sup 3} (mean values ± standard deviations (SDs) of ΔHU{sub Pre} {sub to} {sub Arterial}, 102.7 ± 33.7 and 57.5 ± 28.8, respectively, P < 0.001). PTA ≥1 cm {sup 3} showed an early washout pattern on the venous phase, whereas PTA <1 cm {sup 3} showed a progressive enhancement pattern on the venous phase (mean values ± SDs of ΔHU{sub Arterial} {sub to} {sub Venous}, -13.2 ± 31.6 and 14.4 ± 32.7, respectively; P = 0.009). The enhancement pattern of PTA on 4D-CT is variable with respect to PTA volume based on CT. Therefore, the enhancement pattern of PTA on 4D-CT requires careful interpretation concerning the tumor volume, especially in cases of PTA <1 cm {sup 3}. (orig.)

  15. Quantitation of the reconstruction quality of a four-dimensional computed tomography process for lung cancer patients

    International Nuclear Information System (INIS)

    Lu Wei; Parikh, Parag J.; El Naqa, Issam M.; Nystrom, Michelle M.; Hubenschmidt, James P.; Wahab, Sasha H.; Mutic, Sasa; Singh, Anurag K.; Christensen, Gary E.; Bradley, Jeffrey D.; Low, Daniel A.

    2005-01-01

    We have developed a four-dimensional computed tomography (4D CT) technique for mapping breathing motion in radiotherapy treatment planning. A multislice CT scanner (1.5 mm slices) operated in cine mode was used to acquire 12 contiguous slices in each couch position for 15 consecutive scans (0.5 s rotation, 0.25 s between scans) while the patient underwent simultaneous quantitative spirometry measurements to provide a sorting metric. The spirometry-sorted scans were used to reconstruct a 4D data set. A critical factor for 4D CT is quantifying the reconstructed data set quality which we measure by correlating the metric used relative to internal-object motion. For this study, the internal air content within the lung was used as a surrogate for internal motion measurements. Thresholding and image morphological operations were applied to delineate the air-containing tissues (lungs, trachea) from each CT slice. The Hounsfield values were converted to the internal air content (V). The relationship between the air content and spirometer-measured tidal volume (ν) was found to be quite linear throughout the lungs and was used to estimate the overall accuracy and precision of tidal volume-sorted 4D CT. Inspection of the CT-scan air content as a function of tidal volume showed excellent correlations (typically r>0.99) throughout the lung volume. Because of the discovered linear relationship, the ratio of internal air content to tidal volume was indicative of the fraction of air change in each couch position. Theoretically, due to air density differences within the lung and in room, the sum of these ratios would equal 1.11. For 12 patients, the mean value was 1.08±0.06, indicating the high quality of spirometry-based image sorting. The residual of a first-order fit between ν and V was used to estimate the process precision. For all patients, the precision was better than 8%, with a mean value of 5.1%±1.9%. This quantitative analysis highlights the value of using spirometry

  16. Reliability of pelvic floor measurements on three- and four-dimensional ultrasound during and after first pregnancy: implications for training.

    Science.gov (United States)

    van Veelen, G A; Schweitzer, K J; van der Vaart, C H

    2013-11-01

    To evaluate the reliability of measurements of the levator hiatus and levator-urethra gap (LUG) using three/four-dimensional (3D/4D) transperineal ultrasound in women during their first pregnancy and 6 months postpartum, and to assess the learning process for these measurements. An inexperienced observer was taught to perform measurements of the levator hiatus and LUG by an experienced observer. After training, 3D/4D ultrasound volume datasets of 40 women in the first trimester were analyzed by these two observers. Another training session then took place and both observers repeated the analyses of the same volume datasets. Finally, analyses of 40 volume datasets of the women 6 months postpartum were performed by both observers. Intra- and interobserver reliability were determined by intraclass correlation coefficients (ICC) with 95% CIs. For levator hiatal measurements, in the women during their first pregnancy the interobserver reliability was substantial to almost perfect after both the first and second training session (ICC, 0.62-0.83 and 0.71-0.89, respectively, for anteroposterior diameter, transverse diameter and area at rest, on contraction and on Valsalva) and the intraobserver reliability was substantial to almost perfect for both observers. For these measurements performed once the women had delivered, interobserver reliability was moderate to almost perfect. For LUG measurements performed during pregnancy, interobserver reliability was slight to moderate after the first training session (ICC, 0.14-0.54), but improved after the second training session (ICC, 0.38-0.71), and intraobserver reliability was moderate to substantial for the experienced observer and slight to moderate for the inexperienced observer. For these measurements performed when the women had delivered, interobserver reliability was fair to moderate. The levator hiatus and LUG can be measured reliably using 3D/4D ultrasound in primigravid and primiparous women. The technique to measure

  17. SU-E-J-110: Dosimetric Analysis of Respiratory Motion Based On Four-Dimensional Dose Accumulation in Liver Stereotactic Body Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Kang, S; Kim, D; Kim, T; Kim, K; Cho, M; Shin, D; Suh, T [The Catholic University of Korea College of Medicine, Seoul (Korea, Republic of); Kim, S [Virginia Commonwealth University, Richmond, VA (United States); Park, S [Uijeongbu St.Mary’s Hospital, GyeongGi-Do (Korea, Republic of)

    2015-06-15

    Purpose: Respiratory motion in thoracic and abdominal region could lead to significant underdosing of target and increased dose to healthy tissues. The aim of this study is to evaluate the dosimetric effect of respiratory motion in conventional 3D dose by comparing 4D deformable dose in liver stereotactic body radiotherapy (SBRT). Methods: Five patients who had previously treated liver SBRT were included in this study. Four-dimensional computed tomography (4DCT) images with 10 phases for all patients were acquired on multi-slice CT scanner (Siemens, Somatom definition). Conventional 3D planning was performed using the average intensity projection (AIP) images. 4D dose accumulation was calculated by summation of dose distribution for all phase images of 4DCT using deformable image registration (DIR) . The target volume and normal organs dose were evaluated with the 4D dose and compared with those from 3D dose. And also, Index of achievement (IOA) which assesses the consistency between planned dose and prescription dose was used to compare target dose distribution between 3D and 4D dose. Results: Although the 3D dose calculation considered the moving target coverage, significant differences of various dosimetric parameters between 4D and 3D dose were observed in normal organs and PTV. The conventional 3D dose overestimated dose to PTV, however, there was no significant difference for GTV. The average difference of IOA which become ‘1’ in an ideal case was 3.2% in PTV. The average difference of liver and duodenum was 5% and 16% respectively. Conclusion: 4D dose accumulation which can provide dosimetric effect of respiratory motion has a possibility to predict the more accurate delivered dose to target and normal organs and improve treatment accuracy. This work was supported by the Radiation Technology R&D program (No. 2013M2A2A7043498) and the Mid-career Researcher Program (2014R1A2A1A10050270) through the National Research Foundation of Korea funded by the

  18. Real-time respiration monitoring using the radiotherapy treatment beam and four-dimensional computed tomography (4DCT)-a conceptual study

    International Nuclear Information System (INIS)

    Lu Weiguo; Ruchala, Kenneth J; Chen, Ming-Li; Chen, Quan; Olivera, Gustavo H

    2006-01-01

    Real-time knowledge of intra-fraction motion, such as respiration, is essential for four-dimensional (4D) radiotherapy. Surrogate-based and internal-fiducial-based methods may suffer from one or many drawbacks such as false correlation, being invasive, delivering extra patient radiation, and requiring complicated hardware and software development and implementation. In this paper we develop a simple non-surrogate, non-invasive method to monitor respiratory motion during radiotherapy treatments in real time. This method directly utilizes the treatment beam and thus imposes no additional radiation to the patient. The method requires a pre-treatment 4DCT and a real-time detector system. The method combines off-line processes with on-line processes. The off-line processes include 4DCT imaging and pre-calculating detector signals at each phase of the 4DCT based on the planned fluence map and the detector response function. The on-line processes include measuring detector signal from the treatment beam, and correlating the measured detector signal with the pre-calculated signals. The respiration phase is determined as the position of peak correlation. We tested our method with extensive simulations based on a TomoTherapy machine and a 4DCT of a lung cancer patient. Three types of simulations were implemented to mimic the clinical situations. Each type of simulation used three different TomoTherapy delivery sinograms, each with 800 to 1000 projections, as input fluences. Three arbitrary breathing patterns were simulated and two dose levels, 2 Gy/fraction and 2 cGy/fraction, were used for simulations to study the robustness of this method against detector quantum noise. The algorithm was used to determine the breathing phases and this result was compared with the simulated breathing patterns. For the 2 Gy/fraction simulations, the respiration phases were accurately determined within one phase error in real time for most projections of the treatment, except for a few

  19. Measuring interfraction and intrafraction lung function changes during radiation therapy using four-dimensional cone beam CT ventilation imaging

    International Nuclear Information System (INIS)

    Kipritidis, John; Keall, Paul J.; Hugo, Geoffrey; Weiss, Elisabeth; Williamson, Jeffrey

    2015-01-01

    Purpose: Adaptive ventilation guided radiation therapy could minimize the irradiation of healthy lung based on repeat lung ventilation imaging (VI) during treatment. However the efficacy of adaptive ventilation guidance requires that interfraction (e.g., week-to-week), ventilation changes are not washed out by intrafraction (e.g., pre- and postfraction) changes, for example, due to patient breathing variability. The authors hypothesize that patients undergoing lung cancer radiation therapy exhibit larger interfraction ventilation changes compared to intrafraction function changes. To test this, the authors perform the first comparison of interfraction and intrafraction lung VI pairs using four-dimensional cone beam CT ventilation imaging (4D-CBCT VI), a novel technique for functional lung imaging. Methods: The authors analyzed a total of 215 4D-CBCT scans acquired for 19 locally advanced non-small cell lung cancer (LA-NSCLC) patients over 4–6 weeks of radiation therapy. This set of 215 scans was sorted into 56 interfraction pairs (including first day scans and each of treatment weeks 2, 4, and 6) and 78 intrafraction pairs (including pre/postfraction scans on the same-day), with some scans appearing in both sets. VIs were obtained from the Jacobian determinant of the transform between the 4D-CBCT end-exhale and end-inhale images after deformable image registration. All VIs were deformably registered to their corresponding planning CT and normalized to account for differences in breathing effort, thus facilitating image comparison in terms of (i) voxelwise Spearman correlations, (ii) mean image differences, and (iii) gamma pass rates for all interfraction and intrafraction VI pairs. For the side of the lung ipsilateral to the tumor, we applied two-sided t-tests to determine whether interfraction VI pairs were more different than intrafraction VI pairs. Results: The (mean ± standard deviation) Spearman correlation for interfraction VI pairs was r - Inter =0.52±0

  20. Measuring interfraction and intrafraction lung function changes during radiation therapy using four-dimensional cone beam CT ventilation imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kipritidis, John, E-mail: john.kipritidis@sydney.edu.au; Keall, Paul J. [Radiation Physics Laboratory, Sydney Medical School, University of Sydney, Sydney NSW 2006 (Australia); Hugo, Geoffrey; Weiss, Elisabeth; Williamson, Jeffrey [Department of Radiation Oncology, Virginia Commonwealth University, Richmond, Virginia 23298 (United States)

    2015-03-15

    Purpose: Adaptive ventilation guided radiation therapy could minimize the irradiation of healthy lung based on repeat lung ventilation imaging (VI) during treatment. However the efficacy of adaptive ventilation guidance requires that interfraction (e.g., week-to-week), ventilation changes are not washed out by intrafraction (e.g., pre- and postfraction) changes, for example, due to patient breathing variability. The authors hypothesize that patients undergoing lung cancer radiation therapy exhibit larger interfraction ventilation changes compared to intrafraction function changes. To test this, the authors perform the first comparison of interfraction and intrafraction lung VI pairs using four-dimensional cone beam CT ventilation imaging (4D-CBCT VI), a novel technique for functional lung imaging. Methods: The authors analyzed a total of 215 4D-CBCT scans acquired for 19 locally advanced non-small cell lung cancer (LA-NSCLC) patients over 4–6 weeks of radiation therapy. This set of 215 scans was sorted into 56 interfraction pairs (including first day scans and each of treatment weeks 2, 4, and 6) and 78 intrafraction pairs (including pre/postfraction scans on the same-day), with some scans appearing in both sets. VIs were obtained from the Jacobian determinant of the transform between the 4D-CBCT end-exhale and end-inhale images after deformable image registration. All VIs were deformably registered to their corresponding planning CT and normalized to account for differences in breathing effort, thus facilitating image comparison in terms of (i) voxelwise Spearman correlations, (ii) mean image differences, and (iii) gamma pass rates for all interfraction and intrafraction VI pairs. For the side of the lung ipsilateral to the tumor, we applied two-sided t-tests to determine whether interfraction VI pairs were more different than intrafraction VI pairs. Results: The (mean ± standard deviation) Spearman correlation for interfraction VI pairs was r{sup -}{sub Inter

  1. Comparison of planning target volumes based on three-dimensional and four-dimensional CT imaging of thoracic esophageal cancer

    Directory of Open Access Journals (Sweden)

    Wang W

    2016-08-01

    Full Text Available Wei Wang, Jianbin Li, Yingjie Zhang, Qian Shao, Min Xu, Tingyong Fan, Jinzhi Wang Department of Radiation Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, Shandong, People’s Republic of China Background and purpose: To investigate the definition of planning target volumes (PTVs based on four-dimensional computed tomography (4DCT compared with conventional PTV definition and PTV definition using asymmetrical margins for thoracic primary esophageal cancer. Materials and methods: Forty-three patients with esophageal cancer underwent 3DCT and 4DCT simulation scans during free breathing. The motions of primary tumors located in the proximal (group A, middle (group B, and distal (group C thoracic esophagus were obtained from the 4DCT scans. PTV3D was defined on 3DCT using the tumor motion measured based on 4DCT, PTV conventional (PTVconv was defined on 3DCT by adding a 1.0 cm margin to the clinical target volume, and PTV4D was defined as the union of the target volumes contoured on the ten phases of the 4DCT images. The centroid positions, volumetric differences, and dice similarity coefficients were evaluated for all PTVs. Results: The median centroid shifts between PTV3D and PTV4D and between PTVconv and PTV4D in all three dimensions were <0.3 cm for the three groups. The median size ratios of PTV4D to PTV3D were 0.80, 0.88, and 0.71, and PTV4D to PTVconv were 0.67, 0.73, and 0.76 (χ2=–3.18, –2.98, and –3.06; P=0.001, 0.003, and 0.002 for groups A, B, and C, respectively. The dice similarity coefficients were 0.87, 0.90, and 0.81 between PTV4D and PTV3D and 0.80, 0.84, and 0.83 between PTV4D and PTVconv (χ2=–3.18, –2.98, and –3.06; P=0.001, 0.003, and 0.002 for groups A, B, and C, respectively. The difference between the degree of inclusion of PTV4D in PTV3D and that of PTV4D in PTVconv was <2% for all groups. Compared with PTVconv, the amount of irradiated normal tissue

  2. Development of an ultrasmall C-band linear accelerator guide for a four-dimensional image-guided radiotherapy system with a gimbaled x-ray head.

    Science.gov (United States)

    Kamino, Yuichiro; Miura, Sadao; Kokubo, Masaki; Yamashita, Ichiro; Hirai, Etsuro; Hiraoka, Masahiro; Ishikawa, Junzo

    2007-05-01

    We are developing a four-dimensional image-guided radiotherapy system with a gimbaled x-ray head. It is capable of pursuing irradiation and delivering irradiation precisely with the help of an agile moving x-ray head on the gimbals. Requirements for the accelerator guide were established, system design was developed, and detailed design was conducted. An accelerator guide was manufactured and basic beam performance and leakage radiation from the accelerator guide were evaluated at a low pulse repetition rate. The accelerator guide including the electron gun is 38 cm long and weighs about 10 kg. The length of the accelerating structure is 24.4 cm. The accelerating structure is a standing wave type and is composed of the axial-coupled injector section and the side-coupled acceleration cavity section. The injector section is composed of one prebuncher cavity, one buncher cavity, one side-coupled half cavity, and two axial coupling cavities. The acceleration cavity section is composed of eight side-coupled nose reentrant cavities and eight coupling cavities. The electron gun is a diode-type gun with a cerium hexaboride (CeB6) direct heating cathode. The accelerator guide can be operated without any magnetic focusing device. Output beam current was 75 mA with a transmission efficiency of 58%, and the average energy was 5.24 MeV. Beam energy was distributed from 4.95 to 5.6 MeV. The beam profile, measured 88 mm from the beam output hole on the axis of the accelerator guide, was 0.7 mm X 0.9 mm full width at half maximum (FWHM) width. The beam loading line was 5.925 (MeV)-Ib (mA) X 0.00808 (MeV/mA), where Ib is output beam current. The maximum radiation leakage of the accelerator guide at 100 cm from the axis of the accelerator guide was calculated as 0.33 cGy/min at the rated x-ray output of 500 cGy/min from the measured value. This leakage requires no radiation shielding for the accelerator guide itself per IEC 60601-2-1.

  3. SU-F-303-13: Initial Evaluation of Four Dimensional Diffusion- Weighted MRI (4D-DWI) and Its Effect On Apparent Diffusion Coefficient (ADC) Measurement

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Y [Duke University Medical Physics Program (United States); Yin, F; Czito, B; Bashir, M; Palta, M; Cai, J [Duke University Medical Center, Durham, NC (United States); Zhong, X; Dale, B [Siemens Healthcare, Durham, NC (United States)

    2015-06-15

    Purpose: Diffusion-weighted imaging(DWI) has been shown to have superior tumor-to-tissue contrast for cancer detection.This study aims at developing and evaluating a four dimensional DWI(4D-DWI) technique using retrospective sorting method for imaging respiratory motion for radiotherapy planning,and evaluate its effect on Apparent Diffusion Coefficient(ADC) measurement. Materials/Methods: Image acquisition was performed by repeatedly imaging a volume of interest using a multi-slice single-shot 2D-DWI sequence in the axial planes and cine MRI(served as reference) using FIESTA sequence.Each 2D-DWI image were acquired in xyz-diffusion-directions with a high b-value(b=500s/mm2).The respiratory motion was simultaneously recorded using bellows.Retrospective sorting was applied in each direction to reconstruct 4D-DWI.The technique was evaluated using a computer simulated 4D-digital human phantom(XCAT),a motion phantom and a healthy volunteer under an IRB-approved study.Motion trajectories of regions-of-interests(ROI) were extracted from 4D-DWI and compared with reference.The mean motion trajectory amplitude differences(D) between the two was calculated.To quantitatively analyze the motion artifacts,XCAT were controlled to simulate regular motion and the motions of 10 liver cancer patients.4D-DWI,free-breathing DWI(FB- DWI) were reconstructed.Tumor volume difference(VD) of each phase of 4D-DWI and FB-DWI from the input static tumor were calculated.Furthermore, ADC was measured for each phase of 4D-DWI and FB-DWI data,and mean tumor ADC values(M-ADC) were calculated.Mean M-ADC over all 4D-DWI phases was compared with M-ADC calculated from FB-DWI. Results: 4D-DWI of XCAT,the motion phantom and the healthy volunteer demonstrated the respiratory motion clearly.ROI D values were 1.9mm,1.7mm and 2.0mm,respectively.For motion artifacts analysis,XCAT 4D-DWI images show much less motion artifacts compare to FB-DWI.Mean VD for 4D-WDI and FB-DWI were 8.5±1.4% and 108±15

  4. Quantum corrections to ward identities of chronological AVV- and AAA-current correlators for nondegenerate many-fermion systems in the four-dimensional world

    International Nuclear Information System (INIS)

    Kucheryavij, V.Yi.

    1994-01-01

    The explicit form of nontrivial quantum corrections to Ward identities for AVV- and AAA-current correlators in the four-dimensional world for nondegenerate many-fermion systems of general type is obtained. The characteristics of all nontrivial quantum corrections for nondegenerate two-flavour fermion systems are classified and described. In particular, the well-known results follow from ours for the trivial quantum corrections (anomalies) in the case of the degenerate spectrum of fermion masses

  5. Four-dimensional data coupled to alternating weighted residue constraint quadrilinear decomposition model applied to environmental analysis: Determination of polycyclic aromatic hydrocarbons

    Science.gov (United States)

    Liu, Tingting; Zhang, Ling; Wang, Shutao; Cui, Yaoyao; Wang, Yutian; Liu, Lingfei; Yang, Zhe

    2018-03-01

    Qualitative and quantitative analysis of polycyclic aromatic hydrocarbons (PAHs) was carried out by three-dimensional fluorescence spectroscopy combining with Alternating Weighted Residue Constraint Quadrilinear Decomposition (AWRCQLD). The experimental subjects were acenaphthene (ANA) and naphthalene (NAP). Firstly, in order to solve the redundant information of the three-dimensional fluorescence spectral data, the wavelet transform was used to compress data in preprocessing. Then, the four-dimensional data was constructed by using the excitation-emission fluorescence spectra of different concentration PAHs. The sample data was obtained from three solvents that are methanol, ethanol and Ultra-pure water. The four-dimensional spectral data was analyzed by AWRCQLD, then the recovery rate of PAHs was obtained from the three solvents and compared respectively. On one hand, the results showed that PAHs can be measured more accurately by the high-order data, and the recovery rate was higher. On the other hand, the results presented that AWRCQLD can better reflect the superiority of four-dimensional algorithm than the second-order calibration and other third-order calibration algorithms. The recovery rate of ANA was 96.5% 103.3% and the root mean square error of prediction was 0.04 μgL- 1. The recovery rate of NAP was 96.7% 115.7% and the root mean square error of prediction was 0.06 μgL- 1.

  6. Reactive scattering with row-orthonormal hyperspherical coordinates. 4. Four-dimensional-space Wigner rotation function for pentaatomic systems.

    Science.gov (United States)

    Kuppermann, Aron

    2011-05-14

    The row-orthonormal hyperspherical coordinate (ROHC) approach to calculating state-to-state reaction cross sections and bound state levels of N-atom systems requires the use of angular momentum tensors and Wigner rotation functions in a space of dimension N - 1. The properties of those tensors and functions are discussed for arbitrary N and determined for N = 5 in terms of the 6 Euler angles involved in 4-dimensional space.

  7. Comparison of Rigid and Adaptive Methods of Propagating Gross Tumor Volume Through Respiratory Phases of Four-Dimensional Computed Tomography Image Data Set

    International Nuclear Information System (INIS)

    Ezhil, Muthuveni; Choi, Bum; Starkschall, George; Bucci, M. Kara; Vedam, Sastry; Balter, Peter

    2008-01-01

    Purpose: To compare three different methods of propagating the gross tumor volume (GTV) through the respiratory phases that constitute a four-dimensional computed tomography image data set. Methods and Materials: Four-dimensional computed tomography data sets of 20 patients who had undergone definitive hypofractionated radiotherapy to the lung were acquired. The GTV regions of interest (ROIs) were manually delineated on each phase of the four-dimensional computed tomography data set. The ROI from the end-expiration phase was propagated to the remaining nine phases of respiration using the following three techniques: (1) rigid-image registration using in-house software, (2) rigid image registration using research software from a commercial radiotherapy planning system vendor, and (3) rigid-image registration followed by deformable adaptation originally intended for organ-at-risk delineation using the same software. The internal GTVs generated from the various propagation methods were compared with the manual internal GTV using the normalized Dice similarity coefficient (DSC) index. Results: The normalized DSC index of 1.01 ± 0.06 (SD) for rigid propagation using the in-house software program was identical to the normalized DSC index of 1.01 ± 0.06 for rigid propagation achieved with the vendor's research software. Adaptive propagation yielded poorer results, with a normalized DSC index of 0.89 ± 0.10 (paired t test, p <0.001). Conclusion: Propagation of the GTV ROIs through the respiratory phases using rigid- body registration is an acceptable method within a 1-mm margin of uncertainty. The adaptive organ-at-risk propagation method was not applicable to propagating GTV ROIs, resulting in an unacceptable reduction of the volume and distortion of the ROIs

  8. Investigation of pancreas tumour movements and of their potential markers by four-dimensional scanography: implication for image-guided radiotherapy

    International Nuclear Information System (INIS)

    Huguet, F.; Yorke, E.; Davidson, M.; Zhang, Z.; Jackson, A.; Mageras, G.; Wu, A.; Goodman, K.

    2011-01-01

    The authors report the study which aimed at quantifying pancreas tumour movements induced by breathing by using four-dimensional scanography, and at assessing the reliability of biliary prosthesis, of intra-tumor fiducials, and of an external maker as position markers of the gross tumour volume (GTV). The authors analyzed scanography images acquired during the simulation of 22 patients treated for locally advanced pancreas cancer by intensity-modulated conformational irradiation with respiratory gating. Average movements in different directions have measured. Respiratory gating limits the GTV movement amplitude by 40 to 60 per cent. GTV movements are in good correlation with that of biliary prostheses and intra-tumor fiducials. Short communication

  9. The end point of the first-order phase transition of the SU(2) gauge-Higgs model on a four-dimensional isotropic lattice

    International Nuclear Information System (INIS)

    Aoki, Y.; Csikor, F.; Fodor, Z.; Ukawa, A.

    1999-01-01

    We report results of a study of the end point of the electroweak phase transition of the SU(2) gauge-Higgs model defined on a four-dimensional isotropic lattice with N t = 2. Finite-size scaling study of Lee-Yang zeros yields λ c = 0.00116(16) for the end point. Combined with a zero-temperature measurement of Higgs and W boson masses, this leads to M H,c = 68.2 ± 6.6 GeV for the critical Higgs boson mass. An independent analysis of Binder cumulant gives a consistent value λ c = 0.00102(3) for the end point

  10. The four-dimensional non-uniform rational B-splines-based cardiac-torso phantom and its application in medical imaging research

    International Nuclear Information System (INIS)

    Li Chongguo; Wu Dake; Lang Jinyi

    2008-01-01

    Simulation skill is playing an increasingly important role in medical imaging research. four-dimensional non-uniform rational B-splines-based cardiac-torso (4D NCAT) phantom is new tool for meoical imaging res catch and when combined with accurate models for the imaging process a wealth of realistic imaging data from subjects of various anatomies. Can be provided 4D NCAT phantoms have bend widely used in medical research such as SPECT, PET, CT and so on. 4D NCAT phantoms have also been used in inverse planning system of intensity modulated radiation therapy. (authors)

  11. Unified treatment of complete orthonormal sets for wave functions, and Slater orbitals of particles with arbitrary spin in coordinate, momentum and four-dimensional spaces

    International Nuclear Information System (INIS)

    Guseinov, I.I.

    2007-01-01

    The new analytical relations of complete orthonormal sets for the tensor wave functions and the tensor Slater orbitals of particles with arbitrary spin in coordinate, momentum and four-dimensional spaces are derived using the properties of tensor spherical harmonics and complete orthonormal scalar basis sets of ψ α -exponential type orbitals, φ α -momentum space orbitals and z α -hyperspherical harmonics introduced by the author for particles with spin s=0, where the α=1,0,-1,-2,.... All of the tensor wave functions obtained are complete without the inclusion of the continuum and, therefore, their group of transformations is the four-dimensional rotation group O(4). The analytical formulas in coordinate space are also derived for the overlap integrals over tensor Slater orbitals with the same screening constant. We notice that the new idea presented in this work is the combination of tensor spherical harmonics of rank s with complete orthonormal scalar sets for radial parts of ψ α -, φ α - and z α -orbitals, where s=1/2,1,3/2,2,...

  12. Nonlinear spatio-temporal filtering of dynamic PET data using a four-dimensional Gaussian filter and expectation-maximization deconvolution

    International Nuclear Information System (INIS)

    Floberg, J M; Holden, J E

    2013-01-01

    We introduce a method for denoising dynamic PET data, spatio-temporal expectation-maximization (STEM) filtering, that combines four-dimensional Gaussian filtering with EM deconvolution. The initial Gaussian filter suppresses noise at a broad range of spatial and temporal frequencies and EM deconvolution quickly restores the frequencies most important to the signal. We aim to demonstrate that STEM filtering can improve variance in both individual time frames and in parametric images without introducing significant bias. We evaluate STEM filtering with a dynamic phantom study, and with simulated and human dynamic PET studies of a tracer with reversible binding behaviour, [C-11]raclopride, and a tracer with irreversible binding behaviour, [F-18]FDOPA. STEM filtering is compared to a number of established three and four-dimensional denoising methods. STEM filtering provides substantial improvements in variance in both individual time frames and in parametric images generated with a number of kinetic analysis techniques while introducing little bias. STEM filtering does bias early frames, but this does not affect quantitative parameter estimates. STEM filtering is shown to be superior to the other simple denoising methods studied. STEM filtering is a simple and effective denoising method that could be valuable for a wide range of dynamic PET applications. (paper)

  13. Four-dimensional measurement of intrafractional respiratory motion of pancreatic tumors using a 256 multi-slice CT scanner

    International Nuclear Information System (INIS)

    Mori, Shinichiro; Hara, Ryusuke; Yanagi, Takeshi; Sharp, Gregory C.; Kumagai, Motoki; Asakura, Hiroshi; Kishimoto, Riwa; Yamada, Shigeru; Kandatsu, Susumu; Kamada, Tadashi

    2009-01-01

    Purpose: To quantify pancreas and pancreatic tumor movement due to respiratory motion using volumetric cine CT images. Materials and methods: Six patients with pancreatic tumors were scanned in cine mode with a 256 multi-slice CT scanner under free breathing conditions. Gross tumor volume (GTV) and pancreas were manually contoured on the CT data set by a radiation oncologist. Intrafractional respiratory movement of the GTV and pancreas was calculated, and the results were compared between the respiratory ungated and gated phases, which is a 30% duty cycle around exhalation. Results: Respiratory-induced organ motion was observed mainly in the anterior abdominal side than the posterior side. Average GTV displacement (ungated/gated phases) was 0.7 mm/0.2 mm in both the left and right directions, and 2.5 mm/0.9 mm in the anterior, 0.1 mm/0 mm in the posterior, and 8.9 mm/2.6 mm in the inferior directions. Average pancreas center of mass displacement relative to that at peak exhalation was mainly in the inferior direction, at 9.6 mm in the ungated phase and 2.3 mm in the gated phase. Conclusions: By allowing accurate determination of the margin, quantitative analysis of tumor and pancreas displacement provides useful information in treatment planning in all radiation approaches for pancreatic tumors.

  14. TH-E-17A-07: Improved Cine Four-Dimensional Computed Tomography (4D CT) Acquisition and Processing Method

    International Nuclear Information System (INIS)

    Castillo, S; Castillo, R; Castillo, E; Pan, T; Ibbott, G; Balter, P; Hobbs, B; Dai, J; Guerrero, T

    2014-01-01

    Purpose: Artifacts arising from the 4D CT acquisition and post-processing methods add systematic uncertainty to the treatment planning process. We propose an alternate cine 4D CT acquisition and post-processing method to consistently reduce artifacts, and explore patient parameters indicative of image quality. Methods: In an IRB-approved protocol, 18 patients with primary thoracic malignancies received a standard cine 4D CT acquisition followed by an oversampling 4D CT that doubled the number of images acquired. A second cohort of 10 patients received the clinical 4D CT plus 3 oversampling scans for intra-fraction reproducibility. The clinical acquisitions were processed by the standard phase sorting method. The oversampling acquisitions were processed using Dijkstras algorithm to optimize an artifact metric over available image data. Image quality was evaluated with a one-way mixed ANOVA model using a correlation-based artifact metric calculated from the final 4D CT image sets. Spearman correlations and a linear mixed model tested the association between breathing parameters, patient characteristics, and image quality. Results: The oversampling 4D CT scans reduced artifact presence significantly by 27% and 28%, for the first cohort and second cohort respectively. From cohort 2, the inter-replicate deviation for the oversampling method was within approximately 13% of the cross scan average at the 0.05 significance level. Artifact presence for both clinical and oversampling methods was significantly correlated with breathing period (ρ=0.407, p-value<0.032 clinical, ρ=0.296, p-value<0.041 oversampling). Artifact presence in the oversampling method was significantly correlated with amount of data acquired, (ρ=-0.335, p-value<0.02) indicating decreased artifact presence with increased breathing cycles per scan location. Conclusion: The 4D CT oversampling acquisition with optimized sorting reduced artifact presence significantly and reproducibly compared to the phase

  15. Four-dimensional characterization of thrombosis in a live-cell, shear-flow assay: development and application to xenotransplantation.

    Directory of Open Access Journals (Sweden)

    Donald G Harris

    Full Text Available Porcine xenografts are a promising source of scarce transplantable organs, but stimulate intense thrombosis of human blood despite targeted genetic and pharmacologic interventions. Current experimental models do not enable study of the blood/endothelial interface to investigate adhesive interactions and thrombosis at the cellular level under physiologic conditions. The purpose of this study was to develop and validate a live-cell, shear-flow based thrombosis assay relevant to general thrombosis research, and demonstrate its potential in xenotransplantation applications.Confluent wild-type (WT, n = 48 and Gal transferase knock-out (GalTKO, which resist hyperacute rejection; n = 11 porcine endothelia were cultured in microfluidic channels. To mimic microcirculatory flow, channels were perfused at 5 dynes/cm2 and 37°C with human blood stained to fluorescently label platelets. Serial fluorescent imaging visualized percent surface area coverage (SA, for adhesion of labeled cells and total fluorescence (a metric of clot volume. Aggregation was calculated by the fluorescence/SA ratio (FR. WT endothelia stimulated diffuse platelet adhesion (SA 65 ± 2% and aggregation (FR 120 ± 1 a.u., indicating high-grade thrombosis consistent with the rapid platelet activation and consumption seen in whole-organ lung xenotransplantation models. Experiments with antibody blockade of platelet aggregation, and perfusion of syngeneic and allo-incompatible endothelium was used to verify the biologic specificity and validity of the assay. Finally, with GalTKO endothelia thrombus volume decreased by 60%, due primarily to a 58% reduction in adhesion (P < 0.0001 each; importantly, aggregation was only marginally affected (11% reduction, P < 0.0001.This novel, high-throughput assay enabled dynamic modeling of whole-blood thrombosis on intact endothelium under physiologic conditions, and allowed mechanistic characterization of endothelial and platelet interactions. Applied to

  16. Four-dimensional (4D) flow of the whole heart and great vessels using real-time respiratory self-gating

    DEFF Research Database (Denmark)

    Uribe, Sergio; Beerbaum, Philipp; Sørensen, Thomas Sangild

    2009-01-01

    Four-dimensional (4D) flow imaging has been used to study flow patterns and pathophysiology, usually focused on specific thoracic vessels and cardiac chambers. Whole-heart 4D flow at high measurement accuracy covering the entire thoracic cardiovascular system would be desirable to simplify...... and improve hemodynamic assessment. This has been a challenge because compensation of respiratory motion is difficult to achieve, but it is paramount to limit artifacts and improve accuracy. In this work we propose a self-gating technique for respiratory motion-compensation integrated into a whole-heart 4D...... flow acquisition that overcomes these challenges. Flow components are measured in all three directions for each pixel over the complete cardiac cycle, and 1D volume projections are obtained at certain time intervals for respiratory gating in real time during the acquisition. The technique was tested...

  17. Solitons in four dimensional gravity

    International Nuclear Information System (INIS)

    Matos, T.

    1990-01-01

    An alternative method to solve the Chiral equations with SL (2,R) symmetry is developed. One gets the N-soliton solution using the Neugebauer Ansatz. For N = 1 one obtains the Backlund transformation of the Chiral equations. From the application of this transformation for the flat seed solution one finds the Kerr-NUT solution. This method can be applied to generate solutions of the n-dimensional Einstein equations (Author)

  18. Four-Dimensional Golden Search

    Energy Technology Data Exchange (ETDEWEB)

    Fenimore, Edward E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-02-25

    The Golden search technique is a method to search a multiple-dimension space to find the minimum. It basically subdivides the possible ranges of parameters until it brackets, to within an arbitrarily small distance, the minimum. It has the advantages that (1) the function to be minimized can be non-linear, (2) it does not require derivatives of the function, (3) the convergence criterion does not depend on the magnitude of the function. Thus, if the function is a goodness of fit parameter such as chi-square, the convergence does not depend on the noise being correctly estimated or the function correctly following the chi-square statistic. And, (4) the convergence criterion does not depend on the shape of the function. Thus, long shallow surfaces can be searched without the problem of premature convergence. As with many methods, the Golden search technique can be confused by surfaces with multiple minima.

  19. Four-dimensional superstring models

    International Nuclear Information System (INIS)

    Lykken, J.D.

    1997-01-01

    These five lectures give an elementary introduction to perturbative superstring theory, superstring phenomenology, and the fermionic construction of perturbative string models. These lectures assume no prior knowledge of string theory. (author) string theory. (author)

  20. Quantification of the kV X-ray imaging dose during real-time tumor tracking and from three- and four-dimensional cone-beam computed tomography in lung cancer patients using a Monte Carlo simulation.

    Science.gov (United States)

    Nakamura, Mitsuhiro; Ishihara, Yoshitomo; Matsuo, Yukinori; Iizuka, Yusuke; Ueki, Nami; Iramina, Hiraku; Hirashima, Hideaki; Mizowaki, Takashi

    2018-03-01

    Knowledge of the imaging doses delivered to patients and accurate dosimetry of the radiation to organs from various imaging procedures is becoming increasingly important for clinicians. The purposes of this study were to calculate imaging doses delivered to the organs of lung cancer patients during real-time tumor tracking (RTTT) with three-dimensional (3D), and four-dimensional (4D) cone-beam computed tomography (CBCT), using Monte Carlo techniques to simulate kV X-ray dose distributions delivered using the Vero4DRT. Imaging doses from RTTT, 3D-CBCT and 4D-CBCT were calculated with the planning CT images for nine lung cancer patients who underwent stereotactic body radiotherapy (SBRT) with RTTT. With RTTT, imaging doses from correlation modeling and from monitoring of imaging during beam delivery were calculated. With CBCT, doses from 3D-CBCT and 4D-CBCT were also simulated. The doses covering 2-cc volumes (D2cc) in correlation modeling were up to 9.3 cGy for soft tissues and 48.4 cGy for bone. The values from correlation modeling and monitoring were up to 11.0 cGy for soft tissues and 59.8 cGy for bone. Imaging doses in correlation modeling were larger with RTTT. On a single 4D-CBCT, the skin and bone D2cc values were in the ranges of 7.4-10.5 cGy and 33.5-58.1 cGy, respectively. The D2cc from 4D-CBCT was approximately double that from 3D-CBCT. Clinicians should Figure that the imaging dose increases the cumulative doses to organs.

  1. A four dimensional separation method based on continuous heart-cutting gas chromatography with ion mobility and high resolution mass spectrometry.

    Science.gov (United States)

    Lipok, Christian; Hippler, Jörg; Schmitz, Oliver J

    2018-02-09

    A two-dimensional GC (2D-GC) method was developed and coupled to an ion mobility-high resolution mass spectrometer, which enables the separation of complex samples in four dimensions (2D-GC, ion mobilility spectrometry and mass spectrometry). This approach works as a continuous multiheart-cutting GC-system (GC+GC), using a long modulation time of 20s, which allows the complete transfer of most of the first dimension peaks to the second dimension column without fractionation, in comparison to comprehensive two-dimensional gas chromatography (GCxGC). Hence, each compound delivers only one peak in the second dimension, which simplifies the data handling even when ion mobility spectrometry as a third and mass spectrometry as a fourth dimension are introduced. The analysis of a plant extract from Calendula officinales shows the separation power of this four dimensional separation method. The introduction of ion mobility spectrometry provides an additional separation dimension and allows to determine collision cross sections (CCS) of the analytes as a further physicochemical constant supporting the identification. A CCS database with more than 800 standard substances including drug-like compounds and pesticides was used for CCS data base search in this work. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Role of four-dimensional echocardiography with high-definition flow imaging and spatiotemporal image correlation in detecting fetal pulmonary veins.

    Science.gov (United States)

    Sun, Xue; Zhang, Ying; Fan, Miao; Wang, Yu; Wang, Meilian; Siddiqui, Faiza Amber; Sun, Wei; Sun, Feifei; Zhang, Dongyu; Lei, Wenjia; Hu, Guyue

    2017-06-01

    Prenatal diagnosis of fetal total anomalous pulmonary vein connection (TAPVC) remains challenging for most screening sonographers. The purpose of this study was to evaluate the use of four-dimensional echocardiography with high-definition flow imaging and spatiotemporal image correlation (4D-HDFI) in identifying pulmonary veins in normal and TAPVC fetuses. We retrospectively reviewed and performed 4D-HDFI in 204 normal and 12 fetuses with confirmed diagnosis of TAPVC. Cardiac volumes were available for postanalysis to obtain 4D-rendered images of the pulmonary veins. For the normal fetuses, two other traditional modalities including color Doppler and HDFI were used to detect the number of pulmonary veins and comparisons were made between each of these traditional methods and 4D-HDFI. For conventional echocardiography, HDFI modality was superior to color Doppler in detecting more pulmonary veins in normal fetuses throughout the gestational period. 4D-HDFI was the best method during the second trimester of pregnancy in identifying normal fetal pulmonary veins. 4D-HDFI images vividly depicted the figure, course, and drainage of pulmonary veins in both normal and TAPVC fetuses. HDFI and the advanced 4D-HDFI technique could facilitate identification of the anatomical features of pulmonary veins in both normal and TAPVC fetuses; 4D-HDFI therefore provides additional and more precise information than conventional echocardiography techniques. © 2017, Wiley Periodicals, Inc.

  3. Speed and amplitude of lung tumor motion precisely detected in four-dimensional setup and in real-time tumor-tracking radiotherapy

    International Nuclear Information System (INIS)

    Shirato, Hiroki; Suzuki, Keishiro; Sharp, Gregory C.; Fujita, Katsuhisa R.T.; Onimaru, Rikiya; Fujino, Masaharu; Kato, Norio; Osaka, Yasuhiro; Kinoshita, Rumiko; Taguchi, Hiroshi; Onodera, Shunsuke; Miyasaka, Kazuo

    2006-01-01

    Background: To reduce the uncertainty of registration for lung tumors, we have developed a four-dimensional (4D) setup system using a real-time tumor-tracking radiotherapy system. Methods and Materials: During treatment planning and daily setup in the treatment room, the trajectory of the internal fiducial marker was recorded for 1 to 2 min at the rate of 30 times per second by the real-time tumor-tracking radiotherapy system. To maximize gating efficiency, the patient's position on the treatment couch was adjusted using the 4D setup system with fine on-line remote control of the treatment couch. Results: The trajectory of the marker detected in the 4D setup system was well visualized and used for daily setup. Various degrees of interfractional and intrafractional changes in the absolute amplitude and speed of the internal marker were detected. Readjustments were necessary during each treatment session, prompted by baseline shifting of the tumor position. Conclusion: The 4D setup system was shown to be useful for reducing the uncertainty of tumor motion and for increasing the efficiency of gated irradiation. Considering the interfractional and intrafractional changes in speed and amplitude detected in this study, intercepting radiotherapy is the safe and cost-effective method for 4D radiotherapy using real-time tracking technology

  4. Dimensional Reduction of N=1, E_8 SYM over SU(3)/U(1) x U(1) x Z_3 and its four-dimensional effective action

    CERN Document Server

    Irges, Nikos; Zoupanos, George

    2011-01-01

    We present an extension of the Standard Model inspired by the E_8 x E_8 Heterotic String. In order that a reasonable effective Lagrangian is presented we neglect everything else other than the ten-dimensional N=1 supersymmetric Yang-Mills sector associated with one of the gauge factors and certain couplings necessary for anomaly cancellation. We consider a compactified space-time M_4 x B_0 / Z_3, where B_0 is the nearly-Kaehler manifold SU(3)/U(1) x U(1) and Z_3 is a freely acting discrete group on B_0. Then we reduce dimensionally the E_8 on this manifold and we employ the Wilson flux mechanism leading in four dimensions to an SU(3)^3 gauge theory with the spectrum of a N=1 supersymmetric theory. We compute the effective four-dimensional Lagrangian and demonstrate that an extension of the Standard Model is obtained with interesting features including a conserved baryon number and fixed tree level Yukawa couplings and scalar potential. The spectrum contains new states such as right handed neutrinos and heavy ...

  5. Four-dimensional real-time sonographically guided cauterization of the umbilical cord in a case of twin-twin transfusion syndrome.

    Science.gov (United States)

    Timor-Tritsch, Ilan E; Rebarber, Andrei; MacKenzie, Andrew; Caglione, Christopher F; Young, Bruce K

    2003-07-01

    In the past decade, three-dimensional (3D) sonographic technology has matured from a static imaging modality to near-real-time imaging. One of the more notable improvements in this technology has been the speed with which the imaged volume is acquired and displayed. This has enabled the birth of the near-real-time or four-dimensional (4D) sonographic concept. Using the 4D feature of the current 3D sonography machines allows us to follow moving structures, such as fetal motion, in almost real time. Shortly after the emergence of 3D and 4D technology as a clinical imaging tool, its use in guiding needles into structures was explored by other investigators. We present a case in which we used the 4D feature of our sonographic equipment to follow the course and motion of an instrument inserted into the uterus to occlude the umbilical cord of a fetus in a case of twin-twin transfusion syndrome.

  6. Fetal cardiac stroke volume determination by four-dimensional ultrasound with spatio-temporal image correlation compared with two-dimensional and Doppler ultrasonography.

    Science.gov (United States)

    Rizzo, Giuseppe; Capponi, Alessandra; Cavicchioni, Ottavia; Vendola, Marianne; Arduini, Domenico

    2007-12-01

    To assess the agreement of stroke volume (SV) measured with two-dimensional (2D) ultrasonography with Doppler capability (vs) four-dimensional (4D) with spatiotemporal image correlation (STIC) in normal and growth restricted fetuses. 2D Doppler and 4D STIC were used to measure SV of 40 normal fetuses at 20 to 22 and 28 to 32 weeks, and 16 growth-restricted fetuses at 26 to 34 weeks of gestation. Intraclass correlation was used to evaluate the agreement between left and right SV obtained by the two techniques, and proportionate Bland-Altman plots constructed. The time necessary to obtain SV was analyzed. The intraclass correlation coefficient between 2D Doppler and 4D STIC measurements for the left ventricle were 0.977 and 0.980 for the right ventricle. The proportionate limits of agreement between the two methods were 18.7 to 23.9% for the left ventricle and - 20.9 to 21.7% for the right ventricle. The time necessary to measure SV was significantly shorter with 4D STIC (3.1 (vs) 7.9 min p < 0.0001) than with 2D Doppler. There is a good agreement between SV measured either by 2D Doppler or by 4D STIC. The 4D STIC represents a simple and rapid technique to estimate fetal SV and promises to become the method of choice. Copyright (c) 2007 John Wiley & Sons, Ltd.

  7. Four-dimensional CT angiography (4D-CTA) in the evaluation of juvenile nasopharyngeal angiofibromas: comparison with digital subtraction angiography (DSA) and surgical findings.

    Science.gov (United States)

    Xiao, Zebin; Zheng, Yingyan; Li, Jian; Chen, Dehua; Liu, Fang; Cao, Dairong

    2017-12-01

    To explore the value of four-dimensional CT angiography (4D-CTA) in the preoperative evaluation of juvenile nasopharyngeal angiofibromas (JNAs) using 320-row volume CT. 4D-CTA and DSA data of 18 patients with histopathologically proven JNAs were retrospectively reviewed. The location, extent, feeding vessels and stage of JNAs were assessed by two radiologists independently and blindly. The agreements between both reviewers and between 4D-CTA and surgical findings for assessing the above indicators were analysed, respectively. The radiation dose and the number of feeding arteries between 4D-CTA and digital subtraction angiography (DSA) were also compared. 4D-CTA showed high diagnostic consistency with surgical pathology for JNAs with consistent rates of 96.2 and 100% in both reviewers, respectively. The effective dose of 4D-CTA was significantly less than that of DSA (p 0.05). 4D-CTA can provide a reliable preoperative diagnosis and assessment of JNAs, which is useful for determining the surgical strategy and management of this condition.

  8. Modulated Structures of Homologous Compounds In MO 3(ZnO) m( M=In, Ga; m=Integer) Described by Four-Dimensional Superspace Group

    Science.gov (United States)

    Li, Chunfei; Bando, Yoshio; Nakamura, Masaki; Onoda, Mitsuko; Kimizuka, Noboru

    1998-09-01

    The modulated structures appearing in the homologous compounds InMO3(ZnO)m(M=In, Ga;m=integer) were observed by using a high-resoultion transmission electron microscope and are described based on a four-dimensional superspace group. The electron diffraction patterns for compounds withmlarger than 6 reveal extra spots, indicating the formation of a modulated structure. The subcell structures form=odd and even numbers are assigned to be either monoclinic or orthorhombic, respectively. On the other hand, extra spots can be indexed by one-dimensional modulated structure. The possible space groups for the subcell structure areCm,C2, andC2/mform=odd numbers, while those form=even numbers areCcm21andCcmm, respectively. Then, corresponding possible superspace groups are assigned to bePC2s,PCmoverline1, andPC2/msoverline1for oddmnumbers andPCcm211overline1overline1andPCcmm1overline11for evenmnumbers. Based on the superspace group determination, a structure model for a one-dimensional modulated structure is proposed.

  9. Real-Space Imaging of Carrier Dynamics of Materials Surfaces by Second-Generation Four-Dimensional Scanning Ultrafast Electron Microscopy

    KAUST Repository

    Sun, Jingya

    2015-09-14

    In the fields of photocatalysis and photovoltaics, ultrafast dynamical processes, including carrier trapping and recombination on material surfaces, are among the key factors that determine the overall energy conversion efficiency. A precise knowledge of these dynamical events on the nanometer (nm) and femtosecond (fs) scales was not accessible until recently. The only way to access such fundamental processes fully is to map the surface dynamics selectively in real space and time. In this study, we establish a second generation of four-dimensional scanning ultrafast electron microscopy (4D S-UEM) and demonstrate the ability to record time-resolved images (snapshots) of material surfaces with 650 fs and ∼5 nm temporal and spatial resolutions, respectively. In this method, the surface of a specimen is excited by a clocking optical pulse and imaged using a pulsed primary electron beam as a probe pulse, generating secondary electrons (SEs), which are emitted from the surface of the specimen in a manner that is sensitive to the local electron/hole density. This method provides direct and controllable information regarding surface dynamics. We clearly demonstrate how the surface morphology, grains, defects, and nanostructured features can significantly impact the overall dynamical processes on the surface of photoactive-materials. In addition, the ability to access two regimes of dynamical probing in a single experiment and the energy loss of SEs in semiconductor-nanoscale materials will also be discussed.

  10. Comparison of IGRT Registration Strategies for Optimal Coverage of Primary Lung Tumors and Involved Nodes Based on Multiple Four-Dimensional CT Scans Obtained Throughout the Radiotherapy Course

    International Nuclear Information System (INIS)

    Mohammed, Nasiruddin; Kestin, Larry; Grills, Inga; Shah, Chirag; Glide-Hurst, Carri; Yan, Di; Ionascu, Dan

    2012-01-01

    Purpose: To investigate the impact of primary tumor and involved lymph node (LN) geometry (centroid, shape, volume) on internal target volume (ITV) throughout treatment for locally advanced non–small cell lung cancer using weekly four-dimensional computed tomography (4DCT). Methods and Materials: Eleven patients with advanced non–small cell lung cancer were treated using image-guided radiotherapy with acquisition of weekly 10-Phase 4DCTs (n = 51). Initial ITV was based on planning 4DCT. Master-ITV incorporated target geometry across the entire treatment (all 4DCTs). Geographic miss was defined as the % Master-ITV positioned outside of the initial planning ITV after registration is complete. Registration strategies considered were bony (B), primary tumor soft tissue alone (T), and registration based on primary tumor and involved LNs (T L N). Results: The % geographic miss for the primary tumor, mediastinal, and hilar lymph nodes based on each registration strategy were (1) B: 30%, 30%, 30%; (2) T: 21%, 40%, 36%; and (3) T L N: 26%, 26%, 27%. Mean geographic expansions to encompass 100% of the primary tumor and involved LNs were 1.2 ± 0.7 cm and 0.8 ± 0.3 cm, respectively, for B and T L N. Primary and involved LN expansions were 0.7 ± 0.5 cm and 1.1 ± 0.5 cm for T. Conclusion: T is best for solitary targets. When treatments include primary tumor and LNs, B and T L N provide more comprehensive geographic coverage. We have identified high % geographic miss when considering multiple registration strategies. The dosimetric implications are the subject of future study.

  11. Assessing Respiration-Induced Tumor Motion and Internal Target Volume Using Four-Dimensional Computed Tomography for Radiotherapy of Lung Cancer

    International Nuclear Information System (INIS)

    Liu, H. Helen; Balter, Peter; Tutt, Teresa; Choi, Bum; Zhang, Joy; Wang, Catherine; Chi, Melinda; Luo Dershan; Pan Tinsu; Hunjan, Sandeep; Starkschall, George; Rosen, Isaac; Prado, Karl; Liao Zhongxing; Chang, Joe; Komaki, Ritsuko; Cox, James D.; Mohan, Radhe; Dong Lei

    2007-01-01

    Purpose: To assess three-dimensional tumor motion caused by respiration and internal target volume (ITV) for radiotherapy of lung cancer. Methods and Materials: Respiration-induced tumor motion was analyzed for 166 tumors from 152 lung cancer patients, 57.2% of whom had Stage III or IV non-small-cell lung cancer. All patients underwent four-dimensional computed tomography (4DCT) during normal breathing before treatment. The expiratory phase of 4DCT images was used as the reference set to delineate gross tumor volume (GTV). Gross tumor volumes on other respiratory phases and resulting ITVs were determined using rigid-body registration of 4DCT images. The association of GTV motion with various clinical and anatomic factors was analyzed statistically. Results: The proportions of tumors that moved >0.5 cm along the superior-inferior (SI), lateral, and anterior-posterior (AP) axes during normal breathing were 39.2%, 1.8%, and 5.4%, respectively. For 95% of the tumors, the magnitude of motion was less than 1.34 cm, 0.40 cm, and 0.59 cm along the SI, lateral, and AP directions. The principal component of tumor motion was in the SI direction, with only 10.8% of tumors moving >1.0 cm. The tumor motion was found to be associated with diaphragm motion, the SI tumor location in the lung, size of the GTV, and disease T stage. Conclusions: Lung tumor motion is primarily driven by diaphragm motion. The motion of locally advanced lung tumors is unlikely to exceed 1.0 cm during quiet normal breathing except for small lesions located in the lower half of the lung

  12. Comparison of IGRT Registration Strategies for Optimal Coverage of Primary Lung Tumors and Involved Nodes Based on Multiple Four-Dimensional CT Scans Obtained Throughout the Radiotherapy Course

    Energy Technology Data Exchange (ETDEWEB)

    Mohammed, Nasiruddin; Kestin, Larry; Grills, Inga; Shah, Chirag; Glide-Hurst, Carri; Yan, Di [Department of Radiation Oncology, William Beaumont Hospital, Royal Oak, MI (United States); Ionascu, Dan, E-mail: Dan.ionascu@beaumont.edu [Department of Radiation Oncology, William Beaumont Hospital, Royal Oak, MI (United States)

    2012-03-15

    Purpose: To investigate the impact of primary tumor and involved lymph node (LN) geometry (centroid, shape, volume) on internal target volume (ITV) throughout treatment for locally advanced non-small cell lung cancer using weekly four-dimensional computed tomography (4DCT). Methods and Materials: Eleven patients with advanced non-small cell lung cancer were treated using image-guided radiotherapy with acquisition of weekly 10-Phase 4DCTs (n = 51). Initial ITV was based on planning 4DCT. Master-ITV incorporated target geometry across the entire treatment (all 4DCTs). Geographic miss was defined as the % Master-ITV positioned outside of the initial planning ITV after registration is complete. Registration strategies considered were bony (B), primary tumor soft tissue alone (T), and registration based on primary tumor and involved LNs (T{sub L}N). Results: The % geographic miss for the primary tumor, mediastinal, and hilar lymph nodes based on each registration strategy were (1) B: 30%, 30%, 30%; (2) T: 21%, 40%, 36%; and (3) T{sub L}N: 26%, 26%, 27%. Mean geographic expansions to encompass 100% of the primary tumor and involved LNs were 1.2 {+-} 0.7 cm and 0.8 {+-} 0.3 cm, respectively, for B and T{sub L}N. Primary and involved LN expansions were 0.7 {+-} 0.5 cm and 1.1 {+-} 0.5 cm for T. Conclusion: T is best for solitary targets. When treatments include primary tumor and LNs, B and T{sub L}N provide more comprehensive geographic coverage. We have identified high % geographic miss when considering multiple registration strategies. The dosimetric implications are the subject of future study.

  13. Four-dimensional measurement of the displacement of internal fiducial and skin markers during 320-multislice computed tomography scanning of breast cancer.

    Science.gov (United States)

    Yamashita, Hideomi; Okuma, Kae; Tada, Keiichiro; Shiraishi, Kenshiro; Takahashi, Wataru; Shibata-Mobayashi, Shino; Sakumi, Akira; Saotome, Naoya; Haga, Akihiro; Onoe, Tsuyoshi; Ino, Kenji; Akahane, Masaaki; Ohtomo, Kuni; Nakagawa, Keiichi

    2012-10-01

    To study the three-dimensional movement of internal tumor bed fiducial and breast skin markers, using 320-multislice computed tomography (CT); and to analyze intrafractional errors for breast cancer patients undergoing breast irradiation. This study examined 280 markers on the skin of the breast (200 markers) and on the primary tumor bed (80 markers) of 20 patients treated by external-beam photon radiotherapy. Motion assessment was analyzed in 41 respiratory phases during 20 s of cine CT in the radiotherapy position. To assess intrafractional errors resulting from respiratory motion, four-dimensional CT scans were acquired for 20 patients. Motion in the anterior-posterior (A/P) and superior-inferior (S/I) directions showed a strong correlation (|r| > 0.7) with the respiratory curve for most markers (79% and 70%, respectively). The average marker displacements between maximum and minimum value during 20 s for the 200 breast skin metal markers were 1.1 ± 0.3 mm, 2.1 ± 0.6 mm, and 1.6 ± 0.4 mm in the left-right, A/P, and S/I directions, respectively. For the 80 tumor bed clips, displacements were 0.9 ± 0.2 mm in left-right, 1.7 ± 0.5 mm in A/P, and 1.1 ± 0.3 mm in S/I. There was no significant difference in the motion between breast quadrant regions or between the primary site and the other regions. Motion in primary breast tumors was evaluated with 320-multislice CT. Very little change was detected during individual radiation treatment fractions. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Comparison of Intensity-Modulated Radiotherapy Planning Based on Manual and Automatically Generated Contours Using Deformable Image Registration in Four-Dimensional Computed Tomography of Lung Cancer Patients

    International Nuclear Information System (INIS)

    Weiss, Elisabeth; Wijesooriya, Krishni; Ramakrishnan, Viswanathan; Keall, Paul J.

    2008-01-01

    Purpose: To evaluate the implications of differences between contours drawn manually and contours generated automatically by deformable image registration for four-dimensional (4D) treatment planning. Methods and Materials: In 12 lung cancer patients intensity-modulated radiotherapy (IMRT) planning was performed for both manual contours and automatically generated ('auto') contours in mid and peak expiration of 4D computed tomography scans, with the manual contours in peak inspiration serving as the reference for the displacement vector fields. Manual and auto plans were analyzed with respect to their coverage of the manual contours, which were assumed to represent the anatomically correct volumes. Results: Auto contours were on average larger than manual contours by up to 9%. Objective scores, D 2% and D 98% of the planning target volume, homogeneity and conformity indices, and coverage of normal tissue structures (lungs, heart, esophagus, spinal cord) at defined dose levels were not significantly different between plans (p = 0.22-0.94). Differences were statistically insignificant for the generalized equivalent uniform dose of the planning target volume (p = 0.19-0.94) and normal tissue complication probabilities for lung and esophagus (p = 0.13-0.47). Dosimetric differences >2% or >1 Gy were more frequent in patients with auto/manual volume differences ≥10% (p = 0.04). Conclusions: The applied deformable image registration algorithm produces clinically plausible auto contours in the majority of structures. At this stage clinical supervision of the auto contouring process is required, and manual interventions may become necessary. Before routine use, further investigations are required, particularly to reduce imaging artifacts

  15. The Prognostic Value of a Four-Dimensional CT Angiography-Based Collateral Grading Scale for Reperfusion Therapy in Acute Ischemic Stroke Patients.

    Science.gov (United States)

    Zhang, Sheng; Chen, Weili; Tang, Huan; Han, Quan; Yan, Shenqiang; Zhang, Xiaocheng; Chen, Qingmeng; Parsons, Mark; Wang, Shaoshi; Lou, Min

    2016-01-01

    Leptomeningeal collaterals, which affects tissue fate, are still challenging to assess. Four-dimensional CT angiography (4D CTA) originated from CT perfusion (CTP) provides the possibility of non-invasive and time-resolved assessment of leptomeningeal collateral flow. We sought to develop a comprehensive rating system to integrate the speed and extent of collateral flow on 4D CTA, and investigate its prognostic value for reperfusion therapy in acute ischemic stroke (AIS) patients. We retrospectively studied 80 patients with M1 ± internal carotid artery (ICA) occlusion who had baseline CTP before intravenous thrombolysis. The velocity and extent of collaterals were evaluated by regional leptomeningeal collateral score on peak phase (rLMC-P) and temporally fused intensity projections (tMIP) (rLMC-M) on 4D CTA, respectively. The cutoffs of rLMC-P and rLMC-M score for predicting good outcome (mRS score ≤ 2) were integrated to develop the collateral grading scale (CGS) (rating from 0-2). The CGS score was correlated with 3-months mRS score (non-recanalizers: ρ = -0.495, p = 0.01; recanalizers: ρ = -0.671, p < 0.001). Patients with intermediate or good collaterals (CGS score of 1 and 2) who recanalized were more likely to have good outcome than those without recanalization (p = 0.038, p = 0.018), while there was no significant difference in outcome in patients with poor collaterals (CGS score of 0) stratified by recanalization (p = 0.227). Identification of collaterals based on CGS may help to select good responders to reperfusion therapy in patients with large artery occlusion.

  16. The English version of the four-dimensional symptom questionnaire (4DSQ) measures the same as the original Dutch questionnaire: a validation study.

    Science.gov (United States)

    Terluin, Berend; Smits, Niels; Miedema, Baukje

    2014-12-01

    Translations of questionnaires need to be carefully validated to assure that the translation measures the same construct(s) as the original questionnaire. The four-dimensional symptom questionnaire (4DSQ) is a Dutch self-report questionnaire measuring distress, depression, anxiety and somatization. To evaluate the equivalence of the English version of the 4DSQ. 4DSQ data of English and Dutch speaking general practice attendees were analysed and compared. The English speaking group consisted of 205 attendees, aged 18-64 years, in general practice, in Canada whereas the Dutch group consisted of 302 general practice attendees in the Netherlands. Differential item functioning (DIF) analysis was conducted using the Mantel-Haenszel method and ordinal logistic regression. Differential test functioning (DTF; i.e., the scale impact of DIF) was evaluated using linear regression analysis. DIF was detected in 2/16 distress items, 2/6 depression items, 2/12 anxiety items, and 1/16 somatization items. With respect to mean scale scores, the impact of DIF on the scale level was negligible for all scales. On the anxiety scale DIF caused the English speaking patients with moderate to severe anxiety to score about one point lower than Dutch patients with the same anxiety level. The English 4DSQ measures the same constructs like the original Dutch 4DSQ. The distress, depression and somatization scales can employ the same cut-off points as the corresponding Dutch scales. However, cut-off points of the English 4DSQ anxiety scale should be lowered by one point to retain the same meaning as the Dutch anxiety cut-off points.

  17. Mid-Ventilation Concept for Mobile Pulmonary Tumors: Internal Tumor Trajectory Versus Selective Reconstruction of Four-Dimensional Computed Tomography Frames Based on External Breathing Motion

    International Nuclear Information System (INIS)

    Guckenberger, Matthias; Wilbert, Juergen; Krieger, Thomas; Richter, Anne; Baier, Kurt; Flentje, Michael

    2009-01-01

    Purpose: To evaluate the accuracy of direct reconstruction of mid-ventilation and peak-phase four-dimensional (4D) computed tomography (CT) frames based on the external breathing signal. Methods and Materials: For 11 patients with 15 pulmonary targets, a respiration-correlated CT study (4D CT) was acquired for treatment planning. After retrospective time-based sorting of raw projection data and reconstruction of eight CT frames equally distributed over the breathing cycle, mean tumor position (P mean ), mid-ventilation frame, and breathing motion were evaluated based on the internal tumor trajectory. Analysis of the external breathing signal (pressure sensor around abdomen) with amplitude-based sorting of projections was performed for direct reconstruction of the mid-ventilation frame and frames at peak phases of the breathing cycle. Results: On the basis of the eight 4D CT frames equally spaced in time, tumor motion was largest in the craniocaudal direction, with 12 ± 7 mm on average. Tumor motion between the two frames reconstructed at peak phases was not different in the craniocaudal and anterior-posterior directions but was systematically smaller in the left-right direction by 1 mm on average. The 3-dimensional distance between P mean and the tumor position in the mid-ventilation frame based on the internal tumor trajectory was 1.2 ± 1 mm. Reconstruction of the mid-ventilation frame at the mean amplitude position of the external breathing signal resulted in tumor positions 2.0 ± 1.1 mm distant from P mean . Breathing-induced motion artifacts in mid-ventilation frames caused negligible changes in tumor volume and shape. Conclusions: Direct reconstruction of the mid-ventilation frame and frames at peak phases based on the external breathing signal was reliable. This makes the reconstruction of only three 4D CT frames sufficient for application of the mid-ventilation technique in clinical practice.

  18. Correlations of third-trimester hiatal biometry obtained using four-dimensional translabial ultrasonography with the delivery route in nulliparous pregnant women

    Directory of Open Access Journals (Sweden)

    Teerayut Temtanakitpaisan

    2016-01-01

    Full Text Available Purpose: The goal of this study was to evaluate normal hiatal dimensions in the third trimester in nulliparous Thai pregnant women and to establish which biometric factors were associated with various pregnancy outcomes. Methods: Fifty-seven consecutive nulliparous pregnant Thai women in their third trimester were recruited on a voluntary basis from April to October 2014. All subjects underwent four-dimensional (4D translabial ultrasonography. Hiatal biometric parameters were measured at rest, while performing a Valsalva maneuver, and during contraction. Information about the patients’ eventual deliveries was obtained from their medical records. Results: The mean values of the patients’ age, body mass index, and gestational age at the time of examination were 27.4±5.47 years, 26.7±3.48 kg/m2, and 36.6±1.49 weeks, respectively. No subjects had vaginal lumps or experienced prolapse greater than stage 1 of the Pelvic Organ Prolapse Quantification system. Ultrasonography showed that the mean values of the hiatal area at rest, while performing a Valsalva maneuver, and during contraction were 13.10±2.92 cm2, 17.50±4.81 cm2, and 9.69±2.09 cm2, respectively. The hiatal area at rest, the axial measurement at rest, and the axial measurement while performing a Valsalva maneuver were significantly associated with the route of delivery (P=0.02, P=0.04, and P=0.03, respectively. Conclusion: The route of delivery was associated with hiatal biometric values measured using 4D translabial ultrasonography, based on the results of nulliparous Thai women in the third trimester.

  19. Cerebral Hemodynamics in Patients with Hemolytic Uremic Syndrome Assessed by Susceptibility Weighted Imaging and Four-Dimensional Non-Contrast MR Angiography.

    Science.gov (United States)

    Löbel, Ulrike; Forkert, Nils Daniel; Schmitt, Peter; Dohrmann, Thorsten; Schroeder, Maria; Magnus, Tim; Kluge, Stefan; Weiler-Normann, Christina; Bi, Xiaoming; Fiehler, Jens; Sedlacik, Jan

    2016-01-01

    Conventional magnetic resonance imaging (MRI) of patients with hemolytic uremic syndrome (HUS) and neurological symptoms performed during an epidemic outbreak of Escherichia coli O104:H4 in Northern Europe has previously shown pathological changes in only approximately 50% of patients. In contrast, susceptibility-weighted imaging (SWI) revealed a loss of venous contrast in a large number of patients. We hypothesized that this observation may be due to an increase in cerebral blood flow (CBF) and aimed to identify a plausible cause. Baseline 1.5T MRI scans of 36 patients (female, 26; male, 10; mean age, 38.2±19.3 years) were evaluated. Venous contrast was rated on standard SWI minimum intensity projections. A prototype four-dimensional (time resolved) magnetic resonance angiography (4D MRA) assessed cerebral hemodynamics by global time-to-peak (TTP), as a surrogate marker for CBF. Clinical parameters studied were hemoglobin, hematocrit, creatinine, urea levels, blood pressure, heart rate, and end-tidal CO2. SWI venous contrast was abnormally low in 33 of 36 patients. TTP ranged from 3.7 to 10.2 frames (mean, 7.9 ± 1.4). Hemoglobin at the time of MRI (n = 35) was decreased in all patients (range, 5.0 to 12.6 g/dL; mean, 8.2 ± 1.4); hematocrit (n = 33) was abnormally low in all but a single patient (range, 14.3 to 37.2%; mean, 23.7 ± 4.2). Creatinine was abnormally high in 30 of 36 patients (83%) (range, 0.8 to 9.7; mean, 3.7 ± 2.2). SWI venous contrast correlated significantly with hemoglobin (r = 0.52, P = 0.0015), hematocrit (r = 0.65, P effect of blood transfusions in patients with HUS and neurological symptoms.

  20. Four dimensional data assimilation (FDDA) impacts on WRF performance in simulating inversion layer structure and distributions of CMAQ-simulated winter ozone concentrations in Uintah Basin

    Science.gov (United States)

    Tran, Trang; Tran, Huy; Mansfield, Marc; Lyman, Seth; Crosman, Erik

    2018-03-01

    Four-dimensional data assimilation (FDDA) was applied in WRF-CMAQ model sensitivity tests to study the impact of observational and analysis nudging on model performance in simulating inversion layers and O3 concentration distributions within the Uintah Basin, Utah, U.S.A. in winter 2013. Observational nudging substantially improved WRF model performance in simulating surface wind fields, correcting a 10 °C warm surface temperature bias, correcting overestimation of the planetary boundary layer height (PBLH) and correcting underestimation of inversion strengths produced by regular WRF model physics without nudging. However, the combined effects of poor performance of WRF meteorological model physical parameterization schemes in simulating low clouds, and warm and moist biases in the temperature and moisture initialization and subsequent simulation fields, likely amplified the overestimation of warm clouds during inversion days when observational nudging was applied, impacting the resulting O3 photochemical formation in the chemistry model. To reduce the impact of a moist bias in the simulations on warm cloud formation, nudging with the analysis water mixing ratio above the planetary boundary layer (PBL) was applied. However, due to poor analysis vertical temperature profiles, applying analysis nudging also increased the errors in the modeled inversion layer vertical structure compared to observational nudging. Combining both observational and analysis nudging methods resulted in unrealistically extreme stratified stability that trapped pollutants at the lowest elevations at the center of the Uintah Basin and yielded the worst WRF performance in simulating inversion layer structure among the four sensitivity tests. The results of this study illustrate the importance of carefully considering the representativeness and quality of the observational and model analysis data sets when applying nudging techniques within stable PBLs, and the need to evaluate model results

  1. Comparison of three approaches to delineate internal gross tumor volume based on four-dimensional CT simulation images of non-small-cell lung cancer

    International Nuclear Information System (INIS)

    Li Fengxiang; Li Jianbin; Zhang Yingjie; Shang Dongping; Liu Tonghai; Tian Shiyu; Xu Min; Ma Changsheng

    2011-01-01

    Objective: To compare positional and volumetric differences of internal gross tumor volume (IGTV) delineated separately by three approaches based on four-dimensional CT (4DCT) for the primary tumor of non-small cell lung cancer (NLCLC). Methods: Twenty-one patients with NLCLC underwent big bore 4DCT simulation scan of the thorax. IGTVs of the primary tumor of NSCLC were delineated using three approaches as followed: (1) the gross tumor volume (GTV) on each of the ten the respiratory phases of the 4DCT image set were delineated and the ten GTV were fused to produce IGTV 10 ; (2) the GTV delineated separately based on 0% and 50% phase were fused to produce IGTV EI+EE ; (3) the visible tumor on the MIP images were delineated to produce IGTV MIP . The position of the target center, the volume of target, the degree of inclusion (DI) and the matching index (MI) were compared reciprocally between IGTV 10 , IGTV EI+EE and IGTV MIP . Results: Average differences between the position of the center of IGTVs on direction of x, y and z axes were less than 1 mm, with no statistically significant difference. The volume of IGTV 10 was larger than that of IGTV EI+EE , the difference was statistically significant (t=2.37, P=0.028); the volume of IGTV 10 was larger than that of IGTV MIP , but the difference was not statistically significant (t=1.95, P=0.065). The ratio of IGTV EI+EE with IGTV 10 , IGTV MIP with IGTV 10 were 0.85±0.08 and 0.92±0.11, respectively. DI of IGTV EI+EE in IGTV 10 , IGTV MIP in IGTV 10 were 84.78% ± 8. 95% and 88.47% ±9.04%. MI between IGTV 10 and IGTV EI+EE , IGTV 10 and IGTV MIP were 0.85 ±0.09, 0.86±0.09, respectively. Conclusions: The center displacement of the IGTVs delineated separately by the three different techniques based on 4DCT images are not obvious; IGTV EI+EE and IGTV MIP can not replace IGTV 10 , however, IGTV MIP is more close to IGTV 10 comparing to IGTV EI+EE . The ratio of GTV EI+EE with IGTV 10 is correlated to the tumor motion

  2. Prenatal diagnosis of congenital heart disease using four-dimensional spatio-temporal image correlation (STIC) telemedicine via an Internet link: a pilot study.

    Science.gov (United States)

    Viñals, F; Mandujano, L; Vargas, G; Giuliano, A

    2005-01-01

    To assess whether the spatio-temporal image correlation (STIC) acquisition technique can be taught to a general obstetrician by e-mail; whether STIC volume datasets can be transmitted over the Internet; and whether STIC volume datasets analyzed offline at a remote setting can be used to confirm or exclude major cardiac defects (TELE-STIC). This was a prospective study involving 50 pregnant women with gestational ages ranging between 20 and 36 weeks. These patients were selected by two general obstetricians (operators) working in geographically remote areas of Chile. Although both obstetricians were users of equipment capable of four-dimensional (4D) ultrasound with STIC, they lacked skill in the performance of fetal cardiac examination. A dedicated web disk was created to upload the acquired volume datasets using an Internet broadband connection. Offline analysis was performed by a single investigator experienced in fetal echocardiography (the administrator). A telemedicine link via the Internet was possible in all cases. Seventy-seven volume datasets were sent to the web server. A complete cardiac examination according to set criteria was achieved by the administrator in 86% of the cases scanned by one operator and 95% of the cases scanned by the other operator. Three patients had cardiac defects confirmed postnatally, two fetuses had extracardiac anomalies and one fetus had a suspected cardiac defect unconfirmed by second-opinion TELE-STIC. There were two isolated major congenital heart defects. Both patients were given advice by e-mail and teleconference using a web camera about the likely outcome and benefits of scheduling in utero transport to a tertiary care center. STIC volumes can be obtained by operators inexperienced in fetal echocardiography, transmitted via the Internet, and their analysis enables recognition of most of the structures and views necessary to assess fetal cardiac anatomy. The preliminary use of TELE-STIC allowed us to demonstrate that

  3. TU-F-17A-09: Four-Dimensional Cone Beam CT Ventilation Imaging Can Detect Interfraction Lung Function Variations for Locally Advanced Lung Cancer Patients

    Energy Technology Data Exchange (ETDEWEB)

    Kipritidis, J; Keall, P [Radiation Physics Laboratory, University of Sydney, Sydney NSW 2006 Australia (Australia); Hugo, G; Weiss, E; Williamson, J [Department of Radiation Oncology, Virginia Commonwealth University, Richmond VA (United States)

    2014-06-15

    Purpose: Four-dimensional cone beam CT ventilation imaging (4D-CBCT VI) is a novel functional lung imaging modality requiring validation. We hypothesize that 4D-CBCT VI satisfies a necessary condition for validity: that intrafraction variations (e.g. due to poor 4D-CBCT image quality) are substantially different to interfraction variations (e.g. due to changes in underlying function). We perform the first comparison of intrafraction (pre/post fraction) and interfraction (week-to-week) 4D-CBCT VIs for locally advanced non small cell lung cancer (LA NSCLC) patients undergoing radiation therapy. Methods: A total of 215 4D-CBCT scans were acquired for 19 LA NSCLC patients over 4-6 weeks of radiation therapy, including 75 pairs of pre-/post-fraction scans on the same day. 4D-CBCT VIs were obtained by applying state-of-the-art, B-spline deformable image registration to obtain the Jacobian determinant of deformation between the end-exhale and end-inhale phases. All VIs were deformably registered to the corresponding first day scan, normalized between the 10th and 90th percentile values and cropped to the ipsilateral lung only. Intrafraction variations were assessed by computing the mean and standard deviation of voxel-wise differences between all same-day pairs of pre-/post-fraction VIs. Interfraction differences were computed between first-day VIs and treatment weeks 2, 4 and 6 for all 19 patients. We tested the hypothesis by comparing cumulative distribution functions (CDFs) of intrafraction and interfraction ventilation differences using two-sided Kolmogorov-Smirnov goodness-of-fit tests. Results: The (mean ± std. dev.) of intrafraction differences was (−0.007 ± 0.079). Interfraction differences for weeks 2, 4 and 6 were (−0.035 ± 0.103), (−0.006 ± 0.094) and (−0.019 ± 0.127) respectively. For week 2, the changes in CDFs for intrafraction and interfraction differences approached statistical significance (p=0.099). Conclusion: We have shown that 4D-CBCT VI

  4. O the Development and Use of Four-Dimensional Data Assimilation in Limited-Area Mesoscale Models Used for Meteorological Analysis.

    Science.gov (United States)

    Stauffer, David R.

    1990-01-01

    The application of dynamic relationships to the analysis problem for the atmosphere is extended to use a full-physics limited-area mesoscale model as the dynamic constraint. A four-dimensional data assimilation (FDDA) scheme based on Newtonian relaxation or "nudging" is developed and evaluated in the Penn State/National Center for Atmospheric Research (PSU/NCAR) mesoscale model, which is used here as a dynamic-analysis tool. The thesis is to determine what assimilation strategies and what meterological fields (mass, wind or both) have the greatest positive impact on the 72-h numerical simulations (dynamic analyses) of two mid-latitude, real-data cases. The basic FDDA methodology is tested in a 10-layer version of the model with a bulk-aerodynamic (single-layer) representation of the planetary boundary layer (PBL), and refined in a 15-layer version of the model by considering the effects of data assimilation within a multi-layer PBL scheme. As designed, the model solution can be relaxed toward either gridded analyses ("analysis nudging"), or toward the actual observations ("obs nudging"). The data used for assimilation include standard 12-hourly rawinsonde data, and also 3-hourly mesoalpha-scale surface data which are applied within the model's multi-layer PBL. Continuous assimilation of standard-resolution rawinsonde data into the 10-layer model successfully reduced large-scale amplitude and phase errors while the model realistically simulated mesoscale structures poorly defined or absent in the rawinsonde analyses and in the model simulations without FDDA. Nudging the model fields directly toward the rawinsonde observations generally produced results comparable to nudging toward gridded analyses. This obs -nudging technique is especially attractive for the assimilation of high-frequency, asynoptic data. Assimilation of 3-hourly surface wind and moisture data into the 15-layer FDDA system was most effective for improving the simulated precipitation fields because a

  5. New Visualization Techniques to Analyze Ultra-High Resolution Four-dimensional Surface Deformation Imagery Collected With Ground-based Tripod LiDAR

    Science.gov (United States)

    Kreylos, O.; Bawden, G. W.; Kellogg, L. H.

    2005-12-01

    We are developing a visualization application to display and interact with very large (tens of millions of points) four-dimensional point position datasets in an immersive environment such that point groups from repeated Tripod LiDAR (Light Detection And Ranging) surveys can be selected, measured, and analyzed for land surface change using 3D~interactions. Ground-based tripod or terrestrial LiDAR (T-LiDAR) can remotely collect ultra-high resolution (centimeter to subcentimeter) and accurate (± 4 mm) digital imagery of the scanned target, and at scanning rates of 2,000 (x, y, z, i) (3D~position~+ intensity) points per second over 7~million points can be collected for a given target in an hour. We developed a multiresolution point set data representation based on octrees to display large T-LiDAR point cloud datasets at the frame rates required for immersive display (between 60 Hz and 120 Hz). Data inside an observer's region of interest is shown in full detail, whereas data outside the field of view or far away from the observer is shown at reduced resolution to provide context. Using 3D input devices at the University of California Davis KeckCAVES, users can navigate large point sets, accurately select related point groups in two or more point sets by sweeping regions of space, and guide the software in deriving positional information from point groups to compute their displacements between surveys. We used this new software application in the KeckCAVES to analyze 4D T-LiDAR imagery from the June~1, 2005 Blue Bird Canyon landslide in Laguna Beach, southern California. Over 50~million (x, y, z, i) data points were collected between 10 and 21~days after the landslide to evaluate T-LiDAR as a natural hazards response tool. The visualization of the T-LiDAR scans within the immediate landslide showed minor readjustments in the weeks following the primarily landslide with no observable continued motion on the primary landslide. Recovery and demolition efforts across the

  6. SU-G-JeP4-06: Evaluation of Interfractional and Intrafractional Tumor Motion in Stereotactic Liver Radiotherapy, Based On Four-Dimensional Cone-Beam Computed Tomography Using Fiducial Markers

    International Nuclear Information System (INIS)

    Shimohigashi, Y; Araki, F; Toya, R; Maruyama, M; Nakaguchi, Y

    2016-01-01

    Purpose: The purpose of this study was to evaluate the interfractional and intrafractional motion of liver tumors in stereotactic body radiation therapy (SBRT), based on four-dimensional cone-beam computed tomography using fiducial markers. (4D-CBCT). Methods: Seven patients with liver tumors were treated by SBRT with abdominal compression (AC) in five fractions with image guidance based on 4D-CBCT. The 4D-CBCT studies were performed to determine the individualized internal margin for the planning simulation. The interfractional and intrafractional changes of liver tumor motion for all patients was measured, based on the planning simulation 4D-CBCT, pre-SBRT 4D-CBCT, and post-SBRT 4D-CBCT. The interfractional motion change was calculated from the difference in liver tumor amplitude on pre-SBRT 4D-CBCT relative to that of the planning simulation 4D-CBCT for each fraction. The intrafractional motion change was calculated from the difference between the liver tumor amplitudes of the pre- and post-SBRT 4D-CBCT for each fraction. Significant interfractional and intrafractional changes in liver tumor motion were defined as a change ≥3 mm. Statistical analysis was performed using the Pearson correlation. Results: The values of the mean amplitude of liver tumor, as indicated by planning simulation 4D-CBCT, were 1.6 ± 0.8 mm, 1.6 ± 0.9 mm, and 4.9 ± 2.2 mm in the left-right (LR), anterior-posterior (AP), and superior-inferior (SI) directions, respectively. Pearson correlation coefficients between the liver tumor amplitudes, based on planning simulation 4D-CBCT, and pre-SBRT 4D-CBCT during fraction treatment in the LR, AP, and SI directions were 0.6, 0.7, and 0.8, respectively. Interfractional and intrafractional motion changes of ≥3 mm occurred in 23% and 3% of treatment fractions, respectively. Conclusion: The interfractional and intrafractional changes of liver tumor motion were small in most patients who received liver SBRT with AC. In addition, planning

  7. SU-G-JeP4-06: Evaluation of Interfractional and Intrafractional Tumor Motion in Stereotactic Liver Radiotherapy, Based On Four-Dimensional Cone-Beam Computed Tomography Using Fiducial Markers

    Energy Technology Data Exchange (ETDEWEB)

    Shimohigashi, Y [Department of Radiological Technology, Kumamoto University Hospital, Department of Graduate School of Health Sciences, Kumamoto University (Japan); Araki, F [Department of Health Sciences, Kumamoto University (Japan); Toya, R [Department of Radiation Oncology, Kumamoto University Hospital (Japan); Department of Human Oncology, University of Wisconsin School of Medicine and Public Health (United States); Maruyama, M; Nakaguchi, Y [Department of Radiological Technology, Kumamoto University Hospital (Japan)

    2016-06-15

    Purpose: The purpose of this study was to evaluate the interfractional and intrafractional motion of liver tumors in stereotactic body radiation therapy (SBRT), based on four-dimensional cone-beam computed tomography using fiducial markers. (4D-CBCT). Methods: Seven patients with liver tumors were treated by SBRT with abdominal compression (AC) in five fractions with image guidance based on 4D-CBCT. The 4D-CBCT studies were performed to determine the individualized internal margin for the planning simulation. The interfractional and intrafractional changes of liver tumor motion for all patients was measured, based on the planning simulation 4D-CBCT, pre-SBRT 4D-CBCT, and post-SBRT 4D-CBCT. The interfractional motion change was calculated from the difference in liver tumor amplitude on pre-SBRT 4D-CBCT relative to that of the planning simulation 4D-CBCT for each fraction. The intrafractional motion change was calculated from the difference between the liver tumor amplitudes of the pre- and post-SBRT 4D-CBCT for each fraction. Significant interfractional and intrafractional changes in liver tumor motion were defined as a change ≥3 mm. Statistical analysis was performed using the Pearson correlation. Results: The values of the mean amplitude of liver tumor, as indicated by planning simulation 4D-CBCT, were 1.6 ± 0.8 mm, 1.6 ± 0.9 mm, and 4.9 ± 2.2 mm in the left-right (LR), anterior-posterior (AP), and superior-inferior (SI) directions, respectively. Pearson correlation coefficients between the liver tumor amplitudes, based on planning simulation 4D-CBCT, and pre-SBRT 4D-CBCT during fraction treatment in the LR, AP, and SI directions were 0.6, 0.7, and 0.8, respectively. Interfractional and intrafractional motion changes of ≥3 mm occurred in 23% and 3% of treatment fractions, respectively. Conclusion: The interfractional and intrafractional changes of liver tumor motion were small in most patients who received liver SBRT with AC. In addition, planning

  8. A correlation study on the displacement of the whole breast target after breast-conserving surgery based on four-dimensional computed tomography

    International Nuclear Information System (INIS)

    Wang Wei; Li Jianbin; Wang Suzhen; Zhang Yingjie; Li Fengxiang; Xu Min; Shang Dongping

    2011-01-01

    Objective: To investigate the correlations of the whole breast displacement in different respiratory cycle during free breathing (FB) following breast-conserving surgery to the displacement of selected skin marker, nipple, and selected surgical clip based on four-dimensional computed tomography (4D-CT). Methods: Thirteen breast cancer patients who had undergone breast-conserving surgery received whole breast intensity-modulated radiotherapy (IMRT). Respiration-synchronized 4D-CT image data were gathered during FB and were exported to the Varian Eclipse treatment planning system, and the whole breast target, nipple, superior clip,and metal marker on the skin at the anterior body midline were delineated on the CT images of ten phases of the respiratory cycle by the same radiotherapist based on the same delineating criteria. The displacement distances of the delineated target in the mediolateral (x), anteroposterior (y), and superoinferior (z) axles were achieved,and the correlations of the whole breast target displacement to the displacement of the clip, nipple, and skin marker were analyzed. The ipsilateral lung was delineated on the CT images of every phase of the respiratory cycle, and the changes in ipsilateral lung volume were analyzed during the respiratory cycle relative to the displacement of the breast. Results: The maximal displacement distances of the whole breast target in the x, y, and z axles during FB were 0.71, 0.76 and 1.29 mm, respectively (F=5.755, P<0.05). There was no relationship between the three-dimensional (3D) displacement of the whole breast and the volume of the whole breast (r=-0.264, P<0.05), and there was no relationship between the displacement of the whole breast and the volume change of the ipsilateral lung (r=0.346, P<0.05). There was no significant difference among the mean target displacement distances in 3 axles,and among 2 selected successive end-inspiration (EI) phases and 3 selected successive end-expiration (EE) phases. There

  9. The effect of irregular breathing patterns on internal target volumes in four-dimensional CT and cone-beam CT images in the context of stereotactic lung radiotherapy

    International Nuclear Information System (INIS)

    Clements, N.; Kron, T.; Roxby, P.; Franich, R.; Dunn, L.; Aarons, Y.; Chesson, B.; Siva, S.; Duplan, D.; Ball, D.

    2013-01-01

    Purpose: Stereotactic lung radiotherapy is complicated by tumor motion from patient respiration. Four-dimensional CT (4DCT) imaging is a motion compensation method used in treatment planning to generate a maximum intensity projection (MIP) internal target volume (ITV). Image guided radiotherapy during treatment may involve acquiring a volumetric cone-beam CT (CBCT) image and visually aligning the tumor to the planning 4DCT MIP ITV contour. Moving targets imaged with CBCT can appear blurred and currently there are no studies reporting on the effect that irregular breathing patterns have on CBCT volumes and their alignment to 4DCT MIP ITV contours. The objective of this work was therefore to image a phantom moving with irregular breathing patterns to determine whether any configurations resulted in errors in volume contouring or alignment. Methods: A Perspex thorax phantom was used to simulate a patient. Three wooden “lung” inserts with embedded Perspex “lesions” were moved up to 4 cm with computer-generated motion patterns, and up to 1 cm with patient-specific breathing patterns. The phantom was imaged on 4DCT and CBCT with the same acquisition settings used for stereotactic lung patients in the clinic and the volumes on all phantom images were contoured. This project assessed the volumes for qualitative and quantitative changes including volume, length of the volume, and errors in alignment between CBCT volumes and 4DCT MIP ITV contours. Results: When motion was introduced 4DCT and CBCT volumes were reduced by up to 20% and 30% and shortened by up to 7 and 11 mm, respectively, indicating that volume was being under-represented at the extremes of motion. Banding artifacts were present in 4DCT MIP images, while CBCT volumes were largely reduced in contrast. When variable amplitudes from patient traces were used and CBCT ITVs were compared to 4DCT MIP ITVs there was a distinct trend in reduced ITV with increasing amplitude that was not seen when compared to

  10. The effect of irregular breathing patterns on internal target volumes in four-dimensional CT and cone-beam CT images in the context of stereotactic lung radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Clements, N. [Department of Physical Sciences, Peter MacCallum Cancer Centre, East Melbourne 3002, Australia and Department of Applied Sciences, RMIT University, Melbourne 3001 (Australia); Kron, T.; Roxby, P. [Department of Physical Sciences, Peter MacCallum Cancer Centre, East Melbourne 3002 (Australia); Franich, R.; Dunn, L. [Department of Applied Sciences, RMIT University, Melbourne 3001 (Australia); Aarons, Y.; Chesson, B. [Department of Radiation Therapy, Peter MacCallum Cancer Centre, East Melbourne 3002 (Australia); Siva, S.; Duplan, D.; Ball, D. [Department of Radiation Oncology, Peter MacCallum Cancer Centre, East Melbourne 3002 (Australia)

    2013-02-15

    Purpose: Stereotactic lung radiotherapy is complicated by tumor motion from patient respiration. Four-dimensional CT (4DCT) imaging is a motion compensation method used in treatment planning to generate a maximum intensity projection (MIP) internal target volume (ITV). Image guided radiotherapy during treatment may involve acquiring a volumetric cone-beam CT (CBCT) image and visually aligning the tumor to the planning 4DCT MIP ITV contour. Moving targets imaged with CBCT can appear blurred and currently there are no studies reporting on the effect that irregular breathing patterns have on CBCT volumes and their alignment to 4DCT MIP ITV contours. The objective of this work was therefore to image a phantom moving with irregular breathing patterns to determine whether any configurations resulted in errors in volume contouring or alignment. Methods: A Perspex thorax phantom was used to simulate a patient. Three wooden 'lung' inserts with embedded Perspex 'lesions' were moved up to 4 cm with computer-generated motion patterns, and up to 1 cm with patient-specific breathing patterns. The phantom was imaged on 4DCT and CBCT with the same acquisition settings used for stereotactic lung patients in the clinic and the volumes on all phantom images were contoured. This project assessed the volumes for qualitative and quantitative changes including volume, length of the volume, and errors in alignment between CBCT volumes and 4DCT MIP ITV contours. Results: When motion was introduced 4DCT and CBCT volumes were reduced by up to 20% and 30% and shortened by up to 7 and 11 mm, respectively, indicating that volume was being under-represented at the extremes of motion. Banding artifacts were present in 4DCT MIP images, while CBCT volumes were largely reduced in contrast. When variable amplitudes from patient traces were used and CBCT ITVs were compared to 4DCT MIP ITVs there was a distinct trend in reduced ITV with increasing amplitude that was not seen when

  11. Cerebral Hemodynamics in Patients with Hemolytic Uremic Syndrome Assessed by Susceptibility Weighted Imaging and Four-Dimensional Non-Contrast MR Angiography.

    Directory of Open Access Journals (Sweden)

    Ulrike Löbel

    Full Text Available Conventional magnetic resonance imaging (MRI of patients with hemolytic uremic syndrome (HUS and neurological symptoms performed during an epidemic outbreak of Escherichia coli O104:H4 in Northern Europe has previously shown pathological changes in only approximately 50% of patients. In contrast, susceptibility-weighted imaging (SWI revealed a loss of venous contrast in a large number of patients. We hypothesized that this observation may be due to an increase in cerebral blood flow (CBF and aimed to identify a plausible cause.Baseline 1.5T MRI scans of 36 patients (female, 26; male, 10; mean age, 38.2±19.3 years were evaluated. Venous contrast was rated on standard SWI minimum intensity projections. A prototype four-dimensional (time resolved magnetic resonance angiography (4D MRA assessed cerebral hemodynamics by global time-to-peak (TTP, as a surrogate marker for CBF. Clinical parameters studied were hemoglobin, hematocrit, creatinine, urea levels, blood pressure, heart rate, and end-tidal CO2.SWI venous contrast was abnormally low in 33 of 36 patients. TTP ranged from 3.7 to 10.2 frames (mean, 7.9 ± 1.4. Hemoglobin at the time of MRI (n = 35 was decreased in all patients (range, 5.0 to 12.6 g/dL; mean, 8.2 ± 1.4; hematocrit (n = 33 was abnormally low in all but a single patient (range, 14.3 to 37.2%; mean, 23.7 ± 4.2. Creatinine was abnormally high in 30 of 36 patients (83% (range, 0.8 to 9.7; mean, 3.7 ± 2.2. SWI venous contrast correlated significantly with hemoglobin (r = 0.52, P = 0.0015, hematocrit (r = 0.65, P < 0.001, and TTP (r = 0.35, P = 0.036. No correlation of SWI with blood pressure, heart rate, end-tidal CO2, creatinine, and urea level was observed. Findings suggest that the loss of venous contrast is related to an increase in CBF secondary to severe anemia related to HUS. SWI contrast of patients with pathological conventional MRI findings was significantly lower compared to patients with normal MRI (mean SWI score, 1

  12. Perturbative calculations and their application to Higgs physics

    International Nuclear Information System (INIS)

    Zirke, Tom J.E.

    2014-09-01

    In this thesis the numerical calculation of IR-finite two-loop integrals for processes related to Higgs physics in four-dimensional regularization regarding especilla the process gg→HZ is described. An application to two-loop vacuum integrals with φ→γγ at NLO QCD is presented. (HSI)

  13. Preoperative assessment of pleural adhesion by Four-Dimensional Ultra-Low-Dose Computed Tomography (4D-ULDCT) with Adaptive Iterative Dose Reduction using Three-Dimensional processing (AIDR-3D).

    Science.gov (United States)

    Hashimoto, Masayuki; Nagatani, Yukihiro; Oshio, Yasuhiko; Nitta, Norihisa; Yamashiro, Tsuneo; Tsukagoshi, Shinsuke; Ushio, Noritoshi; Mayumi, Masayuki; Kimoto, Tatsuya; Igarashi, Tomoyuki; Yoshigoe, Makoto; Iwai, Kyohei; Tanaka, Koki; Sato, Shigetaka; Sonoda, Akinaga; Otani, Hideji; Murata, Kiyoshi; Hanaoka, Jun

    2018-01-01

    To assess the feasibility of Four-Dimensional Ultra-Low-Dose Computed Tomography (4D-ULDCT) for distinguishing pleural aspects with localized pleural adhesion (LPA) from those without. Twenty-seven patients underwent 4D-ULDCT during a single respiration with a 16cm-coverage of the body axis. The presence and severity of LPA was confirmed by their intraoperative thoracoscopic findings. A point on the pleura and a corresponding point on the outer edge of the costal bone were placed in identical axial planes at end-inspiration. The distance of the two points (PCD), traced by automatic tracking functions respectively, was calculated at each respiratory phase. The maximal and average change amounts in PCD (PCD MCA and PCD ACA ) were compared among 110 measurement points (MPs) without LPA, 16MPs with mild LPA and 10MPs with severe LPA in upper lung field cranial to the bronchial bifurcation (ULF), and 150MPs without LPA, 17MPs with mild LPA and 9MPs with severe LPA in lower lung field caudal to the bronchial bifurcation (LLF) using the Mann-Whitney U test. In the LLF, PCD ACA as well as PCD MCA demonstrated a significant difference among non-LPA, mild LPA and severe LPA (18.1±9.2, 12.3±6.2 and 5.0±3.3mm) (p<0.05). Also in the ULF, PCD ACA showed a significant difference among three conditions (9.2±5.5, 5.7±2.8 and 2.2±0.4mm, respectively) (p<0.05), whereas PCD MCA for mild LPA was similar to that for non-LPA (12.3±5.9 and 17.5±11.0mm). Four D-ULDCT could be a useful non-invasive preoperative assessment modality for the detection of the presence or severity of LPA. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Research on the Countermeasures for High-end Talent Development in the New Material Industry from the Perspective of Four-dimensional Subject-With Hunan Province as an Example

    Science.gov (United States)

    Wen, Qiong

    2018-03-01

    In the context of the increasingly severe international economic situation, the new material industry is as one of the seven strategic emerging industries, and its development has become a major strategic decision of China that should be insisted at present and in the future. The implementation of this strategic decision cannot be achieved without talents. Based on the actual situation of Hunan Province, this paper points out the four major problems in high-end talent development of Hunan Province, namely, immaturity of industry development, unreasonable talent structure, imperfect training mechanism and unscientific incentive measures, and purposes the countermeasures in the perspective of four-dimensional subject involving government, enterprises, schools and students.

  15. Using four-dimensional computed tomography images to optimize the internal target volume when using volume-modulated arc therapy to treat moving targets.

    Science.gov (United States)

    Yakoumakis, Nikolaos; Winey, Brian; Killoran, Joseph; Mayo, Charles; Niedermayr, Thomas; Panayiotakis, George; Lingos, Tania; Court, Laurence

    2012-11-08

    In this work we used 4D dose calculations, which include the effects of shape deformations, to investigate an alternative approach to creating the ITV. We hypothesized that instead of needing images from all the breathing phases in the 4D CT dataset to create the outer envelope used for treatment planning, it is possible to exclude images from the phases closest to the inhale phase. We used 4D CT images from 10 patients with lung cancer. For each patient, we drew a gross tumor volume on the exhale-phase image and propagated this to the images from other phases in the 4D CT dataset using commercial image registration software. We created four different ITVs using the N phases closest to the exhale phase (where N = 10, 8, 7, 6). For each ITV contour, we created a volume-modulated arc therapy plan on the exhale-phase CT and normalized it so that the prescribed dose covered at least 95% of the ITV. Each plan was applied to CT images from each CT phase (phases 1-10), and the calculated doses were then mapped to the exhale phase using deformable registration. The effect of the motion was quantified using the dose to 95% of the target on the exhale phase (D95) and tumor control probability. For the three-dimensional and 4D dose calculations of the plan where N = 10, differences in the D95 value varied from 3% to 14%, with an average difference of 7%. For 9 of the 10 patients, the reduction in D95 was less than 5% if eight phases were used to create the ITV. For three of the 10 patients, the reduction in the D95 was less than 5% if seven phases were used to create the ITV. We were unsuccessful in creating a general rule that could be used to create the ITV. Some reduction (8/10 phases) was possible for most, but not all, of the patients, and the ITV reduction was small.

  16. Prenatal Diagnosis of Fetal Interrupted Aortic Arch Type A by Two-Dimensional Echocardiography and Four-Dimensional Echocardiography with B-Flow Imaging and Spatiotemporal Image Correlation.

    Science.gov (United States)

    Zhang, Dongyu; Zhang, Ying; Ren, Weidong; Sun, Feifei; Guo, Yajun; Sun, Wei; Wang, Yu; Huang, Liping; Cai, Ailu

    2016-01-01

    Fetal interrupted aortic arch (IAA) is a rare cardiac anomaly and its prenatal diagnosis is challenging. The purpose of our report is to evaluate the use of two-dimensional echocardiography (2DE) and 4D echocardiography with B-flow imaging and spatiotemporal image correlation (4D BF-STIC) in detecting IAA type A (IAA-A). Twenty-three cases of confirmed IAA-A identified by fetal echocardiography were involved in the study. The fetal echocardiography image data were reviewed to analyze the ratio of right ventricle to left ventricle (RV/LV) diameter, the ratio of main pulmonary artery to ascending aorta (MPA/AAO) diameter, and the correlation of RV/LV diameter ratio and size of ventricular septal defect (VSD). 4D BF-STIC was performed in 21 fetuses using the sagittal view (4D BF-STIC-sagittal) and the four-chamber view (4D BF-STIC-4CV) as initial planes of view. An additional 183 normal fetuses were also included in our study. RV/LV and MPA/AAO ratios were calculated and compared with that of IAA-A fetuses. Fetal 2DE, 4D BF-STIC-sagittal, and 4D BF-STIC-4CV were used to visualize the aortic arch and its associated neck vessels. Six subgroups were evaluated according to gestational age. Fetal 2DE, 4D BF-STIC-sagittal, and 4D BF-STIC-4CV made the correct prenatal diagnosis of IAA-A in 19/23 (82.6%), 14/21 (66.7%), and 19/21 (90.5%) of patients, respectively. A significantly enlarged MPA combined with symmetric ventricles was found in the IAA-A fetuses, while the size of the VSD was negatively correlated with RV/LV ratio. 4D BF-STIC-sagittal and 4D BF-STIC-4CV were better than traditional 2D ultrasound in detecting the aortic arch and neck vessels between 17 and 28 gestational weeks and 29 to 40 gestational weeks in normal fetuses. It is demonstrated that IAA-A could be diagnosed by traditional fetal echocardiography, while 4D technique could better display the anatomic structure and the spatial relationships of the great arteries. Use of volume reconstruction may

  17. A comparison of four dimensional time-resolved with keyhole and three dimensional time-of-flight MR angiography for the evaluation of cerebral aneurysms

    International Nuclear Information System (INIS)

    Wu Qian; Li Minghua; Zhang Jiayin; Li Yongdong

    2012-01-01

    Objective: To evaluate the accuracy and reliability of 4D time-resolved MRA with keyhole (4D-TRAK) for the detection and characterization of cerebral aneurysms (CAs), with a comparison of 3D time-of-flight MRA (3D-TOF-MRA). Methods: 3D-TOF-MRA, 4D-TRAK and 3D-DSA were performed sequentially in 52 patients with suspected CAs. 4D-TRAK was acquired using a combination of sensitivity encoding (SENSE) and contrast-enhanced (CE) timing robust angiography (CENTRA) k-space sampling techniques at a contrast dose of 10 ml at 3 T scanner. Accuracy, sensitivity, specificity of 4D-TRAK and 3D-TOF-MRA were calculated and compared for the detection of CAs on patient-based and aneurysm-based evaluation using 3D-DSA as a reference. Wilcoxon signed rank test were used. Results: The overall image quality of 4D-TRAK was appropriate for the diagnostic purpose, but yet not comparable with that of 3D-TOF-MRA. In 52 patients with suspected GAs, 58 CAs were confirmed on 3D-DSA finally.Fifty-one (with 2 false-positives and 9 false-negatives) and 58 (with 1 false-positive and 1 false-negative) CAs were visualized on 4D-TRAK and 3D-TOF-MRA, respectively. Accuracy, sensitivity and specificity on patient-based evaluation of 4D-TRAK and 3D-TOF-MRA were 92.31% (48/52), 93.33% (42/45), 85.71 % (6/7) and 98.08% (51/52), 100.00% (45/45), 85.71% (6/7), respectively, and 74.07% (20/27), 75.00% (18/24), 66.67% (2/3) and 96.30% (26/27), 95.83% (26/27), 100.00% (3/3) on aneurysm-based evaluation in patients with multiple CAs, respectively. Subgroup analysis revealed that for 19 very small CAs (maximal diameter <3 mm,measured on 3D-DSA), 9 were missed on 4D-TRAK and 1 on 3D-TOF-MRA (Z=-2.464, P0.05). In 4 large CAs with maximal diameter more than 10 mm, 4D-TRAK provided a better characterization of morphology than 3D

  18. Calculability and stability in the flipped string

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, J.L.; Nanopoulos, D.V. (Texas A and M Univ., College Station, TX (USA). Center for Theoretical Physics Houston Advanced Research Center (HARC), The Woodlands, TX (USA). Astroparticle Physics Group)

    1991-03-07

    We show that the highly successful structure of the recently proposed superstring flipped SU(5) model remains intact after the inclusion in the superpotential of the low-energy effective theory of all relevant string-induced nonrenormalizable terms. This structure provides for only two light Higgs doublets, hierarchical fermion mass matrices, and an adequate proton lifetime. We reach this conclusion explicit calculations using a recently derived set of rules to evaluate nonrenormalizable terms in the four-dimensional free fermionic formulation of superstrings. This remarkable stability of the infrared limit of the flipped string makes its experimental predictions trustworthy and hence its physical existence falsifiable. (orig.).

  19. Magnetic properties of four dimensional fermions

    Science.gov (United States)

    Bergman, Oren; Lifschytz, Gilad; Lippert, Matthew

    2013-12-01

    We investigate the Sakai-Sugimoto model at nonzero baryon chemical potential in a background magnetic field in the chiral symmetric phase. We find that a new form of baryonic matter shows up, and we investigate its properties. We find a generated axial current, a reduction in the amount of charge participating in dissipative interactions and a metamagnetic like phase transition at low temperature.

  20. A Four-Dimensional Product Innovativeness Typology

    DEFF Research Database (Denmark)

    Rosenø, Axel

    2005-01-01

    ) typology with four newproduct types; Leonard-Barton's (1995) five product types; and Veryzer's (1998a)four types in a two-by-two matrix.Interestingly, these two meta-perspectives on product innovativeness (i.e. 1. new tothe market and/or new to the company and 2. technological and/or marketnewness...... discontinuous newproduct projects (Song & Montoya-Weiss 1998; Atuahene-Gima 1995; Veryzer 1998a;Lynn et al. 1996; O'Connor 1998; Rice et al. 1998). By looking at both these types ofnew product development projects, empirical observations are likely to be morerealistic than those of studies that do...... the dichotomous view and, thereby, lend themselves to a more finegrainedstudy of innovation management practices for different types of newproduct projects.In fact, various innovativeness typologies exist that include more than two producttypes. Notably, the typology by Booz, Allen & Hamilton (1982)2 introduces...

  1. Comparison of primary tumour volumes delineated on four-dimensional computed tomography maximum intensity projection and 18F-fluorodeoxyglucose positron emission tomography computed tomography images of non-small cell lung cancer

    International Nuclear Information System (INIS)

    Duan, Yili; Li, Jianbin; Zhang, Yingjie; Wang, Wei; Fan, Tingyong; Shao, Qian; Xu, Min; Guo, Yanluan; Sun, Xiaorong; Shang, Dongping

    2015-01-01

    The study aims to compare the positional and volumetric differences of tumour volumes based on the maximum intensity projection (MIP) of four-dimensional CT (4DCT) and 18 F-fluorodexyglucose ( 18 F-FDG) positron emission tomography CT (PET/CT) images for the primary tumour of non-small cell lung cancer (NSCLC). Ten patients with NSCLC underwent 4DCT and 18 F-FDG PET/CT scans of the thorax on the same day. Internal gross target volumes (IGTVs) of the primary tumours were contoured on the MIP images of 4DCT to generate IGTV MIP . Gross target volumes (GTVs) based on PET (GTV PET ) were determined with nine different threshold methods using the auto-contouring function. The differences in the volume, position, matching index (MI) and degree of inclusion (DI) of the GTV PET and IGTV MIP were investigated. In volume terms, GTV PET2.0 and GTV PET20% approximated closely to IGTV MIP with mean volume ratio of 0.93 ± 0.45 and 1.06 ± 0.43, respectively. The best MI was between IGTV MIP and GTV PET20% (0.45 ± 0.23). The best DI of IGTV MIP in GTV PET was IGTV MIP in GTV PET20% (0.61 ± 0.26). In 3D PET images, the GTVPET contoured by standardised uptake value (SUV) 2.0 or 20% of maximal SUV (SUV max ) approximate closely to the IGTV MIP in target size, while the spatial mismatch is apparent between them. Therefore, neither of them could replace IGTV MIP in spatial position and form. The advent of 4D PET/CT may improve the accuracy of contouring the perimeter for moving targets.

  2. MO-DE-207A-08: Four-Dimensional Cone-Beam CT Iterative Reconstruction with Time-Ordered Chain Graph Model for Non-Periodic Organ Motion and Deformation

    Energy Technology Data Exchange (ETDEWEB)

    Nakano, M; Haga, A; Hanaoka, S; Nakagawa, K [The University of Tokyo Hospital, Bunkyo-ku, Tokyo (Japan); Kotoku, J [Teikyo University, Itabashi-ku, Tokyo (Japan); Magome, T [Komazawa University, Setagaya-ku, Tokyo (Japan); Masutani, Y [Hiroshima-City University, Hiroshima, Hiroshima (Japan)

    2016-06-15

    Purpose: The purpose of this study is to propose a new concept of four-dimensional (4D) cone-beam CT (CBCT) reconstruction for non-periodic organ motion using the Time-ordered Chain Graph Model (TCGM), and to compare the reconstructed results with the previously proposed methods, the total variation-based compressed sensing (TVCS) and prior-image constrained compressed sensing (PICCS). Methods: CBCT reconstruction method introduced in this study consisted of maximum a posteriori (MAP) iterative reconstruction combined with a regularization term derived from a concept of TCGM, which includes a constraint coming from the images of neighbouring time-phases. The time-ordered image series were concurrently reconstructed in the MAP iterative reconstruction framework. Angular range of projections for each time-phase was 90 degrees for TCGM and PICCS, and 200 degrees for TVCS. Two kinds of projection data, an elliptic-cylindrical digital phantom data and two clinical patients’ data, were used for reconstruction. The digital phantom contained an air sphere moving 3 cm along longitudinal axis, and temporal resolution of each method was evaluated by measuring the penumbral width of reconstructed moving air sphere. The clinical feasibility of non-periodic time-ordered 4D CBCT reconstruction was also examined using projection data of prostate cancer patients. Results: The results of reconstructed digital phantom shows that the penumbral widths of TCGM yielded the narrowest result; PICCS and TCGM were 10.6% and 17.4% narrower than that of TVCS, respectively. This suggests that the TCGM has the better temporal resolution than the others. Patients’ CBCT projection data were also reconstructed and all three reconstructed results showed motion of rectal gas and stool. The result of TCGM provided visually clearer and less blurring images. Conclusion: The present study demonstrates that the new concept for 4D CBCT reconstruction, TCGM, combined with MAP iterative reconstruction

  3. Geometrical differences in target volumes based on 18F-fluorodeoxyglucose positron emission tomography/computed tomography and four-dimensional computed tomography maximum intensity projection images of primary thoracic esophageal cancer.

    Science.gov (United States)

    Guo, Y; Li, J; Wang, W; Zhang, Y; Wang, J; Duan, Y; Shang, D; Fu, Z

    2014-01-01

    The objective of the study was to compare geometrical differences of target volumes based on four-dimensional computed tomography (4DCT) maximum intensity projection (MIP) and 18F-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) images of primary thoracic esophageal cancer for radiation treatment. Twenty-one patients with thoracic esophageal cancer sequentially underwent contrast-enhanced three-dimensional computed tomography (3DCT), 4DCT, and 18F-FDG PET/CT thoracic simulation scans during normal free breathing. The internal gross target volume defined as IGTVMIP was obtained by contouring on MIP images. The gross target volumes based on PET/CT images (GTVPET ) were determined with nine different standardized uptake value (SUV) thresholds and manual contouring: SUV≥2.0, 2.5, 3.0, 3.5 (SUVn); ≥20%, 25%, 30%, 35%, 40% of the maximum (percentages of SUVmax, SUVn%). The differences in volume ratio (VR), conformity index (CI), and degree of inclusion (DI) between IGTVMIP and GTVPET were investigated. The mean centroid distance between GTVPET and IGTVMIP ranged from 4.98 mm to 6.53 mm. The VR ranged from 0.37 to 1.34, being significantly (P<0.05) closest to 1 at SUV2.5 (0.94), SUV20% (1.07), or manual contouring (1.10). The mean CI ranged from 0.34 to 0.58, being significantly closest to 1 (P<0.05) at SUV2.0 (0.55), SUV2.5 (0.56), SUV20% (0.56), SUV25% (0.53), or manual contouring (0.58). The mean DI of GTVPET in IGTVMIP ranged from 0.61 to 0.91, and the mean DI of IGTVMIP in GTVPET ranged from 0.34 to 0.86. The SUV threshold setting of SUV2.5, SUV20% or manual contouring yields the best tumor VR and CI with internal-gross target volume contoured on MIP of 4DCT dataset, but 3DPET/CT and 4DCT MIP could not replace each other for motion encompassing target volume delineation for radiation treatment. © 2014 International Society for Diseases of the Esophagus.

  4. Detecting depressive and anxiety disorders in distressed patients in primary care; comparative diagnostic accuracy of the Four-Dimensional Symptom Questionnaire (4DSQ and the Hospital Anxiety and Depression Scale (HADS

    Directory of Open Access Journals (Sweden)

    Verhaak Peter FM

    2009-08-01

    Full Text Available Abstract Background Depressive and anxiety disorders often go unrecognized in distressed primary care patients, despite the overtly psychosocial nature of their demand for help. This is especially problematic in more severe disorders needing specific treatment (e.g. antidepressant pharmacotherapy or specialized cognitive behavioural therapy. The use of a screening tool to detect (more severe depressive and anxiety disorders may be useful not to overlook such disorders. We examined the accuracy with which the Four-Dimensional Symptom Questionnaire (4DSQ and the Hospital Anxiety and Depression Scale (HADS are able to detect (more severe depressive and anxiety disorders in distressed patients, and which cut-off points should be used. Methods Seventy general practitioners (GPs included 295 patients on sick leave due to psychological problems. They excluded patients with recognized depressive or anxiety disorders. Patients completed the 4DSQ and HADS. Standardized diagnoses of DSM-IV defined depressive and anxiety disorders were established with the Composite International Diagnostic Interview (CIDI. Receiver Operating Characteristic (ROC analyses were performed to obtain sensitivity and specificity values for a range of scores, and area under the curve (AUC values as a measure of diagnostic accuracy. Results With respect to the detection of any depressive or anxiety disorder (180 patients, 61%, the 4DSQ and HADS scales yielded comparable results with AUC values between 0.745 and 0.815. Also with respect to the detection of moderate or severe depressive disorder, the 4DSQ and HADS depression scales performed comparably (AUC 0.780 and 0.739, p 0.165. With respect to the detection of panic disorder, agoraphobia and social phobia, the 4DSQ anxiety scale performed significantly better than the HADS anxiety scale (AUC 0.852 versus 0.757, p 0.001. The recommended cut-off points of both HADS scales appeared to be too low while those of the 4DSQ anxiety

  5. Detecting depressive and anxiety disorders in distressed patients in primary care; comparative diagnostic accuracy of the Four-Dimensional Symptom Questionnaire (4DSQ) and the Hospital Anxiety and Depression Scale (HADS).

    Science.gov (United States)

    Terluin, Berend; Brouwers, Evelien P M; van Marwijk, Harm W J; Verhaak, Peter F M; van der Horst, Henriëtte E

    2009-08-23

    Depressive and anxiety disorders often go unrecognized in distressed primary care patients, despite the overtly psychosocial nature of their demand for help. This is especially problematic in more severe disorders needing specific treatment (e.g. antidepressant pharmacotherapy or specialized cognitive behavioural therapy). The use of a screening tool to detect (more severe) depressive and anxiety disorders may be useful not to overlook such disorders. We examined the accuracy with which the Four-Dimensional Symptom Questionnaire (4DSQ) and the Hospital Anxiety and Depression Scale (HADS) are able to detect (more severe) depressive and anxiety disorders in distressed patients, and which cut-off points should be used. Seventy general practitioners (GPs) included 295 patients on sick leave due to psychological problems. They excluded patients with recognized depressive or anxiety disorders. Patients completed the 4DSQ and HADS. Standardized diagnoses of DSM-IV defined depressive and anxiety disorders were established with the Composite International Diagnostic Interview (CIDI). Receiver Operating Characteristic (ROC) analyses were performed to obtain sensitivity and specificity values for a range of scores, and area under the curve (AUC) values as a measure of diagnostic accuracy. With respect to the detection of any depressive or anxiety disorder (180 patients, 61%), the 4DSQ and HADS scales yielded comparable results with AUC values between 0.745 and 0.815. Also with respect to the detection of moderate or severe depressive disorder, the 4DSQ and HADS depression scales performed comparably (AUC 0.780 and 0.739, p 0.165). With respect to the detection of panic disorder, agoraphobia and social phobia, the 4DSQ anxiety scale performed significantly better than the HADS anxiety scale (AUC 0.852 versus 0.757, p 0.001). The recommended cut-off points of both HADS scales appeared to be too low while those of the 4DSQ anxiety scale appeared to be too high. In general

  6. Declination Calculator

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Declination is calculated using the current International Geomagnetic Reference Field (IGRF) model. Declination is calculated using the current World Magnetic Model...

  7. CONTAIN calculations

    International Nuclear Information System (INIS)

    Scholtyssek, W.

    1995-01-01

    In the first phase of a benchmark comparison, the CONTAIN code was used to calculate an assumed EPR accident 'medium-sized leak in the cold leg', especially for the first two days after initiation of the accident. The results for global characteristics compare well with those of FIPLOC, MELCOR and WAVCO calculations, if the same materials data are used as input. However, significant differences show up for local quantities such as flows through leakages. (orig.)

  8. Burnout calculation

    International Nuclear Information System (INIS)

    Li, D.

    1980-01-01

    Reviewed is the effect of heat flux of different system parameters on critical density in order to give an initial view on the value of several parameters. A thorough analysis of different equations is carried out to calculate burnout is steam-water flows in uniformly heated tubes, annular, and rectangular channels and rod bundles. Effect of heat flux density distribution and flux twisting on burnout and storage determination according to burnout are commended [ru

  9. Investigation of pancreas tumour movements and of their potential markers by four-dimensional scanography: implication for image-guided radiotherapy; etude des mouvements des tumeurs du pancreas et de leurs marqueurs potentiels par scanographie quadridimensionnelle: implication pour la radiotherapie guidee par l'image

    Energy Technology Data Exchange (ETDEWEB)

    Huguet, F. [Hopital Tenon, Paris (France); Yorke, E.; Davidson, M.; Zhang, Z.; Jackson, A.; Mageras, G.; Wu, A.; Goodman, K. [Memorial Sloan-Kettering Cancer Center, New York (United States)

    2011-10-15

    The authors report the study which aimed at quantifying pancreas tumour movements induced by breathing by using four-dimensional scanography, and at assessing the reliability of biliary prosthesis, of intra-tumor fiducials, and of an external maker as position markers of the gross tumour volume (GTV). The authors analyzed scanography images acquired during the simulation of 22 patients treated for locally advanced pancreas cancer by intensity-modulated conformational irradiation with respiratory gating. Average movements in different directions have measured. Respiratory gating limits the GTV movement amplitude by 40 to 60 per cent. GTV movements are in good correlation with that of biliary prostheses and intra-tumor fiducials. Short communication

  10. Reliability calculations

    International Nuclear Information System (INIS)

    Petersen, K.E.

    1986-03-01

    Risk and reliability analysis is increasingly being used in evaluations of plant safety and plant reliability. The analysis can be performed either during the design process or during the operation time, with the purpose to improve the safety or the reliability. Due to plant complexity and safety and availability requirements, sophisticated tools, which are flexible and efficient, are needed. Such tools have been developed in the last 20 years and they have to be continuously refined to meet the growing requirements. Two different areas of application were analysed. In structural reliability probabilistic approaches have been introduced in some cases for the calculation of the reliability of structures or components. A new computer program has been developed based upon numerical integration in several variables. In systems reliability Monte Carlo simulation programs are used especially in analysis of very complex systems. In order to increase the applicability of the programs variance reduction techniques can be applied to speed up the calculation process. Variance reduction techniques have been studied and procedures for implementation of importance sampling are suggested. (author)

  11. Calculator calculus

    CERN Document Server

    McCarty, George

    1982-01-01

    How THIS BOOK DIFFERS This book is about the calculus. What distinguishes it, however, from other books is that it uses the pocket calculator to illustrate the theory. A computation that requires hours of labor when done by hand with tables is quite inappropriate as an example or exercise in a beginning calculus course. But that same computation can become a delicate illustration of the theory when the student does it in seconds on his calculator. t Furthermore, the student's own personal involvement and easy accomplishment give hi~ reassurance and en­ couragement. The machine is like a microscope, and its magnification is a hundred millionfold. We shall be interested in limits, and no stage of numerical approximation proves anything about the limit. However, the derivative of fex) = 67.SgX, for instance, acquires real meaning when a student first appreciates its values as numbers, as limits of 10 100 1000 t A quick example is 1.1 , 1.01 , 1.001 , •••• Another example is t = 0.1, 0.01, in the functio...

  12. Reliability Calculations

    DEFF Research Database (Denmark)

    Petersen, Kurt Erling

    1986-01-01

    Risk and reliability analysis is increasingly being used in evaluations of plant safety and plant reliability. The analysis can be performed either during the design process or during the operation time, with the purpose to improve the safety or the reliability. Due to plant complexity and safety...... and availability requirements, sophisticated tools, which are flexible and efficient, are needed. Such tools have been developed in the last 20 years and they have to be continuously refined to meet the growing requirements. Two different areas of application were analysed. In structural reliability probabilistic...... approaches have been introduced in some cases for the calculation of the reliability of structures or components. A new computer program has been developed based upon numerical integration in several variables. In systems reliability Monte Carlo simulation programs are used especially in analysis of very...

  13. Transmission of supersymmetry breaking from a four-dimensional boundary

    International Nuclear Information System (INIS)

    Mirabelli, E.A.; Peskin, M.E.

    1998-01-01

    In the strong-coupling limit of the heterotic string theory constructed by Horava and Witten, an 11-dimensional supergravity theory is coupled to matter multiplets confined to 10-dimensional mirror planes. This structure suggests that realistic unification models are obtained, after compactification of 6 dimensions, as theories of 5-dimensional supergravity in an interval, coupling to matter fields on 4-dimensional walls. Supersymmetry breaking may be communicated from one boundary to another by the 5-dimensional fields. In this paper, we study a toy model of this communication in which 5-dimensional super-Yang-Mills theory in the bulk couples to chiral multiplets on the walls. Using the auxiliary fields of the Yang-Mills multiplet, we find a simple algorithm for coupling the bulk and boundary fields. We demonstrate two different mechanisms for generating soft supersymmetry breaking terms in the boundary theory. We also compute the Casimir energy generated by supersymmetry breaking. copyright 1998 The American Physical Society

  14. Holographic superconductor in a deformed four-dimensional STU model

    Energy Technology Data Exchange (ETDEWEB)

    Pourhassan, B.; Bagheri-Mohagheghi, M.M. [Damghan University, School of Physics, Damghan (Iran, Islamic Republic of)

    2017-11-15

    In this paper, we consider a deformed STU model in four dimensions including both electric and magnetic charges. Using the AdS/CFT correspondence, we study holographic superconductors and obtain transport properties like electrical and thermal conductivities. We obtain transport properties in terms of the magnetic charge of the black hole and interpret it as the magnetic monopole of dual field theory. We find that the presence of the magnetic charge is necessary to have maximum conductivities, and the existence of a magnetic monopole with a critical charge (137 e) to reach the maximum superconductivity is important. Also, we show that the thermal conductivity increases with increasing of the magnetic charge. It may be concluded that the origin of superconductivity is the magnetic monopole. (orig.)

  15. A Lifshitz black hole in four dimensional R2 gravity

    International Nuclear Information System (INIS)

    Cai Ronggen; Liu Yan; Sun Yawen

    2009-01-01

    We consider a higher derivative gravity theory in four dimensions with a negative cosmological constant and show that vacuum solutions of both Lifshitz type and Schroedinger type with arbitrary dynamical exponent z exist in this system. Then we find an analytic black hole solution which asymptotes to the vacuum Lifshitz solution with z = 3/2 at a specific value of the coupling constant. We analyze the thermodynamic behavior of this black hole and find that the black hole has zero entropy while non-zero temperature, which is very similar to the case of BTZ black holes in new massive gravity at a specific coupling. In addition, we find that the three dimensional Lifshitz black hole recently found by E. Ayon-Beato et al. has a negative entropy and mass when the Newton constant is taken to be positive.

  16. Four-dimensional optical manipulation of colloidal particles

    DEFF Research Database (Denmark)

    Rodrigo, Peter John; Daria, Vincent Ricardo Mancao; Glückstad, Jesper

    2010-01-01

    years ago. Bringing together many landmark papers on the field, Optical Tweezers: Methods and Applications covers the techniques and uses of optical tweezers. Each section is introduced by a brief commentary, setting the papers into their historical and contemporary contexts. The first two sections...... of the best in the field, this compendium presents important historical and current developments of optical tweezers in a range of scientific areas, from the manipulation of bacteria to the treatment of DNA....

  17. Four-dimensional boson field theory. II. Existence

    International Nuclear Information System (INIS)

    Baker, G.A. Jr.

    1986-01-01

    The existence of the continuum, quantum field theory found by Baker and Johnson [G. A. Baker, Jr. and J. D. Johnson, J. Phys. A 18, L261 (1985)] to be nontrivial is proved rigorously. It is proved to satisfy all usual requirements of such a field theory, except rotational invariance. Currently known information is consistent with rotational invariance however. Most of the usual properties of other known Euclidean boson quantum field theories hold here, in a somewhat weakened form. Summability of the sufficiently strongly ultraviolet cutoff bare coupling constant perturbation series is proved as well as a nonzero radius of convergence for high-temperature expansions of the corresponding continuous-spin Ising model. The description of the theory by these two series methods is shown to be equivalent. The field theory is probably not asymptotically free

  18. Four-dimensional CP2 model on a lattice

    International Nuclear Information System (INIS)

    Bitar, K.M.; Raja, R.

    1983-01-01

    We investigate the phenomenon of dynamical generation of gauge interactions from CP/sup N/-1 models in four dimensions. We do this for the CP 2 model on a lattice. The phase diagram of a model that interpolates between CP 2 and U(1) gauge theory on a lattice is first mapped out. The potential between static charges in various regions of this diagram is also measured. Contrary to hopes based on the large-N behavior of similar models in two dimensions and on our phase diagram, we find that the potentials generated by CP 2 do not bear any resemblance to those of U(1). They are rather similar to the Higgs phase of an Abelian gauge theory in both phases displayed by CP 2

  19. Gradient formula for the four-dimensional hyperspherical harmonics

    International Nuclear Information System (INIS)

    Santos, M.B.

    1975-01-01

    The gradient formula for the hyperspherical harmonics in 4 dimensions is derived, a result which is here obtainned in two distinct ways: either by differentiation of a closed expression for the hyperspherical harmonics or by making use of the Wigner-Eckart theorem for the R 4 group. The result is useful for physical applications in view of the significance of the R 4 group in several physical problems [pt

  20. Determining intrafractional prostate motion using four dimensional ultrasound system

    DEFF Research Database (Denmark)

    Baker, Mariwan; Behrens, Claus F.

    2016-01-01

    , LR, and AP directions, respectively. The mean of the maximal intrafractional Euclidean distance (3D vector) was 0.9 +/- 0.6 mm. For 12 % of the fractions the maximal 3D vector displacements were larger than 2.0 mm. At only two fractions (4 %) displacements larger than 3. 0 mm were observed...

  1. Curvature properties of four-dimensional Walker metrics

    International Nuclear Information System (INIS)

    Chaichi, M; Garcia-Rio, E; Matsushita, Y

    2005-01-01

    A Walker n-manifold is a semi-Riemannian manifold, which admits a field of parallel null r-planes, r ≤ n/2. In the present paper we study curvature properties of a Walker 4-manifold (M, g) which admits a field of parallel null 2-planes. The metric g is necessarily of neutral signature (+ + - -). Such a Walker 4-manifold is the lowest dimensional example not of Lorentz type. There are three functions of coordinates which define a Walker metric. Some recent work shows that a Walker 4-manifold of restricted type whose metric is characterized by two functions exhibits a large variety of symplectic structures, Hermitian structures, Kaehler structures, etc. For such a restricted Walker 4-manifold, we shall study mainly curvature properties, e.g., conditions for a Walker metric to be Einstein, Osserman, or locally conformally flat, etc. One of our main results is the exact solutions to the Einstein equations for a restricted Walker 4-manifold

  2. M Theory, G2-manifolds and four dimensional physics

    International Nuclear Information System (INIS)

    Acharya, B.S.

    2003-01-01

    M theory on a manifold of G 2 -holonomy is a natural framework for obtaining vacua with four large spacetime dimensions and N = 1 supersymmetry. In order to obtain, within this framework, the standard features of particle physics, namely non-Abelian gauge groups and chiral fermions, we consider G 2 -manifolds with certain kinds of singularities at which these features reside. The aim of these lectures is to describe in detail how the above picture emerges. Along the way we will see how interesting aspects of strongly coupled gauge theories, such as confinement, receive relatively simple explanations within the context of M theory. (author)

  3. How the flip target behaves in four-dimensional space

    International Nuclear Information System (INIS)

    Antillon, A.; Kats, J.

    1985-01-01

    We use available coupling theory for understanding how a flip target in a 4-dimensional phase space reduces a gaussian beam of particles. Experimental evidence at the AGS can be qualitatively explained by this theory

  4. Renormalization theory in four dimensional scalar fields. Pt. 2

    International Nuclear Information System (INIS)

    Gallavotti, G.; Rome Univ.; Nicolo, F.; Universita 'La Sapienza', Rome

    1985-01-01

    We interpret the results of the preceding paper (1985) in terms of partial resummations of the perturbative series for the effective interaction. As an application we sketch how our resummation method leads to a simple summation rule leading to a convergent expansion for the Schwinger functions of the planar PHI 4 4 -theory. (orig./HSI)

  5. Vacuum degeneracy in four-dimensional string theories

    International Nuclear Information System (INIS)

    Nilles, H.P.

    1988-01-01

    I present results obtained in collaboration with A. Font, L. Ibanez and F. Quevedo using a method that links explicit string constructions with the techniques of supergravity field theories. We make use of the fact that the supersymmetric vacua of the field theory limit of d=4 N=1 superstring theories are all degenerate. Given a particular string theory we can then test for new 'nearby' string theories by an examination of flat directions in the scalar potential of the underlying field theory. As input from string theory we need the knowledge of the Yukawa couplings (i.e., the superpotential) for any number of fields. In the language of conformal field theory, this amounts to a search for exactly marginal operators and the classification of multicritical points. (orig./HSI)

  6. Four-dimensional Ashkin-Teller gauge theory

    International Nuclear Information System (INIS)

    Alcaraz, F.C.; Jacobs, L.

    1983-01-01

    The authors construct and analyze a lattice field theory of two Z 2 gauge fields which interact in a minimal gauge-invariant fashion. Although the theory presented here, a generalization of the two-dimensional Ashkin-Teller spin system, has no formal continuum limit, it is found that it has an electrodynamicslike phase similar to that observed in general Z/sub N/ theories for N> or =4. This model is probably the simplest generalization of the conventional Z 2 pure gauge theory which has a massless phase separated from the strong- and weak-coupling regions by lines of second-order phase transitions

  7. The construction of ``realistic'' four-dimensional strings through orbifolds

    Science.gov (United States)

    Font, A.; Ibáñez, L. E.; Quevedo, F.; Sierra, A.

    1990-02-01

    We discuss the construction of "realistic" lower rank 4-dimensional strings, through symmetric orbifolds with background fields. We present Z 3 three-generation SU(3) × SU(2) × U(1) models as well as models incorporating a left-right SU(2) L × SU(2) R × U(1) B-L symmetry in which proton stability is automatically guaranteed. Conformal field theory selection rules are used to find the flat directions to all orders which lead to these low-rank models and to study the relevant Yukawa couplings. A hierarchical structure of quark-lepton masses appears naturally in some models. We also present a detailed study of the structure of the Z 3 × Z 3 orbifold including the generalized GSO projection, the effect of discrete torsion and the conformal field theory Yukawa coupling selection rules. All these points are illustrated with a three-generation Z 3 × Z 3 model. We have made an effort to write a self-contained presentation in order to make this material available to non-string experts interested in the phenomenological aspects of this theory.

  8. The construction of 'realistic' four-dimensional strings through orbifolds

    International Nuclear Information System (INIS)

    Font, A.; Quevedo, F.; Sierra, A.

    1990-01-01

    We discuss the construction of 'realistic' lower rank 4-dimensional strings, through symmetric orbifolds with background fields. We present Z 3 three-generation SU(3)xSU(2)xU(1) models as well as models incorporating a left-right SU(2) L xSU(2) R xU(1) B-L symmetry in which proton stability is automatically guaranteed. Conformal field theory selection rules are used to find the flat directions to all orders which lead to these low-rank models and to study the relevant Yukawa couplings. A hierarchical structure of quark-lepton masses appears naturally in some models. We also present a detailed study of the structure of the Z 3 xZ 3 orbifold including the generalized GSO projection, the effect of discrete torsion and the conformal field theory Yukawa coupling selection rules. All these points are illustrated with a three-generation Z 3 xZ 3 model. We have made an effort to write a self-contained presentation in order to make this material available to non-string experts interested in the phenomenological aspects of this theory. (orig.)

  9. Four-dimensional image display for associated particle imaging

    International Nuclear Information System (INIS)

    Headley, G.; Beyerle, A.; Durkee, R.; Hurley, P.; Tunnell, L.

    1994-01-01

    Associated particle imaging (API) is a three-dimensional neutron gamma imaging technique which provides both spatial and spectral information about an unknown. A local area network consisting of a UNIX fileserver and multiple DOS workstations has been chosen to perform the data acquisition and display functions. The data are acquired with a CAMAC system, stored in list mode, and sorted on the fileserver for display on the DOS workstations. Three of the display PCs, interacting with the fileserver, provide coordinated views as the operator ''slices'' the image. The operator has a choice of: a one-dimensional shadowgram from any side, two-dimensional shadowgrams from any side; a three-dimensional view (either perspective projection or stereoscopic). A common color scheme is used to carry energy information into the spatial images. ((orig.))

  10. Brane dynamics and four-dimensional quantum field theory

    International Nuclear Information System (INIS)

    Lambert, N.D.; West, P.C.

    1999-01-01

    We review the relation between the classical dynamics of the M-fivebrane and the quantum low energy effective action for N = 2 Yang-Mills theories. We also discuss some outstanding issues in this correspondence. (author)

  11. Four-dimensional conversion for spiritual leadership development: A ...

    African Journals Online (AJOL)

    2014-04-14

    Apr 14, 2014 ... being of humans, as well as their social and political attitudes and behaviours, can equally .... be Christians capable of living as dignified citizens of the ..... community leaders, parents or any other people of influence ..... Mostert, B., 2007, The Power of intercession, Carpe Diem Media, Vanderbijlpark.

  12. Magnetic Field Calculator

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Magnetic Field Calculator will calculate the total magnetic field, including components (declination, inclination, horizontal intensity, northerly intensity,...

  13. CO2 flowrate calculator

    International Nuclear Information System (INIS)

    Carossi, Jean-Claude

    1969-02-01

    A CO 2 flowrate calculator has been designed for measuring and recording the gas flow in the loops of Pegase reactor. The analog calculator applies, at every moment, Bernoulli's formula to the values that characterize the carbon dioxide flow through a nozzle. The calculator electronics is described (it includes a sampling calculator and a two-variable function generator), with its amplifiers, triggers, interpolator, multiplier, etc. Calculator operation and setting are presented

  14. Heterogeneous Calculation of {epsilon}

    Energy Technology Data Exchange (ETDEWEB)

    Jonsson, Alf

    1961-02-15

    A heterogeneous method of calculating the fast fission factor given by Naudet has been applied to the Carlvik - Pershagen definition of {epsilon}. An exact calculation of the collision probabilities is included in the programme developed for the Ferranti - Mercury computer.

  15. Heterogeneous Calculation of ε

    International Nuclear Information System (INIS)

    Jonsson, Alf

    1961-02-01

    A heterogeneous method of calculating the fast fission factor given by Naudet has been applied to the Carlvik - Pershagen definition of ε. An exact calculation of the collision probabilities is included in the programme developed for the Ferranti - Mercury computer

  16. Core calculations of JMTR

    Energy Technology Data Exchange (ETDEWEB)

    Nagao, Yoshiharu [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment

    1998-03-01

    In material testing reactors like the JMTR (Japan Material Testing Reactor) of 50 MW in Japan Atomic Energy Research Institute, the neutron flux and neutron energy spectra of irradiated samples show complex distributions. It is necessary to assess the neutron flux and neutron energy spectra of an irradiation field by carrying out the nuclear calculation of the core for every operation cycle. In order to advance core calculation, in the JMTR, the application of MCNP to the assessment of core reactivity and neutron flux and spectra has been investigated. In this study, in order to reduce the time for calculation and variance, the comparison of the results of the calculations by the use of K code and fixed source and the use of Weight Window were investigated. As to the calculation method, the modeling of the total JMTR core, the conditions for calculation and the adopted variance reduction technique are explained. The results of calculation are shown. Significant difference was not observed in the results of neutron flux calculations according to the difference of the modeling of fuel region in the calculations by K code and fixed source. The method of assessing the results of neutron flux calculation is described. (K.I.)

  17. Electronics Environmental Benefits Calculator

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Electronics Environmental Benefits Calculator (EEBC) was developed to assist organizations in estimating the environmental benefits of greening their purchase,...

  18. Electrical installation calculations basic

    CERN Document Server

    Kitcher, Christopher

    2013-01-01

    All the essential calculations required for basic electrical installation workThe Electrical Installation Calculations series has proved an invaluable reference for over forty years, for both apprentices and professional electrical installation engineers alike. The book provides a step-by-step guide to the successful application of electrical installation calculations required in day-to-day electrical engineering practice. A step-by-step guide to everyday calculations used on the job An essential aid to the City & Guilds certificates at Levels 2 and 3Fo

  19. Electrical installation calculations advanced

    CERN Document Server

    Kitcher, Christopher

    2013-01-01

    All the essential calculations required for advanced electrical installation workThe Electrical Installation Calculations series has proved an invaluable reference for over forty years, for both apprentices and professional electrical installation engineers alike. The book provides a step-by-step guide to the successful application of electrical installation calculations required in day-to-day electrical engineering practiceA step-by-step guide to everyday calculations used on the job An essential aid to the City & Guilds certificates at Levels 2 and 3For apprentices and electrical installatio

  20. Radar Signature Calculation Facility

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: The calculation, analysis, and visualization of the spatially extended radar signatures of complex objects such as ships in a sea multipath environment and...

  1. Waste Package Lifting Calculation

    International Nuclear Information System (INIS)

    H. Marr

    2000-01-01

    The objective of this calculation is to evaluate the structural response of the waste package during the horizontal and vertical lifting operations in order to support the waste package lifting feature design. The scope of this calculation includes the evaluation of the 21 PWR UCF (pressurized water reactor uncanistered fuel) waste package, naval waste package, 5 DHLW/DOE SNF (defense high-level waste/Department of Energy spent nuclear fuel)--short waste package, and 44 BWR (boiling water reactor) UCF waste package. Procedure AP-3.12Q, Revision 0, ICN 0, calculations, is used to develop and document this calculation

  2. PWR core design calculations

    International Nuclear Information System (INIS)

    Trkov, A.; Ravnik, M.; Zeleznik, N.

    1992-01-01

    Functional description of the programme package Cord-2 for PWR core design calculations is presented. Programme package is briefly described. Use of the package and calculational procedures for typical core design problems are treated. Comparison of main results with experimental values is presented as part of the verification process. (author) [sl

  3. Uneconomical top calculation method

    International Nuclear Information System (INIS)

    De Noord, M.; Vanm Sambeek, E.J.W.

    2003-08-01

    The methodology used to calculate the financial gap of renewable electricity sources and technologies is described. This methodology is used for calculating the production subsidy levels (MEP subsidies) for new renewable electricity projects in 2004 and 2005 in the Netherlands [nl

  4. Dose calculation for electrons

    International Nuclear Information System (INIS)

    Hirayama, Hideo

    1995-01-01

    The joint working group of ICRP/ICRU is advancing the works of reviewing the ICRP publication 51 by investigating the data related to radiation protection. In order to introduce the 1990 recommendation, it has been demanded to carry out calculation for neutrons, photons and electrons. As for electrons, EURADOS WG4 (Numerical Dosimetry) rearranged the data to be calculated at the meeting held in PTB Braunschweig in June, 1992, and the question and request were presented by Dr. J.L. Chartier, the responsible person, to the researchers who are likely to undertake electron transport Monte Carlo calculation. The author also has carried out the requested calculation as it was the good chance to do the mutual comparison among various computation codes regarding electron transport calculation. The content that the WG requested to calculate was the absorbed dose at depth d mm when parallel electron beam enters at angle α into flat plate phantoms of PMMA, water and ICRU4-element tissue, which were placed in vacuum. The calculation was carried out by the versatile electron-photon shower computation Monte Carlo code, EGS4. As the results, depth dose curves and the dependence of absorbed dose on electron energy, incident angle and material are reported. The subjects to be investigated are pointed out. (K.I.)

  5. Large scale GW calculations

    International Nuclear Information System (INIS)

    Govoni, Marco; Argonne National Lab., Argonne, IL; Galli, Giulia; Argonne National Lab., Argonne, IL

    2015-01-01

    We present GW calculations of molecules, ordered and disordered solids and interfaces, which employ an efficient contour deformation technique for frequency integration and do not require the explicit evaluation of virtual electronic states nor the inversion of dielectric matrices. We also present a parallel implementation of the algorithm, which takes advantage of separable expressions of both the single particle Green's function and the screened Coulomb interaction. The method can be used starting from density functional theory calculations performed with semilocal or hybrid functionals. The newly developed technique was applied to GW calculations of systems of unprecedented size, including water/semiconductor interfaces with thousands of electrons

  6. Radioactive cloud dose calculations

    International Nuclear Information System (INIS)

    Healy, J.W.

    1984-01-01

    Radiological dosage principles, as well as methods for calculating external and internal dose rates, following dispersion and deposition of radioactive materials in the atmosphere are described. Emphasis has been placed on analytical solutions that are appropriate for hand calculations. In addition, the methods for calculating dose rates from ingestion are discussed. A brief description of several computer programs are included for information on radionuclides. There has been no attempt to be comprehensive, and only a sampling of programs has been selected to illustrate the variety available

  7. Handout on shielding calculation

    International Nuclear Information System (INIS)

    Heilbron Filho, P.F.L.

    1991-01-01

    In order to avoid the difficulties of the radioprotection supervisors in the tasks related to shielding calculations, is presented in this paper the basic concepts of shielding theory. It also includes exercises and examples. (author)

  8. Unit Cost Compendium Calculations

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Unit Cost Compendium (UCC) Calculations raw data set was designed to provide for greater accuracy and consistency in the use of unit costs across the USEPA...

  9. PHYSICOCHEMICAL PROPERTY CALCULATIONS

    Science.gov (United States)

    Computer models have been developed to estimate a wide range of physical-chemical properties from molecular structure. The SPARC modeling system approaches calculations as site specific reactions (pKa, hydrolysis, hydration) and `whole molecule' properties (vapor pressure, boilin...

  10. Magnetic Field Grid Calculator

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Magnetic Field Properties Calculator will computes the estimated values of Earth's magnetic field(declination, inclination, vertical component, northerly...

  11. Intercavitary implants dosage calculation

    International Nuclear Information System (INIS)

    Rehder, B.P.

    The use of spacial geometry peculiar to each treatment for the attainment of intercavitary and intersticial implants dosage calculation is presented. The study is made in patients with intercavitary implants by applying a modified Manchester technique [pt

  12. Casio Graphical Calculator Project.

    Science.gov (United States)

    Stott, Nick

    2001-01-01

    Shares experiences of a project aimed at developing and refining programs written on a Casio FX9750G graphing calculator. Describes in detail some programs used to develop mental strategies and problem solving skills. (MM)

  13. Small portable speed calculator

    Science.gov (United States)

    Burch, J. L.; Billions, J. C.

    1973-01-01

    Calculator is adapted stopwatch calibrated for fast accurate measurement of speeds. Single assembled unit is rugged, self-contained, and relatively inexpensive to manufacture. Potential market includes automobile-speed enforcement, railroads, and field-test facilities.

  14. Calculativeness and trust

    DEFF Research Database (Denmark)

    Frederiksen, Morten

    2014-01-01

    Williamson’s characterisation of calculativeness as inimical to trust contradicts most sociological trust research. However, a similar argument is found within trust phenomenology. This paper re-investigates Williamson’s argument from the perspective of Løgstrup’s phenomenological theory of trust....... Contrary to Williamson, however, Løgstrup’s contention is that trust, not calculativeness, is the default attitude and only when suspicion is awoken does trust falter. The paper argues that while Williamson’s distinction between calculativeness and trust is supported by phenomenology, the analysis needs...... to take actual subjective experience into consideration. It points out that, first, Løgstrup places trust alongside calculativeness as a different mode of engaging in social interaction, rather conceiving of trust as a state or the outcome of a decision-making process. Secondly, the analysis must take...

  15. Activities for Calculators.

    Science.gov (United States)

    Hiatt, Arthur A.

    1987-01-01

    Ten activities that give learners in grades 5-8 a chance to explore mathematics with calculators are provided. The activity cards involve such topics as odd addends, magic squares, strange projects, and conjecturing rules. (MNS)

  16. IRIS core criticality calculations

    International Nuclear Information System (INIS)

    Jecmenica, R.; Trontl, K.; Pevec, D.; Grgic, D.

    2003-01-01

    Three-dimensional Monte Carlo computer code KENO-VI of CSAS26 sequence of SCALE-4.4 code system was applied for pin-by-pin calculations of the effective multiplication factor for the first cycle IRIS reactor core. The effective multiplication factors obtained by the above mentioned Monte Carlo calculations using 27-group ENDF/B-IV library and 238-group ENDF/B-V library have been compared with the effective multiplication factors achieved by HELIOS/NESTLE, CASMO/SIMULATE, and modified CORD-2 nodal calculations. The results of Monte Carlo calculations are found to be in good agreement with the results obtained by the nodal codes. The discrepancies in effective multiplication factor are typically within 1%. (author)

  17. Current interruption transients calculation

    CERN Document Server

    Peelo, David F

    2014-01-01

    Provides an original, detailed and practical description of current interruption transients, origins, and the circuits involved, and how they can be calculated Current Interruption Transients Calculationis a comprehensive resource for the understanding, calculation and analysis of the transient recovery voltages (TRVs) and related re-ignition or re-striking transients associated with fault current interruption and the switching of inductive and capacitive load currents in circuits. This book provides an original, detailed and practical description of current interruption transients, origins,

  18. Source and replica calculations

    International Nuclear Information System (INIS)

    Whalen, P.P.

    1994-01-01

    The starting point of the Hiroshima-Nagasaki Dose Reevaluation Program is the energy and directional distributions of the prompt neutron and gamma-ray radiation emitted from the exploding bombs. A brief introduction to the neutron source calculations is presented. The development of our current understanding of the source problem is outlined. It is recommended that adjoint calculations be used to modify source spectra to resolve the neutron discrepancy problem

  19. Shielding calculations using FLUKA

    International Nuclear Information System (INIS)

    Yamaguchi, Chiri; Tesch, K.; Dinter, H.

    1988-06-01

    The dose equivalent on the surface of concrete shielding has been calculated using the Monte Carlo code FLUKA86 for incident proton energies from 10 to 800 GeV. The results have been compared with some simple equations. The value of the angular dependent parameter in Moyer's equation has been calculated from the locations where the values of the maximum dose equivalent occur. (author)

  20. Uncertainty calculations made easier

    International Nuclear Information System (INIS)

    Hogenbirk, A.

    1994-07-01

    The results are presented of a neutron cross section sensitivity/uncertainty analysis performed in a complicated 2D model of the NET shielding blanket design inside the ITER torus design, surrounded by the cryostat/biological shield as planned for ITER. The calculations were performed with a code system developed at ECN Petten, with which sensitivity/uncertainty calculations become relatively simple. In order to check the deterministic neutron transport calculations (performed with DORT), calculations were also performed with the Monte Carlo code MCNP. Care was taken to model the 2.0 cm wide gaps between two blanket segments, as the neutron flux behind the vacuum vessel is largely determined by neutrons streaming through these gaps. The resulting neutron flux spectra are in excellent agreement up to the end of the cryostat. It is noted, that at this position the attenuation of the neutron flux is about 1 l orders of magnitude. The uncertainty in the energy integrated flux at the beginning of the vacuum vessel and at the beginning of the cryostat was determined in the calculations. The uncertainty appears to be strongly dependent on the exact geometry: if the gaps are filled with stainless steel, the neutron spectrum changes strongly, which results in an uncertainty of 70% in the energy integrated flux at the beginning of the cryostat in the no-gap-geometry, compared to an uncertainty of only 5% in the gap-geometry. Therefore, it is essential to take into account the exact geometry in sensitivity/uncertainty calculations. Furthermore, this study shows that an improvement of the covariance data is urgently needed in order to obtain reliable estimates of the uncertainties in response parameters in neutron transport calculations. (orig./GL)

  1. Online plasma calculator

    Science.gov (United States)

    Wisniewski, H.; Gourdain, P.-A.

    2017-10-01

    APOLLO is an online, Linux based plasma calculator. Users can input variables that correspond to their specific plasma, such as ion and electron densities, temperatures, and external magnetic fields. The system is based on a webserver where a FastCGI protocol computes key plasma parameters including frequencies, lengths, velocities, and dimensionless numbers. FastCGI was chosen to overcome security problems caused by JAVA-based plugins. The FastCGI also speeds up calculations over PHP based systems. APOLLO is built upon the WT library, which turns any web browser into a versatile, fast graphic user interface. All values with units are expressed in SI units except temperature, which is in electron-volts. SI units were chosen over cgs units because of the gradual shift to using SI units within the plasma community. APOLLO is intended to be a fast calculator that also provides the user with the proper equations used to calculate the plasma parameters. This system is intended to be used by undergraduates taking plasma courses as well as graduate students and researchers who need a quick reference calculation.

  2. Daylight calculations in practice

    DEFF Research Database (Denmark)

    Iversen, Anne; Roy, Nicolas; Hvass, Mette

    The aim of the project was to obtain a better understanding of what daylight calculations show and also to gain knowledge of how the different daylight simulation programs perform compared with each other. Experience has shown that results for the same room, obtained from two daylight simulation...... programs can give different results. This can be due to restrictions in the program itself and/or be due to the skills of the persons setting up the models. This is crucial as daylight calculations are used to document that the demands and recommendations to daylight levels outlined by building authorities....... The aim of the project was to obtain a better understanding of what daylight calculations show and also to gain knowledge of how the different daylight simulation programs perform compared with each other. Furthermore the aim was to provide knowledge of how to build up the 3D models that were...

  3. Calculating Quenching Weights

    CERN Document Server

    Salgado, C A; Salgado, Carlos A.; Wiedemann, Urs Achim

    2003-01-01

    We calculate the probability (``quenching weight'') that a hard parton radiates an additional energy fraction due to scattering in spatially extended QCD matter. This study is based on an exact treatment of finite in-medium path length, it includes the case of a dynamically expanding medium, and it extends to the angular dependence of the medium-induced gluon radiation pattern. All calculations are done in the multiple soft scattering approximation (Baier-Dokshitzer-Mueller-Peign\\'e-Schiff--Zakharov ``BDMPS-Z''-formalism) and in the single hard scattering approximation (N=1 opacity approximation). By comparison, we establish a simple relation between transport coefficient, Debye screening mass and opacity, for which both approximations lead to comparable results. Together with this paper, a CPU-inexpensive numerical subroutine for calculating quenching weights is provided electronically. To illustrate its applications, we discuss the suppression of hadronic transverse momentum spectra in nucleus-nucleus colli...

  4. Three recent TDHF calculations

    International Nuclear Information System (INIS)

    Weiss, M.S.

    1981-05-01

    Three applications of TDHF are discussed. First, vibrational spectra of a post grazing collision 40 Ca nucleus is examined and found to contain many high energy components, qualitatively consistent with recent Orsay experiments. Second, the fusion cross section in energy and angular momentum are calculated for 16 O + 24 Mg to exhibit the parameters of the low l window for this system. A sensitivity of the fusion cross section to the effective two body potential is discussed. Last, a preliminary analysis of 86 Kr + 139 La at E/sub lab/ = 505 MeV calculated in the frozen approximation is displayed, compared to experiment and discussed

  5. Fission neutron multiplicity calculations

    International Nuclear Information System (INIS)

    Maerten, H.; Ruben, A.; Seeliger, D.

    1991-01-01

    A model for calculating neutron multiplicities in nuclear fission is presented. It is based on the solution of the energy partition problem as function of mass asymmetry within a phenomenological approach including temperature-dependent microscopic energies. Nuclear structure effects on fragment de-excitation, which influence neutron multiplicities, are discussed. Temperature effects on microscopic energy play an important role in induced fission reactions. Calculated results are presented for various fission reactions induced by neutrons. Data cover the incident energy range 0-20 MeV, i.e. multiple chance fission is considered. (author). 28 refs, 13 figs

  6. Lattice cell burnup calculation

    International Nuclear Information System (INIS)

    Pop-Jordanov, J.

    1977-01-01

    Accurate burnup prediction is a key item for design and operation of a power reactor. It should supply information on isotopic changes at each point in the reactor core and the consequences of these changes on the reactivity, power distribution, kinetic characters, control rod patterns, fuel cycles and operating strategy. A basic stage in the burnup prediction is the lattice cell burnup calculation. This series of lectures attempts to give a review of the general principles and calculational methods developed and applied in this area of burnup physics

  7. PWR core design calculations

    Energy Technology Data Exchange (ETDEWEB)

    Trkov, A; Ravnik, M; Zeleznik, N [Inst. Jozef Stefan, Ljubljana (Slovenia)

    1992-07-01

    Functional description of the programme package Cord-2 for PWR core design calculations is presented. Programme package is briefly described. Use of the package and calculational procedures for typical core design problems are treated. Comparison of main results with experimental values is presented as part of the verification process. (author) [Slovenian] Opisali smo programski paket CORD-2, ki se uporablja pri projektnih izracunih sredice pri upravljanju tlacnovodnega reaktorja. Prikazana je uporaba paketa in racunskih postopkov za tipicne probleme, ki nastopajo pri projektiranju sredice. Primerjava glavnih rezultatov z eksperimentalnimi vrednostmi je predstavljena kot del preveritvenega procesa. (author)

  8. Calculating Student Grades.

    Science.gov (United States)

    Allswang, John M.

    1986-01-01

    This article provides two short microcomputer gradebook programs. The programs, written in BASIC for the IBM-PC and Apple II, provide statistical information about class performance and calculate grades either on a normal distribution or based on teacher-defined break points. (JDH)

  9. Cardiovascular risk calculation

    African Journals Online (AJOL)

    James A. Ker

    2014-08-20

    Aug 20, 2014 ... smoking and elevated blood sugar levels (diabetes mellitus). These risk ... These are risk charts, e.g. FRS, a non-laboratory-based risk calculation, and ... for hard cardiovascular end-points, such as coronary death, myocardial ...

  10. Cooling tower calculations

    International Nuclear Information System (INIS)

    Simonkova, J.

    1988-01-01

    The problems are summed up of the dynamic calculation of cooling towers with forced and natural air draft. The quantities and relations are given characterizing the simultaneous exchange of momentum, heat and mass in evaporative water cooling by atmospheric air in the packings of cooling towers. The method of solution is clarified in the calculation of evaporation criteria and thermal characteristics of countercurrent and cross current cooling systems. The procedure is demonstrated of the calculation of cooling towers, and correction curves and the effect assessed of the operating mode at constant air number or constant outlet air volume flow on their course in ventilator cooling towers. In cooling towers with the natural air draft the flow unevenness is assessed of water and air relative to its effect on the resulting cooling efficiency of the towers. The calculation is demonstrated of thermal and resistance response curves and cooling curves of hydraulically unevenly loaded towers owing to the water flow rate parameter graded radially by 20% along the cross-section of the packing. Flow rate unevenness of air due to wind impact on the outlet air flow from the tower significantly affects the temperatures of cooled water in natural air draft cooling towers of a design with lower demands on aerodynamics, as early as at wind velocity of 2 m.s -1 as was demonstrated on a concrete example. (author). 11 figs., 10 refs

  11. Hypervelocity impact cratering calculations

    Science.gov (United States)

    Maxwell, D. E.; Moises, H.

    1971-01-01

    A summary is presented of prediction calculations on the mechanisms involved in hypervelocity impact cratering and response of earth media. Considered are: (1) a one-gram lithium-magnesium alloys impacting basalt normally at 6.4 km/sec, and (2) a large terrestrial impact corresponding to that of Sierra Madera.

  12. Languages for structural calculations

    International Nuclear Information System (INIS)

    Thomas, J.B.; Chambon, M.R.

    1988-01-01

    The differences between human and computing languages are recalled. It is argued that they are to some extent structured in antagonistic ways. Languages in structural calculation, in the past, present, and future, are considered. The contribution of artificial intelligence is stressed [fr

  13. Monte Carlo alpha calculation

    Energy Technology Data Exchange (ETDEWEB)

    Brockway, D.; Soran, P.; Whalen, P.

    1985-01-01

    A Monte Carlo algorithm to efficiently calculate static alpha eigenvalues, N = ne/sup ..cap alpha..t/, for supercritical systems has been developed and tested. A direct Monte Carlo approach to calculating a static alpha is to simply follow the buildup in time of neutrons in a supercritical system and evaluate the logarithmic derivative of the neutron population with respect to time. This procedure is expensive, and the solution is very noisy and almost useless for a system near critical. The modified approach is to convert the time-dependent problem to a static ..cap alpha../sup -/eigenvalue problem and regress ..cap alpha.. on solutions of a/sup -/ k/sup -/eigenvalue problem. In practice, this procedure is much more efficient than the direct calculation, and produces much more accurate results. Because the Monte Carlo codes are intrinsically three-dimensional and use elaborate continuous-energy cross sections, this technique is now used as a standard for evaluating other calculational techniques in odd geometries or with group cross sections.

  14. Reactor dynamics calculations

    International Nuclear Information System (INIS)

    Devooght, J.; Lefvert, T.; Stankiewiez, J.

    1981-01-01

    This chapter deals with the work done in reactor dynamics within the Coordinated Research Program on Transport Theory and Advanced Reactor Calculations by three groups in Belgium, Poland, Sweden and Italy. Discretization methods in diffusion theory, collision probability methods in time-dependent neutron transport and singular perturbation method are represented in this paper

  15. Equilibrium fission model calculations

    International Nuclear Information System (INIS)

    Beckerman, M.; Blann, M.

    1976-01-01

    In order to aid in understanding the systematics of heavy ion fission and fission-like reactions in terms of the target-projectile system, bombarding energy and angular momentum, fission widths are calculated using an angular momentum dependent extension of the Bohr-Wheeler theory and particle emission widths using angular momentum coupling

  16. Course on hybrid calculation

    International Nuclear Information System (INIS)

    Weill, J.; Tellier; Bonnemay; Craigne; Chareton; Di Falco

    1969-02-01

    After a definition of hybrid calculation (combination of analogue and digital calculation) with a distinction between series and parallel hybrid computing, and a description of a hybrid computer structure and of task sharing between computers, this course proposes a description of hybrid hardware used in Saclay and Cadarache computing centres, and of operations performed by these systems. The next part addresses issues related to programming languages and software. The fourth part describes how a problem is organised for its processing on these computers. Methods of hybrid analysis are then addressed: resolution of optimisation problems, of partial differential equations, and of integral equations by means of different methods (gradient, maximum principle, characteristics, functional approximation, time slicing, Monte Carlo, Neumann iteration, Fischer iteration)

  17. Calculation of projected ranges

    International Nuclear Information System (INIS)

    Biersack, J.P.

    1980-09-01

    The concept of multiple scattering is reconsidered for obtaining the directional spreading of ion motion as a function of energy loss. From this the mean projection of each pathlength element of the ion trajectory is derived which - upon summation or integration - leads to the desired mean projected range. In special cases, the calculation can be carried out analytically, otherwise a simple general algorithm is derived which is suitable even for the smallest programmable calculators. Necessary input for the present treatment consists only of generally accessable stopping power and straggling formulas. The procedure does not rely on scattering cross sections, e.g. power potential or f(t 1 sup(/) 2 ) approximations. The present approach lends itself easily to include electronic straggling or to treat composed target materials, or even to account for the so-called time integral. (orig.)

  18. Spallation reactions: calculations

    International Nuclear Information System (INIS)

    Bertini, H.W.

    1975-01-01

    Current methods for calculating spallation reactions over various energy ranges are described and evaluated. Recent semiempirical fits to existing data will probably yield the most accurate predictions for these reactions in general. However, if the products in question have binding energies appreciably different from their isotropic neighbors and if the cross section is approximately 30 mb or larger, then the intranuclear-cascade-evaporation approach is probably better suited. (6 tables, 12 figures, 34 references) (U.S.)

  19. Performance assessment calculational exercises

    International Nuclear Information System (INIS)

    Barnard, R.W.; Dockery, H.A.

    1990-01-01

    The Performance Assessment Calculational Exercises (PACE) are an ongoing effort coordinated by Yucca Mountain Project Office. The objectives of fiscal year 1990 work, termed PACE-90, as outlined in the Department of Energy Performance Assessment (PA) Implementation Plan were to develop PA capabilities among Yucca Mountain Project (YMP) participants by calculating performance of a Yucca Mountain (YM) repository under ''expected'' and also ''disturbed'' conditions, to identify critical elements and processes necessary to assess the performance of YM, and to perform sensitivity studies on key parameters. It was expected that the PACE problems would aid in development of conceptual models and eventual evaluation of site data. The PACE-90 participants calculated transport of a selected set of radionuclides through a portion of Yucca Mountain for a period of 100,000 years. Results include analyses of fluid-flow profiles, development of a source term for radionuclide release, and simulations of contaminant transport in the fluid-flow field. Later work included development of a problem definition for perturbations to the originally modeled conditions and for some parametric sensitivity studies. 3 refs

  20. Beam brightness calculation for analytical and empirical distribution functions

    International Nuclear Information System (INIS)

    Myers, T.J.; Boulais, K.A.; O, Y.S.; Rhee, M.J.

    1992-01-01

    The beam brightness, a figure of merit for a beam quality useful for high-current low-emittance beams, was introduced by van Steenbergen as B = I/V 4 , where I is the beam current and V 4 is the hypervolume in the four-dimensional trace space occupied by the beam particles. Customarily, the brightness is expressed in terms of the product of emittances ε x ε y as B = ηI/(π 2 ε x ε y ), where η is a form factor of order unity which depends on the precise definition of emittance and hypervolume. Recently, a refined definition of the beam brightness based on the arithmetic mean value defined in statistics is proposed. The beam brightness is defined as B triple-bond 4 > = I -1 ∫ ρ 4 2 dxdydx'dy', where I is the beam current given by I ∫ ρ 4 dxdydx'dy'. Note that in this definition, neither the hypervolume V 4 nor the emittance, are explicitly used; the brightness is determined solely by the distribution function. Brightnesses are unambiguously calculated and expressed analytically in terms of the respective beam current and effective emittance for a few commonly used distribution functions, including Maxwellian and water-bag distributions. Other distributions of arbitrary shape frequently encountered in actual experiments are treated numerically. The resulting brightnesses are expressed in the form B = ηI/(π 2 ε x ε y ), and η is found to be weakly dependent on the form of velocity distribution as well as spatial distribution

  1. Accurate quantum chemical calculations

    Science.gov (United States)

    Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.; Taylor, Peter R.

    1989-01-01

    An important goal of quantum chemical calculations is to provide an understanding of chemical bonding and molecular electronic structure. A second goal, the prediction of energy differences to chemical accuracy, has been much harder to attain. First, the computational resources required to achieve such accuracy are very large, and second, it is not straightforward to demonstrate that an apparently accurate result, in terms of agreement with experiment, does not result from a cancellation of errors. Recent advances in electronic structure methodology, coupled with the power of vector supercomputers, have made it possible to solve a number of electronic structure problems exactly using the full configuration interaction (FCI) method within a subspace of the complete Hilbert space. These exact results can be used to benchmark approximate techniques that are applicable to a wider range of chemical and physical problems. The methodology of many-electron quantum chemistry is reviewed. Methods are considered in detail for performing FCI calculations. The application of FCI methods to several three-electron problems in molecular physics are discussed. A number of benchmark applications of FCI wave functions are described. Atomic basis sets and the development of improved methods for handling very large basis sets are discussed: these are then applied to a number of chemical and spectroscopic problems; to transition metals; and to problems involving potential energy surfaces. Although the experiences described give considerable grounds for optimism about the general ability to perform accurate calculations, there are several problems that have proved less tractable, at least with current computer resources, and these and possible solutions are discussed.

  2. Zero Temperature Hope Calculations

    International Nuclear Information System (INIS)

    Rozsnyai, B. F.

    2002-01-01

    The primary purpose of the HOPE code is to calculate opacities over a wide temperature and density range. It can also produce equation of state (EOS) data. Since the experimental data at the high temperature region are scarce, comparisons of predictions with the ample zero temperature data provide a valuable physics check of the code. In this report we show a selected few examples across the periodic table. Below we give a brief general information about the physics of the HOPE code. The HOPE code is an ''average atom'' (AA) Dirac-Slater self-consistent code. The AA label in the case of finite temperature means that the one-electron levels are populated according to the Fermi statistics, at zero temperature it means that the ''aufbau'' principle works, i.e. no a priory electronic configuration is set, although it can be done. As such, it is a one-particle model (any Hartree-Fock model is a one particle model). The code is an ''ion-sphere'' model, meaning that the atom under investigation is neutral within the ion-sphere radius. Furthermore, the boundary conditions for the bound states are also set at the ion-sphere radius, which distinguishes the code from the INFERNO, OPAL and STA codes. Once the self-consistent AA state is obtained, the code proceeds to generate many-electron configurations and proceeds to calculate photoabsorption in the ''detailed configuration accounting'' (DCA) scheme. However, this last feature is meaningless at zero temperature. There is one important feature in the HOPE code which should be noted; any self-consistent model is self-consistent in the space of the occupied orbitals. The unoccupied orbitals, where electrons are lifted via photoexcitation, are unphysical. The rigorous way to deal with that problem is to carry out complete self-consistent calculations both in the initial and final states connecting photoexcitations, an enormous computational task. The Amaldi correction is an attempt to address this problem by distorting the

  3. Calculation of the inventory

    International Nuclear Information System (INIS)

    Heilbron Filho, P.F.L.; Oliveira Brandao, R. de.

    1988-04-01

    The theory of Point Kernel applied to a source uniformelly distributed in a cylindrical geometry was utilized to estimated the Cs-137 content of each package of radioactive waste collected. The Taylor equation was employed to calculate the build-up factor and the Green function G was adjusted by means of a least square method. The theory also takes into account factors such as aditional shielding, heterogeneity and humidity of the medium as well as associated uncertanties of the parameters envolved. (author) [pt

  4. Calculations in furnace technology

    CERN Document Server

    Davies, Clive; Hopkins, DW; Owen, WS

    2013-01-01

    Calculations in Furnace Technology presents the theoretical and practical aspects of furnace technology. This book provides information pertinent to the development, application, and efficiency of furnace technology. Organized into eight chapters, this book begins with an overview of the exothermic reactions that occur when carbon, hydrogen, and sulfur are burned to release the energy available in the fuel. This text then evaluates the efficiencies to measure the quantity of fuel used, of flue gases leaving the plant, of air entering, and the heat lost to the surroundings. Other chapters consi

  5. Deep penetration calculations

    International Nuclear Information System (INIS)

    Thompson, W.L.; Deutsch, O.L.; Booth, T.E.

    1980-04-01

    Several Monte Carlo techniques are compared in the transport of neutrons of different source energies through two different deep-penetration problems each with two parts. The first problem involves transmission through a 200-cm concrete slab. The second problem is a 90 0 bent pipe jacketed by concrete. In one case the pipe is void, and in the other it is filled with liquid sodium. Calculations are made with two different Los Alamos Monte Carlo codes: the continuous-energy code MCNP and the multigroup code MCMG

  6. Weldon Spring dose calculations

    International Nuclear Information System (INIS)

    Dickson, H.W.; Hill, G.S.; Perdue, P.T.

    1978-09-01

    In response to a request by the Oak Ridge Operations (ORO) Office of the Department of Energy (DOE) for assistance to the Department of the Army (DA) on the decommissioning of the Weldon Spring Chemical Plant, the Health and Safety Research Division of the Oak Ridge National Laboratory (ORNL) performed limited dose assessment calculations for that site. Based upon radiological measurements from a number of soil samples analyzed by ORNL and from previously acquired radiological data for the Weldon Spring site, source terms were derived to calculate radiation doses for three specific site scenarios. These three hypothetical scenarios are: a wildlife refuge for hunting, fishing, and general outdoor recreation; a school with 40 hr per week occupancy by students and a custodian; and a truck farm producing fruits, vegetables, meat, and dairy products which may be consumed on site. Radiation doses are reported for each of these scenarios both for measured uranium daughter equilibrium ratios and for assumed secular equilibrium. Doses are lower for the nonequilibrium case

  7. Configuration space Faddeev calculations

    International Nuclear Information System (INIS)

    Payne, G.L.; Klink, W.H.; Polyzou, W.N.

    1989-01-01

    The detailed study of few-body systems provides one of the most effective means for studying nuclear physics at subnucleon distance scales. For few-body systems the model equations can be solved numerically with errors less than the experimental uncertainties. We have used such systems to investigate the size of relativistic effects, the role of meson-exchange currents, and the importance of quark degrees of freedom in the nucleus. Complete calculations for momentum-dependent potentials have been performed, and the properties of the three-body bound state for these potentials have been studied. Few-body calculations of the electromagnetic form factors of the deuteron and pion have been carried out using a front-form formulation of relativistic quantum mechanics. The decomposition of the operators transforming convariantly under the Poincare group into kinematical and dynamical parts has been studies. New ways for constructing interactions between particles, as well as interactions which lead to the production of particles, have been constructed in the context of a relativistic quantum mechanics. To compute scattering amplitudes in a nonperturbative way, classes of operators have been generated out of which the phase operator may be constructed. Finally, we have worked out procedures for computing Clebsch-Gordan and Racah coefficients on a computer, as well as giving procedures for dealing with the multiplicity problem

  8. Buoyant plume calculations

    International Nuclear Information System (INIS)

    Penner, J.E.; Haselman, L.C.; Edwards, L.L.

    1985-01-01

    Smoke from raging fires produced in the aftermath of a major nuclear exchange has been predicted to cause large decreases in surface temperatures. However, the extent of the decrease and even the sign of the temperature change, depend on how the smoke is distributed with altitude. We present a model capable of evaluating the initial distribution of lofted smoke above a massive fire. Calculations are shown for a two-dimensional slab version of the model and a full three-dimensional version. The model has been evaluated by simulating smoke heights for the Hamburg firestorm of 1943 and a smaller scale oil fire which occurred in Long Beach in 1958. Our plume heights for these fires are compared to those predicted by the classical Morton-Taylor-Turner theory for weakly buoyant plumes. We consider the effect of the added buoyancy caused by condensation of water-laden ground level air being carried to high altitude with the convection column as well as the effects of background wind on the calculated smoke plume heights for several fire intensities. We find that the rise height of the plume depends on the assumed background atmospheric conditions as well as the fire intensity. Little smoke is injected into the stratosphere unless the fire is unusually intense, or atmospheric conditions are more unstable than we have assumed. For intense fires significant amounts of water vapor are condensed raising the possibility of early scavenging of smoke particles by precipitation. 26 references, 11 figures

  9. Shielding calculations for NET

    International Nuclear Information System (INIS)

    Verschuur, K.A.; Hogenbirk, A.

    1991-05-01

    In the European Fusion Technology Programme there is only a small activity on research and development for fusion neutronics. Never-the-less, looking further than blanket design now, as ECN is getting involved in design of radiation shields for the coils and biological shields, it becomes apparent that fusion neutronics as a whole still needs substantial development. Existing exact codes for calculation of complex geometries like MCNP and DORT/TORT are put over the limits of their numerical capabilities, whilst approximate codes for complex geometries like FURNACE and MERCURE4 are put over the limits of their modelling capabilities. The main objective of this study is just to find out how far we can get with existing codes in obtaining reliable values for the radiation levels inside and outside the cryostat/shield during operation and after shut-down. Starting with a 1D torus model for preliminary parametric studies, more dimensional approximation of the torus or parts of it including the main heterogeneities should follow. Regular contacts with the NET-Team are kept, to be aware of main changes in NET design that might affect our calculation models. Work on the contract started 1 July 1990. The technical description of the contract is given. (author). 14 refs.; 4 figs.; 1 tab

  10. Calculating graduation rates.

    Science.gov (United States)

    Starck, Patricia L; Love, Karen; McPherson, Robert

    2008-01-01

    In recent years, the focus has been on increasing the number of registered nurse (RN) graduates. Numerous states have initiated programs to increase the number and quality of students entering nursing programs, and to expand the capacity of their programs to enroll additional qualified students. However, little attention has been focused on an equally, if not more, effective method for increasing the number of RNs produced-increasing the graduation rate of students enrolling. This article describes a project that undertook the task of compiling graduation data for 15 entry-level programs, standardizing terms and calculations for compiling the data, and producing a regional report on graduation rates of RN students overall and by type of program. Methodology is outlined in this article. This effort produced results that were surprising to program deans and directors and is expected to produce greater collaborative efforts to improve these rates both locally and statewide.

  11. Mice take calculated risks.

    Science.gov (United States)

    Kheifets, Aaron; Gallistel, C R

    2012-05-29

    Animals successfully navigate the world despite having only incomplete information about behaviorally important contingencies. It is an open question to what degree this behavior is driven by estimates of stochastic parameters (brain-constructed models of the experienced world) and to what degree it is directed by reinforcement-driven processes that optimize behavior in the limit without estimating stochastic parameters (model-free adaptation processes, such as associative learning). We find that mice adjust their behavior in response to a change in probability more quickly and abruptly than can be explained by differential reinforcement. Our results imply that mice represent probabilities and perform calculations over them to optimize their behavior, even when the optimization produces negligible material gain.

  12. Smile esthetics: calculated beauty?

    Science.gov (United States)

    Lecocq, Guillaume; Truong Tan Trung, Lisa

    2014-06-01

    Esthetic demand from patients continues to increase. Consequently, the treatments we offer are moving towards more discreet or invisible techniques using lingual brackets in order to achieve harmonious, balanced results in line with our treatment goals. As orthodontists, we act upon relationships between teeth and bone. And the equilibrium they create impacts the entire face via the smile. A balanced smile is essential to an esthetic outcome and is governed by rules, which guide both the practitioner and patient. A smile can be described in terms of mathematical ratios and proportions but beauty cannot be calculated. For the smile to sit harmoniously within the face, we need to take into account facial proportions and the possibility of their being modified by our orthopedic appliances or by surgery. Copyright © 2014 CEO. Published by Elsevier Masson SAS. All rights reserved.

  13. Relative Hazard Calculation Methodology

    International Nuclear Information System (INIS)

    DL Strenge; MK White; RD Stenner; WB Andrews

    1999-01-01

    The methodology presented in this document was developed to provide a means of calculating the RH ratios to use in developing useful graphic illustrations. The RH equation, as presented in this methodology, is primarily a collection of key factors relevant to understanding the hazards and risks associated with projected risk management activities. The RH equation has the potential for much broader application than generating risk profiles. For example, it can be used to compare one risk management activity with another, instead of just comparing it to a fixed baseline as was done for the risk profiles. If the appropriate source term data are available, it could be used in its non-ratio form to estimate absolute values of the associated hazards. These estimated values of hazard could then be examined to help understand which risk management activities are addressing the higher hazard conditions at a site. Graphics could be generated from these absolute hazard values to compare high-hazard conditions. If the RH equation is used in this manner, care must be taken to specifically define and qualify the estimated absolute hazard values (e.g., identify which factors were considered and which ones tended to drive the hazard estimation)

  14. Experimental Young's modulus calculations

    International Nuclear Information System (INIS)

    Chen, Y.; Jayakumar, R.; Yu, K.

    1994-01-01

    Coil is a very important magnet component. The turn location and the coil size impact both mechanical and magnetic behavior of the magnet. The Young's modulus plays a significant role in determining the coil location and size. Therefore, Young's modulus study is essential in predicting both the analytical and practical magnet behavior. To determine the coil Young's modulus, an experiment has been conducted to measure azimuthal sizes of a half quadrant QSE101 inner coil under different loading. All measurements are made at four different positions along an 8-inch long inner coil. Each measurement is repeated three times to determine the reproducibility of the experiment. To ensure the reliability of this experiment, the same measurement is performed twice with a open-quotes dummy coil,close quotes which is made of G10 and has the same dimension and similar azimuthal Young's modulus as the inner coil. The difference between the G10 azimuthal Young's modulus calculated from the experiments and its known value from the manufacturer will be compared. Much effort has been extended in analyzing the experimental data to obtain a more reliable Young's modulus. Analysis methods include the error analysis method and the least square method

  15. Relativistic few body calculations

    International Nuclear Information System (INIS)

    Gross, F.

    1988-01-01

    A modern treatment of the nuclear few-body problem must take into account both the quark structure of baryons and mesons, which should be important at short range, and the relativistic exchange of mesons, which describes the long range, peripheral interactions. A way to model both of these aspects is described. The long range, peripheral interactions are calculated using the spectator model, a general approach in which the spectators to nucleon interactions are put on their mass-shell. Recent numerical results for a relativistic OBE model of the NN interaction, obtained by solving a relativistic equation with one-particle on mass-shell, will be presented and discussed. Two meson exchange models, one with only four mesons (π,σ,/rho/,ω) but with a 25% admixture of γ 5 coupling for the pion, and a second with six mesons (π,σ,/rho/,ω,δ,/eta/) but pure γ 5 γ/sup μ/ pion coupling, are shown to give very good quantitative fits to the NN scattering phase shifts below 400 MeV, and also a good description of the /rvec p/ 40 Ca elastic scattering observables. Applications of this model to electromagnetic interactions of the two body system, with emphasis on the determination of relativistic current operators consistent with the dynamics and the exact treatment of current conservation in the presence of phenomenological form factors, will be described. 18 refs., 8 figs

  16. Equilibrium calculations, ch. 6

    International Nuclear Information System (INIS)

    Deursen, A.P.J. van

    1976-01-01

    A calculation is presented of dimer intensities obtained in supersonic expansions. There are two possible limiting considerations; the dimers observed are already present in the source, in thermodynamic equilibrium, and are accelerated in the expansion. Destruction during acceleration is neglected, as are processes leading to newly formed dimers. On the other hand one can apply a kinetic approach, where formation and destruction processes are followed throughout the expansion. The difficulty of this approach stems from the fact that the density, temperature and rate constants have to be known at all distances from the nozzle. The simple point of view has been adopted and the measured dimer intensities are compared with the equilibrium concentration in the source. The comparison is performed under the assumption that the detection efficiency for dimers is twice the detection efficiency for monomers. The experimental evidence against the simple point of view that the dimers of the onset region are formed in the source already, under equilibrium conditions, is discussed. (Auth.)

  17. Configuration space Faddeev calculations

    International Nuclear Information System (INIS)

    Payne, G.L.; Klink, W.H.; Ployzou, W.N.

    1991-01-01

    The detailed study of few-body systems provides one of the most precise tools for studying the dynamics of nuclei. Our research program consists of a careful theoretical study of the nuclear few-body systems. During the past year we have completed several aspects of this program. We have continued our program of using the trinucleon system to investigate the validity of various realistic nucleon-nucleon potentials. Also, the effects of meson-exchange currents in nuclear systems have been studied. Initial calculations using the configuration-space Faddeev equations for nucleon-deuteron scattering have been completed. With modifications to treat relativistic systems, few-body methods can be applied to phenomena that are sensitive to the structure of the individual hadrons. We have completed a review of Relativistic Hamiltonian Dynamics in Nuclear and Particle Physics for Advances in Nuclear Physics. Although it is called a review, it is a large document that contains a significant amount of new research

  18. The rating reliability calculator

    Directory of Open Access Journals (Sweden)

    Solomon David J

    2004-04-01

    Full Text Available Abstract Background Rating scales form an important means of gathering evaluation data. Since important decisions are often based on these evaluations, determining the reliability of rating data can be critical. Most commonly used methods of estimating reliability require a complete set of ratings i.e. every subject being rated must be rated by each judge. Over fifty years ago Ebel described an algorithm for estimating the reliability of ratings based on incomplete data. While his article has been widely cited over the years, software based on the algorithm is not readily available. This paper describes an easy-to-use Web-based utility for estimating the reliability of ratings based on incomplete data using Ebel's algorithm. Methods The program is available public use on our server and the source code is freely available under GNU General Public License. The utility is written in PHP, a common open source imbedded scripting language. The rating data can be entered in a convenient format on the user's personal computer that the program will upload to the server for calculating the reliability and other statistics describing the ratings. Results When the program is run it displays the reliability, number of subject rated, harmonic mean number of judges rating each subject, the mean and standard deviation of the averaged ratings per subject. The program also displays the mean, standard deviation and number of ratings for each subject rated. Additionally the program will estimate the reliability of an average of a number of ratings for each subject via the Spearman-Brown prophecy formula. Conclusion This simple web-based program provides a convenient means of estimating the reliability of rating data without the need to conduct special studies in order to provide complete rating data. I would welcome other researchers revising and enhancing the program.

  19. MOx Depletion Calculation Benchmark

    International Nuclear Information System (INIS)

    San Felice, Laurence; Eschbach, Romain; Dewi Syarifah, Ratna; Maryam, Seif-Eddine; Hesketh, Kevin

    2016-01-01

    Under the auspices of the NEA Nuclear Science Committee (NSC), the Working Party on Scientific Issues of Reactor Systems (WPRS) has been established to study the reactor physics, fuel performance, radiation transport and shielding, and the uncertainties associated with modelling of these phenomena in present and future nuclear power systems. The WPRS has different expert groups to cover a wide range of scientific issues in these fields. The Expert Group on Reactor Physics and Advanced Nuclear Systems (EGRPANS) was created in 2011 to perform specific tasks associated with reactor physics aspects of present and future nuclear power systems. EGRPANS provides expert advice to the WPRS and the nuclear community on the development needs (data and methods, validation experiments, scenario studies) for different reactor systems and also provides specific technical information regarding: core reactivity characteristics, including fuel depletion effects; core power/flux distributions; Core dynamics and reactivity control. In 2013 EGRPANS published a report that investigated fuel depletion effects in a Pressurised Water Reactor (PWR). This was entitled 'International Comparison of a Depletion Calculation Benchmark on Fuel Cycle Issues' NEA/NSC/DOC(2013) that documented a benchmark exercise for UO 2 fuel rods. This report documents a complementary benchmark exercise that focused on PuO 2 /UO 2 Mixed Oxide (MOX) fuel rods. The results are especially relevant to the back-end of the fuel cycle, including irradiated fuel transport, reprocessing, interim storage and waste repository. Saint-Laurent B1 (SLB1) was the first French reactor to use MOx assemblies. SLB1 is a 900 MWe PWR, with 30% MOx fuel loading. The standard MOx assemblies, used in Saint-Laurent B1 reactor, include three zones with different plutonium enrichments, high Pu content (5.64%) in the center zone, medium Pu content (4.42%) in the intermediate zone and low Pu content (2.91%) in the peripheral zone

  20. ENRAF gauge reference level calculations

    Energy Technology Data Exchange (ETDEWEB)

    Huber, J.H., Fluor Daniel Hanford

    1997-02-06

    This document describes the method for calculating reference levels for Enraf Series 854 Level Detectors as installed in the tank farms. The reference level calculation for each installed level gauge is contained herein.

  1. HEU benchmark calculations and LEU preliminary calculations for IRR-1

    International Nuclear Information System (INIS)

    Caner, M.; Shapira, M.; Bettan, M.; Nagler, A.; Gilat, J.

    2004-01-01

    We performed neutronics calculations for the Soreq Research Reactor, IRR-1. The calculations were done for the purpose of upgrading and benchmarking our codes and methods. The codes used were mainly WIMS-D/4 for cell calculations and the three dimensional diffusion code CITATION for full core calculations. The experimental flux was obtained by gold wire activation methods and compared with our calculated flux profile. The IRR-1 is loaded with highly enriched uranium fuel assemblies, of the plate type. In the framework of preparation for conversion to low enrichment fuel, additional calculations were done assuming the presence of LEU fresh fuel. In these preliminary calculations we investigated the effect on the criticality and flux distributions of the increase of U-238 loading, and the corresponding uranium density.(author)

  2. MCNP and OMEGA criticality calculations

    International Nuclear Information System (INIS)

    Seifert, E.

    1998-04-01

    The reliability of OMEGA criticality calculations is shown by a comparison with calculations by the validated and widely used Monte Carlo code MCNP. The criticality of 16 assemblies with uranium as fissionable is calculated with the codes MCNP (Version 4A, ENDF/B-V cross sections), MCNP (Version 4B, ENDF/B-VI cross sections), and OMEGA. Identical calculation models are used for the three codes. The results are compared mutually and with the experimental criticality of the assemblies. (orig.)

  3. CALCULATION OF LASER CUTTING COSTS

    OpenAIRE

    Bogdan Nedic; Milan Eric; Marijana Aleksijevic

    2016-01-01

    The paper presents description methods of metal cutting and calculation of treatment costs based on model that is developed on Faculty of mechanical engineering in Kragujevac. Based on systematization and analysis of large number of calculation models of cutting with unconventional methods, mathematical model is derived, which is used for creating a software for calculation costs of metal cutting. Software solution enables resolving the problem of calculating the cost of laser cutting, compar...

  4. Transient anisotropic magnetic field calculation

    International Nuclear Information System (INIS)

    Jesenik, Marko; Gorican, Viktor; Trlep, Mladen; Hamler, Anton; Stumberger, Bojan

    2006-01-01

    For anisotropic magnetic material, nonlinear magnetic characteristics of the material are described with magnetization curves for different magnetization directions. The paper presents transient finite element calculation of the magnetic field in the anisotropic magnetic material based on the measured magnetization curves for different magnetization directions. For the verification of the calculation method some results of the calculation are compared with the measurement

  5. Dosimetric comparison of peripheral NSCLC SBRT using Acuros XB and AAA calculation algorithms.

    Science.gov (United States)

    Ong, Chloe C H; Ang, Khong Wei; Soh, Roger C X; Tin, Kah Ming; Yap, Jerome H H; Lee, James C L; Bragg, Christopher M

    2017-01-01

    There is a concern for dose calculation in highly heterogenous environments such as the thorax region. This study compares the quality of treatment plans of peripheral non-small cell lung cancer (NSCLC) stereotactic body radiation therapy (SBRT) using 2 calculation algorithms, namely, Eclipse Anisotropic Analytical Algorithm (AAA) and Acuros External Beam (AXB), for 3-dimensional conformal radiation therapy (3DCRT) and volumetric-modulated arc therapy (VMAT). Four-dimensional computed tomography (4DCT) data from 20 anonymized patients were studied using Varian Eclipse planning system, AXB, and AAA version 10.0.28. A 3DCRT plan and a VMAT plan were generated using AAA and AXB with constant plan parameters for each patient. The prescription and dose constraints were benchmarked against Radiation Therapy Oncology Group (RTOG) 0915 protocol. Planning parameters of the plan were compared statistically using Mann-Whitney U tests. Results showed that 3DCRT and VMAT plans have a lower target coverage up to 8% when calculated using AXB as compared with AAA. The conformity index (CI) for AXB plans was 4.7% lower than AAA plans, but was closer to unity, which indicated better target conformity. AXB produced plans with global maximum doses which were, on average, 2% hotter than AAA plans. Both 3DCRT and VMAT plans were able to achieve D95%. VMAT plans were shown to be more conformal (CI = 1.01) and were at least 3.2% and 1.5% lower in terms of PTV maximum and mean dose, respectively. There was no statistically significant difference for doses received by organs at risk (OARs) regardless of calculation algorithms and treatment techniques. In general, the difference in tissue modeling for AXB and AAA algorithm is responsible for the dose distribution between the AXB and the AAA algorithms. The AXB VMAT plans could be used to benefit patients receiving peripheral NSCLC SBRT. Copyright © 2017 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights

  6. Invert Effective Thermal Conductivity Calculation

    International Nuclear Information System (INIS)

    M.J. Anderson; H.M. Wade; T.L. Mitchell

    2000-01-01

    The objective of this calculation is to evaluate the temperature-dependent effective thermal conductivities of a repository-emplaced invert steel set and surrounding ballast material. The scope of this calculation analyzes a ballast-material thermal conductivity range of 0.10 to 0.70 W/m · K, a transverse beam spacing range of 0.75 to 1.50 meters, and beam compositions of A 516 carbon steel and plain carbon steel. Results from this calculation are intended to support calculations that identify waste package and repository thermal characteristics for Site Recommendation (SR). This calculation was developed by Waste Package Department (WPD) under Office of Civilian Radioactive Waste Management (OCRWM) procedure AP-3.12Q, Revision 1, ICN 0, Calculations

  7. Global nuclear-structure calculations

    International Nuclear Information System (INIS)

    Moeller, P.; Nix, J.R.

    1990-01-01

    The revival of interest in nuclear ground-state octupole deformations that occurred in the 1980's was stimulated by observations in 1980 of particularly large deviations between calculated and experimental masses in the Ra region, in a global calculation of nuclear ground-state masses. By minimizing the total potential energy with respect to octupole shape degrees of freedom in addition to ε 2 and ε 4 used originally, a vastly improved agreement between calculated and experimental masses was obtained. To study the global behavior and interrelationships between other nuclear properties, we calculate nuclear ground-state masses, spins, pairing gaps and Β-decay and half-lives and compare the results to experimental qualities. The calculations are based on the macroscopic-microscopic approach, with the microscopic contributions calculated in a folded-Yukawa single-particle potential

  8. CALCULATION OF LASER CUTTING COSTS

    Directory of Open Access Journals (Sweden)

    Bogdan Nedic

    2016-09-01

    Full Text Available The paper presents description methods of metal cutting and calculation of treatment costs based on model that is developed on Faculty of mechanical engineering in Kragujevac. Based on systematization and analysis of large number of calculation models of cutting with unconventional methods, mathematical model is derived, which is used for creating a software for calculation costs of metal cutting. Software solution enables resolving the problem of calculating the cost of laser cutting, comparison' of costs made by other unconventional methods and provides documentation that consists of reports on estimated costs.

  9. Calculation of Rydberg interaction potentials

    DEFF Research Database (Denmark)

    Weber, Sebastian; Tresp, Christoph; Menke, Henri

    2017-01-01

    for calculating the required electric multipole moments and the inclusion of electromagnetic fields with arbitrary direction. We focus specifically on symmetry arguments and selection rules, which greatly reduce the size of the Hamiltonian matrix, enabling the direct diagonalization of the Hamiltonian up...... to higher multipole orders on a desktop computer. Finally, we present example calculations showing the relevance of the full interaction calculation to current experiments. Our software for calculating Rydberg potentials including all features discussed in this tutorial is available as open source....

  10. Geoarchaeology, the four dimensional (4D) fluvial matrix and climatic causality

    Science.gov (United States)

    Brown, A. G.

    2008-10-01

    Geoarchaeology is the application of geological and geomorphological techniques to archaeology and the study of the interactions of hominins with the natural environment at a variety of temporal and spatial scales. Geoarchaeology in the UK over the last twenty years has flourished largely because it has gone beyond technological and scientific applications. Over the same period our ability to reconstruct the 3-dimensional stratigraphy of fluvial deposits and the matrix of fluvial sites has increased dramatically because of a number of technological advances. These have included the use of LiDAR (laser imaging) and radar to produce high-resolution digital surface models, the use of geophysics, particularly ground penetrating radar and electrical resistivity, to produce sediment depth models, and the use of GIS and data visualisation techniques to manipulate and display the data. These techniques along with more systematic and detailed sedimentological recording of exposed sections have allowed the construction of more precise 3-dimensional (volumetric) models of the matrix of artefacts within fluvial deposits. Additionally a revolution in dating techniques, particularly direct sediment dating by luminescence methods, has enabled the creation of 4-dimensional models of the creation and preservation of these sites. These 4-dimensional models have the ability to provide far more information about the processes of site creation, preservation and even destruction, and also allow the integration of these processes with independent data sources concerning cultural evolution and climatic change. All improvements in the precision of dating fluvial deposits have archaeological importance in our need to translate events from a sequential or geological timeframe to human timescales. This allows geoarchaeology to make a more direct contribution to cultural history through the recognition of agency at the individual or group level. This data can then form a component of biocomplexity or agent-based modelling which is becoming increasingly used in the natural sciences, particularly ecology and geomorphology and which can be used to test scenarios including the impact on, and response of, hominins to abrupt or catastrophic environmental change. Whilst catastrophic events clearly represent the atypical they can be illuminating in revealing cognitive processes resulting in abandonment, coping, mitigation and innovation. These points are exemplified using two in-depth case studies: one from the Holocene geoarchaeological record of the River Trent in Central England and the other from the Palaeolithic record from rivers in South West Britain. In the former the interaction between climate change and human activity is illustrated at the year to century timescale whilst in the other the timescale is millennial. These case studies have deliberately been chosen to be as different as possible in temporal and spatial scale with the aim of examining the applicability of methodological and theoretical aspects of geoarchaeology. Lastly the paper considers the problem of scale in geoarchaeology and concludes it is process-dependency, which ultimately affects the questions we can ask, and that questions of human response to climate change are fundamentally a product of materiality and cognitive processes. This demands an in-depth contextual approach to such questions rather than database-driven assertions of causality.

  11. Stationary axisymmetric four dimensional space-time endowed with Einstein metric

    International Nuclear Information System (INIS)

    Hasanuddin; Azwar, A.; Gunara, B. E.

    2015-01-01

    In this paper, we construct Ernst equation from vacuum Einstein field equation for both zero and non-zero cosmological constant. In particular, we consider the case where the space-time admits axisymmetric using Boyer-Lindquist coordinates. This is called Kerr-Einstein solution describing a spinning black hole. Finally, we give a short discussion about the dynamics of photons on Kerr-Einstein space-time

  12. Four-Dimensional Weather Functional Requirements for NextGen Air Traffic Management

    Science.gov (United States)

    2008-01-18

    receive or contain. Acquire To come into the possession of something concrete or abstract. Analyze To examine carefully and in detail so as to...consisting of transparent or translucent pellets of ice (5 mm or less in diameter). Icing Formation of ice, rime, or hoarfrost on an aircraft. Impact...Can be observed and reported at the surface or aloft. Snow Type of frozen (or mostly frozen) precipitation composed of white or translucent ice

  13. Four-dimensional black holes with scalar hair in nonlinear electrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Barrientos, Jose [Universidad de Concepcion, Departamento de Fisica, Concepcion (Chile); Universidad Catolica del Norte, Departamento de Ensenanza de las Ciencias Basicas, Coquimbo (Chile); Gonzalez, P.A. [Universidad Diego Portales, Facultad de Ingenieria, Santiago (Chile); Vasquez, Yerko [Universidad de La Serena, Departamento de Fisica y Astronomia, Facultad de Ciencias, La Serena (Chile)

    2016-12-15

    We consider a gravitating system consisting of a scalar field minimally coupled to gravity with a self-interacting potential and a U(1) nonlinear electromagnetic field. Solving analytically and numerically the coupled system for both power-law and Born-Infeld type electrodynamics, we find charged hairy black hole solutions. Then we study the thermodynamics of these solutions and we find that at a low temperature the topological charged black hole with scalar hair is thermodynamically preferred, whereas the topological charged black hole without scalar hair is thermodynamically preferred at a high temperature for power-law electrodynamics. Interestingly enough, these phase transitions occur at a fixed critical temperature and do not depend on the exponent p of the nonlinear electrodynamics. (orig.)

  14. Four-dimensional aether-like Lorentz-breaking QED revisited and problem of ambiguities

    Energy Technology Data Exchange (ETDEWEB)

    Baeta Scarpelli, A.P. [Setor Tecnico-Cientifico, Departamento de Policia Federal, Rua Hugo D' Antola, 95, Lapa, Sao Paulo (Brazil); Mariz, T. [Universidade Federal de Alagoas, Instituto de Fisica, Maceio, Alagoas (Brazil); Nascimento, J.R.; Petrov, A.Yu. [Universidade Federal da Paraiba, Departamento de Fisica, Caixa Postal 5008, Joao Pessoa, Paraiba (Brazil)

    2013-08-15

    In this paper, we consider the perturbative generation of the CPT-even aether-like Lorentz-breaking term in the extended Lorentz-breaking QED within different approaches and discuss its ambiguities. (orig.)

  15. Four-dimensional jets of hadrons: universal characteristics of multiple production of particles

    International Nuclear Information System (INIS)

    Baldin, A.M.; Batyunya, B.V.; Gramenitskii, I.M.; Grishin, V.G.; Didenko, L.A.; Kuznetsov, A.A.; Metreveli, Z.V.

    1986-01-01

    In a new relativistically invariant approach, data on multiple production of particles are analyzed in pp, p-barp, π - p, π - C, pC, and pTa interactions in the momentum range from 6 to 205 GeV/c. Distributions of hadrons (π - , K 0 /sub S/, Λ) in the square of the 4-velocity (b/sub k/) relative to the jet axis are obtained. It is shown that at a momentum p/sub lab/ ≥22 GeV/c these distributions do not depend on energy and are identical for hadronization of quarks and of multiquark systems. The observed universal properties of 4-dimensional jets of hadrons apparently are fundamental characteristics of interactions of color charges with the vacuum

  16. Sigma-model formulation of the Yang-Mills theory on four-dimensional hypersphere

    International Nuclear Information System (INIS)

    Ivanov, E.A.; Krivonos, S.O.

    1981-01-01

    The bilocal sigma-model representation is constructed for the Yang-Mills theory in the simplest conformally flat hyperspherical spaces So(1,4)/SO(1,3), SO(2,3)/SO(1,3) and SO(5)/SO(4). Like in the case of Minkowski and Euclidean spaces, Yang-Mills potential is defined as bsub(μ)(x)=dsub(μ)sup(y)b(x,y)|y=0 , b(x,y) being a bilocal Goldstone field which takes values in the gauge group algebra and is subjected to certain covariant constraints. The minimal version of these constraints results in the ''string'' representation for b(x,y) through the P-exponential of bsub(μ)(x) along the fixed paths coinciding with geodesics. Due to the presence of closed geodesics, the contour fuctionals naturally appear in the theory, with contours being the circles with the hypersphere radius. The sigma-model representation is shown to be Weyl-covariant: its formulations indifferent conformally flat spaces are related by transformations of ysup(rho). The geometric meaning of ysup(rho) and minimal constraints is explained, and the conformal group gransformation for ysup(rho) is found [ru

  17. Four-dimensional treatment planning and fluoroscopic real-time tumor tracking radiotherapy for moving tumor

    International Nuclear Information System (INIS)

    Shirato, Hiroki; Shimizu, Shinichi; Kitamura, Kei; Nishioka, Takeshi; Kagei, Kenji; Hashimoto, Seiko; Aoyama, Hidefumi; Kunieda, Tatsuya; Shinohara, Nobuo; Dosaka-Akita, Hirotoshi; Miyasaka, Kazuo

    2000-01-01

    Purpose: To achieve precise three-dimensional (3D) conformal radiotherapy for mobile tumors, a new radiotherapy system and its treatment planning system were developed and used for clinical practice. Methods and Materials: We developed a linear accelerator synchronized with a fluoroscopic real-time tumor tracking system by which 3D coordinates of a 2.0-mm gold marker in the tumor can be determined every 0.03 second. The 3D relationships between the marker and the tumor at different respiratory phases are evaluated using CT image at each respiratory phase, whereby the optimum phase can be selected to synchronize with irradiation (4D treatment planning). The linac is triggered to irradiate the tumor only when the marker is located within the region of the planned coordinates relative to the isocenter. Results: The coordinates of the marker were detected with an accuracy of ± 1 mm during radiotherapy in the phantom experiment. The time delay between recognition of the marker position and the start or stop of megavoltage X-ray irradiation was 0.03 second. Fourteen patients with various tumors were treated by conformal radiotherapy with a 'tight' planning target volume (PTV) margin. They were surviving without relapse or complications with a median follow-up of 6 months. Conclusion: Fluoroscopic real-time tumor tracking radiotherapy following 4D treatment planning was developed and shown to be feasible to improve the accuracy of the radiotherapy for mobile tumors

  18. Arthropod Distribution in a Tropical Rainforest: Tackling a Four Dimensional Puzzle.

    Science.gov (United States)

    Basset, Yves; Cizek, Lukas; Cuénoud, Philippe; Didham, Raphael K; Novotny, Vojtech; Ødegaard, Frode; Roslin, Tomas; Tishechkin, Alexey K; Schmidl, Jürgen; Winchester, Neville N; Roubik, David W; Aberlenc, Henri-Pierre; Bail, Johannes; Barrios, Héctor; Bridle, Jonathan R; Castaño-Meneses, Gabriela; Corbara, Bruno; Curletti, Gianfranco; Duarte da Rocha, Wesley; De Bakker, Domir; Delabie, Jacques H C; Dejean, Alain; Fagan, Laura L; Floren, Andreas; Kitching, Roger L; Medianero, Enrique; Gama de Oliveira, Evandro; Orivel, Jérôme; Pollet, Marc; Rapp, Mathieu; Ribeiro, Sérvio P; Roisin, Yves; Schmidt, Jesper B; Sørensen, Line; Lewinsohn, Thomas M; Leponce, Maurice

    2015-01-01

    Quantifying the spatio-temporal distribution of arthropods in tropical rainforests represents a first step towards scrutinizing the global distribution of biodiversity on Earth. To date most studies have focused on narrow taxonomic groups or lack a design that allows partitioning of the components of diversity. Here, we consider an exceptionally large dataset (113,952 individuals representing 5,858 species), obtained from the San Lorenzo forest in Panama, where the phylogenetic breadth of arthropod taxa was surveyed using 14 protocols targeting the soil, litter, understory, lower and upper canopy habitats, replicated across seasons in 2003 and 2004. This dataset is used to explore the relative influence of horizontal, vertical and seasonal drivers of arthropod distribution in this forest. We considered arthropod abundance, observed and estimated species richness, additive decomposition of species richness, multiplicative partitioning of species diversity, variation in species composition, species turnover and guild structure as components of diversity. At the scale of our study (2 km of distance, 40 m in height and 400 days), the effects related to the vertical and seasonal dimensions were most important. Most adult arthropods were collected from the soil/litter or the upper canopy and species richness was highest in the canopy. We compared the distribution of arthropods and trees within our study system. Effects related to the seasonal dimension were stronger for arthropods than for trees. We conclude that: (1) models of beta diversity developed for tropical trees are unlikely to be applicable to tropical arthropods; (2) it is imperative that estimates of global biodiversity derived from mass collecting of arthropods in tropical rainforests embrace the strong vertical and seasonal partitioning observed here; and (3) given the high species turnover observed between seasons, global climate change may have severe consequences for rainforest arthropods.

  19. Sigma-model formulation of the Yang-Mills theory on four-dimensional hypersphere

    International Nuclear Information System (INIS)

    Ivanov, E.A.; Krivonos, S.O.

    1983-01-01

    The bilocal sigma-model representation is constructed for Yang-Mills theory in the simplest conformally flat hyperspherical spases SO(1, 4)/SO(1, 3), SO(2, 3)/SO(1, 3) and SO(5)/SO(4) (for the Euclidean Yang-Mills). Like in the case of Minkowski and Euclidean spaces, Yang-Mills potential is defined as bsub(μ)(x)=dsub(μ)sup(y)b(x, y)sub(y=0), b(x, y) being a bilocal Goldstone field which takes values in the gauge group algebra and is subjected to certain covariant constraints. The minimal version of these constraints results in the ''string'' representation for b(x, y) through the P exponential of bsub(μ)(x) along the fixed paths coinciding with geodesics. Due to the presence of closed geodesics, the contour functional naturally appear in the theory, with contours being the circles with the hypersphere radius. The sigma-model representation is shown to be Weyl-covariant: its formulations in different conformally flat spaces are related by transformations of ysup(rho). The geometric meaning ysup(rho) and minimal constraints is explained, and the conformal group transofrmation of ysup(rho) is found

  20. Tumor motion in lung cancers: An overview of four-dimensional radiotherapy treatment of lung cancers

    Directory of Open Access Journals (Sweden)

    Anusheel Munshi

    2017-01-01

    Full Text Available Most modern radiotherapy centers have adopted contouring based treatment. Sparing of the normal structures has been made more achievable than ever before by use of technologies such as Intensity Modulated Radiotherapy (IMRT and Image guided radiotherapy (IGRT. However, unlike, sites such as brain or head neck, thorax is a site in active motion, mostly contributed by patient's respiratory movement. 4 D radiotherapy, that addresses the issues of motion in thoracic tumours answers this critical question. The present article outlines the scope of need for 4 D radiotherapy and discusses the options available for 4 D treatments of cancer patients.

  1. Geometry of all supersymmetric four-dimensional N = 1 supergravity backgrounds

    International Nuclear Information System (INIS)

    Gran, U.; Gutowski, J.; Papadopoulos, G.

    2008-01-01

    We solve the Killing spinor equations of N = 1 supergravity, with four supercharges, coupled to any number of vector and scalar multiplets in all cases. We find that backgrounds with N = 1 supersymmetry admit a null, integrable, Killing vector field. There are two classes of N = 2 backgrounds. The spacetime in the first class admits a parallel null vector field and so it is a pp-wave. The spacetime of the other class admits three Killing vector fields, and a vector field that commutes with the three Killing directions. These backgrounds are of cohomogeneity one with homogenous sections either R 2,1 or AdS 3 and have an interpretation as domain walls. The N = 3 backgrounds are locally maximally supersymmetric. There are N = 3 backgrounds which arise as discrete identifications of maximally supersymmetric ones. The maximally supersymmetric backgrounds are locally isometric to either R 3,1 or AdS 4 .

  2. Four-dimensional black holes with scalar hair in nonlinear electrodynamics

    International Nuclear Information System (INIS)

    Barrientos, Jose; Gonzalez, P.A.; Vasquez, Yerko

    2016-01-01

    We consider a gravitating system consisting of a scalar field minimally coupled to gravity with a self-interacting potential and a U(1) nonlinear electromagnetic field. Solving analytically and numerically the coupled system for both power-law and Born-Infeld type electrodynamics, we find charged hairy black hole solutions. Then we study the thermodynamics of these solutions and we find that at a low temperature the topological charged black hole with scalar hair is thermodynamically preferred, whereas the topological charged black hole without scalar hair is thermodynamically preferred at a high temperature for power-law electrodynamics. Interestingly enough, these phase transitions occur at a fixed critical temperature and do not depend on the exponent p of the nonlinear electrodynamics. (orig.)

  3. Chiral Models in Noncommutative N=1/2 Four Dimensional Superspace

    DEFF Research Database (Denmark)

    Ryttov, Thomas; Sannino, Francesco

    2005-01-01

    We derive the component Lagrangian for a generic N=1/2 supersymmetric chiral model with an arbitrary number of fields in four space-time dimensions. We then investigate a toy model in which the deformation parameter modifies the undeformed potential near the origin of the field space in a way which...

  4. Utilizing Four Dimensional Lightning and Dual-Polarization Radar to Develop Lightning Initiation Forecast Guidance

    Science.gov (United States)

    2015-03-26

    vapor condensing on cloud condensation nuclei. The updraft speed increases with height inside the cloud and en- trainment occurs as air outside the...2012–30 January 2013 due to a KMLB radar outage caused by construction of a taller radar tower needed to avoid beam blockage by new aircraft hangers

  5. Phase structure of three- and four-dimensional φ4 field theory

    International Nuclear Information System (INIS)

    Efimov, G.V.

    1991-01-01

    Strong coupling regime of gφ theory in space-time R d for d=3,4 is investigated by the methods of canonical transformations and renormalization group. Comparison with the case d=2 shows a crucial influence of the renormalization structure of the theory of its phase structure. 19 refs.; 7 figs.; 1 tab

  6. Classical and quantum investigations of four-dimensional maps with a mixed phase space

    International Nuclear Information System (INIS)

    Richter, Martin

    2012-01-01

    Systems with more than two degrees of freedom are of fundamental importance for the understanding of problems ranging from celestial mechanics to molecules. Due to the dimensionality the classical phase-space structure of such systems is more difficult to understand than for systems with two or fewer degrees of freedom. This thesis aims for a better insight into the classical as well as the quantum mechanics of 4D mappings representing driven systems with two degrees of freedom. In order to analyze such systems, we introduce 3D sections through the 4D phase space which reveal the regular and chaotic structures. We introduce these concepts by means of three example mappings of increasing complexity. After a classical analysis the systems are investigated quantum mechanically. We focus especially on two important aspects: First, we address quantum mechanical consequences of the classical Arnold web and demonstrate how quantum mechanics can resolve this web in the semiclassical limit. Second, we investigate the quantum mechanical tunneling couplings between regular and chaotic regions in phase space. We determine regular-to-chaotic tunneling rates numerically and extend the fictitious integrable system approach to higher dimensions for their prediction. Finally, we study resonance-assisted tunneling in 4D maps.

  7. Glass transitions in one-, two-, three-, and four-dimensional binary Lennard-Jones systems

    Energy Technology Data Exchange (ETDEWEB)

    Bruening, Ralf; St-Onge, Denis A; Patterson, Steve [Physics Department, Mount Allison University, Sackville, NB, E4L 1E6 (Canada); Kob, Walter [Laboratoire des Colloides, Verres et Nanomateriaux, UMR5587, Universite Montpellier II and CNRS, 34095 Montpellier Cedex (France)], E-mail: rbruening@mta.ca

    2009-01-21

    We investigate the calorimetric liquid-glass transition by performing simulations of a binary Lennard-Jones mixture in one through four dimensions. Starting at a high temperature, the systems are cooled to T = 0 and heated back to the ergodic liquid state at constant rates. Glass transitions are observed in two, three and four dimensions as a hysteresis between the cooling and heating curves. This hysteresis appears in the energy and pressure diagrams, and the scanning rate dependence of the area and height of the hysteresis can be described using power laws. The one-dimensional system does not experience a glass transition but its specific heat curve resembles the shape of the D{>=}2 results in the supercooled liquid regime above the glass transition. As D increases, the radial distribution functions reflect reduced geometric constraints. Nearest neighbor distances become smaller with increasing D due to interactions between nearest and next-nearest neighbors. Simulation data for the glasses are compared with crystal and melting data obtained with a Lennard-Jones system with only one type of particle and we find that with increasing D crystallization becomes increasingly more difficult.

  8. Ultra-high resolution four dimensional geodetic imaging of engineered structures for stability assessment

    Science.gov (United States)

    Bawden, Gerald W.; Bond, Sandra; Podoski, J. H.; Kreylos, O.; Kellogg, L. H.

    2012-01-01

    We used ground-based Tripod LiDAR (T-LiDAR) to assess the stability of two engineered structures: a bridge spanning the San Andreas fault following the M6.0 Parkfield earthquake in Central California and a newly built coastal breakwater located at the Kaumālapa`u Harbor Lana'i, Hawaii. In the 10 weeks following the earthquake, we found that the surface under the bridge shifted 7.1 cm with an additional 2.6 cm of motion in the subsequent 13 weeks, which deflected the bridge's northern I-beam support 4.3 cm and 2.1 respectively; the bridge integrity remained intact. T-LiDAR imagery was collected after the completion of armored breakwater with 817 35-ton interlocking concrete armor units, Core-Locs®, in the summers of 2007, 2008 and 2010. We found a wide range of motion of individual Core-Locs, from a few centimeters to >110 cm along the ocean side of the breakwater, with lesser movement along the harbor side.

  9. Four-dimensional flow MRI of stented versus stentless aortic valve bioprostheses

    Energy Technology Data Exchange (ETDEWEB)

    Kesteren, Floortje van [University of Amsterdam, Department of Radiology and Nuclear Medicine, Academic Medical Centre, Amsterdam (Netherlands); University of Amsterdam, Department of Cardiology, Academic Medical Centre, Amsterdam (Netherlands); Wollersheim, Laurens W.; Kaya, Abdullah; Mol, Bas A. de [University of Amsterdam, Department of Cardiothoracic Surgery, Academic Medical Centre, Amsterdam (Netherlands); Baan, Jan; Boekholdt, S.M. [University of Amsterdam, Department of Cardiology, Academic Medical Centre, Amsterdam (Netherlands); Nederveen, A.J.; Ooij, Pim van; Planken, R.N. [University of Amsterdam, Department of Radiology and Nuclear Medicine, Academic Medical Centre, Amsterdam (Netherlands)

    2018-01-15

    To evaluate aortic velocity, wall shear stress (WSS) and viscous energy loss (EL) of stented and stentless bioprostheses using 4D flow MRI 1 year after surgical aortic valve replacement. For this cross-sectional study 28 patients with stented (n = 14) or stentless (n = 14) bioprosthesis underwent non-contrast-enhanced 4D-flow MRI at 1.5 T. Analyses included a comparison of velocity, WSS and EL in the ascending aorta during peak systole for both spatially averaged values and a comparison of local differences using per-voxel analysis. No significant differences were found in peak and mean velocity (stented vs. stentless: 2.45 m/s vs. 2.11 m/s; p = 0.09 and 0.60 m/s vs. 0.62 m/s; p = 0.89), WSS (0.60 Pa vs. 0.59 Pa; p = 0.55) and EL (10.17 mW vs. 7.82 mW; p = 0.10). Per-voxel analysis revealed significantly higher central lumen velocity, and lower outer lumen velocity, WSS and EL for stentless versus stented prostheses. One year after aortic valve implantation with stented and stentless bioprostheses, velocity, WSS and EL were comparable when assessed for averaged values in the ascending aorta. However, the flow profile described with local analysis for stentless prosthesis is potentially favourable with a significantly higher central velocity profile and lower values for outer lumen velocity, WSS and EL. (orig.)

  10. arXiv $\\mathbb R^3$ Index for Four-Dimensional $N=2$ Field Theories

    CERN Document Server

    Alexandrov, Sergei; Neitzke, Andrew; Pioline, Boris

    2015-01-01

    In theories with $N=2$ supersymmetry on $R^{3,1}$, BPS bound states can decay across walls of marginal stability in the space of Coulomb branch parameters, leading to discontinuities in the BPS indices $\\Omega(\\gamma,u)$. We consider a supersymmetric index $I$ which receives contributions from 1/2-BPS states, generalizing the familiar Witten index $Tr (-1)^F e^{-\\beta H}$. We expect $I$ to be smooth away from loci where massless particles appear, thanks to contributions from the continuum of multi-particle states. Taking inspiration from a similar phenomenon in the hypermultiplet moduli space of $N=2$ string vacua, we conjecture a formula expressing $I$ in terms of the BPS indices $\\Omega(\\gamma,u)$, which is continuous across the walls and exhibits the expected contributions from single particle states at large $\\beta$. This gives a universal prediction for the contributions of multi-particle states to the index $I$. This index is naturally a function on the moduli space after reduction on a circle, closely ...

  11. Constraints on four dimensional effective field theories from string and F-theory

    Energy Technology Data Exchange (ETDEWEB)

    Baume, Florent

    2017-06-21

    This thesis is a study of string theory compactifications to four dimensions and the constraints the Effective Field theories must exhibit, exploring both the closed and open sectors. In the former case, we focus on axion monodromy scenarios and the impact the backreaction of the energy density induced by the vev of an axion has on its field excursions. For all the cases studied, we find that the backreaction is small up to a critical value, and the proper field distance is flux independent and at most logarithmic in the axion vev. We then move to the open sector, where we use the framework of F-theory. We first explore the relation between the spectra arising from F-theory GUTs and those coming from a decomposition of the adjoint of E{sub 8} to SU(5) x U(1){sup n}. We find that extending the latter spectrum with new SU(5)-singlet fields, and classifying all possible ways of breaking the Abelian factors, all the spectra coming from smooth elliptic fibration constructed in the literature fit in our classification. We then explore generic properties of the spectra arising when breaking SU(5) to the Standard Model gauge group while retaining some anomaly properties. We finish by a study of F-theory compactications on a singular elliptic fibration via Matrix Factorisation, and find the charged spectrum of two non-Abelian examples.

  12. On the localisation of four-dimensional brane-world black holes: II. The general case

    International Nuclear Information System (INIS)

    Kanti, P; Pappas, T; Pappas, N

    2016-01-01

    We perform a comprehensive analysis of a number of scalar field theories in an attempt to find analytically five-dimensional, localised-on-the-brane, black-hole solutions. Extending a previous analysis, we assume a generalised Vaidya ansatz for the five-dimensional metric tensor that allows for a time-dependent, non-trivial profile of the mass function in terms of the bulk coordinate and a deviation from the over-restricting Schwarzschild-type solution on the brane. In order to support such a solution, we study a variety of theories including single or multiple scalar fields, with canonical or non-canonical kinetic terms, minimally or non-minimally coupled to gravity. We demonstrate that for such a metric ansatz and for a carefully chosen energy-momentum tensor which is non-isotropic in five dimensions, solutions that have the form of a Schwarzschild–(anti)de Sitter or Reissner–Nordstrom type of solution do emerge. However, the resulting profile of the mass function along the bulk coordinate, when allowed, is not the correct one for eliminating bulk singularities. (paper)

  13. On the localisation of four-dimensional brane-world black holes: II. The general case

    Science.gov (United States)

    Kanti, P.; Pappas, N.; Pappas, T.

    2016-01-01

    We perform a comprehensive analysis of a number of scalar field theories in an attempt to find analytically five-dimensional, localised-on-the-brane, black-hole solutions. Extending a previous analysis, we assume a generalised Vaidya ansatz for the five-dimensional metric tensor that allows for a time-dependent, non-trivial profile of the mass function in terms of the bulk coordinate and a deviation from the over-restricting Schwarzschild-type solution on the brane. In order to support such a solution, we study a variety of theories including single or multiple scalar fields, with canonical or non-canonical kinetic terms, minimally or non-minimally coupled to gravity. We demonstrate that for such a metric ansatz and for a carefully chosen energy-momentum tensor which is non-isotropic in five dimensions, solutions that have the form of a Schwarzschild-(anti)de Sitter or Reissner-Nordstrom type of solution do emerge. However, the resulting profile of the mass function along the bulk coordinate, when allowed, is not the correct one for eliminating bulk singularities.

  14. On the localization of four-dimensional brane-world black holes

    International Nuclear Information System (INIS)

    Kanti, P; Pappas, N; Zuleta, K

    2013-01-01

    In the context of brane-world models, we pursue the question of the existence of five-dimensional solutions describing regular black holes localized close to the brane. Employing a perturbed Vaidya-type line-element embedded in a warped fifth dimension, we attempt to localize the extended black-string singularity, and to restore the regularity of the AdS spacetime at a finite distance from the brane by introducing an appropriate bulk energy–momentum tensor. As a source for this bulk matter, we are considering a variety of non-ordinary field-theory models of scalar fields either minimally coupled to gravity, but including non-canonical kinetic terms, mixing terms, derivative interactions and ghosts, or non-minimally coupled to gravity through a general coupling to the Ricci scalar. In all models considered, even in those characterized by a high degree of flexibility, a negative result was reached. Our analysis demonstrates how difficult the analytic construction of a localized brane-world black hole may be in the context of a well-defined field-theory model. Finally, with regard to the question of the existence or not of a static classical black-hole solution on the brane, our analysis suggests that such solutions could in principle exist; however, the associated field configuration itself has to be dynamic. (paper)

  15. The construction of 'realistic' four-dimensional strings through orbifolds

    Energy Technology Data Exchange (ETDEWEB)

    Font, A. (Grenoble-1 Univ., 74 - Annecy (France). Lab. de Physique des Particules); Ibanez, L.E. (Geneva Univ. (Switzerland)); Quevedo, F. (McGill Univ., Montreal, Quebec (Canada)); Sierra, A. (Universidad Autonoma de Madrid (Spain). Dept. de Fisica Teorica)

    1990-02-12

    We discuss the construction of 'realistic' lower rank 4-dimensional strings, through symmetric orbifolds with background fields. We present Z{sub 3} three-generation SU(3)xSU(2)xU(1) models as well as models incorporating a left-right SU(2){sub L}xSU(2){sub R}xU(1){sub B-L} symmetry in which proton stability is automatically guaranteed. Conformal field theory selection rules are used to find the flat directions to all orders which lead to these low-rank models and to study the relevant Yukawa couplings. A hierarchical structure of quark-lepton masses appears naturally in some models. We also present a detailed study of the structure of the Z{sub 3}xZ{sub 3} orbifold including the generalized GSO projection, the effect of discrete torsion and the conformal field theory Yukawa coupling selection rules. All these points are illustrated with a three-generation Z{sub 3}xZ{sub 3} model. We have made an effort to write a self-contained presentation in order to make this material available to non-string experts interested in the phenomenological aspects of this theory. (orig.).

  16. R3 Index for Four-Dimensional N =2 Field Theories

    Science.gov (United States)

    Alexandrov, Sergei; Moore, Gregory W.; Neitzke, Andrew; Pioline, Boris

    2015-03-01

    In theories with N =2 supersymmetry on R3 ,1, supersymmetric bound states can decay across walls of marginal stability in the space of Coulomb branch parameters, leading to discontinuities in the BPS indices Ω (γ ,u ) . We consider a supersymmetric index I which receives contributions from 1 /2 -BPS states, generalizing the familiar Witten index Tr (-1 )Fe-β H . We expect I to be smooth away from loci where massless particles appear, thanks to contributions from the continuum of multiparticle states. Taking inspiration from a similar phenomenon in the hypermultiplet moduli space of N =2 string vacua, we conjecture a formula expressing I in terms of the BPS indices Ω (γ ,u ), which is continuous across the walls and exhibits the expected contributions from single particle states at large β . This gives a universal prediction for the contributions of multiparticle states to the index I . This index is naturally a function on the moduli space after reduction on a circle, closely related to the canonical hyperkähler metric and hyperholomorphic connection on this space.

  17. R^{3} index for four-dimensional (N)=2 field theories.

    Science.gov (United States)

    Alexandrov, Sergei; Moore, Gregory W; Neitzke, Andrew; Pioline, Boris

    2015-03-27

    In theories with N=2 supersymmetry on R^{3,1}, supersymmetric bound states can decay across walls of marginal stability in the space of Coulomb branch parameters, leading to discontinuities in the BPS indices Ω(γ,u). We consider a supersymmetric index I which receives contributions from 1/2-BPS states, generalizing the familiar Witten index Tr(-1)^{F}e^{-βH}. We expect I to be smooth away from loci where massless particles appear, thanks to contributions from the continuum of multiparticle states. Taking inspiration from a similar phenomenon in the hypermultiplet moduli space of N=2 string vacua, we conjecture a formula expressing I in terms of the BPS indices Ω(γ,u), which is continuous across the walls and exhibits the expected contributions from single particle states at large β. This gives a universal prediction for the contributions of multiparticle states to the index I. This index is naturally a function on the moduli space after reduction on a circle, closely related to the canonical hyperkähler metric and hyperholomorphic connection on this space.

  18. Three- and four-dimensional ultrasound in fetal echocardiography: an up-to-date overview

    NARCIS (Netherlands)

    Adriaanse, B.M.; Vugt, J.M.G. van; Haak, M.C.

    2016-01-01

    Congenital heart diseases (CHD) are the most commonly overlooked lesions in prenatal screening programs. Real-time two-dimensional ultrasound (2DUS) is the conventionally used tool for fetal echocardiography. Although continuous improvements in the hardware and post-processing software have resulted

  19. Arthropod distribution in a tropical rainforest: tackling a four dimensional puzzle

    Czech Academy of Sciences Publication Activity Database

    Basset, Y.; Čížek, Lukáš; Cuénoud, P.; Didham, R. K.; Novotný, Vojtěch; Ødegaard, F.; Roslin, T.; Tishechkin, A. K.; Schmidl, J.; Winchester, N. N.; Roubik, D. W.; Aberlenc, H.-P.; Bail, J.; Barrios, H.; Bridle, J. R.; Castaňo-Meneses, G.; Corbara, B.; Curletti, G.; Duarte da Rocha, W.; De Bakker, D.; Delabie, J. H. C.; Dejean, A.; Fagan, L. L.; Floren, A.; Kitching, R. L.; Medianero, E.; Gama de Oliveira, E.; Orivel, J.; Pollet, M.; Rapp, F.; Ribeiro, S. P.; Roisin, Y.; Schmidt, J. B.; Sorensen, L.; Lewinsohn, T. M.; Leponce, M.

    2015-01-01

    Roč. 10, č. 12 (2015), e0144110 E-ISSN 1932-6203 R&D Projects: GA ČR GB14-36098G Grant - others:European Social Fund(CZ) CZ.1.07/2.3.00/20.0064 Institutional support: RVO:60077344 Keywords : Arthropod * rainforest * biodiversity Subject RIV: EH - Ecology, Behaviour Impact factor: 3.057, year: 2015 http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0144110

  20. Four-dimensional model assimilation of data: a strategy for the earth system sciences

    National Research Council Canada - National Science Library

    Panel on Model-Assimilated Data Sets for Atmospheric and Oceanic Research, National Research Council

    1991-01-01

    ... of model assimilation technology and new applications, and identifies the pressing national need in the 1990s - to manage and utilize effectively the overwhelming volume of earth system data already...

  1. Aspects of compactifications and black holes in four-dimensional supergravity

    NARCIS (Netherlands)

    Looijestijn, H.T.

    2010-01-01

    In the 20th century, theoretical physics has seen the development of General Relativity and the Standard Model of elementary particles. These theories describe, with great precision, gravity and all known matter, respectively. However, it is not possible to unite them into one, single theory. We

  2. Understanding and managing three-dimensional/four-dimensional model implementations at the project team level

    NARCIS (Netherlands)

    Hartmann, Timo; Levitt, R.

    2010-01-01

    This paper introduces an extant, theoretical, social-psychological model that explains the sense-making processes of project managers confronted with a new technology to improve our understanding of project-based innovation processes. The model represents the interlinked processes through which

  3. Geometry of the Poincaré compactification of a four-dimensional food-web system

    Czech Academy of Sciences Publication Activity Database

    Priyadarshi, Anupam; Banerjee, S.; Gakkhar, S.

    2014-01-01

    Roč. 226, JAN 1 (2014), s. 229-237 ISSN 0096-3003 R&D Projects: GA MŠk(CZ) EE2.3.30.0032 Institutional support: RVO:60077344 Keywords : Poincaré compactification * global dynamics * boundedness Subject RIV: EH - Ecology, Behaviour Impact factor: 1.551, year: 2014 http://www.sciencedirect.com/science/article/pii/S0096300313011247

  4. 24 +24 real scalar multiplet in four dimensional N =2 conformal supergravity

    Science.gov (United States)

    Hegde, Subramanya; Lodato, Ivano; Sahoo, Bindusar

    2018-03-01

    Starting from the 48 +48 component multiplet of supercurrents for a rigid N =2 tensor multiplet in four spacetime dimensions, we obtain the transformation of the linearized supergravity multiplet which couples to this supercurrent multiplet. At the linearized level, this 48 +48 component supergravity multiplet decouples into the 24 +24 component linearized standard Weyl multiplet and a 24 +24 component irreducible matter multiplet containing a real scalar field. By a consistent application of the supersymmetry algebra with field-dependent structure constants appropriate to N =2 conformal supergravity, we find the full transformation law for this multiplet in a conformal supergravity background. By performing a suitable field redefinition, we find that the multiplet is a generalization of the flat space multiplet, obtained by Howe et al. in Nucl. Phys. B214, 519 (1983), 10.1016/0550-3213(83)90249-3, to a conformal supergravity background. We also present a set of constraints which can be consistently imposed on this multiplet to obtain a restricted minimal 8 +8 off-shell matter multiplet. We also show, as an example, the precise embedding of the tensor multiplet inside this multiplet.

  5. Four-dimensional in vivo X-ray microscopy with projection-guided gating

    Science.gov (United States)

    Mokso, Rajmund; Schwyn, Daniel A.; Walker, Simon M.; Doube, Michael; Wicklein, Martina; Müller, Tonya; Stampanoni, Marco; Taylor, Graham K.; Krapp, Holger G.

    2015-03-01

    Visualizing fast micrometer scale internal movements of small animals is a key challenge for functional anatomy, physiology and biomechanics. We combine phase contrast tomographic microscopy (down to 3.3 μm voxel size) with retrospective, projection-based gating (in the order of hundreds of microseconds) to improve the spatiotemporal resolution by an order of magnitude over previous studies. We demonstrate our method by visualizing 20 three-dimensional snapshots through the 150 Hz oscillations of the blowfly flight motor.

  6. The Co-Creation-Wheel: A Four-Dimensional Model of Collaborative Interorganistional Innovation

    Science.gov (United States)

    Ehlen, Corry; van der Klink, Marcel; Stoffers, Jol; Boshuizen, Henny

    2017-01-01

    Purpose: This study aims to design and validate a conceptual and practical model of co-creation. Co-creation, to design collaborative new products, services and processes in contact with users, has become more and more important because organisations increasingly require multidisciplinary collaboration inside and outside the organisation to…

  7. Arthropod Distribution in a Tropical Rainforest: Tackling a Four Dimensional Puzzle

    Science.gov (United States)

    Basset, Yves; Cizek, Lukas; Cuénoud, Philippe; Didham, Raphael K.; Novotny, Vojtech; Ødegaard, Frode; Roslin, Tomas; Tishechkin, Alexey K.; Schmidl, Jürgen; Winchester, Neville N.; Roubik, David W.; Aberlenc, Henri-Pierre; Bail, Johannes; Barrios, Héctor; Bridle, Jonathan R.; Castaño-Meneses, Gabriela; Corbara, Bruno; Curletti, Gianfranco; Duarte da Rocha, Wesley; De Bakker, Domir; Delabie, Jacques H. C.; Dejean, Alain; Fagan, Laura L.; Floren, Andreas; Kitching, Roger L.; Medianero, Enrique; Gama de Oliveira, Evandro; Orivel, Jérôme; Pollet, Marc; Rapp, Mathieu; Ribeiro, Sérvio P.; Roisin, Yves; Schmidt, Jesper B.; Sørensen, Line; Lewinsohn, Thomas M.; Leponce, Maurice

    2015-01-01

    Quantifying the spatio-temporal distribution of arthropods in tropical rainforests represents a first step towards scrutinizing the global distribution of biodiversity on Earth. To date most studies have focused on narrow taxonomic groups or lack a design that allows partitioning of the components of diversity. Here, we consider an exceptionally large dataset (113,952 individuals representing 5,858 species), obtained from the San Lorenzo forest in Panama, where the phylogenetic breadth of arthropod taxa was surveyed using 14 protocols targeting the soil, litter, understory, lower and upper canopy habitats, replicated across seasons in 2003 and 2004. This dataset is used to explore the relative influence of horizontal, vertical and seasonal drivers of arthropod distribution in this forest. We considered arthropod abundance, observed and estimated species richness, additive decomposition of species richness, multiplicative partitioning of species diversity, variation in species composition, species turnover and guild structure as components of diversity. At the scale of our study (2km of distance, 40m in height and 400 days), the effects related to the vertical and seasonal dimensions were most important. Most adult arthropods were collected from the soil/litter or the upper canopy and species richness was highest in the canopy. We compared the distribution of arthropods and trees within our study system. Effects related to the seasonal dimension were stronger for arthropods than for trees. We conclude that: (1) models of beta diversity developed for tropical trees are unlikely to be applicable to tropical arthropods; (2) it is imperative that estimates of global biodiversity derived from mass collecting of arthropods in tropical rainforests embrace the strong vertical and seasonal partitioning observed here; and (3) given the high species turnover observed between seasons, global climate change may have severe consequences for rainforest arthropods. PMID:26633187

  8. The generalized Erlangen program and setting a geometry for four- dimensional conformal fields

    International Nuclear Information System (INIS)

    Ne'eman, Y.; Texas Univ., Austin, TX; Hehl, F.W.; Mielke, E.W.

    1993-01-01

    This is the text of a talk at the International Symposium on ''Mathematical Physics towards the XXI Century'' held in March 1993 at Beersheva, Israel. In the first part we attempt to summarize XXth Century Physics, in the light of Kelvin's 1900 speech ''Dark Clouds over XIXth Century Physics.'' Contrary to what is usually said, Kelvin predicted that the ''clouds'' (relativity and quantum mechanics) would revolutionize physics and that one hundred years might be needed to harmonize them with classical physics. Quantum Gravity can be considered as a leftover from Kelvin's program -- so are the problems with the interpretation of quantum mechanics. At the end of the XXth Century, the Standard Model is the new panoramic synthesis, drawn in gauge-geometric lines -- realizing the Erlangen program beyond F. Klein's expectations. The hierarchy problem and the smallness of the cosmological constant are our ''clouds'', generations and the Higgs sector are to us what radioactivity was in 1900. In the second part we describe Metric-Affine spacetimes. We construct the Noether machinery and provide expressions for the conserved energy and hypermomentum. Superimposing conformal invariance over the affine structure induces the Virasoro-like infinite constraining algebra of diffeomorphisms, applied with constant parameters and opening the possibility of a 4DCFT, similar to 2DCFT

  9. A large class of new gravitational and axionic backgrounds for four-dimensional superstrings

    CERN Document Server

    Kiritsis, Elias B; Lüst, Dieter

    1994-01-01

    A large class of new 4-D superstring vacua with non-trivial/singular geometries, spacetime supersymmetry and other background fields (axion, dilaton) are found. Killing symmetries are generic and are associated with non-trivial dilaton and antisymmetric tensor fields. Duality symmetries preserving N=2 superconformal invariance are employed to generate a large class of explicit metrics for non-compact 4-D Calabi-Yau manifolds with Killing symmetries.

  10. Strong Coupling Dynamics of Four-Dimensional N=1 Gauge Theories from M Theory Fivebrane

    International Nuclear Information System (INIS)

    Hori, K.; Ooguri, H.; Oz, Y.

    1997-01-01

    It has been known that the fivebrane of type IIA theory can be used to give an exact low energy description of N=2 supersymmetric gauge theories in four dimensions. We follow the recent M theory description by Witten and show that it can be used to study theories with N=1 supersymmetry. The N=2 supersymmetry can be broken to N=1 by turning on a mass for the adjoint chiral superfield in the N=2 vector multiplet. We construct the configuration of the fivebrane for both finite and infinite values of the adjoint mass. The fivebrane describes strong coupling dynamics of N=1 theory with SU(N c ) gauge group and N f quarks. For N c > N f , we show how the brane configuration encodes the information of the Affleck-Dine-Seiberg superpotential. For N c and f , we study the deformation space of the brane configuration and compare it with the moduli space of the N=1 theory. We find agreement with field theory results, including the quantum deformation of the moduli space at N c = N f . We also prove the type II s-rule in M theory and find new non-renormalization theorems for N = 1 superpotentials

  11. Four dimensional imaging of E. coli nucleoid organization and dynamics in living cells

    Science.gov (United States)

    Fisher, J. K.; Bourniquel, A.; Witz, G.; Weiner, B.; Prentiss, M.; Kleckner, N.

    2013-01-01

    Visualization of living E. coli nucleoids, defined by HupA-mCherry, reveals a discrete, dynamic helical ellipsoid. Three basic features emerge. (i) Nucleoid density efficiently coalesces into longitudinal bundles, giving a stiff, low DNA density ellipsoid. (ii) This ellipsoid is radially confined within the cell cylinder. Radial confinement gives helical shape and drives and directs global nucleoid dynamics, including sister segregation. (iii) Longitudinal density waves flux back and forth along the nucleoid, with 5–10% of density shifting within 5s, enhancing internal nucleoid mobility. Furthermore, sisters separate end-to-end in sequential discontinuous pulses, each elongating the nucleoid by 5–15%. Pulses occur at 20min intervals, at defined cell cycle times. This progression is mediated by sequential installation and release of programmed tethers, implying cyclic accumulation and relief of intra-nucleoid mechanical stress. These effects could comprise a chromosome-based cell cycle engine. Overall, the presented results suggest a general conceptual framework for bacterial nucleoid morphogenesis and dynamics. PMID:23623305

  12. Violating the Weak Cosmic Censorship Conjecture in Four-Dimensional Anti-de Sitter Space

    Science.gov (United States)

    Crisford, Toby; Santos, Jorge E.

    2017-05-01

    We consider time-dependent solutions of the Einstein-Maxwell equations using anti-de Sitter (AdS) boundary conditions, and provide the first counterexample to the weak cosmic censorship conjecture in four spacetime dimensions. Our counterexample is entirely formulated in the Poincaré patch of AdS. We claim that our results have important consequences for quantum gravity, most notably to the weak gravity conjecture.

  13. Three- and four-dimensional mapping of speech and language in patients with epilepsy

    Science.gov (United States)

    Nakai, Yasuo; Jeong, Jeong-won; Brown, Erik C.; Rothermel, Robert; Kojima, Katsuaki; Kambara, Toshimune; Shah, Aashit; Mittal, Sandeep; Sood, Sandeep

    2017-01-01

    We have provided 3-D and 4D mapping of speech and language function based upon the results of direct cortical stimulation and event-related modulation of electrocorticography signals. Patients estimated to have right-hemispheric language dominance were excluded. Thus, 100 patients who underwent two-stage epilepsy surgery with chronic electrocorticography recording were studied. An older group consisted of 84 patients at least 10 years of age (7367 artefact-free non-epileptic electrodes), whereas a younger group included 16 children younger than age 10 (1438 electrodes). The probability of symptoms transiently induced by electrical stimulation was delineated on a 3D average surface image. The electrocorticography amplitude changes of high-gamma (70–110 Hz) and beta (15–30 Hz) activities during an auditory-naming task were animated on the average surface image in a 4D manner. Thereby, high-gamma augmentation and beta attenuation were treated as summary measures of cortical activation. Stimulation data indicated the causal relationship between (i) superior-temporal gyrus of either hemisphere and auditory hallucination; (ii) left superior-/middle-temporal gyri and receptive aphasia; (iii) widespread temporal/frontal lobe regions of the left hemisphere and expressive aphasia; and (iv) bilateral precentral/left posterior superior-frontal regions and speech arrest. On electrocorticography analysis, high-gamma augmentation involved the bilateral superior-temporal and precentral gyri immediately following question onset; at the same time, high-gamma activity was attenuated in the left orbitofrontal gyrus. High-gamma activity was augmented in the left temporal/frontal lobe regions, as well as left inferior-parietal and cingulate regions, maximally around question offset, with high-gamma augmentation in the left pars orbitalis inferior-frontal, middle-frontal, and inferior-parietal regions preceded by high-gamma attenuation in the contralateral homotopic regions. Immediately before verbal response, high-gamma augmentation involved the posterior superior-frontal and pre/postcentral regions, bilaterally. Beta-attenuation was spatially and temporally correlated with high-gamma augmentation in general but with exceptions. The younger and older groups shared similar spatial-temporal profiles of high-gamma and beta modulation; except, the younger group failed to show left-dominant activation in the rostral middle-frontal and pars orbitalis inferior-frontal regions around stimulus offset. The human brain may rapidly and alternately activate and deactivate cortical areas advantageous or obtrusive to function directed toward speech and language at a given moment. Increased left-dominant activation in the anterior frontal structures in the older age group may reflect developmental consolidation of the language system. The results of our functional mapping may be useful in predicting, across not only space but also time and patient age, sites specific to language function for presurgical evaluation of focal epilepsy. PMID:28334963

  14. The second law in four-dimensional Einstein–Gauss–Bonnet gravity

    International Nuclear Information System (INIS)

    Chatterjee, Saugata; Parikh, Maulik

    2014-01-01

    The topological contribution of a Gauss–Bonnet term in four dimensions to black hole entropy opens up the possibility of a violation of the second law of thermodynamics in black hole mergers. We show, however, that the second law is not violated in the regime where Einstein–Gauss–Bonnet holds as an effective theory and black holes can be treated thermodynamically. For mergers of anti-de Sitter (AdS) black holes, the second law appears to be violated even in Einstein gravity; we argue, however, that the second law holds when gravitational potential energy is taken into account. (paper)

  15. Four-dimensional integral equations for the MHD diffraction waves in plasma

    International Nuclear Information System (INIS)

    Alexandrova, A.A.; Khizhnyak, N.A.

    2000-01-01

    The superficial analysis of the boundary-value nonstationary problem for Alfven wave has shown the principal possibility of using the method of evolutionary integral equations of non-stationary macroscopic electrodynamical in a case of MHD description of waves in plasma. With the importance of strict mathematical solutions obtained for simple model problems that is the diffraction of one separately taken Alfven wave is that it can be the basis for construction of the approximate solutions of more complex boundary-value problems

  16. Automated four-dimensional Monte Carlo workflow using log files and real-time motion monitoring

    DEFF Research Database (Denmark)

    Sibolt, Patrik; Cronholm, R.O.; Heath, E.

    2017-01-01

    been developed in python. The workflow has been tested and verified using an in-house developed dosimetry system comprised of a dynamic thorax phantom constructed for plastic scintillator dosimetry. The workflow is directly compatible with any treatment planning system and can also be triggered...... by the appearance of linac log files. It has minimum user interaction and, with the use of linac log files, it provides a method for verification of the actually delivered dose in the patient geometry....

  17. Full four-dimensional and reciprocal Mueller matrix bidirectional reflectance distribution function of sintered polytetrafluoroethylene.

    Science.gov (United States)

    Germer, Thomas A

    2017-11-20

    We measured the Mueller matrix bidirectional reflectance distribution function (BRDF) of a sintered polytetrafluoroethylene (PTFE) sample over the scattering hemisphere for six incident angles (0°-75° in 15° steps) and for four wavelengths (351 nm, 532 nm, 633 nm, and 1064 nm). The data for each wavelength were fit to a phenomenological description for the Mueller matrix BRDF, which is an extension of the bidirectional surface scattering modes developed by Koenderink and van Doorn [J. Opt. Soc. Am. A.15, 2903 (1998)JOAOD60740-323210.1364/JOSAA.15.002903] for unpolarized BRDF. This description is designed to be complete, to obey the appropriate reciprocity conditions, and to provide a full description of the Mueller matrix BRDF as a function of incident and scattering directions for each wavelength. The description was further extended by linearizing the surface scattering mode coefficients with wavelength. This data set and its parameterization provides a comprehensive on-demand description of the reflectance properties for this commonly used diffuse reflectance reference material over a wide range of wavelengths.

  18. Four-dimensional aether-like Lorentz-breaking QED revisited and problem of ambiguities

    International Nuclear Information System (INIS)

    Baeta Scarpelli, A.P.; Mariz, T.; Nascimento, J.R.; Petrov, A.Yu.

    2013-01-01

    In this paper, we consider the perturbative generation of the CPT-even aether-like Lorentz-breaking term in the extended Lorentz-breaking QED within different approaches and discuss its ambiguities. (orig.)

  19. Constraints on four dimensional effective field theories from string and F-theory

    International Nuclear Information System (INIS)

    Baume, Florent

    2017-01-01

    This thesis is a study of string theory compactifications to four dimensions and the constraints the Effective Field theories must exhibit, exploring both the closed and open sectors. In the former case, we focus on axion monodromy scenarios and the impact the backreaction of the energy density induced by the vev of an axion has on its field excursions. For all the cases studied, we find that the backreaction is small up to a critical value, and the proper field distance is flux independent and at most logarithmic in the axion vev. We then move to the open sector, where we use the framework of F-theory. We first explore the relation between the spectra arising from F-theory GUTs and those coming from a decomposition of the adjoint of E 8 to SU(5) x U(1) n . We find that extending the latter spectrum with new SU(5)-singlet fields, and classifying all possible ways of breaking the Abelian factors, all the spectra coming from smooth elliptic fibration constructed in the literature fit in our classification. We then explore generic properties of the spectra arising when breaking SU(5) to the Standard Model gauge group while retaining some anomaly properties. We finish by a study of F-theory compactications on a singular elliptic fibration via Matrix Factorisation, and find the charged spectrum of two non-Abelian examples.

  20. Codimension-one tangency bifurcations of global Poincare maps of four-dimensional vector fields

    NARCIS (Netherlands)

    Krauskopf, B.; Lee, C.M.; Osinga, H.M.

    2009-01-01

    When one considers a Poincarreturn map on a general unbounded (n - 1)-dimensional section for a vector field in R-n there are typically points where the flow is tangent to the section. The only notable exception is when the system is (equivalent to) a periodically forced system. The tangencies can

  1. Chern-Simons forms and four-dimensional N=1 superspace geometry

    International Nuclear Information System (INIS)

    Girardi, G.; Grimm, R.

    1986-12-01

    The complete superspace geometry for Yang-Mills, chiral U(1) and Lorentz Chern-Simons forms is constructed. The analysis is completely off-shell and covers the cases of minimal, new minimal and 16-16 supergravity. Supersymmetry is guaranteed by construction. Invariant superfield actions are proposed

  2. Calculators

    Science.gov (United States)

    ... ounces of regular beer, 5 ounces of table wine, or 1.5 ounces of 80-proof distilled spirits. Distilled spirits include vodka, whiskey, gin, rum, and ... is 5% alcohol by volume (alc/vol), table wine is about 12% alc/vol, and straight 80-proof distilled spirits is 40% alc/vol. The percent alcohol by ...

  3. Core calculational techniques and procedures

    International Nuclear Information System (INIS)

    Romano, J.J.

    1977-10-01

    Described are the procedures and techniques employed by B and W in core design analyses of power peaking, control rod worths, and reactivity coefficients. Major emphasis has been placed on current calculational tools and the most frequently performed calculations over the operating power range

  4. Economic calculation in socialist countries

    NARCIS (Netherlands)

    Ellman, M.; Durlauf, S.N.; Blume, L.E.

    2008-01-01

    In the 1930s, when the classical socialist system emerged, economic decisions were based not on detailed and precise economic methods of calculation but on rough and ready political methods. An important method of economic calculation - particularly in the post-Stalin period - was that of

  5. Calculation of Spectra of Solids:

    DEFF Research Database (Denmark)

    Lindgård, Per-Anker

    1975-01-01

    The Gilat-Raubenheimer method simplified to tetrahedron division is used to calculate the real and imaginary part of the dynamical response function for electrons. A frequency expansion for the real part is discussed. The Lindhard function is calculated as a test for numerical accuracy...

  6. Calculator. Owning a Small Business.

    Science.gov (United States)

    Parma City School District, OH.

    Seven activities are presented in this student workbook designed for an exploration of small business ownership and the use of the calculator in this career. Included are simulated situations in which students must use a calculator to compute property taxes; estimate payroll taxes and franchise taxes; compute pricing, approximate salaries,…

  7. Dose calculation with respiration-averaged CT processed from cine CT without a respiratory surrogate

    International Nuclear Information System (INIS)

    Riegel, Adam C.; Ahmad, Moiz; Sun Xiaojun; Pan Tinsu

    2008-01-01

    Dose calculation for thoracic radiotherapy is commonly performed on a free-breathing helical CT despite artifacts caused by respiratory motion. Four-dimensional computed tomography (4D-CT) is one method to incorporate motion information into the treatment planning process. Some centers now use the respiration-averaged CT (RACT), the pixel-by-pixel average of the ten phases of 4D-CT, for dose calculation. This method, while sparing the tedious task of 4D dose calculation, still requires 4D-CT technology. The authors have recently developed a means to reconstruct RACT directly from unsorted cine CT data from which 4D-CT is formed, bypassing the need for a respiratory surrogate. Using RACT from cine CT for dose calculation may be a means to incorporate motion information into dose calculation without performing 4D-CT. The purpose of this study was to determine if RACT from cine CT can be substituted for RACT from 4D-CT for the purposes of dose calculation, and if increasing the cine duration can decrease differences between the dose distributions. Cine CT data and corresponding 4D-CT simulations for 23 patients with at least two breathing cycles per cine duration were retrieved. RACT was generated four ways: First from ten phases of 4D-CT, second, from 1 breathing cycle of images, third, from 1.5 breathing cycles of images, and fourth, from 2 breathing cycles of images. The clinical treatment plan was transferred to each RACT and dose was recalculated. Dose planes were exported at orthogonal planes through the isocenter (coronal, sagittal, and transverse orientations). The resulting dose distributions were compared using the gamma (γ) index within the planning target volume (PTV). Failure criteria were set to 2%/1 mm. A follow-up study with 50 additional lung cancer patients was performed to increase sample size. The same dose recalculation and analysis was performed. In the primary patient group, 22 of 23 patients had 100% of points within the PTV pass γ criteria

  8. Shielding calculational system for plutonium

    International Nuclear Information System (INIS)

    Zimmerman, M.G.; Thomsen, D.H.

    1975-08-01

    A computer calculational system has been developed and assembled specifically for calculating dose rates in AEC plutonium fabrication facilities. The system consists of two computer codes and all nuclear data necessary for calculation of neutron and gamma dose rates from plutonium. The codes include the multigroup version of the Battelle Monte Carlo code for solution of general neutron and gamma shielding problems and the PUSHLD code for solution of shielding problems where low energy gamma and x-rays are important. The nuclear data consists of built in neutron and gamma yields and spectra for various plutonium compounds, an automatic calculation of age effects and all cross-sections commonly used. Experimental correlations have been performed to verify portions of the calculational system. (23 tables, 7 figs, 16 refs) (U.S.)

  9. Closure and Sealing Design Calculation

    International Nuclear Information System (INIS)

    T. Lahnalampi; J. Case

    2005-01-01

    The purpose of the ''Closure and Sealing Design Calculation'' is to illustrate closure and sealing methods for sealing shafts, ramps, and identify boreholes that require sealing in order to limit the potential of water infiltration. In addition, this calculation will provide a description of the magma that can reduce the consequences of an igneous event intersecting the repository. This calculation will also include a listing of the project requirements related to closure and sealing. The scope of this calculation is to: summarize applicable project requirements and codes relating to backfilling nonemplacement openings, removal of uncommitted materials from the subsurface, installation of drip shields, and erecting monuments; compile an inventory of boreholes that are found in the area of the subsurface repository; describe the magma bulkhead feature and location; and include figures for the proposed shaft and ramp seals. The objective of this calculation is to: categorize the boreholes for sealing by depth and proximity to the subsurface repository; develop drawing figures which show the location and geometry for the magma bulkhead; include the shaft seal figures and a proposed construction sequence; and include the ramp seal figure and a proposed construction sequence. The intent of this closure and sealing calculation is to support the License Application by providing a description of the closure and sealing methods for the Safety Analysis Report. The closure and sealing calculation will also provide input for Post Closure Activities by describing the location of the magma bulkhead. This calculation is limited to describing the final configuration of the sealing and backfill systems for the underground area. The methods and procedures used to place the backfill and remove uncommitted materials (such as concrete) from the repository and detailed design of the magma bulkhead will be the subject of separate analyses or calculations. Post-closure monitoring will not

  10. Reactor core performance calculating device

    International Nuclear Information System (INIS)

    Tominaga, Kenji; Bando, Masaru; Sano, Hiroki; Maruyama, Hiromi.

    1995-01-01

    The device of the present invention can calculate a power distribution efficiently at high speed by a plurality of calculation means while taking an amount of the reactor state into consideration. Namely, an input device takes data from a measuring device for the amount of the reactor core state such as a large number of neutron detectors disposed in the reactor core for monitoring the reactor state during operation. An input data distribution device comprises a state recognition section and a data distribution section. The state recognition section recognizes the kind and amount of the inputted data and information of the calculation means. The data distribution section analyzes the characteristic of the inputted data, divides them into a several groups, allocates them to each of the calculation means for the purpose of calculating the reactor core performance efficiently at high speed based on the information from the state recognition section. A plurality of the calculation means calculate power distribution of each of regions based on the allocated inputted data, to determine the power distribution of the entire reactor core. As a result, the reactor core can be evaluated at high accuracy and at high speed irrespective of the whole reactor core or partial region. (I.S.)

  11. Alaska Village Electric Load Calculator

    Energy Technology Data Exchange (ETDEWEB)

    Devine, M.; Baring-Gould, E. I.

    2004-10-01

    As part of designing a village electric power system, the present and future electric loads must be defined, including both seasonal and daily usage patterns. However, in many cases, detailed electric load information is not readily available. NREL developed the Alaska Village Electric Load Calculator to help estimate the electricity requirements in a village given basic information about the types of facilities located within the community. The purpose of this report is to explain how the load calculator was developed and to provide instructions on its use so that organizations can then use this model to calculate expected electrical energy usage.

  12. Reactor calculations and nuclear information

    International Nuclear Information System (INIS)

    Lang, D.W.

    1977-12-01

    The relationship of sets of nuclear parameters and the macroscopic reactor quantities that can be calculated from them is examined. The framework of the study is similar to that of Usachev and Bobkov. The analysis is generalised and some properties required by common sense are demonstrated. The form of calculation permits revision of the parameter set. It is argued that any discrepancy between a calculation and measurement of a macroscopic quantity is more useful when applied directly to prediction of other macroscopic quantities than to revision of the parameter set. The mathematical technique outlined is seen to describe common engineering practice. (Author)

  13. Practical astronomy with your calculator

    CERN Document Server

    Duffett-Smith, Peter

    1989-01-01

    Practical Astronomy with your Calculator, first published in 1979, has enjoyed immense success. The author's clear and easy to follow routines enable you to solve a variety of practical and recreational problems in astronomy using a scientific calculator. Mathematical complexity is kept firmly in the background, leaving just the elements necessary for swiftly making calculations. The major topics are: time, coordinate systems, the Sun, the planetary system, binary stars, the Moon, and eclipses. In the third edition there are entirely new sections on generalised coordinate transformations, nutr

  14. Calculation of pion form factor

    International Nuclear Information System (INIS)

    Vahedi, N.; Amirarjomand, S.

    1975-09-01

    The pion form factor is calculated using the structure function Wsub(2), which incorporates kinematical constraints, threshold behaviour and scaling. The Bloom-Gilman sum rule is used and only the two leading Regge trajectories are taken into account

  15. Landfill Gas Energy Benefits Calculator

    Science.gov (United States)

    This page contains the LFG Energy Benefits Calculator to estimate direct, avoided, and total greenhouse gas reductions, as well as environmental and energy benefits, for a landfill gas energy project.

  16. Calculate Your Body Mass Index

    Science.gov (United States)

    ... Can! ) Health Professional Resources Calculate Your Body Mass Index Body mass index (BMI) is a measure of body fat based ... Health Information Email Alerts Jobs and Careers Site Index About NHLBI National Institute of Health Department of ...

  17. Transfer Area Mechanical Handling Calculation

    International Nuclear Information System (INIS)

    Dianda, B.

    2004-01-01

    This calculation is intended to support the License Application (LA) submittal of December 2004, in accordance with the directive given by DOE correspondence received on the 27th of January 2004 entitled: ''Authorization for Bechtel SAX Company L.L. C. to Include a Bare Fuel Handling Facility and Increased Aging Capacity in the License Application, Contract Number DE-AC--28-01R W12101'' (Arthur, W.J., I11 2004). This correspondence was appended by further Correspondence received on the 19th of February 2004 entitled: ''Technical Direction to Bechtel SAIC Company L.L. C. for Surface Facility Improvements, Contract Number DE-AC--28-OIRW12101; TDL No. 04-024'' (BSC 2004a). These documents give the authorization for a Fuel Handling Facility to be included in the baseline. The purpose of this calculation is to establish preliminary bounding equipment envelopes and weights for the Fuel Handling Facility (FHF) transfer areas equipment. This calculation provides preliminary information only to support development of facility layouts and preliminary load calculations. The limitations of this preliminary calculation lie within the assumptions of section 5 , as this calculation is part of an evolutionary design process. It is intended that this calculation is superseded as the design advances to reflect information necessary to support License Application. The design choices outlined within this calculation represent a demonstration of feasibility and may or may not be included in the completed design. This calculation provides preliminary weight, dimensional envelope, and equipment position in building for the purposes of defining interface variables. This calculation identifies and sizes major equipment and assemblies that dictate overall equipment dimensions and facility interfaces. Sizing of components is based on the selection of commercially available products, where applicable. This is not a specific recommendation for the future use of these components or their

  18. CONTAIN calculations; CONTAIN-Rechnungen

    Energy Technology Data Exchange (ETDEWEB)

    Scholtyssek, W.

    1995-08-01

    In the first phase of a benchmark comparison, the CONTAIN code was used to calculate an assumed EPR accident `medium-sized leak in the cold leg`, especially for the first two days after initiation of the accident. The results for global characteristics compare well with those of FIPLOC, MELCOR and WAVCO calculations, if the same materials data are used as input. However, significant differences show up for local quantities such as flows through leakages. (orig.)

  19. Numerical calculations near spatial infinity

    International Nuclear Information System (INIS)

    Zenginoglu, Anil

    2007-01-01

    After describing in short some problems and methods regarding the smoothness of null infinity for isolated systems, I present numerical calculations in which both spatial and null infinity can be studied. The reduced conformal field equations based on the conformal Gauss gauge allow us in spherical symmetry to calculate numerically the entire Schwarzschild-Kruskal spacetime in a smooth way including spacelike, null and timelike infinity and the domain close to the singularity

  20. Calculating radiation exposure and dose

    International Nuclear Information System (INIS)

    Hondros, J.

    1987-01-01

    This paper discusses the methods and procedures used to calculate the radiation exposures and radiation doses to designated employees of the Olympic Dam Project. Each of the three major exposure pathways are examined. These are: gamma irradiation, radon daughter inhalation and radioactive dust inhalation. A further section presents ICRP methodology for combining individual pathway exposures to give a total dose figure. Computer programs used for calculations and data storage are also presented briefly

  1. Calculation of Rydberg interaction potentials

    International Nuclear Information System (INIS)

    Weber, Sebastian; Büchler, Hans Peter; Tresp, Christoph; Urvoy, Alban; Hofferberth, Sebastian; Menke, Henri; Firstenberg, Ofer

    2017-01-01

    The strong interaction between individual Rydberg atoms provides a powerful tool exploited in an ever-growing range of applications in quantum information science, quantum simulation and ultracold chemistry. One hallmark of the Rydberg interaction is that both its strength and angular dependence can be fine-tuned with great flexibility by choosing appropriate Rydberg states and applying external electric and magnetic fields. More and more experiments are probing this interaction at short atomic distances or with such high precision that perturbative calculations as well as restrictions to the leading dipole–dipole interaction term are no longer sufficient. In this tutorial, we review all relevant aspects of the full calculation of Rydberg interaction potentials. We discuss the derivation of the interaction Hamiltonian from the electrostatic multipole expansion, numerical and analytical methods for calculating the required electric multipole moments and the inclusion of electromagnetic fields with arbitrary direction. We focus specifically on symmetry arguments and selection rules, which greatly reduce the size of the Hamiltonian matrix, enabling the direct diagonalization of the Hamiltonian up to higher multipole orders on a desktop computer. Finally, we present example calculations showing the relevance of the full interaction calculation to current experiments. Our software for calculating Rydberg potentials including all features discussed in this tutorial is available as open source. (tutorial)

  2. Mordred: a molecular descriptor calculator.

    Science.gov (United States)

    Moriwaki, Hirotomo; Tian, Yu-Shi; Kawashita, Norihito; Takagi, Tatsuya

    2018-02-06

    Molecular descriptors are widely employed to present molecular characteristics in cheminformatics. Various molecular-descriptor-calculation software programs have been developed. However, users of those programs must contend with several issues, including software bugs, insufficient update frequencies, and software licensing constraints. To address these issues, we propose Mordred, a developed descriptor-calculation software application that can calculate more than 1800 two- and three-dimensional descriptors. It is freely available via GitHub. Mordred can be easily installed and used in the command line interface, as a web application, or as a high-flexibility Python package on all major platforms (Windows, Linux, and macOS). Performance benchmark results show that Mordred is at least twice as fast as the well-known PaDEL-Descriptor and it can calculate descriptors for large molecules, which cannot be accomplished by other software. Owing to its good performance, convenience, number of descriptors, and a lax licensing constraint, Mordred is a promising choice of molecular descriptor calculation software that can be utilized for cheminformatics studies, such as those on quantitative structure-property relationships.

  3. Propagation calculation for reactor cases

    Energy Technology Data Exchange (ETDEWEB)

    Yang Yanhua [School of Power and Energy Engineering, Shanghai Jiao Tong Univ., Shanghai (China); Moriyama, K.; Maruyama, Y.; Nakamura, H.; Hashimoto, K. [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2000-11-01

    The propagation of steam explosion for real reactor geometry and conditions are investigated by using the computer code JASMINE-pro. The ex-vessel steam explosion is considered, which is described as follow: during the accident of reactor core meltdown, the molten core melts a hole at the bottom of reactor vessel and causes the higher temperature core fuel being leaked into the water pool below reactor vessel. During the melt-water mixing interaction process, the high temperature melt evaporates the cool water at an extreme high rate and might induce a steam explosion. A steam explosion could experience first the premixing phase and then the propagation explosion phase. For a propagation calculation, we should know the information about the initial fragmentation time, the total melt mass, premixing region size, initial void fraction and distribution of the melt volume fraction, and so on. All the initial conditions used in this calculation are based on analyses from some simple assumptions and the observation from the experiments. The results show that the most important parameter for the initial condition of this phase is the total mass and its initial distribution. This gives the requirement for a premixing calculation. On the other hand, for higher melt volume fraction case, the fragmentation is strong so that the local pressure can exceed over the EOS maximum pressure of the code, which lead to the incorrect calculation or divergence of the calculation. (Suetake, M.)

  4. Calculation of magnetic hyperfine constants

    International Nuclear Information System (INIS)

    Bufaical, R.F.; Maffeo, B.; Brandi, H.S.

    1975-01-01

    The magnetic hyperfine constants of the V sub(K) center in CaF 2 , SrF 2 and BaF 2 have been calculated assuming a phenomenological model, based on the F 2 - 'central molucule', to describe the wavefunction of the defect. Calculations have shown that introduction of a small degree of covalence, between this central molecule and neighboring ions, is necessary to improve the electronic structure description of the defect. It was also shown that the results for the hyperfine constants are strongly dependent on the relaxations of the ions neighboring the central molecule; these relaxations have been determined by fitting the experimental data. The present results are compared with other previous calculations where similar and different theoretical methods have been used

  5. Parameters calculation of shielding experiment

    International Nuclear Information System (INIS)

    Gavazza, S.

    1986-02-01

    The radiation transport methodology comparing the calculated reactions and dose rates for neutrons and gama-rays, with experimental measurements obtained on iron shield, irradiated in the YAYOI reactor is evaluated. The ENDF/B-IV and VITAMIN-C libraries and the AMPX-II modular system, for cross sections generation collapsed by the ANISN code were used. The transport calculations were made using the DOT 3.5 code, adjusting the boundary iron shield source spectrum to the reactions and dose rates, measured at the beginning of shield. The neutron and gamma ray distributions calculated on the iron shield presented reasonable agreement with experimental measurements. An experimental arrangement using the IEA-R1 reactor to determine a shielding benchmark is proposed. (Author) [pt

  6. Insertion device calculations with mathematica

    Energy Technology Data Exchange (ETDEWEB)

    Carr, R. [Stanford Synchrotron Radiation Lab., CA (United States); Lidia, S. [Univ. of California, Davis, CA (United States)

    1995-02-01

    The design of accelerator insertion devices such as wigglers and undulators has usually been aided by numerical modeling on digital computers, using code in high level languages like Fortran. In the present era, there are higher level programming environments like IDL{reg_sign}, MatLab{reg_sign}, and Mathematica{reg_sign} in which these calculations may be performed by writing much less code, and in which standard mathematical techniques are very easily used. The authors present a suite of standard insertion device modeling routines in Mathematica to illustrate the new techniques. These routines include a simple way to generate magnetic fields using blocks of CSEM materials, trajectory solutions from the Lorentz force equations for given magnetic fields, Bessel function calculations of radiation for wigglers and undulators and general radiation calculations for undulators.

  7. PHEBUS-FPTO Benchmark calculations

    International Nuclear Information System (INIS)

    Shepherd, I.; Ball, A.; Trambauer, K.; Barbero, F.; Olivar Dominguez, F.; Herranz, L.; Biasi, L.; Fermandjian, J.; Hocke, K.

    1991-01-01

    This report summarizes a set of pre-test predictions made for the first Phebus-FP test, FPT-O. There were many different calculations, performed by various organizations and they represent the first attempt to calculate the whole experimental sequence, from bundle to containment. Quantitative agreement between the various calculations was not good but the particular models in the code responsible for disagreements were mostly identified. A consensus view was formed as to how the test would proceed. It was found that a successful execution of the test will require a different operating procedure than had been assumed here. Critical areas which require close attention are the need to devize a strategy for the power and flow in the bundle that takes account of uncertainties in the modelling and the shroud conductivity and the necessity to develop a reliable method to achieve the desired thermalhydraulic conditions in the containment

  8. Automatic calculations of electroweak processes

    International Nuclear Information System (INIS)

    Ishikawa, T.; Kawabata, S.; Kurihara, Y.; Shimizu, Y.; Kaneko, T.; Kato, K.; Tanaka, H.

    1996-01-01

    GRACE system is an excellent tool for calculating the cross section and for generating event of the elementary process automatically. However it is not always easy for beginners to use. An interactive version of GRACE is being developed so as to be a user friendly system. Since it works exactly in the same environment as PAW, all functions of PAW are available for handling any histogram information produced by GRACE. As its application the cross sections of all elementary processes with up to 5-body final states induced by e + e - interaction are going to be calculated and to be summarized as a catalogue. (author)

  9. Calculation methods in program CCRMN

    Energy Technology Data Exchange (ETDEWEB)

    Chonghai, Cai [Nankai Univ., Tianjin (China). Dept. of Physics; Qingbiao, Shen [Chinese Nuclear Data Center, Beijing, BJ (China)

    1996-06-01

    CCRMN is a program for calculating complex reactions of a medium-heavy nucleus with six light particles. In CCRMN, the incoming particles can be neutrons, protons, {sup 4}He, deuterons, tritons and {sup 3}He. the CCRMN code is constructed within the framework of the optical model, pre-equilibrium statistical theory based on the exciton model and the evaporation model. CCRMN is valid in 1{approx} MeV energy region, it can give correct results for optical model quantities and all kinds of reaction cross sections. This program has been applied in practical calculations and got reasonable results.

  10. Friction and wear calculation methods

    CERN Document Server

    Kragelsky, I V; Kombalov, V S

    1981-01-01

    Friction and Wear: Calculation Methods provides an introduction to the main theories of a new branch of mechanics known as """"contact interaction of solids in relative motion."""" This branch is closely bound up with other sciences, especially physics and chemistry. The book analyzes the nature of friction and wear, and some theoretical relationships that link the characteristics of the processes and the properties of the contacting bodies essential for practical application of the theories in calculating friction forces and wear values. The effect of the environment on friction and wear is a

  11. Selfconsistent calculations at finite temperatures

    International Nuclear Information System (INIS)

    Brack, M.; Quentin, P.

    1975-01-01

    Calculations have been done for the spherical nuclei 40 Ca, 208 Pb and the hypothetical superheavy nucleus with Z=114, A=298, as well as for the deformed nucleus 168 Yb. The temperature T was varied from zero up to 5 MeV. For T>3 MeV, some numerical problems arise in connection with the optimization of the basis when calculating deformed nuclei. However, at these high temperatures the occupation numbers in the continuum are sufficiently large so that the nucleus starts evaporating particles and no equilibrium state can be described. Results are obtained for excitation energies and entropies. (Auth.)

  12. Benchmark neutron porosity log calculations

    International Nuclear Information System (INIS)

    Little, R.C.; Michael, M.; Verghese, K.; Gardner, R.P.

    1989-01-01

    Calculations have been made for a benchmark neutron porosity log problem with the general purpose Monte Carlo code MCNP and the specific purpose Monte Carlo code McDNL. For accuracy and timing comparison purposes the CRAY XMP and MicroVax II computers have been used with these codes. The CRAY has been used for an analog version of the MCNP code while the MicroVax II has been used for the optimized variance reduction versions of both codes. Results indicate that the two codes give the same results within calculated standard deviations. Comparisons are given and discussed for accuracy (precision) and computation times for the two codes

  13. Molecular calculations with B functions

    International Nuclear Information System (INIS)

    Steinborn, E.O.; Homeier, H.H.H.; Ema, I.; Lopez, R.; Ramirez, G.

    2000-01-01

    A program for molecular calculations with B functions is reported and its performance is analyzed. All the one- and two-center integrals and the three-center nuclear attraction integrals are computed by direct procedures, using previously developed algorithms. The three- and four-center electron repulsion integrals are computed by means of Gaussian expansions of the B functions. A new procedure for obtaining these expansions is also reported. Some results on full molecular calculations are included to show the capabilities of the program and the quality of the B functions to represent the electronic functions in molecules

  14. Lattice calculations in gauge theory

    International Nuclear Information System (INIS)

    Rebbi, C.

    1985-01-01

    The lattice formulation of quantum gauge theories is discussed as a viable technique for quantitative studies of nonperturbative effects in QCD. Evidence is presented to ascertain that whole classes of lattice actions produce a universal continuum limit. Discrepancies between numerical results from Monto Carlo simulations for the pure gauge system and for the system with gauge and quark fields are discussed. Numerical calculations for QCD require very substantial computational resources. The use of powerful vector processors of special purpose machines, in extending the scope and magnitude or the calculations is considered, and one may reasonably expect that in the near future good quantitative predictions will be obtained for QCD

  15. Methods for Melting Temperature Calculation

    Science.gov (United States)

    Hong, Qi-Jun

    Melting temperature calculation has important applications in the theoretical study of phase diagrams and computational materials screenings. In this thesis, we present two new methods, i.e., the improved Widom's particle insertion method and the small-cell coexistence method, which we developed in order to capture melting temperatures both accurately and quickly. We propose a scheme that drastically improves the efficiency of Widom's particle insertion method by efficiently sampling cavities while calculating the integrals providing the chemical potentials of a physical system. This idea enables us to calculate chemical potentials of liquids directly from first-principles without the help of any reference system, which is necessary in the commonly used thermodynamic integration method. As an example, we apply our scheme, combined with the density functional formalism, to the calculation of the chemical potential of liquid copper. The calculated chemical potential is further used to locate the melting temperature. The calculated results closely agree with experiments. We propose the small-cell coexistence method based on the statistical analysis of small-size coexistence MD simulations. It eliminates the risk of a metastable superheated solid in the fast-heating method, while also significantly reducing the computer cost relative to the traditional large-scale coexistence method. Using empirical potentials, we validate the method and systematically study the finite-size effect on the calculated melting points. The method converges to the exact result in the limit of a large system size. An accuracy within 100 K in melting temperature is usually achieved when the simulation contains more than 100 atoms. DFT examples of Tantalum, high-pressure Sodium, and ionic material NaCl are shown to demonstrate the accuracy and flexibility of the method in its practical applications. The method serves as a promising approach for large-scale automated material screening in which

  16. Development of My Footprint Calculator

    Science.gov (United States)

    Mummidisetti, Karthik

    The Environmental footprint is a very powerful tool that helps an individual to understand how their everyday activities are impacting environmental surroundings. Data shows that global climate change, which is a growing concern for nations all over the world, is already affecting humankind, plants and animals through raising ocean levels, droughts & desertification and changing weather patterns. In addition to a wide range of policy measures implemented by national and state governments, it is necessary for individuals to understand the impact that their lifestyle may have on their personal environmental footprint, and thus over the global climate change. "My Footprint Calculator" (myfootprintcalculator.com) has been designed to be one the simplest, yet comprehensive, web tools to help individuals calculate and understand their personal environmental impact. "My Footprint Calculator" is a website that queries users about their everyday habits and activities and calculates their personal impact on the environment. This website was re-designed to help users determine their environmental impact in various aspects of their lives ranging from transportation and recycling habits to water and energy usage with the addition of new features that will allow users to share their experiences and their best practices with other users interested in reducing their personal Environmental footprint. The collected data is stored in the database and a future goal of this work plans to analyze the collected data from all users (anonymously) for developing relevant trends and statistics.

  17. Calculations of nucleon structure functions

    International Nuclear Information System (INIS)

    Signal, A.I.

    1990-01-01

    We present a method of calculating deep inelastic nucleon structure functions using bag model wavefunctions. Our method uses the Peierls - Yoccoz projection to form translation invariant bag states. We obtain the correct support for the structure functions and satisfy the positivity requirements for quark and anti-quark distribution functions. (orig.)

  18. Data Acquisition and Flux Calculations

    DEFF Research Database (Denmark)

    Rebmann, C.; Kolle, O; Heinesch, B

    2012-01-01

    In this chapter, the basic theory and the procedures used to obtain turbulent fluxes of energy, mass, and momentum with the eddy covariance technique will be detailed. This includes a description of data acquisition, pretreatment of high-frequency data and flux calculation....

  19. Ab Initio Calculations of Oxosulfatovanadates

    DEFF Research Database (Denmark)

    Frøberg, Torben; Johansen, Helge

    1996-01-01

    Restricted Hartree-Fock and multi-configurational self-consistent-field calculations together with secondorder perturbation theory have been used to study the geometry, the electron density, and the electronicspectrum of (VO2SO4)-. A bidentate sulphate attachment to vanadium was found to be stabl...

  20. Coil protection calculator for TFTR

    International Nuclear Information System (INIS)

    Marsala, R.J.; Lawson, J.E.; Persing, R.G.; Senko, T.R.; Woolley, R.D.

    1989-01-01

    A new coil protection system (CPS) is being developed to replace the existing TFTR magnetic coil fault detector. The existing fault detector sacrifices TFTR operating capability for simplicity. The new CPS, when installed in October of 1988, will permit operation up to the actual coil stress limits parameters in real-time. The computation will be done in a microprocessor based Coil Protection Calculator (CPC) currently under construction at PPL. THe new CPC will allow TFTR to operate with higher plasma currents and will permit the optimization of pulse repetition rates. The CPC will provide real-time estimates of critical coil and bus temperatures and stresses based on real-time redundant measurements of coil currents, coil cooling water inlet temperature, and plasma current. The critical parameter calculations are compared to prespecified limits. If these limits are reached or exceeded, protection action will be initiated to a hard wired control system (HCS), which will shut down the power supplies. The CPC consists of a redundant VME based microprocessor system which will sample all input data and compute all stress quantities every ten milliseconds. Thermal calculations will be approximated every 10ms with an exact solution occurring every second. The CPC features continuous cross-checking of redundant input signal, automatic detection of internal failure modes, monitoring and recording of calculated results, and a quick, functional verification of performance via an internal test system. (author)

  1. Ab-initio ZORA calculations

    NARCIS (Netherlands)

    Faas, S.; Snijders, Jaap; van Lenthe, J.H.; HernandezLaguna, A; Maruani, J; McWeeny, R; Wilson, S

    2000-01-01

    In this paper we present the first application of the ZORA (Zeroth Order Regular Approximation of the Dirac Fock equation) formalism in Ab Initio electronic structure calculations. The ZORA method, which has been tested previously in the context of Density Functional Theory, has been implemented in

  2. Introduction to calculations of recuperators

    International Nuclear Information System (INIS)

    Dollar, M.

    1977-01-01

    Physical principles of heat transfer between fluid under turbulent flow conditions and a wall of a duct are described. The methods of calculations of heat transfer coefficient and the theory of recuperative heat exchangers are presented. Numerical examples are given to illustrate the theory. (author)

  3. Photoproduction data for heating calculations

    International Nuclear Information System (INIS)

    Van der Marck, Steven C.; Koning, Arjan J.; Rochman, Dimitri

    2008-01-01

    For irradiations in a materials test reactor, the prediction of the amount of gamma heating in the reactor is important. Only a good predictive calculation will lead to an irradiation in which the specified temperatures are reached. The photons produced by fission product decay are often missing in spectrum calculations for a reactor, but the contribution of the photons can be computed effectively using engineering correlations for the amount of fission product decay and the ensuing photon spectrum. The prompt photons are usually calculated by a spectrum code based on the underlying nuclear data libraries. For most of the important nuclides, the nuclear data libraries contain data for the photon productions rates. However, there are still many nuclides for which the photon production data are missing, and some of these nuclides contribute to gamma heating. In this paper it is estimated what the contributions to heating are from photon production on nuclides such as 236 U, 238 Pu, 135 I, 135 Xe, 147 Pm, 148 Pm, 148m Pm, and 149 Sm. Also, simple arguments are given to judge the effect from photon production on all other (lumped) fission products, and from 28 Al decay. For all these calculations the High Flux Reactor is used as an example. (authors)

  4. Methods for magnetostatic field calculation

    International Nuclear Information System (INIS)

    Vorozhtsov, S.B.

    1984-01-01

    Two methods for magnetostatic field calculation: differential and integrat are considered. Both approaches are shown to have certain merits and drawbacks, choice of the method depend on the type of the solved problem. An opportunity of combination of these tWo methods in one algorithm (hybrid method) is considered

  5. Prenatal radiation exposure. Dose calculation

    International Nuclear Information System (INIS)

    Scharwaechter, C.; Schwartz, C.A.; Haage, P.; Roeser, A.

    2015-01-01

    The unborn child requires special protection. In this context, the indication for an X-ray examination is to be checked critically. If thereupon radiation of the lower abdomen including the uterus cannot be avoided, the examination should be postponed until the end of pregnancy or alternative examination techniques should be considered. Under certain circumstances, either accidental or in unavoidable cases after a thorough risk assessment, radiation exposure of the unborn may take place. In some of these cases an expert radiation hygiene consultation may be required. This consultation should comprise the expected risks for the unborn while not perturbing the mother or the involved medical staff. For the risk assessment in case of an in-utero X-ray exposition deterministic damages with a defined threshold dose are distinguished from stochastic damages without a definable threshold dose. The occurrence of deterministic damages depends on the dose and the developmental stage of the unborn at the time of radiation. To calculate the risks of an in-utero radiation exposure a three-stage concept is commonly applied. Depending on the amount of radiation, the radiation dose is either estimated, roughly calculated using standard tables or, in critical cases, accurately calculated based on the individual event. The complexity of the calculation thereby increases from stage to stage. An estimation based on stage one is easily feasible whereas calculations based on stages two and especially three are more complex and often necessitate execution by specialists. This article demonstrates in detail the risks for the unborn child pertaining to its developmental phase and explains the three-stage concept as an evaluation scheme. It should be noted, that all risk estimations are subject to considerable uncertainties.

  6. Calculating zeros: Non-equilibrium free energy calculations

    International Nuclear Information System (INIS)

    Oostenbrink, Chris; Gunsteren, Wilfred F. van

    2006-01-01

    Free energy calculations on three model processes with theoretically known free energy changes have been performed using short simulation times. A comparison between equilibrium (thermodynamic integration) and non-equilibrium (fast growth) methods has been made in order to assess the accuracy and precision of these methods. The three processes have been chosen to represent processes often observed in biomolecular free energy calculations. They involve a redistribution of charges, the creation and annihilation of neutral particles and conformational changes. At very short overall simulation times, the thermodynamic integration approach using discrete steps is most accurate. More importantly, reasonable accuracy can be obtained using this method which seems independent of the overall simulation time. In cases where slow conformational changes play a role, fast growth simulations might have an advantage over discrete thermodynamic integration where sufficient sampling needs to be obtained at every λ-point, but only if the initial conformations do properly represent an equilibrium ensemble. From these three test cases practical lessons can be learned that will be applicable to biomolecular free energy calculations

  7. Mechanical calculation of heat exchangers

    International Nuclear Information System (INIS)

    Osweiller, Francis.

    1977-01-01

    Many heat exchangers are still being dimensioned at the present time by means of the American TEMA code (Tubular Exchanger Manufacturers Association). The basic formula of this code often gives rise to significant tubular plate thicknesses which, apart from the cost of materials, involve significant machining. Some constructors have brought into use calculation methods that are more analytic so as to take into better consideration the mechanical phenomena which come into play in a heat exchanger. After a brief analysis of these methods it is shown, how the original TEMA formulations have changed to reach the present version and how this code has incorporated Gardner's results for treating exchangers with two fixed heads. A formal and numerical comparison is then made of the analytical and TEMA methods by attempting to highlight a code based on these methods or a computer calculation programme in relation to the TEMA code [fr

  8. CONTRIBUTION FOR MINING ATMOSPHERE CALCULATION

    Directory of Open Access Journals (Sweden)

    Franica Trojanović

    1989-12-01

    Full Text Available Humid air is an unavoidable feature of mining atmosphere, which plays a significant role in defining the climate conditions as well as permitted circumstances for normal mining work. Saturated humid air prevents heat conduction from the human body by means of evaporation. Consequently, it is of primary interest in the mining practice to establish the relative air humidity either by means of direct or indirect methods. Percentage of water in the surrounding air may be determined in various procedures including tables, diagrams or particular calculations, where each technique has its specific advantages and disadvantages. Classical calculation is done according to Sprung's formula, in which case partial steam pressure should also be taken from the steam table. The new method without the use of diagram or tables, established on the functional relation of pressure and temperature on saturated line, is presented here for the first time (the paper is published in Croatian.

  9. The Collective Practice of Calculation

    DEFF Research Database (Denmark)

    Schrøder, Ida

    The calculation of costs plays an increasingly large role in the decision-making processes of public sector human service organizations. This has brought scholars of management accounting to investigate the relationship between caring professions and demands to make economic entities of the service...... productions as either a process of hybridization or conflict. With these approaches, though, they fail to interrogate the possibility that professional action might not be either the one or the other, but entail a broad variety of relationships between calculations and judgements. This paper elaborates...... and judgement to reach decisions to invest in social services. The line is not drawn between the two, but between the material arrangements that make decisions possible. This implies that the insisting on qualitatively based decisions gives the professionals agency to collectively engage in practical...

  10. Computer programs for lattice calculations

    International Nuclear Information System (INIS)

    Keil, E.; Reich, K.H.

    1984-01-01

    The aim of the workshop was to find out whether some standardisation could be achieved for future work in this field. A certain amount of useful information was unearthed, and desirable features of a ''standard'' program emerged. Progress is not expected to be breathtaking, although participants (practically from all interested US, Canadian and European accelerator laboratories) agreed that the mathematics of the existing programs is more or less the same. Apart from the NIH (not invented here) effect, there is a - to quite some extent understandable - tendency to stay with a program one knows and to add to it if unavoidable rather than to start using a new one. Users of the well supported program TRANSPORT (designed for beam line calculations) would prefer to have it fully extended for lattice calculations (to some extent already possible now), while SYNCH users wish to see that program provided with a user-friendly input, rather than spending time and effort for mastering a new program

  11. Coil protection calculator for TFTR

    International Nuclear Information System (INIS)

    Marsala, R.J.; Woolley, R.D.

    1987-01-01

    A new coil protection calculator (CPC) is presented in this paper. It is now being developed for TFTR's magnetic field coils will replace the existing coil fault detector. The existing fault detector sacrifices TFTR operating capability for simplicity. The new CPC will permit operation up to the actual coil limits by accurately and continuously computing coil parameters in real-time. The improvement will allow TFTR to operate with higher plasma currents and will permit the optimization of pulse repetition rates

  12. Rotor calculations for neutron spectroscopy

    International Nuclear Information System (INIS)

    Gobert, G.

    1968-01-01

    The determination of stress in a rotating disk plane of symmetry normal to the axis of rotation has been studied by a number of investigators. In a recent paper Reich gives an operating process for an analytical solution in an asymmetric rotating disk. In the report we give the calculation of finite difference stress solutions applicable to the two rotating disks. The equations are then programmed for the 360.75 computer by Fortran methods concerning the rotors of choppers. (author) [fr

  13. Parallel plasma fluid turbulence calculations

    International Nuclear Information System (INIS)

    Leboeuf, J.N.; Carreras, B.A.; Charlton, L.A.; Drake, J.B.; Lynch, V.E.; Newman, D.E.; Sidikman, K.L.; Spong, D.A.

    1994-01-01

    The study of plasma turbulence and transport is a complex problem of critical importance for fusion-relevant plasmas. To this day, the fluid treatment of plasma dynamics is the best approach to realistic physics at the high resolution required for certain experimentally relevant calculations. Core and edge turbulence in a magnetic fusion device have been modeled using state-of-the-art, nonlinear, three-dimensional, initial-value fluid and gyrofluid codes. Parallel implementation of these models on diverse platforms--vector parallel (National Energy Research Supercomputer Center's CRAY Y-MP C90), massively parallel (Intel Paragon XP/S 35), and serial parallel (clusters of high-performance workstations using the Parallel Virtual Machine protocol)--offers a variety of paths to high resolution and significant improvements in real-time efficiency, each with its own advantages. The largest and most efficient calculations have been performed at the 200 Mword memory limit on the C90 in dedicated mode, where an overlap of 12 to 13 out of a maximum of 16 processors has been achieved with a gyrofluid model of core fluctuations. The richness of the physics captured by these calculations is commensurate with the increased resolution and efficiency and is limited only by the ingenuity brought to the analysis of the massive amounts of data generated

  14. Microcomputer generated pipe support calculations

    International Nuclear Information System (INIS)

    Hankinson, R.F.; Czarnowski, P.; Roemer, R.E.

    1991-01-01

    The cost and complexity of pipe support design has been a continuing challenge to the construction and modification of commercial nuclear facilities. Typically, pipe support design or qualification projects have required large numbers of engineers centrally located with access to mainframe computer facilities. Much engineering time has been spent repetitively performing a sequence of tasks to address complex design criteria and consolidating the results of calculations into documentation packages in accordance with strict quality requirements. The continuing challenges of cost and quality, the need for support engineering services at operating plant sites, and the substantial recent advances in microcomputer systems suggested that a stand-alone microcomputer pipe support calculation generator was feasible and had become a necessity for providing cost-effective and high quality pipe support engineering services to the industry. This paper outlines the preparation for, and the development of, an integrated pipe support design/evaluation software system which maintains all computer programs in the same environment, minimizes manual performance of standard or repetitive tasks, and generates a high quality calculation which is consistent and easily followed

  15. Calculational methods for lattice cells

    International Nuclear Information System (INIS)

    Askew, J.R.

    1980-01-01

    At the current stage of development, direct simulation of all the processes involved in the reactor to the degree of accuracy required is not an economic proposition, and this is achieved by progressive synthesis of models for parts of the full space/angle/energy neutron behaviour. The split between reactor and lattice calculations is one such simplification. Most reactors are constructed of repetitions of similar geometric units, the fuel elements, having broadly similar properties. Thus the provision of detailed predictions of their behaviour is an important step towards overall modelling. We shall be dealing with these lattice methods in this series of lectures, but will refer back from time to time to their relationship with overall reactor calculation The lattice cell is itself composed of somewhat similar sub-units, the fuel pins, and will itself often rely upon a further break down of modelling. Construction of a good model depends upon the identification, on physical and mathematical grounds, of the most helpful division of the calculation at this level

  16. Calculation of groundwater travel time

    International Nuclear Information System (INIS)

    Arnett, R.C.; Sagar, B.; Baca, R.G.

    1984-12-01

    Pre-waste-emplacement groundwater travel time is one indicator of the isolation capability of the geologic system surrounding a repository. Two distinct modeling approaches exist for prediction of groundwater flow paths and travel times from the repository location to the designated accessible environment boundary. These two approaches are: (1) the deterministic approach which calculates a single value prediction of groundwater travel time based on average values for input parameters and (2) the stochastic approach which yields a distribution of possible groundwater travel times as a function of the nature and magnitude of uncertainties in the model inputs. The purposes of this report are to (1) document the theoretical (i.e., mathematical) basis used to calculate groundwater pathlines and travel times in a basalt system, (2) outline limitations and ranges of applicability of the deterministic modeling approach, and (3) explain the motivation for the use of the stochastic modeling approach currently being used to predict groundwater pathlines and travel times for the Hanford Site. Example calculations of groundwater travel times are presented to highlight and compare the differences between the deterministic and stochastic modeling approaches. 28 refs

  17. Nuclear data library in design calculation

    International Nuclear Information System (INIS)

    Hirano, Go; Kosaka, Shinya

    2006-01-01

    In core design calculation, nuclear data takes part as multi group cross section library during the assembly calculation, which is the first stage of a core design calculation. This report summarizes the multi group cross section libraries used in assembly calculations and also presents the methods adopted for resonance and assembly calculation. (author)

  18. Ab initio calculation of intermolecular potentials for dimer Cl_2-Cl_2 and prediction of second virial coefficients

    International Nuclear Information System (INIS)

    Nguyen Thanh Duoc; Nguyen Thi Ai Nhung; Tran Duong; Pham Van Tat

    2015-01-01

    The results presented in this paper are the ab initio intermolecular potentials and the second virial coefficient, B_2 (T) of the dimer Cl_2-Cl_2. These ab initio potentials were proposed by the quantum chemical calculations at high level of theory CCSD(T) with basis sets of Dunning valence correlation-consistent aug-cc-pVmZ (m = 2, 3); these results were extrapolated to complete basis set limit aug-cc-pV23Z. The ab initio energies of complete basis set limit aug-cc-pV23Z resulted from the exponential extrapolation were used to construct the 5-site pair potential functions. The second virial coefficients for this dimer were predicted from those with four-dimensional integration. The second virial coefficients were also corrected to first-order quantum effects. The results turn out to be in good agreement with experimental data, if available, or with those from empirical correlation. The quality of ab initio 5-site potentials proved the reliability for prediction of molecular thermodynamic properties. (author)

  19. Calculation of gas turbine characteristic

    Science.gov (United States)

    Mamaev, B. I.; Murashko, V. L.

    2016-04-01

    The reasons and regularities of vapor flow and turbine parameter variation depending on the total pressure drop rate π* and rotor rotation frequency n are studied, as exemplified by a two-stage compressor turbine of a power-generating gas turbine installation. The turbine characteristic is calculated in a wide range of mode parameters using the method in which analytical dependences provide high accuracy for the calculated flow output angle and different types of gas dynamic losses are determined with account of the influence of blade row geometry, blade surface roughness, angles, compressibility, Reynolds number, and flow turbulence. The method provides satisfactory agreement of results of calculation and turbine testing. In the design mode, the operation conditions for the blade rows are favorable, the flow output velocities are close to the optimal ones, the angles of incidence are small, and the flow "choking" modes (with respect to consumption) in the rows are absent. High performance and a nearly axial flow behind the turbine are obtained. Reduction of the rotor rotation frequency and variation of the pressure drop change the flow parameters, the parameters of the stages and the turbine, as well as the form of the characteristic. In particular, for decreased n, nonmonotonic variation of the second stage reactivity with increasing π* is observed. It is demonstrated that the turbine characteristic is mainly determined by the influence of the angles of incidence and the velocity at the output of the rows on the losses and the flow output angle. The account of the growing flow output angle due to the positive angle of incidence for decreased rotation frequencies results in a considerable change of the characteristic: poorer performance, redistribution of the pressure drop at the stages, and change of reactivities, growth of the turbine capacity, and change of the angle and flow velocity behind the turbine.

  20. Calculation of Rydberg interaction potentials

    DEFF Research Database (Denmark)

    Weber, Sebastian; Tresp, Christoph; Menke, Henri

    2017-01-01

    The strong interaction between individual Rydberg atoms provides a powerful tool exploited in an ever-growing range of applications in quantum information science, quantum simulation and ultracold chemistry. One hallmark of the Rydberg interaction is that both its strength and angular dependence...... for calculating the required electric multipole moments and the inclusion of electromagnetic fields with arbitrary direction. We focus specifically on symmetry arguments and selection rules, which greatly reduce the size of the Hamiltonian matrix, enabling the direct diagonalization of the Hamiltonian up...