WorldWideScience

Sample records for fossil fuels industry

  1. Fossil Fuels.

    Crank, Ron

    This instructional unit is one of 10 developed by students on various energy-related areas that deals specifically with fossil fuels. Some topics covered are historic facts, development of fuels, history of oil production, current and future trends of the oil industry, refining fossil fuels, and environmental problems. Material in each unit may…

  2. 76 FR 3517 - Standards of Performance for Fossil-Fuel-Fired, Electric Utility, Industrial-Commercial...

    2011-01-20

    ... AGENCY 40 CFR Part 60 RIN 2060-AQ46 Standards of Performance for Fossil-Fuel-Fired, Electric Utility... limited to, the following: Category NAICS \\1\\ Examples of regulated entities Industry 221112 Fossil fuel-fired electric utility steam generating units. Federal Government 22112 Fossil fuel-fired...

  3. 76 FR 3587 - Standards of Performance for Fossil-Fuel-Fired, Electric Utility, Industrial-Commercial...

    2011-01-20

    ... AGENCY 40 CFR Part 60 RIN 2060-AQ46 Standards of Performance for Fossil-Fuel-Fired, Electric Utility... 221112 Fossil fuel-fired electric utility steam generating units. Federal Government 22112 Fossil fuel... government 22112 Fossil fuel-fired electric utility steam generating units owned by municipalities....

  4. Effect on industry structure by fossil fuel burden

    Kang, Yoon Young [Korea Energy Economics Institute, Euiwang (Korea)

    1999-12-01

    Multi-industrial sector dynamic operation general equilibrium model of Korean economy has been developed. It is able to analyze carbon dioxide emission, energy use and macro economy, and reciprocal actions between each industrial sector and to measure economic effects by environmental policy for the purpose of reducing carbon dioxide. Using this model, it analyzed its effect on industries in Korea of limiting carbon dioxide emission by experimenting each policy instrument, policy object, application of tax revenue for limiting carbon dioxide. The spreading effect on each industry has a large difference for each industry. The production reduction of energy industry or large energy consuming industry (basic chemical industry, transportation and storage, steel industry, construction) shows relatively huge to other industries. Production reduction for each industry, i.e. a wide difference of economic burden between industries, will need some consideration when introducing energy carbon tax, especially in the initial stage, since it could cause an equity problem between industries. Moreover, studies on differentiating tax rate, tax return and exemption that can mitigate an equity problem between industries should be implemented. (author). 66 refs., 22 figs., 12 tabs.

  5. Sustainability of Fossil Fuels

    Lackner, K. S.

    2002-05-01

    For a sustainable world economy, energy is a bottleneck. Energy is at the basis of a modern, technological society, but unlike materials it cannot be recycled. Energy or more precisely "negentropy" (the opposite of entropy) is always consumed. Thus, one either accepts the use of large but finite resources or must stay within the limits imposed by dilute but self-renewing resources like sunlight. The challenge of sustainable energy is exacerbated by likely growth in world energy demand due to increased population and increased wealth. Most of the world still has to undergo the transition to a wealthy, stable society with the near zero population growth that characterizes a modern industrial society. This represents a huge unmet demand. If ten billion people were to consume energy like North Americans do today, world energy demand would be ten times higher. In addition, technological advances while often improving energy efficiency tend to raise energy demand by offering more opportunity for consumption. Energy consumption still increases at close to the 2.3% per year that would lead to a tenfold increase over the course of the next century. Meeting future energy demands while phasing out fossil fuels appears extremely difficult. Instead, the world needs sustainable or nearly sustainable fossil fuels. I propose the following definition of sustainable under which fossil fuels would well qualify: The use of a technology or resource is sustainable if the intended and unintended consequences will not force its abandonment within a reasonable planning horizon. Of course sustainable technologies must not be limited by resource depletion but this is only one of many concerns. Environmental impacts, excessive land use, and other constraints can equally limit the use of a technology and thus render it unsustainable. In the foreseeable future, fossil fuels are not limited by resource depletion. However, environmental concerns based on climate change and other environmental

  6. Nuclear Energy R&D Imperative 3: Enable a Transition Away from Fossil Fuel in the Transportation and Industrial Sectors

    David Petti; J. Stephen Herring

    2010-03-01

    As described in the Department of Energy Office of Nuclear Energy’s Nuclear Energy R&D Roadmap, nuclear energy can play a significant role in supplying energy for a growing economy while reducing both our dependence on foreign energy supplies and emissions from the burning of fossil fuels. The industrial and transportation sectors are responsible for more than half of the greenhouse gas emissions in the U.S., and imported oil supplies 70% of the energy used in the transportation sector. It is therefore important to examine the various ways nuclear energy can facilitate a transition away from fossil fuels to secure environmentally sustainable production and use of energy in the transportation and manufacturing industry sectors. Imperative 3 of the Nuclear Energy R&D Roadmap, entitled “Enable a Transition Away from Fossil Fuels by Producing Process Heat for use in the Transportation and Industrial Sectors”, addresses this need. This document presents an Implementation Plan for R&D efforts related to this imperative. The expanded use of nuclear energy beyond the electrical grid will contribute significantly to overcoming the three inter-linked energy challenges facing U.S. industry: the rising and volatile prices for premium fossil fuels such as oil and natural gas, dependence on foreign sources for these fuels, and the risks of climate change resulting from carbon emissions. Nuclear energy could be used in the industrial and transportation sectors to: • Generate high temperature process heat and electricity to serve industrial needs including the production of chemical feedstocks for use in manufacturing premium fuels and fertilizer products, • Produce hydrogen for industrial processes and transportation fuels, and • Provide clean water for human consumption by desalination and promote wastewater treatment using low-grade nuclear heat as a useful additional benefit. Opening new avenues for nuclear energy will significantly enhance our nation’s energy

  7. Design, quality, and quality assurance of solid recovered fuels for the substitution of fossil feedstock in the cement industry.

    Sarc, R; Lorber, K E; Pomberger, R; Rogetzer, M; Sipple, E M

    2014-07-01

    This paper describes the requirements for the production, quality, and quality assurance of solid recovered fuels (SRF) that are increasingly used in the cement industry. Different aspects have to be considered before using SRF as an alternative fuel. Here, a study on the quality of SRF used in the cement industry is presented. This overview is completed by an investigation of type and properties of input materials used at waste splitting and SRF production plants in Austria. As a simplified classification, SRF can be divided into two classes: a fine, high-calorific SRF for the main burner, or coarser SRF material with low calorific value for secondary firing systems, such as precombustion chambers or similar systems. In the present study, SRFs coming from various sources that fall under these two different waste fuel classes are discussed. Both SRFs are actually fired in the grey clinker kiln of the Holcim (Slovensko) plant in Rohožnik (Slovakia). The fine premium-quality material is used in the main burner and the coarse regular-quality material is fed to a FLS Hotdisc combustion device. In general, the alternative fuels are used instead of their substituted fossil fuels. For this, chemical compositions and other properties of SRF were compared to hard coal as one of the most common conventional fuels in Europe. This approach allows to compare the heavy metal input from traditional and alternative fuels and to comment on the legal requirements on SRF that, at the moment, are under development in Europe.

  8. Biodesulfurization of fossil fuels.

    Gray, Kevin A; Mrachko, Gregory T; Squires, Charles H

    2003-06-01

    Biotechnological techniques enabling the specific removal of sulfur from fossil fuels have been developed. In the past three years there have been important advances in the elucidation of the mechanisms of biodesulfurization; some of the most significant relate to the role of a flavin reductase, DszD, in the enzymology of desulfurization, and to the use of new tools that enable enzyme enhancement via DNA manipulation to influence both the rate and the substrate range of Dsz. Also, a clearer understanding of the unique desulfinase step in the pathway has begun to emerge.

  9. The legacy of fossil fuels.

    Armaroli, Nicola; Balzani, Vincenzo

    2011-03-01

    Currently, over 80% of the energy used by mankind comes from fossil fuels. Harnessing coal, oil and gas, the energy resources contained in the store of our spaceship, Earth, has prompted a dramatic expansion in energy use and a substantial improvement in the quality of life of billions of individuals in some regions of the world. Powering our civilization with fossil fuels has been very convenient, but now we know that it entails severe consequences. We treat fossil fuels as a resource that anyone anywhere can extract and use in any fashion, and Earth's atmosphere, soil and oceans as a dump for their waste products, including more than 30 Gt/y of carbon dioxide. At present, environmental legacy rather than consistence of exploitable reserves, is the most dramatic problem posed by the relentless increase of fossil fuel global demand. Harmful effects on the environment and human health, usually not incorporated into the pricing of fossil fuels, include immediate and short-term impacts related to their discovery, extraction, transportation, distribution, and burning as well as climate change that are spread over time to future generations or over space to the entire planet. In this essay, several aspects of the fossil fuel legacy are discussed, such as alteration of the carbon cycle, carbon dioxide rise and its measurement, greenhouse effect, anthropogenic climate change, air pollution and human health, geoengineering proposals, land and water degradation, economic problems, indirect effects on the society, and the urgent need of regulatory efforts and related actions to promote a gradual transition out of the fossil fuel era. While manufacturing sustainable solar fuels appears to be a longer-time perspective, alternatives energy sources already exist that have the potential to replace fossil fuels as feedstocks for electricity production.

  10. Future Fossil Fuel Alternative; DME (A review)

    Erdener, Hülya; Arinan, Ayca; Orman, Sultan

    2016-01-01

    The world energy consumption is steadily growing with the industrial improvements of the developing countries and the readily available fossil fuel reserves lack in fulfilling this energy requirement. The depletion of the easily achievable reserves; gives rise to the concept of oil production from oil shale and tar sands. However, the high cost and the operational difficulties stand as the major drawbacks in front of these technologies. Along with these circumstances, and the environmental co...

  11. On Prediction of Depreciation Time of Fossil Fuel in Malaysia

    Tey Jin Pin

    2012-01-01

    Full Text Available Problem statement: The fossil fuels play a crucial role in the world energy markets. Demand for fossil fuels become increasingly high and worrisome, because of fossil fuels will be significantly reduced and ultimately exhausted. This study was conducted to predict the depreciation time of fossil fuels in Malaysia and estimate the time remaining before the fossil fuels will finish. Approach: To predict the depreciation time of fossil fuels, the reserves, consumption and prices of fossil fuel will be used. The prediction of fossil fuel reserves were estimated using ratio of fossil fuel reserve versus consumption, Klass Model and Modified Klass Model. The prediction time will give us the opportunity to prepare for the coming energy crisis and discover new energy sources. The results from the analysis will be concluded alongside with the Olduvai Theory and Hubbert Peak Theory. Both of the theories are highly related to the energy crisis. The Olduvai Theory states that the industrial civilization will last for approximately 100 year: circa 1930-2030. As for Hubbert Peak Theory, it can estimate the total amount of fossil fuels available based on the production rate from time to time. Results: Due to the vast usage of petroleum, it will be depleted faster than natural gas and coal. After 14 years, natural gas and coal will replace petroleum as a fossil fuel and coal would then be the major fossil fuels. Based on the results from Hubbert Peak Theory, the rate of production of petroleum has reached the maximum level in 2004 and started to decline since that time; while in the Olduvai theory, it has explained that the life expectancy of the industrial civilization was found to be ended in 2030. Petroleum will be spent over in 2020, followed by natural gas in 2058 and coal around the year 2066. Conclusion: So far, Malaysia has not facing disconnection of electricity as other developed countries. When this happens, it gives the meaning of the end of the

  12. Maximum fossil fuel feedstock replacement potential of petrochemicals via biorefineries

    Brehmer, B.; Boom, R.M.; Sanders, J.P.M.

    2009-01-01

    The search for feedstock replacement options within the petrochemical industry should logically be based upon non-fossil resources. Retaining the functionality of the biochemicals in biomass for use as chemical products and precursors can lead to a sizeable reduction of fossil fuel consumption. This

  13. Fossil fuel support mechanisms in Finland

    Lampinen, Ari

    2013-10-15

    Fossil fuel subsidies and other state support for fossil fuels are forbidden by the Kyoto Protocol and other international treaties. However, they are still commonly used. This publication presents and analyses diverse state support mechanisms for fossil fuels in Finland in 2003-2010. Total of 38 support mechanisms are covered in quantitative analysis and some other mechanisms are mentioned qualitatively only. For some mechanisms the study includes a longer historical perspective. This is the case for tax subsidies for crude oil based traffic fuels that have been maintained in Finland since 1965.

  14. Fuel cells : a viable fossil fuel alternative

    Paduada, M.

    2007-02-15

    This article presented a program initiated by Natural Resources Canada (NRCan) to develop proof-of-concept of underground mining vehicles powered by fuel cells in order to eliminate emissions. Recent studies on American and Canadian underground mines provided the basis for estimating the operational cost savings of switching from diesel to fuel cells. For the Canadian mines evaluated, the estimated ventilation system operating cost reductions ranged from 29 per cent to 75 per cent. In order to demonstrate the viability of a fuel cell-powered vehicle, NRCan has designed a modified Caterpillar R1300 loader with a 160 kW hybrid power plant in which 3 stacks of fuel cells deliver up to 90 kW continuously, and a nickel-metal hydride battery provides up to 70 kW. The battery subsystem transiently boosts output to meet peak power requirements and also accommodates regenerative braking. Traction for the loader is provided by a brushless permanent magnet traction motor. The hydraulic pump motor is capable of a 55 kW load continuously. The loader's hydraulic and traction systems are operated independently. Future fuel cell-powered vehicles designed by the program may include a locomotive and a utility vehicle. Future mines running their operations with hydrogen-fueled equipment may also gain advantages by employing fuel cells in the operation of handheld equipment such as radios, flashlights, and headlamps. However, the proton exchange membrane (PEM) fuel cells used in the project are prohibitively expensive. The catalytic content of a fuel cell can add hundreds of dollars per kW of electric output. Production of catalytic precious metals will be strongly connected to the scale of use and acceptance of fuel cells in vehicles. In addition, the efficiency of hydrogen production and delivery is significantly lower than the well-to-tank efficiency of many conventional fuels. It was concluded that an adequate hydrogen infrastructure will be required for the mining industry

  15. Can UK fossil fuel emissions be determined by radiocarbon measurements?

    Wenger, Angelina; O'Doherty, Simon; Rigby, Matthew; Manning, Alistair; Palmer, Paul

    2016-04-01

    The GAUGE project evaluates different methods to estimate UK emissions. However, estimating carbon dioxide emissions as a result of fossil fuel burning is challenging as natural fluxes in and out of the atmosphere are very large. Radiocarbon (14C) measurements offer a way to specifically measure the amount of recently added carbon dioxide from fossil fuel burning. This is possible as, due to their age, all the radiocarbon in fossil fuels has decayed. Hence the amount of recently added CO2 from fossil fuel burning can be measured as a depletion of the 14C content in air. While this method has been successfully applied by several groups on a city or a regional scale, this is the first attempt at using the technique for a national emission estimate. Geographically the UK, being an island, is a good location for such an experiment. But are 14CO2 measurements the ideal solution for estimating fossil fuel emissions as they are heralded to be? Previous studies have shown that 14CO2emissions from the nuclear industry mask the 14C depletion caused by fossil fuel burning and result in an underestimation of the fossil fuel CO2. While this might not be a problem in certain regions around the world, many countries like the UK have a substantial nuclear industry. A correction for this enhancement from the nuclear industry can be applied but are invariably difficult as 14CO2emissions from nuclear power plants have a high temporal variability. We will explain how our sampling strategy was chosen to minimize the influence form the nuclear industry and why this proved to be challenging. In addition we present the results from our ground based measurements to show why trying to estimate national emissions using radiocarbon measurements was overambitious, and how practical the technique is for the UK in general.

  16. Fossil fuels in the 21st century.

    Lincoln, Stephen F

    2005-12-01

    An overview of the importance of fossil fuels in supplying the energy requirements of the 21st century, their future supply, and the impact of their use on global climate is presented. Current and potential alternative energy sources are considered. It is concluded that even with substantial increases in energy derived from other sources, fossil fuels will remain a major energy source for much of the 21st century and the sequestration of CO2 will be an increasingly important requirement.

  17. Microalgal and Terrestrial Transport Biofuels to Displace Fossil Fuels

    Lucas Reijnders

    2009-02-01

    Full Text Available Terrestrial transport biofuels differ in their ability to replace fossil fuels. When both the conversion of solar energy into biomass and the life cycle inputs of fossil fuels are considered, ethanol from sugarcane and biodiesel from palm oil do relatively well, if compared with ethanol from corn, sugar beet or wheat and biodiesel from rapeseed. When terrestrial biofuels are to replace mineral oil-derived transport fuels, large areas of good agricultural land are needed: about 5x108 ha in the case of biofuels from sugarcane or oil palm, and at least 1.8-3.6x109 ha in the case of ethanol from wheat, corn or sugar beet, as produced in industrialized countries. Biofuels from microalgae which are commercially produced with current technologies do not appear to outperform terrestrial plants such as sugarcane in their ability to displace fossil fuels. Whether they will able to do so on a commercial scale in the future, is uncertain.

  18. Sanitary effects of fossil fuels; Effets sanitaires des combustibles fossiles

    Nifenecker, H. [Centre National de la Recherche Scientifique (IN2P3/CNRS), 38 - Grenoble (France)

    2006-07-01

    In this compilation are studied the sanitary effects of fossil fuels, behavioral and environmental sanitary risks. The risks in connection with the production, the transport and the distribution(casting) are also approached for the oil(petroleum), the gas and the coal. Accidents in the home are evoked. The risks due to the atmospheric pollution are seen through the components of the atmospheric pollution as well as the sanitary effects of this pollution. (N.C.)

  19. A Statistical Method for Estimating Missing GHG Emissions in Bottom-Up Inventories: The Case of Fossil Fuel Combustion in Industry in the Bogota Region, Colombia

    Jimenez-Pizarro, R.; Rojas, A. M.; Pulido-Guio, A. D.

    2012-12-01

    The development of environmentally, socially and financially suitable greenhouse gas (GHG) mitigation portfolios requires detailed disaggregation of emissions by activity sector, preferably at the regional level. Bottom-up (BU) emission inventories are intrinsically disaggregated, but although detailed, they are frequently incomplete. Missing and erroneous activity data are rather common in emission inventories of GHG, criteria and toxic pollutants, even in developed countries. The fraction of missing and erroneous data can be rather large in developing country inventories. In addition, the cost and time for obtaining or correcting this information can be prohibitive or can delay the inventory development. This is particularly true for regional BU inventories in the developing world. Moreover, a rather common practice is to disregard or to arbitrarily impute low default activity or emission values to missing data, which typically leads to significant underestimation of the total emissions. Our investigation focuses on GHG emissions by fossil fuel combustion in industry in the Bogota Region, composed by Bogota and its adjacent, semi-rural area of influence, the Province of Cundinamarca. We found that the BU inventories for this sub-category substantially underestimate emissions when compared to top-down (TD) estimations based on sub-sector specific national fuel consumption data and regional energy intensities. Although both BU inventories have a substantial number of missing and evidently erroneous entries, i.e. information on fuel consumption per combustion unit per company, the validated energy use and emission data display clear and smooth frequency distributions, which can be adequately fitted to bimodal log-normal distributions. This is not unexpected as industrial plant sizes are typically log-normally distributed. Moreover, our statistical tests suggest that industrial sub-sectors, as classified by the International Standard Industrial Classification (ISIC

  20. Assessing the current Brazilian sugar cane industry and directing developments for maximum fossil fuel mitigation for the international petrochemical market

    Brehmer, B.; Sanders, J.P.M.

    2009-01-01

    The EU proposes that 5.75% of the transportation fuels market consist of biofuels by 2010 and the USA proposes that all gasoline be blended with 10% bioethanol by 2012. While these targets have not yet been reached, an aura of critique is emerging, arguing that biofuel mandates are not sustainable.

  1. Fossil fuels supplies modeling and research

    Leiby, P.N.

    1996-06-01

    The fossil fuel supplies modeling and research effort focuses on models for US Strategic Petroleum Reserve (SPR) planning and management. Topics covered included new SPR oil valuation models, updating models for SPR risk analysis, and fill-draw planning. Another task in this program area is the development of advanced computational tools for three-dimensional seismic analysis.

  2. The Fascinating Story of Fossil Fuels

    Asimov, Isaac

    1973-01-01

    How this energy source was created, its meaning to mankind, our drastically reduced supply, and why we cannot wait for nature to make more are considered. Today fossil fuels supply 96 percent of the energy used but we must find alternate energy options if we are to combat the energy crisis. (BL)

  3. Diatoms: a fossil fuel of the future.

    Levitan, Orly; Dinamarca, Jorge; Hochman, Gal; Falkowski, Paul G

    2014-03-01

    Long-term global climate change, caused by burning petroleum and other fossil fuels, has motivated an urgent need to develop renewable, carbon-neutral, economically viable alternatives to displace petroleum using existing infrastructure. Algal feedstocks are promising candidate replacements as a 'drop-in' fuel. Here, we focus on a specific algal taxon, diatoms, to become the fossil fuel of the future. We summarize past attempts to obtain suitable diatom strains, propose future directions for their genetic manipulation, and offer biotechnological pathways to improve yield. We calculate that the yields obtained by using diatoms as a production platform are theoretically sufficient to satisfy the total oil consumption of the US, using between 3 and 5% of its land area.

  4. Microbial Biotechnology 2020; microbiology of fossil fuel resources.

    Head, Ian M; Gray, Neil D

    2016-09-01

    This roadmap examines the future of microbiology research and technology in fossil fuel energy recovery. Globally, the human population will be reliant on fossil fuels for energy and chemical feedstocks for at least the medium term. Microbiology is already important in many areas relevant to both upstream and downstream activities in the oil industry. However, the discipline has struggled for recognition in a world dominated by geophysicists and engineers despite widely known but still poorly understood microbially mediated processes e.g. reservoir biodegradation, reservoir souring and control, microbial enhanced oil recovery. The role of microbiology is even less understood in developing industries such as shale gas recovery by fracking or carbon capture by geological storage. In the future, innovative biotechnologies may offer new routes to reduced emissions pathways especially when applied to the vast unconventional heavy oil resources formed, paradoxically, from microbial activities in the geological past. However, despite this potential, recent low oil prices may make industry funding hard to come by and recruitment of microbiologists by the oil and gas industry may not be a high priority. With regards to public funded research and the imperative for cheap secure energy for economic growth in a growing world population, there are signs of inherent conflicts between policies aimed at a low carbon future using renewable technologies and policies which encourage technologies which maximize recovery from our conventional and unconventional fossil fuel assets.

  5. Traversing the mountaintop: world fossil fuel production to 2050.

    Nehring, Richard

    2009-10-27

    During the past century, fossil fuels--petroleum liquids, natural gas and coal--were the dominant source of world energy production. From 1950 to 2005, fossil fuels provided 85-93% of all energy production. All fossil fuels grew substantially during this period, their combined growth exceeding the increase in world population. This growth, however, was irregular, providing for rapidly growing per capita production from 1950 to 1980, stable per capita production from 1980 to 2000 and rising per capita production again after 2000. During the past half century, growth in fossil fuel production was essentially limited by energy demand. During the next half century, fossil fuel production will be limited primarily by the amount and characteristics of remaining fossil fuel resources. Three possible scenarios--low, medium and high--are developed for the production of each of the fossil fuels to 2050. These scenarios differ primarily by the amount of ultimate resources estimated for each fossil fuel. Total fossil fuel production will continue to grow, but only slowly for the next 15-30 years. The subsequent peak plateau will last for 10-15 years. These production peaks are robust; none of the fossil fuels, even with highly optimistic resource estimates, is projected to keep growing beyond 2050. World fossil fuel production per capita will thus begin an irreversible decline between 2020 and 2030.

  6. Microbial biocatalyst developments to upgrade fossil fuels.

    Kilbane, John J

    2006-06-01

    Steady increases in the average sulfur content of petroleum and stricter environmental regulations concerning the sulfur content have promoted studies of bioprocessing to upgrade fossil fuels. Bioprocesses can potentially provide a solution to the need for improved and expanded fuel upgrading worldwide, because bioprocesses for fuel upgrading do not require hydrogen and produce far less carbon dioxide than thermochemical processes. Recent advances have demonstrated that biodesulfurization is capable of removing sulfur from hydrotreated diesel to yield a product with an ultra-low sulfur concentration that meets current environmental regulations. However, the technology has not yet progressed beyond laboratory-scale testing, as more efficient biocatalysts are needed. Genetic studies to obtain improved biocatalysts for the selective removal of sulfur and nitrogen from petroleum provide the focus of current research efforts.

  7. Classification of fossil fuels according to structural-chemical characteristics

    A.M. Gyul' maliev; G.S. Golovin; S.G. Gagarin [Institute for Fossil Fuels, Moscow (Russian Federation)

    2007-10-15

    On the basis of a set of linear equations that relate the amount of major elements n{sub E} (E = C, H, O, N, S) in the organic matter of fossil fuels to structural characteristics, such as the number of cycles R, the number of atoms n{sub E}, the number of mutual chemical bonds, the degree of unsaturation of the structure {delta}, and the extent of its reduction B, a structural-chemical classification of fossil coals that is closely related to the parameters of the industrial-genetic classification (GOST 25543-88) is proposed. Structural-chemical classification diagrams are constructed for power-generating coals of Russia; coking coals; and coals designed for nonfuel purposes including the manufacture of adsorbents, synthetic liquid fuel, ion exchangers, thermal graphite, and carbon-graphite materials.

  8. Recent developments in biodesulfurization of fossil fuels.

    Xu, Ping; Feng, Jinhui; Yu, Bo; Li, Fuli; Ma, Cuiqing

    2009-01-01

    The emission of sulfur oxides can have adverse effects on the environment. Biodesulfurization of fossil fuels is attracting more and more attention because such a bioprocess is environmentally friendly. Some techniques of desulfurization have been used or studied to meet the stricter limitation on sulfur content in China. Recent advances have demonstrated the mechanism and developments for biodesulfurization of gasoline, diesel and crude oils by free cells or immobilized cells. Genetic technology was also used to improve sulfur removal efficiencies. In this review, we summarize recent progress mainly in China on petroleum biodesulfurization.

  9. On Corporate Accountability: Lead, Asbestos, and Fossil Fuel Lawsuits.

    Shearer, Christine

    2015-08-01

    This paper examines the use of lawsuits against three industries that were eventually found to be selling products damaging to human heath and the environment: lead paint, asbestos, and fossil fuels. These industries are similar in that some companies tried to hide or distort information showing their products were harmful. Common law claims were eventually filed to hold the corporations accountable and compensate the injured. This paper considers the important role the lawsuits played in helping establish some accountability for the industries while also noting the limitations of the lawsuits. It will be argued that the lawsuits helped create pressure for government regulation of the industries' products but were less successful at securing compensation for the injured. Thus, the common law claims strengthened and supported administrative regulation and the adoption of industry alternatives more than they provided a means of legal redress.

  10. Upward revision of global fossil fuel methane emissions based on isotope database

    Schwietzke, Stefan; Sherwood, Owen A.; Bruhwiler, Lori M. P.; Miller, John B.; Etiope, Giuseppe; Dlugokencky, Edward J.; Michel, Sylvia Englund; Arling, Victoria A.; Vaughn, Bruce H.; White, James W. C.; Tans, Pieter P.

    2016-10-01

    Methane has the second-largest global radiative forcing impact of anthropogenic greenhouse gases after carbon dioxide, but our understanding of the global atmospheric methane budget is incomplete. The global fossil fuel industry (production and usage of natural gas, oil and coal) is thought to contribute 15 to 22 per cent of methane emissions to the total atmospheric methane budget. However, questions remain regarding methane emission trends as a result of fossil fuel industrial activity and the contribution to total methane emissions of sources from the fossil fuel industry and from natural geological seepage, which are often co-located. Here we re-evaluate the global methane budget and the contribution of the fossil fuel industry to methane emissions based on long-term global methane and methane carbon isotope records. We compile the largest isotopic methane source signature database so far, including fossil fuel, microbial and biomass-burning methane emission sources. We find that total fossil fuel methane emissions (fossil fuel industry plus natural geological seepage) are not increasing over time, but are 60 to 110 per cent greater than current estimates owing to large revisions in isotope source signatures. We show that this is consistent with the observed global latitudinal methane gradient. After accounting for natural geological methane seepage, we find that methane emissions from natural gas, oil and coal production and their usage are 20 to 60 per cent greater than inventories. Our findings imply a greater potential for the fossil fuel industry to mitigate anthropogenic climate forcing, but we also find that methane emissions from natural gas as a fraction of production have declined from approximately 8 per cent to approximately 2 per cent over the past three decades.

  11. Upward revision of global fossil fuel methane emissions based on isotope database.

    Schwietzke, Stefan; Sherwood, Owen A; Bruhwiler, Lori M P; Miller, John B; Etiope, Giuseppe; Dlugokencky, Edward J; Michel, Sylvia Englund; Arling, Victoria A; Vaughn, Bruce H; White, James W C; Tans, Pieter P

    2016-10-06

    Methane has the second-largest global radiative forcing impact of anthropogenic greenhouse gases after carbon dioxide, but our understanding of the global atmospheric methane budget is incomplete. The global fossil fuel industry (production and usage of natural gas, oil and coal) is thought to contribute 15 to 22 per cent of methane emissions to the total atmospheric methane budget. However, questions remain regarding methane emission trends as a result of fossil fuel industrial activity and the contribution to total methane emissions of sources from the fossil fuel industry and from natural geological seepage, which are often co-located. Here we re-evaluate the global methane budget and the contribution of the fossil fuel industry to methane emissions based on long-term global methane and methane carbon isotope records. We compile the largest isotopic methane source signature database so far, including fossil fuel, microbial and biomass-burning methane emission sources. We find that total fossil fuel methane emissions (fossil fuel industry plus natural geological seepage) are not increasing over time, but are 60 to 110 per cent greater than current estimates owing to large revisions in isotope source signatures. We show that this is consistent with the observed global latitudinal methane gradient. After accounting for natural geological methane seepage, we find that methane emissions from natural gas, oil and coal production and their usage are 20 to 60 per cent greater than inventories. Our findings imply a greater potential for the fossil fuel industry to mitigate anthropogenic climate forcing, but we also find that methane emissions from natural gas as a fraction of production have declined from approximately 8 per cent to approximately 2 per cent over the past three decades.

  12. Sustainability of fossil fuels and alternative energies for Turkey

    Tasdemiroglu, E.

    1989-01-01

    Reserves and production of fossil fuels in Turkey are discussed, as well as projections of production rates to the year 2010. Sustainability of fossil-fuel production has been estimated on the basis of presently known data. Fossil fuels will have a very limited lifetime. Bitumens, hydropower, geothermal energy, solar energy, wind power, biomass, and nuclear energy are appropriate alternative technologies. The potentials of these alternatives are given and recommendations made to enhance their contributions. 19 refs., 1 fig., 2 tabs.

  13. Atmospheric Lifetime of Fossil Fuel Carbon Dioxide

    Archer, David; Eby, Michael; Brovkin, Victor; Ridgwell, Andy; Cao, Long; Mikolajewicz, Uwe; Caldeira, Ken; Matsumoto, Katsumi; Munhoven, Guy; Montenegro, Alvaro; Tokos, Kathy

    2009-05-01

    CO2 released from combustion of fossil fuels equilibrates among the various carbon reservoirs of the atmosphere, the ocean, and the terrestrial biosphere on timescales of a few centuries. However, a sizeable fraction of the CO2 remains in the atmosphere, awaiting a return to the solid earth by much slower weathering processes and deposition of CaCO3. Common measures of the atmospheric lifetime of CO2, including the e-folding time scale, disregard the long tail. Its neglect in the calculation of global warming potentials leads many to underestimate the longevity of anthropogenic global warming. Here, we review the past literature on the atmospheric lifetime of fossil fuel CO2 and its impact on climate, and we present initial results from a model intercomparison project on this topic. The models agree that 20-35% of the CO2 remains in the atmosphere after equilibration with the ocean (2-20 centuries). Neutralization by CaCO3 draws the airborne fraction down further on timescales of 3 to 7 kyr.

  14. Energy properties of solid fossil fuels and solid biofuels

    Holubcik, Michal; Kolkova, Zuzana; Jandacka, Jozef

    2016-06-01

    The paper deals about the problematic of energy properties of solid biofuels in comparison with solid fossil fuels. Biofuels are alternative to fossil fuels and their properties are very similar. During the experiments were done in detail experiments to obtain various properties of spruce wood pellets and wheat straw pellets like biofuels in comparison with brown coal and black coal like fossil fuels. There were tested moisture content, volatile content, fixed carbon content, ash content, elementary analysis (C, H, N, S content) and ash fusion temperatures. The results show that biofuels have some advantages and also disadvantages in comparison with solid fossil fuels.

  15. Divesting from Fossil Fuels Makes Sense Morally… and Financially

    Cleveland, Cutler J.; Reibstein, Richard

    2015-01-01

    Should university endowments divest from fossil fuels? A public discussion of this question has seen some university presidents issuing statements that they would not divest--that investments should not be used for "political action." Many universities hold large endowments that have significant positions in fossil fuel companies or…

  16. Carbon monoxide : A quantitative tracer for fossil fuel CO2?

    Gamnitzer, Ulrike; Karstens, Ute; Kromer, Bernd; Neubert, Rolf E. M.; Meijer, Harro A. J.; Schroeder, Hartwig; Levin, Ingeborg

    2006-01-01

    Carbon monoxide (CO), carbon dioxide (CO2), and radiocarbon ((CO2)-C-14) measurements have been made in Heidelberg from 2001 to 2004 in order to determine the regional fossil fuel CO2 component and to investigate the application of CO as a quantitative tracer for fossil fuel CO2 (CO2(foss)). The obs

  17. Microalgal and terrestrial transport biofuels to displace fossil fuels

    Reijnders, L.

    2009-01-01

    Terrestrial transport biofuels differ in their ability to replace fossil fuels. When both the conversion of solar energy into biomass and the life cycle inputs of fossil fuels are considered, ethanol from sugarcane and biodiesel from palm oil do relatively well, if compared with ethanol from corn, s

  18. Hydrogen: A real alternative to fossil fuels and bio fuels in the Spanish vehicle industry; El Hidrogeno: Una alternativa real a los combustible fosiles y a los biocombustible para automoacion en Espana

    Hernandez-Sobrino, F.; Rodriguez-Monroy, C.; Hernandez-Perez, J. L.

    2010-07-01

    For several years, UE has been trying to increase the use of bio fuels to replace petrol or diesel in the transports with the aim of fulfilling a commitment about climate change, supplying environmentally friendly conditions, promoting renewable energy sources. To achieve this, the 2003/30/EC Directive states that in all the European countries, before 31st December 2010, at least 5.75% of all petrol and diesel fuels used for transport are bio fuels. In previous papers, the authors evaluated this possibility. Analyzing hydrogen as replacement of fossil fuels and bio fuels nowadays in spain and a technical,economic and environmental point of view is the aim of this paper. (Author)

  19. Biodesulfurization of refractory organic sulfur compounds in fossil fuels.

    Soleimani, Mehran; Bassi, Amarjeet; Margaritis, Argyrios

    2007-01-01

    The stringent new regulations to lower sulfur content in fossil fuels require new economic and efficient methods for desulfurization of recalcitrant organic sulfur. Hydrodesulfurization of such compounds is very costly and requires high operating temperature and pressure. Biodesulfurization is a non-invasive approach that can specifically remove sulfur from refractory hydrocarbons under mild conditions and it can be potentially used in industrial desulfurization. Intensive research has been conducted in microbiology and molecular biology of the competent strains to increase their desulfurization activity; however, even the highest activity obtained is still insufficient to fulfill the industrial requirements. To improve the biodesulfurization efficiency, more work is needed in areas such as increasing specific desulfurization activity, hydrocarbon phase tolerance, sulfur removal at higher temperature, and isolating new strains for desulfurizing a broader range of sulfur compounds. This article comprehensively reviews and discusses key issues, advances and challenges for a competitive biodesulfurization process.

  20. Future fossil fuel electricity generation in Europe: options and consequences

    Tzimas, E.; Georgakaki, A.; Peteves, S.D.

    2009-07-01

    The study investigates the development of the fossil fuel fired power generation in Europe up to 2030 and identifies the critical factors that influence its evolution. Through the application of the least-cost expansion planning methods, the technology and fuel mix of fossil fuel power plant portfolios emerging from the twenty-four techno-economic scenarios are described. The different scenarios present alternative views for the role of non-fossil fuel power generation, the development of the world fuel and carbon markets and the carbon capture power generating technologies. The study estimates the needs for new fossil fuel capacity and identifies the optimal power plant mix for all possible combinations of the cases mentioned above. The impacts of the resulting portfolios on the objectives of the European energy policy are assessed using as indicators the capital investment fo the construction of the required capacity, the fuel consumption, the composition of the fuel mix, the CO{sub 2} emission levels, and the average production cost of electricity from the fossil fuelled fleet. The report finds that high CO{sub 2} prices need to be maintained and carbon capture technology must be developed and become commercialised. If these conditions re met and medium or high fossil fuel prices prevail, the portfolio of fossil fuel power plants that will be deployed will be compatible wit the European goal for the development of a more sustainable and secure energy system. The key conclusion is that for a sustainable and secure energy system we need to invest, both in the increase of non-fossil fuel power generation and to ensure that carob n capture and storage technologies are ready to be deployed when needed. 46 refs.,

  1. Dataset for analysing the relationships among economic growth, fossil fuel and non-fossil fuel consumption.

    Asafu-Adjaye, John; Byrne, Dominic; Alvarez, Maximiliano

    2017-02-01

    The data presented in this article are related to the research article entitled 'Economic Growth, Fossil Fuel and Non-Fossil Consumption: A Pooled Mean Group Analysis using Proxies for Capital' (J. Asafu-Adjaye, D. Byrne, M. Alvarez, 2016) [1]. This article describes data modified from three publicly available data sources: the World Bank׳s World Development Indicators (http://databank.worldbank.org/data/reports.aspx?source=world-development-indicators), the U.S. Energy Information Administration׳s International Energy Statistics (http://www.eia.gov/cfapps/ipdbproject/IEDIndex3.cfm?tid=44&pid=44&aid=2) and the Barro-Lee Educational Attainment Dataset (http://www.barrolee.com). These data can be used to examine the relationships between economic growth and different forms of energy consumption. The dataset is made publicly available to promote further analyses.

  2. Krakow clean fossil fuels and energy efficiency project

    Butcher, T.A.; Pierce, B.L. [Brookhaven National Lab., Upton, NY (United States)

    1995-11-01

    The Support for Eastern European Democracy (SEED) Act of 1989 directed the U.S. Department of Energy (DOE) to undertake an equipment assessment project aimed at developing the capability within Poland to manufacture or modify industrial-scale combustion equipment to utilize fossil fuels cleanly. This project is being implemented in the city of Krakow as the `Krakow Clean Fossil Fuels and Energy Efficiency Project.` Funding is provided through the U.S. Agency for International Development (AID). The project is being conducted in a manner that can be generalized to all of Poland and to the rest of Eastern Europe. The historic city of Krakow has a population of 750,000. Almost half of the heating energy used in Krakow is supplied by low-efficiency boilerhouses and home coal stoves. Within the town, there are more than 1,300 local boilerhouses and 100,000 home stoves. These are collectively referred to as the `low emission sources` and they are the primary sources of particulates and hydrocarbon emissions in the city and major contributors of sulfur dioxide and carbon monoxide.

  3. Krakow clean fossil fuels and energy efficiency project

    Butcher, T.A.; Pierce, B.L.

    1995-12-01

    The Support for Eastern European Democracy (SEED) Act of 1989 directed the U.S. Department of Energy (DOE) to undertake an equipment assessment project aimed at developing the capability within Poland to manufacture or modify industrial-scale combustion equipment to utilize fossil fuels cleanly. This project is being implemented in the city of Krakow as the {open_quotes}Krakow Clean Fossil Fuels and Energy Efficiency Project.{close_quotes} Funding is provided through the U.S. Agency for International Development (AID). The project is being conducted in a manner that can be generalized to all of Poland and to the rest of Eastern Europe. The historic city of Krakow has a population of 750,000. Almost half of the heating energy used in Krakow is supplied by low-efficiency boilerhouses and home coal stoves. Within the town, there are more than 1,300 local boilerhouses and 100, 000 home stoves. These are collectively referred to as the {open_quotes}low emission sources{close_quotes} and they are the primary sources of particulates and hydrocarbon emissions in the city and major contributors of sulfur dioxide and carbon monoxide.

  4. Global combustion: the connection between fossil fuel and biomass burning emissions (1997-2010).

    Balch, Jennifer K; Nagy, R Chelsea; Archibald, Sally; Bowman, David M J S; Moritz, Max A; Roos, Christopher I; Scott, Andrew C; Williamson, Grant J

    2016-06-05

    Humans use combustion for heating and cooking, managing lands, and, more recently, for fuelling the industrial economy. As a shift to fossil-fuel-based energy occurs, we expect that anthropogenic biomass burning in open landscapes will decline as it becomes less fundamental to energy acquisition and livelihoods. Using global data on both fossil fuel and biomass burning emissions, we tested this relationship over a 14 year period (1997-2010). The global average annual carbon emissions from biomass burning during this time were 2.2 Pg C per year (±0.3 s.d.), approximately one-third of fossil fuel emissions over the same period (7.3 Pg C, ±0.8 s.d.). There was a significant inverse relationship between average annual fossil fuel and biomass burning emissions. Fossil fuel emissions explained 8% of the variation in biomass burning emissions at a global scale, but this varied substantially by land cover. For example, fossil fuel burning explained 31% of the variation in biomass burning in woody savannas, but was a non-significant predictor for evergreen needleleaf forests. In the land covers most dominated by human use, croplands and urban areas, fossil fuel emissions were more than 30- and 500-fold greater than biomass burning emissions. This relationship suggests that combustion practices may be shifting from open landscape burning to contained combustion for industrial purposes, and highlights the need to take into account how humans appropriate combustion in global modelling of contemporary fire. Industrialized combustion is not only an important driver of atmospheric change, but also an important driver of landscape change through companion declines in human-started fires.This article is part of the themed issue 'The interaction of fire and mankind'.

  5. Criteria for solid recovered fuels as a substitute for fossil fuels--a review.

    Beckmann, Michael; Pohl, Martin; Bernhardt, Daniel; Gebauer, Kathrin

    2012-04-01

    The waste treatment, particularly the thermal treatment of waste has changed fundamentally in the last 20 years, i.e. from facilities solely dedicated to the thermal treatment of waste to facilities, which in addition to that ensure the safe plant operation and fulfill very ambitious criteria regarding emission reduction, resource recovery and energy efficiency as well. Therefore this contributes to the economic use of raw materials and due to the energy recovered from waste also to the energy provision. The development described had the consequence that waste and solid recovered fuels (SRF) has to be evaluated based on fuel criteria as well. Fossil fuels - coal, crude oil, natural gas etc. have been extensively investigated due to their application in plants for energy conversion and also due to their use in the primary industry. Thereby depending on the respective processes, criteria on fuel technical properties can be derived. The methods for engineering analysis of regular fuels (fossil fuels) can be transferred only partially to SRF. For this reason methods are being developed or adapted to current analytical methods for the characterization of SRF. In this paper the possibilities of the energetic utilization of SRF and the characterization of SRF before and during the energetic utilization will be discussed.

  6. The financial impact of divestment from fossil fuels

    Plantinga, Auke; Scholtens, Bert

    2016-01-01

    Divesting from fossil companies has been put forward as a means to address climate change. We study the impact of such divesting on investment portfolio performance. To this extent, we systematically investigate the investment performance of portfolios with and without fossil fuel company stocks. We

  7. Hydrogen production econometric studies. [hydrogen and fossil fuels

    Howell, J. R.; Bannerot, R. B.

    1975-01-01

    The current assessments of fossil fuel resources in the United States were examined, and predictions of the maximum and minimum lifetimes of recoverable resources according to these assessments are presented. In addition, current rates of production in quads/year for the fossil fuels were determined from the literature. Where possible, costs of energy, location of reserves, and remaining time before these reserves are exhausted are given. Limitations that appear to hinder complete development of each energy source are outlined.

  8. Industrial Fuel Flexibility Workshop

    none,

    2006-09-01

    On September 28, 2006, in Washington, DC, ITP and Booz Allen Hamilton conducted a fuel flexibility workshop with attendance from various stakeholder groups. Workshop participants included representatives from the petrochemical, refining, food and beverage, steel and metals, pulp and paper, cement and glass manufacturing industries; as well as representatives from industrial boiler manufacturers, technology providers, energy and waste service providers, the federal government and national laboratories, and developers and financiers.

  9. Fossil fuels in a sustainable energy future

    Bechtel, T.F. [Dept. of Energy, Morgantown, WV (United States)

    1995-12-01

    The coal industry in the United States has become a world leader in safety, productivity, and environmental protection in the mining of coal. The {open_quotes}pick-and-shovel{close_quotes} miner with mangled limbs and black lung disease has been replaced by the highly skilled technicians that lead the world in tons per man-hour. The gob piles, polluted streams, and scared land are a thing of the past. The complementary efforts of the DOE and EPRI-funded programs in coal utilization R&D and the Clean Coal Technology Program commercial demonstrations, have positioned the power generation industry to utilize coal in a way that doesn`t pollute the air or water, keeps electrical power costs low, and avoids the mountains of waste material. This paper reviews the potential for advanced coal utilization technologies in new power generation applications as well as the repowering of existing plants to increase their output, raise their efficiency, and reduce pollution. It demonstrates the potential for these advanced coal-fueled plants to play a complementary role in future planning with the natural gas and oil fired units currently favored in the market place. The status of the US program to demonstrate these technologies at commercial scale is reviewed in some detail.

  10. Hydrogen Separation Membranes for Vision 21 Fossil Fuel Plants

    Roark, Shane E.; Mackay, Richard; Sammells, Anthony F.

    2001-11-06

    Eltron Research and team members CoorsTek, McDermott Technology, Sued Chemie, Argonne National Laboratory, and Oak Ridge National Laboratory are developing an environmentally benign, inexpensive, and efficient method for separating hydrogen from gas mixtures produced during industrial processes, such as coal gasification. This objective is being pursued using dense membranes based in part on Eltron-patented ceramic materials with a demonstrated ability for proton and electron conduction. The technical goals are being addressed by modifying single-phase and composite membrane composition and microstructure to maximize proton and electron conductivity without loss of material stability. Ultimately, these materials must enable hydrogen separation at practical rates under ambient and high-pressure conditions, without deactivation in the presence of feedstream components such as carbon dioxide, water, and sulfur. This project was motivated by the Department of Energy (DOE) National Energy Technology Laboratory (NETL) Vision 21 initiative which seeks to economically eliminate environmental concerns associated with the use of fossil fuels. The proposed technology addresses the DOE Vision 21 initiative in two ways. First, this process offers a relatively inexpensive solution for pure hydrogen separation that can be easily incorporated into Vision 21 fossil fuel plants. Second, this process could reduce the cost of hydrogen, which is a clean burning fuel under increasing demand as supporting technologies are developed for hydrogen utilization and storage. Additional motivation for this project arises from the potential of this technology for other applications. By appropriately changing the catalysts coupled with the membrane, essentially the same system can be used to facilitate alkane dehydrogenation and coupling, aromatics processing, and hydrogen sulfide decomposition.

  11. Evaluation of Biodiesel Fuels to Reduce Fossil Fuel Use in Corps of Engineers Floating Plant Operations

    2016-07-01

    sensitive emissions, increase use of renewable energy , and reduce the use of fossil fuels was conducted with funding from the U.S. Army Corps of...use of renewable energy , and reduce the use of fossil fuels . DISCLAIMER: The contents of this report are not to be used for advertising...increase agency use of renewable energy , and reduce the use of fossil fuels . For USACE floating plant, one of the main strategies of the USACE SSPP

  12. Alternative fuels in cement industry; Alternativa braenslen i cementindustrin

    Nyman, K.E.; Ek, R. [Finnsementti Oy, Parainen (Finland); Maekelae, K. [Finreci Oy (Finland)

    1997-10-01

    In this project the cement industry`s possibilities to replace half of the fossil fuels with waste derived fuels are investigated. Bench-scale experiments, pilot plant tests and full scale tests have been done with used tires and plastics wastes

  13. Exploration for fossil and nuclear fuels from orbital altitudes

    Short, N. M.

    1977-01-01

    The paper discusses the application of remotely sensed data from orbital satellites to the exploration for fossil and nuclear fuels. Geological applications of Landsat data are described including map editing, lithologic identification, structural geology, and mineral exploration. Specific results in fuel exploration are reviewed and a series of related Landsat images is included.

  14. Untapped Fossil Fuel and the Green Paradox: A classroom calibration of the optimal carbon tax

    Rick van der Ploeg

    2013-01-01

    A classroom model of global warming, fossil fuel depletion and the optimal carbon tax is formulated and calibrated. It features iso-elastic fossil fuel demand, stock-dependent fossil fuel extraction costs, an exogenous interest rate and no decay of the atmospheric stock of carbon. The optimal carbon tax reduces emissions from burning fossil fuel, both in the short and medium run. Furthermore, it brings forward the date that renewables take over from fossil fuel and encourages the market to ke...

  15. Assessing global fossil fuel availability in a scenario framework

    Bauer, Nico; Hilaire, Jerome; Brecha, Robert J.; Edmonds, James A.; Jiang, Kejun; Kriegler, Elmar; Rogner, Hans-Holger; Sferra, Fabio

    2016-06-01

    This study assesses global, long-term economic availability of coal, oil and gas within the Shared Socio-economic Pathway (SSP) scenario framework considering alternative assumptions as to highly uncertain future developments of technology, policy and the economy. Diverse sets of trajectories are formulated varying the challenges to mitigation and adaptation of climate change. The potential CO2 emissions from fossil fuels make it a crucial element subject to deep uncertainties. The analysis is based on a well-established data set of cost-quantity combinations that assumes favorable techno-economic developments, but ignores additional constraints on the extraction sector. This study significantly extends that analysis to include alternative assumptions for the fossil fuel sector consistent with the SSP scenario families and applies these filters to the original data set, thus resulting in alternative cumulative fossil fuel availability curves. In a Middle-of-the-Road scenario, low cost fossil fuels embody carbon consistent with a RCP6.0 emission profile, if all the CO2 were emitted freely during the 21st century. In scenarios with high challenges to mitigation, the assumed embodied carbon in low-cost fossil fuels can trigger a RCP8.5 scenario; low mitigation challenges scenarios are still consistent with a RCP4.5 scenario.

  16. Can Geothermal Power Replace Fossil Fuels?

    Klenner, R.; Gosnold, W. D.

    2009-12-01

    is scaled up to produce power in the MW range. Values needed for these systems are temperatures of 92+ °C and flow rates of 140-1000 gpm. In a detailed analysis of the North Dakota part of the Williston Basin, we used heat flow, bottom-hole temperatures, and measured temperature gradients to calculate the energy contained within specific formations having temperatures in the range of 100 °C to 150 °C. We find that at a 2% recovery factor, approximately 4500 MW/hr can be recovered at depths of 3-4 km. North Dakota currently produces approximately 3100 MW/hr from non-renewable sources such as coal and petroleum. We conclude that the geothermal resource in the Williston Basin could completely replace fossil fuels as an electrical power supply for North Dakota.

  17. Reliability estimation for multiunit nuclear and fossil-fired industrial energy systems

    Sullivan, W. G.; Wilson, J. V.; Klepper, O. H.

    1977-06-29

    As petroleum-based fuels grow increasingly scarce and costly, nuclear energy may become an important alternative source of industrial energy. Initial applications would most likely include a mix of fossil-fired and nuclear sources of process energy. A means for determining the overall reliability of these mixed systems is a fundamental aspect of demonstrating their feasibility to potential industrial users. Reliability data from nuclear and fossil-fired plants are presented, and several methods of applying these data for calculating the reliability of reasonably complex industrial energy supply systems are given. Reliability estimates made under a number of simplifying assumptions indicate that multiple nuclear units or a combination of nuclear and fossil-fired plants could provide adequate reliability to meet industrial requirements for continuity of service.

  18. New Optical Sensor Suite for Ultrahigh Temperature Fossil Fuel Application

    John Coggin; Tom Flynn; Jonas Ivasauskas; Daniel Kominsky; Carrie Kozikowski; Russell May; Michael Miller; Tony Peng; Gary Pickrell; Raymond Rumpf; Kelly Stinson-Bagby; Dan Thorsen; Rena Wilson

    2007-12-31

    Accomplishments of a program to develop and demonstrate photonic sensor technology for the instrumentation of advanced powerplants and solid oxide fuel cells are described. The goal of this project is the research and development of advanced, robust photonic sensors based on improved sapphire optical waveguides, and the identification and demonstration of applications of the new sensors in advanced fossil fuel power plants, where the new technology will contribute to improvements in process control and monitoring.

  19. Monthly, global emissions of carbon dioxide from fossil fuel consumption

    Andres, R.J.; Gregg, Jay Sterling; Losey, L.

    2011-01-01

    This paper examines available data, develops a strategy and presents a monthly, global time series of fossil-fuel carbon dioxide emissions for the years 1950–2006. This monthly time series was constructed from detailed study of monthly data from the 21 countries that account for approximately 80...

  20. Rationale of Early Adopters of Fossil Fuel Divestment

    Beer, Christopher Todd

    2016-01-01

    Purpose: This research uses the social science perspectives of institutions, ecological modernization and social movements to analyze the rationale used by the early-adopting universities of fossil fuel divestment in the USA. Design/methodology/approach: Through analysis of qualitative data from interviews with key actors at the universities that…

  1. Divesting Fossil Fuels : The Implications for Investment Portfolios

    Trinks, Arjan; Scholtens, Bert; Mulder, Machiel; Dam, Lammertjan

    2017-01-01

    Fossil fuel divestment campaigns urge investors to sell their stakes in companies that supply coal, oil, and gas. However, avoiding investments in such companies can be expected to impose a financial cost on the investor because of reduced opportunities for portfolio diversification. We compare the

  2. Political determinants of fossil fuel pricing

    Van Beers, C.P.; Strand, J.

    2013-01-01

    This paper provides an empirical analysis of economic and political determinants of gasoline and diesel prices for about 200 countries over the period 1991–2010. A range of both political and economic variables are found to systematically influence fuel prices, and in ways that differ systematically

  3. The future of oil: unconventional fossil fuels.

    Chew, Kenneth J

    2014-01-13

    Unconventional fossil hydrocarbons fall into two categories: resource plays and conversion-sourced hydrocarbons. Resource plays involve the production of accumulations of solid, liquid or gaseous hydro-carbons that have been generated over geological time from organic matter in source rocks. The character of these hydrocarbons may have been modified subsequently, especially in the case of solids and extra-heavy liquids. These unconventional hydrocarbons therefore comprise accumulations of hydrocarbons that are trapped in an unconventional manner and/or whose economic exploitation requires complex and technically advanced production methods. This review focuses primarily on unconventional liquid hydro-carbons. The future potential of unconventional gas, especially shale gas, is also discussed, as it is revolutionizing the energy outlook in North America and elsewhere.

  4. Determination of fossil carbon content in Swedish waste fuel by four different methods.

    Jones, Frida C; Blomqvist, Evalena W; Bisaillon, Mattias; Lindberg, Daniel K; Hupa, Mikko

    2013-10-01

    This study aimed to determine the content of fossil carbon in waste combusted in Sweden by using four different methods at seven geographically spread combustion plants. In total, the measurement campaign included 42 solid samples, 21 flue gas samples, 3 sorting analyses and 2 investigations using the balance method. The fossil carbon content in the solid samples and in the flue gas samples was determined using (14)C-analysis. From the analyses it was concluded that about a third of the carbon in mixed Swedish waste (municipal solid waste and industrial waste collected at Swedish industry sites) is fossil. The two other methods (the balance method and calculations from sorting analyses), based on assumptions and calculations, gave similar results in the plants in which they were used. Furthermore, the results indicate that the difference between samples containing as much as 80% industrial waste and samples consisting of solely municipal solid waste was not as large as expected. Besides investigating the fossil content of the waste, the project was also established to investigate the usability of various methods. However, it is difficult to directly compare the different methods used in this project because besides the estimation of emitted fossil carbon the methods provide other information, which is valuable to the plant owner. Therefore, the choice of method can also be controlled by factors other than direct determination of the fossil fuel emissions when considering implementation in the combustion plants.

  5. Hydrogen as a renewable and sustainable solution in reducing global fossil fuel consumption

    Midilli, Adnan; Dincer, Ibrahim [Energy Division, Mechanical Engineering Department, Nigde University, 51100 Nigde (Turkey); Faculty of Engineering and Applied Science, University of Ontario Institute of Technology, 2000 Simcoe Street North, Oshawa, Ontario L1H 7K4 (Canada)

    2008-08-15

    In this paper, hydrogen is considered as a renewable and sustainable solution for reducing global fossil fuel consumption and combating global warming and studied exergetically through a parametric performance analysis. The environmental impact results are then compared with the ones obtained for fossil fuels. In this regard, some exergetic expressions are derived depending primarily upon the exergetic utilization ratios of fossil fuels and hydrogen: the fossil fuel based global waste exergy factor, hydrogen based global exergetic efficiency, fossil fuel based global irreversibility coefficient and hydrogen based global exergetic indicator. These relations incorporate predicted exergetic utilization ratios for hydrogen energy from non-fossil fuel resources such as water, etc., and are used to investigate whether or not exergetic utilization of hydrogen can significantly reduce the fossil fuel based global irreversibility coefficient (ranging from 1 to +{infinity}) indicating the fossil fuel consumption and contribute to increase the hydrogen based global exergetic indicator (ranging from 0 to 1) indicating the hydrogen utilization at a certain ratio of fossil fuel utilization. In order to verify all these exergetic expressions, the actual fossil fuel consumption and production data are taken from the literature. Due to the unavailability of appropriate hydrogen data for analysis, it is assumed that the utilization ratios of hydrogen are ranged between 0 and 1. For the verification of these parameters, the variations of fossil fuel based global irreversibility coefficient and hydrogen based global exergetic indicator as the functions of fossil fuel based global waste exergy factor, hydrogen based global exergetic efficiency and exergetic utilization of hydrogen from non-fossil fuels are analyzed and discussed in detail. Consequently, if exergetic utilization ratio of hydrogen from non-fossil fuel sources at a certain exergetic utilization ratio of fossil fuels

  6. Fossil-Fuel C02 Emissions Database and Exploration System

    Krassovski, M.; Boden, T.; Andres, R. J.; Blasing, T. J.

    2012-12-01

    The Carbon Dioxide Information Analysis Center (CDIAC) at Oak Ridge National Laboratory (ORNL) quantifies the release of carbon from fossil-fuel use and cement production at global, regional, and national spatial scales. The CDIAC emission time series estimates are based largely on annual energy statistics published at the national level by the United Nations (UN). CDIAC has developed a relational database to house collected data and information and a web-based interface to help users worldwide identify, explore and download desired emission data. The available information is divided in two major group: time series and gridded data. The time series data is offered for global, regional and national scales. Publications containing historical energy statistics make it possible to estimate fossil fuel CO2 emissions back to 1751. Etemad et al. (1991) published a summary compilation that tabulates coal, brown coal, peat, and crude oil production by nation and year. Footnotes in the Etemad et al.(1991) publication extend the energy statistics time series back to 1751. Summary compilations of fossil fuel trade were published by Mitchell (1983, 1992, 1993, 1995). Mitchell's work tabulates solid and liquid fuel imports and exports by nation and year. These pre-1950 production and trade data were digitized and CO2 emission calculations were made following the procedures discussed in Marland and Rotty (1984) and Boden et al. (1995). The gridded data presents annual and monthly estimates. Annual data presents a time series recording 1° latitude by 1° longitude CO2 emissions in units of million metric tons of carbon per year from anthropogenic sources for 1751-2008. The monthly, fossil-fuel CO2 emissions estimates from 1950-2008 provided in this database are derived from time series of global, regional, and national fossil-fuel CO2 emissions (Boden et al. 2011), the references therein, and the methodology described in Andres et al. (2011). The data accessible here take these

  7. CAUSAL RELATIONSHIP BETWEEN FOSSIL FUEL CONSUMPTION AND ECONOMIC GROWTH IN JAPAN: A MULTIVARIATE APPROACH

    Hazuki Ishida

    2013-01-01

    Full Text Available This paper explores whether Japanese economy can continue to grow without extensive dependence on fossil fuels. The paper conducts time series analysis using a multivariate model of fossil fuels, non-fossil energy, labor, stock and GDP to investigate the relationship between fossil fuel consumption and economic growth in Japan. The results of cointegration tests indicate long-run relationships among the variables. Using a vector error-correction model, the study reveals bidirectional causality between fossil fuels and GDP. The results also show that there is no causal relationship between non-fossil energy and GDP. The results of cointegration analysis, Granger causality tests, and variance decomposition analysis imply that non-fossil energy may not necessarily be able to play the role of fossil fuels. Japan cannot seem to realize both continuous economic growth and the departure from dependence on fossil fuels. Hence, growth-oriented macroeconomic policies should be re-examined.

  8. 75 FR 66008 - Fossil Fuel-Generated Energy Consumption Reduction for New Federal Buildings and Major...

    2010-10-27

    ... Parts 433 and 435 RIN 1904-AB96 Fossil Fuel-Generated Energy Consumption Reduction for New Federal... proposed rulemaking (NOPR) regarding the fossil fuel- generated energy consumption ] requirements for new... regarding the fossil fuel-generated energy consumption requirements for new Federal buildings and...

  9. 75 FR 63404 - Fossil Fuel-Generated Energy Consumption Reduction for New Federal Buildings and Major...

    2010-10-15

    ...; ] DEPARTMENT OF ENERGY 10 CFR Parts 433 and 435 RIN 1904-AB96 Fossil Fuel-Generated Energy Consumption... address the reduction of fossil fuel-generated energy consumption in new Federal buildings and Federal... they believe meeting the full fossil fuel-generated energy consumption reduction level is...

  10. Decadal trends in fossil fuel energy consumption and related air pollutant emissions

    Shekar Reddy, M.; Venkataraman, C.; Boucher, O.

    2003-04-01

    The economic liberalization in the early 1990s in India fuelled the industrial production, enabled the decadal annual average rate of 5.9% in the gross domestic product (GDP) during 1990-2000. This resulted in a steady increase of fossil fuels energy consumption throughout the decade. This paper investigates the trends in the GDP growth rate, sectoral fossil fuels consumption and resultant atmospheric air pollutant emissions during the above period. The fossil fuels energy consumption in the 1990 was 6875 PJ, and increased to 10801 PJ in 2000, with a decadal annual average growth rate of 5.7%. Share of the coal and petroleum fuels are 52% and 35%, respectively during 2000. The relative share contribution of power, industrial, transport, and domestic sectors are 40%, 48%, 5% and 7%, respectively. The contribution of various sectors to fossil fuels energy consumption, and the relative distribution of the different fuels within each sector will be discussed. The annual sulfur dioxide (SO_2) and aerosols (particulate matter, black carbon, organic carbon) emissions are estimated using sector and fuel specific average emission factors (mass of pollutant per unit mass of fuel burnt). The estimates take into account the changes in the fuel characteristics and technology during the study period. The estimated SO_2 emissions are 1.7 Tg S yr-1 in 1990 and increased to 2.5 Tg S yr-1 in 2000, with an annual average increase of 5%. Majority of the SO_2 emissions are from coal consumption accounting 62%, predominantly from the power plants. Trends in fuel and sectoral contributions to SO2 emissions over the decade will be presented. In the transportation sector, diesels contribute significantly to BC. Notably, in India, two-stroke engines account for 78% of total vehicle fleet, and contribute significantly to organic carbon emissions. An analysis of available SO_2 and aerosols concentration measurements will be made to explore the possible correlations between trends in the

  11. US fossil fuel technologies for Thailand

    Buehring, W.A.; Dials, G.E.; Gillette, J.L.; Szpunar, C.B.; Traczyk, P.A.

    1990-10-01

    The US Department of Energy has been encouraging other countries to consider US coal and coal technologies in meeting their future energy needs. Thailand is one of three developing countries determined to be a potentially favorable market for such exports. This report briefly profiles Thailand with respect to population, employment, energy infrastructure and policies, as well as financial, economic, and trade issues. Thailand is shifting from a traditionally agrarian economy to one based more strongly on light manufacturing and will therefore require increased energy resources that are reliable and flexible in responding to anticipated growth. Thailand has extensive lignite deposits that could fuel a variety of coal-based technologies. Atmospheric fluidized-bed combustors could utilize this resource and still permit Thailand to meet emission standards for sulfur dioxide. This option also lends itself to small-scale applications suitable for private-sector power generation. Slagging combustors and coal-water mixtures also appear to have potential. Both new construction and refurbishment of existing plants are planned. 18 refs., 3 figs., 7 tabs.

  12. Renewable hydrogen production for fossil fuel processing

    Greenbaum, E.; Lee, J.W.; Tevault, C.V. [and others

    1995-06-01

    In the fundamental biological process of photosynthesis, atmospheric carbon dioxide is reduced to carbohydrate using water as the source of electrons with simultaneous evolution of molecular oxygen: H{sub 2}O + CO{sub 2} + light {yields} O{sub 2} + (CH{sub 2}O). It is well established that two light reactions, Photosystems I and II (PSI and PSII) working in series, are required to perform oxygenic photosynthesis. Experimental data supporting the two-light reaction model are based on the quantum requirement for complete photosynthesis, spectroscopy, and direct biochemical analysis. Some algae also have the capability to evolve molecular hydrogen in a reaction energized by the light reactions of photosynthesis. This process, now known as biophotolysis, can use water as the electron donor and lead to simultaneous evolution of molecular hydrogen and oxygen. In green algae, hydrogen evolution requires prior incubation under anaerobic conditions. Atmospheric oxygen inhibits hydrogen evolution and also represses the synthesis of hydrogenase enzyme. CO{sub 2} fixation competes with proton reduction for electrons relased from the photosystems. Interest in biophotolysis arises from both the questions that it raises concerning photosynthesis and its potential practical application as a process for converting solar energy to a non-carbon-based fuel. Prior data supported the requirement for both Photosystem I and Photosystem II in spanning the energy gap necessary for biophotolysis of water to oxygen and hydrogen. In this paper we report the at PSII alone is capable of driving sustained simultaneous photoevolution of molecular hydrogen and oxygen in an anaerobically adapted PSI-deficient strain of Chlamydomonas reinhardtii, mutant B4, and that CO{sub 2} competes as an electron acceptor.

  13. Brown clouds over South Asia: biomass or fossil fuel combustion?

    Gustafsson, Orjan; Kruså, Martin; Zencak, Zdenek; Sheesley, Rebecca J; Granat, Lennart; Engström, Erik; Praveen, P S; Rao, P S P; Leck, Caroline; Rodhe, Henning

    2009-01-23

    Carbonaceous aerosols cause strong atmospheric heating and large surface cooling that is as important to South Asian climate forcing as greenhouse gases, yet the aerosol sources are poorly understood. Emission inventory models suggest that biofuel burning accounts for 50 to 90% of emissions, whereas the elemental composition of ambient aerosols points to fossil fuel combustion. We used radiocarbon measurements of winter monsoon aerosols from western India and the Indian Ocean to determine that biomass combustion produced two-thirds of the bulk carbonaceous aerosols, as well as one-half and two-thirds of two black carbon subfractions, respectively. These constraints show that both biomass combustion (such as residential cooking and agricultural burning) and fossil fuel combustion should be targeted to mitigate climate effects and improve air quality.

  14. Crop production without fossil fuel: production systems for tractor fuel and mineral nitrogen based on biomass

    Ahlgren, Serina

    2009-12-15

    With diminishing fossil fuel reserves and concerns about global warming, the agricultural sector needs to reduce its use of fossil fuels. The objective of this thesis was to evaluate different systems for biomass-based production of tractor fuel and mineral nitrogen fertilisers, which at present are the two largest fossil energy carriers in Swedish agriculture. The land use, energy input and environmental load of the systems were calculated using life cycle assessment methodology. Two categories of renewable tractor fuel were studied: first generation fuels and second generation fuels, the latter defined as fuels not yet produced on a commercial scale. An organic farm self-sufficient in tractor fuel was modelled. Raw material from the farm was assumed to be delivered to a large fuel production facility and fuel transported back to the farm, where it was utilised. In general, the second generation renewable fuels had higher energy balance and lower environmental impact than the first generation fuels. However all systems studied reduced the use of fossil fuels to a great extent and lowered the contribution to global warming. The land needed to be set aside for tractor fuel varied between 2% and 5% of the farm's available land. Two major routes for biomass-based production of mineral nitrogen for conventional agriculture were studied, one based on anaerobic digestion and one on thermochemical gasification of biomass. The crops studied were able to produce between 1.6 and 3.9 tonnes N per hectare in the form of ammonium nitrate. The use of fossil fuel for ammonium nitrate production was 35 MJ per kg N in the fossil reference scenario, but only 1-4 MJ per kg N in the biomass systems. The contribution to global warming can be greatly reduced by the biomass systems, but there is an increased risk of eutrophication and acidification. It is clear that the agricultural sector has great potential to reduce the use of fossil fuel and to lower the emissions of greenhouse

  15. Water interaction with laboratory-simulated fossil fuel combustion particles.

    Popovicheva, O B; Kireeva, E D; Shonija, N K; Khokhlova, T D

    2009-10-01

    To clarify the impact of fossil fuel combustion particles' composition on their capacity to take up water, we apply a laboratory approach in which the method of deposition of compounds, identified in the particulate coverage of diesel and aircraft engine soot particles, is developed. It is found that near-monolayer organic/inorganic coverage of the soot particles may be represented by three groups of fossil fuel combustion-derived particulate matter with respect to their Hansh's coefficients related to hydrophilic properties. Water adsorption measurements show that nonpolar organics (aliphatic and aromatic hydrocarbons) lead to hydrophobization of the soot surface. Acidic properties of organic compounds such as those of oxidized PAHs, ethers, ketones, aromatic, and aliphatic acids are related to higher water uptake, whereas inorganic acids and ionic compounds such as salts of organic acids are shown to be responsible for soot hydrophilization. This finding allows us to quantify the role of the chemical identity of soot surface compounds in water uptake and the water interaction with fossil fuel combustion particles in the humid atmosphere.

  16. The geographical distribution of fossil fuels unused when limiting global warming to 2 °C

    McGlade, Christophe; Ekins, Paul

    2015-01-01

    Policy makers have generally agreed that the average global temperature rise caused by greenhouse gas emissions should not exceed 2 °C above the average global temperature of pre-industrial times. It has been estimated that to have at least a 50 per cent chance of keeping warming below 2 °C throughout the twenty-first century, the cumulative carbon emissions between 2011 and 2050 need to be limited to around 1,100 gigatonnes of carbon dioxide (Gt CO2). However, the greenhouse gas emissions contained in present estimates of global fossil fuel reserves are around three times higher than this, and so the unabated use of all current fossil fuel reserves is incompatible with a warming limit of 2 °C. Here we use a single integrated assessment model that contains estimates of the quantities, locations and nature of the world's oil, gas and coal reserves and resources, and which is shown to be consistent with a wide variety of modelling approaches with different assumptions, to explore the implications of this emissions limit for fossil fuel production in different regions. Our results suggest that, globally, a third of oil reserves, half of gas reserves and over 80 per cent of current coal reserves should remain unused from 2010 to 2050 in order to meet the target of 2 °C. We show that development of resources in the Arctic and any increase in unconventional oil production are incommensurate with efforts to limit average global warming to 2 °C. Our results show that policy makers' instincts to exploit rapidly and completely their territorial fossil fuels are, in aggregate, inconsistent with their commitments to this temperature limit. Implementation of this policy commitment would also render unnecessary continued substantial expenditure on fossil fuel exploration, because any new discoveries could not lead to increased aggregate production.

  17. A PARAMETRIC STUDY ON EXERGETIC ASPECTS OF HYDROGEN ENERGY IN REDUCING FOSSIL FUEL CONSUMPTION

    Adnan Midilli [Energy Division, Mechanical Engineering Department, Nigde University, Nigde (Turkey); Ibrahim Dincer [Faculty of Engineering and Applied Science, University of Ontario Institute of Technology, Oshawa, ON (Canada)

    2008-09-30

    This paper presents a parametric analysis on the exergetic dimension of hydrogen in reducing global fossil fuels consumption. Some key parameters such as fossil fuel based-global waste exergy factor, hydrogen based-global exergetic efficiency, and fossil fuel based-global irreversibility coefficient are proposed and studied in this regard. In order to verify these exergetic parameters, the actual fossil fuel consumption and production data are used as the base data in the analysis. Due to the unavailability of appropriate hydrogen data for the present study, it is assumed that the utilization ratio of hydrogen is practically ranged between 0 and 1. As a result, if exergetic utilization ratio of hydrogen from non-fossil fuel sources at a certain exergetic utilization ratio of fossil fuels increases, the fossil fuel based-global irreversibility coefficient will decrease.

  18. Evaluation of conventional power systems. [emphasizing fossil fuels and nuclear energy

    Smith, K. R.; Weyant, J.; Holdren, J. P.

    1975-01-01

    The technical, economic, and environmental characteristics of (thermal, nonsolar) electric power plants are reviewed. The fuel cycle, from extraction of new fuel to final waste management, is included. Emphasis is placed on the fossil fuel and nuclear technologies.

  19. Fuel Efficiency in Truck Industry

    Ştefan Farkas

    2010-12-01

    Full Text Available This paper reports range of activities and offer information regarding activities performed at Paccar Inc. truck’s plant in order to reduce of fuel consumption in truck industry. There are six major areas investigated: Aerodynamics, Component Spec’ing, Advanced Technology, Route Management, Driver Behaviour, Proper Maintenance. New technologies to improve vehicle fuel efficiency are also reported.

  20. Biomass - alternative renewable energy source to the fossil fuels

    Koruba Dorota

    2017-01-01

    Full Text Available The article presents the fossil fuels combustion effects in terms of the dangers of increasing CO2 concentration in the atmosphere. Based on the bibliography review the negative impact of increased carbon dioxide concentration on the human population is shown in the area of the external environment, particularly in terms of the air pollution and especially the impact on human health. The paper presents biomass as the renewable energy alternative source to fossil fuels which combustion gives a neutral CO2 emissions and therefore should be the main carrier of primary energy in Poland. The paper presents the combustion heat results and humidity of selected dry wood pellets (pellets straw, energy-crop willow pellets, sawdust pellets, dried sewage sludge from two sewage treatment plants of the Holly Cross province pointing their energy potential. In connection with the results analysis of these studies the standard requirements were discussed (EN 14918:2010 “Solid bio-fuels-determination of calorific value” regarding the basic parameters determining the biomass energy value (combustion heat, humidity.

  1. Current status of U.S. coal utilization and non-fuel uses of fossil fuels

    Song, C.S.; Schobert, H.; Scaroni, A.W. [Pennsylvania State Univ., University Park, PA (United States)

    1997-12-31

    An understanding of the current situation is important for projecting the future direction of coal utilization. The world`s annual consumption of coal in 1995 was 5104.01 million short tons (MST, 1 short ton = 0.907 metric ton). Coal plays a very important role in the US energy supply; US coal production in 1995 totaled 1033 MST, including 611.1 MST of bituminous coal, 328.4 MST of subbituminous coal, 86.1 MST of lignite, and 4.1 MST of anthracite. US coal consumption totaled 940.6 MST, with 88.1% in electric utilities, 3.5% in coke plants, 7.8% for other industrial uses, and only 0.6% in the residential and commercial sectors. The amount of fossil resources used for non-fuel purposes accounted for 8.4% of the total annual consumption in 1995. Non-fuel uses of fossil fuels particularly coal may become more important in the future. The demonstrated coal reserves in the world are large enough for consumption for over 220 years at the 1995 level, while proven oil reserves are only about 40 times the world`s 1995 consumption level. Coal has several positive attributes when considered as a feedstock for aromatic chemicals, specialty chemicals, and carbon-based materials. Existing nonfuel uses of coals include (1) high temperature carbonization of bituminous and subbituminous coals to make metallurgical coke; (2) gasification of coal to make synthesis gases and other chemicals; (3) use of coal in manufacturing other materials such as activated carbons, carbon molecular sieves (CMS) and production of phosphorus (phosphoric acid); (4) the use of coal tars from carbonization and gasification for making aromatic and phenolic chemicals; (5) the use of coal tar pitch for making carbon fibers and activated carbon fibers; and (6) other non-fuel products derived from coal including combustion by-products. Coal may become more important both as an energy source and as the source of chemical feedstocks in the 21st century.

  2. Revisiting global fossil fuel and biofuel emissions of ethane

    Tzompa-Sosa, Z. A.; Mahieu, E.; Franco, B.; Keller, C. A.; Turner, A. J.; Helmig, D.; Fried, A.; Richter, D.; Weibring, P.; Walega, J.; Yacovitch, T. I.; Herndon, S. C.; Blake, D. R.; Hase, F.; Hannigan, J. W.; Conway, S.; Strong, K.; Schneider, M.; Fischer, E. V.

    2017-02-01

    Recent measurements over the Northern Hemisphere indicate that the long-term decline in the atmospheric burden of ethane (C2H6) has ended and the abundance increased dramatically between 2010 and 2014. The rise in C2H6 atmospheric abundances has been attributed to oil and natural gas extraction in North America. Existing global C2H6 emission inventories are based on outdated activity maps that do not account for current oil and natural gas exploitation regions. We present an updated global C2H6 emission inventory based on 2010 satellite-derived CH4 fluxes with adjusted C2H6 emissions over the U.S. from the National Emission Inventory (NEI 2011). We contrast our global 2010 C2H6 emission inventory with one developed for 2001. The C2H6 difference between global anthropogenic emissions is subtle (7.9 versus 7.2 Tg yr-1), but the spatial distribution of the emissions is distinct. In the 2010 C2H6 inventory, fossil fuel sources in the Northern Hemisphere represent half of global C2H6 emissions and 95% of global fossil fuel emissions. Over the U.S., unadjusted NEI 2011 C2H6 emissions produce mixing ratios that are 14-50% of those observed by aircraft observations (2008-2014). When the NEI 2011 C2H6 emission totals are scaled by a factor of 1.4, the Goddard Earth Observing System Chem model largely reproduces a regional suite of observations, with the exception of the central U.S., where it continues to underpredict observed mixing ratios in the lower troposphere. We estimate monthly mean contributions of fossil fuel C2H6 emissions to ozone and peroxyacetyl nitrate surface mixing ratios over North America of 1% and 8%, respectively.

  3. PERSPECTIVE: Keeping a closer eye on fossil fuel CO2

    Nelson, Peter F.

    2009-12-01

    all have a major influence on progress to an international agreement. It is important that the political challenges are not underestimated. Long-term observers of the negotiations necessary for global agreements (Inman 2009) are pessimistic about the chances for success at COP15, and argue that agreements between smaller groups of countries may be more effective. China and other developing countries clearly expect greater emission cuts by developed nations as a condition for a successful deal (Pan 2009). Conversely, the constraints on US climate policies are considerable, notably those imposed by fears that an international agreement that does not include equitable emission control measures for developing countries like China and India, will compromise the agreement and reduce its effectiveness (Skodvin and Andresen 2009). In this context the need for earlier, and more reliable, information on emissions is a high priority. Myhre and coworkers (Myhre et al 2009) provide an efficient method for calculating global carbon dioxide emissions from fossil fuel combustion by combining industry statistics with data from the Carbon Dioxide Information Analysis Center (CDIAC; http://cdiac.ornl.gov/). Recent analyses of carbon dioxide emission data show a worrying acceleration in emissions, beyond even the most extreme IPCC projections, but are based largely on the CDIAC which gives information about emissions released two to three years before real time (Canadell et al 2007, Raupach et al 2007). The approach used by Myhre et al (2009) uses BP annual statistics of fossil fuel consumption and has a much shorter lag, of the order of six months. Of significant concern is that their analysis of the data also reveals that the recent strong increase in fossil fuel CO2 is largely driven by an increase in emissions from coal, most significantly in China. By contrast, emissions from oil and gas continue to follow longer-term historical trends. Earlier and accurate data on CO2 emissions is

  4. Energy Efficiency Indicators for Public Electricity Production from Fossil Fuels

    NONE

    2008-07-01

    This paper presents a set of indicators that are used to analyse the energy efficiency of electricity production from fossil fuels on a global level and for a number of key countries and regions. The analysis is based on IEA statistics and includes public electricity plants and public CHP plants. Electricity production by autoproducers is not included and represents less than 6% of global electricity production. However, the share of autoproducers is significant in certain countries, particularly in Europe. Austria, Finland, Luxembourg, the Netherlands and Spain all have a share of electricity production from autoproducers that is more than twice the global average.

  5. Burning Fossil Fuels: Impact of Climate Change on Health.

    Sommer, Alfred

    2016-01-01

    A recent, sophisticated granular analysis of climate change in the United States related to burning fossil fuels indicates a high likelihood of dramatic increases in temperature, wet-bulb temperature, and precipitation, which will dramatically impact the health and well-being of many Americans, particularly the young, the elderly, and the poor and marginalized. Other areas of the world, where they lack the resources to remediate these weather impacts, will be even more greatly affected. Too little attention is being paid to the impending health impact of accumulating greenhouse gases.

  6. Phase equilibria of continuous fossil fuel process oils

    Abbasian, M.J.; Weil, S.A. (Institute of Gas Technology, Chicago, IL (US))

    1988-04-01

    Fossil fuel process oils consist of such a large number of components that their only proper description is in terms of continuous distribution functions of a suitable characteristic variable. A methodology is presented to describe the oils in terms of a generalized distribution function. The characteristic variable is determined from measurements of the equilibrium ratios of two test oils, at ambient pressure. Application of the proposed methodology to a sequence of operations shows that, unlike the pseudocomponents technique, the level of accuracy can be maintained.

  7. Phase equilibria of continuous fossil fuel process oils

    Abbasian, M.J.; Weil, S.A.

    1987-01-01

    Fossil fuel process oils consist of such a large number of components that their only proper description is in terms of continuous distribution functions of a suitable characteristic variable. A methodology is presented here to describe the oils in terms of a generalized distribution function. The characteristic variable is determined from measurements of the equilibrium ratios of two test oils, at ambient pressure. Application of the proposed methodology to a sequence of operations shows that, unlike the pseudocomponents technique, the level of accuracy can be maintained. 22 refs., 10 figs., 4 tabs.

  8. Phase equilibria of continuous fossil fuel process oils

    Abbasian, M.J.

    1987-01-01

    Fossil fuel processes oils consist of such a large number of components that their only proper description is in terms of continuous distribution functions of a suitable characteristic variable. A methodology is presented here to describe the oils in terms of a generalized distribution function. The characteristic variable is determined from measurements of the equilibrium ratios of two test oils, at ambient pressure. Application of the proposed methodology to a sequence of operations shows that, unlike the psuedocomponents technique, the level of accuracy can be maintained.

  9. Synthetic fossil fuel technologies: health problems and intersociety cooperation

    Gammage, R B; Turner, J E

    1979-01-01

    The potential health impacts of synthetic fossil fuel products are considered mainly in terms of complex and potentially carcinogenic mixtures of polynuclear aromatic (PNA) compounds. These components of oils and tars present an especially perplexing range of problems to those concerned with health protection. The nature of these problems, such as multifactorial exposure, are discussed within a framework of current and future standards to regulate human exposure. Some activities of government agencies, national laboratories, and professional societies are described. A case can be made for pooling the resources of these groups to achieve better solutions for assessing the acceptability of the various technologies and safeguarding human health.

  10. Comparing the social costs of biofuels and fossil fuels: A case study of Vietnam

    Thanh, le L.; Ierland, van E.C.; Zhu, X.; Wesseler, J.H.H.; Ngo, G.

    2013-01-01

    Biofuel substitution for fossil fuels has been recommended in the literature and promoted in many countries; however, there are concerns about its economic viability. In this paper we focus on the cost-effectiveness of fuels, i.e., we compare the social costs of biofuels and fossil fuels for a funct

  11. Strategic backdrop analysis for fossil fuel planning. Task 1. Default Case. Report 468-117-07/01

    1980-06-01

    This report presents data describing a default case analysis performed using the strategic backdrop analytical framework developed to facilitate fossil fuel planning within the DOE. Target years are 1985 and 2025. Residential, commercial, and industrial energy demands are forecast as well as the impacts of energy technology implementation and market penetration using a set of energy technology assumptions. (DMC)

  12. Fossil-fuel power plants and power generation: Economic analysis. (Latest citations from the NTIS bibliographic database). Published Search

    NONE

    1997-02-01

    The bibliography contains citations concerning economic analyses and evaluations of utility and industrial fossil-fuel power generation. Coal-fired, oil-fired, and natural gas-fired electric power generating systems are discussed. Specific technologies, experiences, and locations are also considered. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  13. Strategic backdrop analysis for fossil fuel planning. Task 1. Default Case. Report 468-117-07/02

    1980-06-01

    This report presents data describing a default case analysis performed using the strategic backdrop analytical framework developed to facilitate fossil fuel planning within the DOE. Target years are 1985, 2000, and 2025. Residential, commercial, and industrial energy demands and impacts of energy technology implementation and market penetration are forecast using a set of energy technology assumptions. (DMC)

  14. Evaluation of sustainability by a population living near fossil fuel resources in Northwestern Greece.

    Vatalis, Konstantinos I

    2010-12-01

    The emergence of sustainability as a goal in the management of fossil fuel resources is a result of the growing global environmental concern, and highlights some of the issues expected to be significant in coming years. In order to secure social acceptance, the mining industry has to face these challenges by engaging its many different stakeholders and examining their sustainability concerns. For this reason a questionnaire was conducted involving a simple random sampling of inhabitants near an area rich in fossil fuel resources, in order to gather respondents' views on social, economic and environmental benefits. The study discusses new subnational findings on public attitudes to regional sustainability, based on a quantitative research design. The site of the study was the energy-rich Greek region of Kozani, Western Macedonia, one of the country's energy hubs. The paper examines the future perspectives of the area. The conclusions can form a useful framework for energy policy in the wider Balkan area, which contains important fossil fuel resources.

  15. OVERVIEW OF THE ROMANIAN FOSSIL FUEL MARKET BETWEEN 2002 AND 2012

    ALINA ZAHARIA

    2015-01-01

    In a context in which the energy needs seems to increase fast and the limited stocks of fossil fuels can generate negative impacts on human society, biodiversity and environment, the policy makers proposed several economic models for achieving sustainable development, like green economy, which appears to promote the necessity of decreasing fossil fuel consumption and of increasing energy savings. This paper aims to emphasize the evolution of fossil fuel market, and the electricity...

  16. Health effects of fossil-fuel combustion products: needed research

    1980-01-01

    An examination is made of the research needed to expand and clarify the understanding of the products of fossil-fuel combustion, chiefly that taking place in stationary sources of power. One of the specific objectives that guided the study on which this report is based was to identify the pollutants potentially hazardous to man that are released into the environment in the course of the combustion of fossil fuels. The hazards of principal concern are those which could cause deleterious, long-term somatic and genetic effects. Another objective was to specify the nature of the research needed to determine the health effects of these pollutants on the general population. Special attention was paid to the interaction of pollutants; the meteorologic and climatic factors that affect the transport, diffusion, and transformation of pollutants; the effects of concentrations of aerosol, particulate, and thermal loads on biologic systems; and the susceptibility of some portions of the population to the effects of pollutants on the skin and cardiovascular, pulmonary, and urinary systems. Other objectives were to evaluate the methods of the proposed research, including analytic and interpretation techniques, to identify fields in which the available scientific information is inadequate for regulatory decision-making and to recommend a research program to meet those deficiencies, and to provide a logical framework within which the necessary information can be developed (the proposed program is presented in terms of subject, methods, and priorities).

  17. Geochemical controls of vanadium accumulation in fossil fuels

    Breit, G.N.; Wanty, R.B.

    1989-01-01

    High vanadium contents in petroleum and other fossil fuels have been attributed to organic-matter type, organisms, volcanic emanations, diffusion of sea water, and epigenetic enrichment. However, these factors are inadequate to account for the high abundance of vanadium in some fossil fuels and the paucity in others. By examining vanadium deposits in sedimentary rocks with sparse organic matter, constraints are placed on processes controlling vanadium accumulation in organic-rich sediments. Vanadium, as vanadate (V(V)), entered some depositional basins in oxidizing waters from dry, subaerial environments. Upon contact with organic matter in anoxic waters, V(V) is reduced to vanadyl (V(IV)), which can be removed from the water column by adsorption. H2S reduces V(IV) to V(III), which hydrolyzes and precipitates. The lack of V(III) in petroleum suggests that reduction of V(IV) to V(III) is inhibited by organic complexes. In the absence of strong complexing agents, V(III) forms and is incorporated in clay minerals.

  18. Geochemical controls on vanadium accumulation in fossil fuels

    Breit, G.N.; Wanty, R.B.

    1989-01-01

    High vanadium contents in petroleum and other fossil fuels have been attributed to organic-matter type, organisms, volcanic emanations, diffusion of sea water, and epigenetic enrichment. However, these factors are inadequate to account for the high abundance of vanadium in some fossil fuels and the paucity in others. By examining vanadium deposits in sedimentary rocks with sparse organic matter, constraints are placed on processes controlling vanadium accumulation in organic-rich sediments. Vanadium, as vanadate (V(V)), entered some depositional basins in oxidizing waters from dry, subaerial environments. Upon contact with organic matter in anoxic waters, V(V) is reduced to vanadyl (V(IV)), which can be removed from the water column by adsorption. H2S reduces V(IV) to V(III), which hydrolyzes and precipitates. The lack of V(III) in petroleum suggests that reduction of V(IV) to V(III) is inhibited by organic complexes. In the absence of strong complexing agents, V(III) forms and is incorporated in clay minerals.

  19. An econometrics view of worldwide fossil fuel consumption and the role of US

    Shafiee, Shahriar [School of Engineering, University of Queensland, Qld. 4072 (Australia); CRC Mining, University of Queensland, Qld. 4072 (Australia); Topal, Erkan [School of Engineering, University of Queensland, Qld. 4072 (Australia); CRC Mining, University of Queensland, Qld. 4072 (Australia)], E-mail: e.topal@uq.edu.au

    2008-02-15

    Crude oil, coal and gas, known as fossil fuels, play a crucial role in the global economy. This paper proposes new econometrics modelling to demonstrate the trend of fossil fuels consumption. The main variables affecting consumption trends are: world reserves, the price of fossil fuels, US production and US net imports. All variables have been analysed individually for more than half a century. The research found that while the consumption of fossil fuels worldwide has increased trends in the US production and net imports have been dependent on the type of fossil fuels. Most of the US coal and gas production has been for domestic use, which is why it does not have a strong influence on worldwide fossil fuel prices. Moreover, the reserves of fossil fuels have not shown any diminution during the last couple of decades and predictions that they were about to run out are not substantiated. The nominal and real price of fossil fuels was found to change depending on the type. Finally, estimates of three econometric models for the consumption of fossil fuels from 1949 to 2006 are presented which identify the effects of significant variables.

  20. Challenges faced when using radiocarbon measurements to estimate fossil fuel emissions in the UK.

    Wenger, A.; O'Doherty, S.; Rigby, M. L.; Ganesan, A.; Manning, A.; Allen, G.

    2015-12-01

    Estimating the anthropogenic component of carbon dioxide emissions from direct atmospheric measurements is difficult, due to the large natural carbon dioxide fluxes. One way of determining the fossil fuel component of atmospheric carbon dioxide is the use of radiocarbon measurements. Whilst carbon reservoirs with a reasonably fast carbon exchange rate all have a similar radiocarbon content, fossil fuels are completely devoid of radiocarbon due to their age. Previous studies have 14CO2 (UK) this approach is compromised by the high density of 14CO2 emitting nuclear power plants. Of the 16 nuclear reactors in the UK, 14 are advanced gas cooled reactors, which have one of the highest 14CO2 emission rates of all reactor types. These radiocarbon emissions not only lead to a serious underestimation of the recently added fossil fuel CO2, by masking the depletion of 14C in CO2, but can in fact overshadow the depletion by a factor of 2 or more. While a correction for this enhancement can be applied, the emissions from the nuclear power plants are highly variable, and an accurate correction is therefore not straightforward. We present the first attempt to quantify UK fossil fuel CO2 emissions through the use of 14CO2. We employ a sampling strategy that makes use of a Lagrangian particle dispersion model, in combination with nuclear industry emission estimates, to forecast "good" sampling times, in an attempt to minimize the correction due to emissions from the nuclear industry. As part of the Greenhouse gAs Uk and Global Emissions (GAUGE) project, 14CO2measurements are performed at two measurement sites in the UK and Ireland, as well as during science flights around the UK. The measurement locations have been chosen with a focus on high emitting regions such as London and the Midlands. We discuss the unique challenges that face the determination of fossil fuel emissions through radiocarbon measurements in the UK and our sampling strategy to deal with them. In addition we

  1. High-resolution global fossil fuel CO2 emissions for 1992 to 2010 using integrated in-situ and remotely sensed data in a fossil fuel data assimilation system

    Asefi-Najafabady, S.; Gurney, K. R.; Rayner, P.; Huang, J.; Song, Y.

    2012-12-01

    provide an approximate location and magnitude for fossil fuel CO2 emissions. Some emitting sectors, such as power plant emissions and heavy industry, are not coincident with where people live or lights are on. Therefore, for better accuracy, we used direct emissions information from power stations as a constraint to the FFDAS estimation. We present this new high resolution, multiyear emissions data product with analysis of the space/time patterns, trends and posterior uncertainty. We also compare the FFDAS results to the "bottom-up" high resolution fossil fuel CO2 emissions estimation generated by the Vulcan Project in the United States. Finally, we examine the sensitivity of the results to differences in the procedures used to generate the improved multiyear nightlights time series.

  2. Fossil fuel derivatives with reduced carbon. Phase I final report

    Kennel, E.B.; Zondlo, J.W.; Cessna, T.J.

    1999-06-30

    This project involves the simultaneous production of clean fossil fuel derivatives with reduced carbon and sulfur, along with value-added carbon nanofibers. This can be accomplished because the nanofiber production process removes carbon via a catalyzed pyrolysis reaction, which also has the effect of removing 99.9% of the sulfur, which is trapped in the nanofibers. The reaction is mildly endothermic, meaning that net energy production with real reductions in greenhouse emissions are possible. In Phase I research, the feasibility of generating clean fossil fuel derivatives with reduced carbon was demonstrated by the successful design, construction and operation of a facility capable of utilizing coal as well as natural gas as an inlet feedstock. In the case of coal, for example, reductions in CO{sub 2} emissions can be as much as 70% (normalized according to kilowatts produced), with the majority of carbon safely sequestered in the form of carbon nanofibers or coke. Both of these products are value-added commodities, indicating that low-emission coal fuel can be done at a profit rather than a loss as is the case with most clean-up schemes. The main results of this project were as follows: (1) It was shown that the nanofiber production process produces hydrogen as a byproduct. (2) The hydrogen, or hydrogen-rich hydrocarbon mixture can be consumed with net release of enthalpy. (3) The greenhouse gas emissions from both coal and natural gas are significantly reduced. Because coal consumption also creates coke, the carbon emission can be reduced by 75% per kilowatt-hour of power produced.

  3. Applying Thermodynamics to Fossil Fuels: Heats of Combustion from Elemental Compositions.

    Lloyd, William G.; Davenport, Derek A.

    1980-01-01

    Discussed are the calculations of heats of combustions of some selected fossil fuel compounds such as some foreign shale oils and United States coals. Heating values for coal- and petroleum-derived fuel oils are also presented. (HM)

  4. GASEOUS EMISSIONS FROM FOSSIL FUELS AND BIOMASS COMBUSTION IN SMALL HEATING APPLIANCES

    Daniele Dell'Antonia

    2012-06-01

    Full Text Available The importance of emission control has increased sharply due to the increased need of energy from combustion. However, biomass utilization in energy production is not free from problems because of physical and chemical characteristics which are substantially different from conventional energy sources. In this situation, the quantity and quality of emissions as well as used renewable sources as wood or corn grain are often unknown. To assess this problem the paper addresses the objectives to quantify the amount of greenhouse gases during the combustion of corn as compared to the emissions in fossil combustion (natural gas, LPG and diesel boiler. The test was carried out in Friuli Venezia Giulia in 2006-2008 to determine the air pollution (CO, NO, NO2, NOx, SO2 and CO2 from fuel combustion in family boilers with a power between 20-30 kWt. The flue gas emission was measured with a professional semi-continuous multi-gas analyzer, (Vario plus industrial, MRU air Neckarsulm-Obereisesheim. Data showed a lower emission of fossil fuel compared to corn in family boilers in reference to pollutants in the flue gas (NOx, SO2 and CO. In a particular way the biomass combustion makes a higher concentration of carbon monoxide (for an incomplete combustion because there is not a good mixing between fuel and air and nitrogen oxides (in relation at a higher content of nitrogen in herbaceous biomass in comparison to another fuel.

  5. Possible future environmental issues for fossil fuel technologies. Final report

    Attaway, L.D.

    1979-07-01

    The work reported here was carried out for the Department of Energy's Office of Fossil Energy to identify and assess 15 to 20 major environmental issues likely to affect the implementation of fossil energy technologies between 1985 and 2000. The energy technologies specifically addressed are: oil recovery and processing; gas recovery and processing; coal liquefaction; coal gasification (surface); in situ coal gasification; direct coal combustion; advanced power systems; magnetohydrodynamics; surface oil shale retorting; and true and modified in situ oil shale retorting. Environmental analysis of these technologies included, in addition to the main processing steps, the complete fuel cycle from resource extraction to end use. The 16 environmental issues identified as those most likely for future regulatory actions and the main features of, and the possible regulatory actions associated with, each are as follows: disposal of solid waste from coal conversion and combustion technologies; water consumption by coal and oil shale conversion technologies; siting of coal conversion facilities; the carbon dioxide greenhouse effect; emission of polycyclic organic matter (POM); impacts of outer continental shelf (OCS) oil development; emission of trace elements; groundwater contamination; liquefied natural gas (LNG), safety and environmental factors; underground coal mining - health and safety; fugitive emissions from coal gasification and liquefaction - health and safety; boomtown effects; emission of fine particulates from coal, oil and oil shale technologies; emission of radioactivity from the mining and conversion of coal; emission of nitrogn oxides; and land disturbance from surface mining. (LTN)

  6. New Optimal Sensor Suite for Ultrahigh Temperature Fossil Fuel Applications

    John Coggin; Jonas Ivasauskas; Russell G. May; Michael B. Miller; Rena Wilson

    2006-09-30

    Accomplishments during Phase II of a program to develop and demonstrate photonic sensor technology for the instrumentation of advanced powerplants are described. The goal of this project is the research and development of advanced, robust photonic sensors based on improved sapphire optical waveguides, and the identification and demonstration of applications of the new sensors in advanced fossil fuel power plants, where the new technology will contribute to improvements in process control and monitoring. During this program work period, major progress has been experienced in the development of the sensor hardware, and the planning of the system installation and operation. The major focus of the next work period will be the installation of sensors in the Hamilton, Ohio power plant, and demonstration of high-temperature strain gages during mechanical testing of SOFC components.

  7. Progress performance report of clean uses of fossil fuels

    1992-09-01

    A one-year USDOE/EPSCOR Traineeship Grant, entitled ``Clean Uses of Fossil Fuels.`` was awarded to the Kentucky EPSCoR Committee in September 1991 and administered through the the DOE/EPSCoR Subcommittee. Ten Traineeships were awarded to doctoral students who are enrolled or accepted into Graduate Programs at either the University of Kentucky or the University of Louisville. The disciplines of these students include Biology, Chemical Engineering, Chemistry, Geological Sciences, and Physics. The methods used for a statewide proposal solicitation and to award the Traineeships are presented. The review panel and Kentucky DOE/EPSCoR Subcommittee involved in awarding the Traineeships are described. A summary of the proposed research to be performed within these awards is presented, along with a description of the qualifications of the faculty and students who proposed projects. Future efforts to increase participation in Traineeship proposals for the succeeding funding period are outlined.

  8. Progress performance report of clean uses of fossil fuels

    Todd, Jr., Lee T.; Boggess, Ronald J.; Carson, Ronald J.; Falkenberg, Virginia P.; Flanagan, Patrick; Hettinger, Jr., William P.; Kimel, Kris; Kupchella, Charles E.; Magid, Lee J.; McLaughlin, Barbara; Royster, Wimberly C.; Streepey, Judi L.; Wells, James H.; Stencel, John; Derbyshire, Frank J.; Hanley, Thomas R.; Magid, Lee J.; McEllistrem, Marc T.; Riley, John T.; Steffen, Joseph M.

    1992-01-01

    A one-year USDOE/EPSCOR Traineeship Grant, entitled Clean Uses of Fossil Fuels.'' was awarded to the Kentucky EPSCoR Committee in September 1991 and administered through the the DOE/EPSCoR Subcommittee. Ten Traineeships were awarded to doctoral students who are enrolled or accepted into Graduate Programs at either the University of Kentucky or the University of Louisville. The disciplines of these students include Biology, Chemical Engineering, Chemistry, Geological Sciences, and Physics. The methods used for a statewide proposal solicitation and to award the Traineeships are presented. The review panel and Kentucky DOE/EPSCoR Subcommittee involved in awarding the Traineeships are described. A summary of the proposed research to be performed within these awards is presented, along with a description of the qualifications of the faculty and students who proposed projects. Future efforts to increase participation in Traineeship proposals for the succeeding funding period are outlined.

  9. The U.S. Department of Energy, Office of Fossil Energy Stationary Fuel Cell Program

    Williams, Mark C.; Strakey, Joseph P.; Surdoval, Wayne A.

    The U.S. Department of Energy (DOE) Office of Fossil Energy's (FE) National Energy Technology Laboratory (NETL), in partnership with private industries, is leading a program for the development and demonstration of high efficiency solid oxide fuel cells (SOFCs) and fuel cell/turbine hybrid power generation systems for near-term distributed generation markets, with emphasis on premium power and high reliability. NETL is partnering with Pacific Northwest National Laboratory (PNNL) in developing new directions for research under the Solid State Energy Conversion Alliance (SECA) initiative to develop and commercialize modular, low cost, and fuel flexible SOFC systems. Through advanced materials, processing and system integration research and development (R&D), the SECA initiative will reduce the fuel cell cost to $400 kW -1 for stationary and auxiliary power unit markets. The SECA industry teams and core program have made significant progress in scale-up and performance. Presidential initiatives are focusing research toward a new hydrogen economy. The movement to a hydrogen economy would accomplish several strategic goals, namely that SOFCs have no emissions, and hence figure significantly in DOE strategies. The SOFC hybrid is a key part of the FutureGen plant, a major new DOE FE initiative to produce hydrogen from coal. The highly efficient SOFC hybrid plant will produce electric power while other parts of the plant could produce hydrogen and sequester CO 2. The produced hydrogen can be used in fuel cell cars and for SOFC distributed generation applications.

  10. Fossil Fuels. A Supplement to the "Science 100, 101" Curriculum Guide. Curriculum Support Series.

    Soprovich, William, Comp.

    When the fossil fuels unit was first designed for Science 101 (the currently approved provincial guide for grade 10 science in Manitoba), Canadian support materials were very limited. Since students are asked to interpret data concerning energy consumption and sources for certain fossil fuels, the need for appropriate Canadian data became obvious.…

  11. Ecological consequences of elevated total dissolved solids associated with fossil fuel extraction in the United States

    Fossil fuel burning is considered a major contributor to global climate change. The outlook for production and consumption of fossil fuels int he US indicates continued growth to support growing energy demands. For example, coal-generated electricity is projected ot increase from...

  12. Delta13C values of grasses as a novel indicator of pollution by fossil-fuel-derived greenhouse gas CO2 in urban areas.

    Lichtfouse, Eric; Lichtfouse, Michel; Jaffrézic, Anne

    2003-01-01

    A novel fossil fuel pollution indicator based on the 13C/12C isotopic composition of plants has been designed. This bioindicator is a promising tool for future mapping of the sequestration of fossil fuel CO2 into urban vegetation. Theoretically, plants growing in fossil-fuel-CO2-contaminated areas, such as major cities, industrial centers, and highway borders, should assimilate a mixture of global atmospheric CO2 of delta13C value of -8.02 per thousand and of fossil fuel CO2 of average delta13C value of -27.28 per thousand. This isotopic difference should, thus, be recorded in plant carbon. Indeed, this study reveals that grasses growing near a major highway in Paris, France, have strikingly depleted delta13C values, averaging at -35.08 per thousand, versus rural grasses that show an average delta13C value of -30.59 per thousand. A simple mixing model was used to calculate the contributions of fossil-fuel-derived CO2 to the plant tissue. Calculation based on contaminated and noncontaminated isotopic end members shows that urban grasses assimilate up to 29.1% of fossil-fuel-CO2-derived carbon in their tissues. The 13C isotopic composition of grasses thus represents a promising new tool for the study of the impact of fossil fuel CO2 in major cities.

  13. Characteristics of the Three-Dimensional Fluorescence pectra of Fossil Fuels

    1999-01-01

    We have found some fluorescence characteristics of fossil fuels based on the contour maps of the tlhree-dimensional fluorescence spectra of their non-quenching samples. The common fluorescence characteristic is that themain peaks of various fossil fuels are located in the vicinity of excitation/emission wavelength pair 228nm/340nm.The diversity of fluorescence characteristics can be represented with several indexes α, K, F and R, and these index-es provide measurable parameters for division of fluorescence fingerprints of fossil fuels. The fluorescence fingerprintsof fossil fuels can be divided into five models named O,B,Q,P and G that are corresponding to condensate oil, lightoil, heavy oil, coal and natural gas, respectively. The technique has a potential application in study of environmentpollution on crude oil and geochemical exploration of fossil fuels.

  14. Disaggregating Fossil Fuel Emissions from Biospheric Fluxes: Methodological Improvements for Inverse Methods

    Yadav, V.; Shiga, Y. P.; Michalak, A. M.

    2012-12-01

    The accurate spatio-temporal quantification of fossil fuel emissions is a scientific challenge. Atmospheric inverse models have the capability to overcome this challenge and provide estimates of fossil fuel emissions. Observational and computational limitations limit current analyses to the estimations of a combined "biospheric flux and fossil-fuel emissions" carbon dioxide (CO2) signal, at coarse spatial and temporal resolution. Even in these coarse resolution inverse models, the disaggregation of a strong biospheric signal form a weaker fossil-fuel signal has proven difficult. The use of multiple tracers (delta 14C, CO, CH4, etc.) has provided a potential path forward, but challenges remain. In this study, we attempt to disaggregate biospheric fluxes and fossil-fuel emissions on the basis of error covariance models rather through tracer based CO2 inversions. The goal is to more accurately define the underlying structure of the two processes by using a stationary exponential covariance model for the biospheric fluxes, in conjunction with a semi-stationary covariance model derived from nightlights for fossil fuel emissions. A non-negativity constraint on fossil fuel emissions is imposed using a data transformation approach embedded in an iterative quasi-linear inverse modeling algorithm. The study is performed for January and June 2008, using the ground-based CO2 measurement network over North America. The quality of disaggregation is examined by comparing the inferred spatial distribution of biospheric fluxes and fossil-fuel emissions in a synthetic-data inversion. In addition to disaggregation of fluxes, the ability of the covariance models derived from nightlights to explain the fossil-fuel emissions over North America is also examined. The simple covariance model proposed in this study is found to improve estimation and disaggregation of fossil-fuel emissions from biospheric fluxes in the tracer-based inverse models.

  15. Replacing fossil diesel by biodiesel fuel: expected impact on health.

    Hutter, Hans-Peter; Kundi, Michael; Moshammer, Hanns; Shelton, Janie; Krüger, Bernd; Schicker, Irene; Wallner, Peter

    2015-01-01

    Biofuels have become an alternative to fossil fuel, but consequences on human health from changes to emissions compositions are not well understood. By combining information on composition of vehicle exhaust, dispersion models, and relationship between exposure to air contaminants and health, the authors determined expected mortality outcomes in 2 scenarios: a blend of 10% biodiesel and 90% standard diesel (B10) and biodiesel only (B100), for a rural and an urban environment. Vehicle exhaust for both fuel compositions contained lower fine particle mass but higher NO2 levels. Ambient air concentrations in scenario B10 were almost unchanged. In scenario B100, PM2.5 (particulate matter with an aerodynamic diameter <2.5 μm) levels decreased by 4-8% and NO2 levels increased 7-11%. Reduction of PM2.5 is expected to reduce mortality rate by 5 × 10(-6) and 31 × 10(-6) per year, whereas NO2 increase adds 17 × 10(-6) and 30 × 10(-6) to mortality rate for B10 and B100, respectively. Since effects of PM2.5 and NO2 are not independent, a positive net effect is possible.

  16. Environmental benchmarking of the largest fossil-fueled electricity generating plants in the U.S

    Sarkis, Joseph

    2004-02-01

    Environmental management, to be effective, requires performance evaluation and process improvement. This is especially the case in fossil-fueled electricity generating plants. Although eco-efficient management of these types of organizations are critical to local, national and global environmental issues, few studies have focused on performance measurement and eco-efficiency improvements in this industry. This study evaluates the eco-efficiencies of the top 100 major U.S. fossil-fueled electricity generating plants from 1998 data. Using a multi-criteria non-parametric productivity model (data envelopment analysis) efficiency scores are determined. These efficiency scores are treated by a clustering method in identifying benchmarks for improving poorly performing plants. Efficiency measures are based on three resource input measures including boiler generating capacity, total fuel heat used, and total generator capacity, and four output measures including actual energy generated, SO2, NOx, and CO2 emissions. The purpose of this paper is two-fold, to introduce the methodology"s application to eco-efficiency performance measurement and show some characteristics of the benchmarked plants and groups.

  17. Environmental evidence of fossil fuel pollution in Laguna Chica de San Pedro lake sediments (Central Chile)

    Chirinos, L. [Centro de Ciencias Ambientales EULA-Chile, Universidad de Concepcion, PO Box 160-C, Concepcion (Chile)]. E-mail: lchirin@pucp.edu.pe; Rose, N.L. [Environmental Change Research Centre, University College London, 26 Bedford Way, London WG1HOAP (United Kingdom); Urrutia, R. [Centro de Ciencias Ambientales EULA-Chile, Universidad de Concepcion, PO Box 160-C, Concepcion (Chile); Munoz, P. [Departamento de Biologia Marina, Universidad Catolica del Norte, Larrondo 1281, Coquimbo (Chile); Torrejon, F. [Centro de Ciencias Ambientales EULA-Chile, Universidad de Concepcion, PO Box 160-C, Concepcion (Chile); Torres, L. [Departamento de Botanica, Universidad de Concepcion, Concepcion (Chile); Cruces, F. [Departamento de Botanica, Universidad de Concepcion, Concepcion (Chile); Araneda, A. [Centro de Ciencias Ambientales EULA-Chile, Universidad de Concepcion, PO Box 160-C, Concepcion (Chile); Zaror, C. [Facultad de Ingenieria Quimica, Universidad de Concepcion, Concepcion (Chile)

    2006-05-15

    This paper describes lake sediment spheroidal carbonaceous particle (SCP) profiles from Laguna Chica San Pedro, located in the Biobio Region, Chile (36{sup o} 51' S, 73{sup o} 05' W). The earliest presence of SCPs was found at 16 cm depth, corresponding to the 1915-1937 period, at the very onset of industrial activities in the study area. No SCPs were found at lower depths. SCP concentrations in Laguna Chica San Pedro lake sediments were directly related to local industrial activities. Moreover, no SCPs were found in Galletue lake (38{sup o} 41' S, 71{sup o} 17.5' W), a pristine high mountain water body used here as a reference site, suggesting that contribution from long distance atmospheric transport could be neglected, unlike published data from remote Northern Hemisphere lakes. These results are the first SCP sediment profiles from Chile, showing a direct relationship with fossil fuel consumption in the region. Cores were dated using the {sup 21}Pb technique. - The lake sediment record of SCPs shows the record of fossil-fuel derived pollution in Central Chile.

  18. Identifying the European fossil fuel plumes in the atmosphere over the Northeast Atlantic Region through isotopic observations and numerical modelling

    Geels, C.; Christensen, J.H.; Hansen, A.W.;

    2006-01-01

    Atmospheric transport, C-14. fossil fuel CO_2, numerical modeling, the north East Atlantic Region Udgivelsesdato: 18 August......Atmospheric transport, C-14. fossil fuel CO_2, numerical modeling, the north East Atlantic Region Udgivelsesdato: 18 August...

  19. OVERVIEW OF THE ROMANIAN FOSSIL FUEL MARKET BETWEEN 2002 AND 2012

    ALINA ZAHARIA

    2015-04-01

    Full Text Available In a context in which the energy needs seems to increase fast and the limited stocks of fossil fuels can generate negative impacts on human society, biodiversity and environment, the policy makers proposed several economic models for achieving sustainable development, like green economy, which appears to promote the necessity of decreasing fossil fuel consumption and of increasing energy savings. This paper aims to emphasize the evolution of fossil fuel market, and the electricity generated from fossil fuels since 2002, and especially after 2010, when in Romania were taken some measures for implementing the principles of green economy. In order to see their effects, this research presents an historical analysis for Romania based on the data obtained from European Commission and Romanian Institute of Statistics. The results indicate decreasing trends of primary energy production and consumption, and decreasing trends of electricity generation from fossil fuels due to the more and more use of renewable and nuclear energy sources. The results highlight the need of taking more actions in the energy sector by promoting even more the renewable energy production and consumption for reducing the fossil fuel use, and by promoting, also, a more efficient use of fossil fuel resources for a sustainable future.

  20. Quantification of fossil fuel CO2 emissions on the building/street scale for a large U.S. city.

    Gurney, Kevin R; Razlivanov, Igor; Song, Yang; Zhou, Yuyu; Benes, Bedrich; Abdul-Massih, Michel

    2012-11-06

    In order to advance the scientific understanding of carbon exchange with the land surface, build an effective carbon monitoring system, and contribute to quantitatively based U.S. climate change policy interests, fine spatial and temporal quantification of fossil fuel CO(2) emissions, the primary greenhouse gas, is essential. Called the "Hestia Project", this research effort is the first to use bottom-up methods to quantify all fossil fuel CO(2) emissions down to the scale of individual buildings, road segments, and industrial/electricity production facilities on an hourly basis for an entire urban landscape. Here, we describe the methods used to quantify the on-site fossil fuel CO(2) emissions across the city of Indianapolis, IN. This effort combines a series of data sets and simulation tools such as a building energy simulation model, traffic data, power production reporting, and local air pollution reporting. The system is general enough to be applied to any large U.S. city and holds tremendous potential as a key component of a carbon-monitoring system in addition to enabling efficient greenhouse gas mitigation and planning. We compare the natural gas component of our fossil fuel CO(2) emissions estimate to consumption data provided by the local gas utility. At the zip code level, we achieve a bias-adjusted Pearson r correlation value of 0.92 (p < 0.001).

  1. Fuel cells - an attractive option for use in industry. Brennstoffzellen - eine attraktive Option fuer Anwendungen in der Industrie

    Drenckhahn, W. (Siemens AG Bereich Energieerzeugung (KWU), Erlangen (Germany)); Hassmann, K. (Siemens AG Bereich Energieerzeugung (KWU), Erlangen (Germany)); Lezuo, A. (Siemens AG Bereich Energieerzeugung (KWU), Erlangen (Germany))

    1994-09-01

    In energy generation, environmental loads caused by fossil fuels are one of the motivations for the development of effective processes, including new technologies. According to a present assessment, fuel cell engineering can reserve some niches in this decade from the point of view of costs. Technically almost mature is especially the phosphoric acid fuel cell. Its use may make sense in the industrial range, if as an industrial by-product hydrogen-rich gases are available, which can be used as fuel for the fuel cell. In the present contribution, an applied case is described and some statements on the engineering and cost-effectiveness are made. (orig.)

  2. Carbon emissions from fossil fuel consumption of Beijing in 2012

    Shao, Ling; Guan, Dabo; Zhang, Ning; Shan, Yuli; Chen, G. Q.

    2016-11-01

    The present study analyzed the consumption-based carbon emissions from fossil fuel consumption of Beijing in 2012. The multi-scale input-output analysis method was applied. It is capable of tracing the carbon emissions embodied in imports based on a global multi-regional input-output analysis using Eora data. The results show that the consumption-based carbon emission of Beijing has increased by 18% since 2007, which is 2.57 times higher than the production-based carbon emission in 2012. Only approximately 1/10 of the total carbon emissions embodied in Beijing’s local final demand originated from local direct carbon emissions. Meanwhile, more than 4/5 were from domestically imported products. The carbon emission nexus between Beijing and other Chinese regions has become closer since 2007, while the imbalance as the carbon emission transfer from Beijing to other regions has been mitigated. Instead, Beijing has imported more carbon emissions from foreign countries. Some carbon emission reduction strategies for Beijing concerning different goals are presented on the basis of detailed discussion.

  3. Effects of New Fossil Fuel Developments on the Possibilities of Meeting 2C Scenarios

    Meindertsma, W.; Blok, K.

    2012-12-15

    Recent years have seen an increasing activity in developing new fossil fuel production capacity. This includes unconventional fossil fuels, such as tar sands and shale gas, fossil fuels from remote locations, and fossil fuels with a very large increase in production in the near future. In this report, the impact of such developments on our ability to mitigate climate change is investigated. Our inventory shows that the new fossil fuel developments currently underway consist of 29,400 billion cubic meters of natural gas, 260,000 million barrels of oil and 49,600 million tonnes of coal. The development of these new fossil fuels would result in emissions of 300 billion tonnes of CO2 -equivalent (CO2e) from 2012 until 2050. Until 2050, a 'carbon budget' of 1550 billion tonnes CO2e is still available if we want to of keep global warming below 2C with a 50% probability. For a 75% probability to stay below 2C this budget is only 1050 billion tonnes CO2e. So, the new fossil fuel developments identified in this report consume 20-33% of the remaining carbon budget until 2050. In a scenario where the new fossil fuels are developed, we need to embark on a rapid emission reductions pathway at the latest in 2019 in order to meet the 50% probability carbon budget. Avoiding the development of new fossil fuels will give us until 2025 to start further rapid emission reductions. These calculations are based on the assumption that the maximum emission reduction rate is 4% per year and that the maximum change in emission trend is 0.5 percentage point per year. The starting year for rapid emission reductions depends on the choice of these parameters. A sensitivity analysis shows that, in all cases, refraining from new fossil fuel development allows for a delay of 5 to 8 years before we should embark on a rapid emission reduction pathway. The high investments required for developing new fossil fuels lead to a lock in effect; once developed, these fossil fuels need to be

  4. Forecasting Fossil Fuel Energy Consumption for Power Generation Using QHSA-Based LSSVM Model

    Wei Sun

    2015-01-01

    Full Text Available Accurate forecasting of fossil fuel energy consumption for power generation is important and fundamental for rational power energy planning in the electricity industry. The least squares support vector machine (LSSVM is a powerful methodology for solving nonlinear forecasting issues with small samples. The key point is how to determine the appropriate parameters which have great effect on the performance of LSSVM model. In this paper, a novel hybrid quantum harmony search algorithm-based LSSVM (QHSA-LSSVM energy forecasting model is proposed. The QHSA which combines the quantum computation theory and harmony search algorithm is applied to searching the optimal values of and C in LSSVM model to enhance the learning and generalization ability. The case study on annual fossil fuel energy consumption for power generation in China shows that the proposed model outperforms other four comparative models, namely regression, grey model (1, 1 (GM (1, 1, back propagation (BP and LSSVM, in terms of prediction accuracy and forecasting risk.

  5. Impact on food productivity by fossil fuel independence - A case study of a Swedish small-scale integrated organic farm

    Johansson, Sheshti [Dept. of Energy and Technology, Swedish Univ. of Agricultural Sciences, Uppsala (Sweden); Belfrage, Kristina [Centre for Sustainable Agriculture, Swedish Univ. of Agricultural Sciences, Uppsala (Sweden); Olsson, Mats [Dept. of Soil and Environment, Swedish Univ. of Agricultural Sciences, Uppsala (Sweden)

    2013-02-15

    The large-scale industrial agriculture that provides the majority of food at present is dependent upon fossil fuels in the form of tractor fuel, mineral fertilizers, pesticides, and irrigation. Yet, the age of cheap and abundant fossil fuels will likely come to an end within the coming decades. In this case study, the productivity of a small-scale farm (8 ha arable land, 5.5 ha meadow, 3.5 ha pasture and 18 ha forest) independent on fossil fuels by using organic methods and draught horse power was investigated. The aim was to quantify its productivity when the animal composition and possible alternatives to tractive power were varied. After an analysis of possible solutions, three scenarios for tractive power were selected: draught horse power, diesel tractor, and combination of draught horse power and rapeseed oil fueled tractor. A model that calculates the amount of food available at the farm in terms of meat, milk egg, and crops, converts it into energy units and calculates how many people can be supplied from the farm was developed. The most reasonable of the scenarios studied was when draught horse power was combined with tractor (and combine harvester) driven on locally produced rapeseed oil. Then the farm will have access to all advantages with the tractor and harvester, e.g., timeliness in harvest and lifting heavy loads, and the renewability and efficiency of draught horse power on smaller fields, and lighter operations. This system was able to support between 66 and 82 persons depending on crop yields, milk yields, meat production, fuel demand for the tractor, and availability of forest grazing. Most likely the production capacity lands on ability to support approximately 68 - 70 persons, and the farm may require fossil fuels to support more than 80 persons. If all farmland globally was to be operated with the same productivity, this would be enough for supplying the global population with food at present.

  6. The geographical distribution of fossil fuels unused when limiting global warming to 2 °C.

    McGlade, Christophe; Ekins, Paul

    2015-01-08

    Policy makers have generally agreed that the average global temperature rise caused by greenhouse gas emissions should not exceed 2 °C above the average global temperature of pre-industrial times. It has been estimated that to have at least a 50 per cent chance of keeping warming below 2 °C throughout the twenty-first century, the cumulative carbon emissions between 2011 and 2050 need to be limited to around 1,100 gigatonnes of carbon dioxide (Gt CO2). However, the greenhouse gas emissions contained in present estimates of global fossil fuel reserves are around three times higher than this, and so the unabated use of all current fossil fuel reserves is incompatible with a warming limit of 2 °C. Here we use a single integrated assessment model that contains estimates of the quantities, locations and nature of the world's oil, gas and coal reserves and resources, and which is shown to be consistent with a wide variety of modelling approaches with different assumptions, to explore the implications of this emissions limit for fossil fuel production in different regions. Our results suggest that, globally, a third of oil reserves, half of gas reserves and over 80 per cent of current coal reserves should remain unused from 2010 to 2050 in order to meet the target of 2 °C. We show that development of resources in the Arctic and any increase in unconventional oil production are incommensurate with efforts to limit average global warming to 2 °C. Our results show that policy makers' instincts to exploit rapidly and completely their territorial fossil fuels are, in aggregate, inconsistent with their commitments to this temperature limit. Implementation of this policy commitment would also render unnecessary continued substantial expenditure on fossil fuel exploration, because any new discoveries could not lead to increased aggregate production.

  7. Economic growth, CO{sub 2} emissions, and fossil fuels consumption in Iran

    Lotfalipour, Mohammad Reza; Falahi, Mohammad Ali; Ashena, Malihe [Department of Economics, Ferdowsi University of Mashhad, Mashhad (Iran, Islamic Republic of)

    2010-12-15

    Environmental issues have attracted renewed interest and more attention during recent years due to climatic problems associated with the increased levels of pollution and the deterioration of the environmental quality as a result of increased human activity. This paper investigates the causal relationships between economic growth, carbon emission, and fossil fuels consumption, using the relatively new time series technique known as the Toda-Yamamoto method for Iran during the period 1967-2007. Total fossil fuels, petroleum products, and natural gas consumption are used as three proxies for energy consumption. Empirical results suggest a unidirectional Granger causality running from GDP and two proxies of energy consumption (petroleum products and natural gas consumption) to carbon emissions, and no Granger causality running from total fossil fuels consumption to carbon emissions in the long run. The results also show that carbon emissions, petroleum products, and total fossil fuels consumption do not lead to economic growth, though gas consumption does. (author)

  8. INNOVATIVE FOSSIL FUEL FIRED VITRIFICATION TECHNOLOGY FOR SOIL REMEDIATION

    J. Hnat; L.M. Bartone; M. Pineda

    2001-10-31

    This Final Report summarizes the progress of Phases 3,3A and 4 of a waste technology Demonstration Project sponsored under a DOE Environmental Management Research and Development Program and administered by the U.S. Department of Energy National Energy Technology Laboratory-Morgantown (DOE-NETL) for an ''Innovative Fossil Fuel Fired Vitrification Technology for Soil Remediation''. The Summary Reports for Phases 1 and 2 of the Program were previously submitted to DOE. The total scope of Phase 3 was to have included the design, construction and demonstration of Vortec's integrated waste pretreatment and vitrification process for the treatment of low level waste (LLW), TSCA/LLW and mixed low-level waste (MLLW). Due to funding limitations and delays in the project resulting from a law suit filed by an environmental activist and the extended time for DOE to complete an Environmental Assessment for the project, the scope of the project was reduced to completing the design, construction and testing of the front end of the process which consists of the Material Handling and Waste Conditioning (MH/C) Subsystem of the vitrification plant. Activities completed under Phases 3A and 4 addressed completion of the engineering, design and documentation of the MH/C System such that final procurement of the remaining process assemblies can be completed and construction of a Limited Demonstration Project be initiated in the event DOE elects to proceed with the construction and demonstration testing of the MH/C Subsystem. Because of USEPA policies and regulations that do not require treatment of low level or low-level/PCB contaminated wastes, DOE terminated the project because there is no purported need for this technology.

  9. Fossil-fuel process oils as continuous fluids

    Abbasian-Amin, M.J.

    1986-01-01

    The oils produced by fossil fuel conversion processes consist of such a large number of components that their only proper description is as continuous fluids (i.e., continuum of components). A methodology is presented here to describe the vapor liquid equilibrium processes involving continuous oils. It describes the oil in terms of one or more continuous distribution functions (fractional continuous oils) of some measurable quantity (i.e., characteristic variable) that, in the view of the equilibrium ratio relationship, maintain their functional form in equilibrium processes. Parameters of the distributions of the product streams in any equilibrium process (i.e., vapor and liquid) are determined in terms of the parameters of the feed stream and the operating condition (e.g., T,P). In general, the procedure can be applied to both ideal and non-ideal systems, but in view of the experimental results indicating ideality, only those systems were analyzed. An ambient pressure batch distillation system was constructed to collect vapor-liquid equilibrium data of continuous test oils. Two test oils, a shale oil and a coal oil were studied in this work. From measurement of the equilibrium ratios of the test oils it was determined that both oils behave ideally and the equilibrium ratio was independent of the liquid composition. A simple and definable function of the boiling point provided to be a suitable characteristic variable for the proposed methodology to the sequential operation has shown that if the functions are chosen properly, then the error incurred will not propagate at a significant rate and at the same level of accuracy can be maintained.

  10. INNOVATIVE FOSSIL FUEL FIRED VITRIFICATION TECHNOLOGY FOR SOIL REMEDIATION

    J. Hnat; L.M. Bartone; M. Pineda

    2001-07-13

    This Summary Report summarizes the progress of Phases 3, 3A and 4 of a waste technology Demonstration Project sponsored under a DOE Environmental Management Research and Development Program and administered by the U.S. Department of Energy National Energy Technology Laboratory-Morgantown (DOE-NETL) for an ''Innovative Fossil Fuel Fired Vitrification Technology for Soil Remediation''. The Summary Reports for Phases 1 and 2 of the Program were previously submitted to DOE. The total scope of Phase 3 was to have included the design, construction and demonstration of Vortec's integrated waste pretreatment and vitrification process for the treatment of low level waste (LLW), TSCA/LLW and mixed low-level waste (MLLW). Due to funding limitations and delays in the project resulting from a law suit filed by an environmental activist and the extended time for DOE to complete an Environmental Assessment for the project, the scope of the project was reduced to completing the design, construction and testing of the front end of the process which consists of the Material Handling and Waste Conditioning (MH/C) Subsystem of the vitrification plant. Activities completed under Phases 3A and 4 addressed completion of the engineering, design and documentation of the Material Handling and Conditioning System such that final procurement of the remaining process assemblies can be completed and construction of a Limited Demonstration Project be initiated in the event DOE elects to proceed with the construction and demonstration testing of the MH/C Subsystem.

  11. Material flow analysis of fossil fuels in China during 2000-2010.

    Wang, Sheng; Dai, Jing; Su, Meirong

    2012-01-01

    Since the relationship between the supply and demand of fossil fuels is on edge in the long run, the contradiction between the economic growth and limited resources will hinder the sustainable development of the Chinese society. This paper aims to analyze the input of fossil fuels in China during 2000-2010 via the material flow analysis (MFA) that takes hidden flows into account. With coal, oil, and natural gas quantified by MFA, three indexes, consumption and supply ratio (C/S ratio), resource consumption intensity (RCI), and fossil fuels productivity (FFP), are proposed to reflect the interactions between population, GDP, and fossil fuels. The results indicated that in the past 11 years, China's requirement for fossil fuels has been increasing continuously because of the growing mine productivity in domestic areas, which also leads to a single energy consumption structure as well as excessive dependence on the domestic exploitation. It is advisable to control the fossil fuels consumption by energy recycling and new energy facilities' popularization in order to lead a sustainable access to nonrenewable resources and decrease the soaring carbon emissions.

  12. Recent decreases in fossil-fuel emissions of ethane and methane derived from firn air.

    Aydin, Murat; Verhulst, Kristal R; Saltzman, Eric S; Battle, Mark O; Montzka, Stephen A; Blake, Donald R; Tang, Qi; Prather, Michael J

    2011-08-10

    Methane and ethane are the most abundant hydrocarbons in the atmosphere and they affect both atmospheric chemistry and climate. Both gases are emitted from fossil fuels and biomass burning, whereas methane (CH(4)) alone has large sources from wetlands, agriculture, landfills and waste water. Here we use measurements in firn (perennial snowpack) air from Greenland and Antarctica to reconstruct the atmospheric variability of ethane (C(2)H(6)) during the twentieth century. Ethane levels rose from early in the century until the 1980s, when the trend reversed, with a period of decline over the next 20 years. We find that this variability was primarily driven by changes in ethane emissions from fossil fuels; these emissions peaked in the 1960s and 1970s at 14-16 teragrams per year (1 Tg = 10(12) g) and dropped to 8-10 Tg  yr(-1) by the turn of the century. The reduction in fossil-fuel sources is probably related to changes in light hydrocarbon emissions associated with petroleum production and use. The ethane-based fossil-fuel emission history is strikingly different from bottom-up estimates of methane emissions from fossil-fuel use, and implies that the fossil-fuel source of methane started to decline in the 1980s and probably caused the late twentieth century slow-down in the growth rate of atmospheric methane.

  13. A synthesis of carbon dioxide emissions from fossil-fuel combustion

    R. J. Andres

    2012-05-01

    Full Text Available This synthesis discusses the emissions of carbon dioxide from fossil-fuel combustion and cement production. While much is known about these emissions, there is still much that is unknown about the details surrounding these emissions. This synthesis explores our knowledge of these emissions in terms of why there is concern about them; how they are calculated; the major global efforts on inventorying them; their global, regional, and national totals at different spatial and temporal scales; how they are distributed on global grids (i.e., maps; how they are transported in models; and the uncertainties associated with these different aspects of the emissions. The magnitude of emissions from the combustion of fossil fuels has been almost continuously increasing with time since fossil fuels were first used by humans. Despite events in some nations specifically designed to reduce emissions, or which have had emissions reduction as a byproduct of other events, global total emissions continue their general increase with time. Global total fossil-fuel carbon dioxide emissions are known to within 10 % uncertainty (95 % confidence interval. Uncertainty on individual national total fossil-fuel carbon dioxide emissions range from a few percent to more than 50 %. This manuscript concludes that carbon dioxide emissions from fossil-fuel combustion continue to increase with time and that while much is known about the overall characteristics of these emissions, much is still to be learned about the detailed characteristics of these emissions.

  14. A synthesis of carbon dioxide emissions from fossil-fuel combustion

    R. J. Andres

    2012-01-01

    Full Text Available This synthesis discusses the emissions of carbon dioxide from fossil-fuel combustion and cement production. While much is known about these emissions, there is still much that is unknown about the details surrounding these emissions. This synthesis explores our knowledge of these emissions in terms of why there is concern about them; how they are calculated; the major global efforts on inventorying them; their global, regional, and national totals at different spatial and temporal scales; how they are distributed on global grids (i.e. maps; how they are transported in models; and the uncertainties associated with these different aspects of the emissions. The magnitude of emissions from the combustion of fossil fuels has been almost continuously increasing with time since fossil fuels were first used by humans. Despite events in some nations specifically designed to reduce emissions, or which have had emissions reduction as a byproduct of other events, global total emissions continue their general increase with time. Global total fossil-fuel carbon dioxide emissions are known to within 10% uncertainty (95% confidence interval. Uncertainty on individual national total fossil-fuel carbon dioxide emissions range from a few percent to more than 50%. The information discussed in this manuscript synthesizes global, regional and national fossil-fuel carbon dioxide emissions, their distributions, their transport, and the associated uncertainties.

  15. Material Flow Analysis of Fossil Fuels in China during 2000–2010

    Sheng Wang

    2012-01-01

    Full Text Available Since the relationship between the supply and demand of fossil fuels is on edge in the long run, the contradiction between the economic growth and limited resources will hinder the sustainable development of the Chinese society. This paper aims to analyze the input of fossil fuels in China during 2000–2010 via the material flow analysis (MFA that takes hidden flows into account. With coal, oil, and natural gas quantified by MFA, three indexes, consumption and supply ratio (C/S ratio, resource consumption intensity (RCI, and fossil fuels productivity (FFP, are proposed to reflect the interactions between population, GDP, and fossil fuels. The results indicated that in the past 11 years, China’s requirement for fossil fuels has been increasing continuously because of the growing mine productivity in domestic areas, which also leads to a single energy consumption structure as well as excessive dependence on the domestic exploitation. It is advisable to control the fossil fuels consumption by energy recycling and new energy facilities’ popularization in order to lead a sustainable access to nonrenewable resources and decrease the soaring carbon emissions.

  16. Estimation of NOx Emission from Fossil Fuel Consumption in China for the Period 1980-2012

    Du Yu

    2016-01-01

    Full Text Available As the largest consumer of fossil fuel, China NOx emission from energy consumption has become a hotspot for studies. In this study, emission inventory was used to analysis the historical variation of NOx emission in china for the period 1980 to 2012. Results indicate that NOx mission of China has increased from 446.45 × 104t to 2499.72 × 104t during 1980-2012, electricity, industry and transportation was the main contributor and NOx emission has increased from 145.04 × 104t, 206.75 × 104t, 39.44 × 104t to 1311.6 × 104t, 479.46 × 104t, 576.31 × 104t respectively; from the spatial pattern, high total NOx emission with mainly concentrated in the north of China and the high emission intensity mainly concentrate in eastern China.

  17. Energy Analysis of the Danish Food Production System: Food-EROI and Fossil Fuel Dependency

    Markussen, Mads Ville; Østergård, Hanne

    2013-01-01

    imported livestock feed and commercial fertilisers. The analysis shows that the system requires 221 PJ of fossil energy per year and that for each joule of fossil energy invested in farming, processing and transportation, 0.25 J of food energy is produced; 0.28 when crediting for produced bioenergy....... Furthermore, nutrients in commercial fertiliser and imported feed account for 84%, 90% and 90% of total supply of N, P and K, respectively. We conclude that the system is unsustainable because it is embedded in a highly fossil fuel dependent system based on a non-circular flow of nutrients. As energy and thus......Modern food production depends on limited natural resources for providing energy and fertilisers. We assess the fossil fuel dependency for the Danish food production system by means of Food Energy Returned on fossil Energy Invested (Food-EROI) and by the use of energy intensive nutrients from...

  18. Comparative evaluation of solar, fission, fusion, and fossil energy resources. Part 4: Energy from fossil fuels

    Williams, J. R.

    1974-01-01

    The conversion of fossil-fired power plants now burning oil or gas to burn coal is discussed along with the relaxation of air quality standards and the development of coal gasification processes to insure a continued supply of gas from coal. The location of oil fields, refining areas, natural gas fields, and pipelines in the U.S. is shown. The technologies of modern fossil-fired boilers and gas turbines are defined along with the new technologies of fluid-bed boilers and MHD generators.

  19. The Fossil Fueled Metropolis: Los Angeles and the Emergence of Oil-Based Energy in North America, 1865--1930

    Cooke, Jason Arthur

    Beginning with coal in the nineteenth century, the mass production and intensive consumption of fossil fuel energy fundamentally changed patterns of urban and industrial development in North America. Focusing on the metropolitan development of Los Angeles, this dissertation examines how the emergence of oil-based capitalism in the first three decades of the twentieth century was sustained and made increasingly resilient through the production of urban and industrial space. In a region where coal was scarce, the development of oil-based energy was predicated on long-term investments into conversion technologies, storage systems and distribution networks that facilitated the efficient and economical flow of liquefied fossil fuel. In this dissertation, I argue that the historical and geographical significance of the Southern California petroleum industry is derived from how its distinctive market expansion in the first three decades of the twentieth century helped establish the dominance of oil-based energy as the primary fuel for transportation in capitalist society. In North America, the origins of oil-based capitalism can be traced to the turn of the twentieth century when California was the largest oil-producing economy in the United States and Los Angeles was the fastest growing metropolitan region. This dissertation traces how Los Angeles became the first city in North America where oil became a formative element of urban and industrial development: not only as fuel for transportation, but also in the infrastructures, landscapes and networks that sustain a critical dependence on oil-based energy. With a distinctive metropolitan geography, decentralized and automobile-dependent, Los Angeles became the first oil-based city in North America and thus provides an ideal case study for examining the regional dynamics of energy transition, establishment and dependence. Interwoven with the production of urban and industrial space, oil remains the primary fuel that

  20. Energy analysis and break-even distance for transportation for biofuels in comparison to fossil fuels

    In the present analysis various forms fuel from biomass and fossil sources, their mass and energy densities, and their break-even transportation distances to transport them effectively were analyzed. This study gives an insight on how many times more energy spent on transporting the fuels to differe...

  1. Decision-maker's guide to wood fuel for small industrial energy users. Final report. [Includes glossary

    Levi, M. P.; O& #x27; Grady, M. J.

    1980-02-01

    The technology and economics of various wood energy systems available to the small industrial and commercial energy user are considered. This book is designed to help a plant manager, engineer, or others in a decision-making role to become more familiar with wood fuel systems and make informed decisions about switching to wood as a fuel. The following subjects are discussed: wood combustion, pelletized wood, fuel storage, fuel handling and preparation, combustion equipment, retrofitting fossil-fueled boilers, cogeneration, pollution abatement, and economic considerations of wood fuel use. (MHR)

  2. Co-combustion of Fossil Fuels and Waste

    Wu, Hao

    The Ph.D. thesis deals with the alternative and high efficiency methods of using waste-derived fuels in heat and power production. The focus is on the following subjects: 1) co-combustion of coal and solid recovered fuel (SRF) under pulverized fuel combustion conditions; 2) dust-firing of straw...

  3. Transport realization of high resolution fossil fuel CO2 emissions in an urban domain

    Zhou, Y.; Gurney, K. R.

    2010-12-01

    CO2 emissions from fossil fuel combustion are the largest net annual flux of carbon in the earth atmosphere system and energy consumption in urban environments is a major contributor to total fossil fuel CO2 emissions. Understanding how the emissions are transported in space and time, especially in urban environments and resolving contributions from individual sources of fossil-fuel CO2 emissions are an essential component of a complete reliable monitoring, reporting, and verification (MRV) system that are emerging at local, national, and international levels. As grid models are not designed to resolve concentrations on local scales, we tested the transport realization of fossil fuel CO2 emissions using the Hybrid Single Particle Lagrangian Integrated Trajectory Model (HYSPLIT) model, a commonly used transport algorithm for small domain air quality studies, in the greater Indianapolis region, USA. A typical 24-hour point, mobile, and area sources fossil fuel CO2 emissions in four seasons (spring, summer, autumn and winter) were processed from hourly emissions data and prepared at 500-meter spatial resolution for the model inputs together with other parameters. The simulation result provides a complete 4-dimensional concentration matrix transported from all sources for the urban domain which can be analyzed in order to isolate individual sources or test sampling strategies for verification at selected time periods. In addition, the urban 4-dimensional concentration matrix can be visualized in a virtual environment, which provides a powerful education and outreach platform for researchers, students, and public.

  4. Can the envisaged reductions of fossil fuel CO2 emissions be detected by atmospheric observations?

    Levin, Ingeborg; Rödenbeck, Christian

    2008-03-01

    The lower troposphere is an excellent receptacle, which integrates anthropogenic greenhouse gases emissions over large areas. Therefore, atmospheric concentration observations over populated regions would provide the ultimate proof if sustained emissions changes have occurred. The most important anthropogenic greenhouse gas, carbon dioxide (CO(2)), also shows large natural concentration variations, which need to be disentangled from anthropogenic signals to assess changes in associated emissions. This is in principle possible for the fossil fuel CO(2) component (FFCO(2)) by high-precision radiocarbon ((14)C) analyses because FFCO(2) is free of radiocarbon. Long-term observations of (14)CO(2) conducted at two sites in south-western Germany do not yet reveal any significant trends in the regional fossil fuel CO(2) component. We rather observe strong inter-annual variations, which are largely imprinted by changes of atmospheric transport as supported by dedicated transport model simulations of fossil fuel CO(2). In this paper, we show that, depending on the remoteness of the site, changes of about 7-26% in fossil fuel emissions in respective catchment areas could be detected with confidence by high-precision atmospheric (14)CO(2) measurements when comparing 5-year averages if these inter-annual variations were taken into account. This perspective constitutes the urgently needed tool for validation of fossil fuel CO(2) emissions changes in the framework of the Kyoto protocol and successive climate initiatives.

  5. Biofuel: an alternative to fossil fuel for alleviating world energy and economic crises.

    Bhattarai, Keshav; Stalick, Wayne M; McKay, Scott; Geme, Gija; Bhattarai, Nimisha

    2011-01-01

    The time has come when it is desirable to look for alternative energy resources to confront the global energy crisis. Consideration of the increasing environmental problems and the possible crisis of fossil fuel availability at record high prices dictate that some changes will need to occur sooner rather than later. The recent oil spill in the Gulf of Mexico is just another example of the environmental threats that fossil fuels pose. This paper is an attempt to explore various bio-resources such as corn, barley, oat, rice, wheat, sorghum, sugar, safflower, and coniferous and non-coniferous species for the production of biofuels (ethanol and biodiesel). In order to assess the potential production of biofuel, in this paper, countries are organized into three groups based on: (a) geographic areas; (b) economic development; and(c) lending types, as classified by the World Bank. First, the total fossil fuel energy consumption and supply and possible carbon emission from burning fossil fuel is projected for these three groups of countries. Second, the possibility of production of biofuel from grains and vegetative product is projected. Third, a comparison of fossil fuel and biofuel is done to examine energy sustainability issues.

  6. What Geological, Economic, or Policy Forces Might Limit Fossil Fuel Production?

    Heinberg, R.

    2015-12-01

    In order to ensure a 50% chance of keeping global temperatures from exceeding 2°C above pre-industrial levels, it has been estimated that total carbon dioxide emissions between 2011-2050 must be capped at roughly 1,100 gigatons.[1] However, some estimates calculate that global fossil fuel reserves—including unconventional oil and gas—hold at least three times this amount of potential greenhouse gas emissions.[2]What socio-political, technological, or economic forces are most likely to keep these energy resources from being burned? While it is difficult to predict with specificity what combination of technological, geological, or human factors will significantly minimize global fossil fuel production, there are at least four key potential drivers: 1. Under-investment and the economics of unconventional oil and natural gas; 2. International policy, driven by citizen demand and leadership from key nations; 3. Massive deployment of renewable energy sources and other technological solutions; and 4. Large-scale energy curtailment resulting from global economic contraction. We will explore the implications, viability, and consequences of each of these potential factors. [1] [1]United Nations Framework Convention on Climate Change (UNFCC) Report of the Conference of the Parties on its Fifteenth Session, held in Copenhagen from 7 to 19 December 2009. Part Two: Action taken by the Conference of the Parties at its Fifteenth Session. United Nations Climate Change Conf. Report 43 http://unfccc.int/resource/docs/2009/cop15/eng/11a01.pdf (UNFCC, 2009) [2] Raupach, M. R. et al. Sharing a quota on cumulative carbon emissions. Nature Clim. Chang. 4, 873-879 (2014)

  7. A synthesis of carbon dioxide emissions from fossil-fuel combustion

    Andres, R.J.; Boden, T.A.; Bréon, F.-M.

    2012-01-01

    This synthesis discusses the emissions of carbon dioxide from fossil-fuel combustion and cement production. While much is known about these emissions, there is still much that is unknown about the details surrounding these emissions. This synthesis explores our knowledge of these emissions in terms......, or which have had emissions reduction as a byproduct of other events, global total emissions continue their general increase with time. Global total fossilfuel carbon dioxide emissions are known to within 10% uncertainty (95% confidence interval). Uncertainty on individual national total fossil-fuel carbon...... dioxide emissions range from a few percent to more than 50 %. This manuscript concludes that carbon dioxide emissions from fossil-fuel combustion continue to increase with time and that while much is known about the overall characteristics of these emissions, much is still to be learned about the detailed...

  8. Estimating methane emissions from biological and fossil-fuel sources in the San Francisco Bay Area

    Jeong, Seongeun; Cui, Xinguang; Blake, Donald R.; Miller, Ben; Montzka, Stephen A.; Andrews, Arlyn; Guha, Abhinav; Martien, Philip; Bambha, Ray P.; LaFranchi, Brian; Michelsen, Hope A.; Clements, Craig B.; Glaize, Pierre; Fischer, Marc L.

    2017-01-01

    We present the first sector-specific analysis of methane (CH4) emissions from the San Francisco Bay Area (SFBA) using CH4 and volatile organic compound (VOC) measurements from six sites during September - December 2015. We apply a hierarchical Bayesian inversion to separate the biological from fossil-fuel (natural gas and petroleum) sources using the measurements of CH4 and selected VOCs, a source-specific 1 km CH4 emission model, and an atmospheric transport model. We estimate that SFBA CH4 emissions are 166-289 Gg CH4/yr (at 95% confidence), 1.3-2.3 times higher than a recent inventory with much of the underestimation from landfill. Including the VOCs, 82 ± 27% of total posterior median CH4 emissions are biological and 17 ± 3% fossil fuel, where landfill and natural gas dominate the biological and fossil-fuel CH4 of prior emissions, respectively.

  9. An option for solar thermal repowering of fossil fuel fired power plants

    Popov, D. [Technical University of Sofia, Sofia (Bulgaria)

    2011-02-15

    Global climate change urges immediate measures to be taken to limit greenhouse gas emission coming from the fossil fuel fired power plants. Solar thermal energy can be involved in different ways in existing power generation plants in order to replace heat produced by fossil fuels. Solar field feed water preheating is mainly discussed in this paper as an option for fast and feasible RES penetration. Rankine regenerative steam cycled power plant has been modelled with Thermoflow software. The plant model incorporates also a field with solar Fresnel collectors that directly heats boiler's feed water. The proposed plant modification yields substantial fossil fuel input reduction. The best results can be obtained when the group of high pressure heaters is replaced and feed water temperature exceeds its original design value. The solar power generation share can reach up to 23% of the power plant capacity in this case, having efficiency higher than 39% for the best solar hour of the year.

  10. Long-term ocean oxygen depletion in response to carbon dioxide emissions from fossil fuels

    Shaffer, G.; Olsen, S.M.; Pedersen, Jens Olaf Pepke

    2009-01-01

    Ongoing global warming could persist far into the future, because natural processes require decades to hundreds of thousands of years to remove carbon dioxide from fossil-fuel burning from the atmosphere(1-3). Future warming may have large global impacts including ocean oxygen depletion and assoc......Ongoing global warming could persist far into the future, because natural processes require decades to hundreds of thousands of years to remove carbon dioxide from fossil-fuel burning from the atmosphere(1-3). Future warming may have large global impacts including ocean oxygen depletion...... solubility from surface-layer warming accounts for most of the enhanced oxygen depletion in the upper 500 m of the ocean. Possible weakening of ocean overturning and convection lead to further oxygen depletion, also in the deep ocean. We conclude that substantial reductions in fossil-fuel use over the next...

  11. Combustion system for hybrid solar fossil fuel receiver

    Mehos, Mark S.; Anselmo, Kenneth M.; Moreno, James B.; Andraka, Charles E.; Rawlinson, K. Scott; Corey, John; Bohn, Mark S.

    2004-05-25

    A combustion system for a hybrid solar receiver comprises a pre-mixer which combines air and fuel to form an air-fuel mixture. The mixture is introduced tangentially into a cooling jacket. A burner plenum is fluidically connected to the cooling jacket such that the burner plenum and the cooling jacket are arranged in thermal contact with one another. The air-fuel mixture flows through the cooling jacket cooling the burner plenum to reduce pre-ignition of the air-fuel mixture in the burner plenum. A combustion chamber is operatively associated with and open to the burner plenum to receive the air-fuel mixture from the burner plenum. An igniter is operatively positioned in the combustion chamber to combust the air-fuel mixture, releasing heat. A recuperator is operatively associated with the burner plenum and the combustion chamber and pre-heats the air-fuel mixture in the burner plenum with heat from the combustion chamber. A heat-exchanger is operatively associated and in thermal contact with the combustion chamber. The heat-exchanger provides heat for the hybrid solar receiver.

  12. TOWARDS A RESILIENT ENERGY SYSTEM IN EASTERN ROMANIA – FROM FOSSIL FUELS TO RENEWABLE SOURCES

    BĂNICĂ Alexandru

    2015-12-01

    Full Text Available The study takes into account the two Romanian Eastern regions (North East and South East trying to emphasize the post-communist dynamics of the energy sector in order to draw a general perspective for the future evolution towards both energy security and a clean environment. Before 1989, the energy sector, that had to sustain not only the population needs, but also an oversized manufacturing industry, was based on big power plants usually using coal and oil and highly polluting the environment. The hydropower had a rather small share in the total energy production. This inherited system was very much resistant after the end of the centralized political system, therefore after the general industrial decline the energy sector remained the main source of air pollution in many towns and cities from Romania. Meanwhile, in the last 6-7 years, due to a favourable national political context, we assisted, especially in the analysed area, to an important emergence of renewable energy investments (mainly wind and solar energy, but also biomass or hydro-energy. Our purpose is to evaluate, from a geographical point of view, the extent and the implications of a desirable progressive shift from fossil fuels to renewable energy that could radically change the territorial relations and sustain development on the long term.

  13. Poly(3-hydroxypropionate): a promising alternative to fossil fuel-based materials.

    Andreessen, Björn; Taylor, Nicolas; Steinbüchel, Alexander

    2014-11-01

    Polyhydroxyalkanoates (PHAs) are storage compounds synthesized by numerous microorganisms and have attracted the interest of industry since they are biobased and biodegradable alternatives to fossil fuel-derived plastics. Among PHAs, poly(3-hydroxypropionate) [poly(3HP)] has outstanding material characteristics and exhibits a large variety of applications. As it is not brittle like, e.g., the best-studied PHA, poly(3-hydroxybutyrate) [poly(3HB)], it can be used as a plasticizer in blends to improve their properties. Furthermore, 3-hydroxypropionic acid (3HP) is considered likely to become one of the new industrial building blocks, and it can be obtained from poly(3HP) by simple hydrolysis. Unfortunately, no natural organism is known to accumulate poly(3HP) so far. Thus, several efforts have been made to engineer genetically modified organisms capable of synthesizing the homopolymer or copolymers containing 3HP. In this review, the achievements made so far in efforts to obtain biomass which has accumulated poly(3HP) or 3HP-containing copolymers, as well as the properties of these polyesters and their applications, are compiled and evaluated.

  14. CO2 emissions mitigation and fossil fuel markets: Dynamic and international aspects of climate policies

    Bauer, Nico; Bosetti, Valentina; Hamdi-Cherif, Meriem; Kitous, Alban; McCollum, David; Mejean, Aurelie; Rao, Shilpa; Turton, Hal; Paroussos, Leonidas; Ashina, Shuichi; Calvin, Katherine V.; Wada, Kenichi; Van Vuuren, Detlef

    2015-01-01

    This paper explores a multi-model scenario ensemble to assess the impacts of idealized and non-idealized climate change stabilization policies on fossil fuel markets. Under idealized conditions climate policies significantly reduce coal use in the short- and long-term. Reductions in oil and gas use are much smaller, particularly until 2030, but revenues decrease much more because oil and gas prices are higher and decrease with mitigation. A first deviation from the optimal transition pathway relaxes global emission targets until 2030, in accordance with the Copenhagen pledges and regionally-specific low-carbon technology targets. Fossil fuel markets revert back to the no-policy case: though coal use increases strongest, revenue gains are higher for oil and gas. To balance the carbon budget over the 21st century, the long-term reallocation of fossil fuels is significantly larger - twice and more - than the short-term distortion. This amplifying effect results from coal lock-in and inter-fuel substitution effects. The second deviation from the optimal transition pathway relaxes the global participation assumption. The result here is less clear cut across models, as we find carbon leakage effects ranging from positive to negative because leakage and substitution patterns of coal, oil, and gas differ. In summary, distortions of fossil fuel markets resulting from relaxed short-term global emission targets are more important and less uncertain than the issue of carbon leakage from early mover action.

  15. Underground coal gasification (UCG: A new trend of supply-side economics of fossil fuels

    Fei Mao

    2016-10-01

    Full Text Available China has a huge demand for energy. Under the present energy structure of rich coal, lean oil, less gas, limited and low-rising rate renewable energy, discussion focus is now on the high-efficient mining of coal as well as its clean-and-low-carbon use. In view of this, based on an analysis of the problems in the coal chemical industry and the present coal utilization ways such as Integrated Gasification Combined Cycle (IGCC, this paper proposes that underground coal gasification (UCG technology is a realistic choice. By virtue of its advantages in many aspects such as safety & environment, integrated use of superior resources, economic feasibility, etc. this technology can serve as the front-end support and guarantee for coal chemical industry and IGCC. Under the present situation, the following proposals were presented to promote the development of this technology. First, R&D of technical products should be strengthened, a comprehensive feasibility study assessment system should be established, and the relevant criteria in the industry should be formulated. Second, precise market positioning of UCG products should be made with much concern on the integrated economic indicators of each product's complete flow scheme, following the principle of “Technical Feasibility First, Economic Optimization Followed”. Third, a perfect operation and management pattern should be established with strict control over high-efficient, environmentally-friendly, safe, harmonious & compact objectives in the whole industry chain. In conclusion, to realize the large-scale UCG commercial production will strongly promote the optimization and innovation of fossil fuels supply-side economics in China.

  16. Energy Analysis of the Danish Food Production System: Food-EROI and Fossil Fuel Dependency

    Hanne Østergård

    2013-08-01

    Full Text Available Modern food production depends on limited natural resources for providing energy and fertilisers. We assess the fossil fuel dependency for the Danish food production system by means of Food Energy Returned on fossil Energy Invested (Food-EROI and by the use of energy intensive nutrients from imported livestock feed and commercial fertilisers. The analysis shows that the system requires 221 PJ of fossil energy per year and that for each joule of fossil energy invested in farming, processing and transportation, 0.25 J of food energy is produced; 0.28 when crediting for produced bioenergy. Furthermore, nutrients in commercial fertiliser and imported feed account for 84%, 90% and 90% of total supply of N, P and K, respectively. We conclude that the system is unsustainable because it is embedded in a highly fossil fuel dependent system based on a non-circular flow of nutrients. As energy and thus nutrient constraints may develop in the coming decades, the current system may need to adapt by reducing use of fossil energy at the farm and for transportation of food and feed. An operational strategy may be to relocalise the supply of energy, nutrients, feed and food.

  17. High resolution fossil fuel combustion CO2 emission fluxes for the United States.

    Gurney, Kevin R; Mendoza, Daniel L; Zhou, Yuyu; Fischer, Marc L; Miller, Chris C; Geethakumar, Sarath; de la Rue du Can, Stephane

    2009-07-15

    Quantification of fossil fuel CO2 emissions at fine space and time resolution is emerging as a critical need in carbon cycle and climate change research. As atmospheric CO2 measurements expand with the advent of a dedicated remote sensing platform and denser in situ measurements, the ability to close the carbon budget at spatial scales of approximately 100 km2 and daily time scales requires fossil fuel CO2 inventories at commensurate resolution. Additionally, the growing interest in U.S. climate change policy measures are best served by emissions that are tied to the driving processes in space and time. Here we introduce a high resolution data product (the "Vulcan" inventory: www.purdue.edu/eas/carbon/vulcan/) that has quantified fossil fuel CO2 emissions for the contiguous U.S. at spatial scales less than 100 km2 and temporal scales as small as hours. This data product completed for the year 2002, includes detail on combustion technology and 48 fuel types through all sectors of the U.S. economy. The Vulcan inventory is built from the decades of local/regional air pollution monitoring and complements these data with census, traffic, and digital road data sets. The Vulcan inventory shows excellent agreement with national-level Department of Energy inventories, despite the different approach taken by the DOE to quantify U.S. fossil fuel CO2 emissions. Comparison to the global 1degree x 1 degree fossil fuel CO2 inventory, used widely by the carbon cycle and climate change community prior to the construction of the Vulcan inventory, highlights the space/time biases inherent in the population-based approach.

  18. High resolution fossil fuel combustion CO2 emission fluxes for the United States

    Gurney, Kevin R.; Mendoza, Daniel L.; Zhou, Yuyu; Fischer, Marc L.; Miller, Chris C.; Geethakumar, Sarath; de la Rue du Can, Stephane

    2009-03-19

    Quantification of fossil fuel CO{sub 2} emissions at fine space and time resolution is emerging as a critical need in carbon cycle and climate change research. As atmospheric CO{sub 2} measurements expand with the advent of a dedicated remote sensing platform and denser in situ measurements, the ability to close the carbon budget at spatial scales of {approx}100 km{sup 2} and daily time scales requires fossil fuel CO{sub 2} inventories at commensurate resolution. Additionally, the growing interest in U.S. climate change policy measures are best served by emissions that are tied to the driving processes in space and time. Here we introduce a high resolution data product (the 'Vulcan' inventory: www.purdue.edu/eas/carbon/vulcan/) that has quantified fossil fuel CO{sub 2} emissions for the contiguous U.S. at spatial scales less than 100 km{sup 2} and temporal scales as small as hours. This data product, completed for the year 2002, includes detail on combustion technology and 48 fuel types through all sectors of the U.S. economy. The Vulcan inventory is built from the decades of local/regional air pollution monitoring and complements these data with census, traffic, and digital road data sets. The Vulcan inventory shows excellent agreement with national-level Department of Energy inventories, despite the different approach taken by the DOE to quantify U.S. fossil fuel CO{sub 2} emissions. Comparison to the global 1{sup o} x 1{sup o} fossil fuel CO{sub 2} inventory, used widely by the carbon cycle and climate change community prior to the construction of the Vulcan inventory, highlights the space/time biases inherent in the population-based approach.

  19. Towards a Future of District Heating Systems with Low-Temperature Operation together with Non-Fossil Fuel Heat Sources

    Tol, Hakan; Dinçer, Ibrahim; Svendsen, Svend

    2012-01-01

    This study focused on investigation of non-fossil fuel heat sources to be supplied to low-energy district heating systems operating in low temperature such as 55 C and 25 C in terms of, respectively, supply and return. Vast variety of heat sources classed in categories such as fossil fuel, renewa...

  20. Subsidy regulation in WTO Law : Some implications for fossil fuels and renewable energy

    Marhold, Anna

    2016-01-01

    This contribution discusses WTO subsidies disciplines in the context of the energy sector. After laying out the relevant disciplines, it will discuss the paradox of WTO law with respect to subsidies towards fossil fuels vis-à-vis those towards renewable energy. It is clear that subsidies on clean en

  1. Impact of fossil fuel emissions on atmospheric radiocarbon and various applications of radiocarbon over this century.

    Graven, Heather D

    2015-08-04

    Radiocarbon analyses are commonly used in a broad range of fields, including earth science, archaeology, forgery detection, isotope forensics, and physiology. Many applications are sensitive to the radiocarbon ((14)C) content of atmospheric CO2, which has varied since 1890 as a result of nuclear weapons testing, fossil fuel emissions, and CO2 cycling between atmospheric, oceanic, and terrestrial carbon reservoirs. Over this century, the ratio (14)C/C in atmospheric CO2 (Δ(14)CO2) will be determined by the amount of fossil fuel combustion, which decreases Δ(14)CO2 because fossil fuels have lost all (14)C from radioactive decay. Simulations of Δ(14)CO2 using the emission scenarios from the Intergovernmental Panel on Climate Change Fifth Assessment Report, the Representative Concentration Pathways, indicate that ambitious emission reductions could sustain Δ(14)CO2 near the preindustrial level of 0‰ through 2100, whereas "business-as-usual" emissions will reduce Δ(14)CO2 to -250‰, equivalent to the depletion expected from over 2,000 y of radioactive decay. Given current emissions trends, fossil fuel emission-driven artificial "aging" of the atmosphere is likely to occur much faster and with a larger magnitude than previously expected. This finding has strong and as yet unrecognized implications for many applications of radiocarbon in various fields, and it implies that radiocarbon dating may no longer provide definitive ages for samples up to 2,000 y old.

  2. Subsidies in WTO Law and Energy Regulation : Some Implications for Fossil Fuels and Renewable Energy

    Marhold, Anna

    2017-01-01

    This contribution discusses WTO subsidies disciplines in the context of the energy sector. After laying out the relevant disciplines, it will discuss the paradox of WTO law with respect to subsidies towards fossil fuels vis-à-vis those towards renewable energy. It is clear that subsidies on clean en

  3. Workshop on an Assessment of Gas-Side Fouling in Fossil Fuel Exhaust Environments

    Marner, W. J. (Editor); Webb, R. L. (Editor)

    1982-01-01

    The state of the art of gas side fouling in fossil fuel exhaust environments was assessed. Heat recovery applications were emphasized. The deleterious effects of gas side fouling including increased energy consumption, increased material losses, and loss of production were identified.

  4. Climate Policy and the Optimal Extraction of High- and Low-Carbon Fossil Fuels

    Smulders, J.A.; van der Werf, E.H.

    2005-01-01

    We study how restricting CO2 emissions affcts resource prices and depletion over time.We use a Hotelling-style model with two nonrenewable fossil fuels that differ in their carbon content (e.g. coal and natural gas) and that are imperfect substitutes in final good production.We study both an unexpec

  5. Emissions and their drivers: sensitivity to economic growth and fossil fuel availability across world regions

    Mouratiadou, Ioanna; Luderer, Gunnar; Bauer, Nico; Kriegler, Elmar

    2016-01-01

    This paper investigates the extent to which uncertainty on regional patterns of economic growth and fossil fuel availability impacts regional emission patterns, emission drivers, and regional mitigation potentials and strategies, through an analysis across five key world regions in different stages

  6. CO2 emission mitigation and fossil fuel markets : Dynamic and international aspects of climate policies

    Bauer, Nico; Bosetti, Valentina; Hamdi-Cherif, Meriem; Kitous, Alban; McCollum, David; Méjean, Aurélie; Rao, Shilpa; Turton, Hal; Paroussos, Leonidas; Ashina, Shuichi; Calvin, Katherine; Wada, Kenichi; van Vuuren, Detlef

    2015-01-01

    This paper explores a multi-model scenario ensemble to assess the impacts of idealized and non-idealized climate change stabilization policies on fossil fuel markets. Under idealized conditions climate policies significantly reduce coal use in the short- and long-term. Reductions in oil and gas use

  7. Nitrogen compounds in pressurised fluidised bed gasification of biomass and fossil fuels

    De Jong, W.

    2005-01-01

    Fossil fuels still dominate the energy supply in modern societies. The resources, however, are depleting. Therefore, other energy sources are to be exploited further within this century. Biomass is one of the practically CO2 neutral, renewable contributors to the future energy production. Nowadays m

  8. Impacts of Wind and Solar on Fossil-Fueled Generators: Preprint

    Lew, D.; Brinkman, G.; Kumar, N.; Besuner, P.; Agan, D.; Lefton, S.

    2012-08-01

    High penetrations of wind and solar power will impact the operations of the remaining generators on the power system. Regional integration studies have shown that wind and solar may cause fossil-fueled generators to cycle on and off and ramp down to part load more frequently and potentially more rapidly. Increased cycling, deeper load following, and rapid ramping may result in wear-and-tear impacts on fossil-fueled generators that lead to increased capital and maintenance costs, increased equivalent forced outage rates, and degraded performance over time. Heat rates and emissions from fossil-fueled generators may be higher during cycling and ramping than during steady-state operation. Many wind and solar integration studies have not taken these increased cost and emissions impacts into account because data have not been available. This analysis considers the cost and emissions impacts of cycling and ramping of fossil-fueled generation to refine assessments of wind and solar impacts on the power system.

  9. Liquid fossil-fuel technology. Quarterly technical progress report, April-June 1982

    Linville, B. (ed.)

    1982-10-01

    This report primarily covers in-house oil, gas, and synfuel research and lists the contracted research. The report is broken into the following areas: liquid fossil fuel cycle, extraction, processing, utilization, and project integration and technology transfer. BETC publications are listed. (DLC)

  10. Review of NO/sub x/ emission factors for stationary fossil fuel combustion sources. Final report

    Milligan, R.J.; Sailor, W.C.; Wasilewski, J.; Kuby, W.C.

    1979-09-01

    A review of recent NOx test data was performed, and summaries of emission factors presented for various types of stationary source combustion and for various fossil fuels. The effects of combustion modifications on NOx emissions are quantified. Background data are given to help the user determine the reliability of each factor in particular applications.

  11. Atmospheric observations of carbon monoxide and fossil fuel CO2 emissions from East Asia

    Turnbull, Jocelyn C.; Tans, Pieter P.; Lehman, Scott J.;

    2011-01-01

    Flask samples from two sites in East Asia, Tae-Ahn Peninsula, Korea (TAP), and Shangdianzi, China (SDZ), were measured for trace gases including CO2, CO and fossil fuel CO2(CO(2)ff, derived from Delta(CO2)-C-14 observations). The five-year TAP record shows high CO(2)ff when local air comes from t...

  12. Comparative study on systems of residual water treatment in the process industry by evaporation, using fossils fuels or solar energy; Estudio comparativo sobre sistemas de tratamiento de aguas residuales de la industria de procesamiento por evaporacion, utilizando combustibles fosiles o energia solar

    Landgrave Romero, Julio; Canseco Contreras, Jose [Facultad de Quimica, UNAM (Mexico)

    1996-07-01

    The residual water treatment of the process industry, nowadays is an imminent necessity in our country. In the present study two different forms are considered to concentrate residual waters: multiple effect evaporation and solar evaporation. The use of solar evaporation lagoons is a good possibility to conserving energy by means of the diminution of fossil fuel consumption. The design basis of the evaporation systems via multiple effect, as well as solar evaporation, the results of the respective sizing and the estimation of the corresponding costs are presented. A practical case is described on the cooking of cotton linters (flock) [Spanish] El tratamiento de aguas residuales de la industria de proceso, hoy en dia es una necesidad inminente en nuestro pais. En el presente trabajo se consideran dos formas distintas para concentrar las aguas residuales: evaporacion de multiple efecto y evaporacion solar. El empleo de lagunas de evaporacion solar es una buena posibilidad para conseguir el ahorro de energia mediante disminucion del consumo de combustibles fosiles. Se presentan las bases de diseno de los sistemas de evaporacion via multiple efecto, asi como solar, los resultados del dimensionamiento respectivo y la estimacion de los costos correspondientes. Se describe un caso practico sobre el cocido de linters de algodon (borra)

  13. Aluminum-26 in the early solar system - Fossil or fuel

    Lee, T.; Papanastassiou, D. A.; Wasserburg, G. J.

    1977-01-01

    The isotopic composition of Mg was measured in different phases of a Ca-Al-rich inclusion in the Allende meteorite. Large excesses of Mg-26 of up to 10% were found. These excesses correlate strictly with the Al-27/Mg-24 ratio for four coexisting phases with distinctive chemical compositions. Models of in situ decay of Al-26 within the solar system and of mixing of interstellar dust grains containing fossil Al-26 with normal solar system material are presented. The observed correlation provides definitive evidence for the presence of Al-26 in the early solar system. This requires either injection of freshly synthesized nucleosynthetic material into the solar system immediately before condensation and planet formation, or local production within the solar system by intense activity of the early sun. Planets promptly produced from material with the inferred Al-26/Al-27 would melt within about 300,000 years.

  14. Quantifying fossil fuel CO2 from continuous measurements of APO: a novel approach

    Pickers, Penelope; Manning, Andrew C.; Forster, Grant L.; van der Laan, Sander; Wilson, Phil A.; Wenger, Angelina; Meijer, Harro A. J.; Oram, David E.; Sturges, William T.

    2016-04-01

    Using atmospheric measurements to accurately quantify CO2 emissions from fossil fuel sources requires the separation of biospheric and anthropogenic CO2 fluxes. The ability to quantify the fossil fuel component of CO2 (ffCO2) from atmospheric measurements enables more accurate 'top-down' verification of CO2 emissions inventories, which frequently have large uncertainty. Typically, ffCO2 is quantified (in ppm units) from discrete atmospheric measurements of Δ14CO2, combined with higher resolution atmospheric CO measurements, and with knowledge of CO:ffCO2 ratios. In the United Kingdom (UK), however, measurements of Δ14CO2 are often significantly biased by nuclear power plant influences, which limit the use of this approach. We present a novel approach for quantifying ffCO2 using measurements of APO (Atmospheric Potential Oxygen; a tracer derived from concurrent measurements of CO2 and O2) from two measurement sites in Norfolk, UK. Our approach is similar to that used for quantifying ffCO2 from CO measurements (ffCO2(CO)), whereby ffCO2(APO) = (APOmeas - APObg)/RAPO, where (APOmeas - APObg) is the APO deviation from the background, and RAPO is the APO:CO2 combustion ratio for fossil fuel. Time varying values of RAPO are calculated from the global gridded COFFEE (CO2 release and Oxygen uptake from Fossil Fuel Emission Estimate) dataset, combined with NAME (Numerical Atmospheric-dispersion Modelling Environment) transport model footprints. We compare our ffCO2(APO) results to results obtained using the ffCO2(CO) method, using CO:CO2 fossil fuel emission ratios (RCO) from the EDGAR (Emission Database for Global Atmospheric Research) database. We find that the APO ffCO2 quantification method is more precise than the CO method, owing primarily to a smaller range of possible APO:CO2 fossil fuel emission ratios, compared to the CO:CO2 emission ratio range. Using a long-term dataset of atmospheric O2, CO2, CO and Δ14CO2 from Lutjewad, The Netherlands, we examine the

  15. Economic value of U.S. fossil fuel electricity health impacts.

    Machol, Ben; Rizk, Sarah

    2013-02-01

    Fossil fuel energy has several externalities not accounted for in the retail price, including associated adverse human health impacts, future costs from climate change, and other environmental damages. Here, we quantify the economic value of health impacts associated with PM(2.5) and PM(2.5) precursors (NO(x) and SO(2)) on a per kilowatt hour basis. We provide figures based on state electricity profiles, national averages and fossil fuel type. We find that the economic value of improved human health associated with avoiding emissions from fossil fuel electricity in the United States ranges from a low of $0.005-$0.013/kWh in California to a high of $0.41-$1.01/kWh in Maryland. When accounting for the adverse health impacts of imported electricity, the California figure increases to $0.03-$0.07/kWh. Nationally, the average economic value of health impacts associated with fossil fuel usage is $0.14-$0.35/kWh. For coal, oil, and natural gas, respectively, associated economic values of health impacts are $0.19-$0.45/kWh, $0.08-$0.19/kWh, and $0.01-$0.02/kWh. For coal and oil, these costs are larger than the typical retail price of electricity, demonstrating the magnitude of the externality. When the economic value of health impacts resulting from air emissions is considered, our analysis suggests that on average, U.S. consumers of electricity should be willing to pay $0.24-$0.45/kWh for alternatives such as energy efficiency investments or emission-free renewable sources that avoid fossil fuel combustion. The economic value of health impacts is approximately an order of magnitude larger than estimates of the social cost of carbon for fossil fuel electricity. In total, we estimate that the economic value of health impacts from fossil fuel electricity in the United States is $361.7-886.5 billion annually, representing 2.5-6.0% of the national GDP.

  16. Effects of using Hydrogen-rich Syngas in industrial gas turbines while maintaining fuel flexibility on compressor design

    Nucara, P.; Sayma, A. I.

    2011-01-01

    Most of the current industrial gas turbine systems are designed to operate with conventional fossil fuels. Recently, the use of Low Calorific Value (LCV) fuels gained interest, particularly, Hydrogen rich Syngas resulting from coal and solid waste gasification. When LCV fuels are used the performance and behavior of the engines could significantly change and modifications may be needed. For instance, due to the relatively low heating value the fuel mass flow rate will be much higher than natu...

  17. The taxation of fossil fuels. An assessment of the Brazilian case; Fiscalite des combustibles fossiles une evaluation du cas Bresilien

    Hinostroza, M.L.; Sauer, I.L. [Sao Paulo Univ., PIPGE/IEE/, SP (Brazil); Mallet, S.; Guerra, G. [UNICAMP/ PSE/DE/FEM (Brazil)

    2003-08-01

    The concept of sustainable development established all around the world has brought a change in the conditions for reciprocal interaction between the various cultures, institutions and organisations. With regard to sustainable energy, proof of these changes can be seen through the presence of a rich diversity of ingenuous proposals and environmental policies. However, the target conditions allowing for the deployment of these policies are not yet defined, with the widespread supposition that growing environmental awareness will create these conditions to a certain extent remaining implicit. The aim of this article is to debate the current fiscal policy of Brazil concerning fossil fuels. Beginning with this framework we aim to demonstrate that the structure or institutional conditions which would allow for the deployment for example of solutions such as the creation of a tax on carbon emissions remain inexistent. (authors)

  18. Reconciling fossil fuel power generation development and climate issues: CCS and CCS-Ready

    Paelinck, Philippe; Sonnois, Louis; Leandri, Jean-Francois

    2010-09-15

    This paper intends to analyse how CCS can contribute to reduce CO2 emissions from fossil-fuel power plants and to describe what is its current overall status. Its potential future development is assessed, in both developed and developing countries, and an economical assessment of different investment options highlight the importance of CCS retrofit. The paper analyses then the challenges of the development of fossil fuelled power plants and details case examples to illustrate some technical challenges related to CCS and what are the technical solutions available today to ease and address them: CCS-Ready power plants.

  19. N2O release from agro-biofuel production negates global warming reduction by replacing fossil fuels

    A. R. Mosier

    2007-08-01

    Full Text Available The relationship, on a global basis, between the amount of N fixed by chemical, biological or atmospheric processes entering the terrestrial biosphere, and the total emission of nitrous oxide (N2O, has been re-examined, using known global atmospheric removal rates and concentration growth of N2O as a proxy for overall emissions. The relationship, in both the pre-industrial period and in recent times, after taking into account the large-scale changes in synthetic N fertiliser production and deforestation, is consistent, showing an overall conversion factor of 3–5%. This factor is covered only in part by the ~1% of "direct" emissions from agricultural crop lands estimated by IPCC (2006, or the "indirect" emissions cited therein. This means that the extra N2O entering the atmosphere as a result of using N to produce crops for biofuels will also be correspondingly greater than that estimated just on the basis of IPCC (2006. When the extra N2O emission from biofuel production is calculated in "CO2-equivalent" global warming terms, and compared with the quasi-cooling effect of "saving" emissions of fossil fuel derived CO2, the outcome is that the production of commonly used biofuels, such as biodiesel from rapeseed and bioethanol from corn (maize, can contribute as much or more to global warming by N2O emissions than cooling by fossil fuel savings. Crops with less N demand, such as grasses and woody coppice species have more favourable climate impacts. This analysis only considers the conversion of biomass to biofuel. It does not take into account the use of fossil fuel on the farms and for fertilizer and pesticide production, but it also neglects the production of useful co-products. Both factors partially compensate each other. This needs to be analyzed in a full life cycle assessment.

  20. A 21st-century shift from fossil-fuel to biogenic methane emissions indicated by 13CH4

    Schaefer, Hinrich; Fletcher, Sara E. Mikaloff; Veidt, Cordelia; Lassey, Keith R.; Brailsford, Gordon W.; Bromley, Tony M.; Dlugokencky, Edward J.; Michel, Sylvia E.; Miller, John B.; Levin, Ingeborg; Lowe, Dave C.; Martin, Ross J.; Vaughn, Bruce H.; White, James W. C.

    2016-04-01

    Between 1999 and 2006, a plateau interrupted the otherwise continuous increase of atmospheric methane concentration [CH4] since preindustrial times. Causes could be sink variability or a temporary reduction in industrial or climate-sensitive sources. We reconstructed the global history of [CH4] and its stable carbon isotopes from ice cores, archived air, and a global network of monitoring stations. A box-model analysis suggests that diminishing thermogenic emissions, probably from the fossil-fuel industry, and/or variations in the hydroxyl CH4 sink caused the [CH4] plateau. Thermogenic emissions did not resume to cause the renewed [CH4] rise after 2006, which contradicts emission inventories. Post-2006 source increases are predominantly biogenic, outside the Arctic, and arguably more consistent with agriculture than wetlands. If so, mitigating CH4 emissions must be balanced with the need for food production.

  1. A 21st-century shift from fossil-fuel to biogenic methane emissions indicated by ¹³CH₄.

    Schaefer, Hinrich; Mikaloff Fletcher, Sara E; Veidt, Cordelia; Lassey, Keith R; Brailsford, Gordon W; Bromley, Tony M; Dlugokencky, Edward J; Michel, Sylvia E; Miller, John B; Levin, Ingeborg; Lowe, Dave C; Martin, Ross J; Vaughn, Bruce H; White, James W C

    2016-04-01

    Between 1999 and 2006, a plateau interrupted the otherwise continuous increase of atmospheric methane concentration [CH4] since preindustrial times. Causes could be sink variability or a temporary reduction in industrial or climate-sensitive sources. We reconstructed the global history of [CH4] and its stable carbon isotopes from ice cores, archived air, and a global network of monitoring stations. A box-model analysis suggests that diminishing thermogenic emissions, probably from the fossil-fuel industry, and/or variations in the hydroxyl CH4 sink caused the [CH4] plateau. Thermogenic emissions did not resume to cause the renewed [CH4] rise after 2006, which contradicts emission inventories. Post-2006 source increases are predominantly biogenic, outside the Arctic, and arguably more consistent with agriculture than wetlands. If so, mitigating CH4 emissions must be balanced with the need for food production.

  2. The fossil-fuels and the global warming

    Remenyi, Karoly

    2010-09-15

    The earth is heated by solar radiation. One is the most important questions is the effect of the human industry. A simple model used, this gives a good result of the phenomena than difficult expressions of numerical applications. The calculation assigns a small number of parameters to the atmosphere and the Earth's surface. It is most important parameter which is changing. If decrease the atmospheric CO2 concentration on 500 ppm, the surface temperature would rise less 1 oC. The CO2 concentraton is a sensitive criterion, but not so much then we found by other models.

  3. Analysis of the uncertainty associated with national fossil fuel CO2 emissions datasets for use in the global Fossil Fuel Data Assimilation System (FFDAS) and carbon budgets

    Song, Y.; Gurney, K. R.; Rayner, P. J.; Asefi-Najafabady, S.

    2012-12-01

    High resolution quantification of global fossil fuel CO2 emissions has become essential in research aimed at understanding the global carbon cycle and supporting the verification of international agreements on greenhouse gas emission reductions. The Fossil Fuel Data Assimilation System (FFDAS) was used to estimate global fossil fuel carbon emissions at 0.25 degree from 1992 to 2010. FFDAS quantifies CO2 emissions based on areal population density, per capita economic activity, energy intensity and carbon intensity. A critical constraint to this system is the estimation of national-scale fossil fuel CO2 emissions disaggregated into economic sectors. Furthermore, prior uncertainty estimation is an important aspect of the FFDAS. Objective techniques to quantify uncertainty for the national emissions are essential. There are several institutional datasets that quantify national carbon emissions, including British Petroleum (BP), the International Energy Agency (IEA), the Energy Information Administration (EIA), and the Carbon Dioxide Information and Analysis Center (CDIAC). These four datasets have been "harmonized" by Jordan Macknick for inter-comparison purposes (Macknick, Carbon Management, 2011). The harmonization attempted to generate consistency among the different institutional datasets via a variety of techniques such as reclassifying into consistent emitting categories, recalculating based on consistent emission factors, and converting into consistent units. These harmonized data form the basis of our uncertainty estimation. We summarized the maximum, minimum and mean national carbon emissions for all the datasets from 1992 to 2010. We calculated key statistics highlighting the remaining differences among the harmonized datasets. We combine the span (max - min) of datasets for each country and year with the standard deviation of the national spans over time. We utilize the economic sectoral definitions from IEA to disaggregate the national total emission into

  4. Formulating Energy Policies Related to Fossil Fuel Use: Critical Uncertainties in the Global Carbon Cycle

    Post, W. M.; Dale, V. H.; DeAngelis, D. L.; Mann, L. K.; Mulholland, P. J.; O`Neill, R. V.; Peng, T. -H.; Farrell, M. P.

    1990-02-01

    The global carbon cycle is the dynamic interaction among the earth's carbon sources and sinks. Four reservoirs can be identified, including the atmosphere, terrestrial biosphere, oceans, and sediments. Atmospheric CO{sub 2} concentration is determined by characteristics of carbon fluxes among major reservoirs of the global carbon cycle. The objective of this paper is to document the knowns, and unknowns and uncertainties associated with key questions that if answered will increase the understanding of the portion of past, present, and future atmospheric CO{sub 2} attributable to fossil fuel burning. Documented atmospheric increases in CO{sub 2} levels are thought to result primarily from fossil fuel use and, perhaps, deforestation. However, the observed atmospheric CO{sub 2} increase is less than expected from current understanding of the global carbon cycle because of poorly understood interactions among the major carbon reservoirs.

  5. Toxicity evaluation of 2-hydroxybiphenyl and other compounds involved in studies of fossil fuels biodesulphurisation.

    Alves, L; Paixão, S M

    2011-10-01

    The acute toxicity of some compounds used in fossil fuels biodesulphurisation studies, on the respiration activity, was evaluated by Gordonia alkanivorans and Rhodococcus erythropolis. Moreover, the effect of 2-hydroxybiphenyl on cell growth of both strains was also determined, using batch (chronic bioassays) and continuous cultures. The IC₅₀ values obtained showed the toxicity of all the compounds tested to both strains, specially the high toxicity of 2-HBP. These results were confirmed by the chronic toxicity data. The toxicity data sets highlight for a higher sensitivity to the toxicant by the strain presenting a lower growth rate, due to a lower cells number in contact with the toxicant. Thus, microorganisms exhibiting faster generation times could be more resistant to 2-HBP accumulation during a BDS process. The physiological response of both strains to 2-HBP pulse in a steady-state continuous culture shows their potential to be used in a future fossil fuel BDS process.

  6. Combustion of available fossil fuel resources sufficient to eliminate the Antarctic Ice Sheet.

    Winkelmann, Ricarda; Levermann, Anders; Ridgwell, Andy; Caldeira, Ken

    2015-09-01

    The Antarctic Ice Sheet stores water equivalent to 58 m in global sea-level rise. We show in simulations using the Parallel Ice Sheet Model that burning the currently attainable fossil fuel resources is sufficient to eliminate the ice sheet. With cumulative fossil fuel emissions of 10,000 gigatonnes of carbon (GtC), Antarctica is projected to become almost ice-free with an average contribution to sea-level rise exceeding 3 m per century during the first millennium. Consistent with recent observations and simulations, the West Antarctic Ice Sheet becomes unstable with 600 to 800 GtC of additional carbon emissions. Beyond this additional carbon release, the destabilization of ice basins in both West and East Antarctica results in a threshold increase in global sea level. Unabated carbon emissions thus threaten the Antarctic Ice Sheet in its entirety with associated sea-level rise that far exceeds that of all other possible sources.

  7. Opportunities and insights for reducing fossil fuel consumption by households and organizations

    Stern, Paul C.; Janda, Kathryn B.; Brown, Marilyn A.; Steg, Linda; Vine, Edward L.; Lutzenhiser, Loren

    2016-05-01

    Realizing the ambitious commitments of the 2015 Paris Climate Conference (COP21) will require new ways of meeting human needs previously met by burning fossil fuels. Technological developments will be critical, but so will accelerated adoption of promising low-emission technologies and practices. National commitments will be more achievable if interventions take into account key psychological, social, cultural and organizational factors that influence energy choices, along with factors of an infrastructural, technical and economic nature. Broader engagement of social and behavioural science is needed to identify promising opportunities for reducing fossil fuel consumption. Here we discuss opportunities for change in households and organizations, primarily at short and intermediate timescales, and identify opportunities that have been underused in much of energy policy. Based on this survey, we suggest design principles for interventions by governments and other organizations, and identify areas of emphasis for future social science and interdisciplinary research.

  8. A multiyear, global gridded fossil fuel CO2 emission data product: Evaluation and analysis of results

    Asefi-Najafabady, S.; Rayner, P. J.; Gurney, K. R.; McRobert, A.; Song, Y.; Coltin, K.; Huang, J.; Elvidge, C.; Baugh, K.

    2014-09-01

    High-resolution, global quantification of fossil fuel CO2 emissions is emerging as a critical need in carbon cycle science and climate policy. We build upon a previously developed fossil fuel data assimilation system (FFDAS) for estimating global high-resolution fossil fuel CO2 emissions. We have improved the underlying observationally based data sources, expanded the approach through treatment of separate emitting sectors including a new pointwise database of global power plants, and extended the results to cover a 1997 to 2010 time series at a spatial resolution of 0.1°. Long-term trend analysis of the resulting global emissions shows subnational spatial structure in large active economies such as the United States, China, and India. These three countries, in particular, show different long-term trends and exploration of the trends in nighttime lights, and population reveal a decoupling of population and emissions at the subnational level. Analysis of shorter-term variations reveals the impact of the 2008-2009 global financial crisis with widespread negative emission anomalies across the U.S. and Europe. We have used a center of mass (CM) calculation as a compact metric to express the time evolution of spatial patterns in fossil fuel CO2 emissions. The global emission CM has moved toward the east and somewhat south between 1997 and 2010, driven by the increase in emissions in China and South Asia over this time period. Analysis at the level of individual countries reveals per capita CO2 emission migration in both Russia and India. The per capita emission CM holds potential as a way to succinctly analyze subnational shifts in carbon intensity over time. Uncertainties are generally lower than the previous version of FFDAS due mainly to an improved nightlight data set.

  9. The long-term carbon cycle, fossil fuels and atmospheric composition.

    Berner, Robert A

    2003-11-20

    The long-term carbon cycle operates over millions of years and involves the exchange of carbon between rocks and the Earth's surface. There are many complex feedback pathways between carbon burial, nutrient cycling, atmospheric carbon dioxide and oxygen, and climate. New calculations of carbon fluxes during the Phanerozoic eon (the past 550 million years) illustrate how the long-term carbon cycle has affected the burial of organic matter and fossil-fuel formation, as well as the evolution of atmospheric composition.

  10. Nitrogen Isotope Composition of Thermally Produced NOx from Various Fossil-Fuel Combustion Sources.

    Walters, Wendell W; Tharp, Bruce D; Fang, Huan; Kozak, Brian J; Michalski, Greg

    2015-10-06

    The nitrogen stable isotope composition of NOx (δ(15)N-NOx) may be a useful indicator for NOx source partitioning, which would help constrain NOx source contributions in nitrogen deposition studies. However, there is large uncertainty in the δ(15)N-NOx values for anthropogenic sources other than on-road vehicles and coal-fired energy generating units. To this end, this study presents a broad analysis of δ(15)N-NOx from several fossil-fuel combustion sources that includes: airplanes, gasoline-powered vehicles not equipped with a three-way catalytic converter, lawn equipment, utility vehicles, urban buses, semitrucks, residential gas furnaces, and natural-gas-fired power plants. A relatively large range of δ(15)N-NOx values was measured from -28.1‰ to 8.5‰ for individual exhaust/flue samples that generally tended to be negative due to the kinetic isotope effect associated with thermal NOx production. A negative correlation between NOx concentrations and δ(15)N-NOx for fossil-fuel combustion sources equipped with selective catalytic reducers was observed, suggesting that the catalytic reduction of NOx increases δ(15)N-NOx values relative to the NOx produced through fossil-fuel combustion processes. Combining the δ(15)N-NOx measured in this study with previous published values, a δ(15)N-NOx regional and seasonal isoscape was constructed for the contiguous U.S., which demonstrates seasonal and regional importance of various NOx sources.

  11. The Future of Fossil Fuels: A Century of Abundance or a Century of Decline?

    Nelder, C.

    2012-12-01

    Horizontal drilling, hydraulic fracturing, and other advanced technologies have spawned a host of new euphoric forecasts of hydrocarbon abundance. Yet although the world's remaining oil and gas resources are enormous, most of them are destined to stay in the ground due to real-world constraints on price, flow rates, investor appetite, supply chain security, resource quality, and global economic conditions. While laboring under the mistaken belief that it sits atop a 100-year supply of natural gas, the U.S. is contemplating exporting nearly all of its shale gas production even as that production is already flattening due to poor economics. Instead of bringing "energy independence" to the U.S. and making it the top oil exporter, unrestricted drilling for tight oil and in the federal outer continental shelf would cut the lifespan of U.S. oil production in half and make it the world's most desperate oil importer by mid-century. And current forecasts for Canadian tar sands production are as unrealistic as their failed predecessors. Over the past century, world energy production has moved progressively from high quality resources with high production rates and low costs to lower quality resources with lower production rates and higher costs, and that progression is accelerating. Soon we will discover the limits of practical extraction, as production costs exceed consumer price tolerance. Oil and gas from tight formations, shale, bitumen, kerogen, coalbeds, deepwater, and the Arctic are not the stuff of new abundance, but the oil junkie's last dirty fix. This session will highlight the gap between the story the industry tells about our energy future, and the story the data tells about resource size, production rates, costs, and consumer price tolerance. It will show why it's time to put aside unrealistic visions of continued dependence on fossil fuels, face up to a century of decline, and commit ourselves to energy and transportation transition.

  12. Contributions of Fossil Fuel Combustion to Winter-time Arctic Aerosols

    Barrett, T. E.; Usenko, S.; Robinson, E.; Sheesley, R. J.

    2014-12-01

    Over the last century, the Arctic has been warming at a rate almost twice the global average. Aerosols both directly and indirectly affect the radiative balance of the Arctic through the absorption and scattering of sunlight and by providing a source of cloud and ice condensation nuclei. Global climate models currently have difficulty reproducing the observed warming in the Arctic but could be improved through high temporal resolution measurements of aerosols and their sources. This study focuses on the quantification of fossil fuel and biomass combustion contributions to particulate organic carbon (OC) collected during a winter sampling campaign in the North Slope Alaska. Samples were collected at the Department of Energy Atmospheric Radiation Measurement (ARM) climate research facility in Barrow, AK, USA. Particulate matter (PM10) samples collected from December 2012 to March 2013 were analyzed for organic tracer analysis combined with radiocarbon of elemental and organic carbon (EC and OC). Organic tracers, including polycyclic aromatic hydrocarbons (PAHs), alkanes, hopanes and levoglucosan, were quantified using gas chromatography-mass spectrometry (GCMS). These tracers, commonly used as molecular markers for anthropogenic combustion sources, were then used in a molecular-marker chemical mass balance (CMB) model. Results from the CMB were then combined with radiocarbon (14C) abundance measurements. Radiocarbon analysis differentiates between fossil fuel combustion and biomass burning based on the large difference in end members between fossil and contemporary carbon. Radiocarbon results show an average fossil contribution of 44% to Arctic OC from with spark ignition (gasoline) and compression ignition (diesel) engines being implicated as major sources of fossil OC to Arctic aerosols. The 14C analysis and CMB source apportionment will be combined with back trajectory (BT) to assess the impact of geographic source regions on carbonaceous aerosol burden in the

  13. Climate change adaptation, damages and fossil fuel dependence. An RETD position paper on the costs of inaction

    Katofsky, Ryan; Stanberry, Matt; Hagenstad, Marca; Frantzis, Lisa

    2011-07-15

    The Renewable Energy Technology Deployment (RETD) agreement initiated this project to advance the understanding of the ''Costs of Inaction'', i.e. the costs of climate change adaptation, damages and fossil fuel dependence. A quantitative estimate was developed as well as a better understanding of the knowledge gaps and research needs. The project also included some conceptual work on how to better integrate the analyses of mitigation, adaptation, damages and fossil fuel dependence in energy scenario modelling.

  14. Presence of estrogenic activity from emission of fossil fuel combustion as detected by a recombinant yeast bioassay

    Wang, Jingxian; Wu, Wenzhong; Henkelmann, Bernhard; You, Li; Kettrup, Antonius; Schramm, Karl-Werner

    Estrogenic activities of emission samples generated by fossil fuel combustion were investigated with human estrogen receptor (ER) recombinant yeast bioassay. The results showed that there were weak but clear estrogenic activities in combustion emissions of fossil fuels including coal, petroleum, and diesel. The estrogenic relative potency (RP) of fossil fuel combustion was the highest in petroleum-fired car, followed by coal-fired stove, diesel-fired agrimotor, coal-fired electric power station. On the other hand, the estrogenic relative inductive efficiency (RIE) was the highest in coal-fired stove and coal-fired electric power station, followed by petroleum-fired car and diesel-fired agrimotor. The estrogenic activities in the sub-fractions from chromatographic separation of emitted materials were also determined. The results indicated that different chemical fractions in these complex systems have different estrogenic potencies. The GC/MS analysis of the emission showed that there were many aromatic carbonyls, big molecular alcohol, PAHs and derivatives, and substituted phenolic compounds and derivatives which have been reported as environmental estrogens. The existence of estrogenic substances in fossil fuel combustion demands further investigation of their potential adverse effects on human and on the ecosystem. The magnitude of pollution due to global usage of fossil fuels makes it imperative to understand the issue of fossil fuel-derived endocrine activities and the associated health risks, particularly the aggregated risks stemmed from exposure to toxicants of multiple sources.

  15. Development of Nuclear Renewable Oil Shale Systems for Flexible Electricity and Reduced Fossil Fuel Emissions

    Daniel Curtis; Charles Forsberg; Humberto Garcia

    2015-05-01

    We propose the development of Nuclear Renewable Oil Shale Systems (NROSS) in northern Europe, China, and the western United States to provide large supplies of flexible, dispatchable, very-low-carbon electricity and fossil fuel production with reduced CO2 emissions. NROSS are a class of large hybrid energy systems in which base-load nuclear reactors provide the primary energy used to produce shale oil from kerogen deposits and simultaneously provide flexible, dispatchable, very-low-carbon electricity to the grid. Kerogen is solid organic matter trapped in sedimentary shale, and large reserves of this resource, called oil shale, are found in northern Europe, China, and the western United States. NROSS couples electricity generation and transportation fuel production in a single operation, reduces lifecycle carbon emissions from the fuel produced, improves revenue for the nuclear plant, and enables a major shift toward a very-low-carbon electricity grid. NROSS will require a significant development effort in the United States, where kerogen resources have never been developed on a large scale. In Europe, however, nuclear plants have been used for process heat delivery (district heating), and kerogen use is familiar in certain countries. Europe, China, and the United States all have the opportunity to use large scale NROSS development to enable major growth in renewable generation and either substantially reduce or eliminate their dependence on foreign fossil fuel supplies, accelerating their transitions to cleaner, more efficient, and more reliable energy systems.

  16. Engineering organisms for industrial fuel production.

    Berry, David A

    2010-01-01

    Volatile fuel costs, the need to reduce greenhouse gas emissions and fuel security concerns are driving efforts to produce sustainable renewable fuels and chemicals. Petroleum comes from sunlight, CO(2) and water converted via a biological intermediate into fuel over a several million year timescale. It stands to reason that using biology to short-circuit this time cycle offers an attractive alternative--but only with relevant products at or below market prices. The state of the art of biological engineering over the past five years has progressed to allow for market needs to drive innovation rather than trying to adapt existing approaches to the market. This report describes two innovations using synthetic biology to dis-intermediate fuel production. LS9 is developing a means to convert biological intermediates such as cellulosic hydrolysates into drop-in hydrocarbon product replacements such as diesel. Joule Unlimited is pioneering approaches to eliminate feedstock dependency by efficiently capturing sunlight, CO(2) and water to produce fuels and chemicals. The innovations behind these companies are built with the market in mind, focused on low cost biosynthesis of existing products of the petroleum industry. Through successful deployment of technologies such as those behind LS9 and Joule Unlimited, alternative sources of petroleum products will mitigate many of the issues faced with our petroleum-based economy.

  17. Reduced carbon emission estimates from fossil fuel combustion and cement production in China.

    Liu, Zhu; Guan, Dabo; Wei, Wei; Davis, Steven J; Ciais, Philippe; Bai, Jin; Peng, Shushi; Zhang, Qiang; Hubacek, Klaus; Marland, Gregg; Andres, Robert J; Crawford-Brown, Douglas; Lin, Jintai; Zhao, Hongyan; Hong, Chaopeng; Boden, Thomas A; Feng, Kuishuang; Peters, Glen P; Xi, Fengming; Liu, Junguo; Li, Yuan; Zhao, Yu; Zeng, Ning; He, Kebin

    2015-08-20

    Nearly three-quarters of the growth in global carbon emissions from the burning of fossil fuels and cement production between 2010 and 2012 occurred in China. Yet estimates of Chinese emissions remain subject to large uncertainty; inventories of China's total fossil fuel carbon emissions in 2008 differ by 0.3 gigatonnes of carbon, or 15 per cent. The primary sources of this uncertainty are conflicting estimates of energy consumption and emission factors, the latter being uncertain because of very few actual measurements representative of the mix of Chinese fuels. Here we re-evaluate China's carbon emissions using updated and harmonized energy consumption and clinker production data and two new and comprehensive sets of measured emission factors for Chinese coal. We find that total energy consumption in China was 10 per cent higher in 2000-2012 than the value reported by China's national statistics, that emission factors for Chinese coal are on average 40 per cent lower than the default values recommended by the Intergovernmental Panel on Climate Change, and that emissions from China's cement production are 45 per cent less than recent estimates. Altogether, our revised estimate of China's CO2 emissions from fossil fuel combustion and cement production is 2.49 gigatonnes of carbon (2 standard deviations = ±7.3 per cent) in 2013, which is 14 per cent lower than the emissions reported by other prominent inventories. Over the full period 2000 to 2013, our revised estimates are 2.9 gigatonnes of carbon less than previous estimates of China's cumulative carbon emissions. Our findings suggest that overestimation of China's emissions in 2000-2013 may be larger than China's estimated total forest sink in 1990-2007 (2.66 gigatonnes of carbon) or China's land carbon sink in 2000-2009 (2.6 gigatonnes of carbon).

  18. Reduced carbon emission estimates from fossil fuel combustion and cement production in China

    Liu, Zhu; Guan, Dabo; Wei, Wei; Davis, Steven J.; Ciais, Philippe; Bai, Jin; Peng, Shushi; Zhang, Qiang; Hubacek, Klaus; Marland, Gregg; Andres, Robert J.; Crawford-Brown, Douglas; Lin, Jintai; Zhao, Hongyan; Hong, Chaopeng; Boden, Thomas A.; Feng, Kuishuang; Peters, Glen P.; Xi, Fengming; Liu, Junguo; Li, Yuan; Zhao, Yu; Zeng, Ning; He, Kebin

    2015-08-01

    Nearly three-quarters of the growth in global carbon emissions from the burning of fossil fuels and cement production between 2010 and 2012 occurred in China. Yet estimates of Chinese emissions remain subject to large uncertainty; inventories of China's total fossil fuel carbon emissions in 2008 differ by 0.3 gigatonnes of carbon, or 15 per cent. The primary sources of this uncertainty are conflicting estimates of energy consumption and emission factors, the latter being uncertain because of very few actual measurements representative of the mix of Chinese fuels. Here we re-evaluate China's carbon emissions using updated and harmonized energy consumption and clinker production data and two new and comprehensive sets of measured emission factors for Chinese coal. We find that total energy consumption in China was 10 per cent higher in 2000-2012 than the value reported by China's national statistics, that emission factors for Chinese coal are on average 40 per cent lower than the default values recommended by the Intergovernmental Panel on Climate Change, and that emissions from China's cement production are 45 per cent less than recent estimates. Altogether, our revised estimate of China's CO2 emissions from fossil fuel combustion and cement production is 2.49 gigatonnes of carbon (2 standard deviations = +/-7.3 per cent) in 2013, which is 14 per cent lower than the emissions reported by other prominent inventories. Over the full period 2000 to 2013, our revised estimates are 2.9 gigatonnes of carbon less than previous estimates of China's cumulative carbon emissions. Our findings suggest that overestimation of China's emissions in 2000-2013 may be larger than China's estimated total forest sink in 1990-2007 (2.66 gigatonnes of carbon) or China's land carbon sink in 2000-2009 (2.6 gigatonnes of carbon).

  19. Energy-efficient air pollution controls for fossil-fueled plants: Technology assessment

    Sayer, J.H.

    1995-06-01

    The 1990 Clean Air Act Amendments require most fossil-fuel fired power plants to reduce sulfur dioxide, nitrogen oxides, and particulate emissions. While emission-control equipment is available to help most of New York State`s 91 utility units in 31 power plants comply with the new regulations, technologies currently available consume energy, increase carbon dioxide emissions, reduce operating efficiency, and may produce large amounts of solid and/or semisolid byproducts that use additional energy for processing and disposal. This report discribes several pollution-control technologies that are more energy efficient compared to traditional technologies for controlling sulfur dioxide, nitrogen oxide, and particulates, that may have application in New York State. These technologies are either in commercial use, under development, or in the demonstration phase; This report also presents operating characteristics for these technologies and discusses solutions to dispose of pollution-control system byproducts. Estimated energy consumption for emission-control systems relative to a plant`s gross generating capacity is 3 to 5 for reducing up to 90% sulfur dioxide emissions from coal-fired plants. 0.5 to 2.5% for reducing nitrogen oxide emissions by up to 80% from all fossil-fuel fired plants; and 0.5 to 1.5 % for controlling particulate emissions from oil- and coal-fired plants. While fuel switching and/or cofiring with natural gas are options to reduce emissions, these techniques are not considered in this report; the discussion is limited to fossil-fueled steam-generating plants.

  20. Potential high temperature corrosion problems due to co-firing of biomass and fossil fuels

    Montgomery, Melanie; Vilhelmsen, T.; Jensen, S.A.

    2007-01-01

    Over the past years, considerable high temperature corrosion problems have been encountered when firing biomass in power plants due to the high content of potassium chloride in the deposits. Therefore to combat chloride corrosion problems co-firing of biomass with a fossil fuel has been undertaken...... appear such as sulphidation and hot corrosion due to sulphate deposits. At Studstrup power plant Unit 4, based on trials with exposure times of 3000 hours using 0-20% straw co-firing with coal, the plant now runs with a fuel of 10% straw + coal. After three years exposure in this environment......, the internal sulphidation is much more significant than that revealed in the demonstration project. Avedøre 2 main boiler is fuelled with wood pellets + heavy fuel oil + gas. Some reaction products due to the presence of vanadium compounds in the heavy oil were detected, i.e. iron vanadates. However, the most...

  1. Potential high temperature corrosion problems due to co-firing of biomass and fossil fuels

    Montgomery, Melanie; Vilhelmsen, T.; Jensen, S.A.

    2008-01-01

    Over the past few years, considerable high temperature corrosion problems have been encountered when firing biomass in power plants due to the high content of potassium chloride in the deposits. Therefore, to combat chloride corrosion problems cofiring of biomass with a fossil fuel has been...... corrosion mechanisms appear such as sulphidation and hot corrosion due to sulphate deposits. At Studstrup power plant Unit 4, based on trials with exposure times of 3000 h using 0–20% straw co-firing with coal, the plant now runs with a fuel mix of 10% strawþcoal. Based on results from a 3 years exposure...... in this environment, the internal sulphidation is much more significant than that revealed in the demonstration project. Avedøre 2 main boiler is fuelled with wood pelletsþheavy fuel oilþgas. Some reaction products resulting from the presence of vanadium compounds in the heavy oil were detected, i.e. iron vanadates...

  2. Estimation of fossil-fuel CO2 emissions using satellite measurements of "proxy" species

    Konovalov, Igor B.; Berezin, Evgeny V.; Ciais, Philippe; Broquet, Grégoire; Zhuravlev, Ruslan V.; Janssens-Maenhout, Greet

    2016-11-01

    Fossil-fuel (FF) burning releases carbon dioxide (CO2) together with many other chemical species, some of which, such as nitrogen dioxide (NO2) and carbon monoxide (CO), are routinely monitored from space. This study examines the feasibility of estimation of FF CO2 emissions from large industrial regions by using NO2 and CO column retrievals from satellite measurements in combination with simulations by a mesoscale chemistry transport model (CTM). To this end, an inverse modeling method is developed that allows estimating FF CO2 emissions from different sectors of the economy, as well as the total CO2 emissions, in a given region. The key steps of the method are (1) inferring "top-down" estimates of the regional budget of anthropogenic NOx and CO emissions from satellite measurements of proxy species (NO2 and CO in the case considered) without using formal a priori constraints on these budgets, (2) the application of emission factors (the NOx-to-CO2 and CO-to-CO2 emission ratios in each sector) that relate FF CO2 emissions to the proxy species emissions and are evaluated by using data of "bottom-up" emission inventories, and (3) cross-validation and optimal combination of the estimates of CO2 emission budgets derived from measurements of the different proxy species. Uncertainties in the top-down estimates of the NOx and CO emissions are evaluated and systematic differences between the measured and simulated data are taken into account by using original robust techniques validated with synthetic data. To examine the potential of the method, it was applied to the budget of emissions for a western European region including 12 countries by using NO2 and CO column amounts retrieved from, respectively, the OMI and IASI satellite measurements and simulated by the CHIMERE mesoscale CTM, along with the emission conversion factors based on the EDGAR v4.2 emission inventory. The analysis was focused on evaluation of the uncertainty levels for the top-down NOx and CO emission

  3. Sensitivity of simulated CO2 concentration to sub-annual variations in fossil fuel CO2 emissions

    Zhang, X.; Gurney, K. R.; Rayner, P. J.; Baker, D. F.; Liu, Y.; Asefi-Najafabady, S.

    2014-12-01

    This study presents a sensitivity analysis of the impact of sub-annual fossil fuel CO2 emissions on simulated CO2 concentration using a global tracer transport model. Four sensitivity experiments were conducted to investigate the impact of three cyclic components (diurnal, weekly and monthly) and a complete cyclic component (the combination of the three) by comparing with a temporally "flat" fossil fuel CO2 emissions inventory. A complete exploration of these impacts is quantified at annual, seasonal, weekly and diurnal time scales of the CO2concentration for the surface, vertical profile and column-integral structure. Result shows an annual mean surface concentration difference varying from -1.35 ppm to 0.13 ppm at grid scale for the complete cyclic fossil fuel emissions, which is mainly driven by a large negative diurnal rectification and less positive seasonal rectification. The negative diurnal rectification is up to 1.45 ppm at grid scale and primarily due to the covariation of diurnal fossil fuel CO2 emissions and diurnal variations of vertical mixing. The positive seasonal rectification is up to 0.23 ppm at grid scale which is mainly driven by the monthly fossil fuel CO2emissions coupling with atmospheric transport. Both the diurnal and seasonal rectifier effects are indicated at local-to-regional scales with center at large source regions and extend to neighboring regions in mainly Northern Hemisphere. The diurnal fossil fuel CO2 emissions is found to significantly affect the simulated diurnal CO2 amplitude (up to 9.12 ppm at grid scale), which is primarily contributed by the minima concentration differences around local sunset time. Similarly, large impact on the seasonal CO2 amplitude (up to 6.11 ppm) is found at regional scale for the monthly fossil fuel emissions. An impact of diurnal fossil fuel CO2 emissions on simulated afternoon CO2 concentration is also identified by up to 1.13 ppm at local scales. The study demonstrates a large cyclic fossil fuel

  4. Sensitivity analysis of parameters affecting carbon footprint of fossil fuel power plants based on life cycle assessment scenarios

    F. Dalir

    2017-12-01

    Full Text Available In this study a pseudo comprehensive carbon footprint model for fossil fuel power plants is presented. Parameters which their effects are considered in this study include: plant type, fuel type, fuel transmission type, internal consumption of the plant, degradation, site ambient condition, transmission and distribution losses. Investigating internal consumption, degradation and site ambient condition effect on carbon footprint assessment of fossil fuel power plant is the specific feature of the proposed model. To evaluate the model, a sensitivity analysis is performed under different scenarios covering all possible choices for investigated parameters. The results show that carbon footprint of fossil fuel electrical energy that is produced, transmitted and distributed, varies from 321 g CO2 eq/kWh to 980 g CO2 equivalent /kWh. Carbon footprint of combined cycle with natural gas as main fuel is the minimum carbon footprint. Other factors can also cause indicative variation. Fuel type causes a variation of 28%. Ambient condition may change the result up to 13%. Transmission makes the carbon footprint larger by 4%. Internal consumption and degradation influence the result by 2 and 2.5%, respectively. Therefore, to minimize the carbon footprint of fossil fuel electricity, it is recommended to construct natural gas ignited combined cycles in low lands where the temperature is low and relative humidity is high. And the internal consumption is as least as possible and the maintenance and overhaul is as regular as possible.

  5. Sensitivity of simulated CO2 concentration to regridding of global fossil fuel CO2 emissions

    X. Zhang

    2014-06-01

    Full Text Available Errors in the specification or utilization of fossil fuel CO2 emissions within carbon budget or atmospheric CO2 inverse studies can alias the estimation of biospheric and oceanic carbon exchange. A key component in the simulation of CO2 concentrations arising from fossil fuel emissions is the spatial distribution of the emission near coastlines. Finite grid resolution can give rise to mismatches between the emissions and simulated atmospheric dynamics which differ over land or water. We test these mismatches by examining simulated global atmospheric CO2 concentration driven by two different approaches to regridding fossil fuel CO2 emissions. The two approaches are: (1 a commonly-used method that allocates emissions to gridcells with no attempt to ensure dynamical consistency with atmospheric transport; (2 an improved method that reallocates emissions to gridcells to ensure dynamically consistent results. Results show large spatial and temporal differences in the simulated CO2 concentration when comparing these two approaches. The emissions difference ranges from −30.3 Tg C gridcell−1 yr−1 (−3.39 kg C m−2 yr−1 to +30.0 Tg C gridcell−1 yr−1 (+2.6 kg C m−2 yr−1 along coastal margins. Maximum simulated annual mean CO2 concentration differences at the surface exceed ±6 ppm at various locations and times. Examination of the current CO2 monitoring locations during the local afternoon, consistent with inversion modeling system sampling and measurement protocols, finds maximum hourly differences at 38 stations exceed ±0.10 ppm with individual station differences exceeding −32 ppm. The differences implied by not accounting for this dynamical consistency problem are largest at monitoring sites proximal to large coastal urban areas and point sources. These results suggest that studies comparing simulated to observed atmospheric CO2 concentration, such as atmospheric CO2 inversions, must take measures to correct for this potential

  6. Historic Patterns of CO{sub 2} Emissions from Fossil Fuels: Implications for Stabilization of Emissions

    Andres, R. J.; Marland, G.

    1994-06-01

    This paper examines the historical record of greenhouse gas emissions since 1950, reviews the prospects for emissions into the future, and projects what would be the short-term outcome if the stated targets of the FCCC were in fact achieved. The examination focuses on the most important of the greenhouse gases, CO{sub 2}. The extensive record of historic CO{sub 2} emissions is explored to ascertain if it is an adequate basis for useful extrapolation into the near future. Global carbon dioxide emissions from fossil fuel consumption have been documented. Emissions grew at 4.3% per year from 1950 until the time of the 1973 oil crisis. Another disruption in growth followed the oil price increases of 1979. Global total emissions have been increasing steadily since the 1982-1983 minimum and have grown by more than 20% since then. At present, emission Of CO{sub 2} from fossil fuel burning is dominated by a few countries: the U.S., the former Soviet Union, China, the developed countries of Europe and Japan. Only 20 countries emit 84% of emissions from all countries. However, rates of growth in many of the developed countries are now very low. In contrast, energy use has grown rapidly over the last 20 years in some of the large, developing economies. Emissions from fossil fuel consumption are now nearly 4 times those from land use change and are the primary cause of measured increases in the atmospheric concentration of CO{sub 2}. The increasing concentration of atmospheric CO{sub 2} has led to rising concern about the possibility of impending changes in the global climate system. In an effort to limit or mitigate potential negative effects of global climate change, 154 countries signed the United Nations Framework Convention on Climate Change (FCCC) in Rio de Janeiro in June, 1992. The FCCC asks all countries to conduct an inventory of their current greenhouse gas emissions setting non-binding targets.

  7. Focus: relative vulnerability of fossil fuel net exporters to climate change mitigation measures

    NONE

    1996-09-01

    The United Nations Framework Convention on Climate Change contains explicit reference to the need to protect the interests of countries whose economies are particularly vulnerable to climate change mitigation measures. A recent study by the OPEC Secretariat showed that net exporters of fossil fuel in general, and OPEC in particular, would suffer from losses in export revenue as a result of climatic change mitigation measures. In this new study, an attempt is made to identify in more detail those countries that are likely to be most affected by such measures. 3 refs., 3 figs., 2 tabs.

  8. Liquid fossil-fuel technology. Quarterly technical progress report, January-March 1983

    Linville, B. (ed.)

    1983-07-01

    Accomplishments for the quarter ending March 1983 are presented under the following headings: liquid fossil fuel cycle, processing, utilization, and project integration and technology transfer. Feature articles for this quarter are: (1) abandoned oil field reports issued; (2) oilfield water data bank report published; (3) microbial enhanced recovery report issued; (4) polymer-augmented project could be economic today; (5) carbon dioxide EOR estimates given; (6) BETC passes 65th milestone; and (7) fifty achievements for fifty years (1918-1968). BETC publications are also listed. (ATT)

  9. Detecting the influence of fossil fuel and bio-fuel black carbon aerosols on near surface temperature changes

    Jones, G. S.; Christidis, N.; Stott, P. A.

    2011-01-01

    Past research has shown that the dominant influence on recent global climate changes is from anthropogenic greenhouse gas increases with implications for future increases in global temperatures. One mitigation proposal is to reduce black carbon aerosol emissions. How much warming can be offset by controlling black carbon is unclear, especially as its influence on past climate has not been previously unambiguously detected. In this study observations of near-surface warming over the last century are compared with simulations using a climate model, HadGEM1. In the simulations black carbon, from fossil fuel and bio-fuel sources (fBC), produces a positive radiative forcing of about +0.25 Wm-2 over the 20th century, compared with +2.52 Wm-2 for well mixed greenhouse gases. A simulated warming of global mean near-surface temperatures over the twentieth century from fBC of 0.14 ± 0.1 K compares with 1.06 ± 0.07 K from greenhouse gases, -0.58 ± 0.10 K from anthropogenic aerosols, ozone and land use changes and 0.09 ± 0.09 K from natural influences. Using a detection and attribution methodology, the observed warming since 1900 has detectable influences from anthropogenic and natural factors. Fossil fuel and bio-fuel black carbon is found to have a detectable contribution to the warming over the last 50 yr of the 20th century, although the results are sensitive to the period being examined as fBC is not detected for the later fifty year period ending in 2006. The attributed warming of fBC was found to be consistent with the warming from fBC unscaled by the detection analysis. This study suggests that there is a possible significant influence from fBC on global temperatures, but its influence is small compared to that from greenhouse gas emissions.

  10. N2O release from agro-biofuel production negates global warming reduction by replacing fossil fuels

    Crutzen, P. J.; Mosier, A. R.; Smith, K. A.; Winiwarter, W.

    2008-01-01

    The relationship, on a global basis, between the amount of N fixed by chemical, biological or atmospheric processes entering the terrestrial biosphere, and the total emission of nitrous oxide (N2O), has been re-examined, using known global atmospheric removal rates and concentration growth of N2O as a proxy for overall emissions. For both the pre-industrial period and in recent times, after taking into account the large-scale changes in synthetic N fertiliser production, we find an overall conversion factor of 3-5% from newly fixed N to N2O-N. We assume the same factor to be valid for biofuel production systems. It is covered only in part by the default conversion factor for "direct" emissions from agricultural crop lands (1%) estimated by IPCC (2006), and the default factors for the "indirect" emissions (following volatilization/deposition and leaching/runoff of N: 0.35-0.45%) cited therein. However, as we show in the paper, when additional emissions included in the IPCC methodology, e.g. those from livestock production, are included, the total may not be inconsistent with that given by our "top-down" method. When the extra N2O emission from biofuel production is calculated in "CO2-equivalent" global warming terms, and compared with the quasi-cooling effect of "saving" emissions of fossil fuel derived CO2, the outcome is that the production of commonly used biofuels, such as biodiesel from rapeseed and bioethanol from corn (maize), depending on N fertilizer uptake efficiency by the plants, can contribute as much or more to global warming by N2O emissions than cooling by fossil fuel savings. Crops with less N demand, such as grasses and woody coppice species, have more favourable climate impacts. This analysis only considers the conversion of biomass to biofuel. It does not take into account the use of fossil fuel on the farms and for fertilizer and pesticide production, but it also neglects the production of useful co-products. Both factors partially compensate

  11. N2O release from agro-biofuel production negates global warming reduction by replacing fossil fuels

    A. R. Mosier

    2008-01-01

    Full Text Available The relationship, on a global basis, between the amount of N fixed by chemical, biological or atmospheric processes entering the terrestrial biosphere, and the total emission of nitrous oxide (N2O, has been re-examined, using known global atmospheric removal rates and concentration growth of N2O as a proxy for overall emissions. For both the pre-industrial period and in recent times, after taking into account the large-scale changes in synthetic N fertiliser production, we find an overall conversion factor of 3–5% from newly fixed N to N2O-N. We assume the same factor to be valid for biofuel production systems. It is covered only in part by the default conversion factor for "direct" emissions from agricultural crop lands (1% estimated by IPCC (2006, and the default factors for the "indirect" emissions (following volatilization/deposition and leaching/runoff of N: 0.35–0.45% cited therein. However, as we show in the paper, when additional emissions included in the IPCC methodology, e.g. those from livestock production, are included, the total may not be inconsistent with that given by our "top-down" method. When the extra N2O emission from biofuel production is calculated in "CO2-equivalent" global warming terms, and compared with the quasi-cooling effect of "saving" emissions of fossil fuel derived CO2, the outcome is that the production of commonly used biofuels, such as biodiesel from rapeseed and bioethanol from corn (maize, depending on N fertilizer uptake efficiency by the plants, can contribute as much or more to global warming by N2O emissions than cooling by fossil fuel savings. Crops with less N demand, such as grasses and woody coppice species, have more favourable climate impacts. This analysis only considers the conversion of biomass to biofuel. It does not take into account the use of fossil fuel on the farms and for fertilizer and pesticide production, but it also neglects the production of useful co-products. Both factors

  12. Experimental Study of the Combustion Dynamics of Renewable & Fossil Fuel Co-Fire in Swirling Flame

    Zaķe, M.; Barmina, I.; Kriško, V.; Gedrovičs, M.; Descņickis, A.

    2009-01-01

    The complex experimental research into the combustion dynamics of rene-wable (wood biomass) and fossil (propane) fuel co-fire in a swirling flame flow has been carried out with the aim to achieve clean and effective heat production with reduced carbon emissions. The effect of propane co-fire on the formation of the swirling flame velocity, temperature and composition fields as well as on the combustion efficiency and heat output has been analysed. The results of experimental study show that the propane supply into the wood biomass gasifier provides faster wood fuel gasification with active release of volatiles at the primary stage of swirling flame flow formation, while the swirl-induced recirculation with enhanced mixing of the flame components results in a more complete burnout of wood volatiles downstream of the combustor with reduced mass fraction of polluting impurities in the emissions.

  13. Prospects for conversion of solar energy into chemical fuels: the concept of a solar fuels industry.

    Harriman, Anthony

    2013-08-13

    There is, at present, no solar fuels industry anywhere in the world despite the well-publicized needs to replace our depleting stock of fossil fuels with renewable energy sources. Many obstacles have to be overcome in order to store sunlight in the form of chemical potential, and there are severe barriers to surmount in order to produce energy on a massive scale, at a modest price and in a convenient form. It is also essential to allow for the intermittent nature of sunlight, its diffusiveness and variability and to cope with the obvious need to use large surface areas for light collection. Nonetheless, we have no alternative but to devise viable strategies for storage of sunlight as biomass or chemical feedstock. Simple alternatives, such as solar heating, are attractive in terms of quick demonstrations but are not the answer. Photo-electrochemical devices might serve as the necessary machinery by which to generate electronic charge but the main problem is to couple these charges to the multi-electron catalysis needed to drive energy-storing chemical reactions. Several potential fuels (CO, H₂, HCOOH, NH₃, O₂, speciality organics, etc.) are possible, but the photochemical reduction of CO₂ deserves particular mention because of ever-growing concerns about overproduction of greenhouse gases. The prospects for achieving these reactions under ambient conditions are considered herein.

  14. Survey of population health in towns with nuclear and fossil fuel power plants

    Ivanov, E.; Shubik, V. M.

    2004-07-01

    Comparative assessment of population health in Sosnovy Bor with nuclear power plant and Kirovsk with fossil fuel power station was made for public and administration information. Both towns are located in Leningrad administrative region at 150 km distance from each other. In nuclear power town radiological situation was assessed as normal and in Kirovsk up to 1995 yr. with coal fuel, maximum permissible levels of suspended particle of sulfur oxide in atmosphere were exceeded in 6-9% of samples. After 1995 yr. the natural gas was used as fuel. Demographic data for 1991-2000 yrs indicate that mortality including infants mortality and stillborns was lower in Sosnovy Bor (NOS) then in Kirovsk (fossil fuel) and on average Leningrad administrative region. Birth rate and population growth was higher in Sosnovy Bor at the same time surprisingly the recorded morbidity was higher in Sosnovy Bor which might be explained by extensive medical supervision and improved diagnostics. However, cancer and tuberculosis morbidity was lower in Sosnovy Bor. In Kirovsk in 1997-2000 yrs. oncological morbidity was higher on average comparing to Leningrad administrative region. Oncological mortality in Sosnovy Bor in 1997-2000 yrs. was lower than in Kirovsk and Leningrad region Standardized annual mortality in Sosnovy Bor, Kirovsk and Leningrad administrative region was 128.3, 209.6 and 211.7 on 100 000 respectively. Health state of pregnant women, deliveries, new-born condition were all in normal range in Sosnovy Bor, contrary to higher increased abortion rate and pregnancy complications in Kirovsk. These findings need further studies. (Author)

  15. Radiocarbon-based assessment of fossil fuel-derived contaminant associations in sediments.

    White, Helen K; Reddy, Christopher M; Eglinton, Timothy I

    2008-08-01

    Hydrophobic organic contaminants (HOCs) are associated with natural organic matter (OM) in the environment via mechanisms such as sorption or chemical binding. The latter interactions are difficult to quantitatively constrain, as HOCs can reside in different OM pools outside of conventional analytical windows. Here, we exploited natural abundance variations in radiocarbon (14C) to trace various fossil fuel-derived HOCs (14C-free) within chemically defined fractions of contemporary OM (modern 14C content) in 13 samples including marine and freshwater sediments and one dust and one soil sample. Samples were sequentially treated by solvent extraction followed by saponification. Radiocarbon analysis of the bulk sample and resulting residues was then performed. Fossil fuel-derived HOCs released by these treatments were quantified from an isotope mass balance approach as well as by gas chromatography-mass spectrometry. For the majority of samples (n = 13), 98-100% of the total HOC pool was solvent extractable. Nonextracted HOCs are only significant (29% of total HOC pool)in one sample containing p,p-2,2-bis(chlorophenyl)-1,1,1-trichloroethane and its metabolites. The infrequency of significant incorporation of HOCs into nonextracted OM residues suggests that most HOCs are mobile and bioavailable in the environment and, as such, have a greater potential to exert adverse effects.

  16. Industrial thermoforming simulation of automotive fuel tanks

    Wiesche, S. aus der [Kautex Textron GmbH and Co., Bonn (Germany)

    2004-11-01

    An industrial thermoforming simulation with regard to automotive plastic fuel tanks is presented including all relevant process stages. The radiative and conductive heat transfer during the reheat stage, the deformation and stress behaviour during the forming stage, and the final cooling stage are simulated. The modelling of the thermal and rheological behaviour of the involved material is investigated in greater detail. By means of experimental data it is found that modelling of the phase transition during the process is highly important for predicting correct wall thickness distributions. (author)

  17. Global Partitioning of NOx Sources Using Satellite Observations: Relative Roles of Fossil Fuel Combustion, Biomass Burning and Soil Emissions

    Jaegle, Lyatt; Steinberger, Linda; Martin, Randall V.; Chance, Kelly

    2005-01-01

    This document contains the following abstract for the paper "Global partitioning of NOx sources using satellite observations: Relative roles of fossil fuel combustion, biomass burning and soil emissions." Satellite observations have been used to provide important new information about emissions of nitrogen oxides. Nitrogen oxides (NOx) are significant in atmospheric chemistry, having a role in ozone air pollution, acid deposition and climate change. We know that human activities have led to a three- to six-fold increase in NOx emissions since pre-industrial times, and that there are three main surface sources of NOx: fuel combustion, large-scale fires, and microbial soil processes. How each of these sources contributes to the total NOx emissions is subject to some doubt, however. The problem is that current NOx emission inventories rely on bottom-up approaches, compiling large quantities of statistical information from diverse sources such as fuel and land use, agricultural data, and estimates of burned areas. This results in inherently large uncertainties. To overcome this, Lyatt Jaegle and colleagues from the University of Washington, USA, used new satellite observations from the Global Ozone Monitoring Experiment (GOME) instrument. As the spatial and seasonal distribution of each of the sources of NOx can be clearly mapped from space, the team could provide independent topdown constraints on the individual strengths of NOx sources, and thus help resolve discrepancies in existing inventories. Jaegle's analysis of the satellite observations, presented at the recent Faraday Discussion on "Atmospheric Chemistry", shows that fuel combustion dominates emissions at northern mid-latitudes, while fires are a significant source in the Tropics. Additionally, she discovered a larger than expected role for soil emissions, especially over agricultural regions with heavy fertilizer use. Additional information is included in the original extended abstract.

  18. Health effects and related standards for fossil-fuel and geothermal power plants. Volume 6 of health and safety impacts of nuclear, geothermal, and fossil-fuel electric generation in California. [In California

    Case, G.D.; Bertolli, T.A.; Bodington, J.C.; Choy, T.A.; Nero, A.V.

    1977-01-01

    This report reviews health effects and related standards for fossil-fuel and geothermal power plants, emphasizing impacts which may occur through emissions into the atmosphere, and treating other impacts briefly. Federal regulations as well as California state and local regulations are reviewed. Emissions are characterized by power plant type, including: coal-fired, oil-fired, gas-fired, combined cycle and advanced fossil-fuel plants; and liquid and vapor geothermal systems. Dispersion and transformation of emissions are treated. The state of knowledge of health effects, based on epidemiological, physiological, and biomedical studies, is reviewed.

  19. Costs and CO{sub 2} benefits of recovering, refining and transporting logging residues for fossil fuel replacement

    Gustavsson, Leif [Ecotechnology, Department of Engineering and Sustainable Development, Mid Sweden University, 83125 Oestersund (Sweden); Linnaeus University, 35195 Vaexjoe (Sweden); Eriksson, Lisa; Sathre, Roger [Ecotechnology, Department of Engineering and Sustainable Development, Mid Sweden University, 83125 Oestersund (Sweden)

    2011-01-15

    There are many possible systems for recovering, refining, and transporting logging residues for use as fuel. Here we analyse costs, primary energy and CO{sub 2} benefits of various systems for using logging residues locally, nationally or internationally. The recovery systems we consider are a bundle system and a traditional chip system in a Nordic context. We also consider various transport modes and distances, refining the residues into pellets, and replacing different fossil fuels. Compressing of bundles entails costs, but the cost of chipping is greatly reduced if chipping is done on a large scale, providing an overall cost-effective system. The bundle system entails greater primary energy use, but its lower dry-matter losses mean that more biomass per hectare can be extracted from the harvest site. Thus, the potential replacement of fossil fuels per hectare of harvest area is greater with the bundle system than with the chip system. The fuel-cycle reduction of CO{sub 2} emissions per harvest area when logging residues replace fossil fuels depends more on the type of fossil fuel replaced, the logging residues recovery system used and the refining of the residues, than on whether the residues are transported to local, national or international end-users. The mode and distance of the transport system has a minor impact on the CO{sub 2} emission balance. (author)

  20. Radiocarbon observations in atmospheric CO2: determining fossil fuel CO2 over Europe using Jungfraujoch observations as background.

    Levin, Ingeborg; Hammer, Samuel; Kromer, Bernd; Meinhardt, Frank

    2008-03-01

    Monthly mean 14CO2 observations at two regional stations in Germany (Schauinsland observatory, Black Forest, and Heidelberg, upper Rhine valley) are compared with free tropospheric background measurements at the High Alpine Research Station Jungfraujoch (Swiss Alps) to estimate the regional fossil fuel CO2 surplus at the regional stations. The long-term mean fossil fuel CO2 surplus at Schauinsland is 1.31+/-0.09 ppm while it is 10.96+/-0.20 ppm in Heidelberg. No significant trend is observed at both sites over the last 20 years. Strong seasonal variations of the fossil fuel CO2 offsets indicate a strong seasonality of emissions but also of atmospheric dilution of ground level emissions by vertical mixing.

  1. The domestication of fire: the relationship between biomass fuel, fossil fuel and burns.

    Albertyn, R; Rode, H; Millar, A J W; Peck, M D

    2012-09-01

    Primitive man's discovery and use of fire had a tremendous impact on modern development. It changed lifestyles, and brought with it new fuel sources and cooking methods. It also introduced devastation, injury, pain, disfigurement, and loss of life, and the need to continuously develop management, training and prevention programs.

  2. Pollutant Emissions and Lean Blowoff Limits of Fuel Flexible Burners Operating on Gaseous Renewable and Fossil Fuels

    Colorado, Andres

    This study provides an experimental and numerical examination of pollutant emissions and stability of gaseous fueled reactions stabilized with two premixed-fuel-flexible and ultra-low NOx burner technologies. Both burners feature lean combustion technology to control the formation of nitrogen oxides (NOx). The first fuel--flexible burner is the low-swirl burner (LSB), which features aerodynamic stabilization of the reactions with a divergent flow-field; the second burner is the surface stabilized combustion burner (SSCB), which features the stabilization of the reactions on surface patterns. For combustion applications the most commonly studied species are: NOx, carbon monoxide (CO), and unburned hydrocarbons (UHC). However these are not the only pollutants emitted when burning fossil fuels; other species such as nitrous oxide (N2O), ammonia (NH3) and formaldehyde (CH2O) can be directly emitted from the oxidation reactions. Yet the conditions that favor the emission of these pollutants are not completely understood and require further insight. The results of this dissertation close the gap existing regarding the relations between emission of pollutants species and stability when burning variable gaseous fuels. The results of this study are applicable to current issues such as: 1. Current combustion systems operating at low temperatures to control formation of NOx. 2. Increased use of alternative fuels such as hydrogen, synthetic gas and biogas. 3. Increasing recognition of the need/desire to operate combustion systems in a transient manner to follow load and to offset the intermittency of renewable power. 4. The recent advances in measurement methods allow us to quantify other pollutants, such as N 2O, NH3 and CH2O. Hence in this study, these pollutant species are assessed when burning natural gas (NG) and its binary mixtures with other gaseous fuels such as hydrogen (H2), carbon dioxide (CO2), ethane (C 2H6) and propane (C3H8) at variable operation modes including

  3. Determination of heating value of industrial waste for the formulation of alternative fuels

    Bouabid G.

    2013-09-01

    Full Text Available The use of alternative fuels has become increasingly widespread. They are basically designed based on industrial waste so that they can substitute fossil fuels which start to become scarce. Alternative fuels must meet some criteria, namely an important calorific content, minimum humidity and ash content. When it comes to combustion, the most interesting parameter is the calorific value which represents the thermal energy released during combustion. The experiments that were conducted showed that the calorific value is influenced by other parameters namely moisture and ash content. It was therefore necessary to study the behavior of the heating value in terms of these two parameters in order to establish a relationship that is used to describe the behavior. This is expected to allow a simulation of the calorific value of a mixture of various industrial waste.

  4. Nitrogen Stable Isotope Composition of Various Fossil-fuel Combustion Nitrogen Oxide Sources

    Walters, W.; Michalski, G. M.; Fang, H.

    2015-12-01

    Nitrogen oxides (NOx = NO + NO2) are important trace gases that impact atmospheric chemistry, air quality, and climate. In order to help constrain NOx source contributions, the nitrogen (N) stable isotope composition of NOx (δ15N-NOx) may be a useful indicator for NOx source partitioning. However, despite anthropogenic emissions being the most prevalent source of NOx, there is still large uncertainty in the δ15N-NOx values for anthropogenic sources. To this end, this study provides a detailed analysis of several fossil-fuel combustion NOx sources and their δ15N-NOx values. To accomplish this, exhaust or flue samples from several fossil-fuel combustion sources were sampled and analyzed for their δ15N-NOx that included airplanes, gasoline-powered vehicles not equipped with a catalytic converter, gasoline-powered lawn tools and utility vehicles, diesel-electric buses, diesel semi-trucks, and natural gas-burning home furnace and power plant. A relatively large range of δ15N-NOx values were measured from -28.1 to 0.3‰ for individual exhaust/flue samples with cold started diesel-electric buses contributing on average the lowest δ15N-NOx values at -20.9‰, and warm-started diesel-electric buses contributing on average the highest values of -1.7‰. The NOx sources analyzed in this study primarily originated from the "thermal production" of NOx and generally emitted negative δ15N-NOx values, likely due to the kinetic isotope effect associated with its production. It was found that there is a negative correlation between NOx concentrations and δ15N-NOx for fossil-fuel combustion sources equipped with catalytic NOx reduction technology, suggesting that the catalytic reduction of NOx may have an influence on δ15N-NOx values. Based on the δ15N-NOx values reported in this study and in previous studies, a δ15N-NOx regional and seasonal isoscape was constructed for the contiguous United States. The constructed isoscape demonstrates the seasonal importance of various

  5. Technological research and development of fossil fuels; Ricerca e sviluppo tecnologico per lo sfruttamento ottimale dei combustibili fossili

    Minghetti, E.; Palazzi, G. [ENEA, Centro Ricerche Casaccia, Rome (Italy). Dip. Energia

    1995-05-01

    The aim of the present document is to supply general information concerning fossil fuels that represent, today and for the near future, the main energy source of our planet. New fossil fuel technologies are in continual development with two principal goals: to decrease environmental impact and increase transformation process efficiency. Examples of this effort are: (1) gas-steam combined cycles integrated with coal gasification plants, or with pressurized-fluidized-bed combustors; (2) new cycles with humid air or coal direct fired turbine, now under development. In the first part of this document the international and national energy situations and trends are shown. After some brief notes on environment problems and alternative fuels, such as biomasses and municipal wastes, technological aspects, mainly relevant to increasing fossil-fueled power plant performances, are examined in greater depth. Finally the research and technological development activities of ENEA (National Agency for New technologies, Energy and the Environment) Engineering Branch in order to improve fossil fuels energy and environmental use are presented.

  6. Results of studies on application of CCMHD to advanced fossil fuel power plant cycles

    Foote, J.P.; Wu, Y.C.L.S.; Lineberry, J.T.

    1998-07-01

    A study was conducted to assess the potential for application of a Closed Cycle MHD disk generator (CCMHD) in advanced fossil fuel power generation systems. Cycle analyses were conducted for a variety of candidate power cycles, including simple cycle CCMHD (MHD); a cycle combining CCMHD and gas turbines (MHD/GT); and a triple combined cycle including CCMHD, gas turbines, and steam turbines (MHD/GT/ST). The above cycles were previously considered in cycle studies reported by Japanese researchers. Also considered was a CCMHD cycle incorporating thermochemical heat recovery through reforming of the fuel stream (MHD/REF), which is the first consideration of this approach. A gas turbine/steam turbine combined cycle (GT/ST) was also analyzed for baseline comparison. The only fuel considered in the study was CH4. Component heat and pressure losses were neglected, and the potential for NOx emission due to high combustion temperatures was not considered. Likewise, engineering limitations for cycle components, particularly the high temperature argon heater, were not considered. This approach was adopted to simplify the analysis for preliminary screening of candidate cycles. Cycle calculations were performed using in-house code. Ideal gas thermodynamic properties were calculated using the NASA SP- 273 data base, and thermodynamic properties for steam were calculated using the computerized ASME Steam Tables. High temperature equilibrium compositions for combustion gas were calculated using tabulated values of the equilibrium constants for the important reactions.

  7. Small Scale SOFC Demonstration Using Bio-Based and Fossil Fuels

    Petrik, Michael [Technology Management Inc., Cleveland, OH (United States); Ruhl, Robert [Technology Management Inc., Cleveland, OH (United States)

    2012-05-01

    Technology Management, Inc. (TMI) of Cleveland, Ohio, has completed the project entitled Small Scale SOFC Demonstration using Bio-based and Fossil Fuels. Under this program, two 1-kW systems were engineered as technology demonstrators of an advanced technology that can operate on either traditional hydrocarbon fuels or renewable biofuels. The systems were demonstrated at Patterson's Fruit Farm of Chesterland, OH and were open to the public during the first quarter of 2012. As a result of the demonstration, TMI received quantitative feedback on operation of the systems as well as qualitative assessments from customers. Based on the test results, TMI believes that > 30% net electrical efficiency at 1 kW on both traditional and renewable fuels with a reasonable entry price is obtainable. The demonstration and analysis provide the confidence that a 1 kW entry-level system offers a viable value proposition, but additional modifications are warranted to reduce sound and increase reliability before full commercial acceptance.

  8. Fossil fuel-fired power generation. Case studies of recently constructed coal- and gas-fired plants

    Henderson, C. [IEA Clean Coal Centre, London (United Kingdom)

    2007-10-23

    To meet future energy demand growth and replace older or inefficient units, a large number of fossil fuel-fired plants will be required to be built worldwide in the next decade. Yet CO{sub 2} emissions from fossil-fired power generation are a major contributor to climate change. As a result, new plants must be designed and operated at highest efficiency both to reduce CO{sub 2} emissions and to facilitate deployment of CO{sub 2} capture and storage in the future. The series of case studies in this report, which respond to a request to the IEA from the G8 Summit in July 2005, were conducted to illustrate what efficiency is achieved now in modern plants in different parts of the world using different grades of fossil fuels. The plants were selected from different geographical areas, because local factors influence attainable efficiency. The case studies include pulverized coal combustion (PCC) with both subcritical and supercritical (very high pressure and temperature) steam turbine cycles, a review of current and future applications of coal-fuelled integrated gasification combined cycle plants (IGCC), and a case study of a natural gas fired combined cycle plant to facilitate comparisons. The results of these analyses show that the technologies for high efficiency (low CO{sub 2} emission) and very low conventional pollutant emissions (particulates, SO{sub 2}, NOx) from fossil fuel-fired power generation are available now through PCC, IGCC or NGCC at commercially acceptable cost. This report contains comprehensive technical and indicative cost information for modern fossil fuel-fired plants that was previously unavailable. It serves as a valuable sourcebook for policy makers and technical decision makers contemplating decisions to build new fossil fuel-fired power generation plants.

  9. Detecting the influence of fossil fuel and bio-fuel black carbon aerosols on near surface temperature changes

    G. S. Jones

    2010-09-01

    Full Text Available Past research has shown that the dominant influence on recent global climate changes is from anthropogenic greenhouse gas increases with implications for future increases in global temperatures. One mitigation proposal is to reduce black carbon aerosol emissions. How much warming can be offset by the aerosol's control is unclear, especially as its influence on past climate has not been previously unambiguously detected. In this study observations of near-surface warming over the last century are compared with simulations using a climate model, HadGEM1. In the simulations black carbon, from fossil fuel and bio-fuel sources (fBC, produces a positive radiative forcing of about + 0.25 Wm−2 over the 20th century, compared with a little under + 2.5 Wm−2 for well mixed greenhouse gases. A simulated warming of global mean near-surface temperatures over the twentieth century from fBC of 0.14 ± 0.1 K compares with 1.06 ± 0.07 K from greenhouse gases, -0.58 ± 0.10 K from anthropogenic aerosols, ozone and land use changes and 0.09 ± 0.09 K from natural influences. Using a detection and attribution methodology, the observed warming since 1900 has detectable influences from anthropogenic and natural factors. Fossil fuel and bio-fuel black carbon is found to have a detectable contribution to the warming over the last 50 years of the 20th century, although the results are sensitive to a number of analysis choices, and fBC is not detected for the later fifty year period ending in 2006. The attributed warming of fBC was found to be consistent with the warming from the unscaled simulation. This study suggests that there is a possible significant influence from fBC on global temperatures, but its influence is small compared to that from greenhouse gas emissions.

  10. Detecting the influence of fossil fuel and bio-fuel black carbon aerosols on near surface temperature changes

    G. S. Jones

    2011-01-01

    Full Text Available Past research has shown that the dominant influence on recent global climate changes is from anthropogenic greenhouse gas increases with implications for future increases in global temperatures. One mitigation proposal is to reduce black carbon aerosol emissions. How much warming can be offset by controlling black carbon is unclear, especially as its influence on past climate has not been previously unambiguously detected. In this study observations of near-surface warming over the last century are compared with simulations using a climate model, HadGEM1. In the simulations black carbon, from fossil fuel and bio-fuel sources (fBC, produces a positive radiative forcing of about +0.25 Wm−2 over the 20th century, compared with +2.52 Wm−2 for well mixed greenhouse gases. A simulated warming of global mean near-surface temperatures over the twentieth century from fBC of 0.14 ± 0.1 K compares with 1.06 ± 0.07 K from greenhouse gases, −0.58 ± 0.10 K from anthropogenic aerosols, ozone and land use changes and 0.09 ± 0.09 K from natural influences. Using a detection and attribution methodology, the observed warming since 1900 has detectable influences from anthropogenic and natural factors. Fossil fuel and bio-fuel black carbon is found to have a detectable contribution to the warming over the last 50 yr of the 20th century, although the results are sensitive to the period being examined as fBC is not detected for the later fifty year period ending in 2006. The attributed warming of fBC was found to be consistent with the warming from fBC unscaled by the detection analysis. This study suggests that there is a possible significant influence from fBC on global temperatures, but its influence is small compared to that from greenhouse gas emissions.

  11. Effects of aqueous effluents from in situ fossil-fuel processing technologies on aquatic systems

    Bergman, H.L.

    1978-12-01

    Progress is reported for the second year of this project to evaluate the effects of aqueous effluents from in-situ fossil fuel processing technologies on aquatic biota. The project objectives for Year 2 were pursued through five tasks: literature reviews on process water constituents, possible environmental impacts and potential control technologies; toxicity bioassays on the effects of coal gasification and oil shale retorting process waters and six process water constituents on aquatic biota; biodegradation studies on process water constituents; bioaccumulation factor estimation for the compounds tested in the toxicity bioassays; and recommendations on maximum exposure concentrations for process water constituents based on data from the project and from the literature. Results in each of the five areas of research are reported.

  12. Are forestation, bio-char and landfilled biomass adequate offsets for the climate effects of burning fossil fuels?

    Reijnders, L.

    2009-01-01

    Forestation and landfilling purpose-grown biomass are not adequate offsets for the CO2 emission from burning fossil fuels. Their permanence is insufficiently guaranteed and landfilling purpose-grown biomass may even be counterproductive. As to permanence, bio-char may do better than forests or landf

  13. DEVELOPMENT OF SAMPLING AND ANALYTICAL METHODS FOR THE MEASUREMENT OF NITROUS OXIDE FROM FOSSIL FUEL COMBUSTION SOURCES

    The report documents the technical approach and results achieved while developing a grab sampling method and an automated, on-line gas chromatography method suitable to characterize nitrous oxide (N2O) emissions from fossil fuel combustion sources. The two methods developed have...

  14. Sustainability of bioenergy and a comparison of fossil fuels; Nachhaltigkeit von Bioenergie und fossilen Energietraegern im Vergleich

    Wiedemann, Karsten

    2012-01-15

    The contribution under consideration reports on the sustainability of bioenergy and a comparison of fossil fuels. Beside the concept of sustainability in the energy supply, the author reports and the following aspects: climate balance and contributions to the power supply, opportunities and risks, contribution to the security in supply, social and political sustainability.

  15. Chemical biorefinery perspectives : the valorisation of functionalised chemicals from biomass resources compared to the conventional fossil fuel production route

    Brehmer, B.

    2008-01-01

    In response to the impending problems related to fossil fuels (continued supply, price, and regional and global pollution) alternative feedstocks are gaining interest as possible solutions. Biomass, considered sustainable and renewable, is an option with the potential to replace a wide diversity

  16. Contextualizing avian mortality. A preliminary appraisal of bird and bat fatalities from wind, fossil-fuel, and nuclear electricity

    Sovacool, Benjamin K. [Energy Governance Program, Centre on Asia and Globalisation, Lee Kuan Yew School of Public Policy, National University of Singapore, Singapore 259772 (Singapore)

    2009-06-15

    This article explores the threats that wind farms pose to birds and bats before briefly surveying the recent literature on avian mortality and summarizing some of the problems with it. Based on operating performance in the United States and Europe, this study offers an approximate calculation for the number of birds killed per kWh generated for wind electricity, fossil-fuel, and nuclear power systems. The study estimates that wind farms and nuclear power stations are responsible each for between 0.3 and 0.4 fatalities per gigawatt-hour (GWh) of electricity while fossil-fueled power stations are responsible for about 5.2 fatalities per GWh. While this paper should be respected as a preliminary assessment, the estimate means that wind farms killed approximately seven thousand birds in the United States in 2006 but nuclear plants killed about 327,000 and fossil-fueled power plants 14.5 million. The paper concludes that further study is needed, but also that fossil-fueled power stations appear to pose a much greater threat to avian wildlife than wind and nuclear power technologies. (author)

  17. Contextualizing avian mortality: A preliminary appraisal of bird and bat fatalities from wind, fossil-fuel, and nuclear electricity

    Sovacool, Benjamin K. [Energy Governance Program, Centre on Asia and Globalisation, Lee Kuan Yew School of Public Policy, National University of Singapore, Singapore 259772 (Singapore)], E-mail: bsovacool@nus.edu.sg

    2009-06-15

    This article explores the threats that wind farms pose to birds and bats before briefly surveying the recent literature on avian mortality and summarizing some of the problems with it. Based on operating performance in the United States and Europe, this study offers an approximate calculation for the number of birds killed per kWh generated for wind electricity, fossil-fuel, and nuclear power systems. The study estimates that wind farms and nuclear power stations are responsible each for between 0.3 and 0.4 fatalities per gigawatt-hour (GWh) of electricity while fossil-fueled power stations are responsible for about 5.2 fatalities per GWh. While this paper should be respected as a preliminary assessment, the estimate means that wind farms killed approximately seven thousand birds in the United States in 2006 but nuclear plants killed about 327,000 and fossil-fueled power plants 14.5 million. The paper concludes that further study is needed, but also that fossil-fueled power stations appear to pose a much greater threat to avian wildlife than wind and nuclear power technologies.

  18. Presence of estrogenic activity from emission of fossil fuel combustion as detected by a recombinant yeast bioassay

    Wang, J.X.; Wu, W.Z.; Henkelmann, B.; You, L.; Kettrup, A.; Schramm, K.W. [GSF, Neuherberg (Germany). National Research Center for Environmental & Health

    2003-07-01

    Estrogenic activities of emission samples generated by fossil fuel combustion were investigated with human estrogen receptor recombinant yeast bioassay. The results showed that there were weak but clear estrogenic activities in combustion emissions of fossil fuels including coal, petroleum, and diesel. The estrogenic relative potency of fossil fuel combustion was the highest in petroleum-fired car, followed by coal-fired stove, diesel-fired agrimotor, coal-fired electric power station. On the other hand, the estrogenic relative inductive efficiency was the highest in coal-fired stove and coal-fired electric power station, followed by petroleum-fired car and diesel-fired agrimotor. The estrogenic activities in the sub-fractions from chromatographic separation of emitted materials measured. The results indicated that different chemical fractions in these complex systems have different estrogenic potencies. The GC/MS analysis of the emission showed that there were many aromatic carbonyls, big molecular alcohol, PAHs and derivatives, and substituted phenolic compounds and derivatives which have been reported as environmental estrogens. The existence of estrogenic substances in fossil fuel combustion demands further investigation of their potential adverse effects on human and on the ecosystem.

  19. Small global effect on terrestrial net primary production due to increased fossil fuel aerosol emissions from East Asia since the turn of the century

    O'Sullivan, M.; Rap, A.; Reddington, C. L.; Spracklen, D. V.; Gloor, M.; Buermann, W.

    2016-08-01

    The global terrestrial carbon sink has increased since the start of this century at a time of growing carbon emissions from fossil fuel burning. Here we test the hypothesis that increases in atmospheric aerosols from fossil fuel burning enhanced the diffuse light fraction and the efficiency of plant carbon uptake. Using a combination of models, we estimate that at global scale changes in light regimes from fossil fuel aerosol emissions had only a small negative effect on the increase in terrestrial net primary production over the period 1998-2010. Hereby, the substantial increases in fossil fuel aerosol emissions and plant carbon uptake over East Asia were effectively canceled by opposing trends across Europe and North America. This suggests that if the recent increase in the land carbon sink would be causally linked to fossil fuel emissions, it is unlikely via the effect of aerosols but due to other factors such as nitrogen deposition or nitrogen-carbon interactions.

  20. Small global effect on terrestrial net primary production due to increased fossil fuel aerosol emissions from East Asia since the turn of the century.

    O'Sullivan, M; Rap, A; Reddington, C L; Spracklen, D V; Gloor, M; Buermann, W

    2016-08-16

    The global terrestrial carbon sink has increased since the start of this century at a time of growing carbon emissions from fossil fuel burning. Here we test the hypothesis that increases in atmospheric aerosols from fossil fuel burning enhanced the diffuse light fraction and the efficiency of plant carbon uptake. Using a combination of models, we estimate that at global scale changes in light regimes from fossil fuel aerosol emissions had only a small negative effect on the increase in terrestrial net primary production over the period 1998-2010. Hereby, the substantial increases in fossil fuel aerosol emissions and plant carbon uptake over East Asia were effectively canceled by opposing trends across Europe and North America. This suggests that if the recent increase in the land carbon sink would be causally linked to fossil fuel emissions, it is unlikely via the effect of aerosols but due to other factors such as nitrogen deposition or nitrogen-carbon interactions.

  1. Cost-effective policy instruments for greenhouse gas emission reduction and fossil fuel substitution through bioenergy production in Austria

    Schmidt, Johannes, E-mail: johannes.schmidt@boku.ac.at [Institute for Sustainable Economic Development, University of Natural Resources and Life Sciences, Peter Jordan Strasse 82, A-1190 Vienna (Austria); Leduc, Sylvain [International Institute for Applied Systems Analysis, Schlossplatz 1, A-2361 Laxenburg (Austria); Dotzauer, Erik [Maelardalen University, P.O. Box 883, SE-72123 Vaesteras (Sweden); Schmid, Erwin [Institute for Sustainable Economic Development, University of Natural Resources and Life Sciences, Peter Jordan Strasse 82, A-1190 Vienna (Austria)

    2011-06-15

    Climate change mitigation and security of energy supply are important targets of Austrian energy policy. Bioenergy production based on resources from agriculture and forestry is an important option for attaining these targets. To increase the share of bioenergy in the energy supply, supporting policy instruments are necessary. The cost-effectiveness of these instruments in attaining policy targets depends on the availability of bioenergy technologies. Advanced technologies such as second-generation biofuels, biomass gasification for power production, and bioenergy with carbon capture and storage (BECCS) will likely change the performance of policy instruments. This article assesses the cost-effectiveness of energy policy instruments, considering new bioenergy technologies for the year 2030, with respect to greenhouse gas emission (GHG) reduction and fossil fuel substitution. Instruments that directly subsidize bioenergy are compared with instruments that aim at reducing GHG emissions. A spatially explicit modeling approach is used to account for biomass supply and energy distribution costs in Austria. Results indicate that a carbon tax performs cost-effectively with respect to both policy targets if BECCS is not available. However, the availability of BECCS creates a trade-off between GHG emission reduction and fossil fuel substitution. Biofuel blending obligations are costly in terms of attaining the policy targets. - Highlights: > Costs of energy policies and effects on reduction of CO{sub 2} emissions and fossil fuel consumption. > Particular focus on new bioenergy production technologies such as second generation biofuels. > Spatially explicit techno-economic optimization model. > CO{sub 2} tax: high costs for reducing fossil fuel consumption if carbon capture and storage is available. > Biofuel policy: no significant reductions in CO{sub 2} emissions or fossil fuel consumption.

  2. Comparative analysis of structural concrete quality assurance practices on three fossil fuel power plant construction projects. Final report

    Willenbrock, J.H.; Thomas, H.R. Jr.; Burati, J.L. Jr.

    1978-06-01

    The basic objective of this research effort was to perform a comparative analysis of the Quality Assurance practices related to the structural concrete phase on three fossil fuel power plant projects which are (or have been) under construction in the United States in the past ten years. This analysis identified the response of each Quality Assurance program to criteria similar to those which apply on nuclear power plant projects. The major emphasis was placed on the construction aspects of the structural concrete phase of each project. The engineering and design aspects were examined whenever they interfaced with the construction aspects. For those aspects of the Quality Assurance system which can be considered managerial in nature (i.e., organizational relationships, types of Quality Assurance programs, corrective action procedures, etc.) an attempt has been made to present the alternative approaches that were identified. For those aspects of the Quality Assurance system which are technical in nature (i.e., the frequency of testing for slump, compressive strength, etc.) an attempt has been made to present a comparative analysis between projects and in relation to the recommended or mandated practices presented in the appropriate industry codes and standards.

  3. Fossil fuels: technical, economical and political challenges for 2030-2050; Combustibles fossiles: enjeux techniques, economiques et politiques a l'horizon 2030-2050

    NONE

    2004-07-01

    This panorama takes stock on the international energy actuality in 2003 and discusses the instability of the geo-political context of the energy and the part of the fossil fuels for the future years 2030-2050. The following topics were presented: activities and market for the exploration-production, refining and petrochemistry, the world gas trade situation, the petroleum supply and demand, the Iraq, the diesel in the USA, the investments and the depletion, long-dated evolutions of motors and fuels, implementing of the european directive concerning the market of tradable permits of CO{sub 2}, the carbon sequestration, hydrogen the energy of the future and the biofuels in Europe. (A.L.B.)

  4. Sulphur release from alternative fuel firing

    Cortada Mut, Maria del Mar; Nørskov, Linda Kaare; Glarborg, Peter;

    2014-01-01

    The cement industry has long been dependent on the use of fossil fuels, although a recent trend in replacing fossil fuels with alternative fuels has arisen. 1, 2 However, when unconverted or partly converted alternative fuels are admitted directly in the rotary kiln inlet, the volatiles released...

  5. Uncertainty in projected climate change caused by methodological discrepancy in estimating CO2 emissions from fossil fuel combustion

    Quilcaille, Yann; Gasser, Thomas; Ciais, Philippe; Lecocq, Franck; Janssens-Maenhout, Greet; Mohr, Steve; Andres, Robert J.; Bopp, Laurent

    2016-04-01

    There are different methodologies to estimate CO2 emissions from fossil fuel combustion. The term "methodology" refers to the way subtypes of fossil fuels are aggregated and their implied emissions factors. This study investigates how the choice of a methodology impacts historical and future CO2 emissions, and ensuing climate change projections. First, we use fossil fuel extraction data from the Geologic Resources Supply-Demand model of Mohr et al. (2015). We compare four different methodologies to transform amounts of fossil fuel extracted into CO2 emissions based on the methodologies used by Mohr et al. (2015), CDIAC, EDGARv4.3, and IPCC 1996. We thus obtain 4 emissions pathways, for the historical period 1750-2012, that we compare to the emissions timeseries from EDGARv4.3 (1970-2012) and CDIACv2015 (1751-2011). Using the 3 scenarios by Mohr et al. (2015) for projections till 2300 under the assumption of an Early (Low emission), Best Guess or Late (High emission) extraction peaking, we obtain 12 different pathways of CO2 emissions over 1750-2300. Second, we extend these CO2-only pathways to all co-emitted and climatically active species. Co-emission ratios for CH4, CO, BC, OC, SO2, VOC, N2O, NH3, NOx are calculated on the basis of the EDGAR v4.3 dataset, and are then used to produce complementary pathways of non-CO2 emissions from fossil fuel combustion only. Finally, the 12 emissions scenarios are integrated using the compact Earth system model OSCAR v2.2, in order to quantify the impact of the selected driver onto climate change projections. We find historical cumulative fossil fuel CO2 emissions from 1750 to 2012 ranging from 365 GtC to 392 GtC depending upon the methodology used to convert fossil fuel into CO2 emissions. We notice a drastic increase of the impact of the methodology in the projections. For the High emission scenario with Late fuel extraction peaking, cumulated CO2 emissions from 1700 to 2100 range from 1505 GtC to 1685 GtC; this corresponds

  6. A numerical analysis of worldwide CO{sub 2} emissions based on fossil fuels and effects on atmospheric warming in Turkey

    Tokgoz, Nuray

    2007-07-01

    The climate system of the earth, globally and locally, obviously has been changed from pre-industrial period to present. Some of the changes are due to human activities where the vital role has been played by the emission. Fossil fuels (coal, natural gas, oil), the raw materials for energy, play an effective and determining role in the development and sustenance of industrial development, as well as in the energy planning in all major countries. When global and regional geographies are evaluated from the geo-strategic and geo-political points of view, it is clearly seen that among all fossil fuels, coal is distributed more 'equally' in ratio than oil and natural gas reserves. Coal is gradually gaining importance for countries that do not have energy resources, have limited ones, or have resources on the verge of exhaustion. With the latest environmentally-friendly technological innovations in the field of burning-storing CO2 emissions in thermal power plants and given today's emphasis on the principle of 'sustainable development,' it is an undeniable fact that coal will continue to be a significant primary energy resource in the future, both in Turkey and around the world. In this study, in order to numerically calculate the impact of CO2 from fossil fuel consumption on global warming and the process of climate change, a global scale numerical evaluation has been constructed. The evaluation utilizes the 'total primary energy supply (TPES) - CO2 emission' from 136 countries in 2004 together with such basic indicators as 'TPES/capita' and 'ton CO2/capita'. The potential CO2 emission for the year 2030 has also been estimated. Moreover, to maintain the integrity of the subject under study, the distribution of thermal power plants utilizing fossil fuels among the differing geographical regions of Turkey, the relationship between forests (F) in these regions, and the average annual increase in temperature ({delta

  7. Identifying the European fossil fuel plumes in the atmosphere over the Northeast Atlantic Region through isotopic observations and numerical modelling.

    Geels, C; Christensen, J H; Hansen, A W; Heinemeier, J; Kiilsholm, S; Larsen, N W; Larsen, S E; Pedersen, T; Sørensen, L L; Brandt, J; Frohn, L M; Djurhuus, S

    2006-06-01

    As part of the Danish NEAREX project the origin and variability of anthropogenic atmospheric CO(2) over the Northeast Atlantic Region (NEAR) has been studied. The project consisted of a combination of experimental and modelling activities. Local volunteers operated CO(2) sampling stations, built at University of Copenhagen, for (14)C analysis at four locations (East Denmark, Shetland Isles, Faroe Isles and Iceland). The samples were only collected during winter periods of south-easterly winds in an attempt to trace air enriched in fossil-fuel derived CO(2) due to combustion of fossil fuels within European countries. In order to study the transport and concentration fields over the region in detail, a three-dimensional Eulerian hemispheric air pollution model has been extended to include the main anthropogenic sources for atmospheric CO(2). During the project period (1998-2001) only a few episodes of transport from Central Europe towards NEAR arose, which makes the data set for the evaluation of the method sparse. The analysed samples indicate that the signal for fossil CO(2), as expected, is largest (up to 3.7+/-0.4% fossil CO(2)) at the Danish location closest to the European emissions areas and much weaker (up to approximately 1.5+/-0.6% fossil CO(2)) at the most remote location. As the anthropogenic signal is weak in the clean atmosphere over NEAR these numbers will, however, be very sensitive to the assumed background (14)CO(2) activity and the precision of the measurements. The model simulations include the interplay between the driving processes from the emission into the boundary layer and the following horizontal/vertical mixing and atmospheric transport and are used to analyse the meteorological conditions leading to the observed events of high fossil CO(2) over NEAR. This information about the history of the air masses is essential if an observed signal is to be utilised for identifying and quantifying sources for fossil CO(2).

  8. The coprocessing of fossil fuels and biomass for CO{sub 2} emission reduction in the transportation sector

    Steinberg, M. [Brookhaven National Lab., Upton, NY (United States); Dong, Yuanji [Hydrocarb Corp., New York, NY (United States); Borgwardt, R.H. [Environmental Protection Agency, Research Triangle Park, NC (United States)

    1993-10-01

    Research is underway to evaluate the Hydrocarb process for conversion of carbonaceous raw material to clean carbon and methanol products. These products are valuable in the market either as fuel or as chemical commodities. As fuel, methanol and carbon can be used economically, either independently or in slurry form, in efficient heat energies (turbines and internal combustion engines) for both mobile and stationary single and combined cycle power plants. When considering CO{sub 2} emission control in the utilization of fossil fuels, the copressing of those fossil fuels with biomass (which may include, wood, municipal solid waste and sewage sludge) is a viable mitigation approach. By coprocessing both types of feedstock to produce methanol and carbon while sequestering all or part of the carbon, a significant net CO{sub 2} reduction is achieved if the methanol is substituted for petroleum fuels in the transportation sector. The Hydrocarb process has the potential, if the R&D objectives are achieved, to produce alternative transportation fuel from indigenous resources at lower cost than any other biomass conversion process. These comparisons suggest the resulting fuel can significantly displace gasoline at a competitive price while mitigating CO{sub 2} emissions and reducing ozone and other toxics in urban atmospheres.

  9. Reducing industrial use of fossil raw materials:techno-economic assessment of relevant cases in Northern Finland

    Arvola, J. (Jouko)

    2011-01-01

    Abstract Climate change and global warming are currently widely discussed topics, both of which potentially impact all the nations and industries. Carbon dioxide (CO2) and other green house gases (GHG) are seen as a major challenge. This doctoral dissertation aims to conduct techno-economic calculations on the possibilities of reducing the industrial use of fossil raw materials in Northern Finland. This doctoral dissertation analyses industrial CO2 emissions from five complementary pe...

  10. Creating a Global Grid of Distributed Fossil Fuel CO2 Emissions from Nighttime Satellite Imagery

    Benjamin T. Tuttle

    2010-12-01

    Full Text Available The potential use of satellite observed nighttime lights for estimating carbon-dioxide (CO2 emissions has been demonstrated in several previous studies. However, the procedures for a moderate resolution (1 km2 grid cells global map of fossil fuel CO2 emissions based on nighttime lights are still in the developmental phase. We report on the development of a method for mapping distributed fossil fuel CO2 emissions (excluding electric power utilities at 30 arc-seconds or approximately 1 km2 resolution using nighttime lights data collected by the Defense Meteorological Satellite Program’s Operational Linescan System (DMSP-OLS. A regression model, Model 1, was initially developed based on carbon emissions from five sectors of the Vulcan data produced by the Purdue University and a nighttime satellite image of the U.S. The coefficient derived through Model 1 was applied to the global nighttime image but it resulted in underestimation of CO2 emissions for most of the world’s countries, and the states of the U.S. Thus, a second model, Model 2 was developed by allocating the distributed CO2 emissions (excluding emissions from utilities using a combination of DMSP-OLS nighttime image and population count data from the U.S. Department of Energy's (DOE LandScan grid. The CO2 emissions were distributed in proportion to the brightness of the DMSP nighttime lights in areas where lighting was detected. In areas with no DMSP detected lighting, the CO2 emissions were distributed based on population count, with the assumption that people who live in these areas emit half as much CO2 as people who live in the areas with DMSP detected lighting. The results indicate that the relationship between satellite observed nighttime lights and CO2 emissions is complex, with differences between sectors and variations in lighting practices between countries. As a result it is not possible to make independent estimates of CO2 emissions with currently available coarse

  11. Small global effect on terrestrial net primary production due to increased fossil fuel aerosol emissions from East Asia during the last decade.

    O'Sullivan, Michael; Rap, Alex; Reddington, Carly; Spracklen, Dominick; Buermann, Wolfgang

    2016-04-01

    The global terrestrial carbon sink has increased since the start of this century at a time of rapidly growing carbon dioxide emissions from fossil fuel burning. Here we test the hypothesis that increases in atmospheric aerosols from fossil fuel burning have increased the diffuse fraction of incoming solar radiation and the efficiency of photosynthesis leading to increased plant carbon uptake. Using a combination of atmospheric and biospheric models, we find that changes in diffuse light associated with fossil fuel aerosol emission accounts for only 2.8% of the increase in global net primary production (1.221 PgC/yr) over the study period 1998 to 2007. This relatively small global signal is however a result of large regional compensations. Over East Asia, the strong increase in fossil fuel emissions contributed nearly 70% of the increased plant carbon uptake (21 TgC/yr), whereas the declining fossil fuel aerosol emissions in Europe and North America contributed negatively (-16% and -54%, respectively) to increased plant carbon uptake. At global scale, we also find the CO2 fertilization effect on photosynthesis to be the dominant driver of increased plant carbon uptake, in line with previous studies. These results suggest that further research into alternative mechanisms by which fossil fuel emissions could increase carbon uptake, such as nitrogen deposition and carbon-nitrogen interactions, is required to better understand a potential link between the recent changes in fossil fuel emissions and terrestrial carbon uptake.

  12. Approach for Emissions Compliance in the Fossil-Fuel Based Energy Sector

    Alain, Bill; Bitran, Guillaume; Basler, Benno; Hess, Stephan

    2007-07-01

    Most of today's air pollution legislation varies from country to country depending on factors such as the economy, fuel supply, fuel dependency and specific local pollution problems. At the same time, in a growing number of countries, the energy sector is going through privatisation, deregulation and globalisation process which is affecting energy demand and fuel selection, driving gradual integration of energy markets and requiring new solutions. Today it is also well recognized that pollution is often not a localized problem and that gaseous air pollutants can cross great distances. This has led to the cooperation between countries to control transboundary pollution, under bilateral or multilateral agreements. Similarly as for the energy sector, countries are not only becoming increasingly linked to each other in political, economic and social terms but also in environmental terms. Power generators and equipment manufacturers have been developing technologies and business agreements in countries with respective legislation constraints over many years and take this trend of interdependence into account. The equipment manufacturers and global solution providers such as Alstom have become the focal point driving the development of new environmental compliance products and solutions within the fossil fuel based energy sector. Technological progress achieved in many fields over recent years in different areas of the world according to the different legislations allows the power generators to meet these increasingly stringent emissions reduction requirements while extending the plant lifetime of existing power plants, and keeping them competitive. This paper gives an overview and outlook of environmental regulations, air pollution control technologies and some experience in pioneering environmental long-term service agreements. Obviously, the most immediately effective way to ensure emissions compliance of existing power plant is to professionally maintain and

  13. Effective utilization of fossil fuels for low carbon world -- IGCC and high performance gas turbine

    Ishii, Hiromi; Hashimoto, Takao; Sakamoto, Koichi; Komori, Toyoaki; Kishine, Takashi; Shiozaki, Shigehiro

    2010-09-15

    The reduction of greenhouse-gas emissions is required to minimize the effect of hydrocarbon based power generation on global warming. In pursue of this objective, Mitsubishi Heavy Industries is dedicating considerable efforts on two different ways to reduce the environmental impact. The first one involves gas turbine performance improvement by raising firing temperature for Natural-gas and LNG applications. In this regard, the latest J class gas turbine was designed to operate at 1600 deg C and expected combined cycle efficiency in excess of 60%. The other approach involves the use of Integrated Gasification Combined Cycle (IGCC) plants to burn solid fuel like coal.

  14. Gridded uncertainty in fossil fuel carbon dioxide emission maps, a CDIAC example

    Andres, Robert J.; Boden, Thomas A.; Higdon, David M.

    2016-12-01

    Due to a current lack of physical measurements at appropriate spatial and temporal scales, all current global maps and distributions of fossil fuel carbon dioxide (FFCO2) emissions use one or more proxies to distribute those emissions. These proxies and distribution schemes introduce additional uncertainty into these maps. This paper examines the uncertainty associated with the magnitude of gridded FFCO2 emissions. This uncertainty is gridded at the same spatial and temporal scales as the mass magnitude maps. This gridded uncertainty includes uncertainty contributions from the spatial, temporal, proxy, and magnitude components used to create the magnitude map of FFCO2 emissions. Throughout this process, when assumptions had to be made or expert judgment employed, the general tendency in most cases was toward overestimating or increasing the magnitude of uncertainty. The results of the uncertainty analysis reveal a range of 4-190 %, with an average of 120 % (2σ) for populated and FFCO2-emitting grid spaces over annual timescales. This paper also describes a methodological change specific to the creation of the Carbon Dioxide Information Analysis Center (CDIAC) FFCO2 emission maps: the change from a temporally fixed population proxy to a temporally varying population proxy.

  15. Response of the global climate to changes in atmospheric chemical composition due to fossil fuel burning

    Hameed, S.; Cess, R. D.; Hogan, J. S.

    1980-01-01

    Recent modeling of atmospheric chemical processes (Logan et al, 1978; Hameed et al, 1979) suggests that tropospheric ozone and methane might significantly increase in the future as the result of increasing anthropogenic emissions of CO, NO(x), and CH4 due to fossil fuel burning. Since O3 and CH4 are both greenhouse gases, increases in their concentrations could augment global warming due to larger future amounts of atmospheric CO2. To test the possible climatic impact of changes in tropospheric chemical composition, a zonal energy-balance climate model has been combined with a vertically averaged tropospheric chemical model. The latter model includes all relevant chemical reactions which affect species derived from H2O, O2, CH4, and NO(x). The climate model correspondingly incorporates changes in the infrared heating of the surface-troposphere system resulting from chemically induced changes in tropospheric ozone and methane. This coupled climate-chemical model indicates that global climate is sensitive to changes in emissions of CO, NO(x) and CH4, and that future increases in these emissions could augment global warming due to increasing atmospheric CO2.

  16. Innovative fossil fuel fired vitrification technology for soil remediation. Phase 1

    1994-01-01

    Vortec has successfully completed Phase 1 of the ``Innovative Fossil Fuel Fired Vitrification Technology for Soil Remediation`` program. The Combustion and Melting System (CMS) has processed 7000 pounds of material representative of contaminated soil that is found at DOE sites. The soil was spiked with Resource Conservation and Recovery Act (RCRA) metals surrogates, an organic contaminant, and a surrogate radionuclide. The samples taken during the tests confirmed that virtually all of the radionuclide was retained in the glass and that it did not leach to the environment-as confirmed by both ANS 16.1 and Toxicity Characteristic Leaching Procedure (TCLP) testing. The organic contaminant, anthracene, was destroyed during the test with a Destruction and Removal Efficiency (DRE) of at least 99.99%. RCRA metal surrogates, that were in the vitrified product, were retained and did not leach to the environment as confirmed by the TCLP testing. Semi-volatile RCRA metal surrogates were captured by the Air Pollution Control (APC) system, and data on the amount of metal oxide particulate and the chemical composition of the particulate were established for use in the Phase 2 APC subsystem design.

  17. Sun, Ocean, Nuclear Bombs, and Fossil Fuels: Radiocarbon Variations and Implications for High-Resolution Dating

    Dutta, Koushik

    2016-06-01

    Radiocarbon, or 14C, is a radiometric dating method ideally suited for providing a chronological framework in archaeology and geosciences for timescales spanning the last 50,000 years. 14C is easily detectable in most common natural organic materials and has a half-life (5,730±40 years) relevant to these timescales. 14C produced from large-scale detonations of nuclear bombs between the 1950s and the early 1960s can be used for dating modern organic materials formed after the 1950s. Often these studies demand high-resolution chronology to resolve ages within a few decades to less than a few years. Despite developments in modern, high-precision 14C analytical methods, the applicability of 14C in high-resolution chronology is limited by short-term variations in atmospheric 14C in the past. This article reviews the roles of the principal natural drivers (e.g., solar magnetic activity and ocean circulation) and the anthropogenic perturbations (e.g., fossil fuel CO2 and 14C from nuclear and thermonuclear bombs) that are responsible for short-term 14C variations in the environment. Methods and challenges of high-resolution 14C dating are discussed.

  18. Aeolian contamination of Se and Ag in the North Pacific from Asian fossil fuel combustion.

    Ranville, Mara A; Cutter, Gregory A; Buck, Clifton S; Landing, William M; Cutter, Lynda S; Resing, Joseph A; Flegal, A Russell

    2010-03-01

    Energy production from fossil fuels, and in particular the burning of coal in China, creates atmospheric contamination that is transported across the remote North Pacific with prevailing westerly winds. In recent years this pollution from within Asia has increased dramatically, as a consequence of vigorous economic growth and corresponding energy consumption. During the fourth Intergovernmental Oceanographic Commission baseline contaminant survey in the western Pacific Ocean from May to June, 2002, surface waters and aerosol samples were measured to investigate whether atmospheric deposition of trace elements to the surface North Pacific was altering trace element biogeochemical cycling. Results show a presumably anthropogenic enrichment of Ag and of Se, which is a known tracer of coal combustion, in the North Pacific atmosphere and surface waters. Additionally, a strong correlation was seen between dissolved Ag and Se concentrations in surface waters. This suggests that Ag should now also be considered a geochemical tracer for coal combustion, and provides further evidence that Ag exhibits a disturbed biogeochemical cycle as the result of atmospheric deposition to the North Pacific.

  19. Detecting fossil fuel emissions patterns from subcontinental regions using North American in situ CO2 measurements.

    Shiga, Yoichi P; Michalak, Anna M; Gourdji, Sharon M; Mueller, Kim L; Yadav, Vineet

    2014-06-28

    The ability to monitor fossil fuel carbon dioxide (FFCO2) emissions from subcontinental regions using atmospheric CO2 observations remains an important but unrealized goal. Here we explore a necessary but not sufficient component of this goal, namely, the basic question of the detectability of FFCO2 emissions from subcontinental regions. Detectability is evaluated by examining the degree to which FFCO2 emissions patterns from specific regions are needed to explain the variability observed in high-frequency atmospheric CO2 observations. Analyses using a CO2 monitoring network of 35 continuous measurement towers over North America show that FFCO2 emissions are difficult to detect during nonwinter months. We find that the compounding effects of the seasonality of atmospheric transport patterns and the biospheric CO2 flux signal dramatically hamper the detectability of FFCO2 emissions. Results from several synthetic data case studies highlight the need for advancements in data coverage and transport model accuracy if the goal of atmospheric measurement-based FFCO2 emissions detection and estimation is to be achieved beyond urban scales.

  20. Compiling a multistate emissions inventory. [Fossil-Fuel Power Plant related air pollutants

    Benkovitz, C M

    1978-01-01

    The goal of the Multistate Atmospheric Power Production Pollution Study (MAP3S) is to develop and demonstrate an improved, verified capability of numerically simulating the present conditions and potential changes in pollutant concentration, atmospheric behavior, and precipitation chemistry that result, or will result, from pollutants released to the atmosphere by large-scale power production processes. Due to the multistate nature of the MAP3S area of interest, the emissions inventory project has been based on obtaining pertinent data gathered by other agencies, and computerizing, correlating, and updating such data. This paper describes the development of the project to date. Topics to be covered include the acquisition of both emissions and ancillary data, techniques developed for quality assurance and data updating, as well as descriptions of current and future plans in both upgrading and using the inventory. The MAP3S program is charged with studying the entire spectrum of atmospheric pollutants ascribed to fossil-fuel electric power production or that may interact in the atmosphere with power plant emissions. These pollutants include: sulfur oxides, sulfites, and sulfates; nitrogen oxides and their secondary reaction products, including oxidants; hydrocarbons, including polycyclic organic matter; trace inorganic elements; and particulates, which may contain any or all of the above substances and elemental carbon or soot.

  1. Improving the Carbon Dioxide Emission Estimates from the Combustion of Fossil Fuels in California

    de la Rue du Can, Stephane; Wenzel, Tom; Price, Lynn

    2008-08-13

    Central to any study of climate change is the development of an emission inventory that identifies and quantifies the State's primary anthropogenic sources and sinks of greenhouse gas (GHG) emissions. CO2 emissions from fossil fuel combustion accounted for 80 percent of California GHG emissions (CARB, 2007a). Even though these CO2 emissions are well characterized in the existing state inventory, there still exist significant sources of uncertainties regarding their accuracy. This report evaluates the CO2 emissions accounting based on the California Energy Balance database (CALEB) developed by Lawrence Berkeley National Laboratory (LBNL), in terms of what improvements are needed and where uncertainties lie. The estimated uncertainty for total CO2 emissions ranges between -21 and +37 million metric tons (Mt), or -6percent and +11percent of total CO2 emissions. The report also identifies where improvements are needed for the upcoming updates of CALEB. However, it is worth noting that the California Air Resources Board (CARB) GHG inventory did not use CALEB data for all combustion estimates. Therefore the range in uncertainty estimated in this report does not apply to the CARB's GHG inventory. As much as possible, additional data sources used by CARB in the development of its GHG inventory are summarized in this report for consideration in future updates to CALEB.

  2. The Zero Emission Fossil Fuel Power Plant - from vision to reality.

    Stroemberg, L.; Sauthoff, M.

    2007-07-01

    Sufficient supply of energy without fossil fuels is not possible the next fifty years. Thus, we must find a solution to use coal, without endangering the environment. Carbon Capture and Storage, CCS, might be the answer. At a cost of about 20 Euro/ton CO{sub 2}, there exist technologies, which can be ready for commercial application in 2020. After that, even more cost effective technologies will be developed. To reduce emissions by more than half until 2050, cannot be reached without CCS. However, CCS is very powerful, but not the only tool. All ways to reduce emissions, including renewables and nuclear must be used. To put emphasis behind the words, Vattenfall has started an R and D program to develop technology for CCS in a ten year program. As part of that, Vattenfall is building a Pilot Plant including all process steps from coal input to liquid CO{sub 2}. It will be ready in 2008. In parallel, preparations for a demonstration plant are ongoing. It will be a coal fired full size plant with storage on shore. That will be ready for operation in 2015. (auth)

  3. On-line elemental analysis of fossil fuel process streams by inductively coupled plasma spectrometry

    Chisholm, W.P.

    1995-06-01

    METC is continuing development of a real-time, multi-element plasma based spectrometer system for application to high temperature and high pressure fossil fuel process streams. Two versions are under consideration for development. One is an Inductively Coupled Plasma system that has been described previously, and the other is a high power microwave system. The ICP torch operates on a mixture of argon and helium with a conventional annular swirl flow plasma gas, no auxiliary gas, and a conventional sample stream injection through the base of the plasma plume. A new, demountable torch design comprising three ceramic sections allows bolts passing the length of the torch to compress a double O-ring seal. This improves the reliability of the torch. The microwave system will use the same data acquisition and reduction components as the ICP system; only the plasma source itself is different. It will operate with a 750-Watt, 2.45 gigahertz microwave generator. The plasma discharge will be contained within a narrow quartz tube one quarter wavelength from a shorted waveguide termination. The plasma source will be observed via fiber optics and a battery of computer controlled monochromators. To extract more information from the raw spectral data, a neural net computer program is being developed. This program will calculate analyte concentrations from data that includes analyte and interferant spectral emission intensity. Matrix effects and spectral overlaps can be treated more effectively by this method than by conventional spectral analysis.

  4. Integral power evaluation in fossil fuel power plants; Evaluacion energetica integral en unidades de centrales termoelectricas

    Figueroa I, Luis R; Sanchez H, Laura E; Rodriguez M, Jose H [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico); Nebradt G, Jesus [Unidad de Investigacion y Desarrollo de la Subdireccion de Generacion de la Comision Federal de Electricidad, (Mexico)

    2006-07-01

    In this occasion, a methodology is presented that carries out an integral energy evaluation of fossil fuel power plants units (FFPPU) with the purpose of determining the root of the significant decrements of power produced soon after the annual maintenance service. This proposal, besides identifying the origin of the energy efficiency problems, offers information about the contributions of each one of the involved equipment in the total decrement of the unit. With this methodology, the maintenance focuses in the equipment that contributes to the greater energy loss. This document presents such methodology along with its application in a real case, results and necessary remedial actions, demonstrating that its application offers bases for the investment in corrective measures. [Spanish] En esta ocasion se presenta una metodologia que efectua una evaluacion energetica integral de las unidades de centrales termoelectricas (UCT) con el fin de determinar la raiz de los decrementos de potencia significativos producidos luego del servicio anual de mantenimiento. Dicha propuesta, ademas de identificar el origen de los problemas de eficiencia energetica, brinda informacion acerca de las aportaciones de cada uno de los equipos involucrados al decremento total de la unidad. Con esta metodologia, el mantenimiento se enfoca a los equipos que contribuyen a la mayor perdida de potencia. Este documento exhibe tal metodologia junto con su aplicacion en un caso real, resultados y las acciones correctivas necesarias, demostrando que su aplicacion ofrece bases para una inversion futura en medidas correctivas.

  5. The economic value of remote sensing of earth resources from space: An ERTS overview and the value of continuity of service. Volume 7: Nonreplenishable natural resources: Minerals, fossil fuels and geothermal energy sources

    Lietzke, K. R.

    1974-01-01

    The application of remotely-sensed information to the mineral, fossil fuel, and geothermal energy extraction industry is investigated. Public and private cost savings are documented in geologic mapping activities. Benefits and capabilities accruing to the ERS system are assessed. It is shown that remote sensing aids in resource extraction, as well as the monitoring of several dynamic phenomena, including disturbed lands, reclamation, erosion, glaciation, and volcanic and seismic activity.

  6. Low energy buildings – the basis for realizing the strategy for independency of fossil fuels in 2050

    Svendsen, Svend

    2011-01-01

    The paper introduces how low energy buildings can be developed, designed, optimized, constructed and operated in the future and thereby make a significant contribution to the realization of aim of the energy policy of EU: to become independent of fossil fuels in 2050. The paper describes how low...... energy buildings can become independent of fossil fuels in 2020 based on the following activities. Innovation of building components and systems with improved energy performance. Heating of low energy building with low temperature district heating based on renewable heat. Integrated design...... and optimization of low energy buildings. Continuous commissioning of low energy buildings with respect to energy use, indoor environment and durability. The very big and quick change of the energy performance of buildings is a challenge for the building sector but it can be solved by improving the methods...

  7. Technical and Economic Forecast in Selection of Optimum Biomass and Local Fossil Fuel Application Technology for Thermal Electric Energy Generation

    I. A. Bokun

    2010-01-01

    Full Text Available The paper provides a technical and economic analysis pertaining to selection of optimum biomass and local fossil fuel application technology for thermal electric energy generation while using a matrix of costs and a method of minimum value. Calculation results give grounds to assert that it is expedient to burn in the boiling layer – 69 % and 31 % of wood pellets and wastes, respectively and 54 % of peat and 46 % of slate stones. A steam and gas unit (SGU can fully operate on peat. Taking into account reorientation on decentralized power supply and increase of small power plants up to 3–5 MW the paper specifies variants of the most efficient technologies for burning biomass and local fossil fuels

  8. The future of airborne sulfur-containing particles in the absence of fossil fuel sulfur dioxide emissions.

    Perraud, Véronique; Horne, Jeremy R; Martinez, Andrew S; Kalinowski, Jaroslaw; Meinardi, Simone; Dawson, Matthew L; Wingen, Lisa M; Dabdub, Donald; Blake, Donald R; Gerber, R Benny; Finlayson-Pitts, Barbara J

    2015-11-03

    Sulfuric acid (H2SO4), formed from oxidation of sulfur dioxide (SO2) emitted during fossil fuel combustion, is a major precursor of new airborne particles, which have well-documented detrimental effects on health, air quality, and climate. Another precursor is methanesulfonic acid (MSA), produced simultaneously with SO2 during the atmospheric oxidation of organosulfur compounds (OSCs), such as dimethyl sulfide. In the present work, a multidisciplinary approach is used to examine how contributions of H2SO4 and MSA to particle formation will change in a large coastal urban area as anthropogenic fossil fuel emissions of SO2 decline. The 3-dimensional University of California Irvine-California Institute of Technology airshed model is used to compare atmospheric concentrations of gas phase MSA, H2SO4, and SO2 under current emissions of fossil fuel-associated SO2 and a best-case futuristic scenario with zero fossil fuel sulfur emissions. Model additions include results from (i) quantum chemical calculations that clarify the previously uncertain gas phase mechanism of formation of MSA and (ii) a combination of published and experimental estimates of OSC emissions, such as those from marine, agricultural, and urban processes, which include pet waste and human breath. Results show that in the zero anthropogenic SO2 emissions case, particle formation potential from H2SO4 will drop by about two orders of magnitude compared with the current situation. However, particles will continue to be generated from the oxidation of natural and anthropogenic sources of OSCs, with contributions from MSA and H2SO4 of a similar order of magnitude. This could be particularly important in agricultural areas where there are significant sources of OSCs.

  9. A multiresolution spatial parameterization for the estimation of fossil-fuel carbon dioxide emissions via atmospheric inversions

    J. Ray

    2014-09-01

    Full Text Available The characterization of fossil-fuel CO2 (ffCO2 emissions is paramount to carbon cycle studies, but the use of atmospheric inverse modeling approaches for this purpose has been limited by the highly heterogeneous and non-Gaussian spatiotemporal variability of emissions. Here we explore the feasibility of capturing this variability using a low-dimensional parameterization that can be implemented within the context of atmospheric CO2 inverse problems aimed at constraining regional-scale emissions. We construct a multiresolution (i.e., wavelet-based spatial parameterization for ffCO2 emissions using the Vulcan inventory, and examine whether such a~parameterization can capture a realistic representation of the expected spatial variability of actual emissions. We then explore whether sub-selecting wavelets using two easily available proxies of human activity (images of lights at night and maps of built-up areas yields a low-dimensional alternative. We finally implement this low-dimensional parameterization within an idealized inversion, where a sparse reconstruction algorithm, an extension of stagewise orthogonal matching pursuit (StOMP, is used to identify the wavelet coefficients. We find that (i the spatial variability of fossil-fuel emission can indeed be represented using a low-dimensional wavelet-based parameterization, (ii that images of lights at night can be used as a proxy for sub-selecting wavelets for such analysis, and (iii that implementing this parameterization within the described inversion framework makes it possible to quantify fossil-fuel emissions at regional scales if fossil-fuel-only CO2 observations are available.

  10. Do Oil Companies aquire Alternative Energy Patents to Limit Technological Innovation, in order to Maintain Economic Advantage in Fossil Fuels

    Sims, George G.

    2002-01-01

    Do Oil Companies acquire Alternative Energy Patents to limit Technological Innovation, in order to maintain Economic Advantage in Fossil Fuels by George G. Sims Roger N. Waud, Chairman Economics (Abstract) This paper addresses the charge made by environmental groups that oil companies, since the 1970's, have been acquiring alternative energy patents, to restrict these technologies from reaching the market. The purpose of these restrictions was to protect profits from...

  11. Pulverized coal and substitute fuels for the cement manufacturing industry

    Dobrowsky, F.

    1981-01-01

    This paper comprises an article of general technical interest on coal and its use in the cement industry, plus the scope for using substitute fuels. Discusses coal properties and preparation (crushing). Describes the heating systems of the cement ovens: burners, combustion and parameters governing flame-length. Looks at operation problems connected with heating of the coal: caking, fusing, clinker quality and behaviour of the refractory bricks. Also discusses substitute fuels: type of fuel, scope for utilisation and requisite precautions. 32 refs.

  12. Air Force Achieves Fuel Efficiency through Industry Best Practices

    None

    2012-12-01

    The U.S. Air Force’s Air Mobility Command (AMC) is changing the way it does business. It is saving energy and money through an aircraft fleet fuel-efficiency program inspired by private industry best practices and ideas resulting from the empowered fuel savings culture.

  13. Nitrogen oxide formation from chemically-bound nitrogen during the combustion of fossil fuels. [Extended Zeldovich reactions

    Mitchell, R.E.

    1976-06-01

    One of the many problems associated with the firing of fossil fuels is the impact on the ambient levels of nitrogen oxides. Since the use of coals, oils and coal-derived fuels is expected to triple by 1985, it is urgent that the formation of nitrogen oxides from molecular nitrogen and organo-nitrogen species be fully characterized so that emission abatement strategies can be formulated. The thermal fixation of atmospheric nitrogen and the free radical reactions of nitrogenous species are the sources of NO/sub x/. The fixation reactions can be described by the extended Zeldovich mechanism, and techniques such as staged combustion and flue gas recirculation have been employed to reduce combustion temperatures and, hence, thermally formed NO. These techniques have had little effect, however, on the conversion of chemically-bound nitrogen to NO/sub x/. The fate of chemically-bound nitrogen depends upon such factors as the nitrogen content of the fuel and the equivalence ratio and upon the physical processes governing combustion. Research is proposed to establish the kinetic processes involved in the conversion of fuel nitrogen to NO and N/sub 2/ in environments characteristic of fossil fuel combustion and to identify those conditions which favor the reduction of NO to N/sub 2/.

  14. The limits of bioenergy for mitigating global life-cycle greenhouse gas emissions from fossil fuels

    Staples, Mark D.; Malina, Robert; Barrett, Steven R. H.

    2017-01-01

    The size of the global bioenergy resource has been studied extensively; however, the corresponding life-cycle greenhouse gas benefit of bioenergy remains largely unexplored at the global scale. Here we quantify the optimal use of global bioenergy resources to offset fossil fuels in 2050. We find that bioenergy could reduce life-cycle emissions from fossil fuel-derived electricity and heat, and liquid fuels, by a maximum of 4.9-38.7 Gt CO2e, or 9-68%, and that offsetting electricity and heat with bioenergy is on average 1.6-3.9 times more effective for emissions mitigation than offsetting liquid fuels. At the same time, liquid fuels make up 18-49% of the optimal allocation of bioenergy in our results for 2050, indicating that a mix of bioenergy end-uses maximizes life-cycle emissions reductions. Finally, emissions reductions are maximized by limiting deployment of total available primary bioenergy to 29-91% in our analysis, demonstrating that life-cycle emissions are a constraint on the usefulness of bioenergy for mitigating global climate change.

  15. The politics of environment and acid rain in the Federal Republic of Germany: forests versus fossil fuels

    Boehmer-Christiansen, S.

    1989-09-01

    In June 1982 the Federal Government of the FRG reversed its international position on 'acid rain' and, by joining Sweden, set in motion pressures for cleaning up industrial emissions within the EEC, especially of sulphur dioxide from fossil-fuel burning power stations. This paper deals with the reasons behind this conversion and as such is a case study in environmental decision-making. This report analyses the pressures inside the Federal Republic which forced air pollution to the top of the environmental agenda in the early 1980s and describes the processes by which air pollution controls in general and the GFAVo (Ordinance on Large Firing Installations or Large Combustion Plants, Grossfeuerungsanlagenverordnung) in particular were adopted. This requires reference to both the societal context, the West German energy sector and official policies for both energy and pollution control. The turbulence of German domestic politics between 1981 and 1983 is described as an essential ingredient of policy formation. The strong regional dimensional of German policy and politics, always important, is emphasised and relates to the unequal geographical distribution of both forests and nuclear capacity. Waldsterben (or forest die-back), the still not fully understood illness of forests in Central Europe observed since the late 1970s, was very quickly ascribed to acid rain and in particular to emissions of sulphur dioxide from power stations. Both the Schmidt and Kohl administrations found in acid rain abatement policy a solution to the perceived conflict between energy and environment. This in turn allowed government to ignore, avoid or postpone confronting even more controversial and fundamentally destabilising German 'eco-issues': the future of nuclear power, the presence of foreign nuclear and chemical weapons and, above all, the nature and direction of economic growth.

  16. A statistical approach for isolating fossil fuel emissions in atmospheric inverse problems

    Yadav, Vineet; Michalak, Anna M.; Ray, Jaideep; Shiga, Yoichi P.

    2016-10-01

    Independent verification and quantification of fossil fuel (FF) emissions constitutes a considerable scientific challenge. By coupling atmospheric observations of CO2 with models of atmospheric transport, inverse models offer the possibility of overcoming this challenge. However, disaggregating the biospheric and FF flux components of terrestrial fluxes from CO2 concentration measurements has proven to be difficult, due to observational and modeling limitations. In this study, we propose a statistical inverse modeling scheme for disaggregating winter time fluxes on the basis of their unique error covariances and covariates, where these covariances and covariates are representative of the underlying processes affecting FF and biospheric fluxes. The application of the method is demonstrated with one synthetic and two real data prototypical inversions by using in situ CO2 measurements over North America. Inversions are performed only for the month of January, as predominance of biospheric CO2 signal relative to FF CO2 signal and observational limitations preclude disaggregation of the fluxes in other months. The quality of disaggregation is assessed primarily through examination of a posteriori covariance between disaggregated FF and biospheric fluxes at regional scales. Findings indicate that the proposed method is able to robustly disaggregate fluxes regionally at monthly temporal resolution with a posteriori cross covariance lower than 0.15 µmol m-2 s-1 between FF and biospheric fluxes. Error covariance models and covariates based on temporally varying FF inventory data provide a more robust disaggregation over static proxies (e.g., nightlight intensity and population density). However, the synthetic data case study shows that disaggregation is possible even in absence of detailed temporally varying FF inventory data.

  17. Independent evaluation of point source fossil fuel CO2 emissions to better than 10.

    Turnbull, Jocelyn Christine; Keller, Elizabeth D; Norris, Margaret W; Wiltshire, Rachael M

    2016-09-13

    Independent estimates of fossil fuel CO2 (CO2ff) emissions are key to ensuring that emission reductions and regulations are effective and provide needed transparency and trust. Point source emissions are a key target because a small number of power plants represent a large portion of total global emissions. Currently, emission rates are known only from self-reported data. Atmospheric observations have the potential to meet the need for independent evaluation, but useful results from this method have been elusive, due to challenges in distinguishing CO2ff emissions from the large and varying CO2 background and in relating atmospheric observations to emission flux rates with high accuracy. Here we use time-integrated observations of the radiocarbon content of CO2 ((14)CO2) to quantify the recently added CO2ff mole fraction at surface sites surrounding a point source. We demonstrate that both fast-growing plant material (grass) and CO2 collected by absorption into sodium hydroxide solution provide excellent time-integrated records of atmospheric (14)CO2 These time-integrated samples allow us to evaluate emissions over a period of days to weeks with only a modest number of measurements. Applying the same time integration in an atmospheric transport model eliminates the need to resolve highly variable short-term turbulence. Together these techniques allow us to independently evaluate point source CO2ff emission rates from atmospheric observations with uncertainties of better than 10%. This uncertainty represents an improvement by a factor of 2 over current bottom-up inventory estimates and previous atmospheric observation estimates and allows reliable independent evaluation of emissions.

  18. Prices of agricultural commodities, biofuels and fossil fuels in long-run relationships: a comparative study for the USA and Europe

    Groth, Tanja; Bentzen, Jan

    2013-01-01

    Time-series data for the USA and Europe representing prices of agricultural commodities, biofuels and fossil fuels are used for a comparative analysis of long-run price relationships. There is some evidence for cointegration between ethanol and gasoline, especially for the USA, and in the case of...... of biodiesel, stronger evidence of cointegration between biodiesel, diesel and soya oil for both the USA and Europe. Finally, biofuel prices do not seem to influence agricultural commodity prices or fossil fuel prices....

  19. Carbon storage versus fossil fuel substitution: a climate change mitigation option for two different land use categories based on short and long rotation forestry in India

    Kaul, M; Mohren, G.M.J.; Dadhwal, V.K.

    2010-01-01

    Short rotation bioenergy crops for energy production are considered an effective means to mitigate the greenhouse effect, mainly due to their ability to substitute fossil fuels. Alternatively, carbon can be sequestered and stored in the living biomass. This paper compares the two land use categories (forest land and non-forest land) for two management practices (short rotation vs. long rotation) to study mitigation potential of afforestation and fossil fuel substitution as compared to carbon ...

  20. Distributions of fossil fuel originated CO2 in five metropolitan areas of Korea (Seoul, Busan, Daegu, Daejeon, and Gwangju) according to the Δ14C in ginkgo leaves

    Park, J. H.; Hong, W.; Park, G.; Sung, K. S.; Lee, K. H.; Kim, Y. E.; Kim, J. K.; Choi, H. W.; Kim, G. D.; Woo, H. J.

    2013-01-01

    We collected a batch of ginkgo (Ginkgo biloba Linnaeus) leaf samples at five metropolitan areas of Korea (Seoul, Busan, Daegu, Daejeon, and Gwangju) in 2009 to obtain the regional distribution of fossil fuel originated CO2 (fossil fuel CO2) in the atmosphere. Regions assumed to be free of fossil fuel CO2 were also selected, namely Mt. Chiak, Mt. Kyeryong, Mt. Jiri, Anmyeon Island, and Jeju Island and ginkgo leaf samples were collected in those areas during the same period. The Δ14C values of the samples were measured using Accelerator Mass Spectrometry (AMS) and the fossil fuel CO2 ratios in the atmosphere were obtained in the five metropolitan areas. The average ratio of fossil fuel CO2 in Seoul was higher than that in the other four cities. The leaves from the Sajik Tunnel in Seoul recorded the highest FFCTC (fossil fuel CO2 over total CO2 in atmosphere), 13.9 ± 0.5%, as the air flow of the surrounding neighborhood of the Sajik Tunnel was blocked.

  1. Structural Path Analysis of Fossil Fuel Based CO2 Emissions: A Case Study for China.

    Zhiyong Yang

    Full Text Available Environmentally extended input-output analysis (EEIOA has long been used to quantify global and regional environmental impacts and to clarify emission transfers. Structural path analysis (SPA, a technique based on EEIOA, is especially useful for measuring significant flows in this environmental-economic system. This paper constructs an imports-adjusted single-region input-output (SRIO model considering only domestic final use elements, and it uses the SPA technique to highlight crucial routes along the production chain in both final use and sectoral perspectives. The results indicate that future mitigation policies on household consumption should change direct energy use structures in rural areas, cut unreasonable demand for power and chemical products, and focus on urban areas due to their consistently higher magnitudes than rural areas in the structural routes. Impacts originating from government spending should be tackled by managing onsite energy use in 3 major service sectors and promoting cleaner fuels and energy-saving techniques in the transport sector. Policies on investment should concentrate on sectoral interrelationships along the production chain by setting up standards to regulate upstream industries, especially for the services, construction and equipment manufacturing sectors, which have high demand pulling effects. Apart from the similar methods above, mitigating policies in exports should also consider improving embodied technology and quality in manufactured products to achieve sustainable development. Additionally, detailed sectoral results in the coal extraction industry highlight the onsite energy use management in large domestic companies, emphasize energy structure rearrangement, and indicate resources and energy safety issues. Conclusions based on the construction and public administration sectors reveal that future mitigation in secondary and tertiary industries should be combined with upstream emission intensive

  2. Krakow clean fossil fuels and energy efficiency program. Phase 1 report

    Butcher, T.; Pierce, B. [eds.

    1995-06-01

    Krakow is one of the largest and oldest cities in Poland. It is situated in the south of the country on the banks of the Vistula River. From the 11th until the 17th centuries, it was the capital of Poland. Today, Krakow is a city of 750,000 residents, one of the largest centers of higher education, an important industrial center, and is of particular importance because of the number and kinds of historic buildings and sites. For this reason, Krakow was included by the UNESCO in the list of the world`s cultural heritages. For about three decades, significant air pollution has been one of Krakow`s most serious problems. Because the city is situated in the Vistula River valley, it is poorly ventilated and experiences a high concentration of air pollutants. The quality of air in Krakow is affected mainly by industry (Sendzimir Steelworks, energy industry, chemical plants), influx from the Silesian industrial region (power plants, metallurgy), transboundary pollution (Ostrava - Czech Republic), and local sources of low pollution, i.e. more than 1,000 boiler houses using solid fuels and more than 100,000 coal-fired home stoves. These local sources, with low stacks and almost no pollution-control equipment, are responsible for about 35-40% of the air pollution. This report presents phase I results of a program to reduce pollution in krakow. Phase I was to gather information on emissions and costs, and to verify assumptions on existing heating methods and alternatives.

  3. Structural Path Analysis of Fossil Fuel Based CO2 Emissions: A Case Study for China.

    Yang, Zhiyong; Dong, Wenjie; Xiu, Jinfeng; Dai, Rufeng; Chou, Jieming

    2015-01-01

    Environmentally extended input-output analysis (EEIOA) has long been used to quantify global and regional environmental impacts and to clarify emission transfers. Structural path analysis (SPA), a technique based on EEIOA, is especially useful for measuring significant flows in this environmental-economic system. This paper constructs an imports-adjusted single-region input-output (SRIO) model considering only domestic final use elements, and it uses the SPA technique to highlight crucial routes along the production chain in both final use and sectoral perspectives. The results indicate that future mitigation policies on household consumption should change direct energy use structures in rural areas, cut unreasonable demand for power and chemical products, and focus on urban areas due to their consistently higher magnitudes than rural areas in the structural routes. Impacts originating from government spending should be tackled by managing onsite energy use in 3 major service sectors and promoting cleaner fuels and energy-saving techniques in the transport sector. Policies on investment should concentrate on sectoral interrelationships along the production chain by setting up standards to regulate upstream industries, especially for the services, construction and equipment manufacturing sectors, which have high demand pulling effects. Apart from the similar methods above, mitigating policies in exports should also consider improving embodied technology and quality in manufactured products to achieve sustainable development. Additionally, detailed sectoral results in the coal extraction industry highlight the onsite energy use management in large domestic companies, emphasize energy structure rearrangement, and indicate resources and energy safety issues. Conclusions based on the construction and public administration sectors reveal that future mitigation in secondary and tertiary industries should be combined with upstream emission intensive industries in a

  4. Partial replacement of fossil fuel in a cement plant: risk assessment for the population living in the neighborhood.

    Rovira, Joaquim; Mari, Montse; Nadal, Martí; Schuhmacher, Marta; Domingo, José L

    2010-10-15

    In cement plants, the substitution of traditional fossil fuels not only allows a reduction of CO(2), but it also means to check-out residual materials, such as sewage sludge or municipal solid wastes (MSW), which should otherwise be disposed somehow/somewhere. In recent months, a cement plant placed in Alcanar (Catalonia, Spain) has been conducting tests to replace fossil fuel by refuse-derived fuel (RDF) from MSW. In July 2009, an operational test was progressively initiated by reaching a maximum of partial substitution of 20% of the required energy. In order to study the influence of the new process, environmental monitoring surveys were performed before and after the RDF implementation. Metals and polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) were analyzed in soil, herbage, and air samples collected around the facility. In soils, significant decreases of PCDD/F levels, as well as in some metal concentrations were found, while no significant increases in the concentrations of these pollutants were observed. In turn, PM(10) levels remained constant, with a value of 16μgm(-3). In both surveys, the carcinogenic and non-carcinogenic risks derived from exposure to metals and PCDD/Fs for the population living in the vicinity of the facility were within the ranges considered as acceptable according to national and international standards. This means that RDF may be a successful choice in front of classical fossil fuels, being in accordance with the new EU environmental policies, which entail the reduction of CO(2) emissions and the energetic valorization of MSW. However, further long-term environmental studies are necessary to corroborate the harmlessness of RDF, in terms of human health risks.

  5. Substitutability of Electricity and Renewable Materials for Fossil Fuels in a Post-Carbon Economy

    Antonio García-Olivares

    2015-11-01

    Full Text Available A feasible way to avoid the risk of energy decline and combat climate change is to build a 100% renewable global energy mix. However, a globally electrified economy cannot grow much above 12 electric terawatts without putting pressure on the limits of finite mineral reserves. Here we analyze whether 12 TW of electricity and 1 TW of biomass (final power will be able to fuel a future post-carbon economy that can provide similar services to those of a contemporary economy. Contrarily to some pessimistic expectations, this analysis shows that the principle economic processes can be replaced with sustainable alternatives based on electricity, charcoal, biogas and hydrogen. Furthermore, those services that cannot be replaced are not as crucial so as to cause a return to a pre-industrial society. Even so, land transport and aviation are at the limit of what is sustainable, outdoor work should be reorganized, metal primary production should be based on hydrogen reduction when possible, mineral production should be increasingly based on recycling, the petrochemical industry should shrink to a size of 40%–43% of the 2012 petrochemical sector, i.e., a size similar to that the sector had in 1985–1986, and agriculture may require organic farming methods to be sustainable.

  6. Future directions of fuel efficiency in aviation industry

    Maria MRAZOVA

    2013-12-01

    Full Text Available A major goal for the aviation community is reducing fuel consumption. Nowadays we can see so much effort to design a modern aircrafts that offer weight and low fuel burn savings. This study could help to understand the long way during the production of the efficient engine such as PurePower and it shows us many advantages in fuel economy. In the second part of this study the author describes technological enhancements and inevitable measures for the improvement of fuel economy. Current fuel efficient engines and future innovations in aircraft designs are introduced in the third part of the thesis. It also shows a great vision in improving aircraft performance and reducing fuel consumption. Anyway, it is too early to say which of many researching ways will lead to viable solutions, but the air transport industry is committed to support advanced technological innovations. Also, technologies are constantly being deployed and researched by the aviation industry to continuously increase performance. But we cannot forget that our effort to achieve an increased efficiency in terms of fuel consumption is still pushing the industry further.

  7. The flexfuel tractor. Invesigations on the combustion behaviour of vegetable oil fuels and on the discernability of fossil and biogenic fuels; Der Flexfuel Traktor. Untersuchungen zum Verbrennungsverhalten von Pflanzenoelkraftstoffen und zur Unterscheidbarkeit fossiler und biogener Kraftstoffe

    Dieringer, Stefanie

    2012-07-01

    Increasing energy prices, especially for fossil fuels, as well as the necessity to reduce CO{sub 2} emissions are emphasizing the advantages of self-produced vegetable oil fuels in agriculture. Monetary advantages are depending on basic conditions like farm size or tax legislation, which can be changing locally as well as temporarily. Due to the differing properties of diesel and vegetable oil fuel, engines have to be adapted to each fuel to fulfil performance requirements as well as emission limits and reliability. Knowing that there are advantages of vegetable oil compared to diesel fuel, though not always and everywhere present, it becomes obvious that the well known flexible fuel concept of passenger cars should be adapted for diesel engines of agricultural machines. So called flexfuel engines imply the detection of the fuel type and an automated adjustment of the engine control parameters without any manual action of an operator. Therefore, the first step consists of the evaluation of the combustion properties of rapeseed, sunflower, jatropha and false flax oil compared to diesel fuel. The tested vegetable oils showed very similar behaviour in the tested common rail diesel engine. Especially the limited emissions were met with the same engine control software with all vegetable oils. In consequence it is possible to realize a flexfuel engine using the two engine control maps available at the moment, one for diesel and the other one for vegetable oil fuels. For further investigations one oil type, namely rapeseed oil was selected to test the combustion behaviour of fuel blends made of diesel and vegetable oil. The goal was to determine the blend ratio of vegetable oil and diesel fuel at which the engine control software has to be changed from the diesel to the vegetable oil map automatically. If the fuel consists of 40% or more vegetable oil, the vegetable oil engine control map has to be selected in order to fulfil legal emission limits. Finally the

  8. Non-deforestation fire vs. fossil fuel combustion: the source of CO2 emissions affects the global carbon cycle and climate responses

    Landry, Jean-Sébastien; Damon Matthews, H.

    2016-04-01

    Non-deforestation fire - i.e., fire that is typically followed by the recovery of natural vegetation - is arguably the most influential disturbance in terrestrial ecosystems, thereby playing a major role in carbon exchanges and affecting many climatic processes. The radiative effect from a given atmospheric CO2 perturbation is the same for fire and fossil fuel combustion. However, major differences exist per unit of CO2 emitted between the effects of non-deforestation fire vs. fossil fuel combustion on the global carbon cycle and climate, because (1) fossil fuel combustion implies a net transfer of carbon from geological reservoirs to the atmospheric, oceanic, and terrestrial pools, whereas fire occurring in terrestrial ecosystems does not; (2) the average lifetime of the atmospheric CO2 increase is longer when originating from fossil fuel combustion compared to fire, due to the strong vegetation regrowth following fire disturbances in terrestrial ecosystems; and (3) other impacts, for example on land surface albedo, also differ between fire and fossil fuel combustion. The main purpose of this study is to illustrate the consequences from these fundamental differences between fossil fuel combustion and non-deforestation fires using 1000-year simulations of a coupled climate-carbon model with interactive vegetation. We assessed emissions from both pulse and stable fire regime changes, considering both the gross (carbon released from combustion) and net (fire-caused change in land carbon, also accounting for vegetation decomposition and regrowth, as well as climate-carbon feedbacks) fire CO2 emissions. In all cases, we found substantial differences from equivalent amounts of emissions produced by fossil fuel combustion. These findings suggest that side-by-side comparisons of non-deforestation fire and fossil fuel CO2 emissions - implicitly implying that they have similar effects per unit of CO2 emitted - should therefore be avoided, particularly when these comparisons

  9. The influence of weather and environment on pulmonary embolism: pollutants and fossil fuels.

    Clauss, Ralf; Mayes, Julian; Hilton, Paul; Lawrenson, Ross

    2005-01-01

    Previous publications have highlighted seasonal variations in the incidence of thrombosis and pulmonary embolism, and that weather patterns can influence these. While medical risk factors for pulmonary thrombo-embolism such as age, obesity, hypercoagulable states, cancer, previous thrombo-embolism, immobility, limb paralysis, surgery, major illness, trauma, hypotension, tachypnoea and right ventricular hypokinesis are not directly implicated regarding environmental factors such as weather, they could be influenced indirectly by these. This would be especially relevant in polluted areas that are associated with a higher pulmonary embolism risk. Routine nuclear medicine lung ventilation/perfusion studies (V/Q scans) of 2071 adult patients referred to the nuclear medicine department of the Royal Surrey County Hospital in Guildford, UK, between January 1998 and October 2002 were reviewed and 316 of these patients were classified as positive for pulmonary embolism with high probability scan on PIOPED criteria. The occurrence of positive scans was compared to environmental factors such as temperature, humidity, vapour pressure, air pressure and rainfall. Multiple linear regression was used to establish the significance of these relations. The incidence of pulmonary embolism was positively related to vapour pressure and rainfall. The most significant relation was to vapour pressure (p=0.010) while rainfall was less significant (p=0.017). There was no significant relation between pulmonary embolism and air pressure, humidity or temperature. It is postulated that rainfall and water vapour may be contributary factors in thrombosis and pulmonary embolism by way of pollutants that are carried as condensation nuclei in micro-droplets of water. In particular, fossil fuel pollutants are implicated as these condensation nuclei. Pollutants may be inhaled by populations exposed to windborne vapour droplets in cities or airports. Polluted vapour droplets may be absorbed by the lung

  10. Summary of research on hydrogen production from fossil fuels conducted at NETL

    Shamsi, Abolghasem

    2008-03-30

    In this presentation we will summarize the work performed at NETL on the production of hydrogen via partial oxidation/dry reforming of methane and catalytic decomposition of hydrogen sulfide. We have determined that high pressure resulted in greater carbon formation on the reforming catalysts, lower methane and CO2 conversions, as well as a H2/CO ratio. The results also showed that Rh/alumina catalyst is the most resistant toward carbon deposition both at lower and at higher pressures. We studied the catalytic partial oxidation of methane over Ni-MgO solid solutions supported on metal foams and the results showed that the foam-supported catalysts reach near-equilibrium conversions of methane and H2/CO selectivities. The rates of carbon deposition differ greatly among the catalysts, varying from 0.24 mg C/g cat h for the dipped foams to 7.0 mg C/g cat h for the powder-coated foams, suggesting that the exposed Cr on all of the foam samples may interact with the Ni-MgO catalyst to kinetically limit carbon formation. Effects of sulfur poisoning on reforming catalysts were studies and pulse sulfidation of catalyst appeared to be reversible for some of the catalysts but not for all. Under pulse sulfidation conditions, the 0.5%Rh/alumina and NiMg2Ox-1100ºC (solid solution) catalysts were fully regenerated after reduction with hydrogen. Rh catalyst showed the best overall activity, less carbon deposition, both fresh and when it was exposed to pulses of H2S. Sulfidation under steady state conditions significantly reduced catalyst activity. Decomposition of hydrogen sulfide into hydrogen and sulfur was studied over several supported metal oxides and metal oxide catalysts at a temperature range of 650-850°C. H2S conversions and effective activation energies were estimated using Arrhenius plots. The results of these studies will further our understanding of catalytic reactions and may help in developing better and robust catalysts for the production of hydrogen from fossil

  11. Field Observations of Methane Emissions from Unconventional and Conventional Fossil Fuel Exploration

    Dubey, M.; Lindenmaier, R.; Arata, C.; Costigan, K. R.; Frankenberg, C.; Kort, E. A.; Rahn, T. A.; Henderson, B. G.; Love, S. P.; Aubrey, A. D.

    2013-12-01

    Energy from methane (CH4) has lower carbon dioxide and air pollutant emissions per unit energy produced than coal or oil making it a desirable fossil fuel. Hydraulic fracturing is allowing United States to harvest the nation's abundant domestic shale gas reservoirs to achieve energy independence. However, CH4 is a gas that is hard to contain during mining, processing, transport and end-use. Therefore fugitive CH4 leaks occur that are reported in bottom up inventories by the EPA. Recent targeted field observations at selected plays have provided top down CH4 leak estimates that are larger than the reported EPA inventories. Furthermore, no long-term regional baselines are available to delineate leaks from unconventional mining operations from historical conventional mining. We will report and compare observations of fugitive CH4 leaks from conventional and unconventional mining to understand changes from technology shifts. We will report in situ and regional column measurements of CH4, its isotopologue 13CH4 and ethane (C2H6) at our Four Corners site near Farmington, NM. The region has substantial coal bed methane, conventional oil and gas production, processing and distribution with minimal hydraulic fracturing activity. We observe large enhancements in in situ and regional column CH4 with distinct time dependence. Our in situ 13CH4 observations and remote C2H6/CH4 provide strong evidence of thermogenic sources. Comparisons of WRF-simulations with emissions inventory (Edgar) with our observations show that the fugitive CH4 leaks from conventional mining are 3 times greater than reported. We also compare in situ mobile surveys of fugitive CH4 and 13CH4 leak signals in basins with conventional (San Juan) mining and unconventional (Permian and Powder River) mining. A large number of active and closed wells were sampled in these regions. Furthermore, play scale surveys on public roads allowed us to gain a regional perspective. The composition of atmospheric 13CH4

  12. Overall intelligent hybrid control system for a fossil-fuel power unit

    Garduno-Ramirez, Raul

    2000-10-01

    In response to the multiple and tighter operation requirements already placed on power plants, and anticipating everyday variations on their quantity and relevance due to competition on deregulated energy markets, this dissertation contributes the Intelligent Coordinated Control System (ICCS) paradigm that establishes a reference framework for the design of overall control systems for fossil-fuel power units, and develops a minimum prototype (ICCS-MP) to show its feasibility. The ICCS consists of a multiagent system organization structured as an open set of functionally grouped agent clusters in a two-level hierarchy. The upper level performs the supervisory functions needed to produce self-governing system behavior, while the lower level performs the fast reactive functions necessary for real-time control and protection. The ICCS-MP greatly extends the concept of current coordinated control schemes and embraces a minimum set of ICCS functions for the power unit to participate in load-frequency control in deregulated power systems; provides the means to achieve optimal wide-range load-tracking in multiobjective operating scenarios. The ICCS-MP preserves the ICCS structure. Supervisory functions include optimization and command generation, learning and control tuning, and performance and state monitoring. Direct level control functions realize a nonlinear multivariable feedforward-feedback scheme. These functions are implemented in three modules: reference governor, feedforward control processor (FFCP), and feedback control processor (FBCP). The reference governor provides set-point trajectories for the control loops by solving a multiobjective optimization problem that accommodates the operating scenario at hand. The FFCP facilitates achievement of wide-range operation; it is implemented as a fuzzy system that emulates the inverse static behavior of the power unit, and it is designed using neural networks. The FBCP provides disturbance and uncertainty compensation

  13. The first 1-year-long estimate of the Paris region fossil fuel CO2 emissions based on atmospheric inversion

    Staufer, Johannes; Broquet, Grégoire; Bréon, François-Marie; Puygrenier, Vincent; Chevallier, Frédéric; Xueref-Rémy, Irène; Dieudonné, Elsa; Lopez, Morgan; Schmidt, Martina; Ramonet, Michel; Perrussel, Olivier; Lac, Christine; Wu, Lin; Ciais, Philippe

    2016-11-01

    The ability of a Bayesian atmospheric inversion to quantify the Paris region's fossil fuel CO2 emissions on a monthly basis, based on a network of three surface stations operated for 1 year as part of the CO2-MEGAPARIS experiment (August 2010-July 2011), is analysed. Differences in hourly CO2 atmospheric mole fractions between the near-ground monitoring sites (CO2 gradients), located at the north-eastern and south-western edges of the urban area, are used to estimate the 6 h mean fossil fuel CO2 emission. The inversion relies on the CHIMERE transport model run at 2 km × 2 km horizontal resolution, on the spatial distribution of fossil fuel CO2 emissions in 2008 from a local inventory established at 1 km × 1 km horizontal resolution by the AIRPARIF air quality agency, and on the spatial distribution of the biogenic CO2 fluxes from the C-TESSEL land surface model. It corrects a prior estimate of the 6 h mean budgets of the fossil fuel CO2 emissions given by the AIRPARIF 2008 inventory. We found that a stringent selection of CO2 gradients is necessary for reliable inversion results, due to large modelling uncertainties. In particular, the most robust data selection analysed in this study uses only mid-afternoon gradients if wind speeds are larger than 3 m s-1 and if the modelled wind at the upwind site is within ±15° of the transect between downwind and upwind sites. This stringent data selection removes 92 % of the hourly observations. Even though this leaves few remaining data to constrain the emissions, the inversion system diagnoses that their assimilation significantly reduces the uncertainty in monthly emissions: by 9 % in November 2010 to 50 % in October 2010. The inverted monthly mean emissions correlate well with independent monthly mean air temperature. Furthermore, the inverted annual mean emission is consistent with the independent revision of the AIRPARIF inventory for the year 2010, which better corresponds to the measurement period than the 2008

  14. Biomass fuel based on wastes from the paper industry

    Budzyń Stanisław; Tora Barbara

    2016-01-01

    Wastes from paper industry are mostly combustible. It is possible to recycle them with energy recovery. These wastes have a high moisture content (up to 60%) and thus a small calorific value. An alternative to waste incineration is the production of solid recovered fuel. The benefits are: easy adjustment of the physical and chemical properties of the fuel (via the change of proportions of ingredients), low moisture and high calorific value. The study involved the following types of cellulose ...

  15. Evaluation of long range transport of fossil fuel originated organic aerosol at a background site in Northeast Asia

    Hwang, Eun Jin; Lee, Ji Yi; Park, Jin Soo; Lee, Seok Jo; Kim, Hyun Jae; Jeon, Ha Eun; Sung, Min Young

    2013-04-01

    Northeast Asia is heavy air pollution region due to usage of large amounts of fossil fuel. In addition, meteorological conditions represented as prevailing westerlies in Northeast Asia region causes long range transport of anthropogenic pollutants emitted from China to Korea and Japan and even the United States across the Pacific Ocean (Bey et al., 2001). The Baengnyeong Island of Korea is located at the northwestern part of the Korean peninsula and close by North Korea and China, thus this site is regarded as an ideal place for background air measurements in Northeast Asia. Also, it has low local anthropogenic emissions and is frequently influenced by various air masses from China and North Korea in the Island. In this study, we performed intensive sampling during summer and winter in the Baengnyeong Island and analyzed various organic compounds including fossil fuel originated organic markers such as hopanes and PAHs using thermal desorption two dimensional gas chromatography with time of flight mass spectrometry (TD-GC×GC-TOFMS). We also analyzed ~20 urban aerosol samples collected at Seoul, a representative urban site in Northeast Asia region to compare organic compounds distributions of aerosol samples at the Baengnyeong Island. By applying air mass back trajectory analysis and comparing organic compounds distributions in aerosol samples of the Baengnyeong Island and Seoul, the impact of long-range transport of fossil fuel originated organic pollutants at a background site in Northeast Asia were evaluated. (References) Bey, I., Jacob, D.J., Logan, J.A., Yantosca, R.M., 2001. Asian chemical outflow to the Pacific in spring: origins, pathways, and budgets. Journal of Geophysical Research-Atmosphere 106, 23097-23113.

  16. A multiresolution spatial parameterization for the estimation of fossil-fuel carbon dioxide emissions via atmospheric inversions

    J. Ray

    2014-02-01

    Full Text Available The characterization of fossil-fuel CO2 (ffCO2 emissions is paramount to carbon cycle studies, but the use of atmospheric inverse modeling approaches for this purpose has been limited by the highly heterogeneous and non-Gaussian spatiotemporal variability of emissions. Here we explore the feasibility of capturing this variability using a low-dimensional parameterization that can be implemented within the context of atmospheric CO2 inverse problems aimed at constraining regional-scale emissions. We construct a multiresolution (i.e., wavelet-based spatial parameterization for ffCO2 emissions using the Vulcan inventory, and examine whether such a parameterization can capture a realistic representation of the expected spatial variability of actual emissions. We then explore whether sub-selecting wavelets using two easily available proxies of human activity (images of lights at night and maps of built-up areas yields a low-dimensional alternative. We finally implement this low-dimensional parameterization within an inversion, where a sparse reconstruction algorithm, an extension of Stagewise Orthogonal Matching Pursuit (StOMP, is used to identify the wavelet coefficients. We find that (i the spatial variability of fossil fuel emission can indeed be represented using a low-dimensional wavelet-based parameterization, (ii that images of lights at night can be used as a proxy for sub-selecting wavelets for such analysis, and (iii that implementing this parameterization within the described inversion framework makes it possible to quantify fossil fuel emissions at regional scales under some simplifying conditions.

  17. Proceedings of the US Department of Energy environmental control symposium. Volume 1. Plenary session and fossil fuels

    None

    1979-09-01

    Volume one of the proceedings (Plenary Session and Fossil Fuels) contains papers on environmental pollution control which resulted mainly from US DOE's research programs in coal (preparation, desulfurization, gasification, liquefaction, combustion, fluidized-bed combustion, and pollution control methods with respect to SO/sub 2/, NO/sub x/, and CO/sub 2/ (global effects and feasibility studies); a few papers deal with oil shale operations and the enhanced recovery of petroleum. Papers have been entered individually into EDB and ERA, with 3 also into EAPA; six papers had been entered previously from other sources. (LTN)

  18. Use of Chia Plant to Monitor Urban Fossil Fuel CO2 Emission: An Example From Irvine, CA in 2010

    Xu, X.; Stills, A.; Trumbore, S.; Randerson, J. T.; Yi, J.

    2011-12-01

    Δ14CO2 is a unique tracer for quantifying anthropogenic CO2 emissions. However, monitoring 14CO2 change and distribution in an urban environment is challenging because of its large spatial and temporal variations. We have tested the potential use of a chia plant (Salvia hispanica) as an alternative way to collect a time-integrated CO2 sample for radiocarbon analysis. The results show that Δ14C of the new growth of chia sprouts and chia leaves are consistent with the Δ14C of air samples collected during the growing period, indicating the new growth has no inherited C from seeds and thus records atmospheric 14CO2. Time-integrated air samples and chia leaf samples significantly reduced the noises of Δ14CO2 in an urban environment. We report here an example of monitoring 14CO2 change in Irvine, CA from Mar 2010 to Mar 2011 utilizing such a method. The results showed a clear seasonal cycle with high (close to remote air background level) Δ14C in summer and low Δ14C in winter months in this urban area. Excess (above remote air background) fossil fuel CO2 was calculated to be closed to 0 ppm in June to about 16 ppm from November 2010 to February 2011. Monthly mean Δ14CO2 was anti-correlated with monthly mean CO mixing ratio, indicating Δ14CO2 is mainly controlled by fossil fuel CO2 mixing with clean on-shore marine air. In summary, this study has shown encouraging result that chia plant can be potentially used as a convenient and inexpensive sampling method for time-integrated atmospheric 14CO2. Combined with other annual plants this provides the opportunity to map out time-integrated fossil fuel-derived CO2 in major cities at low cost. This in turn can be used to: 1) establish a baseline for fossil fuel emissions reductions in cities in the future; 2) provide invaluable information for validating emission models.

  19. Boiler and steam generator corrosion: Fossil fuel power plants. (Latest citations from the NTIS bibliographic database). Published Search

    NONE

    1996-11-01

    The bibliography contains citations concerning corrosion effects, mechanisms, detection, and inhibition in fossil fuel fired boilers. Fluidized bed combustors and coal gasification are included in the applications. The citations examine hot corrosion, thermal mechanical degradation, and intergranular oxidation corrosion studies performed on the water side and hot gas side of heat exchanger tubes and support structures. Coatings and treatment of material to inhibit corrosion are discussed. Corrosion affecting nuclear powered steam generators is examined in a separate bibliography. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  20. Resource Usage Strategies and Trade-Offs between Cropland Demand, Fossil Fuel Consumption, and Greenhouse Gas Emissions—Building Insulation as an Example

    Anja Hansen

    2016-06-01

    Full Text Available Bioresources are used in different production systems as materials as well as energy carriers. The same is true for fossil fuel resources. This study explored whether preferential resource usages exist, using a building insulation system as an example, with regard to the following sustainability criteria: climate impact, land, and fossil fuel demand. We considered the complete life cycle in a life cycle assessment-based approach. The criteria were compared for two strategies: one used natural fibers as material and generated production energies from fossil fuels; the other generated production energies from bioenergy carriers and transformed fossil resources into the insulation material. Both strategies finally yielded the same insulation effect. Hence, the energy demand for heating the building was ignored. None of the strategies operated best in all three criteria: While cropland demand was lower in the bioenergy than in the biomaterial system, its fossil fuel demand was higher. Net contribution to climate change was in the same range for both strategies if we considered no indirect changes in land use. Provided that effective recycling concepts for fossil-derived insulations are in place, using bioresources for energy generation was identified as a promising way to mitigate climate change along with efficient resource use.

  1. The substitutive effect of biofuels on fossil fuels in the lower and higher crude oil price periods

    Chang, Ting-Huan [Energy and Environment Research Laboratories, Industrial Technology Research Institute, Hsinchu County 310 (China); Department of Banking and Finance, Tamkang University, No.151, Ying-Chuan Road, Taipei County 251 (China); Su, Hsin-Mei [Department of Banking and Finance, Tamkang University, No.151, Ying-Chuan Road, Taipei County 251 (China)

    2010-07-15

    Various biofuels, including bioethanol and biodiesel are technologically being considered replacements for fossil fuels, such as the conventional gasoline and diesel. This paper aims to measure whether economic substitutability can be generated during periods of higher and/or lower prices of crude oil. The empirical results of the bivariate EGARCH model prove that this substitutive effect was occurred during the higher crude oil price period due to the significant price spillover effects from crude oil futures to corn and soybean futures, indicating that the increase in food prices can be attributed to more consumption of biofuels. We suggest more extensive research in the search for fuel alternatives from inedible feedstock such as pongamia, jojoba, jatropha, especially the 2nd generation biofuel technologies such as algae-based biofuels. (author)

  2. Advanced fuel developments for an industrial accelerator driven system prototype

    Delage, Fabienne; Ottaviani, Jean Pierre [Commissariat a l' Energie Atomique CEA (France); Fernandez-Carretero, Asuncion; Staicu, Dragos [JRC-ITU (Germany); Boccaccini, Claudia-Matzerath; Chen, Xue-Nong; Mascheck, Werner; Rineiski, Andrei [Forschungszentrum Karlsruhe - FZK (Germany); D' Agata, Elio [JRC-IE (Netherlands); Klaassen, Frodo [NRG, PO Box 25, NL-1755 ZG Petten (Netherlands); Sobolev, Vitaly [SCK-CEN (Belgium); Wallenius, Janne [KTH Royal Institute of Technology (Sweden); Abram, T. [National Nuclear Laboratory - NNL (United Kingdom)

    2009-06-15

    Fuel to be used in an Accelerator Driven System (ADS) for transmutation in a fast spectrum, can be described as a highly innovative concept in comparison with fuels used in critical cores. ADS fuel is not fertile, so as to improve the transmutation performance. It necessarily contains a high concentration ({approx}50%) of minor actinides and plutonium. This unusual fuel composition results in high gamma and neutron emissions during its fabrication, as well as degraded core performance. So, an optimal ADS fuel is based on finding the best compromise between thermal, mechanical, chemical, neutronic and technological constraints. CERCER and CERMET composite fuels consisting of particles of (Pu,MA)O{sub 2} phases dispersed in a magnesia or molybdenum matrix are under investigation within the frame of the ongoing European Integrated Project EUROTRANS (European Research programme for Transmutation) which aims at performing a conceptual design of a 400 MWth transmuter: the European Facility for Industrial Transmutation (EFIT). Performances and safety of EFIT cores loaded with CERCER and CERMET fuels have been evaluated. Out-of-pile and in-pile experiments are carried out to gain knowledge on the properties and the behaviour of these fuels. The current paper gives an overview of the work progress. (authors)

  3. Biomass fuel based on wastes from the paper industry

    Budzyń Stanisław

    2016-01-01

    Full Text Available Wastes from paper industry are mostly combustible. It is possible to recycle them with energy recovery. These wastes have a high moisture content (up to 60% and thus a small calorific value. An alternative to waste incineration is the production of solid recovered fuel. The benefits are: easy adjustment of the physical and chemical properties of the fuel (via the change of proportions of ingredients, low moisture and high calorific value. The study involved the following types of cellulose wastes: - Belmer - the rejects from recovered paper, Krofta - deinking sludge, sludge - wastewater treatment sludge, bark - the rejects from virgin pulps. The results of investigations of waste produced in one of the biggest Polish paper mill - are shown. Following aspects were investigated: energy properties, content of carbon, hydrogen, sulfur, chlorine and nitrogen, chemical composition of ash. Authors proposed two formulas of the biomass fuel. The properties of the fuel such as the content of carbon, hydrogen, sulfur, chlorine or nitrogen, the chemical composition of the ash were investigated. Due to the fact that the combustion of the biomass fuel is preferred in view of law regulations (zero CO2 emission, green certificates the content of biodegradable fraction was examined. It has been shown that the fuel is a biomass one. Fuel from waste can be a substitute for approx. 25% of primary fuel (coal used by the paper mill.

  4. Microscale In Vitro Assays for the Investigation of Neutral Red Retention and Ethoxyresorufin-O-Deethylase of Biofuels and Fossil Fuels

    2016-01-01

    Only few information on the potential toxic effectiveness of biofuels are available. Due to increasing worldwide demand for energy and fuels during the past decades, biofuels are considered as a promising alternative for fossil fuels in the transport sector. Hence, more information on their hazard potentials are required to understand the toxicological impact of biofuels on the environment. In the German Cluster of Excellence “Tailor-made Fuels from Biomass” design processes for economical, s...

  5. Carbon Capture and Water Emissions Treatment System (CCWESTRS) at Fossil-Fueled Electric Generating Plants

    P. Alan Mays; Bert R. Bock; Gregory A. Brodie; L. Suzanne Fisher; J. Devereux Joslin; Donald L. Kachelman; Jimmy J. Maddox; N. S. Nicholas; Larry E. Shelton; Nick Taylor; Mark H. Wolfe; Dennis H. Yankee; John Goodrich-Mahoney

    2005-08-30

    The Tennessee Valley Authority (TVA), the Electric Power Research Institute (EPRI), and the Department of Energy-National Energy Technologies Laboratory (DOE-NETL) are evaluating and demonstrating integration of terrestrial carbon sequestration techniques at a coal-fired electric power plant through the use of Flue Gas Desulfurization (FGD) system gypsum as a soil amendment and mulch, and coal fly ash pond process water for periodic irrigation. From January to March 2002, the Project Team initiated the construction of a 40 ha Carbon Capture and Water Emissions Treatment System (CCWESTRS) near TVA's Paradise Fossil Plant on marginally reclaimed surface coal mine lands in Kentucky. The CCWESTRS is growing commercial grade trees and cover crops and is expected to sequester 1.5-2.0 MT/ha carbon per year over a 20-year period. The concept could be used to meet a portion of the timber industry's needs while simultaneously sequestering carbon in lands which would otherwise remain non-productive. The CCWESTRS includes a constructed wetland to enhance the ability to sequester carbon and to remove any nutrients and metals present in the coal fly ash process water runoff. The CCWESTRS project is a cooperative effort between TVA, EPRI, and DOE-NETL, with a total budget of $1,574,000. The proposed demonstration project began in October 2000 and has continued through December 2005. Additional funding is being sought in order to extend the project. The primary goal of the project is to determine if integrating power plant processes with carbon sequestration techniques will enhance carbon sequestration cost-effectively. This goal is consistent with DOE objectives to provide economically competitive and environmentally safe options to offset projected growth in U.S. baseline emissions of greenhouse gases after 2010, achieve the long-term goal of $10/ton of avoided net costs for carbon sequestration, and provide half of the required reductions in global greenhouse gases by

  6. Industry

    Bernstein, Lenny; Roy, Joyashree; Delhotal, K. Casey; Harnisch, Jochen; Matsuhashi, Ryuji; Price, Lynn; Tanaka, Kanako; Worrell, Ernst; Yamba, Francis; Fengqi, Zhou; de la Rue du Can, Stephane; Gielen, Dolf; Joosen, Suzanne; Konar, Manaswita; Matysek, Anna; Miner, Reid; Okazaki, Teruo; Sanders, Johan; Sheinbaum Parado, Claudia

    2007-12-01

    This chapter addresses past, ongoing, and short (to 2010) and medium-term (to 2030) future actions that can be taken to mitigate GHG emissions from the manufacturing and process industries. Globally, and in most countries, CO{sub 2} accounts for more than 90% of CO{sub 2}-eq GHG emissions from the industrial sector (Price et al., 2006; US EPA, 2006b). These CO{sub 2} emissions arise from three sources: (1) the use of fossil fuels for energy, either directly by industry for heat and power generation or indirectly in the generation of purchased electricity and steam; (2) non-energy uses of fossil fuels in chemical processing and metal smelting; and (3) non-fossil fuel sources, for example cement and lime manufacture. Industrial processes also emit other GHGs, e.g.: (1) Nitrous oxide (N{sub 2}O) is emitted as a byproduct of adipic acid, nitric acid and caprolactam production; (2) HFC-23 is emitted as a byproduct of HCFC-22 production, a refrigerant, and also used in fluoroplastics manufacture; (3) Perfluorocarbons (PFCs) are emitted as byproducts of aluminium smelting and in semiconductor manufacture; (4) Sulphur hexafluoride (SF{sub 6}) is emitted in the manufacture, use and, decommissioning of gas insulated electrical switchgear, during the production of flat screen panels and semiconductors, from magnesium die casting and other industrial applications; (5) Methane (CH{sub 4}) is emitted as a byproduct of some chemical processes; and (6) CH{sub 4} and N{sub 2}O can be emitted by food industry waste streams. Many GHG emission mitigation options have been developed for the industrial sector. They fall into three categories: operating procedures, sector-wide technologies and process-specific technologies. A sampling of these options is discussed in Sections 7.2-7.4. The short- and medium-term potential for and cost of all classes of options are discussed in Section 7.5, barriers to the application of these options are addressed in Section 7.6 and the implication of

  7. Future climate trends from a first-difference atmospheric carbon dioxide regression model involving emissions scenarios for business as usual and for peak fossil fuel

    Leggett, L M W

    2014-01-01

    This paper investigates the implications of the future continuation of the demonstrated past (1960-2012) strong correlation between first-difference atmospheric CO2 and global surface temperature. It does this, for the period from the present to 2050, for a comprehensive range of future global fossil fuel energy use scenarios. The results show that even for a business-as-usual (the mid-level IPCC) fossil fuel use estimate, global surface temperature will rise at a slower rate than for the recent period 1960-2000. Concerning peak fossil fuel, for the most common scenario the currently observed (1998-2013)temperature plateau will turn into a decrease. The observed trend to date for temperature is compared with that for global climate disasters: these peaked in 2005 and are notably decreasing. The temperature and disaster results taken together are consistent with either a reduced business-as-usual fossil fuel use scenario into the future, or a peak fossil fuel scenario, but not with the standard business-as-usu...

  8. Coal-Based Oxy-Fuel System Evaluation and Combustor Development; Oxy-Fuel Turbomachinery Development for Energy Intensive Industrial Applications

    Hollis, Rebecca

    2013-03-31

    Clean Energy Systems, Inc. (CES) partnered with the U.S. Department of Energy’s National Energy Technology Laboratory in 2005 to study and develop a competing technology for use in future fossil-fueled power generation facilities that could operate with near zero emissions. CES’s background in oxy-fuel (O-F) rocket technology lead to the award of Cooperative Agreement DE-FC26-05NT42645, “Coal-Based Oxy-Fuel System Evaluation and Combustor Development,” where CES was to first evaluate the potential of these O-F power cycles, then develop the detailed design of a commercial-scale O-F combustor for use in these clean burning fossil-fueled plants. Throughout the studies, CES found that in order to operate at competitive cycle efficiencies a high-temperature intermediate pressure turbine was required. This led to an extension of the Agreement for, “Oxy-Fuel Turbomachinery Development for Energy Intensive Industrial Applications” where CES was to also develop an intermediate-pressure O-F turbine (OFT) that could be deployed in O-F industrial plants that capture and sequester >99% of produced CO2, at competitive cycle efficiencies using diverse fuels. The following report details CES’ activities from October 2005 through March 2013, to evaluate O-F power cycles, develop and validate detailed designs of O-F combustors (main and reheat), and to design, manufacture, and test a commercial-scale OFT, under the three-phase Cooperative Agreement.

  9. Direct Experiments on the Ocean Disposal of Fossil Fuel CO2

    Barry, James, P.

    2010-05-26

    Funding from DoE grant # FG0204-ER63721, Direct Experiments on the Ocean Disposal of Fossil Fuel CO2, supposed several postdoctoral fellows and research activities at MBARI related to ocean CO2 disposal and the biological consequences of high ocean CO2 levels on marine organisms. Postdocs supported on the project included Brad Seibel, now an associate professor at the University of Rhode Island, Jeff Drazen, now an associate professor at the University of Hawaii, and Eric Pane, who continues as a research associate at MBARI. Thus, the project contributed significantly to the professional development of young scientists. In addition, we made significant progress in several research areas. We continued several deep-sea CO2 release experiments using support from DoE and MBARI, along with several collaborators. These CO2 release studies had the goal of broadening our understanding of the effects of high ocean CO2 levels on deep sea animals in the vicinity of potential release sites for direct deep-ocean carbon dioxide sequestration. Using MBARI ships and ROVs, we performed these experiments at depths of 3000 to 3600 m, where liquid CO2 is heavier than seawater. CO2 was released into small pools (sections of PVC pipe) on the seabed, where it dissolved and drifted downstream, bathing any caged animals and sediments in a CO2-rich, low-pH plume. We assessed the survival of organisms nearby. Several publications arose from these studies (Barry et al. 2004, 2005; Carman et al. 2004; Thistle et al. 2005, 2006, 2007; Fleeger et al. 2006, 2010; Barry and Drazen 2007; Bernhard et al. 2009; Sedlacek et al. 2009; Ricketts et al. in press; Barry et al, in revision) concerning the sensitivity of animals to low pH waters. Using funds from DoE and MBARI, we designed and fabricated a hyperbaric trap-respirometer to study metabolic rates of deep-sea fishes under high CO2 conditions (Drazen et al, 2005), as well as a gas-control aquarium system to support laboratory studies of the

  10. Inhibition of progesterone receptor activity in recombinant yeast by soot from fossil fuel combustion emissions and air particulate materials.

    Wang, Jingxian; Xie, Ping; Kettrup, Antonius; Schramm, Karl-Werner

    2005-10-15

    Numerous environmental pollutants have been detected for estrogenic activity by interacting with the estrogen receptor, but little information is available about their interactions with the progesterone receptor. In this study, emission samples generated by fossil fuel combustion (FFC) and air particulate material (APM) collected from an urban location near a traffic line in a big city of China were evaluated to interact with the human progesterone receptor (hPR) signaling pathway by examining their ability to interact with the activity of hPR expressed in yeast. The results showed that the soot of a petroleum-fired vehicle possessed the most potent anti-progesteronic activity, that of coal-fired stove and diesel fired agrimotor emissions took the second place, and soot samples of coal-fired heating work and electric power station had lesser progesterone inhibition activity. The anti-progesteronic activity of APM was between that of soot from petroleum-fired vehicle and soot from coal-fired establishments and diesel fired agrimotor. Since there was no other large pollution source near the APM sampling sites, the endocrine disrupters were most likely from vehicle emissions, tire attrition and house heating sources. The correlation analysis showed that a strong relationship existed between estrogenic activity and anti-progesteronic activity in emissions of fossil fuel combustion. The discoveries that some environmental pollutants with estrogenic activity can also inhibit hPR activity indicate that further studies are required to investigate potential mechanisms for the reported estrogenic activities of these pollutants.

  11. Impacts of a 32-billion-gallon bioenergy landscape on land and fossil fuel use in the US

    Hudiburg, Tara W.; Wang, Weiwei; Khanna, Madhu; Long, Stephen P.; Dwivedi, Puneet; Parton, William J.; Hartman, Melannie; Delucia, Evan H.

    2016-01-01

    Sustainable transportation biofuels may require considerable changes in land use to meet mandated targets. Understanding the possible impact of different policies on land use and greenhouse gas emissions has typically proceeded by exploring either ecosystem or economic modelling. Here we integrate such models to assess the potential for the US Renewable Fuel Standard to reduce greenhouse gas emissions from the transportation sector through the use of cellulosic biofuels. We find that 2022 US emissions are decreased by 7.0 ± 2.5% largely through gasoline displacement and soil carbon storage by perennial grasses. If the Renewable Fuel Standard is accompanied by a cellulosic biofuel tax credit, these emissions could be reduced by 12.3 ± 3.4%. Our integrated approach indicates that transitioning to cellulosic biofuels can meet a 32-billion-gallon Renewable Fuel Standard target with negligible effects on food crop production, while reducing fossil fuel use and greenhouse gas emissions. However, emissions savings are lower than previous estimates that did not account for economic constraints.

  12. On the road : non-fossil fuel deployment for the public bus fleet of Sweden

    Xylia, Maria; Silveira, Semida

    2015-01-01

    The public transport sector in Sweden has set a target to run 90% of its total vehicle-kilometers on renewable fuels by 2020, and double its market share in the long term. The focus of this paper is the adoption of renewable fuels in public bus fleets. Data for all 21 Swedish counties were gathered and analyzed, mapping the bus fleets’ condition in relation to renewable fuel deployment, CO2 emissions and energy efficiency. The main factors affecting fuel choices in the bus fleets were investi...

  13. Carbon as Investment Risk—The Influence of Fossil Fuel Divestment on Decision Making at Germany’s Main Power Providers

    Dagmar Kiyar

    2015-09-01

    Full Text Available German electricity giants have recently taken high-level decisions to remove selected fossil fuel operations from their company portfolio. This new corporate strategy could be seen as a direct response to the growing global influence of the fossil fuel divestment campaign. In this paper we ask whether the divestment movement currently exerts significant influence on decision-making at the top four German energy giants—E.On, RWE, Vattenfall and EnBW. We find that this is not yet the case. After describing the trajectory of the global fossil fuel divestment campaign, we outline four alternative influences on corporate strategy that, currently, are having a greater impact than the divestment movement on Germany’s power sector. In time, however, clear political decisions and strong civil support may increase the significance of climate change concerns in the strategic management of the German electricity giants.

  14. Development of Nano-crystalline Doped-Ceramic Enabled Fiber Sensors for High Temperature In-Situ Monitoring of Fossil Fuel Gases

    Xiao, Hai [Missouri Univ. of Science and Technology, Rolla, MO (United States); Dong, Junhang [Univ. of Cincinnati, OH (United States); Lin, Jerry [Arizona State Univ., Tempe, AZ (United States); Romero, Van [New Mexico Institute of Mining and Technology, Socorro, NM (United States)

    2012-03-01

    This is a final technical report for the first project year from July 1, 2005 to Jan 31, 2012 for DoE/NETL funded project DE-FC26-05NT42439: Development of Nanocrystalline Doped-Ceramic Enabled Fiber Sensors for High Temperature In-Situ Monitoring of Fossil Fuel Gases. This report summarizes the technical progresses and achievements towards the development of novel nanocrystalline doped ceramic material-enabled optical fiber sensors for in situ and real time monitoring the gas composition of flue or hot gas streams involved in fossil-fuel based power generation and hydrogen production.

  15. Low Emissions Burner Technology for Metal Processing Industry using Byproducts and Biomass Derived Liquid Fuels

    Agrawal, Ajay; Taylor, Robert

    2013-09-30

    path forward to utilize both fossil and alternative liquid fuels in the same combustion system. In particular, experiments show that straight VO can be cleanly combusted without the need for chemical processing or preheating steps, which can result in significant economic and environmental benefits. Next, low-emission combustion of glycerol/methane was achieved by utilizing FB injector to yield fine droplets of highly viscous glycerol. Heat released from methane combustion further improves glycerol pre-vaporization and thus its clean combustion. Methane addition results in an intensified reaction zone with locally high temperatures near the injector exit. Reduction in methane flow rate elongates the reaction zone, which leads to higher CO emissions and lower NOx emissions. Similarly, higher air to liquid (ALR) mass ratio improves atomization and fuel pre-vaporization and shifts the flame closer to the injector exit. In spite of these internal variations, all fuel mixes of glycerol with methane produced similar CO and NOx emissions at the combustor exit. Results show that FB concept provides low emissions with the flexibility to utilize gaseous and highly viscous liquid fuels, straight VO and glycerol, without preheating or preprocessing the fuels. Following these initial experiments in quartz combustor, we demonstrated that glycerol combustion can be stably sustained in a metal combustor. Phase Doppler Particle Analyzer (PDPA) measurements in glycerol/methane flames resulted in flow-weighted Sauter Mean Diameter (SMD) of 35 to 40 μm, depending upon the methane percentage. This study verified that lab-scale dual-fuel burner using FB injector can successfully atomize and combust glycerol and presumably other highly viscous liquid fuels at relatively low HRR (<10 kW). For industrial applications, a scaled-up glycerol burner design thus seemed feasible.

  16. Tactical techno-economic analysis of electricity generation from forest, fossil, and wood waste fuels in a heating plant

    Palander Teijo

    2012-01-01

    Full Text Available The Finnish energy industry is subject to policy decisions regarding renewable energy production and energy efficiency regulation. Conventional electricity generation has environmental side-effects that may cause global warming. Renewable fuels are superior because they offer near-zero net emissions. In this study, we investigated a heating mill's ability to generate electricity from forest fuels in southern Finland on a 1-year strategic decision-making horizon. The electricity-generation, -purchase, and -sales decisions are made using three different energy efficiency and forest technology rates. Then the decision environment was complicated by the sequence-dependent procurement chains for forest fuels (below-ground on a tactical decision-making horizon. With this aim, fuel data of three forest fuel procurement teams were collected for 3 months. The strategic fuel procurement decisions were adjusted to the changed decision environment based on a tactical techno-economic analysis using forest technology rates. The optimal energy product and fuel mixtures were solved by minimizing procurement costs, maximizing production revenues, and minimizing energy losses.

  17. Carbon Capture and Water Emissions Treatment System (CCWESTRS) at Fossil-Fueled Electric Generating Plants

    P. Alan Mays; Bert R. Bock; Gregory A. Brodie; L. Suzanne Fisher; J. Devereux Joslin; Donald L. Kachelman; Jimmy J. Maddox; N. S. Nicholas; Larry E. Shelton; Nick Taylor; Mark H. Wolfe; Dennis H. Yankee; John Goodrich-Mahoney

    2005-08-30

    The Tennessee Valley Authority (TVA), the Electric Power Research Institute (EPRI), and the Department of Energy-National Energy Technologies Laboratory (DOE-NETL) are evaluating and demonstrating integration of terrestrial carbon sequestration techniques at a coal-fired electric power plant through the use of Flue Gas Desulfurization (FGD) system gypsum as a soil amendment and mulch, and coal fly ash pond process water for periodic irrigation. From January to March 2002, the Project Team initiated the construction of a 40 ha Carbon Capture and Water Emissions Treatment System (CCWESTRS) near TVA's Paradise Fossil Plant on marginally reclaimed surface coal mine lands in Kentucky. The CCWESTRS is growing commercial grade trees and cover crops and is expected to sequester 1.5-2.0 MT/ha carbon per year over a 20-year period. The concept could be used to meet a portion of the timber industry's needs while simultaneously sequestering carbon in lands which would otherwise remain non-productive. The CCWESTRS includes a constructed wetland to enhance the ability to sequester carbon and to remove any nutrients and metals present in the coal fly ash process water runoff. The CCWESTRS project is a cooperative effort between TVA, EPRI, and DOE-NETL, with a total budget of $1,574,000. The proposed demonstration project began in October 2000 and has continued through December 2005. Additional funding is being sought in order to extend the project. The primary goal of the project is to determine if integrating power plant processes with carbon sequestration techniques will enhance carbon sequestration cost-effectively. This goal is consistent with DOE objectives to provide economically competitive and environmentally safe options to offset projected growth in U.S. baseline emissions of greenhouse gases after 2010, achieve the long-term goal of $10/ton of avoided net costs for carbon sequestration, and provide half of the required reductions in global greenhouse gases by

  18. Health and safety impacts of nuclear, geothermal, and fossil-fuel electric generation in California. Volume 9. Methodologies for review of the health and safety aspects of proposed nuclear, geothermal, and fossil-fuel sites and facilities

    Nero, A.V.; Quinby-Hunt, M.S.

    1977-01-01

    This report sets forth methodologies for review of the health and safety aspects of proposed nuclear, geothermal, and fossil-fuel sites and facilities for electric power generation. The review is divided into a Notice of Intention process and an Application for Certification process, in accordance with the structure to be used by the California Energy Resources Conservation and Development Commission, the first emphasizing site-specific considerations, the second examining the detailed facility design as well. The Notice of Intention review is divided into three possible stages: an examination of emissions and site characteristics, a basic impact analysis, and an assessment of public impacts. The Application for Certification review is divided into five possible stages: a review of the Notice of Intention treatment, review of the emission control equipment, review of the safety design, review of the general facility design, and an overall assessment of site and facility acceptability.

  19. Suitability of thin-layer chromatography-flame ionization detection with regard to quantitative characterization of different fossil fuel products. 1. FID performances and response of pure compounds related to fossil fuel products

    Cebolla, V.L.; Vela, J.; Membrado, L.; Ferrando, A.C. [CSIC, Zaragoza (Spain). Inst. de Carboquimica, Dept. de Procesos Quimicos

    1998-10-01

    The performance of a modern TLC-FID system (which includes the newest detector configuration) was tested on polycyclic aromatic compound standards and related compounds as a preliminary step to evaluate its suitability for quantitative hydrocarbon group type analysis of different coal and petroleum products. FID linearity was evaluated as a function of sample load and scan speed for high-molecular-weight and semi-volatile standards. TLC-FID response factors for compounds of several homologous series were studied in order to differentiate effects of volatility from those exclusively due to the chemical nature concerning FID response. Criteria are developed for the accurate application of TLC-FID to fossil fuel samples. Measurements of chromarod temperatures were carried out in order to evaluate whether an evaporation of compounds outside the H{sub 2} flame might take place. 10 refs., 3 figs., 4 tabs.

  20. Overall intelligent hybrid control system for a fossil-fuel power unit

    Garduno-Ramirez, Raul

    2000-08-01

    This research present a methodology to design a generalized overall unit control system for a fossil fuel power unit (FFPU), and develops a minimum prototype to demonstrate its feasibility. Toward the above goal, the associated research project was undertaken as a technology innovation process with its two ends identified as follows. First, it is recognized that the coordinated control strategies constitute the uppermost control level in current FFPUs, and so, are responsible for driving the boiler-turbine-generator set as a single entity. Second, a FFPU is envisioned as a complex process, subject to multiple changing operating conditions, that should perform as an intelligent system, for which an advanced integral control concept is needed. Therefore, as an outcome of the innovation process, a generalized unit control concept that extends the capabilities of current coordinated control schemes is proposed. This concept is presented as the Intelligent Coordinated Control System (ICCS) paradigm, which establishes an open reference framework for the development of overall unit control schemes. The ICCS's system goals are identified using power plant process engineering concepts, and intelligent control systems engineering concepts are used to identify main tasks and to achieve system functional decomposition. A software engineering agency concept is used to identify and group agents according to their knowledge and purpose interactions. The resultant ICCS structure is an open set of functionally grouped agent clusters in a two-level hierarchical system. The upper level, mainly characterized for knowledge-driven processes, performs the supervisory functions needed to provide self governing operation characteristics, while the lower level, mainly characterized for data-driven processes, performs the fast reactive behavior functions necessary for hybrid real-time control and protection. Developed through several stages, the ICCS-MP finally implements a two

  1. Surrogate gas prediction model as a proxy for Δ(14)C-based measurements of fossil fuel-CO2.

    Coakley, Kevin J; Miller, John B; Montzka, Stephen A; Sweeney, Colm; Miller, Ben R

    2016-06-27

    The measured (14)C:(12)C isotopic ratio of atmospheric CO2 (and its associated derived Δ(14)C value) is an ideal tracer for determination of the fossil fuel derived CO2 enhancement contributing to any atmospheric CO2 measurement (Cff ). Given enough such measurements, independent top-down estimation of US fossil fuel-CO2 emissions should be possible. However, the number of Δ(14)C measurements is presently constrained by cost, available sample volume, and availability of mass spectrometer measurement facilities. Δ(14)C is therefore measured in just a small fraction of samples obtained by ask air sampling networks around the world. Here, we develop a Projection Pursuit Regression (PPR) model to predict Cff as a function of multiple surrogate gases acquired within the NOAA/ESRL Global Greenhouse Gas Reference Network (GGGRN). The surrogates consist of measured enhancements of various anthropogenic trace gases, including CO, SF6, and halo- and hydrocarbons acquired in vertical airborne sampling profiles near Cape May, NJ and Portsmouth, NH from 2005 through 2010. Model performance for these sites is quantified based on predicted values corresponding to test data excluded from the model building process. Chi-square hypothesis test analysis indicates that these predictions and corresponding observations are consistent given our uncertainty budget which accounts for random effects and one particular systematic effect. However, quantification of the combined uncertainty of the prediction due to all relevant systematic effects is difficult because of the limited range of the observations and their relatively high fractional uncertainties at the sampling sites considered here. To account for the possibility of additional systematic effects, we incorporate another component of uncertainty into our budget. Expanding the number of Δ(14)C measurements in the NOAA GGGRN and building new PPR models at additional sites would improve our understanding of uncertainties and

  2. Surrogate gas prediction model as a proxy for Δ14C-based measurements of fossil fuel CO2

    Coakley, Kevin J.; Miller, John B.; Montzka, Stephen A.; Sweeney, Colm; Miller, Ben R.

    2016-06-01

    The measured 14C:12C isotopic ratio of atmospheric CO2 (and its associated derived Δ14C value) is an ideal tracer for determination of the fossil fuel derived CO2 enhancement contributing to any atmospheric CO2 measurement (Cff). Given enough such measurements, independent top-down estimation of U.S. fossil fuel CO2 emissions should be possible. However, the number of Δ14C measurements is presently constrained by cost, available sample volume, and availability of mass spectrometer measurement facilities. Δ14C is therefore measured in just a small fraction of samples obtained by flask air sampling networks around the world. Here we develop a projection pursuit regression (PPR) model to predict Cff as a function of multiple surrogate gases acquired within the NOAA/Earth System Research Laboratory (ESRL) Global Greenhouse Gas Reference Network (GGGRN). The surrogates consist of measured enhancements of various anthropogenic trace gases, including CO, SF6, and halocarbon and hydrocarbon acquired in vertical airborne sampling profiles near Cape May, NJ and Portsmouth, NH from 2005 to 2010. Model performance for these sites is quantified based on predicted values corresponding to test data excluded from the model building process. Chi-square hypothesis test analysis indicates that these predictions and corresponding observations are consistent given our uncertainty budget which accounts for random effects and one particular systematic effect. However, quantification of the combined uncertainty of the prediction due to all relevant systematic effects is difficult because of the limited range of the observations and their relatively high fractional uncertainties at the sampling sites considered here. To account for the possibility of additional systematic effects, we incorporate another component of uncertainty into our budget. Expanding the number of Δ14C measurements in the NOAA GGGRN and building new PPR models at additional sites would improve our understanding of

  3. Chemistry of fossil fuels and biofuels (cambridge series in chemical engineering)

    Schobert, Harold

    2013-01-01

    Focusing on today's major fuel resources - ethanol, biodiesel, wood, natural gas, petroleum products and coal - this book discusses the formation, composition and properties of the fuels, and the ways in which they are processed for commercial use. The book examines the origin of fuels through natural processes such as photosynthesis and the geological transformation of ancient plant material; the relationships between their composition, molecular structures, and physical properties; and the various processes by which they are converted or refined into the fuel products appearing on today's market. Fundamental chemical aspects such as catalysis and the behaviour of reactive intermediates are presented, and global warming and anthropogenic carbon dioxide emissions are also discussed. The book is suitable for graduate students in energy engineering, chemical engineering, mechanical engineering and chemistry, as well as professional scientists and engineers.

  4. Real Costs Assessment of Solar-Hydrogen and Some Fossil Fuels by means of a Combustion Analysis

    Giovanni Nicoletti

    2016-01-01

    Full Text Available In order to compare solar-hydrogen and the most used fossil fuels, the evaluation of the “external” costs related to their use is required. These costs involve the environmental damage produced by the combustion reactions, the health problems caused by air pollution, the damage to land from fuel mining, and the environmental degradation linked to the global warming, the acid rains, and the water pollution. For each fuel, the global cost is determined as sum of the market price and of the correspondent external costs. In order to obtain a quantitative comparison, the quality of the different combustion reactions and the efficiency of the technologies employed in the specific application sector have to be considered adequately. At this purpose, an entropic index that considers the degree of irreversibility produced during the combustion process and the degradation of surroundings is introduced. Additionally, an environmental index that measures the pollutants released during the combustions is proposed. The combination of these indexes and the efficiency of the several technologies employed in four energy sectors have allowed the evaluation of the total costs, highlighting an economic scenario from which the real advantages concerning the exploitation of different energy carrier are determined.

  5. Exploration for fossil and nuclear fuels from orbital altitudes. [results of ERTS program for oil exploration

    Short, N. M.

    1974-01-01

    Results from the ERTS program pertinent to exploration for oil, gas, and uranium are discussed. A review of achievements in relevant geological studies from ERTS, and a survey of accomplishments oriented towards exploration for energy sources are presented along with an evaluation of the prospects and limitations of the space platform approach to fuel exploration, and an examination of continuing programs designed to prove out the use of ERTS and other space system in exploring for fuel resources.

  6. Solid recovered fuels in the cement industry with special respect to hazardous waste.

    Thomanetz, Erwin

    2012-04-01

    Cements with good technical properties have been produced in Europe since the nineteenth century and are now worldwide standardized high-quality mass products with enormous production numbers. The basic component for cement is the so-called clinker which is produced mainly from raw meal (limestone plus clay plus sands) in a rotary kiln with preheater and progressively with integrated calciner, at temperatures up to 1450 °C. This process requires large amounts of fossil fuels and is CO₂-intensive. But most CO₂ is released by lime decomposition during the burning process. In the 1980s the use of alternative fuels began--firstly in the form of used oil and waste tyres and then increasingly by pre-conditioned materials from commercial waste and from high calorific industrial waste (i.e. solid recovered fuel (SRF))--as well as organic hazardous waste materials such as solvents, pre-conditioned with sawdust. Therefore the cement industry is more and more a competitor in the waste-to-energy market--be it for municipal waste or for hazardous waste, especially concerning waste incineration, but also for other co-incineration plants. There are still no binding EU rules identifying which types of SRF or hazardous waste could be incinerated in cement kilns, but there are some well-made country-specific 'positive lists', for example in Switzerland and Austria. Thus, for proper planning in the cement industry as well as in the waste management field, waste disposal routes should be considered properly, in order to avoid surplus capacities on one side and shortage on the other.

  7. Effect of fossil fuels on the parameters of CO2 capture.

    Nagy, Tibor; Mizsey, Peter

    2013-08-06

    The carbon dioxide capture is a more and more important issue in the design and operation of boilers and/or power stations because of increasing environmental considerations. Such processes, absorber desorber should be able to cope with flue gases from the use of different fossil primary energy sources, in order to guarantee a flexible, stable, and secure energy supply operation. The changing flue gases have significant influence on the optimal operation of the capture process, that is, where the required heating of the desorber is the minimal. Therefore special considerations are devoted to the proper design and control of such boiler and/or power stations equipped with CO2 capture process.

  8. Determination of wood burning and fossil fuel contribution of black carbon at Delhi, India using aerosol light absorption technique.

    Tiwari, S; Pipal, A S; Srivastava, A K; Bisht, D S; Pandithurai, G

    2015-02-01

    A comprehensive measurement program of effective black carbon (eBC), fine particle (PM2.5), and carbon monoxide (CO) was undertaken during 1 December 2011 to 31 March 2012 (winter period) in Delhi, India. The mean mass concentrations of eBC, PM2.5, and CO were recorded as 12.1 ± 8.7 μg/m(3), 182.75 ± 114.5 μg/m(3), and 3.41 ± 1.6 ppm, respectively, during the study period. Also, the absorption Angstrom exponent (AAE) was estimated from eBC and varied from 0.38 to 1.29 with a mean value of 1.09 ± 0.11. The frequency of occurrence of AAE was ~17 % less than unity whereas ~83 % greater than unity was observed during the winter period in Delhi. The mass concentrations of eBC were found to be higher by ~34 % of the average value of eBC (12.1 μg/m(3)) during the study period. Sources of eBC were estimated, and they were ~94 % from fossil fuel (eBCff) combustion whereas only 6 % was from wood burning (eBCwb). The ratio between eBCff and eBCwb was 15, which indicates a higher impact from fossil fuels compared to biomass burning. When comparing eBCff during day and night, a factor of three higher concentrations was observed in nighttime than daytime, and it is due to combustion of fossil fuel (diesel vehicle emission) and shallow boundary layer conditions. The contribution of eBCwb in eBC was higher between 1800 and 2100 hours due to burning of wood/biomass. A significant correlation between eBC and PM2.5 (r = 0.78) and eBC and CO (r = 0.46) indicates the similarity in location sources. The mass concentration of eBC was highest (23.4 μg/m(3)) during the month of December when the mean visibility (VIS) was lowest (1.31 km). Regression analysis among wind speed (WS), VIS, soot particles, and CO was studied, and significant negative relationships were seen between VIS and eBC (-0.65), eBCff (-0.66), eBCwb (-0.34), and CO (-0.65); however, between WS and eBC (-0.68), eBCff (-0.67), eBCwb (-0.28), and CO (-0.53). The regression analysis indicated

  9. Effects of aqueous effluents from in situ fossil fuel processing technologies on aquatic systems. Annual progress report

    Bergman, H.L.; Anderson, A.D.

    1977-12-01

    This is the first annual report issued under a project to evaluate the effects of aqueous effluents from in-situ fossil fuel processing technologies on aquatic biota. Briefly, the goals of the project are to: evaluate the toxicity of process water effluents on aquatic biota; recommend maximum exposure concentrations for process water constituents; and assist DOE in using project data and recommendations to design control technologies and to assess environmental impacts. The project objectives for Year 1 were pursued through the following five tasks: a literature review on process water constituents; toxicity studies on the effect of process waters and six process water constituents on aquatic biota; degradation rate studies on four to six process water constituents; bioaccumulation studies on four to six process water constituents; and recommendations on maximum exposure concentrations for process water constituents based on data from the project and from the literature. Progress toward completion of these goals is presented.

  10. Energy Systems in the Era of Energy Vectors A Key to Define, Analyze and Design Energy Systems Beyond Fossil Fuels

    Orecchini, Fabio

    2012-01-01

    What lies beyond the era of fossil fuels? While most answers focus on different primary energy resources, Energy Systems in the Era of Energy Vectors provides a completely new approach. Instead of providing a traditional consumption analysis of classical primary energy resources such as oil, coal, nuclear power and gas, Energy Systems in the Era of Energy Vectors describes and assesses energy technologies, markets and future strategies, focusing on their capacity to produce, exchange, and use energy vectors. Special attention is given to the renewable energy resources available in different areas of the world and made exploitable by the integration of energy vectors in the global energy system. Clear definitions of energy vectors and energy systems are used as the basis for a complete explanation and assessment of up-to-date, available technologies for energy resources, transport and storage systems, conversion and use. The energy vectors scheme allows the potential realisation of a worldwide sustainable ener...

  11. DETERMINING THE COMPOSITION OF HIGH TEMPERATURE COMBUSTION PRODUCTS OF FOSSIL FUEL BASED ON VARIATIONAL PRINCIPLES AND GEOMETRIC PROGRAMMING

    Velibor V Vujović

    2011-01-01

    Full Text Available This paper presents the algorithm and results of a computer program for calculation of complex equilibrium composition for the high temperature fossil fuel combustion products. The method of determining the composition of high temperatures combustion products at the temperatures appearing in the open cycle MHD power generation is given. The determination of combustion product composition is based on minimization of the Gibbs free energy. The number of equations to be solved is reduced by using variational principles and a method of geometric programming and is equal to the sum of the numbers of elements and phases. A short description of the computer program for the calculation of the composition and an example of the results are also given.

  12. Crude Glycerol as Cost-Effective Fuel for Combined Heat and Power to Replace Fossil Fuels, Final Technical Report

    Roberts, William L

    2012-10-31

    The primary objectives of this work can be summed into two major categories. Firstly, the fundamentals of the combustion of glycerol (in both a refined and unrefined form) were to be investigated, with emphasis of the development of a system capable of reliably and repeatedly combusting glycerol as well as an analysis of the emissions produced during glycerol combustion. Focus was placed on quantifying common emissions in comparison to more traditional fuels and this work showed that the burner developed was able to completely combust glycerol within a relatively wide range of operating conditions. Additionally, focus was placed on examining specific emissions in more detail, namely interesting NOx emissions observed in initial trials, acrolein and other volatile organic emissions, and particulate and ash emissions. This work showed that the combustion of crude glycerol could result in significantly reduced NOx emissions as a function of the high fuel bound oxygen content within the glycerol fuel. It also showed that when burned properly, the combustion of crude glycerol did not result in excessive emissions of acrolein or any other VOC compared to the combustion from more traditional fuels. Lastly however, this work has shown that in any practical application in which glycerol is being burned, it will be necessary to explore ash mitigation techniques due to the very high particulate matter concentrations produced during glycerol combustion. These emissions are comparable to unfiltered coal combustion and are directly tied to the biodiesel production method. The second focus of this work was directed to developing a commercialization strategy for the use of glycerol as a fuel replacement. This strategy has identified a 30 month plan for the scaling up of the laboratory scale burner into a pre-pilot scale system. Additionally, financing options were explored and an assessment was made of the economics of replacing a traditional fuel (namely natural gas) with crude

  13. Studies on the new fuels with Santilli magnecular structure and their industrial applications

    Pandhurnekar, Chandrashekhar P., E-mail: pandhurnekarcp@rknec.edu [Shri Ramdeobaba College of Engineering and Management, Nagpur, Maharashtra 440 013 (India)

    2015-03-10

    Professor R. M. Santilli, the Italian-American physicist, for the first time in the history of Science, presented the theoretical and experimental evidence on the existence of the new chemical species of “magnecules” [1]. This new species mainly consist of individual atoms, radicals and conventional molecules bonded together with stable clusters under the new attractive force primarily originating from torroidal polarization of orbitals of atomic electrons under strong magnetic field. The main contribution in this area was the production of Magnegas{sup TM}, new clean fuels developed by Prof. Santilli, which are produced as byproducts of recycling nonradioactive liquid feedstock such as antifreeze waste, engine oil waste, town sewage, crude oil, etc., and generally vary with the liquid used for their production. A new technology, called Plasma Arc FlowTM, flows the waste through a submerged electric arc between conventional electrodes. The arc decomposes the liquid molecules into their atomic constituents, and forms a plasma in the immediate vicinity of the electrodes at about 10,000{sup 0} F. The technology then moves the plasma away from the electrodes, and controls its recombination into environmentally acceptable fuels. In fact, the exhaust of magnegases shows: absence of carcinogenic or other toxic substances; breathable oxygen up 14 percent; and carbon dioxide down to 0.01 percent. Since, in addition, the new fuels can be produced everywhere, and have environmentally acceptable exhausts, Magnegases offer promising possibilities to satisfy our ever increasing energy needs, as well as to contain the alarming environmental problems caused by fossil fuels. Thus, it was thought worthwhile to present some of the industrial applications of environmentally benign fuel consisting magnecular bonds [2, 3, 4, 5]. Also in the present communications, some of the experimental evidences of Santilli’s new chemical species i. e. Magnecules which had been published

  14. Isotopic measurements of atmospheric methane in Los Angeles, California, USA: Influence of “fugitive” fossil fuel emissions

    Townsend-Small, Amy; Tyler, Stanley C.; Pataki, Diane E.; Xu, Xiaomei; Christensen, Lance E.

    2012-04-01

    Recent studies have suggested that CH4 emissions in Los Angeles and other large cities may be underestimated. We utilized stable isotopes (13C and D) and radiocarbon (14C) to investigate sources of CH4 in Los Angeles, California. First, we made measurements of δ13C and δD of various CH4 sources in urban areas. Fossil fuel CH4 sources (oil refineries, power plants, traffic, and oil drilling fields) had δ13C values between -45 and -30‰ and dD values between -275 and -100‰, whereas biological CH4 (cows, biofuels, landfills, sewage treatment plants, and cattle feedlots) had δ13C values between -65 and -45‰ and δD values between -350 and -275‰. We made high-altitude observations of CH4 concentration using continuous tunable laser spectroscopy measurements combined with isotope analyses (13C, 14C, and D) of discrete samples to constrain urban CH4 sources. Our data indicate that the dominant source of CH4 in Los Angeles has a δ13C value of approximately -41.5‰ and a δD value between -229 and -208‰. Δ14C of CH4 in urban air samples ranged from +262 to +344‰ (127.1 to 134.9 pMC), depleted with respect to average global background CH4. We conclude that the major source of CH4 in Los Angeles is leakage of fossil fuels, such as from geologic formations, natural gas pipelines, oil refining, and/or power plants. More research is needed to constrain fluxes of CH4 from natural gas distribution and refining, as this flux may increase with greater reliance on natural gas and biogas for energy needs.

  15. A multiresolution spatial parametrization for the estimation of fossil-fuel carbon dioxide emissions via atmospheric inversions.

    Ray, Jaideep; Lee, Jina; Lefantzi, Sophia; Yadav, Vineet [Carnegie Institution for Science, Stanford, CA; Michalak, Anna M. [Carnegie Institution for Science, Stanford, CA; van Bloemen Waanders, Bart Gustaaf [Sandia National Laboratories, Albuquerque, NM; McKenna, Sean Andrew [IBM Research, Mulhuddart, Dublin 15, Ireland

    2013-04-01

    The estimation of fossil-fuel CO2 emissions (ffCO2) from limited ground-based and satellite measurements of CO2 concentrations will form a key component of the monitoring of treaties aimed at the abatement of greenhouse gas emissions. To that end, we construct a multiresolution spatial parametrization for fossil-fuel CO2 emissions (ffCO2), to be used in atmospheric inversions. Such a parametrization does not currently exist. The parametrization uses wavelets to accurately capture the multiscale, nonstationary nature of ffCO2 emissions and employs proxies of human habitation, e.g., images of lights at night and maps of built-up areas to reduce the dimensionality of the multiresolution parametrization. The parametrization is used in a synthetic data inversion to test its suitability for use in atmospheric inverse problem. This linear inverse problem is predicated on observations of ffCO2 concentrations collected at measurement towers. We adapt a convex optimization technique, commonly used in the reconstruction of compressively sensed images, to perform sparse reconstruction of the time-variant ffCO2 emission field. We also borrow concepts from compressive sensing to impose boundary conditions i.e., to limit ffCO2 emissions within an irregularly shaped region (the United States, in our case). We find that the optimization algorithm performs a data-driven sparsification of the spatial parametrization and retains only of those wavelets whose weights could be estimated from the observations. Further, our method for the imposition of boundary conditions leads to a 10computational saving over conventional means of doing so. We conclude with a discussion of the accuracy of the estimated emissions and the suitability of the spatial parametrization for use in inverse problems with a significant degree of regularization.

  16. The study of PAH's in aerosols produced from combustion processes of coal and other fossil fuels

    Ronald J. Pugmire; Mark S. Solum; Y.J. Jiang; S. Yan; A.F. Sarofim; Randy Winans [University of Utah, Salt Lake City, UT (United States). Institute for Combustion and Energy Sciences

    2005-07-01

    In combustion systems PAH formation plays a key role not only in environmental and health related affects but also in heat transfer processes. The latter is particularly important with regard to the optical constants of the gas phase PAHs that not only control the radiative heat transfer but also produce spectral signatures that are integral to certain types of weapons systems. A resurgence of interest in polyarenes has been stimulated by growing awareness that compounds of this class, including a number of relatively potent carcinogens, are prevalent in the human environment and may play an important role in the causation of cancer. Research interest has focused on the polyarenes because of their widespread environmental prevalence and the high carcinogenic potency of some members of this class. Polyarenes are formed as products of incomplete combustion of fossil fuels and other organic matter. Over the past five years we have studied the source and formation mechanisms of PAH's from various fossil fuels. Various types of data obtained on selected coal samples were instrumental in the analysis both structure and pyrolysis. Utilizing NMR, ESR and mass spectroscopy data, the reaction mechanisms for PAH formation have been formulated as well as the amount of stable free radicals that are ever present in combustion products. Conductivity measurements in anthracite coals as well as combustion aerosol samples have proven to be an interesting factor in determining the extend of turbostratic structure present in soot structures. The details of these experiments and the body of data will be summarized. (Abstract only)

  17. Microscale In Vitro Assays for the Investigation of Neutral Red Retention and Ethoxyresorufin-O-Deethylase of Biofuels and Fossil Fuels.

    Heger, Sebastian; Bluhm, Kerstin; Brendt, Julia; Mayer, Philipp; Anders, Nico; Schäffer, Andreas; Seiler, Thomas-Benjamin; Hollert, Henner

    Only few information on the potential toxic effectiveness of biofuels are available. Due to increasing worldwide demand for energy and fuels during the past decades, biofuels are considered as a promising alternative for fossil fuels in the transport sector. Hence, more information on their hazard potentials are required to understand the toxicological impact of biofuels on the environment. In the German Cluster of Excellence "Tailor-made Fuels from Biomass" design processes for economical, sustainable and environmentally friendly biofuels are investigated. In an unique and interdisciplinary approach, ecotoxicological methods are applied to gain information on potential adverse environmental effects of biofuels at an early phase of their development. In the present study, three potential biofuels, ethyl levulinate, 2-methyltetrahydrofuran and 2-methylfuran were tested. Furthermore, we investigated a fossil gasoline fuel, a fossil diesel fuel and an established biodiesel. Two in vitro bioassays, one for assessing cytotoxicity and one for aryl hydrocarbon receptor agonism, so called dioxin-like activity, as measured by Ethoxyresorufin-O-Deethylase, were applied using the permanent fish liver cell line RTL-W1 (Oncorhynchus mykiss). The special properties of these fuel samples required modifications of the test design. Points that had to be addressed were high substance volatility, material compatibility and low solubility. For testing of gasoline, diesel and biodiesel, water accommodated fractions and a passive dosing approach were tested to address the high hydrophobicity and low solubility of these complex mixtures. Further work has to focus on an improvement of the chemical analyses of the fuel samples to allow a better comparison of any effects of fossil fuels and biofuels.

  18. Microscale In Vitro Assays for the Investigation of Neutral Red Retention and Ethoxyresorufin-O-Deethylase of Biofuels and Fossil Fuels

    Bluhm, Kerstin; Brendt, Julia; Mayer, Philipp; Anders, Nico; Schäffer, Andreas; Seiler, Thomas-Benjamin; Hollert, Henner

    2016-01-01

    Only few information on the potential toxic effectiveness of biofuels are available. Due to increasing worldwide demand for energy and fuels during the past decades, biofuels are considered as a promising alternative for fossil fuels in the transport sector. Hence, more information on their hazard potentials are required to understand the toxicological impact of biofuels on the environment. In the German Cluster of Excellence “Tailor-made Fuels from Biomass” design processes for economical, sustainable and environmentally friendly biofuels are investigated. In an unique and interdisciplinary approach, ecotoxicological methods are applied to gain information on potential adverse environmental effects of biofuels at an early phase of their development. In the present study, three potential biofuels, ethyl levulinate, 2-methyltetrahydrofuran and 2-methylfuran were tested. Furthermore, we investigated a fossil gasoline fuel, a fossil diesel fuel and an established biodiesel. Two in vitro bioassays, one for assessing cytotoxicity and one for aryl hydrocarbon receptor agonism, so called dioxin-like activity, as measured by Ethoxyresorufin-O-Deethylase, were applied using the permanent fish liver cell line RTL-W1 (Oncorhynchus mykiss). The special properties of these fuel samples required modifications of the test design. Points that had to be addressed were high substance volatility, material compatibility and low solubility. For testing of gasoline, diesel and biodiesel, water accommodated fractions and a passive dosing approach were tested to address the high hydrophobicity and low solubility of these complex mixtures. Further work has to focus on an improvement of the chemical analyses of the fuel samples to allow a better comparison of any effects of fossil fuels and biofuels. PMID:27684069

  19. Biofuel Impacts on World Food Supply: Use of Fossil Fuel, Land and Water Resources

    Robert McCormack

    2008-09-01

    Full Text Available The rapidly growing world population and rising consumption of biofuels are increasing demand for both food and biofuels. This exaggerates both food and fuel shortages. Using food crops such as corn grain to produce ethanol raises major nutritional and ethical concerns. Nearly 60% of humans in the world are currently malnourished, so the need for grains and other basic foods is critical. Growing crops for fuel squanders land, water and energy resources vital for the production of food for human consumption. Using corn for ethanol increases the price of U.S. beef, chicken, pork, eggs, breads, cereals, and milk more than 10% to 30%.

  20. Emissions of Water and Carbon Dioxide from Fossil-Fuel Combustion Contribute Directly to Ocean Mass and Volume Increases

    Skuce, A. G.

    2014-12-01

    The direct, non-climate, contribution of carbon dioxide and water emissions from fossil-fuel (FF) combustion to the volume and mass of the oceans has been omitted from estimates of sea-level rise (SLR) in IPCC reports. Following the method of Gornitz et al. (1997), H2O emissions are estimated using carbon emissions from the Carbon Dioxide Information Analysis Center, along with typical carbon and hydrogen contents of FF. Historic H2O emissions from 1750 to 2010 amount to 430 ±50 PgH2O, equivalent to 1.2 ±0.2 mmSLR. Sometime in this decade the volume of H2O from historic FF combustion will exceed the volume of Lake Erie (480 km3). CO2 dissolved in the ocean increases the seawater volume by 31-33 mL mol-1 CO2. From 1750 to 2010, 370 ±70 PgCO2 from FF combustion has dissolved in the oceans, causing 0.7 ±0.2 mmSLR. Combined H2O+CO2emissions from FF have therefore added 1.9 ±0.4 mm to sea levels in the Industrial Era. Combustion of FF in 2010 resulted in emissions of 32 PgCO2 and 12 ±1 PgH2O. SLR contributions for that year from FF emissions were 0.033 ±0.005 mm from H2O and 0.011±0.003 mm from dissolved CO2, a total rate of 0.044 ±0.008 mm yr-1. Emissions incorporated in socio-economic models underlying the RCP 8.5 and 2.6 scenarios are used along with concentration-driven CMIP5 Earth System Models results to estimate future sea-level rise from FF combustion. From 2010 to 2100, RCP8.5 and 2.6 models respectively produce 9 ±2 mmSLR and 5 ±1 mmSLR from FF H2O+CO2. For perspective, these amounts are larger than the modelled contributions from loss of glaciers in the Andes. The direct contribution of FF emissions to SLR is small (1-2%) relative to current rates and projected estimates under RCP scenarios up to 2100. The magnitude is similar to SLR estimates from other minor sources such as the melting of floating ice, land-use emissions and produced water from oil operations, none of which are currently included in SLR assessments. As uncertainties in

  1. Enhancing the growth of renewable energy sources. Pt. 2. The fossil fuel economy is meeting a turning point; Das Wachstum der Erneuerbaren beschleunigen. T. 2. Die fossile Energiewirtschaft vor dem Scheitelpunkt

    Seltmann, Thomas

    2009-04-15

    The first part of this article was published in SBZ 7/09; it described the dramatic shortage of fossil fuels. The second part presents analyses and forecasts of the potential and rate of development of renewable energy sources. The central statement is that development can be faster and at lower investments than often assumed, but there are still massive obstacles. Also, the faster the conversion to renewables, the less costly it will be. (orig.)

  2. Carbon storage versus fossil fuel substitution: a climate change mitigation option for two different land use categories based on short and long rotation forestry in India

    Kaul, M.; Mohren, G.M.J.; Dadhwal, V.K.

    2010-01-01

    Short rotation bioenergy crops for energy production are considered an effective means to mitigate the greenhouse effect, mainly due to their ability to substitute fossil fuels. Alternatively, carbon can be sequestered and stored in the living biomass. This paper compares the two land use categories

  3. Fossil Fuels, Let’s Leave Them under Earth. Four Reasons to Vote “Yes” at the Italian Referendum on Drilling

    ASPO Italy Association for the Study of PeakOil And Gas

    2016-04-01

    Full Text Available The referendum that will be held on 17 April 2016 is calling Italians to express their willingness on an aspect of licensing the sea drilling activities: The end of the licenses to the offshore exploitation of fossil fuel resources within the 12 miles from the coast.

  4. To break away from fossil fuels : a contribution to solve climatic change and energy security for Quebec; S'affranchir des carburants fossiles : une contribution a la lutte aux changements climatiques et a la securite energetique du Quebec

    Bonin, P.; Seguin, H.; Waridel, L.

    2006-06-15

    In response to growing energy demands, Quebec has proposed the construction of 3 deep water terminals to accommodate methane tankers which transport liquefied natural gas (LNG). This paper focused on the proposed Gros Cacouna Port project in the St. Lawrence Seaway which is currently under study and subject to approval. Equiterre, questioned the energy security aspect of the proposal and argued that increasing Quebec's reliance on increasingly expensive energy would decrease energy security. In addition, importation of LNG would bring a clear exit of capital outside the province. Equiterre also argued that reliance on fossil fuels should be decreased in order to mitigate greenhouse gas emissions which contribute to climate change. The organization questioned whether the economic and social need for the proposed project justifies a greater dependency on fossil fuels and the associated impact on the environment and fragile ecosystems of the St. Lawrence. It was suggested that alternative solutions such as renewable energy sources and energy efficiency should be explored in order to promote sustainable development, increase energy security and reduce greenhouse gases. Equiterre argued that Quebec can and must decrease, and even eliminate, its dependence on fossil fuels, including natural gas, for Quebec's economic, social and environmental well-being. For these reasons, Equiterre recommended that the proposed project be rejected, particularly since the project proponents failed to show the real impact that the project would have on Quebec markets. 72 refs., 10 tabs., 21 figs.

  5. Separation of biospheric and fossil fuel fluxes of CO2 by atmospheric inversion of CO2 and 14CO2 measurements: Observation System Simulations

    Basu, Sourish; Bharat Miller, John; Lehman, Scott

    2016-05-01

    National annual total CO2 emissions from combustion of fossil fuels are likely known to within 5-10 % for most developed countries. However, uncertainties are inevitably larger (by unknown amounts) for emission estimates at regional and monthly scales, or for developing countries. Given recent international efforts to establish emission reduction targets, independent determination and verification of regional and national scale fossil fuel CO2 emissions are likely to become increasingly important. Here, we take advantage of the fact that precise measurements of 14C in CO2 provide a largely unbiased tracer for recently added fossil-fuel-derived CO2 in the atmosphere and present an atmospheric inversion technique to jointly assimilate observations of CO2 and 14CO2 in order to simultaneously estimate fossil fuel emissions and biospheric exchange fluxes of CO2. Using this method in a set of Observation System Simulation Experiments (OSSEs), we show that given the coverage of 14CO2 measurements available in 2010 (969 over North America, 1063 globally), we can recover the US national total fossil fuel emission to better than 1 % for the year and to within 5 % for most months. Increasing the number of 14CO2 observations to ˜ 5000 per year over North America, as recently recommended by the National Academy of Science (NAS) (Pacala et al., 2010), we recover monthly emissions to within 5 % for all months for the US as a whole and also for smaller, highly emissive regions over which the specified data coverage is relatively dense, such as for the New England states or the NY-NJ-PA tri-state area. This result suggests that, given continued improvement in state-of-the art transport models, a measurement program similar in scale to that recommended by the NAS can provide for independent verification of bottom-up inventories of fossil fuel CO2 at the regional and national scale. In addition, we show that the dual tracer inversion framework can detect and minimize biases in

  6. The Geography of emerging industry - Regional knowledge dynamics in the emerging fuel cell industry

    Nygaard Tanner, A.

    2012-03-15

    This thesis focuses on the emergence of new industries and seeks to understand from where they emerge. Emerging industries are defined as a group of firms that explore and exploit the economic potential of a radical technology. This thesis builds on the innovation system approach, as well as the newly developed paradigm of evolutionary economic geography. The main objective is twofold: 1) to examine the mechanisms underlying the origin and emergence of technology-based industry in its geographical settings and 2) to draw attention to industry emergence in the field of economic geography. This thesis combines quantitative and qualitative research methods, and analyses are carried out at the meso level (with regions as the analytical unit) and at the micro level (with a focus on firms and universities). The findings support the evolutionary hypothesis that emerging industries are place-dependent and that this trait is observed even for industries that emerge based on radical technology development. Radically new industries tend to emerge where the regional knowledge base is technologically related to the knowledge base of the new industry; however, technological change in emerging technological trajectories relies not only on the accumulation of scientific and applied knowledge but also on risk-taking actors who are willing and able to implement and exploit radical technologies. Accordingly, another finding of this thesis indicates that in the case of the emerging fuel cell industry, incumbent multinational enterprises seem to play an important role in developing fuel cell system products. Although these findings contribute to the understanding of the underlying mechanisms behind the spatial emergence of new industries, these results also raise further questions that must be answered before we can claim to have a satisfactory understanding of emerging industries in their geographical context. (LN)

  7. Biofuels that cause land-use change may have much larger non-GHG air quality emissions than fossil fuels.

    Tsao, C-C; Campbell, J E; Mena-Carrasco, M; Spak, S N; Carmichael, G R; Chen, Y

    2012-10-02

    Although biofuels present an opportunity for renewable energy production, significant land-use change resulting from biofuels may contribute to negative environmental, economic, and social impacts. Here we examined non-GHG air pollution impacts from both indirect and direct land-use change caused by the anticipated expansion of Brazilian biofuels production. We synthesized information on fuel loading, combustion completeness, and emission factors, and developed a spatially explicit approach with uncertainty and sensitivity analyses to estimate air pollution emissions. The land-use change emissions, ranging from 6.7 to 26.4 Tg PM(2.5), were dominated by deforestation burning practices associated with indirect land-use change. We also found Brazilian sugar cane ethanol and soybean biodiesel including direct and indirect land-use change effects have much larger life-cycle emissions than conventional fossil fuels for six regulated air pollutants. The emissions magnitude and uncertainty decrease with longer life-cycle integration periods. Results are conditional to the single LUC scenario employed here. After LUC uncertainty, the largest source of uncertainty in LUC emissions stems from the combustion completeness during deforestation. While current biofuels cropland burning policies in Brazil seek to reduce life-cycle emissions, these policies do not address the large emissions caused by indirect land-use change.

  8. Fixed bed gasification for production of industrial fuel gas

    1977-10-01

    This report summarizes the results of technical and economic evaluations of six commercially available, fixed-bed coal gasification processes for the production of industrial fuel gas. The study was performed for DOE and is intended to assist industrial companies in exploring the feasibility of producing gaseous fuels for both retrofit and new industrial plant situations. The report includes a technical analysis of the physical configuration, performance capabilities, and commercial experiments to-date for both air-blown and oxygen-blown fixed bed gasifiers. The product gas from these gasifiers is analyzed economically for three different degrees of cleanliness: (1) hot raw gas, (2) dust-, tar-, and oil-free gas, and (3) dust-, tar-, oil-free and desulfurized gas. The evaluations indicate that low-Btu gases produced from fixed bed gasifiers constitute one of the most logical short-term solutions for helping ease the shortage of natural gas for industrial fuel applications because the technology is well-proven and has been utilized on a commercial scale for several decades both in this country and overseas; time from initiation of design to commercial operation is about two years; the technology is not complicated to construct, operate, or maintain; and a reliable supply of product gas can be generated on-site. The advantages and disadvantages of fixed bed gasification technology are listed. The cost of the low Btu gas is estimated at $2 to $4 per MM Btu depending on gas purity, cost of coal ($20 to $50 per ton) and a number of specified assumptions with respect to financing, reliability, etc. (LTN)

  9. Scenario Development for the City of Stockholm Towards a Fossil Fuel Free City by 2050

    Giagkalos, Panagiotis

    2012-01-01

    The City of Stockholm’s energy and climate goals are analyzed and projected in several scenarios. Using the year 2015 as the baseline year, a database covering the energy performance and fuel use within the City is created. This starting point is used to project the performance of the City until the year 2050. The projection is made with the use of scenarios and the simulation software LEAP by formulating scenarios that combine ongoing, planned and conceivable measures. All these scenarios ai...

  10. The Department of Defense: Reducing Its Reliance on Fossil-Based Aviation Fuel - Issues for Congress

    2007-06-15

    19 Figure 2. KC-135 Winglet Flight Tests at Dryden Flight Research Center . . . . 23 List of Tables Table 1...involving two or more opposing forces using rules, data, and procedures designed to depict an actual or assumed real life situation.” 19 Winglets , for...applying winglets to DOD aircraft. See page 24 of this report for further information. reflect the DOD’s true fuel costs, masks energy efficiency

  11. Particulate emission factors for mobile fossil fuel and biomass combustion sources.

    Watson, John G; Chow, Judith C; Chen, L-W Antony; Lowenthal, Douglas H; Fujita, Eric M; Kuhns, Hampden D; Sodeman, David A; Campbell, David E; Moosmüller, Hans; Zhu, Dongzi; Motallebi, Nehzat

    2011-05-15

    PM emission factors (EFs) for gasoline- and diesel-fueled vehicles and biomass combustion were measured in several recent studies. In the Gas/Diesel Split Study (GD-Split), PM(2.5) EFs for heavy-duty diesel vehicles (HDDV) ranged from 0.2 to ~2 g/mile and increased with vehicle age. EFs for HDDV estimated with the U.S. EPA MOBILE 6.2 and California Air Resources Board (ARB) EMFAC2007 models correlated well with measured values. PM(2.5) EFs measured for gasoline vehicles were ~two orders of magnitude lower than those for HDDV and did not correlate with model estimates. In the Kansas City Study, PM(2.5) EFs for gasoline-powered vehicles (e.g., passenger cars and light trucks) were generally fuel, corresponding to 0.3 and 2 g/mile, respectively. These values are comparable to those of on-road HDDV. EFs for biomass burning measured during the Fire Laboratory at Missoula Experiment (FLAME) were compared with EFs from the ARB Emission Estimation System (EES) model. The highest PM(2.5) EFs (76.8±37.5 g/kg) were measured for wet (>50% moisture content) Ponderosa Pine needles. EFs were generally fuels with low moisture content but underestimated measured EFs for fuel with moisture content >40%. Average EFs for dry chamise, rice straw, and dry grass were within a factor of three of values adopted by ARB in California's San Joaquin Valley (SJV). Discrepancies between measured and modeled emission factors suggest that there may be important uncertainties in current PM(2.5) emission inventories.

  12. Estimation of the external cost of energy production based on fossil fuels in Finland and a comparison with estimates of external costs of wind power

    Otterstroem, T. [Ekono Energy Ltd, Helsinki (Finland)

    1995-12-31

    Ekono Energy Ltd. and Soil and Water Ltd. participated in 1993 - 1994 in the SIHTI 2 research programme of the Ministry of Trade and Industry by carrying out the project `Estimation of the extremal cost of energy production in Finland`. The aim of the survey was to assess the external costs of Finnish energy production which are incurred by the environmental impacts of emissions during the life cycles of fossil fuels. To this end, the survey studied the environmental impacts of emissions on a local level (population centres), on a national level (Finland) and on a global level. The main target was to develop a method for calculating the economic value of these impacts. The method was applied to the emissions in 1990. During the survey, the main emphasis was put on developing and applying indirect valuation methods. An indirect method proceeds through dose-response functions. The dose-response function links a certain emission quantity, concentration or deposition to the extent or intensity of the effect. When quantitative data on hazards is available, it is possible to carry out monetary valuation by means of market prices or people`s otherwise expressed willingness to pay (WTP). Monetary valuation includes many uncertainty factors, of which the most significant with regard to this study are the transferability of dose-response functions and willingness-to-pay values from different kinds of conditions, additivity of damage values, uncertainty factors and problems related to discounting

  13. Microscale In Vitro Assays for the Investigation of Neutral Red Retention and Ethoxyresorufin-O-Deethylase of Biofuels and Fossil Fuels

    Heger, Sebastian; Bluhm, Kerstin; Brendt, Julia

    2016-01-01

    Only few information on the potential toxic effectiveness of biofuels are available. Due to increasing worldwide demand for energy and fuels during the past decades, biofuels are considered as a promising alternative for fossil fuels in the transport sector. Hence, more information on their hazard...... potentials are required to understand the toxicological impact of biofuels on the environment. In the German Cluster of Excellence “Tailor-made Fuels from Biomass” design processes for economical, sustainable and environmentally friendly biofuels are investigated. In an unique and interdisciplinary approach......, ecotoxicological methods are applied to gain information on potential adverse environmental effects of biofuels at an early phase of their development. In the present study, three potential biofuels, ethyl levulinate, 2-methyltetrahydrofuran and 2-methylfuran were tested. Furthermore, we investigated a fossil...

  14. The Role of Nuclear Power in Reducing Risk of the Fossil Fuel Prices and Diversity of Electricity Generation in Tunisia: A Portfolio Approach

    Abdelhamid, Mohamed Ben; Aloui, Chaker; Chaton, Corinne; Souissi, Jomâa

    2010-04-01

    This paper applies real options and mean-variance portfolio theories to analyze the electricity generation planning into presence of nuclear power plant for the Tunisian case. First, we analyze the choice between fossil fuel and nuclear production. A dynamic model is presented to illustrate the impact of fossil fuel cost uncertainty on the optimal timing to switch from gas to nuclear. Next, we use the portfolio theory to manage risk of the electricity generation portfolio and to determine the optimal fuel mix with the nuclear alternative. Based on portfolio theory, the results show that there is other optimal mix than the mix fixed for the Tunisian mix for the horizon 2010-2020, with lower cost for the same risk degree. In the presence of nuclear technology, we found that the optimal generating portfolio must include 13% of nuclear power technology share.

  15. Proposals for the gradual reduction of the inefficiencies associated with the account of consumption of fossil fuels of isolated systems; Propostas para a gradativa reducao das ineficiencias associadas a conta de consumo de combustiveis fosseis dos sistemas isolados

    Magalhaes, Pedro Coelho de Souza Monteiro; Tiryaki, Gisele Ferreira [Universidade Salvador (UNIFACS), BA (Brazil)

    2008-07-01

    Restricted access to electricity, the existence of an energy matrix based on fossil fueled electricity plants and the lack of financial means by the population living in the Northern region of Brazil to afford the costs with electricity generation, transmission and distribution in the region created the need to implement cross subsidies in the country's Electric Sector Isolated System. The subsidy policies have aimed at allowing the access to electricity for the population and industries in the north of Brazil and at promoting the economic development of this region, but have brought a great cost to society, particularly the Fuel Consumption Account (CCC). This paper evaluates the current structure and the regulatory norms of the electricity sector' subsidies granted to the Isolated Systems, and indicates solutions to the inefficiency associated to cross-subsidization. (author)

  16. Toxic compounds emission from fossil fuels in compression with alternative energies

    Halek, F.; Kavousi, A. [Dept. of Energy (Iran). Materials and Energy Resesarch Center

    2008-09-30

    Transportation sources are one of the leading contributors to hazardous air pollutants. The internal combustion engine emits a large percentage of pollutants, but gasoline and diesel in the liquid form also contribute chemical pollution in the form of vaporization of the fuel as it heats and cools within the gas tank. Polycyclic aromatic hydrocarbons (PAHs) are a group of organic compounts made up of two or more fused benzene rings in linear, angular or cluster arrangements. PAHs are considered highly toxic for human beings and several of these compounts are carcinogenic, mutagenic or teratogenic. A major source of PAH in Tehran is related to traffic and the number of gasoline and diesel vehicles. During nearly a 1-year period (throughout 2005) a comprehensive study was done in the Tehran area in 21 stations. Results of PAHs analysis indicated that existence of several low molecular weights, like Fluoranthene, Fluorene and Phenantherene confirm the role of diesel oil emissions in Tehran's atmosphere. Biodiesel, a renewable energy source, is the name for a variety of ester-based oxygenated fuels (11% oxygen by weight) made from vegetable oils: sunflower, safflower, soybean, palm, cottonseed, rapeseed or peanut. The lifecycle production and use of biodiesel produces approximately 80% less carbon dioxide emissions, and almost 100% less sulfur dioxide. Combustion of biodiesel alone provides over a 90% reduction in total unburned hydrocarbons, and a 75-90% reduction in aromatic hydrocarbons. Biodiesel further provides significant reductions in particulates and carbon monoxide than petroleum diesel fuel. Based on mutagenicity tests, biodiesel provides a 90% reduction in cancer risks.

  17. Model-based Fuel Flow Control for Fossil-fired Power Plants

    Niemczyk, Piotr

    2010-01-01

    -fired power plants represent the largest reserve of such controllable power sources in several countries. However, their production take-up rates are limited, mainly due to poor fuel flow control. The thesis presents analysis of difficulties and potential improvements in the control of the coal grinding...... such sources may vary unpredictably meaning that the desired level of generation cannot always be achieved upon request. On-demand production from controllable units, such as thermal power plants, must change quickly in order to ensure balance between consumer demands and electricity generation. Coal...

  18. DOE Coal Gasification Multi-Test Facility: fossil fuel processing technical/professional services

    Hefferan, J.K.; Lee, G.Y.; Boesch, L.P.; James, R.B.; Rode, R.R.; Walters, A.B.

    1979-07-13

    A conceptual design, including process descriptions, heat and material balances, process flow diagrams, utility requirements, schedule, capital and operating cost estimate, and alternative design considerations, is presented for the DOE Coal Gasification Multi-Test Facility (GMTF). The GMTF, an engineering scale facility, is to provide a complete plant into which different types of gasifiers and conversion/synthesis equipment can be readily integrated for testing in an operational environment at relatively low cost. The design allows for operation of several gasifiers simultaneously at a total coal throughput of 2500 tons/day; individual gasifiers operate at up to 1200 tons/day and 600 psig using air or oxygen. Ten different test gasifiers can be in place at the facility, but only three can be operated at one time. The GMTF can produce a spectrum of saleable products, including low Btu, synthesis and pipeline gases, hydrogen (for fuel cells or hydrogasification), methanol, gasoline, diesel and fuel oils, organic chemicals, and electrical power (potentially). In 1979 dollars, the base facility requires a $288 million capital investment for common-use units, $193 million for four gasification units and four synthesis units, and $305 million for six years of operation. Critical reviews of detailed vendor designs are appended for a methanol synthesis unit, three entrained flow gasifiers, a fluidized bed gasifier, and a hydrogasifier/slag-bath gasifier.

  19. Fossil fuel saving through a direct solar energy water heating system

    Michels, Ademar; Dias Mayer, Flavio; Gallon, Roger; Hoffmann, Ronaldo; Tiago Serafini, Seimur [Federal University of Santa Maria, Santa Maria-RS (Brazil)

    2008-09-15

    The global warming and energy crisis is motivating the search for sustainable power sources. The objective of this work is to analyze the economic return and quantify the reduction in the emission of pollutants, when low-cost solar collectors are used as a partial substitute for a boiler that uses fuel oil as the energy source, in order to heat water for the swimming pools of the Physical Education Center, Federal University of Santa Maria. The collectors are made from PVC and other easily acquired materials. The estimations for energy saving are based on a collecting area of 182 m{sup 2}. From knowledge of the collectors' efficiency, the mathematical demonstration shows a fuel oil saving of 13,174 kg, representing 24% of the total amount consumed per annum. The investment required for the construction and installation of the collectors is US$ 6,445 and the estimated useful live is five years. The internal rate of return is 30%. The emission of pollutants is reduced by a considerable amount of 41,213 kg CO{sub 2}equivalent/year. The use of direct sun energy as an alternative power source represents a significant economic interest as well as contributing to the mitigation of greenhouse gases. (Abstract Copyright [2008], Wiley Periodicals, Inc.)

  20. A Model of Carbon Capture and Storage with Demonstration of Global Warming Potential and Fossil Fuel Resource Use Efficiency

    Suebsiri, Jitsopa

    Increasing greenhouse gas concentration in the atmosphere influences global climate change even though the level of impact is still unclear. Carbon dioxide capture and storage (CCS) is increasingly seen as an important component of broadly based greenhouse gas reduction measures. Although the other greenhouse gases are more potent, the sheer volume of CO 2 makes it dominant in term of its effect in the atmosphere. To understand the implications, CCS activities should be studied from a full life cycle perspective. This thesis outlines the successful achievement of the objectives of this study in conducting life cycle assessment (LCA), reviewing the carbon dioxide implications only, combining two energy systems, coal-fired electrical generations and CO2 used for enhanced oil recovery (EOR). LCA is the primary approach used in this study to create a tool for CCS environmental evaluation. The Boundary Dam Power Station (BDPS) and the Weyburn-Midale CO 2 EOR Project in Saskatchewan, Canada, are studied and adopted as case scenarios to find the potential for effective application of CCS in both energy systems. This study demonstrates two levels of retrofitting of the BDPS, retrofit of unit 3 or retrofit of all units, combined with three options for CO 2 geological storage: deep saline aquifer, CO2 EOR, and a combination of deep saline aquifer storage and CO2 EOR. Energy output is considered the product of combining these two energy resources (coal and oil). Gigajoules (GJ) are used as the fundamental unit of measurement in comparing the combined energy types. The application of this tool effectively demonstrates the results of application of a CCS system concerning global warming potential (GWP) and fossil fuel resource use efficiency. Other environmental impacts could be analyzed with this tool as well. In addition, the results demonstrate that the GWP reduction is directly related to resource use efficiency. This means the lower the GWP of CCS, the lower resource use

  1. Complex methodology for determining the thermal properties of solid wastes from fossil fuels

    Belyaev, A.A.; Glushnev, S.V.; Ignatova, N.N.

    1983-01-01

    Comparative method based on theory is presented for determining the thermal capacity and heat conductivity of wastes from coal mining and processing. A schematic diagram of an apparatus for measuring thermal properties of solids is presented. The method described determines effective heat capacity and coefficient of heat conductivity. The accuracy of the method and its limitations in laboratory and industrial practice are discussed. (6 refs.)

  2. A research needs assessment for the capture, utilization and disposal of carbon dioxide from fossil fuel-fired power plants. Volume 2, Topical reports: Final report

    1993-07-01

    This study, identifies and assesses system approaches in order to prioritize research needs for the capture and non-atmospheric sequestering of a significant portion of the carbon dioxide (CO{sub 2}) emitted from fossil fuel-fired electric power plants (US power plants presently produce about 7% of the world`s CO{sub 2} emissions). The study considers capture technologies applicable either to existing plants or to those that optimistically might be demonstrated on a commercial scale over the next twenty years. The research needs that have high priority in establishing the technical, environmental, and economic feasibility of large-scale capture and disposal of CO{sub 2} from electric power plants are:(1) survey and assess the capacity, cost, and location of potential depleted gas and oil wells that are suitable CO{sub 2} repositories (with the cooperation of the oil and gas industry); (2) conduct research on the feasibility of ocean disposal, with objectives of determining the cost, residence time, and environmental effects for different methods of CO{sub 2} injection; (3) perform an in-depth survey of knowledge concerning the feasibility of using deep, confined aquifers for disposal and, if feasible, identify potential disposal locations (with the cooperation of the oil and gas industry); (4) evaluate, on a common basis, system and design alternatives for integration of CO{sub 2} capture systems with emerging and advanced technologies for power generation; and prepare a conceptual design, an analysis of barrier issues, and a preliminary cost estimate for pipeline networks necessary to transport a significant portion of the CO{sub 2} to potentially feasible disposal locations.

  3. Surface characterization of adsorbents in ultrasound-assisted oxidative desulfurization process of fossil fuels.

    Etemadi, Omid; Yen, Teh Fu

    2007-09-01

    Surface properties of two different phases of alumina were studied through SEM images. Characterization of amorphous acidic alumina and crystalline boehmite by XRD explains the differences in adsorption capacities of each sample. Data from small angle neutron scattering (SANS) provide further results regarding the ordering in amorphous and crystalline samples of alumina. Quantitative measurements from SANS are used for pore size calculations. Higher disorder provides more topological traps, irregularities, and hidden grooves for higher adsorption capacity. An isotherm model was derived for adsorption of dibenzothiophene sulfone (DBTO) by amorphous acidic alumina to predict and calculate the adsorption of sulfur compounds. The Langmuir-Freundlich model covers a wide range of sulfur concentrations. Experiments prove that amorphous acidic alumina is the adsorbent of choice for selective adsorption in the ultrasound-assisted oxidative desulfurization (UAOD) process to produce ultra-low-sulfur fuel (ULSF).

  4. TASK 3.4--IMPACTS OF COFIRING BIOMASS WITH FOSSIL FUELS

    Christopher J. Zygarlicke; Donald P. McCollor; Kurt E. Eylands; Melanie D. Hetland; Mark A. Musich; Charlene R. Crocker; Jonas Dahl; Stacie Laducer

    2001-08-01

    With a major worldwide effort now ongoing to reduce greenhouse gas emissions, cofiring of renewable biomass fuels at conventional coal-fired utilities is seen as one of the lower-cost options to achieve such reductions. The Energy & Environmental Research Center has undertaken a fundamental study to address the viability of cofiring biomass with coal in a pulverized coal (pc)-fired boiler for power production. Wheat straw, alfalfa stems, and hybrid poplar were selected as candidate biomass materials for blending at a 20 wt% level with an Illinois bituminous coal and an Absaloka subbituminous coal. The biomass materials were found to be easily processed by shredding and pulverizing to a size suitable for cofiring with pc in a bench-scale downfired furnace. A literature investigation was undertaken on mineral uptake and storage by plants considered for biomass cofiring in order to understand the modes of occurrence of inorganic elements in plant matter. Sixteen essential elements, C, H, O, N, P, K, Ca, Mg, S, Zn, Cu, Fe, Mn, B, Mo, and Cl, are found throughout plants. The predominant inorganic elements are K and Ca, which are essential to the function of all plant cells and will, therefore, be evenly distributed throughout the nonreproductive, aerial portions of herbaceous biomass. Some inorganic constituents, e.g., N, P, Ca, and Cl, are organically associated and incorporated into the structure of the plant. Cell vacuoles are the repository for excess ions in the plant. Minerals deposited in these ubiquitous organelles are expected to be most easily leached from dry material. Other elements may not have specific functions within the plant, but are nevertheless absorbed and fill a need, such as silica. Other elements, such as Na, are nonessential, but are deposited throughout the plant. Their concentration will depend entirely on extrinsic factors regulating their availability in the soil solution, i.e., moisture and soil content. Similarly, Cl content is determined

  5. Technical benchmarking of fossil energy sources to regenerative substitute fuels for medium speed for-stroke diesel engines; Technisches Benchmark fossiler Energietraeger zu regenerativen Substitutbrennstoffen fuer mittelschnelllaufende 4-Takt Dieselgeneratoren

    Schillings, Hubert

    2010-07-01

    Diesel engines were actually designed for fossil fuels. For this reason an operation with substitute fuels poses a special challenge. For example native oils/fats are elements comprising a range of more than 5000 chemically different substances. Each of these has individual characteristics which have to be considered during operation. Hence, an adapted operation is necessary. Typical damages include: 1. Cavitation pitting in the fuel injection system. 2. Precipitation of combustion residues in inlet and outlet. 3. Engine damages caused by lube oil dilution. 4. Engine damages caused by agglutination of lube oil. 5. Plugging of fuel conduit and filter systems caused by polymerization reactions. Practice has shown that the operational mode of engines are not generally reproducible. It is a fact that engines of the same type and manufacturer show a different operating performance. This is due to catalytic effects which can be traced back to the consistence of the material grade. Traditionally the material grades of these engines are designed for basic fuels. In contrast to that most of the substitute fuels (oils/fats) have distinctive acidic characteristics. The question in how far the catalytically active surfaces boost or avoid polymerization is part of current researches. (orig.)

  6. TASK 3.4--IMPACTS OF COFIRING BIOMASS WITH FOSSIL FUELS

    Christopher J. Zygarlicke; Donald P. McCollor; Kurt E. Eylands; Melanie D. Hetland; Mark A. Musich; Charlene R. Crocker; Jonas Dahl; Stacie Laducer

    2001-08-01

    With a major worldwide effort now ongoing to reduce greenhouse gas emissions, cofiring of renewable biomass fuels at conventional coal-fired utilities is seen as one of the lower-cost options to achieve such reductions. The Energy & Environmental Research Center has undertaken a fundamental study to address the viability of cofiring biomass with coal in a pulverized coal (pc)-fired boiler for power production. Wheat straw, alfalfa stems, and hybrid poplar were selected as candidate biomass materials for blending at a 20 wt% level with an Illinois bituminous coal and an Absaloka subbituminous coal. The biomass materials were found to be easily processed by shredding and pulverizing to a size suitable for cofiring with pc in a bench-scale downfired furnace. A literature investigation was undertaken on mineral uptake and storage by plants considered for biomass cofiring in order to understand the modes of occurrence of inorganic elements in plant matter. Sixteen essential elements, C, H, O, N, P, K, Ca, Mg, S, Zn, Cu, Fe, Mn, B, Mo, and Cl, are found throughout plants. The predominant inorganic elements are K and Ca, which are essential to the function of all plant cells and will, therefore, be evenly distributed throughout the nonreproductive, aerial portions of herbaceous biomass. Some inorganic constituents, e.g., N, P, Ca, and Cl, are organically associated and incorporated into the structure of the plant. Cell vacuoles are the repository for excess ions in the plant. Minerals deposited in these ubiquitous organelles are expected to be most easily leached from dry material. Other elements may not have specific functions within the plant, but are nevertheless absorbed and fill a need, such as silica. Other elements, such as Na, are nonessential, but are deposited throughout the plant. Their concentration will depend entirely on extrinsic factors regulating their availability in the soil solution, i.e., moisture and soil content. Similarly, Cl content is determined

  7. Is There a Future for Nuclear Power? Wind and Emission Reduction Targets in Fossil-Fuel Alberta.

    van Kooten, G Cornelis; Duan, Jun; Lynch, Rachel

    2016-01-01

    This paper explores the viability of relying on wind power to replace upwards of 60% of electricity generation in Alberta that would be lost if coal-fired generation is phased out. Using hourly wind data from 17 locations across Alberta, we are able to simulate the potential wind power output available to the Alberta grid when modern, 3.5 MW-capacity wind turbines are spread across the province. Using wind regimes for the years 2006 through 2015, we find that available wind power is less than 60% of installed capacity 98% of the time, and below 30% of capacity 74% of the time. There is only a small amount of correlation between wind speeds at different locations, but yet it remains necessary to rely on fossil fuel generation. Then, based on the results from a grid allocation model, we find that CO2 emissions can be reduced by about 30%, but only through a combination of investment in wind energy and reliance on purchases of hydropower from British Columbia. Only if nuclear energy is permitted into the generation mix would Alberta be able to meet its CO2-emissions reduction target in the electricity sector. With nuclear power, emissions can be reduced by upwards of 85%.

  8. Assessing the potential long-term increase of oceanic fossil fuel CO2 uptake due to CO2-calcification feedback

    T. M. Lenton

    2007-07-01

    Full Text Available Plankton manipulation experiments exhibit a wide range of sensitivities of biogenic calcification to simulated anthropogenic acidification of the ocean, with the "lab rat" of planktic calcifiers, Emiliania huxleyi apparently not representative of calcification generally. We assess the implications of this observational uncertainty by creating an ensemble of realizations of an Earth system model that encapsulates a comparable range of uncertainty in calcification response to ocean acidification. We predict that a substantial reduction in marine carbonate production is possible in the future, with enhanced ocean CO2 sequestration across the model ensemble driving a 4–13% reduction in the year 3000 atmospheric fossil fuel CO2 burden. Concurrent changes in ocean circulation and surface temperatures in the model contribute about one third to the increase in CO2 uptake. We find that uncertainty in the predicted strength of CO2-calcification feedback seems to be dominated by the assumption as to which species of calcifier contribute most to carbonate production in the open ocean.

  9. Conclusions drawn from actions implemented within the first stage of the Cracow program of energy conservation and clean fossil fuels

    Bieda, J.; Bardel, J.; Pierce, B.

    1995-12-31

    Since 1992 Brookhaven National Laboratory (BNL) and Pacific Northwest Laboratory (PNL), acting on behalf of the U.S. Department of Energy, executed the first stage of the Cracow Program of Energy Conservation and Clean Fossil Fuels, called also American-Polish Program of Actions for Elimination of Low Emission Sources in Cracow. The main contractor for BNL and PNL was the Cracow Development Office (BRK). The interest in improving the condition of Cracow air results from the fact that the standard for permissible air pollution was exceeded several times in Cracow and especially within the central part of the town. Therefore, air pollution appeared one of the most important problems that faced the municipal authorities. It followed from monitoring investigations that the high level of air pollutant concentration is caused by in-home coal-fired tile stoves operated in winter seasons and by coal- and coke-fired boiler houses simulated mainly in the central part of the town. The results obtained in first stage are presented. This paper is an attempt to formulate conclusions drawn from these works and recommendations with regard to the future policy of the town authorities; selected results are presented to clarify or illustrate the conclusions.

  10. Fossil fuel savings, carbon emission reduction and economic attractiveness of medium-scale integrated biomass gasification combined cycle cogeneration plants

    Kalina Jacek

    2012-01-01

    Full Text Available The paper theoretically investigates the system made up of fluidized bed gasifier, SGT-100 gas turbine and bottoming steam cycle. Different configurations of the combined cycle plant are examined. A comparison is made between systems with producer gas (PG and natural gas (NG fired turbine. Supplementary firing of the PG in a heat recovery steam generator is also taken into account. The performance of the gas turbine is investigated using in-house built Engineering Equation Solver model. Steam cycle is modeled using GateCycleTM simulation software. The results are compared in terms of electric energy generation efficiency, CO2 emission and fossil fuel energy savings. Finally there is performed an economic analysis of a sample project. The results show relatively good performance in the both alternative configurations at different rates of supplementary firing. Furthermore, positive values of economic indices were obtained. [Acknowledgements. This work was carried out within the frame of research project no. N N513 004036, titled: Analysis and optimization of distributed energy conversion plants integrated with gasification of biomass. The project is financed by the Polish Ministry of Science.

  11. Impact of alternate fuels on industrial refractories and refractory insulation applications. An Assessment

    Wei, G.C.; Tennery, V.J.

    1976-09-01

    The effects of use of alternate fuels such as distillate oils, residual oils, coal, producer gas, and electricity on refractory insulation are evaluated. Sections are included on alternate fuels for 1976 to 1980, assessment by industry of fuel conversion impact on industrial refractories in the period 1976 to 1980, interactions of alternate fuel combustion products with refractories and refractory insulation, and analysis of degradation mechanisms in refractories and refractory materials. (JRD)

  12. Year-round Source Contributions of Fossil Fuel and Biomass Combustion to Elemental Carbon on the North Slope Alaska Utilizing Radiocarbon Analysis

    Barrett, T. E.; Gustafsson, O.; Winiger, P.; Moffett, C.; Back, J.; Sheesley, R. J.

    2015-12-01

    It is well documented that the Arctic has undergone rapid warming at an alarming rate over the past century. Black carbon (BC) affects the radiative balance of the Arctic directly and indirectly through the absorption of incoming solar radiation and by providing a source of cloud and ice condensation nuclei. Among atmospheric aerosols, BC is the most efficient absorber of light in the visible spectrum. The solar absorbing efficiency of BC is amplified when it is internally mixed with sulfates. Furthermore, BC plumes that are fossil fuel dominated have been shown to be approximately 100% more efficient warming agents than biomass burning dominated plumes. The renewal of offshore oil and gas exploration in the Arctic, specifically in the Chukchi Sea, will introduce new BC sources to the region. This study focuses on the quantification of fossil fuel and biomass combustion sources to atmospheric elemental carbon (EC) during a year-long sampling campaign in the North Slope Alaska. Samples were collected at the Department of Energy Atmospheric Radiation Measurement (ARM) climate research facility in Barrow, AK, USA. Particulate matter (PM10) samples collected from July 2012 to June 2013 were analyzed for EC and sulfate concentrations combined with radiocarbon (14C) analysis of the EC fraction. Radiocarbon analysis distinguishes fossil fuel and biomass burning contributions based on large differences in end members between fossil and contemporary carbon. To perform isotope analysis on EC, it must be separated from the organic carbon fraction of the sample. Separation was achieved by trapping evolved CO2 produced during EC combustion in a cryo-trap utilizing liquid nitrogen. Radiocarbon results show an average fossil contribution of 85% to atmospheric EC, with individual samples ranging from 47% to 95%. Source apportionment results will be combined with back trajectory (BT) analysis to assess geographic source region impacts on the EC burden in the western Arctic.

  13. Proceedings of the symposium on potential health and environmental effects of synthetic fossil fuel technologies

    1979-07-01

    This symposium included five sessions. Session I dealt with the technology for contending with harmful effluents primarily from coal conversion processes. Session II was designed to address the need for the systematic application of existing capabilities to the collection and characterization of materials of importance to the life scientists. Session III had the underlying theme of the health effects research - biologists, chemists, and technologists working together to confront the problems of the emerging industries. Session IV provided the most recent data in the areas of atmospheric, solid, and liquid releases. Session V dealt with effects on humans and on those people who may potentially be affected by the toxic material that they produce. In summary, the sessions were: technology, chemical, characterization, biological effects, environmental and ecological effects and occupational health effects. 29 pages were included.

  14. Chemical and physical characterization of produced waters from conventional and unconventional fossil fuel resources.

    Alley, Bethany; Beebe, Alex; Rodgers, John; Castle, James W

    2011-09-01

    Characterization of produced waters (PWs) is an initial step for determining potential beneficial uses such as irrigation and surface water discharge at some sites. A meta-analysis of characteristics of five PW sources [i.e. shale gas (SGPWs), conventional natural gas (NGPWs), conventional oil (OPWs), coal-bed methane (CBMPWs), tight gas sands (TGSPWs)] was conducted from peer-reviewed literature, government or industry documents, book chapters, internet sources, analytical records from industry, and analyses of PW samples. This meta-analysis assembled a large dataset to extract information of interest such as differences and similarities in constituent and constituent concentrations across these sources of PWs. The PW data analyzed were comprised of 377 coal-bed methane, 165 oilfield, 137 tight gas sand, 4000 natural gas, and 541 shale gas records. Majority of SGPWs, NGPWs, OPWs, and TGSPWs contain chloride concentrations ranging from saline (>30000 mg L(-1)) to hypersaline (>40000 mg L(-1)), while most CBMPWs were fresh (water discharge, while OPW and CBMPW iron concentrations were less than the criterion. Approximately one-fourth of the PW samples in this database are fresh and likely need minimal treatment for metal and metalloid constituents prior to use, while some PWs are brackish (5000-30000 mg Cl(-) L(-1)) to saline containing metals and metalloids that may require considerable treatment. Other PWs are hypersaline and produce a considerable waste stream from reverse osmosis; remediation of these waters may not be feasible. After renovation, fresh to saline PWs may be used for irrigation and replenishing surface waters.

  15. Estimates of global, regional, and national annual CO{sub 2} emissions from fossil-fuel burning, hydraulic cement production, and gas flaring: 1950--1992

    Boden, T.A.; Marland, G. [Oak Ridge National Lab., TN (United States); Andres, R.J. [University of Alaska, Fairbanks, AK (United States). Inst. of Northern Engineering

    1995-12-01

    This document describes the compilation, content, and format of the most comprehensive C0{sub 2}-emissions database currently available. The database includes global, regional, and national annual estimates of C0{sub 2} emissions resulting from fossil-fuel burning, cement manufacturing, and gas flaring in oil fields for 1950--92 as well as the energy production, consumption, and trade data used for these estimates. The methods of Marland and Rotty (1983) are used to calculate these emission estimates. For the first time, the methods and data used to calculate CO, emissions from gas flaring are presented. This C0{sub 2}-emissions database is useful for carbon-cycle research, provides estimates of the rate at which fossil-fuel combustion has released C0{sub 2} to the atmosphere, and offers baseline estimates for those countries compiling 1990 C0{sub 2}-emissions inventories.

  16. Review of air quality modeling techniques. Volume 8. [Assessment of environmental effects of nuclear, geothermal, and fossil-fuel power plants

    Rosen, L.C.

    1977-01-01

    Air transport and diffusion models which are applicable to the assessment of the environmental effects of nuclear, geothermal, and fossil-fuel electric generation are reviewed. The general classification of models and model inputs are discussed. A detailed examination of the statistical, Gaussian plume, Gaussian puff, one-box and species-conservation-of-mass models is given. Representative models are discussed with attention given to the assumptions, input data requirement, advantages, disadvantages and applicability of each.

  17. Thermochemistry of the HOSO radical, a key intermediate in fossil fuel combustion.

    Wheeler, Steven E; Schaefer, Henry F

    2009-06-18

    Despite the key role of the HOSO radical in the combustion of sulfur-rich fuels, the thermochemistry of this simple species is not well-established. Due to the extraordinary sensitivity of the potential energy surface to basis set and electron correlation methods in ab initio computations, there is no consensus in the literature regarding the structure of the global minimum syn-HOSO. A definitive enthalpy of formation for HOSO is presented, based on systematically extrapolated ab initio energies, accounting for electron correlation primarily through coupled cluster theory, including up to single, double, and triple excitations with a perturbative correction for connected quadruple excitations [CCSDT(Q)]. These extrapolated valence electronic energies have been corrected for core-electron correlation, harmonic and anharmonic zero-point vibrational energy, and non-Born-Oppenheimer and scalar relativistic effects. Our final recommended enthalpy of formation is Delta(f)H(0)(o)(syn-HOSO) = -58.0 kcal mol(-1). The planar anti-HOSO transition state lies 2.28 kcal mol(-1) above the syn-HOSO minimum, while predicted reaction enthalpies for H + SO(2) --> HOSO, HOSO --> OH + SO, HOSO + H --> H(2) + SO(2), and OH + HOSO --> SO(2) + H(2)O are -38.6, 68.0, -64.4, and -80.1 kcal mol(-1), respectively. We provide incontrovertible evidence for a quasi-planar structure of the syn-HOSO radical, with a remarkably flat torsional energy surface, based on CCSD(T) geometries and harmonic vibrational frequencies energies with up to quintuple-zeta quality basis sets. The energy separation between planar syn-HOSO and the nonplanar global minimum is a mere 5 cm(-1) at the cc-pV(T+D)Z CCSD(T) level of theory. Computed fundamental vibrational frequencies for syn-HOSO and syn-DOSO based on a full quartic force-field evaluated at the cc-pV(T+d)Z CCSD(T) level of theory are in agreement with available experimental data. The present results confirm a previously tentative assignment of a band at

  18. Water impacts of CO2 emission performance standards for fossil fuel-fired power plants.

    Talati, Shuchi; Zhai, Haibo; Morgan, M Granger

    2014-10-21

    We employ an integrated systems modeling tool to assess the water impacts of the new source performance standards recently proposed by the U.S. Environmental Protection Agency for limiting CO2 emissions from coal- and gas-fired power plants. The implementation of amine-based carbon capture and storage (CCS) for 40% CO2 capture to meet the current proposal will increase plant water use by roughly 30% in supercritical pulverized coal-fired power plants. The specific amount of added water use varies with power plant and CCS designs. More stringent emission standards than the current proposal would require CO2 emission reductions for natural gas combined-cycle (NGCC) plants via CCS, which would also increase plant water use. When examined over a range of possible future emission standards from 1100 to 300 lb CO2/MWh gross, new baseload NGCC plants consume roughly 60-70% less water than coal-fired plants. A series of adaptation approaches to secure low-carbon energy production and improve the electric power industry's water management in the face of future policy constraints are discussed both quantitatively and qualitatively.

  19. Hawaii energy strategy project 2: Fossil energy review. Task 1: World and regional fossil energy dynamics

    Breazeale, K. [ed.; Isaak, D.T.; Yamaguchi, N.; Fridley, D.; Johnson, C.; Long, S.

    1993-12-01

    This report in the Hawaii Energy Strategy Project examines world and regional fossil energy dynamics. The topics of the report include fossil energy characteristics, the world oil industry including reserves, production, consumption, exporters, importers, refining, products and their uses, history and trends in the global oil market and the Asia-Pacific market; world gas industry including reserves, production, consumption, exporters, importers, processing, gas-based products, international gas market and the emerging Asia-Pacific gas market; the world coal industry including reserves, classification and quality, utilization, transportation, pricing, world coal market, Asia-Pacific coal outlook, trends in Europe and the Americas; and environmental trends affecting fossil fuels. 132 figs., 46 tabs.

  20. Potential for worldwide displacement of fossil-fuel electricity by nuclear energy in three decades based on extrapolation of regional deployment data.

    Staffan A Qvist

    Full Text Available There is an ongoing debate about the deployment rates and composition of alternative energy plans that could feasibly displace fossil fuels globally by mid-century, as required to avoid the more extreme impacts of climate change. Here we demonstrate the potential for a large-scale expansion of global nuclear power to replace fossil-fuel electricity production, based on empirical data from the Swedish and French light water reactor programs of the 1960s to 1990s. Analysis of these historical deployments show that if the world built nuclear power at no more than the per capita rate of these exemplar nations during their national expansion, then coal- and gas-fired electricity could be replaced worldwide in less than a decade. Under more conservative projections that take into account probable constraints and uncertainties such as differing relative economic output across regions, current and past unit construction time and costs, future electricity demand growth forecasts and the retiring of existing aging nuclear plants, our modelling estimates that the global share of fossil-fuel-derived electricity could be replaced within 25-34 years. This would allow the world to meet the most stringent greenhouse-gas mitigation targets.

  1. Molecular Characterization of Thiols in Fossil Fuels by Michael Addition Reaction Derivatization and Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry.

    Wang, Meng; Zhao, Suoqi; Liu, Xuxia; Shi, Quan

    2016-10-04

    Thiols widely occur in sediments and fossil fuels. However, the molecular composition of these compounds is unclear due to the lack of appropriate analytical methods. In this work, a characterization method for thiols in fossil fuels was developed on the basis of Michael addition reaction derivatization followed by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI FT-ICR MS). Model thiol compound studies showed that thiols were selectively reacted with phenylvinylsulfone and transformed to sulfones with greater than 98% conversions. This method was applied to a coker naphtha, light and heavy gas oils, and crude oils from various geological sources. The results showed that long alkyl chain thiols are readily present in petroleum, which have up to 30 carbon atoms. Large DBE dispersity of thiols indicates that naphthenic and aromatic thiols are also present in the petroleum. This method is capable of detecting thiol compounds in the part per million range by weight. This method allows characterization of thiols in a complex hydrocarbon matrix, which is complementary to the comprehensive analysis of sulfur compounds in fossil fuels.

  2. Determination of oil/water and octanol/water distribution coefficients from aqueous solutions from four fossil fuels. [MS thesis; in oil-water and octanol-water

    Thomas, B.L.

    1984-07-01

    Liquid fossil fuels, both petroleum and synthetically derived oils, are exceedingly complex mixtures of thousands of components. The effect of many of these energy-related components on the environment is largely unknown. Octanol/water distribution coefficients relate both to toxicity and to the bioaccumulation potential of chemical components. Use of these partition data in conjunction with component concentrations in the oils in environmental models provides important information on the fate of fossil fuel components when released to the environment. Octanol/water distribution data are not available for many energy-related organic compounds, and those data that are available have been determined for individual components in simple, one-component octanol/water equilibrium mixtures. In this study, methods for determining many octanol/water distribution coefficients from aqueous extracts of oil products were developed. Sample aqueous mixtures were made by equilibrating liquid fossil fuels with distilled water. This approach has the advantage of detecting interactions between components of interest and other sample components. Compound types studied included phenols, nitrogen bases, hydrocarbons, sulfur heterocyclic compounds, and carboxylic acids. Octanol/water distribution coefficients that were determined in this study ranged from 9.12 for aniline to 67,600 for 1,2-dimethylnaphthalene. Within a compound type, distribution coefficients increased logarithmically with increasing alkyl substitution and molecular weight. Additionally, oil/water distribution data were determined for oil components. These data are useful in predicting maximum environmental concentrations in water columns. 96 references, 26 figures, and 40 tables.

  3. Potential for worldwide displacement of fossil-fuel electricity by nuclear energy in three decades based on extrapolation of regional deployment data.

    Qvist, Staffan A; Brook, Barry W

    2015-01-01

    There is an ongoing debate about the deployment rates and composition of alternative energy plans that could feasibly displace fossil fuels globally by mid-century, as required to avoid the more extreme impacts of climate change. Here we demonstrate the potential for a large-scale expansion of global nuclear power to replace fossil-fuel electricity production, based on empirical data from the Swedish and French light water reactor programs of the 1960s to 1990s. Analysis of these historical deployments show that if the world built nuclear power at no more than the per capita rate of these exemplar nations during their national expansion, then coal- and gas-fired electricity could be replaced worldwide in less than a decade. Under more conservative projections that take into account probable constraints and uncertainties such as differing relative economic output across regions, current and past unit construction time and costs, future electricity demand growth forecasts and the retiring of existing aging nuclear plants, our modelling estimates that the global share of fossil-fuel-derived electricity could be replaced within 25-34 years. This would allow the world to meet the most stringent greenhouse-gas mitigation targets.

  4. Intelligent system of aid for the starting of fossil fuel units; Sistema inteligente de ayuda para el arranque de unidades termoelectricas

    Suarez Cerda, Dionisio A; Ibargueengoytia Gonzalez, Pablo H; Villavicencio Ramirez, Alejandro [Instituto de Investigaciones Electricas, Temixco, Morelos (Mexico)

    1999-07-01

    In this article the aid system for the starting of fossil fuel units is described (SIAAT) based on techniques of artificial intelligence, that the Management of Supervision of Processes of the Instituto de Investigaciones Electricas (IIE) develops. It analyzes the problem of the starting of fossil fuel units, which sets out to solve through computer techniques based on artificial intelligence. The system architecture is proposed and the challenges that are due to face are mentioned so that the system works in line with the process and along with it. In addition to the technical aspects covered in the project, the more relevant results that make an impact in the expectations of application of the system are mentioned, as well as the expected benefits of its use in fossil fuel power stations. [Spanish] En este articulo se describe el Sistema de ayuda para el Arranque de Unidades Termoelectricas (SIAAT) basado en tecnicas de inteligencia artificial, que desarrolla la Gerencia de Supervision de Procesos del Instituto de Investigaciones Electricas (IIE). Se analiza el problema del arranque de unidades termoelectricas, el cual se propone resolver a traves de tecnicas computacionales basadas en inteligencia artificial. Se presenta la arquitectura del sistema y se mencionan los retos que se deben enfrentar para que el sistema funcione en linea junto con el proceso. Ademas de los aspectos tecnicos abordados en el proyecto, se mencionan los resultados mas relevantes que impactan en las expectativas de aplicacion del sistema, asi como los beneficios esperados de su uso en centrales termoelectricas.

  5. Combustion of Sewage Sludge as Alternative Fuel for Cement Industry

    LI Fuzhou; ZHANG Wei

    2011-01-01

    The combustion of sewage sludge and coal was studied by thermogravimetric analysis.Both differential scanning calorimetric analysis and derivative thermogravimetric profiles showed differences between combustion of sewage sludge and coal, and non-isothermal kinetics analysis method was applied to evaluate the combustion process. Based on Coats-Redfem integral method, some reaction models were tested,the mechanism and kinetics of the combustion reaction were discussed. The results show that the combustion of sewage sludge is mainly in the Iow temperature stage, meanwhile the ignition temperature and Arrhenius activation energy are lower than that of coal. The combustion of sewage sludge has the advantage over coal in some aspects, thus sewage sludge can partly replace coal used as cement industry fuel.

  6. Combined Heat and Power Market Potential for Opportunity Fuels

    Jones, David [Resource Dynamics Corporation, McLean, VA (United States); Lemar, Paul [Resource Dynamics Corporation, McLean, VA (United States

    2015-12-01

    This report estimates the potential for opportunity fuel combined heat and power (CHP) applications in the United States, and provides estimates for the technical and economic market potential compared to those included in an earlier report. An opportunity fuel is any type of fuel that is not widely used when compared to traditional fossil fuels. Opportunity fuels primarily consist of biomass fuels, industrial waste products and fossil fuel derivatives. These fuels have the potential to be an economically viable source of power generation in various CHP applications.

  7. GNOCIS - an on-line NO{sub X} emission and plant performance optimizer for fossil fuel-fired power plants

    Sorge, J.N.; Stallings, J.W.; Smouse, S.M. [Southern Company Services, Inc., Birmingham, AL (United States)

    1997-12-31

    The Generic NO{sub x} Control Intelligent System (GNOCIS) is an on-line enhancement to existing digital control systems (DCS) designed to reduce NO{sub x} emissions from fossil fuel-fired boilers while meeting other operational constraints on the unit (principally heat rate and other regulated emissions). Using artificial intelligence techniques, GNOCIS utilizes a model of the combustion characteristics of the boiler that includes NO{sub x} emissions and boiler efficiency. The software applies an optimizing procedure to identify the best set points for the plant, which can be implemented automatically without operator intervention in a closed-loop mode, or at the plant`s discretion, conveyed to the plant operators for implementation in an open-loop mode. GNOCIS can be viewed as a low-cost long-term means to maintain short-term optimized plant performance. Development of GNOCIS was funded by a consortium consisting of the Electric Power Research Institute, PowerGen, Radian International, Southern Company, U.K. Department of Trade and Industry, and U.S. Department of Energy. The first commercial installation of GNOCIS was at Georgia Power`s Hammond Unit 4, a 500 MW opposed wallfired boiler. Hammond Unit 4 serves as the host site of a U.S. Department of Energy Clean Coal Technology (CCT) Program project, wherein a stepwise long-term evaluation of three technologies to reduce NO{sub x} emissions was conducted: (1) Advanced Overfire Air (AOFA), (2) Low NO{sub x} Burners (LNB), and (3) LNB + AOFA. A general overview of the CCT project and GNOCIS technology is presented along with performance results from Plant Hammond. Preliminary GNOCIS data from Hammond Unit 4 show an efficiency gain of 0.5 percent, a reduction in fly ash loss-on-ignition of 1-3 percentage points, and NO{sub x} reduction of 10-15 percent at full load. 7 refs., 10 figs., 5 tabs.

  8. Methods of economic analysis applied to fusion research: discount rate determination and the fossil fuel price effect

    1978-09-25

    In current and previous efforts, ECON has provided a preliminary economic assessment of a fusion research program. Part of this effort was the demonstration of a methodology for the estimation of reactor system costs and risk and for the treatment of program alternatives as a series of steps (tests) to buy information, thereby controlling program risk and providing a sound economic rationale for properly constructed research programs. The first phase of work also identified two areas which greatly affect the overall economic evaluation of fusion research and which warranted further study in the second phase. This led to the two tasks of the second phase reported herein: (1) discount rate determination and (2) evaluation of the effect of the expectation of the introduction of fusion power on current fossil fuel prices. In the first task, various conceptual measures of the social rate of discount were reviewed and critiqued. In the second task, a benefit area that had been called out by ECON was further examined. Long-range R and D yields short-term benefits in the form of lower nonrenewable energy resource prices because the R and D provides an expectation of future competition for the remaining reserves at the time of technology availability. ECON developed a model of optimal OPEC petroleum pricing as a function of the expectation of future competing technologies. It was shown that the existence of this expectation lowers the optimal OPEC export price and that accelerated technology R and D programs should provide further price decreases. These price reductions translate into benefits to the U.S. of at least a billion dollars.

  9. On the Ability of Ascends to Constrain Fossil Fuel, Ocean and High Latitude Emissions: Flux Estimation Experiments

    Crowell, S.; Kawa, S. R.; Hammerling, D.; Moore, B., III; Rayner, P. J.

    2014-12-01

    In Hammerling et al., 2014 (H14) the authors demonstrated a geostatistical method for mapping satellite estimates of column integrated CO2 mixing ratio, denoted XCO2, that incorporates the spatial variability in satellite-measured XCO2 as well as measurement precision. The goal of the study was to determine whether the Active Sensing of CO2 over Nights, Days and Seasons (ASCENDS) mission would be able to detect changes in XCO2 given changes in the underlying fluxes for different levels of instrument precision. Three scenarios were proposed: a flux-neutral shift in fossil fuel emissions from Europe to China (shown in the figure); a permafrost melting event; interannual variability in the Southern Oceans. The conclusions of H14 were modest but favorable for detectability in each case by ASCENDS given enough observations and sufficient precision. These signal detection experiments suggest that ASCENDS observations, together with a chemical transport model and data assimilation methodology, would be sufficient to provide quality estimates of the underlying surface fluxes, so long as the ASCENDS observations are precise enough. In this work, we present results that bridge the gap between the previous signal detection work by [Hammerling et al., 2014] and the ability of transport models to recover flux perturbations from ASCENDS observations utilizing the TM5-4DVAR data assimilation system. In particular, we will explore the space of model and observational uncertainties that will yield useful scientific information in each of the flux perturbation scenarios. This work will give a sense of the ability of ASCENDS to answer key questions about some of the foremost questions in carbon cycle science today. References: Hammerling, D., Kawa, S., Schaefer, K., and Michalak, A. (2014). Detectability of CO2 flux signals by a space-based lidar mission. Submitted.

  10. Development of Metal Oxide Nanostructure-based Optical Sensors for Fossil Fuel Derived Gases Measurement at High Temperature

    Chen, Kevin

    2014-08-31

    operation temperature up to 750oC, first distributed chemical measurements at the record high temperature up to 700oC, first distributed pressure measurement at the record high temperature up to 800oC, and the fiber laser sensors with the record high operation temperature up to 700oC. The research performed by this program dramatically expand the functionality, adaptability, and applicability of distributed fiber optical sensors with potential applications in a number of high-temperature energy systems such as fossil-fuel power generation, high-temperature fuel cell applications, and potential for nuclear energy systems.

  11. Development of Metal Oxide Nanostructure-based Optical Sensors for Fossil Fuel Derived Gases Measurement at High Temperature

    Chen, Kevin P. [Univ. of Pittsburgh, PA (United States)

    2015-02-13

    operation temperature up to 750°C, first distributed chemical measurements at the record high temperature up to 700°C, first distributed pressure measurement at the record high temperature up to 800°C, and the fiber laser sensors with the record high operation temperature up to 700°C. The research performed by this program dramatically expand the functionality, adaptability, and applicability of distributed fiber optical sensors with potential applications in a number of high-temperature energy systems such as fossil-fuel power generation, high-temperature fuel cell applications, and potential for nuclear energy systems.

  12. Source attribution of fossil-fuel emissions at the urban scale using stable isotopologues of carbon-dioxide (Invited)

    Christen, A.; Ketler, R.; Nesic, Z.; Roth, M.; Schwendenmann, L.

    2013-12-01

    Can atmospheric measurements be used to constrain estimates of sector-specific CO2 emissions at the urban scale? In a pilot-study in the Vancouver Metropolitan Region, BC, Canada, we explored the potential of using time-series of the stable carbon isotope composition of CO2 in the urban atmosphere to identify and separate fossil-fuel (FF) emission sources. For extended periods in winter, spring and summer of 2012/13, total CO2 concentration, δ13C and δ18O in CO2 was measured in the urban atmosphere over the Vancouver Metropolitan Region using a tunable diode laser absorption system (TGA 200, Campbell Scientific, Logan, UT, USA). The system continuously sampled outdoor air and was calibrated against NOAA standard gases with a precision of 0.1 per mil and 0.4 per mil for δ13C and δ18O in CO2, respectively. Time series are analyzed in combination with meteorological data (mixed layer height, wind direction). Data conditionally sampled for selected wind direction was used to determine intercepts using Keeling-plots, assuming that the urban boundary layer is well mixed and the two dominant FF sources are natural gas and gasoline. Source attributions based on those atmospheric measurements are compared to the Community Energy and Emissions Inventory (CEEI) for Metro Vancouver 2010 which is based on an fuel-consumption and bottom-up modeling approach and distributed using traffic counts, utility data and building energy modeling on a monthly scale. The emission source attribution using isotopologues is promising, in particular given that the measurements are made at a single site - likely because the Vancouver Metropolitan Region is an isolated urbanized region commonly experiencing background-air inflow from the Pacific. In January, the isotopologue approach proposes that 53% of the CO2 emissions in the urban boundary layer originate from natural gas, the primary fuel for home heating, which matches relatively well the distributed CEEI data for the same month (58

  13. Where do fossil fuel carbon dioxide emissions from California go? An analysis based on radiocarbon observations and an atmospheric transport model

    Riley, W.J.; Hsueh, D.Y.; Randerson, J.T.; Fischer, M.L.; Hatch, J.G.; Pataki, D.E.; Wang, W.; Goulden, M.L.

    2008-05-01

    Characterizing flow patterns and mixing of fossil fuel-derived CO{sub 2} is important for effectively using atmospheric measurements to constrain emissions inventories. Here we used measurements and a model of atmospheric radiocarbon ({sup 14}C) to investigate the distribution and fluxes of atmospheric fossil fuel CO{sub 2} across the state of California. We sampled {sup 14}C in annual C{sub 3} grasses at 128 sites and used these measurements to test a regional model that simulated anthropogenic and ecosystem CO{sub 2} fluxes, transport in the atmosphere, and the resulting {sup 14}C of annual grasses ({Delta}{sub g}). Average measured {Delta}{sub g} in Los Angeles, San Francisco, the Central Valley, and the North Coast were 27.7 {+-} 20.0, 44.0 {+-} 10.9, 48.7 {+-} 1.9, and 59.9 {+-} 2.5{per_thousand}, respectively, during the 2004-2005 growing season. Model predictions reproduced regional patterns reasonably well, with estimates of 27.6 {+-} 2.4, 39.4 {+-} 3.9, 46.8 {+-} 3.0, and 59.3 {+-} 0.2{per_thousand} for these same regions and corresponding to fossil fuel CO{sub 2} mixing ratios (Cf) of 13.7, 6.1, 4.8, and 0.3 ppm. {Delta}{sub g} spatial heterogeneity in Los Angeles and San Francisco was higher in the measurements than in the predictions, probably from insufficient spatial resolution in the fossil fuel inventories (e.g., freeways are not explicitly included) and transport (e.g., within valleys). We used the model to predict monthly and annual transport patterns of fossil fuel-derived CO{sub 2} within and out of California. Fossil fuel CO{sub 2} emitted in Los Angeles and San Francisco was predicted to move into the Central Valley, raising Cf above that expected from local emissions alone. Annually, about 21, 39, 35, and 5% of fossil fuel emissions leave the California airspace to the north, east, south, and west, respectively, with large seasonal variations in the proportions. Positive correlations between westward fluxes and Santa Ana wind conditions were

  14. Distributions of fossil fuel originated CO{sub 2} in five metropolitan areas of Korea (Seoul, Busan, Daegu, Daejeon, and Gwangju) according to the {Delta}{sup 14}C in ginkgo leaves

    Park, J.H.; Hong, W. [Korea Institute of Geoscience and Mineral Resources, 124 Gwahang-no Yuseong, Daejeon 305-350 (Korea, Republic of); Park, G., E-mail: junghun@kigam.re.kr [Korea Institute of Geoscience and Mineral Resources, 124 Gwahang-no Yuseong, Daejeon 305-350 (Korea, Republic of); Sung, K.S.; Lee, K.H.; Kim, Y.E.; Kim, J.K.; Choi, H.W.; Kim, G.D.; Woo, H.J. [Korea Institute of Geoscience and Mineral Resources, 124 Gwahang-no Yuseong, Daejeon 305-350 (Korea, Republic of)

    2013-01-15

    We collected a batch of ginkgo (Ginkgo biloba Linnaeus) leaf samples at five metropolitan areas of Korea (Seoul, Busan, Daegu, Daejeon, and Gwangju) in 2009 to obtain the regional distribution of fossil fuel originated CO{sub 2} (fossil fuel CO{sub 2}) in the atmosphere. Regions assumed to be free of fossil fuel CO{sub 2} were also selected, namely Mt. Chiak, Mt. Kyeryong, Mt. Jiri, Anmyeon Island, and Jeju Island and ginkgo leaf samples were collected in those areas during the same period. The {Delta}{sup 14}C values of the samples were measured using Accelerator Mass Spectrometry (AMS) and the fossil fuel CO{sub 2} ratios in the atmosphere were obtained in the five metropolitan areas. The average ratio of fossil fuel CO{sub 2} in Seoul was higher than that in the other four cities. The leaves from the Sajik Tunnel in Seoul recorded the highest FFCTC (fossil fuel CO{sub 2} over total CO{sub 2} in atmosphere), 13.9 {+-} 0.5%, as the air flow of the surrounding neighborhood of the Sajik Tunnel was blocked.

  15. Heat for industry from nuclear reactors

    Kikoin, I.K.; Novikov, V.M.

    Two factors which incline nations toward the use of heat from nuclear reactors for industrial use are: 1) exhaustion of cheap fossil fuel resources, and 2) ecological problems associated both with extraction of fossil fuel from the earth and with its combustion. In addition to the usual problems that beset nuclear reactors, special problems associated with using heat from nuclear reactors in various industries are explored.

  16. Modelling socio-metabolic transitions: The historical take-off, the acceleration of fossil fuel use, and the 1970s oil price shock - the first trigger of a future decline?

    Wiedenhofer, Dominik; Rovenskaya, Elena; Krausmann, Fridolin; Haas, Willi; Fischer-Kowalski, Marina

    2013-04-01

    By talking about socio-metabolic transitions, we talk about changes in the energy base of socio-economic systems, leading to fundamental changes in social and environmental relations. This refers to the historical shift from a biomass-based (agrarian) economy to a fossil fuel based (industrial) economy just as much as to a future shift from fossil fuels to renewable energy carriers. In our presentation, • We will first show that this pattern of transition can be identified for most high income industrial countries: the later the transition started, the faster it proceeded, and the turning point to stabilization of metabolic rates in all of them happened in the early 1970ies. Due to the inherent non-linearity of this process, two approaches will be aplied to estimate parameters for the starting point, transition speed and saturation level: firstly a combination of an expontential and a generalized logistic function and secondly a Gompertz function. For both an iterative test procedure is applied to find the global minimum of the residual error for the whole function and all its parameters. This theory-based approach allows us to apply a robust methodology across all cases, thereby yielding results which can be generalized. • Next, we will show that this was not just a "historical" socio-ecological transition, however. Currently, a substantial number of countries comprising more than half of the world's population are following a similar transitional pathway at an ever accelerating pace. Based on empirical data on physical resource use and the above sketched methodology, we can show that these so-called emerging economies are currently in the take-off or acceleration phase of the very same transition. • Apart from these "endogenous" processes of socio-metabolic transition, we will investigate the effect of external shocks and their impact on the dynamics of energy and materials use. The first such shock we will explore is the oil crisis of 1972 that possibly

  17. Problems with fossil fuels

    Smedsvig, K.G. [AEDENAT, Madrid (Spain)

    1995-10-01

    Three coal-fired power plants are responsible for 60% of the Spanish emissions of sulphur dioxide. These are: the As Pontes and the Meirama plants fired with brown lignite and the Andorra plant fired with black lignite. Permissible emission limits of SO{sub 2} were increased from 8000 mg/m{sup 3} to 12,500 mg/m{sup 3} when the As Pontes and Andorra plants were put into operation. As Pontes will change from brown lignite to imported hard coal to reduce sulphur emissions but this coal will have to be hauled 50 km by 750 20-ton trucks, or one every other minute in each direction, around the clock, from port to power plant. The Andorra complex, will be equipped for flue gas desulphurisation. Two new plants included in the programme of the state-owned ENDESA power company include a 175 MW generator with fluidised-bed combustion and a 350 MW installation for coal gasification. ENDESA has been criticised by AEDENAT the Spanish environmentalist group for continued investment in nuclear plants and little use of renewable resources. This short paper is based on an article by AEDENAT entitled `Atmospheric pollutants from electric power generation in peninsular Spain`. 1 ref., 1 fig.

  18. Identifying Opportunities and Impacts of Fuel Switching in the Industrial Sector

    Jain, Ramesh C. [Industrial Technologies Program, Washington, DC (United States); Jamison, Keith [Energetics Inc., Columbia, MD (United States); Thomas, Daniel E. [Energetics Inc., Columbia, MD (United States)

    2006-08-01

    The underlying purpose of this white paper is to examine fuel switching opportunities in the U.S. industrial sector and make strategic recommendations—leading to application of the best available technologies and development of new technologies—that will introduce fuel use flexibility as an economically feasible option for plant operators, as a means to condition local fuel demands and a hedge against the local rises in fuel prices.

  19. Refuse derived fuel (RDF) plasma torch gasification as a feasible route to produce low environmental impact syngas for the cement industry.

    López-Sabirón, Ana M; Fleiger, Kristina; Schäfer, Stefan; Antoñanzas, Javier; Irazustabarrena, Ane; Aranda-Usón, Alfonso; Ferreira, Germán A

    2015-08-01

    Plasma torch gasification (PTG) is currently researched as a technology for solid waste recovery. However, scientific studies based on evaluating its environmental implications considering the life cycle assessment (LCA) methodology are lacking. Therefore, this work is focused on comparing the environmental effect of the emissions of syngas combustion produced by refuse derived fuel (RDF) and PTG as alternative fuels, with that related to fossil fuel combustion in the cement industry. To obtain real data, a semi-industrial scale pilot plant was used to perform experimental trials on RDF-PTG.The results highlight that PTG for waste to energy recovery in the cement industry is environmentally feasible considering its current state of development. A reduction in every impact category was found when a total or partial substitution of alternative fuel for conventional fuel in the calciner firing (60 % of total thermal energy input) was performed. Furthermore, the results revealed that electrical energy consumption in PTG is also an important parameter from the LCA approach.

  20. Industrial Fuel Gas Demonstration Plant Program: environmental permit compliance plan

    Bodamer, Jr., James W.; Bocchino, Robert M.

    1979-11-01

    This Environmental Permit Compliance Plan is intended to assist the Memphis Light, Gas and Water Division in acquiring the necessary environmental permits for their proposed Industrial Fuel Gas Demonstration Plant in a time frame consistent with the construction schedule. Permits included are those required for installation and/or operation of gaseous, liquid and solid waste sources and disposal areas. Only those permits presently established by final regulations are described. The compliance plan describes procedures for obtaining each permit from identified federal, state and local agencies. The information needed for the permit application is presented, and the stepwise procedure to follow when filing the permit application is described. Information given in this plan was obtained by reviewing applicable laws and regulations and from telephone conversations with agency personnel on the federal, state and local levels. This Plan also presents a recommended schedule for beginning the work necessary to obtain the required environmental permits in order to begin dredging operations in October, 1980 and construction of the plant in September, 1981. Activity for several key permits should begin as soon as possible.

  1. Sustainability of the Biorefinery Industry for Fuel Production

    Paulo Cesar Barbosa

    2013-01-01

    Full Text Available Biofuels have been extensively explored and applied in the Brazilian market. In Brazil, ethanol and biodiesel are produced on an industrial scale. Ethanol is commercialized and used in engines in both the hydrated form (96% °GL and the anhydrous form, mixed with gasoline at a proportion of up to 25% by volume. In turn, biodiesel is blended with diesel in a proportion of 5% by volume. Thus, the goal of the use of biofuels is to contribute to the mitigation of greenhouse gases and other pollutants emitted into the atmosphere during burning. This article describes some recent developments in the characterization of the environmental and economic impacts of the production of these biofuels from different biomass sources. On this regard, this review presents results of life-cycle assessments (LCAs, life-cycle cost assessments (LCCAs and Structural Path Analysis (SPA, this last one depicting a sectorial perspective rather than LCA process level data approaches. The results showed that the inclusion of biofuels in transportation activities can lead to the mitigation of the environmental impacts of certain activities, such as emissions of greenhouse gases. However, greater attention must be paid to the improvement of agricultural management to decrease fuel, fertilizer and herbicide consumption.

  2. Energy Economical and Environmental Analysis of Industrial Boilers Using Fuel Switching

    Abdelaziz Emdeldin Atabani; Saidur Rahman; Arridina Susan Silitonga; Abdi Hanra Sebayang

    2011-01-01

    The successful implementation of the industrialization plan  in Malaysia  in 1985 has led to change this country from an agricultural economy into industrial based economy. The industrial sector represents the highest consuming sector across all other sectors and accounts for about 48% of all total  energy demand. This study is concerned with an energy saving, economic and environmental analysis of industrial boilers in Malaysian paper and pulp industries when applying the concept of fuel swi...

  3. Effects of aqueous effluents from in situ fossil fuel processing technologies on aquatic systems. Annual progress report, January 1-December 31, 1979

    Bergman, H.L.

    1980-01-04

    This is the third annual progress report for a continuing EPA-DOE jointly funded project to evaluate the effects of aqueous effluents from in situ fossil-fuel processing technologies on aquatic biota. The project is organized into four project tasks: (1) literature review; (2) process water screening; (3) methods development; and (4) recommendations. Our Bibliography of aquatic ecosystem effects, analytical methods and treatment technologies for organic compounds in advanced fossil-fuel processing effluents was submitted to the EPA for publication. The bibliography contains 1314 citations indexed by chemicals, keywords, taxa and authors. We estimate that the second bibliography volume will contain approximately 1500 citations and be completed in February. We compiled results from several laboratories of inorganic characterizations of 19 process waters: 55 simulated in situ oil-shale retort waters; and Hanna-3, Hanna-4B 01W and Lawrence Livermore Hoe Creek underground coal gasification condenser waters. These process waters were then compared to a published summary of the analyses from 18 simulated in situ oil-shale retort waters. We completed this year 96-h flow-through toxicity bioassays with fathead minnows and rainbow trout and 48-h flow-through bioassays with Daphnia pulicaria exposed to 5 oil-shale process waters, 1 tar-sand process water, 2 underground coal gasification condenser waters, 1 post-gasification backflood condenser water, as well as 2 bioassays with fossil-fuel process water constituents. The LC/sub 50/ toxicity values for these respective species when exposed to these waters are given in detail. (LTN)

  4. Intelligent support system online for the operation of fossil fuel units; Sistema inteligente de ayuda en linea para la operacion de unidades termoelectricas

    Quintero R, Agustin; Suarez C, Dionisio A; Sanchez L, Jose Alfredo [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico)

    2006-07-01

    The purpose of this publication is to present a support system online for the operation (SAO) of fossil fuel units, having as objective to support the operator of fossil fuel units when handling guidelines and essential information to carry out the starting and shutdown in a safe and efficient way, reducing the consumption of the useful life of the steam generator and the turbine, as well as the operational cost. Here are presented the intelligent systems for the support of the operation and are described the main characteristics in the dominion of application for the support system, its architecture and functionality, as well as the results obtained in the system assessment performed with the aid of total reach simulator of a fossil fuel unit and a pilot unit. [Spanish] Es motivo de esta publicacion, la presentacion de un sistema de ayuda en linea para la operacion (SAO) de unidades termoelectricas que tiene como objetivo asistir al operador de una unidad termoelectrica con guias de manejo e informacion esencial para llevar a cabo el arranque o paro en forma segura y eficiente, reducir el consumo de vida util del generador de vapor y la turbina, asi como el costo de operacion. Aqui se presentan los sistemas inteligentes de ayuda a la operacion y se describen las caracteristicas principales del dominio de aplicacion para el sistema de ayuda, su arquitectura y funcionalidad, asi como los resultados obtenidos de la evaluacion del sistema realizada con la ayuda de un simulador de alcance total de una unidad termoelectrica y una unidad piloto.

  5. Results concerning a clean co-combustion technology of waste biomass with fossil fuel, in a pilot fluidised bed combustion facility

    Ionel, Ioana; Trif-Tordai, Gavril; Ungureanu, Corneliu; Popescu, Francisc; Lontis, Nicolae [Politehnica Univ. Timisoara (Romania). Faculty for Mechanical Engineering

    2008-07-01

    The research focuses on a facility, the experimental results, interpretation and future plans concerning a new developed technology of using waste renewable energy by applying the cocombustion of waste biomass with coal, in a fluidised bed system. The experimental facility is working entirely in accordance to the allowed limits for the exhaust flue gas concentration, with special concern for typical pollutants. The experiments conclude that the technology is cleaner, has as main advantage the possibility to reduce both the SO{sub 2} and CO{sub 2} exhaust in comparison to standard fossil fuel combustion, under comparable circumstances. The combustion is occurring in a stable fluidised bed. (orig.)

  6. Oxidation of dibenzothiophene as a model substrate for the removal of organic sulphur from fossil fuels by iron(III ions generated from pyrite by Acidithiobacillus ferrooxidans

    VLADIMIR P. BESKOSKI

    2007-06-01

    Full Text Available Within this paper a new idea for the removal of organically bonded sulphur from fossil fuels is discussed. Dibenzothiophene (DBT was used as a model compound of organicmolecules containing sulphur. This form of (biodesulphurization was performed by an indirect mechanism in which iron(III ions generated from pyrite by Acidithiobacillus ferrooxidans performed the abiotic oxidation. The obtained reaction products, dibenzothiopene sulfoxide and dibenzothiophene sulfone, are more soluble in water than the basic substrate and the obtained results confirmed the basic hypothesis and give the posibility of continuing the experiments related to application of this (biodesulphurization process.

  7. Exploring the Relationship of Organizational Culture and Implicit Leadership Theory to Performance Differences in the Nuclear and Fossil Energy Industry

    Cravey, Kristopher J.

    Notable performance differences exist between nuclear and fossil power generation plants in areas such as safety, outage duration efficiency, and capacity factor. This study explored the relationship of organizational culture and implicit leadership theory to these performance differences. A mixed methods approach consisting of quantitative instruments, namely the Organizational Culture Assessment Instrument and the GLOBE Leadership Scales, and qualitative interviews were used in this study. Subjects were operations middle managers in a U.S. energy company that serves nuclear or fossil power plants. Results from the quantitative instruments revealed no differences between nuclear and fossil groups in regards to organizational culture types and implicit leadership theories. However, the qualitative results did reveal divergence between the two groups in regards to what is valued in the organization and how that drives behaviors and decision making. These organizational phenomenological differences seem to explain why performance differences exist between nuclear and fossil plants because, ultimately, they affect how the organization functions.

  8. Combustion of solid alternative fuels in the cement kiln burner

    Nørskov, Linda Kaare

    In the cement industry there is an increasing environmental and financial motivation for substituting conventional fossil fuels with alternative fuels, being biomass or waste derived fuels. However, the introduction of alternative fuels may influence emissions, cement product quality, process...... stability, and process efficiency. Alternative fuel substitution in the calciner unit has reached close to 100% at many cement plants and to further increase the use of alternative fuels rotary kiln substitution must be enhanced. At present, limited systematic knowledge of the alternative fuel combustion...... modelling, data collection and observations at an industrial cement plant firing alternative fuels. Alternative fuels may differ from conventional fossil fuels in combustion behaviour through differences in physical and chemical properties and reaction kinetics. Often solid alternative fuels are available...

  9. Alternative Fuels in Cement Production

    Larsen, Morten Boberg

    for the most significant alternative fuel energy contributors in the German cement industry. Solid alternative fuels are typically high in volatile content and they may differ significantly in physical and chemical properties compared to traditional solid fossil fuels. From the process point of view......The substitution of alternative for fossil fuels in cement production has increased significantly in the last decade. Of these new alternative fuels, solid state fuels presently account for the largest part, and in particular, meat and bone meal, plastics and tyre derived fuels (TDF) accounted......, considering a modern kiln system for cement production, the use of alternative fuels mainly influences 1) kiln process stability (may accelerate build up of blockages preventing gas and/or solids flow), 2) cement clinker quality, 3) emissions, and 4) decreased production capacity. Kiln process stability...

  10. Innovative fossil fuel fired vitrification technology for soil remediation. Volume 1, Phase 1: Annual report, September 28, 1992--August 31, 1993

    1993-08-01

    Vortex has successfully completed Phase 1 of the ``Innovative Fossil Fuel Fired Vitrification Technology for Soil Remediation`` program with the Department of Energy (DOE) Morgantown Energy Technology Center (METC). The Combustion and Melting System (CMS) has processed 7000 pounds of material representative of contaminated soil that is found at DOE sites. The soil was spiked with Resource Conversation and Recovery Act (RCRA) metals surrogates, an organic contaminant, and a surrogate radionuclide. The samples taken during the tests confirmed that virtually all of the radionuclide was retained in the glass and that it did not leach to the environment. The organic contaminant, anthracene, was destroyed during the test with a Destruction and Removal Efficiency (DRE) of at least 99.99%. RCRA metal surrogates, that were in the vitrified product, were retained and will not leach to the environment--as confirmed by the TCLP testing. Semi-volatile RCRA metal surrogates were captured by the Air Pollution Control (APC) system, and data on the amount of metal oxide particulate and the chemical composition of the particulate were established for use in the Phase 2 APC system design. This topical report will present a summary of the activities conducted during Phase 1 of the ``Innovative Fossil Fuel Fired Vitrification Technology for Soil Remediation`` program. The report includes the detail technical data generated during the experimental program and the design and cost data for the preliminary Phase 2 plant.

  11. The combined effect of reduced fossil fuel consumption and increasing biomass combustion on Athens' air quality, as inferred from long term CO measurements.

    Gratsea, Myrto; Liakakou, Eleni; Mihalopoulos, Nikos; Adamopoulos, Anastasios; Tsilibari, Eirini; Gerasopoulos, Evangelos

    2017-03-14

    To evaluate the role of biomass burning emissions, and in particular of residential wood heating, as a result of the economic recession in Greece, carbon monoxide (CO) atmospheric concentrations from five (5) stations of the National Air Pollution Monitoring Network in Athens, spanning the period 2000-2015, in conjunction with black carbon (BC) concentrations from the NOA (National Observatory of Athens) station at Thissio were analysed. The contribution of the different sources to the diurnal cycle of these two pollutants is clear, resulting to a morning peak, mainly due to traffic, and a late evening peak attributed both to fossil fuel (traffic plus central heating) and biomass combustion. Calculated morning and evening integrals of CO peaks, for the investigated period, show consistent seasonal modulations, characterised by low summer and high winter values. The summer and winter morning CO peak integrals demonstrate an almost constant decreasing trend of CO concentrations over time (by almost 50% since 2000), attributed to the renewal of passenger car fleet and to reduced anthropogenic activities during the last years. On the other hand, an increase of 23%-78% (depending on the monitoring site) in the winter evening integrals since 2012, provides evidence of the significant contribution of biomass combustion, which has prevailed over fossil fuel for domestic heating. CO emitted by wood burning was found to contribute almost 50% to the total CO emissions during night time (16:00-5:00), suggesting that emissions from biomass combustion have gained an increasing role in atmospheric pollution levels in Athens.

  12. The relationship between air pollution, fossil fuel energy consumption, and water resources in the panel of selected Asia-Pacific countries.

    Rafindadi, Abdulkadir Abdulrashid; Yusof, Zarinah; Zaman, Khalid; Kyophilavong, Phouphet; Akhmat, Ghulam

    2014-10-01

    The objective of the study is to examine the relationship between air pollution, fossil fuel energy consumption, water resources, and natural resource rents in the panel of selected Asia-Pacific countries, over a period of 1975-2012. The study includes number of variables in the model for robust analysis. The results of cross-sectional analysis show that there is a significant relationship between air pollution, energy consumption, and water productivity in the individual countries of Asia-Pacific. However, the results of each country vary according to the time invariant shocks. For this purpose, the study employed the panel least square technique which includes the panel least square regression, panel fixed effect regression, and panel two-stage least square regression. In general, all the panel tests indicate that there is a significant and positive relationship between air pollution, energy consumption, and water resources in the region. The fossil fuel energy consumption has a major dominating impact on the changes in the air pollution in the region.

  13. Basic research and industrialization of CANDU advanced fuel

    Chun, Suk Ho; Park, Joo Hwan; Jun, Ji Su [and others

    2000-04-01

    Wolsong Unit 1 as the first heavy water reactor in Korea has been in service for 17 years since 1983. It would be about the time to prepare a plan for the solution of problems due to aging of the reactor. The aging of CANDU reactor could lead especially to the steam generator cruding and pressure tube sagging and creep and then decreases the operation margin to make some problems on reactor operations and safety. The counterplan could be made in two ways. One is to repair or modify reactor itself. The other is to develop new advanced fuel to increase of CANDU operation margin effectively, so as to compensate the reduced operation margin. Therefore, the first objectives in the present R and D is to develop the CANFLEX-NU (CANDU Flexible fuelling-Natural Uranium) fuel as a CANDU advanced fuel. The second objectives is to develop CANDU advanced fuel bundle to utilize advanced fuel cycles such as recovered uranium, slightly enriched uranium, etc. and so to raise adaptability for change in situation of uranium market. Also, it is to develop CANDU advanced fuel technology which improve uranium utilization to cope with a world-wide imbalance between uranium supply and demand, without significant modification of nuclear reactor design and refuelling strategies. As the implementations to achieve the above R and D goal, the work contents and scope of technology development of CANDU advanced fuel using natural uranium (CANFLEX-NU) are the fuel element/bundle designs, the nuclear design and fuel management analysis, the thermalhydraulic analysis, the safety analysis, fuel fabrication technologies, the out-pile thermalhydraulic test and in-pile irradiation tests performed. At the next, the work scopes and contents of feasibility study of CANDU advanced fuel using recycled uranium (CANFLEX-RU) are the fuel element/bundle designs, the reactor physics analysis, the thermalhydraulic analysis, the basic safety analysis of a CANDU-6 reactor with CANFLEX-RU fuel, the fabrication and

  14. Towards a reference architecture of fuel-based carbon management systems in the logistics industry

    Iacob, M.E.; Sinderen, van M.J.; Steenwijk, M.; Verkroost, P.

    2013-01-01

    The current practice in the logistics industry is to calculate the carbon footprint of transportation activities based on the distance covered, using long-term fuel consumption averages per kilometer. However, fuel consumption may actually vary over time, because of differences in road characteristi

  15. Challenges of electric power industry restructuring for fuel suppliers

    NONE

    1998-09-01

    The purpose of this report is to provide an assessment of the changes in other energy industries that could occur as the result of restructuring in the electric power industry. This report is prepared for a wide audience, including Congress, Federal and State agencies, the electric power industry, and the general public. 28 figs., 25 tabs.

  16. Introduction to selected references on fossil fuels of the central and southern Appalachian basin: Chapter H.1 in Coal and petroleum resources in the Appalachian basin: distribution, geologic framework, and geochemical character

    Ruppert, Leslie F.; Lentz, Erika E.; Tewalt, Susan J.; Román Colón, Yomayra A.; Ruppert, Leslie F.; Ryder, Robert T.

    2014-01-01

    The Appalachian basin contains abundant coal and petroleum resources that have been studied and extracted for at least 150 years. In this volume, U.S. Geological Survey (USGS) scientists describe the geologic framework and geochemical character of the fossil-fuel resources of the central and southern Appalachian basin. Separate subchapters (some previously published) contain geologic cross sections; seismic profiles; burial history models; assessments of Carboniferous coalbed methane and Devonian shale gas; distribution information for oil, gas, and coal fields; data on the geochemistry of natural gas and oil; and the fossil-fuel production history of the basin. Although each chapter and subchapter includes references cited, many historical or other important references on Appalachian basin and global fossil-fuel science were omitted because they were not directly applicable to the chapters.

  17. Analysis of Fuel Flexibility Opportunities and Constraints in the U.S. Industrial Sector

    none,

    2007-03-07

    The purpose of this assessment was to determine if flexible, alternative fuel use in industry, beyond switching from natural gas to petroleum derivatives, presents a sizeable opportunity for the reduction in use of natural gas. Furthermore, the assessment was to determine what programmatic activities the DOE could undertake to accelerate a fuel flexibility program for industry. To this end, a six-part framework (see Figure ES-1) was used to identify the most promising fuel flexibility options, and what level of accomplishment could be achieved, based on DOE leadership.

  18. Hydrogen for transport in Denmark towards 2050. Contribution to electric-powered transport, growth, CO{sub 2} reduction and independence of fossil fuels; Brint til transport i Danmark frem mod 2050. Bidrag til elektrisk transport, vaekst, CO{sub 2} reduktion og fossil uafhaengighed. Baggrundsrapport. Endelig udgave

    Wennike, F. (Hydrogen Link Danmark (Denmark)); Mortensgaard, A. (Brint and Braendselscelle Partnerskabet, Copenhagen (Denmark)); Sloth, M. (H2 Logic A/S, Herning (Denmark))

    2011-12-15

    Significant funding has been invested internationally in the development of hydrogen and fuel cells for the last 10 years, among others by the leading car makers. In Denmark alone businesses have, along with contributions from public programs, invested two billion DKK since 2001. The investments have helped to develop and mature hydrogen and fuel cells so that a deployment can be initiated from 2015. With the Danish government's new initiative, ''Our Energy'', which is targeted towards a switch to a fossil fuel-independent society in 2050, it is obvious that hydrogen is included as one of many technologies that can help solve the challenge within the transport sector. The Hydrogen Link Denmark Association and selected Danish players in the Hydrogen and Fuel Cell Partnership in Denmark has therefore prepared this analysis which describes a possible contribution to electrical transport, growth, CO{sub 2} reduction and fossil fuel independence by introduction of hydrogen for transport in Denmark up to 2050. The analysis is based on a possible share of hydrogen cars in the Danish car fleet in 2050 of 50% and the secondary effects of activation of the energy policy objectives for fossil fuel independence, and not least the significant potential for Danish exports of hydrogen and fuel cell technology and affected jobs. Similarly, the contribution of hydrogen for transport in relation to balancing the increased share of fluctuating renewable energy production was analyzed. (LN)

  19. Research of power fuel low-temperature vortex combustion in industrial boiler based on numerical modelling

    Orlova K.Y.

    2017-01-01

    Full Text Available The goal of the presented research is to perform numerical modelling of fuel low-temperature vortex combustion in once-through industrial steam boiler. Full size and scaled-down furnace model created with FIRE 3D software and was used for the research. All geometrical features were observed. The baseline information for the low-temperature vortex furnace process are velocity and temperature of low, upper and burner blast, air-fuel ratio, fuel consumption, coal dust size range. The obtained results are: temperature and velocity three dimensional fields, furnace gases and solid fuel ash particles concentration.

  20. Best mix of primary energy resources by renewable energy and fossil fuel with CCS in view of security,stability and sustainability——A vision on hydrogen supply chain by organic chemical hydride method

    Junichi; SAKAGUCHI

    2010-01-01

    The best mix scenario by renewable energy and fossil fuel with or without CCS(Carbon Dioxide Capture and Storage) would be a solution to compromise Greenhouse Gases emission issue caused by carbon dioxide(CO2),and depletion of crude oil and natural gas reserves.As fossil fuel with pre-combustion CCS means hydrogen manufacturing and also hydrogen can be produced via electrolysis with renewable energy,it is desirable to establish transportation and storage systems of hydrogen as a clean energy.In this paper a vision on Hydrogen Supply Chain by Organic Chemical Hydride(OCH) Method as well as comparison of CCS configuration are discussed.

  1. Canada's hydrogen and fuel cell industry : clean power for the 21. century

    NONE

    2001-07-01

    Natural Resources Canada has been involved in the research and development of hydrogen and fuel cells and has worked closely with industry for more than 15 years to bring world-leading technologies to market. This brochure presented some of Canada's key players in the area of hydrogen and fuel cell technology and described their respective projects. The players included Agile Systems Inc., Armstrong Monitoring Corp., Ballard Power Systems, Bureau de normalisation du Quebec, Cellex Power Products Inc., the Canadian Hydrogen Association, the Centre for Hydrogen and Electrochemical Studies, Dynetek Industries Ltd., Fuel Cell Technologies Corp., FuelMaker Corporation, GFI Control Systems Inc., Global Thermoelectric, H Power Enterprises of Canada Inc., Hydrogen Systems Inc., Hydrogenics Corporation, Hydro-Quebec, Institute for Integrated Energy Systems, the Institut de recherche sur l'hydrogene, Kinectrics Inc., Kraus Group Inc., McGill University, Powertech Labs Inc., QuestAir Technologies Inc., Stuart Energy Systems, TISEC Inc., Xantrex Technology Inc., and XCELLSIS Fuel Cell Engines Inc. The brochure included a map depicting the Canadian locations where hydrogen and fuel cell activities are taking place. Alternative fuels in the transportation sector is the most prominent opportunity for hydrogen and fuel cell technology, with a zero emission fuel cycle as the goal. Remote and portable power are other opportunities for this technology, along with residential and stationary power generation. It was noted that with fuel cell powered vehicles are close to becoming a commercial reality, but a proper infrastructure must be put in place to receive these vehicles. The brochure also discussed initiatives such as the new National Fuel Cell Research and Innovation Initiative, a $30 million commitment toward the development of a Fuel Cell Testing and Demonstration Facility at the Innovation Centre in Vancouver, a Research and Development deployment program, and a fund

  2. Regional Branching Reconsidered: Emergence of the Fuel Cell Industry in European Regions

    Tanner, Anne Nygaard

    2014-01-01

    2 (nomenclature of territorial units for statistics) regions. The findings can be summarized as follows. First, the analysis reveals that in the case of the emerging fuel cell industry, regional diversification is dominated by firm diversification, which complements previous studies’ findings......The literature on economic geography suffers from a lack of attention to the emergence of new industries. Recent literature on “regional branching” proposes that new industries emerge in regions where preexisting economic activities are technologically related to the emerging industry. This article...... provides a more grounded basis for the emerging literature on regional branching by confronting the regional branching thesis with the realities of an emerging industry, namely, the fuel cell industry. The analysis is based on patent data and qualitative interviews conducted in a selection of European NUTS...

  3. Infrastructure Requirements for an Expanded Fuel Ethanol Industry

    Reynolds, Robert E. [Downstream Alternatives, Inc., South Bend, IN (United States)

    2002-01-15

    This report provides technical information specifically related to ethanol transportation, distribution, and marketing issues. This report required analysis of the infrastructure requirements for an expanded ethanol industry.

  4. Advanced coal-fueled industrial cogeneration gas turbine system

    LeCren, R.T.; Cowell, L.H.; Galica, M.A.; Stephenson, M.D.; Wen, C.S.

    1991-07-01

    Advances in coal-fueled gas turbine technology over the past few years, together with recent DOE-METC sponsored studies, have served to provide new optimism that the problems demonstrated in the past can be economically resolved and that the coal-fueled gas turbine can ultimately be the preferred system in appropriate market application sectors. The objective of the Solar/METC program is to prove the technical, economic, and environmental feasibility of a coal-fired gas turbine for cogeneration applications through tests of a Centaur Type H engine system operated on coal fuel throughout the engine design operating range. The five-year program consists of three phases, namely: (1) system description; (2) component development; (3) prototype system verification. A successful conclusion to the program will initiate a continuation of the commercialization plan through extended field demonstration runs.

  5. The determinants of fuel use in the trucking industry - volume, fleet characteristics and the rebound effect

    de Borger, Bruno; Mulalic, Ismir

    2012-01-01

    more fuel efficient, trucks. Third, these adjustments and the rebound effect jointly imply that the effect of higher fuel prices on fuel use in the trucking industry is fairly small; estimated price elasticities are _0:13 and _0:22 in the short run and in the long run, respectively. The empirical...... of this effect is approximately 10% in the short run and 17% in the long run, so that a 1% improvement in fuel efficiency reduces fuel use by 0.90% (short-run) to 0.83% (long-run). Second, we find that higher fuel prices raise the average capacity of trucks, and they induce firm sto invest in newer, typically...

  6. A summary of truck fuel-saving measures developed with industry participation

    Bertram, K.M.; Saricks, C.L. [Argonne National Lab., IL (United States); Gregory, E.W. II [USDOE, Washington, DC (United States); Moore, A.J. [Northwestern Univ., Evanston, IL (United States)

    1983-09-01

    This report describes the third project undertaken by the Center for Transportation Research, Argonne National Laboratory (ANL), in a US Department of Energy program designed to develop and distribute compendiums of measures for saving transportation fuel. A matrix, or chart, of more than 60 fuel-saving measures was developed by ANL and refined with the assistance of trucking industry operators and researchers at an industry coordination meeting held in August 1982. The first two projects used similar meetings to refine matrices developed for the international maritime and US railroad industries. The consensus reached by those at the meeting was that the single most important element in a truck fuel-efficiency improvement program is the human element -- namely the development of strong motivation among truck drivers to save fuel. The role of the driver is crucial to the successful use of fuel-saving equipment and operating procedures. Identical conclusions were reached in the earlier maritime and rail meetings, thus providing a strong indication of the pervasive importance of the human element in energy-efficient transportation systems. The number and variety of changes made to the matrix are also delineated, including addition and deletion of various options and revisions of fuel-saving estimates, payback period estimates, and remarks concerning items such as the advantages, disadvantages, and cautions associated with various measures. The quality and quantity of the suggested changes demonstrate the considerable value of using a forum of industry operators and researchers to refine research data that are intended for practical application.

  7. Sustainability Impact Assessment on the Production and Use of Different Wood and Fossil Fuels Employed for Energy Production in North Karelia, Finland

    Matias Pekkanen

    2012-11-01

    Full Text Available The utilization rate of woody biomass in eastern Finland is high and expected to increase further in the near future as set out in several regional, national and European policies and strategies. The aim of this study was to assess the sustainability impacts of changes in fuel consumption patterns. We investigated fossil and woody biomass-based energy production chains in the region of North Karelia, focusing on some economic, environmental and social indicators. Indicators were selected based on stakeholder preferences and evaluated using the Tool for Sustainability Impact Assessment (ToSIA. The analysis was based on representative values from National Forest Inventory data, scientific publications, national and regional statistics, databases, published policy targets and expert opinion. From the results it became evident that shifting from fossil to wood-based energy production implies some trade-offs. Replacing oil with woody biomass in energy production would increase the local value added remaining in the region, create employment opportunities and would reduce total GHG emissions. However, firewood, wood chips from small-diameter trees from early thinning and wood pellets have high production costs. Moreover, large greenhouse gas emission resulted from wood pellet production. The case study generated valuable reference data for future sustainability assessments and demonstrated the usefulness of ToSIA as a tool presenting existing knowledge on sustainability impacts of alternative energy supply chains to inform decision making.

  8. Life cycle inventory analysis of hydrogen production by the steam-reforming process: comparison between vegetable oils and fossil fuels as feedstock

    Marquevich, M.; Sonnemann, G.W.; Castells, F.; Montane, D.

    2002-07-01

    A life cycle inventory analysis has been conducted to assess the environmental load, specifically CO{sub 2} (fossil) emissions and global warming potential (GWP), associated to the production of hydrogen by the steam reforming of hydrocarbon feedstocks (methane and naphtha) and vegetable oils (rapeseed oil, soybean oil and palm oil). Results show that the GWPs associated with the production of hydrogen by steam reforming in a 100 years time frame are 9.71 and 9.46 kg CO{sub 2}-equivalent/kg H{sub 2} for natural gas and naphtha, respectively. For vegetable oils, the GWP decreases to 6.42 kg CO{sub 2}-equivalent/kg H{sub 2} for rapeseed oil, 4.32 for palm oil and 3.30 for soybean oil. A dominance analysis determined that the part of the process that has the largest effect on the GWP is the steam reforming reaction itself for the fossil fuel-based systems, which accounts for 56.7% and 74% of the total GWP for natural gas and naphtha, respectively. This contribution is zero for vegetable oil-based systems, for which harvesting and oil production are the main sources of CO{sub 2}-eq emissions.(author)

  9. Vertical Design Research of Fossil Fuel Power Plants in the Mountainous Area%山区火电厂厂区竖向设计研究

    王仁宝

    2013-01-01

    In view of the complex and diversified characteristics of fossil fuel power plants in the mountains, combined with engineering examples for plant vertical design of the main factors for analysis, the article proposed the optimal design of the vertical thinking, providing references for similar projects.%本文针对山区火电厂地势复杂多样的特点,结合工程实例对厂区竖向设计的主要因素进行分析,提出合理确定厂区竖向设计最佳方案的思路,对类似工程提供参考。

  10. Energy Economical and Environmental Analysis of Industrial Boilers Using Fuel Switching

    Abdelaziz Emdeldin Atabani

    2011-01-01

    Full Text Available The successful implementation of the industrialization plan  in Malaysia  in 1985 has led to change this country from an agricultural economy into industrial based economy. The industrial sector represents the highest consuming sector across all other sectors and accounts for about 48% of all total  energy demand. This study is concerned with an energy saving, economic and environmental analysis of industrial boilers in Malaysian paper and pulp industries when applying the concept of fuel switching. It has been found that 11,946 ton of CO2 and RM 1,872,532 could be saved annually, when switching between diesel fuel and biomass by a percentage of 50% for both instead of using 100% of diesel fuel. Also it has been found that 7,495,640 kg of CO2 and RM 923,431 could be saved annually, when switching between diesel fuel and natural gas by a percentage of 50% for both instead of using 100% of diesel fuel. All these results represent high energy saving, environmental and economic benefits for a small developing country like Malaysia.

  11. Δ(14)CO2 from dark respiration in plants and its impact on the estimation of atmospheric fossil fuel CO2.

    Xiong, Xiaohu; Zhou, Weijian; Cheng, Peng; Wu, Shugang; Niu, Zhenchuan; Du, Hua; Lu, Xuefeng; Fu, Yunchong; Burr, George S

    2017-04-01

    Radiocarbon ((14)C) has been widely used for quantification of fossil fuel CO2 (CO2ff) in the atmosphere and for ecosystem source partitioning studies. The strength of the technique lies in the intrinsic differences between the (14)C signature of fossil fuels and other sources. In past studies, the (14)C content of CO2 derived from plants has been equated with the (14)C content of the atmosphere. Carbon isotopic fractionation mechanisms vary among plants however, and experimental study on fractionation associated with dark respiration is lacking. Here we present accelerator mass spectrometry (AMS) radiocarbon results of CO2 respired from 21 plants using a lab-incubation method and associated bulk organic matter. From the respired CO2 we determine Δ(14)Cres values, and from the bulk organic matter we determine Δ(14)Cbom values. A significant difference between Δ(14)Cres and Δ(14)Cbom (P < 0.01) was observed for all investigated plants, ranging from -42.3‰ to 10.1‰. The results show that Δ(14)Cres values are in agreement with mean atmospheric Δ(14)CO2 for several days leading up to the sampling date, but are significantly different from corresponding bulk organic Δ(14)C values. We find that although dark respiration is unlikely to significantly influence the estimation of CO2ff, an additional bias associated with the respiration rate during a plant's growth period should be considered when using Δ(14)C in plants to quantify atmospheric CO2ff.

  12. The spatial distribution of fossil fuel CO2 traced by Δ(14)C in the leaves of gingko (Ginkgo biloba L.) in Beijing City, China.

    Niu, Zhenchuan; Zhou, Weijian; Zhang, Xiaoshan; Wang, Sen; Zhang, Dongxia; Lu, Xuefeng; Cheng, Peng; Wu, Shugang; Xiong, Xiaohu; Du, Hua; Fu, Yunchong

    2016-01-01

    Atmospheric fossil fuel CO2 (CO2ff ) information is an important reference for local government to formulate energy-saving and emission reduction in China. The CO2ff spatial distribution in Beijing City was traced by Δ(14)C in the leaves of gingko (Ginkgo biloba L.) from late March to September in 2009. The Δ(14)C values were in the range of -35.2 ± 2.8∼15.5 ± 3.2 ‰ (average 3.4 ± 11.8 ‰), with high values found at suburban sites (average 12.8 ± 3.1 ‰) and low values at road sites (average -8.4 ± 18.1 ‰). The CO2ff concentrations varied from 11.6 ± 3.7 to 32.5 ± 9.0 ppm, with an average of 16.4 ± 4.9 ppm. The CO2ff distribution in Beijing City showed spatial heterogeneity. CO2ff hotspots were found at road sites resulted from the emission from vehicles, while low CO2ff concentrations were found at suburban sites because of the less usage of fossil fuels. Additionally, CO2ff concentrations in the northwest area were generally higher than those in the southeast area due to the disadvantageous topography.

  13. The role of natural gas in assessing environmental cost of fossil fuels; Il valore del gas naturale nella valutazione dei costi ambientali dei combustibili fossili

    Riva, A.; Trebeschi, C. [SNAM SpA (Italy)

    1999-08-01

    The actual price of a resource is the results of its internal and external costs. Internal costs means the price paid by the users in order to utilise the resource. On the other hand, externals costs, which are associated with the resource, are not paid directly by the users, but they shall be paid for by the society of the future generations. The article presents methodologies and issues relevant to energy policy decisions, when it comes to evaluating and using environmental external costs of fossil fuel life, with particular consideration to the end-use phase. The results of published studies on environmental costs of energy sources and an analysis applied to the Italia case show that natural gas as a significantly higher environmental value than other fossil fuels. The range of values depends upon the technologies considered and on the assumptions adopted when assessment environmental damages. [Italian] Il costo reale di una risorsa e' dato dalla somma del suo costo interno e del suo costo esterno. Il costo interno e' il costo che l'utente paga per poter utilizzare la risorsa. I costi esterni sono invece i costi associati alla risorsa per i quali l'utilizzatore non paga in prima persona un prezzo. Questi costi sono quindi trasferiti in blocco alla societa' o alle future generazioni. Sono presentate le metodologie e le problematiche per la valutazione e l'utilizzo nelle decisioni di politica energetica dei costi esterni ambientali del ciclo di vita dei combustibili fossili, con particolare attenzione per la fase degli usi finali. I dati di letteratura riguardanti i costi ambientali delle fonti energetiche ed un'analisi applicata al caso dell'Italia, dimostrano che il gas naturale ha un valore ambientale ben maggiore di altri combustibili fossili. Tale valore dipende dalla tecnologia considerata e dalle ipotesi adottate per la valutazione dei danni ambientali.

  14. Molecular characterization of urban organic aerosol in tropical India: contributions of biomass/biofuel burning, plastic burning, and fossil fuel combustion

    P. Q. Fu

    2009-10-01

    Full Text Available Organic molecular composition of PM10 samples, collected at Chennai in tropical India, was studied using capillary gas chromatography/mass spectrometry. Twelve organic compound classes were detected in the aerosols, including aliphatic lipids, sugar compounds, lignin products, terpenoid biomarkers, sterols, aromatic acids, phthalates, hopanes, and polycyclic aromatic hydrocarbons (PAHs. At daytime, phthalates was found to be the most abundant compound class; while at nighttime, fatty acids was the dominant one. Concentrations of total quantified organics were higher in summer (611–3268 ng m−3, average 1586 ng m−3 than in winter (362–2381 ng m−3, 1136 ng m−3, accounting for 11.5±1.93% and 9.35±1.77% of organic carbon mass in summer and winter, respectively. Di-(2-ethylhexyl phthalate, C16 fatty acid, and levoglucosan were identified as the most abundant single compounds. The nighttime maxima of most organics in the aerosols indicate a land/sea breeze effect in tropical India, although some other factors such as local emissions and long-range transport may also influence the composition of organic aerosols. The abundances of anhydrosugars (e.g., levoglucosan, lignin and resin products, hopanes and PAHs in the Chennai aerosols suggest that biomass burning and fossil fuel combustion are significant sources of organic aerosols in tropical India. Interestingly, terephthalic acid was maximized at nighttime, which is different from those of phthalic and isophthalic acids. A positive correlation was found between the concentration of 1,3,5-triphenylbenzene (a tracer for plastic burning and terephthalic acid, suggesting that field burning of municipal solid wastes including plastics is a significant source of terephthalic acid. This study demonstrates that, in addition to biomass burning and fossil fuel combustion, the open-burning of plastics also contributes to the organic

  15. Combustion of large solid fuels in cement rotary kilns

    Nielsen, Anders Rooma

    (MBM), waste wood, sewage sludge, paper and plastics. The alternative fuel share of the total energy varies significantly from region to region, but the general trend is towards increased alternative fuel utilization. Solid alternative fuels typically have physical and chemical properties that differ......The cement industry has a significant interest in replacing fossil fuels with alternative fuels in order to minimize production costs and reduce CO2 emissions. These new alternative fuels are in particular solid fuels such as refuse derived fuel (RDF), tire-derived fuel (TDF), meat and bone meal...... from traditional solid fossil fuels. This creates a need for new combustion equipment or modification of existing kiln systems, because alternative fuels may influence process stability and product quality. Process stability is mainly influenced by exposing the raw material bed in the rotary kiln...

  16. Life Cycle Assesment (LCA Based Environmental Impact Minimization of Solid Fuel Boilers in Lithuanian Industry

    Marius Šulga

    2011-12-01

    Full Text Available Today Europe is facing unprecedented energy problems related to the EU dependence on energy imports, concerns about global supplies of fossil fuel and obvious climate change. However, despite all these problems Europe wastes at least 20 percent of energy due to its inefficient use.The EU energy efficiency policy states that one of the biggest saving potentials lies in heating of the buildings whose current consumption is ~ 1725 Mt. The EU building sector is the largest final energy consumer.This research deals with domestic solid fuel boilers that are used in buildings and their efficiency increase by applying life-cycle tools. This article analyzes the situation of manufacturing solid fuel boilers in Lithuania, the EU EuP policy, the main environmental issues of boilers production (their production and use phases. The impact of two different fuels (wood and coal on the environment is also estimated, propositions of an ecological design of boilers are presented and a new solid fuel boiler is described.

  17. New technologies for the reduction of the use of fossil fuels in automobiles; Nuevas tecnologias para la reduccion del uso de combustibles fosiles en automoviles

    Maya Violante, A.; Dorantes Rodriguez, R. [Universidad Autonoma Metropolitana, Unidad Azcapotzalco, Departamento de Energia, Mexico D. F. (Mexico)

    1995-12-31

    The new technologies developed for the reduction of the use of fossil fuels in automobiles can be classified by the way these try to reduce the use of energy. In the search for the technologies for the conservation of it the environmental problem is added, that although it is not the subject of this presentation results decisive for the evaluation of the performance of type of technology. The development of technologies in this field has followed three basic tendencies. First: The efficient improvement of internal combustion motors, which consist in the control and constant monitoring the functioning of these motors in order to determine the strictly necessary consumption for the motor operation in accordance with its load conditions. Second, the development of a system that utilizes alternate fuels, as is the case of hybrid vehicles, that utilize gas turbines that can burn these fuels. Third the development of electric driven and energy regeneration systems avoiding the use of fossil fuels. A fourth tendency could be considered, which consists in determining the best way of controlling and using the transportation time, with all the implicit benefits. The purpose of this paper is to answer all these questions beginning with a detailed revision of the main technological innovations developed by the leading car manufacturers at world level, such as BMW, Mercedes Benz, Ford, etc. concerned in bringing to the market the best vehicles that burn less or none fossil fuels and at the same time comply with the every day more strict standards on the environmental pollution subject. Through these innovations the advantages and disadvantages of each one of them are set forth, with special emphasis in the technologies that, to our concern, will be the most convenient to promote in the years to come. [Espanol] Las nuevas tecnologias desarrolladas para la reduccion del uso de combustibles fosiles en automoviles se pueden caracterizar por la manera en que estas tratan de reducir

  18. Perspectives on gasification systems to produce energy carriers and other chemicals with low CO2 emissions : techno‐economic system analysis on current and advanced flexible thermo‐chemical conversion of fossil fuels and biomass

    Meerman, J.C.

    2012-01-01

    To prevent dangerous climate change, the emissions of anthropogenic greenhouse gasses (GHG) need to be reduced. Two key mitigation options to reduce GHG involve a transition from the current fossil-fuel based infrastructure towards one based on renewable and the implementation of CO2 capture, transp

  19. Central heating: fossil-fired boilers

    Blazek, C.F.; Baker, N.R.; Tison, R.R.

    1979-05-01

    This evaluation provides performance and cost data for fossil-fuel-fired steam boilers, hot-water generators, and thermal fluid generators currently available from manufacturers. Advanced-technology fluidized-bed boilers also are covered. Performance characteristics investigated include unit efficiencies, turndown capacity, and pollution requirements. Costs are tabulated for equipment and installation of both field-erected and packaged units. The information compiled in this evaluation will assist in the process of selecting energy-conversion units required for industrial, commercial, and residential applications.

  20. MACSTOR{trademark}: Dry spent fuel storage for the nuclear power industry

    Pare, F.E.; Pattantyus, P. [AECL Candu, Montreal, Quebec (Canada); Hanson, A.S. [Transnuclear, Inc., Hawthorne, NY (United States)

    1993-12-31

    Safe storage of spent fuel has long been an area of critical concern for the nuclear power industry. As fuel pools fill up and re-racking possibilities become exhausted, power plant operators will find that they must ship spent fuel assemblies off-site or develop new on-site storage options. Many utility companies are turning to dry storage for their spent fuel assemblies. The MACSTOR (Modular Air-cooled Canister STORage) concept was developed with this in mind. Derived from AECL`s successful vertical loading, concrete silo program for storing CANDU nuclear spent fuel, MACSTOR was developed for light water reactor spent fuel and was subjected to full scale thermal testing. The MACSTOR Module is a monolithic, shielded concrete vault structure than can accommodate up to 24 spent fuel canisters. Each canister holds 12 PWR or 32 PWR previously cooled spent fuel assemblies with burn-up rates as high as 45,000 MWD/MTU. The structure is passively cooled by natural convection through an array of inlet and outlet gratings and galleries serving a central plenum where the (vertically) stored canisters are located. The canisters are continuously monitored by means of a pressure monitoring system developed by TNI. The MACSTOR system includes the storage module(s), an overhead gantry system for cask handling, a transfer cask for moving fuel from wet to dry storage and a cask transporter. The canister and transfer cask designs are based on Transnuclear transport cask designs and proven hot cell transfer cask technology, adapted to requirements for on-site spent fuel storage. This Modular Air Cooled System has a number of inherent advantages: efficient use of construction materials and site space; cooling is virtually impossible to impede; has the ability to monitor fuel confinement boundary integrity during storage; the fuel canisters may be used for both storage and transport and canisters utilize a flanged, ASME-III closure system that allows for easy inspection.

  1. Secondary fuels and raw materials in the Spanish cement industry

    Gordobil, J.C.U.; Guede, Elena [Cementos Lemona s.a. (Spain)

    1997-03-01

    The growing environmental and energy concern are having an impact on the Spanish cement industry. This article describes the impact on waste management, the operation of cement kilns and the possibility for recycling. Current projects and future prospects are described. (UK)

  2. Collection and dissemination of thermal energy storage system information for the pulp and paper industry

    Edde, H.

    1981-01-01

    The collection and dissemination of thermal energy storage (TES) system technology for the pulp and paper industry with the intent of reducing fossil fuel usage is discussed. The study plan is described and a description presented of example TES systems.

  3. Green energy - the road to a Danish energy system without fossil fuels. Summary of the work, results and recommendations of the Danish Commission on Climate Change Policy

    2010-09-15

    This summary report describes the main outcomes of the deliberations of the Danish Commission on Climate Change Policy. It includes a proposal for how Denmark can become independent of fossil fuels and, at the same time, meet the target of reducing greenhouse gases by 80%-95% compared with 1990. In addition, 40 specific recommendations for initiatives which will contribute to the realisation of the vision are presented. The documentation section of the overall report, which is only available in Danish, presents the Climate Commission's work in more detail, as well as a description of the comprehensive analyses on which the Climate Commission has based its recommendations. Finally, the background documents, which have been prepared at the request of the Climate Commission are available (in Danish) at the Commission's website, www.klimakommissionen.dk. We can both reduce Danish emissions of greenhouse gasses significantly, and make Denmark independent of fossil fuels. This will require a total conversion of the Danish energy system; conversion away from oil, coal and gas, which today account for more than 80% of our energy consumption, and to green energy with wind turbines and bioenergy as the most important elements. The cost of conversion may seem surprisingly low. The low cost means that not only can we maintain our present living standards, we can also have considerable economic growth, so that energy expenditures will constitute less of our budgets in the future than today. The reason the cost is not higher is primarily because we will not have to pay for overpriced fossil fuels and CO{sub 2} reductions, and we will be able to limit our energy consumption through efficiency improvements in all areas in the future. It is difficult to make predictions about the exact design of the green energy system of the future. However, in overall terms it could look like this: 1) Energy will be used far more efficiently, so that we can, for example, heat our houses

  4. Fuel supply of nuclear power industry with the introduction of fast reactors

    Muraviev, E. V.

    2014-12-01

    The results of studies conducted for the validation of the updated development strategy for nuclear power industry in Russia in the 21st century are presented. Scenarios with different options for the reprocessing of spent fuel of thermal reactors and large-scale growth of nuclear power industry based on fast reactors of inherent safety with a breeding ratio of ˜1 in a closed nuclear fuel cycle are considered. The possibility of enhanced fuel breeding in fast reactors is also taken into account in the analysis. The potential to establish a large-scale nuclear power industry that covers 100% of the increase in electric power requirements in Russia is demonstrated. This power industry may be built by the end of the century through the introduction of fast reactors (replacing thermal ones) with a gross uranium consumption of up to ˜1 million t and the termination of uranium mining even if the reprocessing of spent fuel of thermal reactors is stopped or suffers a long-term delay.

  5. Some regional costs of a synthetic fuel industry: The case of illinois

    Attanasi, E.D.; Green, E.K.

    1981-01-01

    The Federal Government's efforts to induce development of a coal-based synthetic fuel industry include direct subsidies, tax concessions, and assurances that it will purchase the industry's output, even if above the market price. In this note it is argued that these subsidies will enable this industry to secure a region's largest and lowest-cost coal deposits and that the costs imposed on other coal users will be substantial. Moreover, because the lowest-cost coal deposits will be committed to synthetic fuels production regardless of the industry's commercial viability, distortions in regional coal markets will develop. If economic efficiency requires that the price of the resource reflect its replacement value, then a State government is justified in imposing a tax on coal destined for subsidized synthetic fuel plants. Amounts of such a tax, based on the higher costs of coal that must be accepted by other users as the result of the subsidized synthetic fuel plants' preempting the largest and lowest-cost deposits, are estimated for the case of Illinois strippable coal. ?? 1981 Annals of Regional Science.

  6. Fluidized bed gasification of industrial solid recovered fuels.

    Arena, Umberto; Di Gregorio, Fabrizio

    2016-04-01

    The study evaluates the technical feasibility of the fluidized bed gasification of three solid recovered fuels (SRFs), obtained as co-products of a recycling process. The SRFs were pelletized and fed to a pilot scale bubbling fluidized bed reactor, operated in gasification and co-gasification mode. The tests were carried out under conditions of thermal and chemical steady state, with a bed of olivine particles and at different values of equivalence ratio. The results provide a complete syngas characterization, in terms of its heating value and composition (including tars, particulates, and acid/basic pollutants) and of the chemical and physical characterization of bed material and entrained fines collected at the cyclone outlet. The feasibility of the fluidized bed gasification process of the different SRFs was evaluated with the support of a material and substance flow analysis, and a feedstock energy analysis. The results confirm the flexibility of fluidized bed reactor, which makes it one of the preferable technologies for the gasification of different kind of wastes, even in co-gasification mode. The fluidized bed gasification process of the tested SRFs appears technically feasible, yielding a syngas of valuable quality for energy applications in an appropriate plant configuration.

  7. DECHEMA annual meetings `98. Part 2. Environmental engineering, safety engineering, industrial catalysis, membrane, techniques, gasification and combustion of waste and fossil fuels, reaction techniques, innovative separation techniques: zeolites, GVC lecture series crystallization, precipitation, flocculation, solid/liquid separation; special event `patents`. Condensed papers; DECHEMA-Jahrestagungen `98. Bd. 2. Fachtreffen Umwelttechnik, Fachtreffen Sicherheitstechnik, Fachtreffen Industrielle Katalyse, Fachtreffen Membrantechnik, Fachtreffen Vergasung und Verbrennung von Abfaellen und fossilen Brennstoffen, Fachtreffen Reaktionstechnik, Fachtreffen Innovative Trenntechnik: Zeolithe, GVC-Vortragsreihe Kristallisation / Faellung / Flockung / Fest-Fluessig-Trennung, Sonderveranstaltung Patente. Kurzfassungen

    Hess, C. [comp.

    1998-12-31

    In a many-sided, often interdisciplinary programme, the 1998 annual meetings of DECHEMA presented new scientific results, the current state of the art and also the persons, companies and institutions engaged in the various sectors. The major subjects of the meetings were as follows: biotechnology, environmental engineering, safety engineering, catalysis, membrane techniques, reaction techniques, gasification and combustion of waste and fossil fuels as well as separating techniques with the emphasis on zeolites and solid/liquid separation. Results reported are from work done by DECHEMA`s scientific committees and technical sections and from other projects initiated or sponsored under the aegis of DECHEMA. The contributions to solid/liquid separation stem from activities of VDI-GVC. (orig.) [Deutsch] Die DECHEMA-Jahrestagungen `98 stellen in einem vielseitigen, oft interdisziplinaeren Programm neue Ergebnisse aus der Forschung, den aktuellen Stand der Technik und nicht zuletzt auch die auf den jeweiligen Gebieten aktiven Personen, Firmen und Institutionen vor. Schwerpunkte der aktuellen Jahrestagungen bilden Biotechnologie, Umwelttechnik, Sicherheitstechnik, Katalyse, Membrantechnik, Reaktionstechnik, die Vergasung und Verbrennung von Abfaellen und fossilen Brennstoffen sowie die Trenntechnik mit den Schwerpunkten Zeolithe und Fest-Fluessig-Trennung. Damit werden Ergebnisse aus der Arbeit der DECHEMA-Forschungsausschuesse, der Fachsektionen und weiterer unter dem Dach der DECHEMA initiierter oder gefoerderter Arbeiten vorgestellt. Die Beitraege zum Thema Fest-Fluessig-Trennung entstammen Aktivitaeten innerhalb der VDI-GVC. (orig.)

  8. Annual fuel reviews 1987. Aromatic and tar industry

    Watanabe, Yoshinori

    1988-07-20

    Production of benzene, toluene, and xylene - major aromatic products - was 227,000 tons in total in 1987, which exceeded the 1986 production by 12%, renewing the past highest production record. The reason was the favorable supply and demand situation of petroleum chemicals with ethylene as the main products. Total production of pitch, creosote and naphthalene which are the typical tar products was less than that of 1986 by 5%. It was caused by the delayed recovery of the raw material industry with iron as the main product. The demand for aromatic products largely increased in 1987. Demands for toluene and xylene were at high levels. Demand for tar products was roughly the same as 1986 except for continued poor pitch demand. Demand for creosote was approximately of the smae level as 1986. The demand for 95% naphthalene was 2% less as a whole in comparison with 1986. (11 tabs)

  9. Combustion-derived substances in deep basins of Puget Sound: historical inputs from fossil fuel and biomass combustion.

    Kuo, Li-Jung; Louchouarn, Patrick; Herbert, Bruce E; Brandenberger, Jill M; Wade, Terry L; Crecelius, Eric

    2011-04-01

    Reconstructions of 250 years historical inputs of two distinct types of black carbon (soot/graphitic black carbon (GBC) and char-BC) were conducted on sediment cores from two basins of the Puget Sound, WA. Signatures of polycyclic aromatic hydrocarbons (PAHs) were also used to support the historical reconstructions of BC to this system. Down-core maxima in GBC and combustion-derived PAHs occurred in the 1940s in the cores from the Puget Sound Main Basin, whereas in Hood Canal such peak was observed in the 1970s, showing basin-specific differences in inputs of combustion byproducts. This system showed relatively higher inputs from softwood combustion than the northeastern U.S. The historical variations in char-BC concentrations were consistent with shifts in climate indices, suggesting an influence of climate oscillations on wildfire events. Environmental loading of combustion byproducts thus appears as a complex function of urbanization, fuel usage, combustion technology, environmental policies, and climate conditions.

  10. Energy development and security and supply-side ideology: oligopoly, monopoly, and imperfect competition make fossil fuel regulation a necessity

    Groth, P.G.

    1985-04-01

    Should energy development, of any form, be encouraged by the federal government. Inasmuch as conventional economic theories all are inapplicable, incomplete, or unrealistic as descriptions and explanations of real world energy markets, they cannot illuminate this value question. To date, American energy policies generally have manipulated supplies and prices of energy. If the objectives of energy policy are to conserve fuel, to reduce vulnerability to energy-related inflation, to control expenditures on energy, and to free Western Europe, Japan, and the US from dependence upon hostile or potentially hostile suppliers, then an effective policy would have to alter both demand and supply for energy. Advocates of simplistic deregulation, unwilling or unable to anticipate the undesirable consequences of that policy, invite the very governmental interference from which they recoil.

  11. Bi-fuel conversion a viable alternative for a power-strapped industry

    Whitehead, K. [Whitby Hydro, Withby, ON (Canada)

    2004-04-01

    In light of the looming shortage of electric power generation capacity in Ontario, and given the long lead times required to build new capacity, distributed generation is gaining favour in the industry. This article explores the use of bi-fuel conversion, one of the promising solutions, in which standby diesel generation is converted for use with natural gas as an optional fuel. This short-term technology has been used over a long period in Europe and the United States; as such it has become a proven efficient and cost-effective means to utilize existing resources, reduce emissions from diesel generators and relieve pressure on the existing grid, at a cost far less than wholesale expansion. A bi-fuel conversion system (BFCS) injects natural gas into the air supply of an existing diesel engine. Gas percentages usually range from 40 per cent to 90 per cent. No modification to the internal components of the engine is required. The article describes the three integrated major sub-systems associated with BFCS, namely the gas control sub-system, the diesel control sub-system, and the electronic control and monitoring sub-system. It also provides an economic rationale for bi-fuel generation, complete with tables to calculate (1) cost savings using bi-fuel versus diesel fuel, and (2) cost savings using bi-fuel generator to displace utility power. Information is also provided on emission reductions associated with BFCS. 2 tabs.

  12. Microbial alkane production for jet fuel industry: motivation, state of the art and perspectives.

    Jiménez-Díaz, Lorena; Caballero, Antonio; Pérez-Hernández, Natalia; Segura, Ana

    2017-01-01

    Bio-jet fuel has attracted a lot of interest in recent years and has become a focus for aircraft and engine manufacturers, oil companies, governments and researchers. Given the global concern about environmental issues and the instability of oil market, bio-jet fuel has been identified as a promising way to reduce the greenhouse gas emissions from the aviation industry, while also promoting energy security. Although a number of bio-jet fuel sources have been approved for manufacture, their commercialization and entry into the market is still a far way away. In this review, we provide an overview of the drivers for intensified research into bio-jet fuel technologies, the type of chemical compounds found in bio-jet fuel preparations and the current state of related pre-commercial technologies. The biosynthesis of hydrocarbons is one of the most promising approaches for bio-jet fuel production, and thus we provide a detailed analysis of recent advances in the microbial biosynthesis of hydrocarbons (with a focus on alkanes). Finally, we explore the latest developments and their implications for the future of research into bio-jet fuel technologies.

  13. CO{sub 2}-mitigation measures through reduction of fossil fuel burning in power utilities. Which road to go?

    Kaupp, A. [Energetica International Inc., Suva (Fiji)

    1996-12-31

    Five conditions, at minimum, should be examined in the comparative analysis of CO{sub 2}-mitigation options for the power sector. Under the continuing constraint of scarce financial resources for any private or public investment in the power sector, the following combination of requirements characterise a successful CO{sub 2}-mitigation project: (1) Financial attractiveness for private or public investors. (2) Low, or even negative, long range marginal costs per ton of `CO{sub 2} saved`. (3) High impact on CO{sub 2}-mitigation, which indicates a large market potential for the measure. (4) The number of individual investments required to achieve the impact is relatively small. In other words, logistical difficulties in project implementation are minimised. (5) The projects are `socially fair` and have minimal negative impact on any segment of the society. This paper deals with options to reduce carbonaceous fuel burning in the power sector. Part I explains how projects should be selected and classified. Part II describes the technical options. Since reduction of carbonaceous fuel burning may be achieved through Demand Side Management (DSM) and Supply Side Management (SSM) both are treated. Within the context of this paper SSM does not mean to expand power supply as demand grows. It means to economically generate and distribute power as efficiently as possible. In too many instances DSM has degenerated into efficient lighting programs and utility managed incentives and rebate programs. To what extent this is a desirable situation for utilities in Developing Countries that face totally different problems as their counterparts in highly industrialised countries remains to be seen. Which road to go is the topic of this paper.

  14. Clean and economical gasification of combined coal and biomass pelletized fuels by industries worldwide

    Carlo Amorino; Alberto Pettinau; Rolf E. Maurer; Evan Hughes; Filippo Larceri; Francesco Repetto; Phil Wellhausen; Peter Lange [Sotacarbo S.p.A. (Italy)

    2007-07-01

    Industrial clean coal utilization is enhanced when gasifying low cost high ash coals combined with locally available biomass and/or biowaste from agricultural and/or industrial operations. The cost of the biowaste is near zero if there is a cost associated with the removal of the biowaste from the industrial site. The clean gas and liquids generated for industrial usage are in the range of 0.12 to 0.15 euro/nM{sup 3} displacing much costlier petroleum or gaseous fuels. Sotacarbo S.P.A. and Ansaldo Ricerche S.r.l. with collaboration of Hamilton Maurer International, Inc. (HMI) have designed, installed and commissioned an advanced single stage fixed-bed gasifier in Sotacarbo's R&D facility in April 2007. Clean coal utilization is enhanced when coal is combined with a biomass or biowaste feedstock. Ansaldo Ricerche and HMI, Inc. designed a single-stage fixed bed biomass gasifier, installed and successfully commissioned in 2001 at ARI's research facility in Genova, Italy. This presentation highlights the simplicity and high efficiency (82 to 87%) of the coal and coal/biomass gasification process. CPM both in the US and Europe has extensive experience with coal fuels preparation (pelletization). The economics and ability to combine coals with biomass to generate an economical and viable gasification fuel pellets are reviewed. This paper presents the ability to utilize coal cleanly with biomass (Bio-coal) to lower fuel costs while enhancing the availability and reliability of industrial energy and reducing CO{sub 2} emissions provides a quantum jump forward for both industries and the environment. 21 refs., 4 figs.

  15. 2014 Annual Industrial Wastewater Reuse Report for the Idaho National Laboratory Site’s Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond

    Lewis, Mike [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-02-01

    This report describes conditions, as required by the state of Idaho Industrial Wastewater Reuse Permit (WRU-I-0160-01, formerly LA 000160 01), for the wastewater reuse site at the Idaho National Laboratory Site’s Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond from November 1, 2013 through October 31, 2014. The report contains the following information; Facility and system description; Permit required effluent monitoring data and loading rates; Groundwater monitoring data; Status of special compliance conditions; Noncompliance issues; and Discussion of the facility’s environmental impacts During the 2014 reporting year, an estimated 10.11 million gallons of wastewater were discharged to the Industrial Waste Ditch and Pond which is well below the permit limit of 17 million gallons per year. The concentrations of all permit-required analytes in the samples from the down gradient monitoring wells were below the applicable Idaho Department of Environmental Quality’s groundwater quality standard levels.

  16. 2010 Annual Industrial Wastewater Reuse Report for the Idaho National Laboratory Site's Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond

    David B. Frederick

    2011-02-01

    This report describes conditions, as required by the state of Idaho Industrial Wastewater Reuse Permit (#LA 000160 01), for the wastewater reuse site at the Idaho National Laboratory Site’s Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond from May 1, 2010 through October 31, 2010. The report contains the following information: • Facility and system description • Permit required effluent monitoring data and loading rates • Groundwater monitoring data • Status of special compliance conditions • Discussion of the facility’s environmental impacts During the 2010 partial reporting year, an estimated 3.646 million gallons of wastewater were discharged to the Industrial Waste Ditch and Pond which is well below the permit limit of 13 million gallons per year. The concentrations of all permit-required analytes in the samples from the down gradient monitoring wells were below the Ground Water Quality Rule Primary and Secondary Constituent Standards.

  17. 2011 Annual Industrial Wastewater Reuse Report for the Idaho National Laboratory Site's Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond

    David Frederick

    2012-02-01

    This report describes conditions, as required by the state of Idaho Industrial Wastewater Reuse Permit (LA-000160-01), for the wastewater reuse site at the Idaho National Laboratory Site's Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond from November 1, 2010 through October 31, 2011. The report contains the following information: (1) Facility and system description; (2) Permit required effluent monitoring data and loading rates; (3) Groundwater monitoring data; (4) Status of special compliance conditions; and (5) Discussion of the facility's environmental impacts. During the 2011 reporting year, an estimated 6.99 million gallons of wastewater were discharged to the Industrial Waste Ditch and Pond which is well below the permit limit of 13 million gallons per year. Using the dissolved iron data, the concentrations of all permit-required analytes in the samples from the down gradient monitoring wells were below the Ground Water Quality Rule Primary and Secondary Constituent Standards.

  18. Anaerobic microbial fuel cell treating combined industrial wastewater: Correlation of electricity generation with pollutants.

    Abbasi, Umara; Jin, Wang; Pervez, Arshid; Bhatti, Zulfiqar Ahmad; Tariq, Madiha; Shaheen, Shahida; Iqbal, Akhtar; Mahmood, Qaisar

    2016-01-01

    Microbial fuel cell (MFC) is a new technology that not only generates energy but treats wastewater as well. A dual chamber MFC was operated under laboratory conditions. Wastewater samples from vegetable oil industries, metal works, glass and marble industries, chemical industries and combined industrial effluents were collected and each was treated for 98h in MFC. The treatment efficiency for COD in MFC was in range of 85-90% at hydraulic retention time (HRT) of 96h and had significant impact on wastewater treatment as well. The maximum voltage of 890mV was generated when vegetable oil industries discharge was treated with columbic efficiency of 5184.7C. The minimum voltage was produced by Glass House wastewater which was 520mV. There was positive significant co-relation between COD concentration and generated voltage. Further research should be focused on the organic contents of wastewater and various ionic species affecting voltage generation in MFC.

  19. The mechanisms of regional branching: An investigation of the emerging fuel cell industry

    Tanner, Anne Nygaard

    ?regional branching?. What is still lacking, however, is a more thorough understanding of the mechanisms through which regional branching operates: firm diversification, spinoffs, labor mobility, and social networking. This paper analyzes which mechanisms dominate the current regional branching process......The growth of evolutionary thinking in economic geography has brought about the proposition that new industries are place dependent and tend to develop in regions where the pre-existing industry is technologically related to the knowledge base of the new industry, a phenomena that is termed...... of the emerging fuel cell (FC) industry and the degree to which the underlying logic of these mechanisms is technologically related. It is concluded that the actors currently dominating the emerging FC industry are either large incumbent multinational enterprises (MNEs) or smaller dedicated FC system developers...

  20. Breaking down the barriers to commercialization of fuel cells in transportation through Government - industry R&D programs

    Chalk, S.G. [Dept. of Energy, Washington, DC (United States); Venkateswaran, S.R. [Energetics, Inc., Columbia, MD (United States)

    1996-12-31

    PEM fuel cell technology is rapidly emerging as a viable propulsion alternative to the internal combustion engine. Fuel cells offer the advantages of low emissions, high efficiency, fuel flexibility, quiet and continuous operation, and modularity. Over the last decade, dramatic advances have been achieved in the performance and cost of PEM fuel cell technologies for automotive applications. However, significant technical barriers remain to making fuel cell propulsion systems viable alternatives to the internal combustion engine. This paper focuses on the progress achieved and remaining technical barriers while highlighting Government-industry R&D efforts that are accelerating fuel cell technology toward commercialization.

  1. Investments in Fossil Energy Technology: How the Government's Fossil Energy R&D Program Has Made a Difference

    1997-03-01

    America has the technological capacity to change its energy future. There is no reason, for example, why our nation must continue following a path of rising oil imports when billions of barrels of crude oil remain in domestic oil fields. There is no reason why we cannot continue to use our abundant supplies of high-value, low-cost coal when we have the scientific know-how to remove virtually all of its pollutants and reduce greenhouse gas emissions. There is no reason why we cannot turn increasingly to clean-burning natural gas and tap the huge supplies we know exist within our borders. We remain a nation rich in the fuels that have powered economic growth. Today 85 percent of the energy we use to heat our homes and businesses, generate our electricity, and fuel our vehicles comes from coal, petroleum and natural gas. As we move toward a new century, the contributions of these fuels will grow. By 2015, the United States is likely to require nearly 20 percent more energy than it uses today, and fossil fuels are projected to supply almost 88 percent of the energy Americans will consume. We have the scientific know-how to continue using our fossil fuel wealth without fear of environmental damage or skyrocketing costs. The key is technology - developing cutting edge concepts that are beyond the private sector's current capabilities. Some of the most important innovations in America's energy industry are the results of investments in the Federal government's fossil energy research and development programs. Today, our air and water are cleaner, our economy is stronger, and our industries are more competitive in the global market because these programs have produced results. This booklet summarizes many of these achievements. It is not a comprehensive list by any means. Still, it provides solid evidence that the taxpayers' investment in government fossil energy research has paid real and measurable dividends.

  2. Assessment of fossil fuel carbon dioxide and other anthropogenic trace gas emissions from airborne measurements over Sacramento, California in spring 2009

    J. C. Turnbull

    2011-01-01

    Full Text Available Direct quantification of fossil fuel CO2 (CO2ff in atmospheric samples can be used to examine several carbon cycle and air quality questions. We collected in situ CO2, CO, and CH4 measurements and flask samples in the boundary layer and free troposphere over Sacramento, California, USA, during two aircraft flights over and downwind of this urban area during spring of 2009. The flask samples were analyzed for Δ14CO2 and CO2 to determine the recently added CO2ff mole fraction. A suite of greenhouse and other trace gases, including hydrocarbons and halocarbons, were measured in the same samples. Strong correlations were observed between CO2ff and numerous trace gases associated with urban emissions. From these correlations we estimate emission ratios between CO2ff and these species, and compare these with bottom-up inventory-derived estimates. Recent county level inventory estimates for carbon monoxide (CO and benzene from the California Air Resources Board CEPAM database are in good agreement with our measured emission ratios, whereas older emissions inventories appear to overestimate emissions of these gases by a factor of two. For most other trace species, there are substantial differences (200–500% between our measured emission ratios and those derived from available emission inventories. For the first flight, we combine in situ CO measurements with the measured CO:CO2ff emission ratio of 14 ± 2 ppbCO/ppmCO2 to derive an estimate of CO2ff mole fraction throughout this flight, and also estimate the biospheric CO2 mixing ratio (CO2bio from the difference of total and fossil CO2. The resulting CO2bio varies dramatically from up to 8 ± 2 ppm in the urban plume to −6 ± 1 ppm in the surrounding boundary layer air. Finally, we use the in situ estimates of CO

  3. Foresight Study on Advanced Conversion Technologies of Fossil Fuels; Estudio de Prospectiva Tecnologias Avanzadas de conversion de Combustibles Fosiles

    Claver, A.; Cabrera, J. A. [Ciemat, Madrid (Spain)

    2000-07-01

    The Observatorio de Prospectiva Tecnologica Industrial (OPTI) is a Foundation supported by the Ministry of Industry and Energy, (MINER) and has a main objective a basic information and knowledge on technology evolution. This information will be accessible to the Administration and to the Companies and can be taking into account in planning and decision making of technology policies. Ciemat is member of OPTI and is the organism in charge of the actions in the Energy sector. CIEMAT has the responsibility on the realisation of the sector studies to get in three years (1998 to 2001) a foresight vision of the critical technology topics. The OPTI integrated strategic plan undertake the analysis of other seven technology sectors, with the same criteria on methodological aspects. Delphi method was used for the realization of the studies. It consisted of a survey conducted in two rounds using a questionnaire to check the experts opinion. The time frame of the studies was defined from 1999 to 2015. (Author) 17 refs.

  4. Dispersion modeling of polycyclic aromatic hydrocarbons from combustion of biomass and fossil fuels and production of coke in Tianjin, China.

    Tao, Shu; Li, Xinrong; Yang, Yu; Coveney, Raymond M; Lu, Xiaoxia; Chen, Haitao; Shen, Weiran

    2006-08-01

    A USEPA, procedure, ISCLT3 (Industrial Source Complex Long-Term), was applied to model the spatial distribution of polycyclic aromatic hydrocarbons (PAHs) emitted from various sources including coal, petroleum, natural gas, and biomass into the atmosphere of Tianjin, China. Benzo[a]pyrene equivalent concentrations (BaPeq) were calculated for risk assessment. Model results were provisionally validated for concentrations and profiles based on the observed data at two monitoring stations. The dominant emission sources in the area were domestic coal combustion, coke production, and biomass burning. Mainly because of the difference in the emission heights, the contributions of various sources to the average concentrations at receptors differ from proportions emitted. The shares of domestic coal increased from approximately 43% at the sources to 56% at the receptors, while the contributions of coking industry decreased from approximately 23% at the sources to 7% at the receptors. The spatial distributions of gaseous and particulate PAHs were similar, with higher concentrations occurring within urban districts because of domestic coal combustion. With relatively smaller contributions, the other minor sources had limited influences on the overall spatial distribution. The calculated average BaPeq value in air was 2.54 +/- 2.87 ng/m3 on an annual basis. Although only 2.3% of the area in Tianjin exceeded the national standard of 10 ng/m3, 41% of the entire population lives within this area.

  5. Dispersion modeling of polycyclic aromatic hydrocarbons from combustion of biomass and fossil fuels and production of coke in Tianjin, China

    Shu Tao; Xinrong Li; Yu Yang; Raymond M. Coveney, Jr.; Xiaoxia Lu; Haitao Chen; Weiran Shen [Peking University, Beijing (China). Laboratory for Earth Surface Processes, College of Environmental Sciences

    2006-08-01

    A USEPA procedure, ISCLT3 (Industrial Source Complex Long-Term), was applied to model the spatial distribution of polycyclic aromatic hydrocarbons (PAHs) emitted from various sources including coal, petroleum, natural gas, and biomass into the atmosphere of Tianjin, China. Benzo(a)pyrene equivalent concentrations (BaPeq) were calculated for risk assessment. Model results were provisionally validated for concentrations and profiles based on the observed data at two monitoring stations. The dominant emission sources in the area were domestic coal combustion, coke production, and biomass burning. Mainly because of the difference in the emission heights, the contributions of various sources to the average concentrations at receptors differ from proportions emitted. The shares of domestic coal increased from {approximately} 43% at the sources to 56% at the receptors, while the contributions of coking industry decreased from {approximately} 23% at the sources to 7% at the receptors. The spatial distributions of gaseous and particulate PAHs were similar, with higher concentrations occurring within urban districts because of domestic coal combustion. With relatively smaller contributions, the other minor sources had limited influences on the overall spatial distribution. The calculated average BaPeq value in air was 2.54 {+-} 2.87 ng/m{sup 3} on an annual basis. Although only 2.3% of the area in Tianjin exceeded the national standard of 10 ng/m{sup 3}, 41% of the entire population lives within this area. 37 refs., 9 figs.

  6. Fossil Fuel Combustion-Related Emissions Dominate Atmospheric Ammonia Sources during Severe Haze Episodes: Evidence from (15)N-Stable Isotope in Size-Resolved Aerosol Ammonium.

    Pan, Yuepeng; Tian, Shili; Liu, Dongwei; Fang, Yunting; Zhu, Xiaying; Zhang, Qiang; Zheng, Bo; Michalski, Greg; Wang, Yuesi

    2016-08-02

    The reduction of ammonia (NH3) emissions is urgently needed due to its role in aerosol nucleation and growth causing haze formation during its conversion into ammonium (NH4(+)). However, the relative contributions of individual NH3 sources are unclear, and debate remains over whether agricultural emissions dominate atmospheric NH3 in urban areas. Based on the chemical and isotopic measurements of size-resolved aerosols in urban Beijing, China, we find that the natural abundance of (15)N (expressed using δ(15)N values) of NH4(+) in fine particles varies with the development of haze episodes, ranging from -37.1‰ to -21.7‰ during clean/dusty days (relative humidity: ∼ 40%), to -13.1‰ to +5.8‰ during hazy days (relative humidity: 70-90%). After accounting for the isotope exchange between NH3 gas and aerosol NH4(+), the δ(15)N value of the initial NH3 during hazy days is found to be -14.5‰ to -1.6‰, which indicates fossil fuel-based emissions. These emissions contribute 90% of the total NH3 during hazy days in urban Beijing. This work demonstrates the analysis of δ(15)N values of aerosol NH4(+) to be a promising new tool for partitioning atmospheric NH3 sources, providing policy makers with insights into NH3 emissions and secondary aerosols for regulation in urban environments.

  7. Observations of Atmospheric Δ(14)CO2 at the Global and Regional Background Sites in China: Implication for Fossil Fuel CO2 Inputs.

    Niu, Zhenchuan; Zhou, Weijian; Cheng, Peng; Wu, Shugang; Lu, Xuefeng; Xiong, Xiaohu; Du, Hua; Fu, Yunchong

    2016-11-15

    Six months to more than one year of atmospheric Δ(14)CO2 were measured in 2014-2015 at one global background site in Waliguan (WLG) and four regional background sites at Shangdianzi (SDZ), Lin'an (LAN), Longfengshan (LFS) and Luhuitou (LHT), China. The objectives of the study are to document the Δ(14)CO2 levels at each site and to trace the variations in fossil fuel CO2 (CO2ff) inputs at regional background sites. Δ(14)CO2 at WLG varied from 7.1 ± 2.9‰ to 32.0 ± 3.2‰ (average 17.1 ± 6.8‰) in 2015, with high values generally in autumn/summer and low values in winter/spring. During the same period, Δ(14)CO2 values at the regional background sites were found to be significantly (p 0.05) seasonal differences in CO2ff concentrations for the regional sites. Regional sources contributed in part to the CO2ff inputs at LAN and SDZ, while local sources dominated the trend observed at LHT. These data provide a preliminary understanding of atmospheric Δ(14)CO2 and CO2ff inputs for a range of Chinese background sites.

  8. A shift in emission time profiles of fossil fuel combustion due to energy transitions impacts source receptor matrices for air quality.

    Hendriks, Carlijn; Kuenen, Jeroen; Kranenburg, Richard; Scholz, Yvonne; Schaap, Martijn

    2015-03-01

    Effective air pollution and short-lived climate forcer mitigation strategies can only be designed when the effect of emission reductions on pollutant concentrations and health and ecosystem impacts are quantified. Within integrated assessment modeling source-receptor relationships (SRRs) based on chemistry transport modeling are used to this end. Currently, these SRRs are made using invariant emission time profiles. The LOTOS-EUROS model equipped with a source attribution module was used to test this assumption for renewable energy scenarios. Renewable energy availability and thereby fossil fuel back up are strongly dependent on meteorological conditions. We have used the spatially and temporally explicit energy model REMix to derive time profiles for backup power generation. These time profiles were used in LOTOS-EUROS to investigate the effect of emission timing on air pollutant concentrations and SRRs. It is found that the effectiveness of emission reduction in the power sector is significantly lower when accounting for the shift in the way emissions are divided over the year and the correlation of emissions with synoptic situations. The source receptor relationships also changed significantly. This effect was found for both primary and secondary pollutants. Our results indicate that emission timing deserves explicit attention when assessing the impacts of system changes on air quality and climate forcing from short lived substances.

  9. Hydrologic impacts of past shifts of Earth's thermal equator offer insight into those to be produced by fossil fuel CO2.

    Broecker, Wallace S; Putnam, Aaron E

    2013-10-15

    Major changes in global rainfall patterns accompanied a northward shift of Earth's thermal equator at the onset of an abrupt climate change 14.6 kya. This northward pull of Earth's wind and rain belts stemmed from disintegration of North Atlantic winter sea ice cover, which steepened the interhemispheric meridional temperature gradient. A southward migration of Earth's thermal equator may have accompanied the more recent Medieval Warm to Little Ice Age climate transition in the Northern Hemisphere. As fossil fuel CO2 warms the planet, the continents of the Northern Hemisphere are expected to warm faster than the Southern Hemisphere oceans. Therefore, we predict that a northward shift of Earth's thermal equator, initiated by an increased interhemispheric temperature contrast, may well produce hydrologic changes similar to those that occurred during past Northern Hemisphere warm periods. If so, the American West, the Middle East, and southern Amazonia will become drier, and monsoonal Asia, Venezuela, and equatorial Africa will become wetter. Additional paleoclimate data should be acquired and model simulations should be conducted to evaluate the reliability of this analog.

  10. New insights to the use of ethanol in automotive fuels: a stable isotopic tracer for fossil- and bio-fuel combustion inputs to the atmosphere.

    Giebel, Brian M; Swart, Peter K; Riemer, Daniel D

    2011-08-01

    Ethanol is currently receiving increased attention because of its use as a biofuel or fuel additive and because of its influence on air quality. We used stable isotopic ratio measurements of (13)C/(12)C in ethanol emitted from vehicles and a small group of tropical plants to establish ethanol's δ(13)C end-member signatures. Ethanol emitted in exhaust is distinctly different from that emitted by tropical plants and can serve as a unique stable isotopic tracer for transportation-related inputs to the atmosphere. Ethanol's unique isotopic signature in fuel is related to corn, a C4 plant and the primary source of ethanol in the U.S. We estimated a kinetic isotope effect (KIE) for ethanol's oxidative loss in the atmosphere and used previous assumptions with respect to the fractionation that may occur during wet and dry deposition. A small number of interpretive model calculations were used for source apportionment of ethanol and to understand the associated effects resulting from atmospheric removal. The models incorporated our end-member signatures and ambient measurements of ethanol, known or estimated source strengths and removal magnitudes, and estimated KIEs associated with atmospheric removal processes for ethanol. We compared transportation-related ethanol signatures to those from biogenic sources and used a set of ambient measurements to apportion each source contribution in Miami, Florida-a moderately polluted, but well ventilated urban location.

  11. Assessment of potential domestic fossil-fuel resources for SNG (substitute natural gas) production. Final report, February 1983-August 1984

    Cover, A.E.; Hubbard, D.A.; Shah, K.V.; Koneru, P.B.

    1984-08-01

    Quality and availability of naturally occurring resources and industrial by-products which could be gasified and thereby serve as feedstock for SNG plants were studied to identify those resources with the greatest potential for exploitation in this regard. KRSI accumulated information from a large number of literature sources relative to the resources identified by GRI for study. To the extent possible, KRSI then organized this information to highlight for each resource the grades available, typical chemical compositions, quantities and locations of reserves, recovery methods and rates of production and consumption. This information clearly shows that coal is the most practical source of long-term feedstock for SNG in the contiguous USA. Coal resources amount to 84% (by quads) of the energy resources which were studied. In comparison, peat, shale oil and tar sand contain about 11% of the total.

  12. NON-INTRUSIVE GAS-PHASE THERMOMETRY FOR INDUSTRIAL OXY-FUEL BURNERS

    J. W. Tröger

    2015-03-01

    Full Text Available The use of oxy-fuel combustion processes is of large interest for several industrial fields applications since it offers the advantages of low NOx emissions in combination with high combustion temperatures even without additional preheating. For optimization of such processеs a detailed understanding based on precise experimental data is necessary. So far there is still a lack of precise experimental data achieved with high spatial and temporal resolution from industrial relevant turbulent oxy-fuel combustion processes. Beside species concentration information the gas phase temperature is of utmost importance for an improved understanding of the basic chemical reactions and the pollutant formation. The coherent anti-Stokes Raman spectroscopy (CARS technique is a very well suited laser based tool for a non-intrusive investigation of such turbulent high temperature combustion processes. In this work we analysed an industrial 400 kW oxy-fuel burner with the help of O2 based vibrational CARS system which is integrated in an industrial relevant test furnace. The burner is fed with pure oxygen and natural gas at an equivalence ratio of =0.9. At one downstream position temporal and spatial resolved temperatures were measured along a 600 mm line. Additional air sucked in from the environment seems to influence the gas phase temperature significantly.

  13. Recycled water reuse permit renewal application for the materials and fuels complex industrial waste ditch and industrial waste pond

    Name, No

    2014-10-01

    This renewal application for the Industrial Wastewater Reuse Permit (IWRP) WRU-I-0160-01 at Idaho National Laboratory (INL), Materials and Fuels Complex (MFC) Industrial Waste Ditch (IWD) and Industrial Waste Pond (IWP) is being submitted to the State of Idaho, Department of Environmental Quality (DEQ). This application has been prepared in compliance with the requirements in IDAPA 58.01.17, Recycled Water Rules. Information in this application is consistent with the IDAPA 58.01.17 rules, pre-application meeting, and the Guidance for Reclamation and Reuse of Municipal and Industrial Wastewater (September 2007). This application is being submitted using much of the same information contained in the initial permit application, submitted in 2007, and modification, in 2012. There have been no significant changes to the information and operations covered in the existing IWRP. Summary of the monitoring results and operation activity that has occurred since the issuance of the WRP has been included. MFC has operated the IWP and IWD as regulated wastewater land treatment facilities in compliance with the IDAPA 58.01.17 regulations and the IWRP. Industrial wastewater, consisting primarily of continuous discharges of nonhazardous, nonradioactive, routinely discharged noncontact cooling water and steam condensate, periodic discharges of industrial wastewater from the MFC facility process holdup tanks, and precipitation runoff, are discharged to the IWP and IWD system from various MFC facilities. Wastewater goes to the IWP and IWD with a permitted annual flow of up to 17 million gallons/year. All requirements of the IWRP are being met. The Operations and Maintenance Manual for the Industrial Wastewater System will be updated to include any new requirements.

  14. Recycled Water Reuse Permit Renewal Application for the Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond

    No Name

    2014-10-01

    ABSTRACT This renewal application for the Industrial Wastewater Reuse Permit (IWRP) WRU-I-0160-01 at Idaho National Laboratory (INL), Materials and Fuels Complex (MFC) Industrial Waste Ditch (IWD) and Industrial Waste Pond (IWP) is being submitted to the State of Idaho, Department of Environmental Quality (DEQ). This application has been prepared in compliance with the requirements in IDAPA 58.01.17, Recycled Water Rules. Information in this application is consistent with the IDAPA 58.01.17 rules, pre-application meeting, and the Guidance for Reclamation and Reuse of Municipal and Industrial Wastewater (September 2007). This application is being submitted using much of the same information contained in the initial permit application, submitted in 2007, and modification, in 2012. There have been no significant changes to the information and operations covered in the existing IWRP. Summary of the monitoring results and operation activity that has occurred since the issuance of the WRP has been included. MFC has operated the IWP and IWD as regulated wastewater land treatment facilities in compliance with the IDAPA 58.01.17 regulations and the IWRP. Industrial wastewater, consisting primarily of continuous discharges of nonhazardous, nonradioactive, routinely discharged noncontact cooling water and steam condensate, periodic discharges of industrial wastewater from the MFC facility process holdup tanks, and precipitation runoff, are discharged to the IWP and IWD system from various MFC facilities. Wastewater goes to the IWP and IWD with a permitted annual flow of up to 17 million gallons/year. All requirements of the IWRP are being met. The Operations and Maintenance Manual for the Industrial Wastewater System will be updated to include any new requirements.

  15. Electric properties of biodiesel in the range from 20 Hz to 20 MHz. Comparison with diesel fossil fuel

    Gonzalez Prieto, L.E. [Grupo de Energias Renovables, Facultad de Ingenieria, Universidad de Buenos Aires, Av. Paseo Colon 850, Buenos Aires, 1063 (Argentina); Sorichetti, P.A. [Laboratorio de Sistemas Liquidos, Facultad de Ingenieria, Universidad de Buenos Aires, Buenos Aires (Argentina); Romano, S.D. [Grupo de Energias Renovables, Facultad de Ingenieria, Universidad de Buenos Aires, Av. Paseo Colon 850, Buenos Aires, 1063 (Argentina); CONICET: Consejo Nacional de Investigaciones Cientificas y Tecnicas, Av. Rivadavia 1917, Buenos Aires, 1033 (Argentina)

    2008-07-15

    Determination of electric properties at the different steps of biodiesel (BD) production contributes to a better understanding of the influence of the variables. Measurements of complex permittivity and conductivity make possible to survey efficiently the diverse steps of the industrial-scale production process, from the conditioning of the raw material to the quality control of the final product. Moreover, electrical measurements are 'non-destructive' and require relatively small sample volumes. In this work, complex permittivity spectra of BD and DF from 20 Hz to 20 MHz are presented. Experimental data were taken in a range of temperatures from 25 to 75 C, measured with an accuracy of {+-}0.1 C. The measuring system used in this work requires a sample volume of 25cm{sup 3} and gives the real part of permittivity ({epsilon}{sup '}) with an accuracy better than 1%. Dielectric loss (tg{delta}) can be measured between 10{sup -2} and 10{sup 2}. (author)

  16. Bacterial and human cell mutagenicity study of some C[sub 18]H[sub 10] cyclopenta-fused polycyclic aromatic hydrocarbons associated with fossil fuels combustion

    Lafleur, A.L.; Longwell, J.P.; Marr, J.A.; Monchamp, P.A.; Thilly, W.G. (Massachusetts Institute of Technology, Cambridge (United States)); Mulder, P.P.Y.; Boere, B.B.; Cornelisse, J.; Lugtenburg, J. (Univ. of Leiden (Netherlands))

    1993-06-01

    A number of isomeric C[sub 18]H[sub 10] polycyclic aromatic hydrocarbons (PAHs), thought to be primarily cyclopenta-fused PAHs, are produced during the combustion and pyrolysis of fossil fuels. To determine the importance of their contributions to the total mutagenic activity of combustion and pyrolysis samples in which they are found, we characterized reference quantities of four C[sub 18]H[sub 10] CP-PAHs: benzol [ghi] fluoranthene (BF), cyclopenta [cd] pyrene (CPP), cyclopent [hi] acephenanthrylene (CPAP), and cyclopent [hi] acaenthrylene (CPAA). Synthesis of CPAA and CPAP is described. The availability of reference samples of these isomers also proved to be an essential aid in the identification of the C[sub 18]H[sub 10] species often found in combustion and pyrolysis samples. Chemical analysis of selected combustion and pyrolysis samples showed that CPP was generally the most abundant C[sub 18]H[sub 10] isomer, followed by CPAP and BF. CPAA was detected only in pyrolysis products from pure PAHs. We tested the four C[sub 18]H[sub 10] PAHs for mutagenicity in a forward mutation assay using S. typhimurium. CPP, BF, and CPAA were roughly twice as mutagenic as benzo[a]pyrene (BaP), whereas CPAP was only slightly active. These PAHs were also tested for mutagenic activity in human cells. In this assay, CPP and CPAA were strongly mutagenic but less active than BaP, whereas CPAP and BF were inactive at the dose levels tested. Also, the bacterial and human cell mutagenicity of CPAA and CPAP were compared with the mutagenicity of their monocyclopenta-fused analogs, aceanthrylene and acephenanthrylene. Although the mutagenicities of CPAP and acephenanthrylene are similar, the mutagenic activity of CPAA is an order of magnitude greater than that of aceanthrylene.

  17. A research needs assessment for the capture, utilization and disposal of carbon dioxide from fossil fuel-fired power plants. Volume 1, Executive summary: Final report

    1993-07-01

    This study identifies and assesses system approaches in order to prioritize research needs for the capture and non-atmospheric sequestering of a significant portion of the carbon dioxide (CO{sub 2}) emitted from fossil fuel-fired electric power plants (US power plants presently produce about 7% of the world`s CO{sub 2} emissions). The study considers capture technologies applicable either to existing plants or to those that optimistically might be demonstrated on a commercial scale over the next twenty years. Specific conclusions are as follows: (1) To implement CO{sub 2} capture and sequestration on a national scale will decrease power plant net efficiencies and significantly increase the cost of electricity. To make responsible societal decisions, accurate and consistent economic and environmental analysis of all alternatives for atmospheric CO{sub 2} mitigation are required. (2) Commercial CO{sub 2} capture technology, though expensive and energy intensive, exists today. (3) The most promising approach to more economical CO{sub 2} capture is to develop power plant systems that facilitate efficient CO{sub 2} capture. (4) While CO{sub 2} disposal in depleted oil and gas reservoirs is feasible today, the ability to dispose of large quantities Of CO{sub 2} is highly uncertain because of both technical and institutional issues. Disposal into the deep ocean or confined aquifers offers the potential for large quantity disposal, but there are technical, safety, liability, and environmental issues to resolve. Therefore, the highest priority research should focus on establishing the feasibility of large scale disposal options.

  18. Evaluation of NPP-VIIRS Nighttime Light Data for Mapping Global Fossil Fuel Combustion CO2 Emissions: A Comparison with DMSP-OLS Nighttime Light Data.

    Ou, Jinpei; Liu, Xiaoping; Li, Xia; Li, Meifang; Li, Wenkai

    2015-01-01

    Recently, the stable light products and radiance calibrated products from Defense Meteorological Satellite Program's (DMSP) Operational Linescan System (OLS) have been useful for mapping global fossil fuel carbon dioxide (CO2) emissions at fine spatial resolution. However, few studies on this subject were conducted with the new-generation nighttime light data from the Visible Infrared Imaging Radiometer Suite (VIIRS) sensor on the Suomi National Polar-orbiting Partnership (NPP) Satellite, which has a higher spatial resolution and a wider radiometric detection range than the traditional DMSP-OLS nighttime light data. Therefore, this study performed the first evaluation of the potential of NPP-VIIRS data in estimating the spatial distributions of global CO2 emissions (excluding power plant emissions). Through a disaggregating model, three global emission maps were then derived from population counts and three different types of nighttime lights data (NPP-VIIRS, the stable light data and radiance calibrated data of DMSP-OLS) for a comparative analysis. The results compared with the reference data of land cover in Beijing, Shanghai and Guangzhou show that the emission areas of map from NPP-VIIRS data have higher spatial consistency of the artificial surfaces and exhibit a more reasonable distribution of CO2 emission than those of other two maps from DMSP-OLS data. Besides, in contrast to two maps from DMSP-OLS data, the emission map from NPP-VIIRS data is closer to the Vulcan inventory and exhibits a better agreement with the actual statistical data of CO2 emissions at the level of sub-administrative units of the United States. This study demonstrates that the NPP-VIIRS data can be a powerful tool for studying the spatial distributions of CO2 emissions, as well as the socioeconomic indicators at multiple scales.

  19. Evaluation of NPP-VIIRS Nighttime Light Data for Mapping Global Fossil Fuel Combustion CO2 Emissions: A Comparison with DMSP-OLS Nighttime Light Data.

    Jinpei Ou

    Full Text Available Recently, the stable light products and radiance calibrated products from Defense Meteorological Satellite Program's (DMSP Operational Linescan System (OLS have been useful for mapping global fossil fuel carbon dioxide (CO2 emissions at fine spatial resolution. However, few studies on this subject were conducted with the new-generation nighttime light data from the Visible Infrared Imaging Radiometer Suite (VIIRS sensor on the Suomi National Polar-orbiting Partnership (NPP Satellite, which has a higher spatial resolution and a wider radiometric detection range than the traditional DMSP-OLS nighttime light data. Therefore, this study performed the first evaluation of the potential of NPP-VIIRS data in estimating the spatial distributions of global CO2 emissions (excluding power plant emissions. Through a disaggregating model, three global emission maps were then derived from population counts and three different types of nighttime lights data (NPP-VIIRS, the stable light data and radiance calibrated data of DMSP-OLS for a comparative analysis. The results compared with the reference data of land cover in Beijing, Shanghai and Guangzhou show that the emission areas of map from NPP-VIIRS data have higher spatial consistency of the artificial surfaces and exhibit a more reasonable distribution of CO2 emission than those of other two maps from DMSP-OLS data. Besides, in contrast to two maps from DMSP-OLS data, the emission map from NPP-VIIRS data is closer to the Vulcan inventory and exhibits a better agreement with the actual statistical data of CO2 emissions at the level of sub-administrative units of the United States. This study demonstrates that the NPP-VIIRS data can be a powerful tool for studying the spatial distributions of CO2 emissions, as well as the socioeconomic indicators at multiple scales.

  20. Advances in the research line of diagnosing of faults in fossil fuel power plants; Avances en la linea de investigacion de diagnostico de fallas en centrales termoelectricas

    Ruz H, Jose A [Universidad Autonoma del Carmen, Campeche (Mexico); Sanchez C, Edgar N [Centro de Investigacion y Estudios Avanzados del Instituto Politecnico Nacional, Mexico, D.F. (Mexico); Suarez Cerda, Dionisio A; Quintero R, Agustin [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico)

    2006-07-01

    This article deals with a research in progress searching to take care of the faults that occur with greatest frequency in the fossil fuel power plants of Mexico with the aid of tools of computational intelligence such as the neuronal networks and the fuzzy logic, for the online recognition of the dynamic behavior patterns of variable groups. What this research looks for is the development of individual systems, in relation to the computational intelligence techniques that continuously supervise the functioning of the unit and inform the operator of the eventual faults in the understanding that on time attention to the faults will result in a minimum cost. The advantages of these diagnosis mechanisms are established in comparison to alternative diagnosis methods, such as their associative memory useful to store fault patterns. [Spanish] Se trata de una investigacion en progreso que busca atender las fallas que ocurren con mayor frecuencia en las unidades termoelectricas de Mexico con la ayuda de herramientas de inteligencia computacional como las redes neuronales y la logica difusa, para el reconocimiento en linea de patrones de comportamiento dinamico de grupos de variables. Lo que esta investigacion busca es desarrollar sendos sistemas, en relacion a las tecnicas de inteligencia computacional, que supervisen continuamente el funcionamiento de la unidad e informen al operador de fallas eventuales, en el entendido que la oportuna atencion a fallas redituara en un costo minimo. Las ventajas de estos mecanismos de diagnostico se establecen en comparacion a metodos de diagnostico alternativos, como su memoria asociativa util para almacenar patrones de falla.

  1. Spatially Distributed Fossil Fuel CO2 Emissions in Two U.S. Cities Using Activity Data: Applicability for Global Cities and High-resolution Atmospheric Inversion Modeling

    Rao, P.; Lauvaux, T.; Oda, T.; Tang, J.; Gurney, K. R.; Eldering, A.; Miller, C. E.; Duren, R. M.

    2015-12-01

    Urban fossil fuel CO2 (FFCO2) emissions play a significant role in the global C cycle and climate change. To better understand and monitor urban FFCO2 emissions, we need timely estimates at fine spatial resolution. However, currently available global estimates have coarse resolution of 10km or more except for some US cities which have finer FFCO2 estimates at ~250m (Hestia Project; Gurney et al. 2012). We construct an urban sectoral emission model for the U.S. based on multiple cities and spatially disaggregate each sector to arrive at finely resolved emissions data products. We then calibrate our results with other datasets to confirm whether this approach can be applicable in any global urban domain. We acquire 2012 annual emissions estimates from EPA's national emissions inventory for the Los Angeles megacity and Indianapolis and apply our U.S. urban sectoral emission model to derive sectoral estimates. We then spatially distribute these sectoral emissions based on activity and other proxy data. We combine remote sensing and open source data such as national land cover data, population density, impervious surface, and road maps to develop intensity metrics of energy use within each sector. These intensity metrics are then used to spatially allocate emissions within each sector. We incorporate global powerplant emissions data to complete our emissions datasets. We validate our urban FFCO2 emissions datasets, both at sectoral and city scales, against Hestia results for two cities and, in case of Indianapolis, compare to results from inverse modeling of atmospheric CO2 concentrations. This study will guide the next phase of research by developing the methodology to determine the spatial variation of FFCO2 emissions in select cities around the world.

  2. Uncertainty in future global energy use and fossil fuel CO{sub 2} emissions 1975 to 2075: Appendices A--B

    Edmonds, J.A. [Oak Ridge Associated Universities, Washington, DC (United States). Inst. for Energy Analysis; Reilly, J.M. [Pacific Northwest Labs., Washington, DC (United States); Gardner, R.H. [Oak Ridge National Lab., TN (United States); Brenkert, A. [Science Applications International Corp., Oak Ridge, TN (United States)

    1985-12-01

    Appendix A contains the Monte Carlo Data Set. The data sheets give the distribution for input variables used in Monte Carlo analysis of the IEA/ORAU Global Energy, CO{sub 2} Model. The data sheets include a discussion of data sources, bibliographic sources, and other considerations used in developing the particular data format and values for distributions. As much detail as possible about how distributions are related to published estimates is given but in most cases it was necessary to make a significant leap from available data to the quantified distribution. The distributions are meant to be roughly accurate and to the degree that uncertainty exists about the form and value of distributions, the authors have tended to opt for wider bounds. Appendix B contains The IEA/ORAU Long-Term Global Energy-CO{sub 2} Model, Version A.84 -- Model Improvements. The model was originally developed in 1982 in support of work conducted for the US Department of Energy Carbon Dioxide Research Division in the area of future global fossil fuel related CO emissions research. The uncertainty analysis, documented in this report, made demands on the model that had not previously been made, and in the process of operating the model much was learned about areas in which simplification or elaboration was justified, or in which a different approach was warranted. As a consequence of these criticisms, demands, and learning numerous model modifications were undertaken. Since two versions of the model now exist, version specifications have been adopted. The 1984 version is designated A.84, while the version completed in 1982 is designated B.82. Model changes fall into three categories: those which affect the theoretical structure of the model, those which affect the computational processes of the model, and those which affect only the model by which model inputs are entered.

  3. An assessment of econometric models applied to fossil fuel power generation; Un'analisi critica dell'applicazione dei modelli econometrici alla generazione termoelettrica

    Gracceva, F.; Quercioli, R. [ENEA, Funzione Centrale Studi, Centro Ricerche Casaccia, Rome (Italy)

    2001-07-01

    The main purpose of this report is to provide a general view of those studies, in which the econometric approach is applied to the selection of fuel in fossil fired power generation, focusing the attention to the key role played by the fuel prices. The report consists of a methodological analysis and a survey of the studies available in literature. The methodological analysis allows to assess the adequateness of the econometric approach, in the electrical power utilities policy. With this purpose, the fundamentals of microeconomics, which are the basis of the econometric models, are pointed out and discussed, and then the hypotheses, which are needed to be assumed for complying the economic theory, are verified in their actual implementation in the power generation sector. The survey of the available studies provides a detailed description of the Translog and Logit models, and the results achieved with their application. From these results, the estimated models show to fit the data with good approximation, a certain degree of interfuel substitution and a meaningful reaction to prices on demand side. [Italian] In questo rapporto viene tracciato un quadro generale degli studi che utilizzano modelli econometrici per analizzare la scelta dei combustibili nella termogenerazione, con particoalre attenzione al ruolo svolto dal prezzo dei combustibili. La trattazione si compone di un'analisi di tipo metodologico e di una rassegna della letteratura. L'analisi metodologica consente di valutare l'adeguatezza dell'approccio econometrico nell'analisi del comportamento delle imprese di generazione elettrica. A tal fine vengono esplicitati e discussi i fondamenti microeconomici su cui poggiano i modelli econometrici, e viene verificata la sussistenza, nel settore termoelettrico, delle ipotesi che e' necessario assumere per soddisfare la teoria economica. La rassegna fornisce invece una descrizione dei modelli translog e logit lineare, ed un

  4. High Power Diode Laser-Treated HP-HVOF and Twin Wire Arc-Sprayed Coatings for Fossil Fuel Power Plants

    Mann, B. S.

    2013-08-01

    This article deals with high power diode laser (HPDL) surface modification of twin wire arc-sprayed (TWAS) and high pressure high velocity oxy-fuel (HP-HVOF) coatings to combat solid particle erosion occurring in fossil fuel power plants. To overcome solid particle impact wear above 673 K, Cr3C2-NiCr-, Cr3C2-CoNiCrAlY-, and WC-CrC-Ni-based HVOF coatings are used. WC-CoCr-based HVOF coatings are generally used below 673 K. Twin wire arc (TWA) spraying of Tafa 140 MXC and SHS 7170 cored wires is used for a wide range of applications for a temperature up to 1073 K. Laser surface modification of high chromium stainless steels for steam valve components and LPST blades is carried out regularly. TWA spraying using SHS 7170 cored wire, HP-HVOF coating using WC-CoCr powder, Ti6Al4V alloy, and high chromium stainless steels (X20Cr13, AISI 410, X10CrNiMoV1222, 13Cr4Ni, 17Cr4Ni) were selected in the present study. Using robotically controlled parameters, HPDL surface treatments of TWAS-coated high strength X10CrNiMoV1222 stainless steel and HP-HVOF-coated AISI 410 stainless steel samples were carried out and these were compared with HPDL-treated high chromium stainless steels and titanium alloy for high energy particle impact wear (HEPIW) resistance. The HPDL surface treatment of the coatings has improved the HEPIW resistance manifold. The improvement in HPDL-treated stainless steels and titanium alloys is marginal and it is not comparable with that of HPDL-treated coatings. These coatings were also compared with "as-sprayed" coatings for fracture toughness, microhardness, microstructure, and phase analyses. The HEPIW resistance has a strong relationship with the product of fracture toughness and microhardness of the HPDL-treated HP-HVOF and TWAS SHS 7170 coatings. This development opens up a possibility of using HPDL surface treatments in specialized areas where the problem of HEPIW is very severe. The HEPIW resistance of HPDL-treated high chromium stainless steels and

  5. An evaluation of deeply-cleaned coals as industrial boiler fuels

    Miller, B.G.; Wincek, R.T.; Scaroni, A.W.

    1999-07-01

    AMAX Research and Development Center (AMAX) recently conducted a program for the US Department of Energy (DOE) in which processes for preparing ultra-clean coal were developed (Jha et al., 1997). The coal cleaning methods targeted were advanced column flotation and selective agglomeration. The goal was to develop a coal-based fuel, preferably a coal-water slurry fuel (CWSF), that would be a viable alternative to fuel oil or natural gas in industrial and utility boilers, and would also be appropriate for advanced combustion systems that are under development. Additional objectives were to develop near-term applications of the advanced coal cleaning technologies in new or existing coal preparation plants in order to efficiently process minus 28 mesh fines and convert them into marketable products, and to determine the extent of removal of toxic trace elements from coal by the advanced cleaning technologies. AMAX cleaned three coals in an integrated advanced column flotation and selective agglomeration process development unit. The coals were from the Taggart (Virginia), Indiana VII (Indiana) and Hiawatha (Utah) seams. As a complement to the AMAX program, Penn State is evaluating the deeply-cleaned coals as industrial boiler fuels. Specifically, the handling characteristics, combustion performance, and trace element emissions of the coals are being determined. The coals are being tested in demonstration (20 million Btu/h) and research (2 million Btu/h) boilers as part of a Penn State/DOE project characterizing trace element emissions from coal-fired industrial boilers. This paper will discuss the atomization characteristics and combustion performance (in the demonstration boiler) in a 1 ton/h filter cake re-entrainment circuit. In addition, the combustion performance of the ultra-clean CWSFs is compared to that of other CWSFs prepared in Penn State's 1 ton/h single and double-stage grinding circuit.

  6. An alternative feedstock of corn meal for industrial fuel ethanol production: delignified corncob residue.

    Lei, Cheng; Zhang, Jian; Xiao, Lin; Bao, Jie

    2014-09-01

    Delignified corncob residue is an industrial solid waste from xylose production using corncob as feedstock. In this study, delignified corncob residue was used as the feedstock of ethanol production by simultaneous saccharification and fermentation (SSF) and the optimal fermentation performance was investigated under various operation conditions. The ethanol titer and yield reached 75.07 g/L and 89.38%, respectively, using a regular industrial yeast strain at moderate cellulase dosage and high solids loading. A uniform SSF temperature of 37°C at both prehydrolysis and SSF stages was tested. The fermentation performance and cost of delignified corncob residue and corn meal was compared as feedstock of ethanol fermentation. The result shows that the delignified corncob residue is competitive to corn meal as ethanol production feedstock. The study gives a typical case to demonstrate the potential of intensively processed lignocellulose as the alternative feedstock of corn meal for industrial fuel ethanol production.

  7. Integrated production of merchantable wood and wood fuels in industry; Teollisuuden ainespuun ja puupolttoaineen integroitu tuotanto

    Kuvaja, K. [Enso Oy, Imatra (Finland). Forest Dept.

    1997-12-01

    The aim of this project is the economically profitable integrated harvesting of industrial wood and firewood especially in harvesting of small-diameter first thinning wood. The research in 1994 was concentrated on improvement of the quality of the chipping methods based on chain-flail debarking chipping method, and on determination of the possible utilisation targets for the fuel fraction. A reasonably large drum debarking test was also carried out at the industrial scale debarking station of the Enocell Oy. More than 80 000 m{sup 3} of first thinning wood was delivered by Enocell during this project. The quality of wood chips, produced using the chain-flail delimbing method, could be improved in the case of pine nearly to the required quality level, but additional measures are still needed in the case of birch. The fuel fraction deliveries to different points of utilisation was started. The particle size of the fuel fraction appeared to be good after crushing. In 1995 a chain-flail-drum debarking chipping unit was developed to improve and homogenise the quality of chips. (orig.)

  8. Proceedings of the 18th Annual Conference on Fossil Energy Materials.

    Judkins, RR

    2004-11-02

    The 18th Annual conference on Fossil Energy Materials was held in Knoxville, Tennessee, on June 2 through June 4, 2004. The meeting was sponsored by the U.S. Department of Energy's (DOE) Office of Fossil Energy through the Advanced Research Materials Program (ARM). The objective of the ARM Program is to conduct research and development on materials for longer-term fossil energy applications, as well as for generic needs of various fossil fuel technologies. The management of the program has been decentralized to the DOE Oak Ridge Operations Office and Oak Ridge National Laboratory (ORNL). The research is performed by staff members at ORNL and by researchers at other national laboratories, universities, and in private industry. The work is divided into the following categories: (1) structural, ceramics, (2) new alloys and coatings, (3) functional materials, and (4) technology development and transfer.

  9. Population, Fossil Fuels and Armageddon

    Ely, John T. A.

    2001-03-01

    A well documented report of the somber findings of the specialists has established the growing world climate instability and related increases in weather related disasters since 1990 (Bette Hileman, Chem Eng News 16-28, Aug 9, '99). Their projections over the next century imply that ocean-atmosphere CO2 exchange involves deep mixing and long times. However, the Magnetic Coupling Model predicts a self-sustaining warming mode, based on net flux of CO2 from the top 100m of ocean surface to the atmosphere on decade time scales. Such a catastrophic greenhouse runaway to a new equilibrium climate is not precluded theoretically, could end the possibility of human intervention in global warming and sea level rise, and may have already started. It could initiate a melt of global ice inventory which can rapidly raise sea level 6 m. The recent decade's rate of pCO2 climb, over 1.5 ppmv/year, increasing exponentially, is more than twice the average rate from 1900 to 1950, but only half the 2.9 increase from 1997 to 1998. [Ely Proc. IEEE Conf. Oceans '89, 1: 277-284, 1989; NASA Conf. Pub. 2098, A, 25-26, 1979; Eos, Dec 98; Proc. Solar 1979 NW, DOE Conf. 79-0845, (Supplement 38-43), 1979].

  10. Fast optical measurements and imaging of flow mixing: Fast optical measurements and imaging of temperature in combined fossil fuel and biomass/waste systems

    Clausen, Soennik; Fateev, A.; Lindorff Nielsen, K.; Evseev, V.

    2012-02-15

    Project is focused on fast time-resolved infrared measurements of gas temperature and fast IR-imagining of flames in various combustion environments. The infrared spectrometer system was developed in the project for fast infrared spectral measurements on industrial scale using IR-fibre- optics. Fast time-and spectral-resolved measurements in 1.5-5.1 mu spectral range give information about flame characteristics like gas and particle temperatures, eddies and turbulent gas mixing. Time-resolved gas composition in that spectral range (H{sub 2}O, CH{sub 4}, CO{sub 2}, CO) which is one of the key parameters in combustion enhancement can be also obtained. The infrared camera was also used together with special endoscope optics for fast thermal imaging of a coal-straw flame in an industrial boiler. Obtained time-resolved infrared images provided useful information for the diagnostics of the flame and fuel distribustion. The applicability of the system for gas leak detection is also demonstrated. The infrared spectrometer system with minor developments was applied for fast time-resolved exhaust gas temperature measurements performed simultaneously at the three optical ports of the exhaust duct of a marine Diesel engine and visualisation of gas flow behaviour in cylinder. (Author)

  11. The impact of water vapour on climate; Does a hydrogen energy management bear higher risks than the combination of fossil fuels. Der Einfluss von Wasserdampf auf das Klima; Birgt eine Wasserstoffenergiewirtschaft hoehere Klimarisiken als die Verbrennung fossiler Energietraeger

    Zittel, W. (Ludwig-Boelkow-Systemtechnik GmbH, Ottobrunn (Germany)); Altmann, M. (Ludwig-Boelkow-Systemtechnik GmbH, Ottobrunn (Germany))

    1994-04-01

    Do water vapour emissions from a solar hydrogen system affect the climate This question was investigated by the authors. They state: The comparison with natural emissions by evaporation shows that emissions caused by energy generation, regardless of whether they stem from fossil, nuclear or regenerative energy systems, are negligible with a proportion of 0.005%. On the other hand, carbon dioxide emissions with a proportion of 4%, constitute a factor which already impedes the natural cycle. (orig.)

  12. Monetary assessments of carbon dioxide emissions - Comparison between biofuels and fossil fuels; Monetaera vaerderingar av koldioxidutslaepp - jaemfoerelser mellan biobraenslen och fossila braenslen

    Ekstroem, C.; Kierkegaard, G. [Vattenfall Utveckling AB, Stockholm (Sweden)] Borgstroem, T. [Swedpower AB (Sweden)

    1999-10-01

    The Swedish tax and subsidy system results in that municipal heat and combined heat and power often can be produced from biofuels at the same as or at lower costs than from fossil fuels. A considerable part of the Swedish municipal district heat is nowadays produced from biofuels. It has been questioned, whether this is justifiable from a national economic point of view, considering realistic estimates of the possible future costs, caused by increased carbon dioxide emissions, that will be avoided this way. There are however large differences between the monetary assessments of carbon dioxide emissions presented in various studies. According to neoclassic national economy, various energy production options should be valued based on their total costs from a national economic point of view. Such total costs include the production costs (`private costs`) as well as `external costs`, i.e. costs that will be brought down upon other parties than the plant owners and the energy buyers. This study illustrates how such total costs for power and heat production from biofuels relative to from natural gas, oil and coal, would be affected if various monetary assessments of carbon dioxide emissions would be treated as external costs and internalised, i.a. charged upon the production costs. The calculations are made for assumed new production plants. The order of precedence (with respect to the lowest total costs) between the studied fuels is affected in favour of biofuels only for high monetary assessments of carbon dioxide emissions. For heat as well as combined heat and power production, an order of precedence corresponding to the carbon dioxide emissions for the respective fuels, will be achieved only for the highest carbon dioxide monetary assessments based on a low discount rate. For condensing power production, the calculated production costs for biofuels are so high that natural gas will get the lowest total costs for all the studied carbon dioxide monetary assessments

  13. The refining industry and the future of the fuel oils; L'industrie du raffinage et le devenir des fiouls lourds

    Soleille, S

    2004-01-15

    The fuel oils consumption decrease in France since 1970, because of the two petroleum crisis, the nuclear energy competition and the air pollution. The fuel oils industry is then looking other export possibilities. This report aims to offer a first approach of the problem and presents the main challenges. The first part is devoted to the technical context (definition, production and outlet. The second part presents the environmental context and the fuel oils market. In the third part the market is studied at the world scale, in the fourth at the french scale and in the fifth at the scale of other countries as United States, Japan and european Union. A synthesis tables is given in the last part to compare and propose some hypothesis concerning the future of fuel oils and the french refining industry. (A.L.B.)

  14. Electricity Production and Characterization of High-Strength Industrial Wastewaters in Microbial Fuel Cell.

    Cetinkaya, Afsin Y; Ozdemir, Oguz Kaan; Demir, Ahmet; Ozkaya, Bestami

    2016-11-23

    Microbial fuel cells (MFCs) convert electrochemical energy into electrical energy immediately and have a big potential usage for the same time wastewater treatment and energy recovery via electro-active microorganisms. However, MFCs must be efficiently optimized due to its limitations such as high cost and low power production. Finding new materials to increase the cell performance and reduce cost for MFC anodes is mandatory. In the first step of this study, different inoculation sludges such as anaerobic gum industry wastewater, anaerobic brewery wastewater and anaerobic phosphate were tested, and MFC that was set up with anaerobic gum industry wastewater inoculation sludge exhibited the highest performance. In the second step of this study, various wastewaters such as chocolate industry, gum industry and slaughterhouse industry were investigated for anode bacteria sources. Several electrochemical techniques have been employed to elucidate how wastewaters affect the MFCs' performance. Among all the mentioned wastewaters, the best performance was achieved by the MFCs fed with slaughterhouse wastewater; this device produced a maximum power density of 267 mW·m(-2).

  15. Proceedings of the GLOBAL 2009 congress - The Nuclear Fuel Cycle: Sustainable Options and Industrial Perspectives

    NONE

    2009-06-15

    GLOBAL 2009 is the ninth bi-annual scientific world meeting on the Nuclear Fuel Cycle (NFC) that started in 1993 in Seattle. This meeting has established itself as a dedicated international forum for experts, to provide an overall review of the status and new trends of research applications and policies related to the fuel cycle. The international nuclear community is actively developing advanced processes and innovative technologies that enhance economic competitiveness of nuclear energy and ensure its sustainability, through optimized utilization of natural resources, minimization of nuclear wastes, resistance to proliferation and compliance with safety requirements. In this context, and under the profound evolutions concerning energy supply, GLOBAL 2009 is a great opportunity for sharing ideas and visions on the NFC. Special emphasis are placed on the results of the international studies for developing next generation systems. GLOBAL 2009 highlights the technical challenges and successes involved in closing the NFC and recycling long lived nuclear waste. It is also an excellent occasion to review and discuss social and regulatory aspects as well as national plans and international policies and decision affecting the future of nuclear energy. This meeting provides a forum for the exchange of the newest ideas and developments related to the initiatives at of establishing an acceptable, reliable and universal international non proliferation regime. The congress, organized by the French Nuclear Energy Society (SFEN), under the aegis of the IAEA, NEA of the OECD and the UE Commission with the basic sponsorships of ANS, ENS and AESJ, combines plenary sessions, general panel sessions, parallel sessions and technical visits. The program has full length technical papers, which are peer reviewed and published in conference proceedings. A large industrial exhibition takes place to complement the congress. The GLOBAL 2009 congress is organized in coordination with the 2009

  16. Towards space based verification of CO2 emissions from strong localized sources: fossil fuel power plant emissions as seen by a CarbonSat constellation

    K. Gerilowski

    2011-08-01

    Full Text Available Carbon dioxide (CO2 is the most important man-made greenhouse gas (GHG that cause global warming. With electricity generation through fossil-fuel power plants now as the economic sector with the largest source of CO2, power plant emissions monitoring has become more important than ever in the fight against global warming. In a previous study done by Bovensmann et al. (2010, random and systematic errors of power plant CO2 emissions have been quantified using a single overpass from a proposed CarbonSat instrument. In this study, we quantify errors of power plant annual emission estimates from a hypothetical CarbonSat and constellations of several CarbonSats while taking into account that power plant CO2 emissions are time-dependent. Our focus is on estimating systematic errors arising from the sparse temporal sampling as well as random errors that are primarily dependent on wind speeds. We used hourly emissions data from the US Environmental Protection Agency (EPA combined with assimilated and re-analyzed meteorological fields from the National Centers of Environmental Prediction (NCEP. CarbonSat orbits were simulated as a sun-synchronous low-earth orbiting satellite (LEO with an 828-km orbit height, local time ascending node (LTAN of 13:30 (01:30 p.m. and achieves global coverage after 5 days. We show, that despite the variability of the power plant emissions and the limited satellite overpasses, one CarbonSat can verify reported US annual CO2 emissions from large power plants (≥5 Mt CO2 yr−1 with a systematic error of less than ~4.9 % for 50 % of all the power plants. For 90 % of all the power plants, the systematic error was less than ~12.4 %. We additionally investigated two different satellite configurations using a combination of 5 CarbonSats. One achieves global coverage everyday but only samples the targets at fixed local times. The other configuration samples the targets five times at two-hour intervals approximately every 6th day but

  17. Industrial Fuel Gas Demonstration Plant Program. Volume III. Demonstration plant environmental analysis (Deliverable No. 27)

    1979-08-01

    An Environmental Report on the Memphis Light, Gas and Water Division Industrial Fuel Demonstration Plant was prepared for submission to the US Department of Energy under Contract ET-77-C-01-2582. This document is Volume III of a three-volume Environmental Report. Volume I consists of the Summary, Introduction and the Description of the Proposed Action. Volume II consists of the Description of the Existing Environment. Volume III contains the Environmental Impacts of the Proposed Action, Mitigating Measures and Alternatives to the Proposed Action.

  18. Research on the general analytical method of fossil fuel cycle from a viewpoint of the global environment. 3; Chikyu kankyo kara mita sogoteki kaseki nenryo cycle bunseki hyoka shuho no chosa. 3

    NONE

    1996-03-01

    The general analysis/assessment method of a fossil fuel cycle was studied. Seven kinds of power generation plants such as LNG cycle and coal cycle ones, and four kinds of transport and treatment systems of recovered CO2 such as ocean and underground systems were studied as case studies on life cycle analysis. As data necessary for life cycle analysis, the database was constructed which stores the facilities and operational energy required for a total energy system from mining of fossil fuel to treatment of recovered CO2, and the quantity of environmental waste such as CO2 emission. As a result, the decrease rate of energy balance defined as ratio of input energy to power plant output was estimated to be 14-43% and 20-60% in LNG cycle and coal cycle, respectively. Even if the recovery rate of CO2 in power plants reached 80-90%, reduction of total CO2 emission was limited to only 20-40% because of CO2 emission during mining, liquefaction and transport of fuel. 168 refs., 48 figs., 102 tabs.

  19. Comprehensive characterization of humic-like substances in smoke PM2.5 emitted from the combustion of biomass materials and fossil fuels

    Fan, Xingjun; Wei, Siye; Zhu, Mengbo; Song, Jianzhong; Peng, Ping'an

    2016-10-01

    Humic-like substances (HULIS) in smoke fine particulate matter (PM2.5) emitted from the combustion of biomass materials (rice straw, corn straw, and pine branch) and fossil fuels (lignite coal and diesel fuel) were comprehensively studied in this work. The HULIS fractions were first isolated with a one-step solid-phase extraction method, and were then investigated with a series of analytical techniques: elemental analysis, total organic carbon analysis, UV-vis (ultraviolet-visible) spectroscopy, excitation-emission matrix (EEM) fluorescence spectroscopy, Fourier transform infrared spectroscopy, and 1H-nuclear magnetic resonance spectroscopy. The results show that HULIS account for 11.2-23.4 and 5.3 % of PM2.5 emitted from biomass burning (BB) and coal combustion, respectively. In addition, contributions of HULIS-C to total carbon and water-soluble carbon in smoke PM2.5 emitted from BB are 8.0-21.7 and 56.9-66.1 %, respectively. The corresponding contributions in smoke PM2.5 from coal combustion are 5.2 and 45.5 %, respectively. These results suggest that BB and coal combustion are both important sources of HULIS in atmospheric aeros