WorldWideScience

Sample records for fossil energy sources

  1. Implications for global energy markets: implications for non-fossil energy sources

    International Nuclear Information System (INIS)

    Grubb, Michael

    1998-01-01

    This paper highlights the recent developments concerning non-fossil energy and examines the impact of the Kyoto Protocol on non-fossil energy sources, and the implications for non-fossil sources in the implementation of the Kyoto Protocol. The current contributions of fossil and non-fossil fuels to electricity production, prospects for expansion of the established non-fossil sources, new renewables in Europe to date, renewables in Europe to 2010, and policy integration in the EU are discussed. Charts illustrating the generating capacity of renewable energy plant in Britain (1992-1966), wind energy capacity in Europe (1990-2000), and projected renewable energy contributions in the EU (wind, small hydro, photovoltaic, biomass and geothermal) are provided. (UK)

  2. Renewable and nuclear sources of energy reduce the share of fossil fuels

    International Nuclear Information System (INIS)

    Koprda, V.

    2009-01-01

    In this paper author presents a statistical data use of nuclear energy, renewable sources and fossil fuels in the share of energy production in the Slovak Republic. It is stated that use of nuclear energy and renewable sources reduce the share of fossil fuels.

  3. Renewable and nuclear sources of energy decreases of share of fossil fuels

    International Nuclear Information System (INIS)

    Koprda, V.

    2009-01-01

    In this paper author presents a statistical data use of nuclear energy, renewable sources and fossil fuels in the share of energy production in the Slovak Republic. It is stated that use of nuclear energy and renewable sources decreases of share of fossil fuels.

  4. Energy research and energy technologies. Fossil energy sources. Annual report 1994

    International Nuclear Information System (INIS)

    1995-01-01

    After an introduction into the research programme and an overview of the sponsored projects, the main part of the book gives a description of the projects in the research area fossile energy sources. Several indexes provide access to this comprehensive compilation: a project number index, an index of interconnected projects, and an index of companies. The organization plan of ''BEO'', the project group biology, energy, ecology, is appended. (UA) [de

  5. Governmental interventions in the energy market. Study of the Dutch level playing field for fossil fuels, renewable sources, nuclear energy and energy conservation

    International Nuclear Information System (INIS)

    De Visser, E.; Winkel, T.; De Jager, D.; De Vos, R.; Blom, M.; Afman, M.

    2011-06-01

    This study has made an inventory of 53 governmental interventions in the Dutch energy market. Moreover, the consequences for the playing field for fossil fuels, renewable sources, nuclear energy and energy saving have been quantified. It shows that the government still stimulates the use of energy and fossil fuels more than it stimulates use of renewable energy sources. Policy that focuses on decreasing the price differences between sustainable and fossil should therefore focus on the phase-out of this support and subsequently on bridging the remaining financial gap. [nl

  6. Biomass - alternative renewable energy source to the fossil fuels

    Directory of Open Access Journals (Sweden)

    Koruba Dorota

    2017-01-01

    Full Text Available The article presents the fossil fuels combustion effects in terms of the dangers of increasing CO2 concentration in the atmosphere. Based on the bibliography review the negative impact of increased carbon dioxide concentration on the human population is shown in the area of the external environment, particularly in terms of the air pollution and especially the impact on human health. The paper presents biomass as the renewable energy alternative source to fossil fuels which combustion gives a neutral CO2 emissions and therefore should be the main carrier of primary energy in Poland. The paper presents the combustion heat results and humidity of selected dry wood pellets (pellets straw, energy-crop willow pellets, sawdust pellets, dried sewage sludge from two sewage treatment plants of the Holly Cross province pointing their energy potential. In connection with the results analysis of these studies the standard requirements were discussed (EN 14918:2010 “Solid bio-fuels-determination of calorific value” regarding the basic parameters determining the biomass energy value (combustion heat, humidity.

  7. The energy challenge of a post-fossil world: Seasonal energy storage

    International Nuclear Information System (INIS)

    Forsberg, C.

    2009-01-01

    Fossil fuels are an energy source and an energy storage system. The demand for electricity and heat varies daily, weekly, and seasonally with seasonal variations often varying by a factor of two or more. The variable demand is met by fossil fuels because 1) fossil fuels are inexpensive to store in coal piles, oil tanks, and underground natural gas storage facilities and 2) the capital cost of the equipment to burn fossil fuels and convert the energy to heat or electricity is small relative to the cost of the fossil fuels. Concerns about climate change may limit the conventional use of fossil fuels. The alternative low-carbon energy production systems (nuclear, fossil fuels with carbon dioxide sequestration, wind, and solar) are capital-intensive energy sources with low operating costs. To obtain favorable economics these technologies must operate at full capacity; but, their output does not match energy demand. We have energy alternatives to fossil fuels but no replacements for the energy storage capabilities or fossil fuels. Proposed strategies and technologies to address the grand storage challenge (including seasonal storage of electricity) are described. The options suggest a nuclear-renewable future to address seasonal energy storage needs in a low-carbon world.

  8. Environmental, economic and exergetic sustainability assessment of power generation from fossil and renewable energy sources

    NARCIS (Netherlands)

    Stougie, L.; Giustozzi, N.; van der Kooi, H.J.; Stoppato, Anna

    2018-01-01

    Energy conversion systems have assumed a crucial role in current society. The threat of climate change, fossil fuel depletion and the growing world energy demand ask for a more sustainable way of electricity production, eg, by using renewable energy sources, by improving the conversion efficiency

  9. Environmental costs of fossil fuel energy production

    International Nuclear Information System (INIS)

    Riva, A.; Trebeschi, C.

    1997-01-01

    The costs of environmental impacts caused by fossil fuel energy production are external to the energy economy and normally they are not reflected in energy prices. To determine the environmental costs associated with an energy source a detailed analysis of all environmental impacts of the complete energy cycle is required. The economic evaluation of environmental damages is presented caused by atmospheric emissions produced by fossil fuel combustion for different uses. Considering the emission factors of sulphur oxides, nitrogen oxides, dust and carbon dioxide and the economic evaluation of their environmental damages reported in literature, a range of environmental costs associated with different fossil fuels and technologies is presented. A comparison of environmental costs resulting from atmospheric emissions produced by fossil-fuel combustion for energy production shows that natural gas has a significantly higher environmental value than other fossil fuels. (R.P.)

  10. FOSSIL2 energy policy model documentation: FOSSIL2 documentation

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-10-01

    This report discusses the structure, derivations, assumptions, and mathematical formulation of the FOSSIL2 model. Each major facet of the model - supply/demand interactions, industry financing, and production - has been designed to parallel closely the actual cause/effect relationships determining the behavior of the United States energy system. The data base for the FOSSIL2 program is large, as is appropriate for a system dynamics simulation model. When possible, all data were obtained from sources well known to experts in the energy field. Cost and resource estimates are based on DOE data whenever possible. This report presents the FOSSIL2 model at several levels. Volumes II and III of this report list the equations that comprise the FOSSIL2 model, along with variable definitions and a cross-reference list of the model variables. Volume II provides the model equations with each of their variables defined, while Volume III lists the equations, and a one line definition for equations, in a shorter, more readable format.

  11. Program energy research and energy technologies. Annual report 1987. Fossil energy carriers, renewable energy sources, efficient use of energy. Programm Energieforschung und Energietechnologien. Jahresbericht 1987. Fossile Energietraeger, erneuerbare Energiequellen, rationelle Energieverwendung

    Energy Technology Data Exchange (ETDEWEB)

    1988-01-01

    After a general introduction and a short overview of financial contributions in 1987 there is a description of the projects sponsored. The main section contains project descriptions of the partial programmes Fossil Energy Carriers, Renewable Energy Sources and Efficient Use of Energy. The ordering of the wide-ranging material is carried out essentially via two indices: the index of project numbers and the index of companies. Then an overview is given of final reports published in 1987. A list of 1987 patents forms the final section.

  12. Instrumentation and control for fossil-energy processes

    Energy Technology Data Exchange (ETDEWEB)

    1982-09-01

    The 1982 symposium on instrumentation and control for fossil energy processes was held June 7 through 9, 1982, at Adam's Mark Hotel, Houston, Texas. It was sponsored by the US Department of Energy, Office of Fossil Energy; Argonne National Laboratory; and the Society for Control and Instrumentation of Energy Processes. Fifty-two papers have been entered individually into EDB and ERA; eleven papers had been entered previously from other sources. (LTN)

  13. Energy sources

    International Nuclear Information System (INIS)

    Vajda, Gy.

    1998-01-01

    A comprehensive review is presented of the available sources of energy in the world is presented. About 80 percent of primary energy utilization is based on fossile fuels, and their dominant role is not expected to change in the foreseeable future. Data are given on petroleum, natural gas and coal based power production. The role and economic aspects of nuclear power are analyzed. A brief summary of renewable energy sources is presented. The future prospects of the world's energy resources are discussed, and the special position of Hungary regarding fossil, nuclear and renewable energy and the country's energy potential is evaluated. (R.P.)

  14. Role of non-fossil energy in meeting China's energy and climate target for 2020

    International Nuclear Information System (INIS)

    Zhou, Sheng; Tong, Qing; Yu, Sha; Wang, Yu; Chai, Qimin; Zhang, Xiliang

    2012-01-01

    China is the largest energy consumer and CO 2 emitter in the world. The Chinese government faces growing challenges of ensuring energy security and reducing greenhouse gas emissions. To address these two issues, the Chinese government has announced two ambitious domestic indicative autonomous mitigation targets for 2020: increasing the ratio of non-fossil energy to 15% and reducing carbon dioxide emissions per unit of GDP by 40–45% from 2005 levels. To explore the role of non-fossil energy in achieving these two targets, this paper first provides an overview of current status of non-fossil energy development in China; then gives a brief review of GDP and primary energy consumption; next assesses in detail the role of the non-fossil energy in 2020, including the installed capacity and electricity generation of non-fossil energy sources, the share and role of non-fossil energy in the electricity structure, emissions reduction resulting from the shift to non-fossil energy, and challenges for accomplishing the mitigation targets in 2020; finally, conclusions and policy measures for non-fossil energy development are proposed.

  15. Hawaii Energy Strategy Project 2: Fossil Energy Review. Task IV. Scenario development and analysis

    Energy Technology Data Exchange (ETDEWEB)

    Yamaguchi, N.D.; Breazeale, K. [ed.

    1993-12-01

    The Hawaii Energy Strategy (HES) Program is a seven-project effort led by the State of Hawaii Department of Business, Economic Development & Tourism (DBEDT) to investigate a wide spectrum of Hawaii energy issues. The East-West Center`s Program on Resources: Energy and Minerals, has been assigned HES Project 2, Fossil Energy Review, which focuses on fossil energy use in Hawaii and the greater regional and global markets. HES Project 2 has four parts: Task I (World and Regional Fossil Energy Dynamics) covers petroleum, natural gas, and coal in global and regional contexts, along with a discussion of energy and the environment. Task II (Fossil Energy in Hawaii) focuses more closely on fossil energy use in Hawaii: current utilization and trends, the structure of imports, possible future sources of supply, fuel substitutability, and energy security. Task III`s emphasis is Greenfield Options; that is, fossil energy sources not yet used in Hawaii. This task is divided into two sections: first, an in-depth {open_quotes}Assessment of Coal Technology Options and Implications for the State of Hawaii,{close_quotes} along with a spreadsheet analysis model, which was subcontracted to the Environmental Assessment and Information Sciences Division of Argonne National Laboratory; and second, a chapter on liquefied natural gas (LNG) in the Asia-Pacific market and the issues surrounding possible introduction of LNG into the Hawaii market.

  16. Energy Ontologies: Wind, Biomass, and Fossil Transportation

    Directory of Open Access Journals (Sweden)

    Heidi Scott

    2016-06-01

    Full Text Available This article uses literary sources to draw ontological distinctions among three distinct energy sources: wind power, biomass, and fossil fuels. The primary aim is to demonstrate how radically our fossil fuel regime has changed human ontology in the last two centuries during which we have entered the Anthropocene. Because this radical transformation contains myriad elements, this article will focus on transportation: the speed, quality, and quantity of travel permitted by successive energy sources. To consider the comparative literatures of energy as they relate to transportation, we will begin with wind, then consider muscle-driven biomass giving way to coal locomotion, and conclude with the highest octane fuel, petroleum. The central interest is in how the fuel depicted in literature illuminates historical moments in which the interfaces between self, society, and nature are configured by specific energy regimes. By using literature as a source text, we may arrive at an emotionally and philosophically more robust synthesis of energy history than the social and natural sciences, relying upon objective accounts and statistics, are able to provide. By re-reading literature through the lens of the Anthropocene, we gain perspective on how earlier insights into the relationship between energy and experience can inform our explorations of today’s ontological reality. Energy literature instructs us out of the fossil fuel mindset of world domination and back to a physical realm in which we are small actors in a world guided by capricious forces. Such a reality requires hard muscular work and emotional immersion to restore an ethic of care and sustainability.

  17. Fossil energy savings potential of sugar cane bio-energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Thu Lan T. [Department of Agroecology, Aarhus University, Tjele (Denmark); The Joint Graduate School of Energy and Environment, King Mongkut' s University of Technology Thonburi, Bangkok (Thailand); Hermansen, John E. [Department of Agroecology, Aarhus University, Tjele (Denmark); Sagisaka, Masayuki [Institute of Science for Safety and Sustainability, National Institute of Advanced Industrial Science and Technology, Tsukuba (Japan)

    2009-11-15

    One important rationale for bio-energy systems is their potential to save fossil energy. Converting a conventional sugar mill into a bio-energy process plant would contribute to fossil energy savings via the extraction of renewable electricity and ethanol substituting for fossil electricity and gasoline, respectively. This paper takes a closer look at the Thai sugar industry and examines two practical approaches that will enhance fossil energy savings. The first one addresses an efficient extraction of energy in the form of electricity from the excess bagasse and cane trash. The second while proposing to convert molasses or sugar cane to ethanol stresses the use of bagasse as well as distillery spent wash to replace coal in meeting ethanol plants' energy needs. The savings potential achieved with extracting ethanol from surplus sugar versus current practice in sugar industry in Thailand amounts to 15 million barrels of oil a year. Whether the saving benefits could be fully realized, however, depends on how well the potential land use change resulting from an expansion of ethanol production is managed. The results presented serve as a useful guidance to formulate strategies that enable optimum utilization of biomass as an energy source. (author)

  18. Free Switzerland from fossil energy sources - Clear proposals for the building, transportation and electrical power sectors

    International Nuclear Information System (INIS)

    Nordmann, R.

    2010-10-01

    A comprehensive review of the current situation of energy resources and consumption and of the prevailing framework like climate change is given, with a focus on Switzerland. The author, a member of the Lower House of the Swiss Parliament, presents facts and figures in a simple language, illustrated by tables and diagrams, in a well structured, easy-to-read book, with detailed indications of his data sources. Starting from the limited character of fossil energy sources, 'peak-oil' and the necessary reduction of greenhouse gas emissions, the author states that nuclear energy is not the solution. Action is absolutely needed, but which policy should be adopted? A global strategy is required that includes the stabilization of the world population as a key factor. An international agreement signed by as many states as possible should create stringent commitments. The developed countries have to demonstrate that prosperity and high life standard are compatible with an economy based on renewable energy sources. This will give to the most ambitious countries a significant advantage on new markets created by renewable energy use and energy efficiency. The author goes on by describing the current status of the technologies needed. What regards the particular case of Switzerland, this country is strongly dependent on energy import - mainly fossil - and CO 2 emissions arise mainly from the building and transportation sectors. A 50% efficiency improvement until 2030 is needed in fossil energy use. Electricity use has to become more efficient as well. Electricity generation - today about 60% renewable - shall move towards 100% renewable. The next chapters discuss clear realistic proposals on how to achieve these goals in the transportation sector ('Intelligent mobility'), the building sector ('Retrofitting the buildings to get them up-to-date') and the electrical power sector ('Entirely renewable electricity'). The title of the conclusion chapter: 'Focus again on the general

  19. Decarbonisation of fossil energy via methane pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Kreysa, G.; Agar, D.W.; Schultz, I. [Technische Univ. Dortmund (Germany)

    2010-12-30

    Despite the rising consumption of energy over the last few decades, the proven reserves of fossil fuels have steadily increased. Additionally, there are potentially tremendous reserves of methane hydrates available, which remain to be exploited. The use of fossil energy sources is thus increasingly being dictated less by supply than by the environmental concerns raised by climate change. In the context of the decarbonisation of the global energy system that this has stimulated, new means must be explored for using methane as energy source. Noncatalytic thermal pyrolysis of methane is proposed here as a promising concept for utilising methane with low to zero carbon dioxide emissions. Following cracking, only the energy content of the hydrogen is used, while the carbon can be stored safely and retrievably in disused coal mines. The thermodynamics and different process engineering concepts for the technical realisation of such a carbon moratorium technology are discussed. The possible contribution of methane pyrolysis to carbon negative geoengineering is also addressed. (orig.)

  20. Power plant engineering for the use of fossil, regenerative and nuclear energy sources

    International Nuclear Information System (INIS)

    Strauss, K.

    1992-01-01

    Electrical power is the motor for technical advance and for the development of the standard of living in industrial countries. It has been provided for about 110 years on the industrial scale for general use by energy conversion in powerstations. This book gives the present state of technology for this and points out possible future developments. The author deals with the following aspects: Survey of available energy sources (fossil, regenerative, nuclear) the principles for the conversion of primary energy into electricity contamination of the environment resulting from energy conversion statements on the efficiency, availability of plant and costs. The reader can estimate the order of magnitude of energy and material flows and the dimensions of components and units from examples with answers. The book is intended for students and practical engineers in energy and powerstation technology. (orig.) With 210 figs [de

  1. A comparative analysis of environmental impacts of non-fossil energy production methods

    Directory of Open Access Journals (Sweden)

    Kiss Adam

    2014-01-01

    Full Text Available The widespread proliferation of other then fossil based energy production methods is a development, which inevitable comes in the next future. It is proven that the photovoltaic conversion or the use of heat of Sun radiation, the water energy, the utilization of the wind, the biomass production, the use of geothermal energy can all produce big amounts of energy for human use. In addition, the nuclear energy from fission is a technology, which has already long history and is widely used. However, these all, like the fossil energy sources, have great impacts on the environment. Nevertheless, the comparison of the environmental effects of these alternative energy sources is not easy. The effects are of considerable different natures and their spatial and the time distributions vary on large scales. The present work overviews the principles and the methodological prerequisites of performing a comparative analysis of the environmental effects for the non-fossil energy production methods. After establishing the basic principles for comparison, we shall go through all the non-fossil energy sources and analyze the most important environmental impacts of each energy production method. In conclusion, the comparison of the environmental effects will be discussed.

  2. A comparative analysis of environmental impacts of non-fossil energy production methods

    Science.gov (United States)

    Kiss, Adam

    2014-12-01

    The widespread proliferation of other then fossil based energy production methods is a development, which inevitable comes in the next future. It is proven that the photovoltaic conversion or the use of heat of Sun radiation, the water energy, the utilization of the wind, the biomass production, the use of geothermal energy can all produce big amounts of energy for human use. In addition, the nuclear energy from fission is a technology, which has already long history and is widely used. However, these all, like the fossil energy sources, have great impacts on the environment. Nevertheless, the comparison of the environmental effects of these alternative energy sources is not easy. The effects are of considerable different natures and their spatial and the time distributions vary on large scales. The present work overviews the principles and the methodological prerequisites of performing a comparative analysis of the environmental effects for the non-fossil energy production methods. After establishing the basic principles for comparison, we shall go through all the non-fossil energy sources and analyze the most important environmental impacts of each energy production method. In conclusion, the comparison of the environmental effects will be discussed.

  3. Hawaii energy strategy project 2: Fossil energy review. Task 2: Fossil energy in Hawaii

    Energy Technology Data Exchange (ETDEWEB)

    Breazeale, K. [ed.; Yamaguchi, N.D.; Keeville, H. [and others

    1993-12-01

    In Task 2, the authors establish a baseline for evaluating energy use in Hawaii, and examine key energy and economic indicators. They provide a detailed look at fossil energy imports by type, current and possible sources of oil, gas and coal, quality considerations, and processing/transformation. They present time series data on petroleum product consumption by end-use sector, though they caution the reader that the data is imperfect. They discuss fuel substitutability to identify those end-use categories that are most easily switched to other fuels. They then define and analyze sequential scenarios of fuel substitution in Hawaii and their impacts on patterns of demand. They also discuss energy security--what it means to Hawaii, what it means to neighboring economies, whether it is possible to achieve energy security. 95 figs., 48 tabs.

  4. Reliability estimation for multiunit nuclear and fossil-fired industrial energy systems

    International Nuclear Information System (INIS)

    Sullivan, W.G.; Wilson, J.V.; Klepper, O.H.

    1977-01-01

    As petroleum-based fuels grow increasingly scarce and costly, nuclear energy may become an important alternative source of industrial energy. Initial applications would most likely include a mix of fossil-fired and nuclear sources of process energy. A means for determining the overall reliability of these mixed systems is a fundamental aspect of demonstrating their feasibility to potential industrial users. Reliability data from nuclear and fossil-fired plants are presented, and several methods of applying these data for calculating the reliability of reasonably complex industrial energy supply systems are given. Reliability estimates made under a number of simplifying assumptions indicate that multiple nuclear units or a combination of nuclear and fossil-fired plants could provide adequate reliability to meet industrial requirements for continuity of service

  5. Biofuels, fossil energy ratio, and the future of energy production

    Science.gov (United States)

    Consiglio, David

    2017-05-01

    Two hundred years ago, much of humanity's energy came from burning wood. As energy needs outstripped supplies, we began to burn fossil fuels. This transition allowed our civilization to modernize rapidly, but it came with heavy costs including climate change. Today, scientists and engineers are taking another look at biofuels as a source of energy to fuel our ever-increasing consumption.

  6. A model for detailed evaluation of fossil-energy saving by utilizing unused but possible energy-sources on a city scale

    International Nuclear Information System (INIS)

    Mori, Yasuhumi; Kikegawa, Yukihiro; Uchida, Hiroyuki

    2007-01-01

    There is growing interest in the utilization of unused, but possible, energy sources to reduce carbon-dioxide emissions and fossil-energy consumption, and especially to comply with the Kyoto Protocol which came into effect in 2005. Detailed considerations of plant location, land use and life cycle analysis, however, have not yet been fully estimated with a view to confirming the advantages of the new energy-source usage. A model for heat energy from river water and treated sewage water, and waste-heat energy from municipal solid-waste incineration plants was built and applied to the Tokyo urban area in Japan, considering the spatial and time-related distribution of demands and supplies, the shapes of buildings in the demand area, and life-cycle analysis. The model selected areas were those which should use these energies without prejudice, and sometimes the areas were far from the energy-source point. The reduction of carbon-dioxide emissions resulting from new energy-sources was about 8% of the reduction target for Tokyo in 1990. The model was able to precisely evaluate the new energy-usage, using data from both supply and demand sides. (author)

  7. Energy and the transport sector. [For countries with no fossil fuels

    Energy Technology Data Exchange (ETDEWEB)

    Olson, P E

    1979-01-01

    This article describes the current energy situation from both the global viewpoint and the viewpoint of countries with no indigenous sources of fossil fuels. The lack of fossil fuels necessitates a substitution with indigenous sources of energy, where feasible. Long-distance railway transport is a self-evident element in the expanding transport sector. In view of the proven high energy efficiency of electric railway systems, there is every incentive for a more active investment policy in railway electrification. This applies to both medium-distance transportation of freight and passengers and different electric mass transit systems.

  8. A Transition Strategy from Fossil Fuels to Renewable Energy Sources in the Mexican Electricity System

    Directory of Open Access Journals (Sweden)

    Juan J. Vidal-Amaro

    2018-03-01

    Full Text Available Renewable energy sources exploitation acquires special importance for creating low-carbon energy systems. In Mexico a national regulation limits the fossil fuel-based electricity generation to 65%, 60% and 50% by years 2024, 2030 and 2050 respectively. This study evaluates several scenarios of renewables incorporation into the Mexican electricity system to attend those targets as well as a 75% renewables-based electricity share target towards a 100% renewable system. By its size, the Mexican electricity system, with a generation of 260.4 TWh/year (85% based on fossil fuels, can be regarded as an illustrating reference. The impact of increasing amounts of wind, photovoltaic solar, biomass, biogas, geothermal, hydro and concentrating solar power on the system’s capacity to attend demand on a one-hour timescale resolution is investigated utilizing the EnergyPLAN model and the minimum total mix capacity method. Possible excess of electricity production is also assessed. For every target year, a solution is obtained corresponding to the combination resulting in the minimum total generation capacity for the electricity system. A transition strategy to a system with a high share of renewables-based electricity is designed where every transition step corresponds to the optimal energy mix for each of the target years.

  9. Hawaii energy strategy project 2: Fossil energy review. Task 1: World and regional fossil energy dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Breazeale, K. [ed.; Isaak, D.T.; Yamaguchi, N.; Fridley, D.; Johnson, C.; Long, S.

    1993-12-01

    This report in the Hawaii Energy Strategy Project examines world and regional fossil energy dynamics. The topics of the report include fossil energy characteristics, the world oil industry including reserves, production, consumption, exporters, importers, refining, products and their uses, history and trends in the global oil market and the Asia-Pacific market; world gas industry including reserves, production, consumption, exporters, importers, processing, gas-based products, international gas market and the emerging Asia-Pacific gas market; the world coal industry including reserves, classification and quality, utilization, transportation, pricing, world coal market, Asia-Pacific coal outlook, trends in Europe and the Americas; and environmental trends affecting fossil fuels. 132 figs., 46 tabs.

  10. Fossil energy use and the environment

    International Nuclear Information System (INIS)

    Sage, P.W.

    1994-01-01

    Energy demand projections indicate that fossil energy will provide some ninety per cent of global primary energy demand for the foreseeable future. This paper considers the principal environmental impacts associated with fossil energy use and describes approaches to minimise them. Technologies are now available to reduce significantly pollutant emissions from fossil fuel use. Emerging technologies offer higher conversion efficiencies to reduce still further specific emissions per unit of energy output. It is essential, particularly in those areas of rapid growth in energy use, that best practice and technology are deployed. Technology transfer and training will help to achieve this and enable fossil energy use to be fully compatible with increasingly stringent environmental requirements. (author) 4 figs., 12 refs

  11. Fossil energy waste management. Technology status report

    Energy Technology Data Exchange (ETDEWEB)

    Bossart, S.J.; Newman, D.A.

    1995-02-01

    This report describes the current status and recent accomplishments of the Fossil Energy Waste Management (FE WM) projects sponsored by the Morgantown Energy Technology Center (METC) of the US Department of Energy (DOE). The primary goal of the Waste Management Program is to identify and develop optimal strategies to manage solid by-products from advanced coal technologies for the purpose of ensuring the competitiveness of advanced coal technologies as a future energy source. The projects in the Fossil Energy Waste Management Program are divided into three types of activities: Waste Characterization, Disposal Technologies, and Utilization Technologies. This technology status report includes a discussion on barriers to increased use of coal by-products. Also, the major technical and nontechnical challenges currently being addressed by the FE WM program are discussed. A bibliography of 96 citations and a list of project contacts is included if the reader is interested in obtaining additional information about the FE WM program.

  12. SOURCES OF ENERGY AND THE ENVIRONMENT

    OpenAIRE

    Spash, Clive L.; Young, A.

    1994-01-01

    Energy from fossil fuels have become dominant in the industrialised and industrialising economies of the world. However, fossil fuels are also recognised as heavily polluting and responsible for a range of modern environmental and health problems. Nuclear power is a similar conventional energy source in that it relies upon depletion of a limited stock resource and is associated with a range of social and environmental problems. However, the alternative energy sources relying upon flow reso...

  13. Proceedings of the 1980 symposium on instrumentation and control for fossil energy processes

    Energy Technology Data Exchange (ETDEWEB)

    Doering, R.W. (comp.)

    1980-01-01

    The 1980 symposium on Instrumentation and Control for Fossil Energy Processes was held June 9-11, 1980, New Cavalier, Virginia Beach, Virginia. It was sponsored by the Argonne National Laboratory and the US Department of Energy, Office of Fossil Energy. Forty-five papers have been entered individually into EDB and ERA; nine papers had been entered previously from other sources. (LTN)

  14. Fossil-energy program. Quarterly progress report for June 30, 1983

    Energy Technology Data Exchange (ETDEWEB)

    McNeese, L.E.

    1983-08-01

    This quarterly report covers the progress made during the period March 31 through June 30 for the Oak Ridge National Laboratory research and development projects that are carried out in support of the increased utilization of coal and other fossil fuels as sources of clean energy. These projects are supported by various parts of DOE including Fossil Energy, Basic Energy Sciences, Office of Health and Environmental Research, Office of Environmental Compliance and Overview, the Electric Power Research Institute, and by the Tennessee Valley Authority and the EPA Office of Research and Development through inter-agency agreement with DOE.

  15. Krakow clean fossil fuels and energy efficiency project

    Energy Technology Data Exchange (ETDEWEB)

    Butcher, T.A.; Pierce, B.L. [Brookhaven National Lab., Upton, NY (United States)

    1995-11-01

    The Support for Eastern European Democracy (SEED) Act of 1989 directed the U.S. Department of Energy (DOE) to undertake an equipment assessment project aimed at developing the capability within Poland to manufacture or modify industrial-scale combustion equipment to utilize fossil fuels cleanly. This project is being implemented in the city of Krakow as the `Krakow Clean Fossil Fuels and Energy Efficiency Project.` Funding is provided through the U.S. Agency for International Development (AID). The project is being conducted in a manner that can be generalized to all of Poland and to the rest of Eastern Europe. The historic city of Krakow has a population of 750,000. Almost half of the heating energy used in Krakow is supplied by low-efficiency boilerhouses and home coal stoves. Within the town, there are more than 1,300 local boilerhouses and 100,000 home stoves. These are collectively referred to as the `low emission sources` and they are the primary sources of particulates and hydrocarbon emissions in the city and major contributors of sulfur dioxide and carbon monoxide.

  16. Proceedings of the 1981 symposium on instrumentation and control for fossil-energy processes

    Energy Technology Data Exchange (ETDEWEB)

    1982-01-01

    The 1981 symposium on instrumentation and control for fossil-energy processes was held June 8-10, 1981, at the Sheraton-Palace Hotel, San Francisco, California. It was sponsored by the US Department of Energy; Office of Fossil Energy; Argonne National Laboratory; and the Society for Control and Instrumentation of Energy Processes. Sixty-seven articles from the proceedings have been entered individually into EDB and ERA; thirteen articles had been entered previously from other sources. (LTN)

  17. Fossil energy and food security

    International Nuclear Information System (INIS)

    Folke, G.

    2001-01-01

    To fulfil the basic goal of delivering food for the tables of the citizens, modern Western agriculture is extremely dependent on supporting material flows, infrastructure, and fossil energy. According to several observers, fossil fuel production is about to peak, i.e., oil extraction is no longer capable of keeping pace with the increasing demand. This situation may trigger an unprecedented increase in fossil energy prices, which may make the current highly energy dependent food production-distribution system highly vulnerable. The paper starts with a survey of this vulnerability. Also, the supply of phosphorus, a key factor in agriculture, may be at stake under such circumstances. The paper analyses this situation and discusses settlement structures integrated with agriculture that might increase food security by reducing energy demands. In the proposed ideal societal structure, agriculture is integrated with settlements and most of the food needed by the population is produced locally, and the nutrients for food production are recycled from households and animals by means of biological processes demanding considerably less mechanical investment and fossil support energy than the conventional type of agriculture. The vulnerability of this structure would be considerably lower, than that of the current system. (author)

  18. Fossil energy savings potential of sugar cane bio-energy systems

    DEFF Research Database (Denmark)

    Nguyen, Thu Lan T; Hermansen, John Erik; Sagisaka, Masayuki

    2009-01-01

    One important rationale for bio-energy systems is their potential to save fossil energy. Converting a conventional sugar mill into a bio-energy process plant would contribute to fossil energy savings via the extraction of renewable electricity and ethanol substituting for fossil electricity...... and gasoline, respectively. This paper takes a closer look at the Thai sugar industry and examines two practical approaches that will enhance fossil energy savings. The first one addresses an efficient extraction of energy in the form of electricity from the excess bagasse and cane trash. The second while...... proposing to convert molasses or sugar cane to ethanol stresses the use of bagasse as well as distillery spent wash to replace coal in meeting ethanol plants' energy needs. The savings potential achieved with extracting ethanol from surplus sugar versus current practice in sugar industry in Thailand amounts...

  19. Energy revolution: From a fossil energy era to a new energy era

    Directory of Open Access Journals (Sweden)

    Caineng Zou

    2016-01-01

    Full Text Available This paper aims to predict the future situation of global energy development. In view of this, we reviewed the history of energy use and understood that new energy sources will usher in a new era following oil & gas, coal and wood one after another in the past time. Although the fossil energy sources are still plenty in the world, great breakthroughs made in some key technologies and the increasing demand for ecological environmental protection both impel the third time of transformation from oil & gas to new energy sources. Sooner or later, oil, gas, coal and new energy sources will each account for a quarter of global energy consumption in the new era, specifically speaking, accounting for 32.6%, 23.7%, 30.0% and 13.7% respectively. As one of the largest coal consumer, China will inevitably face up to the situation of tripartite confrontation of the coal, oil & gas and new energy. The following forecasting results were achieved. First, the oil will be in a stable period and its annual production peak will be around 2040, reaching up to 45 × 108 t. Second, the natural gas will enter the heyday period and its annual production peak will be around 2060, reaching up to 4.5 × 1012 m3, which will play a pivotal role in the future energy sustainable development. Third, the coal has entered a high-to-low-carbon transition period, and its direct use and the discharged pollutants will be significantly reduced. In 2050, the coal will be dropped to 25% of the primary energy mix. Last, the development and utilization of new energy sources has been getting into the golden age and its proportion in the primary energy mix will be substantially enhanced. On this basis, we presented some proposals for the future energy development in China. At first, we should understand well that China's energy production and consumption has its own characteristics. Under the present situation, we should strengthen the clean and efficient use of coal resources, which

  20. Conventional and unconventional energy sources for mankind

    International Nuclear Information System (INIS)

    Sethna, H.N.

    1981-01-01

    Plenty of industrial nations of the world is founded on the fact that only 1% of their energy requirement is met by muscle power, both of human and animal origin, while 99% comes mostly from fossil fuels. However, fossil fuels are not an eternal source and hence to conserve it, other sources must also be used. Availability of energy sources such as coal, biogas, solar energy, wind, tidal energy is examined and their draw-backs are pointed out. Another energy source i.e. nuclear energy can however substantially contribute to the energy scene. Fission reactors can contribute nearly 25% of the world energy requirements within two decades. Breeder reactors, if successfully developed, can meet the energy requirements of the world for few thousands of years. Fusion reactors, if successful for commercial exploitation, will form almost an inexhaustible source of energy. An added advantage is that they produce much less radioactive waste than that produced by fission reactors. (author)

  1. China's INDC and non-fossil energy development

    Directory of Open Access Journals (Sweden)

    Jian-Kun He

    2015-09-01

    Full Text Available Global climate change promotes the energy system reform. Achieving a high proportion of renewable energy becomes the major countries' energy strategy. As proposed in its Intended Nationally Determined Contributions (INDC, China intends to raise the proportion of non-fossil energy in primary energy consumption to about 20% by 2030. That ambitious goal means the non-fossil energy supplies by 2030 will be 7–8 times that of 2005, and the annual increase rate is more than 8% within the 25 years. Besides, the capacity of wind power, solar power, hydropower and nuclear power reaches 400 GW, 350 GW, 450 GW, and 150 GW respectively, and China's non-fossil power capacity is even greater than the U.S.'s total power capacity. In addition, the scale of natural gas increases. Consequently, by 2030, the proportion of coal falls from the current 70% to below 50%, and the CO2 intensity of energy consumption decreases by 20% compared with the level of 2005, which play important roles in significantly reducing the CO2 intensity of GDP. Since China has confirmed to achieve the CO2 emissions peak around 2030, at that time, the newly added energy demand will be satisfied by non-fossil energy, and the consumption of fossil fuel will stop growing. By 2030, non-fossil energy accounts for 20%, and the large scale and sound momentum of new and renewable energy industry will support the growth of total energy demand, which plays a key role in CO2 emissions peaking and beginning to decline, and lays the foundation for establishing a new energy system dominated by new and renewable energy in the second half of the 21st century as well as finally achieving the CO2 zero-emission.

  2. Fossil fuel subsidies and the new EU Climate and Energy Governance Mechanism

    International Nuclear Information System (INIS)

    Sartor, Oliver; Spencer, Thomas

    2016-07-01

    There is currently no dedicated process to track the extent of fossil fuel subsidies, nor to ensure that Member States phase them out. This situation is inconsistent with the European Union's stated decarbonization and energy efficiency dimensions under the Energy Union. The EU is therefore in need of an alternative process for tracking and ensuring the phase-out of fossil fuel subsidies by the Member States. The new Energy Union governance mechanism presents an opportunity for creating this alternative. Providing the right price signals is essential part of the policy mix that is needed to achieve Europe's climate policy goals. Phasing out fossil fuel subsidies in the EU is an important part of aligning energy prices with the EU's climate and energy goals. Depending on how they are measured, combined fossil fuel subsidies in the EU range from 39 to over euro 200 billion per annum (European Commission, 2014). They therefore constitute a significant source of incoherence between the EU's climate mitigation and fiscal policies for energy. However, there has recently been mixed progress in addressing fossil fuel subsidies in Europe. For instance, under the Europe 2020 Strategy, Member States had committed to begin developing plans for phasing out fossil fuel subsidies by 2020. Progress on implementing these plans was supposed to be monitored under the European Semester. However, the decision was taken to remove the focus on energy and fossil fuel subsidies from the European Semester in 2015. As yet, no new system for governing the phase-out of fossil fuel subsidies has been advanced, leaving the question of fossil fuel subsidy reform in limbo. The advent of the EU's Energy Union project creates an opportunity for putting the phase-out of fossil fuel subsidies back on track in Europe. This could be done by including requirements for national goal setting on specific kinds of fossil fuel subsidies in a dedicated sub-section of the National Climate and Energy Plans

  3. DESIGN OF ALTERNATIVE ENERGY SOURCES

    Directory of Open Access Journals (Sweden)

    Popa Stefania

    2013-11-01

    Full Text Available By energy sources we understand technologies and materials used to obtain various forms of energy necessary for the development of society. These sources must be in adequate quantities and be conveniently exploited in terms of technical, economic and sustainable perspective. Alternative energy uses the inherent power of natural sources like wind, tides, the sun. Alternative energy is a term used for some energy sources and energy storage technologies. Generally it indicates energies that are nontraditional and have low impact to the environment. The alternative energy term is used in contrast with the term fossil fuel according to some sources, while other sources use it with the meaning of renewable energy purposes.

  4. Fossil Fuels: Factors of Supply Reduction and Use of The Renewable Energy As A Suitable Alternative

    OpenAIRE

    Askari Mohammad Bagher,

    2015-01-01

    In this article we will review the consumption of fossil fuels in the world. According to the exhaustible resources of fossil fuels, and the damaging effects of these fuels on the environment and nature, we introduce renewable energy sources as perfect replacement for fossil fuels.

  5. Fossil Energy Materials Program conference proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Judkins, R.R. (comp.)

    1987-08-01

    The US Department of Energy Office of Fossil Energy has recognized the need for materials research and development to assure the adequacy of materials of construction for advanced fossil energy systems. The principal responsibility for identifying needed materials research and for establishing a program to address these needs resides within the Office of Technical Coordination. That office has established the Advanced Research and Technology Development (AR and TD) Fossil Energy Materials Program to fulfill that responsibility. In addition to the AR and TD Materials Program, which is designed to address in a generic way the materials needs of fossil energy systems, specific materials support activities are also sponsored by the various line organizations such as the Office of Coal Gasification. A conference was held at Oak Ridge, Tennessee on May 19-21, 1987, to present and discuss the results of program activities during the past year. The conference program was organized in accordance with the research thrust areas we have established. These research thrust areas include structural ceramics (particularly fiber-reinforced ceramic composites), corrosion and erosion, and alloy development and mechanical properties. Eighty-six people attended the conference. Papers have been entered individually into EDB and ERA. (LTN)

  6. Say no to fossil fuels and yes to nuclear energy

    International Nuclear Information System (INIS)

    Raghava Chari, S.

    2011-01-01

    Mistaken notion and wrongful fear of nuclear energy based on the horrors of the second world war bombing of Nagasaki and Hiroshima and accidents at Chernobyl and Three mile island and lately the Fukushima nuclear plant meltdown to earthquake and and tsunami have developed antagonism to nuclear energy (NE) and clouded its usefulness as a practical, clean, environment friendly and affordable alternate source of energy. Such antagonism has slowed down research on NE and its adoption on a much wider scale, the crying need of the day. There is a motivated disinformation campaign against nuclear energy in India as witnessed from the ongoing agitation at Kudankulam in Tamil Nadu and Jaitapur in Maharashtra. In fact nuclear energy is the only practical alternative energy source to meet the ever increasing energy needs of the world particularly the developing nations, and to save the world from the greenhouse ill effects of massive carbon dioxide and other emissions from burning fossil fuels like coal, oil and natural gas. Emissions from fossil fuel burning including radioactive emissions are hundreds of times more in weight and volume and far more hazardous than from an equal capacity nuclear plant. In fact there are no greenhouse gases (CO 2 ), acid rain gases (SO 2 ) or carcinogen emissions (NO x ) from nuclear plants. The accident rates and severity of accidents owing to nuclear plants is much lower as compared to fossil fuel power generation. Last but not the least NE offers economic freedom from the clutches of the few monopolistic oil producing countries, which charge exorbitant oil prices and cripple the finances of developing nations. (author)

  7. Towards a Future of District Heating Systems with Low-Temperature Operation together with Non-Fossil Fuel Heat Sources

    DEFF Research Database (Denmark)

    Tol, Hakan; Dinçer, Ibrahim; Svendsen, Svend

    2012-01-01

    This study focused on investigation of non-fossil fuel heat sources to be supplied to low-energy district heating systems operating in low temperature such as 55 C and 25 C in terms of, respectively, supply and return. Vast variety of heat sources classed in categories such as fossil fuel...

  8. Nuclear power, useful energy source

    International Nuclear Information System (INIS)

    Sorin, F.

    2003-01-01

    This article is a reprint of an article published in a newspaper named 'Liberation Champagne' from October 7, 2003. It makes a brief analysis of the future world energy needs, of the need to fight against the global warming and to find a substitution to fossil fuels on the way to depletion. The mankind has to face a contradictory problem: increasing the energy production and saving the fossil fuels. The only solution is to accelerate the development of nuclear energy and of renewable energy sources. This is also the only way to fulfill the Kyoto protocol commitments. Short paper. (J.S.)

  9. Scope of fossil energy resources in Mexico and the Andean Group

    International Nuclear Information System (INIS)

    Figueroa Vega, F. de la; Boesl, B.

    1997-01-01

    The article focuses on fossil energy resources in the Andean Group and Mexico, and argues for a dynamic approach to calculating reserves to production ratios. Individual countries are surveyed in terms of estimated reserves of fossil energy, resources, current production rates and future prospects; energy policy options for individual countries are analysed. As a primary objective of energy policy is to ensure security of supply, it is important that that calculations of reserves to production ratios accurately, estimate the desired level of investment in exploration. The calculations need to take into account a variety of parameters, including different energy sources, availability and risk; geographic considerations including proximity, transport, storage capacity and commercial aspects; the competitive and environmental implications of developing indigenous resources; and the use of instruments to establish contingency plans for emergencies

  10. Risoe energy report 9. Non-fossil energy technologies in 2050 and beyond

    International Nuclear Information System (INIS)

    Larsen, Hans; Soenderberg Petersen, L.

    2010-11-01

    This Risoe Energy Report, the ninth in a series that began in 2002, analyses the long-term outlook for energy technologies in 2050 in a perspective where the dominating role of fossil fuels has been taken over by non-fossil fuels, and CO 2 emissions have been reduced to a minimum. Against this background, the report addresses issues like: 1) How much will today's non-fossil energy technologies have evolved up to 2050? 2) Which non-fossil energy technologies can we bring into play in 2050, including emerging technologies? 3) What are the implications for the energy system? Further, Volume 9 analyses other central issues for the future energy supply: 4) The role of non-fossil energy technologies in relation to security of supply and sustainability 5) System aspects in 2050 6) Examples of global and Danish energy scenarios in 2050 The report is based on the latest research results from Risoe DTU, together with available international literature and reports. (Author)

  11. Risoe energy report 9. Non-fossil energy technologies in 2050 and beyond

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Hans; Soenderberg Petersen, L. (eds.)

    2010-11-15

    This Risoe Energy Report, the ninth in a series that began in 2002, analyses the long-term outlook for energy technologies in 2050 in a perspective where the dominating role of fossil fuels has been taken over by non-fossil fuels, and CO{sub 2} emissions have been reduced to a minimum. Against this background, the report addresses issues like: 1) How much will today's non-fossil energy technologies have evolved up to 2050? 2) Which non-fossil energy technologies can we bring into play in 2050, including emerging technologies? 3) What are the implications for the energy system? Further, Volume 9 analyses other central issues for the future energy supply: 4) The role of non-fossil energy technologies in relation to security of supply and sustainability 5) System aspects in 2050 6) Examples of global and Danish energy scenarios in 2050 The report is based on the latest research results from Risoe DTU, together with available international literature and reports. (Author)

  12. Fossil energy: From laboratory to marketplace

    International Nuclear Information System (INIS)

    1992-03-01

    The purpose of this work is to provide a summary description of the role of advanced research in the overall Fossil Energy R ampersand D program successes. It presents the specific Fossil Energy advanced research products that have been adopted commercially or fed into other R ampersand D programs as part of the crosscutting enabling technology base upon which advanced systems are based

  13. A Brief Review on Recent Trends in Alternative Sources of Energy

    OpenAIRE

    Divya S.; Jibin Joseph

    2014-01-01

    Alternative energy is any energy source that is an alternative to fossil fuel. These alternatives are intended to address concerns about such fossil fuels. Today, because of the variety of energy choices and differing goals of their advocates, defining some energy types as "alternative" is highly controversial. Most of the recent and existing alternative sources of energy are discussed below

  14. Energy price comparison of new, renewable, and fossil energy sources

    International Nuclear Information System (INIS)

    Edwaren Liun; Sunardi

    2014-01-01

    Low cost transportation for people and goods is essential to the economic well-being of the nation. Until now, if the oil prices rise, the cost of transportation will automatically follow and most of the people suffering due to soaring prices of food and other items. Almost 100 percent of Indonesian transportation energy demand is supported by oil. Supply disruption - or even the threat of disruption - in the Middle East or elsewhere may lead to a shift in consumer prices and the cost of the industry in significant numbers. While costs in the energy sector, especially electricity in developed countries that also contribute significantly to support the transport sector, is much more stable and predictable. Energy requirements are so high in the transport sector tends to force people to seek the source and means of energy in other forms such as electricity or hydrogen that can match or exceed the performance of fuel oil. This paper aims to analyze the economics of energy price comparison to see the extent of the economic opportunities some kind of energy to play a significant role in the transport sector and the subsequent impact on the energy system. From the results obtained by the analysis that will be increasingly necessary role of nuclear energy and other specific energy as a source of electrical energy considering its economical aspects are relatively better. (author)

  15. Fossil Energy Program semiannual progress report for October 1991--March 1992

    Energy Technology Data Exchange (ETDEWEB)

    Judkins, R.R.

    1992-11-01

    This report covers progress made during the period October 1, 1991, through March 31, 1992, for research and development projects that contribute to the advancement of various fossil energy technologies. Projects on the Fossil Energy Program are supported by the DOE Office of Fossil Energy, the DOE Morgantown Energy Technology Center, the DOE Pittsburgh Energy Technology Center, the DOE Fossil Energy Clean Coal Technology Program, the DOE Office of Basic Energy Sciences, the DOE Fossil Energy Office of Petroleum Reserves, the DOE Fossil Energy Naval Petroleum and Oil Shale Reserves, and the US Agency for International Development. The Fossil Energy Program organization chart is shown in the appendix. Topics discussed are under the following projects: materials research and developments; environmental analysis support; coal conversion development; coal combustion research; and fossil fuels supplies modeling and research.

  16. Proceedings of the sixth annual conference on fossil energy materials. Fossil Energy AR and TD Mateials Program

    Energy Technology Data Exchange (ETDEWEB)

    Cole, N.C.; Judkins, R.R. [comps.

    1992-07-01

    The Sixth Annual Conference on Fossil Energy Materials was held in Oak Ridge, Tennessee, on May 12--14, 1992. The meeting was sponsored by the US Department of Energy`s Office of Fossil Energy through the Advanced Research and Technology Development (AR&TD) Materials Program, and ASM International. The objective of the AR&TD Materials Program is to conduct research and development on materials for longer-term fossil energy applications as well as for generic needs of various fossil fuel technologies. The management of the Program has been decentralized to the DOE Field Office, Oak Ridge with Oak Ridge National Laboratory (ORNL) as the technical support contractor. The research is performed by staff members at ORNL and by a substantial number of researchers at other national laboratories, universities, and in private industry. The work is divided into the following categories: (1) ceramics, (2) development and corrosion resistance of iron aluminide, advanced austenitic and chromium-niobium alloys, and (3) technology assessment and technology transfer. This conference is held each year to review the work on all of the projects of the Program. The agenda for the meeting is given in Appendix A, and a list of attendees is presented in Appendix B. ASM International cosponsored the conference, for which we are especially grateful.

  17. Hydrogen Production Costs of Various Primary Energy Sources

    International Nuclear Information System (INIS)

    Choi, Jae Hyuk; Tak, Nam Il; Kim, Yong Hee; Park, Won Seok

    2005-01-01

    The limited resource and environmental impacts of fossil fuels are becoming more and more serious problems in the world. Consequently, hydrogen is in the limelight as a future alternative energy due to its clean combustion and inexhaustibility and a transition from the traditional fossil fuel system to a hydrogen-based energy system is under considerations. Several countries are already gearing the industries to the hydrogen economy to cope with the limitations of the current fossil fuels. Unfortunately, hydrogen has to be chemically separated from the hydrogen compounds in nature such as water by using some energy sources. In this paper, the hydrogen production costs of major primary energy sources are compared in consideration of the Korean situations. The evaluation methodology is based on the report of the National Academy of Science (NAS) of U.S

  18. Fossil Energy Program semiannual progress report for April 1992-- September 1992

    Energy Technology Data Exchange (ETDEWEB)

    Judkins, R.R.

    1992-12-01

    This report covers progress made during the period April 1, 1992, through September 30, 1992, for research and development projects that contribute to the advancement of various fossil energy technologies. Projects on the Fossil Energy Program are supported by the DOE Office of Fossil Energy, the DOE Morgantown Energy Technology Center, the DOE Pittsburgh Energy Technology Center, the DOE Fossil Energy Clean Coal Technology Program, the DOE Office of Basic Energy Sciences, the DOE Fossil Energy Office of Petroleum Reserves, the DOE Fossil Energy Office of Naval Petroleum and Oil Shale Reserves, and the US Agency for International Development.

  19. Proceedings of the Seventh Annual Conference on Fossil Energy Materials. Fossil Energy AR and TD Materials Program

    Energy Technology Data Exchange (ETDEWEB)

    Cole, N.C.; Judkins, R.R. [comps.

    1993-07-01

    Objective of the AR&TD Materials Program is to conduct research and development on materials for longer-term fossil energy applications as well as for generic needs of various fossil fuel technologies. The 37 papers are arranged into 3 sessions: ceramics, new alloys/intermetallics, and new alloys/advanced austenitics. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

  20. Synergistic energy conversion process using nuclear energy and fossil fuels

    International Nuclear Information System (INIS)

    Hori, Masao

    2007-01-01

    Because primary energies such as fossil fuels, nuclear energy and renewable energy are limited in quantity of supply, it is necessary to use available energies effectively for the increase of energy demand that is inevitable this century while keeping environment in good condition. For this purpose, an efficient synergistic energy conversion process using nuclear energy and fossil fuels together converted to energy carriers such are electricity, hydrogen, and synthetic fuels seems to be effective. Synergistic energy conversion processes containing nuclear energy were surveyed and effects of these processes on resource saving and the CO 2 emission reduction were discussed. (T.T.)

  1. Fossil energy research meeting

    Energy Technology Data Exchange (ETDEWEB)

    Kropschot, R. H.; Phillips, G. C.

    1977-12-01

    U.S. ERDA's research programs in fossil energy are reviewed with brief descriptions, budgets, etc. Of general interest are discussions related to the capabilities for such research of national laboratories, universities, energy centers, etc. Of necessity many items are treated briefly, but a general overview of the whole program is provided. (LTN)

  2. Water Use of Fossil Energy Production and Supply in China

    Directory of Open Access Journals (Sweden)

    Gang Lin

    2017-07-01

    Full Text Available Fossil energy and water resources are both important for economic and social development in China, and they are tightly interlinked. Fossil energy production consumes large amounts of water, and it is essential to investigate the water footprint of fossil energy production (WFEP in China. In addition, fossil energy is supplied to consumers in China by both domestic and foreign producers, and understanding the water footprint of fossil energy supply (WFES is also highly significant for water and energy development programs in the long-term. The objectives of this paper were to provide an estimation of the blue component of WFEP and WFES in China for the period from 2001 to 2014, and to evaluate the impact on water resources from energy production, the contribution of internal and external WFES, and water-energy related issues of the international energy trade by applying water footprint analysis based on the bottom-up approach. The results indicate that generally, the WFEP and WFES in China both maintained steady growth before 2013, with the WFEP increasing from approximately 3900 million m3/year to 10,400 million m3/year, while the WFES grew from 3900 million m3/year to 11,600 million m3/year. The fossil energy production caps of the 13th Five Year Plan can bring the water consumed for fossil energy production back to a sustainable level. Over the long-term, China’s energy trade plan should also consider the water and energy resources of the countries from which fossil energy is imported.

  3. Fossil energy biotechnology: A research needs assessment. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1993-11-01

    The Office of Program Analysis of the US Department of Energy commissioned this study to evaluate and prioritize research needs in fossil energy biotechnology. The objectives were to identify research initiatives in biotechnology that offer timely and strategic options for the more efficient and effective uses of the Nation`s fossil resource base, particularly the early identification of new and novel applications of biotechnology for the use or conversion of domestic fossil fuels. Fossil energy biotechnology consists of a number of diverse and distinct technologies, all related by the common denominator -- biocatalysis. The expert panel organized 14 technical subjects into three interrelated biotechnology programs: (1) upgrading the fuel value of fossil fuels; (2) bioconversion of fossil feedstocks and refined products to added value chemicals; and, (3) the development of environmental management strategies to minimize and mitigate the release of toxic and hazardous petrochemical wastes.

  4. Fossil fuels in the 21st century.

    Science.gov (United States)

    Lincoln, Stephen F

    2005-12-01

    An overview of the importance of fossil fuels in supplying the energy requirements of the 21st century, their future supply, and the impact of their use on global climate is presented. Current and potential alternative energy sources are considered. It is concluded that even with substantial increases in energy derived from other sources, fossil fuels will remain a major energy source for much of the 21st century and the sequestration of CO2 will be an increasingly important requirement.

  5. Fossil Energy Advanced Research and Technology Development (AR&TD) Materials Program semiannual progress report for the period ending September 30, 1991. Fossil Energy Program

    Energy Technology Data Exchange (ETDEWEB)

    Judkins, R.R.; Cole, N.C. [comps.

    1992-04-01

    The objective of the Fossil Energy Advanced Research and Technology Development Materials Program is to conduct research and development on materials for fossil energy applications with a focus on the longer-term and generic needs of the various fossil fuel technologies. The Program includes research aimed toward a better understanding of materials behavior in fossil energy environments and the development of new materials capable of substantial enhancement of plant operations and reliability. Research is outlined in four areas: Ceramics, New Alloys, Corrosion and Erosion Research, and Technology Development and Transfer. (VC)

  6. Wood-energy: success depends on the price of fossil energies and on the carbon tax level

    International Nuclear Information System (INIS)

    Defaye, Serge; Maindrault, Marc

    2016-01-01

    Illustrated by several graphs indicating the structure of fossil energy prices, the comparison between domestic fuel and wood-energy for public network exploitation, the levels of fossil prices and carbon tax for non-subsidised projects, this article analyses the development of biomass (and more particularly wood-energy), the success of which depends on the price of fossil energies and on the carbon tax level. It outlines the differences of price-building elements between fossil and renewable heat, that subsidies are necessary if reference prices are low. It discusses the influence of carbon tax level and of fossil prices. It finally identifies conditions to be met (reduction of fossil energy supply and therefore higher fossil prices, introduction of a carbon tax) to reach COP objectives

  7. Development of concepts for a zero-fossil-energy greenhouse

    NARCIS (Netherlands)

    Ooster, A. van 't; Henten, E.J. van; Janssen, E.G.O.N.; Bot, G.P.A.; Dekker, E.

    2008-01-01

    Dutch government and greenhouse horticultural practice aim for strongly reduced fossil energy use and of environmental loads in 2010 and energy neutral greenhouses in 2020. This research aims to design a greenhouse concept with minimal use of fossil energy and independent of nearby greenhouses. The

  8. Fossil fuels, uranium, and the energy crisis

    Energy Technology Data Exchange (ETDEWEB)

    Playford, P E

    1977-01-01

    Relevant data on the world energy picture are presented to indicate present energy sources and resources, especially fossil fuels and the role of uranium in energy production, with some predictions for the future. World energy is presently being derived from petroleum (some 62%), coal (31%), hydropower (6%), and nuclear (1%). The fundamental cause of the present world energy crisis is attributed to the increase in consumption of petroleum over the past 20 yr, compared with the relatively small size and unequal distribution of the world's remaining reserves. The reserves/production ratio for petroleum has fallen steadily from a general level of 60 to 80 yr from 1920 to 1955, to about 31 yr today. New oil is becoming harder and more expensive to find and produce, the size of discoveries is declining. There is no reason to believe that this trend will be substantially altered, and production is expected to begin to decline between 1985 and 1990. Gas resources also are expected to fall short after the mid-1980s. Coal reserves are enormous, but their full utilization is doubtful because of economic and environmental problems. Tar sands and oil shale resources are potentially major sources of oil, and they are expected to become more competitive with petroleum as higher oil prices occur.

  9. Relative economic incentives for hydrogen from nuclear, renewable, and fossil energy sources

    International Nuclear Information System (INIS)

    Gorensek, Maximilian B.; Forsberg, Charles W.

    2009-01-01

    The specific hydrogen market determines the value of hydrogen from different sources. Each hydrogen production technology has its own distinct characteristics. For example, steam reforming of natural gas produces only hydrogen. In contrast, nuclear and solar hydrogen production facilities produce hydrogen together with oxygen as a by-product or co-product. For a user who needs both oxygen and hydrogen, the value of hydrogen from nuclear and solar plants is higher than that from a fossil plant because ''free'' oxygen is produced as a by-product. Six factors that impact the relative economics of fossil, nuclear, and solar hydrogen production to the customer are identified: oxygen by-product, avoidance of carbon dioxide emissions, hydrogen transport costs, storage costs, availability of low-cost heat, and institutional factors. These factors imply that different hydrogen production technologies will be competitive in different markets and that the first markets for nuclear and solar hydrogen will be those markets in which they have a unique competitive advantage. These secondary economic factors are described and quantified in terms of dollars per kilogram of hydrogen. (author)

  10. Fossil Energy Planning for Navajo Nation

    Energy Technology Data Exchange (ETDEWEB)

    Acedo, Margarita [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-08-11

    This project includes fossil energy transition planning to find optimal solutions that benefit the Navajo Nation and stakeholders. The majority of the tribe’s budget currently comes from fossil energy-revenue. The purpose of this work is to assess potential alternative energy resources including solar photovoltaics and biomass (microalgae for either biofuel or food consumption). This includes evaluating carbon-based reserves related to the tribe’s resources including CO2 emissions for the Four Corners generating station. The methodology for this analysis will consist of data collection from publicly available data, utilizing expertise from national laboratories and academics, and evaluating economic, health, and environmental impacts. Finally, this report will highlight areas of opportunities to implement renewable energy in the Navajo Nation by presenting the technology requirements, cost, and considerations to energy, water, and environment in an educational structure.

  11. Accounting Methodology for Source Energy of Non-Combustible Renewable Electricity Generation

    Energy Technology Data Exchange (ETDEWEB)

    Donohoo-Vallett, Paul [US Department of Energy, Washington, DC (United States)

    2016-10-01

    As non-combustible sources of renewable power (wind, solar, hydro, and geothermal) do not consume fuel, the “source” (or “primary”) energy from these sources cannot be accounted for in the same manner as it is for fossil fuel sources. The methodology chosen for these technologies is important as it affects the perception of the relative size of renewable source energy to fossil energy, affects estimates of source-based building energy use, and overall source energy based metrics such as energy productivity. This memo reviews the methodological choices, outlines implications of each choice, summarizes responses to a request for information on this topic, and presents guiding principles for the U.S. Department of Energy, (DOE) Office of Energy Efficiency and Renewable Energy (EERE) to use to determine where modifying the current renewable source energy accounting method used in EERE products and analyses would be appropriate to address the issues raised above.

  12. Long-range prospects of world energy demands and future energy sources

    International Nuclear Information System (INIS)

    Kozaki, Yasuji

    1998-01-01

    The long-range prospects for world energy demands are reviewed, and the major factors which are influential in relation to energy demands are discussed. The potential for various kinds of conventional and new energy sources such as fossil fuels, solar energies, nuclear fission, and fusion energies to need future energy demands is also discussed. (author)

  13. Nitrogen Isotope Composition of Thermally Produced NOx from Various Fossil-Fuel Combustion Sources.

    Science.gov (United States)

    Walters, Wendell W; Tharp, Bruce D; Fang, Huan; Kozak, Brian J; Michalski, Greg

    2015-10-06

    The nitrogen stable isotope composition of NOx (δ(15)N-NOx) may be a useful indicator for NOx source partitioning, which would help constrain NOx source contributions in nitrogen deposition studies. However, there is large uncertainty in the δ(15)N-NOx values for anthropogenic sources other than on-road vehicles and coal-fired energy generating units. To this end, this study presents a broad analysis of δ(15)N-NOx from several fossil-fuel combustion sources that includes: airplanes, gasoline-powered vehicles not equipped with a three-way catalytic converter, lawn equipment, utility vehicles, urban buses, semitrucks, residential gas furnaces, and natural-gas-fired power plants. A relatively large range of δ(15)N-NOx values was measured from -28.1‰ to 8.5‰ for individual exhaust/flue samples that generally tended to be negative due to the kinetic isotope effect associated with thermal NOx production. A negative correlation between NOx concentrations and δ(15)N-NOx for fossil-fuel combustion sources equipped with selective catalytic reducers was observed, suggesting that the catalytic reduction of NOx increases δ(15)N-NOx values relative to the NOx produced through fossil-fuel combustion processes. Combining the δ(15)N-NOx measured in this study with previous published values, a δ(15)N-NOx regional and seasonal isoscape was constructed for the contiguous U.S., which demonstrates seasonal and regional importance of various NOx sources.

  14. Participation of the fossil energy in cotton agro-ecosystem in family agricultural explorations; Participacao da energia fossil no agroecossistema algodao em exploracoes agricolas familiares

    Energy Technology Data Exchange (ETDEWEB)

    Bueno, Osmar de Carvalho; Cabrera Romero, Maria Gloria [Universidade Estadual Paulista (UNESP), Botucatu, SP (Brazil). Fac. de Ciencias Agronomicas

    2006-07-01

    With the objective of presenting the participation of the several energy sources employees in the cotton agro-ecosystem, this work is constituted in a contribution regarding the subject of the sustain grow.As the focal point of this research, family exploitation is analyzed, with the use of the categorization done by the National Program for Strengthening Family Agriculture - ('Programa Nacional de Fortalecimento da Agricultura Familiar - PRONAF). Use was made of primary and secondary data from three family exploitations in the municipality of Leme/SP, Brazil. To construct the energy expenditure structure of the cotton agro-ecosystem, the mean values obtained were considered, since these agriculturalists present the same technical itinerary and are within the typification proposed in this study. The results were presented by the energy expenditure structure by type, source, form of energy. Considering the cotton agro-ecosystem from the technical itinerary presented, the input energy equal to 51.961,63 MJ . ha{sup -1} was observed, with a participation of 34,21% and 65,79% of the direct and indirect energy respectively. The studied agro ecosystem fundamentally depended on the industrial source of energy, particularly insecticides (39,71%) and chemical fertilizers (19,88%) and fossil sources (33,80%). It was verified like this that the dependence of the industrial energy and of the fossil energy in the cotton agro ecosystem. In that way, we suggest himself the search of the use of another types of energy that they allow the energy sustainability of this agro-ecosystems in family agricultural systems. (author)

  15. A Web Based Puzzle for Energy Sources

    Science.gov (United States)

    Secken, Nilgun

    2006-01-01

    At present many countries in the world consume too much fossil fuels such as petroleum, natural gas and coal to meet their energy needs. These fossil fuels are not renewable; their sources are limited and reducing gradually. More importantly they have been becoming more expensive day by day and their damage to the environment has been increasing.…

  16. Fossil Energy Program annual progress report for April 1994 through March 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-06-01

    This report covers progress made during the period April 1, 1994, through March 31, 1995, for research and development projects that contribute to the advancement of various fossil energy technologies. Projects on the Fossil Energy Program are supported by the DOE Office of Fossil Energy, and DOE Morgantown Energy Technology Center, the DOE Pittsburgh Energy Technology Center, the DOE Fossil Energy Clean Coal Technology Program, the DOE Bartlesville Project Office, and the DOE Fossil Energy Office of Strategic Petroleum Reserve. The following research areas are covered in this report: Materials research and development; Environmental analysis support; Bioprocessing research; Coal combustion research; and Fossil fuels supplies modeling and research. Selected papers have been processed separately for inclusion in the Energy Science an Technology database.

  17. Elucidating the consumption and CO_2 emissions of fossil fuels and low-carbon energy in the United States using Lotka–Volterra models

    International Nuclear Information System (INIS)

    Tsai, Bi-Huei; Chang, Chih-Jen; Chang, Chun-Hsien

    2016-01-01

    By using the Lotka–Volterra model, this work examines for the first time the feasibility of using low-carbon energy to reduce fossil fuel consumption in the United States and, ultimately, to decrease CO_2 emissions. The research sample in this work consists of data on energy consumption and CO_2 emissions in the United States. Parameter estimation results reveal that although the consumption of low-carbon energy increases the consumption of fossil fuels, the latter does not affect the former. Low-carbon energy usage, including nuclear energy and solar photovoltaic power, increases fossil fuel consumption because the entire lifetime of a nuclear or solar energy facility, from the construction of electricity plants to decommissioning, consumes tremendous amounts of fossil fuels. This result verifies the infeasibility of low-carbon energy to replace fossil fuels under the current mining technology, electricity generation skills and governmental policy in the United States and explains why the United States refused to become a signatory of the Kyoto Protocol. Equilibrium analysis results indicate that the annual consumption of fossil fuels will ultimately exceed that of low-carbon energy by 461%. Since our proposed Lotka–Volterra model accurately predicts the consumption and CO_2 emission of different energy sources, this work contributes to the energy policies. - Highlights: • Our Lotka–Volterra model accurately predicts consumption of different energy sources. • We find the current infeasibility of using low-carbon energy to reduce fossil fuels. • The set-up of nuclear and solar plants increases fossil fuel usage in the U.S. • The consumption of fossil fuels will exceed that of low-carbon energy by 435%. • United States government prefers economic development over environmental protection.

  18. Nuclear energy and the fossil fuels

    Energy Technology Data Exchange (ETDEWEB)

    Folinsbee, R E

    1970-01-01

    The energy phenomenon of the first half of this century has been the increase in the use of petroleum and natural gas as fuels. World demand for petroleum energy has been increasing at the rate of 11% per yr. This demand is unsustainable, for the supply, as with any exhaustible resource, is limited. The continental energy policy is essentially one of integrating the North American supply and demand picture for the fossil fuels, using oil and gas from the interior of the continent to supply demand from the interior and using overseas supplies, up the limit of national security, for energy users farthest removed from these sources. The economics of expensive pipeline transportation as against cheap supertankers dictates this policy. Beyond any shadow of a doubt, the fuel of the future will be nuclear, and for this century almost entirely the energy of fission rather than of fusion. Recent estimates suggest that as much as 50% of the energy for the U.S. will be nuclear by the year 2,000, and for Canada the more modest National Energy Board estimate holds that in 1990, 35% of Canadian electric generation will be by nuclear power reactors concentrated in the fuel-starved province of Ontario. (17 refs.)

  19. Investments in Fossil Energy Technology: How the Government's Fossil Energy R&D Program Has Made a Difference

    Science.gov (United States)

    1997-03-01

    America has the technological capacity to change its energy future. There is no reason, for example, why our nation must continue following a path of rising oil imports when billions of barrels of crude oil remain in domestic oil fields. There is no reason why we cannot continue to use our abundant supplies of high-value, low-cost coal when we have the scientific know-how to remove virtually all of its pollutants and reduce greenhouse gas emissions. There is no reason why we cannot turn increasingly to clean-burning natural gas and tap the huge supplies we know exist within our borders. We remain a nation rich in the fuels that have powered economic growth. Today 85 percent of the energy we use to heat our homes and businesses, generate our electricity, and fuel our vehicles comes from coal, petroleum and natural gas. As we move toward a new century, the contributions of these fuels will grow. By 2015, the United States is likely to require nearly 20 percent more energy than it uses today, and fossil fuels are projected to supply almost 88 percent of the energy Americans will consume. We have the scientific know-how to continue using our fossil fuel wealth without fear of environmental damage or skyrocketing costs. The key is technology - developing cutting edge concepts that are beyond the private sector's current capabilities. Some of the most important innovations in America's energy industry are the results of investments in the Federal government's fossil energy research and development programs. Today, our air and water are cleaner, our economy is stronger, and our industries are more competitive in the global market because these programs have produced results. This booklet summarizes many of these achievements. It is not a comprehensive list by any means. Still, it provides solid evidence that the taxpayers' investment in government fossil energy research has paid real and measurable dividends.

  20. Energy Comes Together in Denmark: The Key to a Future Fossil-Free Danish Power System

    DEFF Research Database (Denmark)

    Meibom, Peter; Hilger, Klaus Baggesen; Madsen, Henrik

    2013-01-01

    The transition of the Danish energy system to a system based only on renewable energy in 2050 carries many challenges. For Denmark to become independent of fossil energy sources, wind power and biomass are expected to become the main sources of energy. Onshore and offshore wind farms are expected...... to provide the majority of electricity, and biomass and electricity are expected to become the major sources of heating. On the way toward the 100% renewable goal in 2050, the Danish government has proposed a 2035 midterm goal to cover the energy consumption for power and heat with renewables....

  1. Proceedings of the fourth annual conference on fossil energy materials

    Energy Technology Data Exchange (ETDEWEB)

    Judkins, R.R.; Braski, D.N. (comps.)

    1990-08-01

    The Fourth Annual Conference on Fossil Energy Materials was held in Oak Ridge, Tennessee, on may 15--17, 1990. The meeting was sponsored by the US Department of Energy's Office of Fossil Energy through the Advanced Research and Technology Development (AR TD) Materials Program, and ASM International. The objective of the AR TD Materials Program is to conduct research and development on materials for longer-term fossil energy applications as well as for generic needs of various fossil fuel technologies. The work is divided into the following categories: (1) Ceramics, (2) New Alloys, (3) Corrosion and Erosion, and (4) Technology Assessment and Technology Transfer. Individual projects are processed separately for the data bases.

  2. Fossil energy program. Summary document

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-05-01

    This program summary document presents a comprehensive overview of the research, development, and demonstration (RD and D) activities that will be performed in FY 1981 by the Assistant Secretary for Fossil Energy (ASFE), US Department of Energy (DOE). The ASFE technology programs for the fossil resources of coal, petroleum (including oil shale) and gas have been established with the goal of making substantive contributions to the nation's future supply and efficienty use of energy. On April 29, 1977, the Administration submitted to Congress the National Energy Plan (NEP) and accompanying legislative proposals designed to establish a coherent energy policy structure for the United States. Congress passed the National Energy Act (NEA) on October 15, 1978, which allows implementation of the vital parts of the NEP. The NEP was supplemented by additional energy policy statements culminating in the President's address on July 15, 1979, presenting a program to further reduce dependence on imported petroleum. The passage of the NEA-related energy programs represent specific steps by the Administration and Congress to reorganize, redirect, and clarify the role of the Federal Government in the formulation and execution of national energy policy and programs. The energy technology RD and D prog4rams carried out by ASFE are an important part of the Federal Government's effort to provide the combination and amounts of energy resources needed to ensure national security and continued economic growth.

  3. Energy analysis and break-even distance for transportation for biofuels in comparison to fossil fuels

    Science.gov (United States)

    In the present analysis various forms fuel from biomass and fossil sources, their mass and energy densities, and their break-even transportation distances to transport them effectively were analyzed. This study gives an insight on how many times more energy spent on transporting the fuels to differe...

  4. NATO Advanced Study Institute on Magnetic Resonance : Introduction, Advanced Topics and Applications to Fossil Energy

    CERN Document Server

    Fraissard, Jacques

    1984-01-01

    This volume contains the lectures presented at an Advanced Study Institute on "Magnetic Resonance Techniques in Fossil Energy Problems," which was held at the village of Maleme, Crete, in July of 1983. As of this writing, a different popular attitude prevails from that when the ASI was proposed as far as how critical the world energy picture is. In the popular press, a panglossian attitude (the "petroleum glut" of the 80's) has replaced the jeremiads of the 70's ( a catastrophic "energy crisis"). Yet, there are certain important constants: (a) for the foreseeable future, fossil energy sources (petroleum, coal, oil shale, etc. ) will continue to be of paramount importance; and (b) science and technology of the highest order are needed to extend the fossil ener~y resource base and to utilize it in a cost-effective manner that is also environmentally acceptable. It is precisely this second item that this volume addresses. The volume introduces the phenomenology of magnetic resonance ~n a unified and detailed man...

  5. Status of fossil fuel reserves; Etat des reserves des combustibles fossiles

    Energy Technology Data Exchange (ETDEWEB)

    Laherrere, J

    2005-07-01

    Reserves represent the sum of past and future productions up to the end of production. In most countries the reserve data of fields are confidential. Therefore, fossil fuel reserves are badly known because the published data are more political than technical and many countries make a confusion between resources and reserves. The cumulated production of fossil fuels represents only between a third and a fifth of the ultimate reserves. The production peak will take place between 2020 and 2050. In the ultimate reserves, which extrapolate the past, the fossil fuels represent three thirds of the overall energy. This document analyses the uncertainties linked with fossil fuel reserves: reliability of published data, modeling of future production, comparison with other energy sources, energy consumption forecasts, reserves/production ratio, exploitation of non-conventional hydrocarbons (tar sands, extra-heavy oils, bituminous shales, coal gas, gas shales, methane in overpressure aquifers, methane hydrates), technology impacts, prices impact, and reserves growth. (J.S.)

  6. New renewable source of energy from municipal solid waste plastics

    Energy Technology Data Exchange (ETDEWEB)

    Sarker, Moinuddin; Zaman, Ashiquz; Mamunor Rashid, Mohammad

    2010-09-15

    Renewable energy plays an important role in the supply of energy. When energy sources are used, the demand for fossil fuels is reduced. Emissions from the evaporation and combustion of these traditional fossil fuels contributing to a range of environmental and health problems, causing poor air quality, and emitting greenhouse gases that contribute to global warming. Alternative fuel created from domestic sources has been proposed as a solution to these problems and many alternative fuels are being developed based on solar, wind and biomass. Natural State Research has developed different alternative hydrocarbon fuel produced from abundant waste plastic materials.

  7. Survey lecture on renewable energy sources. [In German

    Energy Technology Data Exchange (ETDEWEB)

    Meliss, M

    1977-01-01

    The essay deals with utilizable regenerative energy sources: geothermal energy, tidal energy, solar energy, running water energy, and wind energy. Tests for the development of these sources have been carried out, but only one of them has a considerable share in meeting the energy demand--that gained from running water. The others are only of regional importance (geothermal energy, tidal energy) or have lost the importance they once had (wind energy, biochemical energy in the form of wood). The latest discussions about the restrictions on fossil and nuclear energy sources and the environmental effects of the technologies necessary for their utilization have increased the interest in the ''inexhaustible'' energy sources. This is why the author outlines the possible importance of renewable energy sources.

  8. Cost and prices of electricity. Fossil fuels, nuclear power and renewable energy sources in comparison; Kosten und Preise fuer Strom. Fossile, Atomstrom und Erneuerbare Energien im Vergleich

    Energy Technology Data Exchange (ETDEWEB)

    Muehlenhoff, Joerg

    2011-09-15

    Consumers of electricity pay for production, transport and distribution as well as for taxes and dues. Electricity rates depend on various influencing factors, e.g. different fuel and capital cost of the power plants and the ratio of supply and demand in the electricity stock markets. End user electricity rats also include taxes and dues as well as the cost of power transmission. The publication presents background information on the formation of electricity rates in Germany. In a second step, the different cost factors of fossil fuels, nuclear power and renewable energy sources are compared. In particular, the external cost is gone into which often tends to be neglected in the electricity markets.

  9. Climatic impact of alternative energy sources

    Energy Technology Data Exchange (ETDEWEB)

    Williams, J

    1979-01-01

    Detailed evaluations have suggested that the order of magnitude of energy demand 50 yr from the present will be 25-40 TW compared with about 8 TW at the present day. Environmental impacts are discussed of three energy-supply sources that could be developed on a large-enough scale to satisfy a demand of this magnitude: solar and nuclear energy and fossil fuels. 14 refs.

  10. Improving energy consumption structure: A comprehensive assessment of fossil energy subsidies reform in China

    International Nuclear Information System (INIS)

    Liu Wei; Li Hong

    2011-01-01

    Fossil energy subsidies reform would be an effective way to improve the energy consumption structure; however, the reform needs to be assessed comprehensively beforehand as it would exert uncertain impacts on economy, society and environment. In this paper, we use price-gap approach to estimate the fossil energy subsidies of China, then establish CGE model that contains pollutant emissions accounts and CO 2 emissions account to stimulate the fossil energy subsidies reform under different scenarios, and the environmental economic analysis concept is introduced to monetize the pollutant reduction benefits. Furthermore, we analyze the possibility and scope of improving the energy consumption structure from the perspective of technical and economic analysis. Analytical results show that the energy consumption structure could be improved by different extent by removing coal or oil subsidies, while the economic and social indexes will be influenced distinctively. Meanwhile, the effects of cutting coal subsidies are more feasible than that of cutting oil subsidies overall. It is recommended to implement fossil energy subsidies gradually, cut the coal first and then cut oil subsidies successively. - Research highlights: → This paper estimates the scale of fossil energy subsidies of China in 2007 with price-gap approach. → We establish a Social Accounting Matrix and a CGE model extended with pollutant accounts. → We simulate the impacts of removing or cutting subsidies under three different scenarios. → We discuss the possibility and potential of improving energy consumption structure.

  11. The change from fossil fuel dependence to sustainable energy sources in Nigeria

    International Nuclear Information System (INIS)

    Chukwu, C.; Ajedegba, J.

    2006-01-01

    Nigeria faces a serious energy crisis due to declining electricity generation from domestic power plants. Although the country is highly dependent on fossil fuel resources, Nigeria has a range of unexploited biomass and hydro power resources, as well as extensive solar energy potential. This paper presented a current energy balance of Nigeria and examined ways of reaching an environmentally sustainable energy balance through the use of a mix of renewable resources. Supply and consumption details of domestic, industrial and transportation sectors as well as electricity production statistics were presented. Total hydropower potential based on the country's river system was estimated to be 10,000 MW. It was estimated that Nigeria has an average of 1.804 x 10 15 of incident solar energy annually, which is 27 times the nation's total conventional energy resources in energy units. It was noted that Nigeria also possesses a significant amount of biomass resources from several large forests that may be used to supply domestic cooking and heating needs as well as for ethanol production. It was noted that wind energy may not be a viable alternative for large scale electricity production in Nigeria. Recommendations to promote the use of renewable resources in the national energy mix included encouraging the decentralization of energy supplies; discouraging the use of wood as fuel; promoting efficient methods in the use of biomass energy resources; private sector participation; and global partnerships. 15 refs., 7 tabs

  12. Expected Rates of Renewable Energy Sources in Meeting of Energy Demands

    Directory of Open Access Journals (Sweden)

    Ferenc Kovács

    2007-12-01

    Full Text Available Taking the expected growth of the world’s population and the estimated technological development and increase in living standards into account, the paper forecasts energy demands. On the basis of the actual production data of 380-400 EJ.year-1 in 2000 and data in publications, the author assumes the total energy demand to be 750-800 EJ.year-1 for 2030, 600-1,000 EJ.year-1 for 2050 and 900-3,600 EJ.year-1 for 2100. The author analyses the appearance of the different energy types in the history of mankind giving the specific heat content and heating value of the different fuels. The environmental advantages, disadvantages, technical and economic limits of application involved in the use of primary renewable energy sources are also dealt with. The analysis of the data in the different prognoses in publications gives the result that fossil fuels will meet 84-85 % of the total energy demand until 2030 in the foreseeable future. In 2050, the fossil rate may be 50-70 % and the rate of renewables may amount to 20-40 %. In 2100, the maximum fossil rate may be 40-50 % with a 30-60 % maximum rate of renewables. On the basis of the results of investigation, the general conclusion may be that the realistically exploitable amount of renewable energy sources is not so unlimitedly high as many suppose. Therefore, it is an illusion to expect that the replacement or substitution of mineral fuels and nuclear energy can be solved relying solely on renewable energies.

  13. The nuclear energy: an essential source of the energy package

    International Nuclear Information System (INIS)

    Ngo, Ch.

    2007-01-01

    In the framework of the energy consumption facing the environmental quality, the author presents the energy sources, used and possible. He shows the necessity to reduce the dependency towards the fossil fuels. He discusses the possibility of the CO 2 storage, the electric power use to decrease the CO 2 emissions. He then analyses the cogeneration alternative, the hybrid vehicles and the advantages of the nuclear energy. (A.L.B.)

  14. Planning of the district heating system in copenhagen from an economic perspective comparing energy-savings versus fossil-free supply

    DEFF Research Database (Denmark)

    Harrestrup, Maria; Svendsen, Svend

    geothermal heating plants, may lead to oversized heating plants that are too expensive to build compared to implementing energy savings. Therefore reducing heat demand of existing buildings before investing in supply capacity will save society half the investment, indicating the importance of carrying out......The Danish government has adopted a long-term energy policy of being independent of fossil fuels by 2050, and that the energy supply for buildings should be independent of fossil fuels by 2035. Therefore, urgent action is needed to meet the requirements for the future energy system. One way...... of becoming independent of fossil fuels is to energy upgrade the existing building stock and change the energy supply to renewable energy sources. A sustainable way of providing space heating (SH) and domestic hot water (DHW) to buildings in densely populated areas is through the use of district heating (DH...

  15. Hybrid Design of Electric Power Generation Systems Including Renewable Sources of Energy

    Science.gov (United States)

    Wang, Lingfeng; Singh, Chanan

    2008-01-01

    With the stricter environmental regulations and diminishing fossil-fuel reserves, there is now higher emphasis on exploiting various renewable sources of energy. These alternative sources of energy are usually environmentally friendly and emit no pollutants. However, the capital investments for those renewable sources of energy are normally high,…

  16. Unused energy sources inducing minimal pollution

    Energy Technology Data Exchange (ETDEWEB)

    Voss, A [Inst. fur Reaktorentwicklung, Kernforschungsanlage Julich GmbH, German Federal Republic

    1974-01-01

    The contribution of hydroelectricity to the growing worldwide energy demand is not expected to exceed 6%. As the largest amount of hydroelectric potential is located in developing nations, it will find its greatest development outside the currently industrialized sphere. The potential of 60 GW ascribed to tidal and geothermal energy is a negligible quantity. Solar energy represents an essentially inexhaustible source, but technological problems will preclude any major contribution from it during this century. The environmental problems caused by these 'new' energy sources are different from those engendered by fossil and nuclear power plants, but they are not negligible. It is irresponsible and misleading to describe them as pollution-free.

  17. Influence of fossil energy applications on environmental pollution

    Energy Technology Data Exchange (ETDEWEB)

    Balat, M.; Ayar, G.; Oguzhan, C.; Uluduz, H.; Faiz, U. [University of Mahallesi, Trabzon (Turkey)

    2007-07-01

    The aim of this work is to investigate influence of fossil energy applications on the environmental pollution. Turkey's high rate of economic growth experienced during much of the 1990s, besides resulting in booming industrial production, also led to higher levels of energy consumption, imports, air and water pollution, and greater risks to the country's environment. Air pollution is a major problem in Turkey, with key pollutants including sulfur dioxide, suspended particulates, nitrogen oxides, and carbon dioxide. In Turkey, carbon dioxide emissions from fossil fuels totaled about 50.07 million tons in 2001. However, fuel share of carbon emissions in 2001 was oil 44.2%, coal 38.8%, and natural gas 16.9%. Total carbon dioxide emissions from fossil fuels are expected to be 104 million tons in 2025.

  18. Oil crops: requirements and possibilities for their utilization as an energy source

    Energy Technology Data Exchange (ETDEWEB)

    Boerner, G; Schoenefeldt, J; Mehring, I [OeHMI Forschung und Ingenieurtechnik GmbH, Magdeburg (Germany)

    1995-12-01

    Although vegetable oils have been used as an energy source for centuries, they were used almost exclusively in oil lamps. Their value as a foodstuff and the availability and low price of mineral oil had for a long time kept them from being seriously considered as a potential energy source. Now, owing to the increasing cost of fossil fuel, particularly oil, and increasing industrial energy consumption, as well as the negative impact of fossil fuel use on the environment, there is interest in a number of alternative energy sources, including vegetable oils. The discussion in this paper focuses on the use of untreated vegetable oils, particularly rapeseed oil. The energy potential of rapeseed oil is explored first. Then, conditions under which the use of oil crops as an energy source is feasible are briefly discussed; two concepts for decentralized oil-seed processing are described and, finally, future possibilities for use of vegetable oils as a fuel source are reviewed. (author) 5 refs, 4 figs, 4 tabs

  19. Oil crops: requirements and possibilities for their utilization as an energy source

    International Nuclear Information System (INIS)

    Boerner, G.; Schoenefeldt, J.; Mehring, I.

    1995-01-01

    Although vegetable oils have been used as an energy source for centuries, they were used almost exclusively in oil lamps. Their value as a foodstuff and the availability and low price of mineral oil had for a long time kept them from being seriously considered as a potential energy source. Now, owing to the increasing cost of fossil fuel, particularly oil, and increasing industrial energy consumption, as well as the negative impact of fossil fuel use on the environment, there is interest in a number of alternative energy sources, including vegetable oils. The discussion in this paper focuses on the use of untreated vegetable oils, particularly rapeseed oil. The energy potential of rapeseed oil is explored first. Then, conditions under which the use of oil crops as an energy source is feasible are briefly discussed; two concepts for decentralized oil-seed processing are described and, finally, future possibilities for use of vegetable oils as a fuel source are reviewed. (author)

  20. Proceedings of the ninth annual conference on fossil energy materials

    Energy Technology Data Exchange (ETDEWEB)

    Cole, N.C.; Judkins, R.R. [comps.

    1995-08-01

    The Ninth Annual Conference on Fossil Energy materials was held in Oak Ridge, Tennessee, on May 16--18, 1995. The meeting was sponsored by the US Department of Energy`s (DOE) Office of Fossil Energy through the Advanced Research and Technology Development (AR&TD) Materials Program. The objective of the AR&TD Materials Program is to conduct research and development on materials for longer-term fossil energy applications as well as for generic needs of various fossil fuel technologies. The management of the program has been decentralized to the DOE Oak Ridge Operations Office with Oak Ridge National Laboratory (ORNL) as the technical support contractor. The research is performed by staff members at ORNL and by researchers at other national laboratories, universities, and in private industry. The work is divided into the following categories: (1) structural ceramics, (2) new alloys and coatings, (3) functional materials, and (4) technology assessment and transfer. This conference is held each year to review the work on all of the projects of the Program. Selected papers have been processed separately for inclusion in the Energy Science and Technology database.

  1. Fossil and non-fossil sources of organic carbon (OC and elemental carbon (EC in Göteborg, Sweden

    Directory of Open Access Journals (Sweden)

    S. Szidat

    2009-03-01

    Full Text Available Particulate matter was collected at an urban site in Göteborg (Sweden in February/March 2005 and in June/July 2006. Additional samples were collected at a rural site for the winter period. Total carbon (TC concentrations were 2.1–3.6 μg m−3, 1.8–1.9 μg m−3, and 2.2–3.0 μg m−3 for urban/winter, rural/winter, and urban/summer conditions, respectively. Elemental carbon (EC, organic carbon (OC, water-insoluble OC (WINSOC, and water-soluble OC (WSOC were analyzed for 14C in order to distinguish fossil from non-fossil emissions. As wood burning is the single major source of non-fossil EC, its contribution can be quantified directly. For non-fossil OC, the wood-burning fraction was determined independently by levoglucosan and 14C analysis and combined using Latin-hypercube sampling (LHS. For the winter period, the relative contribution of EC from wood burning to the total EC was >3 times higher at the rural site compared to the urban site, whereas the absolute concentrations of EC from wood burning were elevated only moderately at the rural compared to the urban site. Thus, the urban site is substantially more influenced by fossil EC emissions. For summer, biogenic emissions dominated OC concentrations most likely due to secondary organic aerosol (SOA formation. During both seasons, a more pronounced fossil signal was observed for Göteborg than has previously been reported for Zurich, Switzerland. Analysis of air mass origin using back trajectories suggests that the fossil impact was larger when local sources dominated, whereas long-range transport caused an enhanced non-fossil signal. In comparison to other European locations, concentrations of levoglucosan and other monosaccharide anhydrides were low for the urban and the rural site in the area of Göteborg during winter.

  2. A “Grammar” for assessing the performance of power-supply systems: Comparing nuclear energy to fossil energy

    International Nuclear Information System (INIS)

    Diaz-Maurin, François; Giampietro, Mario

    2013-01-01

    This article illustrates an innovative approach for the characterization and comparison of the performance of power-supply systems. The concept of ‘grammar’ forces to declare the pre-analytical decisions about: (i) semantic and formal categories used for the accounting – primary energy sources (PES), energy carriers (EC), and production factors; (ii) the set of functional and structural elements of the power-supply system included in the analysis. After having tamed the systemic ambiguity associated with energy accounting, it becomes possible to generate a double assessment referring to: (i) external constraints – the consumption of PES and the generation of waste and pollution; and (ii) internal constraints – the requirements of production factors such as human labor, power capacity, internal consumption of EC for making EC. The case study provided compares the production of EC (electricity) with “nuclear energy” and “fossil energy”. When considering internal constraints, nuclear energy requires about twice as much power capacity (5.9–9.5 kW/GWh vs. 2.6–2.9 kW/GWh) and 5–8 times more labor (570–640 h/GWh vs. 80–115 h/GWh). Things do not improve for nuclear energy when looking at external constraints – e.g. the relative scarcity of PES. This may explain the difficulties faced by nuclear energy to gain interest from investors. -- Highlights: ► A new approach to assess the performance of power-supply systems is provided. ► A biophysical analysis of the production process is based on the concept of grammar. ► A grammar is capable of handling the inherent ambiguity associated with energy. ► The performance of nuclear energy and fossil energy is compared using this grammar. ► Nuclear energy demonstrates a lower performance than fossil energy in making electricity.

  3. A shift in emission time profiles of fossil fuel combustion due to energy transitions impacts source receptor matrices for air quality.

    Science.gov (United States)

    Hendriks, Carlijn; Kuenen, Jeroen; Kranenburg, Richard; Scholz, Yvonne; Schaap, Martijn

    2015-03-01

    Effective air pollution and short-lived climate forcer mitigation strategies can only be designed when the effect of emission reductions on pollutant concentrations and health and ecosystem impacts are quantified. Within integrated assessment modeling source-receptor relationships (SRRs) based on chemistry transport modeling are used to this end. Currently, these SRRs are made using invariant emission time profiles. The LOTOS-EUROS model equipped with a source attribution module was used to test this assumption for renewable energy scenarios. Renewable energy availability and thereby fossil fuel back up are strongly dependent on meteorological conditions. We have used the spatially and temporally explicit energy model REMix to derive time profiles for backup power generation. These time profiles were used in LOTOS-EUROS to investigate the effect of emission timing on air pollutant concentrations and SRRs. It is found that the effectiveness of emission reduction in the power sector is significantly lower when accounting for the shift in the way emissions are divided over the year and the correlation of emissions with synoptic situations. The source receptor relationships also changed significantly. This effect was found for both primary and secondary pollutants. Our results indicate that emission timing deserves explicit attention when assessing the impacts of system changes on air quality and climate forcing from short lived substances.

  4. New fossil fuel combustion technologies

    International Nuclear Information System (INIS)

    Minghetti, E.; Palazzi, G.

    1995-01-01

    The aim of the present article is to supply general information concerning fossil fuels that represent, today and for the near future, the main energy source of our Planet. New fossil fuel technologies are in continual development with two principal goals: to decrease environmental impact and increase transformation process efficiency. Examples of this efforts are: 1) gas-steam combined cycles integrated with coal gasification plants, or with pressurized-fluidized-bed combustors; 2) new cycles with humid air or coal direct fired turbine, now under development. In the first part of this article the international and national energy situations and trends are shown. After some brief notes on environmental problems and alternative fuels, such as bio masses and municipal wastes, technological aspects, mainly relevant to increase fossil-fueled power plant performances, are examined in greater depth. Finally the research and technological development activities of ENEA (Italian Agency for New Technologies, Energy and Environment) Engineering Branch, in order to improve fossil fuels energy and environmental use are presented

  5. Using energy efficiency and alternative energy to extend fossil resources or what if tomorrow actually comes

    International Nuclear Information System (INIS)

    Moore, M.C.

    2003-01-01

    This PowerPoint presentation outlined the role of energy in maintaining and advancing society, and what happens if we run out of energy. The author provided a glimpse into the energy world through the display of a series of graphs depicting world energy consumption, world energy production, world population distribution, growth rates in Asia, coal use per capita, the United States energy consumption by source, percent of air emissions in the United States from fossil fuel use, and others. It was argued that alternative energy and energy efficiency diminish growth in demand and peak load, supports portfolio diversity, lowers cost, and diminishes environmental impacts. The advances in wind power and solar power were reviewed, as well as advances in bioenergy and hydrogen. The author also argued the case for energy efficiency and conservation. A discussion of various pricing schemes was offered. The first option examined was time of use price, defined as 3 time blocks published in advance for entire seasons. The second option was critical peak pricing, involving a high price imposed for a few days per year when system conditions are critical or near critical. The third option discussed was real-time prices, implying an hourly real-time marginal cost of a kilowatt hour. It was suggested that the system should be changed, since subsidizing energy consumption distorts demand. Energy efficiency and renewables extend fossil energy availability, helping in the transition to a more sustainable world. refs., tabs., figs

  6. Life cycle inventory analysis of fossil energies in Japan

    International Nuclear Information System (INIS)

    Yoon Sungyee; Yamada, Tatsuya

    1999-01-01

    Given growing concerns over global warming problems in recent years, a matter of great importance has been to grasp GHG emissions from fossil energy use as accurately as possible by figuring out how much GHGs result from a life cycle (production, transportation and consumption) of various fossil energies. The objective of this study is to make a life cycle inventory (LCI) analysis of major fossil energies (coal, oil, LNG, LPG) consumed in Japan pursuant to ISO 14040. On these fossil energies imported to Japan in 1997, LCI analysis results of GHG emissions (specifically carbon dioxide and methane) put CO 2 intensity during their combustion stage (gross heat value basis) at 100:121:138:179 among LNG:LPG:oil:coal. But, in life cycle terms, the ratios turned to be 100:110:120:154. The world average (gross heat value basis) gained from IPCC data, among others, puts the ratios among LNG:LPG:oil:coal at 100:105:110:151. In comparison, our study that focused on Japan found their corresponding figures at 100:110:120:154. COP 3 set forth country-by-country targets. Yet, global warming, that is a worldwide problem, also requires a more comprehensive assessment based on a life cycle analysis (LCA). The estimation results of our study can be of some help in shaping some criteria when considering energy and environmental policies from a global viewpoint. In addition, our study results suggest the importance of the best energy mix that is endorsed by LCI analysis results, if global warming abatement efforts should successfully be in advance. As specific institutional designs of Kyoto Mechanism are currently under examination, the introduction of LCI method deserves to be considered in discussing the baseline issue of joint implementation and clean development mechanism. In the days ahead, by gathering and analysing detailed-ever data, and through fossil-energy LCA by use, we had better consider supply and demand of the right energies in the right uses. (author)

  7. Proceedings of the tenth annual conference on fossil energy materials

    Energy Technology Data Exchange (ETDEWEB)

    Cole, N.C.; Judkins, R.R. [comps.

    1996-08-01

    The Tenth Annual Conference on Fossil Energy Materials was held in Knoxville, Tennessee, on May 14-16, 1996. The meeting was sponsored by the U.S. Department of Energy`s (DOE) Office of Fossil Energy through the Advanced Research and Technology Development (AR&TD) Materials Program. The objective of the AR&TD Materials Program is to conduct research and development on materials for longer-term fossil energy applications as well as for generic needs of various fossil fuel technologies. The management of the program has been decentralized to the DOE Oak Ridge Operations Office and Oak Ridge National Laboratory (ORNL). The research is performed by staff members at ORNL and by researchers at other national laboratories, universities, and in private industry. The work is divided into the following categories: (1) structural ceramics, (2) new alloys and coatings, (3) functional materials, and (4) technology development and transfer. This conference is held each year to review the work on all of the projects of the program. The final program for the meeting is given in Appendix A, and a list of attendees is presented in Appendix B. Selected items have been processed separately for inclusion in the Energy Science and Technology database.

  8. Energy properties of solid fossil fuels and solid biofuels

    International Nuclear Information System (INIS)

    Holubcik, Michal; Jandacka, Jozef; Kolkova, Zuzana

    2016-01-01

    The paper deals about the problematic of energy properties of solid biofuels in comparison with solid fossil fuels. Biofuels are alternative to fossil fuels and their properties are very similar. During the experiments were done in detail experiments to obtain various properties of spruce wood pellets and wheat straw pellets like biofuels in comparison with brown coal and black coal like fossil fuels. There were tested moisture content, volatile content, fixed carbon content, ash content, elementary analysis (C, H, N, S content) and ash fusion temperatures. The results show that biofuels have some advantages and also disadvantages in comparison with solid fossil fuels.

  9. Energy properties of solid fossil fuels and solid biofuels

    Energy Technology Data Exchange (ETDEWEB)

    Holubcik, Michal, E-mail: michal.holubcik@fstroj.uniza.sk; Jandacka, Jozef, E-mail: jozef.jandacka@fstroj.uniza.sk [University of Žilina, Faculty of Mechanical Engineering, Department of Power Engineering, Univerzitná 8215/1, 010 26 Žilina (Slovakia); Kolkova, Zuzana, E-mail: zuzana.kolkova@rc.uniza.sk [Research centre, University of Žilina, Univerzitna 8215/1, 010 26 Žilina (Slovakia)

    2016-06-30

    The paper deals about the problematic of energy properties of solid biofuels in comparison with solid fossil fuels. Biofuels are alternative to fossil fuels and their properties are very similar. During the experiments were done in detail experiments to obtain various properties of spruce wood pellets and wheat straw pellets like biofuels in comparison with brown coal and black coal like fossil fuels. There were tested moisture content, volatile content, fixed carbon content, ash content, elementary analysis (C, H, N, S content) and ash fusion temperatures. The results show that biofuels have some advantages and also disadvantages in comparison with solid fossil fuels.

  10. Proceedings of the 18th Annual Conference on Fossil Energy Materials.

    Energy Technology Data Exchange (ETDEWEB)

    Judkins, RR

    2004-11-02

    The 18th Annual conference on Fossil Energy Materials was held in Knoxville, Tennessee, on June 2 through June 4, 2004. The meeting was sponsored by the U.S. Department of Energy's (DOE) Office of Fossil Energy through the Advanced Research Materials Program (ARM). The objective of the ARM Program is to conduct research and development on materials for longer-term fossil energy applications, as well as for generic needs of various fossil fuel technologies. The management of the program has been decentralized to the DOE Oak Ridge Operations Office and Oak Ridge National Laboratory (ORNL). The research is performed by staff members at ORNL and by researchers at other national laboratories, universities, and in private industry. The work is divided into the following categories: (1) structural, ceramics, (2) new alloys and coatings, (3) functional materials, and (4) technology development and transfer.

  11. Energy sources for future. Change to a sustainable energy system

    International Nuclear Information System (INIS)

    Morris, C.

    2005-01-01

    Can Germany give up gasoline and power from coal or nuclear energy and how much does it cost? The book does away with all common misunderstandings due to renewable energy sources and describes a compatible model for a sustainable energy mixing in future. Nevertheless fossil fuels are not denounced but seen as a platform for the advanced system. The author explains first why objections to renewable energy sources base on bad information, and pursues quite an other argumentation as such authors emphasizing the potential of these energy sources. Than he shows in detail the possibility of the optimal energy mixing for biomass, solar power, wind power, geothermal energy, hydropower and energy efficiency. The environment will reward us for this and instead buying expensive resources from foreign countries we will create work places at home. The number of big power plants - taking into account safety risks - will decrease and small units of on-site power generation feeded with this renewable sources will play more and more an important role. (GL) [de

  12. Towards a fossil free energy future. The next energy transition

    Energy Technology Data Exchange (ETDEWEB)

    Lazarus, M.; Greber, L.; Hall, J.; Bartels, C.; Bernow, S.; Hansen, E.; Raskin, P.; Von Hippel, D. (Stockholm Environment Institute, Boston, MA (United States))

    1993-04-01

    The report provides technical analysis and documentation as input to the Greenpeace project 'Towards a fossil free energy future'. It presents a main scenario and several variants for reducing greenhouse gas emissions, and the technical methods and assumptions used to develop them. The goal is to investigate the technical, economic and policy feasibility to phasing out fossil fuels over the next century as part of a strategy to avert unacceptably high levels or rates of global warming. 209 refs., 42 figs., 27 tabs.

  13. Fossil Energy Program Annual Progress Report for the Period April 1, 2000 through March 31, 2001

    Energy Technology Data Exchange (ETDEWEB)

    Judkins, RR

    2001-06-14

    This report covers progress made at Oak Ridge National Laboratory (ORNL) on research and development projects that contribute to the advancement of fossil energy technologies. Projects on the ORNL Fossil Energy Program are supported by the U.S. Department of Energy (DOE) Office of Fossil Energy, the DOE National Energy Technology Laboratory (NETL), the DOE Fossil Energy Clean Coal Technology (CCT) Program, the DOE National Petroleum Technology Office, and the DOE Fossil Energy Office of Strategic Petroleum Reserve (SPR). The ORNL Fossil Energy Program research and development activities cover the areas of coal, clean coal technology, gas, petroleum, and support to the SPR. An important part of the Fossil Energy Program is technical management of all activities on the DOE Fossil Energy Advanced Research (AR) Materials Program. The AR Materials Program involves research at other DOE and government laboratories, at universities, and at industrial organizations.

  14. Access to primary energy sources - the basis of national energy security

    Science.gov (United States)

    Szlązak, Jan; Szlązak, Rafał A.

    2017-11-01

    National energy security is of fundamental importance for economic development of a country. To ensure such safety energy raw material, also called primary energy sources, are necessary. Currently in Poland primary energy sources include mainly fossil fuels, such as hard coal, brown coal, natural gas and crude oil. Other sources, e.g. renewable energy sources account for c. 15% in the energy mix. Primary energy sources are used to produce mainly electricity, which is considered as the cleanest form of energy. Poland does not have, unfortunately, sufficient energy sources and is forced to import some of them, mainly natural gas and crude oil. The article presents an insightful analysis of energy raw material reserves possessed by Poland and their structure taking account of the requirements applicable in the European Union, in particular, those related to environmental protection. The article also describes demand for electricity now and in the perspective of 2030. Primary energy sources necessary for its production have also been given. The article also includes the possibilities for the use of renewable energy sources in Poland, however, climatic conditions there are not are not particularly favourable to it. All the issues addressed in the article are summed up and ended with conclusions.

  15. Engineering economics of alternative energy sources

    International Nuclear Information System (INIS)

    Denno, K.

    1990-01-01

    This textbook presents a comprehensive picture of the economic aspects, feasibility and adaptability of alternative energy sources and their interconnections. The author intends for this treatment of energy sources to be total and complete. It therefore includes such topics as low temperature and high temperature fuel cells, rechargeable storage batteries (including lead acid, nickel-cadmium, lithium, and sodium-sulfur), Redox flows cells energy system in compatibility with fuel cells and storage batteries, MHD energy systems using non-fossil renewable fuels, solar energy system using direct thermal units and photovoltaic generators, wind energy conversion systems, tidal ocean wave energy converters, geothermal energy, and ocean thermal energy conversion systems. The book is structured so that each major energy source is given one chapter. Each chapter begins with a discussion of the basic structural components of the energy source, as well as operational and fuel characteristics. This is followed by an economic analysis, which includes incremental energy cost curves and economic coordination equations for each possible system of operation. Where appropriate, economic scheduling of generation is applied to several modes of system consumption (e.g., localized dispersed systems, interconnected load centers, and central systems)

  16. Status of fossil fuel reserves

    International Nuclear Information System (INIS)

    Laherrere, J.

    2005-01-01

    Reserves represent the sum of past and future productions up to the end of production. In most countries the reserve data of fields are confidential. Therefore, fossil fuel reserves are badly known because the published data are more political than technical and many countries make a confusion between resources and reserves. The cumulated production of fossil fuels represents only between a third and a fifth of the ultimate reserves. The production peak will take place between 2020 and 2050. In the ultimate reserves, which extrapolate the past, the fossil fuels represent three thirds of the overall energy. This document analyses the uncertainties linked with fossil fuel reserves: reliability of published data, modeling of future production, comparison with other energy sources, energy consumption forecasts, reserves/production ratio, exploitation of non-conventional hydrocarbons (tar sands, extra-heavy oils, bituminous shales, coal gas, gas shales, methane in overpressure aquifers, methane hydrates), technology impacts, prices impact, and reserves growth. (J.S.)

  17. News technology utilization fossil fuel

    Directory of Open Access Journals (Sweden)

    Blišanová Monika

    2004-09-01

    Full Text Available Fossil fuel – “alternative energy“ is coal, petroleum, natural gas. Petroleum and natural gas are scarce resources, but they are delimited. Reserves petroleum will be depleted after 39 years and reserves natural gas after 60 years.World reserves coal are good for another 240 years. Coal is the most abundant fossil fuel. It is the least expensive energy source for generating electricity. Many environmental problems associated with use of coal:in coal production, mining creates environmental problems.On Slovakia representative coal only important internal fuel – power of source and coal is produced in 5 locality. Nowadays, oneself invest to new technology on utilization coal. Perspective solution onself shows UCG, IGCC.

  18. Problems related to fossil fuels utilization

    International Nuclear Information System (INIS)

    Rota, R.

    1999-01-01

    Fossil fuels still present the main energy source in the world since about 90% of the energy produced comes from combustion. This paper, based on the lectures given at the conference of Energy and Environment hold at the Accademia dei Lincei in 1998, presents a short review of some of the problems related to the utilization of fossil fuels, such as their availability in the medium period, the effect of pollutant dispersion in the atmosphere as well as the available technologies to deal with such problems [it

  19. Characteristics of Ampel bamboo as a biomass energy source potential in Bali

    Science.gov (United States)

    Sucipta, M.; Putra Negara, D. N. K.; Tirta Nindhia, T. G.; Surata, I. W.

    2017-05-01

    Currently, non-renewable fossil energy dominates utilization of the world energy need for many applications. Efforts has been developed to find alternative renewable energy sources, due to fossil energy availability is diminishing. And one of renewable energy source is from biomass. The aim of this research is to determine characteristics of the Ampel bamboo (Bambusa vulgaris) as an energy potential of biomass. The Ampel bamboo’s characteristics possessed are evaluated based on its chemical composition; moisture, volatile, ash, and fixed carbon through proximate analysis; and also carbon, hydrogen and nitrogen content through ultimate analysis. From the Thermo-gravimetric analysis (TGA) indicates that Ampel bamboo contains of about 18.10% hemicelluloses, 47.75% cellulose and 18.86% lignin. While from the ultimate analysis results in the content of carbon, hydrogen, and Nitrogen of Ampel bamboo are 39.75%, 5.75% and 0% respectively. With such characteristics, it indicates that Ampel bamboo has an attractive potential as a renewable energy source.

  20. How do the stock prices of new energy and fossil fuel companies correlate? Evidence from China

    International Nuclear Information System (INIS)

    Wen, Xiaoqian; Guo, Yanfeng; Wei, Yu; Huang, Dengshi

    2014-01-01

    This study documents the return and volatility spillover effect between the stock prices of Chinese new energy and fossil fuel companies using the asymmetric BEKK model. Based on daily samples taken from August 30, 2006 to September 11, 2012, the dynamics of new energy/fossil fuel stock spillover are found to be significant and asymmetric. Compared with positive news, negative news about new energy and fossil fuel stock returns leads to larger return changes in their counter assets. News about both new energy and fossil fuel stock returns spills over into variances of their counter assets, and the volatility spillovers depend complexly on the respective signs of the return shocks of each asset. The empirical results demonstrate that new energy and fossil fuel stocks are generally viewed as competing assets, that positive news about new energy stocks could affect the attractiveness of fossil fuel stocks and that new energy stock investment is more speculative and riskier than fossil fuel stock investment. These results have potential implications for asset allocation, financial risk management and energy policymaking. - Highlights: • The dynamics of Chinese new energy/fossil fuel stock spillover are significant and asymmetric. • New energy and fossil fuel stocks are generally viewed as competing assets. • Positive news about new energy stocks affects the attractiveness of fossil fuel stocks. • New energy stock investment is more speculative and riskier than fossil fuel stock investment

  1. Energy Analysis of the Danish Food Production System: Food-EROI and Fossil Fuel Dependency

    DEFF Research Database (Denmark)

    Markussen, Mads Ville; Østergård, Hanne

    2013-01-01

    Modern food production depends on limited natural resources for providing energy and fertilisers. We assess the fossil fuel dependency for the Danish food production system by means of Food Energy Returned on fossil Energy Invested (Food-EROI) and by the use of energy intensive nutrients from....... Furthermore, nutrients in commercial fertiliser and imported feed account for 84%, 90% and 90% of total supply of N, P and K, respectively. We conclude that the system is unsustainable because it is embedded in a highly fossil fuel dependent system based on a non-circular flow of nutrients. As energy and thus...... imported livestock feed and commercial fertilisers. The analysis shows that the system requires 221 PJ of fossil energy per year and that for each joule of fossil energy invested in farming, processing and transportation, 0.25 J of food energy is produced; 0.28 when crediting for produced bioenergy...

  2. Risks of energy sources

    International Nuclear Information System (INIS)

    Pop-Jordanov, J.; Pop-Jordanova, N.

    1989-09-01

    The paper is devoted to comparative health and environmental risks of different energy sources and their influence to public perception, social acceptability and decision-making. The technical heights of the risks, expressed in the number of fatalities of labor and public per unit energy output, from fossil, nuclear and renewable sources are analysed and compared. The complete energy cycle from mining to waste disposal, as well as the future trends, are taken into account. A comparison of the risks of different energy systems with the anticipated global and national energy shares by source is also presented. Furthermore, detailed studies of the non-technical dimensions of the energy risks are performed. Using a modified attitude-behaviour model, the cognitive structure underlying the positions towards different energy options is investigated. Estimating the diverse acting of the risk components, the consequent changes in the rank ordering of the energy sources are deduced. Finally, adding the psychological components nuclear reaches the highest place. In this respect, a unified multidimensional space for the representation of various technological risks is introduced. It affords a comparison of the risks not only by their technical height, but also by other characteristics (involuntary, fearfulness etc.). Finally, it was pointed out that in considering the risk characteristics and constraints, as well as the external fields, a system approach has to be used, taking into account the risks simultaneously with the benefits. 12 refs, 4 figs, 2 tabs

  3. Proceedings of the sixth annual conference on fossil energy materials

    Energy Technology Data Exchange (ETDEWEB)

    Cole, N.C.; Judkins, R.R. (comps.)

    1992-07-01

    The Sixth Annual Conference on Fossil Energy Materials was held in Oak Ridge, Tennessee, on May 12--14, 1992. The meeting was sponsored by the US Department of Energy's Office of Fossil Energy through the Advanced Research and Technology Development (AR TD) Materials Program, and ASM International. The objective of the AR TD Materials Program is to conduct research and development on materials for longer-term fossil energy applications as well as for generic needs of various fossil fuel technologies. The management of the Program has been decentralized to the DOE Field Office, Oak Ridge with Oak Ridge National Laboratory (ORNL) as the technical support contractor. The research is performed by staff members at ORNL and by a substantial number of researchers at other national laboratories, universities, and in private industry. The work is divided into the following categories: (1) ceramics, (2) development and corrosion resistance of iron aluminide, advanced austenitic and chromium-niobium alloys, and (3) technology assessment and technology transfer. This conference is held each year to review the work on all of the projects of the Program. The agenda for the meeting is given in Appendix A, and a list of attendees is presented in Appendix B. ASM International cosponsored the conference, for which we are especially grateful.

  4. The importance of fossil-fired power plants for the future energy supply

    International Nuclear Information System (INIS)

    Czychon, K.H.

    2013-01-01

    In response to the nuclear disaster in Fukushima and the phasing out of nuclear energy in Germany which is planned up to the year 2022, in addition to the already decommissioned nuclear power plants, a further outage capacity of approximately 13 MW will result. Against the background of the unresolved storage problem, regardless of further expansion of the use of renewable energy sources, the need arises for additional fossil-fueled power plants, i.e. gas and coal power plants. The development of gas prices shows that a further expansion of the gas turbine power plants is limited for economic reasons. This leads to the consequence that the future coal-fired power plants are needed to produce electricity. To meet the requirements for a reduction of CO 2 emissions laws, new power plants must be built with increased efficiency compared to previous systems. In order to meet the challenges of future fossil fuel power plant generations, the Grosskraftwerk Mannheim (Large-scale Power Plant Mannheim) is involved in numerous research projects to increase efficiency, reduce harmful emissions and economic implementation of ambitious technologies.

  5. Hydrogen Production Costs of Various Primary Energy Sources

    International Nuclear Information System (INIS)

    Choi, Jae Hyuk; Tak, Nam Il; Kim, Yong Hee; Park, Won Seok

    2005-11-01

    Many studies on the economical aspects of hydrogen energy technologies have been conducted with the increase of the technical and socioeconomic importance of the hydrogen energy. However, there is still no research which evaluates the economy of hydrogen production from the primary energy sources in consideration of Korean situations. In this study, the hydrogen production costs of major primary energy sources are compared in consideration of the Korean situations such as feedstock price, electricity rate, and load factor. The evaluation methodology is based on the report of the National Academy of Science (NAS) of U.S. The present study focuses on the possible future technology scenario defined by NAS. The scenario assumes technological improvement that may be achieved if present research and development (R and D) programs are successful. The production costs by the coal and natural gas are 1.1 $/kgH 2 and 1.36 $/kgH 2 , respectively. However, the fossil fuels are susceptible to the price variation depending on the oil and the raw material prices, and the hydrogen production cost also depends on the carbon tax. The economic competitiveness of the renewable energy sources such as the wind, solar, and biomass are relatively low when compared with that of the other energy sources. The estimated hydrogen production costs from the renewable energy sources range from 2.35 $/kgH 2 to 6.03 $/kgH 2 . On the other hand, the production cost by nuclear energy is lower than that of natural gas or coal when the prices of the oil and soft coal are above $50/barrel and 138 $/ton, respectively. Taking into consideration the recent rapid increase of the oil and soft coal prices and the limited fossil resource, the nuclear-hydrogen option appears to be the most economical way in the future

  6. Health evaluation of energy-generating sources

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    The American Medical Association's House of Delegates, at its December 1976 Clinical Convention, requested that an evaluation be made of the health hazards of nuclear, fossil, and alternative energy-generating sources, for employees of energy-producing facilities as well as for the general population. This report is a summary evaluation of such hazards prepared in response to that request. This report, which was adopted by the House of Delegates on June 21, 1978, appears here in a revised and corrected version

  7. The unstudied barriers to widespread renewable energy deployment: Fossil fuel price responses

    International Nuclear Information System (INIS)

    Foster, Edward; Contestabile, Marcello; Blazquez, Jorge; Manzano, Baltasar; Workman, Mark; Shah, Nilay

    2017-01-01

    Renewable energy policy focuses on supporting the deployment of renewable power generators so as to reduce their costs through scale economies and technological learning. It is expected that, once cost parity with fossil fuel generation is achieved, a transition towards renewable power should continue without the need for further renewable energy subsidies. However, this reasoning implicitly assumes that the cost of fossil fuel power generation does not respond to the large scale penetration of renewable power. In this paper we build a standard economic framework to test the validity of this assumption, particularly in the case of coal and gas fired power generation. We find that it is likely that the cost of fossil fuel power generation will respond to the large scale penetration of renewables, thus making the renewable energy transition slower or more costly than anticipated. More analysis is needed in order to be able to quantify this effect, the occurrence of which should be considered in the renewable energy discourse. - Highlights: • Renewables are increasingly competing with fossil fuel power generation. • This may have various effects on the fossil fuel generation value chain. • One such possible effect is a response of fossil fuel prices to renewables deployment. • We have tested this hypothesis using a supply-demand analytical framework. • We found that the effect is likely to occur and should be further investigated.

  8. The Fascinating Story of Fossil Fuels

    Science.gov (United States)

    Asimov, Isaac

    1973-01-01

    How this energy source was created, its meaning to mankind, our drastically reduced supply, and why we cannot wait for nature to make more are considered. Today fossil fuels supply 96 percent of the energy used but we must find alternate energy options if we are to combat the energy crisis. (BL)

  9. Fossil Energy Advanced Research and Technology Development Materials Program

    Energy Technology Data Exchange (ETDEWEB)

    Cole, N.C.; Judkins, R.R. (comps.)

    1992-12-01

    Objective of this materials program is to conduct R and D on materials for fossil energy applications with focus on longer-term and generic needs of the various fossil fuel technologies. The projects are organized according to materials research areas: (1) ceramics, (2) new alloys: iron aluminides, advanced austenitics and chromium niobium alloys, and (3) technology development and transfer. Separate abstracts have been prepared.

  10. The legacy of fossil fuels.

    Science.gov (United States)

    Armaroli, Nicola; Balzani, Vincenzo

    2011-03-01

    Currently, over 80% of the energy used by mankind comes from fossil fuels. Harnessing coal, oil and gas, the energy resources contained in the store of our spaceship, Earth, has prompted a dramatic expansion in energy use and a substantial improvement in the quality of life of billions of individuals in some regions of the world. Powering our civilization with fossil fuels has been very convenient, but now we know that it entails severe consequences. We treat fossil fuels as a resource that anyone anywhere can extract and use in any fashion, and Earth's atmosphere, soil and oceans as a dump for their waste products, including more than 30 Gt/y of carbon dioxide. At present, environmental legacy rather than consistence of exploitable reserves, is the most dramatic problem posed by the relentless increase of fossil fuel global demand. Harmful effects on the environment and human health, usually not incorporated into the pricing of fossil fuels, include immediate and short-term impacts related to their discovery, extraction, transportation, distribution, and burning as well as climate change that are spread over time to future generations or over space to the entire planet. In this essay, several aspects of the fossil fuel legacy are discussed, such as alteration of the carbon cycle, carbon dioxide rise and its measurement, greenhouse effect, anthropogenic climate change, air pollution and human health, geoengineering proposals, land and water degradation, economic problems, indirect effects on the society, and the urgent need of regulatory efforts and related actions to promote a gradual transition out of the fossil fuel era. While manufacturing sustainable solar fuels appears to be a longer-time perspective, alternatives energy sources already exist that have the potential to replace fossil fuels as feedstocks for electricity production. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. The legacy of fossil fuels

    Energy Technology Data Exchange (ETDEWEB)

    Armaroli, N.; Balzani, V. [CNR, Bologna (Italy)

    2011-03-01

    Currently, over 80% of the energy used by mankind comes from fossil fuels. Harnessing coal, oil and gas, the energy resources contained in the store of our spaceship, Earth, has prompted a dramatic expansion in energy use and a substantial improvement in the quality of life of billions of individuals in some regions of the world. Powering our civilization with fossil fuels has been very convenient, but now we know that it entails severe consequences. We treat fossil fuels as a resource that anyone anywhere can extract and use in any fashion, and Earth's atmosphere, soil and oceans as a dump for their waste products, including more than 30 Gt/y of carbon dioxide. At present, environmental legacy rather than consistence of exploitable reserves, is the most dramatic problem posed by the relentless increase of fossil fuel global demand. Harmful effects on the environment and human health, usually not incorporated into the pricing of fossil fuels, include immediate and short-term impacts related to their discovery, extraction, transportation, distribution, and burning as well as climate change that are spread over time to future generations or over space to the entire planet. In this essay, several aspects of the fossil fuel legacy are discussed, such as alteration of the carbon cycle, carbon dioxide rise and its measurement, greenhouse effect, anthropogenic climate change, air pollution and human health, geoengineering proposals, land and water degradation, economic problems, indirect effects on the society, and the urgent need of regulatory efforts and related actions to promote a gradual transition out of the fossil fuel era. While manufacturing sustainable solar fuels appears to be a longer-time perspective, alternatives energy sources already exist that have the potential to replace fossil fuels as feedstocks for electricity production.

  12. Renewables vs fossil fuels

    Energy Technology Data Exchange (ETDEWEB)

    Adams, K. (Energy Research and Development Corporation (Australia))

    1992-01-01

    The paper examines some of the factors which will influence the future mix of energy from fossil fuels and renewable sources in Australia. Aspects covered include: the present energy situation; impact of environmental issues; potential for renewable energy; motivators for change; and research and development. It is concluded that the future for fossil fuels and renewable energy is dependent on a number of complex factors, many of which are currently unknown. The key factor is economic viability and that will be influenced by a range of factors such as policies of the Australian and overseas governments in relation to pollution and environment protection (reflected in the cost of meeting such requirements), exploration and production costs (also influenced by government policies), availability of supply, rate of technological development and the size of export markets. 8 refs., 2 figs., 1 tab.

  13. Global climate change: a synopsis of current activities in the Office of Fossil Energy

    International Nuclear Information System (INIS)

    South, D.W.; Kane, R.

    1990-01-01

    This paper reports on the US DOE Office of Fossil Energy investigation and monitoring of several aspects of global climate change as it relates to fossil fuels. The paper consists of the overheads from the presentation. The topics of this paper include greenhouse gases from fossil fuels, scientific uncertainties, legislation and protocols, mitigation strategies and policies, energy and economic impacts, and the role of clean coal technologies and fossil fuels in global climate change

  14. Fossil and non-fossil source contributions to atmospheric carbonaceous aerosols during extreme spring grassland fires in Eastern Europe

    Science.gov (United States)

    Ulevicius, Vidmantas; Byčenkienė, Steigvilė; Bozzetti, Carlo; Vlachou, Athanasia; Plauškaitė, Kristina; Mordas, Genrik; Dudoitis, Vadimas; Abbaszade, Gülcin; Remeikis, Vidmantas; Garbaras, Andrius; Masalaite, Agne; Blees, Jan; Fröhlich, Roman; Dällenbach, Kaspar R.; Canonaco, Francesco; Slowik, Jay G.; Dommen, Josef; Zimmermann, Ralf; Schnelle-Kreis, Jürgen; Salazar, Gary A.; Agrios, Konstantinos; Szidat, Sönke; El Haddad, Imad; Prévôt, André S. H.

    2016-05-01

    In early spring the Baltic region is frequently affected by high-pollution events due to biomass burning in that area. Here we present a comprehensive study to investigate the impact of biomass/grass burning (BB) on the evolution and composition of aerosol in Preila, Lithuania, during springtime open fires. Non-refractory submicron particulate matter (NR-PM1) was measured by an Aerodyne aerosol chemical speciation monitor (ACSM) and a source apportionment with the multilinear engine (ME-2) running the positive matrix factorization (PMF) model was applied to the organic aerosol fraction to investigate the impact of biomass/grass burning. Satellite observations over regions of biomass burning activity supported the results and identification of air mass transport to the area of investigation. Sharp increases in biomass burning tracers, such as levoglucosan up to 683 ng m-3 and black carbon (BC) up to 17 µg m-3 were observed during this period. A further separation between fossil and non-fossil primary and secondary contributions was obtained by coupling ACSM PMF results and radiocarbon (14C) measurements of the elemental (EC) and organic (OC) carbon fractions. Non-fossil organic carbon (OCnf) was the dominant fraction of PM1, with the primary (POCnf) and secondary (SOCnf) fractions contributing 26-44 % and 13-23 % to the total carbon (TC), respectively. 5-8 % of the TC had a primary fossil origin (POCf), whereas the contribution of fossil secondary organic carbon (SOCf) was 4-13 %. Non-fossil EC (ECnf) and fossil EC (ECf) ranged from 13-24 and 7-13 %, respectively. Isotope ratios of stable carbon and nitrogen isotopes were used to distinguish aerosol particles associated with solid and liquid fossil fuel burning.

  15. Nuclear power: tomorrow's energy source

    International Nuclear Information System (INIS)

    2002-01-01

    In France, 76% of electricity is produced by nuclear power. The industry's pricing levels are among the most competitive in Europe. Thanks to its 58 nuclear reactors France enjoys almost 50% energy autonomy thus ensuring a highly stable supply. Equally, as a non-producer of greenhouse gases, the nuclear sector can rightfully claim to have an environmentally friendly impact. Against a background to increasing global demand with predictions that fossil fuels will run out and global warming a central issue, it is important to use production methods which face up to problems of this nature. There is no question that nuclear energy has a vital role to play alongside other energy sources. (authors)

  16. Assessment on health and energy sources

    International Nuclear Information System (INIS)

    Acket, C.; Yvon, M.

    2013-01-01

    After having recalled some issues related to the prevention of environmental health risks and mentioned in the preparation of the debate on energy transition in France, this document gathers actual objective elements for an assessment of health impact of the different energy sources. It discusses the impacts on health (mortality, sicknesses and diseases) of fossil fuels (coal and its wastes, gas), of renewable energies, of nuclear energy. For this last one, the document outlines the lack of documentation for various topics, discusses some results published on the dose impact of nuclear operation, and comment the issue of waste storage. It also recalls the main accidents (Three Mile Island, Chernobyl, and Fukushima) and some of the known and assessed impacts. The third part proposes comparisons between the different energy sources in terms of deadly accidents, of pollution and greenhouse effect (current and late mortality), of released radioactivity (release sources and collective dose). In conclusion, the authors outline that the impact on health of environmental risks must be one of the essential issues for the definition of energy policy, and discuss the resulting implications. Various data are provided in appendix: energy in France and in the world, origins of radioactivity

  17. 75 FR 66008 - Fossil Fuel-Generated Energy Consumption Reduction for New Federal Buildings and Major...

    Science.gov (United States)

    2010-10-27

    ... Fossil Fuel-Generated Energy Consumption Reduction for New Federal Buildings and Major Renovations of Federal Buildings; Correction AGENCY: Office of Energy Efficiency and Renewable Energy, Department of... the fossil fuel- generated energy consumption [[Page 66009

  18. Structure of production costs of different energy sources (fossile fuels and nuclear energy) (group 11)

    International Nuclear Information System (INIS)

    Girard, Ph.

    2002-01-01

    This article is the work of a group of students from the ''Ecole Nationale d'Administration'', they had to study the structure of the costs of the different energy sources. This analysis shows some common features between the energy sources. The cost is very dependent on the partial costs of technological constraints due to exploration, production, transport and distribution. For primary energies the market appears to be not very competitive, the price depends strongly on the market power of the operator and benefits are generally important. In France, taxes play a role to assure competitiveness of gas and coal against oil. Uranium fuel presents the lowest production and transformation costs at the same energy content. Transport costs are important for natural gas which implies a strong mutual dependence between gas producers and consumers. The irreplaceable use of oil in transport assures regular high revenues for oil companies. (A.C.)

  19. Publications of the Oak Ridge National Laboratory Fossil Energy Program, October 1, 1991--March 31, 1993

    International Nuclear Information System (INIS)

    Carlson, P.T.

    1993-06-01

    The Oak Ridge National Laboratory (ORNL) Fossil Energy Program, organized in FY 1974 as the Coal Technology Program, involves research and development activities for the Department of Energy (DOE) Assistant Secretary for Fossil Energy that cover a wide range of fossil energy technologies. The principal focus of the Laboratory's fossil energy activities relates to coal, with current emphasis on materials research and development; environmental, health, and safety research; and the bioprocessing of coal to produce liquid or gaseous fuels. This bibliography covers the period of October 1, 1991, through March 31, 1993

  20. Impacts of non-nuclear energy sources on the environment

    International Nuclear Information System (INIS)

    Tavkaya, E.

    2006-01-01

    Fossil fuels (i.e., petroleum, natural gas and coal) , which meet most of the world's energy demand today, are being depleted fast. Also, their combustion products are causing the global problems, such as the greenhouse effect, ozone layer depletion, acid rains and pollution, which are posing great danger for our environment and eventually for the life in our planet. If humankind is going to have a future on this planet, at least a high-technology future, with a significant population of several billions of humans continuing to inhabit the Earth, it is absolutely inevitable that we will have to find another energy source. Table 1: The environmental effects for some energy systems; SOURCES: Fossil fuels (petroleum, natural gas and coal) ENVIRONMENTAL EFFECTS : - Ozone layer depletion - Changes of atmospheric conditions - Decrease of air quality (Coal , petroleum) - Acid rains and destroy of forests (coal, petroleum ) - Pollution from toxic wastes (coal ash, slag and smoke hole gases) - Pollution of surface water - Seaside and sea pollutions (petroleum) - Terrain devolution - Large amount of fuel and transportation requirements - Sources depletion SOURCES: Hydroelectric ENVIRONMENTAL EFFECTS - Large area requirements - Population situation changes - Erosion and usage changes - Ecosystem changes and health effects - Disappearing of biological variety - Downfall of dams - Leave out of production SOURCES: Renewable (sun, wind, geothermal, biomass) ENVIRONMENTAL EFFECTS : - Decrease of air quality (geothermal, biomass) - Large area usage - Ecologic system changes - Fabrication effects (CO 2 effect due to production of photovoltaic cells that work with sun) - Noise (wind) SOURCES: Nuclear (All energy chain) ENVIRONMENTAL EFFECTS : - Radioactive oscillation because of serious reactor accident - Radiation of waste storage. In this study, the environmental effects for some energy systems are investigated with all details

  1. Fossil and non-fossil source contributions to atmospheric carbonaceous aerosols during extreme spring grassland fires in Eastern Europe

    Directory of Open Access Journals (Sweden)

    V. Ulevicius

    2016-05-01

    Full Text Available In early spring the Baltic region is frequently affected by high-pollution events due to biomass burning in that area. Here we present a comprehensive study to investigate the impact of biomass/grass burning (BB on the evolution and composition of aerosol in Preila, Lithuania, during springtime open fires. Non-refractory submicron particulate matter (NR-PM1 was measured by an Aerodyne aerosol chemical speciation monitor (ACSM and a source apportionment with the multilinear engine (ME-2 running the positive matrix factorization (PMF model was applied to the organic aerosol fraction to investigate the impact of biomass/grass burning. Satellite observations over regions of biomass burning activity supported the results and identification of air mass transport to the area of investigation. Sharp increases in biomass burning tracers, such as levoglucosan up to 683 ng m−3 and black carbon (BC up to 17 µg m−3 were observed during this period. A further separation between fossil and non-fossil primary and secondary contributions was obtained by coupling ACSM PMF results and radiocarbon (14C measurements of the elemental (EC and organic (OC carbon fractions. Non-fossil organic carbon (OCnf was the dominant fraction of PM1, with the primary (POCnf and secondary (SOCnf fractions contributing 26–44 % and 13–23 % to the total carbon (TC, respectively. 5–8 % of the TC had a primary fossil origin (POCf, whereas the contribution of fossil secondary organic carbon (SOCf was 4–13 %. Non-fossil EC (ECnf and fossil EC (ECf ranged from 13–24 and 7–13 %, respectively. Isotope ratios of stable carbon and nitrogen isotopes were used to distinguish aerosol particles associated with solid and liquid fossil fuel burning.

  2. Renewable Energy Sources - Technologies and Development of the Economy

    International Nuclear Information System (INIS)

    Car, S.

    2010-01-01

    The usage of renewable energy sources is a substitute for usage of fossil fuels, whose quantities are limited, and it represents an essential contribution to the reduction of greenhouse gases; at the same time it has a great economic significance for the development of new industries and creation of new jobs. To speed up gradual transition from fossil to renewable sources, governments of all EU member states harmonise their legislations and subordinate regulations promoting investments in usage of renewable sources and thus creating opportunities for new jobs especially in the production of plants and equipment for utilisation of wind power, solar energy, small hydro power plants, biomass and other kinds of renewable sources. In the last 10 years Croatia has adopted a number of acts and regulations that also stimulate investors to utilise renewable sources, and the source of such subsidies is a higher price of electricity paid by all the consumers. On the other hand, the development of domestic industry and gaining references necessary for gaining new contracts are very difficult because of stiff international competition and foreign sources of finance, which often require purchase of foreign equipment as a condition for contract award. In such conditions the utilisation of renewable sources does not contribute either to economic development or creating new jobs in Croatia, but in the countries in which such equipment is produced.(author).

  3. 75 FR 45623 - Morris Energy Group, LLC v.PSEG Energy Resources & Trade LLC; PSEG Fossil LLC; and PSEG Power LLC...

    Science.gov (United States)

    2010-08-03

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. EL10-79-000] Morris Energy Group, LLC v.PSEG Energy Resources & Trade LLC; PSEG Fossil LLC; and PSEG Power LLC; Notice of Complaint...) filed a complaint against PSEG Energy Resources & Trade, LLC, PSEG Fossil LLC and PSEG Power LLC (PSEG...

  4. Biofuel: an alternative to fossil fuel for alleviating world energy and economic crises.

    Science.gov (United States)

    Bhattarai, Keshav; Stalick, Wayne M; McKay, Scott; Geme, Gija; Bhattarai, Nimisha

    2011-01-01

    The time has come when it is desirable to look for alternative energy resources to confront the global energy crisis. Consideration of the increasing environmental problems and the possible crisis of fossil fuel availability at record high prices dictate that some changes will need to occur sooner rather than later. The recent oil spill in the Gulf of Mexico is just another example of the environmental threats that fossil fuels pose. This paper is an attempt to explore various bio-resources such as corn, barley, oat, rice, wheat, sorghum, sugar, safflower, and coniferous and non-coniferous species for the production of biofuels (ethanol and biodiesel). In order to assess the potential production of biofuel, in this paper, countries are organized into three groups based on: (a) geographic areas; (b) economic development; and(c) lending types, as classified by the World Bank. First, the total fossil fuel energy consumption and supply and possible carbon emission from burning fossil fuel is projected for these three groups of countries. Second, the possibility of production of biofuel from grains and vegetative product is projected. Third, a comparison of fossil fuel and biofuel is done to examine energy sustainability issues.

  5. A revisit of fossil-fuel subsidies in China: Challenges and opportunities for energy price reform

    International Nuclear Information System (INIS)

    Lin, Boqiang; Ouyang, Xiaoling

    2014-01-01

    Highlights: • We measure fossil-fuel subsidies and effects of subsidy removal in a systematic fashion during 2006–2010. • Fossil-fuel subsidies scale of China was CNY 881.94 billion in 2010, equivalent to 2.59% of GDP. • Impacts of removing subsidies on macroeconomic variables are examined by the CGE model. • Future policy should focus on designing transparent, targeted and efficient energy subsidies. - Abstract: Fossil-fuel subsidies contribute to the extensive growth of energy demand and the related carbon dioxide emissions in China. However, the process of energy price reform is slow, even though China faces increasing problems of energy scarcity and environmental deterioration. This paper focuses on analyzing fossil fuel subsidies in China by estimating subsidies scale and the implications for future reform. We begin by measuring fossil-fuel subsidies and the effects of subsidy removal in a systematic fashion during 2006–2010 using a price-gap approach. Results indicate that the oil price reform in 2009 significantly reduced China’s fossil-fuel subsidies and modified the subsidy structure. Fossil-fuel subsidies scale in China was 881.94 billion CNY in 2010, which was lower than the amount in 2006, equivalent to 2.59% of the GDP. The macro-economic impacts of removing fossil-fuel subsidies are then evaluated by the computable general equilibrium (CGE) model. Results demonstrate that the economic growth and employment will be negatively affected as well as energy demand, carbon dioxide and sulfur dioxide emissions. Finally, policy implications are suggested: first, risks of government pricing of energy are far from negligible; second, an acceptable macroeconomic impact is a criterion for energy price reform in China; third, the future energy policy should focus on designing transparent, targeted and efficient energy subsidies

  6. Mathematical modelling of electricity market with renewable energy sources

    International Nuclear Information System (INIS)

    Marchenko, O.V.

    2007-01-01

    The paper addresses the electricity market with conventional energy sources on fossil fuel and non-conventional renewable energy sources (RESs) with stochastic operating conditions. A mathematical model of long-run (accounting for development of generation capacities) equilibrium in the market is constructed. The problem of determining optimal parameters providing the maximum social criterion of efficiency is also formulated. The calculations performed have shown that the adequate choice of price cap, environmental tax, subsidies to RESs and consumption tax make it possible to take into account external effects (environmental damage) and to create incentives for investors to construct conventional and renewable energy sources in an optimal (from the society view point) mix. (author)

  7. Energy research at DOE, was it worth it?: energy efficiency and fossil energy research 1978 to 2000

    National Research Council Canada - National Science Library

    2001-01-01

    ... from the R&D conducted since 1978 in DOE's energy efficiency and fossil energy programs. In response to the congressional charge, the National Research Council formed the Committee on Benefits of DOE...

  8. Proceedings of the eleventh annual conference on fossil energy materials

    Energy Technology Data Exchange (ETDEWEB)

    Judkins, R.R. [comp.

    1997-12-01

    The objective of the Advanced Research and Technology Development (AR and TD) Materials Program is to conduct research and development on materials for longer-term fossil energy applications as well as for generic needs of various fossil fuel technologies. These proceedings contain 34 papers organized under the following topical sections: Ceramic composites and functional materials; Ceramics, new alloys, and functional materials; and New alloys. Also included is a summary of a workshop on materials issues in low emission boilers and in high efficiency coal-fired cycles. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

  9. Hydrogen production econometric studies. [hydrogen and fossil fuels

    Science.gov (United States)

    Howell, J. R.; Bannerot, R. B.

    1975-01-01

    The current assessments of fossil fuel resources in the United States were examined, and predictions of the maximum and minimum lifetimes of recoverable resources according to these assessments are presented. In addition, current rates of production in quads/year for the fossil fuels were determined from the literature. Where possible, costs of energy, location of reserves, and remaining time before these reserves are exhausted are given. Limitations that appear to hinder complete development of each energy source are outlined.

  10. Traversing the mountaintop: world fossil fuel production to 2050.

    Science.gov (United States)

    Nehring, Richard

    2009-10-27

    During the past century, fossil fuels--petroleum liquids, natural gas and coal--were the dominant source of world energy production. From 1950 to 2005, fossil fuels provided 85-93% of all energy production. All fossil fuels grew substantially during this period, their combined growth exceeding the increase in world population. This growth, however, was irregular, providing for rapidly growing per capita production from 1950 to 1980, stable per capita production from 1980 to 2000 and rising per capita production again after 2000. During the past half century, growth in fossil fuel production was essentially limited by energy demand. During the next half century, fossil fuel production will be limited primarily by the amount and characteristics of remaining fossil fuel resources. Three possible scenarios--low, medium and high--are developed for the production of each of the fossil fuels to 2050. These scenarios differ primarily by the amount of ultimate resources estimated for each fossil fuel. Total fossil fuel production will continue to grow, but only slowly for the next 15-30 years. The subsequent peak plateau will last for 10-15 years. These production peaks are robust; none of the fossil fuels, even with highly optimistic resource estimates, is projected to keep growing beyond 2050. World fossil fuel production per capita will thus begin an irreversible decline between 2020 and 2030.

  11. The energy return on energy investment (EROI) of photovoltaics: Methodology and comparisons with fossil fuel life cycles

    International Nuclear Information System (INIS)

    Raugei, Marco; Fullana-i-Palmer, Pere; Fthenakis, Vasilis

    2012-01-01

    A high energy return on energy investment (EROI) of an energy production process is crucial to its long-term viability. The EROI of conventional thermal electricity from fossil fuels has been viewed as being much higher than those of renewable energy life-cycles, and specifically of photovoltaics (PVs). We show that this is largely a misconception fostered by the use of outdated data and, often, a lack of consistency among calculation methods. We hereby present a thorough review of the methodology, discuss methodological variations and present updated EROI values for a range of modern PV systems, in comparison to conventional fossil-fuel based electricity life-cycles. - Highlights: ► We perform a review of the EROI methodology. ► We provide new calculations for PV compared to oil- and coal-based energy systems. ► If compared consistently, PV sits squarely in the same range of EROI as conventional fossil fuel life cycles.

  12. Perspectives of Use of Alternative Energy Sources in Air Transport

    Directory of Open Access Journals (Sweden)

    Luboš Socha

    2017-01-01

    Full Text Available The problem of environmental load is also reflected in air transport. Usage of fossil fuels, which are dominant nowadays, has a negative impact on the environment and also its resources are limited. Therefore, the article focuses on the prospective of use of other energy sources in aviation, such as alternative fuels (synthetic fuels, biofuels, alcohol, methane, hydrogen, solar energy and the use of fuel cells. Also, the paper briefly summarizes the approach of aircraft manufacturers to the use alternative sources.

  13. Measuring the energy security implications of fossil fuel resource concentration

    International Nuclear Information System (INIS)

    Lefevre, Nicolas

    2010-01-01

    Economic assessments of the welfare effects of energy insecurity are typically uncertain and fail to provide clear guidance to policy makers. As a result, governments have had little analytical support to complement expert judgment in the assessment of energy security. This is likely to be inadequate when considering multiple policy goals, and in particular the intersections between energy security and climate change mitigation policies. This paper presents an alternative approach which focuses on gauging the causes of energy insecurity as a way to assist policy making. The paper focuses on the energy security implications of fossil fuel resource concentration and distinguishes between the price and physical availability components of energy insecurity. It defines two separate indexes: the energy security price index (ESPI), based on the measure of market concentration in competitive fossil fuel markets, and the energy security physical availability index (ESPAI), based on the measure of supply flexibility in regulated markets. The paper illustrates the application of ESPI and ESPAI with two case studies-France and the United Kingdom-looking at the evolution of both indexes to 2030.

  14. Measuring the energy security implications of fossil fuel resource concentration

    Energy Technology Data Exchange (ETDEWEB)

    Lefevre, Nicolas [Woodrow Wilson School of Public and International Affairs, Princeton University, New Jersey (United States)

    2010-04-15

    Economic assessments of the welfare effects of energy insecurity are typically uncertain and fail to provide clear guidance to policy makers. As a result, governments have had little analytical support to complement expert judgment in the assessment of energy security. This is likely to be inadequate when considering multiple policy goals, and in particular the intersections between energy security and climate change mitigation policies. This paper presents an alternative approach which focuses on gauging the causes of energy insecurity as a way to assist policy making. The paper focuses on the energy security implications of fossil fuel resource concentration and distinguishes between the price and physical availability components of energy insecurity. It defines two separate indexes: the energy security price index (ESPI), based on the measure of market concentration in competitive fossil fuel markets, and the energy security physical availability index (ESPAI), based on the measure of supply flexibility in regulated markets. The paper illustrates the application of ESPI and ESPAI with two case studies - France and the United Kingdom - looking at the evolution of both indexes to 2030. (author)

  15. Fossil Energy Program annual progress report for April 1995 through March 1996

    Energy Technology Data Exchange (ETDEWEB)

    Judkins, R.R.

    1996-06-01

    This report covers progress for research and development projects that contribute to the advancement of various fossil energy technologies. Attention is focused on the following areas: materials research and development; environmental analysis support; bioprocessing research for coal, oil, and natural gas; coal combustion research; fossil fuels supplies modeling and research; and advanced turbine systems. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  16. Methods for comparative risk assessment of different energy sources

    International Nuclear Information System (INIS)

    1992-10-01

    The environmental and health aspects of different energy systems, particularly those associated with the generation of electricity, are emerging as significant issues for policy formulation and implementation. This, together with the growing need of many countries to define their energy programmes for the next century, has provided the basis for a renewed interest in the comparative risk assessment of different energy sources (fossil, nuclear, renewables). This document is the outcome of a Specialists Meeting on the procedural and methodological issues associated with comparative health and environmental risks of different energy sources. After an introductory chapter outlining the issues under consideration the papers presented at the Meeting, which have been indexed separately, are given. Refs, figs and tabs

  17. FOSSIL FUEL ENERGY RESOURCES OF ETHIOPIA Wolela Ahmed ...

    African Journals Online (AJOL)

    a

    KEY WORDS: Coal, Energy, Ethiopia, Fossil fuel, Oil shale, Oil and gas. INTRODUCTION .... The marginal faults favoured the accumulation of alluvial fan sandy ... sediments towards the western marginal areas of the basin. ...... subsiding East African continental margin initiated to deposit fluvio-lacustrine sediments. A.

  18. Herbaceous land plants as a renewable energy source for Puerto Rico

    Energy Technology Data Exchange (ETDEWEB)

    Alexander, A.G.

    1980-01-01

    Herbaceous tropical plants are a renewable energy source of major importance to many tropical nations. They convert the radiant energy of sunlight to chemical energy, which is stored in plant tissues (cellulose, hemicellulose, lignin) and fermentable solids (sugars, starches). Because all tropical plants do this - even those commonly regarded as weeds - they constitute an inexpensive, renewable, and domestic alternative to foreign fossil energy. The vast majority of herbaceous tropical plants have never been cultivated for food, fiber, or energy. A major screening program would be needed to identify superior species and the most effective roles they can play in a domestic energy industry. Other herbaceous plants, such as sugarcane and tropical forage grasses, have been cultivated for centuries as agricultural commodities. As energy crops, important revisions in management will be needed to maximize their energy yield. Two broad groups of herbaceous plants are seen to have an immediate potential for reducing Puerto Rico's reliance on imported fossil fuels: the tropical grasses (of which sugarcane is the dominant member) and the tropical legumes. Managed for its maximum growth potential, sugarcane is an excellent source of boiler fuel, fermentation substrates, cellulosic feedstocks, and the sweetener sucrose. Other tropical grasses store relatively little extractable sugar while equaling or moderately surpassing sugarcane in yield of cellulosic dry matter. The latter might soon become an economical source of fermentation substrates. Certain legume species are also very effective producers of biomass. Herbaceous tropical legumes are perceived as a potential source of biological nitrogen for energy crops unable to utilize nitrogen from the atmosphere.

  19. Herbaceous land plants as a renewable energy source for Puerto Rico

    Energy Technology Data Exchange (ETDEWEB)

    Alexander, A G

    1980-01-01

    Herbaceous tropical plants are a renewable energy source of major importance to many tropical nations. They convert the radiant energy of sunlight to chemical energy, which is stored in plant tissues (cellulose, hemicellulose, lignin) and fermentable solids (sugars, starches). Because all tropical plants do this - even those commonly regarded as weeds - they constitute an inexpensive, renewable, and domestic alternative to foreign fossil energy. The vast majority of herbaceous tropical plants have never been cultivated for food, fiber, or energy. A major screening program would be needed to identify superior species and the most effective roles they can play in a domestic energy industry. Other herbaceous plants, such as sugarcane and tropical forage grasses, have been cultivated for centuries as agricultural commodities. As energy crops, important revisions in management will be needed to maximize their energy yield. Two broad groups of herbaceous plants are seen to have an immediate potential for reducing Puerto Rico's reliance on imported fossil fuels: the tropical grasses (of which sugarcane is the dominant member) and the tropical legumes. Managed for its maximum growth potential, sugarcane is an excellent source of boiler fuel, fermentation substrates, cellulosic feedstocks, and the sweetener sucrose. Other tropical grasses store relatively little extractable sugar while equaling or moderately surpassing sugarcane in yield of cellulosic dry matter. The latter might soon become an economical source of fermentation substrates. Certain legume species are also very effective producers of biomass. Herbaceous tropical legumes are perceived as a potential source of biological nitrogen for energy crops unable to utilize nitrogen from the atmosphere.

  20. Environmental impact of fossil fuel utilization in the thermal power plant

    International Nuclear Information System (INIS)

    Ghasem D Najafpour; Seyed Jafar Mehdizadeh; Abdul Rahman Mohamed

    2000-01-01

    Carbon dioxide causes green house effect, has been considered as a pollutant source of our safe environment. Since combustion of fossil fuel may create tremendous amount of carbon dioxide, detecting any pollutant sources would be important to eliminate the pollution sources. Evaluation of smoke dispersion that has been generated by a power plant utilizing fossil fuel is the objective of this paper. The concentration of NO, and SO, in the soil, have been analyzed from a distance of 3 to 4 km far from power plant. The experimental results shown. that the concentration of toxic gases was a little above the international standards. Replacement of fossil fuel by natural gas caused NO, concentration to be developed in the atmosphere, therefore usage of natural gas is limited by environmental protection agencies. Beside the nuclear power plant, the power generated by other sources. are limited. Electric power generated by water dam is not a major contribution of electric power demand. Therefore generation of electricity by any other energy sources, which are friendly to the environment, is recommended. Other sources of energy, such as wind power, solar energy, geothermal, ocean thennal and renewable source of energy can be considered safe for the environment. The goal of environmental management system would be to meet the minimum requirements were established and demanded by the local environmental protection agency or international standard organization (ISO-14000). (Author)

  1. ALTERNATIVE SOURCES OF ENERGY - ALTERNATIVE SOURCES OF POLLUTION?

    Directory of Open Access Journals (Sweden)

    Marius-Razvan SURUGIU

    2007-06-01

    Full Text Available In many countries of the world investments are made for obtaining energy efficiency, pursuing to increase the generation of non-polluting fuels due to the fact that energy is vital for any economy. The increase in non-polluting fuels and in renewable energy generation might lead to diminishing the dependence of countries less endowed with conventional energy resources on oil and natural gas from Russia or from Arab countries. Nevertheless, environmental issues represent serious questions facing the mankind, requiring the identification, prevention, and why not, their total solving.European Union countries depend on imports of energy, especially on oil imports. At the same time, the European Union countries record a high volume of greenhouse gas emissions, substances adding to global warming. The transport sector is the main consumer of fossil fuels and generator of greenhouse gas emissions. Therefore, diversifying the energy supply used in the transport sector with less polluting sources is an essential objective of the European Union policy in the transport, energy and environment sector. Road transports’ is the sector recording the highest consumption of energy and the highest volume of greenhouse gas emissions.The use of ecologic fuels in the transport sector is an important factor for achieving the objectives of European policies in the field. It is yet to be seen to what extent alternative energy sources are damaging to the environment, as it is a known fact that even for them is recorded a certain level of negative externalities.

  2. Aspects of using biomass as energy source for power generation

    Directory of Open Access Journals (Sweden)

    Tîrtea Raluca-Nicoleta

    2017-07-01

    Full Text Available Biomass represents an important source of renewable energy in Romania with about 64% of the whole available green energy. Being a priority for the energy sector worldwide, in our country the development stage is poor compared to solar and wind energy. Biomass power plants offer great horizontal economy development, local and regional economic growth with benefic effects on life standard. The paper presents an analysis on biomass to power conversion solutions compared to fossil fuels using two main processes: combustion and gasification. Beside the heating value, which can be considerably higher for fossil fuels compared to biomass, a big difference between fossil fuels and biomass can be observed in the sulphur content. While the biomass sulphur content is between 0 and approximately 1%, the sulphur content of coal can reach 4%. Using coal in power plants requires important investments in installations of flue gas desulfurization. If limestone is used to reduce SO2 emissions, then additional carbon dioxide moles will be released during the production of CaO from CaCO3. Therefore, fossil fuels not only release a high amount of carbon dioxide through burning, but also through the caption of sulphur dioxide, while biomass is considered CO2 neutral. Biomass is in most of the cases represented by residues, so it is a free fuel compared to fossil fuels. The same power plant can be used even if biomass or fossil fuels is used as a feedstock with small differences. The biomass plant could need a drying system due to high moisture content of the biomass, while the coal plant will need a desulfurization installation of flue gas and additional money will be spent with fuel purchasing.

  3. Development of alternative/renewable sources of energy in Pakistan

    International Nuclear Information System (INIS)

    Sharif, M.

    2005-01-01

    The depleting Conventional Energy Resources and highly raised prices of fuel oil, coal, firewood and such other fossil fuels, have forced the mankind to think about the utilization of Alternative / Renewable Sources of Energy. Alternative / Renewable Energy is very attractive, reliable and cost competitive energy. Sun is readily available to provide a clean, abundant and virtually infinite energy to meet the significant portion of mankind's energy-needs. The possible use of renewable-energy sources is discussed in this paper, in order to fill the estimated gap between the available energy-sources and energy-needs of our country in the near future. Designing, Fabrication and Installation of different renewable-energy devices by PCSIR are also discussed in this paper. Different renewable-energy devices such as, solar water heaters, solar cookers, solar dehydrators, solar water-desalination plants, solar heating and cooling of buildings, solar operated absorption-type chiller, solar furnace, solar architecture, developed by PCSIR are discussed in some detail so that the role of renewable-energy sources for their direct use (as heat and power) can be determined. Various technical aspects are discussed to reduce the unit cost with improved efficiency. (author)

  4. Solar-hydrogen energy as an alternative energy source for mobile robots and the new-age car

    International Nuclear Information System (INIS)

    Sulaiman, A; Inambao, F; Bright, G

    2014-01-01

    The disastrous effects of climate change as witnessed in recent violent storms, and the stark reality that fossil fuels are not going to last forever, is certain to create renewed demands for alternative energy sources. One such alternative source, namely solar energy, although unreliable because of its dependence on available sunlight, can nevertheless be utilised to generate a secondary source of energy, namely hydrogen, which can be stored and thereby provide a constant and reliable source of energy. The only draw-back with hydrogen, though, is finding efficient means for its storage. This study demonstrates how this problem can be overcome by the use of metal hydrides which offers a very compact and safe way of storing hydrogen. It also provides a case study of how solar and hydrogen energy can be combined in an energy system to provide an efficient source of energy that can be applied for modern technologies such as a mobile robot. Hydrogen energy holds out the most promise amongst the various alternative energy sources, so much so that it is proving to be the energy source of choice for automobile manufacturers in their quest for alternative fuels to power their cars of the future

  5. Solar-hydrogen energy as an alternative energy source for mobile robots and the new-age car

    Science.gov (United States)

    Sulaiman, A.; Inambao, F.; Bright, G.

    2014-07-01

    The disastrous effects of climate change as witnessed in recent violent storms, and the stark reality that fossil fuels are not going to last forever, is certain to create renewed demands for alternative energy sources. One such alternative source, namely solar energy, although unreliable because of its dependence on available sunlight, can nevertheless be utilised to generate a secondary source of energy, namely hydrogen, which can be stored and thereby provide a constant and reliable source of energy. The only draw-back with hydrogen, though, is finding efficient means for its storage. This study demonstrates how this problem can be overcome by the use of metal hydrides which offers a very compact and safe way of storing hydrogen. It also provides a case study of how solar and hydrogen energy can be combined in an energy system to provide an efficient source of energy that can be applied for modern technologies such as a mobile robot. Hydrogen energy holds out the most promise amongst the various alternative energy sources, so much so that it is proving to be the energy source of choice for automobile manufacturers in their quest for alternative fuels to power their cars of the future.

  6. Impacts of GDP, Fossil Fuel Energy Consumption, Energy Consumption Intensity, and Economic Structure on SO2 Emissions: A Multi-Variate Panel Data Model Analysis on Selected Chinese Provinces

    Directory of Open Access Journals (Sweden)

    Haoran Zhao

    2018-03-01

    considering economic development and environmental impacts. (3 Exploring renewable and sustainable energy sources to substitute for fossil fuel energy according to regional resources endowment. (4 Developing high value added and low pollution emissions industries and reducing the proportion of secondary industry.

  7. Croatian non-fossil energy programme (NFE Program); Program nefosilnih energenata u Hrvatskoj (Program NFE)

    Energy Technology Data Exchange (ETDEWEB)

    Kamenski, M; Potocnik, V [Zagreb (Croatia)

    1997-12-31

    Proposed NFE Program (rational energy use and renewable energy) takes into account European Union experience and the facts of scarce fossil fuel reserves and relatively low energy efficiency in Croatia. Implementation of the NFE Program is expected to reduce fossil fuels import growth and environmental pollution, to improve import-export trade balance and to contribute to the new local jobs. (author). 4 figs., 11 refs.

  8. Total energy analysis of nuclear and fossil fueled power plants

    International Nuclear Information System (INIS)

    Franklin, W.D.; Mutsakis, M.; Ort, R.G.

    1971-01-01

    The overall thermal efficiencies of electrical power generation were determined for Liquid Metal Fast Breeder, High Temperature Gas Cooled, Boiling Water, and Pressurized Water Reactors and for coal-, oil-, and gas-fired systems. All important energy consuming steps from mining through processing, transporting, and reprocessing the fuels were included in the energy balance along with electrical transmission and thermal losses and energy expenditures for pollution abatement. The results of these studies show that the overall fuel cycle efficiency of the light water nuclear fueled reactors is less than the efficiency of modern fossil fuel cycles. However, the nuclear fuel cycle based on the fast breeder reactors should produce power more efficiently than the most modern supercritical fossil fuel cycles. The high temperature gas cooled reactor has a cycle efficiency comparable to the supercritical coal fuel cycle

  9. Biogas as a potential renewable energy source: A Ghanaian case study

    International Nuclear Information System (INIS)

    Arthur, Richard; Baidoo, Martina Francisca; Antwi, Edward

    2011-01-01

    The associated harmful environmental, health and social effects with the use of traditional biomass and fossil fuel has enhanced the growing interest in the search for alternate cleaner source of energy globally. Ghana, a developing country depends heavy on woodfuel as a source of fuel contributing about 72% of the primary energy supply with crude oil and hydro making up the rest. Biogas generation has simply been seen as a by-product of anaerobic digestion of organic waste. Having proven to be a practicable and promising technology, it has been very successful and a very reliable and clean source of energy when proper management programmes are followed. There are vast biomass resources including organic waste in Ghana that have the potential for use as feedstock for biogas production to reduce the over reliance of woodfuel and fossil fuel, and to help reduce the it would reduce greenhouse gas emissions which may be affecting climate change. Ghana having the technical potential of constructing about 278,000 biogas plants, only a little over 100 biogas plants has so far been established. This paper presents the energy situation and the status of the biogas technology and utilization in Ghana. It also presents the potential benefits, prospects and challenges of the biogas technology. (author)

  10. Biogas as a potential renewable energy source: A Ghanaian case study

    Energy Technology Data Exchange (ETDEWEB)

    Arthur, Richard; Baidoo, Martina Francisca [Department of Energy Systems Engineering, Koforidua Polytechnic, Koforidua, Box KF 981, Koforidua (Ghana); Antwi, Edward [Department of Mechanical Engineering, Kumasi Polytechnic, Box 854, Kumasi (Ghana)

    2011-05-15

    The associated harmful environmental, health and social effects with the use of traditional biomass and fossil fuel has enhanced the growing interest in the search for alternate cleaner source of energy globally. Ghana, a developing country depends heavy on woodfuel as a source of fuel contributing about 72% of the primary energy supply with crude oil and hydro making up the rest. Biogas generation has simply been seen as a by-product of anaerobic digestion of organic waste. Having proven to be a practicable and promising technology, it has been very successful and a very reliable and clean source of energy when proper management programmes are followed. There are vast biomass resources including organic waste in Ghana that have the potential for use as feedstock for biogas production to reduce the over reliance of woodfuel and fossil fuel, and to help reduce the it would reduce greenhouse gas emissions which may be affecting climate change. Ghana having the technical potential of constructing about 278,000 biogas plants, only a little over 100 biogas plants has so far been established. This paper presents the energy situation and the status of the biogas technology and utilization in Ghana. It also presents the potential benefits, prospects and challenges of the biogas technology. (author)

  11. Little energy dictionary. Vol. 2. Renewable and new sources of energy. Mini-Lex der Energie. Bd. 2. Erneuerbare und neue Energiequellen

    Energy Technology Data Exchange (ETDEWEB)

    Lukner, C

    1985-01-01

    The fact that the fossil fuel resources are limited requires the exploration and use of renewable and new sources of energy. To distinguish between feasible and utopian projects it is necessary to take recourse to secured technical knowledge in the discussion. The author treats 85 important terms used in the energy discussion, e.g. upwind power plants, energy experiments house, solar furnaces, wave power. He uses descriptive popular language.

  12. Does Non-Fossil Energy Usage Lower CO2 Emissions? Empirical Evidence from China

    Directory of Open Access Journals (Sweden)

    Deshan Li

    2016-08-01

    Full Text Available This paper uses an autoregressive distributed lag model (ARDL to examine the dynamic impact of non-fossil energy consumption on carbon dioxide (CO2 emissions in China for a given level of economic growth, trade openness, and energy usage between 1965 and 2014. The results suggest that the variables are in a long-run equilibrium. ARDL estimation indicates that consumption of non-fossil energy plays a crucial role in curbing CO2 emissions in the long run but not in the short term. The results also suggest that, in both the long and short term, energy consumption and trade openness have a negative impact on the reduction of CO2 emissions, while gross domestic product (GDP per capita increases CO2 emissions only in the short term. Finally, the Granger causality test indicates a bidirectional causality between CO2 emissions and energy consumption. In addition, this study suggests that non-fossil energy is an effective solution to mitigate CO2 emissions, providing useful information for policy-makers wishing to reduce atmospheric CO2.

  13. Fossil energy and GHG saving potentials of pig farming in the EU

    International Nuclear Information System (INIS)

    Nguyen, Thu Lan T.; Hermansen, John E.; Mogensen, Lisbeth

    2010-01-01

    In Europe, the highly developed livestock industry places a high burden on resource use and environmental quality. This paper examines pig meat production in North-West Europe as a base case and runs different scenarios to investigate how improvements in terms of energy and greenhouse gas (GHG) savings can be feasibly achieved. As shown in the results of the analysis, pig farming in the EU has a high potential to reduce fossil energy use and GHG emissions by taking improvement measures in three aspects: (i) feed use; (ii) manure management; and (iii) manure utilization. In particular, a combination of improvements in all mentioned aspects offers the highest savings potential of up to 61% fossil energy and 49% GHG emissions. In weighing these three aspects, manure utilization for energy production is found to be the most important factor in reducing fossil energy use and GHG emissions. However, when GHG implications of land use change and land opportunity cost associated with the production of feed crops (e.g. soy meal, cereals) are considered, reducing feed use becomes the main factor in improving GHG performance of EU pork.

  14. Fossil energy and GHG saving potentials of pig farming in the EU

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Thu Lan T.; Hermansen, John E.; Mogensen, Lisbeth [Department of Agroecology and Environment, Aarhus University, Tjele (Denmark)

    2010-05-15

    In Europe, the highly developed livestock industry places a high burden on resource use and environmental quality. This paper examines pig meat production in North-West Europe as a base case and runs different scenarios to investigate how improvements in terms of energy and greenhouse gas (GHG) savings can be feasibly achieved. As shown in the results of the analysis, pig farming in the EU has a high potential to reduce fossil energy use and GHG emissions by taking improvement measures in three aspects: (i) feed use; (2) manure management; and (3) manure utilization. In particular, a combination of improvements in all mentioned aspects offers the highest savings potential of up to 61% fossil energy and 49% GHG emissions. In weighing these three aspects, manure utilization for energy production is found to be the most important factor in reducing fossil energy use and GHG emissions. However, when GHG implications of land use change and land opportunity cost associated with the production of feed crops (e.g. soy meal, cereals) are considered, reducing feed use becomes the main factor in improving GHG performance of EU pork. (author)

  15. The Potential of Solar as Alternative Energy Source for Socio-Economic Wellbeing in Rural Areas, Malaysia

    Science.gov (United States)

    Alam, Rashidah Zainal; Siwar, Chamhuri; Ludin, Norasikin Ahmad

    Malaysia's energy sector is highly dependent on fossil fuels as a primary energy source. Economic growth and socio-economic wellbeing also rely on the utilization of energy in daily life routine. Nevertheless, the increasing cost for electricity and declining fossil fuels resources causes various negative impacts to the people and environment especially in rural areas. This prompted Malaysia to shift towards alternative energy sources such as solar energy to ensure social, economic and environmental benefits. The solar energy is one of the potential renewable energy sources in tropical countries particularly in Malaysia. The paper attempts to analyze the benefits and advantages related to energy efficiency of solar for sustainable energy use and socio economic wellbeing in rural areas, Malaysia. The paper uses secondary sources of data such as policies, regulations and research reports from relevant ministries and agencies to attain the objectives. As a signatory country to the UN Convention on Climate Change and the Kyoto Protocol, Malaysia has taken initiatives for decreasing energy dependence on oil to reduce greenhouse gas emissions (GHG) for sustainable development. The paper shows solar energy becomes one of the promising alternative energy sources to alleviate energy poverty in Malaysia for rural areas. Finally, solar energy has increased socio-economic wellbeing and develops green potential and toward achieving energy efficiency in energy sector of Malaysia by preserving environment as well as reducing carbon emission.

  16. Fossil Energy Program annual progress report for April 1996 through March 1997

    Energy Technology Data Exchange (ETDEWEB)

    Judkins, R.R.

    1997-07-01

    The Oak Ridge National Laboratory (ORNL) Fossil Energy Program research and development activities, performed for the Department of Energy (DOE) Assistant Secretary for Fossil Energy, cover the areas of coal, clean coal technology, gas, petroleum, and support to the Strategic Petroleum Reserve. The coal activities include materials research and development; environmental analysis support; bioprocessing of coal to produce liquid or gaseous fuels; and coal combustion research. The work in support of gas technologies includes activities on the Advanced Turbine Systems Program, primarily in the materials and manufacturing aspects. Several activities are contributing to petroleum technologies in the areas of computational tools for seismic analysis and the use of bioconversion for the removal of impurities from heavy oils. This report contains 32 papers describing the various research activities, arranged under the following topical sections: materials research and development; environmental analysis support; bioprocessing research; coal combustion research; fossil fuel supply modeling and research; and advanced turbine systems.

  17. Fossil energy versus nuclear, wind, solar and agricultural biomass: Insights from an Italian national survey

    International Nuclear Information System (INIS)

    Cicia, Gianni; Cembalo, Luigi; Del Giudice, Teresa; Palladino, Andrea

    2012-01-01

    In Italy there has been considerable political debate around the new energy policy, which is specifically designed to contribute to climate change mitigation. While there is renewed interest in nuclear energy generation, there has been heated debate concerning wind farms that have rapidly expanded and are dramatically changing the landscape in many rural areas. Finally, interest has also increased in biomass as an energy source. However, in this case, a significant part of the population is worried about landscape change and primary crop reduction. In this study we report the results from a nation-wide survey (=504 households) in Italy undertaken during summer 2009. A Latent Class Choice Experiment was used to quantify household preferences over different energy sources. Our results show that Italian households can be split into three segments with homogeneous preferences. The first segment (35% of the population) shows strong preference for wind and solar energy and dislikes both biomass and nuclear. The second (33% of the population) shows moderate preference for solar and wind energy and, as with the first segment, dislikes both nuclear and biomass. The third (32% of the population) shows a strong preference for green energy (solar, wind and biomass) and is very much against nuclear energy. The three segments were also characterized in terms of household socio-economic characteristics. - Highlights: ► We quantify Italian household preferences over different energy sources. ► Results come from a nation-wide survey undertaken during summer 2009. ► Energy sources tested: fossil fuel, nuclear, wind, solar and agricultural biomass. ► A latent class choice experiment was used. ► Italians can be split into three segments with different energy source preferences.

  18. Primary energy sources and greenhouse effect; Sources d'energie primaires et effet de serre

    Energy Technology Data Exchange (ETDEWEB)

    Tissot, B. [Commission Nationale d' Evaluation des Recherches sur la Gestion des Dechets Nucleaires, 75 - Paris (France)

    2003-07-01

    In the frame of the diminution of fossil energy and climate change, the two most difficult demands to satisfy are providing electricity to megalopolises and fuels for transportation. Renewable energies have to be promoted but will not be able to replace fossil fuels in their current uses before several decades. According to the previsions for this century, carefulness is necessary to preserve the future of humanity and the environment. (author)

  19. Heat planning for fossil-fuel-free district heating areas with extensive end-use heat savings

    DEFF Research Database (Denmark)

    Harrestrup, Maria; Svendsen, S.

    2014-01-01

    is a theoretical investigation of the district heating system in the Copenhagen area, in which heat conservation is related to the heat supply in buildings from an economic perspective. Supplying the existing building stock from low-temperature energy resources, e.g. geothermal heat, might lead to oversized......The Danish government plans to make the Danish energy system to be completely free of fossil fuels by 2050 and that by 2035 the energy supply for buildings and electricity should be entirely based on renewable energy sources. To become independent from fossil fuels, it is necessary to reduce...... the energy consumption of the existing building stock, increase energy efficiency, and convert the present heat supply from fossil fuels to renewable energy sources. District heating is a sustainable way of providing space heating and domestic hot water to buildings in densely populated areas. This paper...

  20. Allocation of fossil and nuclear fuels. Heat production from chemically and physically bound energy

    International Nuclear Information System (INIS)

    Wagner, U.

    2008-01-01

    The first part of the book presents the broad field of allocation, transformation, transport and distribution of the most important energy carriers in the modern power industry. The following chapters cover solid fossil fuel, liquid fuel, gaseous fuel and nuclear fuel. The final chapters concern the heat production from chemically and physically bound energy, including elementary analysis, combustion calculations, energy balance considerations in fossil fuel fired systems, and fundamentals of nuclear physics

  1. Sustainable development relevant comparison of the greenhouse gas emissions from the full energy chains of different energy sources

    International Nuclear Information System (INIS)

    Van De Vate, J.F.

    1997-01-01

    It is emphasized that sustainable energy planning should account for the emissions of all greenhouse gases (GHGs) from the whole energy chain, hence accounting not only carbon dioxide as the greenhouse gas and not only for the emissions from the combustion of fossil fuels. Lowering greenhouse gas emissions from the worldwide energy use can be done most effectively by accounting in energy planning for the full-energy-chain (FENCH) emissions of all GHGs. Only energy sources with similar output can be compared. This study investigates electricity generating technologies, which are compared in terms their GHG emission factors to be expressed in CO 2 -equivalents per kW.h(e). Earlier IAEA expert meetings are reviewed. A general meeting made general recommendations about methods and input data bases for FENCH-GHG analysis. Two more recent meetings dealt with the energy chains of nuclear and hydropower. The site-specific character of the emission factors of these energy sources is discussed. Both electricity generators have emission factors in the range of 5-30 g CO 2 -equiv./kW.h(e), which is very low compared to the FENCH-GHG emission factors of fossil-fueled power generation and of most of the renewable power generators. (author)

  2. When will fossil fuel reserves be diminished?

    International Nuclear Information System (INIS)

    Shafiee, Shahriar; Topal, Erkan

    2009-01-01

    Crude oil, coal and gas are the main resources for world energy supply. The size of fossil fuel reserves and the dilemma that 'when non-renewable energy will be diminished' is a fundamental and doubtful question that needs to be answered. This paper presents a new formula for calculating when fossil fuel reserves are likely to be depleted and develops an econometrics model to demonstrate the relationship between fossil fuel reserves and some main variables. The new formula is modified from the Klass model and thus assumes a continuous compound rate and computes fossil fuel reserve depletion times for oil, coal and gas of approximately 35, 107 and 37 years, respectively. This means that coal reserves are available up to 2112, and will be the only fossil fuel remaining after 2042. In the Econometrics model, the main exogenous variables affecting oil, coal and gas reserve trends are their consumption and respective prices between 1980 and 2006. The models for oil and gas reserves unexpectedly show a positive and significant relationship with consumption, while presenting a negative and significant relationship with price. The econometrics model for coal reserves, however, expectedly illustrates a negative and significant relationship with consumption and a positive and significant relationship with price. Consequently, huge reserves of coal and low-level coal prices in comparison to oil and gas make coal one of the main energy substitutions for oil and gas in the future, under the assumption of coal as a clean energy source

  3. A Bayesian stochastic frontier analysis of Chinese fossil-fuel electricity generation companies

    International Nuclear Information System (INIS)

    Chen, Zhongfei; Barros, Carlos Pestana; Borges, Maria Rosa

    2015-01-01

    This paper analyses the technical efficiency of Chinese fossil-fuel electricity generation companies from 1999 to 2011, using a Bayesian stochastic frontier model. The results reveal that efficiency varies among the fossil-fuel electricity generation companies that were analysed. We also focus on the factors of size, location, government ownership and mixed sources of electricity generation for the fossil-fuel electricity generation companies, and also examine their effects on the efficiency of these companies. Policy implications are derived. - Highlights: • We analyze the efficiency of 27 quoted Chinese fossil-fuel electricity generation companies during 1999–2011. • We adopt a Bayesian stochastic frontier model taking into consideration the identified heterogeneity. • With reform background in Chinese energy industry, we propose four hypotheses and check their influence on efficiency. • Big size, coastal location, government control and hydro energy sources all have increased costs

  4. Fossil shell emission in dying radio loud AGNs

    Science.gov (United States)

    Kino, M.; Ito, H.; Kawakatu, N.; Orienti, M.; Nagai, H.; Wajima, K.; Itoh, R.

    2016-02-01

    We investigate shell emission associated with dying radio loud AGNs. First, based on our recent work by Ito et al. (2015), we describe the dynamical and spectral evolution of shells after stopping the jet energy injection. We find that the shell emission overwhelms that of the radio lobes soon after stopping the jet energy injection because fresh electrons are continuously supplied into the shell via the forward shock, while the radio lobes rapidly fade out without jet energy injection. We find that such fossil shells can be a new class of target sources for SKA telescope. Next, we apply the model to the nearby radio source 3C84. Then, we find that the fossil shell emission in 3C84 is less luminous in the radio band while it is bright in the TeV γ-ray band and can be detectable by CTA. Data from STELLA

  5. Economic competitiveness of seawater desalinated by nuclear and fossil energy

    International Nuclear Information System (INIS)

    Tian Li; Wang Yongqing; Guo Jilin; Liu Wei

    2001-01-01

    The levelized discounted production water cost method and the new desalination economic evaluation program (DEEP1.1) were used to compare the economics of desalination using nuclear or fossil energy. The results indicate that nuclear desalination is more economic than fossil desalination with reverse osmosis (RO), multi-effect distillation (MED) and multi-stage flash (MSF). The desalination water cost varies depending on the desalination technology and the water plant size from 0.52-1.98 USD·m -3 with the lowest water price by RO and the highest by MSF. The sensitivity factors for the economic competitiveness increases in order of the discounted rate, desalination plant scale, fossil fuel price, specific power plant investment, seawater temperature and total dissolve solid (TDS). The highest water cost is about 22.6% more than the base case

  6. Nuclear Energy R and D Imperative 3: Enable a Transition Away from Fossil Fuel in the Transportation and Industrial Sectors

    International Nuclear Information System (INIS)

    Petti, David; Herring, J. Stephen

    2010-01-01

    As described in the Department of Energy Office of Nuclear Energy's Nuclear Energy R and D Roadmap, nuclear energy can play a significant role in supplying energy for a growing economy while reducing both our dependence on foreign energy supplies and emissions from the burning of fossil fuels. The industrial and transportation sectors are responsible for more than half of the greenhouse gas emissions in the U.S., and imported oil supplies 70% of the energy used in the transportation sector. It is therefore important to examine the various ways nuclear energy can facilitate a transition away from fossil fuels to secure environmentally sustainable production and use of energy in the transportation and manufacturing industry sectors. Imperative 3 of the Nuclear Energy R and D Roadmap, entitled 'Enable a Transition Away from Fossil Fuels by Producing Process Heat for use in the Transportation and Industrial Sectors', addresses this need. This document presents an Implementation Plan for R and D efforts related to this imperative. The expanded use of nuclear energy beyond the electrical grid will contribute significantly to overcoming the three inter-linked energy challenges facing U.S. industry: the rising and volatile prices for premium fossil fuels such as oil and natural gas, dependence on foreign sources for these fuels, and the risks of climate change resulting from carbon emissions. Nuclear energy could be used in the industrial and transportation sectors to: (1) Generate high temperature process heat and electricity to serve industrial needs including the production of chemical feedstocks for use in manufacturing premium fuels and fertilizer products, (2) Produce hydrogen for industrial processes and transportation fuels, and (3) Provide clean water for human consumption by desalination and promote wastewater treatment using low-grade nuclear heat as a useful additional benefit. Opening new avenues for nuclear energy will significantly enhance our nation

  7. Fossil energy. Program report, 1 October 1977-30 September 1978. [US DOE

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-12-01

    The Fossil Energy program is now in its second year under the Department of Energy. This document describes the Fossil Energy-supported contract and project activity for FY 1978. The primary thrust of the Program is on coal - especially direct coal combustion and what can be done to increase the environmental acceptability of coal. We are concerned with developing cleaner technologies, and we are working on precombustion cleanup, fluidized-bed combustion, and post-combustion cleanup. Longer range technologies are being developed to use coal more efficiently; for example, magnetohydrodynamics, fuel cells, and high-temperature turbine utilization. Another Fossil Energy priority is the development of a capability to produce synthetic fuels from coal. We are also engaged in a coal mining research and development program that focuses on increased mine productivity and workers' safety through the development of improved technologies. Our activity in the petroleum and gas research areas is intended to complement efforts in the private sector, which are to be further stimulated by new pricing or Federal incentives. Our present enhanced oil recovery efforts represent a shift in emphasis toward longer range, high-technology development projects instead of numerous field demonstrations and tests. The enhanced gas program emphasis activities to increase our knowledge of the size and economic productivity of the unconventional gas resources. We are also involved in oil shale development. We are continually assessing our program. Total annual funding has increased from $58 million in FY 1973 to $881 million in FY 1979.Fossil Energy is working closely with all parts of the Department of Energy, other appropriate Federal agencies, industry, and universities to insure that we maintain a balanced, aggressive, and responsive program suited to our national needs.

  8. The role of nuclear energy in the more efficient exploitation of fossil fuel resources

    International Nuclear Information System (INIS)

    Seifritz, W.

    1978-01-01

    The energy theory of value, being a valuable addition to the debate on the rational exploitation of man's energy reserves, is applied in order to clarify the presently confused energy input/output relations for nuclear and solar systems as they interact with fossil fuel. It is shown on the basis of purely energetics considerations that the nuclear route - at present and in future - is a very efficient way to stretch out and finally to substitute for the limited fossil fuel resources. This is particularly true if one considers the transitory phase where the substituting process has to exhibit a rapid exponential growth rate. The energetical effectiveness of the production of a synthetic fuel, as for example hydrogen by water splitting processes, is addressed at the end and serves to give an idea how effectively the energy available in fossil fuels can be amplified by virtue of the coupling of nuclear energy into the process. (author)

  9. Net fossil energy savings for alternative mixes in various electric supply systems

    International Nuclear Information System (INIS)

    Essam, P.; Stocks, K.J.

    1978-11-01

    The actual and projected electric power station building programs of several countries and regions have been examined to determine what effect the introduction of nuclear power has on fossil fuel usage by the electricity system. It was found that (1) nuclear power leads directly to savings in fossil fuel usage, a larger nuclear component leading to larger savings; (2) individual nuclear stations rapidly wipe out the energy 'debt' incurred during building; and (3) the relatively short periods of consolidation in the early stages of a nation's building program usually prevent the nuclear component from going into energy 'debt'. Assessments of the energy requirements to build and run various types of power station have been made from the available literature

  10. Advanced research and technology development fossil energy materials program. Quarterly progress report for the period ending September 30, 1981

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, R.A. (comp.)

    1981-12-01

    This is the fourth combined quarterly progress report for those projects that are part of the Advanced Research and Technology Development Fossil Energy Materials Program. The objective is to conduct a program of research and development on materials for fossil energy applications with a focus on the longer-term and generic needs of the various fossil fuel technologies. The program includes research aimed toward a better understanding of materials behavior in fossil energy environments and the development of new materials capable of substantial enhancement of plant operations and reliability. Work performed on the program generally falls into the Applied Research and Exploratory Development categories as defined in the DOE Technology Base Review, although basic research and engineering development are also conducted. A substantial portion of the work on the AR and TD Fossil Energy Materials Program is performed by participating cntractor organizations. All subcontractor work is monitored by Program staff members at ORNL and Argonne National Laboratory. This report is organized in accordance with a work breakdown structure defined in the AR and TD Fossil Energy Materials Program Plan for FY 1981 in which projects are organized according to fossil energy technologies. We hope this series of AR and TD Fossil Energy Materials Program quarterly progress reports will aid in the dissemination of information developed on the program.

  11. Subsidies in WTO Law and Energy Regulation : Some Implications for Fossil Fuels and Renewable Energy

    NARCIS (Netherlands)

    Marhold, Anna

    2018-01-01

    This contribution discusses WTO subsidies disciplines in the context of the energy sector. After laying out the relevant disciplines, it will discuss the paradox of WTO law with respect to subsidies towards fossil fuels vis-à-vis those towards renewable energy. It is clear that subsidies on clean

  12. Environmental performance of crop residues as an energy source for electricity production

    DEFF Research Database (Denmark)

    Nguyen, T Lan T; Hermansen, John Erik; Mogensen, Lisbeth

    2013-01-01

    This paper aims to address the question, “What is the environmental performance of crop residues as an alternative energy source to fossil fuels, and whether and how can it be improved?”. In order to address the issue, we compare electricity production from wheat straw to that from coal and natural...... gas. The results on the environmental performance of straw for energy utilization and the two fossil fuel references are displayed first for different midpoint categories and then aggregated into a single score. The midpoint impact assessment shows that substitution of straw either for coal...... or for natural gas reduces global warming, non-renewable energy use, human toxicity and ecotoxicity, but increases eutrophication, respiratory inorganics, acidification and photochemical ozone. The results at the aggregate level show that the use of straw biomass for conversion to energy scores better than...

  13. Fossil Energy Program annual progress report for April 1997 through March 1998

    Energy Technology Data Exchange (ETDEWEB)

    Judkins, R.R.

    1998-07-01

    This report covers progress made on research and development projects that contribute to the advancement of fossil energy technologies, covering the areas of coal, clean coal technology, gas, petroleum, and support to the Strategic Petroleum Reserve (SPR). Papers are arranged under the following topical sections: materials research and development; environmental analysis support; bioprocessing research; fossil fuels supplies modeling and research; and oil and gas production.

  14. The energy challenge

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This chapter addresses the challenge of switching US energy dependency from fossil fuels to renewable sources of energy for economic and environmental reasons. The topics discussed include the role of fossil fuels in the US economy, the role of chlorofluorocarbons and fossil fuel combustion on the greenhouse effect, energy choices, and the role of energy efficiency and nuclear energy

  15. Is cumulative fossil energy demand a useful indicator for the environmental performance of products?

    NARCIS (Netherlands)

    Huijbregts, Mark A J; Rombouts, Linda J A; Hellweg, Stefanie; Frischknecht, Rolf; Hendriks, A Jan; Meent, Dik van de; Ragas, Ad M J; Reijnders, Lucas; Struijs, Jaap

    2006-01-01

    The appropriateness of the fossil Cumulative Energy Demand (CED) as an indicator for the environmental performance of products and processes is explored with a regression analysis between the environmental life-cycle impacts and fossil CEDs of 1218 products, divided into the product categories

  16. Innovation in the energy sector – The role of fossil fuels and developing economies

    International Nuclear Information System (INIS)

    Brutschin, Elina; Fleig, Andreas

    2016-01-01

    This paper analyzes the effects of fossil fuel rents on R&D expenditures and patent grants in the field of energy-related technology. We argue that an increasing share of fossil fuel rents lessens the innovation of new energy technologies. We consider a sample of countries beyond the common selection of OECD members and investigate innovation efforts in the energy sector of 116 countries from 1980 to 2012. We observe the gradually growing influence of resource-abundant countries on global R&D expenditures and find that increasing fossil fuel rents have a negative effect on patent grants. This study contributes to the ongoing debate concerning the potential effects of resource abundance. More importantly, it increases our understanding of innovation activities within the energy sector and further underscores the need to extend future research to countries that have not been taken into account thus far. - Highlights: • We investigate a sample of 116 countries, a pool beyond the commonly considered OECD members. • We find that high oil prices induce increased R&D expenditures in developed countries. • Fossil rents are associated with decreasing patent grants when developing economies are included. • We use multiple imputation to handle the problem of missing data.

  17. AR and TD Fossil Energy Materials Program. Quarterly progress report for the period ending December 31, 1981

    Energy Technology Data Exchange (ETDEWEB)

    1982-04-01

    The ORNL Fossil Energy Materials Program Office compiles and issues this combined quarterly progress report from camera-ready copies submitted by each of the participating subcontractor organizations. This report of activities on the program is organized in accordance with a work breakdown structure defined in the AR and TD Fossil Energy Materials Program Plan for FY 1982-1986 in which projects are organized according to fossil energy technologies. This report is divided into parts and chapters with each part describing projects related to a particular fossil energy technology. Chapters within a part provide details of the various projects associated with that technology. We hope this series of AR and TD Fossil Energy Materials Program quarterly progress reports will aid in the dissemination of information developed on the program. Plans for the program will be issued annually. A draft of the program plan for FY 1982 to 1986 has been prepared and is in the review process. The implementation of these plans will be reflected by these quarterly progress reports, and this dissemination of information will bw augmented by topical or final reports as appropriate.

  18. The use of virtual reality as an information tool on externalities of energy sources

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Maria I.B.; Mol, Antonio C.A.; Lapa, Celso M.F., E-mail: isabel@ien.gov.br, E-mail: mol@ien.gov.br, E-mail: lapa@ien.gov.br [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2017-07-01

    Almost daily communication vehicles make some reference to the need to combat the indiscriminate use of fossil fuels and to use less polluting energy sources. In this scenario, nuclear energy should be presented as an option but this is still covered by many myths. Thus, to inform the youth public about the characteristics of the main sources that compose the brazilian energy matrix it is necessary to promote the transfer of knowledge and to demystify the nuclear sector in playful and responsible way. (author)

  19. The use of virtual reality as an information tool on externalities of energy sources

    International Nuclear Information System (INIS)

    Silva, Maria I.B.; Mol, Antonio C.A.; Lapa, Celso M.F.

    2017-01-01

    Almost daily communication vehicles make some reference to the need to combat the indiscriminate use of fossil fuels and to use less polluting energy sources. In this scenario, nuclear energy should be presented as an option but this is still covered by many myths. Thus, to inform the youth public about the characteristics of the main sources that compose the brazilian energy matrix it is necessary to promote the transfer of knowledge and to demystify the nuclear sector in playful and responsible way. (author)

  20. Status of geothermal energy amongst the world's energy sources

    International Nuclear Information System (INIS)

    Fridleifsson, I.B.

    2003-01-01

    The world primary energy consumption is about 400 EJ/year, mostly provided by fossil fuels (80%), The renewables collectively provide 14% of the primary energy, in the form of traditional biomass (10%), large (>10 MW) hydropower stations (2%), and the ''new renewables''(2%). Nuclear energy provides 6%. The World Energy Council expects the world primary energy consumption to have grown by 50-275% in 2050, depending on different scenarios. The renewable energy sources are expected to provide 20-40% of the primary energy in 2050 and 30-80% in 2100. The technical potential of the renewables is estimated at 7600 EJ/year, and thus certainly sufficiently large to meet future world energy requirements. Of the total electricity production from renewables of 2826 TWh in 1998, 92% came from hydropower, 5.5% from biomass, 1.6% from geothermal and 0.6% from wind. Solar electricity contributed 0.05% and tidal 0.02%. The electricity cost is 2-10 UScents/kWh for geothermal and hydro, 5-13 UScents/kWh for wind, 5-15 UScents/kWh for biomass, 25-125 UScents/kWh for solar photovoltaic and 12-18 UScents/kWh for solar thermal electricity. Biomass constitutes 93% of the total direct heat production from renewables, geothermal 5%, and solar heating 2%. Heat production from renewables is commercially competitive with conventional energy sources. Direct heat from biomass costs 1-5 UScents/kWh, geothermal 0.5-5 UScents/kWh, and solar heating 3-20 UScents/kWh. (author)

  1. A potential of utilizing renewable energy sources and the state support in Slovakia

    Directory of Open Access Journals (Sweden)

    Lívia Bodonská

    2007-04-01

    Full Text Available The renewable energy sources are domestic sources of energy that help to enhance the safety of energy supplies and the diversification of energy sources. The utilization of such sources complies with the environmental acceptability requirement and leads to a reduction in greenhouse gas emissions. The renewable energy is proved to be commercially viable for a growing list of consumers and uses. The renewable energy technologies provide many benefits that go well beyond the energy alone. More and more, the renewable energies contribute to the three pillars of the sustainable development in the economy, environment and the society.Several renewable energy technologies are established in world markets, building global industries and infrastructures. Other renewables become competitive in growing markets, and some are widely recognised as the lowest cost option for stand-alone and offgrid applications. An increased utilization of renewable energy sources in the heat and electricity generation is one of priority tasks of the Slovak Republic to boost the use of domestic energy potential and thus to decrease the Slovakia’s dependence on imported fossil fuels.

  2. Improvement of CO2 emission estimates from the non-energy use of fossil fuels in the Netherlands

    International Nuclear Information System (INIS)

    Neelis, M.; Patel, M.; De Feber, M.

    2003-04-01

    Estimates of carbon dioxide emissions originating from the non-energy use of fossil fuels are generally considered to be a rather uncertain part in greenhouse gas (GHG) emission inventories. For this reason, the NEAT (Non-energy use Emission Accounting Tables) model has been developed which represents a bottom-up carbon flow analysis to calculate the CO2 emissions that originate from the non-energy use of fossil fuels. The NEAT model also provides estimates for the total fossil CO2 emissions by deducting the non-energy use carbon storage from the total fuel consumption. In this study, an extended version of the NEAT model (NEAT 2.0) has been developed and applied to the Netherlands for the period 1993-1999. For this analysis, confidential production and trade statistics were provided by Statistics Netherlands (CBS) within the CEREM framework. The main conclusion of this study is that the total fossil CO2 emissions are very likely to be overestimated in the official CO2 emission inventories for the Netherlands (as reported to the UNFCCC). According to the NEAT model, the total fossil CO2 emissions in the Netherlands range between 158-173 Mt CO2 (varying per year), whereas the results according to the IPCC Reference Approach (IPCC-RA, a top down method based on the total primary energy supply in a country) are 2.9-7.5 Mt CO2 (2-7%) higher. The difference results from a different estimate for non-energy use carbon storage that is deducted from the total primary energy supply to yield an estimate for total national CO2 emissions of fossil origin

  3. Depletion of energy or depletion of knowledge alternative use of energy resources

    International Nuclear Information System (INIS)

    Arslan, M.

    2011-01-01

    This research paper is about the depletion of Energy resources being a huge problem facing the world at this time. As available energy sources are coming to a shortage and measures are be taken in order to conserve the irreplaceable energy resources that leads to sustainability and fair use of energy sources for future generations. Alternative energy sources are being sought; however no other energy source is able to provide even a fraction of energy as that of fossil fuels. Use of the alternative energy resources like wind corridors (Sindh and Baluchistan), fair use of Hydro energy (past monsoon flooding can produce enough energy that may available for next century). Uranium Resources which are enough for centuries energy production in Pakistan (Dhok Pathan Formation) lying in Siwalick series from Pliocene to Pleistocene. Among all of these, my focus is about energy from mineral fuels like Uranium from Sandstone hosted deposits in Pakistan (Siwalik Series in Pakistan). A number of uranium bearing mineralized horizons are present in the upper part of the Dhok Pathan Formation. These horizons have secondary uranium mineral carnotite and other ores. Uranium mineralization is widely distributed throughout the Siwaliks The purpose of this paper was to introduce the use of alternative energy sources in Pakistan which are present in enough amounts by nature. Pakistan is blessed with wealth of natural resources. Unfortunately, Pakistan is totally depending on non renewable energy resource. There are three main types of fossil fuels: coal, oil and natural gas. After food, fossil fuel is humanity's most important source of energy. Pakistan is among the most gas dependent economies of the world. Use of fossil fuel for energy will not only increase the demand of more fossils but it has also extreme effects on climate as well as direct and indirect effects to humans. These entire remedial thinking can only be possible if you try to use alternative energy resources rather than

  4. Importance of biomass energy sources for Turkey

    International Nuclear Information System (INIS)

    Demirbas, Ayhan

    2008-01-01

    Various agricultural residues such as grain dust, crop residues and fruit tree residues are available in Turkey as the sources of biomass energy. Among the biomass energy sources, fuelwood seems to be one of the most interesting because its share of the total energy production of Turkey is high at 21% and the techniques for converting it to useful energy are not necessarily sophisticated. Selection of a particular biomass for energy requirements is influenced by its availability, source and transportation cost, competing uses and prevalent fossil fuel prices. Utilization of biomass is a very attractive energy resource, particularly for developing countries since biomass uses local feedstocks and labor. Like many developing countries, Turkey relies on biomass to provide much of its energy requirement. More efficient use of biomass in producing energy, both electrical and thermal, may allow Turkey to reduce petroleum imports, thus affecting its balance of payments dramatically. Turkey has always been one of the major agricultural countries in the world. The importance of agriculture is increasing due to biomass energy being one of the major resources in Turkey. Biomass waste materials can be used in Turkey to provide centralized, medium- and large-scale production of process heat for electricity production. Turkey's first biomass power project is under development in Adana province, at an installed capacity of 45 MW. Two others, at a total capacity of 30 MW, are at the feasibility study stage in Mersin and Tarsus provinces. Electricity production from biomass has been found to be a promising method in the nearest future in Turkey

  5. Sweden's primary production and supplies of food - Possible consequences of a lack of fossil energy; Sveriges primaerproduktion och foersoerjning av livsmedel - Moejliga konsekvenser vid en brist paa fossil energi

    Energy Technology Data Exchange (ETDEWEB)

    Baky, Andras; Widerberg, Anna; Landquist, Birgit; Norberg, Ida; Berlin, Johanna; Engstroem, Jonas; Svanaeng, Karin; Lorentzon, Katarina; Cronholm, Lars-Aake; Pettersson, Ola

    2013-07-01

    This report provides an insight into what may be the consequences for Sweden's food supply if the ability to import sufficient quantities of fossil energy decreases. The situation described is an imaginary situation that arose quickly and unexpectedly by political unrest or natural disaster. There has thus been no preparation for the situation. The length of the crisis is set to a period of 3-5 years. During that time, there is assumed no technological development or other structural change, that will change conditions compared to the current situation. If the crisis becomes more prolonged it will however gradually force major changes. Today's food supply in Sweden and much of the world depends on a constant supply of fossil energy. In the production of food is used, for example, large amounts of diesel, heating oil and mineral fertilizers. This applies to primary production of vegetables and animal breeding but also to a high degree of for user-industries , which ensures that the raw materials become finished food products for consumers. Between the different stages there are transport's in many directions that depend on fossil energy. Three different scenarios are termed low deprivation, lack of resources and high deprivation. They represent different failure scenarios where the availability of fossil energy is assumed to decrease. The three levels are tentatively set as a decrease of 25%, 50% and 75% compared with current levels. These percentages are set as initial discussion-levels from which calculations have been made of how the different stages of production will be affected.

  6. Sustainability of Fossil Fuels

    Science.gov (United States)

    Lackner, K. S.

    2002-05-01

    For a sustainable world economy, energy is a bottleneck. Energy is at the basis of a modern, technological society, but unlike materials it cannot be recycled. Energy or more precisely "negentropy" (the opposite of entropy) is always consumed. Thus, one either accepts the use of large but finite resources or must stay within the limits imposed by dilute but self-renewing resources like sunlight. The challenge of sustainable energy is exacerbated by likely growth in world energy demand due to increased population and increased wealth. Most of the world still has to undergo the transition to a wealthy, stable society with the near zero population growth that characterizes a modern industrial society. This represents a huge unmet demand. If ten billion people were to consume energy like North Americans do today, world energy demand would be ten times higher. In addition, technological advances while often improving energy efficiency tend to raise energy demand by offering more opportunity for consumption. Energy consumption still increases at close to the 2.3% per year that would lead to a tenfold increase over the course of the next century. Meeting future energy demands while phasing out fossil fuels appears extremely difficult. Instead, the world needs sustainable or nearly sustainable fossil fuels. I propose the following definition of sustainable under which fossil fuels would well qualify: The use of a technology or resource is sustainable if the intended and unintended consequences will not force its abandonment within a reasonable planning horizon. Of course sustainable technologies must not be limited by resource depletion but this is only one of many concerns. Environmental impacts, excessive land use, and other constraints can equally limit the use of a technology and thus render it unsustainable. In the foreseeable future, fossil fuels are not limited by resource depletion. However, environmental concerns based on climate change and other environmental

  7. Nitrogen compounds in pressurised fluidised bed gasification of biomass and fossil fuels

    NARCIS (Netherlands)

    De Jong, W.

    2005-01-01

    Fossil fuels still dominate the energy supply in modern societies. The resources, however, are depleting. Therefore, other energy sources are to be exploited further within this century. Biomass is one of the practically CO2 neutral, renewable contributors to the future energy production. Nowadays

  8. Analysis of the industrial sector representation in the Fossil2 energy-economic model

    International Nuclear Information System (INIS)

    Wise, M.A.; Woodruff, M.G.; Ashton, W.B.

    1992-08-01

    The Fossil2 energy-economic model is used by the US Department of Energy (DOE) for a variety of energy and environmental policy analyses. A number of improvements to the model are under way or are being considered. This report was prepared by the Pacific Northwest Laboratory (PNL) to provide a clearer understanding of the current industrial sector module of Fossil2 and to explore strategies for improving it. The report includes a detailed description of the structure and decision logic of the industrial sector module, along with results from several simulation exercises to demonstrate the behavior of the module in different policy scenarios and under different values of key model parameters. The cases were run with the Fossil2 model at PNL using the National Energy Strategy Actions Case of 1991 as the point of departure. The report also includes a discussion of suggested industrial sector module improvements. These improvements include changes in the way the current model is used; on- and off-line adjustments to some of the model's parameters; and significant changes to include more detail on the industrial processes, technologies, and regions of the country being modeled. The potential benefits and costs of these changes are also discussed

  9. Progress of fossil fuel science

    Energy Technology Data Exchange (ETDEWEB)

    Demirbas, M.F.

    2007-07-01

    Coal is the most abundant and widely distributed fossil fuel. More than 45% of the world's electricity is generated from coal, and it is the major fuel for generating electricity worldwide. The known coal reserves in the world are enough for more than 215 years of consumption, while the known oil reserves are only about 39 times of the world's consumption and the known natural gas reserves are about 63 times of the world's consumption level in 1998. In recent years, there have been effective scientific investigations on Turkish fossil fuels, which are considerable focused on coal resources. Coal is a major fossil fuel source for Turkey. Turkish coal consumption has been stable over the past decade and currently accounts for about 24% of the country's total energy consumption. Lignite coal has had the biggest share in total fossil fuel production, at 43%, in Turkey. Turkish researchers may investigate ten broad pathways of coal species upgrading, such as desulfurization and oxydesulfurization, pyrolysis and hydropyrolysis, liquefaction and hydroliquefaction, extraction and supercritical fluid extraction, gasification, oxidation, briquetting, flotation, and structure identification.

  10. Fossil Energy Research and Development Program of the U. S. Department of Energy, FY 1979

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-03-01

    The U.S. Department of Energy (DOE) focuses energy Research and Development efforts on new and promising ways to provide for our future energy needs. This document focuses on DOE's programs and projects related to the nation's Fossil Energy resources: coal, oil, natural gas and oil shale. Fossil Energy programs have grown rapidly from about $58 million in FY 1973 to the $802 million requested for FY 1979. As those programs have matured, there have been significant shifts in emphasis. For example, by FY 1979, gasification technologies will have matured sufficiently to enter the demonstration phase. Then we will have to make critical decisions as to which candidate processes to pursue and to encourage industry's active participation as early as possible. We will present the rationale for those changes and others at the beginning of each section describing a particular grouping of similar projects, e.g., coal liquefaction. We will then discuss each project and present its current status along with past and future milestones. Emphasis is on projects with early payoff potential, particularly the direct utilization of coal. However, this near-term emphasis will not overshadow the need for a stong technological base for development of longer-term promising technologies and the need for a strong environmental concern.

  11. Low energy buildings – the basis for realizing the strategy for independency of fossil fuels in 2050

    DEFF Research Database (Denmark)

    Svendsen, Svend

    2011-01-01

    The paper introduces how low energy buildings can be developed, designed, optimized, constructed and operated in the future and thereby make a significant contribution to the realization of aim of the energy policy of EU: to become independent of fossil fuels in 2050. The paper describes how low...... energy buildings can become independent of fossil fuels in 2020 based on the following activities. Innovation of building components and systems with improved energy performance. Heating of low energy building with low temperature district heating based on renewable heat. Integrated design...... without use of fossil fuels can be accomplished by the building sector by 2020. The building sector may in the process be transformed from an experience based sector to knowledge and research based sector with high quality sustainable products and very good business....

  12. To break away from fossil fuels : a contribution to solve climatic change and energy security for Quebec; S'affranchir des carburants fossiles : une contribution a la lutte aux changements climatiques et a la securite energetique du Quebec

    Energy Technology Data Exchange (ETDEWEB)

    Bonin, P.; Seguin, H.; Waridel, L.

    2006-06-15

    In response to growing energy demands, Quebec has proposed the construction of 3 deep water terminals to accommodate methane tankers which transport liquefied natural gas (LNG). This paper focused on the proposed Gros Cacouna Port project in the St. Lawrence Seaway which is currently under study and subject to approval. Equiterre, questioned the energy security aspect of the proposal and argued that increasing Quebec's reliance on increasingly expensive energy would decrease energy security. In addition, importation of LNG would bring a clear exit of capital outside the province. Equiterre also argued that reliance on fossil fuels should be decreased in order to mitigate greenhouse gas emissions which contribute to climate change. The organization questioned whether the economic and social need for the proposed project justifies a greater dependency on fossil fuels and the associated impact on the environment and fragile ecosystems of the St. Lawrence. It was suggested that alternative solutions such as renewable energy sources and energy efficiency should be explored in order to promote sustainable development, increase energy security and reduce greenhouse gases. Equiterre argued that Quebec can and must decrease, and even eliminate, its dependence on fossil fuels, including natural gas, for Quebec's economic, social and environmental well-being. For these reasons, Equiterre recommended that the proposed project be rejected, particularly since the project proponents failed to show the real impact that the project would have on Quebec markets. 72 refs., 10 tabs., 21 figs.

  13. Fossil Energy Program semiannual progress report, April 1990-- September 1990

    Energy Technology Data Exchange (ETDEWEB)

    Judkins, R.R.

    1991-09-01

    This report covers progress made during the period April 1, 1990, through September 30, 1990, for research and development projects that contribute to the advancement of various fossil energy technologies. Topics discussed include: ceramics and composite materials R&D, new alloys, corrosion and erosion research, coal conversion development, mild gasification. (VC)

  14. Fossil Energy Program semiannual progress report, April 1990-- September 1990

    Energy Technology Data Exchange (ETDEWEB)

    Judkins, R.R.

    1991-09-01

    This report covers progress made during the period April 1, 1990, through September 30, 1990, for research and development projects that contribute to the advancement of various fossil energy technologies. Topics discussed include: ceramics and composite materials R D, new alloys, corrosion and erosion research, coal conversion development, mild gasification. (VC)

  15. Forecasting production of fossil fuel sources in Turkey using a comparative regression and ARIMA model

    International Nuclear Information System (INIS)

    Ediger, Volkan S.; Akar, Sertac; Ugurlu, Berkin

    2006-01-01

    This study aims at forecasting the most possible curve for domestic fossil fuel production of Turkey to help policy makers to develop policy implications for rapidly growing dependency problem on imported fossil fuels. The fossil fuel dependency problem is international in scope and context and Turkey is a typical example for emerging energy markets of the developing world. We developed a decision support system for forecasting fossil fuel production by applying a regression, ARIMA and SARIMA method to the historical data from 1950 to 2003 in a comparative manner. The method integrates each model by using some decision parameters related to goodness-of-fit and confidence interval, behavior of the curve, and reserves. Different forecasting models are proposed for different fossil fuel types. The best result is obtained for oil since the reserve classifications used it is much better defined them for the others. Our findings show that the fossil fuel production peak has already been reached; indicating the total fossil fuel production of the country will diminish and theoretically will end in 2038. However, production is expected to end in 2019 for hard coal, in 2024 for natural gas, in 2029 for oil and 2031 for asphaltite. The gap between the fossil fuel consumption and production is growing enormously and it reaches in 2030 to approximately twice of what it is in 2000

  16. Problems of attracting nuclear energy resources in order to provide economical and rational consumption of fossil fuels

    International Nuclear Information System (INIS)

    Nazarov, E.K.; Nikitin, A.T.; Ponomarev-Stepnoy, N.N.; Protsenko, A.N.; Stolyarevskii, A.Ya.; Doroshenko, N.A.

    1990-01-01

    Depletion of fossil fuel resources and the gradual increase in cost of their extraction and transportation to the places of their consumption put forward into a line of the most urgent tasks the problem of rational and economical utilization of fuel and energy resources, as well as introduction of new energy sources into various sectors of the national economy. The nuclear energy sources which are widely spread in power engineering have not yet been used to a proper extent in the sectors of industrial technologies and residential space heating, which are the most energy consuming sectors in the national economy. The most effective way of solving this problem can be the development and commercialization of high temperature nuclear reactors, as the majority of power consuming industrial processes and those involved in chemico-thermal systems of distant heat transmission demand the temperature of a heat carrier generated by nuclear reactors and assimilated by the above processes to be in the range from 900 0 to 1000 0 C. (author)

  17. Nuclear power as a substitute for fossil fuels

    International Nuclear Information System (INIS)

    Bahramabadi, G. A.; Shirzadi, C.

    2008-01-01

    The challenge in energy policy is to reduce CO 2 emissions and the worlds dependence on oil while satisfying a substantially increased demand for energy. Putting aside the still-speculative possibility of sequestering carbon dioxide, this challenge reduces to that of using energy more efficiently and finding substitutes for fossil fuels. Alternatives to fossil fuels fall into two broad categories: Renewable sources. Most of these sources-including hydroelectric power, wind power, direct solar heating, photovoltaic power, and biomass-derive their energy ultimately from the Sun and will not be exhausted during the next billion years. Geothermal energy and tidal energy are also renewable, in this sense, although they do not rely on the sun. However, there is almost an inverse correlation between the extent to which the source b now being used and the size of the potentially trap able resource. Thus, expansion of hydroelectric power (which is substantially used) is constricted by limited sites and environmental objections, whereas wind (for which the resource is large) is as yet less used and thus is not fully proven as a large-scale contributor. Nuclear sources. The two nuclear possibilities are fission and fusion. The latter would be inexhaustible for all practical purposes, but developing an effective fusion system remains an uncertain hope. Fission energy would also have an extremely long time span if breeder reactors arc employed, but with present-day reactors limits on uranium (or thorium) resources could be an eventual problem. At present, fission power faces problems of public acceptance and economic competitiveness. The broad alternatives of renewable energy and nuclear energy can be considered as being in competition, with one or the other to be the dominant choice, or complementary, with both being extensively employed

  18. Emissions balancing of renewable energy sources. Avoided emissions due to the use of renewable energies in 2007; Emissionsbilanz erneuerbarer Energietraeger. Durch Einsatz erneuerbarer Energien vermiedene Emissionen im Jahr 2007

    Energy Technology Data Exchange (ETDEWEB)

    Memmler, Michael; Mohrbach, Elke; Schneider, Sven; Dreher, Marion; Herbener, Reinhard

    2009-10-15

    The report on the emissions accounting with respect to renewable energy covers the following issues: 1. Introduction and purpose. 2. Methodology concerning the balancing for electricity, heat and traffic, uncertainties due to lack of data. 3. Energy supply from renewable energy sources in 2007. 4. Fossil energy substitution by renewable energy sources: electricity, heat and traffic. 5. Emissions from different energy supply lines: electricity, heat, traffic. 6. Results of the emissions accounting for renewable energy sources: electricity, heat, traffic and comprehensive review. 7. Retroacting accounting and forward projection.

  19. Advanced Researech and Technology Development fossil energy materials program: Semiannual progress report for the period ending September 30, 1988

    Energy Technology Data Exchange (ETDEWEB)

    1989-01-01

    The objective of the ARandTD Fossil Energy Materials Program is to conduct research and development on materials for fossil energy applications with a focus on the longer-term and generic needs of the various fossil fuel technologies. The program includes research aimed toward a better understanding of materials behavior in fossil energy environments and the development of new materials capable of substantial enhancement of plant operations and reliability. The ORNL Fossil Energy Materials Program Office compiles and issues this combined semiannual progress report from camera-ready copies submitted by each of the participating subcontractor organizations. This report of activities on the program is organized in accordance with a work breakdown structure in which projects are organized according to materials research thrust areas. These areas are (1) Structural Ceramics, (2) Alloy Development and Mechanical Properties, (3) Corrosion and Erosion of Alloys, and (4) Assessments and Technology Transfer. Individual projects are processed separately for the data bases.

  20. Fossil Fuels.

    Science.gov (United States)

    Crank, Ron

    This instructional unit is one of 10 developed by students on various energy-related areas that deals specifically with fossil fuels. Some topics covered are historic facts, development of fuels, history of oil production, current and future trends of the oil industry, refining fossil fuels, and environmental problems. Material in each unit may…

  1. Interaction of carbon reduction and green energy promotion in a small fossil-fuel importing economy

    International Nuclear Information System (INIS)

    Pethig, Ruediger; Wittlich, Christian

    2009-01-01

    We study the incidence of carbon-reduction and green-energy promotion policies in an open fossil-fuel importing general equilibrium economy. The focus is on mixed price-based or quantity-based policies. Instruments directed toward promoting green energy are shown to reduce also carbon emissions and vice versa. Their direct effects are stronger than their side effects, the more so, the greater is the elasticity of substitution in consumption between energy and the consumption good. We calculate the effects of variations in individual policy parameters, especially on energy prices and welfare costs, and determine the impact of exogenous fossil-fuel price shocks on the economy. (orig.)

  2. Life cycle analysis on fossil energy ratio of algal biodiesel: effects of nitrogen deficiency and oil extraction technology.

    Science.gov (United States)

    Jian, Hou; Jing, Yang; Peidong, Zhang

    2015-01-01

    Life cycle assessment (LCA) has been widely used to analyze various pathways of biofuel preparation from "cradle to grave." Effects of nitrogen supply for algae cultivation and technology of algal oil extraction on life cycle fossil energy ratio of biodiesel are assessed in this study. Life cycle fossil energy ratio of Chlorella vulgaris based biodiesel is improved by growing algae under nitrogen-limited conditions, while the life cycle fossil energy ratio of biodiesel production from Phaeodactylum tricornutum grown with nitrogen deprivation decreases. Compared to extraction of oil from dried algae, extraction of lipid from wet algae with subcritical cosolvents achieves a 43.83% improvement in fossil energy ratio of algal biodiesel when oilcake drying is not considered. The outcome for sensitivity analysis indicates that the algal oil conversion rate and energy content of algae are found to have the greatest effects on the LCA results of algal biodiesel production, followed by utilization ratio of algal residue, energy demand for algae drying, capacity of water mixing, and productivity of algae.

  3. Influence of coal as an energy source on environmental pollution

    Energy Technology Data Exchange (ETDEWEB)

    Balat, M. [University of Mahallesi, Trabzon (Turkey)

    2007-07-01

    This article considers the influence of coal energy on environmental pollution. Coal is undoubtedly part of the greenhouse problem. The main emissions from coal combustion are sulfur dioxide (SO{sub 2}), nitrogen oxides (NOx), particulates, carbon dioxide (CO{sub 2}), and mercury (Hg). Since 1980, despite a 36% increase in electricity generation and more than a 50% increase in coal use, electric utility SO{sub 2} and NOx emissions have declined significantly. Globally, the largest source of anthropogenic greenhouse gas (GHG) emissions is CO{sub 2} from the combustion of fossil fuels - around 75% of total GHG emissions covered under the Kyoto Protocol. At the present time, coal is responsible for 30-40% of world CO{sub 2} emission from fossil fuels.

  4. The Future of Nuclear Energy As a Primary Source for Clean Hydrogen Energy System in Developing Countries

    International Nuclear Information System (INIS)

    Ahmed, K.; Shaaban, H.

    2007-01-01

    The limited availability of fossil fuels compared to the increasing demand and the connected environmental questions have become topics of growing importance and international attention. Many other clean alternative sources of energy are available, but most of them are either relatively undeveloped technologically or are not yet fully utilized. Also, there is a need for a medium which can carry the produced energy to the consumer in a convenient and environmentally acceptable way. In this study, a fission reactor as a primary energy source with hydrogen as an energy carrier is suggested. An assessment of hydrogen production from nuclear energy is presented. A complete nuclear-electro-hydrogen energy system is proposed for a medium size city (population of 500,000). The whole energy requirement is assessed including residential, industrial and transportation energies. A preliminary economical and environmental impact study is performed on the proposed system. The presented work could be used as a nucleus for a feasibility study for applying this system in any newly established city

  5. Investigation and usage of renewable energy sources. First conference proceedings

    International Nuclear Information System (INIS)

    Tiit, Valdur

    2000-01-01

    The conference was devoted to sustainable development promotion in Estonia. Modern lifestyle and outstanding technical achievements are strongly based on usage of fossil energy sources, especially oil products. Development demands an increasing amount of energy, but the supplies of non-renewable natural resources are limited. Moreover, their usage pollutes the environment and conveys vital oxygen out of the atmosphere. Due to supplies run out the production of fossil fuels will inevitably decrease already after 20 years. The same is likely to happen with Estonian oil shale resources, which is not only a fuel for electric power stations, but also an important staple of chemical industry. And after the rise of oil prices and its fall in market share, oil shale will have even greater value. To satisfy mankind's energy demand we have to take solar energy and processes started by solar (wind, flowing water, synthesis of plants biomass) more into use. The spread of their usage is determined by natural and social situation of the region, and economic expediency. Although rapid growth in using renewable energy sources has started, it will take decades to raise their share over half of total energy use. Estonia has chosen the path of sustainable development, which should guarantee development and healthy environment also in the farther future. There are great solar and wind energy resources plus good assumptions for producing biomass in Estonia. However, for efficient use of national natural resources we need more knowledge and skills, people with environment friendly attitude and extensive scientific, technical and applied investigations. In addition we have to advance sensible international cooperation as well as national industry of this field. The technical progress concerning renewable energy usage has a long way to go, which could apply also Estonians

  6. Biofuels as an Alternative Energy Source for Aviation-A Survey

    Science.gov (United States)

    McDowellBomani, Bilal M.; Bulzan, Dan L.; Centeno-Gomez, Diana I.; Hendricks, Robert C.

    2009-01-01

    The use of biofuels has been gaining in popularity over the past few years because of their ability to reduce the dependence on fossil fuels. As a renewable energy source, biofuels can be a viable option for sustaining long-term energy needs if they are managed efficiently. We investigate past, present, and possible future biofuel alternatives currently being researched and applied around the world. More specifically, we investigate the use of ethanol, cellulosic ethanol, biodiesel (palm oil, algae, and halophytes), and synthetic fuel blends that can potentially be used as fuels for aviation and nonaerospace applications. We also investigate the processing of biomass via gasification, hydrolysis, and anaerobic digestion as a way to extract fuel oil from alternative biofuels sources.

  7. Cogenerational sources of energies and their allocating problem

    Directory of Open Access Journals (Sweden)

    Badida Miroslav

    1997-12-01

    Full Text Available Energy production in industrial communities consume a main part of primary raw materials and it is one of the sources of ecologicall impact. Electric power plants and warm produce plants are mostly important investment – consuming establishments with a long time of return, what stress along with the economical, predictional, logistical and environmental decision making aspect of their allocating. Already input of the mentioned aspects along with the price movement after the energy depression motivate a formation of new conception of combinated so-called items, which are able to use the energetic potential of fuels with a higher concurrent efficiency and, on the other hand, can reduce ecologic impacts of fossil combustion.

  8. Energy and fossil fuels as a topic in WTO accession protocols

    NARCIS (Netherlands)

    Marhold, Anna; Weiss, Friedl; Bungenberg, M; Krajewski, M; Tams, C; Terhechte, JP; Ziegler, AR

    2018-01-01

    This article seeks to analyse and compare WTO Accession Protocols, particularly the interpretations given relevant commitments made in them regarding energy and fossil fuels. Much has changed in global trade relations since the launch of the Doha Round of multilateral trade negotiations in November

  9. A comparative analysis of environmental impacts of non-fossil energy production methods

    OpenAIRE

    Kiss Adam

    2014-01-01

    The widespread proliferation of other then fossil based energy production methods is a development, which inevitable comes in the next future. It is proven that the photovoltaic conversion or the use of heat of Sun radiation, the water energy, the utilization of the wind, the biomass production, the use of geothermal energy can all produce big amounts of energy for human use. In addition, the nuclear energy from fission is a technology, which has already long history and is widely used. Howev...

  10. Fossil Fuels. A Supplement to the "Science 100, 101" Curriculum Guide. Curriculum Support Series.

    Science.gov (United States)

    Soprovich, William, Comp.

    When the fossil fuels unit was first designed for Science 101 (the currently approved provincial guide for grade 10 science in Manitoba), Canadian support materials were very limited. Since students are asked to interpret data concerning energy consumption and sources for certain fossil fuels, the need for appropriate Canadian data became obvious.…

  11. Valuation of environmental and societal trade-offs of renewable energy sources

    International Nuclear Information System (INIS)

    Kosenius, Anna-Kaisa; Ollikainen, Markku

    2013-01-01

    Use of renewable energy sources is one solution to decrease green house gas emissions and the use of polluting fossil fuels. Renewables differ in their environmental and societal impacts, and to design sound renewable energy policy, societies need to assess the trade-offs between alternative sources. To enable the evaluation and comparison of renewable energy production alternatives in Finland, this paper applies the choice experiment to elicit the monetary information on people's preferences for four renewable energy sources: wind power, hydro power and energy from crops and wood, and considers four impacts of energy production: effects on biodiversity, local jobs, carbon emissions and household's electricity bill. The nested logit analysis reveals that higher income, male gender, young age, and pro-environmental attitude increase the probability to choose renewable energy instead of the current energy mix. Wind power is, on average, the most popular renewable energy technology, but regional differences exist. Biodiversity deterioration should be avoided. The national aggregate willingness to pay, based on stated preferences rather than preferences revealed by actual market behavior, for a combination of renewable energy technologies that corresponds to Finland's climate change and energy policy is over 500 million Euros. - Highlights: • Preferences for renewable energy sources are elicited with choice experiment. • Wind power is the most popular source in general. • Regional differences exist: energy from wood is favored in rural areas. • Biodiversity deterioration should be avoided

  12. Energy Sources Management and Future Automotive Technologies: Environmental Impact

    Directory of Open Access Journals (Sweden)

    Florin Mariasiu

    2012-01-01

    Full Text Available The paper presents the environmental impact created through the introduction of introducing new technologies in transportation domain. New electric vehicles are considered zero-emission vehicles (ZEV. However, electricity produced in power plants is still predominantly based on fossil fuel usage (required for recharge electric vehicle batteries and thus directly affects the quantity of pollutant emissions and greenhouse gases (CO2, NOx and SOx. Given the structure of EU-wide energy sources used for electricity generation, the potential pollutant emissions stemming from these energy sources, related to energy consumption of an electric vehicle, was determined under the projected environmental impact of specific market penetration of electric vehicles. In addition to the overall impact at the EU level, were identified the countries for which the use of electric vehicles is (or not feasible in terms of reaching the lower values ​​of future emissions compared to the present and future European standards.

  13. Depletion of fossil fuels and anthropogenic climate change—A review

    International Nuclear Information System (INIS)

    Höök, Mikael; Tang, Xu

    2013-01-01

    Future scenarios with significant anthropogenic climate change also display large increases in world production of fossil fuels, the principal CO 2 emission source. Meanwhile, fossil fuel depletion has also been identified as a future challenge. This chapter reviews the connection between these two issues and concludes that limits to availability of fossil fuels will set a limit for mankind's ability to affect the climate. However, this limit is unclear as various studies have reached quite different conclusions regarding future atmospheric CO 2 concentrations caused by fossil fuel limitations. It is concluded that the current set of emission scenarios used by the IPCC and others is perforated by optimistic expectations on future fossil fuel production that are improbable or even unrealistic. The current situation, where climate models largely rely on emission scenarios detached from the reality of supply and its inherent problems are problematic. In fact, it may even mislead planners and politicians into making decisions that mitigate one problem but make the other one worse. It is important to understand that the fossil energy problem and the anthropogenic climate change problem are tightly connected and need to be treated as two interwoven challenges necessitating a holistic solution. - Highlights: ► Review of the development of emission scenarios. ► Survey of future fossil fuel trajectories used by the IPCC emission scenarios. ► Discussions on energy transitions in the light of oil depletion. ► Review of earlier studies of future climate change and fossil fuel limitations.

  14. A PESTLE Policy Mapping and Stakeholder Analysis of Indonesia’s Fossil Fuel Energy Industry

    Directory of Open Access Journals (Sweden)

    Satya Widya Yudha

    2018-05-01

    Full Text Available Indonesia has a long-standing history of reliance on fossil fuels, which reflects the country’s vast reserves of crude oil, natural gas, coal, and other resources. Consequently, the potential of Indonesia’s fossil energy industry is both complex and multi-layered. This paper aims to carry out a policy mapping and stakeholder analysis of Indonesia’s fossil energy industry, adopting a PESTLE (Political, Economic, Social, Technology, Legal, and Environmental approach, which allows identification of multidisciplinary stakeholders and underlying relationships across the sector. The outcomes from the analysis indicated the importance of strategically aligning the stakeholders’ policies to the needs of other relevant stakeholders. Furthermore, the central and regional governments need to work closely in order to better sense if there is a change in the policy, be receptive to anticipating the potential impacts, and to avoid policies being executed in an isolated manner.

  15. Renewable energy sources - the opportunity for a safer future

    International Nuclear Information System (INIS)

    Prodrom, Andrei; Federenciuc, Dumitru; Ignat, Vasile; Dobre, Paul

    2004-01-01

    The researches have shown that the potential of renewable energy sources is huge as they can in principle meet many times the world's energy demand. Renewable energy sources such as biomass, wind, solar, hydropower and geothermal can provide energy services based on the use of local available resources. Starting from this fact, a transition to renewable-based energy systems is looking increasingly likely as their costs have dropped while the price of oil and gas continue to fluctuate. In the past 30 years, the sales of solar and wind energy systems continued to increase because the capital and electricity production costs decreased simultaneously with the performance enhancement. It is becoming clear that future growth in the energy sector will be primarily in the renewable energy systems and to some extent natural gas-based systems and not in conventional oil and coal sources. It is also important to have governmental assistance and popular support in developing these alternate energy sources, that among others, reduce local and global atmospheric emissions, provide commercially attractive options, particularly in developing countries and rural areas and create the transition to the energy sector of the future. This paper tries to approach the renewable energy sources currently analyzed by the experts, emphasizing their strengths and weaknesses. The conventional energy sources based on oil, coal and natural gas have proven to be highly effective drivers of economic progress but at the same time damaging to the environment and human health. Furthermore they tend to be cyclical in nature, due to the effects of oligopoly in production and distribution. These traditional fossil fuel-based energy sources are facing increasing pressure on environmental issues, among these the future reduction of greenhouse gas specified in the Kyoto Protocol. Renewable energy sources currently supply between 15 - 20% of world's total energy demand. This supply is dominated by biomass

  16. Fossil Energy Advanced Research and Technology Development (AR TD) Materials Program semiannual progress report for the period ending September 30, 1991

    Energy Technology Data Exchange (ETDEWEB)

    Judkins, R.R.; Cole, N.C. (comps.)

    1992-04-01

    The objective of the Fossil Energy Advanced Research and Technology Development Materials Program is to conduct research and development on materials for fossil energy applications with a focus on the longer-term and generic needs of the various fossil fuel technologies. The Program includes research aimed toward a better understanding of materials behavior in fossil energy environments and the development of new materials capable of substantial enhancement of plant operations and reliability. Research is outlined in four areas: Ceramics, New Alloys, Corrosion and Erosion Research, and Technology Development and Transfer. (VC)

  17. Emissions Scenarios and Fossil-fuel Peaking

    Science.gov (United States)

    Brecha, R.

    2008-12-01

    Intergovernmental Panel on Climate Change (IPCC) emissions scenarios are based on detailed energy system models in which demographics, technology and economics are used to generate projections of future world energy consumption, and therefore, of greenhouse gas emissions. Built into the assumptions for these scenarios are estimates for ultimately recoverable resources of various fossil fuels. There is a growing chorus of critics who believe that the true extent of recoverable fossil resources is much smaller than the amounts taken as a baseline for the IPCC scenarios. In a climate optimist camp are those who contend that "peak oil" will lead to a switch to renewable energy sources, while others point out that high prices for oil caused by supply limitations could very well lead to a transition to liquid fuels that actually increase total carbon emissions. We examine a third scenario in which high energy prices, which are correlated with increasing infrastructure, exploration and development costs, conspire to limit the potential for making a switch to coal or natural gas for liquid fuels. In addition, the same increasing costs limit the potential for expansion of tar sand and shale oil recovery. In our qualitative model of the energy system, backed by data from short- and medium-term trends, we have a useful way to gain a sense of potential carbon emission bounds. A bound for 21st century emissions is investigated based on two assumptions: first, that extractable fossil-fuel resources follow the trends assumed by "peak oil" adherents, and second, that little is done in the way of climate mitigation policies. If resources, and perhaps more importantly, extraction rates, of fossil fuels are limited compared to assumptions in the emissions scenarios, a situation can arise in which emissions are supply-driven. However, we show that even in this "peak fossil-fuel" limit, carbon emissions are high enough to surpass 550 ppm or 2°C climate protection guardrails. Some

  18. Comparative evaluation of solar, fission, fusion, and fossil energy resources. Part 4: Energy from fossil fuels

    Science.gov (United States)

    Williams, J. R.

    1974-01-01

    The conversion of fossil-fired power plants now burning oil or gas to burn coal is discussed along with the relaxation of air quality standards and the development of coal gasification processes to insure a continued supply of gas from coal. The location of oil fields, refining areas, natural gas fields, and pipelines in the U.S. is shown. The technologies of modern fossil-fired boilers and gas turbines are defined along with the new technologies of fluid-bed boilers and MHD generators.

  19. Financial mechanisms for renewable energy sources; Mecanismos financeiros para fontes de energia renovaveis

    Energy Technology Data Exchange (ETDEWEB)

    Moya Chaves, Francisco David [Universidade Estadual de Campinas (UNICAMP), SP (Brazil)

    2006-07-01

    This work presents three different financial mechanisms in the world as choices in the electricity generation investment from alternative energy sources. It shows a description of the following methods developed in the world: payment capacity, social costs of energy, and markets that trade renewable energies certificates. Finally, a recommendation about the best choice that could be implemented in Brazil is suggested. Given the importance in the use of the renewable energy of electric energy generation, most of the electric systems in the world have developed mechanisms to encourage the use of alternative energies. With the capacity payment the power plants that employ alternative sources, can receive extra payment as benefits for their initial investment. A possibility could be fixing taxes for the generation of electricity with fossil fuel that could finance the renewable energy sources. A renewable energy market dealing with trade able certificates, forces the electricity purchasers to have a percentage from alternative energies of the totally energy acquired. In this way the forced purchasing of energy from power plants which use energy certificates allows the expansion of these technologies. (author)

  20. CH50% - A Switzerland with a consumption of fossil energy split in half

    International Nuclear Information System (INIS)

    1999-06-01

    The Swiss Academy of Engineering Sciences has investigated the possibilities and the consequences of a consumption reduction by 50 % of fossil energy agents within a time frame of 20 to 40 years. A working group of the Academy has made a study on the subject of if and when it would be possible to reduce the consumption of fossil energy in Switzerland by 50 % compared to 1990. The working group came to the conclusion that a reduction of well over 40 % would be feasible by the year 2020, principally due to an improvement in efficiency. This takes into account the substitution potential by renewable energy alternatives. A reduction by 50% will be possible in the second quarter of the 21st century under the condition that both today's known technologies are indeed exploited and that energy prices are increased. For Switzerland's economy and society no unacceptable impacts will thereby result. (author) [de

  1. Forecasting Fossil Fuel Energy Consumption for Power Generation Using QHSA-Based LSSVM Model

    Directory of Open Access Journals (Sweden)

    Wei Sun

    2015-01-01

    Full Text Available Accurate forecasting of fossil fuel energy consumption for power generation is important and fundamental for rational power energy planning in the electricity industry. The least squares support vector machine (LSSVM is a powerful methodology for solving nonlinear forecasting issues with small samples. The key point is how to determine the appropriate parameters which have great effect on the performance of LSSVM model. In this paper, a novel hybrid quantum harmony search algorithm-based LSSVM (QHSA-LSSVM energy forecasting model is proposed. The QHSA which combines the quantum computation theory and harmony search algorithm is applied to searching the optimal values of and C in LSSVM model to enhance the learning and generalization ability. The case study on annual fossil fuel energy consumption for power generation in China shows that the proposed model outperforms other four comparative models, namely regression, grey model (1, 1 (GM (1, 1, back propagation (BP and LSSVM, in terms of prediction accuracy and forecasting risk.

  2. Primary energy sources for hydrogen production

    International Nuclear Information System (INIS)

    Hassmann, K.; Kuehne, H.-M.

    1993-01-01

    The cost of hydrogen from water electrolysis is estimated, assuming that the electricity was produced from solar, hydro-, fossil, or nuclear power. The costs for hydrogen end-use in the sectors of power generation, heat and transportation are calculated, based on a state-of-the-art technology and a more advanced technology expected to represent the state by the year 2010. The cost of hydrogen utilization (without energy taxes) is higher than the current price of fossil fuels (including taxes). Without restrictions imposed on fossil fuel consumption, hydrogen will not gain a significant market share in either of the cases discussed. (Author)

  3. Potential Sources for Financing Environmental Protection Projects – Focusing on Energy Efficiency

    Directory of Open Access Journals (Sweden)

    Milan Počuča

    2015-05-01

    Full Text Available This paper elaborates financial mechanisms for financing energy efficiency with particular emphasis on the resources from financial institutions and equity funds and capital from the companies themselves. By conducting relevant academic research of literature and data from print and electronic sources (statistical reports, laws and regulations, statements of companies and financial institutions, as well as from the practical experience of some countries, it has been observed that the poor representation of adapted financial mechanisms is a major constraint to the emergence of a culture of energy efficiency in most countries, including Serbia. Even where they exist they are not necessarily known to make use of successful experiences. By conducting an analysis of the relevant academic literature and an analysis of practical experiences in the domain of energy efficiency and renewable energy sources it was concluded that energy efficiency is a significant potential for growth of the economic strength of Serbia, and therefore incentives should nfluence a greater use of renewable energy and a reduction in use of the fossil fuels as an energy source.

  4. Nuclear power: tomorrow's energy source; Le nucleaire: une energie pour l'avenir

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-01

    In France, 76% of electricity is produced by nuclear power. The industry's pricing levels are among the most competitive in Europe. Thanks to its 58 nuclear reactors France enjoys almost 50% energy autonomy thus ensuring a highly stable supply. Equally, as a non-producer of greenhouse gases, the nuclear sector can rightfully claim to have an environmentally friendly impact. Against a background to increasing global demand with predictions that fossil fuels will run out and global warming a central issue, it is important to use production methods which face up to problems of this nature. There is no question that nuclear energy has a vital role to play alongside other energy sources. (authors)

  5. Virtual Generation (Energy Efficiency) The Cheapest Source For Power Generation

    Energy Technology Data Exchange (ETDEWEB)

    Hasnie, Sohail

    2010-09-15

    Energy efficiency is the cheapest source of energy that has escaped the minds of the politicians in the developing countries. This paper argues for large scale utility led end use efficiency programs in a new paradigm, where 1 million efficient light bulbs is synonymous to a 50 MW power station that costs only 2% of the traditional fossil fuel power station and zero maintenance. Bulk procurement, setting up new standards and generation of certified emissions reduction is part of this strategy. It discusses implementation of a $20 million pilot in the Philippines supported by the Asian Development Bank.

  6. Subsidy regulation in WTO Law : Some implications for fossil fuels and renewable energy

    NARCIS (Netherlands)

    Marhold, Anna

    2016-01-01

    This contribution discusses WTO subsidies disciplines in the context of the energy sector. After laying out the relevant disciplines, it will discuss the paradox of WTO law with respect to subsidies towards fossil fuels vis-à-vis those towards renewable energy. It is clear that subsidies on clean

  7. Hydrogen production by reforming of fossil and biomass fuels accompanied by carbon dioxide capture process is the energy source for the near future

    International Nuclear Information System (INIS)

    Aboudheir, Ahmed; Idem, Raphael; Tontiwachwuthikul, Paitoon; Wilson, Malcolm; Kambietz, Lionel

    2006-01-01

    Hydrogen has a significant future potential as an alternative energy source for the transportation sector as well as in residential homes and offices, H 2 in fuel cell power systems provides an alternative to direct fossil fuel and biomass combustion based technologies and offer the possibility for a significant reduction in greenhouse gas emission based on improved H 2 yield per unit of fossil fuel and biomass, compatibility with renewable energies and motivation to convert to a H 2 -based energy economy. Several practical techniques for H 2 production to service H 2 refuelling stations as well as homes and offices, all of which need to be located at the end of the energy distribution network, include: (1) the carbon dioxide reforming of natural gas; (2) reforming of gasoline; (3) reforming of crude ethanol. Locating the H 2 production at the end of the energy distribution network solves the well-known problems of metal fatigue and high cost of H 2 compression for long distance transportation if H 2 is produced in a large centralized plant. In addition, the ratification of the Kyoto Protocol and the need to reduce emissions of CO 2 to the atmosphere has prompted the capture and utilization of the CO 2 produced from the reforming process. In this research: (1) new efficient catalysts for each reforming process was developed; (2) a new efficient catalyst for our version of the water gas shift reaction to convert carbon monoxide to carbon dioxide was developed; (3) a new membrane separation process for production of high purity, fuel cell-grade H 2 was designed; (4) a numerical model for optimum process design and optimum utilization of resources both at the laboratory and industrial scales was developed; (5) various processes for CO 2 capture were investigated experimentally in order to achieve a net improvement in the absorption process; (6) the utilization of captured CO 2 for enhanced oil recovery and/or storage in an aging oil field were investigated; (7

  8. Publications of the Fossil Energy Advanced Research and Technology Development Materials Program: April 1, 1993--March 31, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, P.T. [comp.

    1995-04-01

    The objective of the Fossil Energy Advanced Research and Technology Development (AR and TD) Materials Program is to conduct research and development on materials for fossil energy applications, with a focus on the longer-term needs for materials with general applicability to the various fossil fuel technologies. The Program includes research aimed at a better understanding of materials behavior in fossil energy environments and on the development of new materials capable of substantial improvement in plant operations and reliability. The scope of the Program addresses materials requirements for all fossil energy systems, including materials for coal preparation, coal liquefaction, coal gasification, heat engines and heat recovery, combustion systems, and fuel cells. Work on the Program is conducted at national and government laboratories, universities, and industrial research facilities. This bibliography covers the period of April 1, 1993, through March 31, 1995, and is a supplement to previous bibliographies in this series. It is the intent of this series of bibliographies to list only those publications that can be conveniently obtained by a researcher through relatively normal channels. The publications listed in this document have been limited to topical reports, open literature publications in refereed journals, full-length papers in published proceedings of conferences, full-length papers in unrefereed journals, and books and book articles. 159 refs.

  9. Sources of variation in δ13C of fossil fuel emissions in Salt Lake City, USA

    International Nuclear Information System (INIS)

    Bush, S.E.; Pataki, D.E.; Ehleringer, J.R.

    2007-01-01

    The isotopic composition of fossil fuels is an important component of many studies of C sources and sinks based on atmospheric measurements of CO 2 . In C budget studies, the isotopic composition of crude petroleum and CH 4 are often used as a proxy for the isotopic composition of CO 2 emissions from combustion. In this study, the C isotope composition (δ 13 C) of exhaust from the major fossil fuel emission sources in Salt Lake City, USA, was characterized with 159 measurements of vehicle exhaust of various types and eight measurements of residential furnace exhaust. These two sources were found to be isotopically distinct, and differed from global-scale estimates based on average values for crude petroleum and CH 4 . Vehicle-specific factors such as engine load and operation time had no effect on δ 13 C of vehicle exhaust. A small difference was found between the mean δ 13 C of vehicle exhaust collected randomly from different vehicles and the mean δ 13 C of gasoline collected from multiple fueling stations representing major gasoline distributors in Salt Lake City and the surrounding area. However, a paired comparison of δ 13 C of exhaust and gasoline for six different vehicles did not show any consistent C isotope fractionation during vehicle combustion. The mean δ 13 C of crude petroleum processed for local distribution differed slightly from refined gasoline collected at multiple fueling stations, but time lags between processing and transportation cannot be ruled out as an uncontrollable contributing factor. Measured isotope ratios were then combined with fuel consumption statistics to predict the annual cycle of δ 13 C of fossil fuel emissions for the Salt Lake City metropolitan area. The results showed that the isotopic composition of CO 2 emissions from fossil fuel combustion varied by almost 3 per mille over the course of the 2002 calendar year. This study illustrates that on a regional scale, the isotopic composition of fossil fuel emissions shows

  10. Economic analysis to compare fabrication of nuclear power and fossil fuel power plants at Iran

    International Nuclear Information System (INIS)

    Rasouliye Koohi, Mojtaba

    1997-01-01

    Electric power due to its many advantages over other forms of energies covers most of the world's energy demands.The electric power can be produced by various energy converting systems fed by different energy resources like fossil fuels, nuclear, hydro and renewable energies, each having their own appropriate technologies. The fossil fuel not only consumes the deplete and precious sources of non conventional energies but they add pollution to environment too. The nuclear power plants has its own share of radioactive pollutions which, of course can be controlled by taking precautionary measures. The investing cost of each generated unit (KWh) in the nuclear power plants, comparing with its equivalent production by fossil fuels is investigated. The various issues of economical analysis, technical, political and environmental are the different aspects, which individually can influence the decisions for kind of power plant to be installed. Finally, it is concluded that the fossil and nuclear power generations both has its own advantages and disadvantages. Hence, from a specializing point of view, it may not be proper to prefer one over the others

  11. Potential of natural energy sources

    Energy Technology Data Exchange (ETDEWEB)

    Denton, J D; Glanville, R; Gliddon, B J; Harrison, P L; Hotchkiss, R C; Hughes, E M; Swift-Hook, D T; Wright, J K

    1976-01-01

    Apart from fossil fuels and nuclear energy, five main alternative sources of power for electricity generation are: the sun, the wind, the waves, the tides, and the heat inside the earth. Each has been examined for its relevance to the energy situation in Britain and in particular to the CEGB's requirements as an electrical utility. None emerges from the analysis as directly competitive with nuclear power, provided that nuclear fulfills present expectations. As an insurance against unforeseen delays in the nuclear program, however, one or two of the options may well be worth closer consideration, particularly wave power, for which Britain is favorably placed. The best immediate prospect for using solar energy falls outside the province of the CEGB, in the area of domestic water heating. Wind power, despite the windiness of the British Isles, suffers in practice from a low load factor, which would greatly inflate the capital cost. Geothermal power in Britain, geologically one of the most stable parts of the world, appears to be available only at depths too great to be presently attractive for electricity generation. Finally, tidal power, although technically available in limited amounts, again suffers from high capital costs. (auth)

  12. Primary energy sources for hydrogen production

    International Nuclear Information System (INIS)

    Hassmann, K.; Kuehne, H.M.

    1993-01-01

    The costs for hydrogen production through water electrolysis are estimated, assuming the electricity is produced from solar, hydro-, fossil, or nuclear power. The costs for hydrogen end-use in the power generation, heat and transportation sectors are also calculated, based on a state of the art technology and a more advanced technology expected to represent the state by the year 2010. The costs for hydrogen utilization (without energy taxes) are shown to be higher than current prices for fossil fuels (including taxes). Without restrictions imposed on fossil fuel consumption, hydrogen shall not gain a significant market share in either of the cases discussed. 2 figs., 3 tabs., 4 refs

  13. The impact for households of a carbon component in the price of fossil energies

    International Nuclear Information System (INIS)

    Simon, Olivier; Thao Khamsing, Willy

    2016-03-01

    A carbon component has been introduced in tax on fossil energies in 2014 in France in order to support energy transition, and resulted in a higher cost of fossil energies for households in their transport and heating expenses. This publication aims at illustrating and commenting these consequences of a carbon component. It shows that expenses increase with the standard of living, that modest households are more affected, notably as far as heating expenses are concerned, that households using domestic fuel for heating and diesel fuel for their vehicles are the most affected, that the additional cost is particularly a burden for single-parent families and singles, and that rural households are more affected. A cross-criterion analysis (household type, location, heating type, fuel type) is proposed to assess the impact of 2016 on the energy bill of typical households. Methodological hypotheses, data origins and calculation method are briefly presented

  14. Opportunities for utilization of non-conventional energy sources for biomass pretreatment.

    Science.gov (United States)

    Singh, Rawel; Krishna, Bhavya B; Kumar, Jitendra; Bhaskar, Thallada

    2016-01-01

    The increasing concerns over the depletion of fossil resources and its associated geo-political issues have driven the entire world to move toward sustainable forms of energy. Pretreatment is the first step in any biochemical conversion process for the production of valuable fuels/chemicals from lignocellulosic biomass to eliminate the lignin and produce fermentable sugars by hydrolysis. Conventional techniques have several limitations which can be addressed by using them in tandem with non-conventional methods for biomass pretreatment. Electron beam and γ (gamma)-irradiation, microwave and ultrasound energies have certain advantages over conventional source of energy and there is an opportunity that these energies can be exploited for biomass pretreatment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Economics of Carbon Dioxide Sequestration and Mitigation versus a Suite of Alternative Renewable Energy Sources for Electricity Generation in U.S.

    Directory of Open Access Journals (Sweden)

    Zheming Zhang

    2011-01-01

    Full Text Available An equilibrium economic model for policy evaluation related to electricity generation in U.S has been developed; the model takes into account the non-renewable and renewable energy sources, demand and supply factors and environmental constraints. The non-renewable energy sources include three types of fossil fuels: coal, natural gas and petroleum, and renewable energy sources include nuclear, hydraulic, wind, solar photovoltaic, biomass wood, biomass waste and geothermal. Energy demand sectors include households, industrial manufacturing and non-manufacturing commercial enterprises. Energy supply takes into account the electricity delivered to the consumer by the utility companies at a certain price which maybe different for retail and wholesale customers. Environmental risks primarily take into account the CO2 generation from fossil fuels. The model takes into account the employment in various sectors and labor supply and demand. Detailed electricity supply and demand data, electricity cost data, employment data in various sectors and CO2 generation data are collected for a period of nineteen years from 1990 to 2009 in U.S. The model is employed for policy analysis experiments if a switch is made in sources of electricity generation, namely from fossil fuels to renewable energy sources. As an example, we consider a switch of 10% of electricity generation from coal to 5% from wind, 3% from solar photovoltaic, 1% from biomass wood and 1% from biomass waste. The model is also applied to a switch from 10% coal to 10% from clean coal technologies. It should be noted that the cost of electricity generation from different sources is different and is taken into account. The consequences of this switch on supply and demand, employment, wages, and emissions are obtained from the economic model under three scenarios: (1 energy prices are fully regulated, (2 energy prices are fully adjusted with electricity supply fixed, and (3 energy prices and

  16. The influence of the switch from fossil fuels to solar and wind energy on the electricity prices in Germany

    NARCIS (Netherlands)

    A.B. Dorsman (Andre); A. Khoshrou (Abdolrahman); E.J. Pauwels (Eric)

    2016-01-01

    textabstractGermany is actively pursuing a switch from fossil fuel to renewables, the so-called Energiewende (energy transition). Due to the fact that the supply of wind and solar energy is less predictable than the supply of fossil fuel, stabilizing the grid has become more challenging. On sunny

  17. Development of world energy requirements and ways of meeting the demand

    International Nuclear Information System (INIS)

    Valvoda, Z.

    1977-01-01

    The development is described of the past and future energy demand and the possibility is discussed of using fossil and non-fossil energy sources in meeting the needs of population. The use of alternative energy sources is recommended to reduce the fossil fuel demand, such as solar energy, water energy, geothermal energy, tidal energy, wind energy, sea wave energy, ocean temperature gradients, photosynthesis, glacier energy and nuclear fission energy. The comparison of the possible use of the respective types of energy sources shows that only geothermal energy, tidal energy and the nuclear energy produced by thermal reactors have undergone the whole developmental stage and are industrially applicable. (Oy)

  18. Public support for energy sources and related technologies: The impact of simple information provision

    International Nuclear Information System (INIS)

    Hobman, Elizabeth V.; Ashworth, Peta

    2013-01-01

    Increasing public awareness and understanding of alternative energy sources and related technologies is an essential component of informed decision-making regarding new options of generating energy for a low carbon future. The current study examined the influence of psychological factors (i.e., pro-environmental beliefs, and subjective norms) and the provision of factual information on public support for a range of energy sources and related technologies. A representative sample of 1907 Australians completed an on-line survey that measured perceptions of a range of climate change and energy issues. Results showed that support for renewables is stronger than support for traditional fossil-fuel based energy sources (i.e., coal or gas) or nuclear energy. The provision of factual information about generation cost and emissions significantly changed support ratings, particularly when cost information was provided. Regression analyses revealed that pro-environmental beliefs were significantly related to support ratings for alternative energy sources. Subjective norms, however, were the strongest positive explanatory factor, suggesting that social mechanisms may be key drivers of support for new and emerging energy sources and related technologies. - Highlights: • We examine support for a wide range of energy sources and technologies. • Support changes when information on cost and emissions is provided. • Pro-environmental beliefs and social norms positively relate to support

  19. Management of fossil natural resources: the impossible challenge?

    International Nuclear Information System (INIS)

    Loubens, Audrey

    2013-10-01

    A set of articles addresses various issues related to fossil energies and resources. A first set addresses the general context of fossil resources: the forced wedding between fossil energies and the environment (discussion of an annual report by the IEA on coal reserves), the availability of fossil fuels (discussion about the high share of fossil fuel in an always more renewable world). A second set addresses how to transform resources into reserves: discussion of the annual IEA report on conventional oil and gas reserves, on unconventional oil and gas reserves, and on coal reserves. The next set is a prospective one, and addresses the question of a scenario by 2040: the extremely high tension between fossil resources and geopolitical reality, and the question of the possibility of a world energy transition (discussions of the World Energy Outlook published by the IEA). Other issues are addressed by the last set of articles: the abundance of fossil energies obscures the potential of renewable energies, the evolution of the chemical industry towards alternative solutions in order to limit the use of hydrocarbons, and the territorial claims by Russia in the Arctic region

  20. The Use of Energy in Malaysia: Tracing Energy Flows from Primary Source to End Use

    Directory of Open Access Journals (Sweden)

    Chinhao Chong

    2015-04-01

    Full Text Available Malaysia is a rapidly developing country in Southeast Asia that aims to achieve high-income country status by 2020; its economic growth is highly dependent on its abundant energy resources, especially natural gas and crude oil. In this paper, a complete picture of Malaysia’s energy use from primary source to end use is presented by mapping a Sankey diagram of Malaysia’s energy flows, together with ongoing trends analysis of the main factors influencing the energy flows. The results indicate that Malaysia’s energy use depends heavily on fossil fuels, including oil, gas and coal. In the past 30 years, Malaysia has successfully diversified its energy structure by introducing more natural gas and coal into its power generation. To sustainably feed the rapidly growing energy demand in end-use sectors with the challenge of global climate change, Malaysia must pay more attention to the development of renewable energy, green technology and energy conservation in the future.

  1. An assessment of exploiting renewable energy sources with concerns of policy and technology

    International Nuclear Information System (INIS)

    Shen, Yung-Chi; Lin, Grace T.R.; Li, Kuang-Pin; Yuan, Benjamin J.C.

    2010-01-01

    In recent years, the Taiwanese government has vigorously promoted the development of renewable energy to engage the challenges of gradual depletion of fossil fuels and oil, as well as the intensification of the greenhouse effect. Since the Sustainable Energy Policy Principles were announced in 2008, Taiwanese government has declared that the development of renewable energy should take into account goals that pertain to energy, the environment, and the economy (3E goals). This study aims to assess the 3E goals and renewable energy sources regulated by the Renewable Energy Development Bill that passed in 2009. The fuzzy analytic hierarchy process (FAHP) is used to resolve the multi-goal problem for achieving our research purposes. That is, this research attempts to reveal the suitable renewable energy sources for the purposes of meeting the 3E policy goals. The results first show that environmental goal is the most important to the development of various renewable energy technologies in Taiwan, followed by the economic and energy goals. Additionally, hydropower, solar energy, and wind energy would be the renewable energy sources utilized in meeting the 3E policy goals. (author)

  2. ''Green'' path from fossil-based to hydrogen economy: An overview of carbon-neutral technologies

    Energy Technology Data Exchange (ETDEWEB)

    Muradov, Nazim Z. [Florida Solar Energy Center, University of Central Florida, Cocoa, FL 32922 (United States); Veziroglu, T. Nejat [Clean Energy Research Institute, University of Miami, Coral Gables, FL 33124 (United States)

    2008-12-15

    While the dominant role of hydrogen in a sustainable energy future is widely accepted, the strategies for the transition from fossil-based to hydrogen economy are still actively debated. This paper emphasizes the role of carbon-neutral technologies and fuels during the transition period. To satisfy the world's growing appetite for energy and keep our planet healthy, at least 10 TW (or terawatt) of carbon-free power has to be produced by mid-century. Three prominent options discussed in the literature include: decarbonization of fossil energy, nuclear energy and renewable energy sources. These options are analyzed in this paper with a special emphasis on the role of hydrogen as a carbon-free energy carrier. In particular, the authors compare various fossil decarbonization strategies and evaluate the potential of nuclear and renewable energy resources to meet the 10 TW target. An overview of state-of-the-art technologies for production of carbon-free energy carriers and transportation fuels, and the assessment of their commercial potential is provided. It is shown that neither of these three options alone could provide 10 TW of carbon-neutral power without major changes in the existing infrastructure, and/or technological breakthroughs in many areas, and/or a considerable environmental risk. The authors propose a scenario for the transition from current fossil-based to hydrogen economy that includes two key elements: (i) changing the fossil decarbonization strategy from one based on CO{sub 2} sequestration to one that involves sequestration and/or utilization of solid carbon, and (ii) producing carbon-neutral synthetic fuels from bio-carbon and hydrogen generated from water using carbon-free sources (nuclear, solar, wind, geothermal). This strategy would allow taking advantage of the existing fuel infrastructure without an adverse environmental impact, and it would secure a smooth carbon-neutral transition from fossil-based to future hydrogen economy. (author)

  3. Energy and environment

    International Nuclear Information System (INIS)

    Barrere, M.

    1978-01-01

    Energy problems will play a fundamental role in the near future and researchers, engineers, economists and ecologists must work together to increase existing non-fossil energy sources and to develop new sources or techniques using less energy without pollution of the environment. Four aspects of future activities in this field are considered. First, energy sources, ie solar, fossil, nuclear, geothermal, and others such as wind energy or wave energy are considered in relation to the environment. Secondly the use of these sources by industry and by transportation, domestic, and agricultural sectors are examined. The problem of energy conservation in all fields is then considered. Finally the overall optimisation is analysed. This is the search for a compromise between the cost of usable energy and that of a degradation function taking into account the effect on the environment. (U.K.)

  4. Mitigating environmental pollution and impacts from fossil fuels: The role of alternative fuels

    Energy Technology Data Exchange (ETDEWEB)

    Liu, L.; Cheng, S.Y.; Li, J.B.; Huang, Y.F. [Dalhousie University, Halifax, NS (Canada)

    2007-07-01

    In order to meet the rising global demand for energy, rapid development of conventional fossil fuels (i.e., coal, oil, and natural gas) have been experienced by many nations, bringing dramatic economic benefit and prosperity to fossil-fuel industries as well as well being of human society. However, various fossil-fuel related activities emit huge quantities of gaseous, liquid, and solid waste materials, posing a variety of impacts, risks, and liabilities to the environment. Therefore, on the one hand, control measures are desired for effectively managing pollution issues; on the other hand, it becomes extremely critical to invest efforts in finding promising alternative energy sources as solutions to the possible energy shortage crisis in future. This article focuses on both aspects through: (1) a discussion of waste materials generated from fossil-fuel industries and waste management measures; and (2) an exploration of some well-recognized alternative fuels in terms of their nature, availability, production, handling, environmental performances, and current and future applications. The conclusion restates the urgency of finding replaceable long-term alternatives to the conventional fuels.

  5. Energy from biomass. Energie uit biomassa

    Energy Technology Data Exchange (ETDEWEB)

    Van Doorn, J [Business Unit ESC-Energy Studies, Netherlands Energy Research Foundation, Petten (Netherlands)

    1992-11-01

    A brief overview is given of the options to use biomass as an energy source. Attention is paid to processing techniques, energy yields from crops, production costs in comparison with other renewable sources and fossil fuels, and the Dutch energy policy for this matter. 1 fig., 1 ill., 2 tabs., 3 refs.

  6. Wind energy renewable energy and the environment

    CERN Document Server

    Nelson, Vaughn; Nelson, Vaughn

    2009-01-01

    Due to the mounting demand for energy and increasing population of the world, switching from nonrenewable fossil fuels to other energy sources is not an option-it is a necessity. Focusing on a cost-effective option for the generation of electricity, Wind Energy: Renewable Energy and the Environment covers all facets of wind energy and wind turbines. The book begins by outlining the history of wind energy, before providing reasons to shift from fossil fuels to renewable energy. After examining the characteristics of wind, such as shear, power potential, and turbulence, it discusses the measur

  7. The effect of size-control policy on unified energy and carbon efficiency for Chinese fossil fuel power plants

    International Nuclear Information System (INIS)

    Zhang, Ning; Kong, Fanbin; Choi, Yongrok; Zhou, P.

    2014-01-01

    This paper examines the effect of size control policy on the energy and carbon efficiency for Chinese fossil fuel power industry. For this purpose, we propose two non-radial directional distance functions for energy/carbon efficiency analysis of fossil fuel electricity generation. One is named a total-factor directional distance function that incorporates the inefficiency of all input and output factors to measure the unified (operational and environmental) efficiency of fossil fuel power plants, and the other is called an energy–environmental directional distance function that can be used to measure the energy–environmental performance of fossil fuel electric power plants. Several standardized indicators for measuring unified efficiency and energy–environmental performance are derived from the two directional distance functions. An empirical study of 252 fossil fuel power plants in China is conducted by using the proposed approach. Our empirical results show that there exists a significant positive relationship between the plant size and unified efficiency, the five state-owned companies show lower unified efficiency and energy–environmental performance than other companies. It is suggested that Chinese government might need to consider private incentives and deregulation for its state-owned enterprises to improve their performance proactively. - Highlights: • Two non-radial directional distance functions are presented for energy/carbon efficiency analysis. • An empirical study of 252 fossil fuel power plants in China is conducted. • The five state-owned companies show lower unified efficiency and energy–environmental performance

  8. Fusion: an energy source for synthetic fuels

    International Nuclear Information System (INIS)

    Fillo, J.A.; Powell, J; Steinberg, M.

    1980-01-01

    The decreasing availability of fossil fuels emphasizes the need to develop systems which will produce synthetic fuel to substitute for and supplement the natural supply. An important first step in the synthesis of liquid and gaseous fuels is the production of hydrogen. Thermonuclear fusion offers an inexhaustible source of energy for the production of hydrogen from water. Depending on design, electric generation efficiencies of approx. 40 to 60% and hydrogen production efficiencies by high temperature electrolysis of approx. 50 to 70% are projected for fusion reactors using high temperature blankets. Fusion/coal symbiotic systems appear economically promising for the first generation of commercial fusion synfuels plants. Coal production requirements and the environmental effects of large-scale coal usage would be greatly reduced by a fusion/coal system. In the long term, there could be a gradual transition to an inexhaustible energy system based solely on fusion

  9. Renewable energy sources: the case of Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Goldemberg, J

    1979-04-01

    Industrial nations have based their economic and social development on the use of fossil fuels (coal, petroleum, and natural gas). This trend is being followed by many developing countries, which have neither the natural resources nor the manpower to adopt this path. As a result, one finds in many of these countries islands of prosperity (based on consumption patterns copied from industrial nations surrounded by a sea of poverty. The problems resulting from this dual social structure are obvious in many parts of the world. It is argued here that renewable energy sources are a natural basis for the development of the poorer countries and that intelligent use of hydropower, biomass, and direct solar energy can shortut many of the problems faced today by industrial nations. The case of Brazil is analyzed as one of the countries in which these solutions are being tried. 5 references, 3 figures, 6 tables.

  10. Economic evaluation of methods to substitute consumption of fossil fuel for nuclear one in power generation

    International Nuclear Information System (INIS)

    Veretennikov, G.A.; Boldyrev, V.M.; Sigal, M.V.

    1986-01-01

    Technical-and-economic indices of separate and combind processes of thermal and electric power production are compared for different energy sources (heat-only nuclear stations power and heat nuclear stations condensation nuclear power plants, fossil-fuel condensation power plants, fossil-fuel power and heat nuclear stations and fossil-fuel boiler houses). The data on capital outlays, fuel expenses and total reduced costs are presented. The analysis has shown that all versions of nuclear energy development with the use of heat-only nuclear stations in different combinations prove to be less preferable than the version of cogeneration of heat and electric power at power and heat nuclear stations

  11. Special document: which energies for tomorrow? Fossil, renewable, nuclear, hydrogen energies; the CEA of Saclay at the heart of the research; energy, greenhouse effect, climate; Dossier special: quelles energies pour demain? Energies fossiles, renouvelables, nucleaires, hydrogene; le Centre CEA de Saclay au coeur de la recherche; energie, effet de serre, climat

    Energy Technology Data Exchange (ETDEWEB)

    Anon

    2003-04-01

    The Cea devotes many research programs in the energy domain and especially in the development of new energetic solutions: hydrogen program, photovoltaic program, energy conservation domain and improvement of energy production systems. In this framework, this document presents synthetical information on the France situation in the world energy space and on the Cea Saclay researches. The energy policy and the electric power in France, the fossil energies, the nuclear energy, the renewable energies, the hydrogen and the fuel cell, the greenhouse effect and the climatology are detailed. (A.L.B.)

  12. Renewable Energy Sources, Energy Efficiency and Reduction of Greenhouse Gas Emissions as Main Sources Development of 'Green Economy' in Croatia until 2050

    International Nuclear Information System (INIS)

    Cosic, B.; Duic, N.; Krajacic, G.; Novosel, T.; Puksec, T.; Ridjan, I.

    2012-01-01

    Most countries will need a shift in their energy strategies in order to limit the increase in global warming and to reduce the emissions of greenhouse gases. It is worrying that while technologies with little or no greenhouse gas emissions exist, and are used for a couple of decades now, the increase of their market share is extremely low and the investments and subsidies in fossil fuels are substantially larger on a world wide scale. For changes to accrue it is necessary to carefully plan both the energy consumption and supply. A correct and rational prediction of future energy consumption is the basic assumption for the advanced analysis and modelling of energy systems and it will, as an input, have a profound influence on them. In this paper a bottom up approach was selected because it is the most suitable methodology to describe the legal, economic or purely technical mechanisms. Scenarios for the energy supply in 100% renewable systems in 2050 and the possibility to create a low-carbon society were simulated using the EnergyPLAN model for energy system analysis. Comparison of the necessary useful energy for space heating in 2050 shows a difference greater than 16% for different rates of renovation of the existing buildings in the residential sector of 1% and 3% annually. The electrification of road transport for passenger cars in combination with increased requirements for energy efficiency of internal combustion engines can reduce the energy consumption in the transport sector by 30% in comparison to the reference scenario for 2050. It is possible to reduce the emission of greenhouse gases by 82% in the period 2030-2050 and the use of renewable energy sources and the production of synthetic fuels can enable a transition to a 100% renewable energy system in Croatia in 2050. Doing so would create 192000 jobs in plant maintenance and fuel production alone, increase the security of energy supply and reduce the expenditure for the purchase of fossil fuels by 4

  13. Renewable sources of energy in Africa: status of development and future contribution to the energy mix

    International Nuclear Information System (INIS)

    Mwanza, P.N.; Pashkov, Y.V.

    1995-01-01

    Renewable sources of energy in Africa are widely regarded as alternatives to fossil fuels. Being an abundant indigenous reserve, they offer considerable savings of foreign exchange. Also, they are usually regarded as environmentally friendly and thus do not contribute significantly to the greenhouse effect. However, present contributions of renewable energy to the African energy supply remain negligible despite substantial claims often made about the potential scope for renewable energy forms. This paper is based on a comprehensive study undertaken by the United Nations Economic Commission for Africa in 1993-94. The assessment of renewable energy contributions to the energy mix has been made based on data obtained from African countries. A formula reflecting new and renewable sources of energy (NRSE) utilisation was developed and an attempt was made to delineate some zones with identical patterns of utilisation. Some of the difficulties encountered in the dissemination of NRSE and incentives introduced by African countries are also discussed. The conclusion is that African countries acknowledge the role of NRSE technologies in the development of future world energy systems. Yet the probability of NRSE assuming a greater share in energy supplies within the next two decades in Africa is doubtful. (author) 3 tabs., 1 fig., 7 refs

  14. Problems of attracting nuclear energy resources in order to provide economical and rational consumption of fossil fuels

    International Nuclear Information System (INIS)

    Nazarov, E.K.; Nikitin, A.T.; Ponomarev-Stepnoy, N.N.; Protsenko, A.N.; Stolyarevskii, A.Ya.; Doroshenko, N.A.

    1990-01-01

    The solution of problems related to increasing costs of fossil fuels and application of nuclear energy in the industrial sector could be the development and commercialization of high temperature nuclear reactors, as the majority of power consuming industrial processes demand that the temperature of heat carrier generated to be in the range from 900-1000 deg. C. In the Soviet Union the strategy adopted for solving energy supply problems was named 'nuclear-hydrogen power engineering and technologies'. Based on analytic research and taking into account the present state of the art, the new alternative energy sources, e.g. nuclear ones, should be introduced into the industry by the following steps: development and mastering of stable operation of high-temperature nuclear reactors; search of rational technical solutions for heat discharge from nuclear reactors; utilisation of meet the power demand of existing production plants; complete substitution of organic raw materials burned now with nuclear energy; review the conditions and development of organizational and engineering solutions acceptable for implementing the nuclear energy in commercial processes

  15. Problems of attracting nuclear energy resources in order to provide economical and rational consumption of fossil fuels

    Energy Technology Data Exchange (ETDEWEB)

    Nazarov, E K; Nikitin, A T; Ponomarev-Stepnoy, N N; Protsenko, A N; Stolyarevskii, A Ya; Doroshenko, N A [State Institute of Nitrogen Industry, Moscow (USSR); [I.V. Kurchatov Institute of Atomic Energy, Moscow (USSR)

    1990-07-01

    The solution of problems related to increasing costs of fossil fuels and application of nuclear energy in the industrial sector could be the development and commercialization of high temperature nuclear reactors, as the majority of power consuming industrial processes demand that the temperature of heat carrier generated to be in the range from 900-1000 deg. C. In the Soviet Union the strategy adopted for solving energy supply problems was named 'nuclear-hydrogen power engineering and technologies'. Based on analytic research and taking into account the present state of the art, the new alternative energy sources, e.g. nuclear ones, should be introduced into the industry by the following steps: development and mastering of stable operation of high-temperature nuclear reactors; search of rational technical solutions for heat discharge from nuclear reactors; utilisation of meet the power demand of existing production plants; complete substitution of organic raw materials burned now with nuclear energy; review the conditions and development of organizational and engineering solutions acceptable for implementing the nuclear energy in commercial processes.

  16. Hawaii Integrated Energy Assessment. Volume V. Rules, regulations, permits and policies affecting the development of alternate energy sources in Hawaii

    Energy Technology Data Exchange (ETDEWEB)

    1980-01-01

    A comprehensive presentaton of the major permits, regulations, rules, and controls which are likely to affect the development of alternate energy sources in Hawaii is presented. An overview of the permit process, showing the major categories and types of permits and controls for energy alternatives is presented. This is followed by a brief resume of current and projected changes designed to streamline the permit process. The permits, laws, regulations, and controls that are applicable to the development of energy alternatives in Hawaii are described. The alternate energy technologies affected, a description of the permit or control, and the requirements for conformance are presented for each applicable permit. Federal, state, and county permits and controls are covered. The individual energy technologies being considered as alternatives to the State's present dependence on imported fossil fuels are emphasized. The alternate energy sources covered are bioconversion, geothermal, ocean thermal, wind, solar (direct), and solid waste. For each energy alternative, the significant permits are summarized with a brief explanation of why they may be necessary. The framework of policy development at each of the levels of government with respect to the alternate energy sources is covered.

  17. Renewable sources of energy. Principles, social acceptance, and state of the art

    International Nuclear Information System (INIS)

    Henriquez, B.

    2008-01-01

    The use of power in contemporary society is characterized by being dominated by fossil combustion. Because of this there has been a global warming which has led to the climate change that is experienced today and will continue in the coming years. The combustion of fossil is primarily used for power generation and automotive transport. However the ground constantly becomes an amount of energy from the Sun millions of times greater than any society which needs. This energy is transformed in different ways and can be exploited in a different way without fear until. This is the primary basis of the renewable sources of energy. Most used renewable energy sources are solar energy (thermal, luminous, photovoltaic, photochemistry), wind energy, hydraulic energy, the energy of the Sea (tides, currents, waves, ocean thermal gradient), bioenergy (biogas, biomass, biofuels). Renewable energy sources are characterized by having its origin in the Sun, be inexhaustible and does not contribute to the warming of the planet, but on the other hand being distributed and accessible to all are more difficult to convert into business. For the popular masses are a solution, for the transnational power are a challenge. Traditionally though these sources of energy are available and are inexhaustible have been disregarded by the energy market in favour of lines called hard which include oil, coal and nuclear power. The form of generation and use of energy in the contemporary civilization is dominated by the consumer society that obliges the excessive generation of heat, the emission of pollutants and the destruction of the environment and biodiversity. To the global energy crisis some pathways are presented as response that can trigger solutions, or an escalation of the crisis. Among the proposals for change and with varied approaches are the energy revolution in Cuba, development in the path of the Sun, the possession of technologies, control of resources, carbon credits and the wars to

  18. Energy Transformation of Croatia

    International Nuclear Information System (INIS)

    Potocnik, V.

    2014-01-01

    Due to obvious climate change, caused mainly by combustion of the fossil fuels, as well as to their modest reserves, energy transformation is under way. It is the transition from the fossil fuels to improved energy efficiency (ENEF) and renewable energy sources (RES). Leading role in the energy transformation has Germany with 'Energiewende', which among other includes closing of existing nuclear power plants until 2022. Croatia has very limited proven fossil fuels reserves, which cover 3/4 of primary energy in consumption. Croatia also has large potential for improvements in ENEF and RES. Therefore, energy transformation of Croatia is justified. (author).

  19. Fossil Energy Program report, 1 October 1976--30 September 1977. [Objectives, progress and plans for each contract or project

    Energy Technology Data Exchange (ETDEWEB)

    Dunning, H. Neal; Batchelor, James; Crim, Winfred; Furlong, Leroy; Harvie, Robert; Hunter, Juanita; Jones, William; Karnes, Anita; Ludwig, Linda; Miller, C. Lowell; Mills, G. Alex; Sacks, Stephen; Watkins, J. Wade; Watson, Coni; Weaver, Val

    1978-08-01

    This report is an integral part of the documentation system of the Fossil Energy Program of the Department of Energy. It contains descriptions of each contract and project, arranged in conformance with planning and budgetary documents. The results of contracts are reported at various intervals, depending on the type of contract, but at least annually. These reports are not listed individually in the ''Publications'' sections but are available from the National Technical Information Service, U.S. Department of Commerce, Springfield, Virginia 22161. The Department of Energy also publishes several abstract journals: Fossil Energy Update, Energy Research Abstracts, and Energy Abstracts for Policy Analysis.

  20. Proceedings of the second US Department of Energy environmental control symposium. Volume 1. Fossil energy

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-06-01

    These proceedings document the presentations given at the Second Environmental Control Symposium. Symposium presentations highlighted environmental control activities which span the entire DOE. Volume I contains papers relating to coal preparation, oil shales, coal combustion, advanced coal utilization (fluidized bed combustion, MHD generators, OCGT, fuel cells), coal gasification, coal liquefaction, and fossil resource extraction (enhanced recovery). Separate abstracts for individual papers are prepared for inclusion in the Energy Data Base. (DMC)

  1. 21st century's energy: hydrogen energy system

    International Nuclear Information System (INIS)

    Veziroglu, T. N.

    2007-01-01

    Fossil fuels (i.e., petroleum, natural gas and coal), which meet most of the world's energy demand today, are being depleted fast. Also, their combustion products are causing the global problems, such as the greenhouse effect, ozone layer depletion, acid rains and pollution, which are posing great danger for our environment and eventually for the life in our planet. Many engineers and scientists agree that the solution to these global problems would be to replace the existing fossil fuel system by the Hydrogen Energy System. Hydrogen is a very efficient and clean fuel. Its combustion will produce no greenhouse gases, no ozone layer depleting chemicals, little or no acid rain ingredients and pollution. Hydrogen, produced from renewable energy (e.g., solar) sources, would result in a permanent energy system, which we would never have to change. However, there are other energy systems proposed for the post-petroleum era, such as a synthetic fossil fuel system. In this system, synthetic gasoline and synthetic natural gas will be produced using abundant deposits of coal. In a way, this will ensure the continuation of the present fossil fuel system. The two possible energy systems for the post-fossil fuel era (i.e., the solar hydrogen energy system and the synthetic fossil fuel system) are compared with the present fossil fuel system by taking into consideration production costs, environmental damages and utilization efficiencies. The results indicate that the solar hydrogen energy system is the best energy system to ascertain a sustainable future, and it should replace the fossil fuel system before the end of the 21st Century

  2. 21st Century's energy: Hydrogen energy system

    International Nuclear Information System (INIS)

    Veziroglu, T. Nejat; Sahin, Suemer

    2008-01-01

    Fossil fuels (i.e., petroleum, natural gas and coal), which meet most of the world's energy demand today, are being depleted fast. Also, their combustion products are causing the global problems, such as the greenhouse effect, ozone layer depletion, acid rains and pollution, which are posing great danger for our environment and eventually for the life in our planet. Many engineers and scientists agree that the solution to these global problems would be to replace the existing fossil fuel system by the hydrogen energy system. Hydrogen is a very efficient and clean fuel. Its combustion will produce no greenhouse gases, no ozone layer depleting chemicals, little or no acid rain ingredients and pollution. Hydrogen, produced from renewable energy (e.g., solar) sources, would result in a permanent energy system, which we would never have to change. However, there are other energy systems proposed for the post-petroleum era, such as a synthetic fossil fuel system. In this system, synthetic gasoline and synthetic natural gas will be produced using abundant deposits of coal. In a way, this will ensure the continuation of the present fossil fuel system. The two possible energy systems for the post-fossil fuel era (i.e., the solar-hydrogen energy system and the synthetic fossil fuel system) are compared with the present fossil fuel system by taking into consideration production costs, environmental damages and utilization efficiencies. The results indicate that the solar-hydrogen energy system is the best energy system to ascertain a sustainable future, and it should replace the fossil fuel system before the end of the 21st century

  3. Renewable energy outlook in Iran and World's energy structure

    International Nuclear Information System (INIS)

    Azarm, D.; Adl, M.

    2001-01-01

    Limited fossil fuel resources and environmental impact of energy production technologies causing Global Warming have encouraged wide spread used of renewable energies. This article reviews the characteristics of renewable energy sources as well as their status within IR of Iran and pro-countries. According to the mentioned Information and Status, currently 22% of world electricity is produced through conversion of various renewable energies and expected to grow even further. This trend has been a main factor in reduction of end-used renewable energy prices. Consideration of social and environmental costs of fossil fuel use will help to reveal compatibility of renewable energies. Utilization of renewable energy potentials apart from proven environmental advantages and job creation effects may conserve country's conventional fossil fuel resources. In general, growth of renewable energy in a country is direct result of existing energy policies with respect to increasing the share of clean energies in the energy basket. Nevertheless in Iran yearly demand hikes for energy and considering the fact the fossil fuel reservoirs are limited, utilization of renewable energy potentials is inevitable

  4. The greenhouse gas emissions and fossil energy requirement of bioplastics from cradle to gate of a biomass refinery.

    Science.gov (United States)

    Yu, Jian; Chen, Lilian X L

    2008-09-15

    Polyhydroxyalkanoates (PHA) are promising eco-friendly bioplastics that can be produced from cellulosic ethanol biorefineries as value-added coproducts. A cradle-to-factory-gate life cycle assessment is performed with two important categories: the greenhouse gas (GHG)emissions and fossil energy requirement per kg of bioplastics produced. The analysis indicates that PHA bioplastics contribute clearly to the goal of mitigating GHG emissions with only 0.49 kg CO(2-e) being emitted from production of 1 kg of resin. Compared with 2-3 kg CO(2-e) of petrochemical counterparts, it is about 80% reduction of the global warming potential. The fossil energy requirement per kg of bioplastics is 44 MJ, lowerthan those of petrochemical counterparts (78-88 MJ/kg resin). About 62% of fossil energy is used for processing utilities and wastewater treatment, and the rest is required for raw materials in different life cycle stages.

  5. Technological research and development of fossil fuels; Ricerca e sviluppo tecnologico per lo sfruttamento ottimale dei combustibili fossili

    Energy Technology Data Exchange (ETDEWEB)

    Minghetti, E; Palazzi, G [ENEA, Centro Ricerche Casaccia, Rome (Italy). Dip. Energia

    1995-05-01

    The aim of the present document is to supply general information concerning fossil fuels that represent, today and for the near future, the main energy source of our planet. New fossil fuel technologies are in continual development with two principal goals: to decrease environmental impact and increase transformation process efficiency. Examples of this effort are: (1) gas-steam combined cycles integrated with coal gasification plants, or with pressurized-fluidized-bed combustors; (2) new cycles with humid air or coal direct fired turbine, now under development. In the first part of this document the international and national energy situations and trends are shown. After some brief notes on environment problems and alternative fuels, such as biomasses and municipal wastes, technological aspects, mainly relevant to increasing fossil-fueled power plant performances, are examined in greater depth. Finally the research and technological development activities of ENEA (National Agency for New technologies, Energy and the Environment) Engineering Branch in order to improve fossil fuels energy and environmental use are presented.

  6. Fossil fuel usage and the environment

    International Nuclear Information System (INIS)

    Klass, D.L.

    1991-01-01

    The Greenhouse Effect and global warming, ozone formation in the troposphere, ozone destruction in the stratosphere, and acid rain are important environmental issues. The relationship of fossil fuel usage to some of these issues is discussed. Data on fossil fuel consumption and the sources and sinks of carbon dioxide, carbon monoxide, methane, nitrogen and sulfur oxides, and ozone indicate that natural gas provides lower emissions of carbon dioxide, carbon monoxide, and nitrogen and sulfur oxides than other fossil fuels. Global emissions of methane from the gas industry are significantly less than those from other anthropogenic activities and natural sources, and methane plays an important role along with carbon monoxide and nitric oxide in tropospheric ozone formation. Reductions in any or all of these air pollutants would reduce ozone in the lower atmosphere. Several remedial measures have been or are being implemented in certain countries to reduce fossil fuel emissions. These include removal of emissions from the atmosphere by new biomass growth, fuel substitution by use of cleaner burning fuels for stationary and mobile sources, and fossil fuel combustion at higher efficiencies. It is unlikely that concerted environmental action by all governments of the world will occur soon, but much progress has been made to achieve clean air

  7. A potention of renewable energy sources in Slovakia in term of production of electricity

    Directory of Open Access Journals (Sweden)

    Štefan Kuzevič

    2005-11-01

    Full Text Available Electro-energetics of Slovak Republic is in this time in state of re-structuralization consequent from responsibilities which SR has with integration to the EU and on the other hand with actual status of production capacities of fossil fuels using in heat power stations and heat stations also the utilization of nuclear energy in nuclear power stations Jaslovské Bohunice and Mochovce. Paradoxically slim representation in production capacities have renewable energy sources, while only one relevant one is utilization of water in small hydro power stations. According to fact, that to the year 2010, the share of renewable sources of energy using in comparing with electric energy has to achieve 21,7% (direction of EU 77/2001. It is necessary to evaluate possibilities of utilization and to specify potential of utilization from technical and economical aspect.

  8. IGT calculates world reserves of fossil fuels

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    The Institute of Gas Technology has published the IGT World Reserves Survey, giving their latest tabulation of world reserves of fossil fuels and uranium. The report contains 120 Tables and 41 Figures. Estimates are provided for proved reserves, resources, current production, and life indexes of the non-renewable energy sources of the US and of the world as a whole. World regional data are also provided in many cases. The data are summarized here. 2 figures, 5 tables

  9. A comprehensive economic evaluation of integrated desalination systems using fossil fuelled and nuclear energies and including their environmental costs

    International Nuclear Information System (INIS)

    Nisan, S.; Benzarti, N.

    2008-01-01

    Seawater desalination is now widely accepted as an attractive alternative source of freshwater for domestic and industrial uses. Despite the considerable progress made in the relevant technologies desalination, however, remains an energy intensive process in which the energy cost is the paramount factor. This Study is a first of a kind in that we have integrated the environmental costs into the power and desalination costs. The study has focused on the seawater desalination cost evaluation of the following systems. It is supposed that they will be operating in the co-generation mode (Simultaneous production of electrical power and desalted water) in 2015: Fossil fuelled based systems such as the coal and oil fired plants and the gas turbine combined cycle plant, coupled to MED, and RO; Pressurised water reactors such as the PWR-900 and the AP-600, coupled to MED, and RO; High temperature reactors such as the GT-MHR, the PBMR, coupled to MED, with the utilisation of virtually free waste-heat provided by these reactors. The study is made in real site-specific conditions of a site In Southern Europe. Sensitivity studies for different parameters such as the fossil fuel prices, interest and discount rates, power costs etc., have also been undertaken. The results obtained are then used to evaluate the financial interest of selected integrated desalination systems in terms of a detailed cash flow analysis, providing the net present values, pay back periods and the internal rate of returns. Analysis of the results shows that among the fossil fuelled systems the power and desalination costs by circulating fluidized bed coal fired plant would be the lowest with current coal prices. Those by oil fired plants would be highest. In all cases, integrated nuclear energy systems would lead to considerably lower power and water costs than the corresponding coal based systems. When external costs for different energies are internalized in power and water costs, the relative cost

  10. Energy management in buildings using photovoltaics

    CERN Document Server

    Papadopoulou, Elena

    2012-01-01

    Although fossil fuels remain the primary global energy source, developing and expanding economies are creating an ever-widening gap between supply and demand. Efficient energy management offers a cost-effective opportunity for both industrialized and developing nations to limit the enormous financial and environmental costs associated with burning fossil fuels. The implication of photovoltaic systems in particular presents the potential for clean and sustainable electrical energy to be generated from an unrestricted source. Energy Management in Buildings Using Photovoltaics demonstrates how ad

  11. Biogas - a new energy source saves fossil resources; Biogas - mit neuer Energie Ressourcen schonen

    Energy Technology Data Exchange (ETDEWEB)

    Thoss, C. (comp.)

    2001-07-01

    The new German Renewable Energy Sources Act (EEG) of 2000 made conditions for biogas more favourable - small wonder, as the German Biogas Association (Fachverband Biogas e.V.) co-operated with written expert opinions and many discussions with decision-makers. The subjects discussed at the 10th Biogas Conference reflect the current situation and will provide a basis for committee work in 2001. [German] Im Jahr 2000 haben sich die gesetzlichen Rahmenbedingungen fuer den Biogasbereich mit dem Inkrafttreten des erneuerbaren Energiegesetz (EEG) sehr positiv entwickelt. Der Fachverband Biogas e.V. hat mit schriftlichen Stellungnahmen und in vielen Gespraechen mit Entscheidungstraegern diese Bedingungen mitgestaltet. In Zukunft gibt es noch viele Aufgaben fuer eine effektive Interessenvertretung der Biogasbranche auf Laender- und Bundesebene. Die Themen, die auf der 10. Biogastagung diskutiert werden, spiegeln die Fragen wieder, die unter Experten derzeit intensiv diskutiert werden. Die Ergebnisse des Erfahrungsaustausches auf dieser Tagung werden die Grundlage fuer die Arbeit der Gremien im Fachverband Biogas im Jahr 2001 sein. Mit dem vorliegenden Tagungsband ist es gelungen, die Basis fuer die fachlichen Gespraeche waehrend und nach der Tagung schaffen. (orig.)

  12. Supply of fossil heating and motor fuels

    International Nuclear Information System (INIS)

    Kaegi, W.; Siegrist, S.; Schaefli, M.; Eichenberger, U.

    2003-01-01

    This comprehensive study made for the Swiss Federal Office of Energy (SFOE) within the framework of the Energy Economics Fundamentals research programme examines if it can be guaranteed that Swiss industry can be supplied with fossil fuels for heating and transport purposes over the next few decades. The results of a comprehensive survey of literature on the subject are presented, with a major focus being placed on oil. The study examines both pessimistic and optimistic views and also presents an overview of fossil energy carriers and the possibilities of substituting them. Scenarios and prognoses on the availability of fossil fuels and their reserves for the future are presented. Also, new technologies for exploration and the extraction of fossil fuels are discussed, as are international interdependencies that influence supply. Market and price scenarios are presented that take account of a possible increasing scarcity of fossil fuels. The implications for industry and investment planning are examined

  13. Decarbonization of Croatian Energy System

    International Nuclear Information System (INIS)

    Potocnik, V.

    2012-01-01

    Energy system decarbonization is reduction of greenhouse gases (CO 2 ) emission, chiefly from the fossil fuels (coal, oil, natural gas) combustion. The main objective of an energy system decarbonization is the climate change mitigation, and at the same time development of local industry and employment, better environment and health protection, as well as reduction of the fossil fuels import and foreign debt. Croatia has small fossil fuels reserves and large renewable energy sources (RES) reserves, energy efficiency (ENEF) is relatively low, and energy import, according to the actual Energy strategy 2009, should increase from 50% to 70% until 2020. Croatian energy system participates with about one third in the Croatian foreign trade deficit. The main measures of the Croatian energy system decarbonization should be: increasing ENEF (energy savings), switch from fossil fuels to RES, administrative measures (low carbon development strategy, environmental tax reform, and decoupling income from energy sales). By urgent application of these measures, Croatia could become fossil fuels free until the year 2050.(author)

  14. Policies for 100% Renewable Energy Systems

    DEFF Research Database (Denmark)

    Hvelplund, Frede

    2014-01-01

    The official Danish energy policy goal is both to increase the wind power share of electricity consumption from 33% in 2014 to 50% by 2020 and to have a 100% renewable energy based energy system by 2050. This is a huge technological change from stored, scarce and polluting fossil fuels...... to fluctuating, abundant and clean energy sources. “Stored” fossil fuels can be used when needed; fluctuating energy sources must be captured when available and transformed to meet the energy needs of society in the right amounts and at the right time. We are amidst this change. Renewable energy has come of age...... and is no longer a minor technology experimenting in the corner of the energy scene, but has become a large new technology taking away considerable market shares from the old fossil fuel technologies....

  15. Biogas : Animal Waste That Can be Alternative Energy Source

    Directory of Open Access Journals (Sweden)

    Tuti Haryati

    2006-09-01

    Full Text Available Biogas is a renewable energy which can be used as alternative fuel to replace fossil fuel such as oil and natural gas . Recently, diversification on the use of energy has increasingly become an important issue because the oil sources are depleting . Utilization of agricultural wastes for biogas production can minimize the consumption of commercial energy source such as kerosene as well as the use of firewood . Biogas is generated by the process of organic material digestion by certain anaerobe bacteria activity in aerobic digester . Anaerobic digestion process is basically carried out in three steps i.e. hydrolysis, acidogenic and metanogenic . Digestion process needs certain condition such as C : N ratio, temperature, acidity and also digester design . Most anaerobic digestions perform best at 32 - 35°C or at 50 - 55°C, and pH 6 .8 - 8 . At these temperatures, the digestion process essentially converts organic matter in the present of water into gaseous energy . Generally, biogas consists of methane about 60 - 70% and yield about 1,000 British Thermal Unit/ft 3 or 252 Kcal/0.028 m3 when burned . In several developing countries, as well as in Europe and the United States, biogas has been commonly used as a subtitute environmental friendly energy . Meanwhile, potentially Indonesia has abundant potential of biomass waste, however biogas has not been used maximally .

  16. Constraints of fossil fuels depletion on global warming projections

    International Nuclear Information System (INIS)

    Chiari, Luca; Zecca, Antonio

    2011-01-01

    A scientific debate is in progress about the intersection of climate change with the new field of fossil fuels depletion geology. Here, new projections of atmospheric CO 2 concentration and global-mean temperature change are presented, should fossil fuels be exploited at a rate limited by geological availability only. The present work starts from the projections of fossil energy use, as obtained from ten independent sources. From such projections an upper bound, a lower bound and an ensemble mean profile for fossil CO 2 emissions until 2200 are derived. Using the coupled gas-cycle/climate model MAGICC, the corresponding climatic projections out to 2200 are obtained. We find that CO 2 concentration might increase up to about 480 ppm (445-540 ppm), while the global-mean temperature increase w.r.t. 2000 might reach 1.2 deg. C (0.9-1.6 deg. C). However, future improvements of fossil fuels recovery and discoveries of new resources might lead to higher emissions; hence our climatic projections are likely to be underestimated. In the absence of actions of emissions reduction, a level of dangerous anthropogenic interference with the climate system might be already experienced toward the middle of the 21st century, despite the constraints imposed by the exhaustion of fossil fuels. - Highlights: → CO 2 and global temperature are projected under fossil fuels exhaustion scenarios. → Temperature is projected to reach a minimum of 2 deg. C above pre-industrial. → Temperature projections are possibly lower than the IPCC ones. → Fossil fuels exhaustion will not avoid dangerous global warming.

  17. Constraints of fossil fuels depletion on global warming projections

    Energy Technology Data Exchange (ETDEWEB)

    Chiari, Luca, E-mail: chiari@science.unitn.it [Department of Physics, University of Trento, Via Sommarive 14, 38123 Povo (Italy); Zecca, Antonio, E-mail: zecca@science.unitn.it [Department of Physics, University of Trento, Via Sommarive 14, 38123 Povo (Italy)

    2011-09-15

    A scientific debate is in progress about the intersection of climate change with the new field of fossil fuels depletion geology. Here, new projections of atmospheric CO{sub 2} concentration and global-mean temperature change are presented, should fossil fuels be exploited at a rate limited by geological availability only. The present work starts from the projections of fossil energy use, as obtained from ten independent sources. From such projections an upper bound, a lower bound and an ensemble mean profile for fossil CO{sub 2} emissions until 2200 are derived. Using the coupled gas-cycle/climate model MAGICC, the corresponding climatic projections out to 2200 are obtained. We find that CO{sub 2} concentration might increase up to about 480 ppm (445-540 ppm), while the global-mean temperature increase w.r.t. 2000 might reach 1.2 deg. C (0.9-1.6 deg. C). However, future improvements of fossil fuels recovery and discoveries of new resources might lead to higher emissions; hence our climatic projections are likely to be underestimated. In the absence of actions of emissions reduction, a level of dangerous anthropogenic interference with the climate system might be already experienced toward the middle of the 21st century, despite the constraints imposed by the exhaustion of fossil fuels. - Highlights: > CO{sub 2} and global temperature are projected under fossil fuels exhaustion scenarios. > Temperature is projected to reach a minimum of 2 deg. C above pre-industrial. > Temperature projections are possibly lower than the IPCC ones. > Fossil fuels exhaustion will not avoid dangerous global warming.

  18. Energy Systems in the Era of Energy Vectors A Key to Define, Analyze and Design Energy Systems Beyond Fossil Fuels

    CERN Document Server

    Orecchini, Fabio

    2012-01-01

    What lies beyond the era of fossil fuels? While most answers focus on different primary energy resources, Energy Systems in the Era of Energy Vectors provides a completely new approach. Instead of providing a traditional consumption analysis of classical primary energy resources such as oil, coal, nuclear power and gas, Energy Systems in the Era of Energy Vectors describes and assesses energy technologies, markets and future strategies, focusing on their capacity to produce, exchange, and use energy vectors. Special attention is given to the renewable energy resources available in different areas of the world and made exploitable by the integration of energy vectors in the global energy system. Clear definitions of energy vectors and energy systems are used as the basis for a complete explanation and assessment of up-to-date, available technologies for energy resources, transport and storage systems, conversion and use. The energy vectors scheme allows the potential realisation of a worldwide sustainable ener...

  19. Renewable energy sources and climate change mitigation. Special report of the Intergovernmental Panel on Climate Change (IPCC)

    Energy Technology Data Exchange (ETDEWEB)

    Edenhofer, O. (Potsdam Institute for Climate Impact Research (PIK), Potsdam (Germany)); Pichs Madruga, R. (Centro de Investigaciones de la Economia Mundial (CIEM), Hanoi (Viet Nam)); Sokona, Y. (African Climate Policy Centre, United Nations Economic Commission for Africa, Addis Ababa (Ethiopia)) (and others)

    2012-07-01

    Climate change is one of the great challenges of the 21st century. Its most severe impacts may still be avoided if efforts are made to transform current energy systems. Renewable energy sources have a large potential to displace emissions of greenhouse gases from the combustion of fossil fuels and thereby to mitigate climate change. If implemented properly, renewable energy sources can contribute to social and economic development, to energy access, to a secure and sustainable energy supply, and to a reduction of negative impacts of energy provision on the environment and human health. This Special Report on Renewable Energy Sources and Climate Change Mitigation (SRREN) impartially assesses the scientific literature on the potential role of renewable energy in the mitigation of climate change for policymakers, the private sector, academic researchers and civil society. It covers six renewable energy sources - bioenergy, direct solar energy, geothermal energy, hydropower, ocean energy and wind energy - as well as their integration into present and future energy systems. It considers the environmental and social consequences associated with the deployment of these technologies, and presents strategies to overcome technical as well as non-technical obstacles to their application and diffusion. The authors also compare the levelized cost of energy from renewable energy sources to recent non-renewable energy costs. (Author)

  20. Looking for alternative energy sources.

    Science.gov (United States)

    Gross, Michael

    2012-02-21

    With unrest in oil-exporting countries, backlashes against biofuels and photovoltaics, and a nuclear incident in Japan, the year 2011 rattled confidence in future energy supplies. The search for alternatives is all the more urgent, but some of the solutions investigated hark back to fossil fuels that we can't afford to burn.

  1. Methane hydrates. An overlooked energy source

    International Nuclear Information System (INIS)

    Avella, R.; Castellazzi, L.; Bassano, C.

    2001-01-01

    A virtually unthought-of world energy reserve, at least twice as large as known fossil-fuel reserves, opens new opportunities and deserves investments in research on methods for discovering and exploiting deposits, and in the development of relevant technologies [it

  2. BIOMASS UTILIZATION AS A RENEVABLE ENERGY SOURCE IN POLISH POWER INDUSTRY – CURRENT STATUS AND PERSPECTIVES

    Directory of Open Access Journals (Sweden)

    Beata Gołuchowska

    2015-06-01

    Full Text Available The depletion of the conventional energy sources, as well as the degradation and pollution of the environment by the exploitation of fossil fuels caused the development of renewable energy sources (RES, including biomass. In Poland, biomass is the most popular renewable energy source, which is closely related to the obligations associated with the membership in the EU. Biomass is the oldest renewable energy source, and its potential, diversity and polymorphism place it over other sources. Besides, the improvement in its parameters, including an increase in its calorific value, resulted in increasing use of biomass as energy source. In the electric power industry biomass is applied in the process of co-combustion with coal. This process may contribute, inter alia, to the reduction in the emissions of carbon, nitrogen and sulfur oxides. The article presents the characteristics of the biomass burned in power boilers of one of the largest Polish power plants, located in Opole Province (Southern Poland. Besides, the impact of biomass on the installation of co-combustion, as well as the advantages and disadvantages of the co-combustion process not only in technological, but also environmental, economic and social aspects were described.

  3. Fossil energy consumption and greenhouse gas emissions, including soil carbon effects, of producing agriculture and forestry feedstocks

    Science.gov (United States)

    Christina E. Canter; Zhangcai Qin; Hao Cai; Jennifer B. Dunn; Michael Wang; D. Andrew Scott

    2017-01-01

    The GHG emissions and fossil energy consumption associated with producing potential biomass sup­ply in the select BT16 scenarios include emissions and energy consumption from biomass production, harvest/collection, transport, and pre-processing activities to the reactor throat. Emissions associated with energy, fertilizers, and...

  4. The prospects for hydrogen as an energy carrier: an overview of hydrogen energy and hydrogen energy systems

    International Nuclear Information System (INIS)

    Rosen, Marc A.; Koohi-Fayegh, Seama

    2016-01-01

    Hydrogen is expected to play a key role as an energy carrier in future energy systems of the world. As fossil-fuel supplies become scarcer and environmental concerns increase, hydrogen is likely to become an increasingly important chemical energy carrier and eventually may become the principal chemical energy carrier. When most of the world's energy sources become non-fossil based, hydrogen and electricity are expected to be the two dominant energy carriers for the provision of end-use services. In such a ''hydrogen economy,'' the two complementary energy carriers, hydrogen and electricity, are used to satisfy most of the requirements of energy consumers. A transition era will bridge the gap between today's fossil-fuel economy and a hydrogen economy, in which non-fossil-derived hydrogen will be used to extend the lifetime of the world's fossil fuels - by upgrading heavy oils, for instance - and the infrastructure needed to support a hydrogen economy is gradually developed. In this paper, the role of hydrogen as an energy carrier and hydrogen energy systems' technologies and their economics are described. Also, the social and political implications of hydrogen energy are examined, and the questions of when and where hydrogen is likely to become important are addressed. Examples are provided to illustrate key points. (orig.)

  5. Sustainable energy development material management team report. Fossil business unit

    International Nuclear Information System (INIS)

    Bird, P.; Keller, P.; Manning, P.; Nolan, M.; Ricci, A.; Turnbull, F.; Varadinek, H.

    1995-01-01

    Report of the Material Management Sustainable Energy Development (SED) Team was presented, outlining strategic directions and initiative for embedding SED principles in the materials management function. Six principles underlying SED were prescribed, accompanied by a framework for analysis. Excerpts from position papers used in the formulation of SED recommendations and initiatives were provided. The general theme of the recommendations was: (1) materials management activities should be review to ensure consistency with SED, (2) strategic alliances should be developed where appropriate and (3) staff in the Fossil Business Unit should promote SED among industry suppliers

  6. DEVELOPMENT OF SAMPLING AND ANALYTICAL METHODS FOR THE MEASUREMENT OF NITROUS OXIDE FROM FOSSIL FUEL COMBUSTION SOURCES

    Science.gov (United States)

    The report documents the technical approach and results achieved while developing a grab sampling method and an automated, on-line gas chromatography method suitable to characterize nitrous oxide (N2O) emissions from fossil fuel combustion sources. The two methods developed have...

  7. Ambient measurements and source apportionment of fossil fuel and biomass burning black carbon in Ontario

    Science.gov (United States)

    Healy, R. M.; Sofowote, U.; Su, Y.; Debosz, J.; Noble, M.; Jeong, C.-H.; Wang, J. M.; Hilker, N.; Evans, G. J.; Doerksen, G.; Jones, K.; Munoz, A.

    2017-07-01

    Black carbon (BC) is of significant interest from a human exposure perspective but also due to its impacts as a short-lived climate pollutant. In this study, sources of BC influencing air quality in Ontario, Canada were investigated using nine concurrent Aethalometer datasets collected between June 2015 and May 2016. The sampling sites represent a mix of background and near-road locations. An optical model was used to estimate the relative contributions of fossil fuel combustion and biomass burning to ambient concentrations of BC at every site. The highest annual mean BC concentration was observed at a Toronto highway site, where vehicular traffic was found to be the dominant source. Fossil fuel combustion was the dominant contributor to ambient BC at all sites in every season, while the highest seasonal biomass burning mass contribution (35%) was observed in the winter at a background site with minimal traffic contributions. The mass absorption cross-section of BC was also investigated at two sites, where concurrent thermal/optical elemental carbon data were available, and was found to be similar at both locations. These results are expected to be useful for comparing the optical properties of BC at other near-road environments globally. A strong seasonal dependence was observed for fossil fuel BC at every Ontario site, with mean summer mass concentrations higher than their respective mean winter mass concentrations by up to a factor of two. An increased influence from transboundary fossil fuel BC emissions originating in Michigan, Ohio, Pennsylvania and New York was identified for the summer months. The findings reported here indicate that BC should not be considered as an exclusively local pollutant in future air quality policy decisions. The highest seasonal difference was observed at the highway site, however, suggesting that changes in fuel composition may also play an important role in the seasonality of BC mass concentrations in the near-road environment

  8. Nuclear power and other energy sources in the context of a smooth and practical social and economic development

    International Nuclear Information System (INIS)

    Sumitra, T.

    1996-01-01

    The dilemma on the adoption of nuclear energy for electricity generation has been going on for many years. On the one hand, nuclear energy is considered to be technically proven, relatively cheap and environmental friendly but concerns about the risk of a major accident and safe disposal of long-lived radioactive wastes are still controversial. On the other hand, the hope for cheap, clean and practical energy sources, such as renewable energy sources, is still alive and often cited as the real and only alternative to fossil fuels. This paper describes some arguments concerning all alternatives in the context of a smooth and practical social and economic development of a country. (author)

  9. Potency of Microalgae as Biodiesel Source in Indonesia

    Directory of Open Access Journals (Sweden)

    H Hadiyanto

    2012-02-01

    Full Text Available Within 20 years, Indonesia should find another energy alternative to substitute current fossil oil. Current use of renewable energy is only 5% and need to be improved up to 17% of our energy mix program. Even though, most of the area in Indonesia is covered by sea, however the utilization of microalgae as biofuel production is still limited. The biodiesel from current sources (Jatropha, palm oil, and sorghum is still not able to cover all the needs if the fossil oil cannot be explored anymore. In this paper, the potency of microalgae in Indonesia was analysed as the new potential of energy (biodiesel sources.

  10. Analysis of integrated energy systems

    International Nuclear Information System (INIS)

    Matsuhashi, Takaharu; Kaya, Yoichi; Komiyama, Hiroshi; Hayashi, Taketo; Yasukawa, Shigeru.

    1988-01-01

    World attention is now attracted to the concept of Novel Horizontally Integrated Energy System (NHIES). In NHIES, all fossil fuels are fist converted into CO and H 2 . Potential environmental contaminants such as sulfur are removed during this process. CO turbines are mainly used to generate electric power. Combustion is performed in pure oxygen produced through air separation, making it possible to completely prevent the formation of thermal NOx. Thus, NHIES would release very little amount of such substances that would contribute to acid rain. In this system, the intermediate energy sources of CO, H 2 and O 2 are integrated horizontally. They are combined appropriately to produce a specific form of final energy source. The integration of intermediate energy sources can provide a wide variety of final energy sources, allowing any type of fossil fuel to serve as an alternative to other types of fossil fuel. Another feature of NHIES is the positive use of nuclear fuel to reduce the formation of CO 2 . Studies are under way in Japan to develop a new concept of integrated energy system. These studies are especially aimed at decreased overall efficiency and introduction of new liquid fuels that are high in conversion efficiency. Considerations are made on the final form of energy source, robust control, acid fallout, and CO 2 reduction. (Nogami, K.)

  11. Fossil energy and GHG saving potentials of pig farming in the EU

    DEFF Research Database (Denmark)

    Nguyen, T Lan T; Mogensen, Lisbeth; Hermansen, John Erik

    2010-01-01

    ) savings can be feasibly achieved. As shown in the results of the analysis, pig farming in the EU has a high potential to reduce fossil energy use and GHG emissions by taking improvement measures in three aspects: (i) feed use; (ii) manure management; and (iii) manure utilization. In particular......In Europe, the highly developed livestock industry places a high burden on resource use and environmental quality. This paper examines pig meat production in North-West Europe as a base case and runs different scenarios to investigate how improvements in terms of energy and greenhouse gas (GHG...

  12. Annual energy review 1996

    International Nuclear Information System (INIS)

    1997-07-01

    This report presents historical energy statistics on all major energy activities. The statistics cover consumption, production, trade, stock, and prices, for all major energy commodities including fossil fuels, electricity, and renewable energy sources

  13. Annual energy review 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-07-01

    This report presents historical energy statistics on all major energy activities. The statistics cover consumption, production, trade, stock, and prices, for all major energy commodities including fossil fuels, electricity, and renewable energy sources.

  14. Solar energy and nuclear power. Energy sources, environmental pollution and CO{sub 2} - problem; Solarenergie und Atomstrom. Energiequellen, Umweltbelastung und das CO{sub 2}-Problem

    Energy Technology Data Exchange (ETDEWEB)

    Metzner, H.

    1999-07-01

    In this volume the energy sources used today and possible alternatives like solar-, wind-, and hydro power, geothermal energy and renewable fuels are presented. The environmental pollution due to fossil fuel application (e.g. sulfur- and nitrogen oxides) as the use of nuclear power are discussed in detail. An extra chapter covers the CO2 problem (greenhouse effect, ice cover on earth, sea level, influence on plant growth and agricultural crop) as climatic forecasting. [German] In diesem Band werden die heute nutzbaren Energiequellen und die dazu moeglichen Alternativen wie Solarenergie, Wind-, und Wasserkraft, Erdwaerme und nachwachsende Rohstoffe aufgezeigt. Die Umweltbelastungen aus der Nutzung fossiler Brennstoffe (z.B. Schwefel- und Stickoxide) sowie der Kernenergie sind ausfuehrlich besprochen. Dem CO2-Problem (Treibhauseffekt, Eisbedeckung der Erde, Hoehe des Meeresspiegels, Auswirkungen auf Pflanzenwuchs und Agrarertraege) sowie den Klimaprognosen ist ein eigenes Kapitel gewidmet.

  15. Back to the green jewel. After a period of using fossil fuels, Costa Rica is returning to renewable energy sources; Zurueck zum gruenen Juwel. Nach einem Ausflug zu den fossilen Brennstoffen kehrt Costa Rica zurueck zu den erneuerbaren Energien

    Energy Technology Data Exchange (ETDEWEB)

    Bosworth, Melissa

    2010-07-15

    For more than two decades now, Costa Rica has been a Mecca for eco-tourists. Deep rainforests, empty beeches and an incredible variety of species have made the country into one of the forerunners of sustainability. This picture was marred by the fact that fossil fuels were getting more attention by the government recently. Now, however, Costa Rica is returning to renewable energy sources which had already supplied 100 percent of the country's total power. The government is even considering reimbursement tariffs for solar power. (orig.)

  16. Renewable energies for the production of bricks

    International Nuclear Information System (INIS)

    Moedinger, F.

    2006-01-01

    The research for alternatives to the classical, mainly fossil, sources of energy sources within a high energy consumption sector as brick making can certainly be very rewarding. Within this framework the production of biogas by anaerobic digestion of locally available biomasses and the integration of such a facility in a brick yard where all fermentation wastes, both liquid and solid, can be used can be considered a strategic and profitable business goal: reduction of the dependence on fossil fuels. From an environmental point of view the substitution of fossil fuels with fuels from renewable sources is certainly desire able. Into account might also be taken the possible profitable trade of emission certificates of different type

  17. Origin of fine carbonaceous particulate matter in the Western Mediterranean Basin: fossil versus modern sources

    Science.gov (United States)

    Cruz Minguillón, María.; Perron, Nolwenn; Querol, Xavier; Szidat, Sönke; Fahrni, Simon; Wacker, Lukas; Reche, Cristina; Cusack, Michael; Baltensperger, Urs; Prévôt, André S. H.

    2010-05-01

    The present work was carried out in the frame of the international field campaign DAURE (Determination of the sources of atmospheric Aerosols in Urban and Rural Environments in the western Mediterranean). The objective of this campaign is to study the aerosol pollution episodes occurring at regional scale during winter and summer in the Western Mediterranean Basin. As part of this campaign, this work focuses on identifying the origin of fine carbonaceous aerosols. To this end, fine particulate matter (PM1) samples were collected during two different seasons (February-March and July 2009) at two sites: an urban site (Barcelona, NE Spain) and a rural European Supersite for Atmospheric Aerosol Research (Montseny, NE Spain). Subsequently, 14C analyses were carried out on these samples, both in the elemental carbon (EC) fraction and the organic carbon (OC) fraction, in order to distinguish between modern carbonaceous sources (biogenic emissions and biomass burning emissions) and fossil carbonaceous sources (mainly road traffic). Preliminary results from the winter period show that 40% of the OC at Barcelona has a fossil origin whereas at Montseny this percentage is 30%. These values can be considered as unexpected given the nature of the sites. Nevertheless, the absolute concentrations of fossil OC at Barcelona and Montseny differ by a factor of 2 (the first being higher), since the total OC at Montseny is lower than at Barcelona. Further evaluation of results and comparison with other measurements carried out during the campaign are required to better evaluate the origin of the fine carbonaceous matter in the Western Mediterranean Basin. Acknowledgements: Spanish Ministry of Education and Science, for a Postdoctoral Grant awarded to M.C. Minguillón in the frame of Programa Nacional de Movilidad de Recursos Humanos del Plan nacional de I-D+I 2008-2011. Spanish Ministry of Education and Science, for the Acción Complementaria DAURE CGL2007-30502-E/CLI.

  18. The prospects for hydrogen as an energy carrier: an overview of hydrogen energy and hydrogen energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Rosen, Marc A.; Koohi-Fayegh, Seama [Ontario Univ., Oshawa, ON (Canada). Inst. of Technology

    2016-02-15

    Hydrogen is expected to play a key role as an energy carrier in future energy systems of the world. As fossil-fuel supplies become scarcer and environmental concerns increase, hydrogen is likely to become an increasingly important chemical energy carrier and eventually may become the principal chemical energy carrier. When most of the world's energy sources become non-fossil based, hydrogen and electricity are expected to be the two dominant energy carriers for the provision of end-use services. In such a ''hydrogen economy,'' the two complementary energy carriers, hydrogen and electricity, are used to satisfy most of the requirements of energy consumers. A transition era will bridge the gap between today's fossil-fuel economy and a hydrogen economy, in which non-fossil-derived hydrogen will be used to extend the lifetime of the world's fossil fuels - by upgrading heavy oils, for instance - and the infrastructure needed to support a hydrogen economy is gradually developed. In this paper, the role of hydrogen as an energy carrier and hydrogen energy systems' technologies and their economics are described. Also, the social and political implications of hydrogen energy are examined, and the questions of when and where hydrogen is likely to become important are addressed. Examples are provided to illustrate key points. (orig.)

  19. Displacement efficiency of alternative energy and trans-provincial imported electricity in China

    Science.gov (United States)

    Hu, Yuanan; Cheng, Hefa

    2017-02-01

    China has invested heavily on alternative energy, but the effectiveness of such energy sources at substituting the dominant coal-fired generation remains unknown. Here we analyse the displacement of fossil-fuel-generated electricity by alternative energy, primarily hydropower, and by trans-provincial imported electricity in China between 1995 and 2014 using two-way fixed-effects panel regression models. Nationwide, each unit of alternative energy displaces nearly one-quarter of a unit of fossil-fuel-generated electricity, while each unit of imported electricity (regardless of the generation source) displaces ~0.3 unit of fossil-fuel electricity generated locally. Results from the six regional grids indicate that significant displacement of fossil-fuel-generated electricity occurs once the share of alternative energy in the electricity supply mix exceeds ~10%, which is accompanied by 10-50% rebound in the consumption of fossil-fuel-generated electricity. These findings indicate the need for a policy that integrates carbon taxation, alternative energy and energy efficiency to facilitate China's transition towards a low-carbon economy.

  20. Energy problems

    International Nuclear Information System (INIS)

    Hoefling, O.

    1980-01-01

    The physical and technical fundamentals of energy conversion are described in popular form. There are chapters on fossil nuclear, and renewable energy sources. The final chapter attempts to give a picture of the complex interactions in the fields of energy economy and energy policy. (UA) [de

  1. Reducing use of fossil energy by biological N fixation; Biologinen typensidonta fossiilisen energian saeaestaejaenae

    Energy Technology Data Exchange (ETDEWEB)

    Kankanen, H.; Suokannas, A.; Tiilikkala, K.; Nykanen, A.

    2013-06-01

    be used to mitigate greenhouse gas emissions in agriculture and horticulture. The report is based on high amount of data from different projects in MTT, being synthesized and analyzed from perspective of energy use. Special objective was to support policy making concerning fertilization, and to aid focusing research on greatest gaps in knowledge. The maximal use of biological N fixation probably has positive effects on farm economy in a long run. According to the newest literature, profitability of farming was higher with than without legumes. Further, for instance grass-based production of biogas could still improve the profitability. Fertilizers got as secondary products from bioenergy sources should be studied further. Although great lack in knowledge concerning effects on environment occurs, it seems obvious that increased use of legumes would improve C content and structure of soils. Decreasing production of synthetic fertilizers would diminish greenhouse gas emissions from industry, but effect of different plant materials and cultivation techniques on emissions from agriculture needs research. next in HiiliN project we focus on studying effects of legumes on greenhouse gas emissions, both according literature and experiments. Also management of the legume N needs studies to keep leaching as small as possible. Further, many aspects concerning practices and economy in legume usage would be worth of careful examination. In spite of above mentioned need for further studies, and of many assumptions made in our analysis, conclusions of this report are clearly justifiable. Results can be used in policy, when decisions concerning mitigating climate change are made. The report shows that use of synthetically produced fertilizer N, and thus consumption of fossil energy, is possible to be decreased markedly with help of biological N fixation. Policy making aiming at energy saves can support the change. Motivation of farmers has a great influence, when farming systems are

  2. The environmental dilemma of fossil fuels

    International Nuclear Information System (INIS)

    MacCracken, M.C.

    1992-04-01

    The increasing atmospheric concentration of carbon dioxide poses an environmental dilemma for fossil fuel energy generation that, unlike other related emissions, cannot be resolved by control technologies alone. Although fossil fuels presently provide the most cost-effective global energy source, and model projections suggest that their use is initiating climatic changes which, while quite uncertain, may induce significant, counter-balancing impacts to water resources, coastal resources, ecological systems, and possibly agricultural production. The climate model indicate that the warming should have begun, and there is some evidence for this occurring, but at a less rapid and more uneven rate than projected. In addition, different climate models are not yet in agreement in their latitudinal or regional predictions, and it will likely require a decade or more for such agreement to develop as high performance computers become available for addressing this ''grand challenge'' problem. Thus, in addition to the prospect for climatic change, the uncertainties of the changes and associated impacts contribute to the dilemma of dealing with the issue. Further, the problem is pervasive and international scope, with different countries and peoples having differing perspectives of technology, development, and environmental responsibility. Dealing with this issue will thus require creativity, commitment, and flexibility

  3. Evaluation of Energy Use in Public Housing in Lagos, Nigeria: Prospects for Renewable Energy Sources

    Directory of Open Access Journals (Sweden)

    Isidore Chukwunweike Ezema

    2016-02-01

    Full Text Available Even though domestic energy can be from either renewable or non-renewable sources, the former is preferred because of its role in reducing both the operational energy intensity and carbon footprint. Given the positive role renewable energy plays in the energy mix, this paper examined the pattern of operational energy use with particular reference to the renewable and non-renewable energy content in medium and high density public residential buildings in Lagos, Nigeria. A survey research method was adopted for primary data collection while data analysis was by descriptive statistics. The study found that renewable energy use in the residential units is very low. In contrast, there was high dependence of the occupants on non-renewable direct fuel combustion through the use of fossil fuel-driven privately-owned electricity generators for electricity supply as a result of the inadequate supply from the national grid. In addition to the relatively high operational energy intensity observed in the studied buildings, the findings have implications for the safety, health and wellbeing of the building occupants as well as for carbon emissions from the buildings and for overall environmental sustainability. Recommendations to increase renewable energy use in new buildings and as retrofits in existing buildings were made. Article History: Received Oct 18, 2015; Received in revised form January 14, 2016; Accepted January 30, 2016; Available online How to Cite This Article: Ezema, I.C., Olotuah, A.O., and Fagbenle, O.I, S. (2016 Evaluation of Energy Use in Public Housing in Lagos, Nigeria: Prospects for Renewable Energy Sources. Int. Journal of Renewable Energy Development, 5(1,15-24. http://dx.doi.org/10.14710/ijred.5.1.15-24 

  4. Potential contributions of renewable energy sources and economically and ecologically feasible development strategies for Nordrhein-Westfalen. Final report

    International Nuclear Information System (INIS)

    Mohr, M.; Skiba, M.; Gernhardt; Ziolek, A.; Unger, H.

    1995-08-01

    This final technical report of the study contains the important equations and results of the above mentioned project. The main aim of the study was to show the importance of renewable energy in Nordrhein-Westfalen regarding its possible contribution to the energy supply as well as the reduction of carbon dioxide emissions, caused by the convertion of energy. Considering the energy sources photovoltaic, solar heating, wind and biomass, an economically oriented energy mix of renewable energy systems is developed, which describes the most economical combination of renewable energy sources and its production costs in dependence on the converted energy. In this connection a regional disaggregated estimation of the theoretical possible maximum contribution of the single renewable energy sources to the energy supply in the communities of Nordrhein-Westfalen is investigated. Basing on this estimation and on the technical datas of commerical manufactured systems, converting the energy sources sun, wind and biomass, the technical possibilities for an extension of the renewable energy are determined for every community. The result of the examinations shows, that the energy supply in Nordrhein-Westfalen could by based in future on barely a fourth by using renewable energy sources, on barely a third by using energy more efficient and on nearly the half by using fossil and nuclear energy sources. The costs however, which would be connected with an extension of renewable energy sources according to the suggested energy mix, can economical not be accepted in the further future. (orig./UA) [de

  5. Diversifying bio-petro fuel sources for future energy sustainability and its challenges

    Science.gov (United States)

    Othman, M. R.; Helwani, Z.; Idris, I.

    2018-04-01

    Petroleum has been important in the energy industry since 19th century when the refining of paraffin from crude oil began. The industry recently appears to be in a downtown and fragile moment despite the price of oil is slowly rising. Renewable alternatives such as biofuels have gained increasing traction while petroleum fuel seemingly concedes to bio-fuels due to the rising public concern on the environment and stricter emission regulations. To be a strategic fuel in the energy security matrix, both fossil and bio-fuels options should be considered. However, the use of bio-fuels to achieve a degree of carbon neutrality is not without challenges. Among the challenges are land development and socio-political issue, carbon neutrality due to ILUC, high 2G bio-fuel feedstock and production cost, competing technology from electric vehicles and the impending fourth industrial revolution, NOx emissions and variation in biodiesel quality. This paper briefly reviews the potential of fuels source diversification and the challenges and how they can raise up to the challenges in order to be sustainable and attractive. In order to achieve this objective, first carbon credit through carbon trading needs to continue to stabilize the energy price. Second, 1G bio-fuel needs to forgo the use of natural, peat forest, rubber estate since these are an effective carbon sink and oxygen source. Third, advanced bio-fuels with high yield, process economics and sustainability need to be innovated. Fourth, the quality and standard bio-fuel that reduces NOx emission need to be improved. Finally and most importantly, carbon capture technology needs to be deployed immediately in fossil fuel power plants.

  6. Energy options in the United Kingdom

    Energy Technology Data Exchange (ETDEWEB)

    Evans, S C [ed.

    1975-01-01

    The United Kingdom faces two issues: how can it survive the present massive increases in oil prices and the probability of even more expensive supplies in the future or how can it adjust to the eventual exhaustion of both fossil and nuclear fuels. The theme of the symposium concerned a search for a practical alternative source of energy to fossil and nuclear fuels and which ones would work in the United Kingdom. Papers were presented entitled: Geothermal Energy; Solar Energy in Britain; and Wind and Water Sources of Energy in the United Kingdom. A final paper, High- and Low-Growth Scenarios, examined these two types for the future. Many questions, answeres and comments about energy sources are contained in a final presentation. (MCW)

  7. Real Options Analysis of Renewable Energy Investment Scenarios in the Philippines

    OpenAIRE

    Agaton, Casper

    2017-01-01

    Abstract - With the continuously rising energy demand and much dependence on imported fossil fuels, the Philippines is developing more sustainable sources of energy. Renewable energy seems to be a better alternative solution to meet the country’s energy supply and security concerns. Despite its huge potential, investment in renewable energy sources is challenged with competitive prices of fossil fuels, high start-up cost and lower feed-in tariff rates for renewables. To address these probl...

  8. TECHNOLOGICAL CHANGE during the ENERGY TRANSITION

    NARCIS (Netherlands)

    van der Meijden, Gerard; Smulders, Sjak

    2018-01-01

    The energy transition from fossil fuels to alternative energy sources has important consequences for technological change and resource extraction. We examine these consequences by incorporating a nonrenewable resource and an alternative energy source in a market economy model of endogenous growth

  9. Energy policy and climate change

    International Nuclear Information System (INIS)

    Jean-Baptiste, Ph.; Ducroux, R.

    2001-01-01

    Twenty-two billion tonnes of carbon dioxide (CO 2 ) are released in the air each year from the burning of fossil fuels. The problem of these massive emissions of CO 2 and their climatic impact have become major scientific and political issues. Future stabilization of the atmospheric CO 2 content requires a drastic decrease of CO 2 emissions worldwide. While enhancing natural carbon sinks (reforestation, soils conservation, etc...) can only buy tune for the next decades, energy savings, CO 2 capture/storage and the development of non-fossil energy sources (hydropower, nuclear, wind power,...) can be highly beneficial. In order to secure future energy needs while stabilizing the CO 2 atmospheric concentration around 550 ppm, the ratio of the CO 2 emitted per unit of energy produced must decrease from 2.6 t CO 2 /toe to 0.5-1.1 t CO 2 /toe by 2100. In a growing world economy, now dependent on fossil fuels for 90% of its energy, this will require a vast increase in the supply of carbon-free power. Among these energy sources, hydropower and nuclear energy (operated under western safety and environmental standards) are the most readily available sources capable of supplying vast amount of energy at a competitive price. Wind power is also to be encouraged, as it is expected to approach the competitiveness threshold soon. The French example, where fossil fuel CO 2 emissions were cut by 27% in a matter of a few years (1979-1986) despite increasing energy consumption, suggests that implementing CO 2 stabilization is technically feasible at a competitive price

  10. Potential of renewable energy in large fossil-fuelled boilers; Potential erneuerbarer Energien in groesseren fossilen Feuerungen

    Energy Technology Data Exchange (ETDEWEB)

    Dettli, R.; Baur, M.; Philippen, D. [Econcept AG, Zuerich (Switzerland); Kernen, M. [Planair SA, La Sagne (Switzerland)

    2007-01-15

    This comprehensive final report for the Swiss Federal Office of Energy (SFOE) presents the findings of a project that examined large heat generation systems used in Switzerland for the supply of heating services to several buildings via small and large district heating systems. Focus is placed on those using fossil fuels and the potential of using combined heat and power plants and renewable forms of energy such as heat-pumps and boilers fired with wood-chippings. The study was also extended to other large-scale, fossil-fuelled heating installations. The report discusses the setting up of a data base, the assessment of the potentials for fuel substitution, the economic viability of wood-fired systems and heat-pumps and the analysis of various factors that can obstruct the use of systems employing renewable forms of energy. Around 20 owners of large installations were interviewed on the subject. Strategic planning, studies, putting to tender, realisation and operation aspects are reviewed.

  11. Air Source Heat Pump a Key Role in the Development of Smart Buildings in Future Energy Systems

    DEFF Research Database (Denmark)

    Craciun, Vasile S.; Trifa, Viorel; Bojesen, Carsten

    2012-01-01

    An important challenge for energy systems today is reducing dependency on fossil fuels, while handling increasing penetration levels of intermittent renewables such as wind and solar power. The efficient consumption of energy is a vital mater for a sustainable energy system. A significant part...... of energy is used for space heating, space cooling, and domestic hot water production which are provided to residential and commercial buildings. Air source heat pumps (ASHP) are widely used conversion technologies all over the world for providing building thermal energy services as: cooling, heating......, and water heating. ASHP does not have a constant temperature for the primary source like: soil, ground water, or surface water heat pumps but still have a majority in usage. As result, laboratory experiments and tests are faced by the problem of having to handle a wide range of conditions under which...

  12. Power electronics for renewable energy systems

    DEFF Research Database (Denmark)

    Iov, Florin; Blaabjerg, Frede

    2009-01-01

    sources from the conventional, fossil (and short term) based energy sources to renewable energy resources. Another is to use high efficient power electronics in power generation, power transmission/distribution and end-user application. This paper discuss some of the most emerging renewable energy sources......, wind energy and photovoltaics, which by means of power electronics are changing from being minor energy sources to be acting as important power sources in the energy system....

  13. Alternative Energy Sources

    CERN Document Server

    Michaelides, Efstathios E (Stathis)

    2012-01-01

    Alternative Energy Sources is designed to give the reader, a clear view of the role each form of alternative energy may play in supplying the energy needs of the human society in the near and intermediate future (20-50 years).   The two first chapters on energy demand and supply and environmental effects, set the tone as to why the widespread use of alternative energy is essential for the future of human society. The third chapter exposes the reader to the laws of energy conversion processes, as well as the limitations of converting one energy form to another. The sections on exergy give a succinct, quantitative background on the capability/potential of each energy source to produce power on a global scale. The fourth, fifth and sixth chapters are expositions of fission and fusion nuclear energy. The following five chapters (seventh to eleventh) include detailed descriptions of the most common renewable energy sources – wind, solar, geothermal, biomass, hydroelectric – and some of the less common sources...

  14. Economic value of U.S. fossil fuel electricity health impacts.

    Science.gov (United States)

    Machol, Ben; Rizk, Sarah

    2013-02-01

    Fossil fuel energy has several externalities not accounted for in the retail price, including associated adverse human health impacts, future costs from climate change, and other environmental damages. Here, we quantify the economic value of health impacts associated with PM(2.5) and PM(2.5) precursors (NO(x) and SO(2)) on a per kilowatt hour basis. We provide figures based on state electricity profiles, national averages and fossil fuel type. We find that the economic value of improved human health associated with avoiding emissions from fossil fuel electricity in the United States ranges from a low of $0.005-$0.013/kWh in California to a high of $0.41-$1.01/kWh in Maryland. When accounting for the adverse health impacts of imported electricity, the California figure increases to $0.03-$0.07/kWh. Nationally, the average economic value of health impacts associated with fossil fuel usage is $0.14-$0.35/kWh. For coal, oil, and natural gas, respectively, associated economic values of health impacts are $0.19-$0.45/kWh, $0.08-$0.19/kWh, and $0.01-$0.02/kWh. For coal and oil, these costs are larger than the typical retail price of electricity, demonstrating the magnitude of the externality. When the economic value of health impacts resulting from air emissions is considered, our analysis suggests that on average, U.S. consumers of electricity should be willing to pay $0.24-$0.45/kWh for alternatives such as energy efficiency investments or emission-free renewable sources that avoid fossil fuel combustion. The economic value of health impacts is approximately an order of magnitude larger than estimates of the social cost of carbon for fossil fuel electricity. In total, we estimate that the economic value of health impacts from fossil fuel electricity in the United States is $361.7-886.5 billion annually, representing 2.5-6.0% of the national GDP. Published by Elsevier Ltd.

  15. Hinkley Point 'C' power station public inquiry: proof of evidence on comparison of non-fossil options to Hinkley Point 'C'

    International Nuclear Information System (INIS)

    Goddard, S.C.

    1988-09-01

    A public inquiry has been set up to examine the planning application made by the Central Electricity Generating Board (CEGB) for the construction of a 1200 MW Pressurized Water Reactor power station at Hinkley Point (Hinkley Point ''C'') in the United Kingdom. This evidence to the Inquiry sets out and explains the non-fossil fuel options, with particular reference to renewable energy sources and other PWR locations; gives feasibility, capital cost, performance and total resource estimates for the renewable sources; and shows that no other non-fossil fuel source is to be preferred to Hinkley Point ''C''. (author)

  16. Past, present and future of the fossil energies; Pasado, presente y futuro de las energias fosiles

    Energy Technology Data Exchange (ETDEWEB)

    Diaz Fernandez, J. L.

    2004-07-01

    This article discusses on the energy that is the motor of the world, without which it would not be possible to enjoy the quality of life that we have. It will be centred fundamentally in the fossil energies, so insulted today but that are the ones that have allowed the extraordinary economic developing of the Humanity. (Author) 29 refs.

  17. Energy. From natural sources to production challenges

    International Nuclear Information System (INIS)

    2002-09-01

    Human beings have always needed energy to feed themselves and move about. Energy can be found in various forms. Today's technologies are capable of tapping all possible resources (e.g. fossil fuels, water, wind, sun) to produce large quantities of energy. Now, at the start of the 21. century, energy remains essential for mankind. It represents a major political, economic, scientific and environmental challenge. Of the many properties found in material objects, energy is not only one of the most important but also one of the most abstract, since it is not actually tangible. (authors)

  18. The challenges of reducing greenhouse gas emissions and air pollution through energy sources: evidence from a panel of developed countries.

    Science.gov (United States)

    Akhmat, Ghulam; Zaman, Khalid; Shukui, Tan; Sajjad, Faiza; Khan, Muhammad Azhar; Khan, Muhammad Zahir

    2014-06-01

    The objective of the study is to investigate the long-run relationship between climatic factors (i.e., greenhouse gas emissions, agricultural methane emissions, and industrial nitrous oxide emission), air pollution (i.e., carbon dioxide emissions), and energy sources (i.e., nuclear energy; oil, gas, and coal energy; and fossil fuel energy) in the panel of 35 developed countries (including EU-15, new EU member states, G-7, and other countries) over a period of 1975-2012. In order to achieve this objective, the present study uses sophisticated panel econometric techniques including panel cointegration, panel fully modified OLS (FMOLS), and dynamic OLS (DOLS). The results show that there is a long-run relationship between the variables. Nuclear energy reduces greenhouse gases and carbon emissions; however, the other emissions, i.e., agricultural methane emissions and industrial nitrous oxide, are still to increase during the study period. Electricity production from oil, gas, and coal sources increases the greenhouse gases and carbon emissions; however, the intensity to increase emissions is far less than the intensity to increase emissions through fossil fuel. Policies that reduce emissions of greenhouse gases can simultaneously alter emissions of conventional pollutants that have deleterious effects on human health and the environment.

  19. Technological Change during the Energy Transition

    NARCIS (Netherlands)

    van der Meijden, G.C.; Smulders, J.A.

    2014-01-01

    The energy transition from fossil fuels to alternative energy sources has important consequences for technological change and resource extraction. We examine these consequences by incorporating a non-renewable resource and an alternative energy source in a market economy model of endogenous growth

  20. Technological Change During the Energy Transition

    NARCIS (Netherlands)

    van der Meijden, G.C.; Smulders, Sjak A.

    2014-01-01

    The energy transition from fossil fuels to alternative energy sources has important consequences for technological change and resource extraction. We examine these consequences by incorporating a non-renewable resource and an alternative energy source in a market economy model of endogenous growth

  1. The challenge to keep nuclear fusion alive as a future energy source

    International Nuclear Information System (INIS)

    D'haeseleer, W.D.

    1999-01-01

    Few people are preoccupied with the energy issue. Indeed, inflation-corrected energy prices (in euros) are currently lower than before the first oil crisis of 1973; the annual growth rate of primary-energy use in the industrialized world has diminished considerably compared to before 1970, and oil and gas production is characterized by increased exploration activity and a wider geographical spread. Nevertheless, there is a real energy issue. If the greenhouse effect turns out to be real, then mankind should at least slow down the consumption of fossil fuels. Given the fact that world energy consumption (especially by the developing countries) will rise in the future, and that nuclear fission power has become unpopular in the western world, the idea reigning in some circles to cope with this situation by total reliance on energy savings and renewable energy sources comes close to wishful thinking. A realistic analysis makes it clear that there will be a need for large workhorses for electricity generation to keep the overall electricity grid sufficiently robust. From a global and long-term perspective, the logical conclusion is the following: because mankind cannot count on the continued use of fossil fuels (due to the finiteness of the resources combined with the possible climate change effects), our generation has the responsibility to develop alternative energy sources for the distant future. Many parallel lines of research and development therefore need be pursued; because of the uncertainties with other alternative sources, it would be irresponsible to kill some of these development lines. This holds for renewable sources, the nuclear fission breeder, and for nuclear fusion. A major hurdle for the survival of long term energy research and development is the liberalization of the electricity market. Because of the revolutionary changes taking place, utilities concentrate on cost cutting and short-term survival. In addition, they are no longer supposed to take

  2. Contenu énergétique des alcools d'origine fossile ou biomasse Energy Content of Alcohols of Fossil Or Biomass Origin

    Directory of Open Access Journals (Sweden)

    Arlie J. P.

    2006-11-01

    Full Text Available En utilisant une méthode basée sur le contenu énergétique, défini comme étant la quantité d'énergie mise en oeuvre dans le processus de fabrication depuis la matière première jsuqu'au produit considéré, on compare les filières de production basées sur des matières premières soit d'origine fossile, soit d'origine biomasse. Ces filières peuvent être utilisées pour produire les divers alcools que sont le méthanol, l'éthanol et le butanol. II est montré, qu'en l'état actuel des technologies de fabrication, la comparaison énergétique est très en faveur de la filière matière première renouvelable qui fait apparaître un gain énergétique qui varie suivant les cas étudiés entre 0,1 et 1,5 tep par tonne de produit. Production routes based on raw materials from either fossil or biomass origin are compared using a method based on the energy content, which is defined as being the amount of energy implemented in the manufacturing process starting with the raw material and going to the product being considered. These routes can be used to produce different alcohols such as methanol, ethanol and butanol. Given the current state of manufacturing technologies, this article shows that an energy comparison is highly in favor of the renewable raw-material route which shows an energy gain that varies, according to the cases examined, between 0. 1 and 1. 5 tOE per ton of product.

  3. A law of energy

    International Nuclear Information System (INIS)

    Geel, Pieter van

    2004-01-01

    Developing countries have a right to economic growth, and to achieve that they need energy. Without it they cannot bring about poverty reduction or meet the Millennium Development Goals. Two billion people have no access to modern forms of energy. Private enterprise cannot operate without it. Research shows that recurrent power outages inflict severe financial damage on businesses. And schools and health care institutions can clearly provide better services if they have access to power supplies. At the same time, we have to realize that our growing energy consumption is already causing environmental and health problems and damaging our economies. Poorer populations tend to use wood and charcoal as their main energy sources, but indoor wood fires lead to health difficulties, especially among women and children. According to the World Health Organization (WHO), around 1.6 million people die every year as a result of indoor air pollution. Use of fossil fuels for large-scale power generation and transport is also a source of air pollution, especially in cities in developing countries. According to the World Energy Assessment (2000), urban air pollution caused primarily by emissions from fossil fuels and motorized transport leads to around 800,000 deaths a year worldwide. Consumption of fossil fuels also leads to emissions of the greenhouse gases that cause climate change. More effort is needed to promote the use of renewable energy sources, so that they can eventually meet a greater proportion of our needs. For the next 30 to 50 years, however, there will be no realistic prospect of meeting all of our energy requirements through renewables. So we must also work on energy efficiency, cleaner fuels and modern fossil fuels

  4. Multi-source energy networks for cargo Vessels

    Directory of Open Access Journals (Sweden)

    Sanjana Ahmed

    2016-10-01

    Full Text Available The paper discusses the feasibility of installing renewable energy generation technologies on sea-going transport, taking into account the additional weight and power consumption. This study in based on the power management of a 26,198 tonne commercial chemical tanker. The management system would aim at reducing the number of generators as well as the power required from burning fossil fuels. After a process of elimination of potential technologies based on feasibility of the project and shipboard application, the work is focused towards photovoltaic and wind energy generation in combination with fossil fueled engines and Li-ion battery storage covering the higher energy density needs, and the intermittent nature of renewables. The network architecture is optimized in order to have the highest efficiency, and reduced system weight. The results show that successful management of the system can lead to reduction in generator requirement, and energy despite the weight of extra installations of photovoltaic and wind energy generation systems. By reducing the number of generators and allowing each remaining one to operate near their maximum power, the specific fuel consumption is improved, the efficiency is increased, resulting in significant fuel and cost saving, along with the mass of fuel to be carried on-board.

  5. Hydrogen as a renewable and sustainable solution in reducing global fossil fuel consumption

    International Nuclear Information System (INIS)

    Midilli, Adnan; Dincer, Ibrahim

    2008-01-01

    In this paper, hydrogen is considered as a renewable and sustainable solution for reducing global fossil fuel consumption and combating global warming and studied exergetically through a parametric performance analysis. The environmental impact results are then compared with the ones obtained for fossil fuels. In this regard, some exergetic expressions are derived depending primarily upon the exergetic utilization ratios of fossil fuels and hydrogen: the fossil fuel based global waste exergy factor, hydrogen based global exergetic efficiency, fossil fuel based global irreversibility coefficient and hydrogen based global exergetic indicator. These relations incorporate predicted exergetic utilization ratios for hydrogen energy from non-fossil fuel resources such as water, etc., and are used to investigate whether or not exergetic utilization of hydrogen can significantly reduce the fossil fuel based global irreversibility coefficient (ranging from 1 to +∞) indicating the fossil fuel consumption and contribute to increase the hydrogen based global exergetic indicator (ranging from 0 to 1) indicating the hydrogen utilization at a certain ratio of fossil fuel utilization. In order to verify all these exergetic expressions, the actual fossil fuel consumption and production data are taken from the literature. Due to the unavailability of appropriate hydrogen data for analysis, it is assumed that the utilization ratios of hydrogen are ranged between 0 and 1. For the verification of these parameters, the variations of fossil fuel based global irreversibility coefficient and hydrogen based global exergetic indicator as the functions of fossil fuel based global waste exergy factor, hydrogen based global exergetic efficiency and exergetic utilization of hydrogen from non-fossil fuels are analyzed and discussed in detail. Consequently, if exergetic utilization ratio of hydrogen from non-fossil fuel sources at a certain exergetic utilization ratio of fossil fuels increases

  6. Comparing nuclear power with other energy sources

    International Nuclear Information System (INIS)

    Rey, Francisco C.

    2001-01-01

    The economics of electric generation of nuclear, hydro, oil and gas origin are compared. A similar comparison is also made from the health and environment standpoint for the fossil, nuclear, solar and wind generation. A risk assessment for energies of different origin is outlined and the significance of the greenhouse effect is emphasised. A comprehensive economic and environmental evaluation is recommended for the energy planning

  7. Understanding social acceptance of electricity generation sources

    International Nuclear Information System (INIS)

    Bronfman, Nicolás C.; Jiménez, Raquel B.; Arévalo, Pilar C.; Cifuentes, Luis A.

    2012-01-01

    Social acceptability is a determinant factor in the failure or success of the government's decisions about which electricity generation sources will satisfy the growing demand for energy. The main goal of this study was to validate a causal trust-acceptability model for electricity generation sources. In the model, social acceptance of an energy source is directly caused by perceived risk and benefit and also by social trust in regulatory agencies (both directly and indirectly, through perceived risk and benefit). Results from a web-based survey of Chilean university students demonstrated that data for energy sources that are controversial in Chilean society (fossil fuels, hydro, and nuclear power) fit the hypothesized model, whereas data for non conventional renewable energy sources (solar, wind, geothermal and tidal) did not. Perceived benefit had the greatest total effect on acceptability, thus emerging as a key predictive factor of social acceptability of controversial electricity generation sources. Further implications for regulatory agencies are discussed. - Highlights: ► We tested a causal trust-acceptability model for electricity generation sources in Chile. ► Data for controversial energy sources in the Chilean society (fossil fuels, hydro and nuclear power) fit the hypothesized model. ► Data for non conventional renewable energy sources did not fit the data. ► Perceived benefit showed the greatest total effect on acceptability.

  8. Energy policy in Maghreb

    International Nuclear Information System (INIS)

    Rabah, S.

    1993-01-01

    This paper presents energy policy in Algeria, Morocco and Tunisia. Statistical data on fossil fuels reserves and renewable energy sources are given. This paper describes also energy consumption and energy conservation, power generation and interconnected power systems. 5 tabs

  9. The future of oil: unconventional fossil fuels.

    Science.gov (United States)

    Chew, Kenneth J

    2014-01-13

    Unconventional fossil hydrocarbons fall into two categories: resource plays and conversion-sourced hydrocarbons. Resource plays involve the production of accumulations of solid, liquid or gaseous hydro-carbons that have been generated over geological time from organic matter in source rocks. The character of these hydrocarbons may have been modified subsequently, especially in the case of solids and extra-heavy liquids. These unconventional hydrocarbons therefore comprise accumulations of hydrocarbons that are trapped in an unconventional manner and/or whose economic exploitation requires complex and technically advanced production methods. This review focuses primarily on unconventional liquid hydro-carbons. The future potential of unconventional gas, especially shale gas, is also discussed, as it is revolutionizing the energy outlook in North America and elsewhere.

  10. Consumption of forest chips as an energy source as part of the national action plan for renewable energy

    International Nuclear Information System (INIS)

    Ylitalo, E.

    2004-01-01

    A specific Action Plan for Renewable Energy was introduced in 1999 in order to increase the utilisation of renewable energy sources in Finland. The Plan was renewed in 2002, taking into account a revision of the goals defined in the statements given by the Parliament in the de-bate on national Climate Strategy and the decision on building a new nuclear power plant. The main reason for increasing the consumption of renewable energy is the aim of decreasing emissions of greenhouse gases caused by fossil fuels. The renewed Action Plan includes aims and means of how to increase the consumption of renewable energy in practice in the future. Specific goals for separate renewable energy sources were set for the years 2005, 2010 and 2025. Proportional targets were set for the consumption of forest chips: in 2010 consumption is expected to be four times larger than in 2001 and in 2025 seven times larger. In Finland, the most important source for renewable energy is wood and wood waste, which currently makes up approximately 20 per cent of total energy consumption. Wood waste (incl. waste liquor and solid wood waste) produced by the forest industries can be considered as being fully utilized at the moment. Therefore, the most important means of increasing the consumption of wood energy in the future is in the utilisation of forest chips resources. Since 2000, the Finnish Forest Re-search Institute has compiled statistics on the consumption of forest chips and forest industry by-products used in energy generation. One aim of these statistics is to monitor the fruition of the Action Plan mentioned. In 2003, the volume of forest chips consumed in energy generation was 2.1 mill. m3, i.e. approximately five per cent of all energy sources consumed. According to the statistics, the consumption of forest chips has doubled during the period 2000-2003 with an annual average increase of 0.4 mill. m 3 . The goals set in the Action Plan can be considered to be high. In order to achieve

  11. Reducing global warming through the provision of hydrogen from non-fossil fuels

    International Nuclear Information System (INIS)

    1993-04-01

    Concern has increased in recent years regarding the rising atmospheric concentration of carbon dioxide and its potential effect on future global climate. One element of strategies for the reduction of CO 2 emissions would be to increase the proportion of energy derived from non-fossil energy sources. This option has led to renewed interest in the use of hydrogen as an energy vector which could facilitate the transfer of non-fossil energy into a wider range of end-use sectors. To assess, in this context, the potential role of non-fossil-fuel hydrogen (NFFH), published information on the costs and performance of technologies for the production, storage, distribution and utilisation of hydrogen has been reviewed in this study. These data have been used in a model of the UK energy system to investigate the potential contributions of the various hydrogen technologies, over a 50 year timeframe, and with different levels of constraint imposed on the rate of CO 2 release. Finally, to set these reduced CO 2 release rates in the context of the resultant reduction in global warming commitment, a further modelling study has been made to estimate the residual transient warming to 2050, assuming the world as a whole follows the same CO 2 emission profiles as modelled for the UK. This 259 page report of the study contains extensive tables of data and references, and a glossary of terms, units and conversion factors. (author)

  12. Impact of operational factors on fossil energy inputs in motor-manual tree felling and processing: results of two case studies

    Directory of Open Access Journals (Sweden)

    Gheorghe Ignea

    2017-07-01

    Full Text Available In many cases tree felling and processing operations are carried out motor-manually and knowledge about fossil fuel consumption and direct energy inputs when using such equipment is required for different purposes starting with operational costing and ending with environmental assessment of forest operations. In this study, fuel mixture, chain oil and direct fossil energy inputs were evaluated for two chainsaws which were used to fell and process trees in two silvicultural systems. The results of this study suggest that there is a strong dependence relation between selected tree size variables such as the diameter at breast height and tree volume on one hand and the fuel mixture, chain oil and direct fossil energy inputs when felling and processing broadleaved hardwood and resinous softwood trees on the other hand. For the broadleaved trees (mean tree volume of 1.50 m3 × tree-1, DBH of 45.5 cm and tree height of 21.84 m the mean direct fossil energy input was of 3.86 MJ m-3 while for resinous trees (mean tree volume of 1.77 m3 tree-1, DBH of 39.28 cm and tree height of 32.49 m it was of 3.93 MJ m-3. Other variables, including but not limited to the technology used, work experience and procedural pattern, may influence the mentioned figures and extensive studies are required to clarify their effects.

  13. Fossil Energy Advanced Research and Technology Development Materials Program. Semiannual progress report for the period ending September 30, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Cole, N.C.; Judkins, R.R. [comps.

    1992-12-01

    Objective of this materials program is to conduct R and D on materials for fossil energy applications with focus on longer-term and generic needs of the various fossil fuel technologies. The projects are organized according to materials research areas: (1) ceramics, (2) new alloys: iron aluminides, advanced austenitics and chromium niobium alloys, and (3) technology development and transfer. Separate abstracts have been prepared.

  14. Displacement efficiency of alternative energy and trans-provincial imported electricity in China.

    Science.gov (United States)

    Hu, Yuanan; Cheng, Hefa

    2017-02-17

    China has invested heavily on alternative energy, but the effectiveness of such energy sources at substituting the dominant coal-fired generation remains unknown. Here we analyse the displacement of fossil-fuel-generated electricity by alternative energy, primarily hydropower, and by trans-provincial imported electricity in China between 1995 and 2014 using two-way fixed-effects panel regression models. Nationwide, each unit of alternative energy displaces nearly one-quarter of a unit of fossil-fuel-generated electricity, while each unit of imported electricity (regardless of the generation source) displaces ∼0.3 unit of fossil-fuel electricity generated locally. Results from the six regional grids indicate that significant displacement of fossil-fuel-generated electricity occurs once the share of alternative energy in the electricity supply mix exceeds ∼10%, which is accompanied by 10-50% rebound in the consumption of fossil-fuel-generated electricity. These findings indicate the need for a policy that integrates carbon taxation, alternative energy and energy efficiency to facilitate China's transition towards a low-carbon economy.

  15. The future of energy

    CERN Document Server

    Towler, Brian F

    2014-01-01

    Using the principle that extracting energy from the environment always involves some type of impact on the environment, The Future of Energy discusses the sources, technologies, and tradeoffs involved in meeting the world's energy needs. A historical, scientific, and technical background set the stage for discussions on a wide range of energy sources, including conventional fossil fuels like oil, gas, and coal, as well as emerging renewable sources like solar, wind, geothermal, and biofuels. Readers will learn that there are no truly ""green"" energy sources-all energy usage involves some trad

  16. Use of wood as an energy source in the state of Maine

    Energy Technology Data Exchange (ETDEWEB)

    von Foerster, T.

    1978-09-01

    A detailed study is presented of the availability and use of wood as an energy resource for the State of Maine. Although there are no good data on the total resources of Maine's forests, the best estimates indicate that one could obtain about 1/2 quad (10/sup 15/ Btu) per year from thinning overstocked stands and harvesting dead trees; current logging operations could produce about the same amount of energy in the form of logging residues and thinnings, an amount that could be increased manyfold by intensive forest management. The costs of wood for fuel can be estimated on the basis of current logging and transportation costs. The corresponding energy prices, while high, are competitive with current fossil fuel prices. Using any energy source requires not only the fuel but also a furnace. The total energy costs are thus not only the cost of current fuel use but also those of the capital investment in the furnace. We have estimated these for systems of two sizes, one for a small house, the other for an apartment building or small commercial establishment. In both cases, our estimated indicate, that woodfueled systems can be economically competitive. Wood is currently used as a fuel on a large scale in the pulp and paper industry. With some increase in wood harvesting efforts and some alterations of furnaces that industry could achieve energy self sufficiency. Other large-scale uses are still speculative but deserve further investigation. A state-owned energy corporation could serve to provide a market for currently wasted wood and to investigate the conversion of wood to other forms of energy. The combustion of wood is not associated with environmental effects that are different kind in magnitude from those associated with the combustion of fossil fuel.

  17. Synergistic production of hydrogen using fossil fuels and nuclear energy application of nuclear-heated membrane reformer

    International Nuclear Information System (INIS)

    Hori, M.; Matsui, K.; Tashimo, M.; Yasuda, I.

    2004-01-01

    Processes and technologies to produce hydrogen synergistically by the steam reforming reaction using fossil fuels and nuclear heat are reviewed. Formulas of chemical reactions, required heats for reactions, saving of fuel consumption or reduction of carbon dioxide emission, possible processes and other prospects are examined for such fossil fuels as natural gas, petroleum and coal. The 'membrane reformer' steam reforming with recirculation of reaction products in a closed loop configuration is considered to be the most advantageous among various synergistic hydrogen production methods. Typical merits of this method are: nuclear heat supply at medium temperature below 600 deg. C, compact plant size and membrane area for hydrogen production, efficient conversion of feed fuel, appreciable reduction of carbon dioxide emission, high purity hydrogen without any additional process, and ease of separating carbon dioxide for future sequestration requirements. With all these benefits, the synergistic production of hydrogen by membrane reformer using fossil fuels and nuclear energy can be an effective solution in this century for the world which has to use. fossil fuels any way to some extent while reducing carbon dioxide emission. For both the fossil fuels industry and the nuclear industry, which are under constraint of resource, environment and economy, this production method will be a viable symbiosis strategy for the coming hydrogen economy era. (author)

  18. New renewable energy sources

    International Nuclear Information System (INIS)

    2001-06-01

    This publication presents a review of the technological, economical and market status in the field of new renewable energy sources. It also deals briefly with the present use of energy, external conditions for new renewable energy sources and prospects for these energy sources in a future energy system. The renewable energy sources treated here are ''new'' in the sense that hydroelectric energy technology is excluded, being fully developed commercially. This publication updates a previous version, which was published in 1996. The main sections are: (1) Introduction, (2) Solar energy, (3) Bio energy, (4) Wind power, (5) Energy from the sea, (6) Hydrogen, (7) Other new renewable energy technologies and (8) New renewable s in the energy system of the future

  19. The Potential and Utilization of Unused Energy Sources for Large-Scale Horticulture Facility Applications under Korean Climatic Conditions

    Directory of Open Access Journals (Sweden)

    In Tak Hyun

    2014-07-01

    Full Text Available As the use of fossil fuel has increased, not only in construction, but also in agriculture due to the drastic industrial development in recent times, the problems of heating costs and global warming are getting worse. Therefore, introduction of more reliable and environmentally-friendly alternative energy sources has become urgent and the same trend is found in large-scale horticulture facilities. In this study, among many alternative energy sources, we investigated the reserves and the potential of various different unused energy sources which have infinite potential, but are nowadays wasted due to limitations in their utilization. In addition, we utilized available unused energy as a heat source for a heat pump in a large-scale horticulture facility and analyzed its feasibility through EnergyPlus simulation modeling. Accordingly, the discharge flow rate from the Fan Coil Unit (FCU in the horticulture facility, the discharge air temperature, and the return temperature were analyzed. The performance and heat consumption of each heat source were compared with those of conventional boilers. The result showed that the power load of the heat pump was decreased and thus the heat efficiency was increased as the temperature of the heat source was increased. Among the analyzed heat sources, power plant waste heat which had the highest heat source temperature consumed the least electric energy and showed the highest efficiency.

  20. Fossil Fuels, Backstop Technologies, and Imperfect Substitution

    NARCIS (Netherlands)

    van der Meijden, G.C.; Pittel, Karen; van der Ploeg, Frederick; Withagen, Cees

    2014-01-01

    This chapter studies the transition from fossil fuels to backstop technologies in a general equilibrium model in which growth is driven by research and development. The analysis generalizes the existing literature by allowing for imperfect substitution between fossil fuels and the new energy

  1. Fossil fuel power plant combustion control: Research in Italy

    International Nuclear Information System (INIS)

    Pasini, S.; Trebbi, G.

    1991-01-01

    Electric power demand forecasts for Italy to the year 2000 indicate an increase of about 50% which, due to the current moratorium on nuclear energy, should be met entirely by fossil fuel power plants. Now, there is growing public concern about possible negative health impacts due to the air pollution produced through the combustion of fossil fuels. In response to these concerns, ENEL (Italian National Electricity Board) is investing heavily in air pollution abatement technology R ampersand D. The first phase involves the investigation of pollution mechanisms in order to develop suitable mathematical models and diagnostic techniques. The validity of the models is being tested through through measurements made by sophisticated instrumentation placed directly inside the combustion chambers of steam generator systems. These are allowing engineers to develop improved combustion control methods designed to reduce air pollution at source

  2. REAL OPTIONS ANALYSIS OF RENEWABLE ENERGY INVESTMENT SCENARIOS IN THE PHILIPPINES

    Directory of Open Access Journals (Sweden)

    Casper Agaton

    2017-12-01

    Full Text Available Abstract - With the continuously rising energy demand and much dependence on imported fossil fuels, the Philippines is developing more sustainable sources of energy. Renewable energy seems to be a better alternative solution to meet the country’s energy supply and security concerns. Despite its huge potential, investment in renewable energy sources is challenged with competitive prices of fossil fuels, high start-up cost and lower feed-in tariff rates for renewables. To address these problems, this study aims to analyze energy investment scenarios in the Philippines using real options approach. This compares the attractiveness of investing in renewable energy over continuing to use coal for electricity generation under uncertainties in coal prices, investments cost, electricity prices, growth of investment in renewables, and imposing carbon tax for using fossil fuels.

  3. Environmentally-acceptable fossil energy site evaluation and selection: methodology and user's guide. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Northrop, G.M.

    1980-02-01

    This report is designed to facilitate assessments of environmental and socioeconomic impacts of fossil energy conversion facilities which might be implemented at potential sites. The discussion of methodology and the User's Guide contained herein are presented in a format that assumes the reader is not an energy technologist. Indeed, this methodology is meant for application by almost anyone with an interest in a potential fossil energy development - planners, citizen groups, government officials, and members of industry. It may also be of instructional value. The methodology is called: Site Evaluation for Energy Conversion Systems (SELECS) and is organized in three levels of increasing sophistication. Only the least complicated version - the Level 1 SELECS - is presented in this document. As stated above, it has been expressly designed to enable just about anyone to participate in evaluating the potential impacts of a proposed energy conversion facility. To accomplish this objective, the Level 1 calculations have been restricted to ones which can be performed by hand in about one working day. Data collection and report preparation may bring the total effort required for a first or one-time application to two to three weeks. If repeated applications are made in the same general region, the assembling of data for a different site or energy conversion technology will probably take much less time.

  4. Contribution of electric energy to the process of elimination of low emission sources in Cracow

    Energy Technology Data Exchange (ETDEWEB)

    Lach, J.; Mejer, T.; Wybranski, A. [Power Distribution Plant, Cracow (Poland)

    1995-12-31

    At present energy supply belongs to the most important global problems. A significant part of energy is consumed for residential heating purposes. Depending on climatic conditions, fuel distribution and the level of technological development, the contribution of these purposes ranges between ca. 50% (Poland) and ca. 12% (Spain). The power engineering structure in Poland is based almost exclusively upon solid fuels, i.e. hard and brown coal. Chemical compounds (carbon dioxide, sulfur dioxide and nitrogen oxides) produced in combustion process influence negatively the natural environment. The contribution of residential heating in this negative effect is rather significant. Because of the fact, that the resources of fossil fuels (the most important source of energy at present) are limited and their influence on natural environment is negative, efforts are made to find out more effective ways of energy consumption and to reduce the pollutant emission from heating sources. This problem is a topical issue in Cracow, especially during the heating season because the coal-fired stoves situated in the central part of the town remain the most important source of pollutant emission. These sources cause serious menace to the health of inhabitants; furthermore the pollutants destroy Cracow monuments entered in the UNESCO world list of human heritage.

  5. Clay and clay-supported materials for clean energy storage applications

    CSIR Research Space (South Africa)

    Musyoka, Nicholas M

    2015-01-01

    Full Text Available The dwindling fossil energy reserves together with the need to find cleaner energy sources have intensified investigations for alternative energy sources. Solar energy, batteries and hydrogen have featured prominently amongst the most promising...

  6. Environmental audit: Fossil energy sites in Wyoming

    International Nuclear Information System (INIS)

    1992-08-01

    This report documents the results of the Comprehensive Baseline Environmental Audit completed for Selected Fossil Energy Sites in Wyoming. During this Audit, facilities, field sites, and activities were investigated and inspected in several areas of Wyoming that are considered to be representative of offsite work falling under the purview of the Morgantown Energy Technology Center (METC) in Morgantown, West Virginia. Department of Energy (DOE) personnel at METC and at the Liquid Fuels Technology Branch (LFTB) in Laramie, Wyoming were interviewed as were DOE contractors and Federal and state regulators. Extensive document review was also a key part of this Audit. The on-site portion of the Audit occurred in Morgantown from May 18 to 22, 1992, and throughout Wyoming from May 26 through June 10, 1992. EH-24 carries out independent assessments of DOE facilities and DOE-funded off-site activities as part of the Assistant Secretary's Environmental Audit Program. That program is designed to evaluate the status of facilities and activities regarding compliance with environmental laws, regulations, DOE Directives, formal written procedures, compliance agreements, and Best Management Practices (BMPs). This internal oversight function plays an important role in improving the compliance status of DOE operations. The Audit stresses the fact that it is the responsibility of line management to conduct operations in an environmentally sound and safe manner. The scope of this Environmental Audit was comprehensive, covering all areas of environmental activities and waste management operations with the exception of the National Environmental Policy Act (NEPA), which is beyond the purview of EH-24. Specifically included within this Audit were Air, Soils/Sediment/Biota, Surface Water/Drinking Water, Groundwater, Waste Management, Toxic and Chemical Materials, Quality Assurance, Radiation, Inactive Waste Sites, and Environmental Management

  7. Renewable energy

    International Nuclear Information System (INIS)

    Berghmans, J.

    1994-01-01

    Renewable energy sources have a small environmental impact and can be easily integrated within existing structures. Moreover, the use of renewable energy sources can contribute to achieve a zero emission of carbon dioxide by 2100, provided an efficient environmental policy during the next 40 years. This includes a correct pricing policy of renewable energy sources with respect to nuclear energy and fossil fuel. The latter energy sources have been favoured in the past. In addition, an open market policy, the restructuring or conversion of existing international energy institutes, and international treaties for the protection of the natural environment are needed in view of achieving the zero carbon dioxide emission objective. (A.S.)

  8. Wind energy, electricity, and hydrogen in the Netherlands

    NARCIS (Netherlands)

    Schenk, Niels J.; Moll, Henri C.; Potting, José; Benders, René M.J.

    2007-01-01

    The curbing of greenhouse gases (GHG) is an important issue on the international political agenda. The substitution of fossil fuels by renewable energy sources is an often-advocated mitigation strategy. Wind energy is a potential renewable energy source. However, wind energy is not reliable since

  9. Carbon dioxide emissions from non-energy use of fossil fuels. Summary of key issues and conclusions from the country analyses

    International Nuclear Information System (INIS)

    Patel, Martin; Neelis, Maarten; Gielen, Dolf; Olivier, Jos; Simmons, Tim; Theunis, Jan

    2005-01-01

    The non-energy use of fossil fuels is a source of carbon dioxide (CO 2 ) emissions that is not negligible and has been increasing substantially in the last three decades. Current emission estimates for this source category are subject to major uncertainties. One important reason is that non-energy use as published in energy statistics is not defined in a consistent manner, rendering calculation results based on these data incomparable across countries (concerns in particular the Intergovernmental Panel on Climate Change (IPCC) Reference Approach). Further reasons are the complexity and interlinkage of the energy and material flows in the chemical/petrochemical sector and the current use of storage fractions as default values in the IPCC Reference Approach, which are based on a different definition of storage and refer to other flows than those available from energy statistics. Several other shortcomings of the IPCC Reference Approach are identified in this paper, e.g. the fact that it neglects international trade of synthetic organic products. In order to improve emissions accounting, the Non-Energy Use and CO 2 Emissions (NEU-CO 2 ) network developed a model called Non-Energy Use Emission Accounting Tables (NEAT), which is based on Material Flow Analysis (MFA). The NEAT model and other MFA approaches have been applied to several countries. In this paper, the results for Italy, Japan, Korea, the Netherlands and the USA are compared with the values published in National Communications to the United Framework Convention on Climate Change (UNFCCC). It is shown that the international harmonisation of the data sources (energy statistics) and the methods applied would lead to substantially different emissions results for some countries, in the order of several percent. Moreover, the NEAT model and the other MFA have proved to be a valuable tool to identify errors in energy statistics. These results confirm the need for enhanced efforts to improve and harmonise energy

  10. Renewable energies - Situation and perspectives

    International Nuclear Information System (INIS)

    Acket, Claude; Vaillant, Jacques

    2011-01-01

    The world has to face increasing energy needs while it is today dependent of fossil fuels at 80%. Getting out of the fossil fuels dependence model requires an important effort to promote the energy saving and the carbon-free energies as well, and in particular the renewable energy sources. Taking all this information into account, the authors evaluate the global share that renewable energies could represent in the energy mix, in France and in the entire world. This share represents today only 10% of the energy consumed, but will it remain marginal or will it become important and eventually prominent? (J.S.)

  11. Reducing the CO2 emissions from fossil fuel power plans by exhaust gas treatment

    International Nuclear Information System (INIS)

    David, Elena

    2007-01-01

    The emission of carbon dioxide (CO 2 ) and other pollutants which result from burning fossil fuels has been identified as the major contributor to global warming and climate change. However, for the short term, at least for the next 10-20 years, the world will continue to rely on fossil fuels as the source of primary energy. The challenge for the fossil the fuel industry is to find cost-effective solutions that will reduce the release of CO 2 and other pollutants into the atmosphere. The focus of this paper is on the ability to treat the exhaust gas from fossil fuel power plants in order to capture and store the CO 2 and remove the other pollutants such as SO x and NO x which are released into the atmosphere. In summary, capture/separation costs represent the largest financial impediment for this type of plants. Hence, efficient, cost-effective capture/separation technologies need to be developed to allow their large-scale use. (author)

  12. Energy conversion in natural and artificial photosynthesis.

    Science.gov (United States)

    McConnell, Iain; Li, Gonghu; Brudvig, Gary W

    2010-05-28

    Modern civilization is dependent upon fossil fuels, a nonrenewable energy source originally provided by the storage of solar energy. Fossil-fuel dependence has severe consequences, including energy security issues and greenhouse gas emissions. The consequences of fossil-fuel dependence could be avoided by fuel-producing artificial systems that mimic natural photosynthesis, directly converting solar energy to fuel. This review describes the three key components of solar energy conversion in photosynthesis: light harvesting, charge separation, and catalysis. These processes are compared in natural and in artificial systems. Such a comparison can assist in understanding the general principles of photosynthesis and in developing working devices, including photoelectrochemical cells, for solar energy conversion. 2010 Elsevier Ltd. All rights reserved.

  13. Potency of Microalgae as Biodiesel Source in Indonesia

    OpenAIRE

    Hadiyanto, H; Widayat, W; Cahyo Kumoro, Andri

    2012-01-01

    Within 20 years, Indonesia should find another energy alternative to substitute current fossil oil. Current use of renewable energy is only 5% and need to be improved up to 17% of our energy mix program. Even though, most of the area in Indonesia is covered by sea, however the utilization of microalgae as biofuel production is still limited. The biodiesel from current sources (Jatropha, palm oil, and sorghum) is still not able to cover all the needs if the fossil oil cannot be explored anymor...

  14. Role of energy policy in renewable energy accomplishment: The case of second-generation bioethanol

    International Nuclear Information System (INIS)

    Tan, Kok Tat; Lee, Keat Teong; Mohamed, Abdul Rahman

    2008-01-01

    Renewable energy has been in the limelight ever since the price of crude petroleum oil increases to the unprecedented height of US$96 per barrel recently. This is due to the diminishing oil reserves in the world and political instabilities in some oil-exporting countries. The advantages of renewable energy compared to fossil fuels are enormous in terms of environment and availability. Biofuels like bioethanol and biodiesel are currently being produced from agricultural products such as sugarcane and rapeseed oil, respectively. Collectively, these biofuels from food sources are known as first-generation biofuels. Although first-generation biofuels have the potential to replace fossil fuels as the main source of energy supply, its production is surrounded by certain issues like tropical forests' destruction. Instead, second-generation bioethanol, which utilizes non-edible sources such as lignocellulose biomass to produce ethanol, has been shown to be more suitable as the source of renewable energy. However, there are challenges and obstacles such as cost, technology and environmental issues that need to be overcome. Hence, the introduction of energy policy is crucial in promoting and implementing second-generation bioethanol effectively and subsequently become a major source of renewable energy

  15. The Water-Energy-Food Nexus of Unconventional Fossil Fuels.

    Science.gov (United States)

    Rosa, L.; Davis, K. F.; Rulli, M. C.; D'Odorico, P.

    2017-12-01

    Extraction of unconventional fossil fuels has increased human pressure on freshwater resources. Shale formations are globally abundant and widespread. Their extraction through hydraulic fracturing, a water-intensive process, may be limited by water availability, especially in arid and semiarid regions where stronger competition is expected to emerge with food production. It is unclear to what extent and where shale resource extraction could compete with local water and food security. Although extraction of shale deposits materializes economic gains and increases energy security, in some regions it may exacerbate the reliance on food imports, thereby decreasing regional food security. We consider the global distribution of known shale deposits suitable for oil and gas extraction and evaluate their impacts on water resources for food production and other human and environmental needs. We find that 17% of the world's shale deposits are located in areas affected by both surface water and groundwater stress, 50% in areas with surface water stress, and about 30% in irrigated areas. In these regions shale oil and shale gas production will likely threaten water and food security. These results highlight the importance of hydrologic analyses in the extraction of fossil fuels. Indeed, neglecting water availability as one of the possible factors constraining the development of shale deposits around the world could lead to unaccounted environmental impacts and business risks for firms and investors. Because several shale deposits in the world stretch across irrigated agricultural areas in arid regions, an adequate development of these resources requires appropriate environmental, economic and political decisions.

  16. The role of natural gas in assessing environmental cost of fossil fuels

    International Nuclear Information System (INIS)

    Riva, A.; Trebeschi, C.

    1999-01-01

    The actual price of a resource is the results of its internal and external costs. Internal costs means the price paid by the users in order to utilise the resource. On the other hand, externals costs, which are associated with the resource, are not paid directly by the users, but they shall be paid for by the society of the future generations. The article presents methodologies and issues relevant to energy policy decisions, when it comes to evaluating and using environmental external costs of fossil fuel life, with particular consideration to the end-use phase. The results of published studies on environmental costs of energy sources and an analysis applied to the Italia case show that natural gas as a significantly higher environmental value than other fossil fuels. The range of values depends upon the technologies considered and on the assumptions adopted when assessment environmental damages [it

  17. Integration of renewable energy sources for a sustainable energy policy at Djibouti

    International Nuclear Information System (INIS)

    Aye, Fouad Ahmed

    2009-01-01

    Generally, the predictable exhaustion of the fossil fuels, the necessity of fighting against the global warming, the awareness for the protection of the environment and finally the consideration of the sustainable development in energy policies put the renewable energies in the heart of a strategic stake for the future of our planet. But for the Republic of Djibouti which currently knows an annual economic growth of 3,5 %, it is almost vital to exploit its potential in renewable energies to ensure its economic growth, to realize savings of currencies and to initially achieve the Millennium human development goals whose calendar is fixed at 2015. Unfortunately, the country knows the same energy situation of the countries of sub-Saharan Africa where the energy is plentiful but the electricity is rare. Indeed, the current energy balance of the country is strongly overdrawn. The 97 % of the energy needs of the population (mainly urban in more than 85 %) are satisfied by the imports of oil productions and 90 % of the Djiboutians households use the kerosene as domestic fuel. The cover rate for the electricity network is very low, about 30 %. Only 0,2 % of the electric production (with a total capacity installed of 130 MW) is made from a unique source of renewable energy ( the photovoltaic solar energy). Nevertheless, the country has an important potential in renewable energies. At the level of the photovoltaic solar energy (PV), the technically exploitable solar potential is estimated in 1535 GWh/day. At the level of the wind energy, the estimation of the currently exploitable potential is 8 MW and yet no form of wind energy (whether it is the big or the small wind energy) is exploited in the country. At the level of the geothermal energy, the technically exploitable potential is estimated between 350 and 650 MWe. The economically exploitable potential for the only region of Assal-Ghoubbet is higher than 150 MWe, very widely upper to the current needs of the country. At

  18. The potential of the Malaysian oil palm biomass as a renewable energy source

    International Nuclear Information System (INIS)

    Loh, Soh Kheang

    2017-01-01

    Highlights: • An energy resource data for oil palm biomass is generated. • The data encompasses crucial fuel and physicochemical characteristics. • These characteristics guide on biomass behaviors and technology selection. • Oil palm biomass is advantageous in today’s energy competitive markets. • Overall, it is a green alternative for biorefinery establishment. - Abstract: The scarcity of conventional energy such as fossil fuels (which will lead to eventual depletion) and the ever-increasing demand for new energy sources have resulted in the world moving into an era of renewable energy (RE) and energy efficiency. The Malaysian oil palm industry has been one of the largest contributor of lignocellulosic biomass, with more than 90% of the country’s total biomass deriving from 5.4 million ha of oil palms. Recent concerns on accelerating replanting activity, improving oil extraction rate, expanding mill capacity, etc. are expected to further increase the total oil palm biomass availability in Malaysia. This situation has presented a huge opportunity for the utilization of oil palm biomass in various applications including RE. This paper characterizes the various forms of oil palm biomass for their important fuel and other physicochemical properties, and assesses this resource data in totality – concerning energy potential, the related biomass conversion technologies and possible combustion-related problems. Overall, oil palm biomass possesses huge potential as one of the largest alternative energy sources for commercial exploitation.

  19. Fossil and renewable energy consumption, GHGs (greenhouse gases) and economic growth: Evidence from a panel of EU (European Union) countries

    International Nuclear Information System (INIS)

    Bölük, Gülden; Mert, Mehmet

    2014-01-01

    Recently a great number of empirical research studies have been conducted on the relationship between certain indicators of environmental degradation and income. The EKC (Environmental Kuznets Curve) hypothesis has been tested for various types of environmental degradation. The EKC hypothesis states that the relationship between environmental degradation and income per capita takes the form of an inverted U shape. In this paper the EKC hypothesis was investigated with regards to the relationship between carbon emissions, income and energy consumption in 16 EU (European Union) countries. We conducted panel data analysis for the period of 1990–2008 by fixing the multicollinearity problem between the explanatory variables using their centered values. The main contribution of this paper is that the EKC hypothesis has been investigated by separating final energy consumption into renewable and fossil fuel energy consumption. Unfortunately, the inverted U-shape relationship (EKC) does not hold for carbon emissions in the 16 EU countries. The other important finding is that renewable energy consumption contributes around 1/2 less per unit of energy consumed than fossil energy consumption in terms of GHG (greenhouse gas) emissions in EU countries. This implies that a shift in energy consumption mix towards alternative renewable energy technologies might decrease the GHG emissions. - Highlights: • We investigate the EKC (Environmental Kuznets Curve) hypothesis for 16 EU (European Union) countries. • We fix the multicollinearity problem between explanatory variables. • We found no evidence to support the EKC hypothesis in EU between 1990 and 2008 periods. • Renewable energy contributes less to GHGs (greenhouse gases) around ½ that of a unit of fossil energy

  20. Reforming fossil fuel prices in India: Dilemma of a developing economy

    International Nuclear Information System (INIS)

    Anand, Mukesh Kumar

    2016-01-01

    Over the period between 1990–1 and 2012–3, fossil fuel use on farms has risen and its indirect use in farming, particularly for non-energy purposes, is also growing. Consequently, both energy intensity and fossil fuel intensity are rising for Indian agriculture. But, these are declining for the aggregate Indian economy. Thus, revision of fossil fuel prices acquires greater significance for Indian agriculture than for rest of the economy. There are significant differences across crops. The crop-level analysis is supplemented by an alternative approach that utilizes a three-sector input–output (I–O) model for the Indian economy representing farming, fossil fuels, and rest of economy. Fossil fuels sector is assessed to portray, in general, strong forward linkages. The increase in total cost of farming, for a given change in fossil fuel prices, is estimated as a multiple of increase in direct input cost of fossil fuels in farming. From the three-sector aggregated economy this multiple was estimated at 3.99 for 1998–9. But it grew to 6.7 in 2007–8. The findings have stronger ramifications than commonly recognized, for inflation and cost of implementing the policy on food security. - Highlights: •Fossil fuels’ contribution in primary energy supply has risen from 55 to 75 per cent. •Energy intensity halved for aggregate GDP, but doubled for agricultural GDP. •Impact of fossil fuel price increase on farming costs mimics a widening spiral. •Total cost of farming may increase 6.7 times the increase in direct fuel input cost.

  1. Potency of Microalgae as Biodiesel Source in Indonesia

    Directory of Open Access Journals (Sweden)

    H Hadiyanto

    2012-04-01

    Full Text Available Within 20 years, Indonesia should find another energy alternative to substitutecurrent fossil oil. Current use of renewable energy is only 5% and need to be improved up to 17%of our energy mix program. Even though, most of the area in Indonesia is covered by sea, howeverthe utilization of microalgae as biofuel production is still limited. The biodiesel from currentsources (Jatropha, palm oil, and sorghum is still not able to cover all the needs if the fossil oilcannot be explored anymore. In this paper, the potency of microalgae in Indonesia was analysed asthe new potential of energy (biodiesel sources.

  2. Optimal sizing of a multi-source energy plant for power heat and cooling generation

    International Nuclear Information System (INIS)

    Barbieri, E.S.; Dai, Y.J.; Morini, M.; Pinelli, M.; Spina, P.R.; Sun, P.; Wang, R.Z.

    2014-01-01

    Multi-source systems for the fulfilment of electric, thermal and cooling demand of a building can be based on different technologies (e.g. solar photovoltaic, solar heating, cogeneration, heat pump, absorption chiller) which use renewable, partially renewable and fossil energy sources. Therefore, one of the main issues of these kinds of multi-source systems is to find the appropriate size of each technology. Moreover, building energy demands depend on the climate in which the building is located and on the characteristics of the building envelope, which also influence the optimal sizing. This paper presents an analysis of the effect of different climatic scenarios on the multi-source energy plant sizing. For this purpose a model has been developed and has been implemented in the Matlab ® environment. The model takes into consideration the load profiles for electricity, heating and cooling for a whole year. The performance of the energy systems are modelled through a systemic approach. The optimal sizing of the different technologies composing the multi-source energy plant is investigated by using a genetic algorithm, with the goal of minimizing the primary energy consumption only, since the cost of technologies and, in particular, the actual tariff and incentive scenarios depend on the specific country. Moreover economic considerations may lead to inadequate solutions in terms of primary energy consumption. As a case study, the Sino-Italian Green Energy Laboratory of the Shanghai Jiao Tong University has been hypothetically located in five cities in different climatic zones. The load profiles are calculated by means of a TRNSYS ® model. Results show that the optimal load allocation and component sizing are strictly related to climatic data (e.g. external air temperature and solar radiation)

  3. CAUSAL RELATIONSHIP BETWEEN FOSSIL FUEL CONSUMPTION AND ECONOMIC GROWTH IN JAPAN: A MULTIVARIATE APPROACH

    Directory of Open Access Journals (Sweden)

    Hazuki Ishida

    2013-01-01

    Full Text Available This paper explores whether Japanese economy can continue to grow without extensive dependence on fossil fuels. The paper conducts time series analysis using a multivariate model of fossil fuels, non-fossil energy, labor, stock and GDP to investigate the relationship between fossil fuel consumption and economic growth in Japan. The results of cointegration tests indicate long-run relationships among the variables. Using a vector error-correction model, the study reveals bidirectional causality between fossil fuels and GDP. The results also show that there is no causal relationship between non-fossil energy and GDP. The results of cointegration analysis, Granger causality tests, and variance decomposition analysis imply that non-fossil energy may not necessarily be able to play the role of fossil fuels. Japan cannot seem to realize both continuous economic growth and the departure from dependence on fossil fuels. Hence, growth-oriented macroeconomic policies should be re-examined.

  4. Energy for tomorrow

    International Nuclear Information System (INIS)

    Koerber, H.

    1991-07-01

    The book is intended for readers not so familiar with the subjects, presenting reliable information on specific topics or technologies in the context of a review of the situation in the energy sector. The author explains the energy supply systems and the relevant energy sources, also referring to the potentials of renewable energy sources and the role they may play in addition to fossil fuels and nuclear energy. Energy conseration, economically efficient use of available energy sources, and protection of the environment are other items of main interest. The hazards emanating from energy generation and the market power of electric utilities are items of critical discussion. (DG) [de

  5. Perspectives of microalgal biofuels as a renewable source of energy

    International Nuclear Information System (INIS)

    Kiran, Bala; Kumar, Ritunesh; Deshmukh, Devendra

    2014-01-01

    Highlights: • Microalgae offer solution of wastewater treatment, CO 2 sequestration, and energy crises. • Microalgal biofuel is renewable, nontoxic and environmentally friendly option. • Integration of wastewater treatment with biofuels production has made them more cost effective. • This article details out the potential production process and benefits of microalgal biofuels. - Abstract: Excessive use of fossil fuels to satisfy our rapidly increasing energy demand has created severe environmental problems, such as air pollution, acid rain and global warming. Biofuels are a potential alternative to fossil fuels. First- and second-generation biofuels face criticism due to food security and biodiversity issues. Third-generation biofuels, based on microalgae, seem to be a plausible solution to the current energy crisis, as their oil-producing capability is many times higher than that of various oil crops. Microalgae are the fastest-growing plants and can serve as a sustainable energy source for the production of biodiesel and several other biofuels by conversion of sunlight into chemical energy. Biofuels produced from microalgae are renewable, non-toxic, biodegradable and environment friendly. Microalgae can be grown in open pond systems or closed photobioreactors. Microalgal biofuels are a potential means to keep the development of human activities in synchronization with the environment. The integration of wastewater treatment with biofuel production using microalgae has made microalgal biofuels more attractive and cost effective. A biorefinery approach can also be used to improve the economics of biofuel production, in which all components of microalgal biomass (i.e., proteins, lipids and carbohydrates) are used to produce useful products. The integration of various processes for maximum economic and environmental benefits minimizes the amount of waste produced and the pollution level. This paper presents an overview of various aspects associated with

  6. Non conventional energy sources and energy conservation

    International Nuclear Information System (INIS)

    Bueno M, F.

    1995-01-01

    Geographically speaking, Mexico is in an enviable position. Sun, water, biomass and geothermal fields main non conventional energy sources with commercial applications, are presents and in some cases plentiful in national territory. Moreover the coastal tidal power which is in research stage in several countries. Non conventional energy sources are an alternative which allow us to reduce the consumption of hydrocarbons or any other type of primary energetic, are not by oneself choices for the energy conservation, but energy replacements. At the beginning of this year, CONAE created the Direction of Non conventional Energy Sources, which main objective is to promote and impulse programs inclined towards the application of systems based in renewable energy sources. The research centers represent a technological and consultative support for the CONAE. They have an infrastructure developed along several years of continuous work. The non conventional energy sources will be a reality at the same time that their cost be equal or lower than the cost for the traditional generating systems. CONAE (National Commission for Energy Conservation). (Author)

  7. Zero energy Tunnel-concept

    NARCIS (Netherlands)

    Dzhusupova, R.

    2012-01-01

    Creating a zero energy environment is a hot topic. The developments in this field are based on the concept of the "Trias Energetica": reducing energy consumption, using renewable energy sources, and efficiently using fossil fuels. A zero energy concept can also be applied to road tunnels to improve

  8. Formulating Energy Policies Related to Fossil Fuel Use: Critical Uncertainties in the Global Carbon Cycle

    Science.gov (United States)

    Post, W. M.; Dale, V. H.; DeAngelis, D. L.; Mann, L. K.; Mulholland, P. J.; O`Neill, R. V.; Peng, T. -H.; Farrell, M. P.

    1990-02-01

    The global carbon cycle is the dynamic interaction among the earth's carbon sources and sinks. Four reservoirs can be identified, including the atmosphere, terrestrial biosphere, oceans, and sediments. Atmospheric CO{sub 2} concentration is determined by characteristics of carbon fluxes among major reservoirs of the global carbon cycle. The objective of this paper is to document the knowns, and unknowns and uncertainties associated with key questions that if answered will increase the understanding of the portion of past, present, and future atmospheric CO{sub 2} attributable to fossil fuel burning. Documented atmospheric increases in CO{sub 2} levels are thought to result primarily from fossil fuel use and, perhaps, deforestation. However, the observed atmospheric CO{sub 2} increase is less than expected from current understanding of the global carbon cycle because of poorly understood interactions among the major carbon reservoirs.

  9. Assessment of Renewable Energy Sources & Municipal Solid Waste for Sustainable Power Generation in Nigeria

    Science.gov (United States)

    Aderoju, Olaide M.; Dias, Guerner A.; Echakraoui, Zhour

    2017-12-01

    The demand for Energy in most Sub-Saharan African countries has become unimaginable despite its high potential of natural and renewable resources. The deficit has impeded the regions’ economic growth and sustainability. Nigeria as a nation is blessed with fossil fuels, abundant sunlight, hydro, wind and many among others, but the energy output to its population (185 million) still remains less than 4000MW. Currently, the clamour for an alternative but renewable energy source is the demand of the globe but it is quite expensive to achieve the yield that meets the Nigeria demand. Hence, this study aims at identifying and mapping out various regions with renewable energy potentials. The study also considers municipal solid waste as a consistent and available resource for power generation. Furthermore, this study examines the drawbacks inhibiting the inability to harness these renewable, energy generating potentials in full capacity. The study will enable the authorities and other stakeholders to invest and plan on providing a sustainable energy for the people.

  10. Heat planning for fossil-fuel-free district heating areas with extensive end-use heat savings: A case study of the Copenhagen district heating area in Denmark

    International Nuclear Information System (INIS)

    Harrestrup, M.; Svendsen, S.

    2014-01-01

    The Danish government plans to make the Danish energy system to be completely free of fossil fuels by 2050 and that by 2035 the energy supply for buildings and electricity should be entirely based on renewable energy sources. To become independent from fossil fuels, it is necessary to reduce the energy consumption of the existing building stock, increase energy efficiency, and convert the present heat supply from fossil fuels to renewable energy sources. District heating is a sustainable way of providing space heating and domestic hot water to buildings in densely populated areas. This paper is a theoretical investigation of the district heating system in the Copenhagen area, in which heat conservation is related to the heat supply in buildings from an economic perspective. Supplying the existing building stock from low-temperature energy resources, e.g. geothermal heat, might lead to oversized heating plants that are too expensive to build in comparison with the potential energy savings in buildings. Long-term strategies for the existing building stock must ensure that costs are minimized and that investments in energy savings and new heating capacity are optimized and carried out at the right time. - Highlights: • We investigate how much heating consumption needs to be reduced in a district heating area. • We examine fossil-fuel-free supply vs. energy conservations in the building stock. • It is slightly cost-beneficial to invest in energy renovation from today for a societal point of view. • It is economically beneficial for district heating companies to invest in energy renovations from today. • The cost per delivered heat unit is lower when energy renovations are carried out from today

  11. Our global energy future and the role of nuclear energy

    International Nuclear Information System (INIS)

    Foster, J.S.

    1991-01-01

    An extension in the use of energy, on even a fairly moderate basis, will, for several decades at least, require the use of all our present energy sources at rates that are a natural extension of historical rates, trending toward maximum practicable exploitation for all but nuclear energy. Regardless of what happens with the fossil hydrocarbons nuclear energy will play a major role in the supply of energy. When the fossil hydrocarbons have run their course nuclear and possibly some solar energy, through the media of electricity, hydrogen and synthetic hydrocarbons, will provide the bulk of the world's controlled energy and in sufficient quantity to provide ample energy for all. The burning question, however, is what will happen in the next few decades. There is a wonderful opportunity for nuclear energy, as the world requirement for energy, and particularly electrical energy, grows

  12. Ancient water supports today's energy needs

    Science.gov (United States)

    D'Odorico, Paolo; Natyzak, Jennifer L.; Castner, Elizabeth A.; Davis, Kyle F.; Emery, Kyle A.; Gephart, Jessica A.; Leach, Allison M.; Pace, Michael L.; Galloway, James N.

    2017-05-01

    The water footprint for fossil fuels typically accounts for water utilized in mining and fuel processing, whereas the water footprint of biofuels assesses the agricultural water used by crops through their lifetime. Fossil fuels have an additional water footprint that is not easily accounted for: ancient water that was used by plants millions of years ago, before they were transformed into fossil fuel. How much water is mankind using from the past to sustain current energy needs? We evaluate the link between ancient water virtually embodied in fossil fuels to current global energy demands by determining the water demand required to replace fossil fuels with biomass produced with water from the present. Using equal energy units of wood, bioethanol, and biodiesel to replace coal, natural gas, and crude oil, respectively, the resulting water demand is 7.39 × 1013 m3 y-1, approximately the same as the total annual evaporation from all land masses and transpiration from all terrestrial vegetation. Thus, there are strong hydrologic constraints to a reliance on biofuel energy produced with water from the present because the conversion from fossil fuels to biofuels would have a disproportionate and unsustainable impact on the modern water. By using fossil fuels to meet today's energy needs, we are virtually using water from a geological past. The water cycle is insufficient to sustain the production of the fuel presently consumed by human societies. Thus, non-fuel-based renewable energy sources are needed to decrease mankind's reliance on fossil fuel energy without placing an overwhelming pressure on global freshwater resources.

  13. Environmental damage caused by fossil fuels consumption

    International Nuclear Information System (INIS)

    Barbir, F.; Veziroglu, T.N.

    1991-01-01

    This paper reports that the objectives of this study is to identify the negative effects of the fossil fuels use and to evaluate their economic significance. An economic value of the damage for each of the analyzed effects has been estimated in US dollars per unit energy of the fuel used ($/GJ). This external costs of fossil fuel use should be added to their existing market price, and such real costs should be compared with the real costs of other, environmentally acceptable, energy alternatives, such as hydrogen

  14. Material flow analysis of fossil fuels in China during 2000-2010.

    Science.gov (United States)

    Wang, Sheng; Dai, Jing; Su, Meirong

    2012-01-01

    Since the relationship between the supply and demand of fossil fuels is on edge in the long run, the contradiction between the economic growth and limited resources will hinder the sustainable development of the Chinese society. This paper aims to analyze the input of fossil fuels in China during 2000-2010 via the material flow analysis (MFA) that takes hidden flows into account. With coal, oil, and natural gas quantified by MFA, three indexes, consumption and supply ratio (C/S ratio), resource consumption intensity (RCI), and fossil fuels productivity (FFP), are proposed to reflect the interactions between population, GDP, and fossil fuels. The results indicated that in the past 11 years, China's requirement for fossil fuels has been increasing continuously because of the growing mine productivity in domestic areas, which also leads to a single energy consumption structure as well as excessive dependence on the domestic exploitation. It is advisable to control the fossil fuels consumption by energy recycling and new energy facilities' popularization in order to lead a sustainable access to nonrenewable resources and decrease the soaring carbon emissions.

  15. The use of alternative energy sources - the best approach to improving environmental situation in Azerbaijan

    International Nuclear Information System (INIS)

    Aliyev, F.G.; Khalilova, H.Kh.; Aliyev, F.F.

    2006-01-01

    Energy supply is essential in the development of Azerbaijan. However, it remains reliant on fossil fuels to supply country's energy demand that leads to the exhaustion of energy resources, while increasing environmental pollution in the region. Analysis of the present situation shows that in order to prevent global disasters we must change the existing energy systems. Azerbaijan must seek new ways of generating energy, which do not sacrifice the natural environment, and which protect the health of the population and which promote sustainable development of the region. International Ecoenergy Academy (IEA) has long been engaged in the development of projects on the use of alternative energy sources. Based on the results of studies we suggested that introduction of modern renewable energy technologies can help reduce the health impacts of air pollution and ecological effects of acid rains, hazards of greenhouse gas emissions and climate changes, while providing people with environmentally clean energy and new job opportunities. (authors)

  16. The effect of fossil energy and other environmental taxes on profit incentives for change in an open economy: Evidence from the UK

    International Nuclear Information System (INIS)

    Webster, Allan; Ayatakshi, Sukanya

    2013-01-01

    This paper argues that the underlying supply and demand analysis of fossil energy and other environmental taxes needs further elaboration when a country (a) introduces national fossil energy or environmental taxes and (b) is open to international trade at given world prices. We provide evidence that such conditions are plausible for many sectors in the UK. A key implication is that the short run effects of such taxes should not be felt in final good prices, since these are determined in world markets, but in terms of underlying profitability. These changes in underlying profits provide two key incentives for producers—to change to more environmentally friendly production techniques and to switch resources to production of less environmentally harmful goods. Using input—output techniques we provide evidence for the UK to show how existing fossil energy and other “green” taxes have affected underlying profitability. The evidence shows quite strong profit incentives to shift resources from a small number of energy intensive industries to others. - Highlights: • Energy taxes affect profits more than prices for sectors trading at world prices. • This study suggests that many sectors in the UK satisfy these conditions. • Our evidence suggests that few sectors are strongly affected by energy taxes. • Energy taxes have a strong effect relative to other possible environmental taxes

  17. Green energy - the road to a Danish energy system without fossil fuels. Summary of the work, results and recommendations of the Danish Commission on Climate Change Policy

    Energy Technology Data Exchange (ETDEWEB)

    2010-09-15

    This summary report describes the main outcomes of the deliberations of the Danish Commission on Climate Change Policy. It includes a proposal for how Denmark can become independent of fossil fuels and, at the same time, meet the target of reducing greenhouse gases by 80%-95% compared with 1990. In addition, 40 specific recommendations for initiatives which will contribute to the realisation of the vision are presented. The documentation section of the overall report, which is only available in Danish, presents the Climate Commission's work in more detail, as well as a description of the comprehensive analyses on which the Climate Commission has based its recommendations. Finally, the background documents, which have been prepared at the request of the Climate Commission are available (in Danish) at the Commission's website, www.klimakommissionen.dk. We can both reduce Danish emissions of greenhouse gasses significantly, and make Denmark independent of fossil fuels. This will require a total conversion of the Danish energy system; conversion away from oil, coal and gas, which today account for more than 80% of our energy consumption, and to green energy with wind turbines and bioenergy as the most important elements. The cost of conversion may seem surprisingly low. The low cost means that not only can we maintain our present living standards, we can also have considerable economic growth, so that energy expenditures will constitute less of our budgets in the future than today. The reason the cost is not higher is primarily because we will not have to pay for overpriced fossil fuels and CO{sub 2} reductions, and we will be able to limit our energy consumption through efficiency improvements in all areas in the future. It is difficult to make predictions about the exact design of the green energy system of the future. However, in overall terms it could look like this: 1) Energy will be used far more efficiently, so that we can, for example, heat our houses

  18. Earth 2075 (CO2) - can Ocean-Amplified Carbon Capture (oacc) Impart Atmospheric CO2-SINKING Ability to CCS Fossil Energy?

    Science.gov (United States)

    Fry, R.; Routh, M.; Chaudhuri, S.; Fry, S.; Ison, M.; Hughes, S.; Komor, C.; Klabunde, K.; Sethi, V.; Collins, D.; Polkinghorn, W.; Wroobel, B.; Hughes, J.; Gower, G.; Shkolnik, J.

    2017-12-01

    Previous attempts to capture atmospheric CO2 by algal blooming were stalled by ocean viruses, zooplankton feeding, and/or bacterial decomposition of surface blooms, re-releasing captured CO2 instead of exporting it to seafloor. CCS fossil energy coupling could bypass algal bloom limits—enabling capture of 10 GtC/yr atmospheric CO2 by selective emiliania huxleyi (EHUX) blooming in mid-latitude open oceans, far from coastal waters and polar seas. This could enable a 500 GtC drawdown, 350 ppm restoration by 2050, 280 ppm CO2 by 2075, and ocean pH 8.2. White EHUX blooms could also reflect sunlight back into outer space and seed extra ocean cloud cover, via DMS release, to raise albedo 1.8%—restoring preindustrial temperature (ΔT = 0°C) by 2030. Open oceans would avoid post-bloom anoxia, exclusively a coastal water phenomenon. The EHUX calcification reaction initially sources CO2, but net sinking prevails in follow-up equilibration reactions. Heavier-than-water EHUX sink captured CO2 to the sea floor before surface decomposition occurs. Seeding EHUX high on their nonlinear growth curve could accelerate short-cycle secondary open-ocean blooming—overwhelming mid-latitude viruses, zooplankton, and competition from other algae. Mid-latitude "ocean deserts" exhibit low viral, zooplankton, and bacterial counts. Thermocline prevents nutrient upwelling that would otherwise promote competing algae. Adding nitrogen nutrient would foster exclusive EHUX blooming. Elevated EHUX seed levels could arise from sealed, pH-buffered, floating, seed-production bioreactors infused with 10% CO2 from carbon feedstock supplied by inland CCS fossil power plants capturing 90% of emissions as liquid CO2. Deep-water SPAR platforms extract natural gas from beneath the sea floor. On-platform Haber and pH processing could convert extracted CH4 to buffered NH4+ nutrient, enabling ≥0.7 GtC/yr of bioreactor seed production and 10 GtC/yr of amplified secondary open-ocean CO2 capture—making CCS

  19. Unused Energy Resources of the Republic of Croatia

    International Nuclear Information System (INIS)

    Potocnik, V.

    2008-01-01

    Croatia has very modest fossil fuels resources and relatively large unused potentials of increasing energy efficiency and renewable energy sources. Energy import dependency is close to 60 percent and constantly rising, thus increasing already considerable Croatian foreign debt. By using potential of these resources until the year 2020 Croatia could almost totally eliminate fossil fuels import, reduce foreign debt as well as energy systems' harmful influences on environment, climate and health, and increase domestic employment.(author)

  20. Cost-effectiveness analysis of algae energy production in the EU

    NARCIS (Netherlands)

    Kovacevic, V.; Wesseler, J.H.H.

    2010-01-01

    Today’s society relies heavily on fossil fuels as a main energy source. Global energy demand increase, energy security and climate change are the main drivers of the transition towards alternative energy sources. This paper analyses algal biodiesel production for the EU road transportation and

  1. Hybrid energy systems for rural communities in Zimbabwe

    CSIR Research Space (South Africa)

    Tazvinga, Henerica

    2017-06-01

    Full Text Available Renewable energy sources such as solar photovoltaic (PV) systems have been widely utilized as alternative energy sources to fossil fuels in residential areas in many countries. The PV cell output varies according to many factors including weather...

  2. Financial analysis as a marketing tool in the process of awareness increase in the area of renewable energy sources

    Directory of Open Access Journals (Sweden)

    Marcela Taušová

    2007-04-01

    Full Text Available Alternative sources of energy represent a great area of progress nowadays. The trend of the 21. century is energetically demanding with an increaming tendency to use fossil fuels, sources of which are however limited. The article will deal with an inevitability of the use of marketing tools with the aim to increase the share of these energetical resources on the Slovak market. The result will be obtaining of some financial advantage for future users on one side and the increase of volume of sales for vendors on the other side.

  3. Power conversion and control methods for renewable energy sources

    Science.gov (United States)

    Yu, Dachuan

    2005-07-01

    In recent years, there has been an increase in the use of renewable energy due to the growing concern over the pollution caused by fossil-fuel-based energy. Renewable energy sources, such as photovoltaic (PV) and fuel cell, can be used to enhance the safety, reliability, sustainability, and transmission efficiency of a power system. This dissertation focuses on the power conversion and control for two major renewable-energy sources: PV and fuel cell. Firstly, a current-based, maximum power-point tracking (MPPT) algorithm is proposed for PV energy. An economical converter system using the above scheme for converting the output from PV panels into 60 Hz AC voltage is developed and built. Secondly, a novel circuit model for the Proton Exchange Membrane (PEM) fuel-cell stack that is useful in the design and analysis of fuel-cell-based power systems is proposed. This Pspice-based model uses elements available in the Pspice library with some modifications to represent both the static and dynamic responses of a PEM fuel-cell module. The accuracy of the model is verified by comparing the simulation and experimental results. Thirdly, a DSP-controlled three-phase induction-motor drive using constant voltage over frequency is built and can be used in a fuel-cell automobile. A hydrogen sensor is used in the drive to both sound an alarm and shut down the inverter trigger pulses through the DSP. Finally, a hybrid power system consisting of PV panels and fuel cell is proposed and built. In the proposed system, PV panels can supply most of the power when the sunlight is available, and the excess power required by the load is supplied by a fuel cell. Load sharing between a fuel cell (FC) and the PV panel is investigated by both simulation and experiments.

  4. Sustainability analysis. Development of various indicators of sustainability for technical environmental analysis and evaluation of local heat supply networks on the basis of regenerative energies in comparison to fossil energy sources

    International Nuclear Information System (INIS)

    Hehenberger-Risse, Diana

    2013-06-01

    The aim of this thesis is to define indicators to evaluate local heat supply systems based on renewable energy compared to fossil energy reference scenarios. With these indicators a assessment matrix was developed as a planning instrument for the realization of sustainable and energy-efficient local heat supply systems. Further inferences from single projects on regions can be done. In these thesis a method was developed to assess the sustainability of local heat supply systems with the focus on ecology under consideration of economically and social aspects. This method uses a set of indicators composed of Input-, Output-, Efficiency- and Balance indicators. To realize advancement in comparison to present situations, an environmental quality target to advance the environmental impacts of minimum 75% was defined. For the developing and application of the indicators different examples from projects and scenarios of combined heat production from Biomass, Biogas, Solar heat combined with near-surface geothermal storage; geothermal energy and fossil peakload supply were calculated. These scenarios were related to a basis fossil energy scenario. Overall, the two district heating projects Speichersdorf and Mitterteich were compared. In this case, the project Speichersdorf with different coverage areas and decrease heat densities was investigated. The lengths of electrical grid of two areas are 10,828 m and 6,027 m. Those were opposed to the biomass district-heating project Mitterteich with a grid length of 360 m and a higher heat density decrease. Furthermore, a scenario for heat supply was designed and calculated using geothermal plant operating in duplicate to provide heat to the large coverage area for the storage project village. The calculation of the various processes and scenarios was performed with the program GEMIS 4.8 based on the total heat generated (final energy) by the respective supply type. The study examined the main system components; boilers, solar heat

  5. Nuclear energy ranks first as primary energy source in Europe in 2012

    International Nuclear Information System (INIS)

    Anon.

    2014-01-01

    According to the 2012 report of Eurostat, nuclear energy represents 30% of the production of primary energy in the member states of the E.U., renewable energies a little less than 20% and fossil energies a little more than 50%. In Europe the production of primary energy has been decreasing since 2001, from 940 million tonnes in 2001 to 794 million tonnes in 2012. In Europe the gross energy consumption has decreased in 24 member states to reach the level of 1995 year. In 2012 the E.U.'s dependence rate for energy was of 53% on average. Only Denmark was a net exporter of energy while the dependence rate for energy of the main E.U. energy consumers were: Germany (61%), Spain (73%), France (48%), United-Kingdom (42%) and Italy (81%). (A.C.)

  6. Utilization of solar and nuclear energy for hydrogen production

    International Nuclear Information System (INIS)

    Fischer, M.

    1987-01-01

    Although the world-wide energy supply situation appears to have eased at present, non-fossil primary energy sources and hydrogen as a secondary energy carrier will have to take over a long-term and increasing portion of the energy supply system. The only non-fossil energy sources which are available in relevant quantities, are nuclear energy, solar energy and hydropower. The potential of H 2 for the extensive utilization of solar energy is of particular importance. Status, progress and development potential of the electrolytic H 2 production with photovoltaic generators, solar-thermal power plants and nuclear power plants are studied and discussed. The joint German-Saudi Arabian Research, Development and Demonstration Program HYSOLAR for the solar hydrogen production and utilization is summarized. (orig.)

  7. The future of coal as an energy source

    International Nuclear Information System (INIS)

    Rose, Ian

    1998-01-01

    The position of coal as the preferred fossil fuel for power generation is being challenged by gas. The total cost of production in $/kW/annum of coal generation compared with combined cycle gas turbine plant is illustrated for a range of annual capacity factors and fuel costs in the Australian context. lt is shown that plant capacity factors over 80%are required for coal-fired plants to be price competitive with gas. Unlike other fossil fuel energy types, the high capital cost of coal-fired plant means that new coal-fired plant will generally need to be base-loaded throughout their operating life to be competitive. However, experience shows that having installed the plant, it will operate as base-loaded, intermediate or peaking duty depending on market circumstances. Existing plants In New South Wales, Victoria and Queensland are generally operating at annual capacity factors that are below optimum levels. It is concluded that the coal-fired energy industry can be strongly challenged for the foreseeable future

  8. Multi-objective generation scheduling with hybrid energy resources

    Science.gov (United States)

    Trivedi, Manas

    In economic dispatch (ED) of electric power generation, the committed generating units are scheduled to meet the load demand at minimum operating cost with satisfying all unit and system equality and inequality constraints. Generation of electricity from the fossil fuel releases several contaminants into the atmosphere. So the economic dispatch objective can no longer be considered alone due to the environmental concerns that arise from the emissions produced by fossil fueled electric power plants. This research is proposing the concept of environmental/economic generation scheduling with traditional and renewable energy sources. Environmental/economic dispatch (EED) is a multi-objective problem with conflicting objectives since emission minimization is conflicting with fuel cost minimization. Production and consumption of fossil fuel and nuclear energy are closely related to environmental degradation. This causes negative effects to human health and the quality of life. Depletion of the fossil fuel resources will also be challenging for the presently employed energy systems to cope with future energy requirements. On the other hand, renewable energy sources such as hydro and wind are abundant, inexhaustible and widely available. These sources use native resources and have the capacity to meet the present and the future energy demands of the world with almost nil emissions of air pollutants and greenhouse gases. The costs of fossil fuel and renewable energy are also heading in opposite directions. The economic policies needed to support the widespread and sustainable markets for renewable energy sources are rapidly evolving. The contribution of this research centers on solving the economic dispatch problem of a system with hybrid energy resources under environmental restrictions. It suggests an effective solution of renewable energy to the existing fossil fueled and nuclear electric utilities for the cheaper and cleaner production of electricity with hourly

  9. The energy future in France?

    International Nuclear Information System (INIS)

    Rebut, Paul Henri

    2013-01-01

    In this contribution, the author indicates figures for primary energy sources in France, outlines what is expected from a source of energy, and discusses the energy transformation efficiency. He addresses the case of electricity production and consumption, production costs for the different sources, nuclear energy, primary fluid mechanical energies, issue of intermittency and storage, photovoltaic, storage, subsidies and purchase obligation for EDF, fossil energies and carbon dioxide production. He questions the possibility of reduction of energy consumption, evokes and criticizes the French energy policy concerning electricity production, and possibilities of energy saving in housing and in transports, and by developing smart grids

  10. Fossil energy savings and GHG mitigation potentials of ethanol as a gasoline substitute in Thailand

    International Nuclear Information System (INIS)

    Nguyen, Thu Lan T.; Gheewala, Shabbir H.; Garivait, Savitri

    2007-01-01

    One of the Thai government's measures to promote ethanol use is excise tax exemption, making gasohol cheaper than gasoline. The policy in favour of biofuels is being supported by their contribution to fossil energy savings and greenhouse gas (GHG) mitigation. An analysis of energy balance (EnB), GHG balance and GHG abatement cost has been done to evaluate molasses-based ethanol (MoE) in Thailand. A positive EnB of 19.2 MJ/L implies that MoE is a good substitute for gasoline, effective in fossil energy savings. GHG balance assessment based on the baseline scenario shows that emissions are most likely to increase with the substitution. Scenarios using biogas captured from spent wash treatment and rice husk to substitute coal used in ethanol conversion give encouraging results in improving the GHG balance. However, the higher price of MoE over gasoline currently has resulted in high GHG abatement costs, even under the best-case scenario. Compared to the many other climate strategies relevant to Thailand, MoE is much less cost effective. Governed by the rule of supply and demand, a strong fluctuation in molasses price is considered the main cause of volatile MoE price. Once supplies are stable, the trend of price drops would make MoE a reasonable option for national climate policy

  11. 78 FR 44103 - Announcement of Public Meetings To Receive Comments on Draft Solicitation for Advanced Fossil...

    Science.gov (United States)

    2013-07-23

    ... Advanced Fossil Energy Projects AGENCY: U.S. Department of Energy. ACTION: Notice of public meetings to... a potential future solicitation announcement for Federal Loan Guarantees for Advanced Fossil Energy... Guarantees for Advanced Fossil Energy Projects are invited to attend any of the meetings listed in DATES. To...

  12. Hydrogen Production from Nuclear Energy

    Science.gov (United States)

    Walters, Leon; Wade, Dave

    2003-07-01

    During the past decade the interest in hydrogen as transportation fuel has greatly escalated. This heighten interest is partly related to concerns surrounding local and regional air pollution from the combustion of fossil fuels along with carbon dioxide emissions adding to the enhanced greenhouse effect. More recently there has been a great sensitivity to the vulnerability of our oil supply. Thus, energy security and environmental concerns have driven the interest in hydrogen as the clean and secure alternative to fossil fuels. Remarkable advances in fuel-cell technology have made hydrogen fueled transportation a near-term possibility. However, copious quantities of hydrogen must be generated in a manner independent of fossil fuels if environmental benefits and energy security are to be achieved. The renewable technologies, wind, solar, and geothermal, although important contributors, simply do not comprise the energy density required to deliver enough hydrogen to displace much of the fossil transportation fuels. Nuclear energy is the only primary energy source that can generate enough hydrogen in an energy secure and environmentally benign fashion. Methods of production of hydrogen from nuclear energy, the relative cost of hydrogen, and possible transition schemes to a nuclear-hydrogen economy will be presented.

  13. Financial subsidies to the Australian fossil fuel industry

    International Nuclear Information System (INIS)

    Riedy, Chris; Diesendorf, Mark

    2003-01-01

    A common claim during international greenhouse gas reduction negotiations has been that domestic emissions cuts will harm national economies. This argument fails to consider the distorting effect of existing financial subsidies and associated incentives to fossil fuel production and consumption provided by governments in most developed countries. These subsidies support a fossil fuel energy sector that is the major contributor to global greenhouse gas emissions and conflict with attempts to expand the role of sustainable energy technologies. Reform of these types of subsidies has the potential to provide substantial gains in economic efficiency as well as reductions in carbon dioxide emissions--a 'no regrets' outcome for the economy and the environment. This paper examines financial subsidies to fossil fuel production and consumption in Australia and estimates the magnitude of the subsidies. Subsidies and associated incentives to fossil fuel production and consumption in Australia are similar to those in the United States and the other countries that have pushed for increased 'flexibility' during international negotiations

  14. An enviro-economic function for assessing energy resources for district energy systems

    International Nuclear Information System (INIS)

    Rezaie, Behnaz; Reddy, Bale V.; Rosen, Marc A.

    2014-01-01

    District energy (DE) systems provide an important means of mitigating greenhouse gas emissions and the significant related concerns associated with global climate change. DE systems can use fossil fuels, renewable energy and waste heat as energy sources, and facilitate intelligent integration of energy systems. In this study, an enviro-economic function is developed for assessing various energy sources for a district energy system. The DE system is assessed for the considered energy resources by considering two main factors: CO 2 emissions and economics. Using renewable energy resources and associated technologies as the energy suppliers for a DE system yields environmental benefits which can lead to financial advantages through such instruments as tax breaks; while fossil fuels are increasingly penalized by a carbon tax. Considering these factors as well as the financial value of the technology, an analysis approach is developed for energy suppliers of the DE system. In addition, the proposed approach is modified for the case when thermal energy storage is integrated into a DE system. - Highlights: • Developed a function to assess various energy sources for a district energy system. • Considered CO 2 emissions and economics as two main factors. • Applied renewable energy resources technologies as the suppliers for a DE system. • Yields environmental benefits can lead to financial benefits by tax breaks. • Modified enviro-economic function for the TES integrated into a DE system

  15. Fossil fuel power generation within the European Research Area

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-12-10

    The report is the first in a series of three produced by the PowerClean Thematic Network that looks at and defines future requirements for research and development of fossil fuel power generation in the European Union. It makes the case for fossil fuel R & D with emphasis on the need for clean coal technologies (to increased efficiency and other CO{sub 2} capture and storage) For satisfying future energy demands of the enlarged European Union between now and 2030. The report concludes that affirmative R, D and D action is needed to support the EU power industry, working together on a Europe-wide basis, to establish the use of coal and other fossil fuels in near-zero emissions power plant. The role model would be the European Research Area, as in the Sixth Framework Programme (FP6), but with a more comprehensive range of technical objectives recognising the importance of fossil fuels. Section headings are: introduction; current energy use; future needs and requirements; the future for clean fossil fuel energy in Europe; comparison with approaches adopted elsewhere (USA Vision 21 and FutureGen programmes, Japan); and responsibilities for EU coal R, D & D. 14 refs., 9 figs., 4 tabs.

  16. Energy technologies for climate change mitigation - What is appropriate for SA?

    CSIR Research Space (South Africa)

    Matekenya, W

    2006-05-01

    Full Text Available sector is the largest contributor of carbon dioxide (Figure 2). 2.1 CLEANER FOSSIL FUEL TECHNOLOGY Despite the environmental impacts of fossil fuel use, South Africa will continue depending on fossil fuel power utilisation. Coal in particular... Use of Energy Conference 2006 2.3 NUCLEAR Nuclear energy, hydroelectricity, plus “renewables” like solar and wind, emit no carbon.. Table 1. Energy production comparison Source Output 1 kg coal 3 kWh 1 kg oil 4 kWh 1 kg uranium 50 000 k...

  17. A prototype machine using thermal type Stirling solar energy and bio fuel as a primary energy source

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Carlos Cesar; Sousa, Regina Celia de; Santos, Jose Maria Ramos dos; Oliveira, Antonio Jose Silva [Universidade Federal do Maranhao (UFMA), Sao Luis, MA (Brazil). Dept. de Fisica

    2011-07-01

    Full text. Depending on the energy crisis and global warming became necessary to seek new sources of energy that could minimize the serious problems arising from this situation. The energy base that supported our growth in recent decades has supported - heavily on fossil fuel, highly polluting since its extraction and consumption, causing great environmental impact. Before his coal, also harmful to human health and nature. Modern life has been moved at the expense of exhaustible resources that took millions of years to form and will end one day. In this work we developed a prototype that uses a heat engine cycle of the Stirling engine with a heat source, arising from the burning of bio fuels or solar power. The main bio fuel used was ethanol. Ethanol is a product of today's diverse market applications, widely used as automotive fuel in hydrated form or blended with gasoline. The main layout of our prototype are: the four-cylinder, two for expansion and the other two for compression, a heat spreader and heat sinks. These simple components can be arranged in various configurations allowing a large space to the adequacy and efficiency of the machine. In experimental measurements made in our prototype, we have an angular speed of 360.1 rpm (revolutions per minute) with an average temperature of 215.6 deg C camera hot (expansion cylinder) and 30 deg C cold source (compression cylinders) and torque generated by our machine is 0.388 Nm Our device is multi-fuel and can be used virtually any source of energy: gasoline, ethanol, methanol, natural gas, diesel, biogas, LPG and solar energy. The construction of this device allowed us to investigate the processes of transformation of energy: chemical, thermal, and mechanical and maximize efficiency of the Stirling engine. To complete the monitoring apparatus, use equipment such as notebook, digital tachometer and a data acquisition Agilent 34970A model. These devices were used in monitoring the angular velocity and

  18. Improved Fossil/Industrial CO2 Emissions Modeling for the North American Carbon Program

    Science.gov (United States)

    Gurney, K. R.; Seib, B.; Mendoza, D.; Knox, S.; Fischer, M.; Murtishaw, S.

    2006-12-01

    The quantification of fossil fuel CO2 emissions has implications for a wide variety of scientific and policy- related questions. Improvement in inverse-estimated carbon fluxes, country-level carbon budgeting, analysis of regional emissions trading systems, and targeting of observational systems are all important applications better served by improvements in understanding where and when fossil fuel/industrial CO2 is emitted. Traditional approaches to quantifying fossil/industrial CO2 emissions have relied on national sales/consumption of fossil fuels with secondary spatial footprints performed via proxies such as population. This approach has provided global spatiotemporal resolution of one degree/monthly. In recent years the need has arisen for emission estimates that not only achieve higher spatiotemporal scales but include a process- level component. This latter attribute provides dynamic linkages between energy policy/decisionmaking and emissions for use in projecting changes to energy systems and the implications these changes may have on climate change. We have embarked on a NASA-funded research strategy to construct a process-level fossil/industrial CO2 emissions model/database for North America that will resolve fossil/industrial CO2 emissions hourly and at 36 km. This project is a critical component of the North American Carbon Program. Our approach builds off of many decades of air quality monitoring for regulated pollutants such as NOx, VOCs and CO that has been performed by regional air quality managers, states, and the Environmental Protection Agency in the United States. By using the highly resolved monitoring data supplied to the EPA, we have computed CO2 emissions for residential, commercial/industrial, transportation, and biogenic sources. This effort employs a new emissions modeling system (CONCEPT) that spatially and temporally distributes the monitored emissions across the US. We will provide a description of the methodology we have employed, the

  19. Multicriteria analysis for sources of renewable energy using data from remote sensing

    Science.gov (United States)

    Matejicek, L.

    2015-04-01

    Renewable energy sources are major components of the strategy to reduce harmful emissions and to replace depleting fossil energy resources. Data from remote sensing can provide information for multicriteria analysis for sources of renewable energy. Advanced land cover quantification makes it possible to search for suitable sites. Multicriteria analysis, together with other data, is used to determine the energy potential and socially acceptability of suggested locations. The described case study is focused on an area of surface coal mines in the northwestern region of the Czech Republic, where the impacts of surface mining and reclamation constitute a dominant force in land cover changes. High resolution satellite images represent the main input datasets for identification of suitable sites. Solar mapping, wind predictions, the location of weirs in watersheds, road maps and demographic information complement the data from remote sensing for multicriteria analysis, which is implemented in a geographic information system (GIS). The input spatial datasets for multicriteria analysis in GIS are reclassified to a common scale and processed with raster algebra tools to identify suitable sites for sources of renewable energy. The selection of suitable sites is limited by the CORINE land cover database to mining and agricultural areas. The case study is focused on long term land cover changes in the 1985-2015 period. Multicriteria analysis based on CORINE data shows moderate changes in mapping of suitable sites for utilization of selected sources of renewable energy in 1990, 2000, 2006 and 2012. The results represent map layers showing the energy potential on a scale of a few preference classes (1-7), where the first class is linked to minimum preference and the last class to maximum preference. The attached histograms show the moderate variability of preference classes due to land cover changes caused by mining activities. The results also show a slight increase in the more

  20. The relationship between air pollution, fossil fuel energy consumption, and water resources in the panel of selected Asia-Pacific countries.

    Science.gov (United States)

    Rafindadi, Abdulkadir Abdulrashid; Yusof, Zarinah; Zaman, Khalid; Kyophilavong, Phouphet; Akhmat, Ghulam

    2014-10-01

    The objective of the study is to examine the relationship between air pollution, fossil fuel energy consumption, water resources, and natural resource rents in the panel of selected Asia-Pacific countries, over a period of 1975-2012. The study includes number of variables in the model for robust analysis. The results of cross-sectional analysis show that there is a significant relationship between air pollution, energy consumption, and water productivity in the individual countries of Asia-Pacific. However, the results of each country vary according to the time invariant shocks. For this purpose, the study employed the panel least square technique which includes the panel least square regression, panel fixed effect regression, and panel two-stage least square regression. In general, all the panel tests indicate that there is a significant and positive relationship between air pollution, energy consumption, and water resources in the region. The fossil fuel energy consumption has a major dominating impact on the changes in the air pollution in the region.

  1. A tool for analysing, researching and modeling energy efficiency, sustainability and flexibility of biogas chains operating as load balancer within decentralized (smart) energy systems

    NARCIS (Netherlands)

    Pierie, Frank; Broekhuijsen, J.; Vonder, M.

    Renewable energy is often suggested as a possible solution for reducing greenhouse gas emissions and decreasing dependency on fossil energy sources. The most readily available renewable energy sources in Europe, wind, solar and biomass are dispersed by nature, making them ideally suited for use

  2. Cool energy. Renewal solutions to environmental problems

    International Nuclear Information System (INIS)

    Brower, M.

    1992-01-01

    This book begins with a chapter describing some of the economic and environmental consequences of America's fossil-fuel-based economy. It makes the case that, despite some progress in reducing pollution from fossil fuels, no lasting cure for the deteriorating environment - in particular, the looming threat of global warming - is possible without developing alternative fuel sources. That renewable energy can provide the bulk of the new supplies needed is the theme of the second chapter, which discusses the relative advantages of these resources compared to fossil fuels and nuclear power and evaluates their long-term potential. The bulk of the book considers five broad categories of renewable energy sources: solar, wind, biomass (plant matter), rivers and oceans, and geothermal. For each of these sources, the book describes its current application, discusses its costs, analyzes new technologies under development, and assesses its positive and negative environmental impacts. This book shows the vital role renewable sources can and should play in America's energy future. It cites studies indicating that, with the right policies, renewable energy could provide as much as half of America's energy within 40 years, and an even larger fraction down the road. Such a rapid shift from existing energy sources would be dramatic but not unprecedented. In 1920, coal supplied 70% of US energy, but within 40 years its share had dropped to just 20% as oil and natural gas use increased. Sooner or later, oil and natural gas will also fade in importance. The real question is when. This book makes the case that the time to move decisively toward a renewable energy economy has arrived

  3. GASEOUS EMISSIONS FROM FOSSIL FUELS AND BIOMASS COMBUSTION IN SMALL HEATING APPLIANCES

    Directory of Open Access Journals (Sweden)

    Daniele Dell'Antonia

    2012-06-01

    Full Text Available The importance of emission control has increased sharply due to the increased need of energy from combustion. However, biomass utilization in energy production is not free from problems because of physical and chemical characteristics which are substantially different from conventional energy sources. In this situation, the quantity and quality of emissions as well as used renewable sources as wood or corn grain are often unknown. To assess this problem the paper addresses the objectives to quantify the amount of greenhouse gases during the combustion of corn as compared to the emissions in fossil combustion (natural gas, LPG and diesel boiler. The test was carried out in Friuli Venezia Giulia in 2006-2008 to determine the air pollution (CO, NO, NO2, NOx, SO2 and CO2 from fuel combustion in family boilers with a power between 20-30 kWt. The flue gas emission was measured with a professional semi-continuous multi-gas analyzer, (Vario plus industrial, MRU air Neckarsulm-Obereisesheim. Data showed a lower emission of fossil fuel compared to corn in family boilers in reference to pollutants in the flue gas (NOx, SO2 and CO. In a particular way the biomass combustion makes a higher concentration of carbon monoxide (for an incomplete combustion because there is not a good mixing between fuel and air and nitrogen oxides (in relation at a higher content of nitrogen in herbaceous biomass in comparison to another fuel.

  4. Feasibility study on renewable energy systems and selected insulation applications : smart solutions for energy saving

    OpenAIRE

    Cuadra Fonseca, Sergio

    2013-01-01

    Energy represents a big challenge for future generations; not only mineral and fossil energy sources are being exhausted, but also GHG emissions pollute the environment and disrupt life natural cycles bringing serious irreversible impacts on earth. Renewable energy sources, on the other hand, are unexhausted and free of pollution; solar power systems play an important role in the generation of clean energy, being one of the most cost-effective solutions. Besides, solar power systems have ...

  5. Exploring the Relationship of Organizational Culture and Implicit Leadership Theory to Performance Differences in the Nuclear and Fossil Energy Industry

    Science.gov (United States)

    Cravey, Kristopher J.

    Notable performance differences exist between nuclear and fossil power generation plants in areas such as safety, outage duration efficiency, and capacity factor. This study explored the relationship of organizational culture and implicit leadership theory to these performance differences. A mixed methods approach consisting of quantitative instruments, namely the Organizational Culture Assessment Instrument and the GLOBE Leadership Scales, and qualitative interviews were used in this study. Subjects were operations middle managers in a U.S. energy company that serves nuclear or fossil power plants. Results from the quantitative instruments revealed no differences between nuclear and fossil groups in regards to organizational culture types and implicit leadership theories. However, the qualitative results did reveal divergence between the two groups in regards to what is valued in the organization and how that drives behaviors and decision making. These organizational phenomenological differences seem to explain why performance differences exist between nuclear and fossil plants because, ultimately, they affect how the organization functions.

  6. Environmental pricing of externalities from different sources of electricity generation in Chile

    International Nuclear Information System (INIS)

    Aravena, Claudia; Hutchinson, W. George; Longo, Alberto

    2012-01-01

    The rapid increase in electricity demand in Chile means a choice must be made between major investments in renewable or non-renewable sources for additional production. Current projects to develop large dams for hydropower in Chilean Patagonia impose an environmental price by damaging the natural environment. On the other hand, the increased use of fossil fuels entails an environmental price in terms of air pollution and greenhouse gas emissions contributing to climate change. This paper studies the debate on future electricity supply in Chile by investigating the preferences of households for a variety of different sources of electricity generation such as fossil fuels, large hydropower in Chilean Patagonia and other renewable energy sources. Using Double Bounded Dichotomous Choice Contingent Valuation, a novel advanced disclosure method and internal consistency test are used to elicit the willingness to pay for less environmentally damaging sources. Policy results suggest a strong preference for renewable energy sources with higher environmental prices imposed by consumers on electricity generated from fossil fuels than from large dams in Chilean Patagonia. Policy results further suggest the possibility of introducing incentives for renewable energy developments that would be supported by consumers through green tariffs or environmental premiums. Methodological findings suggest that advanced disclosure learning overcomes the problem of internal inconsistency in SB-DB estimates.

  7. Material Flow Analysis of Fossil Fuels in China during 2000–2010

    Science.gov (United States)

    Wang, Sheng; Dai, Jing; Su, Meirong

    2012-01-01

    Since the relationship between the supply and demand of fossil fuels is on edge in the long run, the contradiction between the economic growth and limited resources will hinder the sustainable development of the Chinese society. This paper aims to analyze the input of fossil fuels in China during 2000–2010 via the material flow analysis (MFA) that takes hidden flows into account. With coal, oil, and natural gas quantified by MFA, three indexes, consumption and supply ratio (C/S ratio), resource consumption intensity (RCI), and fossil fuels productivity (FFP), are proposed to reflect the interactions between population, GDP, and fossil fuels. The results indicated that in the past 11 years, China's requirement for fossil fuels has been increasing continuously because of the growing mine productivity in domestic areas, which also leads to a single energy consumption structure as well as excessive dependence on the domestic exploitation. It is advisable to control the fossil fuels consumption by energy recycling and new energy facilities' popularization in order to lead a sustainable access to nonrenewable resources and decrease the soaring carbon emissions. PMID:23365525

  8. Upward revision of global fossil fuel methane emissions based on isotope database.

    Science.gov (United States)

    Schwietzke, Stefan; Sherwood, Owen A; Bruhwiler, Lori M P; Miller, John B; Etiope, Giuseppe; Dlugokencky, Edward J; Michel, Sylvia Englund; Arling, Victoria A; Vaughn, Bruce H; White, James W C; Tans, Pieter P

    2016-10-06

    Methane has the second-largest global radiative forcing impact of anthropogenic greenhouse gases after carbon dioxide, but our understanding of the global atmospheric methane budget is incomplete. The global fossil fuel industry (production and usage of natural gas, oil and coal) is thought to contribute 15 to 22 per cent of methane emissions to the total atmospheric methane budget. However, questions remain regarding methane emission trends as a result of fossil fuel industrial activity and the contribution to total methane emissions of sources from the fossil fuel industry and from natural geological seepage, which are often co-located. Here we re-evaluate the global methane budget and the contribution of the fossil fuel industry to methane emissions based on long-term global methane and methane carbon isotope records. We compile the largest isotopic methane source signature database so far, including fossil fuel, microbial and biomass-burning methane emission sources. We find that total fossil fuel methane emissions (fossil fuel industry plus natural geological seepage) are not increasing over time, but are 60 to 110 per cent greater than current estimates owing to large revisions in isotope source signatures. We show that this is consistent with the observed global latitudinal methane gradient. After accounting for natural geological methane seepage, we find that methane emissions from natural gas, oil and coal production and their usage are 20 to 60 per cent greater than inventories. Our findings imply a greater potential for the fossil fuel industry to mitigate anthropogenic climate forcing, but we also find that methane emissions from natural gas as a fraction of production have declined from approximately 8 per cent to approximately 2 per cent over the past three decades.

  9. Effect of fossil fuels on the parameters of CO2 capture.

    Science.gov (United States)

    Nagy, Tibor; Mizsey, Peter

    2013-08-06

    The carbon dioxide capture is a more and more important issue in the design and operation of boilers and/or power stations because of increasing environmental considerations. Such processes, absorber desorber should be able to cope with flue gases from the use of different fossil primary energy sources, in order to guarantee a flexible, stable, and secure energy supply operation. The changing flue gases have significant influence on the optimal operation of the capture process, that is, where the required heating of the desorber is the minimal. Therefore special considerations are devoted to the proper design and control of such boiler and/or power stations equipped with CO2 capture process.

  10. Power and choice[expanding use of renewable energy sources

    Energy Technology Data Exchange (ETDEWEB)

    Leipold, Gerd

    2002-07-01

    As we face up to the increased insecurity and slowing global economy caused by the terrorist attacks of 11 September, tackling climate change may appear to be a separate goal. Yet, as environmentalists, we know all things are connected. These issues are directly and critically linked. If we are serious about tackling any of them we have to tackle them all. The British Prime Minister, Tony Blair, recently asked 'what is the lesson of the financial markets, climate change, international terrorism, nuclear proliferation or world trade?' He answered himself: 'It is that our self-interest and our mutual interests are today inextricably woven together - that power, wealth and opportunity must be in the hands of the many, not the few.' If we adopt a visionary and robust approach to tackling climate change we will also bring about real security, provide a boost for the economy, reduce poverty and make the world fairer. Massive expansion of wind and solar power - and other sources of renewable energy - would provide the energy security we so urgently need. We can replace both the fossil fuels that cause climate change and nuclear reactors with their dangerous legacy. In bringing renewable energy to the world's 2 billion poorest people we would reduce poverty, help fight disease, facilitate education, give hope and independence - and make a better environment for everyone, everywhere. Politicians, commentators and scientists the world over have described climate change as the most pressing environmental issue of the day. But it is not limited purely to the agendas of environment departments. Of course it has environmental effects - including floods, drought, dying coral reefs, melting Arctic and Antarctic ice and sea-level rise - which will both directly and indirectly affect people and economies. But its causes go to the heart of industrial society and its energy supply, almost entirely dependent on fossil fuels. Tackling climate change means phasing these out. The United

  11. The Inefficiencies of Energy Efficiency : Reviewing the Strategic Role of Energy Efficiency and its Effectiveness in Alleviating Climate Change

    NARCIS (Netherlands)

    Read, S.A.; Lindhult, Erik; Mashayekhi, A.

    2016-01-01

    Our present economy is high-energy and demand-intensive, demand met through the use of high energy yield fossil fuels. Energy efficiency and renewable energy sources are proposed as the solution and named the ‘twin pillars’ of sustainable energy policy. Increasing energy efficiencies are expected to

  12. Renewable sources of energy

    International Nuclear Information System (INIS)

    Wojas, K.

    1996-01-01

    The author takes a look at causes of the present interest in the renewable, natural sources of energy. These are: the fuel deposits becoming exhausted, hazard to environment (especially carbon dioxide) and accessibility of these sources for under-developed countries. An interrelation is shown between these sources and the energy circulations connected with atmosphere and ocean systems. The chief ones from among them that are being used now are discussed, i.e. solar radiation, wind, water waves energy, tides, geothermal heat, and the like. Problems of conversion of the forms of these kinds of energy are also given a mention. (author)

  13. XIX Mendeleev Congress on general and applied chemistry. Abstract book in 4 volumes. Volume 4. Chemistry aspects of modern energy and alternative energy resources. Chemistry of fossil and renewable hydrocarbon raw materials. Analytical chemistry: novel methods and devices for chemical research and analysis. Chemical education

    International Nuclear Information System (INIS)

    2011-01-01

    The abstracts of the XIX Mendeleev Congress on general and applied chemistry held 25-30 September 2011 in Volgograd are presented. The program includes the Congress plenary and section reports, poster presentations, symposia and round tables on key areas of chemical science and technology, and chemical education. The work of the Congress was held the following sections: 1. Fundamental problems of chemical sciences; 2. Chemistry and technology of materials, including nanomaterials; 3. Physicochemical basis of metallurgical processes; 4. Current issues of chemical production, technical risk assessment; 5. Chemical aspects of modern power and alternative energy sources; 6. Chemistry of fossil and renewable hydrocarbons; 7. Analytical chemistry: new methods and instruments for chemical research and analysis; 8. Chemical education. Volume 4 includes abstracts of oral and poster presentations and presentations of correspondent participants of the sections: Chemistry aspects of modern energy and alternative energy resources; Chemistry of fossil and renewable hydrocarbon raw materials; Analytical chemistry: novel methods and devices for chemical research and analysis; Chemical education, and author index [ru

  14. Green Energy - Fiction and Reality

    Science.gov (United States)

    Cranberg, Lawrence

    2009-03-01

    The term ``Green Energy'' has been popularized to refer to energy sources that do not depend on fossil fuels. The oldest truly ``green'' energy source is wood fuel derived by photosynthesis for thermal comfort in the cold season. Thermal energy from the combustion of wood for personal heating in our 41 million fireplaces has greatly declined, due to an ``Anti-fireplace Hoax'' (1) that fireplaces are ``energy counterproductive.'' Physicists have a special obligation to address the problem that our major true source of ``Green Energy'' is widely misrepresented and neglected. 1. L. Cranberg, The Physics Teacher, Letter, January,l989

  15. Potential of photosynthetically produced organic matter as an energy feedstock. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Spedding, C.R.W.; Walsingham, J.M.; McDougall, V.D.; Shiels, L.A.; Carruthers, S.P.

    1982-01-01

    The following aspects of biomass as an energy source are discussed: fuel supplies, land resources, sources of biomass for fuel, utilization processes, energy cost of producing energy, and potential energy savings. Included in an appendix are fossil fuel energy budgets for crops grown in the United Kingdom.

  16. Energy harvesting solar, wind, and ocean energy conversion systems

    CERN Document Server

    Khaligh, Alireza

    2009-01-01

    Also called energy scavenging, energy harvesting captures, stores, and uses ""clean"" energy sources by employing interfaces, storage devices, and other units. Unlike conventional electric power generation systems, renewable energy harvesting does not use fossil fuels and the generation units can be decentralized, thereby significantly reducing transmission and distribution losses. But advanced technical methods must be developed to increase the efficiency of devices in harvesting energy from environmentally friendly, ""green"" resources and converting them into electrical energy.Recognizing t

  17. Renewable energy.

    Science.gov (United States)

    Destouni, Georgia; Frank, Harry

    2010-01-01

    The Energy Committee of the Royal Swedish Academy of Sciences has in a series of projects gathered information and knowledge on renewable energy from various sources, both within and outside the academic world. In this article, we synthesize and summarize some of the main points on renewable energy from the various Energy Committee projects and the Committee's Energy 2050 symposium, regarding energy from water and wind, bioenergy, and solar energy. We further summarize the Energy Committee's scenario estimates of future renewable energy contributions to the global energy system, and other presentations given at the Energy 2050 symposium. In general, international coordination and investment in energy research and development is crucial to enable future reliance on renewable energy sources with minimal fossil fuel use.

  18. Fossil avian eggshell preserves ancient DNA

    DEFF Research Database (Denmark)

    Oskam, Charlotte L; Haile, James Seymour; McLay, Emma

    2010-01-01

    Owing to exceptional biomolecule preservation, fossil avian eggshell has been used extensively in geochronology and palaeodietary studies. Here, we show, to our knowledge, for the first time that fossil eggshell is a previously unrecognized source of ancient DNA (aDNA). We describe the successful...... isolation and amplification of DNA from fossil eggshell up to 19 ka old. aDNA was successfully characterized from eggshell obtained from New Zealand (extinct moa and ducks), Madagascar (extinct elephant birds) and Australia (emu and owl). Our data demonstrate excellent preservation of the nucleic acids......, evidenced by retrieval of both mitochondrial and nuclear DNA from many of the samples. Using confocal microscopy and quantitative PCR, this study critically evaluates approaches to maximize DNA recovery from powdered eggshell. Our quantitative PCR experiments also demonstrate that moa eggshell has...

  19. Methane emissions and climate compatibility of fossil fuels

    International Nuclear Information System (INIS)

    Meier, B.

    1992-01-01

    Methane contributes directly and indirectly to the additional greenhouse effect caused by human activities. The vast majority of the anthropogenic methane release occurs worldwide in non-fossil sources such as rice cultivation, livestock operations, sanitary landfills and combustion of bio-mass. Methane emissions also occur during production, distribution and utilisation of fossil fuels. Also when considering the methane release and CO 2 -emissions of processes upstream of combustion, the ranking of environmental compatibility of natural gas, fuel oil and cool remains unchanged. Of all fossil fuels, natural gas contributes the least to the greenhouse effect. (orig.) [de

  20. Diversification of energy sources

    Science.gov (United States)

    1975-01-01

    The concept of energy source diversification was introduced as a substitution conservation action. The current status and philosophy behind a diversification program is presented in the context of a national energy policy. Advantages, disadvantages (constraints), and methods of implementation for diversification are discussed. The energy source systems for diversification are listed and an example impact assessment is outlined which deals with the water requirements of the specific energy systems.

  1. CO2 Tax or Fee as a Single Economic Instrument for Climate Protection Policy Promoting Renewable Energy Sources and Enhancing Energy Efficiency

    International Nuclear Information System (INIS)

    Granic, G.; Horvath, L.; Jelavic, B.; Juric, Z.; Kulisic, B.; Vuk, B.

    2013-01-01

    This paper presents the analysis of the current implementation of the policy to reduce CO 2 emissions through four practically independent processes: energy market, emission market, support for renewable energy sources through feed-in tariffs (FIT) and support scheme for enhancing energy efficiency. The conclusion is that in this system, some elements of which appear to be controversial, it is not possible to reach the goal - a radical reduction of CO 2 emissions by 80% in total and 95% in electricity production until 2050, which the EU has set as emission reduction targets for this period. Therefore, a new system is now proposed that is based on a single objective function, CO 2 emissions. The process would be managed through taxes or fees on CO 2 , while the raised revenues would be returned to projects aimed at reducing CO 2 emissions, projects for enhancing energy efficiency, renewable energy sources projects and projects reducing emissions from fossil fuels. The paper outlines the basis of the concept of CO 2 tax or fee as a key measure to stimulate the lowering of emissions and gives an analysis of the impact of different rates of tax or fee on CO 2 emissions on the energy price. A critical analysis of the new model's impact on development of renewable energy sources and on improving energy efficiency in buildings was carried out. Also, there is an analysis of the impact of the new model on transport development. The introduction of the new model should clear the energy market from administrative limitations and privileged positions of renewable sources and should bring all back in the frame of market economy, no matter what source of energy for production of electricity we are dealing with. One limitation to the new model is translation of the current situation in to the new system, especially in the field of renewable energy sources and their protected position under the already concluded long-term contracts. The paper also elaborates the basis for the

  2. On the optimum energy mix

    International Nuclear Information System (INIS)

    Fujii, Yasumasa

    2011-01-01

    After the Fukushima accident occurred in March 2011, reform of Japan's basic energy plan and energy supply system was reported to be under discussion such as to reduce dependence on nuclear power. Planning of energy policy should be considered based on four evaluation indexes of 'economics'. 'environmental effects', 'stable supply of energy' and 'sustainability'. 'Stable supply of energy' should include stability of domestic energy supply infrastructure against natural disasters in addition to stable supply of overseas resources. 'Sustainability' meant long-term availability of resources. Since there did not exist an almighty energy source and energy supply system superior in terms of every above-mentioned evaluation index, it would be wise to use combining various energy sources and supply system in rational way. This combination lead to optimum energy mix, so-called 'Energy Best Mix'. The author evaluated characteristics of energy sources and energy supply system in terms of four indexes and showed best energy mix from short-, medium- and long-term perspectives. Since fossil fuel resources would deplete anyhow, it would be inevitable for human being to be dependent on non-fossil energy resources regardless of greenhouse effects. At present it would be difficult and no guarantee to establish society fully dependent on renewable energy, then it would be probable to need utilization of nuclear energy in the long term. (T. Tanaka)

  3. Solar energy in progress and future research trends

    Energy Technology Data Exchange (ETDEWEB)

    Sen, Zekai [Istanbul Technical Univ., Dept. of Meteorology, Istanbul (Turkey)

    2004-07-01

    Extensive fossil fuel consumption in almost all human activities led to some undesirable phenomena such as atmospheric and environmental pollutions, which have not been experienced before in known human history. Consequently, global warming, greenhouse affect, climate change, ozone layer depletion and acid rain terminologies started to appear in the literature frequently. Since 1970, it has been understood scientifically by experiments and researches that these phenomena are closely related to fossil fuel uses because they emit greenhouse gases such as carbon dioxide (CO{sub 2}) and methane (CH{sub 4}) which hinder the long wave terrestrial radiation to escape into space, and consequently, the earth troposphere becomes warmer. In order to avoid further impacts of these phenomena, the two concentrative alternatives are either to improve the fossil fuel quality with reductions in their harmful emissions into the atmosphere or more significantly to replace fossil fuel usage as much as possible with environmentally friendly, clean and renewable energy sources. Among these sources, solar energy comes at the top of the list due to its abundance, and more evenly distribution in nature than any other renewable energy types such as wind, geothermal, hydro, wave and tidal energies. It must be the main and common purpose of humanity to sustain environment for the betterment of future generations with sustainable energy developments. On the other hand, the known limits of fossil fuels compel the societies of the world in the long run to work jointly for their gradual replacement by renewable energy alternatives rather than the quality improvement of fossil sources. Solar radiation is an integral part of different renewable energy resources. It is the main and continuous input variable from practically inexhaustible sun. Solar energy is expected to play a very significant role in the future especially in developing countries, but it has also potential prospects for developed

  4. The strategic value of fossil fuels: challenges and responses

    International Nuclear Information System (INIS)

    1996-01-01

    Several speeches of the conference concerning the strategic value of fossil fuels that was held on May 8 to 11, 1995 in Houston, Texas are presented. The current and future importance of fossil fuels in energy consumption throughout the world is highlighted. The role of developing countries in the fossil fuels market is increasing, and these countries need some assistance from developed countries to develop. International and regional cooperation seems to be a good way to ensure economic growth. The importance of fossil fuels is shown by the growth of international coal and natural gas trade. (TEC)

  5. Principles of energy conversion, second edition

    International Nuclear Information System (INIS)

    Culp, A.W. Jr.

    1991-01-01

    This book is organized under the following headings: Energy classification, sources, utilization, economics and terminology; Principal fuels for energy conversion; Production of thermal energy; Fossil-fuel systems (such as steam generators, etc.); Nuclear reactor design and operation; The environmental impact of power plant operation; Production of mechanical energy; Production of electrical energy; and Energy storage

  6. Biomass energy and the environmental impacts associated with its production and utilization

    International Nuclear Information System (INIS)

    Abbasi, Tasneem; Abbasi, S.A.

    2010-01-01

    Biomass is the first-ever fuel used by humankind and is also the fuel which was the mainstay of the global fuel economy till the middle of the 18th century. Then fossil fuels took over because fossil fuels were not only more abundant and denser in their energy content, but also generated less pollution when burnt, in comparison to biomass. In recent years there is a resurgence of interest in biomass energy because biomass is perceived as a carbon-neutral source of energy unlike net carbon-emitting fossil fuels of which copious use has led to global warming and ocean acidification. The paper takes stock of the various sources of biomass and the possible ways in which it can be utilized for generating energy. It then examines the environmental impacts, including impact vis a vis greenhouse gas emissions, of different biomass energy generation-utilization options. (author)

  7. Is the doxa on energy reconcilable with expertise?

    International Nuclear Information System (INIS)

    Ruelle, Gilbert

    2012-01-01

    The author first states that the doxa on energy is based on three widespread opinions: renewable energies are attractive, fossil resources will not disappear that quickly and it will not be easy to do without them, and nuclear generates a diffuse fear. Within this context which leads some countries to define a new energy policy (notably with respect to nuclear energy), the author discusses several issues related to new roles assigned to the different energy sources. More precisely, he discusses whether renewable energies can be developed to their maximum capacity, whether we can forget the consequences of fossil energies on climate or whether this impact can be reduced by capturing and storing CO 2 within an acceptable delay, how risks and benefits of the different energy sources can be compared, and whether the refusal of nuclear energy because of its specific risks is based on actual facts

  8. Alternative energy sources

    Energy Technology Data Exchange (ETDEWEB)

    Ruiter, J P [N. V. Kema te Arnhem, NL

    1975-01-01

    A review of alternative energy sources is presented. Solar energy may be used by collecting the heat for direct use or by converting it to electricity. Flat-plate and concentrating collectors are described. Wind energy is an indirect form of solar energy, and has been used for many years in the Netherlands. Calculations of the efficiency of windmills, and of the useful available wind energy along the Netherlands' coastline, are provided. The conversion of organic waste to useable energy is described, including techniques of pyrolysis, combustion, and biological conversion. Tidal energy and ocean-thermal-gradient power plants are briefly described. Geothermal energy is a particularly attractive resource. The average temperature gradient is about 30/sup 0/C/km, ranging from 10/sup 0/C/km in South Africa to 150/sup 0/C/km in Italy. In the Netherlands it ranges from 20-50/sup 0/C/km. The various types of geothermal systems (steam, water, geopressured) are reviewed, and presently operating geothermal power plants are described. A comparison is made of the costs of various energy sources, and 27 references are provided.

  9. Energy infrastructure: hydrogen energy system

    Energy Technology Data Exchange (ETDEWEB)

    Veziroglu, T N

    1979-02-01

    In a hydrogen system, hydrogen is not a primary source of energy, but an intermediary, an energy carrier between the primary energy sources and the user. The new unconventional energy sources, such as nuclear breeder reactors, fusion reactors, direct solar radiation, wind energy, ocean thermal energy, and geothermal energy have their shortcomings. These shortcomings of the new sources point out to the need for an intermediary energy system to form the link between the primary energy sources and the user. In such a system, the intermediary energy form must be transportable and storable; economical to produce; and if possible renewable and pollution-free. The above prerequisites are best met by hydrogen. Hydrogen is plentiful in the form of water. It is the cheapest synthetic fuel to manufacture per unit of energy stored in it. It is the least polluting of all of the fuels, and is the lightest and recyclable. In the proposed system, hydrogen would be produced in large plants located away from the consumption centers at the sites where primary new energy sources and water are available. Hydrogen would then be transported to energy consumption centers where it would be used in every application where fossil fuels are being used today. Once such a system is established, it will never be necessary to change to any other energy system.

  10. Microalgal and terrestrial transport biofuels to displace fossil fuels

    NARCIS (Netherlands)

    Reijnders, L.

    2009-01-01

    Terrestrial transport biofuels differ in their ability to replace fossil fuels. When both the conversion of solar energy into biomass and the life cycle inputs of fossil fuels are considered, ethanol from sugarcane and biodiesel from palm oil do relatively well, if compared with ethanol from corn,

  11. Energy economics and supply

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    This section of the book, Part I, consists of four chapters (1--4). Chapter 1, Energy and the Economic Future, covers the following subjects: general economics of energy; predicting energy demand; a model of energy and the economy; and interpretations. Chapter 2, Uranium and Fossil Fuel Supplies, covers the following subjects: uranium resources; oil and gas supplies; coal resources. Chapter 3, Economics of Nuclear Power, covers information on sources of uncertainty; cost of nuclear power; cost of coal-generated electricity. Chapter 4, Alternative Energy Sources, sums information on solar energy, geothermal energy, fusion power, conservation, and transmission

  12. A Low Carbon EU Energy System and Unconventional Sources

    International Nuclear Information System (INIS)

    Gracceva, F.; Kanudia, A.; Tosato, GC.

    2013-01-01

    The paper investigates the potential role of unconventional fossil fuels in a global low carbon energy system. Making use of a systemic approach, the paper presents an original application of a global partial equilibrium energy system model (TIAM-JET). In order to give a worldwide perspective with higher detail on European energy systems, the model links a set of extra-European macro-regions to the 30 European countries. First, a review of the most recent estimates of the available stocks of unconventional hydrocarbon resources is used to build the set of assumption for the scenario analysis. Secondly, a set of scenarios assuming different availability and cost of unconventional fuels are added to both a Current Trend scenario and a Carbon Constrained (CC) scenario, to explore the perspectives of unconventional gas and oil in a scenario halving CO 2 emissions by 2050, which is consistent with a 2 degree temperature increase. The results show if/how unconventional sources can contribute to the robustness of the European energy system with respect to the stress of a strong carbon constraint. We define this robustness as the capacity of the energy system to adapt its evolution to long-term constraints and keep delivering energy services to end users. In our approach robustness represents the long-term dimension of energy security. Assessing this ''system property'' requires analysing the wide range of factors that can exercise a stabilizing influence on the energy services delivery system, together with their relations, actual interactions and synergies. The energy system approach used for the analysis seeks to take into account as much of this complexity as possible. We assess the robustness of the EU system to the carbon constraint by looking at how the CC scenario affects energy system costs and energy prices under scenarios with different deployment of unconventional sources. This provides insights on the synergies and/or trade-offs between energy security and

  13. Nontraditional renewable energy sources

    International Nuclear Information System (INIS)

    Shpil'rajn, Eh.Eh.

    1997-01-01

    The paper considers the application possibilities of nontraditional renewable energy sources to generate electricity, estimates the potential of nontraditional sources using energy of Sun, wind, biomass, as well as, geothermal energy and presents the results of economical analysis of cost of electricity generated by solar electrical power plants, geothermal and electrical plants and facilities for power reprocessing of biomass. 1 tab

  14. Primate diversification inferred from phylogenies and fossils.

    Science.gov (United States)

    Herrera, James P

    2017-12-01

    Biodiversity arises from the balance between speciation and extinction. Fossils record the origins and disappearance of organisms, and the branching patterns of molecular phylogenies allow estimation of speciation and extinction rates, but the patterns of diversification are frequently incongruent between these two data sources. I tested two hypotheses about the diversification of primates based on ∼600 fossil species and 90% complete phylogenies of living species: (1) diversification rates increased through time; (2) a significant extinction event occurred in the Oligocene. Consistent with the first hypothesis, analyses of phylogenies supported increasing speciation rates and negligible extinction rates. In contrast, fossils showed that while speciation rates increased, speciation and extinction rates tended to be nearly equal, resulting in zero net diversification. Partially supporting the second hypothesis, the fossil data recorded a clear pattern of diversity decline in the Oligocene, although diversification rates were near zero. The phylogeny supported increased extinction ∼34 Ma, but also elevated extinction ∼10 Ma, coinciding with diversity declines in some fossil clades. The results demonstrated that estimates of speciation and extinction ignoring fossils are insufficient to infer diversification and information on extinct lineages should be incorporated into phylogenetic analyses. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.

  15. July 1, 2007: electricity and gas markets open to competition. Oil and gas pipelines, vital energy arteries. Warming of the Earth's northern latitudes: what are the consequences? Nuclear power, an alternative to costly fossil fuels

    International Nuclear Information System (INIS)

    Anon.

    2008-01-01

    This issue of Alternatives newsletter features 4 main articles dealing with: 1 - July 1, 2007 - electricity and gas markets open to competition: first telecommunications, now energy. Starting July 1, 2007, every one of the European Union's 500 million consumers is free to chose a supplier for electricity and natural gas. How will this work? A road map. 2 - Oil and gas pipelines, vital energy arteries: they criss-cross the planet over land and under sea, offering an alternative to sea lanes. How do these strategically placed pipelines work to transport fossil fuels? 3 - Warming of the Earth's northern latitudes: what are the consequences?: Dr. Oleg Anisimov, one of the experts on the Intergovernmental Panel on Climate Change (IPCC) that met in April 2007, reviews the consequences of human activity on permafrost, that huge expense of ice covering almost 20% of the Earth's surface. 4 - Nuclear power, an alternative to costly fossil fuels: part two of a report on the World energy outlook. This publication of the International Energy agency predicts that nuclear power will continue to be one of the main sources of energy supply for the next 25 years

  16. Energy Sector of Russia’s Far East in 2050 Perspective: Technological Aspect

    Directory of Open Access Journals (Sweden)

    Dyomina O. V.

    2012-06-01

    Full Text Available Advanced energy technologies are analyzed: energy generation from fossil fuels, energy production from renewable sources, and nuclear power industry in the world, in Russia and the Russian Far East. It is shown that the high provision with internal energy resources and high prices in the world energy markets hamper the development of energy technologies in Russia: research and development in the field of generation based on traditional and renewable energy sources are aimed at improving the facilities, reducing the unit cost and operating costs; global leadership is only possible in nuclear technology. Prospects for the use of energy technologies in the Russian Far East will be determined by the conditions of extraction of fossil fuels and the related energy production

  17. The global greenhouse effect and the advanced nuclear energy system

    International Nuclear Information System (INIS)

    Byong Whi Lee

    1998-01-01

    In spite of future uncertainty, Korea is very much committed to nuclear energy as a major source of electric power expansion, because of its lack of domestic energy resources. A long term nuclear power program has resulted in 11 nuclear power plants of 9.6 GWe in operation, 2 units under construction and 7 planned. This means that the share of nuclear power in Korean electricity production would be about 38% in 2006. Many other countries were faced with the problem of global warming which is related to carbondioxide emission from the use of fossil fuels. According to Korean experience, it could be concluded that substitution of fossil fuels would be the most efficient and economic means of reducing the greenhouse gas emissions. In addition to nuclear and hydropower, the most promising other non-fossil sources are geothermal energy, biomass, solar thermal energy, photovoltaic systems, wind power, tidal power, wave power and ocean thermal electric conversion

  18. Marine energy generation systems and related monitoring and control

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Liu, Hui; Loh, Poh Chiang

    2014-01-01

    Energy is very important to the world as a driver of the modern society. According to estimations done by the International Energy Agency (IEA), the total global energy consumption is about 17 500 TW·h/yr [1]. In the past, fossil fuels like coal, oil and natural gas supplied the biggest part...... of this global consumption, and they were far larger than those of the renewable energy sources as Fig. 1 shows for 1973 [2]. In 2011, the production of renewable energy and global energy consumption increased, even though renewable energy was still much smaller than fossil fuels as Fig. 1 shows. [2]....

  19. Mean energy polarized neutron source

    International Nuclear Information System (INIS)

    Aleshin, V.A.; Zaika, N.I.; Kolotyj, V.V.; Prokopenko, V.S.; Semenov, V.S.

    1988-01-01

    Physical bases and realization scheme of a pulsed source of polarized neutrons with the energy of up to 75 MeV are described. The source comprises polarized deuteron source, transport line, low-energy ion and axial injector to the accelerator, U-240 isochronous cyclotron, targets for polarized neutron production, accelerated deuteron transport line and flight bases. The pulsed source of fast neutrons with the energy of up to 75 MeV can provide for highly polarized neutron beams with the intensity by 2-3 orders higher than in the most perfect source of this range which allows one to perform various experiments with high efficiency and energy resolution. 9 refs.; 1 fig

  20. Electrical energy supply with permanent energy sources

    Energy Technology Data Exchange (ETDEWEB)

    1981-05-01

    It can be shown that there are no chances for solar and wind power plants in Northern Europe when estimating the investment costs and the floor space required. However, the decentralized utilization of the plants which is likely to become very interesting in a few years shows other results. As a complete annual balance by traditional stores would cause a considerably uneconomic increase of the investment costs supplementary energy sources are inevitable. The author points out how the various primary energy sources in question can be utilized and combined with each other. He describes the converters for the permanent (regenerative) energy sources, the available electrochemical stores and their application as well as the fundamental structures of the energy supply systems. Finally some advice is given regarding the recycling of energy and the operation by the consumers.

  1. Renewable energy sources. Erneuerbare Energien

    Energy Technology Data Exchange (ETDEWEB)

    1988-01-01

    To judge future trends in work on the exploitation of renewable energy sources for overall energy supply, it is necessary to know the following: the rules that nature abides by, the principles of technical exploitation of these energies, and the basic data for the current state of development. The above information is compiled in this publication for those renewable energy sources on which topical discussion centres: solar radiation and wind. For the remaining renowable energy sources (e.g. biomass, tidal power, geothermal energy), some examples of use are mentioned and advanced literature is indicated. (orig./HSCH).

  2. Program for Energy Research and Technologies 1977--1980. Annual report 1977 on efficient uses of energy fossil sources of primary energy new sources of energy

    Energy Technology Data Exchange (ETDEWEB)

    1978-01-01

    The main objectives within the policy of the Federal Government Program for Energy Research and Technologies 1977--1980 can be summarized as follows: guaranteeing the continuity of energy supply in the medium to long term in the Federal Republic at economically favourable costs considering the requirements necessary for the protection of the environment and population. The financial support is effected under the general headings of Development of Energy Resources, Energy Conservation and Efficient Use of Energy. An additional aspect of the support policy is the development of technologies which are of importance for other countries, specifically for the developing countries. Support of a project is effected through a research and development grant from the Federal Government and this can range from less than 50% to 100%. For this the Government receives an irrevocable, free of charge and non-exclusive right to make use of research and development results. In special cases full repayment is agreed subject to commercial success. Based on agreements signed by the Federal Minister of Research and Technology and the Federal Minister of Economic Affairs on the one hand and the Juelich Nuclear Research Establishment (KFA) on the other, the Project Management for Energy Research (PLE) in KFA Juelich is acting on behalf of these Ministries. The Project Management's activities in non-nuclear energy research in general (for the Federal Ministry of Research and Technology) and development and innovation in coal mining and preparation (for the Federal Ministry of Economic Affairs) have the following general objectives: to improve the efficiency of Government support; to ensure that projects are efficiently handled; and to reduce the workload of the Ministries. The individual projects are listed and described briefly.

  3. What energies?

    International Nuclear Information System (INIS)

    Favennec, Jean-Pierre

    2009-01-01

    Energy consumption has developed significantly since the Second World War and population growth and improved living standards should see needs increasing even more. Traditional forecasts show that this energy consumption will continue to depend heavily on fossil energy. However, resources are limited and their use have a negative impact on the greenhouse effect and climate change. There is therefore a need to develop large quantities of renewable energy sources, to intensify energy saving programs and to pursue research in certain key areas

  4. Energy - mankind elixir

    International Nuclear Information System (INIS)

    Tempelmayer, A.

    2000-01-01

    Without energy the society can not survive, independently of its form it is the elixir of life. An overview of the energy situation in Austria is presented, in which statistical data such as 1996-1998 energy demand and production, 1997 renewable energy sources vs total energy consumption, 1997 other energy sources ( firewood, wastes, heat pumps, biomass etc.), 1975-1998 solar collectors capacity as well as a discussion about different resources ( hydropower, biomass, solar energy, wind energy, petroleum, gas, diesel etc.) and factors that influence the power industry are included. The energy demand in Austria has increased 1.4 % from 1997 to 1998 and three quarters were imported as power or fossil fuels. (nevyjel)

  5. A world-wide strategy for conserving fossil fuels

    International Nuclear Information System (INIS)

    Ogisu, Y.

    1994-01-01

    This paper deals with the fact that fossil fuels are capable technologies for savings energy in order to prevent the global warning. It gives some general principles of energy saving such as: Improvement of energy conversion rate; Lowering of burden; Use of natural energy; Storage of heat. (TEC)

  6. Security of supply: a neglected fossil fuel externality

    International Nuclear Information System (INIS)

    Cavallo, A.J.

    1995-01-01

    Various groups have attempted to set a monetary value on the externalities of fossil fuel usage based on damages caused by emissions of particulates, sulfur dioxide, and oxides of nitrogen and carbon. One externality that has been neglected in this type of analysis, however, is the cost of maintaining a secure supply of fossil fuels. Military expenditures for this purpose are relatively easy to quantify based on US Department of Defense and Office of Management and Budget figures, and amount to between $1 and more than $3 per million Btu, based on total fossil fuel consumption in the US. Open acknowledgment of such expenses would, at the very least, have a profound effect on the perceived competitiveness of all non-fossil fuel technologies. It should also provide a simple and easily comprehended rationale for an energy content (Btu) charge on all fossil fuels. (Author)

  7. Tidal power harnessing energy from water currents

    CERN Document Server

    Lyatkher, Victor

    2014-01-01

    As the global supply of conventional energy sources, such as fossil fuels, dwindles and becomes more and more expensive, unconventional and renewable sources of energy, such as power generation from water sources, is becoming more and more important.  Hydropower has been around for decades, but this book suggests new methods that are more cost-effective and less intrusive to the environment for creating power sources from rivers, the tides, and other sources of water.   The energy available from water currents is potentially much greater than society's needs.  Presenting a detailed discussi

  8. Wind energy renewable energy and the environment

    CERN Document Server

    Nelson, Vaughn

    2013-01-01

    As the demand for energy increases, and fossil fuels continue to decrease, Wind Energy: Renewable Energy and the Environment, Second Edition considers the viability of wind as an alternative renewable energy source. This book examines the wind industry from its start in the 1970s until now, and introduces all aspects of wind energy. The phenomenal growth of wind power for utilities is covered along with applications such as wind-diesel, village power, telecommunications, and street lighting.. It covers the characteristics of wind, such as shear, power potential, turbulence, wind resource, wind

  9. Bulgarian geothermal energy resources - state and perspective

    Energy Technology Data Exchange (ETDEWEB)

    Gramatikov, P S [Faculty of Natural Sciences and Mathematics, Dept. of Physical Engineering, South West Univ. ` Neofit Rilsky` , Blagoevgrad (Bulgaria)

    1997-12-01

    As special attention is paid to geothermal energy because the geothermal sources are distributed all over the territory of Bulgaria. Governmental incentives for initiating national action programs for energy efficiency, new renewable sources and the environment as well as educational activities are particularly important. The energy sector, as any other sector of the national economy, is currently undergoing considerable changes on its way to market relations, primarily connected to determining the role of the state as well as the form of ownership. The state energy policy is based on a long - term energy strategy complying with the natural conditions of the country, the expected macro - economic development, the geopolitical situation and regional development of energy cooperation with neighboring and closely situated countries. Limited reserves of fossil fuels, increased local and global environmental risks and recent technological achievements have straightened the global importance of renewable sources of thermal and electric energy. This is even more relevant for Bulgaria with small fossil fuel reserves (lignite) to be nearly exhausted and the environment notably polluted. Concerning local renewable sources of thermal energy and electricity, it is necessary to re-estimate their strategic role, to complete the input data for the resources, also to establish national programs supported by research and educational activities and international cooperation. (orig./AKF)

  10. Energy alternative

    International Nuclear Information System (INIS)

    Suarez Antola, R.

    2010-01-01

    The present work is about primary sources the conventional fossil fuels (petroleum, coal and natural gas) and not conventional (nuclear fuels), as well as the solar light that reaches the floor, the winds, the rivers, the oceanic currents including the seas, and the biomass, among others. In the present technological era the primary sources are used for the most part to transform their energy into electric power.

  11. Can renewable energy power the future?

    International Nuclear Information System (INIS)

    Moriarty, Patrick; Honnery, Damon

    2016-01-01

    Fossil fuels face resource depletion, supply security, and climate change problems; renewable energy (RE) may offer the best prospects for their long-term replacement. However, RE sources differ in many important ways from fossil fuels, particularly in that they are energy flows rather than stocks. The most important RE sources, wind and solar energy, are also intermittent, necessitating major energy storage as these sources increase their share of total energy supply. We show that estimates for the technical potential of RE vary by two orders of magnitude, and argue that values at the lower end of the range must be seriously considered, both because their energy return on energy invested falls, and environmental costs rise, with cumulative output. Finally, most future RE output will be electric, necessitating radical reconfiguration of existing grids to function with intermittent RE. - Highlights: •Published estimates for renewable energy (RE) technical potential vary 100-fold. •Intermittent wind and solar energy dominate total RE potential. •We argue it is unlikely that RE can meet existing global energy use. •The need to maintain ecosystem services will reduce global RE potential. •The need for storage of intermittent RE will further reduce net RE potential.

  12. Global exergetic dimension of hydrogen use in reducing fossil fuel consumption

    International Nuclear Information System (INIS)

    Adnan Midilli; Ibrahim Dincer

    2009-01-01

    In this paper, hydrogen is considered as a renewable and sustainable solution for minimizing the fossil fuel based-global irreversibility coefficient of global fossil fuel consumption and combating global warming and studied exergetically through a parametric performance analysis. The environmental impact results are then compared with the ones obtained for fossil fuels. In this regard, some exergetic expressions such as global waste exergy factor, global irreversibility coefficient and hydrogen based-global exergetic indicator. In order to investigate the role of hydrogen use at minimizing the fossil fuel based global irreversibility, the actual fossil fuel consumption data are taken from the literature. Due to the unavailability of appropriate hydrogen data for analysis, it is assumed that the utilization ratios of hydrogen are ranged between 0 and 1. Consequently, if exergetic utilization ratio of hydrogen from non-fossil fuel sources at a certain exergetic utilization ratio of fossil fuels increases, the fossil fuel based-global irreversibility coefficient will decrease. (author)

  13. Groningen Energy neutral in 2025? Opportunities for an energy neutral built environment in the City of Groningen

    NARCIS (Netherlands)

    Raats, Joep

    2007-01-01

    The use of fossil energy sources and the accompanying emissions are assumed to cause climate change. Initiatives are being taken to avert climate change from occurring. The city of Groningen even has the ambition to become “energy neutral” in 2025 to help

  14. Bioenergy from Low-Intensity Agricultural Systems : An Energy Efficiency Analysis

    NARCIS (Netherlands)

    Arodudu, Oludunsin; Helming, Katharina; Wiggering, Hubert; Voinov, Alexey

    2017-01-01

    In light of possible future restrictions on the use of fossil fuel, due to climate change obligations and continuous depletion of global fossil fuel reserves, the search for alternative renewable energy sources is expected to be an issue of great concern for policy stakeholders. This study assessed

  15. Atmospheric methane isotopic record favors fossil sources flat in 1980s and 1990s with recent increase

    Science.gov (United States)

    Rice, Andrew L.; Butenhoff, Christopher L.; Teama, Doaa G.; Röger, Florian H.; Khalil, M. Aslam K.; Rasmussen, Reinhold A.

    2016-09-01

    Observations of atmospheric methane (CH4) since the late 1970s and measurements of CH4 trapped in ice and snow reveal a meteoric rise in concentration during much of the twentieth century. Since 1750, levels of atmospheric CH4 have more than doubled to current globally averaged concentration near 1,800 ppb. During the late 1980s and 1990s, the CH4 growth rate slowed substantially and was near or at zero between 1999 and 2006. There is no scientific consensus on the drivers of this slowdown. Here, we report measurements of the stable isotopic composition of atmospheric CH4 (13C/12C and D/H) from a rare air archive dating from 1977 to 1998. Together with more modern records of isotopic atmospheric CH4, we performed a time-dependent retrieval of methane fluxes spanning 25 y (1984-2009) using a 3D chemical transport model. This inversion results in a 24 [18, 27] Tg y-1 CH4 increase in fugitive fossil fuel emissions since 1984 with most of this growth occurring after year 2000. This result is consistent with some bottom-up emissions inventories but not with recent estimates based on atmospheric ethane. In fact, when forced with decreasing emissions from fossil fuel sources our inversion estimates unreasonably high emissions in other sources. Further, the inversion estimates a decrease in biomass-burning emissions that could explain falling ethane abundance. A range of sensitivity tests suggests that these results are robust.

  16. The Nuclear Environmentalist Is There a Green Road to Nuclear Energy?

    CERN Document Server

    Gomez Cadenas, Juan José

    2012-01-01

    The general public has many misconceptions concerning energy sources; for example, how many realise that a nuclear power station releases more radioactivity into the atmosphere than a coal-fired power station, or that smoking just one cigarette carries the same risk as living next door to a nuclear plant for two years?  This book argues that greater awareness of the facts is needed as we start to enter an energy crisis owing to increasing scarcity of fossil fuels and climate change impacts. It carefully explores this coming crisis and concisely examines all of the major technologies related to energy production (fossil fuels, renewables, and nuclear) and their impacts on our society and environment. The author argues that it is wrong to pit alternatives to fossil fuels against each other and proposes that nuclear energy, although by no means free of problems, can be a viable source of reliable and carbon-free electricity. He concludes by calling for a diversified and rational mix of electricity generation in...

  17. The energy show

    International Nuclear Information System (INIS)

    1988-01-01

    The Energy Show is a new look at the problems of world energy, where our supplies come from, now and in the future. The programme looks at how we need energy to maintain our standards of living. Energy supply is shown as the complicated set of problems it is - that Fossil Fuels are both raw materials and energy sources, that some 'alternatives' so readily suggested as practical options are in reality a long way from being effective. (author)

  18. Long-term climate policy implications of phasing out fossil fuel subsidies

    International Nuclear Information System (INIS)

    Schwanitz, Valeria Jana; Piontek, Franziska; Bertram, Christoph; Luderer, Gunnar

    2014-01-01

    It is often argued that fossil fuel subsidies hamper the transition towards a sustainable energy supply as they incentivize wasteful consumption. We assess implications of a subsidy phase-out for the mitigation of climate change and the low-carbon transformation of the energy system, using the global energy–economy model REMIND. We compare our results with those obtained by the International Energy Agency (based on the World Energy Model) and by the Organization for Economic Co-Operation and Development (OECD-Model ENV-Linkages), providing the long-term perspective of an intertemporal optimization model. The results are analyzed in the two dimensions of subsidy phase-out and climate policy scenarios. We confirm short-term benefits of phasing-out fossil fuel subsidies as found in prior studies. However, these benefits are only sustained to a small extent in the long term, if dedicated climate policies are weak or nonexistent. Most remarkably we find that a removal of fossil fuel subsidies, if not complemented by other policies, can slow down a global transition towards a renewable based energy system. The reason is that world market prices for fossil fuels may drop due to a removal of subsidies. Thus, low carbon alternatives would encounter comparative disadvantages. - Highlights: • We assess implications of phasing out fossil fuel subsidies on the mitigation of climate change. • The removal of subsidies leads to a net-reduction in the use of energy. • Emission reductions contribute little to stabilize greenhouse gases at 450 ppm if not combined with climate policies. • Low carbon alternatives may encounter comparative disadvantages due to relative price changes at world markets

  19. The fossil history of pseudoscorpions (Arachnida: Pseudoscorpiones

    Directory of Open Access Journals (Sweden)

    D. Harms

    2017-08-01

    Full Text Available Pseudoscorpions, given their resemblance to scorpions, have attracted human attention since the time of Aristotle, although they are much smaller and lack the sting and elongated tail. These arachnids have a long evolutionary history but their origins and phylogenetic affinities are still being debated. Here, we summarise their fossil record based on a comprehensive review of the literature and data contained in other sources. Pseudoscorpions are one of the oldest colonisers of the land, with fossils known since the Middle Devonian (ca. 390 Ma. The only arachnid orders with an older fossil record are scorpions, harvestmen and acariform mites, plus two extinct groups. Pseudoscorpions do not fossilise easily, and records from the Mesozoic and Cenozoic consist almost exclusively of amber inclusions. Most Mesozoic fossils come from Archingeay and Burmese ambers (Late Cretaceous and those from the Cenozoic are primarily from Eocene Baltic amber, although additional fossils from, for example, Miocene Dominican and Mexican ambers, are known. Overall, 16 of the 26 families of living pseudoscorpions have been documented from fossils and 49 currently valid species are recognised in the literature. Pseudoscorpions represent a case of morphological stasis and even the Devonian fossils look rather modern. Indeed, most amber fossils are comparable to Recent groups despite a major gap in the fossil record of almost 250 Myr. Baltic amber inclusions indicate palaeofauna inhabiting much warmer climates than today and point to climatic shifts in central Europe since the Eocene. They also indicate that some groups (e.g. Feaellidae and Pseudogarypidae had much wider Eocene distributions. Their present-day occurrence is relictual and highlights past extinction events. Faunas from younger tropical amber deposits (e.g. Dominican and Mexican amber are comparable to Recent ones. Generally, there is a strong bias in the amber record towards groups that live under tree

  20. Centring radiological protection on today's global challenges in energy, climate change, environment and health-with nuclear energy playing a key role

    International Nuclear Information System (INIS)

    Saint-Pierre, S.

    2011-01-01

    The climate change issue includes meeting the growing demand for electricity while reducing the impacts from energy sources. Applying carbon capture and storage technology to fossil fuel energy and increasing renewable energy pose greater challenges than increasing nuclear energy. International Energy Agency's (IEA) electricity demand of 30 000 TWh by 2030 can be met with 10 000 TWh each from renewable, nuclear and fossil fuel energy. However, the ill-imposed very strict control of tiny public exposure to ionising radiation from nuclear energy continues to pose a serious hindrance. Effort needs to be re-balanced to produce an even-handed control of public exposure with emphasis on the most significant sources (i.e. natural background radiation and medical use) and vice versa. The on-going revision of the International Atomic Energy Agency Basic Safety Standards (BSS) provides an opportunity to achieve this internationally so that national regulations can be subsequently remediated. There can be no urgency in a BSS revision that fails to encompass such perspective. (authors)

  1. Centring radiological protection on today's global challenges in energy, climate change, environment and health--with nuclear energy playing a key role.

    Science.gov (United States)

    Saint-Pierre, Sylvain

    2011-07-01

    The climate change issue includes meeting the growing demand for electricity while reducing the impacts from energy sources. Applying carbon capture and storage technology to fossil fuel energy and increasing renewable energy pose greater challenges than increasing nuclear energy. International Energy Agency's (IEA) electricity demand of 30 000 TWh by 2030 can be met with 10 000 TWh each from renewable, nuclear and fossil fuel energy. However, the ill-imposed very strict control of tiny public exposure to ionising radiation from nuclear energy continues to pose a serious hindrance. Effort needs to be re-balanced to produce an even-handed control of public exposure with emphasis on the most significant sources (i.e. natural background radiation and medical use) and vice versa. The on-going revision of the International Atomic Energy Agency Basic Safety Standards (BSS) provides an opportunity to achieve this internationally so that national regulations can be subsequently remediated. There can be no urgency in a BSS revision that fails to encompass such perspective.

  2. Fossil Explorers

    Science.gov (United States)

    Moran, Sean; McLaughlin, Cheryl; MacFadden, Bruce; Jacobbe, Elizabeth; Poole, Michael

    2015-01-01

    Many young learners are fascinated with fossils, particularly charismatic forms such as dinosaurs and giant sharks. Fossils provide tangible, objective evidence of life that lived millions of years ago. They also provide a timescale of evolution not typically appreciated by young learners. Fossils and the science of paleontology can, therefore,…

  3. Prospects of renewable energy sources in India: Prioritization of alternative sources in terms of Energy Index

    International Nuclear Information System (INIS)

    Jha, Shibani K.; Puppala, Harish

    2017-01-01

    The growing energy demand in progressing civilization governs the exploitation of various renewable sources over the conventional sources. Wind, Solar, Hydro, Biomass, and waste & Bagasse are the various available renewable sources in India. A reliable nonconventional geothermal source is also available in India but it is restricted to direct heat applications. This study archives the status of renewable alternatives in India. The techno economic factors and environmental aspects associated with each of these alternatives are discussed. This study focusses on prioritizing the renewable sources based on a parameter introduced as Energy Index. This index is evaluated using cumulative scores obtained for each of the alternatives. The cumulative score is obtained by evaluating each alternative over a range of eleven environmental and techno economic criteria following Fuzzy Analytical Hierarchy Process. The eleven criteria's considered in the study are Carbon dioxide emissions (CO 2 ), Sulphur dioxide emissions (SO 2 ), Nitrogen oxide emissions (NO x ), Land requirement, Current energy cost, Potential future energy cost, Turnkey investment, Capacity factor, Energy efficiency, Design period and Water consumption. It is concluded from the study that the geothermal source is the most preferable alternative with highest Energy Index. Hydro, Wind, Biomass and Solar sources are subsequently preferred alternatives. - Highlights: • FAH process is used to obtain cumulative score for each renewable alternative. • Cumulative score is normalized by highest score of ideal source. • Energy Index shows how best a renewable alternative is. • Priority order is obtained for alternatives based on Energy Index. • Geothermal is most preferable source followed by Hydro, Wind, Biomass and Solar.

  4. Comparing primary energy attributed to renewable energy with primary energy equivalent to determine carbon abatement in a national context.

    Science.gov (United States)

    Gallachóir, Brian P O; O'Leary, Fergal; Bazilian, Morgan; Howley, Martin; McKeogh, Eamon J

    2006-01-01

    The current conventional approach to determining the primary energy associated with non-combustible renewable energy (RE) sources such as wind energy and hydro power is to equate the electricity generated from these sources with the primary energy supply. This paper compares this with an approach that was formerly used by the IEA, in which the primary energy equivalent attributed to renewable energy was equated with the fossil fuel energy it displaces. Difficulties with implementing this approach in a meaningful way for international comparisons lead to most international organisations abandoning the primary energy equivalent methodology. It has recently re-emerged in prominence however, as efforts grow to develop baseline procedures for quantifying the greenhouse gas (GHG) emissions avoided by renewable energy within the context of the Kyoto Protocol credit trading mechanisms. This paper discusses the primary energy equivalent approach and in particular the distinctions between displacing fossil fuel energy in existing plant or in new plant. The approach is then extended provide insight into future primary energy displacement by renewable energy and to quantify the amount of CO2 emissions avoided by renewable energy. The usefulness of this approach in quantifying the benefits of renewable energy is also discussed in an energy policy context, with regard to increasing security of energy supply as well as reducing energy-related GHG (and other) emissions. The approach is applied in a national context and Ireland is case study country selected for this research. The choice of Ireland is interesting in two respects. The first relates to the high proportion of electricity only fossil fuel plants in Ireland resulting in a significant variation between primary energy and primary energy equivalent. The second concerns Ireland's poor performance to date in limiting GHG emissions in line with its Kyoto target and points to the need for techniques to quantify the potential

  5. ACCELERATING THE ADOPTION PROCESS OF RENEWABLE ENERGY SOURCES AMONG SMES

    Directory of Open Access Journals (Sweden)

    Mirjam Leloux

    2015-07-01

    Full Text Available By 2020, intermittent renewable small scale energy sources (e.g. wind and solar energy are expected to represent about 17% of the EU’s total electricity consumption. All national overriding energy policy objectives are to ensure competitive, secure and sustainable energy for the economy and for society. Renewable energy, allied with energy efficiency, is often found crucial to meet these goals of secure sustainable and competitive energy supplies reducing dependency on expensive fossil imports and underpinning the move towards a low carbon economy while delivering green jobs to the economy. This all contributes to national competitiveness and the jobs and economic growth agenda. However, a straight forward implementation of renewable energy options is not easy, due to various barriers and obstacles. For most SMEs, the concept of generating their own renewable energy is still more of academic than genuine interest. In general, several barriers are experienced, such as high capital investments, slow return on investment, and the lack of knowledge of the benefits. There is a need for education on the benefits and drawbacks of sustainable energy, as well as a greater contribution to costs for this to work. In this paper we describe the intermediate outcomes of a European Partnership under the name of GREAT (Growing Renewable Energy Applications and Technologies, funded under the INTERREG IVB NWE Programme. GREAT aims to encourage communities and small to medium size enterprises (SMEs in Ireland, the United Kingdon, Belgium and The Netherlands to develop technological solutions for Smart Grid, Renewable Energy and Distributive Generation; research and develop policy issues for regulatory authorities and provide structured co-operation opportunities between SMEs and research institutes / technology developers. We developed GREAT spreadsheets to facilitate SMEs in each country to calculate the return-on-investment of renewable energy sources, such as

  6. Environmental impacts of renewable energy sources

    International Nuclear Information System (INIS)

    Abbasi, S.A.; Abbasi, N.

    1997-01-01

    The global attention has always been focused on the adverse environmental impacts of conventional energy sources. In contrast nonconventional energy sources, particularly the renewable ones, have enjoyed a clean image vis a vis environmental impacts. The only major exception to this general trend has been large hydropower projects; experience has taught that they can be disastrous for the environment. The belief now is that mini hydro and microhydro projects are harmless alternatives. But are renewable energy sources really as benign as is widely believed? The present essay addresses this question in the background of Lovin's classical paradigm which had postulated the hard (malignant) and soft (benign) energy concepts in the first place. It then critically evaluates the environmental impacts of major renewable energy sources. It then comes up with the broad conclusion that renewable energy sources are not the panacea they are popularly perceived to be; indeed in some cases their adverse environmental impacts can be as strongly negative as the impacts of conventional energy sources. The paper also dwells on the steps needed to utilize renewable energy sources without facing environmental backlashes of the type experienced from hydropower projects

  7. The challenge of greening energy systems

    International Nuclear Information System (INIS)

    Joseph, A.; Hughes, L.

    2006-01-01

    The current state of world energy supply and demand was examined along with future challenges facing population growth, economic growth, energy-demand growth, fossil energy supply, technology improvements, renewable energy solutions, and conservation measures. It was suggested that in order to implement cleaner and greener energy technology, it is important to understand the nature of global energy systems. The challenge of defining the related ideologies of green energy and sustainability was discussed. In this paper, green energy was defined as indicating environmental compatibility with little or no negative environmental impact. This differs from the concept of sustainability, which was defined as an action that can be repeated continuously without depleting or diminishing resources. In general, green energy options include most technologies that do not involve fossil fuels. However, this paper considered a spectrum of shades of green with some options being low-impact and cleaner, and others having high environmental impacts. As an example, the authors presented the ongoing debate over nuclear energy and hydro power. Although both energy sources can be sustainable over hundreds of years, they may or may not be environmentally compatible because they are often considered to have problematic attributes. Energy from renewable sources currently accounts for less than 20 per cent of world primary energy supply because price and implementation challenges in the renewables sector do not generally compare well to other energy sources. With high energy-demands beginning to strain finite fossil-energy supplies, the energy sector is now subject to more frequent disruptions and price fluctuations. Future growth from emerging economies will demand more energy and resources. This paper also emphasized that the proportion of green sources of energy has not increased substantially in the past 3 decades, and despite many technological advances, there continue to be significant

  8. The challenge of greening energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Joseph, A.; Hughes, L. [Dalhousie Univ., Halifax, NS (Canada). Dept. of Electrical and Computer Engineering, Energy Research Group

    2006-07-01

    The current state of world energy supply and demand was examined along with future challenges facing population growth, economic growth, energy-demand growth, fossil energy supply, technology improvements, renewable energy solutions, and conservation measures. It was suggested that in order to implement cleaner and greener energy technology, it is important to understand the nature of global energy systems. The challenge of defining the related ideologies of green energy and sustainability was discussed. In this paper, green energy was defined as indicating environmental compatibility with little or no negative environmental impact. This differs from the concept of sustainability, which was defined as an action that can be repeated continuously without depleting or diminishing resources. In general, green energy options include most technologies that do not involve fossil fuels. However, this paper considered a spectrum of shades of green with some options being low-impact and cleaner, and others having high environmental impacts. As an example, the authors presented the ongoing debate over nuclear energy and hydro power. Although both energy sources can be sustainable over hundreds of years, they may or may not be environmentally compatible because they are often considered to have problematic attributes. Energy from renewable sources currently accounts for less than 20 per cent of world primary energy supply because price and implementation challenges in the renewables sector do not generally compare well to other energy sources. With high energy-demands beginning to strain finite fossil-energy supplies, the energy sector is now subject to more frequent disruptions and price fluctuations. Future growth from emerging economies will demand more energy and resources. This paper also emphasized that the proportion of green sources of energy has not increased substantially in the past 3 decades, and despite many technological advances, there continue to be significant

  9. Radioactivity in fossils at the Hagerman Fossil Beds National Monument.

    Science.gov (United States)

    Farmer, C Neal; Kathren, Ronald L; Christensen, Craig

    2008-08-01

    Since 1996, higher than background levels of naturally occurring radioactivity have been documented in both fossil and mineral deposits at Hagerman Fossil Beds National Monument in south-central Idaho. Radioactive fossil sites occur primarily within an elevation zone of 900-1000 m above sea level and are most commonly found associated with ancient river channels filled with sand. Fossils found in clay rich deposits do not exhibit discernable levels of radioactivity. Out of 300 randomly selected fossils, approximately three-fourths exhibit detectable levels of natural radioactivity ranging from 1 to 2 orders of magnitude above ambient background levels when surveyed with a portable hand held Geiger-Muller survey instrument. Mineral deposits in geologic strata also show above ambient background levels of radioactivity. Radiochemical lab analysis has documented the presence of numerous natural radioactive isotopes. It is postulated that ancient groundwater transported radioactive elements through sand bodies containing fossils which precipitated out of solution during the fossilization process. The elevated levels of natural radioactivity in fossils may require special precautions to ensure that exposures to personnel from stored or displayed items are kept as low as reasonably achievable (ALARA).

  10. Nuclear Energy is the Answer to Cope with the Lack of Energy and Global Warming

    International Nuclear Information System (INIS)

    Wisnu Arya Wardhana

    2009-01-01

    This paper of nuclear energy is the answer to cope with the lack of energy and global warming based on the analysis of energy demand which is increasing rapidly, meanwhile the energy reserve is limited and decreased. Mostly world′s energy is generated by fossil fuel energy, mainly oil and coal. Fossil fuel energy and industrial activities produce green house gases (GHG) such as : COx, CH 4 , N 2 O, and CFC which cause of global warming. Global warming gives bad impact to environment and to human being. Every country in the world needs sufficient energy, but the energy resources is limited and decreased. The answer for this solution must be an energy source which does not produce green house gases. Why nuclear energy is chosen to cope with the lack of energy and global warming will be explained briefly in this paper. (author)

  11. Hydrogen movement and the next action: fossil fuels industry and sustainability economics

    International Nuclear Information System (INIS)

    Nejat Veziroglu, T.

    1997-01-01

    Since the hydrogen movement started in 1974, there has been progress in research, development, demonstration and commercialization activities, covering all aspects of the hydrogen energy system. In order to solve the interrelated problems of depletion of fossil fuels and the environmental impact of the combustion products of fossil fuels, it is desirable to speed up the conversion to the hydrogen energy system. Most established industries have joined the hydrogen movement. There is one exception: the fossil fuel industry. A call is made to the fossil fuel industry to join the hydrogen movement. It is also proposed to change the present economic system with a sustainability economics in order to account for environmental damage, recyclability and decommissioning, and thus, ensure a sustainable future. (Author)

  12. Nuclear energy from the viewpoint of adolescents. Content analysis of essays of Bavarian high school students

    International Nuclear Information System (INIS)

    Peters, H.P.

    1985-09-01

    It was found that in the discussion about nuclear energy the aspect 'health and safety risks' plays the major role. Nuclear energy in this dimension is judged ambivalent by proponents of nuclear energy and clearly negative by opponents. Surprisingly, proponents and opponents agree on the advantages of nuclear energy in securing long-term energy supply. Even a lot of proponents of nuclear energy were not convinced that a safe disposal of nuclear waste is technically possible. With respect to fossil and renewable energy sources the dimensions 'security of supply' and 'environmental impacts' were the most crucial ones. Both energy sources are judged very negatively in both dimensions. The students who favour the use of nuclear energy were found to rate fossil and renewable energy sources more negatively than those who opposed nuclear energy. (orig./HP) [de

  13. Fuelling the climate crisis : the continental energy plan

    International Nuclear Information System (INIS)

    Foley, D.; Scott, G.; Hocking, D.; Marchildon, S.

    2001-01-01

    This paper emphasized the need for the Canadian government to address the issue of climate change. It was argued that the political will in Canada to address global warming is subordinate to the expansion of fossil fuel production and exports. Canadians are highly dependent upon the services that these carbon-based fuels provide. However, these fossil fuels are significant contributors to local air pollution and the biggest contributor to global climate change. It was argued that conservation and other sources, such as renewable energy sources, are equally technically feasible and economically available. The paper criticized the fact that while world markets for renewables are expanding, Canada's energy future is being developed by the fossil fuel industry in collaboration with U.S. political leaders, energy regulators and policy makers, and that industry and government are ignoring the obvious contradiction between the science of climate change and the policy of fossil fuel expansion. The Canadian government encourages the development of fossil fuel supply and production through subsidies and incentive programs for exploration and development along with deregulation of the oil and natural gas markets. This paper demonstrated that under current market trends, the planned growth in Canadian fossil fuel production and use will raise emissions 44 per cent above the Kyoto target by 2010. New tar sands expansion projects, increased natural gas production to meet U.S. demand and new coal-fired electricity generation will add 63.5 megatonnes of greenhouse gas emissions to Canada's projected annual total. refs., tabs., figs

  14. Emission of CO2 from energy crop production

    International Nuclear Information System (INIS)

    Turhollow, A.F.

    1991-01-01

    The production of cellulosic energy crops (e.g., short rotation woody crops and herbaceous crops) make a net contribution of CO 2 to the atmosphere to the extent that fossil-fuel based inputs are used in their production. The CO 2 released from the use of the biomass is merely CO 2 that has recently been removed from the atmosphere by the plant growth process. Fossil inputs used in the production of energy corps include energy invested in fertilizers and pesticides, and petroleum fuels used for machinery operation such as site preparation, weed control, harvesting, and hauling. Fossil inputs used come from petroleum, natural gas, and electricity derived from fossil sources. No fossil inputs for the capital used to produce fertilizers, pesticides, or machinery is calculated in this analysis. In this paper calculations are made for the short rotation woody crop hybrid poplar (Populus spp.), the annual herbaceous crop sorghum (Sorghum biocolor [L.] Moench), and the perennial herbaceous crop switchgrass (Panicum virgatum L.). For comparison purposes, emissions of CO 2 from corn (Zea mays L.) are calculated

  15. UNEP (United Nations Environment Program) discussed the environmental impacts of extraction, transportation, and utilization of fossil fuels

    Energy Technology Data Exchange (ETDEWEB)

    1978-07-01

    The UNEP (United Nations Environment Program) discussed the environmental impacts of extraction, transportation, and utilization of fossil fuels at a meeting in Warsaw, the first in a series of UNEP undertakings, to be followed by studies on nuclear energy and renewable energy sources. The major issues examined at the meeting were human health effects of atmospheric emissions, especially SO/sub 2/; effects of SO/sub 2/ on vegetation and bodies of fresh water; long-term ecologic effects of oil spills in the sea; and potential effects on climate from atmospheric CO/sub 2/ arising from fossil fuel combustion. A doubling of the atmospheric CO/sub 2/ concentration would cause an estimated 1.5/sup 0/-3.0/sup 0/C increase in the surface air temperature. With an amount of CO/sub 2/ equivalent to 0.5 x 10/sup 10/ tonnes of carbon annually injected into the atmosphere from fossil fuels, of which only 0.27 x 10/sup 10/ tonnes are removed by some exchange processes with ocean or land. A 17% increase in atmospheric CO/sub 2/ over the 1976 concentration of 332 ppm is expected by the year 2000.

  16. Resource analysis of the Chinese society 1980-2002 based on exergy-Part 2: Renewable energy sources and forest

    International Nuclear Information System (INIS)

    Chen, B.; Chen, G.Q.

    2007-01-01

    This second part is the continuation of the first part on fossil fuels and energy minerals. The major renewable energy sources and forest products entering the Chinese society from 1980 to 2002, including sunlight, wind power, tidal power, wave power, geothermal power and heating, biomass, hydroelectric resource and forestry products, are calculated and analyzed in detail in this paper. The solar exergy inputs from solar photovoltaics and solar collectors, including water heater, solar oven and solar building, are calculated and discussed. The development of the wind power plant is presented. Major tidal power plants, which are still working, are addressed. Wave power devices and plants are introduced. Geothermal resources, mainly for power generation and heating, associated with distribution, are depicted. The utilization of biomass, embracing firewood, straw and biogas, which served as the main obtainable local resources for private consumption and production in the rural areas, is illustrated. Development of hydroelectric resources as complement to scarce fossil fuels is represented, of which the small hydropower project adapted for rural areas is emphasized. Finally, forest products from timber forest and economic forest are presented, with the forestation, reproducing, tending areas and sum of odd forestation trees being manifested

  17. Wind energy status in renewable electrical energy production in Turkey

    International Nuclear Information System (INIS)

    Kaygusuz, Kamil

    2010-01-01

    Main electrical energy sources of Turkey are thermal and hydraulic. Most of the thermal sources are derived from natural gas. Turkey imports natural gas; therefore, decreasing usage of natural gas is very important for both economical and environmental aspects. Because of disadvantages of fossil fuels, renewable energy sources are getting importance for sustainable energy development and environmental protection. Among the renewable sources, Turkey has very high wind energy potential. The estimated wind power capacity of Turkey is about 83,000 MW while only 10,000 MW of it seems to be economically feasible to use. Start 2009, the total installed wind power capacity of Turkey was only 4.3% of its total economical wind power potential (433 MW). However, the strong development of wind energy in Turkey is expected to continue in the coming years. In this study, Turkey's installed electric power capacity, electric energy production is investigated and also Turkey current wind energy status is examined. (author)

  18. Energy supply options for climate change mitigation and sustainable development

    Energy Technology Data Exchange (ETDEWEB)

    Dobran, Flavio

    2010-09-15

    Modern society is dependent on fossil fuels for its energy needs, but their combustion is producing emissions of greenhouse gases that cause global warming. If these emissions remain unconstrained they risk of producing significant impacts on humanity and ecosystems. Replacement of fossil fuels with alternative energy sources can stabilize anthropogenic global warming and thus reduce the climate change impacts. The deployment of alternative energy supply technologies should be based on objectives that are consistent with sustainability indicators and incorporate quantitative risk assessment multiattribute utility decision methodologies capable of ascertaining effective future energy supply options.

  19. Phytoremediation of differents wastewaters using energy crops

    OpenAIRE

    Leigue Fernandez, Maria Alejandra

    2014-01-01

    The sources of renewable energy acquire considerable interest, if accompanied by a more rational use of energy, to facilitate the transaction by a high use of fossil fuels to a sustainable use of renewable energy. There are many alternative energy source such as wind, solar, geothermal and biomass that fulfil the criteria of sustainability and economic feasibility. Biomass refers to all the vegetable matter that can be obtained from photosynthesis. Biodiesel can be produced from a variety of ...

  20. Fossil fuel subsidy reform: lessons from the Indonesian case

    International Nuclear Information System (INIS)

    Savatic, Filip

    2016-10-01

    Global assessments of consumption and the Indonesian case show the relevance of non-household consumers of subsidized energy products. As shown in this study, understanding in more nuance how reforms affect them has the potential to improve the reforms that will be developed by policy-makers worldwide. Further study can reinforce the many benefits of successful reform for the countries and societies slowly turning away from these policies of the past. Estimates regarding the amount of public funds utilized to subsidize the production or consumption of fossil fuels are staggering. For 2011, they range from $83 billion in OECD member states, to nearly $4.1 trillion worldwide if environmental externalities are considered. Numerous studies have demonstrated that subsidies repress economic growth, undermine energy sector investment, increase public debt, benefit wealthy citizens over the poor, instigate a rise in illicit activities, and engender greater global and local pollution. The negative effects of fossil fuel subsidies have led numerous governments to reform their energy policies. There has also been a growing international consensus in favor of reform. While the components of successful reform programs have been identified through past case studies, the nature of reforms adopted by several governments that target non-households have not been systematically examined. Since the late 1990s, the Indonesian government has implemented numerous reforms of its fossil fuel subsidies, including measures targeting household as well as non-household energy consumption. In doing so, it has incurred significant fiscal savings. However, an innovative budgetary analysis reveals that households receive a minority, and a declining share, of fossil fuel subsidy funds. This is the case despite the fact that subsidies were implemented to ensure poor households have access to cheap energy. These findings demonstrate the need to consider non-household sectors in the design of fossil