WorldWideScience

Sample records for forward-shock model account

  1. Energetic protons associated with a forward-reverse interplanetary shock pair at 1 A. U

    Energy Technology Data Exchange (ETDEWEB)

    Balogh, A [Imperial Coll. of Science and Technology, London (UK)

    1977-10-01

    A forward-reverse interplanetary shock was observed on 25 March 1969 by the magnetometer and plasma detector on the HEOS-1 satellite. This relatively rare event was described by Chao et al (1972) who concluded that the shock pair was formed at a distance 0.10 to 0.13 AU upstream of the Earth as a result of the interaction between a fast and a slow solar wind streams. Simultaneous observations of 1 MeV solar proton fluxes were also performed on HEOS-1. A characteristic intensity peak was observed as the forward shock passed by the spacecraft. The evolution of the proton intensity, together with a detailed analysis of anisotropies and pitch angle distributions show a complex dynamic picture of the effect of the forward shock on the ambient proton population. Significant changes in particle fluxes are seen to be correlated with fluctuations in the magnetic field. It is suggested that simple geometrical models of shock-assisted acceleration should be expanded to include the effect of magnetic fluctuations on particle fluxes. The interaction region limited by the forward and reverse shocks contained a large variety of magnetic fluctuations. Following the tangential discontinuity separating the fast solar wind stream from the preceding slow stream, a sunward flow was observed in the proton data, followed by a small but significant drop in intensity prior to the reverse shock.

  2. Accounting for imperfect forward modeling in geophysical inverse problems — Exemplified for crosshole tomography

    DEFF Research Database (Denmark)

    Hansen, Thomas Mejer; Cordua, Knud Skou; Holm Jacobsen, Bo

    2014-01-01

    forward models, can be more than an order of magnitude larger than the measurement uncertainty. We also found that the modeling error is strongly linked to the spatial variability of the assumed velocity field, i.e., the a priori velocity model.We discovered some general tools by which the modeling error...... synthetic ground-penetrating radar crosshole tomographic inverse problems. Ignoring the modeling error can lead to severe artifacts, which erroneously appear to be well resolved in the solution of the inverse problem. Accounting for the modeling error leads to a solution of the inverse problem consistent...

  3. Challenging the Forward Shock Model with the 80 Ms Follow up of the X-ray Afterglow of Gamma-Ray Burst 130427A

    Directory of Open Access Journals (Sweden)

    Massimiliano De Pasquale

    2017-01-01

    Full Text Available GRB 130427A was the most luminous gamma-ray burst detected in the last 30 years. With an isotropic energy output of 8.5 × 10 53 erg and redshift of 0.34, it combined very high energetics with a relative proximity to Earth in an unprecedented way. Sensitive X-ray observatories such as XMM-Newton and Chandra have detected the afterglow of this event for a record-breaking baseline longer than 80 million seconds. The light curve displays a simple power-law over more than three decades in time. In this presentation, we explore the consequences of this result for a few models put forward so far to interpret GRB 130427A, and more in general the implication of this outcome in the context of the standard forward shock model.

  4. Self-, other-, and joint monitoring using forward models

    Directory of Open Access Journals (Sweden)

    Martin John Pickering

    2014-03-01

    Full Text Available In the psychology of language, most accounts of self-monitoring assume that it is based on comprehension. Here we outline and develop the alternative account proposed by Pickering and Garrod (2013, in which speakers construct forward models of their upcoming utterances and compare them with the utterance as they produce them. We propose that speakers compute inverse models derived from the discrepancy (error between the utterance and the predicted utterance and use that to modify their production command or (occasionally begin anew. We then propose that comprehenders monitor other people’s speech by simulating their utterances using covert imitation and forward models, and then comparing those forward models with what they hear. They use the discrepancy to compute inverse models and modify their representation of the speaker’s production command, or realize that their representation is incorrect and may develop a new production command. We then discuss monitoring in dialogue, paying attention to sequential contributions, concurrent feedback, and the relationship between monitoring and alignment.

  5. The Advanced Composition Explorer Shock Database and Application to Particle Acceleration Theory

    Science.gov (United States)

    Parker, L. Neergaard; Zank, G. P.

    2015-01-01

    The theory of particle acceleration via diffusive shock acceleration (DSA) has been studied in depth by Gosling et al. (1981), van Nes et al. (1984), Mason (2000), Desai et al. (2003), Zank et al. (2006), among many others. Recently, Parker and Zank (2012, 2014) and Parker et al. (2014) using the Advanced Composition Explorer (ACE) shock database at 1 AU explored two questions: does the upstream distribution alone have enough particles to account for the accelerated downstream distribution and can the slope of the downstream accelerated spectrum be explained using DSA? As was shown in this research, diffusive shock acceleration can account for a large population of the shocks. However, Parker and Zank (2012, 2014) and Parker et al. (2014) used a subset of the larger ACE database. Recently, work has successfully been completed that allows for the entire ACE database to be considered in a larger statistical analysis. We explain DSA as it applies to single and multiple shocks and the shock criteria used in this statistical analysis. We calculate the expected injection energy via diffusive shock acceleration given upstream parameters defined from the ACE Solar Wind Electron, Proton, and Alpha Monitor (SWEPAM) data to construct the theoretical upstream distribution. We show the comparison of shock strength derived from diffusive shock acceleration theory to observations in the 50 keV to 5 MeV range from an instrument on ACE. Parameters such as shock velocity, shock obliquity, particle number, and time between shocks are considered. This study is further divided into single and multiple shock categories, with an additional emphasis on forward-forward multiple shock pairs. Finally with regard to forward-forward shock pairs, results comparing injection energies of the first shock, second shock, and second shock with previous energetic population will be given.

  6. Modelling electricity forward markets by ambit fields

    DEFF Research Database (Denmark)

    Barndorff-Nielsen, Ole; Fred Espen Benth, Fred Espen; Veraart, Almut

    This paper proposes a new modelling framework for electricity forward markets, which is based on ambit fields. The new model can capture many of the stylised facts observed in energy markets. One of the main differences to the traditional models lies in the fact that we do not model the dynamics......, but the forward price directly, where we focus on models which are stationary in time. We give a detailed account on the probabilistic properties of the new model and we discuss martingale conditions and change of measure within the new model class. Also, we derive a model for the spot price which is obtained...

  7. Positive and negative sudden impulses caused by fast forward and reverse interplanetary shocks

    Energy Technology Data Exchange (ETDEWEB)

    Andrioli, Vania Fatima; Savian, Jairo Francisco, E-mail: vaniafatima@gmail.com, E-mail: savian@lacesm.ufsm.br [Space Science Laboratory of Santa Maria - LACESM/CT - UFSM, Universidade Federal de Santa Maria - UFSM, Centro Tecnologico, Santa Maria, RS (Brazil); Echer, Ezequiel, E-mail: eecher@dge.inpe.br [National Institute for Space Research - INPE - MCT, Sao Jose dos Campos, SP (Brazil); Schuch, Nelson Jorge, E-mail: njschuch@lacesm.ufsm.br [Southern Regional Space Research Center - CRSPE/INPE - MCT, Universidade Federal de Santa Maria - UFSM, Santa Maria, RS (Brazil)

    2007-07-01

    Fast forward interplanetary shocks (FFS) are characterized by positive jump in all interplanetary plasma parameters (solar wind speed, temperature and density) and interplanetary magnetic field. However the fast reverse interplanetary shocks (FRS) are characterized by negative jump in all mentioned parameters except solar wind speed. Observations show that FFS cause positive sudden impulses (SI) while FRS cause negative SI in the H-component of the geomagnetic field. In this work we investigate the SI caused by interplanetary shocks. We use the observed plasma parameters, upstream and downstream, to calculate the variation of dynamic pressure. We observe that the SI amplitude is larger for positive SI than for negative ones, as a consequence of the fact that FFS have larger dynamic pressure variations as compared to FRS. (author)

  8. Accounting Fundamentals and Variations of Stock Price: Forward Looking Information Inducement

    OpenAIRE

    Sumiyana, Sumiyana

    2011-01-01

    This study investigates a permanent issue about low association between accounting fundamentals and variations of stock prices. It induces not only historical accountingfundamentals, but also forward looking information. Investors consider forward looking information that enables them to predict potential future cash flow, increase predictive power, lessen mispricing error, increase information content and drives future price equilibrium. The accounting fundamentals are earnings yield, book v...

  9. Government Spending Shocks, the Current Account and the Real Exchange Rate in OECD Countries

    Directory of Open Access Journals (Sweden)

    Soyoung Kim

    2008-06-01

    Full Text Available This paper examines the effects of government spending shocks on the current account and the real exchange rate for 20 OECD countries using panel VAR model, in order to provide empirical stylized facts. The countries were grouped based on openness and size, and the influence of openness and size on the effects of government spending shocks. The main findings are as follows. First, in the analysis of all 20 countries, in response to government spending shocks, the worsening of the current account is significant, but real exchange rate appreciation is not significant. Second, real exchange rate appreciation is more significant and worsening of the current account is more temporary in the group of countries with higher openness than in those with low openness. Third, the worsening of the current account is more significant in the group of large countries than in the group of small countries. Although real exchange rate depreciation under fiscal expansion is not consistent with traditional theories, the results are broadly consistent with the existing theories that incorporate openness and the size of the country.

  10. Slow shocks and their transition to fast shocks in the inner solar wind

    International Nuclear Information System (INIS)

    Wang, Y.C.

    1987-01-01

    The jump conditions of MHD shocks may be directly calculated as functions of three upstream conditions: the shock Alfven number based on the normal component of the relative shock speed, the shock angle, and the plasma β value. The shock Alfven number is less than 1 for a slow shock and greater than 1 for a fast shock. A traveling, forward shock can be a slow shock in coronal space, where the Alfven speed is of the order of 1000 km/s. The surface of a forward slow shock has a bow-shaped geometry with its nose facing toward the sun. The decrease in the Alfven speed at increasing heliocentric distance causes the shock Alfven number of a forward slow shock to become greater than 1, and the shock eventually evolves from a slow shock into a fast shock. During the transition the shock system consists of a slow shock, a fast shock, and a rotational discontinuity. They intersect along a closed transition line. As the system moves outward from the sun, the area enclosed by the transition line expands, the fast shock grows stronger, and the slow shock becomes weaker. Eventually, the slow shock diminishes, and the entire shock system evolves into a forward fast shock. copyrightAmerican Geophysical Union 1987

  11. A multiple-location model for natural gas forward curves

    International Nuclear Information System (INIS)

    Buffington, J.C.

    1999-06-01

    This thesis presents an approach for financial modelling of natural gas in which connections between locations are incorporated and the complexities of forward curves in natural gas are considered. Apart from electricity, natural gas is the most volatile commodity traded. Its price is often dependent on the weather and price shocks can be felt across several geographic locations. This modelling approach incorporates multiple risk factors that correspond to various locations. One of the objectives was to determine if the model could be used for closed-form option prices. It was suggested that an adequate model for natural gas must consider 3 statistical properties: volatility term structure, backwardation and contango, and stochastic basis. Data from gas forward prices at Chicago, NYMEX and AECO were empirically tested to better understand these 3 statistical properties at each location and to verify if the proposed model truly incorporates these properties. In addition, this study examined the time series property of the difference of two locations (the basis) and determines that these empirical properties are consistent with the model properties. Closed-form option solutions were also developed for call options of forward contracts and call options on forward basis. The options were calibrated and compared to other models. The proposed model is capable of pricing options, but the prices derived did not pass the test of economic reasonableness. However, the model was able to capture the effect of transportation as well as aspects of seasonality which is a benefit over other existing models. It was determined that modifications will be needed regarding the estimation of the convenience yields. 57 refs., 2 tabs., 7 figs., 1 append

  12. Comparisons of Air Radiation Model with Shock Tube Measurements

    Science.gov (United States)

    Bose, Deepak; McCorkle, Evan; Bogdanoff, David W.; Allen, Gary A., Jr.

    2009-01-01

    This paper presents an assessment of the predictive capability of shock layer radiation model appropriate for NASA s Orion Crew Exploration Vehicle lunar return entry. A detailed set of spectrally resolved radiation intensity comparisons are made with recently conducted tests in the Electric Arc Shock Tube (EAST) facility at NASA Ames Research Center. The spectral range spanned from vacuum ultraviolet wavelength of 115 nm to infrared wavelength of 1400 nm. The analysis is done for 9.5-10.5 km/s shock passing through room temperature synthetic air at 0.2, 0.3 and 0.7 Torr. The comparisons between model and measurements show discrepancies in the level of background continuum radiation and intensities of atomic lines. Impurities in the EAST facility in the form of carbon bearing species are also modeled to estimate the level of contaminants and their impact on the comparisons. The discrepancies, although large is some cases, exhibit order and consistency. A set of tests and analyses improvements are proposed as forward work plan in order to confirm or reject various proposed reasons for the observed discrepancies.

  13. The Accountability Era in US Teacher Education: Looking Back, Looking Forward

    Science.gov (United States)

    Cochran-Smith, Marilyn; Baker, Megina; Burton, Stephani; Chang, Wen-Chia; Cummings Carney, Molly; Fernández, M. Beatriz; Stringer Keefe, Elizabeth; Miller, Andrew F.; Sánchez, Juan Gabriel

    2017-01-01

    In keeping with the theme of the 40th anniversary issue of "EJTE," this article looks back and forward at US teacher education accountability. It argues that "holding teacher education accountable" has been the major approach to reforming teacher education in the US for the last two decades, assuming that enhanced teacher…

  14. 75 FR 10317 - DHL Global Forwarding, A Subsidiary of DP DHL, Finance and Accounting Divisions, Including...

    Science.gov (United States)

    2010-03-05

    ...,857B; TA-W-70,857C; TA-W-70,857D] DHL Global Forwarding, A Subsidiary of DP DHL, Finance and Accounting... Global Forwarding, A Subsidiary of DP DHL, Finance and Accounting Divisions, Including Workers Whose... Subsidiary of DP DHL Finance and Accounting Divisions, Including Workers Whose Wages Are Reported to Danzas...

  15. Forward-backward asymmetry of the top quark in diquark models

    International Nuclear Information System (INIS)

    Arhrib, Abdesslam; Benbrik, Rachid; Chen, Chuan-Hung

    2010-01-01

    Motivated by the recent unexpected large forward-backward asymmetry of the top-quark observed by D0 and CDF at the Tevatron, we investigate a possible explanation for the anomaly within the framework of diquark models. In the diquark models, the top-quark pair production is mediated by the u-channel diagram. It is found that the color-triplet diquark can generate the forward-backward asymmetry of 20% when the constraint from the cross section of the top-quark pair production is taken into account.

  16. A new model for friction under shock conditions

    Directory of Open Access Journals (Sweden)

    Dambakizi F.

    2011-01-01

    Full Text Available This article is aimed at the developpement of a new model for friction under shock conditions. Thanks to a subgrid model and a specific Coulomb friction law, it takes into account the interface temperature and deformation but also the influence of asperities when the contact pressure is relatively low (≤ 3 GPa.

  17. Shock-induced electrical activity in polymeric solids. A mechanically induced bond scission model

    International Nuclear Information System (INIS)

    Graham, R.A.

    1979-01-01

    When polymeric solids are subjected to high-pressure shock loading, two anomalous electrical phenomena, shock-induced conduction and shock-induced polarization, are observed. The present paper proposes a model of mechanically induced bond scission within the shock front to account for the effects. An experimental study of shock-induced polarization in poly(pyromellitimide) (Vespel SP-1) is reported for shock compressions from 17 to 23% (pressures from 2.5 to 5.4 GPa). Poly(pyromellitimide) is found to be a strong generator of such polarization and the polarization is found to reflect an irreversible or highly hysteretic process. The present measurements are combined with prior measurements to establish a correlation between monomer structure and strength of shock-induced polarization; feeble signals are observed in the simpler monomer repeat units of poly(tetrafluoroethylene) and polyethylene while the strongest signals are observed in more complex monomers of poly(methyl methacrylate) and poly(pyromellitimide). It is also noted that there is an apparent correlation between shock-induced conduction and shock-induced polarization. Such shock-induced electrical activity is also found to be well correlated with the propensity for mechanical bond scission observed in experiments carried out in conventional mechanochemical studies. The bond scission model can account for characteristics observed for electrical activity in shock-loaded polymers and their correlation to monomer structure. Localization of elastic energy within the monomer repeat unit or along the main chain leads to the different propensities for bond scission and resulting shock-induced electrical activity

  18. Associative account of self-cognition: extended forward model and multi-layer structure

    Directory of Open Access Journals (Sweden)

    Motoaki eSugiura

    2013-08-01

    Full Text Available The neural correlates of self identified by neuroimaging studies differ depending on which aspects of self are addressed. Here, three categories of self are proposed based on neuroimaging findings and an evaluation of the likely underlying cognitive processes. The physical self, representing self-agency of action, body ownership, and bodily self-recognition, is supported by the sensory and motor association cortices located primarily in the right hemisphere. The interpersonal self, representing the attention or intentions of others directed at the self, is supported by several amodal association cortices in the dorsomedial frontal and lateral posterior cortices. The social self, representing the self as a collection of context-dependent social values, is supported by the ventral aspect of the medial prefrontal cortex and the posterior cingulate cortex. Despite differences in the underlying cognitive processes and neural substrates, all three categories of self are likely to share the computational characteristics of the forward model, which is underpinned by internal schema or learned associations between one’s behavioral output and the consequential input. Additionally, these three categories exist within a hierarchical layer structure based on developmental processes that updates the schema through the attribution of prediction error. In this account, most of the association cortices critically contribute to some aspect of the self through associative learning while the primary regions involved shift from the lateral to the medial cortices in a sequence from the physical to the interpersonal to the social self.

  19. Inferring Pre-shock Acoustic Field From Post-shock Pitot Pressure Measurement

    Science.gov (United States)

    Wang, Jian-Xun; Zhang, Chao; Duan, Lian; Xiao, Heng; Virginia Tech Team; Missouri Univ of Sci; Tech Team

    2017-11-01

    Linear interaction analysis (LIA) and iterative ensemble Kalman method are used to convert post-shock Pitot pressure fluctuations to static pressure fluctuations in front of the shock. The LIA is used as the forward model for the transfer function associated with a homogeneous field of acoustic waves passing through a nominally normal shock wave. The iterative ensemble Kalman method is then employed to infer the spectrum of upstream acoustic waves based on the post-shock Pitot pressure measured at a single point. Several test cases with synthetic and real measurement data are used to demonstrate the merits of the proposed inference scheme. The study provides the basis for measuring tunnel freestream noise with intrusive probes in noisy supersonic wind tunnels.

  20. Gamma-ray emission from internal shocks in novae

    Science.gov (United States)

    Martin, P.; Dubus, G.; Jean, P.; Tatischeff, V.; Dosne, C.

    2018-04-01

    Context. Gamma-ray emission at energies ≥100 MeV has been detected from nine novae using the Fermi Large Area Telescope (LAT), and can be explained by particle acceleration at shocks in these systems. Eight out of these nine objects are classical novae in which interaction of the ejecta with a tenuous circumbinary material is not expected to generate detectable gamma-ray emission. Aim. We examine whether particle acceleration at internal shocks can account for the gamma-ray emission from these novae. The shocks result from the interaction of a fast wind radiatively-driven by nuclear burning on the white dwarf with material ejected in the initial runaway stage of the nova outburst. Methods: We present a one-dimensional model for the dynamics of a forward and reverse shock system in a nova ejecta, and for the associated time-dependent particle acceleration and high-energy gamma-ray emission. Non-thermal proton and electron spectra are calculated by solving a time-dependent transport equation for particle injection, acceleration, losses, and escape from the shock region. The predicted emission is compared to LAT observations of V407 Cyg, V1324 Sco, V959 Mon, V339 Del, V1369 Cen, and V5668 Sgr. Results: The ≥100 MeV gamma-ray emission arises predominantly from particles accelerated up to 100 GeV at the reverse shock and undergoing hadronic interactions in the dense cooling layer downstream of the shock. The emission rises within days after the onset of the wind, quickly reaches a maximum, and its subsequent decrease reflects mostly the time evolution of the wind properties. Comparison to gamma-ray data points to a typical scenario where an ejecta of mass 10-5-10-4 M⊙ expands in a homologous way with a maximum velocity of 1000-2000 km s-1, followed within a day by a wind with a velocity values of which result in the majority of best-fit models having gamma-ray spectra with a high-energy turnover below 10 GeV. Our typical model is able to account for the main

  1. A Reverse Shock in GRB 160509A

    Science.gov (United States)

    Laskar, Tanmoy; Alexander, Kate D.; Berger, Edo; Fong, Wen-fai; Margutti, Raffaella; Shivvers, Isaac; Williams, Peter K. G.; Kopač, Drejc; Kobayashi, Shiho; Mundell, Carole; Gomboc, Andreja; Zheng, WeiKang; Menten, Karl M.; Graham, Melissa L.; Filippenko, Alexei V.

    2016-12-01

    We present the second multi-frequency radio detection of a reverse shock in a γ-ray burst. By combining our extensive radio observations of the Fermi-Large Area Telescope γ-ray burst 160509A at z = 1.17 up to 20 days after the burst with Swift X-ray observations and ground-based optical and near-infrared data, we show that the afterglow emission comprises distinct reverse shock and forward shock contributions: the reverse shock emission dominates in the radio band at ≲10 days, while the forward shock emission dominates in the X-ray, optical, and near-infrared bands. Through multi-wavelength modeling, we determine a circumburst density of {n}0≈ {10}-3 {{cm}}-3, supporting our previous suggestion that a low-density circumburst environment is conducive to the production of long-lasting reverse shock radiation in the radio band. We infer the presence of a large excess X-ray absorption column, N H ≈ 1.5 × 1022 {{cm}}-2, and a high rest-frame optical extinction, A V ≈ 3.4 mag. We identify a jet break in the X-ray light curve at {t}{jet}≈ 6 {days}, and thus derive a jet opening angle of {θ }{jet}≈ 4^\\circ , yielding a beaming-corrected kinetic energy and radiated γ-ray energy of {E}{{K}}≈ 4× {10}50 erg and {E}γ ≈ 1.3× {10}51 erg (1-104 keV, rest frame), respectively. Consistency arguments connecting the forward shocks and reverse shocks suggest a deceleration time of {t}{dec} ≈ 460 s ≈ T 90, a Lorentz factor of {{Γ }}({t}{dec})≈ 330, and a reverse-shock-to-forward-shock fractional magnetic energy density ratio of {R}{{B}}\\equiv {ɛ }{{B},{RS}}/{ɛ }{{B},{FS}}≈ 8. Our study highlights the power of rapid-response radio observations in the study of the properties and dynamics of γ-ray burst ejecta.

  2. Accountability as a Way Forward for Privacy Protection in the Cloud

    Science.gov (United States)

    Pearson, Siani; Charlesworth, Andrew

    The issue of how to provide appropriate privacy protection for cloud computing is important, and as yet unresolved. In this paper we propose an approach in which procedural and technical solutions are co-designed to demonstrate accountability as a path forward to resolving jurisdictional privacy and security risks within the cloud.

  3. Whole-Motion Model of Perception during Forward- and Backward-Facing Centrifuge Runs

    Science.gov (United States)

    Holly, Jan E.; Vrublevskis, Arturs; Carlson, Lindsay E.

    2009-01-01

    Illusory perceptions of motion and orientation arise during human centrifuge runs without vision. Asymmetries have been found between acceleration and deceleration, and between forward-facing and backward-facing runs. Perceived roll tilt has been studied extensively during upright fixed-carriage centrifuge runs, and other components have been studied to a lesser extent. Certain, but not all, perceptual asymmetries in acceleration-vs-deceleration and forward-vs-backward motion can be explained by existing analyses. The immediate acceleration-deceleration roll-tilt asymmetry can be explained by the three-dimensional physics of the external stimulus; in addition, longer-term data has been modeled in a standard way using physiological time constants. However, the standard modeling approach is shown in the present research to predict forward-vs-backward-facing symmetry in perceived roll tilt, contradicting experimental data, and to predict perceived sideways motion, rather than forward or backward motion, around a curve. The present work develops a different whole-motion-based model taking into account the three-dimensional form of perceived motion and orientation. This model predicts perceived forward or backward motion around a curve, and predicts additional asymmetries such as the forward-backward difference in roll tilt. This model is based upon many of the same principles as the standard model, but includes an additional concept of familiarity of motions as a whole. PMID:19208962

  4. Modeling and analysis of strategic forward contracting in transmission constrained power markets

    International Nuclear Information System (INIS)

    Yu, C.W.; Chung, T.S.; Zhang, S.H.; Wang, X.

    2010-01-01

    Taking the effects of transmission network into account, strategic forward contracting induced by the interaction of generation firms' strategies in the spot and forward markets is investigated. A two-stage game model is proposed to describe generation firms' strategic forward contracting and spot market competition. In the spot market, generation firms behave strategically by submitting bids at their nodes in a form of linear supply function (LSF) and there are arbitrageurs who buy and resell power at different nodes where price differences exceed the costs of transmission. The owner of the grid is assumed to ration limited transmission line capacity to maximize the value of the transmission services in the spot market. The Cournot-type competition is assumed for the strategic forward contract market. This two-stage model is formulated as an equilibrium problem with equilibrium constraints (EPEC); in which each firm's optimization problem in the forward market is a mathematical program with equilibrium constraints (MPEC) and parameter-dependent spot market equilibrium as the inner problem. A nonlinear complementarity method is employed to solve this EPEC model. (author)

  5. Management Accounting in freight-forwarding companies

    DEFF Research Database (Denmark)

    Jensen, Jens Ocksen; Lynggaard, Peter

    2002-01-01

    The article describes the internal business management processes in a freight forwarding compagny on the operative/tactical level. This is done as an explorative study of how these processes are organized in two medium-sized Danish freight-forwarding compagnies....

  6. Pressure measurements and an analytical model for laser-generated shock waves in solids at low irradiance

    International Nuclear Information System (INIS)

    Romain, J P; Bonneau, F; Dayma, G; Boustie, M; Resseguier, T de; Combis, P

    2002-01-01

    Low amplitude shock waves (from 1 to 300 bar) have been generated in gold layers deposited on a quartz substrate, by laser pulses at an incident fluence from 0.4 to 4.0 J cm -2 . The quartz was used as a pressure gauge for recording the induced shock profile. At a fluence -2 , the shock pressure does not exceed 10 bar and the shock front is followed by a tension peak typical of an absorption in solid state. An analytical model of the compression-tension process has been developed, accounting for shock pressure and shock profile evolution as a function of irradiation conditions and material properties. From this model a mechanical interpretation is given to previous observations of spalling of the irradiated target surface

  7. A One-Dimensional Relativistic Shock Model for the Light Curve of Gamma-ray Bursts

    Institute of Scientific and Technical Information of China (English)

    Cheng-Yue Su; Yi-Ping Qin; Jun-Hui Fan; Zhang-Yu Han

    2006-01-01

    We investigate the forming of gamma-ray burst pulses with a simple onedimensional relativistic shock model. The mechanism is that a "central engine" drives forward the nearby plasma inside the fireball to generate a series of pressure waves. We give a relativistic geometric recurrence formula that connects the time when the pressure waves are produced and the time when the corresponding shocks occurred. This relation enables us to relate the pulse magnitude with the observation time. Our analysis shows that the evolution of the pressure waves leads to a fast rise and an exponential decay pulses. In determining the width of the pulses, the acceleration time is more important than that of the deceleration.

  8. Hydrodynamic modelling of the shock ignition scheme for inertial confinement fusion

    International Nuclear Information System (INIS)

    Vallet, Alexandra

    2014-01-01

    The shock ignition concept in inertial confinement fusion uses an intense power spike at the end of an assembly laser pulse. The key features of shock ignition are the generation of a high ablation pressure, the shock pressure amplification by at least a factor of a hundred in the cold fuel shell and the shock coupling to the hot-spot. In this thesis, new semi-analytical hydrodynamic models are developed to describe the ignitor shock from its generation up to the moment of fuel ignition. A model is developed to describe a spherical converging shock wave in a pre-heated hot spot. The self-similar solution developed by Guderley is perturbed over the shock Mach number Ms ≥≥1. The first order correction accounts for the effects of the shock strength. An analytical ignition criterion is defined in terms of the shock strength and the hot-spot areal density. The ignition threshold is higher when the initial Mach number of the shock is lower. A minimal shock pressure of 20 Gbar is needed when it enters the hot-spot. The shock dynamics in the imploding shell is then analyzed. The shock is propagating into a non inertial medium with a high radial pressure gradient and an overall pressure increase with time. The collision with a returning shock coming from the assembly phase enhances further the ignitor shock pressure. The analytical theory allows to describe the shock pressure and strength evolution in a typical shock ignition implosion. It is demonstrated that, in the case of the HiPER target design, a generation shock pressure near the ablation zone on the order of 300-400 Mbar is needed. An analysis of experiments on the strong shock generation performed on the OMEGA laser facility is presented. It is shown that a shock pressure close to 300 Mbar near the ablation zone has been reached with an absorbed laser intensity up to 2 * 10 15 W:cm -2 and a laser wavelength of 351 nm. This value is two times higher than the one expected from collisional laser absorption only

  9. Hierarchical Bayesian Model for Simultaneous EEG Source and Forward Model Reconstruction (SOFOMORE)

    DEFF Research Database (Denmark)

    Stahlhut, Carsten; Mørup, Morten; Winther, Ole

    2009-01-01

    In this paper we propose an approach to handle forward model uncertainty for EEG source reconstruction. A stochastic forward model is motivated by the many uncertain contributions that form the forward propagation model including the tissue conductivity distribution, the cortical surface, and ele......In this paper we propose an approach to handle forward model uncertainty for EEG source reconstruction. A stochastic forward model is motivated by the many uncertain contributions that form the forward propagation model including the tissue conductivity distribution, the cortical surface...

  10. Studying shocks in model astrophysical flows

    International Nuclear Information System (INIS)

    Chakrabarti, S.K.

    1989-01-01

    We briefly discuss some properties of the shocks in the existing models for quasi two-dimensional astrophysical flows. All of these models which allow the study of shock analytically have some unphysical characteristics due to inherent assumptions made. We propose a hybrid model for a thin flow which has fewer unpleasant features and is suitable for the study of shocks. (author). 5 refs

  11. Pressure measurements and an analytical model for laser-generated shock waves in solids at low irradiance

    CERN Document Server

    Romain, J P; Dayma, G; Boustie, M; Resseguier, T D; Combis, P

    2002-01-01

    Low amplitude shock waves (from 1 to 300 bar) have been generated in gold layers deposited on a quartz substrate, by laser pulses at an incident fluence from 0.4 to 4.0 J cm sup - sup 2. The quartz was used as a pressure gauge for recording the induced shock profile. At a fluence <1.4 J cm sup - sup 2 , the shock pressure does not exceed 10 bar and the shock front is followed by a tension peak typical of an absorption in solid state. An analytical model of the compression-tension process has been developed, accounting for shock pressure and shock profile evolution as a function of irradiation conditions and material properties. From this model a mechanical interpretation is given to previous observations of spalling of the irradiated target surface.

  12. Pressure measurements and an analytical model for laser-generated shock waves in solids at low irradiance

    Energy Technology Data Exchange (ETDEWEB)

    Romain, J P [Laboratoire de Combustion et de Detonique, ENSMA, BP 40109, 86961 Futuroscope-Chasseneuil (France); Bonneau, F [Departement de Physique Theorique et Appliquee CEA/DAM Ile de France, BP 12, 91680 Bruyeres le Chatel (France); Dayma, G [Laboratoire de Combustion et de Detonique, ENSMA, BP 40109, 86961 Futuroscope-Chasseneuil (France); Boustie, M [Laboratoire de Combustion et de Detonique, ENSMA, BP 40109, 86961 Futuroscope-Chasseneuil (France); Resseguier, T de [Laboratoire de Combustion et de Detonique, ENSMA, BP 40109, 86961 Futuroscope-Chasseneuil (France); Combis, P [Departement de Physique Theorique et Appliquee CEA/DAM Ile de France, BP 12, 91680 Bruyeres le Chatel (France)

    2002-11-11

    Low amplitude shock waves (from 1 to 300 bar) have been generated in gold layers deposited on a quartz substrate, by laser pulses at an incident fluence from 0.4 to 4.0 J cm{sup -2}. The quartz was used as a pressure gauge for recording the induced shock profile. At a fluence <1.4 J cm{sup -2}, the shock pressure does not exceed 10 bar and the shock front is followed by a tension peak typical of an absorption in solid state. An analytical model of the compression-tension process has been developed, accounting for shock pressure and shock profile evolution as a function of irradiation conditions and material properties. From this model a mechanical interpretation is given to previous observations of spalling of the irradiated target surface.

  13. Quasilinear simulations of interplanetary shocks and Earth's bow shock

    Science.gov (United States)

    Afanasiev, Alexandr; Battarbee, Markus; Ganse, Urs; Vainio, Rami; Palmroth, Minna; Pfau-Kempf, Yann; Hoilijoki, Sanni; von Alfthan, Sebastian

    2016-04-01

    We have developed a new self-consistent Monte Carlo simulation model for particle acceleration in shocks. The model includes a prescribed large-scale magnetic field and plasma density, temperature and velocity profiles and a self-consistently computed incompressible ULF foreshock under the quasilinear approximation. Unlike previous analytical treatments, our model is time dependent and takes full account of the anisotropic particle distributions and scattering in the wave-particle interaction process. We apply the model to the problem of particle acceleration at traveling interplanetary (IP) shocks and Earth's bow shock and compare the results with hybrid-Vlasov simulations and spacecraft observations. A qualitative agreement in terms of spectral shape of the magnetic fluctuations and the polarization of the unstable mode is found between the models and the observations. We will quantify the differences of the models and explore the region of validity of the quasilinear approach in terms of shock parameters. We will also compare the modeled IP shocks and the bow shock, identifying the similarities and differences in the spectrum of accelerated particles and waves in these scenarios. The work has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 637324 (HESPERIA). The Academy of Finland is thanked for financial support. We acknowledge the computational resources provided by CSC - IT Centre for Science Ltd., Espoo.

  14. DO COROTATING INTERACTION REGION ASSOCIATED SHOCKS SURVIVE WHEN THEY PROPAGATE INTO THE HELIOSHEATH?

    International Nuclear Information System (INIS)

    Provornikova, E.; Opher, M.; Izmodenov, V.; Toth, G.

    2012-01-01

    During the solar minimum at the distance of 42-52 AU from the Sun, Voyager 2 observed recurrent sharp, shock-like increases in the solar wind speed that look very much like forward shocks (Lazarus et al.). The shocks were produced by corotating interaction regions (CIRs) that originated near the Sun. After the termination shock (TS) crossing in 2007, Voyager 2 entered the heliosheath and has been observing the plasma emanated during the recent solar minima. Measurements show high variable flow, but there were no shocks detected in the heliosheath. When CIR-driven shocks propagate to the outer heliosphere, their structure changes due to collision and merging processes of CIRs. In this Letter, we explore an effect of the merging of CIRs on the structure of CIR-associated shocks. We use a three-dimensional MHD model to study the outward propagation of the shocks with characteristics similar to those observed by Voyager 2 at ∼45 AU (Lazarus et al. 1999). We show that due to merging of CIRs (1) reverse shocks disappear, (2) forward shocks become weaker due to interaction with rarefaction regions from preceding CIRs, and (3) forward shocks significantly weaken in the heliosheath. Merged CIRs produce compression regions in the heliosheath with small fluctuations of plasma parameters. Amplitudes of the fluctuations diminish as they propagate deeper in the sheath. We conclude that interaction of shocks and rarefaction regions could be one of the explanations, why shocks produced by CIRs are not observed in the heliosheath by Voyager 2 while they were frequently observed upstream the TS.

  15. One-Dimensional Forward–Forward Mean-Field Games

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, Diogo A., E-mail: diogo.gomes@kaust.edu.sa; Nurbekyan, Levon; Sedjro, Marc [King Abdullah University of Science and Technology (KAUST), CEMSE Division (Saudi Arabia)

    2016-12-15

    While the general theory for the terminal-initial value problem for mean-field games (MFGs) has achieved a substantial progress, the corresponding forward–forward problem is still poorly understood—even in the one-dimensional setting. Here, we consider one-dimensional forward–forward MFGs, study the existence of solutions and their long-time convergence. First, we discuss the relation between these models and systems of conservation laws. In particular, we identify new conserved quantities and study some qualitative properties of these systems. Next, we introduce a class of wave-like equations that are equivalent to forward–forward MFGs, and we derive a novel formulation as a system of conservation laws. For first-order logarithmic forward–forward MFG, we establish the existence of a global solution. Then, we consider a class of explicit solutions and show the existence of shocks. Finally, we examine parabolic forward–forward MFGs and establish the long-time convergence of the solutions.

  16. One-Dimensional Forward–Forward Mean-Field Games

    KAUST Repository

    Gomes, Diogo A.; Nurbekyan, Levon; Sedjro, Marc

    2016-01-01

    While the general theory for the terminal-initial value problem for mean-field games (MFGs) has achieved a substantial progress, the corresponding forward–forward problem is still poorly understood—even in the one-dimensional setting. Here, we consider one-dimensional forward–forward MFGs, study the existence of solutions and their long-time convergence. First, we discuss the relation between these models and systems of conservation laws. In particular, we identify new conserved quantities and study some qualitative properties of these systems. Next, we introduce a class of wave-like equations that are equivalent to forward–forward MFGs, and we derive a novel formulation as a system of conservation laws. For first-order logarithmic forward–forward MFG, we establish the existence of a global solution. Then, we consider a class of explicit solutions and show the existence of shocks. Finally, we examine parabolic forward–forward MFGs and establish the long-time convergence of the solutions.

  17. One-Dimensional Forward–Forward Mean-Field Games

    KAUST Repository

    Gomes, Diogo A.

    2016-11-01

    While the general theory for the terminal-initial value problem for mean-field games (MFGs) has achieved a substantial progress, the corresponding forward–forward problem is still poorly understood—even in the one-dimensional setting. Here, we consider one-dimensional forward–forward MFGs, study the existence of solutions and their long-time convergence. First, we discuss the relation between these models and systems of conservation laws. In particular, we identify new conserved quantities and study some qualitative properties of these systems. Next, we introduce a class of wave-like equations that are equivalent to forward–forward MFGs, and we derive a novel formulation as a system of conservation laws. For first-order logarithmic forward–forward MFG, we establish the existence of a global solution. Then, we consider a class of explicit solutions and show the existence of shocks. Finally, we examine parabolic forward–forward MFGs and establish the long-time convergence of the solutions.

  18. MASKED AREAS IN SHEAR PEAK STATISTICS: A FORWARD MODELING APPROACH

    International Nuclear Information System (INIS)

    Bard, D.; Kratochvil, J. M.; Dawson, W.

    2016-01-01

    The statistics of shear peaks have been shown to provide valuable cosmological information beyond the power spectrum, and will be an important constraint of models of cosmology in forthcoming astronomical surveys. Surveys include masked areas due to bright stars, bad pixels etc., which must be accounted for in producing constraints on cosmology from shear maps. We advocate a forward-modeling approach, where the impacts of masking and other survey artifacts are accounted for in the theoretical prediction of cosmological parameters, rather than correcting survey data to remove them. We use masks based on the Deep Lens Survey, and explore the impact of up to 37% of the survey area being masked on LSST and DES-scale surveys. By reconstructing maps of aperture mass the masking effect is smoothed out, resulting in up to 14% smaller statistical uncertainties compared to simply reducing the survey area by the masked area. We show that, even in the presence of large survey masks, the bias in cosmological parameter estimation produced in the forward-modeling process is ≈1%, dominated by bias caused by limited simulation volume. We also explore how this potential bias scales with survey area and evaluate how much small survey areas are impacted by the differences in cosmological structure in the data and simulated volumes, due to cosmic variance

  19. Computational modeling of a forward lunge

    DEFF Research Database (Denmark)

    Alkjær, Tine; Wieland, Maja Rose; Andersen, Michael Skipper

    2012-01-01

    during forward lunging. Thus, the purpose of the present study was to establish a musculoskeletal model of the forward lunge to computationally investigate the complete mechanical force equilibrium of the tibia during the movement to examine the loading pattern of the cruciate ligaments. A healthy female...... was selected from a group of healthy subjects who all performed a forward lunge on a force platform, targeting a knee flexion angle of 90°. Skin-markers were placed on anatomical landmarks on the subject and the movement was recorded by five video cameras. The three-dimensional kinematic data describing...... the forward lunge movement were extracted and used to develop a biomechanical model of the lunge movement. The model comprised two legs including femur, crus, rigid foot segments and the pelvis. Each leg had 35 independent muscle units, which were recruited according to a minimum fatigue criterion...

  20. Forward modeling. Route to electromagnetic inversion

    Energy Technology Data Exchange (ETDEWEB)

    Groom, R; Walker, P [PetRos EiKon Incorporated, Ontario (Canada)

    1996-05-01

    Inversion of electromagnetic data is a topical subject in the literature, and much time has been devoted to understanding the convergence properties of various inverse methods. The relative lack of success of electromagnetic inversion techniques is partly attributable to the difficulties in the kernel forward modeling software. These difficulties come in two broad classes: (1) Completeness and robustness, and (2) convergence, execution time and model simplicity. If such problems exist in the forward modeling kernel, it was demonstrated that inversion can fail to generate reasonable results. It was suggested that classical inversion techniques, which are based on minimizing a norm of the error between data and the simulated data, will only be successful when these difficulties in forward modeling kernels are properly dealt with. 4 refs., 5 figs.

  1. Three-dimensional flow analysis and improvement of slip factor model for forward-curved blades centrifugal fan

    International Nuclear Information System (INIS)

    Guo, En Min; Kim, Kwang Yong

    2004-01-01

    This work developed improved slip factor model and correction method to predict flow through impeller in forward-curved centrifugal fan. Both steady and unsteady three-dimensional CFD analyses were performed to validate the slip factor model and the correction method. The results show that the improved slip factor model presented in this paper could provide more accurate predictions for forward-curved centrifugal impeller than the other slip factor models since the present model takes into account the effect of blade curvature. The correction method is provided to predict mass-averaged absolute circumferential velocity at the exit of impeller by taking account of blockage effects induced by the large-scale backflow near the front plate and flow separation within blade passage. The comparison with CFD results also shows that the improved slip factor model coupled with the present correction method provides accurate predictions for mass-averaged absolute circumferential velocity at the exit of impeller near and above the flow rate of peak total pressure coefficient

  2. Model for calculating shock loading and release paths for multicomponent geologic media

    International Nuclear Information System (INIS)

    Butkovich, T.R.; Moran, B.; Burton, D.E.

    1981-07-01

    A model has been devised to calculate shock Hugoniots and release paths off the Hugoniots for multicomponent rocks containing silicate, carbonate, and water. Hugoniot equations of state are constructed from relatively simple measurements of rock properties including bulk density, grain density of the silicate component, and weight fractions of water and carbonate. Release paths off the composite Hugoniot are calculated by mixing release paths off the component Hugoniots according to their weight fractions. If the shock imparts sufficient energy to the component to cause vaporization, a gas equation of state is used to calculate the release paths. For less energetic shocks, the rock component will unload like a solid or liquid, taking into account the irreversible removal of air-filled porosity

  3. Modeling Business Cycle with Financial Shocks Basing on Kaldor-Kalecki Model

    Directory of Open Access Journals (Sweden)

    Zhenghui Li

    2017-04-01

    Full Text Available The effects of financial factors on real business cycle is rising to one of the most popular discussions in the field of macro business cycle theory. The objective of this paper is to discuss the features of business cycle under financial shocks by quantitative technology. More precisely, we introduce financial shocks into the classical Kaldor-Kalecki business cycle model and study dynamics of the model. The shocks include external shock and internal shock, both of which are expressed as noises. The dynamics of the model can help us understand the effects of financial shocks on business cycle and improve our knowledge about financial business cycle. In the case of external shock, if the intensity of shock is less than some threshold value, the economic system behaves randomly periodically. If the intensity of shock is beyond the threshold value, the economic system will converge to a normalcy. In the case of internal shock, if the intensity of shock is less than some threshold value, the economic system behaves periodically as the case without shock. If the intensity of shock exceeds the threshold value, the economic system either behaves periodically or converges to a normalcy. It is uncertain. The case with both two kinds of shocks is more complicated. We find conditions of the intensities of shocks under which the economic system behaves randomly periodically or disorderly, or converges to normalcy. Discussions about the effects of financial shocks on the business cycle are presented.

  4. Particle Acceleration in Two Converging Shocks

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xin; Wang, Na; Shan, Hao [Xinjiang Astronomical Observatory, Chinese Academy of Sciences, Urumqi 830011 (China); Giacalone, Joe [Lunar and Planetary Laboratory, University of Arizona, Tucson AZ 85721 (United States); Yan, Yihua [CAS Key Laboratory of Solar Activity, National Astronomical Observatories, Beijing 100012 (China); Ding, Mingde, E-mail: wangxin@xao.ac.cn [Key Laboratory of Modern Astronomy and Astrophysics (Nanjing University) Ministry of Education, Nanjing 210093 (China)

    2017-06-20

    Observations by spacecraft such as ACE , STEREO , and others show that there are proton spectral “breaks” with energy E {sub br} at 1–10 MeV in some large CME-driven shocks. Generally, a single shock with the diffusive acceleration mechanism would not predict the “broken” energy spectrum. The present paper focuses on two converging shocks to identify this energy spectral feature. In this case, the converging shocks comprise one forward CME-driven shock on 2006 December 13 and another backward Earth bow shock. We simulate the detailed particle acceleration processes in the region of the converging shocks using the Monte Carlo method. As a result, we not only obtain an extended energy spectrum with an energy “tail” up to a few 10 MeV higher than that in previous single shock model, but also we find an energy spectral “break” occurring on ∼5.5 MeV. The predicted energy spectral shape is consistent with observations from multiple spacecraft. The spectral “break,” then, in this case is caused by the interaction between the CME shock and Earth’s bow shock, and otherwise would not be present if Earth were not in the path of the CME.

  5. Reliability assessment of competing risks with generalized mixed shock models

    International Nuclear Information System (INIS)

    Rafiee, Koosha; Feng, Qianmei; Coit, David W.

    2017-01-01

    This paper investigates reliability modeling for systems subject to dependent competing risks considering the impact from a new generalized mixed shock model. Two dependent competing risks are soft failure due to a degradation process, and hard failure due to random shocks. The shock process contains fatal shocks that can cause hard failure instantaneously, and nonfatal shocks that impact the system in three different ways: 1) damaging the unit by immediately increasing the degradation level, 2) speeding up the deterioration by accelerating the degradation rate, and 3) weakening the unit strength by reducing the hard failure threshold. While the first impact from nonfatal shocks comes from each individual shock, the other two impacts are realized when the condition for a new generalized mixed shock model is satisfied. Unlike most existing mixed shock models that consider a combination of two shock patterns, our new generalized mixed shock model includes three classic shock patterns. According to the proposed generalized mixed shock model, the degradation rate and the hard failure threshold can simultaneously shift multiple times, whenever the condition for one of these three shock patterns is satisfied. An example using micro-electro-mechanical systems devices illustrates the effectiveness of the proposed approach with sensitivity analysis. - Highlights: • A rich reliability model for systems subject to dependent failures is proposed. • The degradation rate and the hard failure threshold can shift simultaneously. • The shift is triggered by a new generalized mixed shock model. • The shift can occur multiple times under the generalized mixed shock model.

  6. Model for Shock Wave Chaos

    KAUST Repository

    Kasimov, Aslan R.

    2013-03-08

    We propose the following model equation, ut+1/2(u2−uus)x=f(x,us) that predicts chaotic shock waves, similar to those in detonations in chemically reacting mixtures. The equation is given on the half line, x<0, and the shock is located at x=0 for any t≥0. Here, us(t) is the shock state and the source term f is taken to mimic the chemical energy release in detonations. This equation retains the essential physics needed to reproduce many properties of detonations in gaseous reactive mixtures: steady traveling wave solutions, instability of such solutions, and the onset of chaos. Our model is the first (to our knowledge) to describe chaos in shock waves by a scalar first-order partial differential equation. The chaos arises in the equation thanks to an interplay between the nonlinearity of the inviscid Burgers equation and a novel forcing term that is nonlocal in nature and has deep physical roots in reactive Euler equations.

  7. A Prognostic Model for Development of Profound Shock among Children Presenting with Dengue Shock Syndrome.

    Directory of Open Access Journals (Sweden)

    Phung Khanh Lam

    Full Text Available To identify risk factors and develop a prediction model for the development of profound and recurrent shock amongst children presenting with dengue shock syndrome (DSS.We analyzed data from a prospective cohort of children with DSS recruited at the Paediatric Intensive Care Unit of the Hospital for Tropical Disease in Ho Chi Minh City, Vietnam. The primary endpoint was "profound DSS", defined as ≥2 recurrent shock episodes (for subjects presenting in compensated shock, or ≥1 recurrent shock episodes (for subjects presenting initially with decompensated/hypotensive shock, and/or requirement for inotropic support. Recurrent shock was evaluated as a secondary endpoint. Risk factors were pre-defined clinical and laboratory variables collected at the time of presentation with shock. Prognostic model development was based on logistic regression and compared to several alternative approaches.The analysis population included 1207 children of whom 222 (18% progressed to "profound DSS" and 433 (36% had recurrent shock. Independent risk factors for both endpoints included younger age, earlier presentation, higher pulse rate, higher temperature, higher haematocrit and, for females, worse hemodynamic status at presentation. The final prognostic model for "profound DSS" showed acceptable discrimination (AUC=0.69 for internal validation and calibration and is presented as a simple score-chart.Several risk factors for development of profound or recurrent shock among children presenting with DSS were identified. The score-chart derived from the prognostic models should improve triage and management of children presenting with DSS in dengue-endemic areas.

  8. Phenomenology of reverse-shock emission in the optical afterglows of gamma-ray bursts

    International Nuclear Information System (INIS)

    Japelj, J.; Kopač, D.; Gomboc, A.; Kobayashi, S.; Harrison, R.; Virgili, F. J.; Mundell, C. G.; Guidorzi, C.; Melandri, A.

    2014-01-01

    We use a parent sample of 118 gamma-ray burst (GRB) afterglows, with known redshift and host galaxy extinction, to separate afterglows with and without signatures of dominant reverse-shock (RS) emission and to determine which physical conditions lead to a prominent reverse-shock emission. We identify 10 GRBs with reverse-shock signatures: 990123, 021004, 021211, 060908, 061126, 080319B, 081007, 090102, 090424, and 130427A. By modeling their optical afterglows with reverse- and forward-shock analytic light curves and using Monte Carlo simulations, we estimate the parameter space of the physical quantities describing the ejecta and circumburst medium. We find that physical properties cover a wide parameter space and do not seem to cluster around any preferential values. Comparing the rest-frame optical, X-ray, and high-energy properties of the larger sample of non-RS-dominated GRBs, we show that the early-time (<1 ks) optical spectral luminosity, X-ray afterglow luminosity, and γ-ray energy output of our reverse-shock dominated sample do not differ significantly from the general population at early times. However, the GRBs with dominant reverse-shock emission have fainter than average optical forward-shock emission at late times (>10 ks). We find that GRBs with an identifiable reverse-shock component show a high magnetization parameter R B = ε B,r /ε B,f ∼ 2-10 4 . Our results are in agreement with the mildly magnetized baryonic jet model of GRBs.

  9. Grain destruction in interstellar shocks

    International Nuclear Information System (INIS)

    Seab, C.G.; Shull, J.M.

    1984-01-01

    One of the principal methods for removing grains from the Interstellar Medium is to destroy them in shock waves. Previous theoretical studies of shock destruction have generally assumed only a single size and type of grain; most do not account for the effect of the grain destruction on the structure of the shock. Earlier calculations have been improved in three ways: first, by using a ''complete'' grain model including a distribution of sizes and types of grains; second, by using a self-consistent shock structure that incorporates the changing elemental depletions as the grains are destroyed; and third, by calculating the shock-processed ultraviolet extinction curves for comparison with observations. (author)

  10. Thermodynamic parameters for mixtures of quartz under shock wave loading in views of the equilibrium model

    International Nuclear Information System (INIS)

    Maevskii, K. K.; Kinelovskii, S. A.

    2015-01-01

    The numerical results of modeling of shock wave loading of mixtures with the SiO 2 component are presented. The TEC (thermodynamic equilibrium component) model is employed to describe the behavior of solid and porous multicomponent mixtures and alloys under shock wave loading. State equations of a Mie–Grüneisen type are used to describe the behavior of condensed phases, taking into account the temperature dependence of the Grüneisen coefficient, gas in pores is one of the components of the environment. The model is based on the assumption that all components of the mixture under shock-wave loading are in thermodynamic equilibrium. The calculation results are compared with the experimental data derived by various authors. The behavior of the mixture containing components with a phase transition under high dynamic loads is described

  11. Vulnerability to shocks in the global seafood trade network

    Science.gov (United States)

    Gephart, Jessica A.; Rovenskaya, Elena; Dieckmann, Ulf; Pace, Michael L.; Brännström, Åke

    2016-03-01

    Trade can allow countries to overcome local or regional losses (shocks) to their food supply, but reliance on international food trade also exposes countries to risks from external perturbations. Countries that are nutritionally or economically dependent on international trade of a commodity may be adversely affected by such shocks. While exposure to shocks has been studied in financial markets, communication networks, and some infrastructure systems, it has received less attention in food-trade networks. Here, we develop a forward shock-propagation model to quantify how trade flows are redistributed under a range of shock scenarios and assess the food-security outcomes by comparing changes in national fish supplies to indices of each country’s nutritional fish dependency. Shock propagation and distribution among regions are modeled on a network of historical bilateral seafood trade data from UN Comtrade using 205 reporting territories grouped into 18 regions. In our model exposure to shocks increases with total imports and the number of import partners. We find that Central and West Africa are the most vulnerable to shocks, with their vulnerability increasing when a willingness-to-pay proxy is included. These findings suggest that countries can reduce their overall vulnerability to shocks by reducing reliance on imports and diversifying food sources. As international seafood trade grows, identifying these types of potential risks and vulnerabilities is important to build a more resilient food system.

  12. The cerebro-cerebellum: Could it be loci of forward models?

    Science.gov (United States)

    Ishikawa, Takahiro; Tomatsu, Saeka; Izawa, Jun; Kakei, Shinji

    2016-03-01

    It is widely accepted that the cerebellum acquires and maintain internal models for motor control. An internal model simulates mapping between a set of causes and effects. There are two candidates of cerebellar internal models, forward models and inverse models. A forward model transforms a motor command into a prediction of the sensory consequences of a movement. In contrast, an inverse model inverts the information flow of the forward model. Despite the clearly different formulations of the two internal models, it is still controversial whether the cerebro-cerebellum, the phylogenetically newer part of the cerebellum, provides inverse models or forward models for voluntary limb movements or other higher brain functions. In this article, we review physiological and morphological evidence that suggests the existence in the cerebro-cerebellum of a forward model for limb movement. We will also discuss how the characteristic input-output organization of the cerebro-cerebellum may contribute to forward models for non-motor higher brain functions. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  13. A shock absorber model for structure-borne noise analyses

    Science.gov (United States)

    Benaziz, Marouane; Nacivet, Samuel; Thouverez, Fabrice

    2015-08-01

    Shock absorbers are often responsible for undesirable structure-borne noise in cars. The early numerical prediction of this noise in the automobile development process can save time and money and yet remains a challenge for industry. In this paper, a new approach to predicting shock absorber structure-borne noise is proposed; it consists in modelling the shock absorber and including the main nonlinear phenomena responsible for discontinuities in the response. The model set forth herein features: compressible fluid behaviour, nonlinear flow rate-pressure relations, valve mechanical equations and rubber mounts. The piston, base valve and complete shock absorber model are compared with experimental results. Sensitivity of the shock absorber response is evaluated and the most important parameters are classified. The response envelope is also computed. This shock absorber model is able to accurately reproduce local nonlinear phenomena and improves our state of knowledge on potential noise sources within the shock absorber.

  14. On a Stochastic Failure Model under Random Shocks

    Science.gov (United States)

    Cha, Ji Hwan

    2013-02-01

    In most conventional settings, the events caused by an external shock are initiated at the moments of its occurrence. In this paper, we study a new classes of shock model, where each shock from a nonhomogeneous Poisson processes can trigger a failure of a system not immediately, as in classical extreme shock models, but with delay of some random time. We derive the corresponding survival and failure rate functions. Furthermore, we study the limiting behaviour of the failure rate function where it is applicable.

  15. Nonlinearity of the forward-backward correlation function in the model with string fusion

    Science.gov (United States)

    Vechernin, Vladimir

    2017-12-01

    The behavior of the forward-backward correlation functions and the corresponding correlation coefficients between multiplicities and transverse momenta of particles produced in high energy hadronic interactions is analyzed by analytical and MC calculations in the models with and without string fusion. The string fusion is taking into account in simplified form by introducing the lattice in the transverse plane. The results obtained with two alternative definitions of the forward-backward correlation coefficient are compared. It is shown that the nonlinearity of correlation functions increases with the width of observation windows, leading at small string density to a strong dependence of correlation coefficient value on the definition. The results of the modeling enable qualitatively to explain the experimentally observed features in the behavior of the correlation functions between multiplicities and mean transverse momenta at small and large multiplicities.

  16. Probabilistic forward model for electroencephalography source analysis

    International Nuclear Information System (INIS)

    Plis, Sergey M; George, John S; Jun, Sung C; Ranken, Doug M; Volegov, Petr L; Schmidt, David M

    2007-01-01

    Source localization by electroencephalography (EEG) requires an accurate model of head geometry and tissue conductivity. The estimation of source time courses from EEG or from EEG in conjunction with magnetoencephalography (MEG) requires a forward model consistent with true activity for the best outcome. Although MRI provides an excellent description of soft tissue anatomy, a high resolution model of the skull (the dominant resistive component of the head) requires CT, which is not justified for routine physiological studies. Although a number of techniques have been employed to estimate tissue conductivity, no present techniques provide the noninvasive 3D tomographic mapping of conductivity that would be desirable. We introduce a formalism for probabilistic forward modeling that allows the propagation of uncertainties in model parameters into possible errors in source localization. We consider uncertainties in the conductivity profile of the skull, but the approach is general and can be extended to other kinds of uncertainties in the forward model. We and others have previously suggested the possibility of extracting conductivity of the skull from measured electroencephalography data by simultaneously optimizing over dipole parameters and the conductivity values required by the forward model. Using Cramer-Rao bounds, we demonstrate that this approach does not improve localization results nor does it produce reliable conductivity estimates. We conclude that the conductivity of the skull has to be either accurately measured by an independent technique, or that the uncertainties in the conductivity values should be reflected in uncertainty in the source location estimates

  17. Factors affecting forward pricing behaviour: implications of alternative regression model specifications

    Directory of Open Access Journals (Sweden)

    Henry Jordaan

    2010-12-01

    Full Text Available Price risk associated with maize production became a reason for concern in South Africa only after the deregulation of the agricultural commodities markets in the mid-1990s, when farmers became responsible for marketing their own crops. Although farmers can use, inter alia, the cash forward contracting and/or the derivatives market to manage price risk, few farmers actually participate in forward pricing. A similar reluctance to use forward pricing methods is also found internationally. A number of different model specifications have been used in previous research to model forward pricing behaviour which is based on the assumption that the same variables influence both the adoption and the quantity decision. This study compares the results from a model specification which models forward pricing behaviour in a single-decision framework with the results from modelling the quantity decision conditional to the adoption decision in a two-step approach. The results suggest that substantially more information is obtained by modelling forward pricing behaviour as two separate decisions rather than a single decision. Such information may be valuable in educational material compiled to educate farmers in the effective use of forward pricing methods in price risk management. Modelling forward pricing behaviour as two separate decisions  is thus a more effective means of modelling forward pricing behaviour than modelling it as a single decision.

  18. A critical analysis of shock models for chondrule formation

    Science.gov (United States)

    Stammler, Sebastian M.; Dullemond, Cornelis P.

    2014-11-01

    In recent years many models of chondrule formation have been proposed. One of those models is the processing of dust in shock waves in protoplanetary disks. In this model, the dust and the chondrule precursors are overrun by shock waves, which heat them up by frictional heating and thermal exchange with the gas. In this paper we reanalyze the nebular shock model of chondrule formation and focus on the downstream boundary condition. We show that for large-scale plane-parallel chondrule-melting shocks the postshock equilibrium temperature is too high to avoid volatile loss. Even if we include radiative cooling in lateral directions out of the disk plane into our model (thereby breaking strict plane-parallel geometry) we find that for a realistic vertical extent of the solar nebula disk the temperature decline is not fast enough. On the other hand, if we assume that the shock is entirely optically thin so that particles can radiate freely, the cooling rates are too high to produce the observed chondrules textures. Global nebular shocks are therefore problematic as the primary sources of chondrules.

  19. out-of-n systems with shock model

    African Journals Online (AJOL)

    distributed. Sarhan, A.M. and Abouammoh (2000) used the shock model to derive the re- liability function of k-out-of-n systems with nonindependent and nonidentical components. They assumed that a system is subjected to n + m independent types of shocks. Liu et al. (2008) proposed a model to evaluate the reliability ...

  20. Analytical model for fast-shock ignition

    International Nuclear Information System (INIS)

    Ghasemi, S. A.; Farahbod, A. H.; Sobhanian, S.

    2014-01-01

    A model and its improvements are introduced for a recently proposed approach to inertial confinement fusion, called fast-shock ignition (FSI). The analysis is based upon the gain models of fast ignition, shock ignition and considerations for the fast electrons penetration into the pre-compressed fuel to examine the formation of an effective central hot spot. Calculations of fast electrons penetration into the dense fuel show that if the initial electron kinetic energy is of the order ∼4.5 MeV, the electrons effectively reach the central part of the fuel. To evaluate more realistically the performance of FSI approach, we have used a quasi-two temperature electron energy distribution function of Strozzi (2012) and fast ignitor energy formula of Bellei (2013) that are consistent with 3D PIC simulations for different values of fast ignitor laser wavelength and coupling efficiency. The general advantages of fast-shock ignition in comparison with the shock ignition can be estimated to be better than 1.3 and it is seen that the best results can be obtained for the fuel mass around 1.5 mg, fast ignitor laser wavelength ∼0.3  micron and the shock ignitor energy weight factor about 0.25

  1. Cloud-In-Cell modeling of shocked particle-laden flows at a ``SPARSE'' cost

    Science.gov (United States)

    Taverniers, Soren; Jacobs, Gustaaf; Sen, Oishik; Udaykumar, H. S.

    2017-11-01

    A common tool for enabling process-scale simulations of shocked particle-laden flows is Eulerian-Lagrangian Particle-Source-In-Cell (PSIC) modeling where each particle is traced in its Lagrangian frame and treated as a mathematical point. Its dynamics are governed by Stokes drag corrected for high Reynolds and Mach numbers. The computational burden is often reduced further through a ``Cloud-In-Cell'' (CIC) approach which amalgamates groups of physical particles into computational ``macro-particles''. CIC does not account for subgrid particle fluctuations, leading to erroneous predictions of cloud dynamics. A Subgrid Particle-Averaged Reynolds-Stress Equivalent (SPARSE) model is proposed that incorporates subgrid interphase velocity and temperature perturbations. A bivariate Gaussian source distribution, whose covariance captures the cloud's deformation to first order, accounts for the particles' momentum and energy influence on the carrier gas. SPARSE is validated by conducting tests on the interaction of a particle cloud with the accelerated flow behind a shock. The cloud's average dynamics and its deformation over time predicted with SPARSE converge to their counterparts computed with reference PSIC models as the number of Gaussians is increased from 1 to 16. This work was supported by AFOSR Grant No. FA9550-16-1-0008.

  2. Modeling of Particle Acceleration at Multiple Shocks Via Diffusive Shock Acceleration: Preliminary Results

    Science.gov (United States)

    Parker, L. N.; Zank, G. P.

    2013-12-01

    Successful forecasting of energetic particle events in space weather models require algorithms for correctly predicting the spectrum of ions accelerated from a background population of charged particles. We present preliminary results from a model that diffusively accelerates particles at multiple shocks. Our basic approach is related to box models (Protheroe and Stanev, 1998; Moraal and Axford, 1983; Ball and Kirk, 1992; Drury et al., 1999) in which a distribution of particles is diffusively accelerated inside the box while simultaneously experiencing decompression through adiabatic expansion and losses from the convection and diffusion of particles outside the box (Melrose and Pope, 1993; Zank et al., 2000). We adiabatically decompress the accelerated particle distribution between each shock by either the method explored in Melrose and Pope (1993) and Pope and Melrose (1994) or by the approach set forth in Zank et al. (2000) where we solve the transport equation by a method analogous to operator splitting. The second method incorporates the additional loss terms of convection and diffusion and allows for the use of a variable time between shocks. We use a maximum injection energy (Emax) appropriate for quasi-parallel and quasi-perpendicular shocks (Zank et al., 2000, 2006; Dosch and Shalchi, 2010) and provide a preliminary application of the diffusive acceleration of particles by multiple shocks with frequencies appropriate for solar maximum (i.e., a non-Markovian process).

  3. Simple model for decay of laser generated shock waves

    International Nuclear Information System (INIS)

    Trainor, R.J.

    1980-01-01

    A simple model is derived to calculate the hydrodynamic decay of laser-generated shock waves. Comparison with detailed hydrocode simulations shows good agreement between calculated time evolution of shock pressure, position, and instantaneous pressure profile. Reliability of the model decreases in regions of the target where superthermal-electron preheat effects become comparable to shock effects

  4. Shock Wave Dynamics in Weakly Ionized Plasmas

    Science.gov (United States)

    Johnson, Joseph A., III

    1999-01-01

    An investigation of the dynamics of shock waves in weakly ionized argon plasmas has been performed using a pressure ruptured shock tube. The velocity of the shock is observed to increase when the shock traverses the plasma. The observed increases cannot be accounted for by thermal effects alone. Possible mechanisms that could explain the anomalous behavior include a vibrational/translational relaxation in the nonequilibrium plasma, electron diffusion across the shock front resulting from high electron mobility, and the propagation of ion-acoustic waves generated at the shock front. Using a turbulence model based on reduced kinetic theory, analysis of the observed results suggest a role for turbulence in anomalous shock dynamics in weakly ionized media and plasma-induced hypersonic drag reduction.

  5. A multiple shock model for common cause failures using discrete Markov chain

    International Nuclear Information System (INIS)

    Chung, Dae Wook; Kang, Chang Soon

    1992-01-01

    The most widely used models in common cause analysis are (single) shock models such as the BFR, and the MFR. But, single shock model can not treat the individual common cause separately and has some irrational assumptions. Multiple shock model for common cause failures is developed using Markov chain theory. This model treats each common cause shock as separately and sequently occuring event to implicate the change in failure probability distribution due to each common cause shock. The final failure probability distribution is evaluated and compared with that from the BFR model. The results show that multiple shock model which minimizes the assumptions in the BFR model is more realistic and conservative than the BFR model. The further work for application is the estimations of parameters such as common cause shock rate and component failure probability given a shock,p, through the data analysis

  6. On Modeling Risk Shocks

    OpenAIRE

    Dorofeenko, Victor; Lee, Gabriel; Salyer, Kevin; Strobel, Johannes

    2016-01-01

    Within the context of a financial accelerator model, we model time-varying uncertainty (i.e. risk shocks) through the use of a mixture Normal model with time variation in the weights applied to the underlying distributions characterizing entrepreneur productivity. Specifically, we model capital producers (i.e. the entrepreneurs) as either low-risk (relatively small second moment for productivity) and high-risk (relatively large second moment for productivity) and the fraction of both types is...

  7. Strategic Management Accounting and Feed-forward Management: with Reference to the Unified Management of Profit Opportunity and Risk

    OpenAIRE

    西村, 明

    2015-01-01

    This paper aims toreexamine strategic management accouning in relation to profit opportunity and risk from the viewpoint of feed-forward management , as few studies to date have discuued the relations between management accounting and the unified management of profit opportunity and risk.Many studies have been conducted that emphasize non-fine information and feedback organizational management in an attept to make traditional management accounting relevant to practical strategic needs. As lon...

  8. Risky forward interest rates and swaptions: Quantum finance model and empirical results

    Science.gov (United States)

    Baaquie, Belal Ehsan; Yu, Miao; Bhanap, Jitendra

    2018-02-01

    Risk free forward interest rates (Diebold and Li, 2006 [1]; Jamshidian, 1991 [2 ]) - and their realization by US Treasury bonds as the leading exemplar - have been studied extensively. In Baaquie (2010), models of risk free bonds and their forward interest rates based on the quantum field theoretic formulation of the risk free forward interest rates have been discussed, including the empirical evidence supporting these models. The quantum finance formulation of risk free forward interest rates is extended to the case of risky forward interest rates. The examples of the Singapore and Malaysian forward interest rates are used as specific cases. The main feature of the quantum finance model is that the risky forward interest rates are modeled both a) as a stand-alone case as well as b) being driven by the US forward interest rates plus a spread - having its own term structure -above the US forward interest rates. Both the US forward interest rates and the term structure for the spread are modeled by a two dimensional Euclidean quantum field. As a precursor to the evaluation of put option of the Singapore coupon bond, the quantum finance model for swaptions is tested using empirical study of swaptions for the US Dollar -showing that the model is quite accurate. A prediction for the market price of the put option for the Singapore coupon bonds is obtained. The quantum finance model is generalized to study the Malaysian case and the Malaysian forward interest rates are shown to have anomalies absent for the US and Singapore case. The model's prediction for a Malaysian interest rate swap is obtained.

  9. Weather shocks and cropland decisions in rural Mozambique

    DEFF Research Database (Denmark)

    Salazar Espinoza, César Antonio; Jones, Edward Samuel; Tarp, Finn

    2015-01-01

    to examine the effect of weather shocks on cropland decisions. We account for the bounded nature of land shares and estimate a Pooled Fractional Probit model for panel data. Our results show that crop choice is sensitive to past weather shocks. Farmers shift land use away from cash and permanent crops one...

  10. 3D Morphology Design for Forward Osmosis

    KAUST Repository

    Shi, Meixia; Printsypar, Galina; Phuoc, Duong; Calo, Victor M.; Iliev, Oleg; Nunes, Suzana Pereira

    2016-01-01

    We propose a multi-scale simulation approach to model forward osmosis (FO) processes using substrates with layered homogeneous morphology. This approach accounts not only for FO setup but also for detailed microstructure of the substrate using

  11. Contabilización de Contratos de Futuros, Opciones, Forwards y Swaps (Accounting treatment for future, options, forwards and swap contracts

    Directory of Open Access Journals (Sweden)

    Vernor Mesén Figueroa

    2012-12-01

    Full Text Available Un entorno cada vez más dinámico y evolutivo ha dado paso al surgimiento y, por ende, al uso cada vez más frecuente de instrumentos financieros cuya flexibilidad y capacidad de ajuste a las condiciones de mercado permitan a las personas y empresas lograr sus objetivos de operación, inversión y financiamiento. En el contexto antes descrito, los contratos de futuros, opciones, forwards y swaps representan mecanismos cuyas características operativas permiten a sus tenedores el logro de objetivos alternativos tales como la cobertura eficaz de diferentes tipos de riesgos o la obtención de ganancias o pérdidas derivadas de la especulación. El presente artículo pretende reseñar, en forma breve, los mecanismos de operación de los contratos de futuros, opciones, forwards y swaps, para luego enfatizar en los criterios de contabilización que toda entidad o intermediario financiero debe seguir para reconocer los efectos que dichos tipos de contratos tienen sobre su posición financiera, resultados de operación y flujos de efectivo.   ABSTRACT A rapidly changing and evolving environment has given rise and increased the use of financial tools whose flexibility and adjusting capabilities to variable market conditions allow individuals and companies to achieve their operating, investment and financial goals. Within this framework, contracts for futures, options, forwards and swaps provide mechanisms with operating characteristics that allow their tenants to achieve alternative objectives such as the effective coverage of different risks or the attaining of profits or losses as a result of speculation. This article attempts to resume the operating mechanisms of futures, options, forwards and swap contracts and then concentrates into the accounting criteria that must be followed by financial intermediaries or entities to recognize the effects such contracts have on their financial position, operational results and cash flow.

  12. Formation of intermediate shocks in both two-fluid and hybrid models

    International Nuclear Information System (INIS)

    Wu, C.C.; Hada, T.

    1991-01-01

    Intermediate shocks are shocks with shock frame fluid velocities greater than the Alfven speed ahead and less than the Alfven speed behind, or equivalently, across intermediate shocks the sign of the transverse component of the magnetic field changes. These shocks had been considered extraneous, or nonevolutionary, or unstable, and they had been thought not to correspond to physical reality [Germain, 1960; Jeffrey and Taniuti, 1964; Kantrowitz and Petschek, 1966]. However, it has been shown that intermediate shocks can be formed from continuous waves according to dissipative magnetohydrodynamics (MHD) [Wu, 1987, 1988a, b, 1990]. Thus according to the formation argument which requires that physical shocks be formed by the wave steepening process, the intermediate shocks should be considered physical. Here, intermediate shocks are studied in a two-fluid model that includes finite ion inertia dispersion and in a hybrid model in which the full ion dynamics is retained while the electrons are treated as a massless fluid. The authors show that in both models intermediate shocks can be formed through wave steepening, meaning that they are stable and possess shock structures

  13. SPECTRA OF MAGNETIC FLUCTUATIONS AND RELATIVISTIC PARTICLES PRODUCED BY A NONRESONANT WAVE INSTABILITY IN SUPERNOVA REMNANT SHOCKS

    International Nuclear Information System (INIS)

    Vladimirov, Andrey E.; Ellison, Donald C.; Bykov, Andrei M.

    2009-01-01

    We model strong forward shocks in young supernova remnants with efficient particle acceleration where a nonresonant instability driven by the cosmic ray current amplifies magnetic turbulence in the shock precursor. Particle injection, magnetic field amplification (MFA), and the nonlinear feedback of particles and fields on the bulk flow are derived consistently. The shock structure depends critically on the efficiency of turbulence cascading. If cascading is suppressed, MFA is strong, the shock precursor is stratified, and the turbulence spectrum contains several discrete peaks. These peaks, as well as the amount of MFA, should influence synchrotron X-rays, allowing observational tests of cascading and other assumptions intrinsic to the nonlinear model of nonresonant wave growth.

  14. Synchrotron self-inverse Compton radiation from reverse shock on GRB 120326A

    Energy Technology Data Exchange (ETDEWEB)

    Urata, Yuji [Institute of Astronomy, National Central University, Chung-Li 32054, Taiwan (China); Huang, Kuiyun; Takahashi, Satoko [Academia Sinica Institute of Astronomy and Astrophysics, Taipei 106, Taiwan (China); Im, Myungshin; Kim, Jae-Woo; Jang, Minsung [Center for the Exploration of the Origin of the Universe, Department of Physics and Astronomy, FPRD, Seoul National University, Shillim-dong, San 56-1, Kwanak-gu, Seoul (Korea, Republic of); Yamaoka, Kazutaka [Solar-Terrestrial Environment Laboratory, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601 (Japan); Tashiro, Makoto [Department of Physics, Saitama University, Shimo-Okubo, Saitama 338-8570 (Japan); Pak, Soojong, E-mail: urata@astro.ncu.edu.tw [School of Space Research, Kyung Hee University, Yongin, Gyeonggi 446-701 (Korea, Republic of)

    2014-07-10

    We present multi-wavelength observations of a typical long duration GRB 120326A at z = 1.798, including rapid observations using a Submillimeter Array (SMA) and a comprehensive monitoring in the X-ray and optical. The SMA observation provided the fastest detection to date among seven submillimeter afterglows at 230 GHz. The prompt spectral analysis, using Swift and Suzaku, yielded a spectral peak energy of E{sub peak}{sup src}=107.8{sub −15.3}{sup +15.3} keV and an equivalent isotropic energy of E{sub iso} as 3.18{sub −0.32}{sup +0.40}×10{sup 52} erg. The temporal evolution and spectral properties in the optical were consistent with the standard forward shock synchrotron with jet collimation (6.°69 ± 0.°16). The forward shock modeling, using a two-dimensional relativistic hydrodynamic jet simulation, was also determined by the reasonable burst explosion and the synchrotron radiation parameters for the optical afterglow. The X-ray light curve showed no apparent jet break and the temporal decay index relation between the X-ray and optical (αo – α{sub X} = –1.45 ± 0.10) indicated different radiation processes in each of them. Introducing synchrotron self-inverse Compton radiation from reverse shock is a possible solution, and the detection and slow decay of the afterglow in submillimeter supports that this is a plausible idea. The observed temporal evolution and spectral properties, as well as forward shock modeling parameters, enabled us to determine reasonable functions to describe the afterglow properties. Because half of the events share similar properties in the X-ray and optical as the current event, GRB 120326A will be a benchmark with further rapid follow-ups, using submillimeter instruments such as an SMA and the Atacama Large Millimeter/submillimeter Array.

  15. Synchrotron self-inverse Compton radiation from reverse shock on GRB 120326A

    International Nuclear Information System (INIS)

    Urata, Yuji; Huang, Kuiyun; Takahashi, Satoko; Im, Myungshin; Kim, Jae-Woo; Jang, Minsung; Yamaoka, Kazutaka; Tashiro, Makoto; Pak, Soojong

    2014-01-01

    We present multi-wavelength observations of a typical long duration GRB 120326A at z = 1.798, including rapid observations using a Submillimeter Array (SMA) and a comprehensive monitoring in the X-ray and optical. The SMA observation provided the fastest detection to date among seven submillimeter afterglows at 230 GHz. The prompt spectral analysis, using Swift and Suzaku, yielded a spectral peak energy of E peak src =107.8 −15.3 +15.3 keV and an equivalent isotropic energy of E iso as 3.18 −0.32 +0.40 ×10 52 erg. The temporal evolution and spectral properties in the optical were consistent with the standard forward shock synchrotron with jet collimation (6.°69 ± 0.°16). The forward shock modeling, using a two-dimensional relativistic hydrodynamic jet simulation, was also determined by the reasonable burst explosion and the synchrotron radiation parameters for the optical afterglow. The X-ray light curve showed no apparent jet break and the temporal decay index relation between the X-ray and optical (αo – α X = –1.45 ± 0.10) indicated different radiation processes in each of them. Introducing synchrotron self-inverse Compton radiation from reverse shock is a possible solution, and the detection and slow decay of the afterglow in submillimeter supports that this is a plausible idea. The observed temporal evolution and spectral properties, as well as forward shock modeling parameters, enabled us to determine reasonable functions to describe the afterglow properties. Because half of the events share similar properties in the X-ray and optical as the current event, GRB 120326A will be a benchmark with further rapid follow-ups, using submillimeter instruments such as an SMA and the Atacama Large Millimeter/submillimeter Array.

  16. Modelling the complete operation of a free-piston shock tunnel for a low enthalpy condition

    Science.gov (United States)

    McGilvray, M.; Dann, A. G.; Jacobs, P. A.

    2013-07-01

    Only a limited number of free-stream flow properties can be measured in hypersonic impulse facilities at the nozzle exit. This poses challenges for experimenters when subsequently analysing experimental data obtained from these facilities. Typically in a reflected shock tunnel, a simple analysis that requires small amounts of computational resources is used to calculate quasi-steady gas properties. This simple analysis requires initial fill conditions and experimental measurements in analytical calculations of each major flow process, using forward coupling with minor corrections to include processes that are not directly modeled. However, this simplistic approach leads to an unknown level of discrepancy to the true flow properties. To explore the simple modelling techniques accuracy, this paper details the use of transient one and two-dimensional numerical simulations of a complete facility to obtain more refined free-stream flow properties from a free-piston reflected shock tunnel operating at low-enthalpy conditions. These calculations were verified by comparison to experimental data obtained from the facility. For the condition and facility investigated, the test conditions at nozzle exit produced with the simple modelling technique agree with the time and space averaged results from the complete facility calculations to within the accuracy of the experimental measurements.

  17. Bayesian model selection of template forward models for EEG source reconstruction.

    Science.gov (United States)

    Strobbe, Gregor; van Mierlo, Pieter; De Vos, Maarten; Mijović, Bogdan; Hallez, Hans; Van Huffel, Sabine; López, José David; Vandenberghe, Stefaan

    2014-06-01

    Several EEG source reconstruction techniques have been proposed to identify the generating neuronal sources of electrical activity measured on the scalp. The solution of these techniques depends directly on the accuracy of the forward model that is inverted. Recently, a parametric empirical Bayesian (PEB) framework for distributed source reconstruction in EEG/MEG was introduced and implemented in the Statistical Parametric Mapping (SPM) software. The framework allows us to compare different forward modeling approaches, using real data, instead of using more traditional simulated data from an assumed true forward model. In the absence of a subject specific MR image, a 3-layered boundary element method (BEM) template head model is currently used including a scalp, skull and brain compartment. In this study, we introduced volumetric template head models based on the finite difference method (FDM). We constructed a FDM head model equivalent to the BEM model and an extended FDM model including CSF. These models were compared within the context of three different types of source priors related to the type of inversion used in the PEB framework: independent and identically distributed (IID) sources, equivalent to classical minimum norm approaches, coherence (COH) priors similar to methods such as LORETA, and multiple sparse priors (MSP). The resulting models were compared based on ERP data of 20 subjects using Bayesian model selection for group studies. The reconstructed activity was also compared with the findings of previous studies using functional magnetic resonance imaging. We found very strong evidence in favor of the extended FDM head model with CSF and assuming MSP. These results suggest that the use of realistic volumetric forward models can improve PEB EEG source reconstruction. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Cosmic ray acceleration by large scale galactic shocks

    International Nuclear Information System (INIS)

    Cesarsky, C.J.; Lagage, P.O.

    1987-01-01

    The mechanism of diffusive shock acceleration may account for the existence of galactic cosmic rays detailed application to stellar wind shocks and especially to supernova shocks have been developed. Existing models can usually deal with the energetics or the spectral slope, but the observed energy range of cosmic rays is not explained. Therefore it seems worthwhile to examine the effect that large scale, long-lived galactic shocks may have on galactic cosmic rays, in the frame of the diffusive shock acceleration mechanism. Large scale fast shocks can only be expected to exist in the galactic halo. We consider three situations where they may arise: expansion of a supernova shock in the halo, galactic wind, galactic infall; and discuss the possible existence of these shocks and their role in accelerating cosmic rays

  19. Shock waves in helium at low temperatures

    International Nuclear Information System (INIS)

    Liepmann, H.W.; Torczynski, J.R.

    1986-01-01

    Results are reported from studies of the properties of low temperature He-4 using shock waves as a probe. Ideal shock tube theory is used to show that sonic speeds of Mach 40 are attainable in He at 300 K. Viscosity reductions at lower temperatures minimize boundary layer effects at the side walls. A two-fluid model is described to account for the phase transition which He undergoes at temperatures below 2.2 K, after which the quantum fluid (He II) and the normal compressed superfluid (He I) coexist. Analytic models are provided for pressure-induced shocks in He I and temperature-induced shock waves (called second sound) which appear in He II. The vapor-fluid interface of He I is capable of reflecting second and gasdynamic sound shocks, which can therefore be used as probes for studying phase transitions between He I and He II. 17 references

  20. Modeling multiscale evolution of numerous voids in shocked brittle material.

    Science.gov (United States)

    Yu, Yin; Wang, Wenqiang; He, Hongliang; Lu, Tiecheng

    2014-04-01

    The influence of the evolution of numerous voids on macroscopic properties of materials is a multiscale problem that challenges computational research. A shock-wave compression model for brittle material, which can obtain both microscopic evolution and macroscopic shock properties, was developed using discrete element methods (lattice model). Using a model interaction-parameter-mapping procedure, qualitative features, as well as trends in the calculated shock-wave profiles, are shown to agree with experimental results. The shock wave splits into an elastic wave and a deformation wave in porous brittle materials, indicating significant shock plasticity. Void collapses in the deformation wave were the natural reason for volume shrinkage and deformation. However, media slippage and rotation deformations indicated by complex vortex patterns composed of relative velocity vectors were also confirmed as an important source of shock plasticity. With increasing pressure, the contribution from slippage deformation to the final plastic strain increased. Porosity was found to determine the amplitude of the elastic wave; porosity and shock stress together determine propagation speed of the deformation wave, as well as stress and strain on the final equilibrium state. Thus, shock behaviors of porous brittle material can be systematically designed for specific applications.

  1. Shock circle model for ejector performance evaluation

    International Nuclear Information System (INIS)

    Zhu, Yinhai; Cai, Wenjian; Wen, Changyun; Li, Yanzhong

    2007-01-01

    In this paper, a novel shock circle model for the prediction of ejector performance at the critical mode operation is proposed. By introducing the 'shock circle' at the entrance of the constant area chamber, a 2D exponential expression for velocity distribution is adopted to approximate the viscosity flow near the ejector inner wall. The advantage of the 'shock circle' analysis is that the calculation of ejector performance is independent of the flows in the constant area chamber and diffuser. Consequently, the calculation is even simpler than many 1D modeling methods and can predict the performance of critical mode operation ejectors much more accurately. The effectiveness of the method is validated by two experimental results reported earlier. The proposed modeling method using two coefficients is shown to produce entrainment ratio, efficiency and coefficient of performance (COP) accurately and much closer to experimental results than those of 1D analysis methods

  2. Dynamical efficiency of collisionless magnetized shocks in relativistic jets

    Science.gov (United States)

    Aloy, Miguel A.; Mimica, Petar

    2011-09-01

    The so-called internal shock model aims to explain the light-curves and spectra produced by non-thermal processes originated in the flow of blazars and gamma-ray bursts. A long standing question is whether the tenuous collisionless shocks, driven inside a relativistic flow, are efficient enough to explain the amount of energy observed as compared with the expected kinetic power of the outflow. In this work we study the dynamic efficiency of conversion of kinetic-to-thermal/magnetic energy of internal shocks in relativistic magnetized outflows. We find that the collision between shells with a non-zero relative velocity can yield either two oppositely moving shocks (in the frame where the contact surface is at rest), or a reverse shock and a forward rarefaction. For moderately magnetized shocks (magnetization σ ~= 0.1), the dynamic efficiency in a single two-shell interaction can be as large as 40%. Hence, the dynamic efficiency of moderately magnetized shocks is larger than in the corresponding unmagnetized two-shell interaction. We find that the efficiency is only weakly dependent on the Lorentz factor of the shells and, thus internal shocks in the magnetized flow of blazars and gamma-ray bursts are approximately equally efficient.

  3. A model for radio emission from solar coronal shocks

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, G. Q.; Chen, L.; Wu, D. J., E-mail: djwu@pmo.ac.cn [Purple Mountain Observatory, CAS, Nanjing 210008 (China)

    2014-05-01

    Solar coronal shocks are very common phenomena in the solar atmosphere and are believed to be the drivers of solar type II radio bursts. However, the microphysical nature of these emissions is still an open question. This paper proposes that electron cyclotron maser (ECM) emission is responsible for the generation of radiation from the coronal shocks. In the present model, an energetic ion beam accelerated by the shock first excites the Alfvén wave (AW), then the excited AW leads to the formation of a density-depleted duct along the foreshock boundary of the shock. In this density-depleted duct, the energetic electron beam produced via the shock acceleration can effectively excite radio emission by ECM instability. Our results show that this model may potentially be applied to solar type II radio bursts.

  4. A model for radio emission from solar coronal shocks

    International Nuclear Information System (INIS)

    Zhao, G. Q.; Chen, L.; Wu, D. J.

    2014-01-01

    Solar coronal shocks are very common phenomena in the solar atmosphere and are believed to be the drivers of solar type II radio bursts. However, the microphysical nature of these emissions is still an open question. This paper proposes that electron cyclotron maser (ECM) emission is responsible for the generation of radiation from the coronal shocks. In the present model, an energetic ion beam accelerated by the shock first excites the Alfvén wave (AW), then the excited AW leads to the formation of a density-depleted duct along the foreshock boundary of the shock. In this density-depleted duct, the energetic electron beam produced via the shock acceleration can effectively excite radio emission by ECM instability. Our results show that this model may potentially be applied to solar type II radio bursts.

  5. On numerical considerations for modeling reactive astrophysical shocks

    International Nuclear Information System (INIS)

    Papatheodore, Thomas L.; Messer, O. E. Bronson

    2014-01-01

    Simulating detonations in astrophysical environments is often complicated by numerical approximations to shock structure. A common prescription to ensure correct detonation speeds and associated quantities is to prohibit burning inside the numerically broadened shock. We have performed a series of simulations to verify the efficacy of this approximation and to understand how resolution and dimensionality might affect its use. Our results show that in one dimension, prohibiting burning in the shock is important wherever the carbon burning length is not resolved, in keeping with the results of Fryxell et al. In two dimensions, we find that the prohibition of shock burning effectively inhibits the development of cellular structure for all but the most highly resolved cases. We discuss the possible impacts this outcome may have on sub-grid models and detonation propagation in models of Type Ia supernovae, including potential impacts on observables.

  6. Gain curves and hydrodynamic modeling for shock ignition

    International Nuclear Information System (INIS)

    Lafon, M.; Ribeyre, X.; Schurtz, G.

    2010-01-01

    Ignition of a precompressed thermonuclear fuel by means of a converging shock is now considered as a credible scheme to obtain high gains for inertial fusion energy. This work aims at modeling the successive stages of the fuel time history, from compression to final thermonuclear combustion, in order to provide the gain curves of shock ignition (SI). The leading physical mechanism at work in SI is pressure amplification, at first by spherical convergence, and by collision with the shock reflected at center during the stagnation process. These two effects are analyzed, and ignition conditions are provided as functions of the shock pressure and implosion velocity. Ignition conditions are obtained from a non-isobaric fuel assembly, for which we present a gain model. The corresponding gain curves exhibit a significantly lower ignition threshold and higher target gains than conventional central ignition.

  7. The Iquique earthquake sequence of April 2014: Bayesian modeling accounting for prediction uncertainty

    Science.gov (United States)

    Duputel, Zacharie; Jiang, Junle; Jolivet, Romain; Simons, Mark; Rivera, Luis; Ampuero, Jean-Paul; Riel, Bryan; Owen, Susan E; Moore, Angelyn W; Samsonov, Sergey V; Ortega Culaciati, Francisco; Minson, Sarah E.

    2016-01-01

    The subduction zone in northern Chile is a well-identified seismic gap that last ruptured in 1877. On 1 April 2014, this region was struck by a large earthquake following a two week long series of foreshocks. This study combines a wide range of observations, including geodetic, tsunami, and seismic data, to produce a reliable kinematic slip model of the Mw=8.1 main shock and a static slip model of the Mw=7.7 aftershock. We use a novel Bayesian modeling approach that accounts for uncertainty in the Green's functions, both static and dynamic, while avoiding nonphysical regularization. The results reveal a sharp slip zone, more compact than previously thought, located downdip of the foreshock sequence and updip of high-frequency sources inferred by back-projection analysis. Both the main shock and the Mw=7.7 aftershock did not rupture to the trench and left most of the seismic gap unbroken, leaving the possibility of a future large earthquake in the region.

  8. Oil prices and current account: A structural analysis for the Turkish economy

    International Nuclear Information System (INIS)

    Ozlale, Umit; Pekkurnaz, Didem

    2010-01-01

    Although there has been an increasing number of studies about the effects of oil prices on the macroeconomic performances, the literature on the interaction between oil prices and current account is limited, especially for oil importing developing countries. This paper analyzes the impact of oil prices on the current account balances for the Turkish economy using a structural vector autoregression model. Our model allows us to identify the net effect of oil prices on current account balances after controlling for other factors such as output gap and exchange rate misalignment. The results show that the response of current account ratio to oil price shock increases gradually up to the first three months and then starts to decrease, which indicates a significant effect of oil price shocks in the short-run. Moreover, when the obtained structural shocks are employed in a simple regression analysis, the parameter regarding the oil price shocks is found to be negative and statistically significant. The final section discusses the policy implications of the results.

  9. Integration and shock transmissions across European electricity forward markets

    International Nuclear Information System (INIS)

    Bunn, Derek W.; Gianfreda, Angelica

    2010-01-01

    New results are presented relating to the integration of the French, German, British, Dutch and Spanish power markets at day-ahead, week-ahead, one month-ahead and two month-ahead lead times. Overall, there is evidence of market integration, increasing over time, despite an underlying inefficiency in each market with respect to the forward and spot price convergence. The spatial analysis, on a financial dimension, is undertaken using causality tests, cointegration and impulse-response techniques, for both price levels and volatilities. In general we find less influence of the size and proximity of neighbouring markets than other studies, more integration at baseload than peak, and, surprisingly, less integration in forwards than spot prices. (author)

  10. Extended charge banking model of dual path shocks for implantable cardioverter defibrillators.

    Science.gov (United States)

    Dosdall, Derek J; Sweeney, James D

    2008-08-01

    Single path defibrillation shock methods have been improved through the use of the Charge Banking Model of defibrillation, which predicts the response of the heart to shocks as a simple resistor-capacitor (RC) circuit. While dual path defibrillation configurations have significantly reduced defibrillation thresholds, improvements to dual path defibrillation techniques have been limited to experimental observations without a practical model to aid in improving dual path defibrillation techniques. The Charge Banking Model has been extended into a new Extended Charge Banking Model of defibrillation that represents small sections of the heart as separate RC circuits, uses a weighting factor based on published defibrillation shock field gradient measures, and implements a critical mass criteria to predict the relative efficacy of single and dual path defibrillation shocks. The new model reproduced the results from several published experimental protocols that demonstrated the relative efficacy of dual path defibrillation shocks. The model predicts that time between phases or pulses of dual path defibrillation shock configurations should be minimized to maximize shock efficacy. Through this approach the Extended Charge Banking Model predictions may be used to improve dual path and multi-pulse defibrillation techniques, which have been shown experimentally to lower defibrillation thresholds substantially. The new model may be a useful tool to help in further improving dual path and multiple pulse defibrillation techniques by predicting optimal pulse durations and shock timing parameters.

  11. Model for Shock Wave Chaos

    KAUST Repository

    Kasimov, Aslan R.; Faria, Luiz; Rosales, Rodolfo R.

    2013-01-01

    : steady traveling wave solutions, instability of such solutions, and the onset of chaos. Our model is the first (to our knowledge) to describe chaos in shock waves by a scalar first-order partial differential equation. The chaos arises in the equation

  12. Forward modeling of gravity data using geostatistically generated subsurface density variations

    Science.gov (United States)

    Phelps, Geoffrey

    2016-01-01

    Using geostatistical models of density variations in the subsurface, constrained by geologic data, forward models of gravity anomalies can be generated by discretizing the subsurface and calculating the cumulative effect of each cell (pixel). The results of such stochastically generated forward gravity anomalies can be compared with the observed gravity anomalies to find density models that match the observed data. These models have an advantage over forward gravity anomalies generated using polygonal bodies of homogeneous density because generating numerous realizations explores a larger region of the solution space. The stochastic modeling can be thought of as dividing the forward model into two components: that due to the shape of each geologic unit and that due to the heterogeneous distribution of density within each geologic unit. The modeling demonstrates that the internally heterogeneous distribution of density within each geologic unit can contribute significantly to the resulting calculated forward gravity anomaly. Furthermore, the stochastic models match observed statistical properties of geologic units, the solution space is more broadly explored by producing a suite of successful models, and the likelihood of a particular conceptual geologic model can be compared. The Vaca Fault near Travis Air Force Base, California, can be successfully modeled as a normal or strike-slip fault, with the normal fault model being slightly more probable. It can also be modeled as a reverse fault, although this structural geologic configuration is highly unlikely given the realizations we explored.

  13. Data-driven forward model inference for EEG brain imaging

    DEFF Research Database (Denmark)

    Hansen, Sofie Therese; Hauberg, Søren; Hansen, Lars Kai

    2016-01-01

    Electroencephalography (EEG) is a flexible and accessible tool with excellent temporal resolution but with a spatial resolution hampered by volume conduction. Reconstruction of the cortical sources of measured EEG activity partly alleviates this problem and effectively turns EEG into a brain......-of-concept study, we show that, even when anatomical knowledge is unavailable, a suitable forward model can be estimated directly from the EEG. We propose a data-driven approach that provides a low-dimensional parametrization of head geometry and compartment conductivities, built using a corpus of forward models....... Combined with only a recorded EEG signal, we are able to estimate both the brain sources and a person-specific forward model by optimizing this parametrization. We thus not only solve an inverse problem, but also optimize over its specification. Our work demonstrates that personalized EEG brain imaging...

  14. Empirical Model Development for Predicting Shock Response on Composite Materials Subjected to Pyroshock Loading

    Science.gov (United States)

    Gentz, Steven J.; Ordway, David O; Parsons, David S.; Garrison, Craig M.; Rodgers, C. Steven; Collins, Brian W.

    2015-01-01

    The NASA Engineering and Safety Center (NESC) received a request to develop an analysis model based on both frequency response and wave propagation analyses for predicting shock response spectrum (SRS) on composite materials subjected to pyroshock loading. The model would account for near-field environment (approx. 9 inches from the source) dominated by direct wave propagation, mid-field environment (approx. 2 feet from the source) characterized by wave propagation and structural resonances, and far-field environment dominated by lower frequency bending waves in the structure. This report documents the outcome of the assessment.

  15. On the shock cell structure and noise of supersonic jets

    Science.gov (United States)

    Tam, C. K. W.; Jackson, J. A.

    1983-01-01

    A linear solution modeling the shock cell structure of an axisymmetric supersonic jet operated at off-design conditions is developed by the method of multiple-scales. The model solution takes into account the gradual spatial change of the mean flow in the downstream direction. Turbulence in the mixing layer of the jet has the tendency of smoothing out the sharp velocity and density gradients induced by the shocks. To simulate this effect, eddy viscosity terms are incorporated in the model. It is known that the interaction between the quasi-periodic shock cells and the downstream propagating large turbulence structures in the mixing layer of the jet is responsible for the generation of broadband shock associated noise. Experimentally, the dominant part of this noise has been found to originate from the part of the jet near the end of the potential core. Calculated shock cell spacing at the end of the jet core according to the present model is used to estimate the peak frequencies of the shock associated noise for a range of observation angles. Very favorable agreement with experimental measurements is found.

  16. Constitutive modeling of shock response of PTFE

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Eric N [Los Alamos National Laboratory; Reanyansky, Anatoly D [DSTO, AUSTRALIA; Bourne, Neil K [AWE, UK; Millett, Jeremy C F [AWE, UK

    2009-01-01

    The PTFE (polytetrafluoroethylene) material is complex and attracts attention of the shock physics researchers because it has amorphous and crystalline components. In turn, the crystalline component has four known phases with the high pressure transition to phase III. At the same time, as has been recently studied using spectrometry, the crystalline region is growing with load. Stress and velocity shock-wave profiles acquired recently with embedded gauges demonstrate feature that may be related to impedance mismatches between the regions subjected to some transitions resulting in density and modulus variations. We consider the above mentioned amorphous-to-crystalline transition and the high pressure Phase II-to-III transitions as possible candidates for the analysis. The present work utilizes a multi-phase rate sensitive model to describe shock response of the PTFE material. One-dimensional experimental shock wave profiles are compared with calculated profiles with the kinetics describing the transitions. The objective of this study is to understand the role of the various transitions in the shock response of PTFE.

  17. Forward-backward correlations in pp interactions in a dual model

    International Nuclear Information System (INIS)

    Fialkowsky, K.; Kotanski, A.; Uniwersytet Jagiellonski, Krakow

    1982-01-01

    Forward-backward correlations in lepton and hadron induced processes are compared according to the dual model. It is indicated that the effect of the chain energy spread in hadron processes is important. After including this effect the model is shown to explain the forward-backward correlations in pp data assuming no dynamical correlations within a single chain. (orig.)

  18. Shock ignition of thermonuclear fuel: principles and modelling

    International Nuclear Information System (INIS)

    Atzeni, S.; Ribeyre, X.; Schurtz, G.; Schmitt, A.J.; Canaud, B.; Betti, R.; Perkins, L.J.

    2014-01-01

    Shock ignition is an approach to direct-drive inertial confinement fusion (ICF) in which the stages of compression and hot spot formation are partly separated. The fuel is first imploded at a lower velocity than in conventional ICF. Close to stagnation, an intense laser spike drives a strong converging shock, which contributes to hot spot formation. Shock ignition shows potentials for high gain at laser energies below 1 MJ, and could be tested on the National Ignition Facility or Laser MegaJoule. Shock ignition principles and modelling are reviewed in this paper. Target designs and computer-generated gain curves are presented and discussed. Limitations of present studies and research needs are outlined. (special topic)

  19. Improved Reactive Flow Modeling of the LX-17 Double Shock Experiments

    Science.gov (United States)

    Rehagen, Thomas J.; Vitello, Peter

    2017-06-01

    Over driven double shock experiments provide a measurement of the properties of the reaction product states of the insensitive high explosive LX-17 (92.5% TATB and 7.5% Kel-F by weight). These experiments used two flyer materials mounted on the end of a projectile to send an initial shock through the LX-17, followed by a second shock of a higher magnitude into the detonation products. In the experiments, the explosive was initially driven by the flyer plate to pressures above the Chapman-Jouguet state. The particle velocity history was recorded by Photonic Doppler Velocimetry (PDV) probes pointing at an aluminum foil coated LiF window. The PDV data shows a sharp initial shock and decay, followed by a rounded second shock. Here, the experimental results are compared to 2D and 3D Cheetah reactive flow modeling. Our default Cheetah reactive flow model fails to accurately reproduce the decay of the first shock or the curvature or strength of the second shock. A new model is proposed in which the carbon condensate produced in the reaction zone is controlled by a kinetic rate. This allows the carbon condensate to be initially out of chemical equilibrium with the product gas. This new model reproduces the initial detonation peak and decay, and matches the curvature of the second shock, however, it still over-predicts the strength of the second shock. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344.

  20. Various continuum approaches for studying shock wave structure in carbon dioxide

    Science.gov (United States)

    Alekseev, I. V.; Kosareva, A. A.; Kustova, E. V.; Nagnibeda, E. A.

    2018-05-01

    Shock wave structure in carbon dioxide is studied using different continuum models within the framework of one-temperature thermal equilibrium flow description. Navier-Stokes and Euler equations as well as commonly used Rankine-Hugoniot equations with different specific heat ratios are used to find the gas-dynamic parameters behind the shock wave. The accuracy of the Rankine-Hugoniot relations in polyatomic gases is assessed, and it is shown that they give a considerable error in the predicted values of fluid-dynamic variables. The effect of bulk viscosity on the shock wave structure in CO2 is evaluated. Taking into account bulk viscosity yields a significant increase in the shock wave width; for the complete model, the shock wave thickness varies non-monotonically with the Mach number.

  1. Rapidly re-computable EEG (electroencephalography) forward models for realistic head shapes

    International Nuclear Information System (INIS)

    Ermer, J.J.; Mosher, J.C.; Baillet, S.; Leahy, R.M.

    2001-01-01

    Solution of the EEG source localization (inverse) problem utilizing model-based methods typically requires a significant number of forward model evaluations. For subspace based inverse methods like MUSIC (6), the total number of forward model evaluations can often approach an order of 10 3 or 10 4 . Techniques based on least-squares minimization may require significantly more evaluations. The observed set of measurements over an M-sensor array is often expressed as a linear forward spatio-temporal model of the form: F = GQ + N (1) where the observed forward field F (M-sensors x N-time samples) can be expressed in terms of the forward model G, a set of dipole moment(s) Q (3xP-dipoles x N-time samples) and additive noise N. Because of their simplicity, ease of computation, and relatively good accuracy, multi-layer spherical models (7) (or fast approximations described in (1), (7)) have traditionally been the 'forward model of choice' for approximating the human head. However, approximation of the human head via a spherical model does have several key drawbacks. By its very shape, the use of a spherical model distorts the true distribution of passive currents in the skull cavity. Spherical models also require that the sensor positions be projected onto the fitted sphere (Fig. 1), resulting in a distortion of the true sensor-dipole spatial geometry (and ultimately the computed surface potential). The use of a single 'best-fitted' sphere has the added drawback of incomplete coverage of the inner skull region, often ignoring areas such as the frontal cortex. In practice, this problem is typically countered by fitting additional sphere(s) to those region(s) not covered by the primary sphere. The use of these additional spheres results in added complication to the forward model. Using high-resolution spatial information obtained via X-ray CT or MR imaging, a realistic head model can be formed by tessellating the head into a set of contiguous regions (typically the scalp

  2. Multispacecraft observations of the terrestrial bow shock and magnetopause during extreme solar wind disturbances

    DEFF Research Database (Denmark)

    Tatrallyay, M.; Erdos, G.; Nemeth, Z.

    2012-01-01

    by the Cluster spacecraft were best predicted by the 3-D model of Lin et al. (2010). The applied empirical bow shock models and the 3-D semi-empiric bow shock model combined with magnetohydrodynamic (MHD) solution proved to be insufficient for predicting the observed unusual bow shock locations during large...... interplanetary disturbances. The results of a global 3-D MHD model were in good agreement with the Cluster observations on 17 January 2005, but they did not predict the bow shock crossings on 31 October 2003....... of three magnetopause and four bow shock models which describe them in considerably different ways using statistical methods based on observations. A new 2-D magnetopause model is introduced (based on Verigin et al., 2009) which takes into account the pressure of the compressed magnetosheath field raised...

  3. Evaluation of the influence of uncertain forward models on the EEG source reconstruction problem

    DEFF Research Database (Denmark)

    Stahlhut, Carsten; Mørup, Morten; Winther, Ole

    2009-01-01

    in the different areas of the brain when noise is present. Results Due to mismatch between the true and experimental forward model, the reconstruction of the sources is determined by the angles between the i'th forward field associated with the true source and the j'th forward field in the experimental forward...... representation of the signal. Conclusions This analysis demonstrated that caution is needed when evaluating the source estimates in different brain regions. Moreover, we demonstrated the importance of reliable forward models, which may be used as a motivation for including the forward model uncertainty...

  4. Modeling of ion acceleration through drift and diffusion at interplanetary shocks

    Science.gov (United States)

    Decker, R. B.; Vlahos, L.

    1986-01-01

    A test particle simulation designed to model ion acceleration through drift and diffusion at interplanetary shocks is described. The technique consists of integrating along exact particle orbits in a system where the angle between the shock normal and mean upstream magnetic field, the level of magnetic fluctuations, and the energy of injected particles can assume a range of values. The technique makes it possible to study time-dependent shock acceleration under conditions not amenable to analytical techniques. To illustrate the capability of the numerical model, proton acceleration was considered under conditions appropriate for interplanetary shocks at 1 AU, including large-amplitude transverse magnetic fluctuations derived from power spectra of both ambient and shock-associated MHD waves.

  5. QUANTITATIVE MEASUREMENTS OF CORONAL MASS EJECTION-DRIVEN SHOCKS FROM LASCO OBSERVATIONS

    International Nuclear Information System (INIS)

    Ontiveros, Veronica; Vourlidas, Angelos

    2009-01-01

    In this paper, we demonstrate that coronal mass ejection (CME)-driven shocks can be detected in white light coronagraph images and in which properties such as the density compression ratio and shock direction can be measured. Also, their propagation direction can be deduced via simple modeling. We focused on CMEs during the ascending phase of solar cycle 23 when the large-scale morphology of the corona was simple. We selected events which were good candidates to drive a shock due to their high speeds (V > 1500 km s -1 ). The final list includes 15 CMEs. For each event, we calibrated the LASCO data, constructed excess mass images, and searched for indications of faint and relatively sharp fronts ahead of the bright CME front. We found such signatures in 86% (13/15) of the events and measured the upstream/downstream densities to estimate the shock strength. Our values are in agreement with theoretical expectations and show good correlations with the CME kinetic energy and momentum. Finally, we used a simple forward modeling technique to estimate the three-dimensional shape and orientation of the white light shock features. We found excellent agreement with the observed density profiles and the locations of the CME source regions. Our results strongly suggest that the observed brightness enhancements result from density enhancements due to a bow-shock structure driven by the CME.

  6. Effective Acceleration Model for the Arrival Time of Interplanetary Shocks driven by Coronal Mass Ejections

    Science.gov (United States)

    Paouris, Evangelos; Mavromichalaki, Helen

    2017-12-01

    In a previous work (Paouris and Mavromichalaki in Solar Phys. 292, 30, 2017), we presented a total of 266 interplanetary coronal mass ejections (ICMEs) with as much information as possible. We developed a new empirical model for estimating the acceleration of these events in the interplanetary medium from this analysis. In this work, we present a new approach on the effective acceleration model (EAM) for predicting the arrival time of the shock that preceds a CME, using data of a total of 214 ICMEs. For the first time, the projection effects of the linear speed of CMEs are taken into account in this empirical model, which significantly improves the prediction of the arrival time of the shock. In particular, the mean value of the time difference between the observed time of the shock and the predicted time was equal to +3.03 hours with a mean absolute error (MAE) of 18.58 hours and a root mean squared error (RMSE) of 22.47 hours. After the improvement of this model, the mean value of the time difference is decreased to -0.28 hours with an MAE of 17.65 hours and an RMSE of 21.55 hours. This improved version was applied to a set of three recent Earth-directed CMEs reported in May, June, and July of 2017, and we compare our results with the values predicted by other related models.

  7. Coupling Climate Models and Forward-Looking Economic Models

    Science.gov (United States)

    Judd, K.; Brock, W. A.

    2010-12-01

    Authors: Dr. Kenneth L. Judd, Hoover Institution, and Prof. William A. Brock, University of Wisconsin Current climate models range from General Circulation Models (GCM’s) with millions of degrees of freedom to models with few degrees of freedom. Simple Energy Balance Climate Models (EBCM’s) help us understand the dynamics of GCM’s. The same is true in economics with Computable General Equilibrium Models (CGE’s) where some models are infinite-dimensional multidimensional differential equations but some are simple models. Nordhaus (2007, 2010) couples a simple EBCM with a simple economic model. One- and two- dimensional ECBM’s do better at approximating damages across the globe and positive and negative feedbacks from anthroprogenic forcing (North etal. (1981), Wu and North (2007)). A proper coupling of climate and economic systems is crucial for arriving at effective policies. Brock and Xepapadeas (2010) have used Fourier/Legendre based expansions to study the shape of socially optimal carbon taxes over time at the planetary level in the face of damages caused by polar ice cap melt (as discussed by Oppenheimer, 2005) but in only a “one dimensional” EBCM. Economists have used orthogonal polynomial expansions to solve dynamic, forward-looking economic models (Judd, 1992, 1998). This presentation will couple EBCM climate models with basic forward-looking economic models, and examine the effectiveness and scaling properties of alternative solution methods. We will use a two dimensional EBCM model on the sphere (Wu and North, 2007) and a multicountry, multisector regional model of the economic system. Our aim will be to gain insights into intertemporal shape of the optimal carbon tax schedule, and its impact on global food production, as modeled by Golub and Hertel (2009). We will initially have limited computing resources and will need to focus on highly aggregated models. However, this will be more complex than existing models with forward

  8. Volatility transmission and volatility impulse response functions in European electricity forward markets

    International Nuclear Information System (INIS)

    Le Pen, Yannick; Sevi, Benoit

    2008-01-01

    Using daily data from March 2001 to June 2005, we estimate a VAR-BEKK model and find evidence of return and volatility spillovers between the German, the Dutch and the British forward electricity markets. We apply Hafner and Herwartz [2006, Journal of International Money and Finance 25, 719-740] Volatility Impulse Response Function(VIRF) to quantify the impact of shock on expected conditional volatility. We observe that a shock has a high positive impact only if its size is large compared to the current level of volatility. The impact of shocks are usually not persistent, which may be an indication of market efficiency. Finally, we estimate the density of the VIRF at different forecast horizon. These fitted distributions are asymmetric and show that extreme events are possible even if their probability is low. These results have interesting implications for market participants whose risk management policy is based on option prices which themselves depend on the volatility level. (authors)

  9. Forward and backward dynamics in implicitly defined overlapping generations models

    NARCIS (Netherlands)

    Gardini, L.; Hommes, C.; Tramontana, F.; de Vilder, R.

    2009-01-01

    In dynamic economic models derived from optimization principles, the forward equilibrium dynamics may not be uniquely defined, while the backward dynamics is well defined. We derive properties of the global forward equilibrium paths based on properties of the backward dynamics. We propose the

  10. Forward modeling of space-borne gravitational wave detectors

    International Nuclear Information System (INIS)

    Rubbo, Louis J.; Cornish, Neil J.; Poujade, Olivier

    2004-01-01

    Planning is underway for several space-borne gravitational wave observatories to be built in the next 10 to 20 years. Realistic and efficient forward modeling will play a key role in the design and operation of these observatories. Space-borne interferometric gravitational wave detectors operate very differently from their ground-based counterparts. Complex orbital motion, virtual interferometry, and finite size effects complicate the description of space-based systems, while nonlinear control systems complicate the description of ground-based systems. Here we explore the forward modeling of space-based gravitational wave detectors and introduce an adiabatic approximation to the detector response that significantly extends the range of the standard low frequency approximation. The adiabatic approximation will aid in the development of data analysis techniques, and improve the modeling of astrophysical parameter extraction

  11. Modeling and evaluation of location-based forwarding in vehicular networks

    NARCIS (Netherlands)

    Heijenk, Geert; Klein Wolterink, W.; van den Berg, Hans Leo; Karagiannis, Georgios; Chen, Wai

    2015-01-01

    Location-based forwarding plays an important role in vehicular networks to dissem- inate messages in a certain region beyond the immediate transmission range of the originator. In this chapter, we introduce an analytical performance model that cap- tures the behaviour of location-based forwarding in

  12. Can Winds Driven by Active Galactic Nuclei Account for the Extragalactic Gamma-Ray and Neutrino Backgrounds?

    Science.gov (United States)

    Liu, Ruo-Yu; Murase, Kohta; Inoue, Susumu; Ge, Chong; Wang, Xiang-Yu

    2018-05-01

    Various observations are revealing the widespread occurrence of fast and powerful winds in active galactic nuclei (AGNs) that are distinct from relativistic jets, likely launched from accretion disks and interacting strongly with the gas of their host galaxies. During the interaction, strong shocks are expected to form that can accelerate nonthermal particles to high energies. Such winds have been suggested to be responsible for a large fraction of the observed extragalactic gamma-ray background (EGB) and the diffuse neutrino background, via the decay of neutral and charged pions generated in inelastic pp collisions between protons accelerated by the forward shock and the ambient gas. However, previous studies did not properly account for processes such as adiabatic losses that may reduce the gamma-ray and neutrino fluxes significantly. We evaluate the production of gamma rays and neutrinos by AGN-driven winds in detail by modeling their hydrodynamic and thermal evolution, including the effects of their two-temperature structure. We find that they can only account for less than ∼30% of the EGB flux, as otherwise the model would violate the independent upper limit derived from the diffuse isotropic gamma-ray background. If the neutrino spectral index is steep with Γ ≳ 2.2, a severe tension with the isotropic gamma-ray background would arise as long as the winds contribute more than 20% of the IceCube neutrino flux in the 10–100 TeV range. At energies ≳ 100 TeV, we find that the IceCube neutrino flux may still be accountable by AGN-driven winds if the spectral index is as small as Γ ∼ 2.0–2.1.

  13. Time-history of shock waves overrunning three-dimensional, cylindrical models

    International Nuclear Information System (INIS)

    Langheim, H.; Loeffler, E.

    To investigate the time-history of the Mach-stem of a shock wave overrunning a nuclear power plant shadowgraphs of threedimensional, cylindrical models with a globe cap were analysed. These models simulating the containment building differ only in the height of the cylinder. They were exposed with shock waves of shock strengths of 1.2 and 1.4, being equal to a peak reflexion overpressure of 0.45 resp. 1.0 bar. The time-histories of the Mach-stem differ only slightly. For this reason it can be stated that these time-histories are independent of the shock strength and the height of the cylinder in the prescribed range of the research program. In comparison with values given in the literature great differences were found at the rear side near the stagnation point of the globe cap resp. the stagnation line of the cylinder. The measured time for overrunning of the shock wave is the same as the time of arrival of the pressure-pulse at the interesting point of the model. This knowledge is a necessary premise for pressure-measurings from which the total load of structure can be determined. (orig.) [de

  14. Observation of shocks associated with CMEs in 2007

    Science.gov (United States)

    Aryan, H.; Balikhin, M. A.; Taktakishvili, A.; Zhang, T. L.

    2014-03-01

    The interaction of CMEs with the solar wind can lead to the formation of interplanetary shocks. Ions accelerated at these shocks contribute to the solar energetic protons observed in the vicinity of the Earth. Recently a joint analysis of Venus Express (VEX) and STEREO data by Russell et al. (2009) have shown that the formation of strong shocks associated with Co-rotating Interaction Regions (CIRs) takes place between the orbits of Venus and the Earth as a result of coalescence of weaker shocks formed earlier. The present study uses VEX and Advanced Composition Explorer (ACE) data in order to analyse shocks associated with CMEs that erupted on 29 and 30 July 2007 during the solar wind conjunction period between Venus and the Earth. For these particular cases it is shown that the above scenario of shock formation proposed for CIRs also takes place for CMEs. Contradiction with shock formation resulting from MHD modelling is explained by inability of classical MHD to account for the role of wave dispersion in the formation of the shock.

  15. Observation of shocks associated with CMEs in 2007

    Directory of Open Access Journals (Sweden)

    H. Aryan

    2014-03-01

    Full Text Available The interaction of CMEs with the solar wind can lead to the formation of interplanetary shocks. Ions accelerated at these shocks contribute to the solar energetic protons observed in the vicinity of the Earth. Recently a joint analysis of Venus Express (VEX and STEREO data by Russell et al. (2009 have shown that the formation of strong shocks associated with Co-rotating Interaction Regions (CIRs takes place between the orbits of Venus and the Earth as a result of coalescence of weaker shocks formed earlier. The present study uses VEX and Advanced Composition Explorer (ACE data in order to analyse shocks associated with CMEs that erupted on 29 and 30 July 2007 during the solar wind conjunction period between Venus and the Earth. For these particular cases it is shown that the above scenario of shock formation proposed for CIRs also takes place for CMEs. Contradiction with shock formation resulting from MHD modelling is explained by inability of classical MHD to account for the role of wave dispersion in the formation of the shock.

  16. A composite model for a class of electric-discharge shock tubes

    Science.gov (United States)

    Elkins, R. T.; Baganoff, D.

    1973-01-01

    A gasdynamic model is presented and analyzed for a class of shock tubes that utilize both Joule heating and electromagnetic forces to produce high-speed shock waves. The model consists of several stages of acceleration in which acceleration to sonic conditions is achieved principally through heating, and further acceleration of the supersonic flow is obtained principally through use of electromagnetic forces. The utility of the model results from the fact that it predicts a quasi-steady flow process, mathematical analysis is straightforward, and it is even possible to remove one or more component stages and still have the model related to a possible shock-tube flow. Initial experiments have been performed where the electrical discharge configuration and current level were such that Joule heating was the dominant form of energy addition present. These experiments indicate that the predictions of the model dealing with heat addition correspond quite closely to reality. The experimental data together with the theory show that heat addition to the flowing driver gas after diaphragm rupture (approach used in the model) is much more effective in producing high-speed shock waves than heating the gas in the driver before diaphragm rupture, as in the case of the arc-driven shock tube.

  17. Modelling short and long-term risks in power markets: Empirical evidence from Nord Pool

    International Nuclear Information System (INIS)

    Nomikos, Nikos K.; Soldatos, Orestes A.

    2010-01-01

    In this paper we propose a three-factor spike model that accounts for different speeds of mean reversion between normal and spiky shocks in the Scandinavian power market. In this model both short and long-run factors are unobservable and are hence estimated as latent variables using the Kalman filter. The proposed model has several advantages. First, it seems to capture in a parsimonious way the most important risks that practitioners face in the market, such as spike risk, short-term risk and long-term risk. Second, it explains the seasonal risk premium observed in the market and improves the fit between theoretical and observed forward prices, particularly for long-dated forward contracts. Finally, closed-form solutions for forward contracts, derived from the model, are consistent with the fact that the correlation between contracts of different maturities is imperfect. The resulting model is very promising, providing a very useful policy analysis and financial engineering tool to market participants for risk management and derivative pricing particularly for long-dated contracts.

  18. Particle acceleration at shocks in the inner heliosphere

    Science.gov (United States)

    Parker, Linda Neergaard

    This dissertation describes a study of particle acceleration at shocks via the diffusive shock acceleration mechanism. Results for particle acceleration at both quasi-parallel and quasi-perpendicular shocks are presented to address the question of whether there are sufficient particles in the solar wind thermal core, modeled as either a Maxwellian or kappa- distribution, to account for the observed accelerated spectrum. Results of accelerating the theoretical upstream distribution are compared to energetic observations at 1 AU. It is shown that the particle distribution in the solar wind thermal core is sufficient to explain the accelerated particle spectrum downstream of the shock, although the shape of the downstream distribution in some cases does not follow completely the theory of diffusive shock acceleration, indicating possible additional processes at work in the shock for these cases. Results show good to excellent agreement between the theoretical and observed spectral index for one third to one half of both quasi-parallel and quasi-perpendicular shocks studied herein. Coronal mass ejections occurring during periods of high solar activity surrounding solar maximum can produce shocks in excess of 3-8 shocks per day. During solar minimum, diffusive shock acceleration at shocks can generally be understood on the basis of single independent shocks and no other shock necessarily influences the diffusive shock acceleration mechanism. In this sense, diffusive shock acceleration during solar minimum may be regarded as Markovian. By contrast, diffusive shock acceleration of particles at periods of high solar activity (e.g. solar maximum) see frequent, closely spaced shocks that include the effects of particle acceleration at preceding and following shocks. Therefore, diffusive shock acceleration of particles at solar maximum cannot be modeled on the basis of diffusive shock acceleration as a single, independent shock and the process is essentially non-Markovian. A

  19. Flow control of micro-ramps on supersonic forward-facing step flow

    International Nuclear Information System (INIS)

    Zhang Qing-Hu; Zhu Tao; Wu Anping; Yi Shihe

    2016-01-01

    The effects of the micro-ramps on supersonic turbulent flow over a forward-facing step (FFS) was experimentally investigated in a supersonic low-noise wind tunnel at Mach number 3 using nano-tracer planar laser scattering (NPLS) and particle image velocimetry (PIV) techniques. High spatiotemporal resolution images and velocity fields of supersonic flow over the testing model were captured. The fine structures and their spatial evolutionary characteristics without and with the micro-ramps were revealed and compared. The large-scale structures generated by the micro-ramps can survive the downstream FFS flowfield. The micro-ramps control on the flow separation and the separation shock unsteadiness was investigated by PIV results. With the micro-ramps, the reduction in the range of the reversal flow zone in streamwise direction is 50% and the turbulence intensity is also reduced. Moreover, the reduction in the average separated region and in separation shock unsteadiness are 47% and 26%, respectively. The results indicate that the micro-ramps are effective in reducing the flow separation and the separation shock unsteadiness. (paper)

  20. Geocoronal Balmer α line profile observations and forward-model analysis

    Science.gov (United States)

    Mierkiewicz, E. J.; Bishop, J.; Roesler, F. L.; Nossal, S. M.

    2006-05-01

    High spectral resolution geocoronal Balmer α line profile observations from Pine Bluff Observatory (PBO) are presented in the context of forward-model analysis. Because Balmer series column emissions depend significantly on multiple scattering, retrieval of hydrogen parameters of general aeronomic interest from these observations (e.g., the hydrogen column abundance) currently requires a forward modeling approach. This capability is provided by the resonance radiative transfer code LYAO_RT. We have recently developed a parametric data-model comparison search procedure employing an extensive grid of radiative transport model input parameters (defining a 6-dimensional parameter space) to map-out bounds for feasible forward model retrieved atomic hydrogen density distributions. We applied this technique to same-night (March, 2000) ground-based Balmer α data from PBO and geocoronal Lyman β measurements from the Espectrógrafo Ultravioleta extremo para la Radiación Difusa (EURD) instrument on the Spanish satellite MINISAT-1 (provided by J.F. Gómez and C. Morales of the Laboratorio de Astrofisica Espacial y Física Fundamental, INTA, Madrid, Spain) in order to investigate the modeling constraints imposed by two sets of independent geocoronal intensity measurements, both of which rely on astronomical calibration methods. In this poster we explore extending this analysis to the line profile information also contained in the March 2000 PBO Balmer α data set. In general, a decrease in the Doppler width of the Balmer α emission with shadow altitude is a persistent feature in every night of PBO observations in which a wide range of shadow altitudes are observed. Preliminary applications of the LYAO_RT code, which includes the ability to output Doppler line profiles for both the singly and multiply scattered contributions to the Balmer α emission line, displays good qualitative agreement with regard to geocoronal Doppler width trends observed from PBO. Model-data Balmer

  1. Advanced Computational Modeling Approaches for Shock Response Prediction

    Science.gov (United States)

    Derkevorkian, Armen; Kolaini, Ali R.; Peterson, Lee

    2015-01-01

    Motivation: (1) The activation of pyroshock devices such as explosives, separation nuts, pin-pullers, etc. produces high frequency transient structural response, typically from few tens of Hz to several hundreds of kHz. (2) Lack of reliable analytical tools makes the prediction of appropriate design and qualification test levels a challenge. (3) In the past few decades, several attempts have been made to develop methodologies that predict the structural responses to shock environments. (4) Currently, there is no validated approach that is viable to predict shock environments overt the full frequency range (i.e., 100 Hz to 10 kHz). Scope: (1) Model, analyze, and interpret space structural systems with complex interfaces and discontinuities, subjected to shock loads. (2) Assess the viability of a suite of numerical tools to simulate transient, non-linear solid mechanics and structural dynamics problems, such as shock wave propagation.

  2. Shock structure in continuum models of gas dynamics: stability and bifurcation analysis

    International Nuclear Information System (INIS)

    Simić, Srboljub S

    2009-01-01

    The problem of shock structure in gas dynamics is analysed through a comparative study of two continuum models: the parabolic Navier–Stokes–Fourier model and the hyperbolic system of 13 moments equations modeling viscous, heat-conducting monatomic gases within the context of extended thermodynamics. When dissipative phenomena are neglected these models both reduce to classical Euler's equations of gas dynamics. The shock profile solution, assumed in the form of a planar travelling wave, reduces the problem to a system of ordinary differential equations, and equilibrium states appear to be stationary points of the system. It is shown that in both models an upstream equilibrium state suffers an exchange of stability when the shock speed crosses the critical value which coincides with the highest characteristic speed of the Euler's system. At the same time a downstream equilibrium state could be seen as a steady bifurcating solution, while the shock profile represents a heteroclinic orbit connecting the two stationary points. Using centre manifold reduction it is demonstrated that both models, although mathematically different, obey the same transcritical bifurcation pattern in the neighbourhood of the bifurcation point corresponding to the critical value of shock speed, the speed of sound

  3. A systematic comparison of two-equation Reynolds-averaged Navier-Stokes turbulence models applied to shock-cloud interactions

    Science.gov (United States)

    Goodson, Matthew D.; Heitsch, Fabian; Eklund, Karl; Williams, Virginia A.

    2017-07-01

    Turbulence models attempt to account for unresolved dynamics and diffusion in hydrodynamical simulations. We develop a common framework for two-equation Reynolds-averaged Navier-Stokes turbulence models, and we implement six models in the athena code. We verify each implementation with the standard subsonic mixing layer, although the level of agreement depends on the definition of the mixing layer width. We then test the validity of each model into the supersonic regime, showing that compressibility corrections can improve agreement with experiment. For models with buoyancy effects, we also verify our implementation via the growth of the Rayleigh-Taylor instability in a stratified medium. The models are then applied to the ubiquitous astrophysical shock-cloud interaction in three dimensions. We focus on the mixing of shock and cloud material, comparing results from turbulence models to high-resolution simulations (up to 200 cells per cloud radius) and ensemble-averaged simulations. We find that the turbulence models lead to increased spreading and mixing of the cloud, although no two models predict the same result. Increased mixing is also observed in inviscid simulations at resolutions greater than 100 cells per radius, which suggests that the turbulent mixing begins to be resolved.

  4. Mathematical Model of a Shim Valve of a Monotube Shock Absorber

    Directory of Open Access Journals (Sweden)

    Paulius Skačkauskas

    2016-12-01

    Full Text Available In the work, a mathematical model of a shim valve, used in monotube shock absorbers, designed to determine the deformations of the shims which form during the exploitation of the shock absorbers, is presented. The characteristic of the damping force formed by the shock absorber depends on the deformations. In the designed model, the amount, geometric dimensions, arrangement and the material properties of the shims are evaluated, and the contact forces, which form between the shims, are determined. The described model of the shim valve is presented in the environment of the software package MATLAB/Simulink, the analysis of the designed model is done using the software package ANSYS 15.0.

  5. Modeling and Analysis of Cellular CDMA Forward Channel

    National Research Council Canada - National Science Library

    Tighe, Jan

    2001-01-01

    In this thesis, we develop the forward channel model for a DS-CDMA cellular system operating in a slow-flat Rayleigh fading and log normal shadowing environment, which incorporates the extended Hata...

  6. Shock Mounting for Heavy Machines

    Science.gov (United States)

    Thompson, A. R.

    1984-01-01

    Elastomeric bearings eliminate extraneous forces. Rocket thrust transmitted from motor to load cells via support that absorbs extraneous forces so they do not affect accuracy of thrust measurements. Adapter spoked cone fits over forward end of rocket motor. Shock mounting developed for rocket engines under test used as support for heavy machines, bridges, or towers.

  7. Particle magnetic moment conservation and resonance in a pure magnetohydrodynamic shock and field inclination influence on diffusive shock acceleration

    International Nuclear Information System (INIS)

    Lieu, R.; Quenby, J.J.

    1990-01-01

    Computational and analytical methods have been used in a study of particle acceleration by MHD shocks. Numerical simulations of single-particle trajectories indicate that magnetic moment is conserved quite accurately for an encounter with a near-perpendicular shock, and for all pitch angles except the very small ones. Acceleration is most effective for particles which are reflected by the shock at small pitch angles. If future encounters with the shock are possible, large acceleration will be repeated only for relativistic plasma flow velocities. Results for the pure MHD shock are then considered within the context of a diffusion model (hence a diffusive MHD shock). The microscopic approach is employed whereby one follows the history of a test particle and explicitly takes into account the possibility of reflection by the shock. Exact analytical solutions are currently available to order V/c, where V is the plasma flow speed, and are found to be in complete agreement with diffusion theory. More specifically, the presence of electromagnetic effects leads to a shortening of acceleration time scale but does not change the steady state spectrum of energetic particles. 7 refs

  8. Forward Models Applied in Visual Servoing for a Reaching Task in the iCub Humanoid Robot

    Directory of Open Access Journals (Sweden)

    Daniel Fernando Tello Gamarra

    2009-01-01

    Full Text Available This paper details the application of a forward model to improve a reaching task. The reaching task must be accomplished by a humanoid robot with 53 degrees of freedom (d.o.f. and a stereo-vision system. We have explored via simulations a new way of constructing and utilizing a forward model that encodes eye–hand relationships. We constructed a forward model using the data obtained from only a single reaching attempt. ANFIS neural networks are used to construct the forward model, but the forward model is updated online with new information that comes from each reaching attempt. Using the obtained forward model, an initial image Jacobian is estimated and is used with a visual servoing controller. Simulation results demonstrate that errors are lower when the initial image Jacobian is derived from the forward model. This paper is one of the few attempts at applying visual servoing in a complete humanoid robot.

  9. Radiation- and pair-loaded shocks

    Science.gov (United States)

    Lyutikov, Maxim

    2018-06-01

    We consider the structure of mildly relativistic shocks in dense media, taking into account the radiation and pair loading, and diffusive radiation energy transfer within the flow. For increasing shock velocity (increasing post-shock temperature), the first important effect is the efficient energy redistribution by radiation within the shock that leads to the appearance of an isothermal jump, whereby the flow reaches the final state through a discontinuous isothermal transition. The isothermal jump, on scales much smaller than the photon diffusion length, consists of a weak shock and a quick relaxation to the isothermal conditions. Highly radiation-dominated shocks do not form isothermal jump. Pair production can mildly increase the overall shock compression ratio to ≈10 (4 for matter-dominated shocks and 7 of the radiation-dominated shocks).

  10. Integral Field Spectroscopy of Balmer-dominated Shocks in the Magellanic Cloud Supernova Remnant N103B

    Energy Technology Data Exchange (ETDEWEB)

    Ghavamian, Parviz [Department of Physics, Astronomy and Geosciences, Towson University, Towson, MD 21252 (United States); Seitenzahl, Ivo R.; Dopita, M. A. [Research School of Astronomy and Astrophysics, Australian National University, Canberra, ACT 2611 (Australia); Vogt, Frédéric P. A. [European Southern Observatory, Av. Alonso de Córdova 3107, 763 0355 Vitacura, Santiago (Chile); Terry, Jason P. [Department of Physics and Astronomy, University of Georgia (United States); Williams, Brian J. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Winkler, P. Frank, E-mail: pghavamian@towson.edu [Department of Physics, Middlebury College, Middlebury, VT 05753 (United States)

    2017-10-01

    We present results of integral field spectroscopy of Balmer-dominated shocks in the LMC supernova remnant (SNR) N103B, carried out using the Wide Field Integral Spectrograph (WiFeS ) on the 2.3 m telescope at the Siding Spring Observatory in Australia. Existing X-ray studies of N103B have indicated an SN Ia origin. Radiative shock emission from clumpy material surrounding the SNR may result from interaction of the forward shock with relic stellar wind material, possibly implicating a thermonuclear explosion in a single-degenerate binary system. The recently discovered Balmer-dominated shocks mark the impact of the forward shock with low density, partially neutral CSM gas, and form a partial shell encircling clumps of material exhibiting radiative shocks. The WiFeS spectra of N103B reveal broad H α emission having a width as high as 2350 km s{sup −1} along the northern rim, and both H α and H β broad profiles having widths around 1300 km s{sup −1} along the southern rim. Fits to the H α line profiles indicate that in addition to the usual broad and narrow emission components, a third component of intermediate width exists in these Balmer-dominated shocks, ranging from around 125 km s{sup −1} up to 225 km s{sup −1} in width. This is consistent with predictions of recent Balmer-dominated shock models, which predict that an intermediate-width component will be generated in a fast neutral precursor. We derive a Sedov age of approximately 685 ± 20 years for N103B from the Balmer-dominated spectra, consistent with the young age of 380–860 years estimated from light echo studies.

  11. Effects of Alfvénic Drift on Diffusive Shock Acceleration at Weak Cluster Shocks

    Science.gov (United States)

    Kang, Hyesung; Ryu, Dongsu

    2018-03-01

    Non-detection of γ-ray emission from galaxy clusters has challenged diffusive shock acceleration (DSA) of cosmic-ray (CR) protons at weak collisionless shocks that are expected to form in the intracluster medium. As an effort to address this problem, we here explore possible roles of Alfvén waves self-excited via resonant streaming instability during the CR acceleration at parallel shocks. The mean drift of Alfvén waves may either increase or decrease the scattering center compression ratio, depending on the postshock cross-helicity, leading to either flatter or steeper CR spectra. We first examine such effects at planar shocks, based on the transport of Alfvén waves in the small amplitude limit. For the shock parameters relevant to cluster shocks, Alfvénic drift flattens the CR spectrum slightly, resulting in a small increase of the CR acceleration efficiency, η. We then consider two additional, physically motivated cases: (1) postshock waves are isotropized via MHD and plasma processes across the shock transition, and (2) postshock waves contain only forward waves propagating along with the flow due to a possible gradient of CR pressure behind the shock. In these cases, Alfvénic drift could reduce η by as much as a factor of five for weak cluster shocks. For the canonical parameters adopted here, we suggest η ∼ 10‑4–10‑2 for shocks with sonic Mach number M s ≈ 2–3. The possible reduction of η may help ease the tension between non-detection of γ-rays from galaxy clusters and DSA predictions.

  12. 3-D Model of Broadband Emission from Supernova Remnants Undergoing Non-linear Diffusive Shock Acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Shiu-Hang; Kamae, Tuneyoshi; Ellison, Donald C.

    2008-07-02

    We present a 3-dimensional model of supernova remnants (SNRs) where the hydrodynamical evolution of the remnant is modeled consistently with nonlinear diffusive shock acceleration occurring at the outer blast wave. The model includes particle escape and diffusion outside of the forward shock, and particle interactions with arbitrary distributions of external ambient material, such as molecular clouds. We include synchrotron emission and cooling, bremsstrahlung radiation, neutral pion production, inverse-Compton (IC), and Coulomb energy-loss. Boardband spectra have been calculated for typical parameters including dense regions of gas external to a 1000 year old SNR. In this paper, we describe the details of our model but do not attempt a detailed fit to any specific remnant. We also do not include magnetic field amplification (MFA), even though this effect may be important in some young remnants. In this first presentation of the model we don't attempt a detailed fit to any specific remnant. Our aim is to develop a flexible platform, which can be generalized to include effects such as MFA, and which can be easily adapted to various SNR environments, including Type Ia SNRs, which explode in a constant density medium, and Type II SNRs, which explode in a pre-supernova wind. When applied to a specific SNR, our model will predict cosmic-ray spectra and multi-wavelength morphology in projected images for instruments with varying spatial and spectral resolutions. We show examples of these spectra and images and emphasize the importance of measurements in the hard X-ray, GeV, and TeV gamma-ray bands for investigating key ingredients in the acceleration mechanism, and for deducing whether or not TeV emission is produced by IC from electrons or pion-decay from protons.

  13. Friction measurement and modelling in forward rod extrusion

    DEFF Research Database (Denmark)

    Tan, Xincai; Bay, Niels; Zhang, Wenqi

    2003-01-01

    Forward extrusion is one of the important processes in bulk metal forming. Friction stress can be estimated from the slope of the load±displacement curve at the steady state after the maximum load in a forward extrusion test. In this paper, forward rod extrusion tests are carried out to determine...... as the lubricant. Friction stresses are obtained from measurements of slopes of extrusion pressure±punch travel curves at the steady state stage. Normal pressures are evaluated by using Mohr’s circle, in which shear ¯ow stresses are estimated at the maximum elastic deformation points from the same extrusion...... pressure±punch travel curves. It is found that the relationship between normal pressure and friction stress appears linear, and therefore Coulomb’s friction model ®ts the experimental data very well. Extrusion pressure±punch travel curves before the steady state can be divided into four stages: elastic...

  14. NGOs, Trust, and the Accountability Agenda

    DEFF Research Database (Denmark)

    Keating, Vincent Charles; Thrandardottir, Erla

    2017-01-01

    NGOs are undergoing an alleged crisis of trustworthiness. The past decades have seen an increase in both academic and practitioner skepticism, particularly given the transformations many NGOs have undergone in size, professionalism, and political importance. The accountability agenda, which...... on theoretical innovations in trust research to put forward three arguments. First, the proponents of the accountability agenda are implicitly working with a rational model of trust. Second, this model does not reflect important social characteristics of trust between donors and NGOs. Third, this mismatch means...... that the accountability agenda might do more to harm trust in NGOs than to help it....

  15. The density compression ratio of shock fronts associated with coronal mass ejections

    Directory of Open Access Journals (Sweden)

    Kwon Ryun-Young

    2018-01-01

    Full Text Available We present a new method to extract the three-dimensional electron density profile and density compression ratio of shock fronts associated with coronal mass ejections (CMEs observed in white light coronagraph images. We demonstrate the method with two examples of fast halo CMEs (∼2000 km s−1 observed on 2011 March 7 and 2014 February 25. Our method uses the ellipsoid model to derive the three-dimensional geometry and kinematics of the fronts. The density profiles of the sheaths are modeled with double-Gaussian functions with four free parameters, and the electrons are distributed within thin shells behind the front. The modeled densities are integrated along the lines of sight to be compared with the observed brightness in COR2-A, and a χ2 approach is used to obtain the optimal parameters for the Gaussian profiles. The upstream densities are obtained from both the inversion of the brightness in a pre-event image and an empirical model. Then the density ratio and Alfvénic Mach number are derived. We find that the density compression peaks around the CME nose, and decreases at larger position angles. The behavior is consistent with a driven shock at the nose and a freely propagating shock wave at the CME flanks. Interestingly, we find that the supercritical region extends over a large area of the shock and lasts longer (several tens of minutes than past reports. It follows that CME shocks are capable of accelerating energetic particles in the corona over extended spatial and temporal scales and are likely responsible for the wide longitudinal distribution of these particles in the inner heliosphere. Our results also demonstrate the power of multi-viewpoint coronagraphic observations and forward modeling in remotely deriving key shock properties in an otherwise inaccessible regime.

  16. Monetary Shocks in Models with Inattentive Producers.

    Science.gov (United States)

    Alvarez, Fernando E; Lippi, Francesco; Paciello, Luigi

    2016-04-01

    We study models where prices respond slowly to shocks because firms are rationally inattentive. Producers must pay a cost to observe the determinants of the current profit maximizing price, and hence observe them infrequently. To generate large real effects of monetary shocks in such a model the time between observations must be long and/or highly volatile. Previous work on rational inattentiveness has allowed for observation intervals that are either constant-but-long ( e.g . Caballero, 1989 or Reis, 2006) or volatile-but-short ( e.g . Reis's, 2006 example where observation costs are negligible), but not both. In these models, the real effects of monetary policy are small for realistic values of the duration between observations. We show that non-negligible observation costs produce both of these effects: intervals between observations are infrequent and volatile. This generates large real effects of monetary policy for realistic values of the average time between observations.

  17. Inhomogeneities and the Modeling of Radio Supernovae

    Energy Technology Data Exchange (ETDEWEB)

    Björnsson, C.-I.; Keshavarzi, S. T., E-mail: bjornsson@astro.su.se [Department of Astronomy, AlbaNova University Center, Stockholm University, SE–106 91 Stockholm (Sweden)

    2017-05-20

    Observations of radio supernovae (SNe) often exhibit characteristics not readily accounted for by a homogeneous, spherically symmetric synchrotron model; e.g., flat-topped spectra/light curves. It is shown that many of these deviations from the standard model can be attributed to an inhomogeneous source structure. When inhomogeneities are present, the deduced radius of the source and, hence, the shock velocity, is sensitive to the details of the modeling. As the inhomogeneities are likely to result from the same mechanism that amplify the magnetic field, a comparison between observations and the detailed numerical simulations now under way may prove mutually beneficial. It is argued that the radio emission in Type Ib/c SNe has a small volume filling factor and comes from a narrow region associated with the forward shock, while the radio emission region in SN 1993J (Type IIb) is determined by the extent of the Rayleigh–Taylor instability emanating from the contact discontinuity. Attention is also drawn to the similarities between radio SNe and the structural properties of SN remnants.

  18. Overview of shock waves in medicine

    Science.gov (United States)

    Cleveland, Robin O.

    2003-10-01

    A brief overview of three applications of shock waves is presented. Shock wave lithotripsy (SWL) has been in clinical use for more than 20 years. In the United States it is used to treat more than 80% of kidney stone cases and has wide acceptance with patients because it is a noninvasive procedure. Despite SWLs enormous success there is no agreement on how shock waves comminute stones. There is also a general acceptance that shock waves lead to trauma to the soft tissue of the kidney. Yet there has been little forward progress in developing lithotripters which provide comminution with less side-effects, indeed the original machine is still considered the gold standard. The last decade has seen the advent of new shock wave devices for treating principally musculoskeletal indications, such as plantar fasciitis, tennis elbow, and bone fractures that do not heal. This is referred to as shock wave therapy (SWT). The mechanisms by which SWT works are even less well understood than SWL and the consequences of bioeffects have also not been studied in detail. Shock waves have also been shown to be effective at enhancing drug delivery into cells and assisting with gene transfection. [Work partially supported by NIH.

  19. FORWARD MODELING OF STANDING KINK MODES IN CORONAL LOOPS. II. APPLICATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Ding; Doorsselaere, Tom Van, E-mail: DYuan2@uclan.ac.uk [Centre for Mathematical Plasma Astrophysics, Department of Mathematics, KU Leuven, Celestijnenlaan 200B bus 2400, B-3001 Leuven (Belgium)

    2016-04-15

    Magnetohydrodynamic waves are believed to play a significant role in coronal heating, and could be used for remote diagnostics of solar plasma. Both the heating and diagnostic applications rely on a correct inversion (or backward modeling) of the observables into the thermal and magnetic structures of the plasma. However, due to the limited availability of observables, this is an ill-posed issue. Forward modeling is designed to establish a plausible mapping of plasma structuring into observables. In this study, we set up forward models of standing kink modes in coronal loops and simulate optically thin emissions in the extreme ultraviolet bandpasses, and then adjust plasma parameters and viewing angles to match three events of transverse loop oscillations observed by the Solar Dynamics Observatory/Atmospheric Imaging Assembly. We demonstrate that forward models could be effectively used to identify the oscillation overtone and polarization, to reproduce the general profile of oscillation amplitude and phase, and to predict multiple harmonic periodicities in the associated emission intensity and loop width variation.

  20. Bayesian Nonparametric Statistical Inference for Shock Models and Wear Processes.

    Science.gov (United States)

    1979-12-01

    also note that the results in Section 2 do not depend on the support of F .) This shock model have been studied by Esary, Marshall and Proschan (1973...Barlow and Proschan (1975), among others. The analogy of the shock model in risk and acturial analysis has been given by BUhlmann (1970, Chapter 2... Mathematical Statistics, Vol. 4, pp. 894-906. Billingsley, P. (1968), CONVERGENCE OF PROBABILITY MEASURES, John Wiley, New York. BUhlmann, H. (1970

  1. A two-layered forward model of tissue for electrical impedance tomography

    International Nuclear Information System (INIS)

    Kulkarni, Rujuta; Saulnier, Gary J; Kao, Tzu-Jen; Newell, Jonathan C; Boverman, Gregory; Isaacson, David

    2009-01-01

    Electrical impedance tomography is being explored as a technique to detect breast cancer, exploiting the differences in admittivity between normal tissue and tumors. In this paper, the geometry is modeled as an infinite half space under a hand-held probe. A forward solution and a reconstruction algorithm for this geometry were developed previously by Mueller et al (1999 IEEE Trans. Biomed. Eng. 46 1379). In this paper, we present a different approach which uses the decomposition of the forward solution into its Fourier components to obtain the forward solution and the reconstructions. The two approaches are compared in terms of the forward solutions and the reconstructions of experimental tank data. We also introduce a two-layered model to incorporate the presence of the skin that surrounds the body area being imaged. We demonstrate an improvement in the reconstruction of a target in a layered medium using this layered model with finite difference simulated data. We then extend the application of our layered model to human subject data and estimate the skin and the tissue admittivities for data collected on the human abdomen using an ultrasound-like hand-held EIT probe. Lastly, we show that for this set of human subject data, the layered model yields an improvement in predicting the measured voltages of around 81% for the lowest temporal frequency (3 kHz) and around 61% for the highest temporal frequency (1 MHz) applied when compared to the homogeneous model

  2. Direct Observation of Strong Ion Coupling in Laser-Driven Shock-Compressed Targets

    International Nuclear Information System (INIS)

    Ravasio, A.; Benuzzi-Mounaix, A.; Loupias, B.; Ozaki, N.; Rabec le Gloahec, M.; Koenig, M.; Gregori, G.; Daligault, J.; Delserieys, A.; Riley, D.; Faenov, A. Ya.; Pikuz, T. A.

    2007-01-01

    In this Letter we report on a near collective x-ray scattering experiment on shock-compressed targets. A highly coupled Al plasma was generated and probed by spectrally resolving an x-ray source forward scattered by the sample. A significant reduction in the intensity of the elastic scatter was observed, which we attribute to the formation of an incipient long-range order. This speculation is confirmed by x-ray scattering calculations accounting for both electron degeneracy and strong coupling effects. Measurements from rear side visible diagnostics are consistent with the plasma parameters inferred from x-ray scattering data. These results give the experimental evidence of the strongly coupled ionic dynamics in dense plasmas

  3. A New Method to Comprehensively Diagnose Shock Waves in the Solar Atmosphere Based on Simultaneous Spectroscopic and Imaging Observations

    Science.gov (United States)

    Ruan, Wenzhi; Yan, Limei; He, Jiansen; Zhang, Lei; Wang, Linghua; Wei, Yong

    2018-06-01

    Shock waves are believed to play an important role in plasma heating. The shock-like temporal jumps in radiation intensity and Doppler shift have been identified in the solar atmosphere. However, a quantitative diagnosis of the shocks in the solar atmosphere is still lacking, seriously hindering the understanding of shock dissipative heating of the solar atmosphere. Here, we propose a new method to realize the goal of the shock quantitative diagnosis, based on Rankine–Hugoniot equations and taking the advantages of simultaneous imaging and spectroscopic observations from, e.g., IRIS (Interface Region Imaging Spectrograph). Because of this method, the key parameters of shock candidates can be derived, such as the bulk velocity and temperature of the plasma in the upstream and downstream, the propagation speed and direction. The method is applied to the shock candidates observed by IRIS, and the overall characteristics of the shocks are revealed quantitatively for the first time. This method is also tested with the help of forward modeling, i.e., virtual observations of simulated shocks. The parameters obtained from the method are consistent with the parameters of the shock formed in the model and are independent of the viewing direction. Therefore, the method we proposed here is applicable to the quantitative and comprehensive diagnosis of the observed shocks in the solar atmosphere.

  4. Simultaneous EEG Source and Forward Model Reconstruction (SOFOMORE) using a Hierarchical Bayesian Approach

    DEFF Research Database (Denmark)

    Stahlhut, Carsten; Mørup, Morten; Winther, Ole

    2011-01-01

    We present an approach to handle forward model uncertainty for EEG source reconstruction. A stochastic forward model representation is motivated by the many random contributions to the path from sources to measurements including the tissue conductivity distribution, the geometry of the cortical s...

  5. Novel Adaptive Forward Neural MIMO NARX Model for the Identification of Industrial 3-DOF Robot Arm Kinematics

    Directory of Open Access Journals (Sweden)

    Ho Pham Huy Anh

    2012-10-01

    Full Text Available In this paper, a novel forward adaptive neural MIMO NARX model is used for modelling and identifying the forward kinematics of an industrial 3-DOF robot arm system. The nonlinear features of the forward kinematics of the industrial robot arm drive are thoroughly modelled based on the forward adaptive neural NARX model-based identification process using experimental input-output training data. This paper proposes a novel use of a back propagation (BP algorithm to generate the forward neural MIMO NARX (FNMN model for the forward kinematics of the industrial 3-DOF robot arm. The results show that the proposed adaptive neural NARX model trained by a Back Propagation learning algorithm yields outstanding performance and perfect accuracy.

  6. CLOUD ACCOUNTING – A NEW PARADIGM OF ACCOUNTING POLICIES

    Directory of Open Access Journals (Sweden)

    Cristina PRICHICI

    2015-04-01

    Full Text Available In the current economic background companies invest in finding complete solutions for the integration of all business functions (sales, logistics, accounting aso., control, centralized coordination and harmonization of systems and financial management operations, data storage and resilience of services as well as cost savings. Technological trend of recent years brings forward the concept of cloud computing, an innovative model of processing and storage of data that allows companies to run business processes on IT infrastructures in conditions of economical optimization. Cloud computing allows companies to effectively and economically use IT applications and infrastructures through the model "use as you need and pay as you go". However, before deploying the data and applications in the virtual environment, organizations must take into account the implications of such a decision on the financial reporting process. In this respect, the paper aims to analyze the impact of cloud computing technology onthe main operational modules used for obtaining accounting data for financial reporting.

  7. Connecting mirror neurons and forward models.

    Science.gov (United States)

    Miall, R C

    2003-12-02

    Two recent developments in motor neuroscience are promising the extension of theoretical concepts from motor control towards cognitive processes, including human social interactions and understanding the intentions of others. The first of these is the discovery of what are now called mirror neurons, which code for both observed and executed actions. The second is the concept of internal models, and in particular recent proposals that forward and inverse models operate in paired modules. These two ideas will be briefly introduced, and a recent suggestion linking between the two processes of mirroring and modelling will be described which may underlie our abilities for imitating actions, for cooperation between two actors, and possibly for communication via gesture and language.

  8. Analysis of compaction shock interactions during DDT of low density HMX

    Science.gov (United States)

    Rao, Pratap T.; Gonthier, Keith A.

    2017-01-01

    Deflagration-to-Detonation Transition (DDT) in confined, low density granular HMX occurs by a complex mechanism that involves compaction shock interactions within the material. Piston driven DDT experiments indicate that detonation is abruptly triggered by the interaction of a strong combustion-supported secondary shock and a piston-supported primary (input) shock, where the nature of the interaction depends on initial packing density and primary shock strength. These interactions influence transition by affecting dissipative heating within the microstructure during pore collapse. Inert meso-scale simulations of successive shock loading of low density HMX are performed to examine how dissipation and hot-spot formation are affected by the initial density, and the primary and secondary shock strengths. This information is used to formulate an ignition and burn model for low density HMX that accounts for the effect of shock densensitization on burn. Preliminary DDT predictions are presented that illustrate how primary shock strength affects the transition mechanism.

  9. A Reverse Shock and Unusual Radio Properties in GRB 160625B

    Science.gov (United States)

    Alexander, K. D.; Laskar, T.; Berger, E.; Guidorzi, C.; Dichiara, S.; Fong, W.; Gomboc, A.; Kobayashi, S.; Kopac, D.; Mundell, C. G.; Tanvir, N. R.; Williams, P. K. G.

    2017-10-01

    We present multi-wavelength observations and modeling of the exceptionally bright long γ-ray burst GRB 160625B. The optical and X-ray data are well fit by synchrotron emission from a collimated blastwave with an opening angle of {θ }j≈ 3\\buildrel{\\circ}\\over{.} 6 and kinetic energy of {E}K≈ 2× {10}51 erg, propagating into a low-density (n≈ 5× {10}-5 cm-3) medium with a uniform profile. The forward shock is sub-dominant in the radio band; instead, the radio emission is dominated by two additional components. The first component is consistent with emission from a reverse shock, indicating an initial Lorentz factor of {{{Γ }}}0≳ 100 and an ejecta magnetization of {R}B≈ 1{--}100. The second component exhibits peculiar spectral and temporal evolution and is most likely the result of scattering of the radio emission by the turbulent Milky Way interstellar medium (ISM). Such scattering is expected in any sufficiently compact extragalactic source and has been seen in GRBs before, but the large amplitude and long duration of the variability seen here are qualitatively more similar to extreme scattering events previously observed in quasars, rather than normal interstellar scintillation effects. High-cadence, broadband radio observations of future GRBs are needed to fully characterize such effects, which can sensitively probe the properties of the ISM and must be taken into account before variability intrinsic to the GRB can be interpreted correctly.

  10. Collisionless Electrostatic Shock Modeling and Simulation

    Science.gov (United States)

    2016-10-21

    equations with piston -like boundary conditions gives a solution for the shock behavior. • Assumes cold upstream ions, therefore neglecting shock...temperature ratio (>10) – Wave Train Wavelength – Shock-Front Mach Number – Reflected Ion Beam Velocity Gathering Experiment Data – Double Plasma Device...experimental shock data. • Inconsistencies in published 1969 double -plasma device data hampered validation. Future Work: Extension to Moderately

  11. Oil shocks in New Keynesian models: Positive and normative implications

    Science.gov (United States)

    Chang, Jian

    Chapter 1 investigates optimal monetary policy response towards oil shocks in a New Keynesian model. We find that optimal policy, in general, becomes contractionary in response to an adverse oil shock. However, the optimal policy rule and the inflation-output trade-off depend on the specific structure of the model. The benchmark economy consists of a flexible-price energy sector and a sticky-price manufacturing sector where energy is used as an intermediate input. We show that optimal policy is to stabilize the sticky (core) price level. We then show that after incorporating a less oil-dependent sticky-price service sector, the model exhibits a trade-off in stabilizing prices and output gaps in the different sticky-price sectors. It predicts that central bank should not try to stabilize the core price level, and the economy will experience higher inflation and rising output gaps, even if central banks respond optimally. Chapter 2 addresses the observed volatility and persistence of real exchange rates and the terms of trade. It contributes to the literature with a quantitative study on the U.S. and Canada. A two-country New Keynesian model consisting of traded, non-traded, and oil production sectors is proposed to examine the time series properties of the real exchange rate, the terms of trade and the real oil price. We find that after incorporating several realistic features (namely oil price shocks, sector specific labor, non-traded goods, asymmetric pricing decisions of exporters and asymmetric consumer preferences over tradables), the benchmark model broadly matches the volatilities of the relative prices and some business cycle correlations. The model matches the data more closely after adding real demand shocks, suggesting their importance in explaining the relative price movements between the US and Canada. Chapter 3 explores several sources and transmission channels of international relative price movements. In particular, we elaborate on the role of

  12. Banking System Shocks and REIT Performance

    OpenAIRE

    Olliges, Jan-Willem; Raudszus, Malte H.; Mueller, Glenn R.

    2013-01-01

    The purpose of this study is to directly contrast the REIT market’s stock return response to bank failures versus bank bailouts. The non-negativity constraints of the GARCH model measuring risk dynamics are mitigated by the use of the EGARCH model. EGARCH accounts for non-symmetrical effects of risk adjustments in response to return shocks. Previous research shows that bank failures cause a positive abnormal return effect for REITs. This confirms the expectation that during crises, market par...

  13. An unstructured shock-fitting solver for hypersonic plasma flows in chemical non-equilibrium

    Science.gov (United States)

    Pepe, R.; Bonfiglioli, A.; D'Angola, A.; Colonna, G.; Paciorri, R.

    2015-11-01

    A CFD solver, using Residual Distribution Schemes on unstructured grids, has been extended to deal with inviscid chemical non-equilibrium flows. The conservative equations have been coupled with a kinetic model for argon plasma which includes the argon metastable state as independent species, taking into account electron-atom and atom-atom processes. Results in the case of an hypersonic flow around an infinite cylinder, obtained by using both shock-capturing and shock-fitting approaches, show higher accuracy of the shock-fitting approach.

  14. Aeroelastic stability of full-span tiltrotor aircraft model in forward flight

    Directory of Open Access Journals (Sweden)

    Zhiquan LI

    2017-12-01

    Full Text Available The existing full-span models of the tiltrotor aircraft adopted the rigid blade model without considering the coupling relationship among the elastic blade, wing and fuselage. To overcome the limitations of the existing full-span models and improve the precision of aeroelastic analysis of tiltrotor aircraft in forward flight, the aeroelastic stability analysis model of full-span tiltrotor aircraft in forward flight has been presented in this paper by considering the coupling among elastic blade, wing, fuselage and various components. The analytical model is validated by comparing with the calculation results and experimental data in the existing references. The influence of some structural parameters, such as the fuselage degrees of freedom, relative displacement between the hub center and the gravity center, and nacelle length, on the system stability is also investigated. The results show that the fuselage degrees of freedom decrease the critical stability velocity of tiltrotor aircraft, and the variation of the structural parameters has great influence on the system stability, and the instability form of system can change between the anti-symmetric and symmetric wing motions of vertical and chordwise bending. Keywords: Aeroelastic stability, Forward flight, Full-span model, Modal analysis, Tiltrotor aircraft

  15. Turkish Accounting Standards, IAS - 39 "Financial Instruments: Recognition and Measurement" Under the Cash Flow Hedge Derivative Products Use: The Case of Forward

    Directory of Open Access Journals (Sweden)

    Emine ÇINA BAL

    2013-06-01

    Full Text Available Businesses face interest rate, exchange rate, liquidity, use derivative financial instruments to hedge against such risks. Forward transactions with derivative financial instruments, the non-organized markets, interest rates pre-determined future date, foreign currency contracts that contain delivery of goods as well as financial assets. Cash flow hedge that forms the subject of this study, a recognized asset or liability or a highly probable forecast transaction and the net profit or loss attributable to a particular risk of affecting the nature of a cash flow hedge to hedge changes in the process. Study the case of the application of foreign money has a tangible fixed asset purchases. Related to the purchase of tangible fixed assets at future foreign mercenaries were forward contracts to hedge the cash flow risk. Forward contracts, principal accounts on the balance sheet in accordance with IAS 39 Standard, derivative financial instruments are shown as fixed assets. The fair value of the contract during the contract period at the end of the period to show the valuation differences arising from the valuation of equity shown in the balance sheet. Net valuation differences arising from the contract are accounted for by two separate options. The first option, the net costs associated with the asset valuation difference. The second option is deducted from the amount of depreciation for the asset at the end of the period.

  16. Lexical prediction via forward models: N400 evidence from German Sign Language.

    Science.gov (United States)

    Hosemann, Jana; Herrmann, Annika; Steinbach, Markus; Bornkessel-Schlesewsky, Ina; Schlesewsky, Matthias

    2013-09-01

    Models of language processing in the human brain often emphasize the prediction of upcoming input-for example in order to explain the rapidity of language understanding. However, the precise mechanisms of prediction are still poorly understood. Forward models, which draw upon the language production system to set up expectations during comprehension, provide a promising approach in this regard. Here, we present an event-related potential (ERP) study on German Sign Language (DGS) which tested the hypotheses of a forward model perspective on prediction. Sign languages involve relatively long transition phases between one sign and the next, which should be anticipated as part of a forward model-based prediction even though they are semantically empty. Native speakers of DGS watched videos of naturally signed DGS sentences which either ended with an expected or a (semantically) unexpected sign. Unexpected signs engendered a biphasic N400-late positivity pattern. Crucially, N400 onset preceded critical sign onset and was thus clearly elicited by properties of the transition phase. The comprehension system thereby clearly anticipated modality-specific information about the realization of the predicted semantic item. These results provide strong converging support for the application of forward models in language comprehension. © 2013 Elsevier Ltd. All rights reserved.

  17. Improved bow shock models for Herbig-Haro objects - application to HH 2A-prime

    International Nuclear Information System (INIS)

    Raymond, J.C.; Hartmann, L.; Hartigan, P.

    1988-01-01

    An improved version of the bow shock theory previously applied to Herbig-Haro objects is presented. The modifications provide a more accurate calculation of the ionization state of material entering the bow shock. The revised preionization does not drastically affect the emission-line predictions for a 200 km/s bow shock model, though the effects will be more severe for slower shock velocities. The line profiles of the new models resemble the observed profiles somewhat more closely, and the relative emission-line intensities typically differ by 30 percent from those predicted by the older models. The models agree well with new IUE spectra and existing optical data for HH 2A-prime. 32 references

  18. Formation of X-ray emitting stationary shocks in magnetized protostellar jets

    Science.gov (United States)

    Ustamujic, S.; Orlando, S.; Bonito, R.; Miceli, M.; Gómez de Castro, A. I.; López-Santiago, J.

    2016-12-01

    Context. X-ray observations of protostellar jets show evidence of strong shocks heating the plasma up to temperatures of a few million degrees. In some cases, the shocked features appear to be stationary. They are interpreted as shock diamonds. Aims: We investigate the physics that guides the formation of X-ray emitting stationary shocks in protostellar jets; the role of the magnetic field in determining the location, stability, and detectability in X-rays of these shocks; and the physical properties of the shocked plasma. Methods: We performed a set of 2.5-dimensional magnetohydrodynamic numerical simulations that modelled supersonic jets ramming into a magnetized medium and explored different configurations of the magnetic field. The model takes into account the most relevant physical effects, namely thermal conduction and radiative losses. We compared the model results with observations, via the emission measure and the X-ray luminosity synthesized from the simulations. Results: Our model explains the formation of X-ray emitting stationary shocks in a natural way. The magnetic field collimates the plasma at the base of the jet and forms a magnetic nozzle there. After an initial transient, the nozzle leads to the formation of a shock diamond at its exit which is stationary over the time covered by the simulations ( 40-60 yr; comparable with timescales of the observations). The shock generates a point-like X-ray source located close to the base of the jet with luminosity comparable with that inferred from X-ray observations of protostellar jets. For the range of parameters explored, the evolution of the post-shock plasma is dominated by the radiative cooling, whereas the thermal conduction slightly affects the structure of the shock. A movie is available at http://www.aanda.org

  19. Surface Ship Shock Modeling and Simulation: Two-Dimensional Analysis

    Directory of Open Access Journals (Sweden)

    Young S. Shin

    1998-01-01

    Full Text Available The modeling and simulation of the response of a surface ship system to underwater explosion requires an understanding of many different subject areas. These include the process of underwater explosion events, shock wave propagation, explosion gas bubble behavior and bubble-pulse loading, bulk and local cavitation, free surface effect, fluid-structure interaction, and structural dynamics. This paper investigates the effects of fluid-structure interaction and cavitation on the response of a surface ship using USA-NASTRAN-CFA code. First, the one-dimensional Bleich-Sandler model is used to validate the approach, and second, the underwater shock response of a two-dimensional mid-section model of a surface ship is predicted with a surrounding fluid model using a constitutive equation of a bilinear fluid which does not allow transmission of negative pressures.

  20. Highly Resolved Measurements of a Developing Strong Collisional Plasma Shock

    Science.gov (United States)

    Rinderknecht, Hans G.; Park, H.-S.; Ross, J. S.; Amendt, P. A.; Higginson, D. P.; Wilks, S. C.; Haberberger, D.; Katz, J.; Froula, D. H.; Hoffman, N. M.; Kagan, G.; Keenan, B. D.; Vold, E. L.

    2018-03-01

    The structure of a strong collisional shock front forming in a plasma is directly probed for the first time in laser-driven gas-jet experiments. Thomson scattering of a 526.5 nm probe beam was used to diagnose temperature and ion velocity distribution in a strong shock (M ˜11 ) propagating through a low-density (ρ ˜0.01 mg /cc ) plasma composed of hydrogen. A forward-streaming population of ions traveling in excess of the shock velocity was observed to heat and slow down on an unmoving, unshocked population of cold protons, until ultimately the populations merge and begin to thermalize. Instabilities are observed during the merging, indicating a uniquely plasma-phase process in shock front formation.

  1. Results and Error Estimates from GRACE Forward Modeling over Greenland, Canada, and Alaska

    Science.gov (United States)

    Bonin, J. A.; Chambers, D. P.

    2012-12-01

    Forward modeling using a weighted least squares technique allows GRACE information to be projected onto a pre-determined collection of local basins. This decreases the impact of spatial leakage, allowing estimates of mass change to be better localized. The technique is especially valuable where models of current-day mass change are poor, such as over Greenland and Antarctica. However, the accuracy of the forward model technique has not been determined, nor is it known how the distribution of the local basins affects the results. We use a "truth" model composed of hydrology and ice-melt slopes as an example case, to estimate the uncertainties of this forward modeling method and expose those design parameters which may result in an incorrect high-resolution mass distribution. We then apply these optimal parameters in a forward model estimate created from RL05 GRACE data. We compare the resulting mass slopes with the expected systematic errors from the simulation, as well as GIA and basic trend-fitting uncertainties. We also consider whether specific regions (such as Ellesmere Island and Baffin Island) can be estimated reliably using our optimal basin layout.

  2. GRB 080916C AND GRB 090510: THE HIGH-ENERGY EMISSION AND THE AFTERGLOW

    International Nuclear Information System (INIS)

    Gao Weihong; Mao Jirong; Xu Dong; Fan Yizhong

    2009-01-01

    We constrain the physical composition of the outflows of GRBs 080916C and 090510 with the prompt emission data and find that the former is likely magnetic, while the latter may be baryonic. The X-ray and optical afterglow emission of both GRBs can be reasonably fitted using the standard external shock model but the density profiles of the circum-burst medium are different. We also propose a simple method to estimate the number of seed photons supposing the GeV afterglow photons are due to the inverse Compton radiation of external forward shock electrons. The seed photons needed in the modeling are too many to be realistic for both events. The synchrotron radiation of the forward shock seems able to account for the GeV afterglow data.

  3. Novel Adaptive Forward Neural MIMO NARX Model for the Identification of Industrial 3-DOF Robot Arm Kinematics

    OpenAIRE

    Ho Pham Huy Anh; Nguyen Thanh Nam

    2012-01-01

    In this paper, a novel forward adaptive neural MIMO NARX model is used for modelling and identifying the forward kinematics of an industrial 3‐DOF robot arm system. The nonlinear features of the forward kinematics of the industrial robot arm drive are thoroughly modelled based on the forward adaptive neural NARX model‐based identification process using experimental input‐output training data. This paper proposes a novel use of a back propagation (BP) algorithm to generate the forward neural M...

  4. The Impact of Commodity Price Shocks in a Major Producing Economy. The Case of Copper and Chile

    OpenAIRE

    Michael Pedersen

    2015-01-01

    The present study analyzes how copper price shocks affect macroeconomic variables in Chile, which is the largest producer in the world of this commodity. It is taken into account that shocks with different sources may have different impacts and a separation is made between supply, demand, and specific copper demand shocks. The empirical analysis is based on a structural VAR model, where shocks are identified by sign restrictions, i.e. restrictions are imposed on impulse-response functions. In...

  5. Modeling and evaluation of HE driven shock effects in copper with the MTS model

    International Nuclear Information System (INIS)

    Murphy, M.J.; Lassila, D.F.

    1997-01-01

    Many experimental studies have investigated the effect of shock pressure on the post-shock mechanical properties of OFHC copper. These studies have shown that significant hardening occurs during shock loading due to dislocation processes and twinning. It has been demonstrated that when an appropriate initial value of the Mechanical Threshold Stress (MTS) is specified, the post-shock flow stress of OFE copper is well described by relationships derived independently for unshocked materials. In this study we consider the evolution of the MTS during HE driven shock loading processes and the effect on the subsequent flow stress of the copper. An increased post shock flow stress results in a higher material temperature due to an increase in the plastic work. An increase in temperature leads to thermal softening which reduces the flow stress. These coupled effects will determine if there is melting in a shaped charge jet or a necking instability in an EFP Ww. 'Me critical factor is the evolution path followed combined with the 'current' temperature, plastic strain, and strain rate. Preliminary studies indicate that in simulations of HE driven shock with very high resolution zoning, the MTS saturates because of the rate dependence in the evolution law. On going studies are addressing this and other issues with the goal of developing a version of the MT'S model that treats HE driven, shock loading, temperature, strain, and rate effects apriori

  6. Shock waves and rarefaction waves in magnetohydrodynamics. Pt. 1: A model system

    International Nuclear Information System (INIS)

    Myong, R.S.; Roe, P.L.

    1997-01-01

    The present study consists of two parts. Here in Part I, a model set of conservation laws exactly preserving the MHD hyperbolic singularities is investigated to develop the general theory of the nonlinear evolution of MHD shock waves. Great emphasis is placed on shock admissibility conditions. By developing the viscosity admissibility condition, it is shown that the intermediate shocks are necessary to ensure that the planar Riemann problem is well-posed. In contrast, it turns out that the evolutionary condition is inappropriate for determining physically relevant MHD, shocks. In the general non-planar case, by studying canonical cases, we show that the solution of the Riemann problem is not necessarily unique - in particular, that it depends not only on reference states but also on the associated internal structure. Finally, the stability of intermediate shocks is discussed, and a theory of their nonlinear evolution is proposed. In Part 2, the theory of nonlinear waves developed for the model is applied to the MHD problem. It is shown that the topology of the MHD Hugoniot and wave curves is identical to that of the model problem. (Author)

  7. Thermal chemical-mechanical reactive flow model of shock initiation in solid explosives

    International Nuclear Information System (INIS)

    Nicholls, A.L. III; Tarver, C.M.

    1998-01-01

    The three dimensional Arbitrary Lagrange Eulerian hydrodynamic computer code ALE3D with fully coupled thermal-chemical-mechanical material models provides the framework for the development of a physically realistic model of shock initiation and detonation of solid explosives. The processes of hot spot formation during shock compression, subsequent ignition of reaction or failure to react, growth of reaction in individual hot spots, and coalescence of reacting hot spots during the transition to detonation can now be modeled using Arrhenius chemical kinetic rate laws and heat transfer to propagate the reactive flow. This paper discusses the growth rates of reacting hot spots in HMX and TATB and their coalescence during shock to detonation transition. Hot spot deflagration rates are found to be fast enough to consume explosive particles less than 10 mm in diameter during typical shock duration times, but larger particles must fragment and create more reactive surface area in order to be rapidly consumed

  8. Health shocks and risk aversion.

    Science.gov (United States)

    Decker, Simon; Schmitz, Hendrik

    2016-12-01

    We empirically assess whether a health shock influences individual risk aversion. We use grip strength data to obtain an objective health shock indicator. In order to account for the non-random nature of our data regression-adjusted matching is employed. Risk preferences are traditionally assumed to be constant. However, we find that a health shock increases individual risk aversion. The finding is robust to a series of sensitivity analyses and persists for at least four years after the shock. Income changes do not seem to be the driving mechanism. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Analysis of a Shock-Associated Noise Prediction Model Using Measured Jet Far-Field Noise Data

    Science.gov (United States)

    Dahl, Milo D.; Sharpe, Jacob A.

    2014-01-01

    A code for predicting supersonic jet broadband shock-associated noise was assessed using a database containing noise measurements of a jet issuing from a convergent nozzle. The jet was operated at 24 conditions covering six fully expanded Mach numbers with four total temperature ratios. To enable comparisons of the predicted shock-associated noise component spectra with data, the measured total jet noise spectra were separated into mixing noise and shock-associated noise component spectra. Comparisons between predicted and measured shock-associated noise component spectra were used to identify deficiencies in the prediction model. Proposed revisions to the model, based on a study of the overall sound pressure levels for the shock-associated noise component of the measured data, a sensitivity analysis of the model parameters with emphasis on the definition of the convection velocity parameter, and a least-squares fit of the predicted to the measured shock-associated noise component spectra, resulted in a new definition for the source strength spectrum in the model. An error analysis showed that the average error in the predicted spectra was reduced by as much as 3.5 dB for the revised model relative to the average error for the original model.

  10. Model for shock wave chaos.

    Science.gov (United States)

    Kasimov, Aslan R; Faria, Luiz M; Rosales, Rodolfo R

    2013-03-08

    We propose the following model equation, u(t) + 1/2(u(2)-uu(s))x = f(x,u(s)) that predicts chaotic shock waves, similar to those in detonations in chemically reacting mixtures. The equation is given on the half line, xorder partial differential equation. The chaos arises in the equation thanks to an interplay between the nonlinearity of the inviscid Burgers equation and a novel forcing term that is nonlocal in nature and has deep physical roots in reactive Euler equations.

  11. Nonlinear Monte Carlo model of superdiffusive shock acceleration with magnetic field amplification

    Science.gov (United States)

    Bykov, Andrei M.; Ellison, Donald C.; Osipov, Sergei M.

    2017-03-01

    Fast collisionless shocks in cosmic plasmas convert their kinetic energy flow into the hot downstream thermal plasma with a substantial fraction of energy going into a broad spectrum of superthermal charged particles and magnetic fluctuations. The superthermal particles can penetrate into the shock upstream region producing an extended shock precursor. The cold upstream plasma flow is decelerated by the force provided by the superthermal particle pressure gradient. In high Mach number collisionless shocks, efficient particle acceleration is likely coupled with turbulent magnetic field amplification (MFA) generated by the anisotropic distribution of accelerated particles. This anisotropy is determined by fast particle transport, making the problem strongly nonlinear and multiscale. Here, we present a nonlinear Monte Carlo model of collisionless shock structure with superdiffusive propagation of high-energy Fermi accelerated particles coupled to particle acceleration and MFA, which affords a consistent description of strong shocks. A distinctive feature of the Monte Carlo technique is that it includes the full angular anisotropy of the particle distribution at all precursor positions. The model reveals that the superdiffusive transport of energetic particles (i.e., Lévy-walk propagation) generates a strong quadruple anisotropy in the precursor particle distribution. The resultant pressure anisotropy of the high-energy particles produces a nonresonant mirror-type instability that amplifies compressible wave modes with wavelengths longer than the gyroradii of the highest-energy protons produced by the shock.

  12. Experimental models of sepsis and septic shock: an overview

    Directory of Open Access Journals (Sweden)

    Garrido Alejandra G.

    2004-01-01

    Full Text Available Sepsis remains a major cause of morbidity and mortality in surgical patients and trauma victims, mainly due to sepsis-induced multiple organ dysfunction. In contrast to preclinical studies, most clinical trials of promising new treatment strategies for sepsis have fails to demonstrate efficacy. Although many reasons could account for this discrepancy, the misinterpretation of preclinical data obtained from experimental studies, and especially the use of animal models that do not adequately mimic human sepsis may have been contributing factors. In this review, the benefits and limitations of various animal models of sepsis are discussed to clarify the extend to which findings are relevant to human sepsis, particularly with respect to the subsequent design and execution of clinical trials. Such models include intravascular infusion of endotoxin or live bacteria, bacterial peritonitis, cecal ligation and perforation, soft tissue infection, pneumonia or meningitis models, using different animal species including rats, mice, rabbits, dogs, pigs, sheep and nonhuman primates. Despite several limitations, animal models remain essential in the development of all new therapies for sepsis and septic shock, because they provide fundamental information about the pharmacokinetics, toxicity, and mechanism of drug action that cannot be duplicated by other methods. New therapeutic agents should be studies in infection models, even after the initiation of the septic process. Furthermore, debility conditions need to be reproduced to avoid the exclusive use of healthy animals, which often do not represent the human septic patient.

  13. Interplanetary fast shock diagnosis with the radio receiver on Ulysses

    Science.gov (United States)

    Hoang, S.; Pantellini, F.; Harvey, C. C.; Lacombe, C.; Mangeney, A.; Meuer-Vernet, N.; Perche, C.; Steinberg, J.-L.; Lengyel-Frey, D.; Macdowall, R. J.

    1992-01-01

    The radio receiver on Ulysses records the quasi-thermal noise which allows a determination of the density and temperature of the cold (core) electrons of the solar wind. Seven interplanetary fast forward or reverse shocks are identified from the density and temperature profiles, together with the magnetic field profile from the Magnetometer experiment. Upstream of the three strongest shocks, bursts of nonthermal waves are observed at the electron plasma frequency f(peu). The more perpendicular the shock, the longer the time interval during which these upstream bursts are observed. For one of the strongest shocks we also observe two kinds of upstream electromagnetic radiation: radiation at 2 f(peu), and radiation at the downstream electron plasma frequency, which propagates into the less dense upstream regions.

  14. Analytical criterion for shock ignition of fusion reaction in hot spot

    International Nuclear Information System (INIS)

    Ribeyre, X.; Tikhonchuk, V. T.; Breil, J.; Lafon, M.; Vallet, A.; Bel, E. L.

    2013-01-01

    Shock ignition of DT capsules involves two major steps. First, the fuel is assembled by means of a low velocity conventional implosion. At stagnation, the central core has a temperature lower than the one needed for ignition. Then a second, strong spherical converging shock, launched from a high intensity laser spike, arrives to the core. This shock crosses the core, rebounds at the target center and increases the central pressure to the ignition conditions. In this work we consider this latter phase by using the Guderley self-similar solution for converging flows. Our model accounts for the fusion reaction energy deposition, thermal and radiation losses thus describing the basic physics of hot spot ignition. The ignition criterion derived from the analytical model is successfully compared with full scale hydrodynamic simulations. (authors)

  15. Power forward curves: a managerial perspective

    International Nuclear Information System (INIS)

    Nagarajan, Shankar

    1999-01-01

    This chapter concentrates on managerial application of power forward curves, and examines the determinants of electricity prices such as transmission constraints, its inability to be stored in a conventional way, its seasonality and weather dependence, the generation stack, and the swing risk. The electricity forward curve, classical arbitrage, constructing a forward curve, volatilities, and electricity forward curve models such as the jump-diffusion model, the mean-reverting heteroscedastic volatility model, and an econometric model of forward prices are examined. A managerial perspective of the applications of the forward curve is presented covering plant valuation, capital budgeting, performance measurement, product pricing and structuring, asset optimisation, valuation of transmission options, and risk management

  16. IDENTIFICATION AND DESCRIPTION OF A NOVEL MURINE MODEL FOR POLYTRAUMA AND SHOCK

    Science.gov (United States)

    Gentile, Lori F; Nacionales, Dina C; Cuenca, Alex G; Armbruster, Michael; Ungaro, Ricardo F; Abouhamze, Amer S; Lopez, Cecelia; Baker, Henry V; Moore, Frederick A; Ang, Darwin N; Efron, Philip A

    2013-01-01

    Objective To develop a novel polytrauma model that better recapitulates the immunological response of the severely injured patient by combining long-bone fracture, muscle tissue damage and cecectomy with hemorrhagic shock, resulting in an equivalent Injury Severity Score of greater than 15. We compared this new polytrauma/shock model to historically-used murine trauma-hemorrhage models. Design Pre-clinical controlled in vivo laboratory study. Setting Laboratory of Inflammation Biology and Surgical Science. Subjects 6–10 wk old C57BL/6 (B6) mice Interventions Mice underwent 90 minutes of shock (MAP 30 mmHg) and resuscitation via femoral artery cannulation followed by either laparotomy (TH), laparotomy with femur fracture (H+FFx), or laparotomy with cecetomy and femur fracture with muscle tissue damage (PT). Mice were euthanized at two hours, one day and three days post injury. Measurements and Main Results The spleen, bone marrow, blood, and serum were collected from mice for analysis at the above time points. None of the models were lethal. Mice undergoing PT exhibited a more robust inflammatory response with significant elevations in cytokine/chemokine concentrations when compared to traditional models. PT was the only model to induce neutrophilia (Ly6G+CD11b+ cells) on days 1 and 3 (ppolytrauma model better replicates the human leukocyte, cytokine, and overall inflammatory response following injury and hemorrhagic shock. PMID:23399937

  17. Empirical Model Development for Predicting Shock Response on Composite Materials Subjected to Pyroshock Loading. Volume 2, Part 1; Appendices

    Science.gov (United States)

    Gentz, Steven J.; Ordway, David O.; Parsons, David S.; Garrison, Craig M.; Rodgers, C. Steven; Collins, Brian W.

    2015-01-01

    The NASA Engineering and Safety Center (NESC) received a request to develop an analysis model based on both frequency response and wave propagation analyses for predicting shock response spectrum (SRS) on composite materials subjected to pyroshock loading. The model would account for near-field environment (approximately 9 inches from the source) dominated by direct wave propagation, mid-field environment (approximately 2 feet from the source) characterized by wave propagation and structural resonances, and far-field environment dominated by lower frequency bending waves in the structure. This document contains appendices to the Volume I report.

  18. Material Protection, Accounting, and Control Technologies (MPACT): Modeling and Simulation Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    Cipiti, Benjamin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Dunn, Timothy [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Durbin, Samual [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Durkee, Joe W. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); England, Jeff [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Jones, Robert [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Ketusky, Edward [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Li, Shelly [Idaho National Lab. (INL), Idaho Falls, ID (United States); Lindgren, Eric [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Meier, David [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Miller, Michael [Idaho National Lab. (INL), Idaho Falls, ID (United States); Osburn, Laura Ann [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Pereira, Candido [Argonne National Lab. (ANL), Argonne, IL (United States); Rauch, Eric Benton [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Scaglione, John [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Scherer, Carolynn P. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Sprinkle, James K. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Yoo, Tae-Sic [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-08-05

    The development of sustainable advanced nuclear fuel cycles is a long-term goal of the Office of Nuclear Energy’s (DOE-NE) Fuel Cycle Technologies program. The Material Protection, Accounting, and Control Technologies (MPACT) campaign is supporting research and development (R&D) of advanced instrumentation, analysis tools, and integration methodologies to meet this goal. This advanced R&D is intended to facilitate safeguards and security by design of fuel cycle facilities. The lab-scale demonstration of a virtual facility, distributed test bed, that connects the individual tools being developed at National Laboratories and university research establishments, is a key program milestone for 2020. These tools will consist of instrumentation and devices as well as computer software for modeling. To aid in framing its long-term goal, during FY16, a modeling and simulation roadmap is being developed for three major areas of investigation: (1) radiation transport and sensors, (2) process and chemical models, and (3) shock physics and assessments. For each area, current modeling approaches are described, and gaps and needs are identified.

  19. Creating Synthetic Coronal Observational Data From MHD Models: The Forward Technique

    Science.gov (United States)

    Rachmeler, Laurel A.; Gibson, Sarah E.; Dove, James; Kucera, Therese Ann

    2010-01-01

    We present a generalized forward code for creating simulated corona) observables off the limb from numerical and analytical MHD models. This generalized forward model is capable of creating emission maps in various wavelengths for instruments such as SXT, EIT, EIS, and coronagraphs, as well as spectropolari metric images and line profiles. The inputs to our code can be analytic models (of which four come with the code) or 2.5D and 3D numerical datacubes. We present some examples of the observable data created with our code as well as its functional capabilities. This code is currently available for beta-testing (contact authors), with the ultimate goal of release as a SolarSoft package

  20. An empirical model of the Earth's bow shock based on an artificial neural network

    Science.gov (United States)

    Pallocchia, Giuseppe; Ambrosino, Danila; Trenchi, Lorenzo

    2014-05-01

    All of the past empirical models of the Earth's bow shock shape were obtained by best-fitting some given surfaces to sets of observed crossings. However, the issue of bow shock modeling can be addressed by means of artificial neural networks (ANN) as well. In this regard, here it is presented a perceptron, a simple feedforward network, which computes the bow shock distance along a given direction using the two angular coordinates of that direction, the bow shock predicted distance RF79 (provided by Formisano's model (F79)) and the upstream alfvénic Mach number Ma. After a brief description of the ANN architecture and training method, we discuss the results of the statistical comparison, performed over a test set of 1140 IMP8 crossings, between the prediction accuracies of ANN and F79 models.

  1. Shock Absorbers Multi-Modeling and Suspension Optimization

    Directory of Open Access Journals (Sweden)

    LUPU Ciprian

    2013-05-01

    Full Text Available The standard dampers used by more 90% of vehicles have damping coefficients constant along stroke, so they can’t solve simultaneous all of them, situation solving practically using a relative dampingcoefficient able to made compromise between them. This paper design and simulation testing multi-models of two types of Damp (DSA and VZN. To compare the two types of suspension they are simulated in various road and load conditions. Analysis of simulation results is presente a new VZN shock absorber. This is an invention of the Institute of Mechanics of the Romanian Academy, and patented at European and U.S. [1], [2]. This is Called VZN shock absorber, iscoming from Variable Zeta Necessary acronym, for well moving in all road and load Conditions, Where zeta Represents the relative damping, Which is Adjusted automatically, stepwise, According to the piston positions [3,4,5]. Suspension systems are used in all air and ground transportation to protect that building transportation and cargo transported around against shocks and vibrations induced in the systemfrom the road Modifying damping coefficients (Zeta function piston position, being correlated with vehicle load and road unevenness.

  2. Geometrical shock dynamics for magnetohydrodynamic fast shocks

    KAUST Repository

    Mostert, W.; Pullin, D. I.; Samtaney, Ravi; Wheatley, V.

    2016-01-01

    We describe a formulation of two-dimensional geometrical shock dynamics (GSD) suitable for ideal magnetohydrodynamic (MHD) fast shocks under magnetic fields of general strength and orientation. The resulting area–Mach-number–shock-angle relation is then incorporated into a numerical method using pseudospectral differentiation. The MHD-GSD model is verified by comparison with results from nonlinear finite-volume solution of the complete ideal MHD equations applied to a shock implosion flow in the presence of an oblique and spatially varying magnetic field ahead of the shock. Results from application of the MHD-GSD equations to the stability of fast MHD shocks in two dimensions are presented. It is shown that the time to formation of triple points for both perturbed MHD and gas-dynamic shocks increases as (Formula presented.), where (Formula presented.) is a measure of the initial Mach-number perturbation. Symmetry breaking in the MHD case is demonstrated. In cylindrical converging geometry, in the presence of an azimuthal field produced by a line current, the MHD shock behaves in the mean as in Pullin et al. (Phys. Fluids, vol. 26, 2014, 097103), but suffers a greater relative pressure fluctuation along the shock than the gas-dynamic shock. © 2016 Cambridge University Press

  3. Geometrical shock dynamics for magnetohydrodynamic fast shocks

    KAUST Repository

    Mostert, W.

    2016-12-12

    We describe a formulation of two-dimensional geometrical shock dynamics (GSD) suitable for ideal magnetohydrodynamic (MHD) fast shocks under magnetic fields of general strength and orientation. The resulting area–Mach-number–shock-angle relation is then incorporated into a numerical method using pseudospectral differentiation. The MHD-GSD model is verified by comparison with results from nonlinear finite-volume solution of the complete ideal MHD equations applied to a shock implosion flow in the presence of an oblique and spatially varying magnetic field ahead of the shock. Results from application of the MHD-GSD equations to the stability of fast MHD shocks in two dimensions are presented. It is shown that the time to formation of triple points for both perturbed MHD and gas-dynamic shocks increases as (Formula presented.), where (Formula presented.) is a measure of the initial Mach-number perturbation. Symmetry breaking in the MHD case is demonstrated. In cylindrical converging geometry, in the presence of an azimuthal field produced by a line current, the MHD shock behaves in the mean as in Pullin et al. (Phys. Fluids, vol. 26, 2014, 097103), but suffers a greater relative pressure fluctuation along the shock than the gas-dynamic shock. © 2016 Cambridge University Press

  4. Conservation laws arising in the study of forward-forward Mean-Field Games

    KAUST Repository

    Gomes, Diogo A.; Nurbekyan, Levon; Sedjro, Marc

    2017-01-01

    We consider forward-forward Mean Field Game (MFG) models that arise in numerical approximations of stationary MFGs. First, we establish a link between these models and a class of hyperbolic conservation laws as well as certain nonlinear wave equations. Second, we investigate existence and long-time behavior of solutions for such models.

  5. Conservation laws arising in the study of forward-forward Mean-Field Games

    KAUST Repository

    Gomes, Diogo A.

    2017-04-24

    We consider forward-forward Mean Field Game (MFG) models that arise in numerical approximations of stationary MFGs. First, we establish a link between these models and a class of hyperbolic conservation laws as well as certain nonlinear wave equations. Second, we investigate existence and long-time behavior of solutions for such models.

  6. Well-posed Euler model of shock-induced two-phase flow in bubbly liquid

    Science.gov (United States)

    Tukhvatullina, R. R.; Frolov, S. M.

    2018-03-01

    A well-posed mathematical model of non-isothermal two-phase two-velocity flow of bubbly liquid is proposed. The model is based on the two-phase Euler equations with the introduction of an additional pressure at the gas bubble surface, which ensures the well-posedness of the Cauchy problem for a system of governing equations with homogeneous initial conditions, and the Rayleigh-Plesset equation for radial pulsations of gas bubbles. The applicability conditions of the model are formulated. The model is validated by comparing one-dimensional calculations of shock wave propagation in liquids with gas bubbles with a gas volume fraction of 0.005-0.3 with experimental data. The model is shown to provide satisfactory results for the shock propagation velocity, pressure profiles, and the shock-induced motion of the bubbly liquid column.

  7. Can diffusive shock acceleration in supernova remnants account for high-energy galactic cosmic rays?

    International Nuclear Information System (INIS)

    Hillas, A M

    2005-01-01

    Diffusive shock acceleration at the outer front of expanding supernova remnants has provided by far the most popular model for the origin of galactic cosmic rays, and has been the subject of intensive theoretical investigation. But several problems loomed at high energies-how to explain the smooth continuation of the cosmic-ray spectrum far beyond 10 14 eV, the very low level of TeV gamma-ray emission from several supernova remnants, and the very low anisotropy of cosmic rays (seeming to conflict with the short trapping times needed to convert a E -2 source spectrum into the observed E -2.7 spectrum of cosmic rays). However, recent work on the cosmic ray spectrum (especially at KASCADE) strongly indicates that about half of the flux does turn down rather sharply near 3 x 10 15 V rigidity, with a distinct tail extending to just beyond 10 17 V rigidity; whilst a plausible description (Bell and Lucek) of the level of self-generated magnetic fields at the shock fronts of young supernova remnants implies that many SNRs in varying environments might very well generate spectra extending smoothly to just this 'knee' position, and a portion of the exploding red supergiants could extend the spectrum approximately as needed. At low energies, recent progress in relating cosmic ray compositional details to modified shock structure also adds weight to the belief that the model is working on the right lines, converting energy into cosmic rays very efficiently where injection can occur. The low level of TeV gamma-ray flux from many young SNRs is a serious challenge, though it may relate to variations in particle injection efficiency with time. The clear detection of TeV gamma rays from SNRs has now just begun, and predictions of a characteristic curved particle spectrum give a target for new tests by TeV observations. However, the isotropy seriously challenges the assumed cosmic-ray trapping time and hence the shape of the spectrum of particles released from SNRs. There is

  8. Why the Nature of Oil Shocks Matters

    International Nuclear Information System (INIS)

    Archanskaia, Elizaveta; Hubert, Paul; Creel, Jerome

    2009-03-01

    This article studies the impact of oil shocks on the macro-economy in two ways insofar unexploited in the literature. The analysis is conducted at the global level, and it explicitly accounts for the potentially changing nature of oil shocks. Based on an original world GDP series and a grouping of oil shocks according to their nature, we find that oil supply shocks negatively impact world growth, contrary to oil demand shocks, pro-cyclical in their nature. This result is robust at the national level for the US. Furthermore, endogenous monetary policy is shown to have no counter-cyclical effects in the context of an oil demand shock. (authors)

  9. Forward Models for Following a Moving Target with the Puma 560 Robot Manipulator

    Directory of Open Access Journals (Sweden)

    Daniel Fernando Tello Gamarra

    2015-12-01

    Full Text Available This paper describes how a forward model could be applied in a manipulator robot to accomplish the task of following a moving target. The forward model has been implemented in the puma 560 robot manipulator in simulation after a babbling motor phase using ANFIS neural networks. The forward model delivers a rough estimation of the position in the operational space of a moving target. Using this information a Cartesian controller tracks the moving target. An implementation of the proposed architecture and the Piepmeir algorithm for the problem of following a moving target is also shown in the paper. The control architecture proposed in this paper was also tested with MLP and RBF neural networks. Results and simulations are shown to demonstrate the applicability of our proposed architecture for tracking a moving target.

  10. Measurements of ion velocity separation and ionization in multi-species plasma shocks

    Science.gov (United States)

    Rinderknecht, Hans G.; Park, H.-S.; Ross, J. S.; Amendt, P. A.; Wilks, S. C.; Katz, J.; Hoffman, N. M.; Kagan, G.; Vold, E. L.; Keenan, B. D.; Simakov, A. N.; Chacón, L.

    2018-05-01

    The ion velocity structure of a strong collisional shock front in a plasma with multiple ion species is directly probed in laser-driven shock-tube experiments. Thomson scattering of a 263.25 nm probe beam is used to diagnose ion composition, temperature, and flow velocity in strong shocks ( M ˜6 ) propagating through low-density ( ρ˜0.1 mg/cc) plasmas composed of mixtures of hydrogen (98%) and neon (2%). Within the preheat region of the shock front, two velocity populations of ions are observed, a characteristic feature of strong plasma shocks. The ionization state of the Ne is observed to change within the shock front, demonstrating an ionization-timescale effect on the shock front structure. The forward-streaming proton feature is shown to be unexpectedly cool compared to predictions from ion Fokker-Planck simulations; the neon ionization gradient is evaluated as a possible cause.

  11. Forward Modeling of a Coronal Cavity

    Science.gov (United States)

    Kucera, T. A.; Gibson, S. E.; Schmit, D. J.

    2011-01-01

    We apply a forward model of emission from a coronal cavity in an effort to determine the temperature and density distribution in the cavity. Coronal cavities are long, low-density structures located over filament neutral lines and are often seen as dark elliptical features at the solar limb in white light, EUV and X-rays. When these structures erupt they form the cavity portions of CMEs The model consists of a coronal streamer model with a tunnel-like cavity with elliptical cross-section and a Gaussian variation of height along the tunnel length. Temperature and density can be varied as a function of altitude both in the cavity and streamer. We apply this model to a cavity observed in Aug. 2007 by a wide array of instruments including Hinode/EIS, STEREO/EUVI and SOHO/EIT. Studies such as these will ultimately help us understand the the original structures which erupt to become CMEs and ICMES, one of the prime Solar Orbiter objectives.

  12. Drop Hammer Tests with Three Oleo Strut Models and Three Different Shock Strut Oils at Low Temperatures

    Science.gov (United States)

    Kranz, M

    1954-01-01

    Drop hammer tests with different shock strut models and shock strut oils were performed at temperatures ranging to -40 C. The various shock strut models do not differ essentially regarding their springing and damping properties at low temperatures; however, the influence of the different shock strut oils on the springing properties at low temperatures varies greatly.

  13. Simulation of mechanical shock environments

    International Nuclear Information System (INIS)

    Lalanne, Christian.

    1975-07-01

    Shocks can produce a severe mechanical environment which must be taken into account when designing and developing new equipments. After some mathematical (Laplace and Fourier transforms) and mechanical recalls (response of a one degree freedom system to a sinusoidal excitation), different analysis methods are compared, these methods being the most used now to compare relative severities of tests and establish specifications. A few chapter deal with the different properties of simple, easy to produce, shock shapes. Then some now-in-use programmators or shock-machines specifications are shown. A final chapter concerns acceleration transducers [fr

  14. Shock Index More Sensitive Than Cardiogenic Shock in ST-Elevation Myocardial Infarction Treated by Primary Percutaneous Coronary Intervention

    NARCIS (Netherlands)

    Hemradj, V.V.; Ottervanger, J.P.; Boer, M.J. de; Suryapranata, H.

    2017-01-01

    BACKGROUND: Cardiogenic shock (CS) is a strong predictor of mortality in patients with ST-elevation myocardial infarction (STEMI), but there is evidence that shock index (SI), taking into account both blood pressure and heart rate, is a more sensitive and powerful predictor. We investigated the

  15. Shock Isolation Elements Testing for High Input Loadings. Volume II. Foam Shock Isolation Elements.

    Science.gov (United States)

    SHOCK ABSORBERS ), (*GUIDED MISSILE SILOS, SHOCK ABSORBERS ), (*EXPANDED PLASTICS, (*SHOCK(MECHANICS), REDUCTION), TEST METHODS, SHOCK WAVES, STRAIN(MECHANICS), LOADS(FORCES), MATHEMATICAL MODELS, NUCLEAR EXPLOSIONS, HARDENING.

  16. A model for precursor structure in supercritical perpendicular, collisionless shock waves

    International Nuclear Information System (INIS)

    Sherwell, D.; Cairns, R.A.

    1978-01-01

    Magnetosonic solitons may be given smooth increasing profiles by assuming the presence within the wave of a current distribution Jsub(y)(x) of trapped ions perpendicular to Bsub(z)(x) and the wave velocity Vsub(x). Suitable ions are found immediately upstream of perpendicular collisionless shock waves and these are coincident with the often observed 'foot' in magnetic field profiles of moderately supercritical shocks. The theory is applied to previous experiments by modelling Jsub(y)(x), where Jsub(y)(x) is observed, the profiles in the foot are reproduced and explained. Insight into a number of features of fast shocks is obtained. (author)

  17. Analytical solutions of hypersonic type IV shock - shock interactions

    Science.gov (United States)

    Frame, Michael John

    An analytical model has been developed to predict the effects of a type IV shock interaction at high Mach numbers. This interaction occurs when an impinging oblique shock wave intersects the most normal portion of a detached bow shock. The flowfield which develops is complicated and contains an embedded jet of supersonic flow, which may be unsteady. The jet impinges on the blunt body surface causing very high pressure and heating loads. Understanding this type of interaction is vital to the designers of cowl lips and leading edges on air- breathing hypersonic vehicles. This analytical model represents the first known attempt at predicting the geometry of the interaction explicitly, without knowing beforehand the jet dimensions, including the length of the transmitted shock where the jet originates. The model uses a hyperbolic equation for the bow shock and by matching mass continuity, flow directions and pressure throughout the flowfield, a prediction of the interaction geometry can be derived. The model has been shown to agree well with the flowfield patterns and properties of experiments and CFD, but the prediction for where the peak pressure is located, and its value, can be significantly in error due to a lack of sophistication in the model of the jet fluid stagnation region. Therefore it is recommended that this region of the flowfield be modeled in more detail and more accurate experimental and CFD measurements be used for validation. However, the analytical model has been shown to be a fast and economic prediction tool, suitable for preliminary design, or for understanding the interactions effects, including the basic physics of the interaction, such as the jet unsteadiness. The model has been used to examine a wide parametric space of possible interactions, including different Mach number, impinging shock strength and location, and cylinder radius. It has also been used to examine the interaction on power-law shaped blunt bodies, a possible candidate for

  18. 3D numerical modeling of YSO accretion shocks

    Directory of Open Access Journals (Sweden)

    Matsakos T.

    2014-01-01

    Full Text Available The dynamics of YSO accretion shocks is determined by radiative processes as well as the strength and structure of the magnetic field. A quasi-periodic emission signature is theoretically expected to be observed, but observations do not confirm any such pattern. In this work, we assume a uniform background field, in the regime of optically thin energy losses, and we study the multi-dimensional shock evolution in the presence of perturbations, i.e. clumps in the stream and an acoustic energy flux flowing at the base of the chromosphere. We perform 3D MHD simulations using the PLUTO code, modelling locally the impact of the infalling gas onto the chromosphere. We find that the structure and dynamics of the post-shock region is strongly dependent on the plasma-beta (thermal over magnetic pressure, different values of which may give distinguishable emission signatures, relevant for observations. In particular, a strong magnetic field effectively confines the plasma inside its flux tubes and leads to the formation of quasi-independent fibrils. The fibrils may oscillate out of phase and hence the sum of their contributions in the emission results in a smooth overall profile. On the contrary, a weak magnetic field is not found to have any significant effect on the shocked plasma and the turbulent hot slab that forms is found to retain its periodic signature.

  19. Numerical modeling of slow shocks

    International Nuclear Information System (INIS)

    Winske, D.

    1987-01-01

    This paper reviews previous attempt and the present status of efforts to understand the structure of slow shocks by means of time dependent numerical calculations. Studies carried out using MHD or hybrid-kinetic codes have demonstrated qualitative agreement with theory. A number of unresolved issues related to hybrid simulations of the internal shock structure are discussed in some detail. 43 refs., 8 figs

  20. Design and Implementation of a Dual-Mass MEMS Gyroscope with High Shock Resistance.

    Science.gov (United States)

    Gao, Yang; Huang, Libin; Ding, Xukai; Li, Hongsheng

    2018-03-30

    This paper presents the design and implementation of a dual-mass MEMS gyroscope with high shock resistance by improving the in-phase frequency of the gyroscope and by using a two-stage elastic stopper mechanism and proposes a Simulink shock model of the gyroscope equipped with the two-stage stopper mechanism, which is a very efficient method to evaluate the shock resistance of the gyroscope. The structural design takes into account both the mechanical sensitivity and the shock resistance. The design of the primary structure and the analysis of the stopper mechanism are first introduced. Based on the expression of the restoring force of the stopper beam, the analytical shock response model of the gyroscope is obtained. By this model, the shock response of the gyroscope is theoretically analyzed, and the appropriate structural parameters are obtained. Then, the correctness of the model is verified by finite element (FE) analysis, where the contact collision analysis is introduced in detail. The simulation results show that the application of the two-stage elastic stopper mechanism can effectively improve the shock resistance by more than 1900 g and 1500 g in the x - and y -directions, respectively. Finally, experimental verifications are carried out by using a machete hammer on the micro-gyroscope prototype fabricated by the deep dry silicon on glass (DDSOG) technology. The results show that the shock resistance of the prototype along the x -, y - and z -axes all exceed 10,000 g. Moreover, the output of the gyroscope can return to normal in about 2 s.

  1. First-order Fermi acceleration of the diffuse ion population near the earth's bow shock

    Science.gov (United States)

    Forman, M. A.

    1981-01-01

    The flux of 30-65 keV particles observed by the ISEE-3 200 earth radii upstream is shown to be an upstream escape of the energetic ions in the earth's bow shock. A formal solution to the transport equation for the distribution function of energetic particles upstream from an isotropic monoenergetic source of particles/sq cm at a plane shock where the plasma changes speed is found, and escape conditions are defined. The efficiency of the acceleration is calculated to depend on the charge/particle, and fluxes near and far upstream of the shock are described analytically. Any model which takes into account shock acceleration by diffusive scattering with significant escape losses produces the observed spectrum close to the shock. The escape loss upstream is demonstrated to control the spectrum and the variation of flux and anisotropy with distance from the shock.

  2. Stochastic modeling for reliability shocks, burn-in and heterogeneous populations

    CERN Document Server

    Finkelstein, Maxim

    2013-01-01

    Focusing on shocks modeling, burn-in and heterogeneous populations, Stochastic Modeling for Reliability naturally combines these three topics in the unified stochastic framework and presents numerous practical examples that illustrate recent theoretical findings of the authors.  The populations of manufactured items in industry are usually heterogeneous. However, the conventional reliability analysis is performed under the implicit assumption of homogeneity, which can result in distortion of the corresponding reliability indices and various misconceptions. Stochastic Modeling for Reliability fills this gap and presents the basics and further developments of reliability theory for heterogeneous populations. Specifically, the authors consider burn-in as a method of elimination of ‘weak’ items from heterogeneous populations. The real life objects are operating in a changing environment. One of the ways to model an impact of this environment is via the external shocks occurring in accordance with some stocha...

  3. Shock Dynamics in Stellar Outbursts. I. Shock Formation

    Energy Technology Data Exchange (ETDEWEB)

    Ro, Stephen; Matzner, Christopher D., E-mail: ro@astro.utoronto.ca [Department of Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto, ON M5S 3H4 (Canada)

    2017-05-20

    Wave-driven outflows and non-disruptive explosions have been implicated in pre-supernova outbursts, supernova impostors, luminous blue variable eruptions, and some narrow-line and superluminous supernovae. To model these events, we investigate the dynamics of stars set in motion by strong acoustic pulses and wave trains, focusing on nonlinear wave propagation, shock formation, and an early phase of the development of a weak shock. We identify the shock formation radius, showing that a heuristic estimate based on crossing characteristics matches an exact expansion around the wave front and verifying both with numerical experiments. Our general analytical condition for shock formation applies to one-dimensional motions within any static environment, including both eruptions and implosions. We also consider the early phase of shock energy dissipation. We find that waves of super-Eddington acoustic luminosity always create shocks, rather than damping by radiative diffusion. Therefore, shock formation is integral to super-Eddington outbursts.

  4. Hybrid Analytical and Data-Driven Modeling for Feed-Forward Robot Control.

    Science.gov (United States)

    Reinhart, René Felix; Shareef, Zeeshan; Steil, Jochen Jakob

    2017-02-08

    Feed-forward model-based control relies on models of the controlled plant, e.g., in robotics on accurate knowledge of manipulator kinematics or dynamics. However, mechanical and analytical models do not capture all aspects of a plant's intrinsic properties and there remain unmodeled dynamics due to varying parameters, unmodeled friction or soft materials. In this context, machine learning is an alternative suitable technique to extract non-linear plant models from data. However, fully data-based models suffer from inaccuracies as well and are inefficient if they include learning of well known analytical models. This paper thus argues that feed-forward control based on hybrid models comprising an analytical model and a learned error model can significantly improve modeling accuracy. Hybrid modeling here serves the purpose to combine the best of the two modeling worlds. The hybrid modeling methodology is described and the approach is demonstrated for two typical problems in robotics, i.e., inverse kinematics control and computed torque control. The former is performed for a redundant soft robot and the latter for a rigid industrial robot with redundant degrees of freedom, where a complete analytical model is not available for any of the platforms.

  5. Plasma electron signature of magnetic connection to the earth's bow shock: ISEE 3

    International Nuclear Information System (INIS)

    Feldman, W.C.; Anderson, R.C.; Asbridge, J.R.; Bame, S.J.; Gosling, J.T.; Zwickl, R.D.

    1982-01-01

    Enhanced fluxes of low-energy electrons backstreaming from the earth's bow shock have been identified at ISEE 3. When present, these fluxes modify ambient solar wind electron velocity distributions f(v) in characteristic ways that depends on whether ISEE 3 is near the edge, or within the interior of the earth's electron foreshock. Near the edge, energy peaks in f(v) are observed. Such distributions should be locally unstable to electron plasma oscillations. Well within the interior of the foreshock, enhanced fluxes of electrons with energies up to the maximum detected by the Los Alamos electron analyzer (approx.1 keV) are observed over the full backward hemisphere. These electrons can be modelled with an asymptotic power law distribution having index in the range 4< or approx. =p/sub b/s< or approx. =6. At intermediate energies (approx.20--50 eV), twin angular peaks are observed centered on the magnetic field direction B. Also observed at these times are depressions in f(v) at energies less than approx.20 eV that are centered on B. Such distributions having a perpendicular temperature greater than their parallel temperature may be locally unstable to the generation of whistler waves. Analysis of a particularly clean example of connection to the bow shock is consistent with the possiblility that the observed electron fluxes emerge from the forward foot of the electron heating region within bow shock where the electron density and temperature are larger than that of the uperturbed upstream solar wind by a factor of approx.1.2. This analysis also indicates that the electrostatic potential within the forward foot of the shock is between approx.5 and 50 V more positive than that within plasma far upstream at ISEE 3. However, these interpretations depend on the assumption of nearly scatter-free propagation, which may not hold

  6. The futures and forward price differential in the Nordic electricity market

    Energy Technology Data Exchange (ETDEWEB)

    Wimschulte, Jens [University of Regensburg (Germany)

    2010-08-15

    This note investigates price differentials between electricity forwards and portfolios of short-term futures with identical delivery periods at the Nordic Power Exchange (Nord Pool). Since both contracts are traded at the same exchange, there is no influence of, for example, different market microstructure and default risk when examining the effect of the marking-to-market of futures on the price differential. Although the prices of the futures portfolios are, on average, below the corresponding forward prices, these price differentials are, on average, not statistically significant and not economically significant when taking transaction costs into account. Given the characteristics of the electricity contracts under observation, this is consistent with the predictions of the model and indicates efficient pricing in the Nord Pool forward market in contrast to previous results. (author)

  7. The futures and forward price differential in the Nordic electricity market

    International Nuclear Information System (INIS)

    Wimschulte, Jens

    2010-01-01

    This note investigates price differentials between electricity forwards and portfolios of short-term futures with identical delivery periods at the Nordic Power Exchange (Nord Pool). Since both contracts are traded at the same exchange, there is no influence of, for example, different market microstructure and default risk when examining the effect of the marking-to-market of futures on the price differential. Although the prices of the futures portfolios are, on average, below the corresponding forward prices, these price differentials are, on average, not statistically significant and not economically significant when taking transaction costs into account. Given the characteristics of the electricity contracts under observation, this is consistent with the predictions of the model and indicates efficient pricing in the Nord Pool forward market in contrast to previous results. (author)

  8. Modeling shock waves in an ideal gas: combining the Burnett approximation and Holian's conjecture.

    Science.gov (United States)

    He, Yi-Guang; Tang, Xiu-Zhang; Pu, Yi-Kang

    2008-07-01

    We model a shock wave in an ideal gas by combining the Burnett approximation and Holian's conjecture. We use the temperature in the direction of shock propagation rather than the average temperature in the Burnett transport coefficients. The shock wave profiles and shock thickness are compared with other theories. The results are found to agree better with the nonequilibrium molecular dynamics (NEMD) and direct simulation Monte Carlo (DSMC) data than the Burnett equations and the modified Navier-Stokes theory.

  9. Field-scale forward modelling of a shallow marine carbonate ramp: the Upper Jurassic Arab Formation (onshore Abu Dhabi - UAE)

    Science.gov (United States)

    Marchionda, Elisabetta; Deschamps, Rémy; Nader, Fadi H.; Ceriani, Andrea; Di Giulio, Andrea; Lawrence, David; Morad, Daniel J.

    2017-04-01

    The stratigraphic record of a carbonate system is the result of the interplay of several local and global factors that control the physical and the biological responses within a basin. Conceptual models cannot be detailed enough to take into account all the processes that control the deposition of sediments. The evaluation of the key controlling parameters on the sedimentation can be investigated with the use of stratigraphic forward models, that permit dynamic and quantitative simulations of the sedimentary basin infill. This work focuses on an onshore Abu Dhabi field (UAE) and it aims to provide a complete picture of the stratigraphic evolution of Upper Jurassic Arab Formation (Fm.). In this study, we started with the definition of the field-scale conceptual depositional model of the Formation, resulting from facies and well log analysis based on five wells. The Arab Fm. could be defined as a shallow marine carbonate ramp, that ranges from outer ramp deposits to supratidal/evaporitic facies association (from bottom to top). With the reconstruction of the sequence stratigraphic pattern and several paleofacies maps, it was possible to suggest multiple directions of progradations at local scale. Then, a 3D forward modelling tool has been used to i) identify and quantify the controlling parameters on geometries and facies distribution of the Arab Fm.; ii) predict the stratigraphic architecture of the Arab Fm.; and iii) integrate and validate the conceptual model. Numerous constraints were set during the different simulations and sensitivity analyses were performed testing the carbonate production, eustatic oscillations and transport parameters. To verify the geological consistency the 3D forward modelling has been calibrated with the available control points (five wells) in terms of thickness and facies distribution.

  10. Musculoskeletal Modeling of a Forward Lunge Movement:Implications for ACL Loading

    DEFF Research Database (Denmark)

    Alkjaer, T; Wieland, MR; Andersen, MS

    2010-01-01

    are loaded during forward lunge? 2) Does the mechanical equilibrium cause ACL loads? Design: Computational modeling. Setting: The biomechanical forward lunge model was based on experimental motion capture data. Patients or Other Participants: One healthy female subject (height 5 169 cm, weight 5 59.6 kg, age....... The model and the pelvis. The hips were modeled as spherical joints, the knees as hinge joints, and the ankles as universal joints. Each according to a minimum fatigue criterion. Main Outcome Measures: Muscle and joint reaction forces that pulled the tibia in anterior or posterior direction. The forces were...... at the time of peak knee flexion. At peak knee flexion, the knee reaction was the only force that pulled the tibia anteriorly (2880 N). This was primarily counterbalanced by the musculus gluteus maximus (21940 N). Conclusions: The loading of the knee joint during lunging never required any stabilization...

  11. Shock loading and reactive flow modeling studies of void induced AP/AL/HTPB propellant

    Science.gov (United States)

    Miller, P. J.; Lindfors, A. J.

    1998-07-01

    The unreactive Hugoniot of a class 1.3 propellant has been investigated by shock compression experiments. The results are analyzed in terms of an ignition and growth reactive flow model using the DYNA2D hydrocode. The calculated shock ignition parameters of the model show a linear dependence on measured void volume which appears to reproduce the observed gauge records well. Shock waves were generated by impact in a 75 mm single stage powder gun. Manganin and PVDF pressure gauges provided pressure-time histories to 140 kbar. The propellants were of similar formulation differing only in AP particle size and the addition of a burn rate modifer (Fe2O3) from that of previous investigations. Results show neglible effect of AP particle size on shock response in contrast to the addition of Fe2O3 which appears to `stiffen' the unreactive Hugoniot and enhances significantly the reactive rates under shock. The unreactive Hugoniot, within experimental error, compares favorably to the solid AP Hugoniot. Shock experiments were performed on propellant samples strained to induce insitu voids. The material state was quantified by uniaxial tension dialatometry. The experimental records show a direct correlation between void volume (0 to 1.7%) and chemical reactivity behind the shock front. These results are discussed in terms of `hot spot' ignition resulting from the shock collapse of the voids.

  12. Experimental investigation of shock wave diffraction over a single- or double-sphere model

    Science.gov (United States)

    Zhang, L. T.; Wang, T. H.; Hao, L. N.; Huang, B. Q.; Chen, W. J.; Shi, H. H.

    2017-01-01

    In this study, the unsteady drag produced by the interaction of a shock wave with a single- and a double-sphere model is measured using imbedded accelerometers. The shock wave is generated in a horizontal circular shock tube with an inner diameter of 200 mm. The effect of the shock Mach number and the dimensionless distance between spheres is investigated. The time-history of the drag coefficient is obtained based on Fast Fourier Transformation (FFT) band-block filtering and polynomial fitting of the measured acceleration. The measured peak values of the drag coefficient, with the associated uncertainty, are reported.

  13. Gravitational shock waves and extreme magnetomaterial shock waves

    International Nuclear Information System (INIS)

    Lichnerowicz, Andre.

    1975-01-01

    Within an astrophysical context corresponding to high densities, a self-gravitating model is studied, which is the set of an extreme material medium of infinite conductivity and of a magnetic field. Corresponding shock waves generate necessarily, in general, gravitational shock waves [fr

  14. Electrostatic shock structures in dissipative multi-ion dusty plasmas

    Science.gov (United States)

    Elkamash, I. S.; Kourakis, I.

    2018-06-01

    A comprehensive analytical model is introduced for shock excitations in dusty bi-ion plasma mixtures, taking into account collisionality and kinematic (fluid) viscosity. A multicomponent plasma configuration is considered, consisting of positive ions, negative ions, electrons, and a massive charged component in the background (dust). The ionic dynamical scale is focused upon; thus, electrons are assumed to be thermalized, while the dust is stationary. A dissipative hybrid Korteweg-de Vries/Burgers equation is derived. An analytical solution is obtained, in the form of a shock structure (a step-shaped function for the electrostatic potential, or an electric field pulse) whose maximum amplitude in the far downstream region decays in time. The effect of relevant plasma configuration parameters, in addition to dissipation, is investigated. Our work extends earlier studies of ion-acoustic type shock waves in pure (two-component) bi-ion plasma mixtures.

  15. New test of bow-shock models of Herbig-Haro objects

    International Nuclear Information System (INIS)

    Raga, A.C.; Bohm, K.H.; Solf, J.; Max-Planck-Institut fuer Astronomie, Heidelberg, West Germany)

    1986-01-01

    Long-slit, high-resolution spectroscopy of the Herbig-Haro oject HH 32 has shown that the emission-line profiles in all four condensations A, B, C, and D show high- and low-velocity components. The spatial maxima of these two components are always arranged in a double-layer pattern, with the maximum of the high-velocity component 0.6-1.0 arcsecs closer to the central star (AS 353A) than the low-velocity maximum. A study of the emission-line profiles predicted from a model of a radiating bow shock shows that such a double-layer structure appears naturally for this type of flow. In this case both the high-velocity and the low-velocity components come from the post-shock gas, in agreement with the theoretical prediction that it should be very difficult to detect the pre-shock gas observationally. The present results agree qualitatively well with observations of HH 32, strengthening the case for a bow-shock interpretation of this Herbig-Haro object. It is shown that the double-layer effect will be more easily observable for bow shocks which move at a relatively large angle with respect to the plane of the sky (i.e., for Herbig-Haro objects which have large radial velocities). 31 references

  16. DENSITY FLUCTUATIONS UPSTREAM AND DOWNSTREAM OF INTERPLANETARY SHOCKS

    Energy Technology Data Exchange (ETDEWEB)

    Pitňa, A.; Šafránková, J.; Němeček, Z.; Goncharov, O.; Němec, F.; Přech, L. [Charles University, Faculty of Mathematics and Physics, V Holešovičkách 2, 180 00 Prague 8 (Czech Republic); Chen, C. H. K. [Department of Physics, Imperial College London, London SW7 2AZ (United Kingdom); Zastenker, G. N., E-mail: jana.safrankova@mff.cuni.cz [Space Research Institute of Russian Academy of Sciences, Moscow, Russia, Profsoyuznaya ul. 84/32, Moscow 117997 (Russian Federation)

    2016-03-01

    Interplanetary (IP) shocks as typical large-scale disturbances arising from processes such as stream–stream interactions or Interplanetary Coronal Mass Ejection (ICME) launching play a significant role in the energy redistribution, dissipation, particle heating, acceleration, etc. They can change the properties of the turbulent cascade on shorter scales. We focus on changes of the level and spectral properties of ion flux fluctuations upstream and downstream of fast forward oblique shocks. Although the fluctuation level increases by an order of magnitude across the shock, the spectral slope in the magnetohydrodynamic range is conserved. The frequency spectra upstream of IP shocks are the same as those in the solar wind (if not spoiled by foreshock waves). The spectral slopes downstream are roughly proportional to the corresponding slopes upstream, suggesting that the properties of the turbulent cascade are conserved across the shock; thus, the shock does not destroy the shape of the spectrum as turbulence passes through it. Frequency spectra downstream of IP shocks often exhibit “an exponential decay” in the ion kinetic range that was earlier reported at electron scales in the solar wind or at ion scales in the interstellar medium. We suggest that the exponential shape of ion flux spectra in this range is caused by stronger damping of the fluctuations in the downstream region.

  17. Subcritical collisionless shock waves. [in earth space plasma

    Science.gov (United States)

    Mellott, M. M.

    1985-01-01

    The development history of theoretical accounts of low Mach number collisionless shock waves is related to recent observational advancements, with attention to weaker shocks in which shock steepening is limited by dispersion and/or anomalous resistivity and whose character is primarily determined by the dispersive properties of the ambient plasma. Attention has focused on nearly perpendicular shocks where dispersive scale lengths become small and the associated cross-field currents become strong enough to generate significant plasma wave turbulence. A number of oblique, low Mach number bow shocks have been studied on the basis of data from the ISEE dual spacecraft pair, allowing an accurate determination of shock scale lengths.

  18. Strategic forward contracting in electricity markets: modelling and analysis by equilibrium method

    International Nuclear Information System (INIS)

    Chung, T.S.; Zhang, S.H.; Wong, K.P.; Yu, C.W.; Chung, C.Y.

    2004-01-01

    Contractual arrangement plays an important role in mitigating market power in electricity markets. The issue of whether rational generators would voluntarily enter contract markets through a strategic incentive is examined, and the factors which could affect this strategic contracting behaviour. A two-stage game model is presented to formulate the competition of generators in bid-based pool spot markets and contract markets, as well as the interaction between these two markets. The affine supply function equilibrium (SFE) method is used to model competitive bidding for the spot market, while the contract market is modelled with the general conjectural variation method. The proposed methodology allows asymmetric, multiple strategic generators having capacity constraints and affine marginal costs with non-zero intercepts to be taken into account. It is shown that the presence of forward contract markets will complicate the solution to the affine SFE, and a new methodology is developed in this regard. Strategic contracting behaviours are analysed in the context of asymmetric, multiple strategic generators. A numerical example is used to verify theoretical results. It is shown that the observability of contract markets plays an important role in fostering generators' strategic contracting incentive, and that this contracting behaviour could also be affected by generators' cost parameters and demand elasticity. (author)

  19. The Jackson Queueing Network Model Built Using Poisson Measures. Application To A Bank Model

    Directory of Open Access Journals (Sweden)

    Ciuiu Daniel

    2014-07-01

    Full Text Available In this paper we will build a bank model using Poisson measures and Jackson queueing networks. We take into account the relationship between the Poisson and the exponential distributions, and we consider for each credit/deposit type a node where shocks are modeled as the compound Poisson processes. The transmissions of the shocks are modeled as moving between nodes in Jackson queueing networks, the external shocks are modeled as external arrivals, and the absorption of shocks as departures from the network.

  20. Developing a Massively Parallel Forward Projection Radiography Model for Large-Scale Industrial Applications

    Energy Technology Data Exchange (ETDEWEB)

    Bauerle, Matthew [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-08-01

    This project utilizes Graphics Processing Units (GPUs) to compute radiograph simulations for arbitrary objects. The generation of radiographs, also known as the forward projection imaging model, is computationally intensive and not widely utilized. The goal of this research is to develop a massively parallel algorithm that can compute forward projections for objects with a trillion voxels (3D pixels). To achieve this end, the data are divided into blocks that can each t into GPU memory. The forward projected image is also divided into segments to allow for future parallelization and to avoid needless computations.

  1. Notes on the Prediction of Shock-induced Boundary-layer Separation

    Science.gov (United States)

    Lange, Roy H.

    1953-01-01

    The present status of available information relative to the prediction of shock-induced boundary-layer separation is discussed. Experimental results showing the effects of Reynolds number and Mach number on the separation of both laminar and turbulent boundary layer are given and compared with available methods for predicting separation. The flow phenomena associated with separation caused by forward-facing steps, wedges, and incident shock waves are discussed. Applications of the flat-plate data to problems of separation on spoilers, diffusers, and scoop inlets are indicated for turbulent boundary layers.

  2. Price formation in electricity forward markets and the relevance of systematic forecast errors

    International Nuclear Information System (INIS)

    Redl, Christian; Haas, Reinhard; Huber, Claus; Boehm, Bernhard

    2009-01-01

    Since the liberalisation of the European electricity sector, forward and futures contracts have gained significant interest of market participants due to risk management reasons. For pricing of these contracts an important fact concerns the non-storability of electricity. In this case, according to economic theory, forward prices are related to the expected spot prices which are built on fundamental market expectations. In the following article the crucial impact parameters of forward electricity prices and the relationship between forward and future spot prices will be assessed by an empirical analysis of electricity prices at the European Energy Exchange and the Nord Pool Power Exchange. In fact, price formation in the considered markets is influenced by historic spot market prices yielding a biased forecasting power of long-term contracts. Although market and risk assessment measures of market participants and supply and demand shocks can partly explain the futures-spot bias inefficiencies in the analysed forward markets cannot be ruled out. (author)

  3. Development of solar wind shock models with tensor plasma pressure for data analysis. Final technical report, 1 Aug 1970--31 Dec 1975

    International Nuclear Information System (INIS)

    Abraham-shrauner, B.

    1975-01-01

    The development of solar wind shock models with tensor plasma pressure and the comparison of some of the shock models with the satellite data from Pioneer 6 through Pioneer 9 are reported. Theoretically, difficulties were found in non-turbulent fluid shock models for tensor pressure plasmas. For microscopic shock theories nonlinear growth caused by plasma instabilities was frequently not clearly demonstrated to lead to the formation of a shock. As a result no clear choice for a shock model for the bow shock or interplanetary tensor pressure shocks emerged

  4. Particle acceleration and injection problem in relativistic and nonrelativistic shocks

    International Nuclear Information System (INIS)

    Hoshino, M.

    2008-01-01

    Acceleration of charged particles at the collisionless shock is believed to be responsible for production of cosmic rays in a variety of astrophysical objects such as supernova, AGN jet, and GRB etc., and the diffusive shock acceleration model is widely accepted as a key process for generating cosmic rays with non-thermal, power-law energy spectrum. Yet it is not well understood how the collisionless shock can produce such high energy particles. Among several unresolved issues, two major problems are the so-called '' injection '' problem of the supra-thermal particles and the generation of plasma waves and turbulence in and around the shock front. With recent advance of computer simulations, however, it is now possible to discuss those issues together with dynamical evolution of the kinetic shock structure. A wealth of modern astrophysical observations also inspires the dynamical shock structure and acceleration processes along with the theoretical and computational studies on shock. In this presentation, we focus on the plasma wave generation and the associated particle energization that directly links to the injection problem by taking into account the kinetic plasma processes of both non-relativistic and relativistic shocks by using a particle-in-cell simulation. We will also discuss some new particle acceleration mechanisms such as stochastic surfing acceleration and wakefield acceleration by the action of nonlinear electrostatic fields. (author)

  5. Giotto observations of the bow shock at Comet Halley

    International Nuclear Information System (INIS)

    Formisano, V.; Amata, E.; Wilken, B.

    1986-01-01

    Preliminary results from the JPA instrument on Giotto indicate that Comet Halley, even on the flanks, has a bow shock which moves backwards and forwards over the spacecraft. To understand the structure properly will require more detailed investigation of the relationships between three particle populations, cometary ions, solar wind ions and electrons

  6. Well-defined EUV wave associated with a CME-driven shock

    Science.gov (United States)

    Cunha-Silva, R. D.; Selhorst, C. L.; Fernandes, F. C. R.; Oliveira e Silva, A. J.

    2018-05-01

    Aims: We report on a well-defined EUV wave observed by the Extreme Ultraviolet Imager (EUVI) on board the Solar Terrestrial Relations Observatory (STEREO) and the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory (SDO). The event was accompanied by a shock wave driven by a halo CME observed by the Large Angle and Spectrometric Coronagraph (LASCO-C2/C3) on board the Solar and Heliospheric Observatory (SOHO), as evidenced by the occurrence of type II bursts in the metric and dekameter-hectometric wavelength ranges. We investigated the kinematics of the EUV wave front and the radio source with the purpose of verifying the association between the EUV wave and the shock wave. Methods: The EUV wave fronts were determined from the SDO/AIA images by means of two appropriate directions (slices). The heights (radial propagation) of the EUV wave observed by STEREO/EUVI and of the radio source associated with the shock wave were compared considering the whole bandwidth of the harmonic lane of the radio emission, whereas the speed of the shock was estimated using the lowest frequencies of the harmonic lane associated with the undisturbed corona, using an appropriate multiple of the Newkirk (1961, ApJ, 133, 983) density model and taking into account the H/F frequency ratio fH/fF = 2. The speed of the radio source associated with the interplanetary shock was determined using the Mann et al. (1999, A&A, 348, 614) density model. Results: The EUV wave fronts determined from the SDO/AIA images revealed the coexistence of two types of EUV waves, a fast one with a speed of 560 km s-1, and a slower one with a speed of 250 km s-1, which corresponds approximately to one-third of the average speed of the radio source ( 680 km s-1). The radio signature of the interplanetary shock revealed an almost constant speed of 930 km s-1, consistent with the linear speed of the halo CME (950 km s-1) and with the values found for the accelerating coronal shock ( 535-823 km s-1

  7. Shock temperature dependent rate law for plastic bonded explosives

    Science.gov (United States)

    Aslam, Tariq D.

    2018-04-01

    A reactive flow model for the tri-amino-tri-nitro-benzene (TATB) based plastic bonded explosive PBX 9502 (95% TATB, 5% polymeric binder Kel-F 800) is presented. This newly devised model is based primarily on the shock temperature of the material, along with local pressure, and accurately models a broader range of detonation and initiation scenarios. Specifically, sensitivity changes to the initial explosive temperature are accounted for naturally and with a single set of parameters. The equation of state forms for the reactants and products, as well as the thermodynamic closure of pressure and temperature equilibration, are carried over from the Wescott-Stewart-Davis (WSD) model [Wescott et al., J. Appl. Phys. 98, 053514 (2005) and "Modeling detonation diffraction and dead zones in PBX-9502," in Proceedings of the Thirteenth International Detonation Symposium (2006)]. This newly devised model, with Arrhenius state dependence on the shock temperature, based on the WSD equation of states, is denoted by AWSD. Modifying an existing implementation of the WSD model to the AWSD model in a hydrocode is a rather straightforward procedure.

  8. Laser light scattering in a laser-induced argon plasma: Investigations of the shock wave

    Energy Technology Data Exchange (ETDEWEB)

    Pokrzywka, B. [Obserwatorium Astronomiczne na Suhorze, Uniwersytet Pedagogiczny, ulica Podchorazych 2, 30-084 Krakow (Poland); Mendys, A., E-mail: agata.mendys@uj.edu.pl [Instytut Fizyki im. M. Smoluchowskiego, Uniwersytet Jagiellonski, ulica Reymonta 4, 30-059 Krakow (Poland); Dzierzega, K.; Grabiec, M. [Instytut Fizyki im. M. Smoluchowskiego, Uniwersytet Jagiellonski, ulica Reymonta 4, 30-059 Krakow (Poland); Pellerin, S. [GREMI, site de Bourges, Universite d' Orleans, CNRS, rue Gaston Berger BP 4043, 18028 Bourges (France)

    2012-08-15

    Shock wave produced by a laser induced spark in argon at atmospheric pressure was examined using Rayleigh and Thomson scattering. The spark was generated by focusing a laser pulse from the second harmonic ({lambda} = 532 nm) of a nanosecond Nd:YAG laser using an 80 mm focal length lens, with a fluence of 2 kJ{center_dot}cm{sup -2}. Images of the spark emission were recorded for times between 30 ns and 100 {mu}s after the laser pulse in order to characterize its spatial evolution. The position of the shock wave at several instants of its evolution and for several plasma regions was determined from the Rayleigh-scattered light of another nanosecond Nd:YAG laser (532 nm, 40 J{center_dot}cm{sup -2} fluence). Simultaneously, Thomson scattering technique was applied to determine the electron density and temperature in the hot plasma core. Attempts were made to describe the temporal evolution of the shock wave within a self-similar model, both by the simple Sedov-Taylor formula as well as its extension deduced by de Izarra. The temporal radial evolution of the shock position is similar to that obtained within theory taking into account the counter pressure of the ambient gas. Density profiles just behind the shock front are in qualitative agreement with those obtained by numerically solving the Euler equations for instantaneous explosion at a point with counter pressure. - Highlights: Black-Right-Pointing-Pointer We investigated shock wave evolution by Rayleigh scattering method. Black-Right-Pointing-Pointer 2D map of shockwave position for several times after plasma generation is presented. Black-Right-Pointing-Pointer Shock wave evolution is not satisfactorily described within self-similar models. Black-Right-Pointing-Pointer Evolution of shock position similar to theory taking into account counter pressure. Black-Right-Pointing-Pointer Density profile behind the shock similar to numerical solution of Euler equations.

  9. Numerical prediction of shock induced oscillations over a 2D airfoil: Influence of turbulence modelling and test section walls

    Energy Technology Data Exchange (ETDEWEB)

    Thiery, Mylene [Aerodynamics and Energetics Modelling Department, Turbulence Modelling and Prediction Unit, ONERA Toulouse, 2 avenue Edouard Belin, 31055 Toulouse Cedex 4 (France); Coustols, Eric [Aerodynamics and Energetics Modelling Department, Turbulence Modelling and Prediction Unit, ONERA Toulouse, 2 avenue Edouard Belin, 31055 Toulouse Cedex 4 (France)]. E-mail: Eric.Coustols@onera.fr

    2006-08-15

    The present study deals with recent numerical results from on-going research conducted at ONERA/DMAE regarding the prediction of transonic flows, for which shock wave/boundary layer interaction is important. When this interaction is strong enough (M {>=} 1.3), shock induced oscillations (SIO) appear at the suction side of the airfoil and lead to the formation of unsteady separated areas. The main issue is then to perform unsteady computations applying appropriate turbulence modelling and relevant boundary conditions with respect to the test case. Computations were performed with the ONERA elsA software and the URANS-type approach, closure relationships being achieved from transport-equation models. Applications are provided for the OAT15A airfoil data base, well documented for unsteady CFD validation (mean and r.m.s. pressure, phase-averaged LDA data, ...). In this paper, the capabilities of turbulence models are evaluated with two 2D URANS strategies, under free-stream or confined conditions. The latter takes into account the adaptive upper and lower wind-tunnel walls. A complete 3D URANS simulation was then performed to demonstrate the real impact of all lateral wind-tunnel walls on such a flow.

  10. Numerical prediction of shock induced oscillations over a 2D airfoil: Influence of turbulence modelling and test section walls

    International Nuclear Information System (INIS)

    Thiery, Mylene; Coustols, Eric

    2006-01-01

    The present study deals with recent numerical results from on-going research conducted at ONERA/DMAE regarding the prediction of transonic flows, for which shock wave/boundary layer interaction is important. When this interaction is strong enough (M ≥ 1.3), shock induced oscillations (SIO) appear at the suction side of the airfoil and lead to the formation of unsteady separated areas. The main issue is then to perform unsteady computations applying appropriate turbulence modelling and relevant boundary conditions with respect to the test case. Computations were performed with the ONERA elsA software and the URANS-type approach, closure relationships being achieved from transport-equation models. Applications are provided for the OAT15A airfoil data base, well documented for unsteady CFD validation (mean and r.m.s. pressure, phase-averaged LDA data, ...). In this paper, the capabilities of turbulence models are evaluated with two 2D URANS strategies, under free-stream or confined conditions. The latter takes into account the adaptive upper and lower wind-tunnel walls. A complete 3D URANS simulation was then performed to demonstrate the real impact of all lateral wind-tunnel walls on such a flow

  11. An Evaluation of EEG Scanner’s Dependence on the Imaging Technique, Forward Model Computation Method, and Array Dimensionality

    DEFF Research Database (Denmark)

    Stahlhut, Carsten; Attias, Hagai Thomas; Stopczynski, Arkadiusz

    2012-01-01

    EEG source reconstruction involves solving an inverse problem that is highly ill-posed and dependent on a generally fixed forward propagation model. In this contribution we compare a low and high density EEG setup’s dependence on correct forward modeling. Specifically, we examine how different...... forward models affect the source estimates obtained using four inverse solvers Minimum-Norm, LORETA, Minimum-Variance Adaptive Beamformer, and Sparse Bayesian Learning....

  12. Reflection of the solar wind ions at the earth's bow shock: energization

    International Nuclear Information System (INIS)

    Bonifazi, C.; Moreno, G.; Russell, C.T.

    1983-01-01

    The energies of the field-aligned proton beams observed upstream of the earth's bow shock are tested, on a statistical basis, against a simple reflection model. The comparison is carried out using both plasma and magnetic field data collected by the ISEE 2 spacecraft. The observations refer to the period from November 5 to December 20, 1977. According to this model, some of the solar wind protons incident upon the earth's shock front when reflected upstream gain energy by displacement parallel to the interplanetary electric field. The energy gained in the reflection can be described as a function of the angles between the interplanetary magnetic field, the solar wind bulk velocity, and the local shock normal. The task of finding these angles, i.e., the expected source point of the reflected ions at the earth's shock front, has been resolved using both the measured magnetic field direction and actual beam trajectory. The latter method, which takes into account the ion drift velocity, leads to a better agreement between theory and observations when far from the shock. In particular, it allows us to check the energies of the field-aligned beams even when they are observed far from the earth's bow shock (at distances up to 10-15 R/sub E/). We confirm, on a statistical basis, the test of the model recently carried out using the Los Alamos National Laboratory/Max-Planck-extraterrestrische observations on ISEE 1 and 2. We infer that reflected beams can sometimes propagate far upstream of the earth's bow shock without changing their energy properties

  13. Shock Isolation Elements Testing for High Input Loadings. Volume III. Mechanical Shock Isolation Elements.

    Science.gov (United States)

    SHOCK ABSORBERS ), (*GUIDED MISSILE SILOS, SHOCK ABSORBERS ), (*SPRINGS, (*SHOCK(MECHANICS), REDUCTION), TORSION BARS, ELASTOMERS, DAMPING, EQUATIONS OF MOTION, MODEL TESTS, TEST METHODS, NUCLEAR EXPLOSIONS, HARDENING.

  14. Cosmic-ray shock acceleration in oblique MHD shocks

    Science.gov (United States)

    Webb, G. M.; Drury, L. OC.; Volk, H. J.

    1986-01-01

    A one-dimensional, steady-state hydrodynamical model of cosmic-ray acceleration at oblique MHD shocks is presented. Upstream of the shock the incoming thermal plasma is subject to the adverse pressure gradient of the accelerated particles, the J x B force, as well as the thermal gas pressure gradient. The efficiency of the acceleration of cosmic-rays at the shock as a function of the upstream magnetic field obliquity and upstream plasma beta is investigated. Astrophysical applications of the results are briefly discussed.

  15. A preventive maintenance model for leased equipment subject to internal degradation and external shock damage

    International Nuclear Information System (INIS)

    Zhou, Xiaojun; Wu, Changjie; Li, Yanting; Xi, Lifeng

    2016-01-01

    A periodic preventive maintenance modeling method is proposed for leased equipment with continuous internal degradation and stochastic external shock damage considered simultaneously, which can facilitate the equipment lessor to optimize the maintenance schedule for the same kind of equipment rented by different lessees. A novel interactive mechanism between the continuous internal degradation and the stochastic external shock damage is established on the hazard rate of the equipment with integrating the imperfect effect of maintenance. Two improvement factors are defined for the modeling of imperfect maintenance. The number of failures resulting from internal degradation and from external shocks are both mathematically deduced based on this interactive mechanism. The optimal preventive maintenance scheme is obtained by minimizing the cumulative maintenance cost throughout the lease period. Numerical example shows that the proposed preventive maintenance model not only can reflect the reliability status of the equipment but also can clearly distinguish between the impact from internal degradation and that from external shocks. - Highlights: • We propose an imperfect periodic preventive maintenance model for leased equipment. • It can distinguish between the impact from internal degradation and that from external shocks. • An internal–external interactive mechanism is proposed. • Two improvement factors are introduced into the modeling of imperfect maintenance. • The model is helpful for the PM scheduling of the same equipment rented by different lessees.

  16. The forward tracking, an optical model method

    CERN Document Server

    Benayoun, M

    2002-01-01

    This Note describes the so-called Forward Tracking, and the underlying optical model, developed in the context of LHCb-Light studies. Starting from Velo tracks, cheated or found by real pattern recognition, the tracks are found in the ST1-3 chambers after the magnet. The main ingredient to the method is a parameterisation of the track in the ST1-3 region, based on the Velo track parameters and an X seed in one ST station. Performance with the LHCb-Minus and LHCb-Light setups is given.

  17. Surfing and drift acceleration at high mach number quasi-perpendicular shocks

    International Nuclear Information System (INIS)

    Amano, T.

    2008-01-01

    Electron acceleration in high Mach number collisionless shocks relevant to supernova remnant is discussed. By performing one- and two-dimensional particle-in-cell simulations of quasi-perpendicular shocks, we find that energetic electrons are quickly generated in the shock transition region through shock surfing and drift acceleration. The electron energization is strong enough to account for the observed injection at supernova remnant shocks. (author)

  18. Structure of intermediate shocks in collisionless anisotropic Hall-magnetohydrodynamics plasma models

    International Nuclear Information System (INIS)

    Sánchez-Arriaga, G.

    2013-01-01

    The existence of discontinuities within the double-adiabatic Hall-magnetohydrodynamics (MHD) model is discussed. These solutions are transitional layers where some of the plasma properties change from one equilibrium state to another. Under the assumption of traveling wave solutions with velocity C and propagation angle θ with respect to the ambient magnetic field, the Hall-MHD model reduces to a dynamical system and the waves are heteroclinic orbits joining two different fixed points. The analysis of the fixed points rules out the existence of rotational discontinuities. Simple considerations about the Hamiltonian nature of the system show that, unlike dissipative models, the intermediate shock waves are organized in branches in parameter space, i.e., they occur if a given relationship between θ and C is satisfied. Electron-polarized (ion-polarized) shock waves exhibit, in addition to a reversal of the magnetic field component tangential to the shock front, a maximum (minimum) of the magnetic field amplitude. The jumps of the magnetic field and the relative specific volume between the downstream and the upstream states as a function of the plasma properties are presented. The organization in parameter space of localized structures including in the model the influence of finite Larmor radius is discussed

  19. Anaesthetic and other treatments of shell shock: World War I and beyond.

    Science.gov (United States)

    McKenzie, A G

    2012-03-01

    Post-traumatic stress disorder (PTSD) is an important health risk factor for military personnel deployed in modern warfare. In World War I this condition (then known as shell shock or 'neurasthenia') was such a problem that 'forward psychiatry' was begun by French doctors in 1915. Some British doctors tried general anaesthesia as a treatment (ether and chloroform), while others preferred application of electricity. Four British 'forward psychiatric units' were set up in 1917. Hospitals for shell shocked soldiers were also established in Britain, including (for officers) Craiglockhart War Hospital in Edinburgh; patients diagnosed to have more serious psychiatric conditions were transferred to the Royal Edinburgh Asylum. Towards the end of 1918 anaesthetic and electrical treatments of shell shock were gradually displaced by modified Freudian methods psychodynamic intervention. The efficacy of 'forward psychiatry' was controversial. In 1922 the War Office produced a report on shell shock with recommendations for prevention of war neurosis. However, when World War II broke out in 1939, this seemed to have been ignored. The term 'combat fatigue' was introduced as breakdown rates became alarming, and then the value of pre-selection was recognised. At the Maudsley Hospital in London in 1940 barbiturate abreaction was advocated for quick relief from severe anxiety and hysteria, using i.v. anaesthetics: Somnifaine, paraldehyde, Sodium Amytal. 'Pentothal narcosis' and 'narco-analysis' were adopted by British and American military psychiatrists. However, by 1945 medical thinking gradually settled on the same approaches that had seemed to be effective in 1918. The term PTSD was introduced in 1980. In the UK the National Institute for Health and Clinical Excellence (NICE) guidelines for management (2005) recommend trauma-focussed Cognitive Behavioural Therapy and consideration of antidepressants.

  20. Three-Component Forward Modeling for Transient Electromagnetic Method

    Directory of Open Access Journals (Sweden)

    Bin Xiong

    2010-01-01

    Full Text Available In general, the time derivative of vertical magnetic field is considered only in the data interpretation of transient electromagnetic (TEM method. However, to survey in the complex geology structures, this conventional technique has begun gradually to be unsatisfied with the demand of field exploration. To improve the integrated interpretation precision of TEM, it is necessary to study the three-component forward modeling and inversion. In this paper, a three-component forward algorithm for 2.5D TEM based on the independent electric and magnetic field has been developed. The main advantage of the new scheme is that it can reduce the size of the global system matrix to the utmost extent, that is to say, the present is only one fourth of the conventional algorithm. In order to illustrate the feasibility and usefulness of the present algorithm, several typical geoelectric models of the TEM responses produced by loop sources at air-earth interface are presented. The results of the numerical experiments show that the computation speed of the present scheme is increased obviously and three-component interpretation can get the most out of the collected data, from which we can easily analyze or interpret the space characteristic of the abnormity object more comprehensively.

  1. Feed forward neural networks modeling for K-P interactions

    International Nuclear Information System (INIS)

    El-Bakry, M.Y.

    2003-01-01

    Artificial intelligence techniques involving neural networks became vital modeling tools where model dynamics are difficult to track with conventional techniques. The paper make use of the feed forward neural networks (FFNN) to model the charged multiplicity distribution of K-P interactions at high energies. The FFNN was trained using experimental data for the multiplicity distributions at different lab momenta. Results of the FFNN model were compared to that generated using the parton two fireball model and the experimental data. The proposed FFNN model results showed good fitting to the experimental data. The neural network model performance was also tested at non-trained space and was found to be in good agreement with the experimental data

  2. Accounting for model error in Bayesian solutions to hydrogeophysical inverse problems using a local basis approach

    Science.gov (United States)

    Irving, J.; Koepke, C.; Elsheikh, A. H.

    2017-12-01

    Bayesian solutions to geophysical and hydrological inverse problems are dependent upon a forward process model linking subsurface parameters to measured data, which is typically assumed to be known perfectly in the inversion procedure. However, in order to make the stochastic solution of the inverse problem computationally tractable using, for example, Markov-chain-Monte-Carlo (MCMC) methods, fast approximations of the forward model are commonly employed. This introduces model error into the problem, which has the potential to significantly bias posterior statistics and hamper data integration efforts if not properly accounted for. Here, we present a new methodology for addressing the issue of model error in Bayesian solutions to hydrogeophysical inverse problems that is geared towards the common case where these errors cannot be effectively characterized globally through some parametric statistical distribution or locally based on interpolation between a small number of computed realizations. Rather than focusing on the construction of a global or local error model, we instead work towards identification of the model-error component of the residual through a projection-based approach. In this regard, pairs of approximate and detailed model runs are stored in a dictionary that grows at a specified rate during the MCMC inversion procedure. At each iteration, a local model-error basis is constructed for the current test set of model parameters using the K-nearest neighbour entries in the dictionary, which is then used to separate the model error from the other error sources before computing the likelihood of the proposed set of model parameters. We demonstrate the performance of our technique on the inversion of synthetic crosshole ground-penetrating radar traveltime data for three different subsurface parameterizations of varying complexity. The synthetic data are generated using the eikonal equation, whereas a straight-ray forward model is assumed in the inversion

  3. Design and testing of a magnetorheological damper to control both vibration and shock loads for a vehicle crew seat

    Science.gov (United States)

    Becnel, Andrew; Hu, Wei; Hiemenz, Gregory J.; Wereley, Norman M.

    2010-04-01

    A magnetorheological shock absorber (MRSA) prototype is designed, fabricated and tested to integrate semiactive shock and vibration mitigation technology into the existing Expeditionary Fighting Vehicle (EFV) forward seating positions. Utilizing Bingham-Plastic (BP) constitutive fluid relationships and a steady state fluid flow model, the MR valve parameters are determined using magnetic circuit analysis, and subsequently validated via electromagnetic finite element analysis (FEA). Low speed (up to 0.9 m/s) simulations of normal vibration mode operation are conducted on the MRSA prototype using single frequency sinusoidal displacements by a servohydraulic testing machine. The high speed (up to 2.2 m/s) design procedure is verified by using a rail-guided drop test stand to impact a known payload mass onto the damper shaft. A refined hydromechanical model of the MRSA under both cyclic and impact loadings is developed and validated using the measured test data. This ratedependent, mechanisms-based model predicts the time response of the MRSA under both loading conditions. The hydromechanical analysis marks a significant improvement over previous linear models. Key design considerations for the MRSA to accommodate both vibration and shock spectra using a single MR device are presented.

  4. Modeling of the plasma generated in a rarefied hypersonic shock layer

    International Nuclear Information System (INIS)

    Farbar, Erin D.; Boyd, Iain D.

    2010-01-01

    In this study, a rigorous numerical model is developed to simulate the plasma generated in a rarefied, hypersonic shock layer. The model uses the direct simulation Monte Carlo (DSMC) method to treat the particle collisions and the particle-in-cell (PIC) method to simulate the plasma dynamics in a self-consistent manner. The model is applied to compute the flow along the stagnation streamline in front of a blunt body reentering the Earth's atmosphere at very high velocity. Results from the rigorous DSMC-PIC model are compared directly to the standard DSMC modeling approach that uses the ambipolar diffusion approximation to simulate the plasma dynamics. It is demonstrated that the self-consistent computation of the plasma dynamics using the rigorous DSMC-PIC model captures many physical phenomena not accurately predicted by the standard modeling approach. These computations represent the first assessment of the validity of the ambipolar diffusion approximation when predicting the rarefied plasma generated in a hypersonic shock layer.

  5. Development of a Forward Model for the Assimilation of Delay-Doppler Maps (DDMs)

    Science.gov (United States)

    Garrison, J. L.; Huang, F.; Leidner, M.; Annane, B.; Hoffman, R.

    2017-12-01

    Ocean wind measurements from CYGNSS have the potential to improve the observation and analysis of tropical cyclones globally. The standard Level-2 wind product, however, is defined by the 25-km spatial resolution requirement using only 15 out of a total of 187 delay-Doppler bins. The full forward model relating a surface wind field to the delay-Doppler map (DDM) involves a surface integral over the glistening zone (which can be expressed in a variety of more numerically efficient convolutional forms) and incorporates variation of the receiver antenna pattern over the surface. Combined with the well-known ambiguity in the mapping between surface coordinates and delay-Doppler space, this model cannot be inverted to provide wind speed estimates away from the specular point. Two approaches are being studied to improve wind retrievals through use of the full DDM. The first uses sequential DDM measurements which cover a large common area on the sea surface, but provide some variation in geometry due to satellite motion. An Extended Kalman filter (EKF) is used to integrate these sequential observations. Numerical simulations have been performed to show the sensitivity of the filter stability to the initial covariance matrix. Although it was found that the EKF wind field still retains artifacts of the delay-Doppler ambiguity, the wind speed at the specular point can be estimated with lower error than that of the baseline Level 2 products. Another approach is to assimilate DDMs directly into a 2-dimensional, Variational vector wind Analysis Method (VAM). Sample results from this forward model will be generated from idealized and real wind fields, and compared to results from the CYGNSS Science Team End-to-End simulator (E2ES). In both of these approaches, an accurate forward model for the calibrated level 1a DDM data is required. This presentation will emphasize the development of this model and the results of testing the forward model through comparison with early CYGNSS

  6. Modeling secondary accidents identified by traffic shock waves.

    Science.gov (United States)

    Junhua, Wang; Boya, Liu; Lanfang, Zhang; Ragland, David R

    2016-02-01

    The high potential for occurrence and the negative consequences of secondary accidents make them an issue of great concern affecting freeway safety. Using accident records from a three-year period together with California interstate freeway loop data, a dynamic method for more accurate classification based on the traffic shock wave detecting method was used to identify secondary accidents. Spatio-temporal gaps between the primary and secondary accident were proven be fit via a mixture of Weibull and normal distribution. A logistic regression model was developed to investigate major factors contributing to secondary accident occurrence. Traffic shock wave speed and volume at the occurrence of a primary accident were explicitly considered in the model, as a secondary accident is defined as an accident that occurs within the spatio-temporal impact scope of the primary accident. Results show that the shock waves originating in the wake of a primary accident have a more significant impact on the likelihood of a secondary accident occurrence than the effects of traffic volume. Primary accidents with long durations can significantly increase the possibility of secondary accidents. Unsafe speed and weather are other factors contributing to secondary crash occurrence. It is strongly suggested that when police or rescue personnel arrive at the scene of an accident, they should not suddenly block, decrease, or unblock the traffic flow, but instead endeavor to control traffic in a smooth and controlled manner. Also it is important to reduce accident processing time to reduce the risk of secondary accident. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Fetus, fasting, and festival: the persistent effects of in utero social shocks.

    Science.gov (United States)

    Chen, Xi

    2014-09-01

    The Fetal Origins Hypothesis (FOH), put forward in the epidemiological literature and later flourished in the economics literature, suggests that the time in utero is a critical period for human development. However, much attention has been paid to the consequences of fetal exposures to more extreme natural shocks, while less is known about fetal exposures to milder but more commonly experienced social shocks. Using two examples of under-nutrition due to mild social shocks, i.e. Ramadan fasting and festival overspending, this paper summarizes our current knowledge, especially the contribution from economics, and key challenges in exploring fetal exposures to milder social shocks. I also discuss the salient added value of identifying milder versus more extreme fetal shocks. Finally, implications are drawn on individual decisions and public policy to improve children's well-being before they are born or even before their mothers realize that they are pregnant.

  8. Fetus, Fasting, and Festival: The Persistent Effects of In Utero Social Shocks

    Directory of Open Access Journals (Sweden)

    Xi Chen

    2014-09-01

    Full Text Available The Fetal Origins Hypothesis (FOH, put forward in the epidemiological literature and later flourished in the economics literature, suggests that the time in utero is a critical period for human development. However, much attention has been paid to the consequences of fetal exposures to more extreme natural shocks, while less is known about fetal exposures to milder but more commonly experienced social shocks. Using two examples of under-nutrition due to mild social shocks, i.e. Ramadan fasting and festival overspending, this paper summarizes our current knowledge, especially the contribution from economics, and key challenges in exploring fetal exposures to milder social shocks. I also discuss the salient added value of identifying milder versus more extreme fetal shocks. Finally, implications are drawn on individual decisions and public policy to improve children’s well-being before they are born or even before their mothers realize that they are pregnant.

  9. Oscillating nonlinear acoustic shock waves

    DEFF Research Database (Denmark)

    Gaididei, Yuri; Rasmussen, Anders Rønne; Christiansen, Peter Leth

    2016-01-01

    We investigate oscillating shock waves in a tube using a higher order weakly nonlinear acoustic model. The model includes thermoviscous effects and is non isentropic. The oscillating shock waves are generated at one end of the tube by a sinusoidal driver. Numerical simulations show that at resona......We investigate oscillating shock waves in a tube using a higher order weakly nonlinear acoustic model. The model includes thermoviscous effects and is non isentropic. The oscillating shock waves are generated at one end of the tube by a sinusoidal driver. Numerical simulations show...... polynomial in the space and time variables, we find analytical approximations to the observed single shock waves in an infinitely long tube. Using perturbation theory for the driven acoustic system approximative analytical solutions for the off resonant case are determined....

  10. Hybrid Analytical and Data-Driven Modeling for Feed-Forward Robot Control †

    Directory of Open Access Journals (Sweden)

    René Felix Reinhart

    2017-02-01

    Full Text Available Feed-forward model-based control relies on models of the controlled plant, e.g., in robotics on accurate knowledge of manipulator kinematics or dynamics. However, mechanical and analytical models do not capture all aspects of a plant’s intrinsic properties and there remain unmodeled dynamics due to varying parameters, unmodeled friction or soft materials. In this context, machine learning is an alternative suitable technique to extract non-linear plant models from data. However, fully data-based models suffer from inaccuracies as well and are inefficient if they include learning of well known analytical models. This paper thus argues that feed-forward control based on hybrid models comprising an analytical model and a learned error model can significantly improve modeling accuracy. Hybrid modeling here serves the purpose to combine the best of the two modeling worlds. The hybrid modeling methodology is described and the approach is demonstrated for two typical problems in robotics, i.e., inverse kinematics control and computed torque control. The former is performed for a redundant soft robot and the latter for a rigid industrial robot with redundant degrees of freedom, where a complete analytical model is not available for any of the platforms.

  11. Hybrid Analytical and Data-Driven Modeling for Feed-Forward Robot Control †

    Science.gov (United States)

    Reinhart, René Felix; Shareef, Zeeshan; Steil, Jochen Jakob

    2017-01-01

    Feed-forward model-based control relies on models of the controlled plant, e.g., in robotics on accurate knowledge of manipulator kinematics or dynamics. However, mechanical and analytical models do not capture all aspects of a plant’s intrinsic properties and there remain unmodeled dynamics due to varying parameters, unmodeled friction or soft materials. In this context, machine learning is an alternative suitable technique to extract non-linear plant models from data. However, fully data-based models suffer from inaccuracies as well and are inefficient if they include learning of well known analytical models. This paper thus argues that feed-forward control based on hybrid models comprising an analytical model and a learned error model can significantly improve modeling accuracy. Hybrid modeling here serves the purpose to combine the best of the two modeling worlds. The hybrid modeling methodology is described and the approach is demonstrated for two typical problems in robotics, i.e., inverse kinematics control and computed torque control. The former is performed for a redundant soft robot and the latter for a rigid industrial robot with redundant degrees of freedom, where a complete analytical model is not available for any of the platforms. PMID:28208697

  12. Critical point anomalies include expansion shock waves

    Energy Technology Data Exchange (ETDEWEB)

    Nannan, N. R., E-mail: ryan.nannan@uvs.edu [Mechanical Engineering Discipline, Anton de Kom University of Suriname, Leysweg 86, PO Box 9212, Paramaribo, Suriname and Process and Energy Department, Delft University of Technology, Leeghwaterstraat 44, 2628 CA Delft (Netherlands); Guardone, A., E-mail: alberto.guardone@polimi.it [Department of Aerospace Science and Technology, Politecnico di Milano, Via La Masa 34, 20156 Milano (Italy); Colonna, P., E-mail: p.colonna@tudelft.nl [Propulsion and Power, Delft University of Technology, Kluyverweg 1, 2629 HS Delft (Netherlands)

    2014-02-15

    From first-principle fluid dynamics, complemented by a rigorous state equation accounting for critical anomalies, we discovered that expansion shock waves may occur in the vicinity of the liquid-vapor critical point in the two-phase region. Due to universality of near-critical thermodynamics, the result is valid for any common pure fluid in which molecular interactions are only short-range, namely, for so-called 3-dimensional Ising-like systems, and under the assumption of thermodynamic equilibrium. In addition to rarefaction shock waves, diverse non-classical effects are admissible, including composite compressive shock-fan-shock waves, due to the change of sign of the fundamental derivative of gasdynamics.

  13. Current Account and Real Exchange Rate Dynamics in Indonesia

    Directory of Open Access Journals (Sweden)

    Firman Mochtar

    2015-07-01

    Full Text Available We analyze the role of both permanent and temporary factors in affecting the Indonesian current account and real exchange dynamics before and after 2000. Adopting Lee and Chinn (1998; 2006 approach as well as Chinn et al. (2007, two results stand out. First, we confirm that the behavior of the real exchange rate has altered since 2000. Identifications show that permanent shocks are the primary causes for the movement of the real exchange rate after 2000, while in the period before 2000, the Indonesian real exchange rate changes are characterized by greater dominance of temporary shocks. The apparent change in the real exchange rate behavior may be strongly justified by the implementation of free-floating exchange rate system since August 1997. Second, the shift of the real exchange rate behavior after 2000 does not necessarily affect the current account dynamics. Empirical evidence confirms that the variance of current account post 2000 remains largely due to temporary shocks. Albeit having increasing influence, permanent shocks have insignificant effect in explaining fluctuations of the current account. In this sense, the current account surplus after 2000 is attributed largely to nominal variables such as price increase, while the impact of productivity improvement is still limited.

  14. Disequilibrium macro model and catastrophe theory: the case of an oil shock

    Energy Technology Data Exchange (ETDEWEB)

    German, I.

    1983-01-01

    This study builds a simple disequilibrium macromodel of a small open economy that imports oil from an exogenous unit. The model is motivated by very slow adjustment of prices and wages to disequilibrium. Output on the other hand adjusts to its final level instantaneously. A rationing scheme is specified that explicitly takes into account the spillover effects and differentiates between notional, effective, and actual quantities. In a Solow-Stiglitz (1968) setting, a dynamic model is developed in which the dynamic forces depend on the economic environment specified by the Malinvandian regimes: Classical Unemployment, Keynesian Unemployment, Repressed Inflation, and the Walrasian Equilibrium. Given that dynamic system, the author seeks to identify the stationary points of the system (quasi-equilibria) and to find their stability properties. To the disequilibrium model an oil shock is introduced and its effects on employment, real output, real wage, and the stationary points of the system are investigated. A one-time increase (decrease) in the real price of oil and a continuous increase (decrease) in the real price of oil are considered. The path the economy takes and, in particular, the continuous and discontinuous behavior of the quasi-equilibria are investigated. Finally, the model government policy is incorporated and different policy alternatives are studied.

  15. On possible structures of transverse ionizing shock waves

    International Nuclear Information System (INIS)

    Liberman, M.A.; Velikovich, A.L.

    1978-01-01

    The possible structures of ionizing shock waves propagating in gases across the magnetic field are investigated taking account of both ionization kinetics and the non-isothermality of the plasma which is formed within the shock front. It is shown that a definite factor in shaping the structure of the transverse ionizing shock wave is photo-ionization of the neutral gas across the front. The paper includes a study of the evolution of the transverse ionizing shock front with regard to photo-ionization, disclosing that a stable stationary shock structure emerges only in boundary conditions which are close to magnetohydrodynamic ones, i.e. upsilon 1 H 1 = upsilon 2 H 2 . In the case of strong transverse ionizing shock waves, when the flux of ionizing radiation across the front is great, the shock structure is obviously magnetohydrodynamic. (author)

  16. Model atmospheres with periodic shocks. [pulsations and mass loss in variable stars

    Science.gov (United States)

    Bowen, G. H.

    1989-01-01

    The pulsation of a long-period variable star generates shock waves which dramatically affect the structure of the star's atmosphere and produce conditions that lead to rapid mass loss. Numerical modeling of atmospheres with periodic shocks is being pursued to study the processes involved and the evolutionary consequences for the stars. It is characteristic of these complex dynamical systems that most effects result from the interaction of various time-dependent processes.

  17. Epicardial shock-wave therapy improves ventricular function in a porcine model of ischaemic heart disease.

    Science.gov (United States)

    Holfeld, Johannes; Zimpfer, Daniel; Albrecht-Schgoer, Karin; Stojadinovic, Alexander; Paulus, Patrick; Dumfarth, Julia; Thomas, Anita; Lobenwein, Daniela; Tepeköylü, Can; Rosenhek, Raphael; Schaden, Wolfgang; Kirchmair, Rudolf; Aharinejad, Seyedhossein; Grimm, Michael

    2016-12-01

    Previously we have shown that epicardial shock-wave therapy improves left ventricular ejection fraction (LVEF) in a rat model of myocardial infarction. In the present experiments we aimed to address the safety and efficacy of epicardial shock-wave therapy in a preclinical large animal model and to further evaluate mechanisms of action of this novel therapy. Four weeks after left anterior descending (LAD) artery ligation in pigs, the animals underwent re-thoracotomy with (shock-wave group, n = 6) or without (control group, n = 5) epicardial shock waves (300 impulses at 0.38 mJ/mm 2 ) applied to the infarcted anterior wall. Efficacy endpoints were improvement of LVEF and induction of angiogenesis 6 weeks after shock-wave therapy. Safety endpoints were haemodynamic stability during treatment and myocardial damage. Four weeks after LAD ligation, LVEF decreased in both the shock-wave (43 ± 3%, p wave animals 6 weeks after treatment (62 ± 9%, p = 0.006); no improvement was observed in controls (41 ± 4%, p = 0.36), yielding a significant difference. Quantitative histology revealed significant angiogenesis 6 weeks after treatment (controls 2 ± 0.4 arterioles/high-power field vs treatment group 9 ± 3; p = 0.004). No acute or chronic adverse effects were observed. As a potential mechanism of action in vitro experiments showed stimulation of VEGF receptors after shock-wave treatment in human coronary artery endothelial cells. Epicardial shock-wave treatment in a large animal model of ischaemic heart failure exerted a positive effect on LVEF improvement and did not show any adverse effects. Angiogenesis was induced by stimulation of VEGF receptors. Copyright © 2014 John Wiley & Sons, Ltd. Copyright © 2014 John Wiley & Sons, Ltd.

  18. THE EXPANSION OF ACCOUNTING TO THE CLOUD

    Directory of Open Access Journals (Sweden)

    Otilia DIMITRIU

    2014-06-01

    Full Text Available The world today is witnessing an explosion of technologies that are remodelling our entire reality. The traditional way of thinking in the business field has shifted towards a new IT breakthrough: cloud computing. The cloud paradigm has emerged as a natural step in the evolution of the internet and has captivated everyone’s attention. The accounting profession itself has found a mean to optimize its activity through cloud-based applications. By reviewing the latest and most relevant studies and practitioners’ reports, this paper is focused on the implications of cloud accounting, as the fusion between cloud technologies and accounting. We addressed this innovative topic through a business-oriented approach and we brought forward a new accounting model that might revolutionize the economic landscape.

  19. Storage and the electricity forward premium

    International Nuclear Information System (INIS)

    Douglas, Stratford; Popova, Julia

    2008-01-01

    We develop and test a model describing the influence of natural gas storage inventories on the electricity forward premium. The model is constructed by linking the effect of gas storage constraints on the higher moments of the distribution of electricity prices to an established model of the effect of those moments on the forward premium. The model predicts a sharply negative effect of gas storage inventories on the electricity forward premium when demand for electricity is high and space-heating demand for gas is low. Empirical results, based on PJM data, strongly support the model. (author)

  20. Long Maturity Forward Rates

    DEFF Research Database (Denmark)

    Christiansen, Charlotte

    2001-01-01

    The paper aims to improve the knowledge of the empirical properties of the long maturity region of the forward rate curve. Firstly, the theoretical negative correlation between the slope at the long end of the forward rate curve and the term structure variance is recovered empirically and found...... to be statistically significant. Secondly, the expectations hypothesis is analyzed for the long maturity region of the forward rate curve using "forward rate" regressions. The expectations hypothesis is numerically close to being accepted but is statistically rejected. The findings provide mixed support...... for the affine term structure model....

  1. The interaction of laser driven shock waves with a spherical density perturbation

    International Nuclear Information System (INIS)

    Bach, D.R; Budil, K.S.; Klein, R.I.; Perry, T.S.

    1999-01-01

    Strong shock waves produced by illumination of a CH target by laser produced x-rays were driven through a copper sphere. The motion and deformation of the sphere were measured using radiographs generated by backlighting the sphere with a large area backlighter. The sphere became non-spherical after the passage of the shock, having a complicated down-stream structure. This was an instability-induced structure that was predicted by calculations. The experiment is a convenient laboratory model of the complicated interactions occurring in much larger systems such as in astrophysics in the interaction of shocks formed in the interstellar medium with various types of clouds. In particular, the experiment is a useful tool for checking the computational ability of the new generation ASCI computers, as it requires three-dimensional modeling. This experiment has shown that three dimensional calculations seem to be necessary to describe major features observed in the experiment. Any attempt to explain hydrodynamic behavior with similar instabilities must take into account these three dimensional effects

  2. 75 FR 25981 - Cost Accounting Standards: Harmonization of Cost Accounting Standards 412 and 413 With the...

    Science.gov (United States)

    2010-05-10

    ... case the pension plan and trust) will continue in business, and follows accrual accounting principles... for the forward-pricing of Government contracts over the near future. Financial statement accounting... financial accounting theory and reporting as well as Congressional changes to ERISA. After considering the...

  3. Motion of shocks through interplanetary streams

    International Nuclear Information System (INIS)

    Burlaga, L.F.; Scudder, J.D.

    1975-01-01

    A model for the motion of flare-generated shocks through interplanetary streams is presented, illustrating the effects of a stream-shock interaction on the shock strength and geometry. It is a gas dynamic calculation based on Whitham's method and on an empirical approximation for the relevant characteristics of streams. The results show that the Mach number of a shock can decrease appreciably to near unity in the interaction region ahead of streams and that the interaction of a spherically symmetric shock with a spiral-shaped corotating stream can cause significant distortions of the initial shock front geometry. The geometry of the February 15--16, 1967, shock discussed by Lepping and Chao (1972) is qualitatively explained by this model

  4. Ionization relaxation in shock-heated krypton-argon mixtures

    International Nuclear Information System (INIS)

    Ezumi, Hiromichi; Kawamura, Masahiko; Yokota, Toshiaki.

    1977-01-01

    The ionization relaxation processes behind shock waves in pure krypton and krypton-argon mixtures have been investigated using a Mach-Zehnder interferometer technique. The incident shock velocity was fixed in the neighborhood of Us=2800 m/sec, and the initial pressure was fixed at 0.95 Torr. The experimental results were compared with theoretical values based on the two-step collisional ionization model taking into account of the wall boundary-layer effect. The slope constants of excitation cross section against relative kinetic energy between krypton atom-atom collisions, krypton atom-electron collisions, and krypton-argon atom-atom collisions were determined to be 4.2 x 10 -19 cm 2 /eV, 1.2 x 10 -17 cm 2 /eV, and 4.2 x 10 -19 cm 2 /eV, respectively. (auth.)

  5. Implementing a trustworthy cost-accounting model.

    Science.gov (United States)

    Spence, Jay; Seargeant, Dan

    2015-03-01

    Hospitals and health systems can develop an effective cost-accounting model and maximize the effectiveness of their cost-accounting teams by focusing on six key areas: Implementing an enhanced data model. Reconciling data efficiently. Accommodating multiple cost-modeling techniques. Improving transparency of cost allocations. Securing department manager participation. Providing essential education and training to staff members and stakeholders.

  6. Understanding financial crisis through accounting models

    NARCIS (Netherlands)

    Bezemer, D.J.

    2010-01-01

    This paper presents evidence that accounting (or flow-of-funds) macroeconomic models helped anticipate the credit crisis and economic recession Equilibrium models ubiquitous in mainstream policy and research did not This study traces the Intellectual pedigrees of the accounting approach as an

  7. Modelling in Accounting. Theoretical and Practical Dimensions

    Directory of Open Access Journals (Sweden)

    Teresa Szot-Gabryś

    2010-10-01

    Full Text Available Accounting in the theoretical approach is a scientific discipline based on specific paradigms. In the practical aspect, accounting manifests itself through the introduction of a system for measurement of economic quantities which operates in a particular business entity. A characteristic of accounting is its flexibility and ability of adaptation to information needs of information recipients. One of the main currents in the development of accounting theory and practice is to cover by economic measurements areas which have not been hitherto covered by any accounting system (it applies, for example, to small businesses, agricultural farms, human capital, which requires the development of an appropriate theoretical and practical model. The article illustrates the issue of modelling in accounting based on the example of an accounting model developed for small businesses, i.e. economic entities which are not obliged by law to keep accounting records.

  8. The theory of ionizing shock waves in a magnetic field

    International Nuclear Information System (INIS)

    Liberman, M.A.; Velikovich, A.L.

    1981-01-01

    The general theory of ionizing shock waves in a magnetic field is constructed. The theory takes into account precursor ionization of a neutral gas ahead of the shock wave front, caused by photo-ionization, as well as by the impact ionization with electrons accelerated by a transverse electric field induced by the shock front in the incident flow of a neutral gas. The concept of shock wave ionization stability, being basic in the theory of ionizing shock waves in a magnetic field, is introduced. The ionizing shock wave structures are shown to transform from the GD regime at a low shock velocity to the MHD regime at an enhanced intensity of the shock wave. The abruptness of such a transition is determined by precursor photo-ionization. (author)

  9. Message-driven factors influencing opening and forwarding of mobile advertising messages

    OpenAIRE

    Sanz Blas, Silvia; Ruiz Mafé, Carla; Martí Parreño, José

    2015-01-01

    This work aims to analyse the influence of message-driven factors -informativeness, ubiquity, frequency and personalization- on consumer attitude and behaviour -opening and forwarding- towards mobile advertising messages. A theoretical model was developed and empirically tested using a sample of 355 Spanish teenager mobile users. Findings show that frequency is the dimension accounting the most -and significantly- of the four message-driven factors analysed on attitude toward mobile advertisi...

  10. Brain Imaging, Forward Inference, and Theories of Reasoning

    Science.gov (United States)

    Heit, Evan

    2015-01-01

    This review focuses on the issue of how neuroimaging studies address theoretical accounts of reasoning, through the lens of the method of forward inference (Henson, 2005, 2006). After theories of deductive and inductive reasoning are briefly presented, the method of forward inference for distinguishing between psychological theories based on brain imaging evidence is critically reviewed. Brain imaging studies of reasoning, comparing deductive and inductive arguments, comparing meaningful versus non-meaningful material, investigating hemispheric localization, and comparing conditional and relational arguments, are assessed in light of the method of forward inference. Finally, conclusions are drawn with regard to future research opportunities. PMID:25620926

  11. Brain imaging, forward inference, and theories of reasoning.

    Science.gov (United States)

    Heit, Evan

    2014-01-01

    This review focuses on the issue of how neuroimaging studies address theoretical accounts of reasoning, through the lens of the method of forward inference (Henson, 2005, 2006). After theories of deductive and inductive reasoning are briefly presented, the method of forward inference for distinguishing between psychological theories based on brain imaging evidence is critically reviewed. Brain imaging studies of reasoning, comparing deductive and inductive arguments, comparing meaningful versus non-meaningful material, investigating hemispheric localization, and comparing conditional and relational arguments, are assessed in light of the method of forward inference. Finally, conclusions are drawn with regard to future research opportunities.

  12. Atmospheric NLTE models for the spectroscopic analysis of blue stars with winds. III. X-ray emission from wind-embedded shocks

    Science.gov (United States)

    Carneiro, L. P.; Puls, J.; Sundqvist, J. O.; Hoffmann, T. L.

    2016-05-01

    Context. Extreme ultraviolet (EUV) and X-ray radiation emitted from wind-embedded shocks in hot, massive stars can affect the ionization balance in their outer atmospheres and can be the mechanism responsible for producing highly ionized atomic species detected in stellar wind UV spectra. Aims: To allow for these processes in the context of spectral analysis, we have implemented the emission from wind-embedded shocks and related physics into our unified, NLTE model atmosphere/spectrum synthesis code FASTWIND. Methods: The shock structure and corresponding emission is calculated as a function of user-supplied parameters (volume filling factor, radial stratification of shock strength, and radial onset of emission). We account for a temperature and density stratification inside the postshock cooling zones, calculated for radiative and adiabatic cooling in the inner and outer wind, respectively. The high-energy absorption of the cool wind is considered by adding important K-shell opacities, and corresponding Auger ionization rates have been included in the NLTE network. To test our implementation and to check the resulting effects, we calculated a comprehensive model grid with a variety of X-ray emission parameters. Results: We tested and verified our implementation carefully against corresponding results from various alternative model atmosphere codes, and studied the effects from shock emission for important ions from He, C, N, O, Si, and P. Surprisingly, dielectronic recombination turned out to play an essential role for the ionization balance of O iv/O v (particularly in dwarfs with Teff~ 45 000 K). Finally, we investigated the frequency dependence and radial behavior of the mass absorption coefficient, κν(r), which is important in the context of X-ray line formation in massive star winds. Conclusions: In almost all of the cases considered, direct ionization is of major influence because of the enhanced EUV radiation field, and Auger ionization only affects N vi

  13. Experimental Investigation on Airfoil Shock Control by Plasma Aerodynamic Actuation

    International Nuclear Information System (INIS)

    Sun Quan; Cheng Bangqin; Li Yinghong; Cui Wei; Jin Di; Li Jun

    2013-01-01

    An experimental investigation on airfoil (NACA64—215) shock control is performed by plasma aerodynamic actuation in a supersonic tunnel (Ma = 2). The results of schlieren and pressure measurement show that when plasma aerodynamic actuation is applied, the position moves forward and the intensity of shock at the head of the airfoil weakens. With the increase in actuating voltage, the total pressure measured at the head of the airfoil increases, which means that the shock intensity decreases and the control effect increases. The best actuation effect is caused by upwind-direction actuation with a magnetic field, and then downwind-direction actuation with a magnetic field, while the control effect of aerodynamic actuation without a magnetic field is the most inconspicuous. The mean intensity of the normal shock at the head of the airfoil is relatively decreased by 16.33%, and the normal shock intensity is relatively reduced by 27.5% when 1000 V actuating voltage and upwind-direction actuation are applied with a magnetic field. This paper theoretically analyzes the Joule heating effect generated by DC discharge and the Lorentz force effect caused by the magnetic field. The discharge characteristics are compared for all kinds of actuation conditions to reveal the mechanism of shock control by plasma aerodynamic actuation

  14. Bubble Dynamics and Shock Waves

    CERN Document Server

    2013-01-01

    This volume of the Shock Wave Science and Technology Reference Library is concerned with the interplay between bubble dynamics and shock waves. It is divided into four parts containing twelve chapters written by eminent scientists. Topics discussed include shock wave emission by laser generated bubbles (W Lauterborn, A Vogel), pulsating bubbles near boundaries (DM Leppinen, QX Wang, JR Blake), interaction of shock waves with bubble clouds (CD Ohl, SW Ohl), shock propagation in polydispersed bubbly liquids by model equations (K Ando, T Colonius, CE Brennen. T Yano, T Kanagawa,  M Watanabe, S Fujikawa) and by DNS (G Tryggvason, S Dabiri), shocks in cavitating flows (NA Adams, SJ Schmidt, CF Delale, GH Schnerr, S Pasinlioglu) together with applications involving encapsulated bubble dynamics in imaging (AA Doinikov, A Novell, JM Escoffre, A Bouakaz),  shock wave lithotripsy (P Zhong), sterilization of ships’ ballast water (A Abe, H Mimura) and bubbly flow model of volcano eruptions ((VK Kedrinskii, K Takayama...

  15. Experimentally validated multiphysics computational model of focusing and shock wave formation in an electromagnetic lithotripter.

    Science.gov (United States)

    Fovargue, Daniel E; Mitran, Sorin; Smith, Nathan B; Sankin, Georgy N; Simmons, Walter N; Zhong, Pei

    2013-08-01

    A multiphysics computational model of the focusing of an acoustic pulse and subsequent shock wave formation that occurs during extracorporeal shock wave lithotripsy is presented. In the electromagnetic lithotripter modeled in this work the focusing is achieved via a polystyrene acoustic lens. The transition of the acoustic pulse through the solid lens is modeled by the linear elasticity equations and the subsequent shock wave formation in water is modeled by the Euler equations with a Tait equation of state. Both sets of equations are solved simultaneously in subsets of a single computational domain within the BEARCLAW framework which uses a finite-volume Riemann solver approach. This model is first validated against experimental measurements with a standard (or original) lens design. The model is then used to successfully predict the effects of a lens modification in the form of an annular ring cut. A second model which includes a kidney stone simulant in the domain is also presented. Within the stone the linear elasticity equations incorporate a simple damage model.

  16. Coronal Magnetism and Forward Solarsoft Idl Package

    Science.gov (United States)

    Gibson, S. E.

    2014-12-01

    The FORWARD suite of Solar Soft IDL codes is a community resource for model-data comparison, with a particular emphasis on analyzing coronal magnetic fields. FORWARD may be used both to synthesize a broad range of coronal observables, and to access and compare to existing data. FORWARD works with numerical model datacubes, interfaces with the web-served Predictive Science Inc MAS simulation datacubes and the Solar Soft IDL Potential Field Source Surface (PFSS) package, and also includes several analytic models (more can be added). It connects to the Virtual Solar Observatory and other web-served observations to download data in a format directly comparable to model predictions. It utilizes the CHIANTI database in modeling UV/EUV lines, and links to the CLE polarimetry synthesis code for forbidden coronal lines. FORWARD enables "forward-fitting" of specific observations, and helps to build intuition into how the physical properties of coronal magnetic structures translate to observable properties.

  17. Modelling "reality" in tectonics: Simulation of the mechanical evolution of the Jura Mountains-Molasse Basin system, and routes to forward-inverse modelling of fold thrust belts.

    Science.gov (United States)

    Hindle, David; Kley, Jonas

    2016-04-01

    The ultimate validation of any numerical model of any geological process comes when it can accurately forward model a case study from the geological record. However, as the example of the Jura-Molasse fold thrust belt demonstrates, geological information on even the most basic aspects of the present day state of such systems is highly incomplete and usually known only with large uncertainties. Fold thrust-belts are studied and understood by geologists in an iterative process of constructing their subsurface geometries and structures (folds, faults, bedding etc) based on limited subsurface information from boreholes, tunnels or seismic data where available, and surface information on outcrops of different layers and their dips. This data is usually processed through geometric models which involve conservation of line length of different beds over the length of an entire cross section. Constructing such sections is the art of cross section balancing. A balanced cross section can be easily restored to its pre-deformation state, assuming (usually) originally horizontal bedding to remove the effects of folding and faulting. Such a pre-deformation state can then form an initial condition for a forward mechanical model of the section. A mechanical model introduces new parameters into the system such as rock elasticity, cohesion, and frictional properties. However, a forward mechanical model can also potentially show the continuous evolution of a fold thrust belt, including dynamic quantities like stress. Moreover, a forward mechanical model, if correct in most aspects, should match in its final state, the present day geological cross section it is simulating. However, when attempting to achieve a match between geometric and mechanical models, it becomes clear that many more aspects of the geodynamic history of a fold thrust belt have to be taken into account. Erosion of the uppermost layers of an evolving thrust belt is the most obvious one of these. This can potentially

  18. Meso-scale modelling of the heat conductivity effect on the shock response of a porous material

    Science.gov (United States)

    Resnyansky, A. D.

    2017-06-01

    Understanding of deformation mechanisms of porous materials under shock compression is important for tailoring material properties at the shock manufacturing of advanced materials from substrate powders and for studying the response of porous materials under shock loading. Numerical set-up of the present work considers a set of solid particles separated by air representing a volume of porous material. Condensed material in the meso-scale set-up is simulated with a viscoelastic rate sensitive material model with heat conduction formulated from the principles of irreversible thermodynamics. The model is implemented in the CTH shock physics code. The meso-scale CTH simulation of the shock loading of the representative volume reveals the mechanism of pore collapse and shows in detail the transition from a high porosity case typical for abnormal Hugoniot response to a moderate porosity case typical for conventional Hugoniot response. Results of the analysis agree with previous analytical considerations and support hypotheses used in the two-phase approach.

  19. Questioning Stakeholder Legitimacy: A Philanthropic Accountability Model.

    Science.gov (United States)

    Kraeger, Patsy; Robichau, Robbie

    2017-01-01

    Philanthropic organizations contribute to important work that solves complex problems to strengthen communities. Many of these organizations are moving toward engaging in public policy work, in addition to funding programs. This paper raises questions of legitimacy for foundations, as well as issues of transparency and accountability in a pluralistic democracy. Measures of civic health also inform how philanthropic organizations can be accountable to stakeholders. We propose a holistic model for philanthropic accountability that combines elements of transparency and performance accountability, as well as practices associated with the American pluralistic model for democratic accountability. We argue that philanthropic institutions should seek stakeholder and public input when shaping any public policy agenda. This paper suggests a new paradigm, called philanthropic accountability that can be used for legitimacy and democratic governance of private foundations engaged in policy work. The Philanthropic Accountability Model can be empirically tested and used as a governance tool.

  20. Shock wave collisions and thermalization in AdS5

    International Nuclear Information System (INIS)

    Kovchegov, Yuri V.

    2011-01-01

    We study heavy ion collisions at strong 't Hooft coupling using AdS/CFT correspondence. According to the AdS/CFT dictionary heavy ion collisions correspond to gravitational shock wave collisions in AdS 5 . We construct the metric in the forward light cone after the collision perturbatively through expansion of Einstein equations in graviton exchanges. We obtain an analytic expression for the metric including all-order graviton exchanges with one shock wave, while keeping the exchanges with another shock wave at the lowest order. We read off the corresponding energy-momentum tensor of the produced medium. Unfortunately this energy-momentum tensor does not correspond to ideal hydrodynamics, indicating that higher order graviton exchanges are needed to construct the full solution of the problem. We also show that shock waves must completely stop almost immediately after the collision in AdS 5 , which, on the field theory side, corresponds to complete nuclear stopping due to strong coupling effects, likely leading to Landau hydrodynamics. Finally, we perform trapped surface analysis of the shock wave collisions demonstrating that a bulk black hole, corresponding to ideal hydrodynamics on the boundary, has to be created in such collisions, thus constructing a proof of thermalization in heavy ion collisions at strong coupling. (author)

  1. Modeling Shocks Detected by Voyager 1 in the Local Interstellar Medium

    Energy Technology Data Exchange (ETDEWEB)

    Kim, T. K.; Pogorelov, N. V. [Center for Space Plasma and Aeronomic Research, University of Alabama in Huntsville, Huntsville, AL 35805 (United States); Burlaga, L. F. [NASA Goddard Space Flight Center, Code 673, Greenbelt, MD 20771 (United States)

    2017-07-10

    The magnetometer (MAG) on Voyager 1 ( V1 ) has been sampling the interstellar magnetic field (ISMF) since 2012 August. The V1 MAG observations have shown draped ISMF in the very local interstellar medium disturbed occasionally by significant enhancements in magnetic field strength. Using a three-dimensional, data-driven, multi-fluid model, we investigated these magnetic field enhancements beyond the heliopause that are supposedly associated with solar transients. To introduce time-dependent effects at the inner boundary at 1 au, we used daily averages of the solar wind parameters from the OMNI data set. The model ISMF strength, direction, and proton number density are compared with V1 data beyond the heliopause. The model reproduced the large-scale fluctuations between 2012.652 and 2016.652, including major events around 2012.9 and 2014.6. The model also predicts shocks arriving at V1 around 2017.395 and 2019.502. Another model driven by OMNI data with interplanetary coronal mass ejections (ICMEs) removed at the inner boundary suggests that ICMEs may play a significant role in the propagation of shocks into the interstellar medium.

  2. Tectonic forward modelling of positive inversion structures

    Energy Technology Data Exchange (ETDEWEB)

    Brandes, C. [Leibniz Univ. Hannover (Germany). Inst. fuer Geologie; Schmidt, C. [Landesamt fuer Bergbau, Energie und Geologie (LBEG), Hannover (Germany)

    2013-08-01

    Positive tectonic inversion structures are common features that were recognized in many deformed sedimentary basins (Lowell, 1995). They are characterized by a two phase fault evolution, where initial normal faulting was followed by reverse faulting along the same fault, accompanied by the development of hanging wall deformation. Analysing the evolution of such inversion structures is important for understanding the tectonics of sedimentary basins and the formation of hydrocarbon traps. We used a 2D tectonic forward modelling approach to simulate the stepwise structural evolution of inversion structures in cross-section. The modelling was performed with the software FaultFold Forward v. 6, which is based on trishear kinematics (Zehnder and Allmendinger, 2000). Key aspect of the study was to derive the controlling factors for the geometry of inversion structures. The simulation results show, that the trishear approach is able to reproduce the geometry of tectonic inversion structures in a realistic way. This implies that inversion structures are simply fault-related folds that initiated as extensional fault-propagation folds, which were subsequently transformed into compressional fault-propagation folds when the stress field changed. The hanging wall deformation is a consequence of the decrease in slip towards the tip line of the fault. Trishear angle and propagation-to-slip ratio are the key controlling factors for the geometry of the fault-related deformation. We tested trishear angles in the range of 30 - 60 and propagation-to-slip ratios between 1 and 2 in increments of 0.1. Small trishear angles and low propagation-to-slip ratios produced tight folds, whereas large trishear angles and high propagation-to-slip ratios led to more open folds with concentric shapes. This has a direct effect on the size and geometry of potential hydrocarbon traps. The 2D simulations can be extended to a pseudo 3D approach, where a set of parallel cross-sections is used to describe

  3. Misfortunes never come singly: Structural change, multiple shocks and child malnutrition in rural Senegal.

    Science.gov (United States)

    Lazzaroni, Sara; Wagner, Natascha

    2016-12-01

    This study considers the two most pronounced shocks Senegalese subsistence farmers struggle with, namely increasing purchase prices and droughts. We assess the relationship of these self-reported shocks with child health in a multi-shock approach to account for concomitance of adverse events from the natural, biological, economic and health sphere. We employ a unique farming household panel dataset containing information on children living in poor, rural households in eight regions of Senegal in 2009 and 2011 and account for structural changes occurring between survey periods due to the large scale, national Nutrition Enhancement Program. By zooming in to the micro level we demonstrate that Senegal as a Sahelian country, mainly reliant on subsistence agriculture, is very vulnerable to climate variability and international price developments: According to our conservative estimates, the occurrence of a drought explains 25% of the pooled weight-for-age standard deviation, income losses 31%. Our multi-shock analysis reveals that the shocks are perceived as more severe in 2011 with droughts explaining up to 44% of the standard deviation of child health, increased prices up to 21%. Yet, the concomitance of droughts and increased prices after the structural change, i.e. the Nutrition Enhancement Program, indicates that the health of children experiencing both shocks in 2011 has improved. We argue that these results are driven by the increase in rural household income as theoretically outlined in the agricultural household model. Thus, adequate policy responses to shocks do not only depend on the nature but also on the concomitance of hazardous events. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. A forward model for ground penetrating radar imaging of buried perfect electric conductors within the physical optics approximation

    DEFF Research Database (Denmark)

    Polat, Burak; Meincke, Peter

    2004-01-01

    A forward model for ground penetrating radar imaging of buried 3-D perfect electric conductors is addressed within the framework of diffraction tomography. The similarity of the present forward model derived within the physical optics approximation with that derived within the first Born...

  5. Interbank funding as insurance mechanism for (persistent) liquidity shocks

    OpenAIRE

    Bluhm, Marcel

    2015-01-01

    The interbank market is important for the efficient functioning of the financial system, transmission of monetary policy and therefore ultimately the real economy. In particular, it facilitates banks' liquidity management. This paper aims at extending the literature which views interbank markets as mutual liquidity insurance mechanism by taking into account persistence of liquidity shocks. Following a theory of long-term interbank funding a financial system which is modeled as a micro-founded...

  6. Model of fragmentation of limestone particles during thermal shock and calcination in fluidised beds

    Energy Technology Data Exchange (ETDEWEB)

    Saastamoinen, J.; Pikkarainen, T.; Tourunen, A.; Rasanen, M.; Jantti, T. [VTT Technical Research Center, Jyvaskyla (Finland)

    2008-11-15

    Fragmentation of limestone due to thermal shock and calcination in a fluidised bed was studied through experiments and modelling. The time for heating was estimated by model calculations and the time for calcination by measurements. Fragmentation due to thermal shock was carried out by experiments in a CO{sub 2} atmosphere in order to prevent the effect of calcination. It was found to be much less than fragmentation due to calcination. Average particle sizes before and after fragmentation are presented for several types of limestone. The effects of particle size and gas composition on the primary fragmentation were studied through experiments. Increasing the fluidisation velocity increased the tendency to fragment. The evolution of the particle size distribution (PSD) of limestone particles due to thermal shock and during calcination (or simultaneous calcination and sulphation) were calculated using a population balance model. Fragmentation due to thermal shock is treated as an instantaneous process. The fragmentation frequency during calcination is presented as exponentially decaying over time. In addition to the final PSD, this model also predicts the PSD during the calcination process. The fragmentation was practically found to end after 10 min. Furthermore. a population balance method to calculate the particle size distribution and amount of limestone in fluidised beds in dynamic and steady state, when feeding history is known, is presented.

  7. Cerebellum as a forward but not inverse model in visuomotor adaptation task: a tDCS-based and modeling study.

    Science.gov (United States)

    Yavari, Fatemeh; Mahdavi, Shirin; Towhidkhah, Farzad; Ahmadi-Pajouh, Mohammad-Ali; Ekhtiari, Hamed; Darainy, Mohammad

    2016-04-01

    Despite several pieces of evidence, which suggest that the human brain employs internal models for motor control and learning, the location of these models in the brain is not yet clear. In this study, we used transcranial direct current stimulation (tDCS) to manipulate right cerebellar function, while subjects adapt to a visuomotor task. We investigated the effect of this manipulation on the internal forward and inverse models by measuring two kinds of behavior: generalization of training in one direction to neighboring directions (as a proxy for inverse models) and localization of the hand position after movement without visual feedback (as a proxy for forward model). The experimental results showed no effect of cerebellar tDCS on generalization, but significant effect on localization. These observations support the idea that the cerebellum is a possible brain region for internal forward, but not inverse model formation. We also used a realistic human head model to calculate current density distribution in the brain. The result of this model confirmed the passage of current through the cerebellum. Moreover, to further explain some observed experimental results, we modeled the visuomotor adaptation process with the help of a biologically inspired method known as population coding. The effect of tDCS was also incorporated in the model. The results of this modeling study closely match our experimental data and provide further evidence in line with the idea that tDCS manipulates FM's function in the cerebellum.

  8. An improved lattice hydrodynamic model considering the influence of optimal flux for forward looking sites

    Science.gov (United States)

    Wang, Yunong; Ge, Hongxia; Cheng, Rongjun

    2017-11-01

    In this paper, a lattice hydrodynamic model is derived considering the delayed-feedback control influence of optimal flux for forward looking sites on a single-lane road which includes more comprehensive information. The control method is used to analyze the stability of the model. The critical condition for the linear steady traffic flow is deduced and the numerical simulation is carried out to investigate the advantage of the proposed model with and without the effect of optimal flux for forward looking sites. Moreover it indicates that the characteristic of the model can lead to a lower energy consumption in traffic system. The results are consistent with the theoretical analysis correspondingly.

  9. Shock absorber in Ignalina NPP

    International Nuclear Information System (INIS)

    Bulavas, A.; Muralis, J.

    1996-09-01

    Theoretical calculation and experimental analysis of models of shock absorber in Ignalina NPP is presented. The results obtained from the investigation with model of shock absorber coincide with the theoretical calculation. (author). 2 figs., 3 refs

  10. Modelling and validation of electromechanical shock absorbers

    Science.gov (United States)

    Tonoli, Andrea; Amati, Nicola; Girardello Detoni, Joaquim; Galluzzi, Renato; Gasparin, Enrico

    2013-08-01

    Electromechanical vehicle suspension systems represent a promising substitute to conventional hydraulic solutions. However, the design of electromechanical devices that are able to supply high damping forces without exceeding geometric dimension and mass constraints is a difficult task. All these challenges meet in off-road vehicle suspension systems, where the power density of the dampers is a crucial parameter. In this context, the present paper outlines a particular shock absorber configuration where a suitable electric machine and a transmission mechanism are utilised to meet off-road vehicle requirements. A dynamic model is used to represent the device. Subsequently, experimental tests are performed on an actual prototype to verify the functionality of the damper and validate the proposed model.

  11. The macroeconomics of "Oil Prices" and "Economic Shocks": Lessons from the 1970s

    Directory of Open Access Journals (Sweden)

    Deepanshu Mohan

    2015-10-01

    Full Text Available This paper examines the relationship between oil price shocks and recessions and focuses particularly on the period of stagflation in the 1970s. Nearly every recession in the U.S. since WWII has been preceded by an oil price shock, and examining the literature as to the causal mechanisms finds there are a range of opinions from supply and demand side factors to the precipitated monetary policy response. Evaluating these across a number of countries finds that the mechanisms at play are complex and disputed. This paper reviews the literature and evaluates the various theories put forward before concluding that whilst oil plays a key role in the economy, the recessions following oil price shocks are more likely to be as a result of monetary policy decisions than the oil price shocks per se.

  12. An instrumental electrode model for solving EIT forward problems.

    Science.gov (United States)

    Zhang, Weida; Li, David

    2014-10-01

    An instrumental electrode model (IEM) capable of describing the performance of electrical impedance tomography (EIT) systems in the MHz frequency range has been proposed. Compared with the commonly used Complete Electrode Model (CEM), which assumes ideal front-end interfaces, the proposed model considers the effects of non-ideal components in the front-end circuits. This introduces an extra boundary condition in the forward model and offers a more accurate modelling for EIT systems. We have demonstrated its performance using simple geometry structures and compared the results with the CEM and full Maxwell methods. The IEM can provide a significantly more accurate approximation than the CEM in the MHz frequency range, where the full Maxwell methods are favoured over the quasi-static approximation. The improved electrode model will facilitate the future characterization and front-end design of real-world EIT systems.

  13. Learning Visual Forward Models to Compensate for Self-Induced Image Motion.

    NARCIS (Netherlands)

    Ghadirzadeh, A.; Kootstra, G.W.; Maki, A.; Björkman, M.

    2014-01-01

    Predicting the sensory consequences of an agent's own actions is considered an important skill for intelligent behavior. In terms of vision, so-called visual forward models can be applied to learn such predictions. This is no trivial task given the high-dimensionality of sensory data and complex

  14. A FOCUSED TRANSPORT APPROACH TO THE TIME-DEPENDENT SHOCK ACCELERATION OF SOLAR ENERGETIC PARTICLES AT A FAST TRAVELING SHOCK

    International Nuclear Information System (INIS)

    Le Roux, J. A.; Webb, G. M.

    2012-01-01

    Some of the most sophisticated models for solar energetic particle (SEP) acceleration at coronal mass ejection driven shocks are based on standard diffusive shock acceleration theory. However, this theory, which only applies when SEP pitch-angle anisotropies are small, might have difficulty in describing first-order Fermi acceleration or the shock pre-heating and injection of SEPs into first-order Fermi acceleration accurately at lower SEP speeds where SEP pitch-angle anisotropies upstream near the shock can be large. To avoid this problem, we use a time-dependent focused transport model to reinvestigate first-order Fermi acceleration at planar parallel and quasi-parallel spherical traveling shocks between the Sun and Earth with high shock speeds associated with rare extreme gradual SEP events. The focused transport model is also used to investigate and compare three different shock pre-heating mechanisms associated with different aspects of the nonuniform cross-shock solar wind flow, namely, the convergence of the flow (adiabatic compression), the shear tensor of the flow, and the acceleration of the flow, and a fourth shock pre-heating mechanism associated with the cross-shock electric field, to determine which pre-heating mechanism contributes the most to injecting shock pre-heated source particles into the first-order Fermi acceleration process. The effects of variations in traveling shock conditions, such as increasing shock obliquity and shock slowdown, and variations in the SEP source with increasing shock distance from the Sun on the coupled processes of shock pre-heating, injection, and first-order Fermi acceleration are analyzed. Besides the finding that the cross-shock acceleration of the solar wind flow yields the dominant shock pre-heating mechanism at high shock speeds, we find that first-order Fermi acceleration at fast traveling shocks differs in a number of respects from the predictions and assumptions of standard steady-state diffusive shock

  15. Shock loading predictions from application of indicial theory to shock-turbulence interactions

    Science.gov (United States)

    Keefe, Laurence R.; Nixon, David

    1991-01-01

    A sequence of steps that permits prediction of some of the characteristics of the pressure field beneath a fluctuating shock wave from knowledge of the oncoming turbulent boundary layer is presented. The theory first predicts the power spectrum and pdf of the position and velocity of the shock wave, which are then used to obtain the shock frequency distribution, and the pdf of the pressure field, as a function of position within the interaction region. To test the validity of the crucial assumption of linearity, the indicial response of a normal shock is calculated from numerical simulation. This indicial response, after being fit by a simple relaxation model, is used to predict the shock position and velocity spectra, along with the shock passage frequency distribution. The low frequency portion of the shock spectra, where most of the energy is concentrated, is satisfactorily predicted by this method.

  16. Bioeffects on an In Vitro Model by Small-Scale Explosives and Shock Wave Overpressure Impacts

    Science.gov (United States)

    2017-11-01

    Many TBIs are associated with blast from improvised explosive devices.2–4 Explosions are physical, chemical , or nuclear reactions involving a rapid...ARL-TR-8210 ● NOV 2017 US Army Research Laboratory Bioeffects on an In Vitro Model by Small-Scale Explosives and Shock Wave...Research Laboratory Bioeffects on an In Vitro Model by Small-Scale Explosives and Shock Wave Overpressure Impacts by Nicole E Zander, Thuvan

  17. Forward energy measurement with CMS

    CERN Document Server

    Kheyn, Lev

    2016-01-01

    Energy flow is measured in the forward region of CMS at pseudorapidities up to 6.6 in pp interactions at 13 TeV with forward (HF) and very forward (CASTOR) calorimeters. The results are compared to model predictions. The CMS results at different center-of-mass energies are intercompared using pseudorapidity variable shifted by beam rapidity, thus studying applicability of hypothesis of limiting fragmentation.

  18. Shock-to-detonation transition of RDX, HMX and NTO based composite high explosives: experiments and modelling

    International Nuclear Information System (INIS)

    Baudin, G; Roudot, M; Genetier, M; Mateille, P; Lefrançois, A

    2014-01-01

    HMX, RDX and NTO based cast-cured plastic bounded explosive (PBX) are widely used in insensitive ammunitions. Designing modern warheads needs robust and reliable models to compute shock ignition and detonation propagation inside PBX. Comparing to a pressed PBX, a cast-cured PBX is not porous and the hot-spots are mainly located at the grain-binder interface leading to a different burning behavior during shock-to-detonation transition. Here, we review the shock-to-detonation transition (SDT) and its modeling for cast-cured PBX containing HMX, RDX and NTO. Future direction is given in conclusion.

  19. Shock-to-detonation transition of RDX, HMX and NTO based composite high explosives: experiments and modelling

    Science.gov (United States)

    Baudin, G.; Roudot, M.; Genetier, M.; Mateille, P.; Lefrançois, A.

    2014-05-01

    HMX, RDX and NTO based cast-cured plastic bounded explosive (PBX) are widely used in insensitive ammunitions. Designing modern warheads needs robust and reliable models to compute shock ignition and detonation propagation inside PBX. Comparing to a pressed PBX, a cast-cured PBX is not porous and the hot-spots are mainly located at the grain-binder interface leading to a different burning behavior during shock-to-detonation transition. Here, we review the shock-to-detonation transition (SDT) and its modeling for cast-cured PBX containing HMX, RDX and NTO. Future direction is given in conclusion.

  20. Using Efference Copy and a Forward Internal Model for Adaptive Biped Walking

    DEFF Research Database (Denmark)

    Schröder-Schetelig, Johannes; Manoonpong, Poramate; Wörgötter, Florentin

    2010-01-01

    an application of this for our dynamic walking robot RunBot. We use efference copies of the motor commands with a simple forward internal model to predict the expected self-generated acceleration during walking. The difference to the actually measured acceleration is then used to stabilize the walking...... on terrains with changing slopes through its upper body component controller. As a consequence, the controller drives the upper body component (UBC) to lean forwards/backwards as soon as an error occurs resulting in dynamical stable walking. We have evaluated the performance of the system on four different...

  1. Predictive zero-dimensional combustion model for DI diesel engine feed-forward control

    International Nuclear Information System (INIS)

    Catania, Andrea Emilio; Finesso, Roberto; Spessa, Ezio

    2011-01-01

    Highlights: → Zero-dimensional low-throughput combustion model for real-time control in diesel engine applications. → Feed-forward control of MFB50, p max and IMEP in both conventional and PCCI combustion modes. → Capability of resolving the contribution to HRR of each injection pulse in multiple injection schedule. → Ignition delay and model parameters estimated through physically consistent and easy-to-tune correlations. - Abstract: An innovative zero-dimensional predictive combustion model has been developed for the estimation of HRR (heat release rate) and in-cylinder pressure traces. This model has been assessed and applied to conventional and PCCI (premixed charge compression ignition) DI diesel engines for model-based feed-forward control purposes. The injection rate profile is calculated on the basis of the injected fuel quantities and on the injection parameters, such as SOI (start of injection), ET (energizing time), and DT (dwell time), taking the injector NOD (nozzle opening delay) and NCD (nozzle closure delay) into account. The injection rate profile in turn allows the released chemical energy Q ch to be estimated. The approach starts from the assumption that, at each time instant, the HRR is proportional to the energy associated with the accumulated fuel mass in the combustion chamber. The main novelties of the proposed approach consist of the method that is adopted to estimate the fuel ignition delay and of injection rate splitting for HRR estimation. The procedure allows an accurate calculation to be made of the different combustion parameters that are important for engine calibration, such as SOC (start of combustion) and MFB50 (50% of fuel mass fraction burned angle). On the basis of an estimation of the fuel released chemical energy, of the heat globally exchanged from the charge with the walls and of the energy associated with the fuel evaporation, the charge net energy is calculated, for a subsequent evaluation of the in

  2. Cost of Oil and Biomass Supply Shocks under Different Biofuel Supply Chain Configurations

    Energy Technology Data Exchange (ETDEWEB)

    Uria Martinez, Rocio [ORNL; Leiby, Paul Newsome [ORNL; Brown, Maxwell L. [National Renewable Energy Laboratory (NREL)

    2018-04-01

    This analysis estimates the cost of selected oil and biomass supply shocks for producers and consumers in the light-duty vehicle fuel market under various supply chain configurations using a mathematical programing model, BioTrans. The supply chain configurations differ by whether they include selected flexibility levers: multi-feedstock biorefineries; advanced biomass logistics; and the ability to adjust ethanol content of low-ethanol fuel blends, from E10 to E15 or E05. The simulated scenarios explore market responses to supply shocks including substitution between gasoline and ethanol, substitution between different sources of ethanol supply, biorefinery capacity additions or idling, and price adjustments. Welfare effects for the various market participants represented in BioTrans are summarized into a net shock cost measure. As oil accounts for a larger fraction of fuel by volume, its supply shocks are costlier than biomass supply shocks. Corn availability and the high cost of adding biorefinery capacity limit increases in ethanol use during gasoline price spikes. During shocks that imply sudden decreases in the price of gasoline, the renewable fuel standard (RFS) biofuel blending mandate limits the extent to which flexibility can be exercised to reduce ethanol use. The selected flexibility levers are most useful in response to cellulosic biomass supply shocks.

  3. A model structure for identification of linear models of the UH-60 helicopter in hover and forward flight

    Science.gov (United States)

    1995-08-01

    A linear model structure applicable to identification of the UH-60 flight : dynamics in hover and forward flight without rotor-state data is developed. The : structure of the model is determined through consideration of the important : dynamic modes ...

  4. Shocks in fragile matter

    Science.gov (United States)

    Vitelli, Vincenzo

    2012-02-01

    Non-linear sound is an extreme phenomenon typically observed in solids after violent explosions. But granular media are different. Right when they unjam, these fragile and disordered solids exhibit vanishing elastic moduli and sound speed, so that even tiny mechanical perturbations form supersonic shocks. Here, we perform simulations in which two-dimensional jammed granular packings are continuously compressed, and demonstrate that the resulting excitations are strongly nonlinear shocks, rather than linear waves. We capture the full dependence of the shock speed on pressure and compression speed by a surprisingly simple analytical model. We also treat shear shocks within a simplified viscoelastic model of nearly-isostatic random networks comprised of harmonic springs. In this case, anharmonicity does not originate locally from nonlinear interactions between particles, as in granular media; instead, it emerges from the global architecture of the network. As a result, the diverging width of the shear shocks bears a nonlinear signature of the diverging isostatic length associated with the loss of rigidity in these floppy networks.

  5. Educational Development and Production of Accountants in Nigeria ...

    African Journals Online (AJOL)

    Toshiba

    Accountants in Nigeria: Challenges and Way. Forward. Akhidime, Augustine ... Nigerian professional accounting regulatory bodies and tertiary educational ... Academic accountants are lecturers, tutors or teachers in educational and professional .... profile non-professional accountants in key public and private organisations ...

  6. Arrival times of Flare/Halo CME associated shocks at the Earth: comparison of the predictions of three numerical models with these observations

    Directory of Open Access Journals (Sweden)

    S. M. P. McKenna-Lawlor

    2002-07-01

    Full Text Available The arrival times at L1 of eleven travelling shocks associated both with X-ray flaring and with halo CMEs recorded aboard SOHO/LASCO have been considered. Close to the Sun the velocities of these events were estimated using either Type II radio records or CME speeds. Close to the Earth the shocks were detected in the data of various solar wind plasma, interplanetary magnetic field (IMF and energetic particle experiments aboard SOHO, ACE, WIND, INTERBALL-1 and IMP-8. The real-time shock arrival predictions of three numerical models, namely the Shock Time of Arrival Model (STOA, the Interplanetary Shock Propagation Model (ISPM and the Hakamada-Akasofu-Fry Solar Wind Model (HAFv.2 were tested against these observations. This is the first time that energetic protons (tens of keV to a few MeV have been used to complement plasma and IMF data in validating shock propagation models. The models were all generally successful in predicting shock arrivals. STOA provided the smallest values of the "predicted minus measured" arrival times and displayed a typical predictive precision better than about 8 h. The ratio of the calculated standard deviation of the transit times to Earth to the standard deviation of the measurements was estimated for each model (treating interacting events as composite shocks and these ratios turned out to be 0.60, 1.15 and 1.02 for STOA, ISPM and HAFv.2, respectively. If an event in the sample for which the shock velocity was not well known is omitted from consideration, these ratios become 0.36, 0.76 and 0.81, respectively. Larger statistical samples should now be tested. The ratio of the in situ shock velocity and the "Sun to L1" transit velocity (Vsh /Vtr was in the range of 0.7–0.9 for individual, non-interacting, shock events. HAFv.2 uniquely provided information on those changes in the COBpoint (the moving Connection point on the shock along the IMF to the OBserver which directly influenced energetic particle rise times

  7. Improving and Assessing Planet Sensitivity of the GPI Exoplanet Survey with a Forward Model Matched Filter

    Energy Technology Data Exchange (ETDEWEB)

    Ruffio, Jean-Baptiste; Macintosh, Bruce; Nielsen, Eric L.; Czekala, Ian; Bailey, Vanessa P.; Follette, Katherine B. [Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, Stanford, CA, 94305 (United States); Wang, Jason J.; Rosa, Robert J. De; Duchêne, Gaspard [Astronomy Department, University of California, Berkeley CA, 94720 (United States); Pueyo, Laurent [Space Telescope Science Institute, Baltimore, MD, 21218 (United States); Marley, Mark S. [NASA Ames Research Center, Mountain View, CA, 94035 (United States); Arriaga, Pauline; Fitzgerald, Michael P. [Department of Physics and Astronomy, University of California, Los Angeles, CA, 90095 (United States); Barman, Travis [Lunar and Planetary Laboratory, University of Arizona, Tucson AZ, 85721 (United States); Bulger, Joanna [Subaru Telescope, NAOJ, 650 North A’ohoku Place, Hilo, HI 96720 (United States); Chilcote, Jeffrey [Dunlap Institute for Astronomy and Astrophysics, University of Toronto, Toronto, ON, M5S 3H4 (Canada); Cotten, Tara [Department of Physics and Astronomy, University of Georgia, Athens, GA, 30602 (United States); Doyon, Rene [Institut de Recherche sur les Exoplanètes, Départment de Physique, Université de Montréal, Montréal QC, H3C 3J7 (Canada); Gerard, Benjamin L. [University of Victoria, 3800 Finnerty Road, Victoria, BC, V8P 5C2 (Canada); Goodsell, Stephen J., E-mail: jruffio@stanford.edu [Gemini Observatory, 670 N. A’ohoku Place, Hilo, HI, 96720 (United States); and others

    2017-06-10

    We present a new matched-filter algorithm for direct detection of point sources in the immediate vicinity of bright stars. The stellar point-spread function (PSF) is first subtracted using a Karhunen-Loéve image processing (KLIP) algorithm with angular and spectral differential imaging (ADI and SDI). The KLIP-induced distortion of the astrophysical signal is included in the matched-filter template by computing a forward model of the PSF at every position in the image. To optimize the performance of the algorithm, we conduct extensive planet injection and recovery tests and tune the exoplanet spectra template and KLIP reduction aggressiveness to maximize the signal-to-noise ratio (S/N) of the recovered planets. We show that only two spectral templates are necessary to recover any young Jovian exoplanets with minimal S/N loss. We also developed a complete pipeline for the automated detection of point-source candidates, the calculation of receiver operating characteristics (ROC), contrast curves based on false positives, and completeness contours. We process in a uniform manner more than 330 data sets from the Gemini Planet Imager Exoplanet Survey and assess GPI typical sensitivity as a function of the star and the hypothetical companion spectral type. This work allows for the first time a comparison of different detection algorithms at a survey scale accounting for both planet completeness and false-positive rate. We show that the new forward model matched filter allows the detection of 50% fainter objects than a conventional cross-correlation technique with a Gaussian PSF template for the same false-positive rate.

  8. Optical characterisation of nanostructures using a discretised forward model

    DEFF Research Database (Denmark)

    Karamehmedovic, Mirza; Sørensen, Mads Peter; Hansen, Poul-Erik

    2012-01-01

    problem. Finally, the size of the measured nanostructure is typically comparable to the wavelength of the illuminating light, so the scattering needs to be described using the full Maxwellian electromagnetic model, rather than (numerically inexpensive) asymptotic formulations. We here describe...... an efficient, accurate and robust forward scattering model [1,2] based on discrete sources and tailor-made for the reconstruction of 2D nanoparticles on substrates from ODM data. We adopt an analysis-based modelling paradigm, and attempt to incorporate as much available a priori information as possible...... be extended to include the roughness and contamination of the substrate without sacricing the speed of computation [3]. We validate the model and show its feasibility in a decomposition-type inverse scheme with synthetic measurement data ([1], figure 1), as well as in the inversion of experimental...

  9. Analysis of Simplifications Applied in Vibration Damping Modelling for a Passive Car Shock Absorber

    Directory of Open Access Journals (Sweden)

    Łukasz Konieczny

    2016-01-01

    Full Text Available The paper presents results of research on hydraulic automotive shock absorbers. The considerations provided in the paper indicate certain flaws and simplifications resulting from the fact that damping characteristics are assumed as the function of input velocity only, which is the case of simulation studies. An important aspect taken into account when determining parameters of damping performed by car shock absorbers at a testing station is the permissible range of characteristics of a shock absorber of the same type. The aim of this study was to determine the damping characteristics entailing the stroke value. The stroke and rotary velocities were selected in a manner enabling that, for different combinations, the same maximum linear velocity can be obtained. Thus the influence of excitation parameters, such as the stroke value, on force versus displacement and force versus velocity diagrams was determined. The 3D characteristics presented as the damping surface in the stoke and the linear velocity function were determined. An analysis of the results addressed in the paper highlights the impact of such factors on the profile of closed loop graphs of damping forces and point-type damping characteristics.

  10. Ablative stabilization of Rayleigh-Taylor instabilities resulting from a laser-driven radiative shock

    Science.gov (United States)

    Huntington, C. M.; Shimony, A.; Trantham, M.; Kuranz, C. C.; Shvarts, D.; Di Stefano, C. A.; Doss, F. W.; Drake, R. P.; Flippo, K. A.; Kalantar, D. H.; Klein, S. R.; Kline, J. L.; MacLaren, S. A.; Malamud, G.; Miles, A. R.; Prisbrey, S. T.; Raman, K. S.; Remington, B. A.; Robey, H. F.; Wan, W. C.; Park, H.-S.

    2018-05-01

    The Rayleigh-Taylor (RT) instability is a common occurrence in nature, notably in astrophysical systems like supernovae, where it serves to mix the dense layers of the interior of an exploding star with the low-density stellar wind surrounding it, and in inertial confinement fusion experiments, where it mixes cooler materials with the central hot spot in an imploding capsule and stifles the desired nuclear reactions. In both of these examples, the radiative flux generated by strong shocks in the system may play a role in partially stabilizing RT instabilities. Here, we present experiments performed on the National Ignition Facility, designed to isolate and study the role of radiation and heat conduction from a shock front in the stabilization of hydrodynamic instabilities. By varying the laser power delivered to a shock-tube target with an embedded, unstable interface, the radiative fluxes generated at the shock front could be controlled. We observe decreased RT growth when the shock significantly heats the medium around it, in contrast to a system where the shock did not produce significant heating. Both systems are modeled with a modified set of buoyancy-drag equations accounting for ablative stabilization, and the experimental results are consistent with ablative stabilization when the shock is radiative. This result has important implications for our understanding of astrophysical radiative shocks and supernova radiative hydrodynamics [Kuranz et al., Nature Communications 9(1), 1564 (2018)].

  11. Modeling properties of chromospheric evaporation driven by thermal conduction fronts from reconnection shocks

    Energy Technology Data Exchange (ETDEWEB)

    Brannon, Sean; Longcope, Dana [Department of Physics, Montana State University, Bozeman, MT 59717 (United States)

    2014-09-01

    Magnetic reconnection in the corona results in contracting flare loops, releasing energy into plasma heating and shocks. The hydrodynamic shocks produced in this manner drive thermal conduction fronts (TCFs) which transport energy into the chromosphere and drive upflows (evaporation) and downflows (condensation) in the cooler, denser footpoint plasma. Observations have revealed that certain properties of the transition point between evaporation and condensation (the 'flow reversal point' or FRP), such as temperature and velocity-temperature derivative at the FRP, vary between different flares. These properties may provide a diagnostic tool to determine parameters of the coronal energy release mechanism and the loop atmosphere. In this study, we develop a one-dimensional hydrodynamical flare loop model with a simplified three-region atmosphere (chromosphere/transition region/corona), with TCFs initiated by shocks introduced in the corona. We investigate the effect of two different flare loop parameters (post-shock temperature and transition region temperature ratio) on the FRP properties. We find that both of the evaporation characteristics have scaling-law relationships to the varied flare parameters, and we report the scaling exponents for our model. This provides a means of using spectroscopic observations of the chromosphere as quantitative diagnostics of flare energy release in the corona.

  12. Constructing forward price curves in electricity markets

    DEFF Research Database (Denmark)

    Fleten, S.-E.; Lemming, Jørgen Kjærgaard

    2003-01-01

    We present and analyze a method for constructing approximated high-resolution forward price curves in electricity markets. Because a limited number of forward or futures contracts are traded in the market, only a limited picture of the theoretical continuous forward price curve is available...... to the analyst. Our method combines the information contained in observed bid and ask prices with information from the forecasts generated by bottom-up models. As an example, we use information concerning the shape of the seasonal variation from a bottom-up model to improve the forward price curve quoted...

  13. Search for interplanetary shock signals using the Tupi telescope at the ascending phase of the solar cycle 24

    International Nuclear Information System (INIS)

    Augusto, C.R.A.; Kopenkin, V.; Navia, C.E.; Tsui, K.H.; Shigueoka, H.; Fauth, A.C.; Kemp, E.; Manganote, E.J.T.; Oliveira, M.A. Leigui de; Miranda, P.; Ticona, R.; Velarde, A.

    2012-01-01

    Full text: This paper presents the results of an on-going survey on the association between the muon flux variation at ground level registered by the Tupi telescopes (Niteroi-Brazil, 22.9 deg S; 43.2 deg W, 3 m above sea level) in the South Atlantic Anomaly (SAA) region and interplanetary shocks detected by space-borne detectors (SOHO, ACE, GOES). The SAA provides favorable conditions for observation of shock driven geomagnetic storms, including those of very small scale. Geomagnetic storms are usually originated by the transient events such as solar flares, coronal mass ejections (CMEs) and corotating interaction regions (CIRs). In most cases scientific research showed variation in the cosmic particle flux at ground level in correlation with large scale CMEs solar flares characterized by high absolute values of geomagnetic activity Kp index. In our analysis we found that the muon flux associated with the interplanetary shock signals changes also in response to low solar activity and to fast rise in Kp index. We report experimental data obtained by the Tupi telescopes in the period from June 2010 to December 2011. This time period corresponds to the rising phase of the solar cycle 24. These observations are compared with publicly available observations from the CELIAS/MTOF Proton Monitor on SOHO satellite in order to study the origin of the shocks. Among 28 interplanetary shocks reported in present analysis, there are 12 possibly associated with the CMEs and solar flares, 2 events - with the CIR related shocks (forward or reverse shocks), and the origin of the remaining 13 events has not been determined by the satellite detectors. By comparing the observed time (delayed or anticipated) of the shock related signal on Earth (the Tupi telescopes) with the trigger time of the shock registered by satellites located at the Lagrange point L1 (SOHO, ACE), we find that it is possible to estimate the type of the shock (forward or reverse). This method can be useful in

  14. Search for interplanetary shock signals using the Tupi telescope at the ascending phase of the solar cycle 24

    Energy Technology Data Exchange (ETDEWEB)

    Augusto, C.R.A.; Kopenkin, V.; Navia, C.E.; Tsui, K.H.; Shigueoka, H. [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil). Inst. de Fisica; Fauth, A.C.; Kemp, E.; Manganote, E.J.T. [Universidade Estadual de Campinas (IFGW/UNICAMP), SP (Brazil). Inst. de Fisica Gleb Wataghin; Oliveira, M.A. Leigui de [Universidade Federal do ABC (UFABC), Santo Andre, SP (Brazil). Centro de Ciencias Naturais e Humanas; Miranda, P.; Ticona, R.; Velarde, A. [Universidad Mayor de San Andres (UMSA), La Paz (Bolivia, Plurinational State of). Inst. de Investigaciones Fisicas

    2012-07-01

    Full text: This paper presents the results of an on-going survey on the association between the muon flux variation at ground level registered by the Tupi telescopes (Niteroi-Brazil, 22.9 deg S; 43.2 deg W, 3 m above sea level) in the South Atlantic Anomaly (SAA) region and interplanetary shocks detected by space-borne detectors (SOHO, ACE, GOES). The SAA provides favorable conditions for observation of shock driven geomagnetic storms, including those of very small scale. Geomagnetic storms are usually originated by the transient events such as solar flares, coronal mass ejections (CMEs) and corotating interaction regions (CIRs). In most cases scientific research showed variation in the cosmic particle flux at ground level in correlation with large scale CMEs solar flares characterized by high absolute values of geomagnetic activity Kp index. In our analysis we found that the muon flux associated with the interplanetary shock signals changes also in response to low solar activity and to fast rise in Kp index. We report experimental data obtained by the Tupi telescopes in the period from June 2010 to December 2011. This time period corresponds to the rising phase of the solar cycle 24. These observations are compared with publicly available observations from the CELIAS/MTOF Proton Monitor on SOHO satellite in order to study the origin of the shocks. Among 28 interplanetary shocks reported in present analysis, there are 12 possibly associated with the CMEs and solar flares, 2 events - with the CIR related shocks (forward or reverse shocks), and the origin of the remaining 13 events has not been determined by the satellite detectors. By comparing the observed time (delayed or anticipated) of the shock related signal on Earth (the Tupi telescopes) with the trigger time of the shock registered by satellites located at the Lagrange point L1 (SOHO, ACE), we find that it is possible to estimate the type of the shock (forward or reverse). This method can be useful in

  15. Rate coefficients of exchange reactions accounting for vibrational excitation of reagents and products

    Science.gov (United States)

    Kustova, E. V.; Savelev, A. S.; Kunova, O. V.

    2018-05-01

    Theoretical models for the vibrational state-resolved Zeldovich reaction are assessed by comparison with the results of quasi-classical trajectory (QCT) calculations. An error in the model of Aliat is corrected; the model is generalized taking into account NO vibrational states. The proposed model is fairly simple and can be easily implemented to the software for non-equilibrium flow modeling. It provides a good agreement with the QCT rate coefficients in the whole range of temperatures and reagent/product vibrational states. The developed models are tested in simulations of vibrational and chemical relaxation of air mixture behind a shock wave. The importance of accounting for excitated NO vibrational states and accurate prediction of Zeldovich reactions rates is shown.

  16. A multiple-scales model of the shock-cell structure of imperfectly expanded supersonic jets

    Science.gov (United States)

    Tam, C. K. W.; Jackson, J. A.; Seiner, J. M.

    1985-01-01

    The present investigation is concerned with the development of an analytical model of the quasi-periodic shock-cell structure of an imperfectly expanded supersonic jet. The investigation represents a part of a program to develop a mathematical theory of broadband shock-associated noise of supersonic jets. Tam and Tanna (1982) have suggested that this type of noise is generated by the weak interaction between the quasi-periodic shock cells and the downstream-propagating large turbulence structures in the mixing layer of the jet. In the model developed in this paper, the effect of turbulence in the mixing layer of the jet is simulated by the addition of turbulent eddy-viscosity terms to the momentum equation. Attention is given to the mean-flow profile and the numerical solution, and a comparison of the numerical results with experimental data.

  17. Chemical kinetics modeling of the influence of molecular structure on shock tube ignition delay

    International Nuclear Information System (INIS)

    Westbrook, C.K.; Pitz, W.J.

    1985-07-01

    The current capabilities of kinetic modeling of hydrocarbon oxidation in shock waves are discussed. The influence of molecular size and structure on ignition delay times are stressed. The n-paraffin fuels from CH 4 to n-C 5 H 12 are examined under shock tube conditions, as well as the branched chain fuel isobutane, and the computed results are compared with available experimental data. The modeling results show that it is important in the reaction mechanism to distinguish between abstraction of primary, secondary and tertiary H atom sites from the fuel molecule. This is due to the fact that both the rates and the product distributions of the subsequent alkyl radical decomposition reactions depend on which H atoms were abstracted. Applications of the reaction mechanisms to shock tube problems and to other practical problems such as engine knock are discussed

  18. Development and Realization of a Shock Wave Test on Expert Flap Qualification Model

    Science.gov (United States)

    De Fruytier, C.; Dell'Orco, F.; Ullio, R.; Gomiero, F.

    2012-07-01

    This paper presents the methodology and the results of the shock test campaign conducted by TAS-I and TAS ETCA to qualify the EXPERT Flap in regards of shock wave and acoustic load generated by pyrocord detonation at stages 2/3 separation phase of the EXPERT vehicle. The design concept of the open flap (manufactured by MT AEROSPACE) is a fully integral manufactured, four sided control surface, with an additional stiffening rib and flanges to meet the first eigenfrequency and the allowable deformation requirement with a minimum necessary mass. The objectives were to reproduce equivalent loading at test article level in terms of pulse duration, front pressure, front velocity and acoustic emission. The Thales Alenia Space ETCA pyrotechnic shock test device is usually used to produce high level shocks by performing a shock on a test fixture supporting the unit under test. In this case, the facility has been used to produce a shock wave, with different requested physical characteristics, directed to the unit under test. Different configurations have been tried on a dummy of the unit to test, following an empirical process. This unusual work has lead to the definition of a nominal set- up meeting the requested physical parameters. Two blast sensors have been placed to acquire the pressure around the flap. The distance between the two sensors has allowed estimating the front pressure velocity. Then, several locations have been selected to acquire the acceleration responses on the unit when it was submitted to this environment. Additionally, a “standard” shock test has been performed on this model. The qualification of the flap, in regards of shock environment, has been successfully conducted.

  19. Evaluation of kriging based surrogate models constructed from mesoscale computations of shock interaction with particles

    Energy Technology Data Exchange (ETDEWEB)

    Sen, Oishik, E-mail: oishik-sen@uiowa.edu [Mechanical and Industrial Engineering, The University of Iowa, Iowa City, IA 52242 (United States); Gaul, Nicholas J., E-mail: nicholas-gaul@ramdosolutions.com [RAMDO Solutions, LLC, Iowa City, IA 52240 (United States); Choi, K.K., E-mail: kyung-choi@uiowa.edu [Mechanical and Industrial Engineering, The University of Iowa, Iowa City, IA 52242 (United States); Jacobs, Gustaaf, E-mail: gjacobs@sdsu.edu [Aerospace Engineering, San Diego State University, San Diego, CA 92115 (United States); Udaykumar, H.S., E-mail: hs-kumar@uiowa.edu [Mechanical and Industrial Engineering, The University of Iowa, Iowa City, IA 52242 (United States)

    2017-05-01

    Macro-scale computations of shocked particulate flows require closure laws that model the exchange of momentum/energy between the fluid and particle phases. Closure laws are constructed in this work in the form of surrogate models derived from highly resolved mesoscale computations of shock-particle interactions. The mesoscale computations are performed to calculate the drag force on a cluster of particles for different values of Mach Number and particle volume fraction. Two Kriging-based methods, viz. the Dynamic Kriging Method (DKG) and the Modified Bayesian Kriging Method (MBKG) are evaluated for their ability to construct surrogate models with sparse data; i.e. using the least number of mesoscale simulations. It is shown that if the input data is noise-free, the DKG method converges monotonically; convergence is less robust in the presence of noise. The MBKG method converges monotonically even with noisy input data and is therefore more suitable for surrogate model construction from numerical experiments. This work is the first step towards a full multiscale modeling of interaction of shocked particle laden flows.

  20. Inspiration from role models and advice for moving forward.

    Science.gov (United States)

    Newman, Michelle G; McGinn, Lata K

    2012-12-01

    This Behavior Therapy series on overcoming the glass ceiling followed from a highly attended panel at ABCT on the same topic. The current paper summarizes the common themes across the various papers in this series with respect to obstacles prominent women have faced, and how we can learn from their stories to help inform the future. These themes include the importance of role models, messages from a supportive environment, difficulties balancing careers with children, coordinating careers with family, importance of taking charge of one's career, moving forward despite negative internal and external messages, and questions about whether things have changed substantially. In addition, this paper contains a summary of the helpful advice from accomplished women in academia for navigating the academic waters. It is our aspiration that going forward this series will stimulate other conversations as well as increase thought, behavior, solidarity, and awareness about this topic so that we can continue to work toward a future when things will continue to improve for women. Copyright © 2012. Published by Elsevier Ltd.

  1. Technology shocks matter

    OpenAIRE

    Jonas D. M. Fisher

    2002-01-01

    This paper uses the neoclassical growth model to identify the effects of technological change on the US business cycle. In the model there are two sources of technological change: neutral, which effects the production of all goods homogeneously, and investment-specific. Investment-specific shocks are the unique source of the secular trend in the real price of investment goods, while shocks to both kinds of technology are the only factors which affect labor productivity in the long run. Consis...

  2. Evidence on a Real Business Cycle Model with Neutral and Investment-Specific Technology Shocks using Bayesian Model Averaging

    NARCIS (Netherlands)

    R.W. Strachan (Rodney); H.K. van Dijk (Herman)

    2010-01-01

    textabstractThe empirical support for a real business cycle model with two technology shocks is evaluated using a Bayesian model averaging procedure. This procedure makes use of a finite mixture of many models within the class of vector autoregressive (VAR) processes. The linear VAR model is

  3. Arrival times of Flare/Halo CME associated shocks at the Earth: comparison of the predictions of three numerical models with these observations

    Directory of Open Access Journals (Sweden)

    S. M. P. McKenna-Lawlor

    Full Text Available The arrival times at L1 of eleven travelling shocks associated both with X-ray flaring and with halo CMEs recorded aboard SOHO/LASCO have been considered. Close to the Sun the velocities of these events were estimated using either Type II radio records or CME speeds. Close to the Earth the shocks were detected in the data of various solar wind plasma, interplanetary magnetic field (IMF and energetic particle experiments aboard SOHO, ACE, WIND, INTERBALL-1 and IMP-8. The real-time shock arrival predictions of three numerical models, namely the Shock Time of Arrival Model (STOA, the Interplanetary Shock Propagation Model (ISPM and the Hakamada-Akasofu-Fry Solar Wind Model (HAFv.2 were tested against these observations. This is the first time that energetic protons (tens of keV to a few MeV have been used to complement plasma and IMF data in validating shock propagation models. The models were all generally successful in predicting shock arrivals. STOA provided the smallest values of the "predicted minus measured" arrival times and displayed a typical predictive precision better than about 8 h. The ratio of the calculated standard deviation of the transit times to Earth to the standard deviation of the measurements was estimated for each model (treating interacting events as composite shocks and these ratios turned out to be 0.60, 1.15 and 1.02 for STOA, ISPM and HAFv.2, respectively. If an event in the sample for which the shock velocity was not well known is omitted from consideration, these ratios become 0.36, 0.76 and 0.81, respectively. Larger statistical samples should now be tested. The ratio of the in situ shock velocity and the "Sun to L1" transit velocity (Vsh /Vtr was in the range of 0.7–0.9 for individual, non-interacting, shock events. HAFv.2 uniquely provided information on those changes in the COBpoint (the moving Connection point on the shock along the IMF to the OBserver which directly influenced energetic

  4. Dynamical Properties of Internal Shocks Revisited

    Energy Technology Data Exchange (ETDEWEB)

    Pe’er, Asaf; Long, Killian [Physics Department, University College Cork, Cork (Ireland); Casella, Piergiorgio [INAF, Osservatorio Astronomico di Roma, Via Frascati 33, I-00078 Monteporzio Catone (Italy)

    2017-09-01

    Internal shocks between propagating plasma shells, originally ejected at different times with different velocities, are believed to play a major role in dissipating the kinetic energy, thereby explaining the observed light curves and spectra in a large range of transient objects. Even if initially the colliding plasmas are cold, following the first collision, the plasma shells are substantially heated, implying that in a scenario of multiple collisions, most collisions take place between plasmas of non-zero temperatures. Here, we calculate the dynamical properties of plasmas resulting from a collision between arbitrarily hot plasma shells, moving at arbitrary speeds. We provide simple analytical expressions valid for both ultrarelativistic and Newtonian velocities for both hot and cold plasmas. We derive the minimum criteria required for the formation of the two-shock wave system, and show that in the relativistic limit, the minimum Lorentz factor is proportional to the square root of the ratio of the initial plasmas enthalpies. We provide basic scaling laws of synchrotron emission from both the forward and reverse-shock waves, and show how these can be used to deduce the properties of the colliding shells. Finally, we discuss the implications of these results in the study of several astronomical transients, such as X-ray binaries, radio-loud quasars, and gamma-ray bursts.

  5. Shocks inside CMEs: A survey of properties from 1997 to 2006

    Science.gov (United States)

    Lugaz, N.; Farrugia, C. J.; Smith, C. W.; Paulson, K.

    2015-04-01

    We report on 49 fast-mode forward shocks propagating inside coronal mass ejections (CMEs) as measured by Wind and ACE at 1 AU from 1997 to 2006. Compared to typical CME-driven shocks, these shocks propagate in different upstream conditions, where the median upstream Alfvén speed is 85 km s-1, the proton β = 0.08 and the magnetic field strength is 8 nT. These shocks are fast with a median speed of 590 km s-1 but weak with a median Alfvénic Mach number of 1.9. They typically compress the magnetic field and density by a factor of 2-3. The most extreme upstream conditions found were a fast magnetosonic speed of 230 km s-1, a plasma β of 0.02, upstream solar wind speed of 740 km s-1 and density of 0.5 cm-3. Nineteen of these complex events were associated with an intense geomagnetic storm (peak Dst under -100 nT) within 12 h of the shock detection at Wind, and 15 were associated with a drop of the storm time Dst index of more than 50 nT between 3 and 9 h after shock detection. We also compare them to a sample of 45 shocks propagating in more typical upstream conditions. We show the average property of these shocks through a superposed epoch analysis, and we present some analytical considerations regarding the compression ratios of shocks in low β regimes. As most of these shocks are measured in the back half of a CME, we conclude that about half the shocks may not remain fast-mode shocks as they propagate through an entire CME due to the large upstream and magnetosonic speeds.

  6. Shock waves and shock tubes; Proceedings of the Fifteenth International Symposium, Berkeley, CA, July 28-August 2, 1985

    International Nuclear Information System (INIS)

    Bershader, D.; Hanson, R.

    1986-01-01

    A detailed survey is presented of shock tube experiments, theoretical developments, and applications being carried out worldwide. The discussions explore shock tube physics and the related chemical, physical and biological science and technology. Extensive attention is devoted to shock wave phenomena in dusty gases and other multiphase and heterogeneous systems, including chemically reactive mixtures. Consideration is given to techniques for measuring, visualizing and theoretically modeling flowfield, shock wave and rarefaction wave characteristics. Numerical modeling is explored in terms of the application of computational fluid dynamics techniques to describing flowfields in shock tubes. Shock interactions and propagation, in both solids, fluids, gases and mixed media are investigated, along with the behavior of shocks in condensed matter. Finally, chemical reactions that are initiated as the result of passage of a shock wave are discussed, together with methods of controlling the evolution of laminar separated flows at concave corners on advanced reentry vehicles

  7. A 2D forward and inverse code for streaming potential problems

    Science.gov (United States)

    Soueid Ahmed, A.; Jardani, A.; Revil, A.

    2013-12-01

    The self-potential method corresponds to the passive measurement of the electrical field in response to the occurrence of natural sources of current in the ground. One of these sources corresponds to the streaming current associated with the flow of the groundwater. We can therefore apply the self- potential method to recover non-intrusively some information regarding the groundwater flow. We first solve the forward problem starting with the solution of the groundwater flow problem, then computing the source current density, and finally solving a Poisson equation for the electrical potential. We use the finite-element method to solve the relevant partial differential equations. In order to reduce the number of (petrophysical) model parameters required to solve the forward problem, we introduced an effective charge density tensor of the pore water, which can be determined directly from the permeability tensor for neutral pore waters. The second aspect of our work concerns the inversion of the self-potential data using Tikhonov regularization with smoothness and weighting depth constraints. This approach accounts for the distribution of the electrical resistivity, which can be independently and approximately determined from electrical resistivity tomography. A numerical code, SP2DINV, has been implemented in Matlab to perform both the forward and inverse modeling. Three synthetic case studies are discussed.

  8. X-RAY EMISSION FROM SN 2004dj: A TALE OF TWO SHOCKS

    Energy Technology Data Exchange (ETDEWEB)

    Chakraborti, Sayan; Yadav, Naveen; Ray, Alak [Tata Institute of Fundamental Research, 1 Homi Bhabha Road, Colaba, Mumbai 400 005 (India); Smith, Randall [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Chandra, Poonam [Department of Physics, Royal Military College of Canada, Kingston, ON K7K 7B4 (Canada); Pooley, David, E-mail: schakraborti@fas.harvard.edu [Department of Physics, Sam Houston State University, Huntsville, TX (United States)

    2012-12-20

    Type IIP (Plateau) supernovae are the most commonly observed variety of core-collapse events. They have been detected in a wide range of wavelengths from radio, through optical to X-rays. The standard picture of a Type IIP supernova has the blastwave interacting with the progenitor's circumstellar matter to produce a hot region bounded by a forward and a reverse shock. This region is thought to be responsible for most of the X-ray and radio emission from these objects. Yet the origin of X-rays from these supernovae is not well understood quantitatively. The relative contributions of particle acceleration and magnetic field amplification in generating the X-ray and radio emission need to be determined. In this work, we analyze archival Chandra observations of SN 2004dj, one of the nearest supernovae since SN 1987A, along with published radio and optical information. We determine the pre-explosion mass-loss rate, blastwave velocity, electron acceleration, and magnetic field amplification efficiencies. We find that a greater fraction of the thermal energy goes into accelerating electrons than into amplifying magnetic fields. We conclude that the X-ray emission arises out of a combination of inverse Compton scattering by non-thermal electrons accelerated in the forward shock and thermal emission from supernova ejecta heated by the reverse shock.

  9. Non-local modelling of cyclic thermal shock damage including parameter estimation

    NARCIS (Netherlands)

    Damhof, F.; Brekelmans, W.A.M.; Geers, M.G.D.

    2011-01-01

    In this paper, rate dependent evolution laws are identified and characterized to model the mechanical (elasticity-based) and thermal damage occurring in coarse grain refractory material subject to cyclic thermal shock. The interacting mechanisms for elastic deformation driven damage induced by

  10. A Source-Term Based Boundary Layer Bleed/Effusion Model for Passive Shock Control

    Science.gov (United States)

    Baurle, Robert A.; Norris, Andrew T.

    2011-01-01

    A modeling framework for boundary layer effusion has been developed based on the use of source (or sink) terms instead of the usual practice of specifying bleed directly as a boundary condition. This framework allows the surface boundary condition (i.e. isothermal wall, adiabatic wall, slip wall, etc.) to remain unaltered in the presence of bleed. This approach also lends itself to easily permit the addition of empirical models for second order effects that are not easily accounted for by simply defining effective transpiration values. Two effusion models formulated for supersonic flows have been implemented into this framework; the Doerffer/Bohning law and the Slater formulation. These models were applied to unit problems that contain key aspects of the flow physics applicable to bleed systems designed for hypersonic air-breathing propulsion systems. The ability of each model to predict bulk bleed properties was assessed, as well as the response of the boundary layer as it passes through and downstream of a porous bleed system. The model assessment was performed with and without the presence of shock waves. Three-dimensional CFD simulations that included the geometric details of the porous plate bleed systems were also carried out to supplement the experimental data, and provide additional insights into the bleed flow physics. Overall, both bleed formulations fared well for the tests performed in this study. However, the sample of test problems considered in this effort was not large enough to permit a comprehensive validation of the models.

  11. Constructing forward price curves in electricity markets

    International Nuclear Information System (INIS)

    Fleten, Stein-Erik; Lemming, Jacob

    2003-01-01

    We present and analyze a method for constructing approximated high-resolution forward price curves in electricity markets. Because a limited number of forward or futures contracts are traded in the market, only a limited picture of the theoretical continuous forward price curve is available to the analyst. Our method combines the information contained in observed bid and ask prices with information from the forecasts generated by bottom-up models. As an example, we use information concerning the shape of the seasonal variation from a bottom-up model to improve the forward price curve quoted on the Nordic power exchange

  12. Shocks near Jamming

    Science.gov (United States)

    Gómez, Leopoldo R.; Turner, Ari M.; van Hecke, Martin; Vitelli, Vincenzo

    2012-02-01

    Nonlinear sound is an extreme phenomenon typically observed in solids after violent explosions. But granular media are different. Right when they jam, these fragile and disordered solids exhibit a vanishing rigidity and sound speed, so that even tiny mechanical perturbations form supersonic shocks. Here, we perform simulations in which two-dimensional jammed granular packings are dynamically compressed and demonstrate that the elementary excitations are strongly nonlinear shocks, rather than ordinary phonons. We capture the full dependence of the shock speed on pressure and impact intensity by a surprisingly simple analytical model.

  13. Initial conditions of radiative shock experiments

    International Nuclear Information System (INIS)

    Kuranz, C. C.; Drake, R. P.; Krauland, C. M.; Marion, D. C.; Grosskopf, M. J.; Rutter, E.; Torralva, B.; Holloway, J. P.; Bingham, D.; Goh, J.; Boehly, T. R.; Sorce, A. T.

    2013-01-01

    We performed experiments at the Omega Laser Facility to characterize the initial, laser-driven state of a radiative shock experiment. These experiments aimed to measure the shock breakout time from a thin, laser-irradiated Be disk. The data are then used to inform a range of valid model parameters, such as electron flux limiter and polytropic γ, used when simulating radiative shock experiments using radiation hydrodynamics codes. The characterization experiment and the radiative shock experiment use a laser irradiance of ∼7 × 10 14 W cm −2 to launch a shock in the Be disk. A velocity interferometer and a streaked optical pyrometer were used to infer the amount of time for the shock to move through the Be disk. The experimental results were compared with simulation results from the Hyades code, which can be used to model the initial conditions of a radiative shock system using the CRASH code

  14. Remarks on stability of magneto-elastic shocks

    Directory of Open Access Journals (Sweden)

    Włodzimierz Domański

    2015-12-01

    Full Text Available The problem of stability of plane shock waves for a model of perfect magnetoelasticityis investigated. Important mathematical properties, like loss of strict hyperbolicityand loss of genuine nonlinearity, and their consequences for the stability ofmagneto-elastic shocks are discussed. It is shown that some of these shocks do not satisfyclassical Lax stability conditions. Both compressible and incompressible models ofmagneto-elasticity are discussed.[b]Keywords[/b]: perfect magneto-elasticity, shock waves, stability conditions

  15. Numerical Simulation of Shock Response and Dynamic Fracture of a Concrete Dam Subjected to Impact Load

    Directory of Open Access Journals (Sweden)

    Lu Lu

    2016-01-01

    Full Text Available The shock response and dynamic fracture of concrete gravity dams under impact load are the key problems to evaluate the antiknock safety of the dam. This study aims at understanding the effects of impact shock on the elastic response and dynamic fracture of concrete gravity dams. Firstly, this paper uses acceleration records of a concrete gravity dam under impact to establish the correct way to determine the concrete gravity dam of the fundamental frequency and present cut sheets multi-degree-of-freedom dynamic modeling. Under strong impact loading, the constitutive relation of concrete gravity dam and the highest frequency of the impact are uncertain. So, the main advantage of this method is avoiding the use of elastic modulus in the calculation. The result indicates that the calculation method is a reliable computational method for concrete gravity dams subjected to impact. Subsequently, the failure process of dam models was numerically simulated based on ABAQUS commercial codes. Finally, this paper puts forward suggestions for future research based on the results of the analysis.

  16. Melting under shock compression

    International Nuclear Information System (INIS)

    Bennett, B.I.

    1980-10-01

    A simple model, using experimentally measured shock and particle velocities, is applied to the Lindemann melting formula to predict the density, temperature, and pressure at which a material will melt when shocked from room temperature and zero pressure initial conditions

  17. Accountancy In the Shadow of the Big Four

    Institute of Scientific and Technical Information of China (English)

    WANG PEI

    2006-01-01

    @@ By introducing its new accounting standards, China has recently moved substantially forward in incorporating accounting principals that comply with international rules. In February this year, the Ministry of Finance issued the revised standards, which include 39 items for corporate accounting and 48 for auditing by registered accountants.

  18. The collision of a strong shock with a gas cloud: a model for Cassiopeia A

    International Nuclear Information System (INIS)

    Sgro, A.G.

    1975-01-01

    The result of the collision of the shock with the cloud is a shock traveling around the cloud, a shock transmitted into the cloud, and a shock reflected from the cloud. By equating the cooling time of the posttransmitted shock gas to the time required for the transmitted shock to travel the length of the cloud, a critical cloud density n/subc/ /sup prime/ is defined. For clouds with density greater than n/subc/ /sup prime/, the posttransmitted shock gas cools rapidly and then emits the lines of the lower ionization stages of its constituent elements. The structure of such and its expected appearance to an observer are discussed and compared with the quasi-stationary condensations of Cas A. Conversely, clouds with density less than n/subc//sup prime/ remain hot for several thousand years, and are sources of X-radiation whose temperatures are much less than that of the intercloud gas. After the transmitted shock passes, the cloud pressure is greater than the pressure in the surrounding gas, causing the cloud to expand and the emission to decrease from its value just after the collision. A model in which the soft X-radiation of Cas A is due to a collection of such clouds is discussed. The faint emission patches to the north of Cas A are interpreted as preshocked clouds which will probably become quasi-stationary condensations after being hit by the shock

  19. Comment on Risk Shocks by Christiano, Motto, and Rostagno (2014)

    OpenAIRE

    Lee, Gabriel; Salyer, Kevin; Strobel, Johannes

    2016-01-01

    In a recent paper, Christiano, Motto and Rostagno (2014, henceforth CMR) report that risk shocks are the most important source of business cycle fluctuations. This result is in contrast to much of the existing literature; e.g. Bachmann and Bayer (2013) report that risk shocks account for 4% of the volatility in GDP. We resolve this apparent contradiction by first highlighting that CMR depart from the normal definition of a risk shock by including an additional \

  20. Application of Photocurrent Model on Polymer Solar Cells Under Forward Bias Stress

    DEFF Research Database (Denmark)

    Rizzo, Antonio; Torto, Lorenzo; Wrachien, Nicola

    2017-01-01

    We performed a constant current stress at forward bias on organic heterojunction solar cells. We measured current voltage curves in both dark and light at each stress step to calculate the photocurrent. An existing model applied to photocurrent experimental data allows the estimation of several...

  1. Predictive zero-dimensional combustion model for DI diesel engine feed-forward control

    Energy Technology Data Exchange (ETDEWEB)

    Catania, Andrea Emilio; Finesso, Roberto [IC Engines Advanced Laboratory, Politecnico di Torino, c.so Duca degli Abruzzi 24, 10129 Torino (Italy); Spessa, Ezio, E-mail: ezio.spessa@polito.it [IC Engines Advanced Laboratory, Politecnico di Torino, c.so Duca degli Abruzzi 24, 10129 Torino (Italy)

    2011-09-15

    Highlights: {yields} Zero-dimensional low-throughput combustion model for real-time control in diesel engine applications. {yields} Feed-forward control of MFB50, p{sub max} and IMEP in both conventional and PCCI combustion modes. {yields} Capability of resolving the contribution to HRR of each injection pulse in multiple injection schedule. {yields} Ignition delay and model parameters estimated through physically consistent and easy-to-tune correlations. - Abstract: An innovative zero-dimensional predictive combustion model has been developed for the estimation of HRR (heat release rate) and in-cylinder pressure traces. This model has been assessed and applied to conventional and PCCI (premixed charge compression ignition) DI diesel engines for model-based feed-forward control purposes. The injection rate profile is calculated on the basis of the injected fuel quantities and on the injection parameters, such as SOI (start of injection), ET (energizing time), and DT (dwell time), taking the injector NOD (nozzle opening delay) and NCD (nozzle closure delay) into account. The injection rate profile in turn allows the released chemical energy Q{sub ch} to be estimated. The approach starts from the assumption that, at each time instant, the HRR is proportional to the energy associated with the accumulated fuel mass in the combustion chamber. The main novelties of the proposed approach consist of the method that is adopted to estimate the fuel ignition delay and of injection rate splitting for HRR estimation. The procedure allows an accurate calculation to be made of the different combustion parameters that are important for engine calibration, such as SOC (start of combustion) and MFB50 (50% of fuel mass fraction burned angle). On the basis of an estimation of the fuel released chemical energy, of the heat globally exchanged from the charge with the walls and of the energy associated with the fuel evaporation, the charge net energy is calculated, for a subsequent

  2. An object-oriented model for ex ante accounting information

    NARCIS (Netherlands)

    Verdaasdonk, P.J.A.

    2003-01-01

    Present accounting data models such as the Research-Event-Agent (REA) model merely focus on the modeling of static accounting phenomena. In this paper, it is argued that these models are not able to provide relevant ex ante accounting data for operations management decisions. These decisions require

  3. Worried sick? Worker Responses to a Financial Shock

    OpenAIRE

    Bratberg, Espen; Monstad, Karin

    2013-01-01

    Excessive sickness absence may hurt productivity and put a strain on public finances. One explanation put forward for increasing absence rates is that a tougher labour market represents a health hazard. A competing hypothesis is that loss of job security works as a disciplinary device. We use a financial shock that hit the public sector in Norway in 2007 in some, but not all, municipalities to identify the effect of reduced job security on sickness absence. Public sector workers i...

  4. A combined nonlinear and hysteresis model of shock absorber for quarter car simulation on the basis of experimental data

    Directory of Open Access Journals (Sweden)

    Vijay Barethiye

    2017-12-01

    Full Text Available Modeling dynamic characteristics of an automotive shock absorber is a challenging task due to its complex behavior. In the present paper, the nonparametric and hybrid approach is proposed to represent the nonlinear and hysteresis characteristics of the shock absorber. An experiment is carried out on a car damper utilizing INSTRON to obtain force-velocity characteristics of the shock absorber. The experimental data is used to devise two different models, namely, piecewise linear model and hysteresis model, to capture the damping properties of the absorber and for consequent use in simulations. The complexity involved due to certain physical phenomenon such as oil compressibility, gas entrapment etc. gives rise to hysteresis behavior and the present paper tries to model such behavior with the help of Neural Networks. Finally, a combined (hybrid shock absorber model (including the characteristics of both piecewise linear and hysteresis behavior is developed in Simulink and integrated into a quarter car simulation to verify its feasibility. The results generated by the combined (hybrid model are compared with linear as well as piecewise linear model and the comparison shows that the proposed model substantially a better option to study the vehicle characteristics more accurately and precisely.

  5. Computer program to solve two-dimensional shock-wave interference problems with an equilibrium chemically reacting air model

    Science.gov (United States)

    Glass, Christopher E.

    1990-08-01

    The computer program EASI, an acronym for Equilibrium Air Shock Interference, was developed to calculate the inviscid flowfield, the maximum surface pressure, and the maximum heat flux produced by six shock wave interference patterns on a 2-D, cylindrical configuration. Thermodynamic properties of the inviscid flowfield are determined using either an 11-specie, 7-reaction equilibrium chemically reacting air model or a calorically perfect air model. The inviscid flowfield is solved using the integral form of the conservation equations. Surface heating calculations at the impingement point for the equilibrium chemically reacting air model use variable transport properties and specific heat. However, for the calorically perfect air model, heating rate calculations use a constant Prandtl number. Sample calculations of the six shock wave interference patterns, a listing of the computer program, and flowcharts of the programming logic are included.

  6. DMFCA Model as a Possible Way to Detect Creative Accounting and Accounting Fraud in an Enterprise

    Directory of Open Access Journals (Sweden)

    Jindřiška Kouřilová

    2013-05-01

    Full Text Available The quality of reported accounting data as well as the quality and behaviour of their users influence the efficiency of an enterprise’s management. Its assessment could therefore be changed as well. To identify creative accounting and fraud, several methods and tools were used. In this paper we would like to present our proposal of the DMFCA (Detection model Material Flow Cost Accounting balance model based on environmental accounting and the MFCA (Material Flow Cost Accounting as its method. The following balance areas are included: material, financial and legislative. Using the analysis of strengths and weaknesses of the model, its possible use within a production and business company were assessed. Its possible usage to the detection of some creative accounting techniques was also assessed. The Model is developed in details for practical use and describing theoretical aspects.

  7. H2 emission from non-stationary magnetized bow shocks

    Science.gov (United States)

    Tram, L. N.; Lesaffre, P.; Cabrit, S.; Gusdorf, A.; Nhung, P. T.

    2018-01-01

    When a fast moving star or a protostellar jet hits an interstellar cloud, the surrounding gas gets heated and illuminated: a bow shock is born that delineates the wake of the impact. In such a process, the new molecules that are formed and excited in the gas phase become accessible to observations. In this paper, we revisit models of H2 emission in these bow shocks. We approximate the bow shock by a statistical distribution of planar shocks computed with a magnetized shock model. We improve on previous works by considering arbitrary bow shapes, a finite irradiation field and by including the age effect of non-stationary C-type shocks on the excitation diagram and line profiles of H2. We also examine the dependence of the line profiles on the shock velocity and on the viewing angle: we suggest that spectrally resolved observations may greatly help to probe the dynamics inside the bow shock. For reasonable bow shapes, our analysis shows that low-velocity shocks largely contribute to H2 excitation diagram. This can result in an observational bias towards low velocities when planar shocks are used to interpret H2 emission from an unresolved bow. We also report a large magnetization bias when the velocity of the planar model is set independently. Our 3D models reproduce excitation diagrams in BHR 71 and Orion bow shocks better than previous 1D models. Our 3D model is also able to reproduce the shape and width of the broad H2 1-0S(1) line profile in an Orion bow shock (Brand et al. 1989).

  8. Elimination of spiral waves in cardiac tissue by multiple electrical shocks

    NARCIS (Netherlands)

    Panfilov, A.V.; Müller, Stefan C.; Zykov, Vladimir S.; Keener, James P.

    1999-01-01

    We study numerically the elimination of a spiral wave in cardiac tissue by application of multiple shocks of external current. To account for the effect of shocks we apply a recently developed theory for the interaction of the external current with cardiac tissue. We compare two possible feedback

  9. Large-scale inverse and forward modeling of adaptive resonance in the tinnitus decompensation.

    Science.gov (United States)

    Low, Yin Fen; Trenado, Carlos; Delb, Wolfgang; D'Amelio, Roberto; Falkai, Peter; Strauss, Daniel J

    2006-01-01

    Neural correlates of psychophysiological tinnitus models in humans may be used for their neurophysiological validation as well as for their refinement and improvement to better understand the pathogenesis of the tinnitus decompensation and to develop new therapeutic approaches. In this paper we make use of neural correlates of top-down projections, particularly, a recently introduced synchronization stability measure, together with a multiscale evoked response potential (ERP) model in order to study and evaluate the tinnitus decompensation by using a hybrid inverse-forward mathematical methodology. The neural synchronization stability, which according to the underlying model is linked to the focus of attention on the tinnitus signal, follows the experimental and inverse way and allows to discriminate between a group of compensated and decompensated tinnitus patients. The multiscale ERP model, which works in the forward direction, is used to consolidate hypotheses which are derived from the experiments for a known neural source dynamics related to attention. It is concluded that both methodologies agree and support each other in the description of the discriminatory character of the neural correlate proposed, but also help to fill the gap between the top-down adaptive resonance theory and the Jastreboff model of tinnitus.

  10. Shock wave attenuation in a micro-channel

    Science.gov (United States)

    Giordano, J.; Perrier, P.; Meister, L.; Brouillette, M.

    2018-05-01

    This work presents optical measurements of shock wave attenuation in a glass micro-channel. This transparent facility, with a cross section ranging from 1 mm× 150 μm to 1 mm× 500 μm, allowed for the use of high-speed schlieren videography to visualize the propagation of a shock wave within the entire micro-channel and to quantify velocity attenuation of the wave due to wall effects. In this paper, we present the experimental technique and the relevant data treatment we have used to increase the sensitivity of shock wave detection. Then, we compared our experimental results for different channel widths, lengths, and shock wave velocities with the analytical model for shock attenuation proposed by Russell (J Fluid Mech 27(2):305-314, 1967), which assumes laminar flow, and by Mirels (Attenuation in a shock tube due to unsteady-boundary-layer action, NACA Report 1333, 1957) for turbulent flow. We found that these models are inadequate to predict the observed data, owing to the presence of fully developed flow which violates the basic assumption of these models. The data are also compared with the empirical shock attenuation models proposed by Zeitoun (Phys Fluids 27(1):011701, 2015) and Deshpande and Puranik (Shock Waves 26(4):465-475, 2016), where better agreement is observed. Finally, we presented experimental data for the flow field behind the shock wave from measurements of the Mach wave angle which shows globally decreasing flow Mach numbers due to viscous wall effects.

  11. Modeling of plastic localization in aluminum and Al–Cu alloys under shock loading

    International Nuclear Information System (INIS)

    Krasnikov, V.S.; Mayer, A.E.

    2014-01-01

    This paper focuses on the modeling of plastic deformation localization in pure aluminum and aluminum–copper alloys during the propagation of a plane shock wave. Modeling is carried out with the use of continual dislocation plasticity model in 2-D geometry. It is shown that the formation of localization bands occurs at an angle of 45° to the direction of propagation of the shock front. Effective initiators for plastic localization in pure aluminum are the perturbations of the initial dislocation density, in the alloys – perturbations of the dislocation density and the concentration of copper atoms. Perturbations of temperature field in a range of tens of kelvins are not so effective for plastic localization. In the alloy plastic localization intensity decreases with an increase of strain rate due to the thermally activated nature of the dislocation motion

  12. Energetic neutral atom imaging with the Polar CEPPAD/IPS instrument: Initial forward modeling results

    International Nuclear Information System (INIS)

    Henderson, M.G.; Reeves, G.D.; Moore, K.R.; Spence, H.E.; Jorgensen, A.M.; Roelof, E.C.

    1997-01-01

    Although the primary function of the CEP-PAD/IPS instrument on Polar is the measurement of energetic ions in-situ, it has also proven to be a very capable Energetic neutral Atom (ENA) imager. Raw ENA images are currently being constructed on a routine basis with a temporal resolution of minutes during both active and quiet times. However, while analyses of these images by themselves provide much information on the spatial distribution and dynamics of the energetic ion population in the ring current, detailed modeling is required to extract the actual ion distributions. In this paper, the authors present the initial results of forward modeling an IPS ENA image obtained during a small geo-magnetic storm on June 9, 1997. The equatorial ion distribution inferred with this technique reproduces the expected large noon/midnight and dawn/dusk asymmetries. The limitations of the model are discussed and a number of modifications to the basic forward modeling technique are proposed which should significantly improve its performance in future studies

  13. Shock Waves Oscillations in the Interaction of Supersonic Flows with the Head of the Aircraft

    Science.gov (United States)

    Bulat, Pavel V.; Volkov, Konstantin N.

    2016-01-01

    In this article we reviewed the shock wave oscillation that occurs when supersonic flows interact with conic, blunt or flat nose of aircraft, taking into account the aerospike attached to it. The main attention was paid to the problem of numerical modeling of such oscillation, flow regime classification, and cases where aerospike attachment can…

  14. PROBING SHOCK BREAKOUT AND PROGENITORS OF STRIPPED-ENVELOPE SUPERNOVAE THROUGH THEIR EARLY RADIO EMISSIONS

    Energy Technology Data Exchange (ETDEWEB)

    Maeda, Keiichi, E-mail: keiichi.maeda@ipmu.jp [Kavli Institute for the Physics and Mathematics of the Universe (Kavli-IPMU), Todai Institutes for Advanced Study (TODIAS), University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8583 (Japan)

    2013-01-01

    We study properties of early radio emission from stripped-envelope supernovae (SNe; those of Type IIb/Ib/Ic). We suggest there is a sub-class of stripped-envelope SNe based on their radio properties, including the optically well-studied Type Ic SNe (SNe Ic) 2002ap and 2007gr, showing a rapid rise to a radio peak within {approx}10 days and reaching a low luminosity (at least an order of magnitude fainter than a majority of SNe IIb/Ib/Ic). They show a decline after the peak that is shallower than that of other stripped-envelope SNe while their spectral index is similar. We show that all these properties are naturally explained if the circumstellar material (CSM) density is low and therefore the forward shock is expanding into the CSM without deceleration. Since the forward shock velocity in this situation, as estimated from the radio properties, still records the maximum velocity of the SN ejecta following the shock breakout, observing these SNe in radio wavelengths provides new diagnostics on the nature of both the breakout and the progenitor which otherwise require a quite rapid follow-up in other wavelengths. The inferred post-shock breakout velocities of SNe Ic 2002ap and 2007gr are sub-relativistic, {approx}0.3c. These are higher than that inferred for SN II 1987A, in line with suggested compact progenitors. However, these are lower than expected for a Wolf-Rayet (W-R) progenitor. It may reflect an as yet unresolved nature of the progenitors just before the explosion, and we suggest that the W-R progenitor envelopes might have been inflated which could quickly reduce the maximum ejecta velocity from the initial shock breakout velocity.

  15. Entropy Generation Across Earth's Bow Shock

    Science.gov (United States)

    Parks, George K.; McCarthy, Michael; Fu, Suiyan; Lee E. s; Cao, Jinbin; Goldstein, Melvyn L.; Canu, Patrick; Dandouras, Iannis S.; Reme, Henri; Fazakerley, Andrew; hide

    2011-01-01

    Earth's bow shock is a transition layer that causes an irreversible change in the state of plasma that is stationary in time. Theories predict entropy increases across the bow shock but entropy has never been directly measured. Cluster and Double Star plasma experiments measure 3D plasma distributions upstream and downstream of the bow shock that allow calculation of Boltzmann's entropy function H and his famous H-theorem, dH/dt O. We present the first direct measurements of entropy density changes across Earth's bow shock. We will show that this entropy generation may be part of the processes that produce the non-thermal plasma distributions is consistent with a kinetic entropy flux model derived from the collisionless Boltzmann equation, giving strong support that solar wind's total entropy across the bow shock remains unchanged. As far as we know, our results are not explained by any existing shock models and should be of interests to theorists.

  16. 2d forward modelling of marine CSEM survey geometry for seabed logging

    International Nuclear Information System (INIS)

    Hussain, N.; Noh, M.; Yahya, N.B.

    2011-01-01

    Hydrocarbon reserve exploration in deep water is done by geophysical surveys. Previously seismic geophysical surveys were explicitly used but it has indistinct results for both water and hydrocarbon saturated reservoir. Recent development for the detection of hydrocarbon reservoir in deeper water is Marine Controlled Source Electromagnetic (MCSEM) geophysical survey. MCSEM is sensitive to electrical conductivity of rocks by which it can differentiate between hydrocarbon reservoir and water saturated reservoir. MCSEM survey geometry put vital role and may causes for anomalies in synthetic data. Consequentially MCSEM is sensitive to survey geometry (e.g. source dipping, rotation and speed, receivers' orientation etc) which causes anomalies. The interpretation for delineating subsurface structure from survey data need to well understand the effects of survey geometry anomalies. Forward modelling is an alternative rather real time survey to study the aforementioned anomalies. In this paper finite difference method (FDM) is implemented for 2D forward modelling in the sense of qualitative understanding to how induced Electromagnetic (EM) signal changes its overall pattern while interact with physical earth properties. A stratified earth structure is developed and modelled in MatLabTM software to study the behaviour of EM field with physical earth properties. Obtained results of 2D geological models are also discussed in this paper. (author)

  17. Thermodynamic model of the compaction of powder materials by shock waves

    NARCIS (Netherlands)

    Dijken, Durandus; Hosson, J.Th.M. De

    1994-01-01

    For powder materials a model is proposed to predict the mean temperature behind the shock wave, the ratio between the increase of thermal energy and increase of total internal energy, as well as the mean final temperature after release of adiabatic pressure. Further, the change of pressure, specific

  18. Sensitivity in reflectance attributed to phytoplankton cell size: forward and inverse modelling approaches

    CSIR Research Space (South Africa)

    Evers-King, H

    2014-05-01

    Full Text Available phytoplankton functional type descriptors within known confidence limits from remotely sensed data has become a major objective to extend the use of ocean colour data beyond chlorophyll a retrievals. Here, a new forward and inverse modelling structure...

  19. Grain Destruction in a Supernova Remnant Shock Wave

    Science.gov (United States)

    Raymond, John C.; Ghavamian, Parviz; Williams, Brian J.; Blair, William P.; Borkowski, Kazimierz J.; Gaetz, Terrance J.; Sankrit, Ravi

    2014-01-01

    Dust grains are sputtered away in the hot gas behind shock fronts in supernova remnants, gradually enriching the gas phase with refractory elements. We have measured emission in C IV (lambda)1550 from C atoms sputtered from dust in the gas behind a non-radiative shock wave in the northern Cygnus Loop. Overall, the intensity observed behind the shock agrees approximately with predictions from model calculations that match the Spitzer 24 micron and the X-ray intensity profiles. Thus these observations confirm the overall picture of dust destruction in SNR shocks and the sputtering rates used in models. However, there is a discrepancy in that the CIV intensity 10'' behind the shock is too high compared to the intensities at the shock and 25'' behind it. Variations in the density, hydrogen neutral fraction and the dust properties over parsec scales in the pre- shock medium limit our ability to test dust destruction models in detail.

  20. Modeling Shock Induced Plasticity in Copper Single Crystal: Numerical and Strain Localization Issues

    International Nuclear Information System (INIS)

    Shehadeh, M

    2011-01-01

    Multiscale dislocation dynamics plasticity (MDDP) simulations are carried out to address the following issues in modeling shock-induced plasticity: 1- the effect of finite element (FE) boundary conditions on shock wave characteristics and wave-dislocation interaction, 2- the effect of the evolution of the dislocation microstructure on lattice rotation and strain localization. While uniaxial strain is achieved with high accuracy using confined boundary condition, periodic boundary condition yields a disturbed wave profile due the edge effect. Including lattice rotation in the analysis leads to higher dislocation density and more localized plastic strain. (author)

  1. The effects of oil price shocks in a new-Keynesian framework with capital accumulation

    International Nuclear Information System (INIS)

    Acurio Vásconez, Verónica; Giraud, Gaël; Mc Isaac, Florent; Pham, Ngoc-Sang

    2015-01-01

    The economic implications of oil price shocks have been extensively studied since the 1970s. Despite this huge literature, no dynamic stochastic general equilibrium model was available that captures two well-known stylized facts: (1) the stagflationary impact of an oil price shock, together with (2) the influence of the energy efficiency of capital on the depth and length of this impact. We build, estimate and simulate a New-Keynesian model with capital accumulation, which takes the case of an economy where oil is imported from abroad, and where these stylized facts can be accounted for. Moreover, the Bayesian estimation of the model on the US economy (1984–2007) suggests that the output elasticity of oil might have been above 10%, stressing the role of oil use in US growth at this time. Finally, our simulations confirm that an increase in energy efficiency significantly attenuates the effects of an oil shock—a possible explanation of why the third oil shock (1999–2008) did not have the same macro-economic impact as the first two ones. These results suggest that oil consumption and energy efficiency have been two major engines for US growth in the last three decades.

  2. Fresh Frozen Plasma Modulates Brain Gene Expression in a Swine Model of Traumatic Brain Injury and Shock

    DEFF Research Database (Denmark)

    Sillesen, Martin; Bambakidis, Ted; Dekker, Simone E

    2017-01-01

    BACKGROUND: Resuscitation with fresh frozen plasma (FFP) decreases brain lesion size and swelling in a swine model of traumatic brain injury and hemorrhagic shock. We hypothesized that brain gene expression profiles after traumatic brain injury and hemorrhagic shock would be modulated by FFP resu...

  3. Risk premium in the UK natural gas forward market

    International Nuclear Information System (INIS)

    Hobaek Haff, Ingrid; Lindqvist, Ola; Loeland, Anders

    2008-01-01

    This report investigates the UK natural gas market, and tests whether it is a fair-game efficient forward market, using forward contracts ranging from one to five months time to delivery. The forward and spot price series are separately non-stationary, but cointegrated. Furthermore, the forward prices are biased predictors of both the future spot and the 1-month-ahead forward price. The risk premium on the forward prices is positive, as opposed to the US gas market, where the risk premium was found to be negative in similar work. Moreover, the analysis reveals that the storage model is an incomplete model for the relationship between the spot and forward prices. However, storage has a clear effect on this relationship, an effect that appears to be non-linear. (author)

  4. The source of real and nominal exchange rate fluctuations in Thailand: Real shock or nominal shock

    OpenAIRE

    Le Thanh, Binh

    2015-01-01

    This paper examines the source of exchange rate fluctuations in Thailand. We employed a structural vector auto-regression (SVAR) model with the long-run neutrality restriction of Blanchard and Quah (1989) to investigate the changes in real and nominal exchange rates from 1994 to 2015. In this paper, we assume that there are two types of shocks which related to exchange rate movements: real shocks and nominal shocks. The empirical analysis indicates that real shocks are the fundamental compon...

  5. Fast forward modeling of Titan’s infrared spectra to invert VIMS/CASSINI hyperspectral images

    Science.gov (United States)

    Rodriguez, S.; Le Mouélic, S.; Rannou, P.; Combe, J.; Le Corre, L.; Griffith, C. A.; Tobie, G.; Barnes, J. W.; Sotin, C.; Brown, R. H.; Baines, K. H.; Buratti, B. J.; Clark, R. N.

    2009-12-01

    The surface of Titan, the largest icy moon of Saturn, is veiled by a very thick and hazy atmosphere. The Visual and Infrared Mapping Spectrometer onboard the Cassini spacecraft, in orbit around Saturn since July 2004, has been conducting an intensive survey of Titan with the objective of understanding the complex nature and interaction of the atmosphere and surface of this mysterious moon. Retrieving and separating contributions from the surface and the atmosphere in Titan’s infrared spectra requires accurate radiative transfer modeling, which is often very demanding of computer resources. As Cassini has gathered hitherto millions of spectra of Titan and will continue to observe it until at least 2010, we report here on the development of a new rapid, simple and versatile radiative transfer model specially designed to process VIMS datacubes. Currently, our model accounts for gas absorption, haze scattering and surface reflectance and can be implemented in an inversion scheme. First results of forward modeling provide spectral shapes that are consistent with VIMS measurements, as well as surface and aerosol properties in the range of validity for Titan. Further inversion tests will be carried on VIMS hyperspectral images for the estimate of spatial coherence of the results, accuracy of the surface reflectance within the atmospheric windows, and potential needs for improved input data and modeling. This work was partly performed at the Jet Propulsion Laboratory, California Institute of Technology, under contract to the National Aeronautics and Space Administration. Calibrated VIMS data appear courtesy of the VIMS team. We thank the CNES French agency for its financial support.

  6. A comment on 'Storage and the electricity forward premium'

    International Nuclear Information System (INIS)

    Bloys van Treslong, Adriaan; Huisman, Ronald

    2010-01-01

    This paper examines the robustness of the results found by Douglas and Popova (2008). They examine the electricity forward premium in relation to gas storage inventories and find that, although electricity is not directly storable, electricity forward premiums are lower when gas storage inventories are higher, especially on days with high temperatures. Douglas and Popova (2008) derive their results from a forward premium model that is an extension of the Bessembinder and Lemmon (2002) model. We examine whether the gas storage inventory results hold under a different specification of the forward risk premium. Our results support the results found by Douglas and Popova (2008) and show that their results are not influenced by the specification of the forward premium model. (author)

  7. Temperature measurements of shock-compressed deuterium

    International Nuclear Information System (INIS)

    Holmes, N.C.; Ross, M.; Nellis, W.J.

    1994-11-01

    The authors measured the temperatures of single and double-shocked D 2 and H 2 up to 85 GPa (0.85 Mbar) and 5,200 K. While single shock temperatures, at pressures to 23 GPa, agree well with previous models, the double shock temperatures are as much as 40% lower than predicted. This is believed to be caused by molecular dissociation, and a new model of the hydrogen EOS at extreme conditions has been developed which correctly predicts their observations. These data and model have important implications for programs which use condensed-phase hydrogen in implosion systems

  8. Evaluation of XHVRB for Capturing Explosive Shock Desensitization

    Science.gov (United States)

    Tuttle, Leah; Schmitt, Robert; Kittell, Dave; Harstad, Eric

    2017-06-01

    Explosive shock desensitization phenomena have been recognized for some time. It has been demonstrated that pressure-based reactive flow models do not adequately capture the basic nature of the explosive behavior. Historically, replacing the local pressure with a shock captured pressure has dramatically improved the numerical modeling approaches. Models based upon shock pressure or functions of entropy have recently been developed. A pseudo-entropy based formulation using the History Variable Reactive Burn model, as proposed by Starkenberg, was implemented into the Eulerian shock physics code CTH. Improvements in the shock capturing algorithm were made. The model is demonstrated to reproduce single shock behavior consistent with published pop plot data. It is also demonstrated to capture a desensitization effect based on available literature data, and to qualitatively capture dead zones from desensitization in 2D corner turning experiments. This models shows promise for use in modeling and simulation problems that are relevant to the desensitization phenomena. Issues are identified with the current implementation and future work is proposed for improving and expanding model capabilities. Sandia National Laboratories is a multi-mission laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. DOE's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  9. Attenuation of surface waves in porous media: Shock wave experiments and modelling

    NARCIS (Netherlands)

    Chao, G.E; Smeulders, D.M.J.; Dongen, van M.E.H.

    2005-01-01

    In this project we conduct experimental and numerical investigations on the attenuation mechanisms of surface waves in poroelastic materials. Viscous dissipation effects are modelled in the framework of Biot's theory. The experiments are performed using a shock tube technique. Quantitative agreement

  10. Persistent vs. Permanent Income Shocks in the Buffer-Stock Model

    DEFF Research Database (Denmark)

    Druedahl, Jeppe; Jørgensen, Thomas Høgholm

    2017-01-01

    relative risk aversion (CRRA) coefficient. If used for calibration, misspecified preferences could, for example, lead to a serious misjudgment in the value of social insurance mechanisms. Economic behavior, such as the marginal propensity to consume (MPC), of households simulated from the estimated......We investigate the effects of assuming a fully permanent income shock in a standard buffer-stock consumption model, when the true income process is only highly persistent. This assumption is computationally very advantageous, and thus often used, but might be problematic due to the implied...... (misspecified) model is, on the other hand, rather close to that from the correctly specified model....

  11. Shock-timing experiments for Inertial Confinement Fusion

    International Nuclear Information System (INIS)

    Debras, G.

    2012-01-01

    The Laser Megajoule (LMJ), which should achieve energy gain in an indirect drive inertial confinement fusion configuration, is being built in France by the CEA (Commissariat a l'Energie Atomique et aux Energies Alternatives). To achieve thermonuclear ignition, the compression of a spherical target will have to be controlled by a series of accurately timed centripetal shocks, with a finely tuned level. A first experiment, performed in 2010 on the LIL (Ligne d'Integration Laser) facility at CEA, has allowed us to study the coalescence of two planar shocks in an indirectly-driven sample of polystyrene, within the framework of shock timing. The main objectives were to validate the experimental concept and the numerical simulations, as a proof-of-principle for future shock-timing campaigns. The main diagnostics used for this study are VISAR (Velocity Interferometer System for Any Reflection) and an optical shock breakout diagnostic, taking into account optical perturbations caused by X-rays. In another experiment, conducted on the LULI (Laboratoire pour l'Utilisation des Lasers Intenses) laser facility in 2010, we studied the timing of two planar directly-driven shocks using the same diagnostics. This latter study is related to the shock ignition concept, with the long-term perspective of energy production. This thesis presents these two experiments and their results. (author) [fr

  12. A DATA-DRIVEN ANALYTIC MODEL FOR PROTON ACCELERATION BY LARGE-SCALE SOLAR CORONAL SHOCKS

    Energy Technology Data Exchange (ETDEWEB)

    Kozarev, Kamen A. [Smithsonian Astrophysical Observatory (United States); Schwadron, Nathan A. [Institute for the Study of Earth, Oceans, and Space, University of New Hampshire (United States)

    2016-11-10

    We have recently studied the development of an eruptive filament-driven, large-scale off-limb coronal bright front (OCBF) in the low solar corona, using remote observations from the Solar Dynamics Observatory ’s Advanced Imaging Assembly EUV telescopes. In that study, we obtained high-temporal resolution estimates of the OCBF parameters regulating the efficiency of charged particle acceleration within the theoretical framework of diffusive shock acceleration (DSA). These parameters include the time-dependent front size, speed, and strength, as well as the upstream coronal magnetic field orientations with respect to the front’s surface normal direction. Here we present an analytical particle acceleration model, specifically developed to incorporate the coronal shock/compressive front properties described above, derived from remote observations. We verify the model’s performance through a grid of idealized case runs using input parameters typical for large-scale coronal shocks, and demonstrate that the results approach the expected DSA steady-state behavior. We then apply the model to the event of 2011 May 11 using the OCBF time-dependent parameters derived by Kozarev et al. We find that the compressive front likely produced energetic particles as low as 1.3 solar radii in the corona. Comparing the modeled and observed fluences near Earth, we also find that the bulk of the acceleration during this event must have occurred above 1.5 solar radii. With this study we have taken a first step in using direct observations of shocks and compressions in the innermost corona to predict the onsets and intensities of solar energetic particle events.

  13. Application limits of finite element models for simulation of shock transfer processes in concrete structures

    International Nuclear Information System (INIS)

    Krutzik, Norbert J.; Eibl, Josef

    2005-01-01

    Shocks on building structures due to impact loads (drop of wreckage and heavy masses from accidents, transport operations, explosions, etc.), especially in case of a postulated aircraft crash, may lead to feasibility problems due to high-induced vibrations and large expenditures at safety-related systems accommodated inside the building structures. A rational and cost-effective qualification of the functionality of such systems requires the prediction of reliable information about the nature of structural responses induced by impact loading in the corresponding regions of the structure. The analytic derivation of realistic and reliable structural responses requires the application of adequate mathematical models and methods as well as a critical evaluation of all factors that influence the entire shock transmission path, from the area of impact to the site of installation of the affected component or system in the structure. Despite extensive studies and computational analyses of impact-induced shocks performed using finite element simulation method, limited and insufficient experimental results to date have precluded a complete investigation and clarification of several 'peculiarities' in the field of shock transmission in finite element models. This refers mainly to the divergence of results observed using FE models when not considering a the required FE element discretization ratio as well as to the attenuation and scatter behavior of the dynamic response results obtained for large building structures and given large distances between the load impact application areas and the component anchoring locations. The cause for such divergences are related to several up to now not clarified 'phenomena' of FE models especially the low-pass filtering effects and dispersion characteristics of FE models

  14. SHOCK BREAKOUT IN TYPE II PLATEAU SUPERNOVAE: PROSPECTS FOR HIGH-REDSHIFT SUPERNOVA SURVEYS

    International Nuclear Information System (INIS)

    Tominaga, N.; Morokuma, T.; Blinnikov, S. I.; Nomoto, K.; Baklanov, P.; Sorokina, E. I.

    2011-01-01

    Shock breakout is the brightest radiative phenomenon in a supernova (SN) but is difficult to be observed owing to the short duration and X-ray/ultraviolet (UV)-peaked spectra. After the first observation from the rising phase reported in 2008, its observability at high redshift is attracting enormous attention. We perform multigroup radiation hydrodynamics calculations of explosions for evolutionary presupernova models with various main-sequence masses M MS , metallicities Z, and explosion energies E. We present multicolor light curves of shock breakouts in Type II plateau SNe, being the most frequent core-collapse SNe, and predict apparent multicolor light curves of shock breakout at various redshifts z. We derive the observable SN rate and reachable redshift as functions of filter x and limiting magnitude m x,lim by taking into account an initial mass function, cosmic star formation history, intergalactic absorption, and host galaxy extinction. We propose a realistic survey strategy optimized for shock breakout. For example, the g'-band observable SN rate for m g',lim = 27.5 mag is 3.3 SNe deg -2 day -1 and half of them are located at z ≥ 1.2. It is clear that the shock breakout is a beneficial clue for probing high-z core-collapse SNe. We also establish ways to identify shock breakout and constrain SN properties from the observations of shock breakout, brightness, timescale, and color. We emphasize that the multicolor observations in blue optical bands with ∼hour intervals, preferably over ≥2 continuous nights, are essential to efficiently detect, identify, and interpret shock breakout.

  15. Shock wave interaction with turbulence: Pseudospectral simulations

    International Nuclear Information System (INIS)

    Buckingham, A.C.

    1986-01-01

    Shock waves amplify pre-existing turbulence. Shock tube and shock wave boundary layer interaction experiments provide qualitative confirmation. However, shock pressure, temperature, and rapid transit complicate direct measurement. Computational simulations supplement the experimental data base and help isolate the mechanisms responsible. Simulations and experiments, particularly under reflected shock wave conditions, significantly influence material mixing. In these pseudospectral Navier-Stokes simulations the shock wave is treated as either a moving (tracked or fitted) domain boundary. The simulations assist development of code mix models. Shock Mach number and pre-existing turbulence intensity initially emerge as key parameters. 20 refs., 8 figs

  16. Converging shocks in elastic-plastic solids.

    Science.gov (United States)

    Ortega, A López; Lombardini, M; Hill, D J

    2011-11-01

    We present an approximate description of the behavior of an elastic-plastic material processed by a cylindrically or spherically symmetric converging shock, following Whitham's shock dynamics theory. Originally applied with success to various gas dynamics problems, this theory is presently derived for solid media, in both elastic and plastic regimes. The exact solutions of the shock dynamics equations obtained reproduce well the results obtained by high-resolution numerical simulations. The examined constitutive laws share a compressible neo-Hookean structure for the internal energy e=e(s)(I(1))+e(h)(ρ,ς), where e(s) accounts for shear through the first invariant of the Cauchy-Green tensor, and e(h) represents the hydrostatic contribution as a function of the density ρ and entropy ς. In the strong-shock limit, reached as the shock approaches the axis or origin r=0, we show that compression effects are dominant over shear deformations. For an isothermal constitutive law, i.e., e(h)=e(h)(ρ), with a power-law dependence e(h) is proportional to ρ(α), shock dynamics predicts that for a converging shock located at r=R(t) at time t, the Mach number increases as M is proportional to [log(1/R)](α), independently of the space index s, where s=2 in cylindrical geometry and 3 in spherical geometry. An alternative isothermal constitutive law with p(ρ) of the arctanh type, which enforces a finite density in the strong-shock limit, leads to M is proportional to R(-(s-1)) for strong shocks. A nonisothermal constitutive law, whose hydrostatic part e(h) is that of an ideal gas, is also tested, recovering the strong-shock limit M is proportional to R(-(s-1)/n(γ)) originally derived by Whitham for perfect gases, where γ is inherently related to the maximum compression ratio that the material can reach, (γ+1)/(γ-1). From these strong-shock limits, we also estimate analytically the density, radial velocity, pressure, and sound speed immediately behind the shock. While the

  17. The MHD intermediate shock interaction with an intermediate wave: Are intermediate shocks physical?

    International Nuclear Information System (INIS)

    Wu, C.C.

    1988-01-01

    Contrary to the usual belief that MHD intermediate shocks are extraneous, the authors have recently shown by numerical solutions of dissipative MHD equations that intermediate shocks are admissible and can be formed through nonlinear steepening from a continuous wave. In this paper, he clarifies the differences between the conventional view and the results by studying the interaction of an MHD intermediate shock with an intermediate wave. The study reaffirms his results. In addition, the study shows that there exists a larger class of shocklike solutions in the time-dependent dissiaptive MHD equations than are given by the MHD Rankine-Hugoniot relations. it also suggests a mechanism for forming rotational discontinuities through the interaction of an intermediate shock with an intermediate wave. The results are of importance not only to the MHD shock theory but also to studies such as magnetic field reconnection models

  18. One-dimensional, forward-forward mean-field games with congestion

    KAUST Repository

    Gomes, Diogo A.; Sedjro, Marc

    2017-01-01

    forward-forward MFGs. Finally, we construct traveling-wave solutions, which settles in a negative way the convergence problem for forward-forward MFGs. A similar technique gives the existence of time-periodic solutions for non-monotonic MFGs.

  19. PARTICLE ACCELERATION AT THE HELIOSPHERIC TERMINATION SHOCK WITH A STOCHASTIC SHOCK OBLIQUITY APPROACH

    International Nuclear Information System (INIS)

    Arthur, Aaron D.; Le Roux, Jakobus A.

    2013-01-01

    Observations by the plasma and magnetic field instruments on board the Voyager 2 spacecraft suggest that the termination shock is weak with a compression ratio of ∼2. However, this is contrary to the observations of accelerated particle spectra at the termination shock, where standard diffusive shock acceleration theory predicts a compression ratio closer to ∼2.9. Using our focused transport model, we investigate pickup proton acceleration at a stationary spherical termination shock with a moderately strong compression ratio of 2.8 to include both the subshock and precursor. We show that for the particle energies observed by the Voyager 2 Low Energy Charged Particle (LECP) instrument, pickup protons will have effective length scales of diffusion that are larger than the combined subshock and precursor termination shock structure observed. As a result, the particles will experience a total effective termination shock compression ratio that is larger than values inferred by the plasma and magnetic field instruments for the subshock and similar to the value predicted by diffusive shock acceleration theory. Furthermore, using a stochastically varying magnetic field angle, we are able to qualitatively reproduce the multiple power-law structure observed for the LECP spectra downstream of the termination shock

  20. Transition from regular to irregular reflection of cylindrical converging shock waves over convex obstacles

    Science.gov (United States)

    Vignati, F.; Guardone, A.

    2017-11-01

    An analytical model for the evolution of regular reflections of cylindrical converging shock waves over circular-arc obstacles is proposed. The model based on the new (local) parameter, the perceived wedge angle, which substitutes the (global) wedge angle of planar surfaces and accounts for the time-dependent curvature of both the shock and the obstacle at the reflection point, is introduced. The new model compares fairly well with numerical results. Results from numerical simulations of the regular to Mach transition—eventually occurring further downstream along the obstacle—point to the perceived wedge angle as the most significant parameter to identify regular to Mach transitions. Indeed, at the transition point, the value of the perceived wedge angle is between 39° and 42° for all investigated configurations, whereas, e.g., the absolute local wedge angle varies in between 10° and 45° in the same conditions.

  1. Thermophysical properties of multi-shock compressed dense argon.

    Science.gov (United States)

    Chen, Q F; Zheng, J; Gu, Y J; Chen, Y L; Cai, L C; Shen, Z J

    2014-02-21

    In contrast to the single shock compression state that can be obtained directly via experimental measurements, the multi-shock compression states, however, have to be calculated with the aid of theoretical models. In order to determine experimentally the multiple shock states, a diagnostic approach with the Doppler pins system (DPS) and the pyrometer was used to probe multiple shocks in dense argon plasmas. Plasma was generated by a shock reverberation technique. The shock was produced using the flyer plate impact accelerated up to ∼6.1 km/s by a two-stage light gas gun and introduced into the plenum argon gas sample, which was pre-compressed from the environmental pressure to about 20 MPa. The time-resolved optical radiation histories were determined using a multi-wavelength channel optical transience radiance pyrometer. Simultaneously, the particle velocity profiles of the LiF window was measured with multi-DPS. The states of multi-shock compression argon plasma were determined from the measured shock velocities combining the particle velocity profiles. We performed the experiments on dense argon plasmas to determine the principal Hugonoit up to 21 GPa, the re-shock pressure up to 73 GPa, and the maximum measure pressure of the fourth shock up to 158 GPa. The results are used to validate the existing self-consistent variational theory model in the partial ionization region and create new theoretical models.

  2. Asymptotic analysis of the Forward Search

    DEFF Research Database (Denmark)

    Johansen, Søren; Nielsen, Bent

    The Forward Search is an iterative algorithm concerned with detection of outliers and other unsuspected structures in data. This approach has been suggested, analysed and applied for regression models in the monograph Atkinson and Riani (2000). An asymptotic analysis of the Forward Search is made...

  3. High-energy Emission from Nonrelativistic Radiative Shocks: Application to Gamma-Ray Novae

    Science.gov (United States)

    Vurm, Indrek; Metzger, Brian D.

    2018-01-01

    The observation of GeV gamma-rays from novae by Fermi/LAT demonstrates that the nonrelativistic radiative shocks in these systems can accelerate particles to energies of at least ∼10 GeV. The low-energy extension of the same nonthermal particle distribution inevitably gives rise to emission in the hard X-ray band. Above ≳ 10 {keV}, this radiation can escape the system without significant absorption/attenuation, and can potentially be detected by NuSTAR. We present theoretical models for hard X-ray and gamma-ray emission from radiative shocks in both leptonic and hadronic scenarios, accounting for the rapid evolution of the downstream properties due to the fast cooling of thermal plasma. We find that due to strong Coulomb losses, only a fraction of {10}-4{--}{10}-3 of the gamma-ray luminosity is radiated in the NuSTAR band; nevertheless, this emission could be detectable simultaneously with the LAT emission in bright gamma-ray novae with a ∼50 ks exposure. The spectral slope in hard X-rays is α ≈ 0 for typical nova parameters, thus serving as a testable prediction of the model. Our work demonstrates how combined hard X-ray and gamma-ray observations can be used to constrain properties of the nova outflow (velocity, density, and mass outflow rate) and particle acceleration at the shock. A very low X-ray to gamma-ray luminosity ratio ({L}{{X}}/{L}γ ≲ 5× {10}-4) would disfavor leptonic models for the gamma-ray emission. Our model can also be applied to other astrophysical environments with radiative shocks, including SNe IIn and colliding winds in massive star binaries.

  4. Optimal Design and Model Validation for Combustion Experiments in a Shock Tube

    KAUST Repository

    Long, Quan; Kim, Daesang; Tempone, Raul; Bisetti, Fabrizio; Farooq, Aamir; Knio, Omar; Prudhomme, Serge

    2014-01-01

    in the reaction rate functions. The control parameters are the initial hydrogen concentration and the temperature. First, we build a polynomial based surrogate model for the observable related to the reactions in the shock tube. Second, we use a novel MAP based

  5. Social Skills Difficulty: Model of Culture Shock for International Graduate Students

    Science.gov (United States)

    Chapdelaine, Raquel Faria; Alexitch, Louise R.

    2004-01-01

    This study expanded and tested Furnham and Bochner's (1982) model of culture shock, employing a sample of 156 male international students in a Canadian university. Path analysis was used to assess the effects of cultural differences, size of co-national group, family status, cross-cultural experience, and social interaction with hosts on culture…

  6. EARLY-TIME VLA OBSERVATIONS AND BROADBAND AFTERGLOW ANALYSIS OF THE FERMI/LAT DETECTED GRB 130907A

    International Nuclear Information System (INIS)

    Veres, Péter; Corsi, Alessandra; Frail, Dale A.; Cenko, S. Bradley; Perley, Daniel A.

    2015-01-01

    We present multi-wavelength observations of the hyper-energetic gamma-ray burst (GRB) 130907A, a Swift-discovered burst with early radio observations starting at ≈4 hr after the γ-ray trigger. GRB 130907A was also detected by the Fermi/LAT instrument and at late times showed a strong spectral evolution in X-rays. We focus on the early-time radio observations, especially at >10 GHz, to attempt to identify reverse shock signatures. While our radio follow-up of GRB 130907A ranks among the earliest observations of a GRB with the Karl G. Jansky Very Large Array, we did not see an unambiguous signature of a reverse shock. While a model with both reverse and forward shock can correctly describe the observations, the data is not constraining enough to decide upon the presence of the reverse-shock component. We model the broadband data using a simple forward-shock synchrotron scenario with a transition from a wind environment to a constant density interstellar medium (ISM) in order to account for the observed features. Within the confines of this model, we also derive the underlying physical parameters of the fireball, which are within typical ranges except for the wind density parameter (A * ), which is higher than those for bursts with wind-ISM transition, but typical for the general population of bursts. We note the importance of early-time radio observations of the afterglow (and of well-sampled light curves) for unambiguously identifying the potential contribution of the reverse shock

  7. Shocks to Bank Lending, Risk-Taking, Securitization, and Their Role for U.S. Business Cycle Fluctuations

    NARCIS (Netherlands)

    Peersman, G.; Wagner, W.B.

    2014-01-01

    Abstract: Shocks to bank lending, risk-taking and securitization activities that are orthogonal to real economy and monetary policy innovations account for more than 30 percent of U.S. output variation. The dynamic effects, however, depend on the type of shock. Expansionary securitization shocks

  8. Acceleration mechanisms flares, magnetic reconnection and shock waves

    International Nuclear Information System (INIS)

    Colgate, S.A.

    1979-01-01

    Several mechanisms are briefly discussed for the acceleration of particles in the astrophysical environment. Included are hydrodynamic acceleration, spherically convergent shocks, shock and a density gradient, coherent electromagnetic acceleration, the flux tube origin, symmetries and instabilities, reconnection, galactic flares, intergalactic acceleration, stochastic acceleration, and astrophysical shocks. It is noted that the supernova shock wave models still depend critically on the presupernova star structure and the assumption of highly compact presupernova models for type I supernovae. 37 references

  9. BSM Higgs physics in the exclusive forward proton mode at the LHC

    International Nuclear Information System (INIS)

    Heinemeyer, S.; Khoze, V.A.; Tasevsky, M.; Weiglein, G.

    2010-12-01

    We investigate the prospects for Central Exclusive Diffractive (CED) production of BSM Higgs bosons at the LHC using forward proton detectors installed at 220 m and 420 m distance around ATLAS and/or CMS. We update a previous analysis for the MSSM taking into account improvements in the theoretical calculations and the most recent exclusion bounds from the Tevatron. We extend the MSSM analysis to new benchmark scenarios that are in agreement with the cold dark matter relic abundance and other precision measurements. We analyse the exclusive production of Higgs bosons in a model with a fourth generation of fermions. Finally, we comment on the determination of Higgs spin-parity and coupling structures at the LHC and show that the forward proton mode could provide crucial information on the CP properties of the Higgs bosons. (orig.)

  10. BSM Higgs physics in the exclusive forward proton mode at the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Heinemeyer, S. [Instituto de Fisica de Cantabria (CSIC-UC), Santander (Spain); Khoze, V.A. [Durham Univ. (United Kingdom). IPPP; Manchester Univ. (United Kingdom). School of Physics and Astronomy; Ryskin, M.G. [Durham Univ. (United Kingdom). IPPP; Petersburg Nuclear Physics Institute, St. Petersburg (Russian Federation); Tasevsky, M. [Institute of Physics, Prague (Czech Republic); Weiglein, G. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2010-12-15

    We investigate the prospects for Central Exclusive Diffractive (CED) production of BSM Higgs bosons at the LHC using forward proton detectors installed at 220 m and 420 m distance around ATLAS and/or CMS. We update a previous analysis for the MSSM taking into account improvements in the theoretical calculations and the most recent exclusion bounds from the Tevatron. We extend the MSSM analysis to new benchmark scenarios that are in agreement with the cold dark matter relic abundance and other precision measurements. We analyse the exclusive production of Higgs bosons in a model with a fourth generation of fermions. Finally, we comment on the determination of Higgs spin-parity and coupling structures at the LHC and show that the forward proton mode could provide crucial information on the CP properties of the Higgs bosons. (orig.)

  11. Shock formation of HCO+

    International Nuclear Information System (INIS)

    Elitzur, M.

    1983-01-01

    It is shown that shocks propagating in dense molecular regions will lead to a decrease in HCO + relative abundance, in agreement with previous results by Iglesias and Silk. The shock enhancement of HCO + detected in the supernova remnant IC 443 by Dickenson et al. is due to enhanced ionization in the shocked material. This is the result of the material penetrating the remnant cavity where it becomes exposed to the trapped cosmic rays. A similar enhancement appears to have been detected by Wootten in W28 and is explained by the same model

  12. Simple feed-forward active control method for suppressing the shock response of a flexible cantilever beam

    International Nuclear Information System (INIS)

    Shin, Kihong; Pyo, Sangho; Lee, Young-Sup

    2009-01-01

    In this paper a 'simple' active control method (without using an error sensor and an adaptive algorithm) is proposed for reducing the residual vibration of a flexible cantilever beam excited by a shock impulse. It is assumed that the shock input can be measured and always occurs on the same point of the beam. In this case, it is shown that a much simpler active control strategy than conventional methods can be used if the system is well identified. The proposed method is verified experimentally with consideration of some practical aspects: the control performance with respect to the control point in time and the choice of frequency response function (FRF) estimators to cope with measurement noise. Experimental results show that a large attenuation of the residual vibration can be achieved using the proposed method. (technical note)

  13. ATLS Hypovolemic Shock Classification by Prediction of Blood Loss in Rats Using Regression Models.

    Science.gov (United States)

    Choi, Soo Beom; Choi, Joon Yul; Park, Jee Soo; Kim, Deok Won

    2016-07-01

    In our previous study, our input data set consisted of 78 rats, the blood loss in percent as a dependent variable, and 11 independent variables (heart rate, systolic blood pressure, diastolic blood pressure, mean arterial pressure, pulse pressure, respiration rate, temperature, perfusion index, lactate concentration, shock index, and new index (lactate concentration/perfusion)). The machine learning methods for multicategory classification were applied to a rat model in acute hemorrhage to predict the four Advanced Trauma Life Support (ATLS) hypovolemic shock classes for triage in our previous study. However, multicategory classification is much more difficult and complicated than binary classification. We introduce a simple approach for classifying ATLS hypovolaemic shock class by predicting blood loss in percent using support vector regression and multivariate linear regression (MLR). We also compared the performance of the classification models using absolute and relative vital signs. The accuracies of support vector regression and MLR models with relative values by predicting blood loss in percent were 88.5% and 84.6%, respectively. These were better than the best accuracy of 80.8% of the direct multicategory classification using the support vector machine one-versus-one model in our previous study for the same validation data set. Moreover, the simple MLR models with both absolute and relative values could provide possibility of the future clinical decision support system for ATLS classification. The perfusion index and new index were more appropriate with relative changes than absolute values.

  14. Shock Wave Propagation in Layered Planetary Interiors: Revisited

    Science.gov (United States)

    Arkani-Hamed, J.; Monteux, J.

    2017-12-01

    The end of the terrestrial planet accretion is characterized by numerous large impacts. About 90% of the mass of a large planet is accreted while the core mantle separation is occurring, because of the accretionary and the short-lived radio-isotope heating. The characteristics of the shockwave propagation, hence the existing scaling laws are poorly known within the layered planets. Here, we use iSALE-2D hydrocode simulations to calculate shock pressure in a differentiated Mars type body for impact velocities of 5-20 km/s, and impactor sizes of 100-400 km. We use two different rheologies for the target interior, an inviscid model ("no-stress model") and a pressure and damage-dependent strength model ("elaborated model"). To better characterize the shock pressure within the whole mantle as a function of distance from the impact site, we propose the following distribution: (1) a near field zone larger than the isobaric core that extends to 7-15 times the projectile radius into the target, where the peak shock pressure decays exponentially with increasing distance, (2) a far field zone where the pressure decays with distance following a power law. The shock pressure decreases more rapidly with distance in the near field for the elaborated model than for the no-stress model because of the influence of acoustic fluidization and damage. However to better illustrate the influence of the rheology on the shock propagation, we use the same expressions to fit the shock pressure with distance for both models. At the core-mantle boundary, CMB, the peak shock pressure jumps as the shock wave enters the core. We derived the boundary condition at CMB for the peak shock pressure. It is less sensitive to the impact velocity or the impactor size, but strongly depends on the rheology of the planet's mantle. Because of the lower shock wave velocity in the core compared to that in the mantle, the refracted shockwave propagates toward the symmetry axis of the planet, and the shock

  15. Solution-diffusion with defects model for pressure-assisted forward osmosis

    KAUST Repository

    Duan, Jintang

    2014-11-01

    An osmosis transport model is presented that combines the standard internal and external concentration polarization equations in the forward osmosis (FO) field with the selective layer transport equations first proposed by Sherwood in 1967. The Sherwood model describes water flux as the sum of a solute-selective, diffusive component driven by the sum of osmotic pressure and hydraulic pressure differences, and a nonselective, convective component driven by hydraulic pressure difference only. This solution-diffusion with defects (SDWD) model and the solution-diffusion (SD) model were compared against data collected using polyamide thin-film-composite (PA-TFC) and integrally-skinned asymmetric cellulose triacetate (CTA) membranes, evaluated in various configurations. When tested with pure water on the porous support side and 1.5. M (π=72.7. bar) sodium chloride solution on the selective layer side, applying 1.25. bar of hydraulic pressure to the porous support side increased water flux by an order of magnitude for PA-TFC membranes, but had negligible effect on CTA membrane flux. These large flux variations can be explained by the SDWD model, but not the SD model. To confirm the existence of defects, a PA-TFC membrane was coated with a uniform, highly water-permeable, nonselective polymer. After coating to block convection through defects, the influence of hydraulic pressure on water flux through this membrane essentially disappeared. Water flux through these defects is low (<1% of total water flux for PA-TFC membranes) and of little consequence in practical FO or reverse osmosis (RO) applications. But in pressure-assisted forward osmosis (PAFO) or pressure-retarded osmosis (PRO), convective transport through defects affects the solute concentration difference across the membrane selective layer, increasing or decreasing water flux through defect-free regions. The presence of defects may explain why membrane power density in PRO is lower than that predicted based on

  16. Risk shocks and housing markets

    OpenAIRE

    Dorofeenko, Viktor; Lee, Gabriel S.; Salyer, Kevin D.

    2010-01-01

    Abstract: This paper analyzes the role of uncertainty in a multi-sector housing model with financial frictions. We include time varying uncertainty (i.e. risk shocks) in the technology shocks that affect housing production. The analysis demonstratesthat risk shocks to the housing production sector are a quantitatively important impulse mechanism for the business cycle. Also, we demonstrate that bankruptcy costs act as an endogenous markup factor in housing prices; as a consequence, the volati...

  17. Dynamics of the aortic arch submitted to a shock loading: Parametric study with fluid-structure models.

    Science.gov (United States)

    El Baroudi, A; Razafimahery, F; Rakotomanana, L

    2012-01-01

    This work aims to present some fluid-structure models for analyzing the dynamics of the aorta during a brusque loading. Indeed, various lesions may appear at the aortic arch during car crash or other accident such as brusque falling. Aortic stresses evolution are simulated during the shock at the cross section and along the aorta. One hot question was that if a brusque deceleration can generate tissue tearing, or a shock is necessary to provoke such a damage. Different constitutive laws of blood are then tested whereas the aorta is assumed linear and elastic. The overall shock model is inspired from an experimental jig. We show that the viscosity has strong influence on the stress and parietal moments and forces. The nonlinear viscosity has no significant additional effects for healthy aorta, but modifies the stress and parietal loadings for the stenotic aorta.

  18. Modeling shock waves in an ideal gas: Going beyond the Navier-Stokes level

    International Nuclear Information System (INIS)

    Holian, B.L.; Patterson, C.W.; Mareschal, M.; Salomons, E.

    1993-01-01

    We model a shock wave in an ideal gas by solving a modified version of the compressible Navier-Stokes equations of hydrodynamics, where, following an earlier conjecture by Holian [Phys. Rev. A 37, 2562 (1988)], we use the temperature in the direction of shock propagation T xx , rather than the average temperature T=(T xx +T yy +T zz )/3, in the evaluation of the linear transport coefficients. The results are found to agree much better with the molecular-dynamics simulations of Salomons and Mareschal [Phys. Rev. Lett. 69, 269 (1992)] than standard Navier-Stokes theory

  19. Holographic interferometric observation of shock wave focusing to extracorporeal shock wave lithotripsy

    Science.gov (United States)

    Takayama, Kazuyoshi; Obara, Tetsuro; Onodera, Osamu

    1991-04-01

    Underwater shock wave focusing is successfully applied to disintegrate and remove kidney stones or gallbladder stones without using surgical operations. This treatment is one of the most peaceful applications ofshock waves and is named as the Extracorporeal Shock Wave Lithotripsy. Ajoint research project is going on between the Institute ofFluid Science, Tohoku University and the School ofMedicine, Tohoku University. The paper describes a result of the fundamental research on the underwater shock wave focusing applied to the ESWL. Quantitatively to visualize the underwater shock waves, various optical flow visualization techniques were successfully used such as holographic interferometry, and shadowgraphs combined with Ima-Con high speed camera. Double exposure holographic interferometric observation revealed the mechanism of generation, propagation and focusing of underwater shock waves. The result of the present research was already used to manufacture a prototype machine and it has already been applied successfully to ESWL crinical treatments. However, despite of success in the clinical treatments, important fundamental questions still remain unsolved, i.e., effects of underwater shock wave focusing on tissue damage during the treatment. Model experiments were conducted to clarify mechanism of the tissue damage associated with the ESWL. Shock-bubble interactions were found responsible to the tissue damage during the ESWL treatment. In order to interprete experimental findings and to predict shock wave behavior and high pressures, a numerical simulation was carried. The numerical results agreed with the experiments.

  20. Essays in the Application of Linear and Non-linear Bayesian VAR Models to the Macroeconomic Impacts of Energy Price Shocks

    Science.gov (United States)

    Nguyen, Bao H.

    This thesis is a collection of five self contained empirical macroeconomic papers on the asymmetric effects of energy price shocks on various economies. Chapter 1 formally determines the number of regime changes in the US natural gas market by employing a MS-VAR model. Estimated using Bayesian methods, three regimes are identified for the period 1980 - 2016, namely, before the Decontrol Act, after the Decontrol Act and the Recession. The results show that the natural gas market tends to be much more sensitive to market fundamental shocks occurring in a Recession regime than in the other regimes. Augmenting the model by incorporating the price of crude oil, the results reveal that the impacts of oil price shocks on natural gas prices are relatively small. Chapter 2 provides new empirical evidence on the asymmetric reactions of the U.S. natural gas market and the U.S. economy to its market fundamental shocks in different phases of the business cycle. To this end, we employ a ST-VAR model to capture the asymmetric responses depending on economic conditions. Our results indicate that in contrast to the prediction made by a linear VAR model, the STVAR model provides a plausible explanation to the behavior of the U.S. natural gas market, which asymmetrically reacts in bad times and good times. Chapter 3 examines the relationship between China's economic growth and global oil market fluctuations between 1992Q1 and 2015Q3. We find that: (1) the time varying parameter VAR with stochastic volatility provides a better fit as compared to it's constant counterparts; (2) the impacts of intertemporal global oil price shocks on China's output are often small and temporary in nature; (3) oil supply and specific oil demand shocks generally produce negative movements in China's GDP growth whilst oil demand shocks tend to have positive effects; (4) domestic output shocks have no significant impact on price or quantity movements within the global oil market. Chapter 4 examines the

  1. Short pulse duration shock initiation experiments plus ignition and growth modeling on Composition B

    International Nuclear Information System (INIS)

    May, Chadd M; Tarver, Craig M

    2014-01-01

    Composition B (63% RDX, 36% TNT, 1% wax) is still a widely used energetic material whose shock initiation characteristics are necessary to understand. It is now possible to shock initiate Composition B and other secondary explosives at diameters well below their characteristic failure diameters for unconfined self-sustaining detonation. This is done using very high velocity, very thin, small diameter flyer plates accelerated by electric or laser power sources. Recently experimental detonation versus failure to detonate threshold flyer velocity curves for Composition B using several Kapton TM flyer thicknesses and diameters were measured. Flyer plates with diameters of 2 mm successfully detonated Composition B, which has a nominal failure diameter of 4.3 mm. The shock pressures required for these initiations are greater than the Chapman-Jouguet (C-J) pressure in self-sustaining Composition B detonation waves. The initiation process is two-dimensional, because both rear and side rarefactions can affect the shocked Composition B reaction rates. The Ignition and Growth reactive flow model for Composition B is extended to yield accurate simulations of this new threshold velocity data for various flyer thicknesses.

  2. Comparison of the CME-associated shock arrival times at the earth using the WSA-ENLIL model with three cone models

    Science.gov (United States)

    Jang, S.; Moon, Y.; Na, H.

    2012-12-01

    We have made a comparison of CME-associated shock arrival times at the earth based on the WSA-ENLIL model with three cone models using 29 halo CMEs from 2001 to 2002. These halo CMEs have cone model parameters from Michalek et al. (2007) as well as their associated interplanetary (IP) shocks. For this study we consider three different cone models (an asymmetric cone model, an ice-cream cone model and an elliptical cone model) to determine CME cone parameters (radial velocity, angular width and source location), which are used for input parameters of the WSA-ENLIL model. The mean absolute error (MAE) of the arrival times for the elliptical cone model is 10 hours, which is about 2 hours smaller than those of the other models. However, this value is still larger than that (8.7 hours) of an empirical model by Kim et al. (2007). We are investigating several possibilities on relatively large errors of the WSA-ENLIL cone model, which may be caused by CME-CME interaction, background solar wind speed, and/or CME density enhancement.

  3. Optimal Design and Model Validation for Combustion Experiments in a Shock Tube

    KAUST Repository

    Long, Quan

    2014-01-06

    We develop a Bayesian framework for the optimal experimental design of the shock tube experiments which are being carried out at the KAUST Clean Combustion Center. The unknown parameters are the pre-exponential parameters and the activation energies in the reaction rate functions. The control parameters are the initial hydrogen concentration and the temperature. First, we build a polynomial based surrogate model for the observable related to the reactions in the shock tube. Second, we use a novel MAP based approach to estimate the expected information gain in the proposed experiments and select the best experimental set-ups corresponding to the optimal expected information gains. Third, we use the synthetic data to carry out virtual validation of our methodology.

  4. Structure of Energetic Particle Mediated Shocks Revisited

    International Nuclear Information System (INIS)

    Mostafavi, P.; Zank, G. P.; Webb, G. M.

    2017-01-01

    The structure of collisionless shock waves is often modified by the presence of energetic particles that are not equilibrated with the thermal plasma (such as pickup ions [PUIs] and solar energetic particles [SEPs]). This is relevant to the inner and outer heliosphere and the Very Local Interstellar Medium (VLISM), where observations of shock waves (e.g., in the inner heliosphere) show that both the magnetic field and thermal gas pressure are less than the energetic particle component pressures. Voyager 2 observations revealed that the heliospheric termination shock (HTS) is very broad and mediated by energetic particles. PUIs and SEPs contribute both a collisionless heat flux and a higher-order viscosity. We show that the incorporation of both effects can completely determine the structure of collisionless shocks mediated by energetic ions. Since the reduced form of the PUI-mediated plasma model is structurally identical to the classical cosmic ray two-fluid model, we note that the presence of viscosity, at least formally, eliminates the need for a gas sub-shock in the classical two-fluid model, including in that regime where three are possible. By considering parameters upstream of the HTS, we show that the thermal gas remains relatively cold and the shock is mediated by PUIs. We determine the structure of the weak interstellar shock observed by Voyager 1 . We consider the inclusion of the thermal heat flux and viscosity to address the most general form of an energetic particle-thermal plasma two-fluid model.

  5. Structure of Energetic Particle Mediated Shocks Revisited

    Energy Technology Data Exchange (ETDEWEB)

    Mostafavi, P.; Zank, G. P. [Department of Space Science, University of Alabama in Huntsville, Huntsville, AL 35899 (United States); Webb, G. M. [Center for Space Plasma and Aeronomic Research (CSPAR), University of Alabama in Huntsville, Huntsville, AL 35899 (United States)

    2017-05-20

    The structure of collisionless shock waves is often modified by the presence of energetic particles that are not equilibrated with the thermal plasma (such as pickup ions [PUIs] and solar energetic particles [SEPs]). This is relevant to the inner and outer heliosphere and the Very Local Interstellar Medium (VLISM), where observations of shock waves (e.g., in the inner heliosphere) show that both the magnetic field and thermal gas pressure are less than the energetic particle component pressures. Voyager 2 observations revealed that the heliospheric termination shock (HTS) is very broad and mediated by energetic particles. PUIs and SEPs contribute both a collisionless heat flux and a higher-order viscosity. We show that the incorporation of both effects can completely determine the structure of collisionless shocks mediated by energetic ions. Since the reduced form of the PUI-mediated plasma model is structurally identical to the classical cosmic ray two-fluid model, we note that the presence of viscosity, at least formally, eliminates the need for a gas sub-shock in the classical two-fluid model, including in that regime where three are possible. By considering parameters upstream of the HTS, we show that the thermal gas remains relatively cold and the shock is mediated by PUIs. We determine the structure of the weak interstellar shock observed by Voyager 1 . We consider the inclusion of the thermal heat flux and viscosity to address the most general form of an energetic particle-thermal plasma two-fluid model.

  6. A SIMPLE EXPERIMENTAL MODEL OF HEAT SHOCK RESPONSE IN RATS

    Directory of Open Access Journals (Sweden)

    Tufi Neder Meyer

    1998-10-01

    Full Text Available Objective: To obtain a simple model for the elicitation of the heat shock response in rats. Design: Laboratory study. Setting: University research laboratories. Sample: Seventy-nine adult male albino rats (weight range 200 g to 570 g. Procedures: Exposure to heat stress by heating animals in a warm bath for 5 min after their rectal temperatures reached 107.60 F (420 C. Liver and lung samples were collected for heat-shock protein 70 (HSP70 detection (Western analysis. Results: Western analysis was positive for HSP70 in the liver and in the lungs of heated animals. There was a temporal correlation between heating and HSP70 detection: it was strongest 1 day after heating and reduced afterwards. No heated animals died. Conclusion: These data show that heating rats in a warm (45o C bath, according to parameters set in this model, elicits efficiently the heat shock response.OBJETIVO: Obter um modelo simples para tentar esclarecer a resposta ao choque térmico em ratos. LOCAL: Laboratório de pesquisa da Universidade. MÉTODO: Amostra: 79 ratos albinos, adultos, entre 200g a 570g. Procedimentos: Exposição ao calor, em banho quente, por 5 minutos, após a temperatura retal chegar a 42 graus centigrados. Biópsias de fígado e pulmão foram obtidas para detectar a proteina 70 (HSP 70, pelo "Western blot". RESULTADOS: As análises foram positivas nos animais aquecidos, com uma correlação entre aquecimento e constatação da HSP 70. Foi mais elevada no primeiro dia e não houve óbitos nos animais aquecidos. CONCLUSÃO: Os ratos aquecidos a 45 graus centígrados respondem eficientemente ao choque térmico.

  7. Accounting for fuel price risk: Using forward natural gas prices instead of gas price forecasts to compare renewable to natural gas-fired generation

    Energy Technology Data Exchange (ETDEWEB)

    Bolinger, Mark; Wiser, Ryan; Golove, William

    2003-08-13

    Against the backdrop of increasingly volatile natural gas prices, renewable energy resources, which by their nature are immune to natural gas fuel price risk, provide a real economic benefit. Unlike many contracts for natural gas-fired generation, renewable generation is typically sold under fixed-price contracts. Assuming that electricity consumers value long-term price stability, a utility or other retail electricity supplier that is looking to expand its resource portfolio (or a policymaker interested in evaluating different resource options) should therefore compare the cost of fixed-price renewable generation to the hedged or guaranteed cost of new natural gas-fired generation, rather than to projected costs based on uncertain gas price forecasts. To do otherwise would be to compare apples to oranges: by their nature, renewable resources carry no natural gas fuel price risk, and if the market values that attribute, then the most appropriate comparison is to the hedged cost of natural gas-fired generation. Nonetheless, utilities and others often compare the costs of renewable to gas-fired generation using as their fuel price input long-term gas price forecasts that are inherently uncertain, rather than long-term natural gas forward prices that can actually be locked in. This practice raises the critical question of how these two price streams compare. If they are similar, then one might conclude that forecast-based modeling and planning exercises are in fact approximating an apples-to-apples comparison, and no further consideration is necessary. If, however, natural gas forward prices systematically differ from price forecasts, then the use of such forecasts in planning and modeling exercises will yield results that are biased in favor of either renewable (if forwards < forecasts) or natural gas-fired generation (if forwards > forecasts). In this report we compare the cost of hedging natural gas price risk through traditional gas-based hedging instruments (e

  8. The Financial Accounting Model from a System Dynamics' Perspective

    OpenAIRE

    Melse, Eric

    2006-01-01

    This paper explores the foundation of the financial accounting model. We examine the properties of the accounting equation as the principal algorithm for the design and the development of a System Dynamics model. Key to the perspective is the foundational requirement that resolves the temporal conflict that resides in a stock and flow model. Through formal analysis the accounting equation is redefined as a cybernetic model by expressing the temporal and dynamic properties of its terms. Articu...

  9. Shock waves in weakly compressed granular media.

    Science.gov (United States)

    van den Wildenberg, Siet; van Loo, Rogier; van Hecke, Martin

    2013-11-22

    We experimentally probe nonlinear wave propagation in weakly compressed granular media and observe a crossover from quasilinear sound waves at low impact to shock waves at high impact. We show that this crossover impact grows with the confining pressure P0, whereas the shock wave speed is independent of P0-two hallmarks of granular shocks predicted recently. The shocks exhibit surprising power law attenuation, which we model with a logarithmic law implying that shock dissipation is weak and qualitatively different from other granular dissipation mechanisms. We show that elastic and potential energy balance in the leading part of the shocks.

  10. Double shock experiments and reactive flow modeling on LX-17 to understand the reacted equation of state

    International Nuclear Information System (INIS)

    Vandersall, Kevin S; Garcia, Frank; Fried, Laurence E; Tarver, Craig M

    2014-01-01

    Experimental data from measurements of the reacted state of an energetic material are desired to incorporate reacted states in modeling by computer codes. In a case such as LX-17 (92.5% TATB and 7.5% Kel-F by weight), where the time dependent kinetics of reaction is still not fully understood and the reacted state may evolve over time, this information becomes even more vital. Experiments were performed to measure the reacted state of LX-17 using a double shock method involving the use of two flyer materials (with known properties) mounted on the projectile that send an initial shock through the material close to or above the Chapman-Jouguet (CJ) state followed by a second shock at a higher magnitude into the detonated material. By measuring the parameters of the first and second shock waves, information on the reacted state can be obtained. The LX-17 detonation reaction zone profiles plus the arrival times and amplitudes of reflected shocks in LX-17 detonation reaction products were measured using Photonic Doppler Velocimetry (PDV) probes and an aluminum foil coated LiF window. A discussion of this work will include the experimental parameters, velocimetry profiles, data interpretation, reactive CHEETAH and Ignition and Growth modeling, as well as detail on possible future experiments.

  11. Do structural oil-market shocks affect stock prices?

    International Nuclear Information System (INIS)

    Apergis, Nicholas; Miller, Stephen M.

    2009-01-01

    This paper investigates how explicit structural shocks that characterize the endogenous character of oil price changes affect stock-market returns in a sample of eight countries - Australia, Canada, France, Germany, Italy, Japan, the United Kingdom, and the United States. For each country, the analysis proceeds in two steps. First, modifying the procedure of Kilian [Not All Oil Price Shocks are Alike: Disentangling Demand and Supply Shocks in the Crude Oil Market. American Economic Review.], we employ a vector error-correction or vector autoregressive model to decompose oil-price changes into three components: oil-supply shocks, global aggregate-demand shocks, and global oil-demand shocks. The last component relates to specific idiosyncratic features of the oil market, such as changes in the precautionary demand concerning the uncertainty about the availability of future oil supplies. Second, recovering the oil-supply shocks, global aggregate-demand shocks, and global oil-demand shocks from the first analysis, we then employ a vector autoregressive model to determine the effects of these structural shocks on the stock market returns in our sample of eight countries. We find that international stock market returns do not respond in a large way to oil market shocks. That is, the significant effects that exist prove small in magnitude. (author)

  12. Forward Genetic Screening Using Behavioral Tests in Zebrafish: A Proof of Concept Analysis of Mutants.

    Science.gov (United States)

    Gerlai, Robert; Poshusta, Tanya L; Rampersad, Mindy; Fernandes, Yohaan; Greenwood, Tammy M; Cousin, Margot A; Klee, Eric W; Clark, Karl J

    2017-01-01

    The zebrafish enjoys several advantages over other model organisms. It is small, easy to maintain, prolific, and numerous genetic tools are available for it. For example, forward genetic screens have allowed investigators to identify important genes potentially involved in a variety of functions from embryogenesis to cancer. However, despite its sophisticated behavioral repertoire, behavioral methods have rarely been utilized in forward genetic screens. Here, we employ a two-tiered strategy, a proof of concept study, to explore the feasibility of behavioral screens. We generated mutant lines using transposon-based insertional mutagenesis, allowing us to bias mutant selection with target genes expressed within the brain. Furthermore, we employed an efficient and fast behavioral pre-selection in which we investigated the locomotory response of 5-day post-fertilization old larval fish to hyperosmotic shock. Based on this assay, we selected five lines for our lower throughput secondary adult behavioral screen. The latter screen utilized tests in which computer animated image presentation and video-tracking-based automated quantification of behavior allowed us to compare heterozygous zebrafish with their wild-type siblings on their responses to a variety of stimuli. We found significant mutation induced adult behavioral alterations in 4 out of the 5 lines analyzed, including changes in response to social or fear inducing stimuli, to handling and novelty, or in habituation to novelty. We discuss the pros and cons of behavioral phenotyping and of the use of different forward genetic methods in biomedical research with zebrafish.

  13. On terminating Poisson processes in some shock models

    Energy Technology Data Exchange (ETDEWEB)

    Finkelstein, Maxim, E-mail: FinkelMI@ufs.ac.z [Department of Mathematical Statistics, University of the Free State, Bloemfontein (South Africa); Max Planck Institute for Demographic Research, Rostock (Germany); Marais, Francois, E-mail: fmarais@csc.co [CSC, Cape Town (South Africa)

    2010-08-15

    A system subject to a point process of shocks is considered. Shocks occur in accordance with the homogeneous Poisson process. Different criteria of system failure (termination) are discussed and the corresponding probabilities of failure (accident)-free performance are derived. The described analytical approach is based on deriving integral equations for each setting and solving these equations through the Laplace transform. Some approximations are analyzed and further generalizations and applications are discussed.

  14. On terminating Poisson processes in some shock models

    International Nuclear Information System (INIS)

    Finkelstein, Maxim; Marais, Francois

    2010-01-01

    A system subject to a point process of shocks is considered. Shocks occur in accordance with the homogeneous Poisson process. Different criteria of system failure (termination) are discussed and the corresponding probabilities of failure (accident)-free performance are derived. The described analytical approach is based on deriving integral equations for each setting and solving these equations through the Laplace transform. Some approximations are analyzed and further generalizations and applications are discussed.

  15. Forward Physics at the LHC within and beyond the Standard Model

    CERN Document Server

    d'Enterria, David

    2008-01-01

    We review the detection capabilities in the forward direction of the various LHC experiments together with the associated physics programme. A selection of measurements accessible with near-beam instrumentation in various sectors (and extensions) of the Standard Model is outlined, including QCD (diffractive and elastic scattering, low-x parton dynamics, hadronic Monte Carlos for cosmic-rays), electroweak processes in gamma-gamma interactions, and Higgs physics (vector-boson-fusion and central exclusive production).

  16. Shock propagation in a heterogeneous medium

    International Nuclear Information System (INIS)

    Elbaz, D.

    2011-01-01

    In the frame of the inertial confinement fusion in direct drive, the use of foams as ablator allows the reduction of hydrodynamic instabilities created on the target by the direct laser irradiation. The foam is made up of carbon (CH) fibers impregnated of cryogenic deuterium-tritium (DT). In the past, studies have been carried out considering this foam to be a homogeneous medium. Yet, the foam presents heterogeneous features. We study the effects of this heterogeneity on the shock velocity when the laser irradiates the target. Thanks to experimental and numerical studies, we show that the shock propagates faster in the heterogeneous medium than in the homogeneous one with the same averaged density. This velocity gap depends on the presence rate of the CH fibers in the foam, the density ratio, the adiabatic coefficient and the foam geometry. We model the foam by different ways, more and more complex. The shock velocity modification is due to the baroclinicity which, during the interaction between the shock front and the interface, creates a vorticity deposition, responsible for the shock acceleration. Accordingly, an interface, which is plane and perpendicular to the front shock, maximizes the vorticity deposition and increases the velocity gaps between heterogeneous and homogeneous media. We found a correlation between the kinetic energy behind the shock front and the velocities relative difference. We compared our results with two analytical models. However, the system is not closed, so we can't for the moment develop a predictive model. (author) [fr

  17. Exploring the Causes of Mid-Holocene Drought in the Rocky Mountains Using Hydrologic Forward Models

    Science.gov (United States)

    Meador, E.; Morrill, C.

    2017-12-01

    We present a quantitative model-data comparison for mid-Holocene (6 ka) lake levels in the Rocky Mountains, with the goals of assessing the skill coupled climate models and hydrologic forward models in simulating climate change and improving our understanding of the factors causing past changes in water resources. The mid-Holocene climate in this area may in some ways be similar to expected future climate, thus improved understanding of the factors causing past changes in water resources have the potential to aid in the process of water allocation for large areas that share a relatively small water source. This project focuses on Little Windy Hill Pond in the Medicine Bow Forest in the Rocky Mountains in southern Wyoming. We first calibrated the Variable Infiltration Capacity (VIC) catchment hydrologic model and the one-dimensional Hostetler Bartlein lake energy-balance model to modern observations, using U.S. Geological Survey stream discharge data and Snow Telemetry (SNOTEL) data to ensure appropriate selection of model parameters. Once the models were calibrated to modern conditions, we forced them with output from eight mid-Holocene coupled climate model simulations completed as part of the Coupled Model Intercomparison Project, Phase 5. Forcing from nearly all of the CMIP5 models generates intense, short-lived droughts for the mid-Holocene that are more severe than any we modeled for the past six decades. The severity of the mid-Holocene droughts could be sufficient, depending on sediment processes in the lake, to account for low lake levels recorded by loss-on-ignition in sediment cores. Our preliminary analysis of model output indicates that the combined effects of decreased snowmelt runoff and increased summer lake evaporation cause low mid-Holocene lake levels. These factors are also expected to be important in the future under anthropogenic climate change.

  18. A mixed multiscale model better accounting for the cross term of the subgrid-scale stress and for backscatter

    Science.gov (United States)

    Thiry, Olivier; Winckelmans, Grégoire

    2016-02-01

    In the large-eddy simulation (LES) of turbulent flows, models are used to account for the subgrid-scale (SGS) stress. We here consider LES with "truncation filtering only" (i.e., that due to the LES grid), thus without regular explicit filtering added. The SGS stress tensor is then composed of two terms: the cross term that accounts for interactions between resolved scales and unresolved scales, and the Reynolds term that accounts for interactions between unresolved scales. Both terms provide forward- (dissipation) and backward (production, also called backscatter) energy transfer. Purely dissipative, eddy-viscosity type, SGS models are widely used: Smagorinsky-type models, or more advanced multiscale-type models. Dynamic versions have also been developed, where the model coefficient is determined using a dynamic procedure. Being dissipative by nature, those models do not provide backscatter. Even when using the dynamic version with local averaging, one typically uses clipping to forbid negative values of the model coefficient and hence ensure the stability of the simulation; hence removing the backscatter produced by the dynamic procedure. More advanced SGS model are thus desirable, and that better conform to the physics of the true SGS stress, while remaining stable. We here investigate, in decaying homogeneous isotropic turbulence, and using a de-aliased pseudo-spectral method, the behavior of the cross term and of the Reynolds term: in terms of dissipation spectra, and in terms of probability density function (pdf) of dissipation in physical space: positive and negative (backscatter). We then develop a new mixed model that better accounts for the physics of the SGS stress and for the backscatter. It has a cross term part which is built using a scale-similarity argument, further combined with a correction for Galilean invariance using a pseudo-Leonard term: this is the term that also does backscatter. It also has an eddy-viscosity multiscale model part that

  19. Calculation of One-dimensional Forward Modelling of Helicopter-borne Electromagnetic Data and a Sensitivity Matrix Using Fast Hankel Transforms

    Directory of Open Access Journals (Sweden)

    Abolfazl Asadian

    2014-06-01

    Full Text Available The helicopter-borne electromagnetic (HEM frequency-domain exploration method is an airborne electromagnetic (AEM technique that is widely used for vast and rough areas for resistivity imaging. The vast amount of digitized data flowing from the HEM method requires an efficient and accurate inversion algorithm. Generally, the inverse modelling of HEM data in the first step requires a precise and efficient technique provided by a forward modelling algorithm. The exact calculation of the sensitivity matrix or Jacobian is also of the utmost importance. As such, the main objective of this study is to design an efficient algorithm for the forward modelling of HEM frequency-domain data for the configuration of horizontal coplanar (HCP coils using fast Hankel transforms (FHTs. An attempt is also made to use an analytical approach to derive the required equations for the Jacobian matrix. To achieve these goals, an elaborated algorithm for the simultaneous calculation of the forward computation and sensitivity matrix is provided. Finally, using two synthetic models, the accuracy of the calculations of the proposed algorithm is verified. A comparison indicates that the obtained results of forward modelling are highly consistent with those reported in Simon et al. (2009 for a four-layer model. Furthermore, the comparison of the results for the sensitivity matrix for a two-layer model with those obtained from software is being used by the BGR Centre in Germany, showing that the proposed algorithm enjoys a high degree of accuracy in calculating this matrix.

  20. Additive Feed Forward Control with Neural Networks

    DEFF Research Database (Denmark)

    Sørensen, O.

    1999-01-01

    This paper demonstrates a method to control a non-linear, multivariable, noisy process using trained neural networks. The basis for the method is a trained neural network controller acting as the inverse process model. A training method for obtaining such an inverse process model is applied....... A suitable 'shaped' (low-pass filtered) reference is used to overcome problems with excessive control action when using a controller acting as the inverse process model. The control concept is Additive Feed Forward Control, where the trained neural network controller, acting as the inverse process model......, is placed in a supplementary pure feed-forward path to an existing feedback controller. This concept benefits from the fact, that an existing, traditional designed, feedback controller can be retained without any modifications, and after training the connection of the neural network feed-forward controller...

  1. One-dimensional, forward-forward mean-field games with congestion

    KAUST Repository

    Gomes, Diogo A.

    2017-03-29

    Here, we consider one-dimensional forward-forward mean-field games (MFGs) with congestion, which were introduced to approximate stationary MFGs. We use methods from the theory of conservation laws to examine the qualitative properties of these games. First, by computing Riemann invariants and corresponding invariant regions, we develop a method to prove lower bounds for the density. Next, by combining the lower bound with an entropy function, we prove the existence of global solutions for parabolic forward-forward MFGs. Finally, we construct traveling-wave solutions, which settles in a negative way the convergence problem for forward-forward MFGs. A similar technique gives the existence of time-periodic solutions for non-monotonic MFGs.

  2. Shock-to-detonation transition of RDX and NTO based composite high explosives: experiments and modeling

    Science.gov (United States)

    Baudin, Gerard; Roudot, Marie; Genetier, Marc

    2013-06-01

    Composite HMX and NTO based high explosives (HE) are widely used in ammunitions. Designing modern warheads needs robust and reliable models to compute shock ignition and detonation propagation inside HE. Comparing to a pressed HE, a composite HE is not porous and the hot-spots are mainly located at the grain - binder interface leading to a different behavior during shock-to-detonation transition. An investigation of how shock-to-detonation transition occurs inside composite HE containing RDX and NTO is proposed in this lecture. Two composite HE have been studied. The first one is HMX - HTPB 82:18. The second one is HMX - NTO - HTPB 12:72:16. These HE have been submitted to plane sustained shock waves at different pressure levels using a laboratory powder gun. Pressure signals are measured using manganin gauges inserted at several distances inside HE. The corresponding run-distances to detonation are determined using wedge test experiments where the plate impact is performed using a powder gun. Both HE exhibit a single detonation buildup curve in the distance - time diagram of shock-to-detonation transition. This feature seems a common shock-to-detonation behavior for composite HE without porosity. This behavior is also confirmed for a RDX - HTPB 85:15 based composite HE. Such a behavior is exploited to determine the heterogeneous reaction rate versus the shock pressure using a method based on the Cauchy-Riemann problem inversion. The reaction rate laws obtained allow to compute both run-distance to detonation and pressure signals.

  3. The strategic use of forward contracts: Applications in power markets

    Science.gov (United States)

    Lien, Jeffrey Scott

    This dissertation develops three theoretical models that analyze forward trading by firms with market power. The models are discussed in the context of recently restructured power markets, but the results can be applied more generally. The first model considers the profitability of large firms in markets with limited economies of scale and free entry. When large firms apply their market power, small firms benefit from the high prices without incurring the costs of restricted output. When entry is considered, and profit opportunity is determined by the cost of entry, this asymmetry creates the "curse of market power;" the long-run profits of large firms are reduced because of their market power. I suggest ways that large power producers can cope with the curse of market power, including the sale of long-term forward contracts. Past research has shown that forward contracts can demonstrate commitment to aggressive behavior to a competing duopolist. I add explicitly modeled entry to this literature, and make the potential entrants the audience of the forward sale. The existence of a forward market decreases equilibrium entry, increases the profits of large firms, and enhances economic efficiency. In the second model, a consumer representative, such as a state government or regulated distribution utility, bargains in the forward market on behalf of end-consumers who cannot organize together in the spot market. The ability to organize in forward markets allows consumers to encourage economic efficiency. When multiple producers are considered, I find that the ability to offer contracts also increases consumer surplus by decreasing the producers' profits. In some specifications of the model, consumers are able to capture the full gains from trade. The third model of this dissertation considers the ability of a large producer to take advantage of anonymity by randomly alternating between forward sales and forward purchases. The large producer uses its market power to

  4. Formation and decay of laser-generated shock waves

    Energy Technology Data Exchange (ETDEWEB)

    Cottet, F.; Romain, J.P.

    1982-01-01

    The process of formation and decay of laser-generated shock waves is described by a hydrodynamic model. Measurements of shock velocities are performed on copper foils for incident intensities between 3 x 10/sup 11/ and 3 x 10/sup 12/ W/cm/sup 2/, with the use of piezoelectric detectors. Maximum induced pressures are found between 0.5 and 1.2 Mbar in the intensity range considered. Analysis of the results with the shock-evolution model outlines the importance of the decay process of laser-generated shocks.

  5. Impacts Of External Price Shocks On Malaysian Macro Economy-An Applied General Equilibrium Analysis

    Directory of Open Access Journals (Sweden)

    Abul Quasem Al-Amin

    2008-10-01

    Full Text Available This paper examines the impacts of external price shocks in the Malaysian economy. There are three simulations are carried out with different degrees of external shocks using Malaysian Social Accounting Matrix (SAM and Computable General Equilibrium (CGE analysis. The model results indicate that the import price shocks, better known as external price shocks by 15% decreases the domestic production of building and construction sector by 25.87%, hotels, restaurants and entertainment sector by 12.04%, industry sector by 12.02%, agriculture sector by 11.01%, and electricity and gas sector by 9.55% from the baseline. On the import side, our simulation results illustrate that as a result of the import price shocks by 15%, imports decreases significantly in all sectors from base level. Among the scenarios, the largest negative impacts goes on industry sectors by 29.67% followed by building and construction sector by 22.42%, hotels, restaurants and entertainment sector by 19.45%, electricity and gas sector by 13.%, agriculture sector by 12.63% and other service sectors by 11.17%. However significant negative impact goes to the investment and fixed capital investment. It also causes the household income, household consumption and household savings down and increases the cost of livings in the economy results in downward social welfare.

  6. Experimental and Theoretical Investigation of Shock-Induced Reactions in Energetic Materials

    Energy Technology Data Exchange (ETDEWEB)

    Kay, Jeffrey J. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Park, Samuel [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Kohl, Ian Thomas [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Knepper, Robert [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Farrow, Darcie [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Tappan, Alexander S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-09-01

    In this work, shock-induced reactions in high explosives and their chemical mechanisms were investigated using state-of-the-art experimental and theoretical techniques. Experimentally, ultrafast shock interrogation (USI, an ultrafast interferometry technique) and ultrafast absorption spectroscopy were used to interrogate shock compression and initiation of reaction on the picosecond timescale. The experiments yielded important new data that appear to indicate reaction of high explosives on the timescale of tens of picoseconds in response to shock compression, potentially setting new upper limits on the timescale of reaction. Theoretically, chemical mechanisms of shock-induced reactions were investigated using density functional theory. The calculations generated important insights regarding the ability of several hypothesized mechanisms to account for shock-induced reactions in explosive materials. The results of this work constitute significant advances in our understanding of the fundamental chemical reaction mechanisms that control explosive sensitivity and initiation of detonation.

  7. Ion heating and energy partition at the heliospheric termination shock: hybrid simulations and analytical model

    Energy Technology Data Exchange (ETDEWEB)

    Gary, S Peter [Los Alamos National Laboratory; Winske, Dan [Los Alamos National Laboratory; Wu, Pin [BOSTON UNIV.; Schwadron, N A [BOSTON UNIV.; Lee, M [UNIV OF NEW HAMPSHIRE

    2009-01-01

    The Los Alamos hybrid simulation code is used to examine heating and the partition of dissipation energy at the perpendicular heliospheric termination shock in the presence of pickup ions. The simulations are one-dimensional in space but three-dimensional in field and velocity components, and are carried out for a range of values of pickup ion relative density. Results from the simulations show that because the solar wind ions are relatively cold upstream, the temperature of these ions is raised by a relatively larger factor than the temperature of the pickup ions. An analytic model for energy partition is developed on the basis of the Rankine-Hugoniot relations and a polytropic energy equation. The polytropic index {gamma} used in the Rankine-Hugoniot relations is varied to improve agreement between the model and the simulations concerning the fraction of downstream heating in the pickup ions as well as the compression ratio at the shock. When the pickup ion density is less than 20%, the polytropic index is about 5/3, whereas for pickup ion densities greater than 20%, the polytropic index tends toward 2.2, suggesting a fundamental change in the character of the shock, as seen in the simulations, when the pickup ion density is large. The model and the simulations both indicate for the upstream parameters chosen for Voyager 2 conditions that the pickup ion density is about 25% and the pickup ions gain the larger share (approximately 90%) of the downstream thermal pressure, consistent with Voyager 2 observations near the shock.

  8. Corporate Policies with Permanent and Transitory Shocks

    NARCIS (Netherlands)

    J-P. Decamps (Jean-Paul); S. Gryglewicz (Sebastian); E. Morellec (Erwan); S. Villeneuve (Stephane)

    2016-01-01

    textabstractWe model the financing, cash holdings, and hedging policies of a firm facing financing frictions and subject to permanent and transitory cash flow shocks. We show that permanent and transitory shocks generate distinct, sometimes opposite, effects on corporate policies and use the model

  9. LHC production of forward-center and forward-forward di-jets in the kt-factorization and transverse dependent unintegrated parton distribution frameworks

    Science.gov (United States)

    Modarres, M.; Masouminia, M. R.; Aminzadeh Nik, R.; Hosseinkhani, H.; Olanj, N.

    2017-09-01

    The present work is devoted to study the high-energy QCD events, such as the di-jet productions from proton-proton inelastic collisions at the LHC in the forward-center and the forward-forward configurations. This provides us with much valuable case study, since such phenomena can provide a direct glimpse into the partonic behavior of a hadron in a dominant gluonic region. We use the unintegrated parton distribution functions (UPDF) in the kt-factorization framework. The UPDF of Kimber et al. (KMR) and Martin et al. (MRW) are generated in the leading order (LO) and next-to-leading order (NLO), using the Harland-Lang et al. (MMHT2014) PDF libraries. While working in the forward-center and the forward-forward rapidity sectors, one can probe the parton densities at very low longitudinal momentum fractions (x). Such a model computation can provide simpler analytic description of data with respect to existing formalisms such as perturbative QCD. The differential cross-section calculations are performed at the center of mass energy of 7 TeV corresponding to CMS collaboration measurement. It is shown that the gluonic jet productions are dominant and a good description of data as well as other theoretical attempts (i.e. KS-linear, KS-nonlinear and rcBK) is obtained. The uncertainty of the calculations is derived by manipulating the hard scale of the processes by a factor of two. This conclusion is achieved, due to the particular visualization of the angular ordering constraint (AOC), that is incorporated in the definition of these UPDF.

  10. Regulatory capture in the globalisation of accounting standards

    OpenAIRE

    Jayne M Godfrey; Ian A Langfield-Smith

    2005-01-01

    The Australian Financial Reporting Council recently shocked the world business community by unexpectedly announcing a change in the nation’s approach to global-accounting-standards development. The change involved switching from ensuring consistency of Australian accounting standards with International Financial Reporting Standards (IFRSs) developed by the International Accounting Standards Board to outright adoption of IFRSs by 2005. At the time of the announcement, Australia had the most de...

  11. Moving forward socio-economically focused models of deforestation

    OpenAIRE

    DEZÉCACHE CAMILLE; SALLES JEAN-MICHEL; VIEILLEDENT GHISLAIN; HÉRAULT BRUNO

    2017-01-01

    While high resolution spatial variables contribute to a good fit of spatially-explicit deforestation models, socio-economic processes are often beyond the scope of these models. Such a low level of interest in the socio-economic dimension of deforestation limits the relevancy of these models for decision making and may be the cause of their failure to accurately predict observed deforestation trends in the medium term. This study aims to propose a flexible methodology for taking into account ...

  12. In-tube shock wave driven by atmospheric millimeter-wave plasma

    International Nuclear Information System (INIS)

    Oda, Yasuhisa; Kajiwara, Ken; Takahashi, Koji; Kasugai, Atsushi; Sakamoto, Keishi; Komurasaki, Kimiya

    2009-01-01

    A shock wave in a tube supported by atmospheric millimeter-wave plasma is discussed. After atmospheric breakdown, the shock wave supported by the millimeter wave propagates at a constant velocity in the tube. In this study, a driving model of the millimeter-wave shock wave is proposed. The model consists of a normal shock wave supported by a propagating heat-supply area in which an ionization front is located. The flow properties predicted by the model show good agreement with the measured properties of the shock wave generated in the tube using a 170 GHz millimeter wave beam. The shock propagation velocity U shock is identical to the propagation velocity of the ionization front U ioniz when U ioniz is supersonic. Then the pressure increment at the tube end is independent of the power density. (author)

  13. Laser Beam Propagation Through Inhomogeneous Media with Shock-Like Profiles: Modeling and Computing

    Science.gov (United States)

    Adamovsky, Grigory; Ida, Nathan

    1997-01-01

    Wave propagation in inhomogeneous media has been studied for such diverse applications as propagation of radiowaves in atmosphere, light propagation through thin films and in inhomogeneous waveguides, flow visualization, and others. In recent years an increased interest has been developed in wave propagation through shocks in supersonic flows. Results of experiments conducted in the past few years has shown such interesting phenomena as a laser beam splitting and spreading. The paper describes a model constructed to propagate a laser beam through shock-like inhomogeneous media. Numerical techniques are presented to compute the beam through such media. The results of computation are presented, discussed, and compared with experimental data.

  14. Shock interactions with heterogeneous energetic materials

    Science.gov (United States)

    Yarrington, Cole D.; Wixom, Ryan R.; Damm, David L.

    2018-03-01

    The complex physical phenomenon of shock wave interaction with material heterogeneities has significant importance and nevertheless remains little understood. In many materials, the observed macroscale response to shock loading is governed by characteristics of the microstructure. Yet, the majority of computational studies aimed at predicting phenomena affected by these processes, such as the initiation and propagation of detonation waves in explosives or shock propagation in geological materials, employ continuum material and reactive burn model treatment. In an effort to highlight the grain-scale processes that underlie the observable effects in an energetic system, a grain-scale model for hexanitrostilbene (HNS) has been developed. The measured microstructures were used to produce synthetic computational representations of the pore structure, and a density functional theory molecular dynamics derived equation of state (EOS) was used for the fully dense HNS matrix. The explicit inclusion of the microstructure along with a fully dense EOS resulted in close agreement with historical shock compression experiments. More recent experiments on the dynamic reaction threshold were also reproduced by inclusion of a global kinetics model. The complete model was shown to reproduce accurately the expected response of this heterogeneous material to shock loading. Mesoscale simulations were shown to provide a clear insight into the nature of threshold behavior and are a way to understand complex physical phenomena.

  15. Converging cylindrical magnetohydrodynamic shock collapse onto a power-law-varying line current

    KAUST Repository

    Mostert, W.

    2016-03-16

    We investigate the convergence behaviour of a cylindrical, fast magnetohydrodynamic (MHD) shock wave in a neutrally ionized gas collapsing onto an axial line current that generates a power law in time, azimuthal magnetic field. The analysis is done within the framework of a modified version of ideal MHD for an inviscid, non-dissipative, neutrally ionized compressible gas. The time variation of the magnetic field is tuned such that it approaches zero at the instant that the shock reaches the axis. This configuration is motivated by the desire to produce a finite magnetic field at finite shock radius but a singular gas pressure and temperature at the instant of shock impact. Our main focus is on the variation with shock radius, as, of the shock Mach number and pressure behind the shock as a function of the magnetic field power-law exponent, where gives a constant-in-time line current. The flow problem is first formulated using an extension of geometrical shock dynamics (GSD) into the time domain to take account of the time-varying conditions ahead of the converging shock, coupled with appropriate shock-jump conditions for a fast, symmetric MHD shock. This provides a pair of ordinary differential equations describing both and the time evolution on the shock, as a function of, constrained by a collapse condition required to achieve tuned shock convergence. Asymptotic, analytical results for and are obtained over a range of for general, and for both small and large . In addition, numerical solutions of the GSD equations are performed over a large range of, for selected parameters using . The accuracy of the GSD model is verified for some cases using direct numerical solution of the full, radially symmetric MHD equations using a shock-capturing method. For the GSD solutions, it is found that the physical character of the shock convergence to the axis is a strong function of . For μ≤0.816, and both approach unity at shock impact owing to the dominance of the strong

  16. A Novel Porcine Model of Septic Shock Induced by Acute Respiratory Distress Syndrome due to Methicillin-resistant Staphylococcus aureus

    Directory of Open Access Journals (Sweden)

    Shuo Wang

    2017-01-01

    Conclusions: In the present study, we developed a novel porcine model of septic shock induced by ARDS due to severe MRSA pneumonia with characteristic hyperdynamic and hypodynamic phases in 24 h, which mimicked the hemodynamic changing of septic shock in human.

  17. Do oil shocks predict economic policy uncertainty?

    Science.gov (United States)

    Rehman, Mobeen Ur

    2018-05-01

    Oil price fluctuations have influential role in global economic policies for developed as well as emerging countries. I investigate the role of international oil prices disintegrated into structural (i) oil supply shock, (ii) aggregate demand shock and (iii) oil market specific demand shocks, based on the work of Kilian (2009) using structural VAR framework on economic policies uncertainty of sampled markets. Economic policy uncertainty, due to its non-linear behavior is modeled in a regime switching framework with disintegrated structural oil shocks. Our results highlight that Indian, Spain and Japanese economic policy uncertainty responds to the global oil price shocks, however aggregate demand shocks fail to induce any change. Oil specific demand shocks are significant only for China and India in high volatility state.

  18. Influence of Shock Wave on the Flutter Behavior of Fan Blades Investigated

    Science.gov (United States)

    Srivastava, Rakesh; Bakhle, Milind A.; Stefko, George L.

    2003-01-01

    Modern fan designs have blades with forward sweep; a lean, thin cross section; and a wide chord to improve performance and reduce noise. These geometric features coupled with the presence of a shock wave can lead to flutter instability. Flutter is a self-excited dynamic instability arising because of fluid-structure interaction, which causes the energy from the surrounding fluid to be extracted by the vibrating structure. An in-flight occurrence of flutter could be catastrophic and is a significant design issue for rotor blades in gas turbines. Understanding the flutter behavior and the influence of flow features on flutter will lead to a better and safer design. An aeroelastic analysis code, TURBO, has been developed and validated for flutter calculations at the NASA Glenn Research Center. The code has been used to understand the occurrence of flutter in a forward-swept fan design. The forward-swept fan, which consists of 22 inserted blades, encountered flutter during wind tunnel tests at part speed conditions.

  19. Evaluating the inverse reasoning account of object discovery.

    Science.gov (United States)

    Carroll, Christopher D; Kemp, Charles

    2015-06-01

    People routinely make inferences about unobserved objects. A hotel guest with welts on his arms, for example, will often worry about bed bugs. The discovery of unobserved objects almost always involves a backward inference from some observed effects (e.g., welts) to unobserved causes (e.g., bed bugs). The inverse reasoning account, which is typically formalized as Bayesian inference, posits that the strength of a backward inference is closely connected to the strength of the corresponding forward inference from the unobserved causes to the observed effects. We evaluated the inverse reasoning account of object discovery in three experiments where participants were asked to discover the unobserved "attractors" and "repellers" that controlled a "particle" moving within an arena. Experiments 1 and 2 showed that participants often failed to provide the best explanations for various particle motions, even when the best explanations were simple and when participants enthusiastically endorsed these explanations when presented with them. This failure demonstrates that object discovery is critically dependent on the processes that support hypothesis generation-processes that the inverse reasoning account does not explain. Experiment 3 demonstrated that people sometimes generate explanations that are invalid even according to their own forward inferences, suggesting that the psychological processes that support forward and backward inference are less intertwined than the inverse reasoning account suggests. The experimental findings support an alternative account of object discovery in which people rely on heuristics to generate possible explanations. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Modeling of quasistatic magnetic hysteresis with feed-forward neural networks

    International Nuclear Information System (INIS)

    Makaveev, Dimitre; Dupre, Luc; De Wulf, Marc; Melkebeek, Jan

    2001-01-01

    A modeling technique for rate-independent (quasistatic) scalar magnetic hysteresis is presented, using neural networks. Based on the theory of dynamic systems and the wiping-out and congruency properties of the classical scalar Preisach hysteresis model, the choice of a feed-forward neural network model is motivated. The neural network input parameters at each time step are the corresponding magnetic field strength and memory state, thereby assuring accurate prediction of the change of magnetic induction. For rate-independent hysteresis, the current memory state can be determined by the last extreme magnetic field strength and induction values, kept in memory. The choice of a network training set is motivated and the performance of the network is illustrated for a test set not used during training. Very accurate prediction of both major and minor hysteresis loops is observed, proving that the neural network technique is suitable for hysteresis modeling. [copyright] 2001 American Institute of Physics

  1. Comparison of three methods for the estimation of cross-shock electric potential using Cluster data

    Directory of Open Access Journals (Sweden)

    A. P. Dimmock

    2011-05-01

    Full Text Available Cluster four point measurements provide a comprehensive dataset for the separation of temporal and spatial variations, which is crucial for the calculation of the cross shock electrostatic potential using electric field measurements. While Cluster is probably the most suited among present and past spacecraft missions to provide such a separation at the terrestrial bow shock, it is far from ideal for a study of the cross shock potential, since only 2 components of the electric field are measured in the spacecraft spin plane. The present paper is devoted to the comparison of 3 different techniques that can be used to estimate the potential with this limitation. The first technique is the estimate taking only into account the projection of the measured components onto the shock normal. The second uses the ideal MHD condition E·B = 0 to estimate the third electric field component. The last method is based on the structure of the electric field in the Normal Incidence Frame (NIF for which only the potential component along the shock normal and the motional electric field exist. All 3 approaches are used to estimate the potential for a single crossing of the terrestrial bow shock that took place on the 31 March 2001. Surprisingly all three methods lead to the same order of magnitude for the cross shock potential. It is argued that the third method must lead to more reliable results. The effect of the shock normal inaccuracy is investigated for this particular shock crossing. The resulting electrostatic potential appears too high in comparison with the theoretical results for low Mach number shocks. This shows the variability of the potential, interpreted in the frame of the non-stationary shock model.

  2. Dispersive shock waves in nonlinear and atomic optics

    Directory of Open Access Journals (Sweden)

    Kamchatnov Anatoly

    2017-01-01

    Full Text Available A brief review is given of dispersive shock waves observed in nonlinear optics and dynamics of Bose-Einstein condensates. The theory of dispersive shock waves is developed on the basis of Whitham modulation theory for various situations taking place in these two fields. In particular, the full classification is established for types of wave structures evolving from initial discontinuities for propagation of long light pulses in fibers with account of steepening effect and for dynamics of the polarization mode in two-component Bose-Einstein condensates.

  3. Characterization of shocked beryllium

    Directory of Open Access Journals (Sweden)

    Papin P.A.

    2012-08-01

    Full Text Available While numerous studies have investigated the low-strain-rate constitutive response of beryllium, the combined influence of high strain rate and temperature on the mechanical behavior and microstructure of beryllium has received limited attention over the last 40 years. In the current work, high strain rate tests were conducted using both explosive drive and a gas gun to accelerate the material. Prior studies have focused on tensile loading behavior, or limited conditions of dynamic strain rate and/or temperature. Two constitutive strength (plasticity models, the Preston-Tonks-Wallace (PTW and Mechanical Threshold Stress (MTS models, were calibrated using common quasi-static and Hopkinson bar data. However, simulations with the two models give noticeably different results when compared with the measured experimental wave profiles. The experimental results indicate that, even if fractured by the initial shock loading, the Be remains sufficiently intact to support a shear stress following partial release and subsequent shock re-loading. Additional “arrested” drive shots were designed and tested to minimize the reflected tensile pulse in the sample. These tests were done to both validate the model and to put large shock induced compressive loads into the beryllium sample.

  4. Radiative shocks with electron thermal conduction

    International Nuclear Information System (INIS)

    Borkowski, Kazimierz.

    1988-01-01

    The authors studies the influence of electron thermal conduction on radiative shock structure for both one- and two-temperature plasmas. The dimensionless ratio of the conductive length to the cooling length determines whether or not conduction is important, and shock jump conditions with conduction are established for a collisionless shock front. He obtains approximate solutions with the assumptions that the ionization state of the gas is constant and the cooling rate is a function of temperature alone. In the absence of magnetic fields, these solutions indicate that conduction noticeably influences normal-abundance interstellar shocks with velocities 50-100 km s -1 and dramatically affects metal-dominated shocks over a wide range of shock velocities. Magnetic fields inhibit conduction, but the conductive energy flux and the corresponding decrease in the post-shock electron temperature may still be appreciable. He calculates detailed steady-state radiative shock models in gas composed entirely of oxygen, with the purpose of explaining observations of fast-moving knots in Cas A and other oxygen-rich supernova remnants (SNRs). The O III ion, whose forbidden emission usually dominates the observed spectra, is present over a wide range of shock velocities, from 100 to 170 kms -1 . All models with conduction have extensive warm photoionization zones, which provides better agreement with observed optical (O I) line strengths. However, the temperatures in these zones could be lowered by (Si II) 34.8 μm and (Ne II) 12.8 μm cooling if Si and Ne are present in appreciable abundance relative to O. Such low temperatures would be inconsistent with the observed (O I) emission in oxygen-rich SNRs

  5. Shock wave of vapor-liquid two-phase flow

    Institute of Scientific and Technical Information of China (English)

    Liangju ZHAO; Fei WANG; Hong GAO; Jingwen TANG; Yuexiang YUAN

    2008-01-01

    The shock wave of vapor-liquid two-phase flow in a pressure-gain steam injector is studied by build-ing a mathematic model and making calculations. The results show that after the shock, the vapor is nearly com-pletely condensed. The upstream Mach number and the volume ratio of vapor have a great effect on the shock. The pressure and Mach number of two-phase shock con-form to the shock of ideal gas. The analysis of available energy shows that the shock is an irreversible process with entropy increase.

  6. Forward Current Transport Mechanisms of Ni/Au—InAlN/AlN/GaN Schottky Diodes

    Science.gov (United States)

    Wang, Xiao-Feng; Shao, Zhen-Guang; Chen, Dun-Jun; Lu, Hai; Zhang, Rong; Zheng, You-Dou

    2014-05-01

    We fabricate two Ni/Au-In0.17Al0.83N/AlN/GaN Schottky diodes on substrates of sapphire and Si, respectively, and investigate their forward-bias current transport mechanisms by temperature-dependent current-voltage measurements. In the temperature range of 300-485 K, the Schottky barrier heights (SBHs) calculated by using the conventional thermionic-emission (TE) model are strongly positively dependent on temperature, which is in contrast to the negative-temperature-dependent characteristic of traditional semiconductor Schottky diodes. By fitting the forward-bias I-V characteristics using different current transport models, we find that the tunneling current model can describe generally the I-V behaviors in the entire measured range of temperature. Under the high forward bias, the traditional TE mechanism also gives a good fit to the measured I-V data, and the actual barrier heights calculated according to the fitting TE curve are 1.434 and 1.413 eV at 300K for InAlN/AlN/GaN Schottky diodes on Si and the sapphire substrate, respectively, and the barrier height shows a slightly negative temperature coefficient. In addition, a formula is given to estimate SBHs of Ni/Au—InAlN/AlN/GaN Schottky diodes taking the Fermi-level pinning effect into account.

  7. Climate Shocks and Migration: An Agent-Based Modeling Approach

    Science.gov (United States)

    Entwisle, Barbara; Williams, Nathalie E.; Verdery, Ashton M.; Rindfuss, Ronald R.; Walsh, Stephen J.; Malanson, George P.; Mucha, Peter J.; Frizzelle, Brian G.; McDaniel, Philip M.; Yao, Xiaozheng; Heumann, Benjamin W.; Prasartkul, Pramote; Sawangdee, Yothin; Jampaklay, Aree

    2016-01-01

    This is a study of migration responses to climate shocks. We construct an agent-based model that incorporates dynamic linkages between demographic behaviors, such as migration, marriage, and births, and agriculture and land use, which depend on rainfall patterns. The rules and parameterization of our model are empirically derived from qualitative and quantitative analyses of a well-studied demographic field site, Nang Rong district, Northeast Thailand. With this model, we simulate patterns of migration under four weather regimes in a rice economy: 1) a reference, ‘normal’ scenario; 2) seven years of unusually wet weather; 3) seven years of unusually dry weather; and 4) seven years of extremely variable weather. Results show relatively small impacts on migration. Experiments with the model show that existing high migration rates and strong selection factors, which are unaffected by climate change, are likely responsible for the weak migration response. PMID:27594725

  8. Modelling of functional systems of managerial accounting

    Directory of Open Access Journals (Sweden)

    O.V. Fomina

    2017-12-01

    Full Text Available The modern stage of managerial accounting development takes place under the powerful influence of managerial innovations. The article aimed at the development of integrational model of budgeting and the system of balanced indices in the system of managerial accounting that will contribute the increasing of relevance for making managerial decisions by managers of different levels management. As a result of the study the author proposed the highly pragmatical integration model of budgeting and system of the balanced indices in the system of managerial accounting, which is realized by the development of the system of gathering, consolidation, analysis, and interpretation of financial and nonfinancial information, contributes the increasing of relevance for making managerial decisions on the base of coordination and effective and purpose orientation both strategical and operative resources of an enterprise. The effective integrational process of the system components makes it possible to distribute limited resources rationally taking into account prospective purposes and strategic initiatives, to carry

  9. Reaction effects in diffusive shock acceleration

    International Nuclear Information System (INIS)

    Drury, L.Oc.

    1984-01-01

    The effects of the reaction of accelerated particles back on the shock wave in the diffusive-shock-acceleration model of cosmic-ray generation are investigated theoretically. Effects examined include changes in the shock structure, modifications of the input and output spectra, scattering effects, and possible instabilities in the small-scale structure. It is pointed out that the latter two effects are applicable to any spatially localized acceleration mechanism. 14 references

  10. An historical account of shell shock during the First World War and reforms in mental health in Australia 1914-1939.

    Science.gov (United States)

    Rae, Ruth

    2007-08-01

    The study of the disorders of the mind at the turn of the twentieth century offered useful knowledge about the psyche and the First World War (FWW) provided an avalanche of case studies. Prior to the war the mentally ill were treated with disdain and the social distrust of individuals who did not present as 'normal' was high. The level of diagnostic expertise of psychiatric illness by doctors and nurses was low and as a consequence medicine and nursing was ill-equipped to deal with the phenomenon initially referred to as 'shell shock'. However, the soldiers of the FWW who endured the varied and seemingly unrelated symptoms of shell-shock were respected men - occasional heroes - who were reduced to the status of 'mentals'. There is evidence that civilian trained health professionals altered their views about mental illness during the FWW but initially, the military imperatives inherent in a global conflict perpetuated the notion that mental illness was linked with defective morality. This paper provides an historical account of changes in attitude toward the mentally ill as a consequence of the FWW. The interregnum (1918-39) was a period of advancement in the field of mental health within the civilian sector. However, the imperatives of war negated these developments and there is evidence that the management of soldiers suffering from post-traumatic stress disorders in the Second World War did not benefit from the lessons learnt in the FWW.

  11. Line emission processes in atomic and molecular shocks

    International Nuclear Information System (INIS)

    Shull, J.M.

    1988-01-01

    The review discusses the observations and theoretical models of interstellar shock waves in diffuse and molecular clouds. After summarizing the relevant gas dynamics, atomic, molecular and grain processes, and physics of radiative and magnetic precursors, the author describes observational diagnostics of shocks. This paper concludes with a discussion of two topics: unstable or non-steady shocks and thermal conduction in metal-rich shocks

  12. Pick-up ion energization at the termination shock

    Energy Technology Data Exchange (ETDEWEB)

    Gary, S Peter [Los Alamos National Laboratory; Winske, Dan [Los Alamos National Laboratory; Wu, Pin [BOSTON UNIV.; Schwadron, N A [BOSTON UNIV.

    2009-01-01

    One-dimensional hybrid simulations are used to investigate how pickup ions are energized at the perpendicular termination shock. Contrary to previous models based on pickup ion energy gain by repeated crossings of the shock front (shock surfing) or due to a reforming shock front, the present simulations show that pickup ion energy gain involves a gyro-phasedependent interaction with the inhomogeneous motional electric field at the shock. The process operates at all relative concentrations of pickup ion density.

  13. Accounting and marketing: searching a common denominator

    Directory of Open Access Journals (Sweden)

    David S. Murphy

    2012-06-01

    Full Text Available Accounting and marketing are very different disciplines. The analysis of customer profitability is one concept that can unite accounting and marketing as a common denominator. In this article I search for common ground between accounting and marketing in the analysis of customer profitability to determine if a common denominator really exists between the two. This analysis focuses on accounting profitability, customer lifetime value, and customer equity. The article ends with a summary of what accountants can do to move the analysis of customer value forward, as an analytical tool, within companies.

  14. Time development of a blast wave with shock heated electrons

    International Nuclear Information System (INIS)

    Edgar, R.J.; Cox, D.P.

    1983-01-01

    Accurate approximations are presented for the time development of both edge conditions and internal structures of a blast wave with shock heated electrons, and equal ion and electron temperatures at the shock. The cases considered evolve in cavities with power law ambient densities (including the uniform ambient density case) and have negligible external pressure. Account is taken of possible saturation of the thermal conduction flux. The structures evolve smoothly to the adiabatic structures

  15. Multiple-shock initiation via statistical crack mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Dienes, J.K.; Kershner, J.D.

    1998-12-31

    Statistical Crack Mechanics (SCRAM) is a theoretical approach to the behavior of brittle materials that accounts for the behavior of an ensemble of microcracks, including their opening, shear, growth, and coalescence. Mechanical parameters are based on measured strain-softening behavior. In applications to explosive and propellant sensitivity it is assumed that closed cracks act as hot spots, and that the heating due to interfacial friction initiates reactions which are modeled as one-dimensional heat flow with an Arrhenius source term, and computed in a subscale grid. Post-ignition behavior of hot spots is treated with the burn model of Ward, Son and Brewster. Numerical calculations using SCRAM-HYDROX are compared with the multiple-shock experiments of Mulford et al. in which the particle velocity in PBX 9501 is measured with embedded wires, and reactions are initiated and quenched.

  16. Stress relaxation of shear in metals during shock loading

    International Nuclear Information System (INIS)

    Glazyrin, V.P.; Platova, T.M.

    1988-01-01

    Constructed determining equation, taking into account stress relaxation of shear, was used to calculate the evolution of plane shock waves of primary and secondary compression in metals. Values of shear stress and viscosity coefficient were

  17. Opportunities and Challenges in Application of Forward Osmosis in Food Processing.

    Science.gov (United States)

    Rastogi, Navin K

    2016-01-01

    Food processing and preservation technologies must maintain the fresh-like characteristics of food while providing an acceptable and convenient shelf life as well as assuring safety and nutritional value. Besides, the consumers' demand for the highest quality convenience foods in terms of natural flavor and taste, free from additives and preservatives necessitated the development of a number of membrane-based non-thermal approaches to the concentration of liquid foods, of which forward osmosis has proven to be the most valuable one. A series of recent publications in scientific journals have demonstrated novel and diverse uses of this technology for food processing, desalination, pharmaceuticals as well as for power generation. Its novel features, which include the concentration of liquid foods at ambient temperature and pressure without significant fouling of membrane, made the technology commercially attractive. This review aims to identify the opportunities and challenges associated with this technology. At the same time, it presents a comprehensive account of recent advances in forward osmosis technology as related to the major issues of concern in its rapidly growing applications in food processing such as concentration of fruit and vegetable juices (grape, pineapple, red raspberry, orange, and tomato juice and red radish juice) and natural food colorants (anthocyanin and betalains extracts). Several vibrant and vital issues such as recent developments in the forward osmosis membrane and concentration polarization aspects have been also addressed. The asymmetric membrane used for forward osmosis poses newer challenges to account both external and internal concentration polarization leading to significant reduction in flux. The recent advances and developments in forward osmosis membrane processes, mechanism of water transport, characteristics of draw solution and membranes as well as applications of forward osmosis in food processing have been discussed.

  18. Role of pseudo-turbulent stresses in shocked particle clouds and construction of surrogate models for closure

    Science.gov (United States)

    Sen, O.; Gaul, N. J.; Davis, S.; Choi, K. K.; Jacobs, G.; Udaykumar, H. S.

    2018-05-01

    Macroscale models of shock-particle interactions require closure terms for unresolved solid-fluid momentum and energy transfer. These comprise the effects of mean as well as fluctuating fluid-phase velocity fields in the particle cloud. Mean drag and Reynolds stress equivalent terms (also known as pseudo-turbulent terms) appear in the macroscale equations. Closure laws for the pseudo-turbulent terms are constructed in this work from ensembles of high-fidelity mesoscale simulations. The computations are performed over a wide range of Mach numbers ( M) and particle volume fractions (φ ) and are used to explicitly compute the pseudo-turbulent stresses from the Favre average of the velocity fluctuations in the flow field. The computed stresses are then used as inputs to a Modified Bayesian Kriging method to generate surrogate models. The surrogates can be used as closure models for the pseudo-turbulent terms in macroscale computations of shock-particle interactions. It is found that the kinetic energy associated with the velocity fluctuations is comparable to that of the mean flow—especially for increasing M and φ . This work is a first attempt to quantify and evaluate the effect of velocity fluctuations for problems of shock-particle interactions.

  19. COMPUTING THE DUST DISTRIBUTION IN THE BOW SHOCK OF A FAST-MOVING, EVOLVED STAR

    International Nuclear Information System (INIS)

    Van Marle, A. J.; Meliani, Z.; Keppens, R.; Decin, L.

    2011-01-01

    We study the hydrodynamical behavior occurring in the turbulent interaction zone of a fast-moving red supergiant star, where the circumstellar and interstellar material collide. In this wind-interstellar-medium collision, the familiar bow shock, contact discontinuity, and wind termination shock morphology form, with localized instability development. Our model includes a detailed treatment of dust grains in the stellar wind and takes into account the drag forces between dust and gas. The dust is treated as pressureless gas components binned per grain size, for which we use 10 representative grain size bins. Our simulations allow us to deduce how dust grains of varying sizes become distributed throughout the circumstellar medium. We show that smaller dust grains (radius <0.045 μm) tend to be strongly bound to the gas and therefore follow the gas density distribution closely, with intricate fine structure due to essentially hydrodynamical instabilities at the wind-related contact discontinuity. Larger grains which are more resistant to drag forces are shown to have their own unique dust distribution, with progressive deviations from the gas morphology. Specifically, small dust grains stay entirely within the zone bound by shocked wind material. The large grains are capable of leaving the shocked wind layer and can penetrate into the shocked or even unshocked interstellar medium. Depending on how the number of dust grains varies with grain size, this should leave a clear imprint in infrared observations of bow shocks of red supergiants and other evolved stars.

  20. Multi-messenger Light Curves from Gamma-Ray Bursts in the Internal Shock Model

    Energy Technology Data Exchange (ETDEWEB)

    Bustamante, Mauricio [Center for Cosmology and AstroParticle Physics (CCAPP), The Ohio State University, Columbus, OH 43210 (United States); Heinze, Jonas; Winter, Walter [Deutsches Elektronen-Synchrotron (DESY), Platanenallee 6, D-15738 Zeuthen (Germany); Murase, Kohta, E-mail: bustamanteramirez.1@osu.edu, E-mail: walter.winter@desy.de, E-mail: jonas.heinze@desy.de, E-mail: murase@psu.edu [Center for Particle and Gravitational Astrophysics, The Pennsylvania State University, University Park, PA16802 (United States)

    2017-03-01

    Gamma-ray bursts (GRBs) are promising as sources of neutrinos and cosmic rays. In the internal shock scenario, blobs of plasma emitted from a central engine collide within a relativistic jet and form shocks, leading to particle acceleration and emission. Motivated by present experimental constraints and sensitivities, we improve the predictions of particle emission by investigating time-dependent effects from multiple shocks. We produce synthetic light curves with different variability timescales that stem from properties of the central engine. For individual GRBs, qualitative conclusions about model parameters, neutrino production efficiency, and delays in high-energy gamma-rays can be deduced from inspection of the gamma-ray light curves. GRBs with fast time variability without additional prominent pulse structure tend to be efficient neutrino emitters, whereas GRBs with fast variability modulated by a broad pulse structure can be inefficient neutrino emitters and produce delayed high-energy gamma-ray signals. Our results can be applied to quantitative tests of the GRB origin of ultra-high-energy cosmic rays, and have the potential to impact current and future multi-messenger searches.

  1. Multi-messenger light curves from gamma-ray bursts in the internal shock model

    Energy Technology Data Exchange (ETDEWEB)

    Bustamante, Mauricio [Ohio State Univ., Columbus, OH (United States). Center for Cosmology and AstroParticle Physics (CCAPP); Ohio State Univ., Columbus, OH (United States). Dept. of Physics; Murase, Kohta [Pennsylvania State Univ., University Park, PA (United States). Center for Particle and Gravitational Astrophysics; Pennsylvania State Univ., University Park, PA (United States). Dept. of Astronomy and Astrophysics; Winter, Walter [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)

    2016-06-15

    Gamma-ray bursts (GRBs) are promising as sources of neutrinos and cosmic rays. In the internal shock scenario, blobs of plasma emitted from a central engine collide within a relativistic jet and form shocks, leading to particle acceleration and emission. Motivated by present experimental constraints and sensitivities, we improve the predictions of particle emission by investigating time-dependent effects from multiple shocks. We produce synthetic light curves with different variability timescales that stem from properties of the central engine. For individual GRBs, qualitative conclusions about model parameters, neutrino production efficiency, and delays in high-energy gamma rays can be deduced from inspection of the gamma-ray light curves. GRBs with fast time variability without additional prominent pulse structure tend to be efficient neutrino emitters, whereas GRBs with fast variability modulated by a broad pulse structure tend to be inefficient neutrino emitters and produce delayed high-energy gamma-ray signals. Our results can be applied to quantitative tests of the GRB origin of ultra-high-energy cosmic rays, and have the potential to impact current and future multi-messenger searches.

  2. Action Prediction Allows Hypothesis Testing via Internal Forward Models at 6 Months of Age

    Directory of Open Access Journals (Sweden)

    Gustaf Gredebäck

    2018-03-01

    Full Text Available We propose that action prediction provides a cornerstone in a learning process known as internal forward models. According to this suggestion infants’ predictions (looking to the mouth of someone moving a spoon upward will moments later be validated or proven false (spoon was in fact directed toward a bowl, information that is directly perceived as the distance between the predicted and actual goal. Using an individual difference approach we demonstrate that action prediction correlates with the tendency to react with surprise when social interactions are not acted out as expected (action evaluation. This association is demonstrated across tasks and in a large sample (n = 118 at 6 months of age. These results provide the first indication that infants might rely on internal forward models to structure their social world. Additional analysis, consistent with prior work and assumptions from embodied cognition, demonstrates that the latency of infants’ action predictions correlate with the infant’s own manual proficiency.

  3. Physics of Collisionless Shocks Space Plasma Shock Waves

    CERN Document Server

    Balogh, André

    2013-01-01

    The present book provides a contemporary systematic treatment of shock waves in high-temperature collisionless plasmas as are encountered in near Earth space and in Astrophysics. It consists of two parts. Part I develops the complete theory of shocks in dilute hot plasmas under the assumption of absence of collisions among the charged particles when the interaction is mediated solely by the self-consistent electromagnetic fields. Such shocks are naturally magnetised implying that the magnetic field plays an important role in their evolution and dynamics. This part treats both subcritical shocks, which dissipate flow energy by generating anomalous resistance or viscosity, and supercritical shocks. The main emphasis is, however, on super-critical shocks where the anomalous dissipation is insufficient to retard the upstream flow. These shocks, depending on the direction of the upstream magnetic field, are distinguished as quasi-perpendicular and quasi-parallel shocks which exhibit different behaviours, reflecti...

  4. 3D Morphology Design for Forward Osmosis

    KAUST Repository

    Shi, Meixia

    2016-06-06

    We propose a multi-scale simulation approach to model forward osmosis (FO) processes using substrates with layered homogeneous morphology. This approach accounts not only for FO setup but also for detailed microstructure of the substrate using the digitally reconstructed morphology. We fabricate a highly porous block copolymer membrane, which has not been explored for FO heretofore, and use it as the substrate for interfacial polymerization. The substrate has three sub-layers, namely a top layer, a sponge-like middle layer, and a nonwoven fabric layer. We generate a digital microstructure for each layer, and verify them with experimental measurements. The permeability and effective diffusivity of each layer are computed based on their virtual microstructures and used for FO operation in cross-flow setups at the macro scale. The proposed simulation approach predicts accurately the FO experimental data.

  5. Analysis on shock wave speed of water hammer of lifting pipes for deep-sea mining

    Science.gov (United States)

    Zhou, Zhi-jin; Yang, Ning; Wang, Zhao

    2013-04-01

    Water hammer occurs whenever the fluid velocity in vertical lifting pipe systems for deep-sea mining suddenly changes. In this work, the shock wave was proven to play an important role in changing pressures and periods, and mathematical and numerical modeling technology was presented for simulated transient pressure in the abnormal pump operation. As volume concentrations were taken into account of shock wave speed, the experiment results about the pressure-time history, discharge-time history and period for the lifting pipe system showed that: as its concentrations rose up, the maximum transient pressure went down, so did its discharges; when its volume concentrations increased gradually, the period numbers of pressure decay were getting less and less, and the corresponding shock wave speed decreased. These results have highly coincided with simulation results. The conclusions are important to design lifting transporting system to prevent water hammer in order to avoid potentially devastating consequences, such as damage to components and equipment and risks to personnel.

  6. Quantitative understanding of Forbush decrease drivers based on shock-only and CME-only models using global signature of February 14, 1978 event

    Energy Technology Data Exchange (ETDEWEB)

    Raghav, Anil; Lotekar, Ajay [University Department of Physics, University of Mumbai, Vidyanagari, Santacruz (E), Mumbai-400098 (India); Bhaskar, Ankush; Vichare, Geeta; Yadav, Virendra, E-mail: raghavanil1984@gmail.com, E-mail: ankushbhaskar@gmail.com, E-mail: ablotekar@gmail.com, E-mail: vicharegeeta@gmail.com, E-mail: virendray.iig@gmail.com [Indian Institute of Geomagnetism, Plot 5, Sector 18, New Panvel, Navi Mumbai-410218 (India)

    2014-10-01

    We have studied the Forbush decrease (FD) event that occurred on February 14, 1978 using 43 neutron monitor observatories to understand the global signature of FD. We have studied rigidity dependence of shock amplitude and total FD amplitude. We have found almost the same power law index for both shock phase amplitude and total FD amplitude. Local time variation of shock phase amplitude and maximum depression time of FD have been investigated which indicate possible effect of shock/CME orientation. We have analyzed rigidity dependence of time constants of two phase recovery. Time constants of slow component of recovery phase show rigidity dependence and imply possible effect of diffusion. Solar wind speed was observed to be well correlated with slow component of FD recovery phase. This indicates solar wind speed as possible driver of recovery phase. To investigate the contribution of interplanetary drivers, shock and CME in FD, we have used shock-only and CME-only models. We have applied these models separately to shock phase and main phase amplitudes respectively. This confirms presently accepted physical scenario that the first step of FD is due to propagating shock barrier and second step is due to flux rope of CME/magnetic cloud.

  7. Quantitative understanding of Forbush decrease drivers based on shock-only and CME-only models using global signature of February 14, 1978 event

    International Nuclear Information System (INIS)

    Raghav, Anil; Lotekar, Ajay; Bhaskar, Ankush; Vichare, Geeta; Yadav, Virendra

    2014-01-01

    We have studied the Forbush decrease (FD) event that occurred on February 14, 1978 using 43 neutron monitor observatories to understand the global signature of FD. We have studied rigidity dependence of shock amplitude and total FD amplitude. We have found almost the same power law index for both shock phase amplitude and total FD amplitude. Local time variation of shock phase amplitude and maximum depression time of FD have been investigated which indicate possible effect of shock/CME orientation. We have analyzed rigidity dependence of time constants of two phase recovery. Time constants of slow component of recovery phase show rigidity dependence and imply possible effect of diffusion. Solar wind speed was observed to be well correlated with slow component of FD recovery phase. This indicates solar wind speed as possible driver of recovery phase. To investigate the contribution of interplanetary drivers, shock and CME in FD, we have used shock-only and CME-only models. We have applied these models separately to shock phase and main phase amplitudes respectively. This confirms presently accepted physical scenario that the first step of FD is due to propagating shock barrier and second step is due to flux rope of CME/magnetic cloud

  8. Financial Constraints and the Response of Business Investment to Monetary Policy Shocks

    Directory of Open Access Journals (Sweden)

    Haase Timothy J.

    2016-09-01

    Full Text Available In this study I investigate what impact monetary policy shocks have on firms’ fixed investment, the less liquid portion of gross investment that requires more planning. I account for firms facing financial constraints firms by utilizing a common measure of asset size, which is used in previous literature. I use two exogenous, continuous series of monetary policy shocks to show that constrained firms have statistically different responses to policy than unconstrained firms. Specifically, I find that constrained firms’ fixed investment significantly responds more to monetary policy shocks than unconstrained firms.

  9. Arbitrage free pricing of forward and futures in the energy market

    International Nuclear Information System (INIS)

    Kloster, Kristian

    2003-01-01

    This thesis will describe a method for an arbitrage-free evaluation of forward and futures contracts in the Nordic electricity market. This is a market where it is not possible to hedge using the underlying asset which one normally would do. The electricity market is a relatively new market, and is less developed than the financial markets. The pricing of energy and energy derivatives are depending on factors like production, transport, storage etc. There are different approaches when pricing a forward contract in an energy market. With motivation from interest rate theory, one could model the forward prices directly in the risk neutral world. Another approach is to start out with a model for the spot prices in the physical world, and then derive theoretical forward prices, which then are fitted to observed forward prices. These and other approaches are described by Clewlow and Strickland in their book, Energy derivatives. This thesis uses the approach where I start out with a model for the spot price, and then derive theoretical forward prices. I use a generalization of the multifactor Schwartz model with seasonal trends and Ornstein Uhlenbeck processes to model the spot prices for electricity. This continuous-time model also incorporates mean-reversion, which is an important aspect of energy prices. Historical data for the spot prices is used to estimate my variables in the multi-factor Schwartz model. Then one can specify arbitrage-free prices for forward and futures based on the Schwartz model. The result from this procedure is a joint spot and forward price model in both the risk neutral and physical market, together with knowledge of the equivalent martingale measure chosen by the market. This measure can be interpreted as the market price of risk, which is of interest for risk management. In this setup both futures and forward contracts will have the same pricing dynamics, as the only difference between the two types of contracts is how the payment for the

  10. The pion-deuteron forward elastic amplitude in the non-overlapping potentials model

    International Nuclear Information System (INIS)

    Butterworth, D.S.

    1978-01-01

    The pion-deuteron forward elastic amplitude has been calculated in the non-overlapping potentials model, which enables a description of off-shell propagation effects in terms of on-shell amplitudes. Calculations include spin, isospin and deuteron D-state probability effects. Two energy regions are considered. First the pion-nucleon P 33 resonance region, where, using a formalism developed by Agassi and Gal (Ann. Phys.; 75:56 (1973) and 94:184 (1975)), the full multiple-scattering series is summed in an approximation of P 33 wave dominance of the higher-order scatterings. Second, for the subsequent highest-energy region, the double-scattering term only is calculated. Fermi smearing effects are included in both cases. Predictions for the total cross section, its dependence on the deuteron alignment and the real part of the forward elastic amplitude are compared with those of Glauber theory, and data where available. Convergence of the multiple-scattering series is also discussed. (author)

  11. Macroeconomic effects of oil price shocks in Brazil and in the United States

    International Nuclear Information System (INIS)

    Cavalcanti, Tiago; Jalles, João Tovar

    2013-01-01

    Highlights: ► We find that output growth volatility in the US has been decreasing over time. ► The contribution of oil price shocks to such volatility has also been decreasing. ► In Brazil, oil shocks do not seem to have a clear impact on growth. ► They account for a small fraction of the Brazilian inflation and output volatility. ► Counterfactuals show US output would be 10% less volatile with Brazil’s oil import share. - Abstract: This paper studies the effects of oil price shocks in the last 30 years on the Brazilian and American inflation rate and rhythm of economic activity. The Brazilian and the United States economies are interesting polar cases, since they had a completely different path on the oil import dependence rate. While the oil import dependence rate has increase sharply in the United States (US), it has decreased substantially in Brazil. We found that output growth volatility in the United States has been decreasing over time as well as the contribution of oil price shocks to such volatility, despite the increase in oil import dependence. Inflation volatility has also been decreasing but oil price shocks are accounting for a larger fraction of this volatility in the US. In Brazil, such shocks do not seem to have a clear impact on output growth and they account for a very small fraction of the Brazilian inflation and output growth rate volatility. We finally run some counterfactual experiments to analyze how real output growth in the United States would had been if net oil import share in the United States behaved similarly to what was observed in Brazil. We conclude that output level would be roughly the same, however, it would be about 10% less volatile if the US had the actual Brazilian oil import share

  12. Moving Forward - Progress on Forward Detectors

    CERN Multimedia

    Grafstrom, P.

    2006-01-01

    You might have been sitting in some meeting hearing about the ATLAS forward detectors. Coming back to your office wanting to learn more you look in the ATLAS TDR’s and disappointingly you find nothing about forward detectors. The explanation is of course that the forward detectors are newcomers in the ATLAS detector arsenal. ATLAS is designed to measure high Pt particles with pseudo rapidities up to 5 which in terms of angles means angles bigger than one degree (0.8 degree to be more accurate). Particles produced with smaller angles close to the beam escape detection. The hole in the forward direction will now partly be filled. Several new detectors have recently been proposed. These detectors are designed for various luminosity measurements but they also have a physics potential in themselves. Closest to the IP there is LUCID (LUminosity measurement using Cerenkov Integrating Detector). LUCID comprises some 170 Cerenkov tubes sitting around the beam pipe at about 17 m away from the IP. The tubes are 1.5 ...

  13. Modeling Hot-Spot Contributions in Shocked High Explosives at the Mesoscale

    Energy Technology Data Exchange (ETDEWEB)

    Harrier, Danielle [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-08-12

    When looking at performance of high explosives, the defects within the explosive become very important. Plastic bonded explosives, or PBXs, contain voids of air and bonder between the particles of explosive material that aid in the ignition of the explosive. These voids collapse in high pressure shock conditions, which leads to the formation of hot spots. Hot spots are localized high temperature and high pressure regions that cause significant changes in the way the explosive material detonates. Previously hot spots have been overlooked with modeling, but now scientists are realizing their importance and new modeling systems that can accurately model hot spots are underway.

  14. Research on accounting transition from computerization to informationization

    Directory of Open Access Journals (Sweden)

    Shu Chen

    2017-11-01

    Full Text Available The application for computer technology, digitalization technology and network technology in the accounting field has promoted the development of accounting informationization. Accounting informationization is a product integrated with traditional accounting theory and modern information technology, which is an inevitable trend of continuous development of modern accounting. This paper discusses the basic concepts and characteristics of accounting computerization and informationization based on the normative research method and literature data method, analyzes the feasibility of accounting transition from computerization to informationization, and finally puts forward the specific approaches and ultimate goals of accounting transition from computerization to informationization.

  15. Hydrodynamic modeling and simulations of shock ignition thresholds

    Directory of Open Access Journals (Sweden)

    Lafon M.

    2013-11-01

    Full Text Available The Shock Ignition (SI scheme [1] offers to reduce the laser requirements by relaxing the implosion phase to sub-ignition velocities and later adding an intense laser spike. Depending on laser energy, target characteristics and implosion velocity, high gains are expected [2,3]. Relevant intensities for scaled targets imploded in the velocity range from 150 to 400 km/s are defined at ignition thresholds. A range of moderate implosion velocities is specified to match safe implosions. These conditions for target design are then inferred for relevant NIF and LMJ shock-ignited targets.

  16. Shock Structure Analysis and Aerodynamics in a Weakly Ionized Gas Flow

    Science.gov (United States)

    Saeks, R.; Popovic, S.; Chow, A. S.

    2006-01-01

    The structure of a shock wave propagating through a weakly ionized gas is analyzed using an electrofluid dynamics model composed of classical conservation laws and Gauss Law. A viscosity model is included to correctly model the spatial scale of the shock structure, and quasi-neutrality is not assumed. A detailed analysis of the structure of a shock wave propagating in a weakly ionized gas is presented, together with a discussion of the physics underlying the key features of the shock structure. A model for the flow behind a shock wave propagating through a weakly ionized gas is developed and used to analyze the effect of the ionization on the aerodynamics and performance of a two-dimensional hypersonic lifting body.

  17. Forward charge distributions associated with hadronically produced J/psi particles

    International Nuclear Information System (INIS)

    Budd, H.S.

    1983-01-01

    We have measured the forward charge as a function of x/sub F/ of the psi for events produced by 225 Gev/c π-Be interactions. The forward charge is the average difference between the number of positive hadrons and negative hadrons produced in the forward hemisphere. The standard Drell-Yan model predicts that the forward charge should become less negative as the x/sub F/ of the J/psi increases. The measured forward charge becomes more negative as the x/sub F/ of the J/psi increases although it is consistent with being flat as a function of x/sub F/. Hence the data is not consistent with any Drell-Yan type model which assumes the forward charge is not strongly dependent on the hadronic energy left over after the J/psi is formed. 45 references

  18. Analytical and numerical modelling of thermoviscous shocks in their interactions in nonlinear fluids including dissipation

    DEFF Research Database (Denmark)

    Rasmussen, Anders Rønne; Sørensen, Mads Peter; Gaididei, Yuri Borisovich

    2010-01-01

    A wave equation, that governs finite amplitude acoustic disturbances in a thermoviscous Newtonian fluid, and includes nonlinear terms up to second order, is proposed. The equation preserves the Hamiltonian structure of the fundamental fluid dynamical equations in the non dissipative limit. An exact...... thermoviscous shock solution is derived. This solution is, in an overall sense, equivalent to the Taylor shock solution of the Burgers equation. However, in contrast to the Burgers equation, the model equation considered here is capable to describe waves propagating in opposite directions. Studies of head...

  19. Low Mach-number collisionless electrostatic shocks and associated ion acceleration

    Science.gov (United States)

    Pusztai, I.; TenBarge, J. M.; Csapó, A. N.; Juno, J.; Hakim, A.; Yi, L.; Fülöp, T.

    2018-03-01

    The existence and properties of low Mach-number (M≳ 1) electrostatic collisionless shocks are investigated with a semi-analytical solution for the shock structure. We show that the properties of the shock obtained in the semi-analytical model can be well reproduced in fully kinetic Eulerian Vlasov-Poisson simulations, where the shock is generated by the decay of an initial density discontinuity. Using this semi-analytical model, we study the effect of the electron-to-ion temperature ratio and the presence of impurities on both the maximum shock potential and the Mach number. We find that even a small amount of impurities can influence the shock properties significantly, including the reflected light ion fraction, which can change several orders of magnitude. Electrostatic shocks in heavy ion plasmas reflect most of the hydrogen impurity ions.

  20. Shock-induced devolatilization of calcite

    Science.gov (United States)

    Boslough, M. B.; Ahrens, T. J.; Vizgirda, J.; Becker, R. H.; Epstein, S.

    1982-01-01

    Experimental measurements of the release adiabats by Vizgirda (1981) indicate that substantial vaporization takes place upon release from shock pressures of 37 GPa for calcite and 14 GPa for aragonite. The present investigation includes the first controlled partial vaporization experiments on calcite. The experiments were conducted to test the predictions of the release adiabat experiments. The quantities of the gaseous species produced from shocked calcite and their carbon and oxygen isotopic compositions were determined, and the shock-induced effect on the Mn(2+) electron spin resonance spectrum in the shock-recovered calcite was observed. On the basis of the obtained results, it is concluded that shock stresses at the 17-18 GPa level give rise to volatilization of 0.03-0.3 (mole) percent of calcite to CO2 and CO. The devolatilization of calcite occurs at low pressure at significantly lower entropy densities than predicted on the basis of thermodynamic continuum models.

  1. Shocking matter to extreme conditions

    International Nuclear Information System (INIS)

    Gupta, Y.M.; Sharma, S.M.

    1997-01-01

    A good understanding of the thermodynamic response of matter at high compression and high energy densities is important to several areas of physics. Shock-wave experiments are uniquely suited for obtaining data at extreme conditions, and a shock-compressed matter can be viewed as a condensed system with or without dissociation or as a strongly coupled plasma. This article reviews work by Da Silva et al. in which irradiances ranging from 5x10 superscript 12 to 2x10 superscript 14 W/cm 2 were used to generate 8- to 10-ns square pulses in liquid deuterium. The authors demonstrated negligible pre-heating of the sample, steady propagation of the shock wave, and direct determination of the shock wave velocity along with particle velocity and density in the shocked state. Da Silva et al. results are compared with models and other experimental information, and the usefulness of the data in other areas is assessed. 11 refs., 1 fig

  2. Neutral hydrogen in the galaxy and the galactic shocks

    International Nuclear Information System (INIS)

    Sawa, T.

    1978-01-01

    To discriminate the galactic shock theory from the linear density-wave theory in comparison with neutral hydrogen data in the Galaxy, model-line profiles and Tsub(b)(l, γ) (brightness temperature) diagrams of 21-cm line are calculated both for the two theories in the longitude range 15 0 0 . It is shown that major differences between the two models appear in the tangential directions of spiral arms and of inter-arm regions. The inter-arm region appears as a trough of the brightness temperature in the shock model. An observed trough on a Tsub(b)(l, γ) diagram at l = 80 0 -100 0 , γ = -20 km s -1 is reproduced reasonably well by the shock model, while the linear model fails to reproduce it. Effects of the galactic shocks on the terminal velocity is also discussed. (Auth.)

  3. Localization of small arms fire using acoustic measurements of muzzle blast and/or ballistic shock wave arrivals.

    Science.gov (United States)

    Lo, Kam W; Ferguson, Brian G

    2012-11-01

    The accurate localization of small arms fire using fixed acoustic sensors is considered. First, the conventional wavefront-curvature passive ranging method, which requires only differential time-of-arrival (DTOA) measurements of the muzzle blast wave to estimate the source position, is modified to account for sensor positions that are not strictly collinear (bowed array). Second, an existing single-sensor-node ballistic model-based localization method, which requires both DTOA and differential angle-of-arrival (DAOA) measurements of the muzzle blast wave and ballistic shock wave, is improved by replacing the basic external ballistics model (which describes the bullet's deceleration along its trajectory) with a more rigorous model and replacing the look-up table ranging procedure with a nonlinear (or polynomial) equation-based ranging procedure. Third, a new multiple-sensor-node ballistic model-based localization method, which requires only DTOA measurements of the ballistic shock wave to localize the point of fire, is formulated. The first method is applicable to situations when only the muzzle blast wave is received, whereas the third method applies when only the ballistic shock wave is received. The effectiveness of each of these methods is verified using an extensive set of real data recorded during a 7 day field experiment.

  4. The financial accounting model from a system dynamics' perspective

    NARCIS (Netherlands)

    Melse, E.

    2006-01-01

    This paper explores the foundation of the financial accounting model. We examine the properties of the accounting equation as the principal algorithm for the design and the development of a System Dynamics model. Key to the perspective is the foundational requirement that resolves the temporal

  5. The physiological impacts of wealth shocks in late life: Evidence from the Great Recession.

    Science.gov (United States)

    Boen, Courtney; Yang, Y Claire

    2016-02-01

    Given documented links between individual socioeconomic status (SES) and health, it is likely that-in addition to its impacts on individuals' wallets and bank accounts-the Great Recession also took a toll on individuals' disease and mortality risk. Exploiting a quasi-natural experiment design, this study utilizes nationally representative, longitudinal data from the National Social Life, Health, and Aging Project (NSHAP) (2005-2011) (N = 930) and individual fixed effects models to examine how household-level wealth shocks experienced during the Great Recession relate to changes in biophysiological functioning in older adults. Results indicate that wealth shocks significantly predicted changes in physiological functioning, such that losses in net worth from the pre-to the post-Recession period were associated with increases in systolic blood pressure and C-reactive protein over the six year period. Further, while the association between wealth shocks and changes in blood pressure was unattenuated with the inclusion of other indicators of SES, psychosocial well-being, and health behaviors in analytic models, we document some evidence of mediation in the association between changes in wealth and changes in C-reactive protein, which suggests specificity in the social and biophysiological mechanisms relating wealth shocks and health at older ages. Linking macro-level conditions, meso-level household environments, and micro-level biological processes, this study provides new insights into the mechanisms through which economic inequality contributes to disease and mortality risk in late life. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. The Shock Wave in the ionosphere during an Earthquake

    Directory of Open Access Journals (Sweden)

    Kuznetsov Vladimir

    2016-01-01

    Full Text Available Fundamentally new model of the shock wave (SW generation in atmosphere and ionosphere during earthquake is proposed. The model proceeds from the idea of cooperative shock water crystallization in a cloud.

  7. On Optimal Input Design for Feed-forward Control

    OpenAIRE

    Hägg, Per; Wahlberg, Bo

    2013-01-01

    This paper considers optimal input design when the intended use of the identified model is to construct a feed-forward controller based on measurable disturbances. The objective is to find a minimum power excitation signal to be used in a system identification experiment, such that the corresponding model-based feed-forward controller guarantees, with a given probability, that the variance of the output signal is within given specifications. To start with, some low order model problems are an...

  8. An Introduction to the Physics of Collisionless Shocks

    International Nuclear Information System (INIS)

    Russell, C.T.

    2005-01-01

    Collisionless shocks are important in astrophysical, heliospheric and magnetospheric settings. They deflect flows around obstacles; they heat the plasma, and they alter the properties of the flow as it intersects those obstacles. The physical processes occurring at collisionless shocks depend on the Mach number (strength) and beta (magnetic to thermal pressure) of the shocks and the direction of the magnetic field relative to the shock normal. Herein we review how the shock has been modeled in numerical simulations, the basic physical processes at work, including dissipation and thermalization, the electric potential drop at the shock, and the formation of the electron and ion foreshocks

  9. Models and Rules of Evaluation in International Accounting

    Directory of Open Access Journals (Sweden)

    Niculae Feleaga

    2006-04-01

    Full Text Available The accounting procedures cannot be analyzed without a previous evaluation. Value is in general a very subjective issue, usually the result of a monetary evaluation made to a specific asset, group of assets or entities, or to some rendered services. Within the economic sciences, value comes from its very own deep history. In accounting, the concept of value had a late and fragile start. The term of value must not be misinterpreted as being the same thing with cost, even though value is frequently measured through costs. At the origin of the international accounting standards lays the framework for preparing, presenting and disclosing the financial statements. The framework stays as a reference matrix, as a standard of standards, as a constitution of financial accounting. According to the international framework, the financial statements use different evaluation basis: the hystorical cost, the current cost, the realisable (settlement value, the present value (the present value of cash flows. Choosing the evaluation basis and the capital maintenance concept will eventually determine the accounting evaluation model used in preparing the financial statements of a company. The multitude of accounting evaluation models differentiate themselves one from another through various relevance and reliable degrees of accounting information and therefore, accountants (the prepares of financial statements must try to equilibrate these two main qualitative characteristics of financial information.

  10. Models and Rules of Evaluation in International Accounting

    Directory of Open Access Journals (Sweden)

    Liliana Feleaga

    2006-06-01

    Full Text Available The accounting procedures cannot be analyzed without a previous evaluation. Value is in general a very subjective issue, usually the result of a monetary evaluation made to a specific asset, group of assets or entities, or to some rendered services. Within the economic sciences, value comes from its very own deep history. In accounting, the concept of value had a late and fragile start. The term of value must not be misinterpreted as being the same thing with cost, even though value is frequently measured through costs. At the origin of the international accounting standards lays the framework for preparing, presenting and disclosing the financial statements. The framework stays as a reference matrix, as a standard of standards, as a constitution of financial accounting. According to the international framework, the financial statements use different evaluation basis: the hystorical cost, the current cost, the realisable (settlement value, the present value (the present value of cash flows. Choosing the evaluation basis and the capital maintenance concept will eventually determine the accounting evaluation model used in preparing the financial statements of a company. The multitude of accounting evaluation models differentiate themselves one from another through various relevance and reliable degrees of accounting information and therefore, accountants (the prepares of financial statements must try to equilibrate these two main qualitative characteristics of financial information.

  11. Shocks in the Early Universe.

    Science.gov (United States)

    Pen, Ue-Li; Turok, Neil

    2016-09-23

    We point out a surprising consequence of the usually assumed initial conditions for cosmological perturbations. Namely, a spectrum of Gaussian, linear, adiabatic, scalar, growing mode perturbations not only creates acoustic oscillations of the kind observed on very large scales today, it also leads to the production of shocks in the radiation fluid of the very early Universe. Shocks cause departures from local thermal equilibrium as well as create vorticity and gravitational waves. For a scale-invariant spectrum and standard model physics, shocks form for temperatures 1  GeVUniverse as early as 10^{-30}  sec after the big bang.

  12. On the Magnitude and Orientation of Stress during Shock Metamorphism: Understanding Peak Ring Formation by Combining Observations and Models.

    Science.gov (United States)

    Rae, A.; Poelchau, M.; Collins, G. S.; Timms, N.; Cavosie, A. J.; Lofi, J.; Salge, T.; Riller, U. P.; Ferrière, L.; Grieve, R. A. F.; Osinski, G.; Morgan, J. V.; Expedition 364 Science Party, I. I.

    2017-12-01

    . Our results quantitatively describe the deviatoric stress conditions of rocks in shock, which are consistent with observations of shock deformation. Our integrated analysis provides further support for the dynamic collapse model of peak-ring formation, and places dynamic constraints on the conditions of peak-ring formation.

  13. Approximate Bayesian computation for forward modeling in cosmology

    International Nuclear Information System (INIS)

    Akeret, Joël; Refregier, Alexandre; Amara, Adam; Seehars, Sebastian; Hasner, Caspar

    2015-01-01

    Bayesian inference is often used in cosmology and astrophysics to derive constraints on model parameters from observations. This approach relies on the ability to compute the likelihood of the data given a choice of model parameters. In many practical situations, the likelihood function may however be unavailable or intractable due to non-gaussian errors, non-linear measurements processes, or complex data formats such as catalogs and maps. In these cases, the simulation of mock data sets can often be made through forward modeling. We discuss how Approximate Bayesian Computation (ABC) can be used in these cases to derive an approximation to the posterior constraints using simulated data sets. This technique relies on the sampling of the parameter set, a distance metric to quantify the difference between the observation and the simulations and summary statistics to compress the information in the data. We first review the principles of ABC and discuss its implementation using a Population Monte-Carlo (PMC) algorithm and the Mahalanobis distance metric. We test the performance of the implementation using a Gaussian toy model. We then apply the ABC technique to the practical case of the calibration of image simulations for wide field cosmological surveys. We find that the ABC analysis is able to provide reliable parameter constraints for this problem and is therefore a promising technique for other applications in cosmology and astrophysics. Our implementation of the ABC PMC method is made available via a public code release

  14. Simulations of Converging Shock Collisions for Shock Ignition

    Science.gov (United States)

    Sauppe, Joshua; Dodd, Evan; Loomis, Eric

    2016-10-01

    Shock ignition (SI) has been proposed as an alternative to achieving high gain in inertial confinement fusion (ICF) targets. A central hot spot below the ignition threshold is created by an initial compression pulse, and a second laser pulse drives a strong converging shock into the fuel. The collision between the rebounding shock from the compression pulse and the converging shock results in amplification of the converging shock and increases the hot spot pressure above the ignition threshold. We investigate shock collision in SI drive schemes for cylindrical targets with a polystyrene foam interior using radiation-hydrodynamics simulations with the RAGE code. The configuration is similar to previous targets fielded on the Omega laser. The CH interior results in a lower convergence ratio and the cylindrical geometry facilitates visualization of the shock transit using an axial X-ray backlighter, both of which are important for comparison to potential experimental measurements. One-dimensional simulations are used to determine shock timing, and the effects of low mode asymmetries in 2D computations are also quantified. LA-UR-16-24773.

  15. The size effects upon shock plastic compression of nanocrystals

    Science.gov (United States)

    Malygin, G. A.; Klyavin, O. V.

    2017-10-01

    For the first time a theoretical analysis of scale effects upon the shock plastic compression of nanocrystals is implemented in the context of a dislocation kinetic approach based on the equations and relationships of dislocation kinetics. The yield point of crystals τy is established as a quantitative function of their cross-section size D and the rate of shock deformation as τy ɛ2/3 D. This dependence is valid in the case of elastic stress relaxation on account of emission of dislocations from single-pole Frank-Read sources near the crystal surface.

  16. Effects of induced stress on seismic forward modelling and inversion

    Science.gov (United States)

    Tromp, Jeroen; Trampert, Jeannot

    2018-05-01

    We demonstrate how effects of induced stress may be incorporated in seismic modelling and inversion. Our approach is motivated by the accommodation of pre-stress in global seismology. Induced stress modifies both the equation of motion and the constitutive relationship. The theory predicts that induced pressure linearly affects the unstressed isotropic moduli with a slope determined by their adiabatic pressure derivatives. The induced deviatoric stress produces anisotropic compressional and shear wave speeds; the latter result in shear wave splitting. For forward modelling purposes, we determine the weak form of the equation of motion under induced stress. In the context of the inverse problem, we determine induced stress sensitivity kernels, which may be used for adjoint tomography. The theory is illustrated by considering 2-D propagation of SH waves and related Fréchet derivatives based on a spectral-element method.

  17. Reliability assessment of aging structures subjected to gradual and shock deteriorations

    International Nuclear Information System (INIS)

    Wang, Cao; Zhang, Hao; Li, Quanwang

    2017-01-01

    Civil structures and infrastructure facilities are susceptible to deterioration posed by the effects of natural hazards and aggressive environmental conditions. These factors may increase the risk of service interruption of infrastructures, and should be taken into account when assessing the structural reliability during an infrastructure's service life. Modeling the resistance deterioration process reasonably is the basis for structural reliability analysis. In this paper, a novel model is developed for describing the deterioration of aging structures. The deterioration is a combination of two stochastic processes: the gradual deterioration posed by environmental effects and the shock deterioration caused by severe load attacks. The dependency of the deterioration magnitude on the load intensity is considered. The Gaussian copula function is employed to help construct the joint distribution of correlated random variables. Semi-analytical methods are developed to assess the structural failure time and the number of significant load events (shocks) to failure. Illustrative examples are presented to demonstrate the applicability of the proposed model in structural reliability analysis. Parametric studies are performed to investigate the role of deterioration-load correlation in structural reliability. - Highlights: • A new resistance deterioration model for aging structures is proposed. • Time-dependent reliability analysis methods incorporating the proposed deterioration model are developed. • Parametric studies are performed to investigate the role of deterioration-load correlation in structural reliability.

  18. Forward and Spot Prices in Multi-Settlement Wholesale Electricity Markets

    Science.gov (United States)

    Larrieu, Jeremy

    In organized wholesale electricity markets, power is sold competitively in a multi-unit multi-settlement single-price auction comprised of a forward and a spot market. This dissertation attempts to understand the structure of the forward premium in these markets, and to identify the factors that may lead forward and spot prices to converge or diverge. These markets are unique in that the forward demand is price-sensitive, while spot residual demand is perfectly inelastic and must be met in full, a crucial design feature the literature often glosses over. An important contribution of this dissertation is the explicit modeling of each market separately in order to understand how generation and load choose to act in each one, and the consequences of these actions on equilibrium prices and quantities given that firms maximize joint profits over both markets. In the first essay, I construct a two-settlement model of electricity prices in which firms that own asymmetric capacity-constrained units facing convex costs compete to meet demand from consumers, first in quantities, then in prices. I show that the forward premium depends on the costliness of spot production relative to firms' ability to exercise market power by setting quantities in the forward market. In the second essay, I test the model from the first essay with unit-level capacity and marginal cost data from the California Independent System Operator (CAISO). I show that the model closely replicates observed price formation in the CAISO. In the third essay, I estimate a time series model of the CAISO forward premium in order to measure the impact that virtual bidding has had on forward and spot price convergence in California between April 2009 and March 2014. I find virtual bidding to have caused forward and spot prices to diverge due to the large number of market participants looking to hedge against - or speculate on - the occurrence of infrequent but large spot price spikes by placing virtual demand bids.

  19. Nonrelativistic grey Sn-transport radiative-shock solutions

    International Nuclear Information System (INIS)

    Ferguson, J. M.; Morel, J. E.; Lowrie, R. B.

    2017-01-01

    We present semi-analytic radiative-shock solutions in which grey Sn-transport is used to model the radiation, and we include both constant cross sections and cross sections that depend on temperature and density. These new solutions solve for a variable Eddington factor (VEF) across the shock domain, which allows for interesting physics not seen before in radiative-shock solutions. Comparisons are made with the grey nonequilibrium-diffusion radiative-shock solutions of Lowrie and Edwards [1], which assumed that the Eddington factor is constant across the shock domain. It is our experience that the local Mach number is monotonic when producing nonequilibrium-diffusion solutions, but that this monotonicity may disappear while integrating the precursor region to produce Sn-transport solutions. For temperature- and density-dependent cross sections we show evidence of a spike in the VEF in the far upstream portion of the radiative-shock precursor. We show evidence of an adaptation zone in the precursor region, adjacent to the embedded hydrodynamic shock, as conjectured by Drake [2, 3], and also confirm his expectation that the precursor temperatures adjacent to the Zel’dovich spike take values that are greater than the downstream post-shock equilibrium temperature. We also show evidence that the radiation energy density can be nonmonotonic under the Zel’dovich spike, which is indicative of anti-diffusive radiation flow as predicted by McClarren and Drake [4]. We compare the angle dependence of the radiation flow for the Sn-transport and nonequilibriumdiffusion radiation solutions, and show that there are considerable differences in the radiation flow between these models across the shock structure. Lastly, we analyze the radiation flow to understand the cause of the adaptation zone, as well as the structure of the Sn-transport radiation-intensity solutions across the shock structure.

  20. School Shock: A Psychodynamic View of Learning Disability.

    Science.gov (United States)

    Zitani, E. Alfredo

    Learning disability is seen to be a dissociative disorder (school shock) similar to shell shock in wartime. The shell shock model is explained to focus diagnosis and treatment of learning disabilities around the dynamics of the predisposing unconscious conflict, the dynamics in the environment, the mechanism which allows these two conditions to…