WorldWideScience

Sample records for forthe community climate

  1. Cpl6: The New Extensible, High-Performance Parallel Coupler forthe Community Climate System Model

    Energy Technology Data Exchange (ETDEWEB)

    Craig, Anthony P.; Jacob, Robert L.; Kauffman, Brain; Bettge,Tom; Larson, Jay; Ong, Everest; Ding, Chris; He, Yun

    2005-03-24

    Coupled climate models are large, multiphysics applications designed to simulate the Earth's climate and predict the response of the climate to any changes in the forcing or boundary conditions. The Community Climate System Model (CCSM) is a widely used state-of-art climate model that has released several versions to the climate community over the past ten years. Like many climate models, CCSM employs a coupler, a functional unit that coordinates the exchange of data between parts of climate system such as the atmosphere and ocean. This paper describes the new coupler, cpl6, contained in the latest version of CCSM,CCSM3. Cpl6 introduces distributed-memory parallelism to the coupler, a class library for important coupler functions, and a standardized interface for component models. Cpl6 is implemented entirely in Fortran90 and uses Model Coupling Toolkit as the base for most of its classes. Cpl6 gives improved performance over previous versions and scales well on multiple platforms.

  2. Network-Based Community Brings forth Sustainable Society

    Science.gov (United States)

    Kikuchi, Toshiko

    It has already been shown that an artificial society based on the three relations of social configuration (market, communal, and obligatory relations) functioning in balance with each other formed a sustainable society which the social reproduction is possible. In this artificial society model, communal relations exist in a network-based community with alternating members rather than a conventional community with cooperative mutual assistance practiced in some agricultural communities. In this paper, using the comparison between network-based communities with alternating members and conventional communities with fixed members, the significance of a network-based community is considered. In concrete terms, the difference in appearance rate for sustainable society, economic activity and asset inequality between network-based communities and conventional communities is analyzed. The appearance rate for a sustainable society of network-based community is higher than that of conventional community. Moreover, most of network-based communities had a larger total number of trade volume than conventional communities. But, the value of Gini coefficient in conventional community is smaller than that of network-based community. These results show that communal relations based on a network-based community is significant for the social reproduction and economic efficiency. However, in such an artificial society, the inequality is sacrificed.

  3. Denmark's forth national communication on climate change. Under the United Nations framework convention on climate change

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    The Kingdom of Denmark comprises Denmark, Greenland and the Faeroe Islands. The UN Framework Convention on Climate Change has been ratified on behalf of all three parts. This report is Denmark's Fourth Climate Communication under the Climate Convention. Since Denmark's ratification covers the entire Realm, the report includes information on Greenland and the Faeroe Islands. The report is organised in accordance with the guidelines for national communications adopted by the parties to the Climate Convention. (BA)

  4. Denmark's forth national communication on climate change. Under the United Nations framework convention on climate change

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    The Kingdom of Denmark comprises Denmark, Greenland and the Faeroe Islands. The UN Framework Convention on Climate Change has been ratified on behalf of all three parts. This report is Denmark's Fourth Climate Communication under the Climate Convention. Since Denmark's ratification covers the entire Realm, the report includes information on Greenland and the Faeroe Islands. The report is organised in accordance with the guidelines for national communications adopted by the parties to the Climate Convention. (BA)

  5. Communities under climate change

    DEFF Research Database (Denmark)

    Nogues, David Bravo; Rahbek, Carsten

    2011-01-01

    The distribution of species on Earth and the interactions among them are tightly linked to historical and contemporary climate, so that global climate change will transform the world in which we live. Biological models can now credibly link recent decadal trends in field data to climate change......, but predicting future impacts on biological communities is a major challenge. Attempts to move beyond general macroecological predictions of climate change impact on one hand, and observations from specific, local-scale cases, small-scale experiments, or studies of a few species on the other, raise a plethora...... of unanswered questions. On page 1124 of this issue, Harley (1) reports results that cast new light on how biodiversity, across different trophic levels, responds to climate change....

  6. Urban Climate Risk Communities

    DEFF Research Database (Denmark)

    Blok, Anders

    2016-01-01

    of Beck’s forward-looking agenda for a post-Euro-centric social science, outlines the contours of such an urban-cosmopolitan ‘realpolitik’ of climate risks, as this is presently unfolding across East Asian world cities. Much more than a theory-building endeavour, the essay suggests, Beck’s sociology......Ulrich Beck’s cosmopolitan sociology affords a much-needed rethinking of the transnational politics of climate change, not least in pointing to an emerging inter-urban geography of world cities as a potential new source of community, change and solidarity. This short essay, written in honour...... provides a standing invitation for further transnational dialogue and collaborative empirical work, in East Asia and beyond, on what are, arguably, the defining challenges for the 21st century world of global risks....

  7. Climate, Carbon, Conservation and Communities

    Energy Technology Data Exchange (ETDEWEB)

    Vaugn, Kit; Brickell, Emily [WWF-UK (United Kingdom); Roe, Dilys; Reid, Hannah; Elliot, Jo

    2007-07-01

    The growing market for carbon offers great opportunities for linking greenhouse gas mitigation with conservation of forests and biodiversity, and the generation of local livelihoods. For these combined objectives to be achieved, strong governance is needed along with institutions that ensure poor people win, rather than lose out, from the new challenges posed by climate change. This briefing paper explores the opportunities from and limitations to carbon-based funds for conservation and development. It highlights mechanisms that may help secure benefits for climate, conservation and communities.

  8. Community Capitals as Community Resilience to Climate Change: Conceptual Connections

    Directory of Open Access Journals (Sweden)

    Shaikh Mohammad Kais

    2016-12-01

    Full Text Available In the last few decades, disaster risk reduction programs and climate initiatives across the globe have focused largely on the intimate connections between vulnerability, recovery, adaptation, and coping mechanisms. Recent focus, however, is increasingly paid to community resilience. Community, placed at the intersection between the household and national levels of social organization, is crucial in addressing economic, social, or environmental disturbances disrupting human security. Resilience measures a community’s capability of bouncing back—restoring the original pre-disaster state, as well as bouncing forward—the capacity to cope with emerging post-disaster situations and changes. Both the ‘bouncing back’ and ‘moving forward’ properties of a community are shaped and reshaped by internal and external shocks such as climate threats, the community’s resilience dimensions, and the intensity of economic, social, and other community capitals. This article reviews (1 the concept of resilience in relation to climate change and vulnerability; and (2 emerging perspectives on community-level impacts of climate change, resilience dimensions, and community capitals. It argues that overall resilience of a place-based community is located at the intersection of the community’s resilience dimensions, community capitals, and the level of climate disruptions.

  9. Community Capitals as Community Resilience to Climate Change: Conceptual Connections

    Science.gov (United States)

    Kais, Shaikh Mohammad; Islam, Md Saidul

    2016-01-01

    In the last few decades, disaster risk reduction programs and climate initiatives across the globe have focused largely on the intimate connections between vulnerability, recovery, adaptation, and coping mechanisms. Recent focus, however, is increasingly paid to community resilience. Community, placed at the intersection between the household and national levels of social organization, is crucial in addressing economic, social, or environmental disturbances disrupting human security. Resilience measures a community’s capability of bouncing back—restoring the original pre-disaster state, as well as bouncing forward—the capacity to cope with emerging post-disaster situations and changes. Both the ‘bouncing back’ and ‘moving forward’ properties of a community are shaped and reshaped by internal and external shocks such as climate threats, the community’s resilience dimensions, and the intensity of economic, social, and other community capitals. This article reviews (1) the concept of resilience in relation to climate change and vulnerability; and (2) emerging perspectives on community-level impacts of climate change, resilience dimensions, and community capitals. It argues that overall resilience of a place-based community is located at the intersection of the community’s resilience dimensions, community capitals, and the level of climate disruptions. PMID:27929448

  10. Community responses to extreme climatic conditions

    Directory of Open Access Journals (Sweden)

    Frédéric JIGUET, Lluis BROTONS, Vincent DEVICTOR

    2011-06-01

    Full Text Available Species assemblages and natural communities are increasingly impacted by changes in the frequency and severity of extreme climatic events. Here we propose a brief overview of expected and demonstrated direct and indirect impacts of extreme events on animal communities. We show that differential impacts on basic biological parameters of individual species can lead to strong changes in community composition and structure with the potential to considerably modify the functional traits of the community. Sudden disequilibria have even been shown to induce irreversible shifts in marine ecosystems, while cascade effects on various taxonomic groups have been highlighted in Mediterranean forests. Indirect effects of extreme climatic events are expected when event-induced habitat changes (e.g. soil stability, vegetation composition, water flows altered by droughts, floods or hurricanes have differential consequences on species assembled within the communities. Moreover, in increasing the amplitude of trophic mismatches, extreme events are likely to turn many systems into ecological traps under climate change. Finally, we propose a focus on the potential impacts of an extreme heat wave on local assemblages as an empirical case study, analysing monitoring data on breeding birds collected in France. In this example, we show that despite specific populations were differently affected by local temperature anomalies, communities seem to be unaffected by a sudden heat wave. These results suggest that communities are tracking climate change at the highest possible rate [Current Zoology 57 (3: 406–413, 2011].

  11. Climatic warming destabilizes forest ant communities.

    Science.gov (United States)

    Diamond, Sarah E; Nichols, Lauren M; Pelini, Shannon L; Penick, Clint A; Barber, Grace W; Cahan, Sara Helms; Dunn, Robert R; Ellison, Aaron M; Sanders, Nathan J; Gotelli, Nicholas J

    2016-10-01

    How will ecological communities change in response to climate warming? Direct effects of temperature and indirect cascading effects of species interactions are already altering the structure of local communities, but the dynamics of community change are still poorly understood. We explore the cumulative effects of warming on the dynamics and turnover of forest ant communities that were warmed as part of a 5-year climate manipulation experiment at two sites in eastern North America. At the community level, warming consistently increased occupancy of nests and decreased extinction and nest abandonment. This consistency was largely driven by strong responses of a subset of thermophilic species at each site. As colonies of thermophilic species persisted in nests for longer periods of time under warmer temperatures, turnover was diminished, and species interactions were likely altered. We found that dynamical (Lyapunov) community stability decreased with warming both within and between sites. These results refute null expectations of simple temperature-driven increases in the activity and movement of thermophilic ectotherms. The reduction in stability under warming contrasts with the findings of previous studies that suggest resilience of species interactions to experimental and natural warming. In the face of warmer, no-analog climates, communities of the future may become increasingly fragile and unstable.

  12. Engaging diverse communities towards climate protection

    Energy Technology Data Exchange (ETDEWEB)

    Nichols, J.; Imran, N. [Blekinge Inst. of Technology, Karlskrona (Sweden)

    2008-07-01

    Engaging urban communities as newcomers towards UN climate change targets is not only good governance but also a way of relating deliberative democracy to the human need of participation. This poster outlines effective multicultural engagement as it relates to strategic sustainable development. The presentation shares the benefits of broadening communication strategies from informing citizens to consultation and empowering diverse communities to participate in the global effort to reduce greenhouse gas emissions.

  13. Doing Climate Science in Indigenous Communities

    Science.gov (United States)

    Pandya, R. E.; Bennett, B.

    2009-12-01

    Historically, the goal of broadening participation in the geosciences has been expressed and approached from the viewpoint of the majority-dominated geoscience community. The need for more students who are American Indian, Native Hawaiian, or Alaska Native is expressed in terms of the need to diversify the research community, and strategies to engage more students are often posed around the question “what can we do to get more indigenous students interested in coming to our institutions to do geosciences?” This approach can lead to neglecting indigenous ways of knowing, inadvertently prioritizes western values over traditional ones, and doesn’t necessarily honor tribal community’s desire to hold on to their talented youth. Further, while this approach has resulted in some modest success, the overall participation in geoscience by students from indigenous backgrounds remains low. Many successful programs, however, have tried an alternate approach; they begin by approaching the geosciences from the viewpoint of indigenous communities. The questions they ask center around how geosciences can advance the priorities of indigenous communities, and their approaches focus on building capacity for the geosciences within indigenous communities. Most importantly, perhaps, these efforts originate in Tribal communities themselves, and invite the geoscience research community to partner in projects that are rooted in indigenous culture and values. Finally, these programs recognize that scientific expertise is only one among many skills indigenous peoples employ in their relation with their homelands. Climate change, like all things related to the landscape, is intimately connected to the core of indigenous cultures. Thus, emerging concerns about climate change provide a venue for developing new, indigenous-centered, approaches to the persistent problem of broadening participation in the geoscience. This presentation will highlight three indigenous-led efforts in to

  14. Conceptualizing Holistic Community Resilience to Climate ...

    Science.gov (United States)

    The concept of resilience has been evolving over the past decade as a way to address the current and future challenges nations, states, and cities face from a changing climate. Understanding how the environment (natural and built), climate event risk, societal interactions, and governance reflect community resilience for adaptive management is critical for envisioning urban and natural environments that can persist through extreme weather events and longer-term shifts in climate. To be successful, this interaction of these five domains must result in maintaining quality of life and ensuring equal access to the benefits or the protection from harm for all segments of the population. An exhaustive literature review of climate resilience approaches was conducted examining the two primary elements of resilience—vulnerability and recoverability. The results of this review were examined to determine if any existing frameworks addressed the above five major areas in an integrated manner. While some aspects of a resilience model were available for existing sources, no comprehensive approach was available. A new conceptual model for resilience to climate events is proposed that incorporates some available structures and addresses these five domains at a national, regional, state, and county spatial scale for a variety of climate-induced events ranging from superstorms to droughts and their concomitant events such as wildfires, floods, and pest invasions. This conceptua

  15. Plant community responses to climate change

    Energy Technology Data Exchange (ETDEWEB)

    Kongstad, J.

    2012-07-01

    ecosystem more resilient to the climatic treatments than expected. We also found that the amount of flowering culms of D. flexuosa increased in response to increased CO{sub 2}, whereas the seed germination success decreased. The bryophyte biomass and the nitrogen content decreased in response to nitrogen addition. Even such apparently minor changes might, given time, affect the plant composition and thereby possibly also the major ecosystem processes. Further, we observed changes in the aboveground plant composition in response to the climate manipulations at the Mols site, where C. vulgaris was regenerating after a disturbance. Here a decrease in biomass of the pioneer stage was seen, when subjected to the drought treatment compared to warmed and control treatments. I therefore conclude, that the stage of the C. vulgaris population as well as the magnitude and frequency of disturbances determine the effects of future climate change on the plant community in heathland ecosystems. (Author)

  16. The Whole Atmosphere Community Climate Model

    Science.gov (United States)

    Boville, B. A.; Garcia, R. R.; Sassi, F.; Kinnison, D.; Roble, R. G.

    The Whole Atmosphere Community Climate Model (WACCM) is an upward exten- sion of the National Center for Atmospheric Research Community Climate System Model. WACCM simulates the atmosphere from the surface to the lower thermosphere (140 km) and includes both dynamical and chemical components. The salient points of the model formulation will be summarized and several aspects of its performance will be discussed. Comparison with observations indicates that WACCM produces re- alistic temperature and zonal wind distributions. Both the mean state and interannual variability will be summarized. Temperature inversions in the midlatitude mesosphere have been reported by several authors and are also found in WACCM. These inver- sions are formed primarily by planetary wave forcing, but the background state on which they form also requires gravity wave forcing. The response to sea surface temperature (SST) anomalies will be examined by com- paring simulations with observed SSTs for 1950-1998 to a simulation with clima- tological annual cycle of SSTs. The response to ENSO events is found to extend though the winter stratosphere and mesosphere and a signal is also found at the sum- mer mesopause. The experimental framework allows the ENSO signal to be isolated, because no other forcings are included (e.g. solar variability and volcanic eruptions) which complicate the observational record. The temperature and wind variations asso- ciated with ENSO are large enough to generate significant perturbations in the chem- ical composition of the middle atmosphere, which will also be discussed.

  17. Tethered Forth system for FPGA applications

    Science.gov (United States)

    Goździkowski, Paweł; Zabołotny, Wojciech M.

    2013-10-01

    This paper presents the tethered Forth system dedicated for testing and debugging of FPGA based electronic systems. Use of the Forth language allows to interactively develop and run complex testing or debugging routines. The solution is based on a small, 16-bit soft core CPU, used to implement the Forth Virtual Machine. Thanks to the use of the tethered Forth model it is possible to minimize usage of the internal RAM memory in the FPGA. The function of the intelligent terminal, which is an essential part of the tethered Forth system, may be fulfilled by the standard PC computer or by the smartphone. System is implemented in Python (the software for intelligent terminal), and in VHDL (the IP core for FPGA), so it can be easily ported to different hardware platforms. The connection between the terminal and FPGA may be established and disconnected many times without disturbing the state of the FPGA based system. The presented system has been verified in the hardware, and may be used as a tool for debugging, testing and even implementing of control algorithms for FPGA based systems.

  18. Trend chart: wind power. Forth quarter 2016

    International Nuclear Information System (INIS)

    Coltier, Yves

    2017-02-01

    This publication presents the wind energy situation of continental France and overseas territories during the forth quarter 2016: total connected load, new connected facilities, regional distribution of wind power production, evolution of quarterly production, distribution of facilities versus power, evolution forecasts of the French wind power park, projects in progress, detailed regional results, methodology used

  19. Trend chart: biogas. Forth quarter 2016

    International Nuclear Information System (INIS)

    Cavaud, Denis

    2017-02-01

    This publication presents the biogas industry situation of continental France and overseas territories during the forth quarter 2016: total connected load of biogas power plants, new connected facilities, regional distribution of facilities, evolution of quarterly production, distribution of facilities versus power and type, evolution forecasts of biogas power generation, detailed regional results, biomethane injection in natural gas distribution systems, methodology used

  20. Trend chart: wind power. Forth quarter 2015

    International Nuclear Information System (INIS)

    Reynaud, Didier

    2016-02-01

    This publication presents the wind energy situation of continental France and overseas territories during the forth quarter 2015: total connected load, new connected facilities, regional distribution of wind power production, evolution of quarterly production, distribution of facilities versus power, evolution forecasts of the French wind power park, projects in progress, detailed regional results, methodology used

  1. Embedded controller FORTH for the 8051 family

    National Research Council Canada - National Science Library

    Payne, William H

    1990-01-01

    ... FORTH For the 8051 Family ο ο ο o o b ο ο ο ο ορ ο οοοοοοοοοοοοοοοοοοοοοοοα ΟΟΟΟ William Η. Payne Sandia National Laboratories Albuquerque, New Mexico A C A D E M...

  2. Community College Organizational Climate for Minorities and Women

    Science.gov (United States)

    Townsend, Barbara K.

    2009-01-01

    This paper explores the issues of what would constitute a positive organizational climate for women and minorities within the community college setting and ways in which such a climate might be achieved. It first describes some traditional or standard measures of a positive organizational climate for women and minorities and then evaluates how…

  3. Rediscovering the "Back-and-Forthness" of Rhetoric in the Age of YouTube

    Science.gov (United States)

    Jackson, Brian; Wallin, Jon

    2009-01-01

    Web 2.0 applications such as YouTube have made it likely that students participate in online back-and-forth exchanges that influence their rhetorical literacy. Because of the back-and-forth nature of online communities, we turn to the procedural, critical, and progressive qualities of dialectic as a means of accounting for what makes public…

  4. Old-field Community, Climate and Atmospheric Manipulation

    Energy Technology Data Exchange (ETDEWEB)

    Aimee Classen

    2009-11-01

    We are in the process of finishing a number of laboratory, growth chamber and greenhouse projects, analyzing data, and writing papers. The projects reported addressed these subjects: How do climate and atmospheric changes alter aboveground plant biomass and community structure; Effects of multiple climate changes factors on plant community composition and diversity: what did we learn from a 5-year open-top chamber experiment using constructed old-field communities; Do atmospheric and climatic change factors interact to alter woody seedling emergence, establishment and productivity; Soil moisture surpasses elevated CO{sub 2} and temperature in importance as a control on soil carbon dynamics; How do climate and atmospheric changes alter belowground root and fungal biomass; How do climate and atmospheric changes alter soil microarthropod and microbial communities; How do climate and atmospheric changes alter belowground microbial function; Linking root litter diversity and microbial functioning at a micro scale under current and projected CO{sub 2} concentrations; Multifactor climate change effects on soil ecosystem functioning depend on concurrent changes in plant community composition; How do climate and atmospheric changes alter aboveground insect populations; How do climate and atmospheric changes alter festuca endophyte infection; How do climate and atmospheric changes soil carbon stabilization.

  5. Exploring the Climate for Women as Community College Faculty.

    Science.gov (United States)

    Hagedorn, Linda Serra; Laden, Berta Vigil

    2002-01-01

    Provides a literature review and national dataset analyses regarding the perceived conditions of women community college faculty members. Reports that the climate at the average community college may be friendlier than at four-year institutions; however, women faculty at community colleges are not free from the confines of glass ceilings, academic…

  6. Signs of the Land: Reaching Arctic Communities Facing Climate Change

    Science.gov (United States)

    Sparrow, E. B.; Chase, M. J.; Demientieff, S.; Pfirman, S. L.; Brunacini, J.

    2014-12-01

    In July 2014, a diverse and intergenerational group of Alaskan Natives came together on Howard Luke's Galee'ya Camp by the Tanana River in Fairbanks, Alaska to talk about climate change and it's impacts on local communities. Over a period of four days, the Signs of the Land Climate Change Camp wove together traditional knowledge, local observations, Native language, and climate science through a mix of storytelling, presentations, dialogue, and hands-on, community-building activities. This camp adapted the model developed several years ago under the Association for Interior Native Educators (AINE)'s Elder Academy. Part of the Polar Learning and Responding Climate Change Education Partnership, the Signs of the Land Climate Change Camp was developed and conducted collaboratively with multiple partners to test a model for engaging indigenous communities in the co-production of climate change knowledge, communication tools, and solutions-building. Native Alaskans have strong subsistence and cultural connections to the land and its resources, and, in addition to being keen observers of their environment, have a long history of adapting to changing conditions. Participants in the camp included Elders, classroom teachers, local resource managers and planners, community members, and climate scientists. Based on their experiences during the camp, participants designed individualized outreach plans for bringing culturally-responsive climate learning to their communities and classrooms throughout the upcoming year. Plans included small group discussions, student projects, teacher training, and conference presentations.

  7. Gender and climate change-induced conflict in pastoral communities

    International Development Research Centre (IDRC) Digital Library (Canada)

    30 juin 2011 ... Climate change poses serious challenges to the already precarious livelihoods of pastoral communities in East Africa. Now, climate-related resource scarcities are increasing the likelihood of violent conflict. Women are often most vulnerable to such violence. Understanding the drivers of this environmental ...

  8. Community based adaptations to climate change: experiences of the Mijikenda Community in Coastal Kenya

    OpenAIRE

    Groh, Maxie Elizabeth

    2016-01-01

    Small-scale farmers in Africa are among the most vulnerable to the impacts of climate change. Macro level climate change policies are having little positive impacts on their livelihoods. However, at the local level, communities are innovating and adapting to climate change. While these innovations are not enough to guarantee extensive adaptation to climate change, they are an important element for the survival of agrarian societies and botanical diversity. It is therefore importan...

  9. Preparing US community greenhouse gas inventories for climate action plans

    International Nuclear Information System (INIS)

    Blackhurst, Michael; Scott Matthews, H; Hendrickson, Chris T; Sharrard, Aurora L; Azevedo, Ines Lima

    2011-01-01

    This study illustrates how alternative and supplemental community-level greenhouse gas (GHG) inventory techniques could improve climate action planning. Eighteen US community GHG inventories are reviewed for current practice. Inventory techniques could be improved by disaggregating the sectors reported, reporting inventory uncertainty and variability, and aligning inventories with local organizations that could facilitate emissions reductions. The potential advantages and challenges of supplementing inventories with comparative benchmarks are also discussed. While GHG inventorying and climate action planning are nascent fields, these techniques can improve CAP design, help communities set more meaningful emission reduction targets, and facilitate CAP implementation and progress monitoring.

  10. Preparing US community greenhouse gas inventories for climate action plans

    Energy Technology Data Exchange (ETDEWEB)

    Blackhurst, Michael [Department of Civil, Architectural and Environmental Engineering, The University of Texas at Austin, 1 University Station C1752, Austin, TX 78712-0276 (United States); Scott Matthews, H; Hendrickson, Chris T [Department of Civil and Environmental Engineering, Carnegie Mellon University, 119 Porter Hall, Pittsburgh, PA 15213 (United States); Sharrard, Aurora L [Green Building Alliance, 333 East Carson Street, Suite 331, Pittsburgh, PA 15219 (United States); Azevedo, Ines Lima, E-mail: mblackhurst@gmail.com, E-mail: hsm@cmu.edu, E-mail: auroras@gbapgh.org, E-mail: cth@andrew.cmu.edu, E-mail: iazevedo@cmu.edu [Department of Engineering and Public Policy, Carnegie Mellon University, 119 Porter Hall, Pittsburgh, PA 15213 (United States)

    2011-07-15

    This study illustrates how alternative and supplemental community-level greenhouse gas (GHG) inventory techniques could improve climate action planning. Eighteen US community GHG inventories are reviewed for current practice. Inventory techniques could be improved by disaggregating the sectors reported, reporting inventory uncertainty and variability, and aligning inventories with local organizations that could facilitate emissions reductions. The potential advantages and challenges of supplementing inventories with comparative benchmarks are also discussed. While GHG inventorying and climate action planning are nascent fields, these techniques can improve CAP design, help communities set more meaningful emission reduction targets, and facilitate CAP implementation and progress monitoring.

  11. School Climate Improvement Action Guide for Community Partners. School Climate Improvement Resource Package

    Science.gov (United States)

    National Center on Safe Supportive Learning Environments, 2017

    2017-01-01

    Improving school climate takes time and commitment from a variety of people in a variety of roles. This document outlines how community partners can support school climate improvements. Organizations and individuals can partner with schools in many different ways--from delivering or coordinating direct services to students and families inside or…

  12. Terrestrial biogeochemistry in the community climate system model (CCSM)

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, Forrest [Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6016 (United States); Fung, Inez [University of California at Berkeley, Berkeley, California (United States); Randerson, Jim [University of California at Irvine, Irvine, California (United States); Thornton, Peter [National Center for Atmospheric Research, Boulder, Colorado (United States); Foley, Jon [University of Wisconsin at Madison, Madison, Wisconsin (United States); Covey, Curtis [Program for Climate Model Diagnosis and Intercomparison, Lawrence Livermore National Laboratory, Livermore, California (United States); John, Jasmin [University of California at Berkeley, Berkeley, California (United States); Levis, Samuel [National Center for Atmospheric Research, Boulder, Colorado (United States); Post, W Mac [Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6016 (United States); Vertenstein, Mariana [National Center for Atmospheric Research, Boulder, Colorado (United States); Stoeckli, Reto [Colorado State University, Ft. Collins, Colorado (United States); Running, Steve [University of Montana, Missoula, Montana (United States); Heinsch, Faith Ann [University of Montana, Missoula, Montana (United States); Erickson, David [Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6016 (United States); Drake, John [Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6016 (United States)

    2006-09-15

    Described here is the formulation of the CASA{sup '} biogeochemistry model of Fung, et al., which has recently been coupled to the Community Land Model Version 3 (CLM3) and the Community Climate System Model Version 3 (CCSM3). This model is presently being used for Coupled Climate/Carbon Cycle Model Intercomparison Project (C{sup 4}MIP) Phase 1 experiments. In addition, CASA{sup '} is one of three models - in addition to CN (Thornton, et al.) and IBIS (Thompson, et al.) - that are being run within CCSM to investigate their suitability for use in climate change predictions in a future version of CCSM. All of these biogeochemistry experiments are being performed on the Computational Climate Science End Station (Dr. Warren Washington, Principle Investigator) at the National Center for Computational Sciences at Oak Ridge National Laboratory.

  13. Terrestrial biogeochemistry in the community climate system model (CCSM)

    International Nuclear Information System (INIS)

    Hoffman, Forrest; Fung, Inez; Randerson, Jim; Thornton, Peter; Foley, Jon; Covey, Curtis; John, Jasmin; Levis, Samuel; Post, W Mac; Vertenstein, Mariana; Stoeckli, Reto; Running, Steve; Heinsch, Faith Ann; Erickson, David; Drake, John

    2006-01-01

    Described here is the formulation of the CASA ' biogeochemistry model of Fung, et al., which has recently been coupled to the Community Land Model Version 3 (CLM3) and the Community Climate System Model Version 3 (CCSM3). This model is presently being used for Coupled Climate/Carbon Cycle Model Intercomparison Project (C 4 MIP) Phase 1 experiments. In addition, CASA ' is one of three models - in addition to CN (Thornton, et al.) and IBIS (Thompson, et al.) - that are being run within CCSM to investigate their suitability for use in climate change predictions in a future version of CCSM. All of these biogeochemistry experiments are being performed on the Computational Climate Science End Station (Dr. Warren Washington, Principle Investigator) at the National Center for Computational Sciences at Oak Ridge National Laboratory

  14. Community-based adaptation to climate change: an update

    Energy Technology Data Exchange (ETDEWEB)

    Ayers, Jessica; Huq, Saleemul

    2009-06-15

    Over a billion people - the world's poorest and most bulnerable communities – will bear the brunt of climate change. For them, building local capacity to cope is a vital step towards resilience. Community-based adaptation (CBA) is emerging as a key response to this challenge. Tailored to local cultures and conditions, CBA supports and builds on autonomous adaptations to climate variability, such as the traditional baira or floating gardens of Bangladesh, which help small farmers' crops survive climate-driven floods. Above all, CBA is participatory – a process involving both local stakeholders, and development and disaster risk reduction practitioners. As such, it builds on existing cultural norms while addressing local development issues that contribute to climate vulnerability. CBA is now gaining ground in many regions, and is ripe for the reassessment offered here.

  15. Engaging Youth on Climate & Health to Cultivate Community Resilience

    Science.gov (United States)

    Haine, D. B.; Gray, K. M.; Chang, D.; Morton, T.; Steele, B.; Backus, A.; Hauptman, M.

    2017-12-01

    Cultivating climate literacy among youth positions them to develop solutions and advocate for actions that prepare communities to adapt to climate change, mitigate emissions and ultimately protect human health and well-being, with an eye towards protecting the most vulnerable populations. This presentation will describe an innovative partnership among three university environmental health programs—based at the University of North Carolina at Chapel Hill, Columbia University and Harvard University—and their community collaborators: the Alliance for Climate Education, Boston Children's Hospital Pediatric Environmental Health Center and WE ACT for Environmental Justice. This project engages youth through non-formal educational programming that promotes climate literacy while also building the capacity of today's youth to promote community resilience. This partnership led to the development and implementation of two, long-duration extracurricular youth science enrichment programs in 2017, one in North Carolina (NC) and one in New York, with joint activities conducted virtually and in person to connect students with each other and with leading public health professionals and others working to promote community resilience and climate justice. Forty high school students, 20 from central NC and 20 from West Harlem in New York City, are enrolled in each program. In July 2017, students came together for a 3-day summer institute in NC. This session will feature the strategies, STEM-based activities and resources used in this project to engage students in the examination of their communities, identification and evaluation of climate adaptation and mitigation strategies and promotion of community resilience. Programming entailed having students interact with public health professionals, scientists and others to learn about climate impacts to public health and its infrastructure, vulnerable populations and planning for resilient communities. Ultimately, we sought to promote

  16. Climate impacts on fungal community and trait dynamics

    Czech Academy of Sciences Publication Activity Database

    Andrew, C.; Heegaard, E.; Halvorsen, R.; Martinez-Pena, F.; Egli, S.; Kirk, P.M.; Baessler, C.; Büntgen, Ulf; Aldea, J.; Hoiland, K.; Boddy, L.; Kauserud, H.

    2016-01-01

    Roč. 22, aug (2016), s. 17-25 ISSN 1754-5048 Institutional support: RVO:67179843 Keywords : nonlinear dimensionality reduction * root-tip communities * ectomycorrhizal fungi * environmental drivers * resource availability * mycorrhizal fungi * fruit bodies * soil * forest * patterns * Community structure * Fungi-forest-climate interactions * Life-history traits * Long-term data * Successional models Subject RIV: EH - Ecology, Behaviour Impact factor: 3.219, year: 2016

  17. Engaging with Underserved Urban Communities on Climate Resilience

    Science.gov (United States)

    Akerlof, K.; Moser, F. C.; Baja, K.; Dindinger, J. M.; Chanse, V.; Rowan, K. E.; Rohring, B.

    2016-12-01

    Meeting the needs of urban high-risk/low-resource communities is one of the most critical challenges in improving climate resilience nationally, but little tailored information exists to guide community engagement efforts specifically for these contexts. This case study describes a collaboration between universities, local governments, and community members working in underserved neighborhoods of the City of Baltimore and Prince George's County, Maryland. In service of current and developing community programs, the team surveyed residents door-to-door about their perceptions of the socio-environmental risks they face, their priorities for change, and the ways in which communication may build protective social capital. We highlight theoretical, applied, and pedagogical aspects of the study that inform both the promise and limitations of these collaborations. These include: 1) the role of citizen participation in climate adaptation decision-making; 2) the meaning, use, and potential impact of community data; 3) balancing differing organizational priorities, timelines, and cultures within community-based projects; and 4) research participation of undergraduate students. The results of the survey illuminate climate risk perceptions in neighborhoods facing complex stressors with lessons for communication and engagement in other urban areas facing similar adaptation challenges.

  18. CLIMATE CHANGE AND COMMUNITY ENVIRONMENTAL CONFLICTS: ARE THEY CORRELATED?

    Directory of Open Access Journals (Sweden)

    Achmad Romsan

    2017-01-01

    Full Text Available Climate change and global warming affect major change in freshwater availability and season uncertainty which hamper all part of the globe. Although the phenomenon is not new but it needs concerns from all the government of States around the world to  address the problem. If notthe drought and water shortages will directly and indirectly be the world problem and finally will ignite conflict over resources.Pollution and environmental degradation will also affect the sustainability of community’s economic activities. In Indonesia, since the enforcement of the first Environmental Management Act of 1982 up to the third Environmental Management Act of 2019, there have been forty one conflicts involving community and industries and palm plantation companies. All the conflicts are brought before the courts. Herein, industries and plantations are blamed for responsible for river water pollution and environmental degradation. Unfortunately, there is very little information in Indonesia obtained from the research reports, journals, news papers, magazines whether climate change and global warming also responsible for the occurrence of community environmental conflict. From the second data sources obtained from outsite Indonesia it is found that there is a link between climate change and community environmental disputes. The objectives of this paper tryto examine whether the cases submitted and solved by the District Courtsalso have some connection with the climate change phenomenon. Other objectives are to recommend to the Government of Indonesia to strengthen the existing regulations dealing with the climate change

  19. An Examination of Campus Climate for LGBTQ Community College Students

    Science.gov (United States)

    Garvey, Jason C.; Taylor, Jason L.; Rankin, Susan

    2015-01-01

    This study examines campus climate for lesbian, gay, bisexual, transgender, and queer (LGBTQ) undergraduate students at community colleges. Data for the study originates from Rankin, Blumenfeld, Weber, and Frazer's (2010) "State of Higher Education for LGBT People." We analyzed both quantitative data generated from closed-ended…

  20. 507 community perception on climate change and usage patterns

    African Journals Online (AJOL)

    Osondu

    forest-dependent communities as a strategy to cope with the impacts of climate change and variability around the ..... minimize or spread risks by managing a mix of crops, crop ... harvesting, processing and marketing of NTFPs is needed so as ...

  1. Impacts of climatic changes on small mammal communities in the ...

    African Journals Online (AJOL)

    To evaluate the impact of climatic change on rodent sahelian communities, we analysed the contents of over 2500 barn owl (Tyto alba) pellets collected along the Senegal river between 1989 and 2003, and from the Ferlo sahelian area in 2003. These results are compared with data from the 1970s and 1980s in the same ...

  2. Common Belief. Australia's Faith Communities on Climate Change

    International Nuclear Information System (INIS)

    2006-12-01

    Sixteen Australian faith communities representing the world's great religious traditions have united to speak out on climate change: Aboriginal people, the Australian Christian lobby, Baha'i believers, Baptists, Buddhists, Catholics, Evangelical Christians, Greek Orthodox, Hindus, Jewish people, Lutherans, Muslims, The Salvation Army, Sikhs, The United Church

  3. Peformance Tuning and Evaluation of a Parallel Community Climate Model

    Energy Technology Data Exchange (ETDEWEB)

    Drake, J.B.; Worley, P.H.; Hammond, S.

    1999-11-13

    The Parallel Community Climate Model (PCCM) is a message-passing parallelization of version 2.1 of the Community Climate Model (CCM) developed by researchers at Argonne and Oak Ridge National Laboratories and at the National Center for Atmospheric Research in the early to mid 1990s. In preparation for use in the Department of Energy's Parallel Climate Model (PCM), PCCM has recently been updated with new physics routines from version 3.2 of the CCM, improvements to the parallel implementation, and ports to the SGIKray Research T3E and Origin 2000. We describe our experience in porting and tuning PCCM on these new platforms, evaluating the performance of different parallel algorithm options and comparing performance between the T3E and Origin 2000.

  4. Earth System Grid II, Turning Climate Datasets into Community Resources

    Energy Technology Data Exchange (ETDEWEB)

    Middleton, Don

    2006-08-01

    The Earth System Grid (ESG) II project, funded by the Department of Energy’s Scientific Discovery through Advanced Computing program, has transformed climate data into community resources. ESG II has accomplished this goal by creating a virtual collaborative environment that links climate centers and users around the world to models and data via a computing Grid, which is based on the Department of Energy’s supercomputing resources and the Internet. Our project’s success stems from partnerships between climate researchers and computer scientists to advance basic and applied research in the terrestrial, atmospheric, and oceanic sciences. By interfacing with other climate science projects, we have learned that commonly used methods to manage and remotely distribute data among related groups lack infrastructure and under-utilize existing technologies. Knowledge and expertise gained from ESG II have helped the climate community plan strategies to manage a rapidly growing data environment more effectively. Moreover, approaches and technologies developed under the ESG project have impacted datasimulation integration in other disciplines, such as astrophysics, molecular biology and materials science.

  5. Psychosocial influences on safety climate: evidence from community pharmacies.

    Science.gov (United States)

    Phipps, Denham L; Ashcroft, Darren M

    2011-12-01

    To examine the relationship between psychosocial job characteristics and safety climate. Cross-sectional survey. Community pharmacies in Great Britain. Participants A random sample of community pharmacists registered in Great Britain (n = 860). Survey instruments Effort-reward imbalance (ERI) indicator and Job Content Questionnaire (JCQ). Main outcome measures Pharmacy Safety Climate Questionnaire (PSCQ). The profile of scores from the ERI indicated a relatively high risk of adverse psychological effects. The profile of scores from the JCQ indicated both high demand on pharmacists and a high level of psychological and social resources to meet these demands. Path analysis confirmed a model in which the ERI and JCQ measures, as well as the type of pharmacy and pharmacist role, predicted responses to the PSCQ (χ(2)(36) = 111.38, p demand) accounted for the effect of job characteristics on safety climate ratings; each had differential effects on the PSCQ scales. The safety climate in community pharmacies is influenced by perceptions of job characteristics, such as the level of job demands and the resources available to meet these demands. Hence, any efforts to improve safety should take into consideration the effect of the psychosocial work environment on safety climate. In addition, there is a need to address the presence of work-related stressors, which have the potential to cause direct or indirect harm to staff and service users. The findings of the current study provide a basis for future research to improve the safety climate and well-being, both in the pharmacy profession and in other healthcare settings.

  6. Creating a Learning Community for Solutions to Climate Change

    Science.gov (United States)

    Bloom, A. J.; Benedict, B. A.; Blockstein, D. E.; Hassenzahl, D. M.; Hunter, A.; Jorgensen, A. D.; Pfirman, S. L.

    2011-12-01

    The rapidly evolving and interdisciplinary nature of climate change presents a challenge to colleges and universities as they seek to educate undergraduate students. To address this challenge, the National Council for Science and the Environment (NCSE) with NSF funding is creating a nationwide cyber-enabled learning community called CAMEL (Climate, Adaptation, and Mitigation e-Learning). CAMEL engages experts in science, policy and decision-making, education, and assessment in the production of a virtual toolbox of curricular resources designed for teaching climate change causes, consequences, and solutions. CAMEL is: ? Developing cyberinfrastructure that supports and promotes the creation of materials and community; ? Generating materials for the Encyclopedia of Earth, a site averaging 50,000 views per day; ? Ensuring that materials developed and shared are founded on the best available scientific information and follow the most appropriate educational practices; ? Assisting faculty at institutions of higher education across the United States as they create, improve, test, and share resources for teaching students not only how to diagnose climate change problems, but also to identify and effect solutions; ? Evaluating the determinants of successful community building using cybermedia. The community and resultant content range from general education to upper division courses for students in a variety of majors. At the center of the community are the 160 colleges and universities represented in NCSE's Council of Environmental Deans and Directors. Members of this group represent recognized expertise in virtually all areas of this project. A team with substantial experience with evaluating innovative initiatives in STEM education is administering the evaluation component.

  7. Climate extremes drive changes in functional community structure.

    Science.gov (United States)

    Boucek, Ross E; Rehage, Jennifer S

    2014-06-01

    The response of communities to climate extremes can be quite variable. Much of this variation has been attributed to differences in community-specific functional trait diversity, as well as community composition. Yet, few if any studies have explicitly tested the response of the functional trait structure of communities following climate extremes (CEs). Recently in South Florida, two independent, but sequential potential CEs took place, a 2010 cold front, followed by a 2011 drought, both of which had profound impacts on a subtropical estuarine fish community. These CEs provided an opportunity to test whether the structure of South Florida fish communities following each extreme was a result of species-specific differences in functional traits. From historical temperature (1927-2012) and freshwater inflows records into the estuary (1955-2012), we determined that the cold front was a statistically extreme disturbance, while the drought was not, but rather a decadal rare disturbance. The two disturbances predictably affected different parts of functional community structure and thus different component species. The cold front virtually eliminated tropical species, including large-bodied snook, mojarra species, nonnative cichlids, and striped mullet, while having little affect on temperate fishes. Likewise, the drought severely impacted freshwater fishes including Florida gar, bowfin, and two centrarchids, with little effect on euryhaline species. Our findings illustrate the ability of this approach to predict and detect both the filtering effects of different types of disturbances and the implications of the resulting changes in community structure. Further, we highlight the value of this approach to developing predictive frameworks for better understanding community responses to global change. © 2014 John Wiley & Sons Ltd.

  8. Improving Climate Change Communication Skills through Community Outreach

    Science.gov (United States)

    Hanrahan, J.

    2015-12-01

    While many undergraduate Atmospheric Science departments are expanding their curriculums to focus on the science of climate change, often overlooked is the need to educate students about how this topic can be effectively communicated to others. It has become increasingly difficult for young scientists to comfortably discuss this polarizing topic with people outside of the classroom. To address this, Atmospheric Science faculty at Lyndon State College are providing undergraduate students the opportunity to practice this important skill by reaching out to the local community. Over the past year, students have been meeting regularly to discuss climate change and its impacts, and to present this information to the general public at local schools and organizations. The group was organized with the primary goal of teaching undergraduate students about effective ways to communicate basic climate science to nonscientists, but to also improve public understanding of anthropogenic climate change while starting a conversation among young people in the community. We will identify lessons learned after one year, discuss effective strategies, and summarize student feedback.

  9. Keeping Pace with New Technology: An Introduction to Robotics, FORTH, and Artificial Intelligence.

    Science.gov (United States)

    Reck, Gene

    A course was developed to introduce students at a community college to four major areas of emphasis in emerging technologies: FORTH programming language, elementary electronic theory, robotics, and artificial intelligence. After a needs assessment indicated the importance of such a course, a pretest focusing on the four areas was given to students…

  10. Analysis and Lessons Learned from an Online, Consultative Dialogue between Community Leaders and Climate Experts

    Science.gov (United States)

    Sylak-Glassman, E.; Clavin, C.

    2016-12-01

    Common approaches to climate resilience planning in the United States rely upon participatory planning approaches and dialogues between decision-makers, science translators, and subject matter experts. In an effort to explore alternative approaches support community climate resilience planning, a pilot of a public-private collaboration called the Resilience Dialogues was held in February and March of 2016. The Resilience Dialogues pilot was an online, asynchronous conversation between community leaders and climate experts, designed to help communities begin the process of climate resilience planning. In order to identify lessons learned from the pilot, we analyzed the discourse of the facilitated dialogues, administered surveys and conducted interviews with participants. Our analysis of the pilot suggests that participating community leaders found value in the consultative dialogue with climate experts, despite limited community-originated requests for climate information. Community leaders most often asked for advice regarding adaptation planning, including specific engineering guidance and advice on how to engage community members around the topic of resilience. Community leaders that had access to downscaled climate data asked experts about how to incorporate the data into their existing planning processes. The guidance sought by community leaders during the pilot shows a large range of hurdles that communities face in using climate information to inform their decision-making processes. Having a forum that connects community leaders with relevant experts and other community leaders who have familiarity with both climate impacts and municipal planning processes would likely help communities accelerate their resilience efforts.

  11. Decoding the Digital Campus Climate for Prospective LGBTQ+ Community Colleges Students

    Science.gov (United States)

    Taylor, Jason L.; Dockendorff, Kari J.; Inselman, Kyle

    2018-01-01

    LGBTQ+ students are increasingly visible on community college campuses, and a safe and welcoming campus climate is critical to LGBTQ+ students' academic success and well-being. Campus climate is difficult to assess for prospective LGBTQ+ community college students, and institutional websites may be a source of information about campus climate.…

  12. Lichen communities and species indicate climate thresholds in southeast and south-central Alaska, USA

    Science.gov (United States)

    Heather T. Root; Bruce. McCune; Sarah. Jovan

    2014-01-01

    Because of their unique physiology, lichen communities are highly sensitive to climatic conditions,making them ideal bioindicators for climate change. Southeast and south-central Alaska host diverse and abundant lichen communities and are faced with a more rapidly changing climate than many more southerly latitudes. We develop sensitive lichen-based indicators for...

  13. Local governments and climate change: sustainable energy planning and implementation in small and medium sized communities

    National Research Council Canada - National Science Library

    Van Staden, Maryke; Musco, Francesco

    2010-01-01

    The focus of 'Local governments and climate change' is on how small and medium-sized communities in Europe are effectively responding to climate change, with a particular focus on different approaches...

  14. Climatic and Environmental Changes Affecting Communities in Atlantic Canada

    Directory of Open Access Journals (Sweden)

    Liette Vasseur

    2017-07-01

    Full Text Available Small rural coastal communities located in Atlantic Canada are vulnerable to the effects of climate and environmental changes. Major storms have impounded the coastline, causing much physical damage and affecting the socioeconomics of these communities that are composed of an aging population. The current study relays findings based on interviews completed in 2011–2012, following the 2010 winter storms in Atlantic Canada. It portrays the physical and social–ecological impacts affecting 10 coastal communities located in the provinces of Québec, New Brunswick, and Prince Edward Island. Semi-structured interviews held in these provinces are the basis for the contributions of this research. The findings reveal physical changes related to coastal erosion from high-wave impacts and storm surge causing flooding of the coastal zone. Also considered are strategies preferred and actually implemented by residents, such as building of protection walls, although undesirable. Due to funding constraints, however, many of these large-scale flood protection projects are not possible without governmental support. Instead, it is suggested that development be controlled and some respondents in this study upheld that relocation be used to alleviate the situation. Finally, more work is required to improve emergency planning. Better concerted short- and long-term responses need to be coordinated by local authorities and higher up in the government in order to ensure the sustainability of these coastal communities.

  15. Sieve of Eratosthenes benchmarks for the Z8 FORTH microcontroller

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, R.

    1989-02-01

    This report presents benchmarks for the Z8 FORTH microcontroller system that ORNL uses extensively in proving concepts and developing prototype test equipment for the Smart House Project. The results are based on the sieve of Eratosthenes algorithm, a calculation used extensively to rate computer systems and programming languages. Three benchmark refinements are presented,each showing how the execution speed of a FORTH program can be improved by use of a particular optimization technique. The last version of the FORTH benchmark shows that optimization is worth the effort: It executes 20 times faster than the Gilbreaths' widely-published FORTH benchmark program. The National Association of Home Builders Smart House Project is a cooperative research and development effort being undertaken by American home builders and a number of major corporations serving the home building industry. The major goal of the project is to help the participating organizations incorporate advanced technology in communications,energy distribution, and appliance control products for American homes. This information is provided to help project participants use the Z8 FORTH prototyping microcontroller in developing Smart House concepts and equipment. The discussion is technical in nature and assumes some experience with microcontroller devices and the techniques used to develop software for them. 7 refs., 5 tabs.

  16. Climate change, agricultural insecticide exposure, and risk for freshwater communities.

    Science.gov (United States)

    Kattwinkel, Mira; Kühne, Jan-Valentin; Foit, Kaarina; Liess, Matthias

    2011-09-01

    Climate change exerts direct effects on ecosystems but has additional indirect effects due to changes in agricultural practice. These include the increased use of pesticides, changes in the areas that are cultivated, and changes in the crops cultivated. It is well known that pesticides, and in particular insecticides, affect aquatic ecosystems adversely. To implement effective mitigation measures it is necessary to identify areas that are affected currently and those that will be affected in the future. As a consequence, we predicted potential exposure to insecticide (insecticide runoff potential, RP) under current conditions (1990) and under a model scenario of future climate and land use (2090) using a spatially explicit model on a continental scale, with a focus on Europe. Space-for-time substitution was used to predict future levels of insecticide application, intensity of agricultural land use, and cultivated crops. To assess the indirect effects of climate change, evaluation of the risk of insecticide exposure was based on a trait-based, climate-insensitive indicator system (SPEAR, SPEcies At Risk). To this end, RP and landscape characteristics that are relevant for the recovery of affected populations were combined to estimate the ecological risk (ER) of insecticides for freshwater communities. We predicted a strong increase in the application of, and aquatic exposure to, insecticides under the future scenario, especially in central and northern Europe. This, in turn, will result in a severe increase in ER in these regions. Hence, the proportion of stream sites adjacent to arable land that do not meet the requirements for good ecological status as defined by the EU Water Framework Directive will increase (from 33% to 39% for the EU-25 countries), in particular in the Scandinavian and Baltic countries (from 6% to 19%). Such spatially explicit mapping of risk enables the planning of adaptation and mitigation strategies including vegetated buffer strips and

  17. Soil ecosystem functioning under climate change: plant species and community effects

    Energy Technology Data Exchange (ETDEWEB)

    Kardol, Paul [ORNL; Cregger, Melissa [ORNL; Campany, Courtney E [ORNL; Classen, Aimee T [ORNL

    2010-01-01

    Feedbacks of terrestrial ecosystems to climate change depend on soil ecosystem dynamics. Soil ecosystems can directly and indirectly respond to climate change. For example, warming directly alters microbial communities by increasing their activity. Climate change may also alter plant community composition, thus indirectly altering the microbial communities that feed on their inputs. To better understand how climate change may directly and indirectly alter soil ecosystem functioning, we investigated old-field plant community and soil ecosystem responses to single and combined effects of elevated [CO2], warming, and water availability. Specifically, we collected soils at the plot level (plant community soils), and beneath dominant plant species (plant-specific soils). We used microbial enzyme activities and soil nematodes as indicators for soil ecosystem functioning. Our study resulted in two main findings: 1) Overall, while there were some interactions, water, relative to increases in [CO2] and warming, had the largest impact on plant community composition, soil enzyme activities, and soil nematodes. Multiple climate change factors can interact to shape ecosystems, but in this case, those interactions were largely driven by changes in water availability. 2) Indirect effects of climate change, via changes in plant communities, had a significant impact on soil ecosystem functioning and this impact was not obvious when looking at plant community soils. Climate change effects on enzyme activities and soil nematode abundance and community structure strongly differed between plant community soils and plant-specific soils, but also within plant-specific soils. In sum, these results indicate that accurate assessments of climate change impacts on soil ecosystem functioning require incorporating the concurrent changes in plant function and plant community composition. Climate change-induced shifts in plant community composition will likely modify or counteract the direct

  18. Linking environmental filtering and disequilibrium to biogeography with a community climate framework.

    Science.gov (United States)

    Blonder, Benjamin; Nogués-Bravo, David; Borregaard, Michael K; Donoghue, John C; Jørgensen, Peter M; Kraft, Nathan J B; Lessard, Jean-Philippe; Morueta-Holme, Naia; Sandel, Brody; Svenning, Jens-Christian; Violle, Cyrille; Rahbek, Carsten; Enquist, Brian J

    2015-04-01

    We present a framework to measure the strength of environmental filtering and disequilibrium of the species composition of a local community across time, relative to past, current, and future climates. We demonstrate the framework by measuring the impact of climate change on New World forests, integrating data for climate niches of more than 14000 species, community composition of 471 New World forest plots, and observed climate across the most recent glacial-interglacial interval. We show that a majority of communities have species compositions that are strongly filtered and are more in equilibrium with current climate than random samples from the regional pool. Variation in the level of current community disequilibrium can be predicted from Last Glacial Maximum climate and will increase with near-future climate change.

  19. Place Identity, Participation, and Emotional Climate in a Rural Community From the Northern Coast of Peru.

    Science.gov (United States)

    Freire, Silvana; Espinosa, Agustín; Rottenbacher, Jan Marc

    2015-01-01

    Currently, in rural communities from the Peruvian northern coast, it is common to find a climate of distrust and pessimism that accompanies the lack of coordinated social action and community participation among residents. This study analyzes the relationships that people develop with regard to the place where they live in, how it associates to the ways they participate in their community and the relationship that these two variables have with the perceived emotional climate, in a rural community from the northern coast of Peru (n = 81). Results indicate that place identity is significantly associated with a high community participation and a climate of trust in the community. Finally, a Path Analysis is performed to analyze comprehensively the relationship between these variables. The results suggest that place identity does have an influence on perceived positive climate in the community, being mediated by the dimensions of community participation.

  20. Predicting the effects of climate change on marine communities and the consequences for fisheries

    DEFF Research Database (Denmark)

    Jennings, Simon; Brander, Keith

    2010-01-01

    for the community under the same climate scenario. The main weakness of the community approach is that the methods predict abundance and production by size-class rather than taxonomic group, and society would be particularly concerned if climate driven changes had a strong effect on the relative production...... of fishable and non-fishable species in the community. The main strength of the community approach is that it provides widely applicable ‘null’ models for assessing the biological effects of climate change and a baseline for model comparisons.......Climate effects on the structure and function of marine communities have received scant attention. The few existing approaches for predicting climate effects suggest that community responses might be predicted from the responses of component populations. These approaches require a very complex...

  1. Staff Turnover in Assertive Community Treatment (Act) Teams: The Role of Team Climate.

    Science.gov (United States)

    Zhu, Xi; Wholey, Douglas R; Cain, Cindy; Natafgi, Nabil

    2017-03-01

    Staff turnover in Assertive Community Treatment (ACT) teams can result in interrupted services and diminished support for clients. This paper examines the effect of team climate, defined as team members' shared perceptions of their work environment, on turnover and individual outcomes that mediate the climate-turnover relationship. We focus on two climate dimensions: safety and quality climate and constructive conflict climate. Using survey data collected from 26 ACT teams, our analyses highlight the importance of safety and quality climate in reducing turnover, and job satisfaction as the main mediator linking team climate to turnover. The findings offer practical implications for team management.

  2. Connecting communities for climate and disaster risk preparedness ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Climate adaptation and disaster risk management and response are ... not only mitigate impact but to improve preparedness, risk management, and climate resilience. ... including heat stress, water management, and climate-related migration.

  3. Controlled comparison of species- and community-level models across novel climates and communities

    Science.gov (United States)

    Maguire, Kaitlin C.; Blois, Jessica L.; Fitzpatrick, Matthew C.; Williams, John W.; Ferrier, Simon; Lorenz, David J.

    2016-01-01

    Species distribution models (SDMs) assume species exist in isolation and do not influence one another's distributions, thus potentially limiting their ability to predict biodiversity patterns. Community-level models (CLMs) capitalize on species co-occurrences to fit shared environmental responses of species and communities, and therefore may result in more robust and transferable models. Here, we conduct a controlled comparison of five paired SDMs and CLMs across changing climates, using palaeoclimatic simulations and fossil-pollen records of eastern North America for the past 21 000 years. Both SDMs and CLMs performed poorly when projected to time periods that are temporally distant and climatically dissimilar from those in which they were fit; however, CLMs generally outperformed SDMs in these instances, especially when models were fit with sparse calibration datasets. Additionally, CLMs did not over-fit training data, unlike SDMs. The expected emergence of novel climates presents a major forecasting challenge for all models, but CLMs may better rise to this challenge by borrowing information from co-occurring taxa. PMID:26962143

  4. Community gardens as a strategy for coping with climate shocks in ...

    African Journals Online (AJOL)

    Drought is the most important climate shock affecting rural farmers this century. In a bid to reduce the effects of climate shocks, coping strategies are being investigated. Community gardens is one such strategy. The purpose of the study was to objectively look at the dynamics involved in community gardens, that is, the ...

  5. Student Leadership Distribution: Effects of a Student-Led Leadership Program on School Climate and Community

    Science.gov (United States)

    Pedersen, Jeff; Yager, Stuart; Yager, Robert

    2012-01-01

    This study focuses on the understandings educators developed from two schools concerning how distributed leadership involving a select group of students affected the climate and community of their schools. Findings suggest that student-led leadership roles within the school community have an impact on creating a positive school-wide climate; a…

  6. Climate Resilience: Outreach and Engagement with Hard to Reach Communities

    Science.gov (United States)

    Baja, K.

    2017-12-01

    Baltimore faces a unique combination of shocks and stresses that cut across social, economic, and environmental sectors. Like many postindustrial cities, Baltimore has experienced a decline in its population - resulting in a lower tax base. These trends have had deleterious effects on the city's ability to attend to much needed infrastructure improvements and human services. Furthermore, Baltimore has an unfortunate history of deliberate racial segregation that is directly responsible for many of the economic and social challenges the City faces today. In addition to considerable social and economic issues, the city is already experiencing negative impacts from climate change. Baltimore is vulnerable to many natural hazards including heavy precipitation, sea level rise, storm surge, and extreme heat. Impacts from hazards and the capacity to adapt to them is not equal across all populations. Low-income residents and communities of color are most vulnerable and lack access to the resources to effectively plan, react and recover. They are also less likely to engage in government processes or input sessions, either due to distrust or ineffective outreach efforts by government employees and partners. This session is focused on sharing best practices and lessons learned from Baltimore's approach to community outreach and engagement as well as its focus on power shifting and relationship building with hard-to-reach communities. Reducing neighborhood vulnerability and strengthening the fabric that holds systems together requires a large number of diverse stakeholders coordinated around resiliency efforts. With the history of deliberate segregation and current disparities it remains critical to build trust, shift power from government to residents, and focus on relationship building. Baltimore City utilized this approach in planning, implementation and evaluation of resiliency work. This session will highlight two plan development processes, several projects, and innovative

  7. Weathercasters' views on climate change: A state-of-the-community review

    Science.gov (United States)

    Timm, K.; Perkins, D. R., IV; Myers, T.; Maibach, E.

    2017-12-01

    As a community of practice, TV weathercasters are positioned at a crucial intersection between climate scientists and the general public. Weathercasters have the opportunity to use their scientific training and public communication skills to educate viewers about climate change. Though early research found high rates of skepticism about climate change among TV weathercasters, the most current and comprehensive analysis to date of TV weathercasters' views on climate change suggests that their views have evolved in several important ways. Surveys of all working TV weathercasters in the United States conducted in 2015, 2016 and 2017 show that the weathercaster community now holds views of climate change that are similar to that of climate scientists—in particular, that human-caused climate change is happening today and it is impacting American communities in many harmful ways. Ninety-five percent of TV weathercasters now believe that climate change (as defined by the American Meteorological Society) is occurring, and certainty in that belief has grown. Nearly 50% of TV weathercasters believe the climate change that has occurred over the past 50 years has been caused mostly (34%), or largely to entirely (15%), by human activity. Additionally, surveys suggest that weathercasters tend to underestimate the scientific consensus on climate change. Weathercasters, on average, estimate 75% of climate scientists believe humans have caused the majority of recent climate change as compared to the actual value of 97%. Despite convergence in weathercasters' climate change beliefs, this analysis suggests that opportunities remain for building climate literacy among America's TV weathercasters. Increasing this personal knowledge of climate change is one of several factors that empower weathercasters to become public climate educators to increase understanding of climate change causes in communities around the country.

  8. Fire and climate suitability for woody vegetation communities in the south central United States

    Science.gov (United States)

    Stroh, Esther; Struckhoff, Matthew; Stambaugh, Michael C.; Guyette, Richard P.

    2018-01-01

    Climate and fire are primary drivers of plant species distributions. Long-term management of south central United States woody vegetation communities can benefit from information on potential changes in climate and fire frequencies, and how these changes might affect plant communities. We used historical (1900 to 1929) and future (2040 to 2069 and 2070 to 2099) projected climate data for the conterminous US to estimate reference and future fire probabilities

  9. A Forth interpreter and compiler's study for computer aided design

    International Nuclear Information System (INIS)

    Djebbar, F. Zohra Widad

    1986-01-01

    The wide field of utilization of FORTH leads us to develop an interpreter. It has been implemented on a MC 68000 microprocessor based computer, with ASTERIX, a UNIX-like operating system (real time system written by C.E.A.). This work has been done in two different versions: - The first one, fully written in C language, assures a good portability on a wide variety of microprocessors. But the performance estimations show off excessive execution times, and lead to a new optimized version. - This new version is characterized by the compilation of the most frequently used words of the FORTH basis. This allows us to get an interpreter with good performances and an execution speed close to the resulting one of the C compiler. (author) [fr

  10. Firth of Forth oil pollution incident, February 1978

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, L.H.; Standring, K.T.; Cadbury, C.J.

    1978-12-01

    Presented are the results of a survey conducted in the Firth of Forth after a February 1978 oil spill to determine the effects of the spill on the area's waterfowl. The spillage (c.250 gallons) seriously affected birds that lived in the area. Great Crested Grebes, Pochard, and Scaup, species that used the polluted area for feeding and roosting, incurred high mortality rates from oil contamination. The behavior of the oiled birds is described. Oil pollution hazards in the area may be reduced by a new sewage disposal plan for Edinburgh; the system is expected to diminish the concentrations of birds feeding in the area. Types of bird oiled in the Firth of Forth spill, number oiled, and number dead as a result of the spill are tabulated. (3 maps, 8 references, 4 tables)

  11. Large extents of intensive land use limit community reorganization during climate warming.

    Science.gov (United States)

    Oliver, Tom H; Gillings, Simon; Pearce-Higgins, James W; Brereton, Tom; Crick, Humphrey Q P; Duffield, Simon J; Morecroft, Michael D; Roy, David B

    2017-06-01

    Climate change is increasingly altering the composition of ecological communities, in combination with other environmental pressures such as high-intensity land use. Pressures are expected to interact in their effects, but the extent to which intensive human land use constrains community responses to climate change is currently unclear. A generic indicator of climate change impact, the community temperature index (CTI), has previously been used to suggest that both bird and butterflies are successfully 'tracking' climate change. Here, we assessed community changes at over 600 English bird or butterfly monitoring sites over three decades and tested how the surrounding land has influenced these changes. We partitioned community changes into warm- and cold-associated assemblages and found that English bird communities have not reorganized successfully in response to climate change. CTI increases for birds are primarily attributable to the loss of cold-associated species, whilst for butterflies, warm-associated species have tended to increase. Importantly, the area of intensively managed land use around monitoring sites appears to influence these community changes, with large extents of intensively managed land limiting 'adaptive' community reorganization in response to climate change. Specifically, high-intensity land use appears to exacerbate declines in cold-adapted bird and butterfly species, and prevent increases in warm-associated birds. This has broad implications for managing landscapes to promote climate change adaptation. © 2017 John Wiley & Sons Ltd.

  12. Rapid adjustment of bird community compositions to local climatic variations and its functional consequences.

    Science.gov (United States)

    Gaüzère, Pierre; Jiguet, Frédéric; Devictor, Vincent

    2015-09-01

    The local spatial congruence between climate changes and community changes has rarely been studied over large areas. We proposed one of the first comprehensive frameworks tracking local changes in community composition related to climate changes. First, we investigated whether and how 12 years of changes in the local composition of bird communities were related to local climate variations. Then, we tested the consequences of this climate-induced adjustment of communities on Grinnellian (habitat-related) and Eltonian (function-related) homogenization. A standardized protocol monitoring spatial and temporal trends of birds over France from 2001 to 2012 was used. For each plot and each year, we used the spring temperature and the spring precipitations and calculated three indices reflecting the thermal niche, the habitat specialization, and the functional originality of the species within a community. We then used a moving-window approach to estimate the spatial distribution of the temporal trends in each of these indices and their congruency with local climatic variations. Temperature fluctuations and community dynamics were found to be highly variable in space, but their variations were finely congruent. More interestingly, the community adjustment to temperature variations was nonmonotonous. Instead, unexplained fluctuations in community composition were observed up to a certain threshold of climate change intensity, above which a change in community composition was observed. This shift corresponded to a significant decrease in the relative abundance of habitat specialists and functionally original species within communities, regardless of the direction of temperature change. The investigation of variations in climate and community responses appears to be a central step toward a better understanding of climate change effects on biodiversity. Our results suggest a fine-scale and short-term adjustment of community composition to temperature changes. Moreover

  13. GIS-Mapping and Statistical Analyses to Identify Climate-Vulnerable Communities and Populations Exposed to Superfund Sites

    Science.gov (United States)

    Climate change-related cumulative health risks are expected to be disproportionately greater for overburdened communities, due to differential proximity and exposures to chemical sources and flood zones. Communities and populations vulnerable to climate change-associated impacts ...

  14. Impact of 21st century climate change on the Baltic Sea fish community and fisheries

    DEFF Research Database (Denmark)

    MacKenzie, Brian; Gislason, Henrik; Möllmann, C.

    2007-01-01

    reviewed. We then use recent regional - scale climate - ocean modelling results to consider how climate change during this century will affect the fish community of the Baltic and fisheries management. Expected climate changes in northern Europe will likely affect both the temperature and salinity...... some of the uncertainties and complexities associated with forecasting how fish populations, communities and industries dependent on an estuarine ecosystem might respond to future climate change.......The Baltic Sea is a large brackish semienclosed sea whose species-poor fish community supports important commercial and recreational fisheries. Both the fish species and the fisheries are strongly affected by climate variations. These climatic effects and the underlying mechanisms are briefly...

  15. Executive summary: Climate change in the northwest: Implications for our landscapes, waters, and communities

    Science.gov (United States)

    Dalton, Meghan M.; Bethel, Jeffrey; Capalbo, Susan M.; Cuhaciyan, J.E.; Eigenbrode, Sanford D.; Glick, Patty; Houston, Laurie L.; Littell, Jeremy S.; Lynn, Kathy; Mote, Philip W.; Raymondi, Rick R.; Reeder, W. Spencer; Shafer, Sarah L.; Snover, Amy K.

    2013-01-01

    Climate Change in the Northwest: Implications for Our Landscapes, Waters, and Communities is aimed at assessing the state of knowledge about key climate impacts and consequences to various sectors and communities in the northwest United States. It draws on a wealth of peer-reviewed literature, earlier state-level assessment reports conducted for Washington (2009) and Oregon (2010), as well as a risk-framing workshop. As an assessment, it aims to be representative (though not exhaustive) of the key climate change issues as reflected in the growing body of Northwest climate change science, impacts, and adaptation literature now available. This report will serve as an updated resource for scientists, stakeholders, decision makers, students, and community members interested in understanding and preparing for climate change impacts on Oregon, Washington, and Idaho. This more detailed, foundational report is intended to support the key findings presented in the Northwest chapter of the Third National Climate Assessment.

  16. Communities' perception of climate change risks in South America's ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    2014-08-15

    Aug 15, 2014 ... uses an Integrated Coastal Management approach and stakeholder perceptions of climate change risks to inform wetland management. ... has been made worse by extreme events tied to climate change. ... Related articles ...

  17. Recognizing Community Voice and a Youth-Led School-Community Partnership in the School Climate Improvement Process

    Science.gov (United States)

    Ice, Megan; Thapa, Amrit; Cohen, Jonathan

    2015-01-01

    A growing body of school improvement research suggests that engaging all members of the school community, including community members and leaders, provides an essential foundation to successful school improvement efforts. School climate surveys to date tend to recognize student, parent/guardian, and school personnel voice but not the voice of…

  18. Regional Community Climate Simulations with variable resolution meshes in the Community Earth System Model

    Science.gov (United States)

    Zarzycki, C. M.; Gettelman, A.; Callaghan, P.

    2017-12-01

    Accurately predicting weather extremes such as precipitation (floods and droughts) and temperature (heat waves) requires high resolution to resolve mesoscale dynamics and topography at horizontal scales of 10-30km. Simulating such resolutions globally for climate scales (years to decades) remains computationally impractical. Simulating only a small region of the planet is more tractable at these scales for climate applications. This work describes global simulations using variable-resolution static meshes with multiple dynamical cores that target the continental United States using developmental versions of the Community Earth System Model version 2 (CESM2). CESM2 is tested in idealized, aquaplanet and full physics configurations to evaluate variable mesh simulations against uniform high and uniform low resolution simulations at resolutions down to 15km. Different physical parameterization suites are also evaluated to gauge their sensitivity to resolution. Idealized variable-resolution mesh cases compare well to high resolution tests. More recent versions of the atmospheric physics, including cloud schemes for CESM2, are more stable with respect to changes in horizontal resolution. Most of the sensitivity is due to sensitivity to timestep and interactions between deep convection and large scale condensation, expected from the closure methods. The resulting full physics model produces a comparable climate to the global low resolution mesh and similar high frequency statistics in the high resolution region. Some biases are reduced (orographic precipitation in the western United States), but biases do not necessarily go away at high resolution (e.g. summertime JJA surface Temp). The simulations are able to reproduce uniform high resolution results, making them an effective tool for regional climate studies and are available in CESM2.

  19. Companies and Climate Risk: Opportunities to Engage the Business Community in Promoting Climate-conscious Policies (Invited)

    Science.gov (United States)

    Goldman, G. T.; Rogerson, P.

    2013-12-01

    Regardless of their policy orientation, the business community has an interest in how climate change impacts will affect their operations and ultimately change their bottom line. The reality that climate change presents material and financial risks to many companies in diverse sectors of the economy presents an opportunity to engage companies on climate-related issues. Company investors are exposed to such financial risks and can pressure public companies to change behavior through shareholder resolutions, voting, and election of new board members. The US Securities and Exchange Commission (SEC) obligates all publicly traded companies to discuss risks that might materially affect their business in their annual Form 10-K filings. In 2010, the guidance for the Form 10-K specifically suggested that companies consider and discuss any significant risks to their business from climate change--both from its physical effects and from impacts of climate regulations. Form 10-Ks for 28 US companies were analyzed for the years 2009 and 2010. Results indicate that some companies comprehensively considered climate-related risks. However, in spite of the SEC guidance, some fail to mention climate change at all. Additionally, many companies discuss only the impacts that regulation would have on their business--not the physical effects of climate change itself. The lack of consideration of climate-related risks in companies' risk assessments demonstrates a need for a more uniform understanding of SEC requirements and additionally, this state of affairs presents an opportunity to push companies to more deeply consider climate change impacts. Several avenues are available for engaging with companies themselves, their shareholders, the SEC, and the public. We will explore what strategies have been effective for engaging such actors and what further opportunities exist for working with the business community to promote more climate-conscious policies and practices.

  20. Community vulnerability to climate change in the context of other exposure-sensitivities in Kugluktuk, Nunavut

    Directory of Open Access Journals (Sweden)

    Laura Tozer

    2011-07-01

    Full Text Available Climate change in the Canadian north is, and will be, managed by communities that are already experiencing social, political, economic and other environmental changes. Hence, there is a need to understand vulnerability to climate change in the context of multiple exposure-sensitivities at the community level. This article responds to this perceived knowledge need based on a case study of the community of Kugluktuk in Nunavut, Canada. An established approach for vulnerability assessment is used to identify current climatic and non-climatic exposure-sensitivities along with their associated contemporary adaptation strategies. This assessment of current vulnerability is used as a basis to consider Kugluktuk's possible vulnerability to climatic change in the future. Current climate-related exposure-sensitivities in Kugluktuk relate primarily to subsistence harvesting and community infrastructure. Thinner and less stable ice conditions and unpredictable weather patterns are making travel and harvesting more dangerous and some community infrastructure is sensitive to permafrost melt and extreme weather events (e.g., flash floods. The ability of individuals and households to adapt to these and other climatic exposure-sensitivities is influenced by non-climatic factors that condition adaptive capacity including substance abuse, the erosion of traditional knowledge and youth suicide. These and other non-climatic factors often underpin adaptive capacity to deal with and adapt to changing conditions and must be considered in an assessment of vulnerability. This research argues that Northern communities are challenged by multiple exposure-sensitivities—beyond just those posed by climate—and effective adaptation to climate change requires consideration if not resolution of socio-economic and other issues in communities.

  1. Life on thin ice: Insights from Uummannaq, Greenland for connecting climate science with Arctic communities

    Science.gov (United States)

    Baztan, Juan; Cordier, Mateo; Huctin, Jean-Michel; Zhu, Zhiwei; Vanderlinden, Jean-Paul

    2017-09-01

    What are the links between mainstream climate science and local community knowledge? This study takes the example of Greenland, considered one of the regions most impacted by climate change, and Inuit people, characterized as being highly adaptive to environmental change, to explore this question. The study is based on 10 years of anthropological participatory research in Uummannaq, Northwest Greenland, along with two fieldwork periods in October 2014 and April 2015, and a quantitative bibliometric analysis of the international literature on sea ice - a central subject of concern identified by Uummannaq community members during the fieldwork periods. Community members' perceptions of currently available scientific climate knowledge were also collected during the fieldwork. This was done to determine if community members consider available scientific knowledge salient and if it covers issues they consider relevant. The bibliometric analysis of the sea ice literature provided additional insight into the degree to which scientific knowledge about climate change provides information relevant for the community. Our results contribute to the ongoing debate on the missing connections between community worldviews, cultural values, livelihood needs, interests and climate science. Our results show that more scientific research efforts should consider local-level needs in order to produce local-scale knowledge that is more salient, credible and legitimate for communities experiencing climate change. In Uummannaq, as in many Inuit communities with similar conditions, more research should be done on sea ice thickness in winter and in areas through which local populations travel. This paper supports the growing evidence that whenever possible, climate change research should focus on environmental features that matter to communities, at temporal and spatial scales relevant to them, in order to foster community adaptations to change. We recommend such research be connected to and

  2. Parallel community climate model: Description and user`s guide

    Energy Technology Data Exchange (ETDEWEB)

    Drake, J.B.; Flanery, R.E.; Semeraro, B.D.; Worley, P.H. [and others

    1996-07-15

    This report gives an overview of a parallel version of the NCAR Community Climate Model, CCM2, implemented for MIMD massively parallel computers using a message-passing programming paradigm. The parallel implementation was developed on an Intel iPSC/860 with 128 processors and on the Intel Delta with 512 processors, and the initial target platform for the production version of the code is the Intel Paragon with 2048 processors. Because the implementation uses a standard, portable message-passing libraries, the code has been easily ported to other multiprocessors supporting a message-passing programming paradigm. The parallelization strategy used is to decompose the problem domain into geographical patches and assign each processor the computation associated with a distinct subset of the patches. With this decomposition, the physics calculations involve only grid points and data local to a processor and are performed in parallel. Using parallel algorithms developed for the semi-Lagrangian transport, the fast Fourier transform and the Legendre transform, both physics and dynamics are computed in parallel with minimal data movement and modest change to the original CCM2 source code. Sequential or parallel history tapes are written and input files (in history tape format) are read sequentially by the parallel code to promote compatibility with production use of the model on other computer systems. A validation exercise has been performed with the parallel code and is detailed along with some performance numbers on the Intel Paragon and the IBM SP2. A discussion of reproducibility of results is included. A user`s guide for the PCCM2 version 2.1 on the various parallel machines completes the report. Procedures for compilation, setup and execution are given. A discussion of code internals is included for those who may wish to modify and use the program in their own research.

  3. The Climate Literacy Network: Leveraging a Diverse Community to Broaden the Reach of Your Climate Literacy Efforts

    Science.gov (United States)

    Ledley, T. S.; Carley, S.; Niepold, F.; Duggan-Haas, D. A.; Hollweg, K.; McCaffrey, M. S.

    2012-12-01

    There are a wide range of programs, activities, and projects focused on improving the understanding of climate science by citizens in a multitude of contexts. While most of these are necessarily customized for the particular audiences, communities, or regions they address, they can learn a lot from each other by sharing their experiences, expertise, and materials. The Climate Literacy Network (CLN, http://cleanet.org/cln), established in 2008 to facilitate the implementation of the Climate Literacy Essential Principles of Climate Science, is a diverse group of over 370 stakeholders with a wide range of expertise in, for example, science, policy, media, arts, economics, psychology, education, and social sciences. The CLN meets virtually weekly to share information about ongoing activities and new resources, discuss controversial public issues and ways to address them, get input from this diverse community on directions individual efforts might take, organize climate literacy sessions at professional meetings, provide input on documents relevant to climate literacy, and address common needs of the individual members. The weekly CLN teleconferences are also a venue for presentations from climate change education efforts to extend their reach and potential impact. The teleconferences are supported by an active listserv that is archived on the CLN website along with recordings of past teleconference and the schedule of upcoming teleconferences (http://cleanet.org/clean/community/cln/telecon_schedule.html). In this presentation we will describe the details of these various activities, give examples of how discussions within the CLN has led to funded efforts and expanded partnerships, and identify ways you can participate in and leverage this very active community.

  4. Connecting Alaskan Youth, Elders, and Scientists in Climate Change Research and Community Resilience

    Science.gov (United States)

    Spellman, K.; Sparrow, E.

    2017-12-01

    Integrated science, technology, engineering and math (STEM) solutions and effective, relevant learning processes are required to address the challenges that a changing climate presents to many Arctic communities. Learning that can both enhance a community's understanding and generate new knowledge about climate change impacts at both local and continental scales are needed to efficiently build the capacity to navigate these changes. The Arctic and Earth STEM Integrating GLOBE and NASA (SIGNs) program is developing a learning model to engage Alaskan rural and indigenous communities in climate change learning, research and action. Youth, elders, educators, community leaders and scientists collaborate to address a pressing local climate change concern. The program trains teams of educators and long-time community members on climate change concepts and environmental observing protocols in face-to-face or online workshops together with Arctic and NASA subject matter experts. Community teams return to their community to identify local data or information needs that align with their student's interests and the observations of local elders. They deepen their understanding of the subject through culturally responsive curriculum materials, and collaborate with a scientist to develop an investigation with their students to address the identified need. Youth make observations using GLOBE (Global Learning and Observations to Benefit the Environment) protocols that best fit the issue, analyze the data they have collected, and utilize indigenous or knowledge, and NASA data to address the issue. The use of GLOBE protocols allow for communities to engage in climate change research at both local and global scales, as over 110 nations worldwide are using these standardized protocols. Teams work to communicate their investigation results back to their community and other scientists, and apply their results to local stewardship action or climate adaptation projects. In this

  5. Lichen communities as climate indicators in the U.S. Pacific States.

    Science.gov (United States)

    Robert J. Smith; Sarah Jovan; Bruce. McCune

    2017-01-01

    Epiphytic lichens are bioindicators of climate, air quality, and other forest conditions and may reveal how forests will respond to global changes in the U.S. Pacific States of Alaska, Washington, Oregon, and California. We explored climate indication with lichen communities surveyed by using both the USDA Forest Service Forest Inventory and Analysis (FIA) and Alaska...

  6. An Investigation of Students' Perceptions about Democratic School Climate and Sense of Community in School

    Science.gov (United States)

    Karakus, Memet

    2017-01-01

    This study aims to investigate students' perceptions about democratic school climate and sense of community in school. In line with this purpose, it aims to find answers to the following questions: How democratic do students find the school climate? What is students' sense of belonging level at school? What is the academic success level of…

  7. The Relationship between Campus Climate and the Teaching of Critical Thinking Skills in Community College Classrooms

    Science.gov (United States)

    Simon, Thomas C.

    2010-01-01

    Although critical thinking skills are important for all citizens participating in a democratic society, many community college students appear to lack these skills. This study addressed the apparent lack of research relating critical thinking instruction to campus climate. Critical thinking theory and Moos's organizational climate theory served as…

  8. Toward an ultra-high resolution community climate system model for the BlueGene platform

    International Nuclear Information System (INIS)

    Dennis, John M; Jacob, Robert; Vertenstein, Mariana; Craig, Tony; Loy, Raymond

    2007-01-01

    Global climate models need to simulate several small, regional-scale processes which affect the global circulation in order to accurately simulate the climate. This is particularly important in the ocean where small scale features such as oceanic eddies are currently represented with adhoc parameterizations. There is also a need for higher resolution to provide climate predictions at small, regional scales. New high-performance computing platforms such as the IBM BlueGene can provide the necessary computational power to perform ultra-high resolution climate model integrations. We have begun to investigate the scaling of the individual components of the Community Climate System Model to prepare it for integrations on BlueGene and similar platforms. Our investigations show that it is possible to successfully utilize O(32K) processors. We describe the scalability of five models: the Parallel Ocean Program (POP), the Community Ice CodE (CICE), the Community Land Model (CLM), and the new CCSM sequential coupler (CPL7) which are components of the next generation Community Climate System Model (CCSM); as well as the High-Order Method Modeling Environment (HOMME) which is a dynamical core currently being evaluated within the Community Atmospheric Model. For our studies we concentrate on 1/10 0 resolution for CICE, POP, and CLM models and 1/4 0 resolution for HOMME. The ability to simulate high resolutions on the massively parallel petascale systems that will dominate high-performance computing for the foreseeable future is essential to the advancement of climate science

  9. Climate Change and Societal Response: Livelihoods, Communities, and the Environment

    Science.gov (United States)

    Molnar, Joseph J.

    2010-01-01

    Climate change may be considered a natural disaster evolving in slow motion on a global scale. Increasing storm intensities, shifting rainfall patterns, melting glaciers, rising sea levels, and other manifold alterations are being experienced around the world. Climate has never been constant in any location, but human-induced changes associated…

  10. Community Based Adaptation to Climate Change in Africa | IDRC ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    First General Meeting : the Adaptation Network; We're Up to the Climate Challenge!, Kirstenbosch Botanical Gardens, Cape Town, 4 November 2009. Download PDF. Reports. South African National Networking Meeting on Climate Change Adaptation, the Airport Grand Hotel, Johannesburg, 18 June 2009. Download PDF ...

  11. Gender and climate change-induced conflict in pastoral communities

    African Journals Online (AJOL)

    Clitmate change-induced conflict is a major global threat to human security and the environment. It has been projected that there is going to be an increase in climate changes resulting in increased droughts and floods in northern Kenya. Climate change impacts will be differently distributed among different regions, ages, ...

  12. Climate Change and the Health of Indigenous Communities | IDRC ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Indigenous people are among the most directly affected by climate change. Yet, there is limited understanding of the health dimensions of climate change and opportunities for adaptation among indigenous populations. Researchers have tended to focus on other vulnerable regions or on populations as a whole.

  13. Landscape Hazards in Yukon Communities: Geological Mapping for Climate Change Adaptation Planning

    Science.gov (United States)

    Kennedy, K.; Kinnear, L.

    2010-12-01

    Climate change is considered to be a significant challenge for northern communities where the effects of increased temperature and climate variability are beginning to affect infrastructure and livelihoods (Arctic Climate Impact Assessment, 2004). Planning for and adapting to ongoing and future changes in climate will require the identification and characterization of social, economic, cultural, political and biophysical vulnerabilities. This pilot project addresses physical landscape vulnerabilities in two communities in the Yukon Territory through community-scale landscape hazard mapping and focused investigations of community permafrost conditions. Landscape hazards are identified by combining pre-existing data from public utilities and private-sector consultants with new geophysical techniques (ground penetrating radar and electrical resistivity), shallow drilling, surficial geological mapping, and permafrost characterization. Existing landscape vulnerabilities are evaluated based on their potential for hazard (low, medium or high) under current climate conditions, as well as under future climate scenarios. Detailed hazard maps and landscape characterizations for both communities will contribute to overall adaptation plans and allow for informed development, planning and mitigation of potentially threatening hazards in and around the communities.

  14. Climate Change Adaptation Tools at the Community Level: An Integrated Literature Review

    Directory of Open Access Journals (Sweden)

    Elvis Modikela Nkoana

    2018-03-01

    Full Text Available The negative impacts of climate change are experienced at the global, regional and local levels. However, rural communities in sub-Saharan Africa face additional socio-political, cultural and economic challenges in addition to climate change. Decision support tools have been developed and applied to assist rural communities to cope with and adapt to climate change. However, poorly planned participatory processes and the lack of context-specific approaches in these tools are obstacles when aiming at strengthening the resilience of these rural communities. This paper uses an integrated literature review to identify best practices for involving rural communities in climate change adaptation efforts through the application of context-specific and culturally-sensitive climate change adaptation tools. These best practices include the use of a livelihoods approach to engage communities; the explicit acknowledgement of the local cultural do’s and don’ts; the recognition of local champions appointed from within the local community; the identification and prioritisation of vulnerable stakeholders; and the implementation of a two-way climate change risk communication instead of a one-sided information sharing approach.

  15. The European Community and climate protection. What's behind the ''empty rhetoric''?

    International Nuclear Information System (INIS)

    Ringius, Lasse

    1999-10-01

    The EC has been hoping to play an environmental leadership role in the global climate negotiations and has been proposing comparatively stringent climate targets for the OECD countries. But especially the United States and to some extent the international environmental community have criticized the EC for being unable to develop effective climate policies that will achieve its ambitious targets. This publication shows that the EC in general expects that it is relatively inexpensive to implement climate policy within the EC and that its climate policy strategy from the beginning has been heavily influenced by the notion of environmental leadership. The defensive positions taken by the United States and Japan in the global climate negotiations have made EC environmental leadership seem simultaneously economically, environmentally and politically beneficial, and political and environmental interests have pushed EC climate policy to go further than what it otherwise would have been. (author)

  16. CLIMATE CHANGE, VARIABILITY AND SUSTAINABLE AGRICULTURE IN ZIMBABWE'S RURAL COMMUNITIES

    Directory of Open Access Journals (Sweden)

    Gukurume Simbarashe

    2013-02-01

    Full Text Available This article explores the impact of climate change and variability on agricultural productivity in the communal area of Bikita. The article further examines the adaptation and mitigation strategies devised by farmers to deal with the vagaries of climate change and variability. The sustainability of these is also interrogated in this article. This study juxtaposed qualitative and quantitative methodologies albeit with more bias on the former. A total of 40 farmers were sampled for unstructured interviews and focus group discussions. This article argues that the adverse impacts of climate change and variability are felt heavily by the poor communal farmers who are directly dependent on agriculture for livelihood. From the study, some of the widely reported signs of climate variability in Bikita included late and unpredictable rains, high temperatures (heat waves, successive drought, shortening rainfall seasons and seasonal changes in the timing of rainfall. The paper argues that climate change has compounded the vulnerability of peasant farmers in the drought - prone district of Bikita plunging them into food insecurity and abject poverty. It emerged in the study that some of effects of climate variability felt by communal farmers in Bikita included failure of crops, death of livestock and low crop yields, all of which have led to declining agricultural productivity. Findings in this study however established that communal farmers have not been passive victims of the vagaries of climate change and variability. They have rationally responded to it through various adaptation and mitigation strategies both individually and collectively.

  17. Coaching small communities towards a climate stretegy plan -- experiences from Sweden

    Energy Technology Data Exchange (ETDEWEB)

    Gormsen, D. [City of Malmoe (Sweden). Environment Dept.

    2008-07-01

    Working on climate change mitigation and adaptation is often more difficult for small communities than is the case for larger cities. Smaller cities and towns may lack the resources and time to take up this work in a comprehensive manner, which is usually not prescribed as a local governmental task by national law but instead is performed voluntarily. In Sweden, applications for a national climate investment fund have shown that small and medium-sized communities are represented to a very small degree among applicants to the fund. To address this gap, the Swedish Network of Municipalities on Climate Change initiated a project called 'Climate coaching -- support to local activities on climate change in small communities', which started in January 2007. Twenty-three small communities joined the project that aims at the production of sustainable energy and the development of climate plans in at least 11 of the participants by September 2008. The remaining communities should by then at least be in the process of developing a climate strategy. The communities receive direct support from a climate coach who visits the communities, arranges seminars of common interest to the participants, and gives support via email and telephone. Additional support comes also from the existing Swedish Network of Municipalities on Climate Change and their 23 members. The results show so far that a number of factors are important for the success of local work. These include the following: The responsibility for the work has to be clear within the municipal organization; The responsible officers need to have time and resources which will allow them to work with climate issues; The politicians should support the commitment of the officers; and It is also important that attention is paid to the establishment of a suitable internal organization for climate mitigation and adaptation, and that this process is allowed to take time. When these issues are in place this will guarantee that

  18. Building climate change adaptation on community experiences: Lessons from community-based natural resource management in southern Africa

    Energy Technology Data Exchange (ETDEWEB)

    Chishakwe, Nyasha; Murray, Laurel; Chambwera, Muyeye

    2012-05-15

    This publication, produced in collaboration with WWF Southern Africa, looks at how community-based natural resource management (CBNRM) can inform and contribute to climate change adaptation at the community level, specifically to community-based adaptation (CBA) to climate change. It provides a framework for analysing the two approaches at conceptual and practical levels. Using case studies from southern Africa, the publication demonstrates the synergies between CBA and CBNRM, most important of which are the adaptation co-benefits between the two. While local incentives have driven community action in CBNRM, it is the evolution of an enabling environment in the region, in the form of institutions, policies, capacity and collaboration which characterises the scaling up of CBNRM to national and regional levels.

  19. Developing rural community health risk assessments for climate change: a Tasmanian pilot study.

    Science.gov (United States)

    Bell, Erica J; Turner, Paul; Meinke, Holger; Holbrook, Neil J

    2015-01-01

    This article examines the development and pilot implementation of an approach to support local community decision-makers to plan health adaptation responses to climate change. The approach involves health and wellbeing risk assessment supported through the use of an electronic tool. While climate change is a major foreseeable public health threat, the extent to which health services are prepared for, or able to adequately respond to, climate change impact-related risks remains unclear. Building health decision-support mechanisms in order to involve and empower local stakeholders to help create the basis for agreement on these adaptive actions is an important first step. The primary research question was 'What can be learned from pilot implementation of a community health and well-being risk assessment (CHWRA) information technology-based tool designed to support understanding of, and decision-making on, local community challenges and opportunities associated with health risks posed by climate change? The article examines the complexity of climate change science to adaptation translational processes, with reference to existing research literature on community development. This is done in the context of addressing human health risks for rural and remote communities in Tasmania, Australia. This process is further examined through the pilot implementation of an electronic tool designed to support the translation of physically based climate change impact information into community-level assessments of health risks and adaptation priorities. The procedural and technical nature of the CHWRA tool is described, and the implications of the data gathered from stakeholder workshops held at three rural Tasmanian local government sites are considered and discussed. Bushfire, depression and waterborne diseases were identified by community stakeholders as being potentially 'catastrophic' health effects 'likely' to 'almost certain' to occur at one or more Tasmanian rural sites

  20. Adaptation to Climate Change in two Rural Communities on the ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    -arid areas, and are largely dependent on agriculture for their livelihood and food security. Already subject to episodic drought, increased climate variability is expected to exacerbate poverty and undermine socioeconomic gains made in ...

  1. Evaluation of the Pharmacy Safety Climate Questionnaire in European community pharmacies.

    NARCIS (Netherlands)

    Phipps, D.L.; Bie, J. de; Herborg, H.; Guerreiro, M.; Eickhoff, C.; Fernandes-Llimos, F.; Bouvy, M.L.; Rossing, C.; Mueller, U.; Ashcroft, D.M.

    2012-01-01

    Objective: To evaluate the internal reliability, factor structure and construct validity of the Pharmacy Safety Climate Questionnaire (PSCQ) when applied to a pan-European sample of community pharmacies. Design: A cross-sectional survey design was used. Setting: Community pharmacies in Denmark,

  2. Change Orientations: The Effects of Organizational Climate on Principal, Teacher, and Community Transformation

    Science.gov (United States)

    Smith, Page A.; Maika, Sean A.

    2008-01-01

    This research investigates the openness that teachers and principals have to change--specifically, the openness of the faculty to community pressure for change. Three dimensions of change are examined (teacher, principal, and community), as well as four aspects of organizational climate (institutional vulnerability, collegial leadership,…

  3. Perceptions of Campus Climate, Academic Efficacy and Academic Success among Community College Students: An Ethnic Comparison

    Science.gov (United States)

    Edman, Jeanne L.; Brazil, Brad

    2009-01-01

    The present study examined whether there are ethnic differences in perceptions of campus climate, social support, and academic efficacy among community college students, and whether student perceptions were associated with academic success. A total of 475 community college students completed a questionnaire that measured students' perceptions of…

  4. Rice Production Vulnerability to Climate Change in Indonesia: An Overview on Community-based Adaptation

    Science.gov (United States)

    Komaladara, A. A. S. P.; Budiasa, I. W.; Ambarawati, I. G. A. A.

    2015-12-01

    Rice remains to be a major crop and staple food in Indonesia. The task to ensure that rice production meets the demand of a growing population continues to engage the attention of national planners and policy makers. However, the adverse effects of climate change on agriculture production have presented Indonesia with yet another significant challenge. The exposure of rice crops to climate-related hazards such as temperature stress, floods, and drought, may lead to lower yield and self-sufficiency rate. This study explores the vulnerability of rice production to the effects of climate change in Indonesia. Considering the vast geographical span of the country and varying exposure, sensitivity, and adaptive capacity to climate change at regional level, this study emphasize the importance of community-based adaptation. Results from a simulation based on production and climate data from 1984 to 2014 indicates that rice production is sensitive to variation in growing season temperature and precipitation. A projection of these climate factors in 2050 has a significant impact on the major rice crop. To manage the impact of climate change, this study turns to the potential roles of farmer organizations, such as Subak, in adaptation strategies. The Subak in Bali is recognized for its cultural and organizational framework that highlights the sharing of knowledge and local wisdom in rice production. This is demonstrated by its efficient community-based irrigation management system, leading to sustainable rice production. Keywords: rice production, climate change, community-based adaptation, Indonesia

  5. Indigenous community health and climate change: integrating biophysical and social science indicators

    Science.gov (United States)

    Donatuto, Jamie; Grossman, Eric E.; Konovsky, John; Grossman, Sarah; Campbell, Larry W.

    2014-01-01

    This article describes a pilot study evaluating the sensitivity of Indigenous community health to climate change impacts on Salish Sea shorelines (Washington State, United States and British Columbia, Canada). Current climate change assessments omit key community health concerns, which are vital to successful adaptation plans, particularly for Indigenous communities. Descriptive scaling techniques, employed in facilitated workshops with two Indigenous communities, tested the efficacy of ranking six key indicators of community health in relation to projected impacts to shellfish habitat and shoreline archaeological sites stemming from changes in the biophysical environment. Findings demonstrate that: when shellfish habitat and archaeological resources are impacted, so is Indigenous community health; not all community health indicators are equally impacted; and, the community health indicators of highest concern are not necessarily the same indicators most likely to be impacted. Based on the findings and feedback from community participants, exploratory trials were successful; Indigenous-specific health indicators may be useful to Indigenous communities who are assessing climate change sensitivities and creating adaptation plans.

  6. Ecological contingency in the effects of climatic warming on forest herb communities

    Science.gov (United States)

    Harrison, Susan; Damschen, Ellen Ingman; Grace, James B.

    2010-01-01

    Downscaling from the predictions of general climate models is critical to current strategies for mitigating species loss caused by climate change. A key impediment to this downscaling is that we lack a fully developed understanding of how variation in physical, biological, or land-use characteristics mediates the effects of climate change on ecological communities within regions. We analyzed change in understory herb communities over a 60-y period (1949/1951–2007/2009) in a complex montane landscape (the Siskiyou Mountains, Oregon) where mean temperatures have increased 2 °C since 1948, similar to projections for other terrestrial communities. Our 185 sites included primary and secondary-growth lower montane forests (500–1.200 m above sea level) and primary upper montane to subalpine forests (1,500–2,100 m above sea level). In lower montane forests, regardless of land-use history, we found multiple herb-community changes consistent with an effectively drier climate, including lower mean specific leaf area, lower relative cover by species of northern biogeographic affinity, and greater compositional resemblance to communities in southerly topographic positions. At higher elevations we found qualitatively different and more modest changes, including increases in herbs of northern biogeographic affinity and in forest canopy cover. Our results provide community-level validation of predicted nonlinearities in climate change effects.

  7. Climate change and physical disturbance cause similar community shifts in biological soil crusts

    Science.gov (United States)

    Ferrenberg, Scott; Reed, Sasha C.; Belnap, Jayne

    2015-01-01

    Biological soil crusts (biocrusts)—communities of mosses, lichens, cyanobacteria, and heterotrophs living at the soil surface—are fundamental components of drylands worldwide, and destruction of biocrusts dramatically alters biogeochemical processes, hydrology, surface energy balance, and vegetation cover. While there has been long-standing concern over impacts of 5 physical disturbances on biocrusts (e.g., trampling by livestock, damage from vehicles), there is also increasing concern over the potential for climate change to alter biocrust community structure. Using long-term data from the Colorado Plateau, USA, we examined the effects of 10 years of experimental warming and altered precipitation (in full-factorial design) on biocrust communities, and compared the effects of altered climate with those of long-term physical 10 disturbance (>10 years of replicated human trampling). Surprisingly, altered climate and physical disturbance treatments had similar effects on biocrust community structure. Warming, altered precipitation frequency [an increase of small (1.2 mm) summer rainfall events], and physical disturbance from trampling all promoted early successional community states marked by dramatic declines in moss cover and increased cyanobacteria cover, with more variable effects 15 on lichens. While the pace of community change varied significantly among treatments, our results suggest that multiple aspects of climate change will affect biocrusts to the same degree as physical disturbance. This is particularly disconcerting in the context of warming, as temperatures for drylands are projected to increase beyond those imposed by the climate treatments used in our study.

  8. Integrating community based disaster risk reduction and climate change adaptation: examples from the Pacific

    Directory of Open Access Journals (Sweden)

    A. Gero

    2011-01-01

    Full Text Available It is acknowledged by academics and development practitioners alike that many common strategies addressing community based disaster risk reduction and climate change adaptation duplicate each other. Thus, there is a strong push to integrate the two fields to enhance aid effectiveness and reduce confusion for communities. Examples of community based disaster risk reduction (DRR and climate change adaptation (CCA projects are presented to highlight some of the ways these issues are tackled in the Pacific. Various approaches are employed but all aim to reduce the vulnerability and enhance the resilience of local communities to the impacts of climate change and disasters. By focusing on three case studies, elements of best practice are drawn out to illustrate how DRR and CCA can be integrated for enhanced aid effectiveness, and also look at ways in which these two often overlapping fields can be better coordinated in ongoing and future projects. Projects that address vulnerability holistically, and target the overall needs and capacity of the community are found to be effective in enhancing the resilience of communities. By strategically developing a multi-stakeholder and multi-sector approach, community projects are likely to encapsulate a range of experience and skills that will benefit the community. Furthermore, by incorporating local knowledge, communities are far more likely to be engaged and actively participate in the project. From selected case studies, commonly occurring best practice methods to integrate DRR and CCA are identified and discussed and recommendations on how to overcome the common challenges also presented.

  9. A vibration powered wireless mote on the Forth Road Bridge

    International Nuclear Information System (INIS)

    Jia, Yu; Yan, Jize; Feng, Tao; Du, Sijun; Fidler, Paul; Soga, Kenichi; Middleton, Campbell; Seshia, Ashwin A

    2015-01-01

    The conventional resonant-approaches to scavenge kinetic energy are typically confined to narrow and single-band frequencies. The vibration energy harvester device reported here combines both direct resonance and parametric resonance in order to enhance the power responsiveness towards more efficient harnessing of real-world ambient vibration. A packaged electromagnetic harvester designed to operate in both of these resonant regimes was tested in situ on the Forth Road Bridge. In the field-site, the harvester, with an operational volume of ∼126 cm 3 , was capable of recovering in excess of 1 mW average raw AC power from the traffic-induced vibrations in the lateral bracing structures underneath the bridge deck. The harvester was integrated off-board with a power conditioning circuit and a wireless mote. Duty- cycled wireless transmissions from the vibration-powered mote was successfully sustained by the recovered ambient energy. This limited duration field test provides the initial validation for realising vibration-powered wireless structural health monitoring systems in real world infrastructure, where the vibration profile is both broadband and intermittent. (paper)

  10. A vibration powered wireless mote on the Forth Road Bridge

    Science.gov (United States)

    Jia, Yu; Yan, Jize; Feng, Tao; Du, Sijun; Fidler, Paul; Soga, Kenichi; Middleton, Campbell; Seshia, Ashwin A.

    2015-12-01

    The conventional resonant-approaches to scavenge kinetic energy are typically confined to narrow and single-band frequencies. The vibration energy harvester device reported here combines both direct resonance and parametric resonance in order to enhance the power responsiveness towards more efficient harnessing of real-world ambient vibration. A packaged electromagnetic harvester designed to operate in both of these resonant regimes was tested in situ on the Forth Road Bridge. In the field-site, the harvester, with an operational volume of ∼126 cm3, was capable of recovering in excess of 1 mW average raw AC power from the traffic-induced vibrations in the lateral bracing structures underneath the bridge deck. The harvester was integrated off-board with a power conditioning circuit and a wireless mote. Duty- cycled wireless transmissions from the vibration-powered mote was successfully sustained by the recovered ambient energy. This limited duration field test provides the initial validation for realising vibration-powered wireless structural health monitoring systems in real world infrastructure, where the vibration profile is both broadband and intermittent.

  11. NOAA's Coral Reef Conservation Program: 2016 projects to assess coral resilence and the resilence of communities to climate change

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In 2016 the following projects will take place to assess coral resilence and the resilence of communities to climate change: Climate and resilience-based...

  12. Conceptualizing Holistic Community Resilience to Climate Events: Foundation for a Climate Resilience Screening Index

    Science.gov (United States)

    The concept of resilience has been evolving over the past decade as a way to address the current and future challenges nations, states, and cities face from a changing climate. Understanding how the environment (natural and built), climate event risk, societal interactions, and g...

  13. Increasing Communities Capacity to Effectively Address Climate Change Through Education, Civic Engagement and Workforce Development

    Science.gov (United States)

    Niepold, F., III; Ledley, T. S.; Stanton, C.; Fraser, J.; Scowcroft, G. A.

    2017-12-01

    Understanding the causes, effects, risks, and developing the social will and skills for responses to global change is a major challenge of the 21st century that requires coordinated contributions from the sciences, social sciences, humanities, arts, and beyond. There have been many effective efforts to implement climate change education, civic engagement and related workforce development programs focused on a multitude of audiences, topics and in multiple regions. This talk will focus on how comprehensive educational efforts across our communities are needed to support cities and their primary industries as they prepare for, and embrace, a low-carbon economy and develop the related workforce.While challenges still exist in identifying and coordinating all stakeholders, managing and leveraging resources, and resourcing and scaling effective programs to increase impact and reach, climate and energy literacy leaders have developed initiatives with broad input to identify the understandings and structures for climate literacy collective impact and to develop regional/metropolitan strategy that focuses its collective impact efforts on local climate issues, impacts and opportunities. This Climate Literacy initiative envisions education as a central strategy for community's civic actions in the coming decades by key leaders who have the potential to foster the effective and innovative strategies that will enable their communities to seize opportunity and prosperity in a post-carbon and resilient future. This talk discusses the advances and collaborations in the Climate Change Education community over the last decade by U.S. federal and non-profit organization that have been made possible through the partnerships of the Climate Literacy & Energy Awareness Network (CLEAN), U.S. National Science Foundation funded Climate Change Education Partnership (CCEP) Alliance, and the Tri-Agency Climate Change Education Collaborative.

  14. Leveraging federal science data and tools to help communities & business build climate resilience

    Science.gov (United States)

    Herring, D.

    2016-12-01

    Decision-makers in every sector and region of the United States are seeking actionable science-based information to help them understand and manage their climate-related risks. Translating data, tools and information from the domain of climate science to the domains of municipal, social, and economic decision-making raises complex questions—e.g., how to communicate causes and impacts of climate variability and change; how to show projections of plausible future climate scenarios; how to characterize and quantify vulnerabilities, risks, and opportunities facing communities and businesses; and how to make and implement "win-win" adaptation plans. These are the types of challenges being addressed by a public-private partnership of federal agencies, academic institutions, non-governmental organizations, and private businesses that are contributing to the development of the U.S. Climate Resilience Toolkit (toolkit.climate.gov), a new website designed to help people build resilience to extreme events caused by both natural climate variability and long-term climate change. The site's Climate Explorer is designed to help people understand potential climate conditions over the course of this century. It offers easy access to downloadable maps, graphs, and data tables of observed and projected temperature, precipitation and other decision-relevant climate variables dating back to 1950 and out to 2100. Of course, climate change is only one of many variables affecting decisions about the future so the Toolkit also ties climate information to a wide range of other relevant tools and information to help users to explore their vulnerabilities and risks. In this session, we will describe recent enhancements to the Toolkit, lessons learned from user engagements, and evidence that our approach of coupling scientific information with actionable decision-making processes is helping Americans build resilience to climate-related impacts.

  15. Beyond Quarterly Earnings: Preparing the Business Community for Long-term Climate Risks

    Science.gov (United States)

    Carlson, C.; Goldman, G. T.

    2014-12-01

    The business community stands to be highly impacted by climate change. In both short and long-term timescales, climate change presents material and financial risks to companies in diverse economic sectors. How the private sector accounts for long-term risks while making short-term decisions about operations is a complex challenge. Companies are accountable to shareholders and must report performance to them on a quarterly basis. At the same time, company investors are exposed to long-term climate-related risks and face losses if companies fail to prepare for climate impacts. The US Securities and Exchange Commission (SEC) obligates publicly traded companies to discuss risks that might materially affect their business and since 2010, the agency recommends that companies consider and discuss any significant risks to their business from climate change. Some companies have complied with this guidance and comprehensively analyze potential climate change impacts, yet others fail to consider climate change at all. Such omissions leave companies without plans for addressing future risks and expose investors and the public to potential catastrophic events from climate change impacts. Climate risk projections can inform companies about the vulnerability of their facilities, supply chains, transportation pathways, and other assets. Such projections can help put climate-related risks in terms of material costs for companies and their investors. Focusing on the vulnerability of coastal facilities, we will use climate change impact projections to demonstrate the economic impacts of climate change faced by the private sector. These risks are then compared to company disclosures to the SEC to assess the degree to which companies have considered their vulnerability to climate change. Finally, we will discuss ways that companies can better assess and manage long-term climate risks.

  16. Global climate change: A U.S. business community's perspective

    International Nuclear Information System (INIS)

    Shales, J.

    1994-01-01

    Scientists from all over the world are currently attempting to evaluate the impact of both manmade and natural phenomena on climate change, including such issues as the role of oceans as sinks in absorbing CO 2 , the role of sunspots, the absorptive capacity of different tree species, the impact of nitrous oxide and non- CO 2 greenhouse gases, the length of time carbon remains in the atmosphere, the impact of ocean currents and innumerable other issues. Understanding these phenomena, and their interaction will be critical to properly addressing the issue which has tremendous importance for both the US and the world economic future development. The climate change issue has the potential to become the vehicle which will link developing countries to the rest of the world, since, embodies in the global climate debate are several of the social issues that the U.N. has attempted to address over the last two decades: hunger, overpopulation, environment, technology, and development. The climate change issue has the potential to test new international institutions, relationships between developed and developing counties and between traditional trading partners

  17. Potentials and limitations of epistemic communities. An analysis of the World Climate Council and the Framework Convention on Climate Change

    International Nuclear Information System (INIS)

    Otto, Daniel

    2015-01-01

    In times of increasing global uncertainties, science takes a central position for policy decisions. According to Peter M. Haas, epistemic communities are able to influence the cooperative behavior of states through their consensual knowledge. This book critically examines this statement. As the case of the Framework Convention on Climate Change shows, the World Climate Council (IPCC) was not in a position to enforce its solution options in the intergovernmental negotiations, as these affected the individual convictions of the decision-makers. While Angela Merkel advocated an agreement, the US government under George W. Bush denied the existence of climate change. Decision-makers and their individual convictions must therefore have a greater significance in international politics. [de

  18. Means and extremes: building variability into community-level climate change experiments.

    Science.gov (United States)

    Thompson, Ross M; Beardall, John; Beringer, Jason; Grace, Mike; Sardina, Paula

    2013-06-01

    Experimental studies assessing climatic effects on ecological communities have typically applied static warming treatments. Although these studies have been informative, they have usually failed to incorporate either current or predicted future, patterns of variability. Future climates are likely to include extreme events which have greater impacts on ecological systems than changes in means alone. Here, we review the studies which have used experiments to assess impacts of temperature on marine, freshwater and terrestrial communities, and classify them into a set of 'generations' based on how they incorporate variability. The majority of studies have failed to incorporate extreme events. In terrestrial ecosystems in particular, experimental treatments have reduced temperature variability, when most climate models predict increased variability. Marine studies have tended to not concentrate on changes in variability, likely in part because the thermal mass of oceans will moderate variation. In freshwaters, climate change experiments have a much shorter history than in the other ecosystems, and have tended to take a relatively simple approach. We propose a new 'generation' of climate change experiments using down-scaled climate models which incorporate predicted changes in climatic variability, and describe a process for generating data which can be applied as experimental climate change treatments. © 2013 John Wiley & Sons Ltd/CNRS.

  19. Aquatic-macroinvertebrate communities of Prairie-Pothole wetlands and lakes under a changed climate

    Science.gov (United States)

    McLean, Kyle I.; Mushet, David M.; Renton, David A.; Stockwell, Craig A.

    2016-01-01

    Understanding how aquatic-macroinvertebrate communities respond to changes in climate is important for biodiversity conservation in the Prairie Pothole Region and other wetland-rich landscapes. We sampled macroinvertebrate communities of 162 wetlands and lakes previously sampled from 1966 to 1976, a much drier period compared to our 2012–2013 sampling timeframe. To identify possible influences of a changed climate and predation pressures on macroinvertebrates, we compared two predictors of aquatic-macroinvertebrate communities: ponded-water dissolved-ion concentration and vertebrate-predator presence/abundance. Further, we make inferences of how macroinvertebrate communities were structured during the drier period when the range of dissolved-ion concentrations was much greater and fish occurrence in aquatic habitats was rare. We found that aquatic-macroinvertebrate community structure was influenced by dissolved-ion concentrations through a complex combination of direct and indirect relationships. Ion concentrations also influenced predator occurrence and abundance, which indirectly affected macroinvertebrate communities. It is important to consider both abiotic and biotic gradients when predicting how invertebrate communities will respond to climate change. Generally, in the wetlands and lakes we studied, freshening of ponded water resulted in more homogenous communities than occurred during a much drier period when salinity range among sites was greater.

  20. Using Local Climate Science to Educate "Key Influentials" and their Communities in the San Diego Region

    Science.gov (United States)

    Boudrias, M. A.; Estrada, M.; Anders, S.; Silva-Send, N. J.; Yin, Z.; Schultz, P.; Young, E.

    2012-12-01

    The San Diego Regional Climate Education Partnership has formed an innovative and collaborative team whose mission is to implement a research-based climate science education and communications program to increase knowledge about climate science among highly-influential leaders and their communities and foster informed decision making based on climate science and impacts. The team includes climate scientists, behavioral psychologists, formal and informal educators and communication specialists. The Partnership's strategic plan has three major goals: (1) raise public understanding of the causes and consequences of climate change; (2) identify the most effective educational methods to educate non-traditional audiences (Key Influentials) about the causes and consequences of climate change; and (3) develop and implement a replicable model for regional climate change education. To implement this strategic plan, we have anchored our project on three major pillars: (1) Local climate science (causes, impacts and long-term consequences); (2) theoretical, research-based evaluation framework (TIMSI); and (3) Key! Influentials (KI) as primary audience for messages (working w! ith and through them). During CCEP-I, the Partnership formed and convened an advisory board of Key Influentials, completed interviews with a sample of Key Influentials, conducted a public opinion survey, developed a website (www.sandiego.edu/climate) , compiled inventories on literature of climate science education resources and climate change community groups and local activities, hosted stakeholder forums, and completed the first phase of on an experiment to test the effects of different messengers delivering the same local climate change message via video. Results of 38 KI Interviews provided evidence of local climate knowledge, strong concern about climate change, and deeply held values related to climate change education and regional leadership. The most intriguing result was that while 90% of Key

  1. A systematic approach to community resilience that reduces the federal fiscal exposure to climate change

    Science.gov (United States)

    Stwertka, C.; Albert, M. R.; White, K. D.

    2016-12-01

    Despite widely available information about the adverse impacts of climate change to the public, including both private sector and federal fiscal exposure, there remain opportunities to effectively translate this knowledge into action. Further delay of climate preparedness and resilience actions imposes a growing toll on American communities and the United States fiscal budget. We hypothesize that a set of four criteria must be met before a community can translate climate disturbances into preparedness action. We examine four case studies to review these proposed criteria, we discuss the critical success factors that can build community resilience, and we define an operational strategy that could support community resilience while reducing the federal fiscal exposure to climate change. This operational strategy defines a community response system that integrates social science research, builds on the strengths of different sectors, values existing resources, and reduces the planning-to-action time. Our next steps are to apply this solution in the field, and to study the dynamics of community engagement and the circular economy.

  2. Coastal community resilience in climate adaptation and risk reduction

    DEFF Research Database (Denmark)

    Thomsen, Mie; Sørensen, Carlo Sass

    that neither the community nor the municipality perceives floods as any immediate threat. Municipal adaptation planning is slowly forming but hitherto without engaging the local community, and the town has no formal emergency preparedness plan. In contrast, the medieval town of Løgstør last experienced severe......, have different resilience strengths and limitations inherent. Thyborøn emerged over the past century as a fisheries town protected from the North Sea by large sea dikes constructed by the national government. Life in a harsh physical environment and no significant flood accounts in decades, means...... floods in 1981 and 2005 which led to the construction of a sea wall, community involvement, and detailed emergency management setup. The Thyborøn community has a reputation of ‘acting on their own’ and the citizens do not –neither individually nor collectively, ask e.g., the municipality for assistance...

  3. Indigenous knowledge of Rural Communities for Combating Climate ...

    African Journals Online (AJOL)

    HP

    and extremes, suppress diseases and crop pests and usd to conserve soil moisture so as to increase ..... materials such as leaves, grass clippings, kitchen scraps and yard wastes. As a result, ... consumption in urban and rural communities.

  4. Engaging Key Stakeholders in Climate Change: A Community-Based Project for Youth-Led Participatory Climate Action

    Science.gov (United States)

    Trott, Carlie D.

    Few studies have examined how youth think about, and take action on climate change and far fewer have sought to facilitate their engagement using participatory methods. This dissertation evaluated the impacts of Science, Camera, Action! (SCA), a novel after-school program that combined climate change education with participatory action through photovoice. The specific aims of this study were to: (1) Evaluate the impacts of SCA on youth participants' climate change knowledge, attitudes, and behaviors; (2) Examine how SCA participation served to empower youth agency; and (3) Explore SCA's influence on youths' science engagement. Participants were 55 youths (ages 10 to 12) across three Boys and Girls Club sites in Northern Colorado. SCA's Science component used interactive activities to demonstrate the interrelationships between Earth's changing climate, ecosystems, and sustainable actions within communities. Photovoice, SCA's Camera component, was used to explore youths' climate change perspectives and to identify opportunities for their active engagement. Finally, SCA's Action component aimed to cultivate youth potential as agents of change in their families and communities through the development and implementation of youth-led action projects. Action projects included local policy advocacy, a tree-planting campaign, a photo gallery opening, development of a website, and the establishment of a Boys and Girls Club community garden. To evaluate SCA impacts, a combination of survey and focus group methods were used. Following the program, youth demonstrated increased knowledge of the scientific and social dimensions of the causes and consequences of climate change, as well as its solutions through human action. Though participants expressed a mix of positive (e.g., hope) and negative (e.g., sadness) emotions about climate change, they left the program with an increased sense of respect for nature, an enhanced sense of environmental responsibility, and a greater sense

  5. Phenological Characterization of Desert Sky Island Vegetation Communities with Remotely Sensed and Climate Time Series Data

    Directory of Open Access Journals (Sweden)

    Stuart E. Marsh

    2010-01-01

    Full Text Available Climate change and variability are expected to impact the synchronicity and interactions between the Sonoran Desert and the forested sky islands which represent steep biological and environmental gradients. The main objectives were to examine how well satellite greenness time series data and derived phenological metrics (e.g., season start, peak greenness can characterize specific vegetation communities across an elevation gradient, and to examine the interactions between climate and phenological metrics for each vegetation community. We found that representative vegetation types (11, varying between desert scrub, mesquite, grassland, mixed oak, juniper and pine, often had unique seasonal and interannual phenological trajectories and spatial patterns. Satellite derived land surface phenometrics (11 for each of the vegetation communities along the cline showed numerous distinct significant relationships in response to temperature (4 and precipitation (7 metrics. Satellite-derived sky island vegetation phenology can help assess and monitor vegetation dynamics and provide unique indicators of climate variability and patterns of change.

  6. Community-level climate change vulnerability research: trends, progress, and future directions

    Science.gov (United States)

    McDowell, Graham; Ford, James; Jones, Julie

    2016-03-01

    This study systematically identifies, characterizes, and critically evaluates community-level climate change vulnerability assessments published over the last 25 years (n = 274). We find that while the field has advanced considerably in terms of conceptual framing and methodological approaches, key shortcomings remain in how vulnerability is being studied at the community-level. We argue that vulnerability research needs to more critically engage with the following: methods for evaluating future vulnerability, the relevance of vulnerability research for decision-making, interdependencies between social and ecological systems, attention to researcher / subject power dynamics, critical interpretation of key terms, and consideration of the potentially positive opportunities presented by a changing climate. Addressing these research needs is necessary for generating knowledge that supports climate-affected communities in navigating the challenges and opportunities ahead.

  7. Correlation between asthma and climate in the European Community Respiratory Health Survey.

    Science.gov (United States)

    Verlato, Giuseppe; Calabrese, Rolando; De Marco, Roberto

    2002-01-01

    The European Community Respiratory Health Survey, performed during 1991-1993, found a remarkable geographical variability in the prevalence of asthma and asthma-like symptoms in individuals aged 20-44 yr. The highest values occurred in the English-speaking centers. In the present investigation, the ecological relationship between climate and symptom prevalence was evaluated in the 48 centers of the European Community Respiratory Health Survey. Meteorological variables were derived from the Global Historical Climatology Network and were averaged over an 11-yr period (i.e., 1980-1990). Respiratory symptom prevalence was directly related to temperature in the coldest month and was related inversely to the temperature in the hottest month. Warm winters and cool summers are features of oceanic climate found in most English-speaking centers of the European Community Respiratory Health Survey (i.e., England, New Zealand, and Oregon). In conclusion, climate can account for significant geographic variability in respiratory symptom prevalence.

  8. Toward an ultra-high resolution community climate system model for the BlueGene platform

    Energy Technology Data Exchange (ETDEWEB)

    Dennis, John M [Computer Science Section, National Center for Atmospheric Research, Boulder, CO (United States); Jacob, Robert [Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL (United States); Vertenstein, Mariana [Climate and Global Dynamics Division, National Center for Atmospheric Research, Boulder, CO (United States); Craig, Tony [Climate and Global Dynamics Division, National Center for Atmospheric Research, Boulder, CO (United States); Loy, Raymond [Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL (United States)

    2007-07-15

    Global climate models need to simulate several small, regional-scale processes which affect the global circulation in order to accurately simulate the climate. This is particularly important in the ocean where small scale features such as oceanic eddies are currently represented with adhoc parameterizations. There is also a need for higher resolution to provide climate predictions at small, regional scales. New high-performance computing platforms such as the IBM BlueGene can provide the necessary computational power to perform ultra-high resolution climate model integrations. We have begun to investigate the scaling of the individual components of the Community Climate System Model to prepare it for integrations on BlueGene and similar platforms. Our investigations show that it is possible to successfully utilize O(32K) processors. We describe the scalability of five models: the Parallel Ocean Program (POP), the Community Ice CodE (CICE), the Community Land Model (CLM), and the new CCSM sequential coupler (CPL7) which are components of the next generation Community Climate System Model (CCSM); as well as the High-Order Method Modeling Environment (HOMME) which is a dynamical core currently being evaluated within the Community Atmospheric Model. For our studies we concentrate on 1/10{sup 0} resolution for CICE, POP, and CLM models and 1/4{sup 0} resolution for HOMME. The ability to simulate high resolutions on the massively parallel petascale systems that will dominate high-performance computing for the foreseeable future is essential to the advancement of climate science.

  9. Estuarine fish communities respond to climate variability over both river and ocean basins.

    Science.gov (United States)

    Feyrer, Frederick; Cloern, James E; Brown, Larry R; Fish, Maxfield A; Hieb, Kathryn A; Baxter, Randall D

    2015-10-01

    Estuaries are dynamic environments at the land-sea interface that are strongly affected by interannual climate variability. Ocean-atmosphere processes propagate into estuaries from the sea, and atmospheric processes over land propagate into estuaries from watersheds. We examined the effects of these two separate climate-driven processes on pelagic and demersal fish community structure along the salinity gradient in the San Francisco Estuary, California, USA. A 33-year data set (1980-2012) on pelagic and demersal fishes spanning the freshwater to marine regions of the estuary suggested the existence of five estuarine salinity fish guilds: limnetic (salinity = 0-1), oligohaline (salinity = 1-12), mesohaline (salinity = 6-19), polyhaline (salinity = 19-28), and euhaline (salinity = 29-32). Climatic effects propagating from the adjacent Pacific Ocean, indexed by the North Pacific Gyre Oscillation (NPGO), affected demersal and pelagic fish community structure in the euhaline and polyhaline guilds. Climatic effects propagating over land, indexed as freshwater outflow from the watershed (OUT), affected demersal and pelagic fish community structure in the oligohaline, mesohaline, polyhaline, and euhaline guilds. The effects of OUT propagated further down the estuary salinity gradient than the effects of NPGO that propagated up the estuary salinity gradient, exemplifying the role of variable freshwater outflow as an important driver of biotic communities in river-dominated estuaries. These results illustrate how unique sources of climate variability interact to drive biotic communities and, therefore, that climate change is likely to be an important driver in shaping the future trajectory of biotic communities in estuaries and other transitional habitats. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.

  10. The Community Earth System Model-Polar Climate Working Group and the status of CESM2.

    Science.gov (United States)

    Bailey, D. A.; Holland, M. M.; DuVivier, A. K.

    2017-12-01

    The Polar Climate Working Group (PCWG) is a consortium of scientists who are interested in modeling and understanding the climate in the Arctic and the Antarctic, and how polar climate processes interact with and influence climate at lower latitudes. Our members come from universities and laboratories, and our interests span all elements of polar climate, from the ocean depths to the top of the atmosphere. In addition to conducting scientific modeling experiments, we are charged with contributing to the development and maintenance of the state-of-the-art sea ice model component (CICE) used in the Community Earth System Model (CESM). A recent priority for the PCWG has been to come up with innovative ways to bring the observational and modeling communities together. This will allow for more robust validation of climate model simulations, the development and implementation of more physically-based model parameterizations, improved data assimilation capabilities, and the better use of models to design and implement field experiments. These have been informed by topical workshops and scientific visitors that we have hosted in these areas. These activities will be discussed and information on how the better integration of observations and models has influenced the new version of the CESM, which is due to be released in late 2017, will be provided. Additionally, we will address how enhanced interactions with the observational community will contribute to model developments and validation moving forward.

  11. Community functional responses to soil and climate at multiple spatial scales: when does intraspecific variation matter?

    Directory of Open Access Journals (Sweden)

    Andrew Siefert

    Full Text Available Despite increasing evidence of the importance of intraspecific trait variation in plant communities, its role in community trait responses to environmental variation, particularly along broad-scale climatic gradients, is poorly understood. We analyzed functional trait variation among early-successional herbaceous plant communities (old fields across a 1200-km latitudinal extent in eastern North America, focusing on four traits: vegetative height, leaf area, specific leaf area (SLA, and leaf dry matter content (LDMC. We determined the contributions of species turnover and intraspecific variation to between-site functional dissimilarity at multiple spatial scales and community trait responses to edaphic and climatic factors. Among-site variation in community mean trait values and community trait responses to the environment were generated by a combination of species turnover and intraspecific variation, with species turnover making a greater contribution for all traits. The relative importance of intraspecific variation decreased with increasing geographic and environmental distance between sites for SLA and leaf area. Intraspecific variation was most important for responses of vegetative height and responses to edaphic compared to climatic factors. Individual species displayed strong trait responses to environmental factors in many cases, but these responses were highly variable among species and did not usually scale up to the community level. These findings provide new insights into the role of intraspecific trait variation in plant communities and the factors controlling its relative importance. The contribution of intraspecific variation to community trait responses was greatest at fine spatial scales and along edaphic gradients, while species turnover dominated at broad spatial scales and along climatic gradients.

  12. Science, Practitioners and Faith Communities: using TEK and Faith Knowledge to address climate issues.

    Science.gov (United States)

    Peterson, K.

    2017-12-01

    Worldview, Lifeway and Science - Communities that are tied to the land or water for their livelihood, and for whom subsistence guides their cultural lifeway, have knowledges that inform their interactions with the environment. These frameworks, sometimes called Traditional Ecological Knowledges (TEK), are based on generations of observations made and shared within lived life-environmental systems, and are tied to practitioners' broader worldviews. Subsistence communities, including Native American tribes, are well aware of the crises caused by climate change impacts. These communities are working on ways to integrate knowledge from their ancient ways with current observations and methods from Western science to implement appropriate adaptation and resilience measures. In the delta region of south Louisiana, the communities hold worldviews that blend TEK, climate science and faith-derived concepts. It is not incongruent for the communities to intertwine conversations from complex and diverse sources, including the academy, to inform their adaptation measures and their imagined solutions. Drawing on over twenty years of work with local communities, science organizations and faith institutions of the lower bayou region of Louisiana, the presenter will address the complexity of traditional communities' work with diverse sources of knowledge to guide local decision-making and to assist outside partners to more effectively address challenges associated with climate change.

  13. Global change and marine communities: Alien species and climate change

    International Nuclear Information System (INIS)

    Occhipinti-Ambrogi, Anna

    2007-01-01

    Anthropogenic influences on the biosphere since the advent of the industrial age are increasingly causing global changes. Climatic change and the rising concentration of greenhouse gases in the atmosphere are ranking high in scientific and public agendas, and other components of global change are also frequently addressed, among which are the introductions of non indigenous species (NIS) in biogeographic regions well separated from the donor region, often followed by spectacular invasions. In the marine environment, both climatic change and spread of alien species have been studied extensively; this review is aimed at examining the main responses of ecosystems to climatic change, taking into account the increasing importance of biological invasions. Some general principles on NIS introductions in the marine environment are recalled, such as the importance of propagule pressure and of development stages during the time course of an invasion. Climatic change is known to affect many ecological properties; it interacts also with NIS in many possible ways. Direct (proximate) effects on individuals and populations of altered physical-chemical conditions are distinguished from indirect effects on emergent properties (species distribution, diversity, and production). Climatically driven changes may affect both local dispersal mechanisms, due to the alteration of current patterns, and competitive interactions between NIS and native species, due to the onset of new thermal optima and/or different carbonate chemistry. As well as latitudinal range expansions of species correlated with changing temperature conditions, and effects on species richness and the correlated extinction of native species, some invasions may provoke multiple effects which involve overall ecosystem functioning (material flow between trophic groups, primary production, relative extent of organic material decomposition, extent of benthic-pelagic coupling). Some examples are given, including a special

  14. Perception, Mitigation and Adaptation Strategies of Irrigated Paddy Farmer Community to Face Climate Change

    Directory of Open Access Journals (Sweden)

    Siska Rasiska Suantapura

    2016-06-01

    Full Text Available Climate change has a real impact on the condition of agriculture in developing countries, including Indonesia. Irrigated paddy farmers are the ones really feeling the impact of climate change. Therefore, we need to understand the perceptions, mitigation and adaptation strategies of irrigated paddy farmer community to face climate change. The study is conducted in Indramayu and Tasikmalaya Regency in West Java by using descriptive survey method, regression analysis and path analysis through Structural Equation Modelling approach with Lisrel TM 8.5. The results showes that: (1 changes to climate variability affects the productivity of rice; (2 perception of irrigated paddy farmer community on climate change and its affects are influenced by internal and external factors; and (3 adaptation strategy are influenced by internal and external factors, whereas no mitigation strategy. Therefore, mitigation and adaptation strategies with site specific location are very necessary improving climate information services, increasing empowerment of farmers through field schools, and providing the provision of facilities that are practical and adaptive to climate.

  15. Lags in the response of mountain plant communities to climate change.

    Science.gov (United States)

    Alexander, Jake M; Chalmandrier, Loïc; Lenoir, Jonathan; Burgess, Treena I; Essl, Franz; Haider, Sylvia; Kueffer, Christoph; McDougall, Keith; Milbau, Ann; Nuñez, Martin A; Pauchard, Aníbal; Rabitsch, Wolfgang; Rew, Lisa J; Sanders, Nathan J; Pellissier, Loïc

    2018-02-01

    Rapid climatic changes and increasing human influence at high elevations around the world will have profound impacts on mountain biodiversity. However, forecasts from statistical models (e.g. species distribution models) rarely consider that plant community changes could substantially lag behind climatic changes, hindering our ability to make temporally realistic projections for the coming century. Indeed, the magnitudes of lags, and the relative importance of the different factors giving rise to them, remain poorly understood. We review evidence for three types of lag: "dispersal lags" affecting plant species' spread along elevational gradients, "establishment lags" following their arrival in recipient communities, and "extinction lags" of resident species. Variation in lags is explained by variation among species in physiological and demographic responses, by effects of altered biotic interactions, and by aspects of the physical environment. Of these, altered biotic interactions could contribute substantially to establishment and extinction lags, yet impacts of biotic interactions on range dynamics are poorly understood. We develop a mechanistic community model to illustrate how species turnover in future communities might lag behind simple expectations based on species' range shifts with unlimited dispersal. The model shows a combined contribution of altered biotic interactions and dispersal lags to plant community turnover along an elevational gradient following climate warming. Our review and simulation support the view that accounting for disequilibrium range dynamics will be essential for realistic forecasts of patterns of biodiversity under climate change, with implications for the conservation of mountain species and the ecosystem functions they provide. © 2017 John Wiley & Sons Ltd.

  16. Lags in the response of mountain plant communities to climate change

    Science.gov (United States)

    Alexander, Jake M.; Chalmandrier, Loïc; Lenoir, Jonathan; Burgess, Treena I.; Essl, Franz; Haider, Sylvia; Kueffer, Christoph; McDougall, Keith; Milbau, Ann; Nuñez, Martin A.; Pauchard, Aníbal; Rabitsch, Wolfgang; Rew, Lisa J.; Sanders, Nathan J.; Pellissier, Loïc

    2018-01-01

    Rapid climatic changes and increasing human influence at high elevations around the world will have profound impacts on mountain biodiversity. However, forecasts from statistical models (e.g. species distribution models) rarely consider that plant community changes could substantially lag behind climatic changes, hindering our ability to make temporally realistic projections for the coming century. Indeed, the magnitudes of lags, and the relative importance of the different factors giving rise to them, remain poorly understood. We review evidence for three types of lag: “dispersal lags” affecting plant species’ spread along elevational gradients, “establishment lags” following their arrival in recipient communities, and “extinction lags” of resident species. Variation in lags is explained by variation among species in physiological and demographic responses, by effects of altered biotic interactions, and by aspects of the physical environment. Of these, altered biotic interactions could contribute substantially to establishment and extinction lags, yet impacts of biotic interactions on range dynamics are poorly understood. We develop a mechanistic community model to illustrate how species turnover in future communities might lag behind simple expectations based on species’ range shifts with unlimited dispersal. The model shows a combined contribution of altered biotic interactions and dispersal lags to plant community turnover along an elevational gradient following climate warming. Our review and simulation support the view that accounting for disequilibrium range dynamics will be essential for realistic forecasts of patterns of biodiversity under climate change, with implications for the conservation of mountain species and the ecosystem functions they provide. PMID:29112781

  17. Performance Evaluation of a Hot-Humid Climate Community

    Energy Technology Data Exchange (ETDEWEB)

    Osser, R. [Building Science Corporation, Somerville, MA (United States); Kerrigan, P. [Building Science Corporation, Somerville, MA (United States)

    2012-02-01

    This report describes the Project Home Again community in New Orleans, a new development for high-performance, affordable homes for residents who lost their homes to Hurricane Katrina. Building Science Corporation acted as a consultant for the project, advocating design strategies for durability, flood resistance, occupant comfort, and low energy use while maintaining cost effectiveness.

  18. Lags in the response of mountain plant communities to climate change

    DEFF Research Database (Denmark)

    Alexander, Jake M; Chalmandrier, Loïc; Lenoir, Jonathan

    2018-01-01

    Rapid climatic changes and increasing human influence at high elevations around the world will have profound impacts on mountain biodiversity. However, forecasts from statistical models (e.g. species distribution models) rarely consider that plant community changes could substantially lag behind...... plant species' spread along elevational gradients, "establishment lags" following their arrival in recipient communities, and "extinction lags" of resident species. Variation in lags is explained by variation among species in physiological and demographic responses, by effects of altered biotic...... turnover in future communities might lag behind simple expectations based on species' range shifts with unlimited dispersal. The model shows a combined contribution of altered biotic interactions and dispersal lags to plant community turnover along an elevational gradient following climate warming. Our...

  19. Building adaptive capacity to climate change in tropical coastal communities

    Science.gov (United States)

    Cinner, Joshua E.; Adger, W. Neil; Allison, Edward H.; Barnes, Michele L.; Brown, Katrina; Cohen, Philippa J.; Gelcich, Stefan; Hicks, Christina C.; Hughes, Terry P.; Lau, Jacqueline; Marshall, Nadine A.; Morrison, Tiffany H.

    2018-01-01

    To minimize the impacts of climate change on human wellbeing, governments, development agencies, and civil society organizations have made substantial investments in improving people's capacity to adapt to change. Yet to date, these investments have tended to focus on a very narrow understanding of adaptive capacity. Here, we propose an approach to build adaptive capacity across five domains: the assets that people can draw upon in times of need; the flexibility to change strategies; the ability to organize and act collectively; learning to recognize and respond to change; and the agency to determine whether to change or not.

  20. Modelling the future biogeography of North Atlantic zooplankton communities in response to climate change

    KAUST Repository

    Villarino, E

    2015-07-02

    Advances in habitat and climate modelling allow us to reduce uncertainties of climate change impacts on species distribution. We evaluated the impacts of future climate change on community structure, diversity, distribution and phenology of 14 copepod species in the North Atlantic. We developed and validated habitat models for key zooplankton species using continuous plankton recorder (CPR) survey data collected at mid latitudes of the North Atlantic. Generalized additive models (GAMs) were applied to relate the occurrence of species to environmental variables. Models were projected to future (2080–2099) environmental conditions using coupled hydroclimatix–biogeochemical models under the Intergovernmental Panel on Climate Change (IPCC) A1B climate scenario, and compared to present (2001–2020) conditions. Our projections indicated that the copepod community is expected to respond substantially to climate change: a mean poleward latitudinal shift of 8.7 km per decade for the overall community with an important species range variation (–15 to 18 km per decade); the species seasonal peak is expected to occur 12–13 d earlier for Calanus finmarchicus and C. hyperboreus; and important changes in community structure are also expected (high species turnover of 43–79% south of the Oceanic Polar Front). The impacts of the change expected by the end of the century under IPCC global warming scenarios on copepods highlight poleward shifts, earlier seasonal peak and changes in biodiversity spatial patterns that might lead to alterations of the future North Atlantic pelagic ecosystem. Our model and projections are supported by a temporal validation undertaken using the North Atlantic climate regime shift that occurred in the 1980s: the habitat model built in the cold period (1970–1986) has been validated in the warm period (1987–2004).

  1. Modelling the future biogeography of North Atlantic zooplankton communities in response to climate change

    KAUST Repository

    Villarino, E; Chust, G; Licandro, P; Butenschö n, M; Ibaibarriaga, L; Larrañ aga, A; Irigoien, Xabier

    2015-01-01

    Advances in habitat and climate modelling allow us to reduce uncertainties of climate change impacts on species distribution. We evaluated the impacts of future climate change on community structure, diversity, distribution and phenology of 14 copepod species in the North Atlantic. We developed and validated habitat models for key zooplankton species using continuous plankton recorder (CPR) survey data collected at mid latitudes of the North Atlantic. Generalized additive models (GAMs) were applied to relate the occurrence of species to environmental variables. Models were projected to future (2080–2099) environmental conditions using coupled hydroclimatix–biogeochemical models under the Intergovernmental Panel on Climate Change (IPCC) A1B climate scenario, and compared to present (2001–2020) conditions. Our projections indicated that the copepod community is expected to respond substantially to climate change: a mean poleward latitudinal shift of 8.7 km per decade for the overall community with an important species range variation (–15 to 18 km per decade); the species seasonal peak is expected to occur 12–13 d earlier for Calanus finmarchicus and C. hyperboreus; and important changes in community structure are also expected (high species turnover of 43–79% south of the Oceanic Polar Front). The impacts of the change expected by the end of the century under IPCC global warming scenarios on copepods highlight poleward shifts, earlier seasonal peak and changes in biodiversity spatial patterns that might lead to alterations of the future North Atlantic pelagic ecosystem. Our model and projections are supported by a temporal validation undertaken using the North Atlantic climate regime shift that occurred in the 1980s: the habitat model built in the cold period (1970–1986) has been validated in the warm period (1987–2004).

  2. Climate interacts with soil to produce beta diversity in Californian plant communities.

    Science.gov (United States)

    Fernandez-Going, B M; Harrison, S P; Anacker, B L; Safford, H D

    2013-09-01

    Spatially distinct communities can arise through interactions and feedbacks between abiotic and biotic factors. We suggest that, for plants, patches of infertile soils such as serpentine may support more distinct communities from those in the surrounding non-serpentine matrix in regions where the climate is more productive (i.e., warmer and/or wetter). Where both soil fertility and climatic productivity are high, communities may be dominated by plants with fast-growing functional traits, whereas where either soils or climate impose low productivity, species with stress-tolerant functional traits may predominate. As a result, both species and functional composition may show higher dissimilarity between patch and matrix in productive climates. This pattern may be reinforced by positive feedbacks, in which higher plant growth under favorable climate and soil conditions leads to higher soil fertility, further enhancing plant growth. For 96 pairs of sites across a 200-km latitudinal gradient in California, we found that the species and functional dissimilarities between communities on infertile serpentine and fertile non-serpentine soils were higher in more productive (wetter) regions. Woody species had more stress-tolerant functional traits on serpentine than non-serpentine soil, and as rainfall increased, woody species functional composition changed toward fast-growing traits on non-serpentine, but not on serpentine soils. Soil organic matter increased with rainfall, but only on non-serpentine soils, and the difference in organic matter between soils was positively correlated with plant community dissimilarity. These results illustrate a novel mechanism wherein climatic productivity is associated with higher species, functional, and landscape-level dissimilarity (beta diversity).

  3. Do we have to fear a forth petroleum crash?

    International Nuclear Information System (INIS)

    Jestin-Fleury, N.

    1998-01-01

    This paper analyses the worldwide energy scenarios for the forecasting of petroleum supply and demand in the year 2020: competition with natural gas industry, oil reserves, resources, production, development of new technologies, investments, fields development, drop of production costs, exploitation of tar sands, extra-heavy crudes, bituminous shales, reduction of the petroleum consumption in the transportation sector (development of LPG and electric powered vehicles, chemical conversion of natural gas, fuel cells), increase of the OPEC countries production, evolution of nuclear energy and economical impact of a serious fight against greenhouse gases emission and climate changes. (J.S.)

  4. Do Community-based Institutions Build Resilience to Climate Change in Mongolia?

    Science.gov (United States)

    Fernandez-Gimenez, M.

    2012-12-01

    Climate change impacts are inherently local, yet relatively little is known about the role of local people and institutions in adapting to climate change. Mongolia has experienced one of the strongest warming trends on Earth over the past 40 years, associated declines in streamflow, and increases in the frequency of extreme winter weather events. Environmental changes are compounded by rapid political, economic and social transformations beginning in 1990. We investigate the complex interactions of social, ecological and climate changes across multiple levels from local to regional to national. We hypothesize that community-based institutions increase resilience by strengthening self-regulating feedbacks between social and ecological systems through development and enforcement of formal management rules, implementation of innovative management practices, strengthening of social networks and information exchange within and across levels of social organization, and enhanced monitoring. These result in better ecological and socio-economic conditions and greater adaptive capacity in areas under formal community-based management compared to adjacent areas without formal community management institutions. Evaluation of this hypothesis involves integrated collection and analysis of quantitative and qualitative ecological, social and hydro-climatic data at household, community and regional levels of spatial and social organization. Here, we present preliminary results evaluating these hypotheses from 10 counties (soum) in 3 provinces (aimag) in the Gobi desert-steppe of southern Mongolia based on household-level social data and plot-level ecological data representing. Our initial findings support the hypothesis that community-based institutions are associated with greater household adaptive capacity and healthier pasture ecological conditions, characterized by greater perennial vegetation cover and biomass, especially in the functional group most important for livestock

  5. Climate change drives a shift in peatland ecosystem plant community: implications for ecosystem function and stability.

    Science.gov (United States)

    Dieleman, Catherine M; Branfireun, Brian A; McLaughlin, James W; Lindo, Zoë

    2015-01-01

    The composition of a peatland plant community has considerable effect on a range of ecosystem functions. Peatland plant community structure is predicted to change under future climate change, making the quantification of the direction and magnitude of this change a research priority. We subjected intact, replicated vegetated poor fen peat monoliths to elevated temperatures, increased atmospheric carbon dioxide (CO2 ), and two water table levels in a factorial design to determine the individual and synergistic effects of climate change factors on the poor fen plant community composition. We identify three indicators of a regime shift occurring in our experimental poor fen system under climate change: nonlinear decline of Sphagnum at temperatures 8 °C above ambient conditions, concomitant increases in Carex spp. at temperatures 4 °C above ambient conditions suggesting a weakening of Sphagnum feedbacks on peat accumulation, and increased variance of the plant community composition and pore water pH through time. A temperature increase of +4 °C appeared to be a threshold for increased vascular plant abundance; however the magnitude of change was species dependent. Elevated temperature combined with elevated CO2 had a synergistic effect on large graminoid species abundance, with a 15 times increase as compared to control conditions. Community analyses suggested that the balance between dominant plant species was tipped from Sphagnum to a graminoid-dominated system by the combination of climate change factors. Our findings indicate that changes in peatland plant community composition are likely under future climate change conditions, with a demonstrated shift toward a dominance of graminoid species in poor fens. © 2014 John Wiley & Sons Ltd.

  6. Acting Globally: Cultivating a thousand community solutions for climate justice

    OpenAIRE

    Giovanna Di Chiro

    2011-01-01

    Giovanna Di Chiro is Director of Environmental Programs at Nuestras Raíces, Inc. and Research Associate at the Five College Women's Studies Research Center. She has published widely on the intersections of race, gender, and environmental justice with a focus on women's activism and policy change addressing environmental health disparities in lower income communities. She is completing a book Embodied Ecologies: Science, Politics, and Environmental Justice. Her current work examines environmen...

  7. Compositional Stability of the Bacterial Community in a Climate-Sensitive Sub-Arctic Peatland.

    Science.gov (United States)

    Weedon, James T; Kowalchuk, George A; Aerts, Rien; Freriks, Stef; Röling, Wilfred F M; van Bodegom, Peter M

    2017-01-01

    The climate sensitivity of microbe-mediated soil processes such as carbon and nitrogen cycling offers an interesting case for evaluating the corresponding sensitivity of microbial community composition to environmental change. Better understanding of the degree of linkage between functional and compositional stability would contribute to ongoing efforts to build mechanistic models aiming at predicting rates of microbe-mediated processes. We used an amplicon sequencing approach to test if previously observed large effects of experimental soil warming on C and N cycle fluxes (50-100% increases) in a sub-arctic Sphagnum peatland were reflected in changes in the composition of the soil bacterial community. We found that treatments that previously induced changes to fluxes did not associate with changes in the phylogenetic composition of the soil bacterial community. For both DNA- and RNA-based analyses, variation in bacterial communities could be explained by the hierarchy: spatial variation (12-15% of variance explained) > temporal variation (7-11%) > climate treatment (4-9%). We conclude that the bacterial community in this environment is stable under changing conditions, despite the previously observed sensitivity of process rates-evidence that microbe-mediated soil processes can alter without concomitant changes in bacterial communities. We propose that progress in linking soil microbial communities to ecosystem processes can be advanced by further investigating the relative importance of community composition effects versus physico-chemical factors in controlling biogeochemical process rates in different contexts.

  8. Climate change on Twitter: topics, communities and conversations about the 2013 IPCC Working Group 1 report.

    Science.gov (United States)

    Pearce, Warren; Holmberg, Kim; Hellsten, Iina; Nerlich, Brigitte

    2014-01-01

    In September 2013 the Intergovernmental Panel on Climate Change published its Working Group 1 report, the first comprehensive assessment of physical climate science in six years, constituting a critical event in the societal debate about climate change. This paper analyses the nature of this debate in one public forum: Twitter. Using statistical methods, tweets were analyzed to discover the hashtags used when people tweeted about the IPCC report, and how Twitter users formed communities around their conversational connections. In short, the paper presents the topics and tweeters at this particular moment in the climate debate. The most used hashtags related to themes of science, geographical location and social issues connected to climate change. Particularly noteworthy were tweets connected to Australian politics, US politics, geoengineering and fracking. Three communities of Twitter users were identified. Researcher coding of Twitter users showed how these varied according to geographical location and whether users were supportive, unsupportive or neutral in their tweets about the IPCC. Overall, users were most likely to converse with users holding similar views. However, qualitative analysis suggested the emergence of a community of Twitter users, predominantly based in the UK, where greater interaction between contrasting views took place. This analysis also illustrated the presence of a campaign by the non-governmental organization Avaaz, aimed at increasing media coverage of the IPCC report.

  9. Climate change on Twitter: topics, communities and conversations about the 2013 IPCC Working Group 1 report.

    Directory of Open Access Journals (Sweden)

    Warren Pearce

    Full Text Available In September 2013 the Intergovernmental Panel on Climate Change published its Working Group 1 report, the first comprehensive assessment of physical climate science in six years, constituting a critical event in the societal debate about climate change. This paper analyses the nature of this debate in one public forum: Twitter. Using statistical methods, tweets were analyzed to discover the hashtags used when people tweeted about the IPCC report, and how Twitter users formed communities around their conversational connections. In short, the paper presents the topics and tweeters at this particular moment in the climate debate. The most used hashtags related to themes of science, geographical location and social issues connected to climate change. Particularly noteworthy were tweets connected to Australian politics, US politics, geoengineering and fracking. Three communities of Twitter users were identified. Researcher coding of Twitter users showed how these varied according to geographical location and whether users were supportive, unsupportive or neutral in their tweets about the IPCC. Overall, users were most likely to converse with users holding similar views. However, qualitative analysis suggested the emergence of a community of Twitter users, predominantly based in the UK, where greater interaction between contrasting views took place. This analysis also illustrated the presence of a campaign by the non-governmental organization Avaaz, aimed at increasing media coverage of the IPCC report.

  10. Climate change through an intersectional lens: gendered vulnerability and resilience in indigenous communities in the United States

    Science.gov (United States)

    Kirsten Vinyeta; Kyle Powys Whyte; Kathy Lynn

    2015-01-01

    The scientific and policy literature on climate change increasingly recognizes the vulnerabilities of indigenous communities and their capacities for resilience. The role of gender in defining how indigenous peoples experience climate change in the United States is a research area that deserves more attention. Advancing climate change threatens the continuance of many...

  11. Responses of redwood soil microbial community structure and N transformations to climate change

    Science.gov (United States)

    Damon C. Bradbury; Mary K. Firestone

    2012-01-01

    Soil microorganisms perform critical ecosystem functions, including decomposition, nitrogen (N) mineralization and nitrification. Soil temperature and water availability can be critical determinants of the rates of these processes as well as microbial community composition and structure. This research examined how changes in climate affect bacterial and fungal...

  12. Impacts of climate warming on lake fish community structure and potential effects on ecosystem function

    NARCIS (Netherlands)

    Jeppesen, E.; Meerhoff, M.; Holmgren, K.; González-Bergonzoni, I.; Teixeira-de Mello, F.; Declerck, Steven A.J.; De Meester, L.; Søndergaard, M.; Lauridsen, T.; Bjerring, R.; Conde-Porcuna, J-M.; Mazzeo, N.; Iglesias, C.; Reizenstein, M.; Malmquist, H.J.; Liu, Z.; Balayla, D.; Lazzaro, X.

    2010-01-01

    Fish play a key role in the trophic dynamics of lakes, not least in shallow systems. With climate warming, complex changes in fish community structure may be expected owing to the direct and indirect effects of temperature, and indirect effects of eutrophication, water-level changes and salinisation

  13. Profiling climate change vulnerability of forest indigenous communities in the Congo Basin

    NARCIS (Netherlands)

    Nkem, J.N.; Somorin, O.A.; Jum, C.; Idinoba, M.E.; Bele, Y.M.; Sonwa, D.J.

    2013-01-01

    The livelihood strategies of indigenous communities in the Congo Basin are inseparable from the forests, following their use of forest ecosystem goods and services (FEGS). Climate change is expected to exert impacts on the forest and its ability to provide FEGS. Thus, human livelihoods that depend

  14. Perceptions of climate change by highland communities in the Nepal Himalaya

    Czech Academy of Sciences Publication Activity Database

    Uprety, Y.; Shrestha, U. B.; Rokaya, Maan Bahadur; Shrestha, S.; Chaudhary, R. P.; Thakali, A.; Cockfield, G.; Asselin, H.

    2017-01-01

    Roč. 9, č. 7 (2017), s. 649-661 ISSN 1756-5529 R&D Projects: GA ČR(CZ) GA17-10280S Institutional support: RVO:67985939 Keywords : climate change * local communities * traditional knowledge Subject RIV: EF - Botanics OBOR OECD: Plant sciences, botany Impact factor: 2.051, year: 2016

  15. Perceptions of climate change by highland communities in the Nepal Himalaya

    Czech Academy of Sciences Publication Activity Database

    Uprety, Y.; Shrestha, U. B.; Rokaya, Maan Bahadur; Shrestha, S.; Chaudhary, R. P.; Thakali, A.; Cockfield, G.; Asselin, H.

    2017-01-01

    Roč. 9, č. 7 (2017), s. 649-661 ISSN 1756-5529 R&D Projects: GA MŠk(CZ) LO1415 Institutional support: RVO:86652079 Keywords : climate change * local communities * Himalaya * Nepal * traditional knowledge Subject RIV: EH - Ecology, Behaviour OBOR OECD: Environmental sciences (social aspects to be 5.7) Impact factor: 2.051, year: 2016

  16. The Brazilian freshwater wetscape: Changes in tree community diversity and composition on climatic and geographic gradients.

    Directory of Open Access Journals (Sweden)

    Florian Wittmann

    Full Text Available Wetlands harbor an important compliment of regional plant diversity, but in many regions data on wetland diversity and composition is still lacking, thus hindering our understanding of the processes that control it. While patterns of broad-scale terrestrial diversity and composition typically correlate with contemporary climate it is not clear to what extent patterns in wetlands are complimentary, or conflicting. To elucidate this, we consolidate data from wetland forest inventories in Brazil and examine patterns of diversity and composition along temperature and rainfall gradients spanning five biomes. We collated 196 floristic inventories covering an area >220 ha and including >260,000 woody individuals. We detected a total of 2,453 tree species, with the Amazon alone accounting for nearly half. Compositional patterns indicated differences in freshwater wetland floras among Brazilian biomes, although biomes with drier, more seasonal climates tended to have a larger proportion of more widely distributed species. Maximal alpha diversity increased with annual temperature, rainfall, and decreasing seasonality, patterns broadly consistent with upland vegetation communities. However, alpha diversity-climate relationships were only revealed at higher diversity values associated with the uppermost quantiles, and in most sites diversity varied irrespective of climate. Likewise, mean biome-level differences in alpha-diversity were unexpectedly modest, even in comparisons of savanna-area wetlands to those of nearby forested regions. We describe attenuated wetland climate-diversity relationships as a shifting balance of local and regional effects on species recruitment. Locally, excessive waterlogging strongly filters species able to colonize from regional pools. On the other hand, increased water availability can accommodate a rich community of drought-sensitive immigrant species that are able to track buffered wetland microclimates. We argue that

  17. Challenges of Climate Change: Resilience Efforts in Rural Communities of Kaliwlingi Village based on Pengembangan Kawasan Pesisir Tangguh (PKPT) Program

    OpenAIRE

    Mustovia Azahro; Angga Dwisapta Ardi

    2017-01-01

    Kaliwlingi Village in Brebes City has experienced climate change impacts such as tidal flood and land abrasion. The climate change causes the dynamics of the coast and sea levels dramatically and fosters the coastal communities to have adaptation strategies. This paper aims to identify how the community of Kaliwlingi Village adapts to the climate change that affects to a social economic condition of the inhabitants. The study used qualitative method by interpreting data taken from Pengembanga...

  18. Signals of Climate Change in Butterfly Communities in a Mediterranean Protected Area

    Science.gov (United States)

    Zografou, Konstantina; Kati, Vassiliki; Grill, Andrea; Wilson, Robert J.; Tzirkalli, Elli; Pamperis, Lazaros N.; Halley, John M.

    2014-01-01

    The European protected-area network will cease to be efficient for biodiversity conservation, particularly in the Mediterranean region, if species are driven out of protected areas by climate warming. Yet, no empirical evidence of how climate change influences ecological communities in Mediterranean nature reserves really exists. Here, we examine long-term (1998–2011/2012) and short-term (2011–2012) changes in the butterfly fauna of Dadia National Park (Greece) by revisiting 21 and 18 transects in 2011 and 2012 respectively, that were initially surveyed in 1998. We evaluate the temperature trend for the study area for a 22-year-period (1990–2012) in which all three butterfly surveys are included. We also assess changes in community composition and species richness in butterfly communities using information on (a) species’ elevational distributions in Greece and (b) Community Temperature Index (calculated from the average temperature of species' geographical ranges in Europe, weighted by species' abundance per transect and year). Despite the protected status of Dadia NP and the subsequent stability of land use regimes, we found a marked change in butterfly community composition over a 13 year period, concomitant with an increase of annual average temperature of 0.95°C. Our analysis gave no evidence of significant year-to-year (2011–2012) variability in butterfly community composition, suggesting that the community composition change we recorded is likely the consequence of long-term environmental change, such as climate warming. We observe an increased abundance of low-elevation species whereas species mainly occurring at higher elevations in the region declined. The Community Temperature Index was found to increase in all habitats except agricultural areas. If equivalent changes occur in other protected areas and taxonomic groups across Mediterranean Europe, new conservation options and approaches for increasing species’ resilience may have to be

  19. Signals of climate change in butterfly communities in a Mediterranean protected area.

    Science.gov (United States)

    Zografou, Konstantina; Kati, Vassiliki; Grill, Andrea; Wilson, Robert J; Tzirkalli, Elli; Pamperis, Lazaros N; Halley, John M

    2014-01-01

    The European protected-area network will cease to be efficient for biodiversity conservation, particularly in the Mediterranean region, if species are driven out of protected areas by climate warming. Yet, no empirical evidence of how climate change influences ecological communities in Mediterranean nature reserves really exists. Here, we examine long-term (1998-2011/2012) and short-term (2011-2012) changes in the butterfly fauna of Dadia National Park (Greece) by revisiting 21 and 18 transects in 2011 and 2012 respectively, that were initially surveyed in 1998. We evaluate the temperature trend for the study area for a 22-year-period (1990-2012) in which all three butterfly surveys are included. We also assess changes in community composition and species richness in butterfly communities using information on (a) species' elevational distributions in Greece and (b) Community Temperature Index (calculated from the average temperature of species' geographical ranges in Europe, weighted by species' abundance per transect and year). Despite the protected status of Dadia NP and the subsequent stability of land use regimes, we found a marked change in butterfly community composition over a 13 year period, concomitant with an increase of annual average temperature of 0.95°C. Our analysis gave no evidence of significant year-to-year (2011-2012) variability in butterfly community composition, suggesting that the community composition change we recorded is likely the consequence of long-term environmental change, such as climate warming. We observe an increased abundance of low-elevation species whereas species mainly occurring at higher elevations in the region declined. The Community Temperature Index was found to increase in all habitats except agricultural areas. If equivalent changes occur in other protected areas and taxonomic groups across Mediterranean Europe, new conservation options and approaches for increasing species' resilience may have to be devised.

  20. Signals of climate change in butterfly communities in a Mediterranean protected area.

    Directory of Open Access Journals (Sweden)

    Konstantina Zografou

    Full Text Available The European protected-area network will cease to be efficient for biodiversity conservation, particularly in the Mediterranean region, if species are driven out of protected areas by climate warming. Yet, no empirical evidence of how climate change influences ecological communities in Mediterranean nature reserves really exists. Here, we examine long-term (1998-2011/2012 and short-term (2011-2012 changes in the butterfly fauna of Dadia National Park (Greece by revisiting 21 and 18 transects in 2011 and 2012 respectively, that were initially surveyed in 1998. We evaluate the temperature trend for the study area for a 22-year-period (1990-2012 in which all three butterfly surveys are included. We also assess changes in community composition and species richness in butterfly communities using information on (a species' elevational distributions in Greece and (b Community Temperature Index (calculated from the average temperature of species' geographical ranges in Europe, weighted by species' abundance per transect and year. Despite the protected status of Dadia NP and the subsequent stability of land use regimes, we found a marked change in butterfly community composition over a 13 year period, concomitant with an increase of annual average temperature of 0.95°C. Our analysis gave no evidence of significant year-to-year (2011-2012 variability in butterfly community composition, suggesting that the community composition change we recorded is likely the consequence of long-term environmental change, such as climate warming. We observe an increased abundance of low-elevation species whereas species mainly occurring at higher elevations in the region declined. The Community Temperature Index was found to increase in all habitats except agricultural areas. If equivalent changes occur in other protected areas and taxonomic groups across Mediterranean Europe, new conservation options and approaches for increasing species' resilience may have to be

  1. Gaining trust from the scientific climate change community and increasing the visibility of their data

    Science.gov (United States)

    Pfeil, B.; Diepenbroek, M.

    2017-12-01

    Climate science has a major impact not just within the field, but also has immediate significant societal and economic implications. Scientists are well aware that their research results may be discussed by policy-makers and the media, sometimes with hostile intent from climate science deniers. Sustainable and scrutinized data management is the backbone for future scientific research and vital to maintain the integrity and reputation of the climate science community. In 2009 a lack of openness regarding data acquisition data treatment was one of the main factors in Climategate that severely damaged the community's image - and efficient data sharing and management can prevent this in the future. Data repositories can only operate effectively if they have the trust of their users: this includes both the data providers and data users. Both groups have to be assured that data treatment and quality control follows internationally agreed SOPs (standard operating procedures), is transparent, documented and traceable. Users want easy access to data and have to be assured that data is citable, allows reproducibility and can be used with confidence, which requires that both the data and accompanying metadata are of the highest possible quality. Building up trust from both communities takes time and requires collaboration, getting feedback from the community and addressing their needs. This presentation will show the basic needs and challenges for data repositories, and will illustrate how the marine carbon climate change community has successfully addressed these through the SOCAT (Surface Ocean CO2 Atlas) project. The project actively involves both data providers and users throughout the design and implementation of their infrastructures. Scientists are directly involved in quality control of the data and metadata, increasing trust in the data and encouraging international collaboration, which in turn increases the visibility of both the community and its data.

  2. Collaborating on Climate: The Signs of the Land Camp as a Model for Meaningful Learning Between Indigenous Communities and Western Climate Scientists

    Science.gov (United States)

    Chase, M.; Brunacini, J.; Sparrow, E. B.

    2016-12-01

    As interest in Indigenous Knowledge (IK) grows, how can researchers ensure that collaboration is meaningful, relevant, and valuable for those involved? The Signs of the Land: Reaching Arctic Communities Facing Climate Change Camp is a collaborative project developed by the Association for Interior Native Educators (AINE), the International Arctic Research Center (IARC), and the PoLAR Partnership. Modeled on AINE's Elder Academy and supported by a grant from the National Science Foundation, the camp facilitates in-depth dialogue about climate change and explores causes, impacts, and solutions through the cultural lens of Alaska Native communities. The project integrates local observations, IK, and western climate science. Participants engage with Alaska Native Elders, local climate researchers, and learn about climate communication tools and resources for responding. Following camps in 2014 and 2016, project partners identified a variety of questions about the challenges and opportunities of the collaboration that will be discussed in this presentation. For instance, what does it mean to equitably integrate IK, and in what ways are Native communities able to participate in research project design, delivery, and evaluation? How are decisions made and consensus built within cultural practices, project goals, and funding expectations? How do opportunities available to Indigenous communities to engage with western climate science broaden understanding and response? And, how does the ability to connect with and learn from Alaska Native Elders affect motivation, engagement, and community action? Finally, what is the effect of learning about climate change in a cultural camp setting?

  3. Engaging Storm Spotters and Community College Students in Regional Responses to Climate Change

    Science.gov (United States)

    Mooney, M. E.; Ackerman, S. A.; Buhr, S. M.

    2012-12-01

    Resiliency to natural hazards includes climate literacy. With a record number of billion dollar weather disasters in 2011, each one enhanced by a warmer atmosphere, our nation needs new strategies to respond, mitigate, communicate and adapt to the impacts of climate change. We know that actions we take today matter, but finding ways to mobilize our citizenry remains largely elusive. One way to galvanize a meaningful response to climate change could involve National Weather Service (NWS) storm spotters and Community College students. Dedicated storm spotters represent decades of NOAA NWS efforts to engage and enlist public participation in community safety. Why not leverage this wealth of human capital to cultivate a similar mitigation and stewardship response? The Cooperative Institute for Meteorological Satellite Studies (CIMSS) at the University of Wisconsin-Madison conducted a pilot project with NWS storm spotters in the spring of 2011 via a web seminar on climate change, climate mitigation and emerging applications to access weather and climate data with mobile devices. Nineteen storm spotters participated and eleven provided feedback via a follow-up survey. A third of the respondents indicated that they had taken actions to minimize their carbon footprint; a majority (90%) indicated their likelihood to take action in the near future and more than two-thirds said they wanted to learn more about climate mitigation and sustainability. One attendee commented "Thank-you for putting together this web seminar. As a weather spotter, I found the information helpful, even humbling, to know climate change is already happening." CIMSS is also collaborating with the Cooperative Institute for Research in Environmental Sciences (CIRES) and Madison Area Technical College (MATC) on a climate education project where community college students take an on-line climate change course followed by the opportunity to apply for a summer internship. Through this program, two students

  4. Temperature adaptation of soil bacterial communities along an Antarctic climate gradient: predicting responses to climate warming

    DEFF Research Database (Denmark)

    Rinnan, Riikka; Rousk, Johannes; Yergeau, Etienne

    2009-01-01

     °38'W) and the Falkland Islands (51 °76'S 59 °03'W). At each location, experimental plots were subjected to warming by open top chambers (OTCs) and paired with control plots on vegetated and fell-field habitats. The bacterial communities were adapted to the mean annual temperature of their environment...

  5. Anthropogenic climate change drives shift and shuffle in North Atlantic phytoplankton communities.

    Science.gov (United States)

    Barton, Andrew D; Irwin, Andrew J; Finkel, Zoe V; Stock, Charles A

    2016-03-15

    Anthropogenic climate change has shifted the biogeography and phenology of many terrestrial and marine species. Marine phytoplankton communities appear sensitive to climate change, yet understanding of how individual species may respond to anthropogenic climate change remains limited. Here, using historical environmental and phytoplankton observations, we characterize the realized ecological niches for 87 North Atlantic diatom and dinoflagellate taxa and project changes in species biogeography between mean historical (1951-2000) and future (2051-2100) ocean conditions. We find that the central positions of the core range of 74% of taxa shift poleward at a median rate of 12.9 km per decade (km⋅dec(-1)), and 90% of taxa shift eastward at a median rate of 42.7 km⋅dec(-1) The poleward shift is faster than previously reported for marine taxa, and the predominance of longitudinal shifts is driven by dynamic changes in multiple environmental drivers, rather than a strictly poleward, temperature-driven redistribution of ocean habitats. A century of climate change significantly shuffles community composition by a basin-wide median value of 16%, compared with seasonal variations of 46%. The North Atlantic phytoplankton community appears poised for marked shift and shuffle, which may have broad effects on food webs and biogeochemical cycles.

  6. Decision-Makers As Messengers Of Climate Change Impacts And Ambassadors For Their Communities.

    Science.gov (United States)

    Boudrias, M. A.; DeBenedict, C.; Bruce, L.; Estrada, M.; Hedge, N.; Silva-Send, N. J.

    2016-12-01

    Over the past several years there have been many coordinated efforts to improve climate change literacy of diverse audiences. The challenge has been to balance science content with audience-specific messaging with a goal to reach solutions and build community resilience. In the San Diego Region, Climate Education Partners (CEP) has been working with business leaders, elected officials, tribal leaders, and other community leaders to develop a suite of programs and activities to enhance the channels of communication outside traditional settings. CEP has employed a multidisciplinary approach that integrates climate science, social and learning sciences and effective communication strategies to create innovative resources and new approaches to climate change communication in order to engage audiences more effectively. We have interviewed over 140 key San Diego leaders and invited them to serve as ambassadors to the project by engaging them directly in the creation of a variety of innovative educational resources as well as serving as spokespersons for outreach activities. Our program has evolved from having only scientists, educators and community practitioners serve as presenters to strategically and deliberately engaging a mix of scientists, educators and decision makers as the conveyers of key messages. Our protocol for events includes preparing all speakers in advance, researching our audience, creating a script, immediate debriefs of each activity and a qualitative and quantitative assessment of each event. Two examples of this integrated approach will show how to engage decision-makers more deeply: (1) coastal flooding tour as a place-based activity and (2) impact videos that blend climate science, local personal stories and key messages from decision makers themselves. For climate change communication to be successful in the future, we will need creative and coordinated approaches.

  7. Effects of high latitude protected areas on bird communities under rapid climate change.

    Science.gov (United States)

    Santangeli, Andrea; Rajasärkkä, Ari; Lehikoinen, Aleksi

    2017-06-01

    Anthropogenic climate change is rapidly becoming one of the main threats to biodiversity, along with other threats triggered by human-driven land-use change. Species are already responding to climate change by shifting their distributions polewards. This shift may create a spatial mismatch between dynamic species distributions and static protected areas (PAs). As protected areas represent one of the main pillars for preserving biodiversity today and in the future, it is important to assess their contribution in sheltering the biodiversity communities, they were designated to protect. A recent development to investigate climate-driven impacts on biological communities is represented by the community temperature index (CTI). CTI provides a measure of the relative temperature average of a community in a specific assemblage. CTI value will be higher for assemblages dominated by warm species compared with those dominated by cold-dwelling species. We here model changes in the CTI of Finnish bird assemblages, as well as changes in species densities, within and outside of PAs during the past four decades in a large boreal landscape under rapid change. We show that CTI has markedly increased over time across Finland, with this change being similar within and outside PAs and five to seven times slower than the temperature increase. Moreover, CTI has been constantly lower within than outside of PAs, and PAs still support communities, which show colder thermal index than those outside of PAs in the 1970s and 1980s. This result can be explained by the higher relative density of northern species within PAs than outside. Overall, our results provide some, albeit inconclusive, evidence that PAs may play a role in supporting the community of northern species. Results also suggest that communities are, however, shifting rapidly, both inside and outside of PAs, highlighting the need for adjusting conservation measures before it is too late. © 2016 John Wiley & Sons Ltd.

  8. Response of carbon fluxes and climate to orbital forcing changes in the Community Climate System Model

    Science.gov (United States)

    Jochum, M.; Peacock, S.; Moore, J. K.; Lindsay, K. T.

    2009-12-01

    A global general circulation model coupled to an ocean ecosystem model is used to quantify the response of carbon fluxes and climate to changes in orbital forcing. Compared to the present-day simulation, the simulation with the Earth's orbital parameters from 115,000 years ago features significantly cooler northern high latitudes, but only moderately cooler southern high latitudes. This asymmetry is explained by a 30% reduction of the strength of the Atlantic Meridional Overturning Circulation that is caused by an increased Arctic sea-ice export and a resulting freshening of the North Atlantic. The strong northern high-latitude cooling and the direct insolation induced tropical warming lead to global shifts in precipitation and winds to the order of 10-20%. These climate shifts lead to regional differences in air-sea carbon fluxes of the same order. However, the differences in global net carbon fluxes are insignificant. This surprising result is due to several effects, two of which stand out: Firstly, colder sea surface temperature leads to a more effective solubility pump but also to increased sea-ice concentration which blocks air-sea exchange; and secondly, the weakening of Southern Ocean winds, which is predicted by some idealized studies, is small compared to its interannual variability.

  9. Differences in Certification and the Effect on Team Climate Among Community Health Workers in Texas.

    Science.gov (United States)

    Siemon, Mark; Kreglo, Brenna; Boursaw, Blake

    The purpose of this study was to compare team climate among Texas community health workers (CHWs)/promotoras who were certified by the 2 different methods: (a) completing a state-approved training program, and (b) providing evidence of work experience (grandfathering). Analysis of survey results found no significant differences in Team Climate Inventory scores between CHWs who were certified either through state-approved training or through work experience. This research provides some preliminary evidence in support of experience-based certification, but there continues to be a need for more research evaluating CHW certification requirements and the impact of state certification of CHWs on population health outcomes.

  10. Grasshopper community response to climatic change: variation along an elevational gradient.

    Science.gov (United States)

    Nufio, César R; McGuire, Chris R; Bowers, M Deane; Guralnick, Robert P

    2010-09-23

    The impacts of climate change on phenological responses of species and communities are well-documented; however, many such studies are correlational and so less effective at assessing the causal links between changes in climate and changes in phenology. Using grasshopper communities found along an elevational gradient, we present an ideal system along the Front Range of Colorado USA that provides a mechanistic link between climate and phenology. This study utilizes past (1959-1960) and present (2006-2008) surveys of grasshopper communities and daily temperature records to quantify the relationship between amount and timing of warming across years and elevations, and grasshopper timing to adulthood. Grasshopper communities were surveyed at four sites, Chautauqua Mesa (1752 m), A1 (2195 m), B1 (2591 m), and C1 (3048 m), located in prairie, lower montane, upper montane, and subalpine life zones, respectively. Changes to earlier first appearance of adults depended on the degree to which a site warmed. The lowest site showed little warming and little phenological advancement. The next highest site (A1) warmed a small, but significant, amount and grasshopper species there showed inconsistent phenological advancements. The two highest sites warmed the most, and at these sites grasshoppers showed significant phenological advancements. At these sites, late-developing species showed the greatest advancements, a pattern that correlated with an increase in rate of late-season warming. The number of growing degree days (GDDs) associated with the time to adulthood for a species was unchanged across the past and present surveys, suggesting that phenological advancement depended on when a set number of GDDs is reached during a season. Our analyses provide clear evidence that variation in amount and timing of warming over the growing season explains the vast majority of phenological variation in this system. Our results move past simple correlation and provide a stronger process

  11. Grasshopper community response to climatic change: variation along an elevational gradient.

    Directory of Open Access Journals (Sweden)

    César R Nufio

    2010-09-01

    Full Text Available The impacts of climate change on phenological responses of species and communities are well-documented; however, many such studies are correlational and so less effective at assessing the causal links between changes in climate and changes in phenology. Using grasshopper communities found along an elevational gradient, we present an ideal system along the Front Range of Colorado USA that provides a mechanistic link between climate and phenology.This study utilizes past (1959-1960 and present (2006-2008 surveys of grasshopper communities and daily temperature records to quantify the relationship between amount and timing of warming across years and elevations, and grasshopper timing to adulthood. Grasshopper communities were surveyed at four sites, Chautauqua Mesa (1752 m, A1 (2195 m, B1 (2591 m, and C1 (3048 m, located in prairie, lower montane, upper montane, and subalpine life zones, respectively. Changes to earlier first appearance of adults depended on the degree to which a site warmed. The lowest site showed little warming and little phenological advancement. The next highest site (A1 warmed a small, but significant, amount and grasshopper species there showed inconsistent phenological advancements. The two highest sites warmed the most, and at these sites grasshoppers showed significant phenological advancements. At these sites, late-developing species showed the greatest advancements, a pattern that correlated with an increase in rate of late-season warming. The number of growing degree days (GDDs associated with the time to adulthood for a species was unchanged across the past and present surveys, suggesting that phenological advancement depended on when a set number of GDDs is reached during a season.Our analyses provide clear evidence that variation in amount and timing of warming over the growing season explains the vast majority of phenological variation in this system. Our results move past simple correlation and provide a stronger

  12. Innovative Strategies for Building Community Resilience: Lessons from the Frontlines of Climate Change Capacity-Building

    Science.gov (United States)

    Abrash Walton, A.

    2017-12-01

    There is broad scientific consensus that climate change is occurring; however, there is limited implementation of measures to create resilient local communities (Abrash Walton, Simpson, Rhoades, & Daniels, 2016; Adger, Arnell, & Tompkins, 2005; Glavovic & Smith, 2014; Moser & Ekstrom, 2010; Picketts, Déry, & Curry, 2014). Communities that are considered climate leaders in the United States may have adopted climate change plans, yet few have actually implemented the policies, projects and recommendations in those plans. A range of innovative, education strategies have proven effective in building the capacity of local decision makers to strengthen community resilience. This presentation draws on the results of two years of original research regarding the information and support local decision makers require for effective action. Findings are based on information from four datasets, with more than 600 respondents from 48 U.S. states and 19 other countries working on local adaptation in a range of capacities. These research results can inform priority setting for public policy, budget setting, and action as well as private sector funding and investment. The presentation will focus, in particular, on methods and results of a pioneering Facilitated Community of Practice model (FCoP) for building climate preparedness and community resilience capacity, among local-level decision makers. The FCoP process includes group formation and shared capacity building experience. The process can also support collective objective setting and creation of structures and processes for ongoing sustainable collaboration. Results from two FCoPs - one fully online and the other hybrid - suggest that participants viewed the interpersonal and technical assistance elements of the FCoP as highly valuable. These findings suggest that there is an important need for facilitated networking and other relational aspects of building capacity among those advancing resilience at the local level.

  13. Transdisciplinarity Within the North American Climate Change Mitigation Research Community, Specifically the Carbon Dioxide Capture, Transportation, Utilization and Storage Community

    Science.gov (United States)

    Carpenter, Steven Michael

    This research investigates the existence of and potential challenges to the development of a transdisciplinary approach to the climate change mitigation technology research focusing on carbon dioxide capture, utilization, and storage (CCUS) in North America. The unprecedented challenge of global climate change is one that invites a transdisciplinary approach. The challenge of climate change mitigation requires an understanding of multiple disciplines, as well as the role that complexity, post-normal or post-modern science, and uncertainty play in combining these various disciplines. This research followed the general discourse of transdisciplinarity as described by Klein (2014) and Augsburg (2016) which describe it as using transcendence, problem solving, and transgression to address wicked, complex societal problems, and as taught by California School of Transdisciplinarity, where the research focuses on sustainability in the age of post-normal science (Funtowicz & Ravetz, 1993). Through the use of electronic surveys and semi-structured interviews, members of the North American climate change mitigation research community shared their views and understanding of transdisciplinarity (Kvale & Brinkmann, 2009). The data indicate that much of the research currently being conducted by members of the North American CCUS research community is in fact transdisciplinary. What is most intriguing is the manner in which researchers arrived at their current understanding of transdisciplinarity, which is in many cases without any foreknowledge or use of the term transdisciplinary. The data reveals that in many cases the researchers now understand that this transdisciplinary approach is borne out of personal beliefs or emotion, social or societal aspects, their educational process, the way in which they communicate, and in most cases, the CCUS research itself, that require this transdisciplinary approach, but had never thought about giving it a name or understanding its origin or

  14. Climate Feedback: Bringing the Scientific Community to Provide Direct Feedback on the Credibility of Climate Media Coverage

    Science.gov (United States)

    Vincent, E. M.; Matlock, T.; Westerling, A. L.

    2015-12-01

    While most scientists recognize climate change as a major societal and environmental issue, social and political will to tackle the problem is still lacking. One of the biggest obstacles is inaccurate reporting or even outright misinformation in climate change coverage that result in the confusion of the general public on the issue.In today's era of instant access to information, what we read online usually falls outside our field of expertise and it is a real challenge to evaluate what is credible. The emerging technology of web annotation could be a game changer as it allows knowledgeable individuals to attach notes to any piece of text of a webpage and to share them with readers who will be able to see the annotations in-context -like comments on a pdf.Here we present the Climate Feedback initiative that is bringing together a community of climate scientists who collectively evaluate the scientific accuracy of influential climate change media coverage. Scientists annotate articles sentence by sentence and assess whether they are consistent with scientific knowledge allowing readers to see where and why the coverage is -or is not- based on science. Scientists also summarize the essence of their critical commentary in the form of a simple article-level overall credibility rating that quickly informs readers about the credibility of the entire piece.Web-annotation allows readers to 'hear' directly from the experts and to sense the consensus in a personal way as one can literaly see how many scientists agree with a given statement. It also allows a broad population of scientists to interact with the media, notably early career scientists.In this talk, we will present results on the impacts annotations have on readers -regarding their evaluation of the trustworthiness of the information they read- and on journalists -regarding their reception of scientists comments.Several dozen scientists have contributed to this effort to date and the system offers potential to

  15. Creating a Partnering Community Aimed to Foster Climate Literacy in the Southeastern United States

    Science.gov (United States)

    Rutherford, D.; McNeal, K. S.; Smith, R.; Hare, D.; Nair, U. S.

    2011-12-01

    The Climate Literacy Partnership in the Southeast (CLiPSE) is a part of the Climate Change Education Program supported by the National Science Foundation (http://CLiPSE-project.org). The established CLiPSE partnership is dedicated to improving climate literacy in the southeast through crafting a shared vision and strategic plan among stakeholders that promotes scientific formal and informal educational resources, materials and programs; a diverse network of key partnering organizations throughout the Southeastern United States (SE US); and effective public dialogues that address diverse learners and audiences and supports learning of climate, climate change, and its relevance upon human and environmental systems. The CLiPSE project has been successful in creating partnerships with more than fifty key stakeholders that stem from a few key publics such as agriculture, education, leisure, religious organizations, and culturally diverse communities. These key publics in the SE US frequently consist of individuals that place great trust in local, private efforts, and CLiPSE has realized the importance of the role of the partnering organizations in providing information through a trusted source. A second unique characteristic of the SE US is the predominately conservative and Protestant citizenry in the region. Working with and through these communities enhances climate change education outreach to this citizenry. The CLiPSE project rests on solid climate science and learning science research in order to formulate an effective plan with desired learning outcomes of critical thinking and civil conversation through effective communication strategies. This paper will present the CLiPSE model in reaching the key publics that traditionally hold ideologies that are traditionally perceived as incompatible with climate change science. We will present the strategies utilized to bring together experts and researchers in climate science, learning science, and social science with

  16. Spatial and body-size dependent response of marine pelagic communities to projected global climate change.

    Science.gov (United States)

    Lefort, Stelly; Aumont, Olivier; Bopp, Laurent; Arsouze, Thomas; Gehlen, Marion; Maury, Olivier

    2015-01-01

    Temperature, oxygen, and food availability directly affect marine life. Climate models project a global warming of the ocean's surface (~+3 °C), a de-oxygenation of the ocean's interior (~-3%) and a decrease in total marine net primary production (~-8%) under the 'business as usual' climate change scenario (RCP8.5). We estimated the effects of these changes on biological communities using a coupled biogeochemical (PISCES)--ecosystems (APECOSM) model forced by the physical outputs of the last generation of the IPSL-CM Earth System Model. The APECOSM model is a size-structured bio-energetic model that simulates the 3D dynamical distributions of three interactive pelagic communities (epipelagic, mesopelagic, and migratory) under the effects of multiple environmental factors. The PISCES-APECOSM model ran from 1850 to 2100 under historical forcing followed by RCP8.5. Our RCP8.5 simulation highlights significant changes in the spatial distribution, biomass, and maximum body-size of the simulated pelagic communities. Biomass and maximum body-size increase at high latitude over the course of the century, reflecting the capacity of marine organisms to respond to new suitable environment. At low- and midlatitude, biomass and maximum body-size strongly decrease. In those regions, large organisms cannot maintain their high metabolic needs because of limited and declining food availability. This resource reduction enhances the competition and modifies the biomass distribution among and within the three communities: the proportion of small organisms increases in the three communities and the migrant community that initially comprised a higher proportion of small organisms is favored. The greater resilience of small body-size organisms resides in their capacity to fulfill their metabolic needs under reduced energy supply and is further favored by the release of predation pressure due to the decline of large organisms. These results suggest that small body-size organisms might be

  17. A new method for data assimilation: the back and forth nudging algorithm

    OpenAIRE

    Auroux , Didier; Blum , Jacques; Nodet , Maëlle

    2013-01-01

    International audience; In this paper, we propose an improvement to the Back and Forth Nudging algorithm for handling diffusion in the context of geophysical data assimilation. We detail the Diffusive Back and Forth Nudging algorithm, in which the sign of the diffusion term is changed in the backward integrations. We study the convergence of this algorithm, in particular for linear transport equations.

  18. A Model for Teaching a Climate Change Elective Science Course at the Community College Level

    Science.gov (United States)

    Mandia, S. A.

    2012-12-01

    The impact of global climate change is far-reaching, both for humanity and for the environment. It is essential that our students be provided a strong scientific background for the role of natural and human caused climate change so that they are better prepared to become involved in the discussion. Here the author reveals a successful model designed for use with a diverse student body at the community college level. Teaching strategies beyond the traditional lecture and exam style include: web-based resources such as static websites along with dynamic blogging tools, post-lecture cooperative learning review sessions, weekly current event research projects, use of rubrics to assist students in their own project evaluation before submission, and a research paper utilizing the Skeptical Science website to examine the validity of the most common climate change myths.

  19. Climate-driven changes in functional biogeography of Arctic marine fish communities.

    Science.gov (United States)

    Frainer, André; Primicerio, Raul; Kortsch, Susanne; Aune, Magnus; Dolgov, Andrey V; Fossheim, Maria; Aschan, Michaela M

    2017-11-14

    Climate change triggers poleward shifts in species distribution leading to changes in biogeography. In the marine environment, fish respond quickly to warming, causing community-wide reorganizations, which result in profound changes in ecosystem functioning. Functional biogeography provides a framework to address how ecosystem functioning may be affected by climate change over large spatial scales. However, there are few studies on functional biogeography in the marine environment, and none in the Arctic, where climate-driven changes are most rapid and extensive. We investigated the impact of climate warming on the functional biogeography of the Barents Sea, which is characterized by a sharp zoogeographic divide separating boreal from Arctic species. Our unique dataset covered 52 fish species, 15 functional traits, and 3,660 stations sampled during the recent warming period. We found that the functional traits characterizing Arctic fish communities, mainly composed of small-sized bottom-dwelling benthivores, are being rapidly replaced by traits of incoming boreal species, particularly the larger, longer lived, and more piscivorous species. The changes in functional traits detected in the Arctic can be predicted based on the characteristics of species expected to undergo quick poleward shifts in response to warming. These are the large, generalist, motile species, such as cod and haddock. We show how functional biogeography can provide important insights into the relationship between species composition, diversity, ecosystem functioning, and environmental drivers. This represents invaluable knowledge in a period when communities and ecosystems experience rapid climate-driven changes across biogeographical regions. Copyright © 2017 the Author(s). Published by PNAS.

  20. Perceptions of Climate Change and the Potential for Adaptation in a Rural Community in Limpopo Province, South Africa

    Directory of Open Access Journals (Sweden)

    Sejabaledi A. Rankoana

    2016-08-01

    Full Text Available Perceptions of climate change by rural communities are centered on observations of variations in temperature and rainfall patterns supported by observations and projections on climate alterations in the form of increased temperatures and scarce rainfall by scientists worldwide. The present study documented perceptions of climate variation and the community’s ability to adapt to climate change hazards threatening the production of subsistence crops. Data were collected through interactions with 100 participants. In the study, climate change is explained as variations in temperature and rainfall patterns which resulted in excessive heat, erratic rainfall patterns and drought negatively impacting on subsistence crop production. Community members have the potential to limit the impacts of climate hazards on subsistence crop production. The negative impacts of climate hazards are limited by community members’ indigenous knowledge of rainfall prediction, the seasons, crop diversification and mixed cropping. Mulching and the application of kraal manure improve the soil structure and fertility to reduce crop failure. These adaptation measures are resilient to the negative impact of climate hazards and may be helpful in the development of adaptation policies to assist rural communities vulnerable to climate change hazards.

  1. Climate Change Community Outreach Initiative (CCCOI)--A Gulf of Mexico Education Partnership

    Science.gov (United States)

    Walker, S. H.; Stone, D.; Schultz, T.; LeBlanc, T.; Miller-Way, T.; Estrada, P.

    2012-12-01

    This five-year, Gulf of Mexico regional collaborative is funded by the National Oceanic and Atmospheric Administration (NOAA)-Office of Education and represents a successful grant submitted by the FL Aquarium as a member of the Association of Zoos and Aquariums (AZA). This climate change effort focuses on enhanced content knowledge and the manner in which personal actions and behaviors contribute to sustainability and stewardship. Diverse audiences—represented by visitors at the informal centers listed above—have been and are involved in the following activities: social networking via responses to climate change surveys; an "ocean and climate change defender" computer game, specifically designed for this project; an average of 10 annual outreach events implemented by these facilities at community festivals; climate change lectures provided to family audiences; and professional development workshops for informal and formal educators. This presentation will provide opportunities and challenges encountered during the first two years of implementation. This regional effort is also aligned with both the Ocean Literacy: Essential Principles and the Climate Literacy: Essential Principles. Additional partners include: Normandeau Associates, Conservation Enterprises, Unlimited, and Mindclay Creative.

  2. Climate perceptions of local communities validated through scientific signals in Sikkim Himalaya, India.

    Science.gov (United States)

    Sharma, R K; Shrestha, D G

    2016-10-01

    Sikkim, a tiny Himalayan state situated in the north-eastern region of India, records limited research on the climate change. Understanding the changes in climate based on the perceptions of local communities can provide important insights for the preparedness against the unprecedented consequences of climate change. A total of 228 households in 12 different villages of Sikkim, India, were interviewed using eight climate change indicators. The results from the public opinions showed a significant increase in temperature compared to a decade earlier, winters are getting warmer, water springs are drying up, change in concept of spring-water recharge (locally known as Mul Phutnu), changes in spring season, low crop yields, incidences of mosquitoes during winter, and decrease in rainfall in last 10 years. In addition, study also showed significant positive correlations of increase in temperature with other climate change indicators viz. spring-water recharge concept (R (2) = 0.893), warmer winter (R (2) = 0.839), drying up of water springs (R (2) = 0.76), changes in spring season (R (2) = 0.68), low crop yields (R (2) = 0.68), decrease in rainfall (R (2) = 0.63), and incidences of mosquitoes in winter (R (2) = 0.50). The air temperature for two meteorological stations of Sikkim indicated statistically significant increasing trend in mean minimum temperature and mean minimum winter temperature (DJF). The observed climate change is consistent with the people perceptions. This information can help in planning specific adaptation strategies to cope with the impacts of climate change by framing village-level action plan.

  3. Climate change and maize agriculture among Chepang communities of Nepal: A review

    Directory of Open Access Journals (Sweden)

    Pratiksha Sharma

    2017-12-01

    Full Text Available This paper reviews recent literature concerning effects of climate change on agriculture and its agricultural adaptation strategies, climate change impacts on Chepang communities and their maize farming. Climate change is perhaps the most serious environmental threat to agricultural productivity. Change in temperature and precipitation specially has greater influence on crop growth and productivity and most of these effect are found to be adverse. Climate change has been great global threat with global temperature rise by 0.83 °C and global sea level rise by 0.19 m. Poor countries of the world are more vulnerable to changing climate due to different technological, institutional and resource constraints. In context of Nepal, practices like tree plantation, lowering numbers of livestock, shifting to off farm activities, sloping agricultural land technology (SALT and shifting cultivation are most common coping strategies. Chepang, one of the most backward indigenous ethnic groups of Nepal are also found to perceive change in the climate. Perception and adaptation strategies followed by different farmers of world including Chepang is mainly found to be effected by household head’s age, size of farm, family size, assessment to credit, information and extension service, training received and transportation. Maize is second most important crop in Nepal in which increase in temperature is favorable in Mountain and its yield is negatively influenced by increase in summer rain and maximum temperature. Local knowledge of indigenous people provides new insights into the phenomenon that has not yet been scientifically researched. So, government should combine this perceptive with scientific climate scenario and should conduct activities in term of adoption strategies and policies to insist targeted and marginalized farmers.

  4. Climate Effects on Plant Range Distributions and Community Structure of Pacific Northwest Prairies

    Energy Technology Data Exchange (ETDEWEB)

    Bridgham, Scott D. [Univ. of Oregon, Eugene, OR (United States); Johnson, Bart [Univ. of Oregon, Eugene, OR (United States)

    2013-09-26

    was negatively impacted by increased temperatures, but for species planted north of their current range, increased temperature was neutral. However, for surviving plants climate treatments and site-specific factors (e.g., nutrient availability) were the strongest predictors of plant growth and seed set. When recruitment and plant growth are considered together, increased temperatures are negative within a species current range but beyond this range they become positive. Germination was the most critical stage for plant response across all sites and climate treatments. Our results underscore the importance of including plant vital rates into models that are examining climate change effects on plant ranges. Warming altered plant community composition, decreased diversity, and increased total cover, with warmed northern communities over time becoming more like ambient communities further south. In particular, warming increased the cover of annual introduced species, suggesting that the observed biogeographic pattern of increasing invasion by this plant functional group in US West Coast prairies as one moves further south is at least in part due to climate. Our results suggest that with the projected increase in drought severity with climate change, Pacific Northwest prairies may face an increase of invasion by annuals, similar to what has been observed in California, resulting in novel species assemblages and shifts in functional composition, which in turn may alter ecosystem function. Warming generally increased nutrient availability and plant productivity across all sites. The seasonality of soil respiration responses to heating were strongly dependent on the Mediterranean climate gradient in the PNW, with heating responses being generally positive during periods of adequate soil moisture and becoming neutral to negative during periods of low soil moisture. The asynchrony between temperature and precipitation may make soils less sensitive to warming. Precipitation

  5. Approaches to 30% Energy Savings at the Community Scale in the Hot-Humid Climate

    Energy Technology Data Exchange (ETDEWEB)

    Thomas-Rees, S.; Beal, D.; Martin, E.; Fonorow, K.

    2013-03-01

    BA-PIRC has worked with several community-scale builders within the hot humid climate zone to improve performance of production, or community scale, housing. Tommy Williams Homes (Gainesville, FL), Lifestyle Homes (Melbourne, FL), and Habitat for Humanity (various locations, FL) have all been continuous partners of the BA Program and are the subjects of this report to document achievement of the Building America goal of 30% whole house energy savings packages adopted at the community scale. The scope of this report is to demonstrate achievement of these goals though the documentation of production-scale homes built cost-effectively at the community scale, and modeled to reduce whole-house energy use by 30% in the Hot Humid climate region. Key aspects of this research include determining how to evolve existing energy efficiency packages to produce replicable target savings, identifying what builders' technical assistance needs are for implementation and working with them to create sustainable quality assurance mechanisms, and documenting the commercial viability through neutral cost analysis and market acceptance. This report documents certain barriers builders overcame and the approaches they implemented in order to accomplish Building America (BA) Program goals that have not already been documented in previous reports.

  6. A dynamic modelling approach for estimating critical loads of nitrogen based on plant community changes under a changing climate

    International Nuclear Information System (INIS)

    Belyazid, Salim; Kurz, Dani; Braun, Sabine; Sverdrup, Harald; Rihm, Beat; Hettelingh, Jean-Paul

    2011-01-01

    A dynamic model of forest ecosystems was used to investigate the effects of climate change, atmospheric deposition and harvest intensity on 48 forest sites in Sweden (n = 16) and Switzerland (n = 32). The model was used to investigate the feasibility of deriving critical loads for nitrogen (N) deposition based on changes in plant community composition. The simulations show that climate and atmospheric deposition have comparably important effects on N mobilization in the soil, as climate triggers the release of organically bound nitrogen stored in the soil during the elevated deposition period. Climate has the most important effect on plant community composition, underlining the fact that this cannot be ignored in future simulations of vegetation dynamics. Harvest intensity has comparatively little effect on the plant community in the long term, while it may be detrimental in the short term following cutting. This study shows: that critical loads of N deposition can be estimated using the plant community as an indicator; that future climatic changes must be taken into account; and that the definition of the reference deposition is critical for the outcome of this estimate. - Research highlights: → Plant community changes can be used to estimate critical loads of nitrogen. → Climate change is decisive for future changes of geochemistry and plant communities. → Climate change cannot be ignored in estimates of critical loads. → The model ForSAFE-Veg was successfully used to set critical loads of nitrogen. - Plant community composition can be used in dynamic modelling to estimate critical loads of nitrogen deposition, provided the appropriate reference deposition, future climate and target plant communities are defined.

  7. Climate responsive and safe earthquake construction: a community building a school

    Directory of Open Access Journals (Sweden)

    Hari Darshan

    2011-10-01

    Full Text Available This article outlines environment friendly features, climate responsive features and construction features of a prototype school building constructed using green building technology. The school building has other additional features such as earthquake resistant construction, use of local materials and local technology. The construction process not only establishes community ownership, but also facilitates dissemination of the technology to the communities. Schools are effective media for raising awareness, disseminating technology and up-scaling the innovative approach. The approach is cost effective and sustainable for long-term application of green building technology. Furthermore, this paper emphasizes that such construction technology will be instrumental to build culture of safety in communities and reduce disaster risk.

  8. Approaches to 30 Percent Energy Savings at the Community Scale in the Hot-Humid Climate

    Energy Technology Data Exchange (ETDEWEB)

    Thomas-Rees, S. [Building America Partnership for Improved Residential Construction (BA-PIRC), Cocoa, FL (United States); Beal, D. [Building America Partnership for Improved Residential Construction (BA-PIRC), Cocoa, FL (United States); Martin, E. [Building America Partnership for Improved Residential Construction (BA-PIRC), Cocoa, FL (United States)

    2013-03-01

    BA-PIRC has worked with several community-scale builders within the hot humid climate zone to improve performance of production, or community scale, housing. Tommy Williams Homes (Gainesville, FL), Lifestyle Homes (Melbourne, FL), and Habitat for Humanity (various locations, FL) have all been continuous partners of the Building America program and are the subjects of this report to document achievement of the Building America goal of 30% whole house energy savings packages adopted at the community scale. Key aspects of this research include determining how to evolve existing energy efficiency packages to produce replicable target savings, identifying what builders' technical assistance needs are for implementation and working with them to create sustainable quality assurance mechanisms, and documenting the commercial viability through neutral cost analysis and market acceptance. This report documents certain barriers builders overcame and the approaches they implemented in order to accomplish Building America (BA) Program goals that have not already been documented in previous reports.

  9. An Analysis of the Relationship between Select Organizational Climate Factors and Job Satisfaction Factors as Reported by Community College Personnel

    Science.gov (United States)

    San Giacomo, Rose-Marie Carla

    2011-01-01

    The purpose of this study was to investigate the overall satisfaction with organizational climate factors across seven studies of various levels of community college personnel. A secondary purpose was to determine if there was a significant relationship between satisfaction with organizational climate factors and the importance of job satisfaction…

  10. A community based approach to improving resilience of forests and water resources: A local and regional climate adaptation methodology

    Science.gov (United States)

    Toby Thaler; Gwen Griffith; Nancy Gilliam

    2014-01-01

    Forest-based ecosystem services are at risk from human-caused stressors, including climate change. Improving governance and management of forests to reduce impacts and increase community resilience to all stressors is the objective of forest-related climate change adaptation. The Model Forest Policy Program (MFPP) has applied one method designed to meet this objective...

  11. Making sense of climate change risks and responses at the community level: A cultural-political lens

    Directory of Open Access Journals (Sweden)

    Ainka A. Granderson

    2014-01-01

    Full Text Available How to better assess, communicate and respond to risks from climate change at the community level have emerged as key questions within climate risk management. Recent research to address these questions centres largely on psychological factors, exploring how cognition and emotion lead to biases in risk assessment. Yet, making sense of climate change and its responses at the community level demands attention to the cultural and political processes that shape how risk is conceived, prioritized and managed. I review the emergent literature on risk perceptions and responses to climate change using a cultural-political lens. This lens highlights how knowledge, meaning and power are produced and negotiated across multiple stakeholders at the community level. It draws attention to the different ways of constructing climate change risks and suggests an array of responses at the community level. It further illustrates how different constructions of risk intersect with agency and power to shape the capacity for response and collective action. What matters are whose constructions of risk, and whose responses, count in decision-making. I argue for greater engagement with the interpretive social sciences in research, practice and policy. The interpretive social sciences offer theories and tools for capturing and problematising the ways of knowing, sense-making and mobilising around risks from climate change. I also highlight the importance of participatory approaches in incorporating the multiplicity of interests at the community level into climate risk management in fair, transparent and culturally appropriate ways.

  12. Using the FORTH Language to Develop an ICU Data Acquisition System

    Science.gov (United States)

    Goldberg, Arthur; SooHoo, Spencer L.; Koerner, Spencer K.; Chang, Robert S. Y.

    1980-01-01

    This paper describes a powerful programming tool that should be considered as an alternative to the more conventional programming languages now in use for developing medical computer systems. Forth provides instantaneous response to user commands, rapid program execution and tremendous programming versatility. An operating system and a language in one carefully designed unit, Forth is well suited for developing data acquisition systems and for interfacing computers to other instruments. We present some of the general features of Forth and describe its use in implementing a data collection system for a Respiratory Intensive Care Unit (RICU).

  13. Whole Community Resilience: Engaging Multiple Sectors with the Coastal Community Resilience Index and the Climate and Resilience Community of Practice in the Gulf of Mexico

    Science.gov (United States)

    Sempier, T.

    2017-12-01

    Communicating risk due to flooding, sea level rise, storm surge, and other natural hazards is a complex task when attempting to build resilience in coastal communities. There are a number of challenges related to preparing for, responding to, and recovering from coastal storms. Successful resilience planning must include a wide range of sectors including, but not limited to local government, business, non-profit, religious, academia, and healthcare. Years of experience working with communities in the Gulf of Mexico has helped create a process that is both inclusive and effective at bringing the right people to the table and gaining momentum towards resilience efforts. The Coastal Community Resilience Index (CRI), a self-assessment for community leaders, has been implemented in 54 Gulf communities with funding that provides small grant awards to help communities take action to address gaps and vulnerabilities identified in the assessment process. To maintain momentum with resilience actions, the Gulf Climate and Resilience Community of Practice (CoP) encourages local municipality participants to share lessons learned and best practices from their implementation projects in an annual symposium. Recently, both graduate and undergraduate students have been exposed to the CRI and CoP as avenues to work through solutions to complex problems at the local level. In addition, a new generation of high school students has been introduced to the CRI. Their engagement in the process is building a more informed citizenry that will take on the leadership and decision-making roles in the future. Investing in multiple age groups and sectors through the CRI and CoP is building capacity for whole community resilience in the Gulf of Mexico. This presentation will focus on methods that have been successful in the Gulf of Mexico for creating effective change in local municipalities towards resilience actions. Discussion will include decision support tools for engaging local

  14. Collaboration in Action: Working with Indigenous peoples and Tribal communities to navigate climate decision support organizations and programs to assist Tribal communities in addressing climate resilience and sustainability efforts

    Science.gov (United States)

    Caldwell, C. M.

    2017-12-01

    Creating opportunities and appropriate spaces with Tribal communities to engage with western scientists on climate resiliency is a complex endeavor. The shifting of seasons predicted by climate models and the resulting impacts that climate scientists investigate often verify what Traditional knowledge has already revealed to Indigenous peoples as they continue to live on, manage, and care for the environment they have been a part of for thousands of years. However, this convergence of two ways of knowing about our human environmental relationships is often difficult to navigate because of the ongoing impacts of colonialism and the disadvantage that Tribes operate from as a result. Day to day priorities of the Tribe are therefore reflective of more immediate issues rather than specifically considering the uncertainties of climate change. The College of Menominee Nation Sustainable Development Institute has developed a climate resilience program aimed at combining western science methodologies with indigenous ways of knowing as a means to assist Tribes in building capacity to address climate and community resiliency through culturally appropriate activities led by the Tribes. The efforts of the Institute, as guided by the SDI theoretical model of sustainability, have resulted in a variety of research, education and outreach projects that have provided not only the Menominee community, but other Tribal communities with opportunities to address climate resiliency as they see fit.

  15. An Accelerated Path to Assisting At-Risk Communities Adapt to Climate Change

    Science.gov (United States)

    Socci, A.

    2010-12-01

    countries need, what and where the opportunities are to assist countries and communities in adapting to climate change, and how might one get started? One of the most effective and efficient ways of identifying community/country needs, assistance opportunities and community/country entry points is to search the online archive of National Adaptation Programmes of Action (NAPAs) that many of the least developed countries have already assembled in conformance with the UNFCCC process. Better still perhaps, consider focusing on community-scale assessments and adaptation action plans that have already been compiled by various communities seeking assistance as national plans are unlikely to capture the nuances and variability of community needs. Unlike NAPAs, such plans are not archived in a central location. Yet clearly, community-scale plans in particular, not only represent an assessment of community needs and plans, presumptively crafted by affected communities, but also represent opportunities to align assistance resources and capacity with community needs, providing the basis for engaging affected communities in an accelerated process. Simply stated, take full advantage of the multitude of assessment and planning efforts that communities have already engaged in on their own behalf.

  16. Grassland communities in the USA and expected trends associated with climate change

    Directory of Open Access Journals (Sweden)

    David Paul Belesky

    2016-06-01

    Full Text Available Grasslands, including managed grazinglands, represent one of the largest ecosystems on the planet. Managed grazinglands in particular tend to occupy marginal climatic and edaphic resource zones, thus exacerbating responses in net primary productivity relative to changes in system resources, including anthropogenic factors. Climate dynamism, as evident from the fossil record, appears to be a putative feature of our planet. Recent global trends in temperature and precipitation patterns seem to differ from long-term patterns and have been associated with human activities linked with increased greenhouse gas emissions; specifically CO2. Thus grasslands, with their diverse floristic components, and interaction with and dependence upon herbivores, have a remarkable ability to persist and sustain productivity in response to changing resource conditions. This resistance and resilience to change, including uncertain long-term weather conditions, establishes managed grasslands as an important means of protecting food security. We review responses of grassland communities across regions of the USA and consider the responses in productivity and system function with respect to climatic variation. Research is needed to identify plant resources and management technologies that strengthen our ability to capitalize upon physiological and anatomical features prevalent in grassland communities associated with varying growing conditions.

  17. Best Practices in Weathering Climate Risks: Advancing Corporate and Community Resilience

    Science.gov (United States)

    Klima, K.; Winkelman, S.

    2012-12-01

    As the annual costs of severe weather events in the US grow into the billions of dollars, companies and communities are examining how best to plan ahead to protect their assets and bolster their bottom line. The Center for Clean Air Policy's Weathering Climate Risks program aims to help cities and companies enhance resilience to the economic impacts of severe weather and a changing climate. This presentation will highlight three communication techniques aimed at different types of audiences such as businesses, policymakers, the media, and society. First, we find that although planning for natural hazards now saves money later, stakeholders must fi¬nd their own self-interest if they are going to engage in a solution. Thus we research best practices and hold informational, off-the-record interviews to better understand the different stakeholders' perspectives, key concerns, and issues surrounding adaptation, resilience, and/or hazard mitigation. Diverse stakeholders find it attractive when a solution has multiple co-benefits such as climate resilience, greenhouse gas reduction, reduced costs, and social benefits. Second, we use off-the-record dialogues emphasizing candid public-private discussion to promote collaborative problem solving. Our high-level workshops typically consist of 30-40 scientists, companies, communities, and policymakers. We begin with presenting background material, such as geographic information systems (GIS) maps. Then we move to informal conservation. Topics include ideas such as "Ask the Climate Question": How will infrastructure, land development, and investment decisions affect GHG emissions and resilience to climate change impacts? We find these dialogues help stakeholders share their perspectives and advance public-private collaboration on climate resilience to protect critical urban infrastructure, ensure business continuity, and increase extreme weather resilience. Third, we find that communication to the general public must capture

  18. Energy and climate protection management, the key to higher energy efficiency in communities; Energie- und Klimaschutzmanagement. Der Schluessel zu mehr Energieeffizienz in Kommunen

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-15

    The brochure explains the dena energy and climate protection management concepts and presents tools for long-term reduction of energy consumption in communities. It presents valuable information for better organization of internal processes in community administrations and for the management of energy efficiency measures. The dena energy and climate protection management concept is developed in cooperation with model communities of different sizes since 2010. All interested communities can use this brochure as a guide for initiating effective climate protection measures.

  19. Insect community responses to climate and weather across elevation gradients in the Sagebrush Steppe, eastern Oregon

    Science.gov (United States)

    Pilliod, David S.; Rohde, Ashley T.

    2016-11-17

    Executive SummaryIn this study, the U.S. Geological Survey investigated the use of insects as bioindicators of climate change in sagebrush steppe shrublands and grasslands in the Upper Columbia Basin. The research was conducted in the Stinkingwater and Pueblo mountain ranges in eastern Oregon on lands administered by the Bureau of Land Management.We used a “space-for-time” sampling design that related insect communities to climate and weather along elevation gradients. We analyzed our insect dataset at three levels of organization: (1) whole-community, (2) feeding guilds (detritivores, herbivores, nectarivores, parasites, and predators), and (3) orders within nectarivores (i.e., pollinators). We captured 59,517 insects from 176 families and 10 orders at the Pueblo Mountains study area and 112,305 insects from 185 families and 11 orders at the Stinkingwater Mountains study area in 2012 and 2013. Of all the individuals captured at the Stinkingwater Mountains study area, 77,688 were from the family Cecidomyiidae (Diptera, gall gnats).We found that the composition of insect communities was associated with variability in long-term (30-yr) temperature and interannual fluctuations in temperature. We found that captures of certain fly, bee, moth, and butterfly pollinators were more strongly associated with some climate and vegetation variables than others. We found that timing of emergence, as measured by first detection of families, was associated with elevation. When analyzed by feeding guilds, we found that all guilds emerged later at high elevations except for detritivores, which emerged earlier at high elevations. The abundance of most taxa varied through time, mostly in response to temperature and precipitation. Of the pollinators, bees (particularly, Halictidae and Megachilidae) peaked in abundance in late June and early July, whereas butterflies and moths peaked in August. Flies peaked in abundance in July.Overall, our interpretation of these patterns is that

  20. Comparison of three ice cloud optical schemes in climate simulations with community atmospheric model version 5

    Science.gov (United States)

    Zhao, Wenjie; Peng, Yiran; Wang, Bin; Yi, Bingqi; Lin, Yanluan; Li, Jiangnan

    2018-05-01

    A newly implemented Baum-Yang scheme for simulating ice cloud optical properties is compared with existing schemes (Mitchell and Fu schemes) in a standalone radiative transfer model and in the global climate model (GCM) Community Atmospheric Model Version 5 (CAM5). This study systematically analyzes the effect of different ice cloud optical schemes on global radiation and climate by a series of simulations with a simplified standalone radiative transfer model, atmospheric GCM CAM5, and a comprehensive coupled climate model. Results from the standalone radiative model show that Baum-Yang scheme yields generally weaker effects of ice cloud on temperature profiles both in shortwave and longwave spectrum. CAM5 simulations indicate that Baum-Yang scheme in place of Mitchell/Fu scheme tends to cool the upper atmosphere and strengthen the thermodynamic instability in low- and mid-latitudes, which could intensify the Hadley circulation and dehydrate the subtropics. When CAM5 is coupled with a slab ocean model to include simplified air-sea interaction, reduced downward longwave flux to surface in Baum-Yang scheme mitigates ice-albedo feedback in the Arctic as well as water vapor and cloud feedbacks in low- and mid-latitudes, resulting in an overall temperature decrease by 3.0/1.4 °C globally compared with Mitchell/Fu schemes. Radiative effect and climate feedback of the three ice cloud optical schemes documented in this study can be referred for future improvements on ice cloud simulation in CAM5.

  1. Climate impacts on bird and plant communities from altered animal-plant interactions

    Science.gov (United States)

    Martin, Thomas E.; Maron, John L.

    2012-01-01

    The contribution of climate change to declining populations of organisms remains a question of outstanding concern. Much attention to declining populations has focused on how changing climate drives phenological mismatches between animals and their food. Effects of climate on plant communities may provide an alternative, but particularly powerful, influence on animal populations because plants provide their habitats. Here, we show that abundances of deciduous trees and associated songbirds have declined with decreasing snowfall over 22 years of study in montane Arizona, USA. We experimentally tested the hypothesis that declining snowfall indirectly influences plants and associated birds by allowing greater over-winter herbivory by elk (Cervus canadensis). We excluded elk from one of two paired snowmelt drainages (10 ha per drainage), and replicated this paired experiment across three distant canyons. Over six years, we reversed multi-decade declines in plant and bird populations by experimentally inhibiting heavy winter herbivory associated with declining snowfall. Moreover, predation rates on songbird nests decreased in exclosures, despite higher abundances of nest predators, demonstrating the over-riding importance of habitat quality to avian recruitment. Thus, our results suggest that climate impacts on plant–animal interactions can have forceful ramifying effects on plants, birds, and ecological interactions.

  2. Globalization and climate change challenges the Arctic communities adaptability and increases vulnerability

    DEFF Research Database (Denmark)

    Hendriksen, Kåre

    2011-01-01

    Globalization and climate change challenges the Arctic communities adaptability and increases vulnerability Kåre Hendriksen, PhD student, Aalborg University, Denmark The previous isolation of the Arctic will change as a wide range of areas increasingly are integrated into the globalized world....... Coinciding climate changes cause an easier access for worldwide market as well as for the extraction of coastal oil and mineral resources. In an attempt to optimize the fishing fleet by economic measures it is centralized to larger units, and the exports of unprocessed fish and shellfish to low wage...... in contemporary developments leaving them with a feeling of being powerless. The consequences of contemporary policies and the problems arising will be illustrated through examples from traditional hunting and fishing districts in Greenland....

  3. Community-based Participatory Process – Climate Change and Health Adaptation Program for Northern First Nations and Inuit in Canada

    Directory of Open Access Journals (Sweden)

    Diane McClymont Peace

    2012-05-01

    Full Text Available Objectives: Health Canada's Program for Climate Change and Health Adaptation in Northern First Nation and Inuit Communities is unique among Canadian federal programs in that it enables community-based participatory research by northern communities. Study design: The program was designed to build capacity by funding communities to conduct their own research in cooperation with Aboriginal associations, academics, and governments; that way, communities could develop health-related adaptation plans and communication materials that would help in adaptation decision-making at the community, regional, national and circumpolar levels with respect to human health and a changing environment. Methods: Community visits and workshops were held to familiarize northerners with the impacts of climate change on their health, as well as methods to develop research proposals and budgets to meet program requirements. Results: Since the launch of the Climate Change and Health Adaptation Program in 2008, Health Canada has funded 36 community projects across Canada's North that focus on relevant health issues caused by climate change. In addition, the program supported capacity-building workshops for northerners, as well as a Pan-Arctic Results Workshop to bring communities together to showcase the results of their research. Results include: numerous films and photo-voice products that engage youth and elders and are available on the web; community-based ice monitoring, surveillance and communication networks; and information products on land, water and ice safety, drinking water, food security and safety, and traditional medicine. Conclusions: Through these efforts, communities have increased their knowledge and understanding of the health effects related to climate change and have begun to develop local adaptation strategies.

  4. Community-based Participatory Process – Climate Change and Health Adaptation Program for Northern First Nations and Inuit in Canada

    Science.gov (United States)

    Peace, Diane McClymont; Myers, Erin

    2012-01-01

    Objectives Health Canada's Program for Climate Change and Health Adaptation in Northern First Nation and Inuit Communities is unique among Canadian federal programs in that it enables community-based participatory research by northern communities. Study design The program was designed to build capacity by funding communities to conduct their own research in cooperation with Aboriginal associations, academics, and governments; that way, communities could develop health-related adaptation plans and communication materials that would help in adaptation decision-making at the community, regional, national and circumpolar levels with respect to human health and a changing environment. Methods Community visits and workshops were held to familiarize northerners with the impacts of climate change on their health, as well as methods to develop research proposals and budgets to meet program requirements. Results Since the launch of the Climate Change and Health Adaptation Program in 2008, Health Canada has funded 36 community projects across Canada's North that focus on relevant health issues caused by climate change. In addition, the program supported capacity-building workshops for northerners, as well as a Pan-Arctic Results Workshop to bring communities together to showcase the results of their research. Results include: numerous films and photo-voice products that engage youth and elders and are available on the web; community-based ice monitoring, surveillance and communication networks; and information products on land, water and ice safety, drinking water, food security and safety, and traditional medicine. Conclusions Through these efforts, communities have increased their knowledge and understanding of the health effects related to climate change and have begun to develop local adaptation strategies. PMID:22584509

  5. Philosophy of sufficiency economy for community-based adaptation to climate change: Lessons learned from Thai case studies

    Directory of Open Access Journals (Sweden)

    Kulvadee Kansuntisukmongkol

    2017-01-01

    Full Text Available Major components within the philosophy of a sufficiency economy include moderation, prudence, and self-immunity together with knowledge and morality. These components were proposed to safeguard local communities from adverse changes and crises. Climatic crises due to global warming can impact upon local agricultural production and consumption systems. Yet, it is still questionable whether communities following the sufficiency economy philosophy can cope with climate change. The objective of this research was to study the coping and adaptive capacity to climate change of local agricultural communities following the sufficiency economy philosophy and to analyze the success factors of adaptation to climate change. The research found five adaptive strategies leading to a resilient livelihood: (1 self-evaluation, (2 diversity dependency, (3 storage and reserve, (4 cooperation, and (5 mobility over space and time. These strategies help to reduce exposure and sensitivity, while increasing adaptive capacity to climate change with the aims of sustainability and adaptation for survival, and protecting natural resource bases for food and settlement security. Moderation, prudence, and self-immunity are critical success factors of adaptation measures, whereas local ecological knowledge with morality is a core enabling factor for adapting to climate change. These factors can be applied in community-based climate change adaptation in the National Adaptation Plan.

  6. Alpine vegetation communities and the alpine-treeline ecotone boundary in New England as biomonitors for climate change

    Science.gov (United States)

    Kenneth D. Kimball; Douglas M. Weihrauch

    2000-01-01

    This study mapped and analyzed the alpine-treeline ecotone (ATE) boundary and alpine plant communities on the Presidential Range, New Hampshire and Mount Katahdin, Maine. These are sensitive biomonitoring parameters for plant community responses to climatic change. The ATE boundary spans a considerable elevational range, suggesting that shorter growing seasons with...

  7. Effects of Institutional Climate and Culture on the Perceptions of the Working Environments of Public Community Colleges

    Science.gov (United States)

    Jones, Stephanie J.; Taylor, Colette M.

    2012-01-01

    Researchers have found that, although community colleges continue to remain gendered organizations, their climates and cultures are perceived to be more open to women than are their college and university peers. Community colleges may in fact still have the male orientation of the higher education system despite their efforts to be…

  8. Climate forcing of an emerging pathogenic fungus across a montane multi-host community.

    Science.gov (United States)

    Clare, Frances C; Halder, Julia B; Daniel, Olivia; Bielby, Jon; Semenov, Mikhail A; Jombart, Thibaut; Loyau, Adeline; Schmeller, Dirk S; Cunningham, Andrew A; Rowcliffe, Marcus; Garner, Trenton W J; Bosch, Jaime; Fisher, Matthew C

    2016-12-05

    Changes in the timings of seasonality as a result of anthropogenic climate change are predicted to occur over the coming decades. While this is expected to have widespread impacts on the dynamics of infectious disease through environmental forcing, empirical data are lacking. Here, we investigated whether seasonality, specifically the timing of spring ice-thaw, affected susceptibility to infection by the emerging pathogenic fungus Batrachochytrium dendrobatidis (Bd) across a montane community of amphibians that are suffering declines and extirpations as a consequence of this infection. We found a robust temporal association between the timing of the spring thaw and Bd infection in two host species, where we show that an early onset of spring forced high prevalences of infection. A third highly susceptible species (the midwife toad, Alytes obstetricans) maintained a high prevalence of infection independent of time of spring thaw. Our data show that perennially overwintering midwife toad larvae may act as a year-round reservoir of infection with variation in time of spring thaw determining the extent to which infection spills over into sympatric species. We used future temperature projections based on global climate models to demonstrate that the timing of spring thaw in this region will advance markedly by the 2050s, indicating that climate change will further force the severity of infection. Our findings on the effect of annual variability on multi-host infection dynamics show that the community-level impact of fungal infectious disease on biodiversity will need to be re-evaluated in the face of climate change.This article is part of the themed issue 'Tackling emerging fungal threats to animal health, food security and ecosystem resilience'. © 2016 The Authors.

  9. Towards Better Simulation of US Maize Yield Responses to Climate in the Community Earth System Model

    Science.gov (United States)

    Peng, B.; Guan, K.; Chen, M.; Lawrence, D. M.; Jin, Z.; Bernacchi, C.; Ainsworth, E. A.; DeLucia, E. H.; Lombardozzi, D. L.; Lu, Y.

    2017-12-01

    Global food security is undergoing continuing pressure from increased population and climate change despites the potential advancement in breeding and management technologies. Earth system models (ESMs) are essential tools to study the impacts of historical and future climate on regional and global food production, as well as to assess the effectiveness of possible adaptations and their potential feedback to climate. Here we developed an improved maize representation within the Community Earth System Model (CESM) by combining the strengths of both the Community Land Model version 4.5 (CLM4.5) and the Agricultural Production Systems sIMulator (APSIM) models. Specifically, we modified the maize planting scheme, incorporated the phenology scheme adopted from the APSIM model, added a new carbon allocation scheme into CLM4.5, and improved the estimation of canopy structure parameters including leaf area index (LAI) and canopy height. Unique features of the new model (CLM-APSIM) include more detailed phenology stages, an explicit implementation of the impacts of various abiotic environmental stresses (including nitrogen, water, temperature and heat stresses) on maize phenology and carbon allocation, as well as an explicit simulation of grain number and grain size. We conducted a regional simulation of this new model over the US Corn Belt during 1990 to 2010. The simulated maize yield as well as its responses to climate (growing season mean temperature and precipitation) are benchmarked with data from UADA NASS statistics. Our results show that the CLM-APSIM model outperforms the CLM4.5 in simulating county-level maize yield production and reproduces more realistic yield responses to climate variations than CLM4.5. However, some critical processes (such as crop failure due to frost and inundation and suboptimal growth condition due to biotic stresses) are still missing in both CLM-APSIM and CLM4.5, making the simulated yield responses to climate slightly deviate from the

  10. The tropicalization of temperate marine ecosystems: climate-mediated changes in herbivory and community phase shifts

    Science.gov (United States)

    Vergés, Adriana; Steinberg, Peter D.; Hay, Mark E.; Poore, Alistair G. B.; Campbell, Alexandra H.; Ballesteros, Enric; Heck, Kenneth L.; Booth, David J.; Coleman, Melinda A.; Feary, David A.; Figueira, Will; Langlois, Tim; Marzinelli, Ezequiel M.; Mizerek, Toni; Mumby, Peter J.; Nakamura, Yohei; Roughan, Moninya; van Sebille, Erik; Gupta, Alex Sen; Smale, Dan A.; Tomas, Fiona; Wernberg, Thomas; Wilson, Shaun K.

    2014-01-01

    Climate-driven changes in biotic interactions can profoundly alter ecological communities, particularly when they impact foundation species. In marine systems, changes in herbivory and the consequent loss of dominant habitat forming species can result in dramatic community phase shifts, such as from coral to macroalgal dominance when tropical fish herbivory decreases, and from algal forests to ‘barrens’ when temperate urchin grazing increases. Here, we propose a novel phase-shift away from macroalgal dominance caused by tropical herbivores extending their range into temperate regions. We argue that this phase shift is facilitated by poleward-flowing boundary currents that are creating ocean warming hotspots around the globe, enabling the range expansion of tropical species and increasing their grazing rates in temperate areas. Overgrazing of temperate macroalgae by tropical herbivorous fishes has already occurred in Japan and the Mediterranean. Emerging evidence suggests similar phenomena are occurring in other temperate regions, with increasing occurrence of tropical fishes on temperate reefs. PMID:25009065

  11. How Are Fishing Patterns and Fishing Communities Responding to Climate Change? A Test Case from the Northwest Atlantic

    Science.gov (United States)

    Young, T.; Fuller, E.; Coleman, K.; Provost, M.; Pinsky, M. L.; St Martin, K.

    2016-02-01

    We know climate is changing and fish are moving in response to those changes. But we understand less about how harvesters are responding to these changes in fish distribution and the ramifications of those changes for fishing communities. Ecological and evolutionary theory suggests that organisms must move, adapt, or die in response to environmental changes, and a related frame may be relevant for human harvesters in the face of climate change. Furthermore, research suggests that there may be a portfolio effect: a wider diversity of catch may buffer harvesters from some effects of climate change. To get at these questions, we explored changes in fishing patterns among commercial fishing communities in the northeast US from 1997-2014 using NOAA-collected logbook data. We found that communities using more mobile gear (large trawl vessels) demonstrated a greater range of latitudinal shift than communities using any other gear. Latitudinal shift was also inversely related to species diversity of catch and port latitude in those communities: southern communities that caught few species shifted dramatically northward, and northern communities that caught many species did not demonstrate marked latitudinal shifts. Those communities that demonstrated larger latitudinal shifts also demonstrated smaller changes in catch composition than their more stationary counterparts. We also found that vessels are indeed leaving many, but not all, fisheries in this region. These results suggest that harvesters are moving, adapting, and leaving fisheries, and that there does appear to be a portfolio effect, with catch diversity mediating some of these responses. While these changes in fishing patterns cannot all be directly attributed to climate change per se, marine fishes in this region are shifting north rapidly, as is expected under climate change. This study provides a valuable test case for exploring the potential ramifications of climate change on coastal socio-ecological systems.

  12. Projected shifts in copepod surface communities in the Mediterranean Sea under several climate change scenarios

    Science.gov (United States)

    Benedetti, F.; Guilhaumon, F.; Adloff, F.; Irisson, J. O.; Ayata, S. D.

    2016-02-01

    Although future increases in water temperature and future changes in regional circulation are expected to have great impacts on the pelagic food-web, estimates focusing on community-level shifts are still lacking for the planktonic compartment. By combining statistical niche models (or species distribution models) with projections from a regional circulation model, the impact of climate change on copepod epipelagic communities is assessed for the Mediterranean Sea. Habitat suitability maps are generated for 106 of the most abundant copepod species to analyze emerging patterns of diversity at the community level. Using variance analysis, we also quantified the uncertainties associated to our modeling strategy (niche model choice, CO2 emission scenario, boundary forcings of the circulation model). Comparing present and future projections, changes in species richness (alpha diversity) and in community composition (beta diversity, decomposed into turnover and nestedness component) are calculated. Average projections show that copepod communities will mainly experience turn-over processes, with little changes in species richness. Species gains are mainly located in the Gulf of Lions, the Northern Adriatic and the Northern Aegean seas. However, projections are highly variable, especially in the Eastern Mediterranean basin. We show that such variability is mainly driven by the choice of the niche model, through interactions with the CO2 emission scenario or the boundary forcing of the circulation model can be locally important. Finally, the possible impact of the estimated community changes on zooplanktonic functional and phylogenetic diversity is also assessed. We encourage the enlargement of this type of study to other components of the pelagic food-web, and argue that niche models' outputs should always be given along with a measure of uncertainty, and explained in light of a strong theoretical background.

  13. The Tribal Lands Collaboratory: Building partnerships and developing tools to support local Tribal community response to climate change.

    Science.gov (United States)

    Jones, K. D.; Wee, B.; Kuslikis, A.

    2015-12-01

    Response of Tribal nations and Tribal communities to current and emerging climate change challenges requires active participation of stakeholders who have effective access to relevant data, information and analytical tools. The Tribal Lands Collaboratory (TLC), currently under development, is a joint effort between the American Indian Higher Education Consortium (AIHEC), the Environmental Systems Research Institute (Esri), and the National Ecological Observatory Network (NEON). The vision of the TLC is to create an integrative platform that enables coordination between multiple stakeholders (e.g. Tribal resource managers, Tribal College faculty and students, farmers, ranchers, and other local community members) to collaborate on locally relevant climate change issues. The TLC is intended to facilitate the transformation of data into actionable information that can inform local climate response planning. The TLC will provide the technical mechanisms to access, collect and analyze data from both internal and external sources (e.g. NASA's Giovanni climate data portal, Ameriflux or USA National Phenology Network) while also providing the social scaffolds to enable collaboration across Tribal communities and with members of the national climate change research community. The prototype project focuses on phenology, a branch of science focused on relationships between climate and the seasonal timing of biological phenomena. Monitoring changes in the timing and duration of phenological stages in plant and animal co­­­­mmunities on Tribal lands can provide insight to the direct impacts of climate change on culturally and economically significant Tribal resources . The project will leverage existing phenological observation protocols created by the USA-National Phenology Network and NEON to direct data collection efforts and will be tailored to the specific needs and concerns of the community. Phenology observations will be captured and managed within the Collaboratory

  14. Patterns and processes influencing helminth parasites of Arctic coastal communities during climate change.

    Science.gov (United States)

    Galaktionov, K V

    2017-07-01

    This review analyses the scarce available data on biodiversity and transmission of helminths in Arctic coastal ecosystems and the potential impact of climate changes on them. The focus is on the helminths of seabirds, dominant parasites in coastal ecosystems. Their fauna in the Arctic is depauperate because of the lack of suitable intermediate hosts and unfavourable conditions for species with free-living larvae. An increasing proportion of crustaceans in the diet of Arctic seabirds would result in a higher infection intensity of cestodes and acanthocephalans, and may also promote the infection of seabirds with non-specific helminths. In this way, the latter may find favourable conditions for colonization of new hosts. Climate changes may alter the composition of the helminth fauna, their infection levels in hosts and ways of transmission in coastal communities. Immigration of boreal invertebrates and fish into Arctic seas may allow the circulation of helminths using them as intermediate hosts. Changing migratory routes of animals would alter the distribution of their parasites, facilitating, in particular, their trans-Arctic transfer. Prolongation of the seasonal 'transmission window' may increase the parasitic load on host populations. Changes in Arctic marine food webs would have an overriding influence on the helminths' circulation. This process may be influenced by the predicted decreased of salinity in Arctic seas, increased storm activity, coastal erosion, ocean acidification, decline of Arctic ice, etc. Greater parasitological research efforts are needed to assess the influence of factors related to Arctic climate change on the transmission of helminths.

  15. Can Perceptions of Environmental and Climate Change in Island Communities Assist in Adaptation Planning Locally?

    Science.gov (United States)

    Aswani, Shankar; Vaccaro, Ismael; Abernethy, Kirsten; Albert, Simon; de Pablo, Javier Fernández-López

    2015-12-01

    Local perceptions of environmental and climate change, as well as associated adaptations made by local populations, are fundamental for designing comprehensive and inclusive mitigation and adaptation plans both locally and nationally. In this paper, we analyze people's perceptions of environmental and climate-related transformations in communities across the Western Solomon Islands through ethnographic and geospatial methods. Specifically, we documented people's observed changes over the past decades across various environmental domains, and for each change, we asked respondents to identify the causes, timing, and people's adaptive responses. We also incorporated this information into a geographical information system database to produce broad-scale base maps of local perceptions of environmental change. Results suggest that people detected changes that tended to be acute (e.g., water clarity, logging intensity, and agricultural diseases). We inferred from these results that most local observations of and adaptations to change were related to parts of environment/ecosystem that are most directly or indirectly related to harvesting strategies. On the other hand, people were less aware of slower insidious/chronic changes identified by scientific studies. For the Solomon Islands and similar contexts in the insular tropics, a broader anticipatory adaptation planning strategy to climate change should include a mix of local scientific studies and local observations of ongoing ecological changes.

  16. A new synoptic scale resolving global climate simulation using the Community Earth System Model

    Science.gov (United States)

    Small, R. Justin; Bacmeister, Julio; Bailey, David; Baker, Allison; Bishop, Stuart; Bryan, Frank; Caron, Julie; Dennis, John; Gent, Peter; Hsu, Hsiao-ming; Jochum, Markus; Lawrence, David; Muñoz, Ernesto; diNezio, Pedro; Scheitlin, Tim; Tomas, Robert; Tribbia, Joseph; Tseng, Yu-heng; Vertenstein, Mariana

    2014-12-01

    High-resolution global climate modeling holds the promise of capturing planetary-scale climate modes and small-scale (regional and sometimes extreme) features simultaneously, including their mutual interaction. This paper discusses a new state-of-the-art high-resolution Community Earth System Model (CESM) simulation that was performed with these goals in mind. The atmospheric component was at 0.25° grid spacing, and ocean component at 0.1°. One hundred years of "present-day" simulation were completed. Major results were that annual mean sea surface temperature (SST) in the equatorial Pacific and El-Niño Southern Oscillation variability were well simulated compared to standard resolution models. Tropical and southern Atlantic SST also had much reduced bias compared to previous versions of the model. In addition, the high resolution of the model enabled small-scale features of the climate system to be represented, such as air-sea interaction over ocean frontal zones, mesoscale systems generated by the Rockies, and Tropical Cyclones. Associated single component runs and standard resolution coupled runs are used to help attribute the strengths and weaknesses of the fully coupled run. The high-resolution run employed 23,404 cores, costing 250 thousand processor-hours per simulated year and made about two simulated years per day on the NCAR-Wyoming supercomputer "Yellowstone."

  17. Winter forest soil respiration controlled by climate and microbial community composition.

    Science.gov (United States)

    Monson, Russell K; Lipson, David L; Burns, Sean P; Turnipseed, Andrew A; Delany, Anthony C; Williams, Mark W; Schmidt, Steven K

    2006-02-09

    Most terrestrial carbon sequestration at mid-latitudes in the Northern Hemisphere occurs in seasonal, montane forest ecosystems. Winter respiratory carbon dioxide losses from these ecosystems are high, and over half of the carbon assimilated by photosynthesis in the summer can be lost the following winter. The amount of winter carbon dioxide loss is potentially susceptible to changes in the depth of the snowpack; a shallower snowpack has less insulation potential, causing colder soil temperatures and potentially lower soil respiration rates. Recent climate analyses have shown widespread declines in the winter snowpack of mountain ecosystems in the western USA and Europe that are coupled to positive temperature anomalies. Here we study the effect of changes in snow cover on soil carbon cycling within the context of natural climate variation. We use a six-year record of net ecosystem carbon dioxide exchange in a subalpine forest to show that years with a reduced winter snowpack are accompanied by significantly lower rates of soil respiration. Furthermore, we show that the cause of the high sensitivity of soil respiration rate to changes in snow depth is a unique soil microbial community that exhibits exponential growth and high rates of substrate utilization at the cold temperatures that exist beneath the snow. Our observations suggest that a warmer climate may change soil carbon sequestration rates in forest ecosystems owing to changes in the depth of the insulating snow cover.

  18. Threats and climate risks into vulnerable populations. The role of education in the community resilience

    Directory of Open Access Journals (Sweden)

    Edgar Javier GONZÁLEZ-GAUDIANO

    2017-06-01

    Full Text Available Nowadays, challenges in the contemporary world lead to the education to propose its current themes. Environmental education is not an exception. The magnitude and complexity of global environmental problems such as the climate change, the ocean acidification and the loss of the biodiversity have generated issues that had attracted pedagogical attention for decades. This article presents the early results of a study aimed at assessing the perception of risk and vulnerability of communities that frequently are affected by extreme hydrometeorological phenomena. These findings could be a starting point for the design of educational programs aimed at strengthening community resilience. We start from the assumption based on socio-cognitive factors that determine the dispositions in order to the populations can act under similar circumstances, we can find key elements that allow us to infer their reactions to difficult situations. This considering their previous experience and their singularities in the adaptation to climate change, in the social learning in extreme situations and in the identification of their strengths and weaknesses.

  19. Role of community based local institution for climate change adaptation in the Teesta riverine area of Bangladesh

    Directory of Open Access Journals (Sweden)

    Md. Rezaul Karim

    2017-01-01

    Full Text Available Climate change adaptation is one of the most crucial issues in developing countries like Bangladesh. The main objective was to understand the linkage of participation with Community Based Adaptation (CBA to climate change. Institutional framework following different types of conceptual theories (collective action, group, game and social learning theory was utilized to analyze the participatory process in local community level Village Disaster Mangement Committee (VDMC that works in collaboration with local government. Field level data was collected through interview and group discussion during 25 April to 30 May 2015 in the Teesta riverine area of northern Bangladesh. Results showed that flood and drought were the major climate change impacts in the study area, and various participatory tools were used for risk assessment and undertaking action plans to overcome the climate change challenges by the group VDMC. Participation in VDMC generated both relational and technical outcomes. The relational outcomes are the informal institutional changes through which local community adopt technological adaptation measures. Although, limitations like bargaining problem, free riding or conflict were found in collective decision making, but the initiation of local governance like VDMC has brought various institutional change in the communities in terms of adaptation practices. More than 80% VDMC and around 40–55% non-VDMC household respondents agreed that overall community based adaptation process was successful in the previous year. They believed that some innovative practices had been brought in the community through VDMC action for climate change adaptation. No doubt that the CBA has achieved good progress to achieve the government Comprehensive Disaster Management (CDM strategy of climate change adaptation. But, there is still lack of coordination among local government, NGOs and civil partners in working together. Research related to socio

  20. Mid-latitude shrub steppe plant communities: climate change consequences for soil water resources.

    Science.gov (United States)

    Palmquist, Kyle A; Schlaepfer, Daniel R; Bradford, John B; Lauenroth, William K

    2016-09-01

    In the coming century, climate change is projected to impact precipitation and temperature regimes worldwide, with especially large effects in drylands. We use big sagebrush ecosystems as a model dryland ecosystem to explore the impacts of altered climate on ecohydrology and the implications of those changes for big sagebrush plant communities using output from 10 Global Circulation Models (GCMs) for two representative concentration pathways (RCPs). We ask: (1) What is the magnitude of variability in future temperature and precipitation regimes among GCMs and RCPs for big sagebrush ecosystems, and (2) How will altered climate and uncertainty in climate forecasts influence key aspects of big sagebrush water balance? We explored these questions across 1980-2010, 2030-2060, and 2070-2100 to determine how changes in water balance might develop through the 21st century. We assessed ecohydrological variables at 898 sagebrush sites across the western US using a process-based soil water model, SOILWAT, to model all components of daily water balance using site-specific vegetation parameters and site-specific soil properties for multiple soil layers. Our modeling approach allowed for changes in vegetation based on climate. Temperature increased across all GCMs and RCPs, whereas changes in precipitation were more variable across GCMs. Winter and spring precipitation was predicted to increase in the future (7% by 2030-2060, 12% by 2070-2100), resulting in slight increases in soil water potential (SWP) in winter. Despite wetter winter soil conditions, SWP decreased in late spring and summer due to increased evapotranspiration (6% by 2030-2060, 10% by 2070-2100) and groundwater recharge (26% and 30% increase by 2030-2060 and 2070-2100). Thus, despite increased precipitation in the cold season, soils may dry out earlier in the year, resulting in potentially longer, drier summer conditions. If winter precipitation cannot offset drier summer conditions in the future, we expect big

  1. Mid-latitude shrub steppe plant communities: Climate change consequences for soil water resources

    Science.gov (United States)

    Palmquist, Kyle A.; Schlaepfer, Daniel R.; Bradford, John B.; Lauenroth, Willliam K.

    2016-01-01

    In the coming century, climate change is projected to impact precipitation and temperature regimes worldwide, with especially large effects in drylands. We use big sagebrush ecosystems as a model dryland ecosystem to explore the impacts of altered climate on ecohydrology and the implications of those changes for big sagebrush plant communities using output from 10 Global Circulation Models (GCMs) for two representative concentration pathways (RCPs). We ask: 1) What is the magnitude of variability in future temperature and precipitation regimes among GCMs and RCPs for big sagebrush ecosystems and 2) How will altered climate and uncertainty in climate forecasts influence key aspects of big sagebrush water balance? We explored these questions across 1980-2010, 2030-2060, and 2070-2100 to determine how changes in water balance might develop through the 21st century. We assessed ecohydrological variables at 898 sagebrush sites across the western US using a process-based soil water model, SOILWAT to model all components of daily water balance using site-specific vegetation parameters and site-specific soil properties for multiple soil layers. Our modeling approach allowed for changes in vegetation based on climate. Temperature increased across all GCMs and RCPs, while changes in precipitation were more variable across GCMs. Winter and spring precipitation was predicted to increase in the future (7% by 2030-2060, 12% by 2070-2100), resulting in slight increases in soil water potential (SWP) in winter. Despite wetter winter soil conditions, SWP decreased in late spring and summer due to increased evapotranspiration (6% by 2030-2060, 10% by 2070-2100) and groundwater recharge (26% and 30% increase by 2030-2060 and 2070-2100). Thus, despite increased precipitation in the cold season, soils may dry out earlier in the year, resulting in potentially longer drier summer conditions. If winter precipitation cannot offset drier summer conditions in the future, we expect big

  2. New Community Education Program on Oceans and Global Climate Change: Results from Our Pilot Year

    Science.gov (United States)

    Bruno, B. C.; Wiener, C.

    2010-12-01

    Ocean FEST (Families Exploring Science Together) engages elementary school students and their parents and teachers in hands-on science. Through this evening program, we educate participants about ocean and earth science issues that are relevant to their local communities. In the process, we hope to inspire more underrepresented students, including Native Hawaiians, Pacific Islanders and girls, to pursue careers in the ocean and earth sciences. Hawaii and the Pacific Islands will be disproportionately affected by the impacts of global climate change, including rising sea levels, coastal erosion, coral reef degradation and ocean acidification. It is therefore critically important to train ocean and earth scientists within these communities. This two-hour program explores ocean properties and timely environmental topics through six hands-on science activities. Activities are designed so students can see how globally important issues (e.g., climate change and ocean acidification) have local effects (e.g., sea level rise, coastal erosion, coral bleaching) which are particularly relevant to island communities. The Ocean FEST program ends with a career component, drawing parallel between the program activities and the activities done by "real scientists" in their jobs. The take-home message is that we are all scientists, we do science every day, and we can choose to do this as a career. Ocean FEST just completed our pilot year. During the 2009-2010 academic year, we conducted 20 events, including 16 formal events held at elementary schools and 4 informal outreach events. Evaluation data were collected at all formal events. Formative feedback from adult participants (parents, teachers, administrators and volunteers) was solicited through written questionnaires. Students were invited to respond to a survey of five questions both before and after the program to see if there were any changes in content knowledge and career attitudes. In our presentation, we will present our

  3. Climate Variability Structures Plant Community Dynamics in Mediterranean Restored and Reference Tidal Wetlands

    Directory of Open Access Journals (Sweden)

    Dylan E. Chapple

    2017-03-01

    Full Text Available In Mediterranean regions and other areas with variable climates, interannual weather variability may impact ecosystem dynamics, and by extension ecological restoration projects. Conditions at reference sites, which are often used to evaluate restoration projects, may also be influenced by weather variability, confounding interpretations of restoration outcomes. To better understand the influence of weather variability on plant community dynamics, we explore change in a vegetation dataset collected between 1990 and 2005 at a historic tidal wetland reference site and a nearby tidal wetland restoration project initiated in 1976 in California’s San Francisco (SF Bay. To determine the factors influencing reference and restoration trajectories, we examine changes in plant community identity in relation to annual salinity levels in the SF Bay, annual rainfall, and tidal channel structure. Over the entire study period, both sites experienced significant directional change away from the 1990 community. Community change was accelerated following low salinity conditions that resulted from strong El Niño events in 1994–1995 and 1997–1998. Overall rates of change were greater at the restoration site and driven by a combination of dominant and sub-dominant species, whereas change at the reference site was driven by sub-dominant species. Sub-dominant species first appeared at the restoration site in 1996 and incrementally increased during each subsequent year, whereas sub-dominant species cover at the reference site peaked in 1999 and subsequently declined. Our results show that frequent, long-term monitoring is needed to adequately capture plant community dynamics in variable Mediterranean ecosystems and demonstrate the need for expanding restoration monitoring and timing restoration actions to match weather conditions.

  4. Challenges of Climate Change: Resilience Efforts in Rural Communities of Kaliwlingi Village based on Pengembangan Kawasan Pesisir Tangguh (PKPT Program

    Directory of Open Access Journals (Sweden)

    Mustovia Azahro

    2017-03-01

    Full Text Available Kaliwlingi Village in Brebes City has experienced climate change impacts such as tidal flood and land abrasion. The climate change causes the dynamics of the coast and sea levels dramatically and fosters the coastal communities to have adaptation strategies. This paper aims to identify how the community of Kaliwlingi Village adapts to the climate change that affects to a social economic condition of the inhabitants. The study used qualitative method by interpreting data taken from PengembanganKawasanPesisirTangguh (PKPT program, interviews, and observations.The study highlights that PKPT program has a significant impact, especially regarding disaster mitigation. PKPT program is successful in collecting the common rules of the community to become social capital accommodated in the local institution. Furthermore, the PKPT Program is also fostering the local economy.

  5. Flexible global ocean-atmosphere-land system model. A modeling tool for the climate change research community

    International Nuclear Information System (INIS)

    Zhou, Tianjun; Yu, Yongqiang; Liu, Yimin; Wang, Bin

    2014-01-01

    First book available on systematic evaluations of the performance of the global climate model FGOALS. Covers the whole field, ranging from the development to the applications of this climate system model. Provide an outlook for the future development of the FGOALS model system. Offers brief introduction about how to run FGOALS. Coupled climate system models are of central importance for climate studies. A new model known as FGOALS (the Flexible Global Ocean-Atmosphere-Land System model), has been developed by the State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences (LASG/IAP, CAS), a first-tier national geophysical laboratory. It serves as a powerful tool, both for deepening our understanding of fundamental mechanisms of the climate system and for making decadal prediction and scenario projections of future climate change. ''Flexible Global Ocean-Atmosphere-Land System Model: A Modeling Tool for the Climate Change Research Community'' is the first book to offer systematic evaluations of this model's performance. It is comprehensive in scope, covering both developmental and application-oriented aspects of this climate system model. It also provides an outlook of future development of FGOALS and offers an overview of how to employ the model. It represents a valuable reference work for researchers and professionals working within the related areas of climate variability and change.

  6. Flexible global ocean-atmosphere-land system model. A modeling tool for the climate change research community

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Tianjun; Yu, Yongqiang; Liu, Yimin; Wang, Bin (eds.) [Chinese Academy of Sciences, Beijing, (China). Inst. of Atmospheric Physics

    2014-04-01

    First book available on systematic evaluations of the performance of the global climate model FGOALS. Covers the whole field, ranging from the development to the applications of this climate system model. Provide an outlook for the future development of the FGOALS model system. Offers brief introduction about how to run FGOALS. Coupled climate system models are of central importance for climate studies. A new model known as FGOALS (the Flexible Global Ocean-Atmosphere-Land System model), has been developed by the State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences (LASG/IAP, CAS), a first-tier national geophysical laboratory. It serves as a powerful tool, both for deepening our understanding of fundamental mechanisms of the climate system and for making decadal prediction and scenario projections of future climate change. ''Flexible Global Ocean-Atmosphere-Land System Model: A Modeling Tool for the Climate Change Research Community'' is the first book to offer systematic evaluations of this model's performance. It is comprehensive in scope, covering both developmental and application-oriented aspects of this climate system model. It also provides an outlook of future development of FGOALS and offers an overview of how to employ the model. It represents a valuable reference work for researchers and professionals working within the related areas of climate variability and change.

  7. Linking Climate Change Science and Adaptation Policy at the Community Scale through Anticipatory Governance: A Review of Concepts with Application to Arizona Communities (Invited)

    Science.gov (United States)

    White, D. D.; Quay, R.; Ferguson, D. B.; Buizer, J. L.; Guido, Z.; Chhetri, N.

    2013-12-01

    Scientific consensus and certainty varies regarding the link between climate change, specific natural hazards and extreme events, and local and regional impacts. Despite these uncertainties, it is necessary to apply the best available scientific knowledge to anticipate a range of possible futures, develop mitigation and adaptation strategies, and monitor changes to build resilience. While there is widespread recognition of the need to improve the linkages between climate science information and public policy for adaptation at the community scale, there are significant challenges to this goal. Many community outreach and engagement efforts, for instance, operate using a one-size-fits-all approach. Recent research has shown this to be problematic for local governments. Public policy occurs in a cycle that includes problem understanding, planning and policy approval, and implementation, with ongoing policy refinement through multiple such cycles. One promising approach to incorporating scientific knowledge with uncertainty into public policy is an anticipatory governance approach. Anticipatory governance employs a continual cycle of anticipation (understanding), planning, monitoring, and adaptation (policy choice and implementation). The types of information needed in each of these phases will be different given the nature of each activity and the unique needs of each community. It is highly unlikely that all local governments will be in the same phase of climate adaptation with the same unique needs at the same time and thus a uniform approach to providing scientific information will only be effective for a discrete group of communities at any given point in time. A key concept for the effective integration of scientific information into public discourse is that such information must be salient, credible, and legitimate. Assuming a scientific institution has established credibility with engaged communities, maximizing the effectiveness of climate science requires

  8. Plants, birds and butterflies: short-term responses of species communities to climate warming vary by taxon and with altitude.

    Science.gov (United States)

    Roth, Tobias; Plattner, Matthias; Amrhein, Valentin

    2014-01-01

    As a consequence of climate warming, species usually shift their distribution towards higher latitudes or altitudes. Yet, it is unclear how different taxonomic groups may respond to climate warming over larger altitudinal ranges. Here, we used data from the national biodiversity monitoring program of Switzerland, collected over an altitudinal range of 2500 m. Within the short period of eight years (2003-2010), we found significant shifts in communities of vascular plants, butterflies and birds. At low altitudes, communities of all species groups changed towards warm-dwelling species, corresponding to an average uphill shift of 8 m, 38 m and 42 m in plant, butterfly and bird communities, respectively. However, rates of community changes decreased with altitude in plants and butterflies, while bird communities changed towards warm-dwelling species at all altitudes. We found no decrease in community variation with respect to temperature niches of species, suggesting that climate warming has not led to more homogenous communities. The different community changes depending on altitude could not be explained by different changes of air temperatures, since during the 16 years between 1995 and 2010, summer temperatures in Switzerland rose by about 0.07°C per year at all altitudes. We discuss that land-use changes or increased disturbances may have prevented alpine plant and butterfly communities from changing towards warm-dwelling species. However, the findings are also consistent with the hypothesis that unlike birds, many alpine plant species in a warming climate could find suitable habitats within just a few metres, due to the highly varied surface of alpine landscapes. Our results may thus support the idea that for plants and butterflies and on a short temporal scale, alpine landscapes are safer places than lowlands in a warming world.

  9. Climate

    International Nuclear Information System (INIS)

    Fellous, J.L.

    2005-02-01

    This book starts with a series of about 20 preconceived ideas about climate and climatic change and analyses each of them in the light of the present day knowledge. Using this approach, it makes a status of the reality of the climatic change, of its causes and of the measures to be implemented to limit its impacts and reduce its most harmful consequences. (J.S.)

  10. 13 CFR 106.302 - What provisions must be set forth in a Fee Based Record?

    Science.gov (United States)

    2010-01-01

    ... 13 Business Credit and Assistance 1 2010-01-01 2010-01-01 false What provisions must be set forth in a Fee Based Record? 106.302 Section 106.302 Business Credit and Assistance SMALL BUSINESS... does not constitute or imply an endorsement by SBA of the Donor or the Donor's products or services. ...

  11. Numerical Analysis of Forth-Order Boundary Value Problems in Fluid Mechanics and Mathematics

    DEFF Research Database (Denmark)

    Hosseinzadeh, E.; Barari, Amin; Fouladi, F.

    2011-01-01

    In this paper He's variational iteration method is used to solve some examples of linear and non-linear forth-order boundary value problems. The first problem compared with homotopy analysis method solution and the other ones with the exact solution. The results show the high accuracy and speed o...

  12. 18 CFR 1.102 - Words denoting number, gender and so forth.

    Science.gov (United States)

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Words denoting number... Rules of Construction § 1.102 Words denoting number, gender and so forth. In determining the meaning of...) Words of one gender include the other gender. [Order 225, 47 FR 19022, May 3, 1982] ...

  13. Desert dust and anthropogenic aerosol interactions in the Community Climate System Model coupled-carbon-climate model

    Directory of Open Access Journals (Sweden)

    N. Mahowald

    2011-02-01

    Full Text Available Coupled-carbon-climate simulations are an essential tool for predicting the impact of human activity onto the climate and biogeochemistry. Here we incorporate prognostic desert dust and anthropogenic aerosols into the CCSM3.1 coupled carbon-climate model and explore the resulting interactions with climate and biogeochemical dynamics through a series of transient anthropogenic simulations (20th and 21st centuries and sensitivity studies. The inclusion of prognostic aerosols into this model has a small net global cooling effect on climate but does not significantly impact the globally averaged carbon cycle; we argue that this is likely to be because the CCSM3.1 model has a small climate feedback onto the carbon cycle. We propose a mechanism for including desert dust and anthropogenic aerosols into a simple carbon-climate feedback analysis to explain the results of our and previous studies. Inclusion of aerosols has statistically significant impacts on regional climate and biogeochemistry, in particular through the effects on the ocean nitrogen cycle and primary productivity of altered iron inputs from desert dust deposition.

  14. Simulating the Pineapple Express in the half degree Community Climate System Model, CCSM4

    Science.gov (United States)

    Shields, Christine A.; Kiehl, Jeffrey T.

    2016-07-01

    Atmospheric rivers are recognized as major contributors to the poleward transport of water vapor. Upon reaching land, these phenomena also play a critical role in extreme precipitation and flooding events. The Pineapple Express (PE) is defined as an atmospheric river extending out of the deep tropics and reaching the west coast of North America. Community Climate System Model (CCSM4) high-resolution ensemble simulations for the twentieth and 21st centuries are diagnosed to identify the PE. Analysis of the twentieth century simulations indicated that the CCSM4 accurately captures the spatial and temporal climatology of the PE. Analysis of the end 21st century simulations indicates a significant increase in storm duration and intensity of precipitation associated with landfall of the PE. Only a modest increase in the number of atmospheric rivers of a few percent is projected for the end of 21st century.

  15. Differentiation, Leaders and Fairness. Negotiating Climate Commitments in the European Community

    Energy Technology Data Exchange (ETDEWEB)

    Ringius, Lasse

    1997-12-31

    This report shows that it is possible to negotiate and reach asymmetrical environmental agreements that take into account significant national dissimilarities. It is argued that analytical models and intuitively appealing model-based quantitative indicators of national circumstances can establish premises for negotiations leading to differentiated environmental agreements. While they cannot take the place of political negotiations, they help identify a formula that defines the problem in a resolvable fashion and prevent the bargaining space from expanding uncontrollably. Scholars arguing that symmetrical environmental measures are widely used because they simplify negotiations and prevent countries from pursuing extremist positions, and that salient focal points are significant in negotiation, overlook this argument. In pre-Kyoto European Community climate policy, which this report empirically examines, high transaction costs and EC member states` ability to block economically hurtful agreements were not essential issues. 54 refs., 1 fig., 7 tabs.

  16. Modeling dynamics of tundra plant communities on the Yamal Peninsula, Russia, in response to climate change and grazing pressure

    International Nuclear Information System (INIS)

    Yu, Q; Epstein, H E; Frost, G V; Walker, D A; Forbes, B C

    2011-01-01

    Understanding the responses of the arctic tundra biome to a changing climate requires knowledge of the complex interactions among the climate, soils and biological system. This study investigates the individual and interaction effects of climate change and reindeer grazing across a variety of climate zones and soil texture types on tundra vegetation community dynamics using an arctic vegetation model that incorporates the reindeer diet, where grazing is a function of both foliar nitrogen concentration and reindeer forage preference. We found that grazing is important, in addition to the latitudinal climate gradient, in controlling tundra plant community composition, explaining about 13% of the total variance in model simulations for all arctic tundra subzones. The decrease in biomass of lichen, deciduous shrub and graminoid plant functional types caused by grazing is potentially dampened by climate warming. Moss biomass had a nonlinear response to increased grazing intensity, and such responses were stronger when warming was present. Our results suggest that evergreen shrubs may benefit from increased grazing intensity due to their low palatability, yet a growth rate sensitivity analysis suggests that changes in nutrient uptake rates may result in different shrub responses to grazing pressure. Heavy grazing caused plant communities to shift from shrub tundra toward moss, graminoid-dominated tundra in subzones C and D when evergreen shrub growth rates were decreased in the model. The response of moss, lichen and forbs to warming varied across the different subzones. Initial vegetation responses to climate change during transient warming are different from the long term equilibrium responses due to shifts in the controlling mechanisms (nutrient limitation versus competition) within tundra plant communities.

  17. The capacity to adapt?: communities in a changing climate, environment, and economy on the northern Andaman coast of Thailand

    Directory of Open Access Journals (Sweden)

    Nathan J. Bennett

    2014-06-01

    Full Text Available The health and productivity of marine ecosystems, habitats, and fisheries are deteriorating on the Andaman coast of Thailand. Because of their high dependence on natural resources and proximity to the ocean, coastal communities are particularly vulnerable to climate-induced changes in the marine environment. These communities must also adapt to the impacts of management interventions and conservation initiatives, including marine protected areas, which have livelihood implications. Further, communities on the Andaman coast are also experiencing a range of new economic opportunities associated in particular with tourism and agriculture. These complex and ongoing changes require integrated assessment of, and deliberate planning to increase, the adaptive capacity of communities so that they may respond to: (1 environmental degradation and fisheries declines through effective management interventions or conservation initiatives, (2 new economic opportunities to reduce dependence on fisheries, and (3 the increasing impacts of climate change. Our results are from a mixed methods study, which used surveys and interviews to examine multiple dimensions of the adaptive capacity of seven island communities near marine protected areas on the Andaman coast of Thailand. Results show that communities had low adaptive capacity with respect to environmental degradation and fisheries declines, and to management and conservation interventions, as well as uneven levels of adaptive capacity to economic opportunities. Though communities and households were experiencing the impacts of climate change, especially storm events, changing seasons and weather patterns, and erosion, they were reacting to these changes with limited knowledge of climate change per se. We recommend interventions, in the form of policies, programs, and actions, at multiple scales for increasing the adaptive capacity of Thailand's coastal communities to change. The analytical and methodological

  18. Community level perceptions of the monsoon onset, withdrawal and climatic trends in Bangladesh

    Science.gov (United States)

    Reeve, M. A.; Abu Syed, M. D.; Hossain, P. R.; Maainuddi, G.; Mamnun, N.

    2012-04-01

    A structured questionnaire study was carried out in 6 different regions in Bangladesh in order to give insight into how the different communities define the monsoon. The respondents were asked how they define the monsoon onset and withdrawal, and by how much these can vary from year to year. They were also asked about how they perceive changes in onset and withdrawal dates and total monsoonal rainfall during the past 20 years. Bangladesh is a developing country with a large proportion of the population living in rural areas and employed in the agricultural sector. It is foreseen that these communities will be most affected by changes in the climate. These groups were considered to be the main stakeholders when considering climate change, due to the direct influence the monsoon has on their livelihood and the food supply for the entire nation. Agricultural workers were therefore the main group targeted in this study. The main aim of the study was to create a framework for defining the monsoon in order to increase the usability of results in future impact-related studies. Refining definitions according to the perceptions of the main stakeholders helps to achieve this goal. Results show that rainfall is the main parameter used in defining the monsoon onset and withdrawal. This is possibly intuitive, however the monsoon onset was considered to be considerably earlier than previous scientific studies. This could be due to pre-monsoonal rainfall, however the respondents defined this type of rainfall separately to what they called the monsoon. The monsoon is considered to start earliest in the Sylhet region in northeast Bangladesh.

  19. Changing times, changing stories: Generational differences in climate change perspectives from four remote indigenous communities in Subarctic Alaska

    Science.gov (United States)

    Herman-Mercer, Nicole M.; Matkin, Elli; Laituri, Melinda J.; Toohey, Ryan C; Massey, Maggie; Elder, Kelly; Schuster, Paul F.; Mutter, Edda A.

    2016-01-01

    Indigenous Arctic and Subarctic communities currently are facing a myriad of social and environmental changes. In response to these changes, studies concerning indigenous knowledge (IK) and climate change vulnerability, resiliency, and adaptation have increased dramatically in recent years. Risks to lives and livelihoods are often the focus of adaptation research; however, the cultural dimensions of climate change are equally important because cultural dimensions inform perceptions of risk. Furthermore, many Arctic and Subarctic IK climate change studies document observations of change and knowledge of the elders and older generations in a community, but few include the perspectives of the younger population. These observations by elders and older generations form a historical baseline record of weather and climate observations in these regions. However, many indigenous Arctic and Subarctic communities are composed of primarily younger residents. We focused on the differences in the cultural dimensions of climate change found between young adults and elders. We outlined the findings from interviews conducted in four indigenous communities in Subarctic Alaska. The findings revealed that (1) intergenerational observations of change were common among interview participants in all four communities, (2) older generations observed more overall change than younger generations interviewed by us, and (3) how change was perceived varied between generations. We defined “observations” as the specific examples of environmental and weather change that were described, whereas “perceptions” referred to the manner in which these observations of change were understood and contextualized by the interview participants. Understanding the differences in generational observations and perceptions of change are key issues in the development of climate change adaptation strategies.

  20. Formal education as an avenue for community action on climate change

    Science.gov (United States)

    Cordero, E.

    2017-12-01

    Green Ninja started at San Jose State University as an educational initiative to inspire youth action on climate change. We created educational videos, games and lesson plans that promoted climate science literacy and pro-environmental behavior. Although some teachers found our content valuable, we came to learn that the overriding decisions about course curriculum come from the school district level. Should we want to scale in a manner that might really provide an environmental benefit, we needed to learn about school district needs and to develop a product that solves their problems. This presentation will discuss our journey from value propositions to empathy for our clients, and how we came to realize that the best approach for achieving our common goals was through the commercial marketplace. We will share data from some of our early adopters that suggests that formal education can both achieve district goals while also delivering environmental benefits. We will also describe the value of partnerships and how leveraging support from communities with aligning interests are improving our chances of success.

  1. Temperature Anomalies from the AIRS Product in Giovanni for the Climate Community

    Science.gov (United States)

    Ding, Feng; Hearty, Thomas J.; Wei, Jennifer; Theobald, Michael; Vollmer, Bruce; Seiler, Edward; Meyer, David

    2018-01-01

    The Atmospheric Infrared Sounder (AIRS) mission began with the launch of Aqua in 2002. Over 15 years of AIRS products have been used by the climate research and application communities. The NASA Goddard Earth Sciences Data and Information Services Center (GES DISC), in collaboration with NASA Sounder Team at JPL, provides processing, archiving, and distribution services for NASA sounders: the present Aqua AIRS mission and the succeeding Suomi National Polar-Orbiting Partnership (SNPP) Cross-track Infrared Sounder (CrIS) mission. We generated a Multi-year Monthly Mean and Anomaly product using 14 years of AIRS standard monthly product. The product includes Air Temperature at the Surface and Surface Skin Temperature, both in Ascending/Daytime and Descending/Nighttime mode. The temperature variables and their anomalies are deployed to Giovanni, a Web-based application developed by the GES DISC. Giovanni provides a simple and intuitive way to visualize, analyze, and access vast amounts of Earth science remote sensing data without having to download the data. It is also a powerful tool that stakeholders can use for decision support in planning and preparing for increased climate variability. In this presentation, we demonstrate the functions in Giovanni with use cases employing AIRS Multi-year Monthly Mean and Anomaly variables.

  2. Psychosocial safety climate: a multilevel theory of work stress in the health and community service sector.

    Science.gov (United States)

    Dollard, M F; McTernan, W

    2011-12-01

    Work stress is widely thought to be a significant problem in the health and community services sector. We reviewed evidence from a range of different data sources that confirms this belief. High levels of psychosocial risk factors, psychological health problems and workers compensation claims for stress are found in the sector. We propose a multilevel theoretical model of work stress to account for the results. Psychosocial safety climate (PSC) refers to a climate for psychological health and safety. It reflects the balance of concern by management about psychological health v. productivity. By extending the health erosion and motivational paths of the Job Demands-Resources model we propose that PSC within work organisations predicts work conditions and in turn psychological health and engagement. Over and above this, however, we expect that the external environment of the sector particularly government policies, driven by economic rationalist ideology, is increasing work pressure and exhaustion. These conditions are likely to lead to a reduced quality of service, errors and mistakes.

  3. Disturbance and climate change in United States/Mexico borderland plant communities: a state-of-the-knowledge review

    Science.gov (United States)

    Guy R. McPherson; Jake F. Weltzin

    2000-01-01

    This review evaluates the effects and importance of disturbance and climate change on plant community dynamics in the United States/Mexico borderlands region. Our primary focus is on knowledge of physiognomic-level change in grasslands and woodlands of southeastern Arizona and southwestern New Mexico. Changes in vegetation physiognomy have broad implications for...

  4. A modelling framework to assess climate change and adaptation impact on heterogeneous crop-livestock farming communities

    NARCIS (Netherlands)

    Descheemaeker, K.K.E.; Masikati, P.; Homann-Kee Tui, S.; Chibwana, G.A.; Crespo, O.

    2015-01-01

    Climate change will impact the productivity of maize-based crop-livestock systems and the livelihoods of smallholders depending on them in semi-arid Zimbabwe. The large diversity in resource endowment and production objectives in rural communities differentially influences this impact and the

  5. Communities of practice in support of collaborative multi-disciplinary learning and action in response to climate change

    Science.gov (United States)

    Heimlich, J. E.; Stylinski, C.; Palmquist, S.; Wasserman, D.

    2017-12-01

    Collaborative efforts reaching across interdisciplinary boundaries to address controversial issues such as climate change present significant complexities, including developing shared language, agreeing on common outcomes, and even establishing habits of regular dialogue. Such collaborative efforts should include museums, aquariums, zoos, parks, and youth groups as each of these informal education institutions provides a critical avenue for supporting learning about and responding to climate change. The community of practice framework offers a potential effective approach to support learning and action of diverse groups with a shared interest. Our study applied this framework to the NSF-funded Maryland and Delaware Climate Change Assessment and Education (MADE-CLEAR) project, facilitating informal educators across these two states to advance their climate change education practices, and could provide insight for a building a citywide multi-sector collaborative effort. We found strategies that center on the process of group evolution; support different perspectives, levels of participation, and community spaces; focus on value as defined by members; and balance familiarity and fun produced a dynamic and functional community with a shared practice where none had existed before. Also important was expanding the community-of-practice focus on relationship building to include structured professional development and spin-off opportunities for small-group team-based endeavors. Our findings suggest that this collaborative professional learning approach is well suited to diverse groups seeking creative solutions to complex and even divisive challenges.

  6. Perceptions of Obvious and Disruptive Climate Change: Community-Based Risk Assessment for Two Native Villages in Alaska

    Directory of Open Access Journals (Sweden)

    Jon Rosales

    2015-10-01

    Full Text Available This work operationalizes the determinants of climate change risk, exposure and vulnerability, through the perceptions held by Native hunters, fishers, and gatherers in Savoonga and Shaktoolik, Alaska. Informed by their skill, experience, and the traditional knowledge of their elders, hunters, fishers, and gatherers in these communities are astute observers of their environment and environmental change. A questionnaire is used to sort and rank their perceptions of the most obvious and disruptive elements of climate change as representations of exposure and vulnerability, respectively. Results represent the relative strength and significance of those perceptions of environmental change. In addition to other changes, storms are among the most obvious and disruptive impacts of climate change to respondents in both communities, while changes to sea ice tend to be more disruptive in Savoonga, a more ice-obligate culture, than Shaktoolik. Changes on the tundra are more obvious in Shaktoolik, but is the least disruptive category of change in both villages. Changes along the coast were both obvious and disruptive, albeit more so in Shaktoolik than Savoonga. The findings suggest that traditional ecological knowledge is a valuable source of information to access perceptions of risk, and develop climate risk management and adaptation plans. The questionnaire design and statistical methodology may be of interest to those working on community-based adaptation and risk assessment projects in high-risk, poor, and marginalized Native communities with small populations.

  7. Safety climate in the US federal wildland fire management community: influences of organizational, environmental, group, and individual characteristics

    Science.gov (United States)

    Anne E. Black; Brooke Baldauf McBride

    2013-01-01

    This study examined the effects of organisational, environmental, group and individual characteristics on five components of safety climate (High Reliability Organising Practices, Leadership, Group Culture, Learning Orientation and Mission Clarity) in the US federal wildland fire management community. Of particular interest were differences between perceptions based on...

  8. Safety climate in the federal fire management community: Influences of organizational, environmental, group, and individual characteristics (Abstract)

    Science.gov (United States)

    Brooke Baldauf McBride; Anne E. Black

    2012-01-01

    This study examined the effects of organizational, environmental, group and individual characteristics on five components of safety climate in the US federal fire management community (HRO Practices, Leadership, Group Culture, Learning Orientation and Mission Clarity). Multiple analyses of variance revealed that all types of characteristics had a significant effect on...

  9. The vulnerability of Australian rural communities to climate variability and change: Part I—Conceptualising and measuring vulnerability

    NARCIS (Netherlands)

    Nelson, R.; Kokic, P.; Crimp, S.; Meinke, H.B.; Howden, S.M.

    2010-01-01

    Vulnerability is a term frequently used to describe the potential threat to rural communities posed by climate variability and change. Despite growing use of the term, analytical measures of vulnerability that are useful for prioritising and evaluating policy responses are yet to evolve. Demand for

  10. Protecting food security when facing uncertain climate: Opportunities for Afghan communities

    Science.gov (United States)

    Salman, Dina; Amer, Saud A.; Ward, Frank A.

    2017-11-01

    Climate change, population growth, and weakly developed water management institutions in many of the world's dry communities have raised the importance of designing innovative water allocation methods that adapt to water supply fluctuations while respecting cultural sensitivities. For example, Afghanistan faces an ancient history of water supply fluctuations that have contributed to periodic food shortage and famine. Poorly designed and weakly enforced water allocation methods continue to result in agriculture sector underperformance and periodic food shortages when water shortfalls occur. To date, little research has examined alternative water sharing rules on a multi-basin scale to protect food security for a subsistence irrigation society when the community faces water shortage. This paper's contribution examines the economic performance of three water-sharing mechanisms for three basins in Afghanistan with the goal of protecting food security for crop irrigation under ongoing threats of drought, while meeting growing demands for food in the face of anticipated population growth. We achieved this by formulating an integrated empirical optimization model to identify water-sharing measures that minimize economic losses while protecting food security when water shortages occur. Findings show that implementation of either a water trading policy or a proportional shortage policy that respects cultural sensitivities has the potential to raise economic welfare in each basin. Such a policy can reduce food insecurity risks for all trading provinces within each basin, thus being a productive institution for adapting to water shortage when it occurs. Total economic welfare gains are highest when drought is the most severe for which suffering would otherwise be greatest. Gains would be considerably higher if water storage reservoirs were built to store wet year flows for use in dry years. Our results light a path for policy makers, donors, water administrators, and farm

  11. Investigating the Influence of Climate Changes on Rodent Communities at a Regional-Scale (MIS 1-3, Southwestern France.

    Directory of Open Access Journals (Sweden)

    Aurélien Royer

    Full Text Available Terrestrial ecosystems have continuously evolved throughout the Late Pleistocene and the Holocene, deeply affected by both progressive environmental and climatic modifications, as well as by abrupt and large climatic changes such as the Heinrich or Dansgaard-Oeschger events. Yet, the impacts of these different events on terrestrial mammalian communities are poorly known, as is the role played by potential refugia on geographical species distributions. This study examines community changes in rodents of southwestern France between 50 and 10 ky BP by integrating 94 dated faunal assemblages coming from 37 archaeological sites. This work reveals that faunal distributions were modified in response to abrupt and brief climatic events, such as Heinrich events, without actually modifying the rodent community on a regional scale. However, the succession of events which operated between the Late Pleistocene and the Holocene gradually led to establishing a new rodent community at the regional scale, with intermediate communities occurring between the Bølling and the Allerød.

  12. A SURVEY OF AUTOMATION TECHNIQUES COMING FORTH IN SHEET-FED OFFSET PRINTING ORGANIZATIONS

    OpenAIRE

    Mr. Ramesh Kumar*, Mr. Bijender & Mr. Sandeep Boora

    2017-01-01

    Sheet-Fed offset is one of the premier processes in India as well as abroad. To cope up with customers large quantity demands automation has become mandatory. From prepress to post press a wide range of automation techniques exist and coming forth for sheet fed offset presses. Objective of this paper is to throw light on various sheet-fed offset automation techniques existing today and their futuristic implications. The data related to automation was collected with the help of survey conducte...

  13. Community based ecological restoration of peatland in Central Mongolia for climate change mitigation and adaptation

    Science.gov (United States)

    Minayeva, Tatiana; Chultem, Dugarjav; Grootjans, Ab; Yamkhin, Jambaljav; Sirin, Andrey; Suvorov, Gennady; Batdorj, Oyunbileg; Tsamba, Batdorj

    2017-04-01

    Peatlands cover almost 2 % of Mongolia. They play crucial role in regulation of key natural processes in ecosystems and provide unique resources to maintain traditional way of life and livelihoods of herders. During the last decades, Mongolian peatlands severely degraded both due to the climate related events and due to overgrazing. The peat degradation causes significant losses of carbon store, GHG emissions and is followed by changes in water balance and water composition. The issue arises if such a type of ecosystems as peatlands could be a subject for ecosystem restoration in this arid and subhumid climate. Could it be considered as measure for climate change mitigation and adaptation? With funding opportunities from the Asian Development Bank a pilot project for peatland restoration had been launched in 2016 in Khashaat soum, Arkhangai aimag in Central Mongolia. The pilot aimed to merge local interests of herders with global targets of climate change mitigation. The following questions are addressed: what are the losses of natural functions and ecosystem services of peatland; what are expectations and demands of local communities and incentives for their involvement; how should and could look the target ecosystem; what are the technical solutions in order to achieve the target ecosystem characteristics; and what are the parameters for monitoring to assess the success of the project? The comprehensive baseline study addressed both natural and social aspects. The conclusions are: most of peat in the study area had been mineralised and has turned to organic rich soil with carbon content between 20 to 40 %, the key sources of water - small springs - are partly destroyed by cattle; the permafrost disappeared in this area and could not be the subject for restoration; local herders understand the value of peatland as water source and had carried out some voluntary activities for water storage and regulation such as dam construction; nevertheless there is no

  14. Linking Hydro-Meteorological Hazards, Climate and Food Security: an Initiative of International Scientific Community

    Science.gov (United States)

    Ismail-Zadeh, A.; Beer, T.

    2013-05-01

    Humans face climatic and hydro-meteorological hazards on different scales in time and space. In particular natural hazards can have disastrous impact in the short term (flood) and in the long term (drought) as they affect human life and health as well as impacting dramatically on the sustainable development of society. They represent a pending danger for vulnerable lifelines, infrastructure and the agricultural systems that depend on the water supply, reservoirs, pipelines, and power plants. Developed countries are affected, but the impact is disproportionate within the developing world. Extreme natural events such as extreme floods or prolonged drought can change the life and economic development of developing nations and stifle their development for decades. The beginning of the XX1st century has been marked by a significant number of natural disasters, such as floods, severe storms, wildfires, hurricanes, and tsunamis. Extreme natural events cause devastation resulting in loss of human life, large environmental damage, and partial or total loss of infrastructure that, in the longer time, will affect the potential for agricultural recovery. Recent catastrophic events of the early 21st century (e.g. floods in Pakistan and Thailand, the 2011 Tohoku earthquake and tsunami) remind us once again that there is a strong coupling between complex solid Earth, oceanic, and atmospheric processes and that even developed countries such as Japan are subject to agricultural declines as a result of disastrous hydro-meteorological events. Scientific community recognizes that communication between the groups of experts of various international organizations dealing with natural hazards and their activity in disaster risk reduction and food security needs to be strengthened. Several international scientific unions and intergovernmental institutions set up a consortium of experts to promote studies of weather, climate and their interaction with agriculture, food and their socio

  15. Modeled subalpine plant community response to climate change and atmospheric nitrogen deposition in Rocky Mountain National Park, USA

    International Nuclear Information System (INIS)

    McDonnell, T.C.; Belyazid, S.; Sullivan, T.J.; Sverdrup, H.; Bowman, W.D.; Porter, E.M.

    2014-01-01

    To evaluate potential long-term effects of climate change and atmospheric nitrogen (N) deposition on subalpine ecosystems, the coupled biogeochemical and vegetation community competition model ForSAFE-Veg was applied to a site at the Loch Vale watershed of Rocky Mountain National Park, Colorado. Changes in climate and N deposition since 1900 resulted in pronounced changes in simulated plant species cover as compared with ambient and estimated future community composition. The estimated critical load (CL) of N deposition to protect against an average future (2010–2100) change in biodiversity of 10% was between 1.9 and 3.5 kg N ha −1  yr −1 . Results suggest that the CL has been exceeded and vegetation at the study site has already undergone a change of more than 10% as a result of N deposition. Future increases in air temperature are forecast to cause further changes in plant community composition, exacerbating changes in response to N deposition alone. - Highlights: • A novel calibration step was introduced for modeling biodiversity with ForSAFE-Veg. • Modeled increases in tree cover are consistent with empirical studies. • Reductions in N deposition decreased future graminoid percent cover. • Critical loads of N to protect biodiversity should consider climate change effects. - Subalpine plant biodiversity in Rocky Mountain National Park has already been impacted by N deposition and climate change and is expected to experience significant future effects

  16. Long-term monitoring of an amphibian community after a climate change- and infectious disease-driven species extirpation.

    Science.gov (United States)

    Bosch, Jaime; Fernández-Beaskoetxea, Saioa; Garner, Trenton W J; Carrascal, Luis María

    2018-02-15

    Infectious disease and climate change are considered major threats to biodiversity and act as drivers behind the global amphibian decline. This is, to a large extent, based on short-term studies that are designed to detect the immediate and strongest biodiversity responses to a threatening process. What few long-term studies are available, although typically focused on single species, report outcomes that often diverge significantly from the short-term species responses. Here, we report the results of an 18-year survey of an amphibian community exposed to both climate warming and the emergence of lethal chytridiomycosis. Our study shows that the impacts of infectious disease are ongoing but restricted to two out of nine species that form the community, despite the fact all species can become infected with the fungus. Climate warming appears to be affecting four out of the nine species, but the response of three of these is an increase in abundance. Our study supports a decreasing role of infectious disease on the community, and an increasing and currently positive effect of climate warming. We caution that if the warming trends continue, the net positive effect will turn negative as amphibian breeding habitat becomes unavailable as water bodies dry, a pattern that already may be underway. © 2018 John Wiley & Sons Ltd.

  17. #ClimateEdCommunity : Field Workshops Bring Together Teachers and Researchers to Make Meaning of Science and Classroom Integration

    Science.gov (United States)

    Bartholow, S.; Warburton, J.; Wood, J. H.; Steiner, S. M.

    2015-12-01

    Seeing Understanding and Teaching: Climate Change in Denali is a four-day immersive teacher professional development course held in Denali National Park. Developed through three partner organizations, the course aims to develop teachers' skills for integrating climate change content into their classrooms. This presentation aims to share tangible best practices for linking researchers and teachers in the field, through four years of experience in program delivery and reported through a published external evaluation. This presentation will examine the key aspects of a successful connection between teachers, researchers, science, and classrooms: (1) Inclusion of teacher leaders, (2) dedicated program staff, (3) workshop community culture, and will expose barriers to this type of collaboration including (1) differences in learning style, (2) prior teaching experience, (3) existing/scaffolding understanding of climate change science, and (4) accessibility of enrollment and accommodations for the extended learning experience. Presentation Content Examples:Participants overwhelmingly value the deep commitment this course has to linking their field experience to the classroom attributing to the role of a teacher-leader; an expert science teacher with first-hand field research experience in the polar regions. The goal of including a teacher-leader is to enhance translatability between fieldwork and the classroom. Additionally, qualitative aspects of the report touches on the intangible successes of the workshop such as: (1) the creation of a non-judgmental learning atmosphere, (2) addressing accessibility to science learning tools in rural and under-served communities, (3) defining successful collaboration as making meaning together through exploratory questioning while in the field (4) discussed the social and cultural implications of climate change, and the difficulty of navigating these topics in educational and/or multicultural spaces. Next Steps? Create a #ClimateEdCommunity

  18. Empowering America's Communities to Prepare for the Effects of Climate Change: Developing Actionable Climate Science Under the President's Climate Action Plan

    Science.gov (United States)

    Duffy, P. B.; Colohan, P.; Driggers, R.; Herring, D.; Laurier, F.; Petes, L.; Ruffo, S.; Tilmes, C.; Venkataraman, B.; Weaver, C. P.

    2014-12-01

    Effective adaptation to impacts of climate change requires best-available information. To be most useful, this information should be easily found, well-documented, and translated into tools that decision-makers use and trust. To meet these needs, the President's Climate Action Plan includes efforts to develop "actionable climate science". The Climate Data Initiative (CDI) leverages the Federal Government's extensive, open data resources to stimulate innovation and private-sector entrepreneurship in support of actions to prepare for climate change. The Initiative forges commitments and partnerships from the private, NGO, academic, and public sectors to create data-driven tools. Open data from Federal agencies to support this innovation is available on Climate.Data.gov, initially focusing on coastal flooding but soon to expand to topics including food, energy, water, energy, transportation, and health. The Climate Resilience Toolkit (CRT) will facilitate access to data-driven resilience tools, services, and best practices, including those accessible through the CDI. The CRT will also include access to training and tutorials, case studies, engagement forums, and other information sources. The Climate Action Plan also calls for a public-private partnership on extreme weather risk, with the goal of generating improved assessments of risk from different types of extreme weather events, using methods and data that are transparent and accessible. Finally, the U.S. Global Change Research Program and associated agencies work to advance the science necessary to inform decisions and sustain assessments. Collectively, these efforts represent increased emphasis across the Federal Government on the importance of information to support climate resilience.

  19. The relative role of dispersal and local interactions for alpine plant community diversity under simulated climate warming

    Energy Technology Data Exchange (ETDEWEB)

    Klanderud, K.; Totland, Oe. [Norwegian Univ. of Life Science, Dept. of Ecology and Natural Resource Management, Aas (Norway)

    2007-08-15

    Most studies on factors determining diversity are conducted in temperate or warm regions, whereas studies in climatically harsh and low productivity areas, such as alpine regions, are rare. We examined the relative roles of seed availability and different biotic and abiotic factors for the diversity of an alpine plant community in southern Norway. Furthermore, because climate warming is predicted to be an important driver of alpine species diversity, we assessed how the relative impacts of dispersal and local interactions on diversity might change under experimental warming (open top chambers, OTCs). Addition of seeds from 27 regional species increased community diversity. The establishment of the species was negatively related both to the diversity of the existing system and the cover of the abundant dwarf shrub Dryas octopetala. These results show that both species dispersal limitation and local biotic interactions are important factors for alpine plant community diversity. Despite relatively harsh environmental conditions and low productivity, competition from the resident vegetation appeared to have a greater role for species establishment and diversity than facilitation and experimental warming. Higher temperature appeared to increase the negative relationship between resident species diversity and species establishment. This may suggest that climate warming can increase the role of interspecific competition for alpine plant community structure, and thus alter the long-term effects of biotic interactions on diversity. (au)

  20. Comparison of post-fire seedling establishment between scrub communities in mediterranean and non-mediterranean climate ecosystems

    Science.gov (United States)

    Carrington, M.E.; Keeley, J.E.

    1999-01-01

    I Both fire regimes and the conditions under which fires occur vary widely. Abiotic conditions (such as climate) in combination with fire season, frequency and intensity could influence vegetation responses to fire. A variety of adaptations facilitate post-fire recruitment in mediterranean climate ecosystems, but responses of other communities are less well known. We evaluated the importance of climate by comparing sites with mediterranean and subtropical climates. 2 We used paired burned and mature sites in chamise chaparral, mixed chaparral and coastal sage scrub (California), and rosemary scrub, sand pine scrub and sand-hill (Florida), to test whether (i) patterns of pre-fire and post-fire seedling recruitment are more similar between communities within a region than between regions, and (ii) post-fire stimulation of seedling establishment is greater in regions with marked fire-induced contrasts in abiotic site characteristics. 3 Post-fire seedling densities were more similar among sites within climatic regions than between regions. Both seedling densities and proportions of species represented by seedlings after fires were generally higher in California. 4 The only site characteristic showing a pre-fire-post-fire contrast was percentage open canopy, and the effect was greater in California than in Florida. Soil properties were unaffected by fire. 5 Mediterranean climate ecosystems in other regions have nutrient-poor soils similar to our subtropical Florida sites, but show post-fire seedling recruitment patterns more similar to the nutrient-rich sites in California. Climate therefore appears to play a more major role than soil characteristics.

  1. A Climate Change Adaptation Planning Process for Low-Lying, Communities Vulnerable to Sea Level Rise

    Directory of Open Access Journals (Sweden)

    Kristi Tatebe

    2012-09-01

    Full Text Available While the province of British Columbia (BC, Canada, provides guidelines for flood risk management, it is local governments’ responsibility to delineate their own flood vulnerability, assess their risk, and integrate these with planning policies to implement adaptive action. However, barriers such as the lack of locally specific data and public perceptions about adaptation options mean that local governments must address the need for adaptation planning within a context of scientific uncertainty, while building public support for difficult choices on flood-related climate policy and action. This research demonstrates a process to model, visualize and evaluate potential flood impacts and adaptation options for the community of Delta, in Metro Vancouver, across economic, social and environmental perspectives. Visualizations in 2D and 3D, based on hydrological modeling of breach events for existing dike infrastructure, future sea level rise and storm surges, are generated collaboratively, together with future adaptation scenarios assessed against quantitative and qualitative indicators. This ‘visioning package’ is being used with staff and a citizens’ Working Group to assess the performance, policy implications and social acceptability of the adaptation strategies. Recommendations based on the experience of the initiative are provided that can facilitate sustainable future adaptation actions and decision-making in Delta and other jurisdictions.

  2. British Container Breeding Mosquitoes: The Impact of Urbanisation and Climate Change on Community Composition and Phenology

    Science.gov (United States)

    Townroe, Susannah; Callaghan, Amanda

    2014-01-01

    The proliferation of artificial container habitats in urban areas has benefitted urban adaptable mosquito species globally. In areas where mosquitoes transmit viruses and parasites, it can promote vector population productivity and fuel mosquito-borne disease outbreaks. In Britain, storage of water in garden water butts is increasing, potentially expanding mosquito larval habitats and influencing population dynamics and mosquito-human contact. Here we show that the community composition, abundance and phenology of mosquitoes breeding in experimental water butt containers were influenced by urbanisation. Mosquitoes in urban containers were less species-rich but present in significantly higher densities (100.4±21.3) per container than those in rural containers (77.7±15.1). Urban containers were dominated by Culex pipiens (a potential vector of West Nile Virus [WNV]) and appear to be increasingly exploited by Anopheles plumbeus (a human-biting potential WNV and malaria vector). Culex phenology was influenced by urban land use type, with peaks in larval abundances occurring earlier in urban than rural containers. Among other factors, this was associated with an urban heat island effect which raised urban air and water temperatures by 0.9°C and 1.2°C respectively. Further increases in domestic water storage, particularly in urban areas, in combination with climate changes will likely alter mosquito population dynamics in the UK. PMID:24759617

  3. Towards a dedicated impact portal to bridge the gap between the impact and climate communities: Lessons from use cases

    International Nuclear Information System (INIS)

    Deandreis, Celine; Page, Christian; Braconnot, Pascale; Joussaume, Sylvie

    2014-01-01

    Future climate evolution is of primary importance for the societal, economical, political orientations and decision-making. It explains the increasing use of climate projections as input for quantitative impact studies, assessing vulnerability and defining adaptation strategies in different sectors. Here we analyse 17 national and representative use cases so as to identify the diversity of the demand for climate information depending on user profiles as well as the best practices, methods and tools that are needed to answer the different requests. A particular emphasis is put on the workflow that allows to translate climate data into suitable impact data, the way to deal with the different sources of uncertainty and to provide a suited product to users. We identified three complementary tools to close the gap between climate scientists and user needs: an efficient interface between users and providers; an optimized methodology to handle user requests and a portal to facilitate access to data and elaborated products. We detail in the paper how these three tools can limit the intervention of experts, educate users, and lead to the production of useful information. This work provides the basis on which the ENES (European Network for Earth System Modelling) Portal Interface for the Climate Impact Communities is built. (authors)

  4. Late Quaternary climate-change velocity: Implications for modern distributions and communities

    DEFF Research Database (Denmark)

    Sandel, Brody Steven; Dalsgaard, Bo; Arge, Lars Allan

    a global map of climate-change velocity since the Last Glacial Maximum and used this measure of climate instability to address a number of classic hypotheses. Results/Conclusions We show that historical climate-change velocity is related to a wide range of characteristics of modern distributions...

  5. Climate change on Twitter: topics, communities and conversations about the 2013 IPCC Working Group 1 report

    NARCIS (Netherlands)

    Pearce, W; Holmberg, K; Hellsten, I.; Nerlich, B.

    2014-01-01

    In September 2013 the Intergovernmental Panel on Climate Change published its Working Group 1 report, the first comprehensive assessment of physical climate science in six years, constituting a critical event in the societal debate about climate change. This paper analyses the nature of this debate

  6. Climate change, human communities, and forests in rural, urban, and wildland-urban interface environments

    Science.gov (United States)

    David N. Wear; Linda A. Joyce

    2012-01-01

    Human concerns about the effects of climate change on forests are related to the values that forests provide to human populations, that is, to the effects on ecosystem services derived from forests. Service values include the consumption of timber products, the regulation of climate and water quality, and aesthetic and spiritual values. Effects of climate change on...

  7. Socioeconomic impacts of climate change on rural communities in the United States

    Science.gov (United States)

    Pankaj Lal; Janaki Alavalapati; D Evan Mercer

    2011-01-01

    Climate change refers to any distinct change in measures of climate such as temperature, rainfall, snow, or wind patterns lasting for decades or longer (USEPA 2009). In the last decade, there has been a clear consensus among scientists that the world is experiencing a rapid global climate change, much of it attributable to anthropogenic activities. The extent of...

  8. Does social climate influence positive eWOM? A study of heavy-users of online communities.

    Directory of Open Access Journals (Sweden)

    Carla Ruiz-Mafe

    2018-01-01

    Full Text Available This paper provides a deeper understanding of the role of social influences on positive eWOM behaviour (PeWOM of heavy-users of online communities. Drawing on Social Interaction Utility Framework, Group Marketing and Social Learning Theories, we develop and test a research model integrating the interactions between the social climate of a website and Interpersonal Influences in PeWOM. 262 Spanish heavy-users of online communities were selected and the data analysed using partial least squares equation modelling. Overall, the model explains 59% of the variance of PeWOM on online communities. Findings reveal that interaction with other members of the online community (Social Presence is the main predictor of PeWOM. Social Identity is a mediator between Social Presence and PeWOM. Interpersonal Influence has an important role as a moderator variable; the greater the impact of Interpersonal Influence, the stronger the relationship between Social Presence and PeWOM.

  9. Forest Plant community changes during 1989-2007 in response to climate warming in the Jura Mountains (France and Switzerland)

    DEFF Research Database (Denmark)

    Lenoir, Jonathan; Gégout, J.C.; Dupouey, J.L.

    2010-01-01

    Question: How strong are climate warming-driven changes within mid-elevation forest communities? Observations of plant community change within temperate mountain forest ecosystems in response to recent warming are scarce in comparison to high-elevation alpine and nival ecosystems, perhaps...... reflecting the confounding influence of forest stand dynamics. Location: Jura Mountains (France and Switzerland). Methods: We assessed changes in plant community composition by surveying 154 Abies alba forest vegetation relevés (550-1,350 m a.s.l.) in 1989 and 2007. Over this period, temperatures increased...... while precipitation did not change. Correspondence analysis (CA) and ecological indicator values were used to measure changes in plant community composition. Relevés in even- and uneven-aged stands were analysed separately to determine the influence of forest stand dynamics. We also analysed changes...

  10. Constraints on trait combinations explain climatic drivers of biodiversity: the importance of trait covariance in community assembly.

    Science.gov (United States)

    Dwyer, John M; Laughlin, Daniel C

    2017-07-01

    Trade-offs maintain diversity and structure communities along environmental gradients. Theory indicates that if covariance among functional traits sets a limit on the number of viable trait combinations in a given environment, then communities with strong multidimensional trait constraints should exhibit low species diversity. We tested this prediction in winter annual plant assemblages along an aridity gradient using multilevel structural equation modelling. Univariate and multivariate functional diversity measures were poorly explained by aridity, and were surprisingly poor predictors of community richness. By contrast, the covariance between maximum height and seed mass strengthened along the aridity gradient, and was strongly associated with richness declines. Community richness had a positive effect on local neighbourhood richness, indicating that climate effects on trait covariance indirectly influence diversity at local scales. We present clear empirical evidence that declines in species richness along gradients of environmental stress can be due to increasing constraints on multidimensional phenotypes. © 2017 John Wiley & Sons Ltd/CNRS.

  11. 12 CFR 714.9 - Are indirect leasing arrangements subject to the purchase of eligible obligation limit set forth...

    Science.gov (United States)

    2010-01-01

    ... the purchase of eligible obligation limit set forth in § 701.23 of this chapter? 714.9 Section 714.9....9 Are indirect leasing arrangements subject to the purchase of eligible obligation limit set forth... underwriting decision and that the lease contract is assigned to you very soon after it is signed by the member...

  12. Differences in plankton community structure and carbon cycling along a climate gradient from the Greenland Ice Sheet to offshore waters

    DEFF Research Database (Denmark)

    Arendt, K.E.; Nielsen, Torkel Gissel; Rysgaard, S.

    Huge differences in plankton community structures and biomasses are observed along a climate gradient from the Greenland Ice Sheet to offshore waters at the West Greenland coast. The offshore region has a high biomass of copepods dominated by Calanus spp., which are capable of consuming 55....... Protozooplankton accounts for 20-38% of the carbon turnover in the offshore and inland areas. However, protozooplankton like copepods has low ability to turn over the primary production close to the Ice Sheet. Increased run of from the Greenland Ice Sheet due to global warming could displace the existing climate...... gradient. This would have a profound influence on the future plankton community structure as well as the energy transfer to higher trophic levels in Arctic coastal ecosystems....

  13. Motion of a Rigid Rod Rocking Back and Forth Cubic-Quintic Duffing Oscillators

    DEFF Research Database (Denmark)

    Ganji, S. S.; Barari, Amin; Karimpour, S.

    2012-01-01

    In this work, we implemented the first-order approximation of the Iteration Perturbation Method (IPM) for approximating the behavior of a rigid rod rocking back and forth on a circular surface without slipping as well as Cubic-Quintic Duffing Oscillators. Comparing the results with the exact...... solution, has led us to significant consequences. The results reveal that the IPM is very effective, simple and convenient to systems of nonlinear equations. It is predicted that IPM can be utilized as a widely applicable approach in engineering....

  14. Christopher E. Forth et Bertrand Taithe (dir, French Masculinities: History, Culture and Politics

    Directory of Open Access Journals (Sweden)

    Régis Revenin

    2007-11-01

    Full Text Available Cet ouvrage collectif, dirigé par Christopher E. Forth, historien à l’Australian National University à Canberra [Australie], et par Bertrand Taithe, professeur d’histoire culturelle à l’Université de Manchester [Royaume-Uni], offre une très intéressante contribution, en langue anglaise, à l’histoire du genre en France, particulièrement à l’histoire des hommes et des masculinités à l’époque contemporaine.L’ouvrage propose une très riche introduction sous la plume des deux directeurs d’ouvrage,...

  15. Use of a FORTH-based PROLOG for real-time expert systems. 1: Spacelab life sciences experiment application

    Science.gov (United States)

    Paloski, William H.; Odette, Louis L.; Krever, Alfred J.; West, Allison K.

    1987-01-01

    A real-time expert system is being developed to serve as the astronaut interface for a series of Spacelab vestibular experiments. This expert system is written in a version of Prolog that is itself written in Forth. The Prolog contains a predicate that can be used to execute Forth definitions; thus, the Forth becomes an embedded real-time operating system within the Prolog programming environment. The expert system consists of a data base containing detailed operational instructions for each experiment, a rule base containing Prolog clauses used to determine the next step in an experiment sequence, and a procedure base containing Prolog goals formed from real-time routines coded in Forth. In this paper, we demonstrate and describe the techniques and considerations used to develop this real-time expert system, and we conclude that Forth-based Prolog provides a viable implementation vehicle for this and similar applications.

  16. Does the stress tolerance of mixed grassland communities change in a future climate? A test with heavy metal stress (zinc pollution)

    International Nuclear Information System (INIS)

    Van den Berge, Joke; Naudts, Kim; Janssens, Ivan A.; Ceulemans, Reinhart; Nijs, Ivan

    2011-01-01

    Will species that are sensitive/tolerant to Zn pollution still have the same sensitivity/tolerance in a future climate? To answer this question we analysed the response of constructed grassland communities to five levels of zinc (Zn) supply, ranging from 0 to 354 mg Zn kg -1 dry soil, under a current climate and a future climate (elevated CO 2 and warming). Zn concentrations increased in roots and shoots with Zn addition but this increase did not differ between climates. Light-saturated net CO 2 assimilation rate (A sat ) of the species, on the other hand, responded differently to Zn addition depending on climate. Still, current and future climate communities have comparable biomass responses to Zn, i.e., no change in root biomass and a 13% decrease of above-ground biomass. Provided that the different response of A sat in a future climate will not compromise productivity and survival on the long term, sensitivity is not altered by climate change. - Highlights: → We exposed constructed grassland communities to Zn addition in a current and a future climate. → Zn uptake did not differ between the climates. → Although A sat was more responsive to Zn in future climate, climate did not alter biomass responses. → If this response remains on the long term, climate change will not alter sensitivity. - This study is the first to examine plant responses to a heavy metal (Zn) in a changing climate, and shows that the tolerance of plants to Zn stress will not be altered in a future climate.

  17. Response of air-sea carbon fluxes and climate to orbital forcing changes in the Community Climate System Model

    Science.gov (United States)

    Jochum, M.; Peacock, S.; Moore, K.; Lindsay, K.

    2010-07-01

    A global general circulation model coupled to an ocean ecosystem model is used to quantify the response of carbon fluxes and climate to changes in orbital forcing. Compared to the present-day simulation, the simulation with the Earth's orbital parameters from 115,000 years ago features significantly cooler northern high latitudes but only moderately cooler southern high latitudes. This asymmetry is explained by a 30% reduction of the strength of the Atlantic Meridional Overturning Circulation that is caused by an increased Arctic sea ice export and a resulting freshening of the North Atlantic. The strong northern high-latitude cooling and the direct insolation induced tropical warming lead to global shifts in precipitation and winds to the order of 10%-20%. These climate shifts lead to regional differences in air-sea carbon fluxes of the same order. However, the differences in global net air-sea carbon fluxes are small, which is due to several effects, two of which stand out: first, colder sea surface temperature leads to a more effective solubility pump but also to increased sea ice concentration which blocks air-sea exchange, and second, the weakening of Southern Ocean winds that is predicted by some idealized studies occurs only in part of the basin, and is compensated by stronger winds in other parts.

  18. Potentials and limitations of epistemic communities. An analysis of the World Climate Council and the Framework Convention on Climate Change; Potenziale und Grenzen von epistemic communities. Eine Analyse des Weltklimarates und der Klimarahmenkonvention

    Energy Technology Data Exchange (ETDEWEB)

    Otto, Daniel

    2015-07-01

    In times of increasing global uncertainties, science takes a central position for policy decisions. According to Peter M. Haas, epistemic communities are able to influence the cooperative behavior of states through their consensual knowledge. This book critically examines this statement. As the case of the Framework Convention on Climate Change shows, the World Climate Council (IPCC) was not in a position to enforce its solution options in the intergovernmental negotiations, as these affected the individual convictions of the decision-makers. While Angela Merkel advocated an agreement, the US government under George W. Bush denied the existence of climate change. Decision-makers and their individual convictions must therefore have a greater significance in international politics. [German] In Zeiten zunehmender globaler Unsicherheiten nimmt die Wissenschaft fuer die Entscheidungen der Politik eine zentrale Stellung ein. Epistemic communities sind nach Peter M. Haas durch ihr konsensuales Wissen in der Lage, das Kooperationsverhalten von Staaten zu beeinflussen. Das vorliegende Buch prueft diese Aussage kritisch. Wie der Fall der Klimarahmenkonvention zeigt, war der Weltklimarat (IPCC) nicht in der Lage, seine Loesungsoptionen in den zwischenstaatlichen Verhandlungen durchzusetzen, da diesen die individuellen Ueberzeugungen der Entscheidungstraeger entgegenstanden. Waehrend Angela Merkel ein Abkommen befuerwortete, bestritt die US-Regierung unter George W. Bush die Existenz des Klimawandels. Entscheidungstraegern und ihren individuellen Ueberzeugungen muss daher in der internationalen Politik eine staerkere Bedeutung zukommen.

  19. Climate-related changes of soil characteristics affect bacterial community composition and function of high altitude and latitude lakes.

    Science.gov (United States)

    Rofner, Carina; Peter, Hannes; Catalán, Núria; Drewes, Fabian; Sommaruga, Ruben; Pérez, María Teresa

    2017-06-01

    Lakes at high altitude and latitude are typically unproductive ecosystems where external factors outweigh the relative importance of in-lake processes, making them ideal sentinels of climate change. Climate change is inducing upward vegetation shifts at high altitude and latitude regions that translate into changes in the pools of soil organic matter. Upon mobilization, this allochthonous organic matter may rapidly alter the composition and function of lake bacterial communities. Here, we experimentally simulate this potential climate-change effect by exposing bacterioplankton of two lakes located above the treeline, one in the Alps and one in the subarctic region, to soil organic matter from below and above the treeline. Changes in bacterial community composition, diversity and function were followed for 72 h. In the subarctic lake, soil organic matter from below the treeline reduced bulk and taxon-specific phosphorus uptake, indicating that bacterial phosphorus limitation was alleviated compared to organic matter from above the treeline. These effects were less pronounced in the alpine lake, suggesting that soil properties (phosphorus and dissolved organic carbon availability) and water temperature further shaped the magnitude of response. The rapid bacterial succession observed in both lakes indicates that certain taxa directly benefited from soil sources. Accordingly, the substrate uptake profiles of initially rare bacteria (copiotrophs) indicated that they are one of the main actors cycling soil-derived carbon and phosphorus. Our work suggests that climate-induced changes in soil characteristics affect bacterioplankton community structure and function, and in turn, the cycling of carbon and phosphorus in high altitude and latitude aquatic ecosystems. © 2016 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.

  20. Community violence exposure and post-traumatic stress reactions among Gambian youth: the moderating role of positive school climate.

    Science.gov (United States)

    O'Donnell, Deborah A; Roberts, William C; Schwab-Stone, Mary E

    2011-01-01

    Community violence exposure among youth can lead to various negative outcomes, including post-traumatic stress symptoms. Research in the Western world indicates that a number of social support factors may moderate the relation between violence exposure and internalizing symptoms. Little research has been carried out in non-Western countries. This study aimed to fill this gap by exploring the relations among violence exposure, parental warmth, positive school climate, and post-traumatic stress reactions among youth in The Republic of The Gambia, Africa. A school-based survey of youth behaviors, feelings, attitudes, and perceptions was administered to 653 students at senior secondary schools in four Gambian communities. Students reported high levels of exposure to violence. Over half of students reported witnessing someone threatened with serious physical harm, beaten up or mugged, attacked or stabbed with a knife/piece of glass, or seriously wounded in an incident of violence. Nearly half of students reported being beaten up or mugged during the past year, and nearly a quarter reported being threatened with serious physical harm. There were no sex differences in levels of exposure. Traumatic stress symptoms were common, especially among females. Both violence witnessing and violent victimization significantly predicted post-traumatic stress symptoms, and positive school climate moderated the relationship. Among youth victimized by violence, positive school climate was most strongly correlated with lower levels of post-traumatic stress at low levels of exposure. Among youth who had witnessed violence, positive school climate was most strongly correlated with lower levels of post-traumatic stress at high levels of exposure. Community-based programs that bring together parents, schools, and youth may play an important role in combating the negative effects of some types of violence exposure among Gambian youth. Youth experiencing high levels of violent victimization

  1. Regional Approach for Linking Ecosystem Services and Livelihood Strategies Under Climate Change of Pastoral Communities in the Mongolian Steppe Ecosystem

    Science.gov (United States)

    Ojima, D. S.; Galvin, K.; Togtohyn, C.

    2012-12-01

    Dramatic changes due to climate and land use dynamics in the Mongolian Plateau affecting ecosystem services and agro-pastoral systems in Mongolia. Recently, market forces and development strategies are affecting land and water resources of the pastoral communities which are being further stressed due to climatic changes. Evaluation of pastoral systems, where humans depend on livestock and grassland ecosystem services, have demonstrated the vulnerability of the social-ecological system to climate change. Current social-ecological changes in ecosystem services are affecting land productivity and carrying capacity, land-atmosphere interactions, water resources, and livelihood strategies. The general trend involves greater intensification of resource exploitation at the expense of traditional patterns of extensive range utilization. Thus we expect climate-land use-land cover relationships to be crucially modified by the social-economic forces. The analysis incorporates information about the social-economic transitions taking place in the region which affect land-use, food security, and ecosystem dynamics. The region of study extends from the Mongolian plateau in Mongolia. Our research indicate that sustainability of pastoral systems in the region needs to integrate the impact of climate change on ecosystem services with socio-economic changes shaping the livelihood strategies of pastoral systems in the region. Adaptation strategies which incorporate integrated analysis of landscape management and livelihood strategies provides a framework which links ecosystem services to critical resource assets. Analysis of the available livelihood assets provides insights to the adaptive capacity of various agents in a region or in a community. Sustainable development pathways which enable the development of these adaptive capacity elements will lead to more effective adaptive management strategies for pastoral land use and herder's living standards. Pastoralists will have the

  2. A Functional Approach to Zooplankton Communities in Mountain Lakes Stocked With Non-Native Sportfish Under a Changing Climate

    Science.gov (United States)

    Redmond, Laura E.; Loewen, Charlie J. G.; Vinebrooke, Rolf D.

    2018-03-01

    Cumulative impacts of multiple stressors on freshwater biodiversity and ecosystem function likely increase with elevation, thereby possibly placing alpine communities at greatest risk. Here, consideration of species traits enables stressor effects on taxonomic composition to be translated into potential functional impacts. We analyzed data for 47 taxa across 137 mountain lakes and ponds spanning large latitudinal (491 km) and elevational (1,399 m) gradients in western Canada, to assess regional and local factors of the taxonomic composition and functional structure of zooplankton communities. Multivariate community analyses revealed that small body size, clonal reproduction via parthenogenesis, and lack of pigmentation were species traits associated with both introduced non-native sportfish and also environmental conditions reflecting a warmer and drier climate—namely higher water temperatures, shallower water depths, and more chemically concentrated water. Thus, historical introductions of sportfish appear to have potentially induced greater tolerance in zooplankton communities of future climatic warming, especially in previously fishless alpine lakes. Although alpine lake communities occupied a relatively small functional space (i.e., low functional diversity), they were contained within the broader regional functional structure. Therefore, our findings point to the importance of dispersal by lower montane species to the future functional stability of alpine communities.

  3. Framing Climate Change Communication to Prompt Individual and Collective Action among Adolescents from Agricultural Communities

    Science.gov (United States)

    Stevenson, Kathryn T.; King, Tasha L.; Selm, Kathryn R.; Peterson, M. Nils; Monroe, Martha C.

    2018-01-01

    Climate communication research suggests strategic message framing may help build public consensus on climate change causes, risks and solutions. However, few have investigated how framing applies to adolescents. Similarly, little research has focused on agricultural audiences, who are among the most vulnerable to and least accepting of climate…

  4. Community ecology, climate change and ecohydrology in desert grassland and shrubland

    Science.gov (United States)

    Mathew Daniel Petrie

    2014-01-01

    This dissertation explores the climate, ecology and hydrology of Chihuahuan Desert ecosystems in the context of global climate change. In coming decades, the southwestern United States is projected to experience greater temperature-driven aridity, possible small decreases in annual precipitation, and a later onset of summer monsoon rainfall. These changes may have...

  5. Abstracts and final report of the Southern Gulf of St. Lawrence Coalition on Sustainability workshop on climate change and coastal communities: concerns and challenges for today and beyond

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-11-01

    The participants at this workshop presented important climate change information from a national perspective and provided an opportunity for stakeholder comments on the Southeastern New Brunswick Sea-Level Rise Project. The abstracts presented in this report outlined current research on ocean current variabilities; climate change and coastal erosion impacts in the Gulf of St. Lawrence estuary; and agriculture and climate change. Community focus presentations addressed issues associated with coastal vulnerability to climate change and sea-level rise in Haida Gwaii, BC; Inuit observations of climate change; impacts and adaptation to climate change in Atlantic Canada; and communities, fisheries and tourism. Future research orientations from governments were also examined, with information on protection policies for coastal areas; climate change impact and adaptation directorates; climate change scenarios; and potential impacts and possible adaptations to the communities in the region. The studies indicate that the sea level will rise by 70 cm by the year 2100 in the southeastern Gulf of St. Lawrence. Immediate implementation of New Brunswick's Coastal Areas Protection Policy was recommended. Climate change is an issue that contains ecological, social and economic aspects, linking science to local knowledge. This final report contains 25 abstracts presented at the conference. A participant list and an appendix of the workshop's agenda was also included.

  6. Evaluating a European knowledge hub on climate change in agriculture: Are we building a better connected community?

    Science.gov (United States)

    Saetnan, Eli Rudinow; Kipling, Richard Philip

    In order to maintain food security and sustainability of production under climate change, interdisciplinary and international collaboration in research is essential. In the EU, knowledge hubs are important funding instruments for the development of an interconnected European Research Area. Here, network analysis was used to assess whether the pilot knowledge hub MACSUR has affected interdisciplinary collaboration, using co-authorship of peer reviewed articles as a measure of collaboration. The broad community of all authors identified as active in the field of agriculture and climate change was increasingly well connected over the period studied. Between knowledge hub members, changes in network parameters suggest an increase in collaborative interaction beyond that expected due to network growth, and greater than that found in the broader community. Given that interdisciplinary networks often take several years to have an impact on research outputs, these changes within the relatively new MACSUR community provide evidence that the knowledge hub structure has been effective in stimulating collaboration. However, analysis showed that knowledge hub partners were initially well-connected, suggesting that the initiative may have gathered together researchers with particular resources or inclinations towards collaborative working. Long term, consistent funding and ongoing reflection to improve networking structures may be necessary to sustain the early positive signs from MACSUR, to extend its success to a wider community of researchers, or to repeat it in less connected fields of science. Tackling complex challenges such as climate change will require research structures that can effectively support and utilise the diversity of talents beyond the already well-connected core of scientists at major research institutes. But network research shows that this core, well-connected group are vital brokers in achieving wider integration.

  7. Efforts onto nuclear research and development such as new reactor and so forth

    International Nuclear Information System (INIS)

    Onishi, Tuneji

    2000-01-01

    The Japan Atomic Power Co. which is one of specified business company on nuclear power generation, has carried out construction and operation of power plants with different types of reactor such as boiling light water reactor (BWR), pressurized light water rector (PWR), and so forth. And, by actively using technical powers and experiences accumulated before then, additional construction of a new power unit, and researches and developments on a simplified light water reactor, a future type rector, and a high breeder proof reactor have been made some efforts. Here were introduced some outlines on development of an improved type PWR, development of a new type reactor for example, deep embedded plant), future type reactor (for example, revolutionary middle and small type reactor, simplified PWR, and simplified BWR), a fast breeder reactor, and a reactor building suitable for a ship shell structure. (G.K.)

  8. Divergence of dominant factors in soil microbial communities and functions in forest ecosystems along a climatic gradient

    Science.gov (United States)

    Xu, Zhiwei; Yu, Guirui; Zhang, Xinyu; He, Nianpeng; Wang, Qiufeng; Wang, Shengzhong; Xu, Xiaofeng; Wang, Ruili; Zhao, Ning

    2018-03-01

    Soil microorganisms play an important role in regulating nutrient cycling in terrestrial ecosystems. Most of the studies conducted thus far have been confined to a single forest biome or have focused on one or two controlling factors, and few have dealt with the integrated effects of climate, vegetation, and soil substrate availability on soil microbial communities and functions among different forests. In this study, we used phospholipid-derived fatty acid (PLFA) analysis to investigate soil microbial community structure and extracellular enzymatic activities to evaluate the functional potential of soil microbes of different types of forests in three different climatic zones along the north-south transect in eastern China (NSTEC). Both climate and forest type had significant effects on soil enzyme activities and microbial communities with considerable interactive effects. Except for soil acid phosphatase (AP), the other three enzyme activities were much higher in the warm temperate zone than in the temperate and the subtropical climate zones. The soil total PLFAs and bacteria were much higher in the temperate zone than in the warm temperate and the subtropical zones. The soil β-glucosidase (BG) and N-acetylglucosaminidase (NAG) activities were highest in the coniferous forest. Except for the soil fungi and fungi-bacteria (F/B), the different groups of microbial PLFAs were much higher in the conifer broad-leaved mixed forests than in the coniferous forests and the broad-leaved forests. In general, soil enzyme activities and microbial PLFAs were higher in primary forests than in secondary forests in temperate and warm temperate regions. In the subtropical region, soil enzyme activities were lower in the primary forests than in the secondary forests and microbial PLFAs did not differ significantly between primary and secondary forests. Different compositions of the tree species may cause variations in soil microbial communities and enzyme activities. Our results

  9. Network Connectedness, Sense of Community, and Risk Perception of Climate Change Professionals in the Pacific Islands Region

    Science.gov (United States)

    Corlew, L. K.; Keener, V. W.; Finucane, M.

    2013-12-01

    The Pacific Regional Integrated Sciences and Assessments (Pacific RISA) Program conducted social network analysis research of climate change professionals (broadly defined) who are from or work in Hawaii and the U.S.-Affiliated Pacific Islands (USAPI) region. This study is supported by the National Oceanic and Atmospheric Administration (NOAA) and the Pacific Islands Climate Science Center (PICSC) to address an identified need for a resource that quantifies the region's collaborative network of climate change professionals, and that supports the further development of cross-regional and inter-sectoral collaborations for future research and adaptation activities. A survey was distributed to nearly 1,200 people who are from and/or work in climate change related fields in the region. The Part One Survey questions (not confidential) created a preferential attachment network by listing major players in Hawaii and the USAPI, with additional open fields to identify important contacts in the greater professional network. Participants (n=340) identified 975 network contacts and frequency of communications (weekly, monthly, seasonally, yearly, at least once ever). Part Two Survey questions (confidential, n=302) explored climate change risk perceptions, Psychological Sense of Community (PSOC), sense of control over climate change impacts, sense of responsibility to act, policy beliefs and preferences regarding climate change actions, concern and optimism scales about specific impacts, and demographic information. Graphical representations of the professional network are being developed for release in September 2013 as a free online tool to promote and assist collaboration building among climate professionals in the region. The graphs are partitioned according to network 'hubs' (high centrality), participant location, and profession to clearly identify network strengths and opportunities for future collaborations across spatial and professional boundaries. For additional

  10. Knowledge and perception about climate change and human health: findings from a baseline survey among vulnerable communities in Bangladesh.

    Science.gov (United States)

    Kabir, Md Iqbal; Rahman, Md Bayzidur; Smith, Wayne; Lusha, Mirza Afreen Fatima; Azim, Syed; Milton, Abul Hasnat

    2016-03-15

    Bangladesh is one of the countries most vulnerable to climate change (CC). A basic understanding of public perception on vulnerability, attitude and the risk in relation to CC and health will provide strategic directions for government policy, adaptation strategies and development of community-based guidelines. The objective of this study was to collect community-based data on peoples' knowledge and perception about CC and its impact on health. In 2012, a cross-sectional survey was undertaken among 6720 households of 224 enumeration areas of rural villages geographically distributed in seven vulnerable districts of Bangladesh, with total population of 19,228,598. Thirty households were selected randomly from each enumeration area using the household listing provided by the Bangladesh Bureau of Statistics (BBS). Information was collected from all the 6720 research participants using a structured questionnaire. An observation checklist was used by the interviewers to collect household- and community-related information. In addition, we selected the head of each household as the eligible participant for an interview. Evidence of association between sociodemographic variables and knowledge of CC was explored by cross-tabulation and measured using chi-square tests. Logistic regression models were used to further explore the predictors of knowledge. The study revealed that the residents of the rural communities selected for this study largely come from a low socioeconomic background: only 9.6% had postsecondary education or higher, the majority worked as day labourer or farmer (60%), and only 10% earned a monthly income above BDT 12000 (equivalent to US $150 approx.). The majority of the participants (54.2%) had some knowledge about CC but 45.8% did not (p change of climate (83.2%). Among all the respondents (n = 6720), 94.5% perceived change in climate and extreme weather events. Most of them (91.9%) observed change in rainfall patterns in the last 10 years, and 97

  11. Climate Change and Thawing Permafrost in Two Iñupiaq Communities of Alaska's Arctic: Observations, Implications, and Resilience

    Science.gov (United States)

    Woodward, A.; Kofinas, G.

    2013-12-01

    For thousands of years the Iñupiat of northern Alaska have relied on ecosystems underlain by permafrost for material and cultural resources. As permafrost thaws across the Arctic, these social-ecological systems are changing rapidly. Community-based research and extensive local knowledge of Iñupiaq villagers offer unique and valuable contributions to understanding permafrost change and its implications for humans. We partnered with two Iñupiaq communities in Alaska's Arctic to investigate current and potential effects of thawing permafrost on social-ecological systems. Anaktuvuk Pass is situated on thaw-stable consolidated gravel in the Brooks Range, while Selawik rests on ice-rich permafrost in Beringia lowland tundra. Using the transdisciplinary approach of resilience theory and mixed geophysical and ethnographic methods, we measured active layer thaw depths and documented local knowledge about climate and permafrost change. Thaw depths were greater overall in Selawik. Residents of both communities reported a variety of changes in surface features, hydrology, weather, flora, and fauna that they attribute to thawing permafrost and / or climate change. Overall, Selawik residents described more numerous and extreme examples of such changes, expressed higher degrees of certainty that change is occurring, and anticipated more significant and negative implications for their way of life than did residents of Anaktuvuk Pass. Of the two villages, Selawik faces greater and more immediate challenges to the resilience of its social-ecological system as permafrost thaws.

  12. How will coral reef fish communities respond to climate-driven disturbances? Insight from landscape-scale perturbations.

    Science.gov (United States)

    Adam, Thomas C; Brooks, Andrew J; Holbrook, Sally J; Schmitt, Russell J; Washburn, Libe; Bernardi, Giacomo

    2014-09-01

    Global climate change is rapidly altering disturbance regimes in many ecosystems including coral reefs, yet the long-term impacts of these changes on ecosystem structure and function are difficult to predict. A major ecosystem service provided by coral reefs is the provisioning of physical habitat for other organisms, and consequently, many of the effects of climate change on coral reefs will be mediated by their impacts on habitat structure. Therefore, there is an urgent need to understand the independent and combined effects of coral mortality and loss of physical habitat on reef-associated biota. Here, we use a unique series of events affecting the coral reefs around the Pacific island of Moorea, French Polynesia to differentiate between the impacts of coral mortality and the degradation of physical habitat on the structure of reef fish communities. We found that, by removing large amounts of physical habitat, a tropical cyclone had larger impacts on reef fish communities than an outbreak of coral-eating sea stars that caused widespread coral mortality but left the physical structure intact. In addition, the impacts of declining structural complexity on reef fish assemblages accelerated as structure became increasingly rare. Structure provided by dead coral colonies can take up to decades to erode following coral mortality, and, consequently, our results suggest that predictions based on short-term studies are likely to grossly underestimate the long-term impacts of coral decline on reef fish communities.

  13. Projection of wave conditions in response to climate change: A community approach to global and regional wave downscaling

    Science.gov (United States)

    Erikson, Li H.; Hemer, M.; Lionello, Piero; Mendez, Fernando J.; Mori, Nobuhito; Semedo, Alvaro; Wang, Xiaolan; Wolf, Judith

    2015-01-01

    Future changes in wind-wave climate have broad implications for coastal geomorphology and management. General circulation models (GCM) are now routinely used for assessing climatological parameters, but generally do not provide parameterizations of ocean wind-waves. To fill this information gap, a growing number of studies use GCM outputs to independently downscale wave conditions to global and regional levels. To consolidate these efforts and provide a robust picture of projected changes, we present strategies from the community-derived multi-model ensemble of wave climate projections (COWCLIP) and an overview of regional contributions. Results and strategies from one contributing regional study concerning changes along the eastern North Pacific coast are presented.

  14. Local governments and climate change: sustainable energy planning and implementation in small and medium sized communities

    National Research Council Canada - National Science Library

    Van Staden, Maryke; Musco, Francesco

    2010-01-01

    ...) motivations and actions. The most effective responses are those with a holistic, integrated and lon-term approach, addressing both climate change mitigation and adaptation, based on citizen and other local stakeholder involvement...

  15. Understanding smallholder farmers’ capacity to respond to climate change in a coastal community in Central Vietnam

    NARCIS (Netherlands)

    Phuong, Le Thi Hong; Biesbroek, G.R.; Sen, Le Thi Hoa; Wals, Arjen E.J.

    2017-01-01

    Climate change as expressed by erratic rainfall, increased flooding, extended droughts, frequency tropical cyclones or saline water intrusion, poses severe threats to smallholder farmers in Vietnam. Adaptation of the agricultural sector is vital to increase the resilience of smallholder farmers’

  16. Ocean climate data for user community in West and Central Africa: Needs, opportunities, and challenges

    Science.gov (United States)

    Ojo, S. O.

    1992-01-01

    The urgent need to improve data delivery systems needed by scientists studying ocean role in climate and climate characteristics has been manifested in recent years because of the unprecedented climatic events experienced in many parts of the world. Indeed, there has been a striking and growing realization by governments and the general public indicating that national economies and human welfare depend on climate and its variability. In West and Central Africa, for instance climatic events, which have resulted in floods and droughts, have caused a lot of concern to both governments and people of the region. In particular, the droughts have been so widespread that greater awareness and concern have become generated for the need to find solutions to the problems created by the consequences of the climatic events. Particularly in the southern border regions of the Sahara Desert as well as in the Sahel region, the drought episodes considerably reduced food production and led to series of socioeconomic problems, not only in the areas affected by the droughts, but also in the other parts of West Africa. The various climatic variabilities which have caused the climatic events are no doubt related to the ocean-atmosphere interactions. Unfortunately, not much has been done on the understanding of these interactions, particularly as they affect developing countries. Indeed, not much has been done to develop programs which will reflect the general concerns and needs for researching into the ocean-atmosphere systems and their implications on man-environmental systems in many developing countries. This is for example, true of West and Central Africa, where compared with the middle latitude countries, much less is known about the characteristics of the ocean-atmosphere systems and their significance on man-environmental systems of the area.

  17. Carbon finance and pro-poor co-benefits: The Gold Standard and Climate, Community and Biodiversity Standards

    Energy Technology Data Exchange (ETDEWEB)

    Wood, Rachel

    2011-04-15

    This paper assesses the practical contribution of the Gold Standard (GS) and Climate Community and Biodiversity (CCB) Standards to local development through the identification of high quality carbon offset projects and ensuring high standards of consultation with local communities during project development and implementation. It is based on desk research, involving analysis of the GS and CCB Standards' project databases, project design documents, and secondary literature. In addition, over 20 representatives of the two standards systems, project developers, NGO representatives, and researchers were interviewed. The paper concludes that both standard systems successfully reward high quality projects which have a demonstrated commitment to local consultations and sustainable development benefits. Moreover, they serve to give well-meaning project developers frameworks with which to ensure that a wide range of criteria are considered in planning and implementing projects. As voluntary standards, it is unrealistic to expect either the GS or CCB Standards to improve poor-quality or unsustainable projects.

  18. Carbon finance and pro-poor co-benefits: The Gold Standard and Climate, Community and Biodiversity Standards

    Energy Technology Data Exchange (ETDEWEB)

    Wood, Rachel

    2011-04-15

    This paper assesses the practical contribution of the Gold Standard (GS) and Climate Community and Biodiversity (CCB) Standards to local development through the identification of high quality carbon offset projects and ensuring high standards of consultation with local communities during project development and implementation. It is based on desk research, involving analysis of the GS and CCB Standards' project databases, project design documents, and secondary literature. In addition, over 20 representatives of the two standards systems, project developers, NGO representatives, and researchers were interviewed. The paper concludes that both standard systems successfully reward high quality projects which have a demonstrated commitment to local consultations and sustainable development benefits. Moreover, they serve to give well-meaning project developers frameworks with which to ensure that a wide range of criteria are considered in planning and implementing projects. As voluntary standards, it is unrealistic to expect either the GS or CCB Standards to improve poor-quality or unsustainable projects.

  19. Microbial Community Dynamics from Permafrost Across the Pleistocene-Holocene Boundary and Response to Abrupt Climate Change

    Science.gov (United States)

    Hammad, A.; Mahony, M.; Froese, D. G.; Lanoil, B. D.

    2014-12-01

    Earth is currently undergoing rapid warming similar to that observed about 10,000 years ago at the end of the Pleistocene. We know a considerable amount about the adaptations and extinctions of mammals and plants at the Pleistocene/Holocene (P/H) boundary, but relatively little about changes at the microbial level. Due to permafrost soils' freezing anoxic conditions, they act as microbial diversity archives allowing us to determine how microbial communities adapted to the abrupt warming at the end of P. Since microbial community composition only helps differentiate viable and extant microorganisms in frozen permafrost, microbial activity in thawing permafrost must be investigated to provide a clear understanding of microbial response to climate change. Current increased temperatures will result in warming and potential thaw of permafrost and release of stored organic carbon, freeing it for microbial utilization; turning permafrost into a carbon source. Studying permafrost viable microbial communities' diversity and activity will provide a better understanding of how these microorganisms respond to soil edaphic variability due to climate change across the P/H boundary, providing insight into the changes that the soil community is currently undergoing in this modern era of rapid climate change. Modern soil, H and P permafrost cores were collected from Lucky Lady II site outside Dawson City, Yukon. 16S rRNA high throughput sequencing of permafrost DNA showed the same trends for total and viable community richness and diversity with both decreasing with permafrost depth and only the richness increasing in mid and early P. The modern, H and P soils had 50.9, 33.9, and 27.3% unique viable species and only 14% of the total number of viable species were shared by all soils. Gas flux measurements of thawed permafrost showed metabolic activity in modern and permafrost soils, aerobic CH­­4 consumption in modern, some H and P soils, and anaerobic CH­­4 production in one H

  20. Climate-induced signatures in the zooplankton communities: a meta-analysis at a European scale.

    Directory of Open Access Journals (Sweden)

    Sónia Cotrim Marques

    2014-05-01

    Full Text Available Several recent studies have revealed the impacts of the climate variability in the dynamic of zooplankton in different estuarine ecosystems, imposing a need for more and continued global studies. Presently, there is a growing appreciation in international collaborations to compare and contrast estuarine ecosystem response to climate variability across geographical gradients, including long-term changes in zooplankton. We performed a meta-analysis comprising field data from 7 location (Mondego estuary-Portugal, Seine estuary- France, Sheldt estuary- Belgium, Kiel fjord - Germany, Gulf of Riga- Latvia, Gulf of Bothnia – Sweden and Finland Archipelagos. The use of climatic modes (e.g. NAO, ENSO has proven useful in investigating links between climatic variations and ecological patterns. Therefore, the main focus will be to test the influence of the NAO on abundance of organisms, key species, local environment and whether these relationships are generally positive, whether they are sensitive to methodological differences among studies, between taxonomic group and key species. The knowledge gained will contribute to quantitatively evaluate the multi-scale structure of climate and marine environment and to identify a set of environmental indicators to assess the estuarine ecosystem state and risks for ecological shifts.

  1. A bipedal DNA motor that travels back and forth between two DNA origami tiles.

    Science.gov (United States)

    Liber, Miran; Tomov, Toma E; Tsukanov, Roman; Berger, Yaron; Nir, Eyal

    2015-02-04

    In this work, the successful operation of a dynamic DNA device constructed from two DNA origami building blocks is reported. The device includes a bipedal walker that strides back and forth between the two origami tiles. Two different DNA origami tiles are first prepared separately; they are then joined together in a controlled manner by a set of DNA strands to form a stable track in high yield as confirmed by single-molecule fluorescence (SMF). Second, a bipedal DNA motor, initially attached to one of the two origami units and operated by sequential interaction with "fuel" and "antifuel" DNA strands, moves from one origami tile to another and then back again. The operational yield, measured by SMF, was similar to that of a motor operating on a similar track embedded in a single origami tile, confirming that the transfer across the junction from one tile to the other does not result in dissociation that is any more than that of steps on a single tile. These results demonstrate that moving parts can reliably travel from one origami unit to another, and it demonstrates the feasibility of dynamic DNA molecular machines that are made of more than a single origami building block. This study is a step toward the development of motors that can stride over micrometer distances. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Gas seepage on an intertidal site: Torry Bay, Firth of Forth, Scotland

    Energy Technology Data Exchange (ETDEWEB)

    Judd, A.G.; Sim, R.; Kingston, P.; McNally, J. [University of Sunderland, Sunderland (United Kingdom)

    2002-07-01

    Gas seeps occurring on tidal flats on the northern shore of the inner Firth of Forth are described. The principal gas is methane, which is considered to come from the coal-bearing rocks of the Lower Limestone Series (Carboniferous); either naturally or from abandoned coal workings. Seep activity has been known, at the site for several years, and it is suggested that the presence of white filamentous bacteria (Beggiatoa sp.) and a carbonate precipitate are indicative of long-term seepage. Comparative studies at the seep and at a control site revealed that the seeps have only a marginal effect on the intertidal fauna. Migration of gas through the thin ({lt} 2 m) surficial sediments appears to be controlled by the topography of a gravel layer, seeps preferentially occurring where the top of the gravel is closest to the surface. The total gas emission from 70 to 100 individual seepage vents is estimated at approximate to 1 tonne CH{sub 4} yr{sup -1}, the majority of which is emitted direct to the atmosphere.

  3. Organizational Climate and Emotional Intelligence: An Appreciative Inquiry into a "Leaderful" Community College

    Science.gov (United States)

    Yoder, Debra Marie

    2005-01-01

    In an era of unprecedented challenges and rapid change, community colleges need effective leadership that brings out the best in people, organizations, and communities. This qualitative study was based on interpretive research using appreciative inquiry (AI). AI is based on social constructivist theory and is a collaborative and highly…

  4. Climate-mediated competition in a high-elevation salamander community

    Science.gov (United States)

    Dallalio, Eric A.; Brand, Adrianne B,; Grant, Evan H. Campbell

    2017-01-01

    The distribution of the federally endangered Shenandoah Salamander (Plethodon shenandoah) is presumed to be limited by competition with the Red-backed Salamander (Plethodon cinereus). In particular, the current distribution of P. shenandoah is understood to be restricted to warmer and drier habitats because of interspecific interactions. These habitats may be particularly sensitive to climate change, though the influence of competition may also be affected by temperature and relative humidity. We investigated the response of P. shenandoah to competition with P. cinereus under four climate scenarios in 3-dimensional mesocosms. The results suggest that, although climate change may alleviate competitive pressure from P. cinereus, warmer temperatures may also significantly influence the persistence of the species across its known range.

  5. Effective Social Media Practices for Communicating Climate Change Science to Community Leaders

    Science.gov (United States)

    Estrada, M.; DeBenedict, C.; Bruce, L.

    2016-12-01

    Climate Education Partners (CEP) uses an action research approach to increase climate knowledge and informed decision-making among key influential (KI) leaders in San Diego county. Social media has been one method for disseminating knowledge. During CEP's project years, social media use has proliferated. To capitalize on this trend, CEP iteratively developed a strategic method to engage KIs. First, as with all climate education, CEP identified the audience. Three primary Facebook and Twitter audiences were CEP's internal team, local KIs, and strategic partner organizations. Second, post contents were chosen based on interest to CEP key audiences and followed CEP's communications message triangle, which incorporates the Tripartite Integration Model of Social Influence (TIMSI). This message triangle focuses on San Diegan's valued quality of life, future challenges we face due to the changing climate, and ways in which we are working together to protect our quality of life for future generations. Third, an editorial calendar was created to carefully time posts, which capitalize on when target audiences were using social media most and to maintain consistency. The results of these three actions were significant. Results attained utilizing Facebook and Twitter data, which tracks post reach, total followers/likes, and engagement (likes, comments, mentions, shares). For example we found that specifically mentioning KIs resulted in more re-tweets and resulted in reaching a broader audience. Overall, data shows that CEP's reach to audiences of like-minded individuals and organizations now extends beyond CEP's original local network and reached more than 20,000 accounts on Twitter this year (compared with 460 on Twitter the year before). In summary, through posting and participating in the online conversation strategically, CEP disseminated key educational climate resources and relevant climate change news to educate and engage target audience and amplify our work.

  6. Diverse coral communities in mangrove habitats suggest a novel refuge from climate change

    Science.gov (United States)

    Yates, Kimberly K.; Rogers, Caroline S.; Herlan, James J.; Brooks, Gregg R.; Smiley, Nathan A.; Larson, Rebekka A.

    2014-01-01

    Risk analyses indicate that more than 90% of the world's reefs will be threatened by climate change and local anthropogenic impacts by the year 2030 under "business-as-usual" climate scenarios. Increasing temperatures and solar radiation cause coral bleaching that has resulted in extensive coral mortality. Increasing carbon dioxide reduces seawater pH, slows coral growth, and may cause loss of reef structure. Management strategies include establishment of marine protected areas with environmental conditions that promote reef resiliency. However, few resilient reefs have been identified, and resiliency factors are poorly defined. 

  7. Projected range contractions of European protected oceanic montane plant communities: focus on climate change impacts is essential for their future conservation.

    Science.gov (United States)

    Hodd, Rory L; Bourke, David; Skeffington, Micheline Sheehy

    2014-01-01

    Global climate is rapidly changing and while many studies have investigated the potential impacts of this on the distribution of montane plant species and communities, few have focused on those with oceanic montane affinities. In Europe, highly sensitive bryophyte species reach their optimum occurrence, highest diversity and abundance in the north-west hyperoceanic regions, while a number of montane vascular plant species occur here at the edge of their range. This study evaluates the potential impact of climate change on the distribution of these species and assesses the implications for EU Habitats Directive-protected oceanic montane plant communities. We applied an ensemble of species distribution modelling techniques, using atlas data of 30 vascular plant and bryophyte species, to calculate range changes under projected future climate change. The future effectiveness of the protected area network to conserve these species was evaluated using gap analysis. We found that the majority of these montane species are projected to lose suitable climate space, primarily at lower altitudes, or that areas of suitable climate will principally shift northwards. In particular, rare oceanic montane bryophytes have poor dispersal capacity and are likely to be especially vulnerable to contractions in their current climate space. Significantly different projected range change responses were found between 1) oceanic montane bryophytes and vascular plants; 2) species belonging to different montane plant communities; 3) species categorised according to different biomes and eastern limit classifications. The inclusion of topographical variables in addition to climate, significantly improved the statistical and spatial performance of models. The current protected area network is projected to become less effective, especially for specialised arctic-montane species, posing a challenge to conserving oceanic montane plant communities. Conservation management plans need significantly

  8. Projected range contractions of European protected oceanic montane plant communities: focus on climate change impacts is essential for their future conservation.

    Directory of Open Access Journals (Sweden)

    Rory L Hodd

    Full Text Available Global climate is rapidly changing and while many studies have investigated the potential impacts of this on the distribution of montane plant species and communities, few have focused on those with oceanic montane affinities. In Europe, highly sensitive bryophyte species reach their optimum occurrence, highest diversity and abundance in the north-west hyperoceanic regions, while a number of montane vascular plant species occur here at the edge of their range. This study evaluates the potential impact of climate change on the distribution of these species and assesses the implications for EU Habitats Directive-protected oceanic montane plant communities. We applied an ensemble of species distribution modelling techniques, using atlas data of 30 vascular plant and bryophyte species, to calculate range changes under projected future climate change. The future effectiveness of the protected area network to conserve these species was evaluated using gap analysis. We found that the majority of these montane species are projected to lose suitable climate space, primarily at lower altitudes, or that areas of suitable climate will principally shift northwards. In particular, rare oceanic montane bryophytes have poor dispersal capacity and are likely to be especially vulnerable to contractions in their current climate space. Significantly different projected range change responses were found between 1 oceanic montane bryophytes and vascular plants; 2 species belonging to different montane plant communities; 3 species categorised according to different biomes and eastern limit classifications. The inclusion of topographical variables in addition to climate, significantly improved the statistical and spatial performance of models. The current protected area network is projected to become less effective, especially for specialised arctic-montane species, posing a challenge to conserving oceanic montane plant communities. Conservation management plans need

  9. Climate-vegetation relationship: adaptations of jarillal community to the semiarid climate. Lihué Calel National Park, province of La Pampa, Argentina

    Directory of Open Access Journals (Sweden)

    Valeria Soledad Duval

    2015-12-01

    Full Text Available The study of vegetation from the Geography perspective focuses on the analysis of the spatial distribution and on the factors affecting it. One of these factors is the climate, which determines the characteristics of the vegetation and, on a larger scale, of the communities. The aim of this paper is to analyze the climate-vegetation relationship by studying adaptations of the jarillal community regarding the semiarid climate in the Lihué Calel National Park, Argentina. Therefore, this contribution is concerned with the knowledge of the characteristics of the environment in order to understand how vegetation responds to certain phenomena, so management of protected areas will be more suitable. Lihué Calel National Park is a national protected area located in the south-center of La Pampa province, Argentina. According to Cabrera (1976 the area belongs to the floristic province of “monte” and the climate is warm and dry. In the interest to achieve the goals of this paper, Thornthwaite and Mather´s water balance was done. The data was collected from a weather station that belongs to the national park, for the period 1995-2010. Emberger›s pluviothermic coefficient, Lang´s rainfall index, De Martonne´s aridity index and Currey´s continentality index were analyzed. In addition, ten stands or plots of vegetation were placed to determine the floristic composition and the vegetation physiognomy. Then, plants species were identified as individuals and their adaptive responses were also analyzed. In conclusion, the survey verified that semi-arid climate conditions determine the morphology and the appearance of jarillal. Climate analysis shows that for the period 1995-2010 the average annual temperature is 16.2° C and reveals that thermal summers and winters are well differentiated. Large water deficit is defined, because water balance indicates that the evapotranspiration exceeds precipitation during every month of the year. According to

  10. Pollinators in peril? A multipark approach to evaluating bee communities in habitats vulnerable to effects from climate change

    Science.gov (United States)

    Rykken, Jessica; Rodman, Ann; Droege, Sam; Grundel, Ralph

    2014-01-01

    In 2010, collaborators from the National Park Service (Ann Rodman, Yellowstone National Park), USGS (Sam Droege and Ralph Grundel), and Harvard University (Jessica Rykken) were awarded funding from the NPS Climate Change Response Program to launch just such an investigation in almost 50 units of the National Park System (fig. 1). The main objectives of this multiyear project were to: Compare bee communities in three “vulnerable” habitats (high elevation, inland arid, coastal) and paired “common” habitats, representative of the landscape matrix, in order to determine whether vulnerable habitats have a distinctive bee fauna that may be at higher risk under climate change scenarios. Inform natural resource managers at each park about the bee fauna at their paired sites, including the presence of rare and endemic species, and make suggestions for active management strategies to promote native bee habitat if warranted. Increase awareness among park natural resource staffs, interpreters, and visitors of native bee diversity and natural history, the essential role of bees in maintaining healthy ecosystems, and potential threats from climate change to pollinator-dependent ecosystems.

  11. The impact of state certification of community health workers on team climate among registered nurses in the United States.

    Science.gov (United States)

    Siemon, Mark; Shuster, Geoff; Boursaw, Blake

    2015-04-01

    A number of states have adopted certification programs for community health workers (CHWs) to improve recognition of CHWs as members of health care teams, increase oversight, and to provide sustainable funding. There has been little research into the impact of state CHW certification on the diffusion and adoption of CHWs into existing health care systems. This study examined the impact of state CHW certification on the perceptions of team climate among registered nurses (RNs) who work with CHWs in states with and without CHW certification programs. The study recruited RNs using a purposeful sampling method and used an online survey, which included the Team Climate Inventory (TCI), and compared the perceptions of team climate between the two groups. The study found no significant differences in the overall mean TCI score or TCI subscale scores between RNs who work in states with CHW certification programs (n = 81) and those who work in states without CHW certification programs (n = 115). There was a statistically significant difference on one survey question regarding whether RNs believe state certification of CHWs improved the ability of their health care team to deliver quality care. More research is needed to assess impact of state certification of CHWs and other factors that influence the diffusion and adoption of CHWs into the current health care system.

  12. Using a community-driven approach to identify local forest and climate change priorities in Teslin, Yukon

    Directory of Open Access Journals (Sweden)

    Joleen Timko

    2015-12-01

    Full Text Available The likelihood of addressing the complex environmental, economic, and social/cultural issues associated with local climate change impacts is enhanced when collaborative partnerships with local people are established. Using a community-centered approach in the Teslin region of Canada’s Yukon Territory, we utilized our research skills to respond to local needs for information by facilitating both an internal community process to clarify traditional and local knowledge, values, and perceptions on locally identified priorities, while gathering external information to enable local people to make sound decisions. Specifically, we sought to clarify local perceptions surrounding climate change impacts on fire risk and wildlife habitat, and the potential adaptation strategies appropriate and feasible within the Teslin Tlingit Traditional Territory. This paper provides a characterization of the study region and our project team; provides background on the interview and data collection process; presents our key results; and discusses the importance of our findings and charts a way forward for our continued work with the people in the Teslin region. This approach presents an excellent opportunity to help people holistically connect a range of local values, including fire risk mitigation, habitat enhancement, economic development, and enhanced social health.

  13. Implementing Climate-Compatible Development in the Context of Power: Lessons for Encouraging Procedural Justice through Community-Based Projects

    Directory of Open Access Journals (Sweden)

    Benjamin T. Wood

    2018-05-01

    Full Text Available Climate-compatible development (CCD is being operationalised across the developing world through projects that integrate development, adaptation and mitigation using community-based approaches—community-based CCD (CB-CCD. By incorporating and considering local people’s concerns, these projects are positioned as more effective, efficient and sustainable than ‘top-down’ climate and development solutions. However, the literature pays little attention to whether and how these projects achieve procedural justice by recognising local people’s identities, cultures and values; and providing local people with meaningful participatory opportunities. We address this gap through an analysis of two donor-funded CB-CCD projects in Malawi, drawing on household surveys, semi-structured interviews and documentary materials. Our findings show that the projects had only limited success in facilitating procedural justice for the target populations. Households’ meaningful engagement in project activities and decision-making was often curtailed because power asymmetries went unchallenged. While many households were well engaged in projects, the recognition and participation of others—including many of the most vulnerable households—was limited. Building on our findings, we present a six-step approach to help CB-CCD project staff understand, manage and challenge power asymmetries; and create widespread recognition of, and meaningful participatory opportunities for, local people.

  14. Understanding the interactions between Social Capital, climate change, and community resilience in Gulf of Mexico coastal counties

    Science.gov (United States)

    Young, C.; Blomberg, B.; Kolker, A.; Nguyen, U.; Page, C. M.; Sherchan, S. P.; Tobias, V. D.; Wu, H.

    2017-12-01

    Coastal communities in the Gulf of Mexico are facing new and complex challenges as their physical environment is altered by climate warming and sea level rise. To effectively prepare for environmental changes, coastal communities must build resilience in both physical structures and social structures. One measure of social structure resilience is how much social capital a community possesses. Social capital is defined as the connections among individuals which result in networks with shared norms, values and understandings that facilitate cooperation within or among groups. Social capital exists in three levels; bonding, bridging and linking. Bonding social capital is a measure of the strength of relationships amongst members of a network who are similar in some form. Bridging social capital is a measure of relationships amongst people who are dissimilar in some way, such as age, education, or race/ethnicity. Finally Linking social capital measures the extent to which individuals build relationships with institutions and individuals who have relative power over them (e.g local government, educational institutions). Using census and American Community Survey data, we calculated a Social Capital index value for bonding, bridging and linking for 60 Gulf of Mexico coastal counties for the years 2000, and 2010 to 2015. To investigate the impact of social capital on community resilience we coupled social capital index values with physical datasets of land-use/land cover, sea level change, climate, elevation and surface water quality for each coastal county in each year. Preliminary results indicate that in Gulf of Mexico coastal counties, increased bonding social capital results in decreased population change. In addition, we observed a multi-year time lag in the effect of increased bridging social capital on population stability, potentially suggesting key linkages between the physical and social environment in this complex coupled-natural human system. This

  15. Vulnerability of Permafrost Soil Carbon to Climate Warming: Evaluating Controls on Microbial Community Composition

    Science.gov (United States)

    Abstract: Despite the fact that permafrost soils contain up to half of the carbon (C) in terrestrial pools, we have a poor understanding of the controls on decomposition in thawed permafrost. Global climate models assume that decomposition increases linearly with temperature, yet decomposition in th...

  16. Vulnerability to climate change and community based adaptation in the Peruvian Andes, a stepwise approach

    NARCIS (Netherlands)

    Lasage, R.; Muis, S.; Sardella, C.S.E.; van Drunen, M.A.; Verburg, P.H.; Aerts, J.C.J.H.

    2015-01-01

    The livelihoods of people in the Andes are expected to be affected by climate change due to their dependence on glacier water. The observed decrease in glacier volume over the last few decades is likely to accelerate during the current century, which will affect water availability in the region.

  17. Investigation of rotated PCA from the perspective of network communities applied to climate data

    Czech Academy of Sciences Publication Activity Database

    Hartman, David; Hlinka, Jaroslav; Vejmelka, Martin; Paluš, Milan

    2013-01-01

    Roč. 15, - (2013), s. 13124 ISSN 1607-7962. [European Geosciences Union General Assembly 2013. 07.04.2013-12.04.2013, Vienna] R&D Projects: GA ČR GCP103/11/J068 Institutional support: RVO:67985807 Keywords : complex networks * graph theory * climate dynamics Subject RIV: BB - Applied Statistics, Operational Research

  18. Sinks and sources : a strategy to involve forest communities in Tanzania in global climate policy

    NARCIS (Netherlands)

    Zahabu, E.M.

    2008-01-01

    At present only the sink ability of forest to sequester atmospheric CO2 through establishing new forests is credited under the current UNFCCC climate change mitigation mechanisms in developing countries, i.e. the Clean Development Mechanism (CDM) of the Kyoto Protocol. Other forest practices such as

  19. Graptolite community responses to global climate change and the late ordovician mass extinction

    Czech Academy of Sciences Publication Activity Database

    Sheets, H. D.; Melchin, M. J.; Loxton, J.; Štorch, Petr; Carlucci, K. L.; Hawkins, A. D.

    2016-01-01

    Roč. 113, č. 30 (2016), s. 8380-8385 ISSN 0027-8424 R&D Projects: GA AV ČR IAA301110908 Institutional support: RVO:67985831 Keywords : abundance * climate change * extinction * macroevolution * selection Subject RIV: DB - Geology ; Mineralogy Impact factor: 9.661, year: 2016

  20. Community based ecological restoration of peatland in Central Mongolia for climate change mitigation and adaptation

    NARCIS (Netherlands)

    Minayeva, Tatiana; Chultem, Dugarjav; Grootjans, Ab; Yamkhin, Jambaljav; Sirin, Andrey; Suvorov, Gennady; Batdorj, Oyunbileg; Tsamba, Batdorj

    2017-01-01

    Peatlands cover almost 2 % of Mongolia. They play crucial role in regulation of key natural processes in ecosystems and provide unique resources to maintain traditional way of life and livelihoods of herders. During the last decades, Mongolian peatlands severely degraded both due to the climate

  1. Does the stress tolerance of mixed grassland communities change in a future climate? A test with heavy metal stress (zinc pollution).

    Science.gov (United States)

    Van den Berge, Joke; Naudts, Kim; Janssens, Ivan A; Ceulemans, Reinhart; Nijs, Ivan

    2011-12-01

    Will species that are sensitive/tolerant to Zn pollution still have the same sensitivity/tolerance in a future climate? To answer this question we analysed the response of constructed grassland communities to five levels of zinc (Zn) supply, ranging from 0 to 354 mg Zn kg(-1) dry soil, under a current climate and a future climate (elevated CO2 and warming). Zn concentrations increased in roots and shoots with Zn addition but this increase did not differ between climates. Light-saturated net CO2 assimilation rate (A(sat)) of the species, on the other hand, responded differently to Zn addition depending on climate. Still, current and future climate communities have comparable biomass responses to Zn, i.e., no change in root biomass and a 13% decrease of above-ground biomass. Provided that the different response of A(sat) in a future climate will not compromise productivity and survival on the long term, sensitivity is not altered by climate change. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Unjust waters. Climate change, flooding and the protection of poor urban communities. Experiences from six African cities

    International Nuclear Information System (INIS)

    2007-02-01

    Floods are natural phenomena, but damage and losses from floods are the consequence of human action. The increasing climatic variability, storminess and more frequent flooding driven by climate change will affect poor urban communities far more than other people living in towns and cities. Although driven by human activities ranging from modernisation and development to land degradation by poor farmers and grazing flocks, climate change in Africa has uneven impacts, affecting the poor severely. Flooding in urban areas is not just related to heavy rainfall and extreme climatic events; it is also related to changes in the built-up areas themselves. Urbanisation aggravates flooding by restricting where floods waters can go, by covering large parts of the ground with roofs, roads and pavements, by obstructing sections of natural channels, and by building drains that ensure that water moves to rivers more rapidly than it did under natural conditions. As people crowd into African cities, these human impacts on urban land surfaces and drainage intensify. The proportions of small stream and river catchment areas that are urbanised will increase. As a result, even quite moderate storms now produce quite high flows in rivers because much more of the catchment area supplies direct surface runoff from its hard surfaces and drains. Where streams flow through a series of culverts and concrete channels, they cannot adjust to changes in the frequency of heavy rain as natural streams do. They often get obstructed by silt and urban debris, particularly when houses are built close to the channels. Such situations frequently arise where poor people build their shelters on low-lying flood plains, over swamps or above the tidewater on the coast. The effects of climate change are superimposed on these people-driven local land surface modifications. The links between changes in land use and in heavy rainfall patterns, the frequency and depth of flooding and the problems of the urban poor

  3. Implications of climate change on human comfort in buildings: evidence from Nkontompo community of Sekondi-Takoradi, Ghana

    Energy Technology Data Exchange (ETDEWEB)

    Amos-Abanyie, S. [Kwame Nkrumah Univ. of Science and Technology, Kumasi (GH)

    2006-07-01

    Climate change has become the most talked about issue in recent times. The impact of climate change is likely to become more evident in the coming decades. Currently, atmospheric conditions, especially in the dry season, are getting hotter and drier with increased heat waves. Increased demand for air conditioning for space cooling as a result of internal discomfort in buildings is already manifesting. This could put an additional stress on the already over-burdened energy capactiy of the nation. The study on implications of climate change on human comfort in buidlings was conducted in Nkontompo community, a suburb of Sekondi-Takoradi Metropolitan area of the Shama-Ahanta District of the Western Region of Ghana. The objectives of this study are to assemble and disseminate information about some of the possible impacts of climate change on the built environment. This is to set the platform for building professionals to identify possible adaptive measures to serve as basis for development of standards to maintain and enhance the quality of life in buildings. The results showed that there were significant changes in temperature, precipitation, and relative humidity. A rise in temperature and humidity levels constitutes a potential hazard to health and human comfort and accelerates many degradation processes and material damage. Subsequently, the amount of energy needed to maintain the condition of air in spaces at comfort levels keeps increasing. It is therefore imperative that landlords and other property owners should be effectively guided by qualified professionals within the framework of policy guidelines based on sound research.

  4. Accessing Both Halves of the Brain to Make Climate Decisions: How Community-Sourced Media, Earth Remote Sensing Data, and Creative Placemaking Art Can Cultivate Change

    Science.gov (United States)

    Drapkin, J. K.; Wagner, L.

    2017-12-01

    Decision-making, science tells us, accesses multiple parts of the brain: both logic and data as well as memory and emotion. It is this mix of signals that propels individuals and communities to act. Founded in 2012, ISeeChange is the nation's first community crowdsourced climate and weather journal that empowers users to document environmental changes with others and discuss the impacts over time. Our neighborhood investigation methodology includes residents documenting their personal experiences alongside collected data, Earth remote sensing data, and local artists interpreting community questions and experiences into place-based public art in the neighborhood to inspire a culture of resilience and climate literacy. ISeeChange connects the public with national media, scientists, and data tools that support community dialogue and enable collaborative science and journalism investigations about our changing environment. Our groundbreaking environmental reporting platform—available online and through a mobile app—personalizes and tracks climate change from the perspective of every day experiences, bringing Eearth science home and into the placesspaces people know best and trust most- their own communities Our session will focus on our newest neighborhood pilot program in New Orleans, furthering the climate resilience, green infrastructure, and creative placemaking efforts of the Trust for Public Land, the City of New Orleans, and other resilience community partners.

  5. Leveraging a Community Participatory Framework to Move Climate Survey Data into Action at a Small College

    Science.gov (United States)

    Peters, C. Ellen; Benitez, Michael, Jr.

    2017-01-01

    A participatory framework in conducting research and implementing decisions can engage multiple constituents throughout a college community. At a small college, it is especially relevant, because nonmajority groups are especially vulnerable because of a smaller critical mass.

  6. FORPS: a FORTH-based production system and its application to a real-time robot control problem

    International Nuclear Information System (INIS)

    Matheus, C.J.; Martin, H.L.

    1986-01-01

    A simple yet very powerful system has been developed that merges the artificial intelligence qualities of a production system with the real-time control capabilities of FORTH. FORPS (FORTH-based Production System) offers the advantages of intelligent, rule-based control in a small package offering high speed, extensibility, and simplicity. A practical example of the system is presented in the development of an obstacle avoidance program to aid in controlling an overhead manipulator transport system. Several other potential applications to the area of control are discussed

  7. Shortcuts to sustainable Nordic communities. Experiences from Nordic Climate Festival (at) Aalto

    Energy Technology Data Exchange (ETDEWEB)

    Haanpaa, S. (ed.)

    2011-07-01

    Nordic Climate Festival (at) Aalto gathered some 90 Nordic Master's and PhD students to Helsinki and Espoo in late August 2011, to search for shortcuts to sustainable Nordic societies. The students worked in 7 workshop tracks, covering all key fields of sustainable societies, under the guidance of researchers from Aalto University. The workshop turned out to be a success with enthusiastic contribution from dedicated students. The real value of the workshop lies not only in the results however, but also in new ways of thinking about sustainability - both for the students and Aalto staff. Most of all, the event helped to build individual connections and networks people engaged in the topic. In the end, the festival was much more than just a Nordic event; the participants represented over 30 countries in total. This can only be seen as a richness in ways of looking at climate change related challenges and especially solutions that, although always being operationalized on a local level and in a local context, in the end are common challenges to all countries in one form or another. The core challenge in dealing with climate change, especially on mitigation, is time. As the level of global greenhouse gas emissions keeps on growing, we desperately need new policies and practices to turn this trend around. At the same time inertia both in natural phenomena and in changing our lifestyles means that global temperatures based on current emissions only will keep on rising for decades to come. This forces us to think of ways to adapt to unavoidable consequences of climate change and adaptation to them, despite the success of mitigation policies. Both aspects of managing climate change require forward oriented thinking already today, so that we can avoid being locked into unsustainable development pathways at the very least - a thing one might argue in many cases is already slowing mitigation efforts down. Therefore the key question the workshop set to study was: can we

  8. City carbon budgets: A proposal to align incentives for climate-friendly communities

    International Nuclear Information System (INIS)

    Salon, Deborah; Sperling, Daniel; Meier, Alan; Murphy, Sinnott; Gorham, Roger; Barrett, James

    2010-01-01

    Local governments can have a large effect on carbon emissions through land use zoning, building codes, transport infrastructure investments, and support for transportation alternatives. This paper proposes a climate policy instrument - city carbon budgets - that provides a durable framework for local governments to reduce greenhouse gas emissions. Local governments would be assigned an emissions 'budget', and would be required to keep annual local transport and buildings emissions within this budget. This policy framework could be implemented and managed by a higher-level government, or might be used in awarding funds to developing country cities from international climate funds. The state of California has enacted a version of this policy. In this paper, we identify and evaluate options for creating an effective and acceptable institutional structure, allocating emission targets to localities, measuring emissions, providing flexibility and incentives to local governments, and assuring compliance. We also discuss the likely costs of such a policy.

  9. Shortcuts to sustainable Nordic communities. Experiences from Nordic Climate Festival (at) Aalto

    Energy Technology Data Exchange (ETDEWEB)

    Haanpaa, S [ed.

    2011-07-01

    Nordic Climate Festival (at) Aalto gathered some 90 Nordic Master's and PhD students to Helsinki and Espoo in late August 2011, to search for shortcuts to sustainable Nordic societies. The students worked in 7 workshop tracks, covering all key fields of sustainable societies, under the guidance of researchers from Aalto University. The workshop turned out to be a success with enthusiastic contribution from dedicated students. The real value of the workshop lies not only in the results however, but also in new ways of thinking about sustainability - both for the students and Aalto staff. Most of all, the event helped to build individual connections and networks people engaged in the topic. In the end, the festival was much more than just a Nordic event; the participants represented over 30 countries in total. This can only be seen as a richness in ways of looking at climate change related challenges and especially solutions that, although always being operationalized on a local level and in a local context, in the end are common challenges to all countries in one form or another. The core challenge in dealing with climate change, especially on mitigation, is time. As the level of global greenhouse gas emissions keeps on growing, we desperately need new policies and practices to turn this trend around. At the same time inertia both in natural phenomena and in changing our lifestyles means that global temperatures based on current emissions only will keep on rising for decades to come. This forces us to think of ways to adapt to unavoidable consequences of climate change and adaptation to them, despite the success of mitigation policies. Both aspects of managing climate change require forward oriented thinking already today, so that we can avoid being locked into unsustainable development pathways at the very least - a thing one might argue in many cases is already slowing mitigation efforts down. Therefore the key question the workshop set to study was: can we find

  10. Assessing the significance of climate and community factors on urban water demand

    OpenAIRE

    Md Mahmudul Haque; Prasanna Egodawatta; Ataur Rahman; Ashantha Goonetilleke

    2015-01-01

    Ensuring adequate water supply to urban areas is a challenging task due to factors such as rapid urban growth, increasing water demand and climate change. In developing a sustainable water supply system, it is important to identify the dominant water demand factors for any given water supply scheme. This paper applies principal components analysis to identify the factors that dominate residential water demand using the Blue Mountains Water Supply System in Australia as a case study. The resul...

  11. Assessing Effects of Climate Change on Access to Ecosystem Services in Rural Alaska: Enhancing the Science through Community Engagement

    Science.gov (United States)

    Brinkman, T. J.; Cold, H.; Brown, D. N.; Brown, C.; Hollingsworth, T. N.; Verbyla, D.

    2017-12-01

    In Arctic-Boreal regions, studies quantifying the characteristics and prevalence of environmental disruptions to access to ecosystem services are lacking. Empirical investigations are needed to assess the vulnerability of rural communities to climate change. We integrated community-based local observation (9 Interior Alaska Communities), field-based ground measurements, and remote sensing data to: 1) identify and prioritize the relative importance of different environmental changes affecting access, 2) characterize the biophysical causes and mechanisms related to access, and 3) evaluate long-term (30 year) trends in the environment that are challenging access. Dynamic winter ice and snow conditions (e.g., dangerous ice travel; n =147) were the most commonly reported cause of disturbance to access, followed by changes in summer hydrology (e.g., river navigability; n = 77) and seasonal shifts in freeze/thaw cycles (n = 31). Supporting local observations, our remote-sensing analysis indicated a trend toward environmental conditions that hinder or disrupt traditional uses of ecosystem services. For example, we found that the window of safe travel on ice has narrowed by approximately 2 weeks since the 1980s. Shifts in travel have implications on the effectiveness of subsistence activities, such as winter trapping and spring waterfowl hunting. From a methods perspective, we implemented a study design that generated novel science while also addressing locally relevant issues. Our approach and findings highlight opportunities for connecting biophysical science with societal concerns.

  12. Knowledge and perception about climate change and human health: findings from a baseline survey among vulnerable communities in Bangladesh

    Directory of Open Access Journals (Sweden)

    Md Iqbal Kabir

    2016-03-01

    Full Text Available Abstract Background Bangladesh is one of the countries most vulnerable to climate change (CC. A basic understanding of public perception on vulnerability, attitude and the risk in relation to CC and health will provide strategic directions for government policy, adaptation strategies and development of community-based guidelines. The objective of this study was to collect community-based data on peoples’ knowledge and perception about CC and its impact on health. Methods In 2012, a cross-sectional survey was undertaken among 6720 households of 224 enumeration areas of rural villages geographically distributed in seven vulnerable districts of Bangladesh, with total population of 19,228,598. Thirty households were selected randomly from each enumeration area using the household listing provided by the Bangladesh Bureau of Statistics (BBS. Information was collected from all the 6720 research participants using a structured questionnaire. An observation checklist was used by the interviewers to collect household- and community-related information. In addition, we selected the head of each household as the eligible participant for an interview. Evidence of association between sociodemographic variables and knowledge of CC was explored by cross-tabulation and measured using chi-square tests. Logistic regression models were used to further explore the predictors of knowledge. Results The study revealed that the residents of the rural communities selected for this study largely come from a low socioeconomic background: only 9.6 % had postsecondary education or higher, the majority worked as day labourer or farmer (60 %, and only 10 % earned a monthly income above BDT 12000 (equivalent to US $150 approx.. The majority of the participants (54.2 % had some knowledge about CC but 45.8 % did not (p < 0.001. The majority of knowledgeable participants (n = 3645 felt excessive temperature as the change of climate (83.2 %. Among all the

  13. Climate change adaptation planning for the Skeena region of British Columbia, Canada: A combined biophysical modelling, social science, and community engagement approach

    Science.gov (United States)

    Melton, J. R.; Kaplan, J. O.; Matthews, R.; Sydneysmith, R.; Tesluk, J.; Piggot, G.; Robinson, D. C.; Brinkman, D.; Marmorek, D.; Cohen, S.; McPherson, K.

    2011-12-01

    The Skeena region of British Columbia, Canada is among the world's most important commercial forest production areas, a key transportation corridor, and provides critical habitat for salmon and other wildlife. Climate change compounds threats to the region from other local environmental and social challenges. To aid local communities in adaptive planning for future climate change impacts, our project combined biophysical modelling, social science, and community engagement in a participatory approach to build regional capacity to prepare and respond to climate change. The sociological aspect of our study interviewed local leaders and resource managers (both First Nations and settlers groups in three communities) to examine how perceptions of environmental and socioeconomic issues have changed in the recent past, and the values placed on diverse natural resources at the present. The three communities differed in their perception of the relative value and condition of community resources, such as small business, natural resource trade, education and local government. However, all three communities regarded salmon as their most important and threatened resource. The most important future drivers of change in the study region were perceived to be: "aboriginal rights, title and treaty settlements", "availability of natural resources", "natural resource policies", and the "global economy". Climate change, as a potential driver of change in the region, was perceived as less important than other socio-economic factors; even though climate records for the region already demonstrate warmer winters, decreased snowfall, and decreased spring precipitation over the last half century. The natural science component of our project applies a regional-scale dynamic vegetation model (LPJ-GUESS) to simulate the potential future of forest ecosystems, with a focus on how climate change and management strategy interact to influence forest productivity, disturbance frequency, species

  14. Developing A Transdisciplinary Process and Community Partnerships to Anticipate Climate Change at the Local Level: The Role of Biophysical and Sociocultural Calendars

    Science.gov (United States)

    Kassam, K. A.; Samimi, C.; Trabucco, A.

    2017-12-01

    Difference is essential to solving the most complex problems faced by humanity. Anthropogenic climate change is one such "wicked problem" that demands cognitive diversity. Biophysical and social scientists must collaborate with scholars from the humanities to address practical issues of concern to local communities, which are at the forefront of impacts of climatic variation. As such, communities of inquirers (e.g. biophysical and social sciences, humanities) must work in tandem with communities of practice (e.g. farmers, fishers, gatherers, herders, hunters). This leads to co-generated knowledge where an adaptation strategy to climatic variation is locally grounded in the biophysical and sociocultural context of the communities where the impacts of climatic variation are most felt. We will present an innovative and `real time' example participatory and transdisciplinary research from an international project where we are developing integrated biophysical and sociocultural calendars, in short, ecological calendars, which are ecologically and culturally grounded in the local context to develop anticipatory capacity to anthropogenic climate change.

  15. Local environment rather than past climate determines community composition of mountain stream macroinvertebrates across Europe.

    Science.gov (United States)

    Múrria, Cesc; Bonada, Núria; Vellend, Mark; Zamora-Muñoz, Carmen; Alba-Tercedor, Javier; Sainz-Cantero, Carmen Elisa; Garrido, Josefina; Acosta, Raul; El Alami, Majida; Barquín, Jose; Derka, Tomáš; Álvarez-Cabria, Mario; Sáinz-Bariain, Marta; Filipe, Ana F; Vogler, Alfried P

    2017-11-01

    Community assembly is determined by a combination of historical events and contemporary processes that are difficult to disentangle, but eco-evolutionary mechanisms may be uncovered by the joint analysis of species and genetic diversity across multiple sites. Mountain streams across Europe harbour highly diverse macroinvertebrate communities whose composition and turnover (replacement of taxa) among sites and regions remain poorly known. We studied whole-community biodiversity within and among six mountain regions along a latitudinal transect from Morocco to Scandinavia at three levels of taxonomic hierarchy: genus, species and haplotypes. Using DNA barcoding of four insect families (>3100 individuals, 118 species) across 62 streams, we found that measures of local and regional diversity and intraregional turnover generally declined slightly towards northern latitudes. However, at all hierarchical levels we found complete (haplotype) or high (species, genus) turnover among regions (and even among sites within regions), which counters the expectations of Pleistocene postglacial northward expansion from southern refugia. Species distributions were mostly correlated with environmental conditions, suggesting a strong role of lineage- or species-specific traits in determining local and latitudinal community composition, lineage diversification and phylogenetic community structure (e.g., loss of Coleoptera, but not Ephemeroptera, at northern sites). High intraspecific genetic structure within regions, even in northernmost sites, reflects species-specific dispersal and demographic histories and indicates postglacial migration from geographically scattered refugia, rather than from only southern areas. Overall, patterns were not strongly concordant across hierarchical levels, but consistent with the overriding influence of environmental factors determining community composition at the species and genus levels. © 2017 John Wiley & Sons Ltd.

  16. The Worldviews Network: Innovative Strategies for Increasing Climate and Ecological Literacy in Your Community

    Science.gov (United States)

    Connolly, R.; Yu, K.; McConville, D.; Sickler, J.; "Irving, Lindsay", L. S.; Gardiner, N.; Hamilton, H.

    2011-12-01

    Informal science Institutions (ISI) are in the unique position to convene and support community dialogues surrounding local ecological impacts of global change. The Worldviews Network-a collaboration between museums, scientists, and community-based organizations-is developing and testing innovative approaches for promoting and encouraging ecological literacy with the American public. In this session, we will share strategies for sparking and sustaining dialogue and action in local communities through high-impact visual presentations and real-world examples of successful projects that are increasing the healthy functioning of regional and global ecosystems. Educating the public about interconnected global change issues can be a daunting task. ISIs can help communities by facilitating dialogues about realistic and regionally relevant approaches for systemically addressing global challenges. Managing the complexity of these challenges requires going far beyond the standard prescriptions for behavior change; it requires inspiring participants with positive examples of system-wide solutions as well as actively involving the audience in scientifically informed design processes. This session will demonstrate how you can implement and sustain these community dialogues, using real-world examples from our partners' national events. We present visualization story templates and a model for facilitating dialogues that can be adapted at your institution. Based on video and written assessment feedback from visitors of our first Worldviews events, we will present initial evaluation findings about the impact that these strategies are having on our audiences and ISI partners. These findings show that engaging the public and NGO partners in sustainability and design dialogues is a powerful way to maintain the relevance of ISIs within their communities.

  17. Managing Community Resilience to Climate Extremes, Rapid Unsustainable Urbanization, Emergencies of Scarcity, and Biodiversity Crises by Use of a Disaster Risk Reduction Bank.

    Science.gov (United States)

    Canyon, Deon V; Burkle, Frederick M; Speare, Rick

    2015-12-01

    Earth's climate is changing and national and international decision-makers are recognizing that global health security requires urgent attention and a significant investment to protect the future. In most locations, current data are inadequate to conduct a full assessment of the direct and indirect health impacts of climate change. All states require this information to evaluate community-level resilience to climate extremes and climate change. A model that is being used successfully in the United Kingdom, Australia, and New Zealand is recommended to generate rapid information to assist decision-makers in the event of a disaster. The model overcomes barriers to success inherent in the traditional ''top-down'' approach to managing crises and recognizes the capacity of capable citizens and community organizers to facilitate response and recovery if provided the opportunity and resources. Local information is a prerequisite for strategic and tactical statewide planning. Time and resources are required to analyze risks within each community and what is required to prevent (mitigate), prepare, respond, recover (rehabilitate), anticipate, and assess any threatening events. Specific requirements at all levels from state to community must emphasize community roles by focusing on how best to maintain, respond, and recover public health protections and the infrastructure necessary for health security.

  18. Developing a Community of Practice through Learning Climate, Leader Support, and Leader Interaction

    Science.gov (United States)

    Baker-Eveleth, Lori J.; Chung, Yunhyung; Eveleth, Daniel M.; O'Neill, Michele

    2011-01-01

    The Communities of Practice (CoP) concept and the knowledge management literature both provide useful frameworks for conceptualizing how an individual's performance in the classroom (e.g., earning a grade) or in an organization (e.g., solving a client's problem) can be supported by a collection of other individuals performing similar tasks and…

  19. Climate change effects on soil arthropod communities from the Falkland Islands and the maritime Antartic.

    NARCIS (Netherlands)

    Bokhorst, S.F.; Huiskes, A.; Convey, P.; van Bodegom, P.M.; Aerts, R.

    2008-01-01

    Over a 2-year study, we investigated the effect of environmental change on the diversity and abundance of soil arthropod communities (Acari and Collembola) in the Maritime Antarctic and the Falkland Islands. Open Top Chambers (OTCs), as used extensively in the framework of the northern boreal

  20. Development of a membrane roofing system with integrated climate control for community shelters

    NARCIS (Netherlands)

    Gijsbers, R.; Cox, M.G.D.M.; Haas, de T.C.A.; Kok, P.J.A.; Hulsbergen, H.S.

    2009-01-01

    In case of calamities and emergencies, shelters offer great relief to large groups of survivors. For community supporting functions the current sheltering solutions are not satisfactory. A humane and feasible solution should be developed to fill this niche. The research group product development has

  1. 13 CFR 106.402 - What provisions must be set forth in a Non-Fee Based Record?

    Science.gov (United States)

    2010-01-01

    ... 13 Business Credit and Assistance 1 2010-01-01 2010-01-01 false What provisions must be set forth in a Non-Fee Based Record? 106.402 Section 106.402 Business Credit and Assistance SMALL BUSINESS... endorsement by SBA of the Donor, or the Donor's products or services. ...

  2. Local climate determines intra- and interspecific variation in sexual size dimorphism in mountain grasshopper communities.

    Science.gov (United States)

    Laiolo, P; Illera, J C; Obeso, J R

    2013-10-01

    The climate is often evoked to explain broad-scale clines of body size, yet its involvement in the processes that generate size inequality in the two sexes (sexual size dimorphism) remains elusive. Here, we analyse climatic clines of sexual size dimorphism along a wide elevation gradient (i) among grasshopper species in a phylogenetically controlled scenario and (ii) within species differing in distribution and cold tolerance, to highlight patterns generated at different time scales, mainly evolutionary (among species or higher taxa) and ontogenetic or microevolutionary (within species). At the interspecific level, grasshoppers were slightly smaller and less dimorphic at high elevations. These clines were associated with gradients of precipitation and sun exposure, which are likely indicators of other factors that directly exert selective pressures, such as resource availability and conditions for effective thermoregulation. Within species, we found a positive effect of temperature and a negative effect of elevation on body size, especially on condition-dependent measures of body size (total body length rather than hind femur length) and in species inhabiting the highest elevations. In spite of a certain degree of species-specific variation, females tended to adjust their body size more often than males, suggesting that body size in females can evolve faster among species and can be more plastic or dependent on nutritional conditions within species living in adverse climates. Natural selection on female body size may therefore prevail over sexual selection on male body size in alpine environments, and abiotic factors may trigger consistent phenotypic patterns across taxonomic scales. © 2013 The Authors. Journal of Evolutionary Biology © 2013 European Society For Evolutionary Biology.

  3. Integrated and Optimized Energy-Efficient Construction Package for a Community of Production Homes in the Mixed-Humid Climate

    Energy Technology Data Exchange (ETDEWEB)

    Mallay, D. [Partnership for Home Innovation, Upper Marlboro, MD (United States); Wiehagen, J. [Partnership for Home Innovation, Upper Marlboro, MD (United States); Del Bianco, M. [Partnership for Home Innovation, Upper Marlboro, MD (United States)

    2014-10-01

    This research high performance home analyzes how a set of advanced technologies can be integrated into a durable and energy-efficient house in the mixed-humid climate while remaining affordable to homeowners. The technical solutions documented in this report are the cornerstone of the builder's entire business model based on delivering high-performance homes on a production basis as a standard product offering to all price segments of the residential market. Home Innovation Research Labs partnered with production builder Nexus EnergyHomes (CZ 4) and they plan to adopt the successful components of the energy solution package for all 55 homes in the community. The research objective was to optimize the builder's energy solution package based on energy performance and construction costs. All of the major construction features, including envelope upgrades, space conditioning system, hot water system, and solar electric system were analyzed.

  4. Short-term utilization of carbon by the soil microbial community under future climatic conditions in a temperate heathland

    DEFF Research Database (Denmark)

    Reinsch, Sabine; Michelsen, Anders; Sárossy, Zsuzsa

    2014-01-01

    An in-situ13C pulse-labeling experiment was carried out in a temperate heath/grassland to study the impacts of elevated CO2 concentration (510ppm), prolonged summer droughts (annual exclusion of 7.6±0.8%) and increased temperature (~1°C) on belowground carbon (C) utilization. Recently assimilated C...... (13C from the pulse-label) was traced into roots, soil and microbial biomass 1, 2 and 8 days after pulse-labeling. The importance of the microbial community in C utilization was investigated using 13C enrichment patterns in different microbial functional groups on the basis of phospholipid fatty acid...... (PLFA) biomarker profiles. Climate treatments did not affect microbial abundance in soil or rhizosphere fractions in terms of total PLFA-C concentration. Elevated CO2 significantly reduced the abundance of gram-negative bacteria (17:0cy), but did not affect the abundance of decomposers (fungi...

  5. Climatic and biotic extreme events moderate long-term responses of above- and belowground sub-Arctic heathland communities to climate change

    NARCIS (Netherlands)

    Bokhorst, S.F.; Phoenix, G.K.; Berg, M.P.; Callaghan, T.V.; Kirby-Lambert, C.; Bjerke, J.W.

    2015-01-01

    Climate change impacts are not uniform across the Arctic region because interacting factors causes large variations in local ecosystem change. Extreme climatic events and population cycles of herbivores occur simultaneously against a background of gradual climate warming trends and can redirect

  6. A Global Assessment on Climate Research Engaging Indigenous Knowledge Systems and Recommendations for Quality Standards of Research Practice in Indigenous Communities

    Science.gov (United States)

    Davíd-Chavez, D. M.; Gavin, M. C.

    2017-12-01

    Indigenous communities worldwide have maintained their own knowledge systems for millennia informed through careful observation of dynamics of environmental changes. Withstanding centuries of challenges to their rights to maintain and practice these knowledge systems, Indigenous peoples continually speak to a need for quality standards for research in their communities. Although, international and Indigenous peoples' working groups emphasize Indigenous knowledge systems and the communities who hold them as critical resources for understanding and adapting to climate change, there has yet to be a comprehensive, evidence based analysis into how diverse knowledge systems are integrated in scientific studies. Do current research practices challenge or support Indigenous communities in their efforts to maintain and appropriately apply their knowledge systems? This study addresses this question using a systematic literature review and meta-analysis assessing levels of Indigenous community participation and decision-making in all stages of the research process (initiation, design, implementation, analysis, dissemination). Assessment is based on reported quality indicators such as: outputs that serve the community, ethical guidelines in practice (free, prior, and informed consent and intellectual property rights), and community access to findings. These indicators serve to identify patterns between levels of community participation and quality standards in practice. Meta-analysis indicates most climate studies practice an extractive model in which Indigenous knowledge systems are co-opted with minimal participation or decision-making authority from communities who hold them. Few studies report outputs that directly serve Indigenous communities, ethical guidelines in practice, or community access to findings. Studies reporting the most quality indicators were initiated in mutual agreement between Indigenous communities and outside researchers or by communities themselves

  7. Moral Stress, Moral Practice, and Ethical Climate in Community-Based Drug-Use Research: Views From the Front Line.

    Science.gov (United States)

    Fisher, Celia B; True, Gala; Alexander, Leslie; Fried, Adam L

    2013-01-01

    The role of front-line researchers, those whose responsibilities include face-to-face contact with participants, is critical to ensuring the responsible conduct of community-based drug use research. To date, there has been little empirical examination of how front-line researchers perceive the effectiveness of ethical procedures in their real-world application and the moral stress they may experience when adherence to scientific procedures appears to conflict with participant protections. This study represents a first step in applying psychological science to examine the work-related attitudes, ethics climate, and moral dilemmas experienced by a national sample of 275 front-line staff members whose responsibilities include face-to-face interaction with participants in community-based drug-use research. Using an anonymous Web-based survey we psychometrically evaluated and examined relationships among six new scales tapping moral stress (frustration in response to perceived barriers to conducting research in a morally appropriate manner); organizational ethics climate; staff support; moral practice dilemmas (perceived conflicts between scientific integrity and participant welfare); research commitment; and research mistrust. As predicted, front-line researchers who evidence a strong commitment to their role in the research process and who perceive their organizations as committed to research ethics and staff support experienced lower levels of moral stress. Front-line researchers who were distrustful of the research enterprise and frequently grappled with moral practice dilemmas reported higher levels of moral stress. Applying psychometrically reliable scales to empirically examine research ethics challenges can illuminate specific threats to scientific integrity and human subjects protections encountered by front-line staff and suggest organizational strategies for reducing moral stress and enhancing the responsible conduct of research.

  8. Wrestling with 'doubt-sayers': a first step in leading community-wide climate change action for better health.

    Science.gov (United States)

    Ritchie, Jan

    2011-12-01

    Although the evidence base for climate change is indisputable and the potential human health impact is extremely concerning, to date public health professionals are playing little part in influencing community change to accept and act on the science. In reviewing the techniques used to obstruct action on tobacco control by vested interests through constantly raising doubt about the science in this arena, a similar pattern is seen in obstructing action on climate change. It is clear that the raising of unverified doubt is the primary tool employed by profit-driven corporations to prevent constructive action in both these arenas, with the very high potential for the health of the whole population to suffer as a result. Those promoting the health of Australians have a responsibility to optimise health in this regard and need to think differently through embracing complexity science and then take action, with the first step being to provide constant counter-arguments to the unsubstantiated statements of the 'doubt-sayers'.

  9. An improved ENSO simulation by representing chlorophyll-induced climate feedback in the NCAR Community Earth System Model.

    Science.gov (United States)

    Kang, Xianbiao; Zhang, Rong-Hua; Gao, Chuan; Zhu, Jieshun

    2017-12-07

    The El Niño-Southern oscillation (ENSO) simulated in the Community Earth System Model of the National Center for Atmospheric Research (NCAR CESM) is much stronger than in reality. Here, satellite data are used to derive a statistical relationship between interannual variations in oceanic chlorophyll (CHL) and sea surface temperature (SST), which is then incorporated into the CESM to represent oceanic chlorophyll -induced climate feedback in the tropical Pacific. Numerical runs with and without the feedback (referred to as feedback and non-feedback runs) are performed and compared with each other. The ENSO amplitude simulated in the feedback run is more accurate than that in the non-feedback run; quantitatively, the Niño3 SST index is reduced by 35% when the feedback is included. The underlying processes are analyzed and the results show that interannual CHL anomalies exert a systematic modulating effect on the solar radiation penetrating into the subsurface layers, which induces differential heating in the upper ocean that affects vertical mixing and thus SST. The statistical modeling approach proposed in this work offers an effective and economical way for improving climate simulations.

  10. Effects of organic amendments and mulches on soil microbial communities in quarry restoration under semiarid climate

    Science.gov (United States)

    Luna Ramos, Lourdes; Pastorelli, Roberta; Miralles Mellado, Isabel; Fabiani, Arturo; Bastida López, Felipe; Hernández Fernández, María Teresa; García Izquierdo, Carlos; Solé Benet, Albert

    2015-04-01

    Mining activities generate loss of the quality of the environment and landscape specially in arid and semiarid Mediterranean regions. A precondition for ecosystem reclamation in such highly disturbed mining areas is the development of functional soils with appropriate levels of organic matter. In an experimental soil restoration in limestone quarries from Sierra de Gádor (Almería), SE Spain, 9 plots 15 x 5 m were prepared to test organic amendments (compost from solid urban residues-DOW-, sludge from urban water treatment-SS-, control-NA-) and different mulches (fine gravel-GM-, wood chips-WM-, control-NM-) with the aim to improve soil/substrate properties and to reduce evaporation and erosion. In each experimental plot, 75 native plants (Macrochloa tenacissima, Anthyllis terniflora and Anthyllis cytisoides) were planted. After 5 years from the start of the experiment, we evaluated how microbial community composition responded to the organic amendments and mulches. Microbial community composition of both bacteria and fungi was determined by phospholipid fatty acid (PLFA) and polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) fingerprinting. The results of the two-way ANOVA showed that PLFAs were significantly affected by organic amendments but not by the mulches or interaction of both factors. Experimental plots with DOW showed significantly higher level of fungal PLFAs than those with SS and NA, even higher than the reference undisturbed soil. However, any plot with organic amendments did not reach the content of bacterial PLFAs of the reference soils. The bacterial diversity (evaluated by diversity indices calculated from DGGE profiles) was greater in soil samples taken under NA and GM. Comparing these indices in fungal DGGE, we found greater values for soil samples taken under DOW and without mulches. Results from UPGMA analysis showed significant differences in the structure of soil bacterial communities from the different treatments

  11. Deep ocean communities impacted by changing climate over 24 y in the abyssal northeast Pacific Ocean.

    Science.gov (United States)

    Smith, Kenneth L; Ruhl, Henry A; Kahru, Mati; Huffard, Christine L; Sherman, Alana D

    2013-12-03

    The deep ocean, covering a vast expanse of the globe, relies almost exclusively on a food supply originating from primary production in surface waters. With well-documented warming of oceanic surface waters and conflicting reports of increasing and decreasing primary production trends, questions persist about how such changes impact deep ocean communities. A 24-y time-series study of sinking particulate organic carbon (food) supply and its utilization by the benthic community was conducted in the abyssal northeast Pacific (~4,000-m depth). Here we show that previous findings of food deficits are now punctuated by large episodic surpluses of particulate organic carbon reaching the sea floor, which meet utilization. Changing surface ocean conditions are translated to the deep ocean, where decadal peaks in supply, remineralization, and sequestration of organic carbon have broad implications for global carbon budget projections.

  12. Local temperatures inferred from plant communities suggest strong spatial buffering of climate warming across Northern Europe

    DEFF Research Database (Denmark)

    Lenoir, Jonathan; Graae, Bente; Aarrestad, Per

    2013-01-01

    -change impacts. Is this local spatial buffering restricted to topographically complex terrains? To answer this, we here study fine-grained thermal variability across a 2500-km wide latitudinal gradient in Northern Europe encompassing a large array of topographic complexities. We first combined plant community...... data, Ellenberg temperature indicator values, locally measured temperatures (LmT) and globally interpolated temperatures (GiT) in a modelling framework to infer biologically relevant temperature conditions from plant assemblages within community-inferred temperatures: CiT). We...... temperature indicator values in combination with plant assemblages explained 46-72% of variation in LmT and 92-96% of variation in GiT during the growing season (June, July, August). Growing-season CiT range within 1-km(2) units peaked at 60-65°N and increased with terrain roughness, averaging 1.97 °C (SD = 0...

  13. Community based adaptation options for climate change impacts on water resources: The case of Jordan

    OpenAIRE

    Hammouri Nezar; Al-Qinna Mohammad; Salahat Mohammad; Adamowski Jan; Prasher Shiv O.

    2015-01-01

    A strategic vision to ensure an adequate, safe and secure drinking water supply presents a challenge, particularly for such a small country as Jordan, faced with a critical supply-demand imbalance and a high risk of water quality deterioration. In order to provide sustainable and equitable long-term water management plans for the future, current and future demands, along with available adaptation options should be assessed through community engagement. An analysis of available water resources...

  14. Impact of climate variability on ichthyoplankton communities: An example of a small temperate estuary

    Science.gov (United States)

    Primo, Ana Lígia; Azeiteiro, Ulisses Miranda; Marques, Sónia Cotrim; Pardal, Miguel Ângelo

    2011-03-01

    Recent variations in the precipitation regime across southern Europe have led to changes in river fluxes and salinity gradients affecting biological communities in most rivers and estuaries. A sampling programme was developed in the Mondego estuary, Portugal, from January 2003 to December 2008 at five distinct sampling stations to evaluate spatial, seasonal and inter-annual distributions of fish larvae. Gobiidae was the most abundant family representing 80% of total catch and Pomatoschistus spp. was the most important taxon. The fish larval community presented a clear seasonality with higher abundances and diversities during spring and summer seasons. Multivariate analysis reinforced differences among seasons but not between years or sampling stations. The taxa Atherina presbyter, Solea solea, Syngnathus abaster, Crystallogobius linearis and Platichthys flesus were more abundant during spring/summer period while Ammodytes tobianus, Callionymus sp., Echiichthys vipera and Liza ramada were more abundant in autumn/winter. Temperature, chlorophyll a and river flow were the main variation drivers observed although extreme drought events (year 2005) seemed not to affect ichthyoplankton community structure. Main changes were related to a spatial displacement of salinity gradient along the estuarine system which produced changes in marine species distribution.

  15. Composition and structure of the larval fish community related to environmental parameters in a tropical estuary impacted by climate change

    Science.gov (United States)

    Sloterdijk, Hans; Brehmer, Patrice; Sadio, Oumar; Müller, Hanno; Döring, Julian; Ekau, Werner

    2017-10-01

    Mangrove ecosystems have long been considered essential habitats and are commonly viewed and referred to as "nursery areas". They are highly sensitive to climate change, and environmental transformations in these ecosystems are expected. The Sine Saloum estuary is a case of a system affected by global climate change where reduced precipitation and temperature increase have resulted in an inversion of the salinity gradient. Within the estuary, the composition and structure of the larval fish community related to environmental parameters were investigated using neuston and ring trawl nets. Larval fishes were sampled at 16 stations distributed along a salinity and distance-to-the-sea gradient during four field campaigns (November 2013, February, June, and August 2014) covering an annual cycle. This is the first study documenting the spatial and temporal assemblages of fish larvae in an inverse estuary. The total of 41 taxa representing 24 families and 34 genus identified in this study was lower than that of other tropical estuaries. Clupeidae spp. was the dominant taxon, accounting for 28.9% of the total number of fish larvae caught, followed by Gerreidae spp. (21.1%), Hyporamphus picarti (18.8%), Diplodus bellottii (8.9%), Hypleurochilus langi (4.8%), Mugilidae spp. (4.4%), and Gobiidae sp.1 (3.5%). A total of 20 taxa were recorded within the upper estuary region, whereas 29 and 37 taxa were observed in the middle and lower reaches, respectively. While larval fish were captured at all sites and during all seasons, abundances and richness decreased with increasing salinity. Larval fish assemblages also showed a clear vertical structure corresponding to three distinct water strata. Salinity, water temperature, and dissolved oxygen were the variables that best explained the spatial and temporal differences in larval fish assemblages. It is difficult to forecast the future situation for this system but so far, compared to other mangrove estuarine systems, we have

  16. Microbial ecology in a future climate: effects of temperature and moisture on microbial communities of two boreal fens.

    Science.gov (United States)

    Peltoniemi, Krista; Laiho, Raija; Juottonen, Heli; Kiikkilä, Oili; Mäkiranta, Päivi; Minkkinen, Kari; Pennanen, Taina; Penttilä, Timo; Sarjala, Tytti; Tuittila, Eeva-Stiina; Tuomivirta, Tero; Fritze, Hannu

    2015-07-01

    Impacts of warming with open-top chambers on microbial communities in wet conditions and in conditions resulting from moderate water-level drawdown (WLD) were studied across 0-50 cm depth in northern and southern boreal sedge fens. Warming alone decreased microbial biomass especially in the northern fen. Impact of warming on microbial PLFA and fungal ITS composition was more obvious in the northern fen and linked to moisture regime and sample depth. Fungal-specific PLFA increased in the surface peat in the drier regime and decreased in layers below 10 cm in the wet regime after warming. OTUs representing Tomentella and Lactarius were observed in drier regime and Mortierella in wet regime after warming in the northern fen. The ectomycorrhizal fungi responded only to WLD. Interestingly, warming together with WLD decreased archaeal 16S rRNA copy numbers in general, and fungal ITS copy numbers in the northern fen. Expectedly, many results indicated that microbial response on warming may be linked to the moisture regime. Results indicated that microbial community in the northern fen representing Arctic soils would be more sensitive to environmental changes. The response to future climate change clearly may vary even within a habitat type, exemplified here by boreal sedge fen. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  17. Direct and indirect effects of climate change on a prairie plant community.

    Directory of Open Access Journals (Sweden)

    Peter B Adler

    2009-09-01

    Full Text Available Climate change directly affects species by altering their physical environment and indirectly affects species by altering interspecific interactions such as predation and competition. Recent studies have shown that the indirect effects of climate change may amplify or counteract the direct effects. However, little is known about the the relative strength of direct and indirect effects or their potential to impact population persistence.We studied the effects of altered precipitation and interspecific interactions on the low-density tiller growth rates and biomass production of three perennial grass species in a Kansas, USA mixed prairie. We transplanted plugs of each species into local neighborhoods of heterospecific competitors and then exposed the plugs to a factorial manipulation of growing season precipitation and neighbor removal. Precipitation treatments had significant direct effects on two of the three species. Interspecific competition also had strong effects, reducing low-density tiller growth rates and aboveground biomass production for all three species. In fact, in the presence of competitors, (log tiller growth rates were close to or below zero for all three species. However, we found no convincing evidence that per capita competitive effects changed with precipitation, as shown by a lack of significant precipitation x competition interactions.We found little evidence that altered precipitation will influence per capita competitive effects. However, based on species' very low growth rates in the presence of competitors in some precipitation treatments, interspecific interactions appear strong enough to affect the balance between population persistence and local extinction. Therefore, ecological forecasting models should include the effect of interspecific interactions on population growth, even if such interaction coefficients are treated as constants.

  18. ECOLES: a Citizen Observers network engaging communities to map climate change at the local level

    Science.gov (United States)

    Thejll, Peter; Walker, Nicholas; Sandholt, Inge; Brown, Ian; Solberg, Rune; Suwala, Jason; Kelly, Richard; Tangen, Helge; Berglund, Robin; Dean, Andy; Engset, Rune; Siewertsen, Bjarne

    2016-04-01

    Engaging people in environmental studies is an important way to bring across awareness of expected future climate changes, and also a way to measure environmental change in ways that are better or complementary to remote sensing methods. With a hands-on approach, people are more likely to embrace the idea that climate change is occurring, and with modern technologies it is possible to collect quite stunning amounts of relevant data. We suggest several national activities tailored to conditions in each of the participating countries and also to existing national CO-projects. The project focuses on gathering data on biological changes, on weather, and on snow-pack information in Nordic countries as well as Greenland and Canada. Data will be gathered with existing equipment (mobile phones and internet-connected weather stations) and the project provides the means for collation of data into a database for dissemination and quality control. Numerical data collected by small non-professional weather stations or mobile phones with sensors are not directly useful quantitatively for e.g. numerical weather prediction without validation of data quality, but with validation there is a huge untapped potential due to the number of observers. Students are a central part of the project, which also seeks to engage people out and about in nature, and people with their own weather stations or other environmental data-collection activities, as well as passive data collection from mobile phone data sensors in people's bags and pockets. Appropriate software, educational and training materials will be designed with end-users in mind; school-age materials will be produced in the appropriate languages (e.g. Kalaallisut for COs of school age in Greenland).

  19. Community

    Science.gov (United States)

    stability Science & Innovation Collaboration Careers Community Environment Science & Innovation Recruitment Events Community Commitment Giving Campaigns, Drives Economic Development Employee Funded neighbor pledge: contribute to quality of life in Northern New Mexico through economic development

  20. Community based adaptation options for climate change impacts on water resources: The case of Jordan

    Directory of Open Access Journals (Sweden)

    Hammouri Nezar

    2015-09-01

    Full Text Available A strategic vision to ensure an adequate, safe and secure drinking water supply presents a challenge, particularly for such a small country as Jordan, faced with a critical supply-demand imbalance and a high risk of water quality deterioration. In order to provide sustainable and equitable long-term water management plans for the future, current and future demands, along with available adaptation options should be assessed through community engagement. An analysis of available water resources, existing demands and use per sector served to assess the nation’s historic water status. Taking into account the effect of both population growth and rainfall reduction, future per sector demands were predicted by linear temporal trend analysis. Water sector vulnerability and adaptation options were assessed by engaging thirty five stakeholders. A set of weighed-criterions were selected, adopted, modified, and then framed into comprehensive guidelines. A quantitative ratio-level approach was used to quantify the magnitude and likelihood of risks and opportunities associated with each proposed adaptation measure using the level of effectiveness and severity status. Prioritization indicated that public awareness and training programs were the most feasible and effective adaptation measures, while building new infrastructure was of low priority. Associated barriers were related to a lack of financial resources, institutional arrangements, and data collection, sharing, availability, consistency and transparency, as well as willingness to adapt. Independent community-based watershed-vulnerability analyses to address water integrity at watershed scale are recommended.

  1. Ocean acidification and desalination: climate-driven change in a Baltic Sea summer microplanktonic community.

    Science.gov (United States)

    Wulff, Angela; Karlberg, Maria; Olofsson, Malin; Torstensson, Anders; Riemann, Lasse; Steinhoff, Franciska S; Mohlin, Malin; Ekstrand, Nina; Chierici, Melissa

    2018-01-01

    Helcom scenario modelling suggests that the Baltic Sea, one of the largest brackish-water bodies in the world, could expect increased precipitation (decreased salinity) and increased concentration of atmospheric CO 2 over the next 100 years. These changes are expected to affect the microplanktonic food web, and thereby nutrient and carbon cycling, in a complex and possibly synergistic manner. In the Baltic Proper, the extensive summer blooms dominated by the filamentous cyanobacteria Aphanizomenon sp., Dolichospermum spp. and the toxic Nodularia spumigena contribute up to 30% of the yearly new nitrogen and carbon exported to the sediment. In a 12 days outdoor microcosm experiment, we tested the combined effects of decreased salinity (from 6 to 3) and elevated CO 2 concentrations (380 and 960 µatm) on a natural summer microplanktonic community, focusing on diazotrophic filamentous cyanobacteria. Elevated p CO 2 had no significant effects on the natural microplanktonic community except for higher biovolume of Dolichospermum spp. and lower biomass of heterotrophic bacteria. At the end of the experimental period, heterotrophic bacterial abundance was correlated to the biovolume of N. spumigena. Lower salinity significantly affected cyanobacteria together with biovolumes of dinoflagellates, diatoms, ciliates and heterotrophic bacteria, with higher biovolume of Dolichospermum spp. and lower biovolume of N. spumigena , dinoflagellates, diatoms, ciliates and heterotrophic bacteria in reduced salinity. Although the salinity effects on diatoms were apparent, they could not clearly be separated from the influence of inorganic nutrients. We found a clear diurnal cycle in photosynthetic activity and pH, but without significant treatment effects. The same diurnal pattern was also observed in situ ( p CO 2 , pH). Thus, considering the Baltic Proper, we do not expect any dramatic effects of increased p CO 2 in combination with decreased salinity on the microplanktonic food web

  2. Ectomycorrhizal Communities on the Roots of Two Beech (Fagus sylvatica) Populations from Contrasting Climates Differ in Nitrogen Acquisition in a Common Environment.

    Science.gov (United States)

    Leberecht, Martin; Dannenmann, Michael; Gschwendtner, Silvia; Bilela, Silvija; Meier, Rudolf; Simon, Judy; Rennenberg, Heinz; Schloter, Michael; Polle, Andrea

    2015-09-01

    Beech (Fagus sylvatica), a dominant forest species in Central Europe, competes for nitrogen with soil microbes and suffers from N limitation under dry conditions. We hypothesized that ectomycorrhizal communities and the free-living rhizosphere microbes from beech trees from sites with two contrasting climatic conditions exhibit differences in N acquisition that contribute to differences in host N uptake and are related to differences in host belowground carbon allocation. To test these hypotheses, young trees from the natural regeneration of two genetically similar populations, one from dryer conditions (located in an area with a southwest exposure [SW trees]) and the other from a cooler, moist climate (located in an area with a northeast exposure [NE trees]), were transplanted into a homogeneous substrate in the same environment and labeled with (13)CO2 and (15)NH4 (+). Free-living rhizosphere microbes were characterized by marker genes for the N cycle, but no differences between the rhizospheres of SW or NE trees were found. Lower (15)N enrichment was found in the ectomycorrhizal communities of the NE tree communities than the SW tree communities, whereas no significant differences in (15)N enrichment were observed for nonmycorrhizal root tips of SW and NE trees. Neither the ectomycorrhizal communities nor the nonmycorrhizal root tips originating from NE and SW trees showed differences in (13)C signatures. Because the level of (15)N accumulation in fine roots and the amount transferred to leaves were lower in NE trees than SW trees, our data support the suggestion that the ectomycorrhizal community influences N transfer to its host and demonstrate that the fungal community from the dry condition was more efficient in N acquisition when environmental constraints were relieved. These findings highlight the importance of adapted ectomycorrhizal communities for forest nutrition in a changing climate. Copyright © 2015, American Society for Microbiology. All Rights

  3. Transient thermal stresses due to a zonal heat source moving back and forth over the surface on an infinite plate

    International Nuclear Information System (INIS)

    Sumi, N.; Hetnarski, R.B.

    1989-01-01

    A solution is given for the transient thermal stresses due to a zonal heat source moving back and forth with a constant angular frequency over the surface of an infinite elastic plate. The transient temperature distribution is obtained by using the complex Fourier and Laplace transforms, and the associated thermal stresses are obtained by means of the thermoelastic displacement potential and the Galerkin function. Graphical representations for the solution in dimensionless terms are included in this paper. (orig.)

  4. Mitigating Climate Change at the Carbon Water Nexus: A Call to Action for the Environmental Engineering Community.

    Science.gov (United States)

    Clarens, Andres F; Peters, Catherine A

    2016-10-01

    Environmental engineers have played a critical role in improving human and ecosystem health over the past several decades. These contributions have focused on providing clean water and air as well as managing waste streams and remediating polluted sites. As environmental problems have become more global in scale and more deeply entrenched in sociotechnical systems, the discipline of environmental engineering must grow to be ready to respond to the challenges of the coming decades. Here we make the case that environmental engineers should play a leadership role in the development of climate change mitigation technologies at the carbon-water nexus (CWN). Climate change, driven largely by unfettered emissions of fossil carbon into the atmosphere, is a far-reaching and enormously complex environmental risk with the potential to negatively affect food security, human health, infrastructure, and other systems. Solving this problem will require a massive mobilization of existing and innovative new technology. The environmental engineering community is uniquely positioned to do pioneering work at the CWN using a skillset that has been honed, solving related problems. The focus of this special issue, on "The science and innovation of emerging subsurface energy technologies," provides one example domain within which environmental engineers and related disciplines are beginning to make important contributions at the CWN. In this article, we define the CWN and describe how environmental engineers can bring their considerable expertise to bear in this area. Then we review some of the topics that appear in this special issue, for example, mitigating the impacts of hydraulic fracturing and geologic carbon storage, and we provide perspective on emergent research directions, for example, enhanced geothermal energy, energy storage in sedimentary formations, and others.

  5. Integrated and Optimized Energy-Efficient Construction Package for a Community of Production Homes in the Mixed-Humid Climate

    Energy Technology Data Exchange (ETDEWEB)

    Mallay, D.; Wiehagen, J.; Del Bianco, M.

    2014-10-01

    Selection and integration of high performance home features are two sides of the same coin in energy efficient sustainable construction. Many advanced technologies are available for selection, but it is in the integration of these technologies into an affordable set of features that can be used on a production basis by builders, that ensures whole-house performance meets expectations. This research high performance home analyzes how a set of advanced technologies can be integrated into a durable and energy efficient house in the mixed-humid climate while remaining affordable to homeowners. The technical solutions documented in this report are the cornerstone of the builder's entire business model based on delivering high-performance homes on a production basis as a standard product offering to all price segments of the residential market. Home Innovation Research Labs partnered with production builder Nexus EnergyHomes (CZ 4). The builder plans to adopt the successful components of the energy solution package for all 55 homes in the community. The research objective was to optimize the builder's energy solution package based on energy performance and construction costs. All of the major construction features, including envelope upgrades, space conditioning system, hot water system, and solar electric system were analyzed. The information in this report can be used by builders and designers to evaluate options, and the integration of options, for increasing the efficiency of home designs in climate zone 4. The data also provide a point of reference for evaluating estimates of energy savings and costs for specific features.

  6. Exploring the nexus between climate change, food security, and deforestation in Q'eqchi' Maya communities, Guatemala

    Science.gov (United States)

    Pope, I.; Harbor, J.

    2013-12-01

    The challenges of food security in the central Highlands of Guatemala are linked to deforestation, land degradation, and climate change. The Q'eqchi' Maya people that inhabit this region are smallholder farmers who rely on subsistence agriculture for survival. The Q'eqchi' support themselves with timber products and ecosystem services provided by the cloud forest, a unique ecosystem where a substantial portion of water is obtained through the condensation of water droplets onto vegetation via cloud filtration. Over the past 30 years, small-scale deforestation of the cloud forest in the Sierra Yalijux and Sacranix has increased as demand for agricultural land has risen. A link between the decline of cloud forest cover and an increase in severe precipitation events that drive soil erosion has been observed in the study area. As a result, land degradation poses a serious threat to the long-term food security of Q'eqchi' communities. We have examined the social, cultural, and land tenure dynamics that impact the ability of the Q'eqchi' to adapt to the rapidly changing climate, as well as to implement recommendations for grassroots initiatives to enhance these adaptations. Using remote-sensing we constructed three land use change maps that show that deforestation rates have increased by over 200% between 1986-2006 in the Sierra Yaljux and Sacranix mountain ranges, largely due to slash and burn agriculture. Using these land use change maps as an input into the Revised Universal Soil Loss Equation we show that implementation of agroecological techniques to counter the impacts of land use change drastically reduces soil erosion and is the best management practice. Surveys and focus groups in several Q'eqchi' villages revealed that precipitation events have become less frequent and more intense over the past 30 years, and temperatures have generally been increasing as well. Q'eqchi' people have observed that increasing severe precipitation events have accelerated soil

  7. Assessing social vulnerability in African urban context. The challenge to cope with climate change induced hazards by communities and households

    Science.gov (United States)

    Kabisch, Sigrun; Jean-Baptiste, Nathalie

    2013-04-01

    Social vulnerability assessment remains central in discourses on global climatic change and takes a more pertinent meaning considering that natural disasters in African countries continue to deeply affect human settlements and destroys human livelihoods. In recent years, in particular large territories and growing cities have experienced severe weather events. Among them are river and flash floods, affecting the social and economic assets of local populations. The impact of the damage related to floods is not only perceptible during seasonal events but also during unexpected larger disasters which place a particular burden on local population and institutions to adapt effectively to increasing climatic pressures. Important features for social vulnerability assessment are the increasing severity of the physical damages, the shortcoming of social and technical infrastructure, the complexity of land management/market, the limited capacity of local institutions and last but not least the restricted capacities of local population to resist these events. Understanding vulnerability implies highlighting and interlinking relevant indicators and/or perceptions encompassed in four main dimensions: social, institutional, physical and attitudinal vulnerability. Case studies in Dar es Salaam, Ouagadougou and Addis Ababa were carried out to obtain insights into the context-related conditions, behavior routines and survival networks in urban areas in west and east Africa. Using a combination of tools (e.g. focus group discussions, transect walks, interviews) we investigated in close cooperation with African partners how households and communities are being prepared to cope with, as well as to recover from floods. A comprehensive process of dealing with floods can be described based on sequential attributes concerning i) Anticipation before a flood occurs, ii) Resistance and coping activities during a flood event and, iii) Recovery and reconstruction afterwards. A participatory

  8. So Close Yet So Far Apart: Contrasting Climate Change Perceptions in Two “Neighboring” Coastal Communities on Aotearoa New Zealand’s Coromandel Peninsula

    Directory of Open Access Journals (Sweden)

    Paul Schneider

    2017-09-01

    Full Text Available Coastal hazard risk, compounded by climate change, is escalating. Efforts to address this challenge are fraught and ‘success’ is elusive. We focus on this impasse and recommend ways to improve understanding, reduce risk and enable adaptation. Two Aotearoa New Zealand coastal communities, Mercury Bay and Kennedy Bay, on the Coromandel Peninsula, serve as case studies. Ethnographic fieldwork underpins this analysis. Despite close proximity, local perceptions are ‘worlds apart’. Poor understanding of climate change, and preoccupation with everyday issues, is commonplace. Moreover, there are countervailing community narratives. In Kennedy Bay, which is undeveloped and Māori, climate change is not a manifest concern. Local narratives are rooted in Māori culture and under the shadow of colonization, which shapes contemporary perceptions, practices and prospects. In Mercury Bay, a rapidly developing resort town, seashore property owners demand protection works—ignoring sea-level rise and privileging short-term private interests. Despite laudable regulatory provisions, static responses to dynamic risks prevail and proactive adaptation is absent. Recommendations are made to improve understanding about local cultural-social-ecological characteristics, climate change and adaption. Enabling leadership and capability-building are needed to institutionalize proactive adaptation. Strengthening Māori self-determination (rangatiratanga and guardianship (kaitiakitanga, and local democracy, are key to mobilizing and sustaining community-based adaptation governance.

  9. Ichthyoplankton Time Series: A Potential Ocean Observing Network to Provide Indicators of Climate Impacts on Fish Communities along the West Coast of North America

    Science.gov (United States)

    Koslow, J. A.; Brodeur, R.; Duffy-Anderson, J. T.; Perry, I.; jimenez Rosenberg, S.; Aceves, G.

    2016-02-01

    Ichthyoplankton time series available from the Bering Sea, Gulf of Alaska and California Current (Oregon to Baja California) provide a potential ocean observing network to assess climate impacts on fish communities along the west coast of North America. Larval fish abundance reflects spawning stock biomass, so these data sets provide indicators of the status of a broad range of exploited and unexploited fish populations. Analyses to date have focused on individual time series, which generally exhibit significant change in relation to climate. Off California, a suite of 24 midwater fish taxa have declined > 60%, correlated with declining midwater oxygen concentrations, and overall larval fish abundance has declined 72% since 1969, a trend based on the decline of predominantly cool-water affinity taxa in response to warming ocean temperatures. Off Oregon, there were dramatic differences in community structure and abundance of larval fishes between warm and cool ocean conditions. Midwater deoxygenation and warming sea surface temperature trends are predicted to continue as a result of global climate change. US, Canadian, and Mexican fishery scientists are now collaborating in a virtual ocean observing network to synthesize available ichthyoplankton time series and compare patterns of change in relation to climate. This will provide regional indicators of populations and groups of taxa sensitive to warming, deoxygenation and potentially other stressors, establish the relevant scales of coherence among sub-regions and across Large Marine Ecosystems, and provide the basis for predicting future climate change impacts on these ecosystems.

  10. Climatic and ecological drivers of euphausiid community structure vary spatially in the Barents Sea: relationships from a long time series (1952-2009

    Directory of Open Access Journals (Sweden)

    Emma Lvovna Orlova

    2015-01-01

    Full Text Available Euphausiids play an important role in transferring energy from ephemeral primary producers to fish, seabirds, and marine mammals in the Barents Sea ecosystem. Climatic impacts have been suggested to occur at all levels of the Barents Sea food-web, but adequate exploration of these phenomena on ecologically relevant spatial scales has not been integrated sufficiently. We used a time-series of euphausiid abundance data spanning 58 years, one of the longest biological time-series in the Arctic, to explore qualitative and quantitative relationships among climate, euphausiids, and their predators, and how these parameters vary spatially in the Barents Sea. We detected four main hydrographic regions, each with distinct patterns of interannual variability in euphausiid abundance and community structure. Assemblages varied primarily in the relative abundance of Thysanoessa inermis versus T. raschii, or T. inermis versus T. longicaudata and Meganyctiphanes norvegica. Climate proxies and the abundance of capelin or cod explained 30-60% of the variability in euphausiid abundance in each region. Climate also influenced patterns of variability in euphausiid community structure, but correlations were generally weaker. Advection of boreal euphausiid taxa from the Norwegian Sea is clearly more prominent in warmer years than in colder years, and interacts with seasonal fish migrations to help explain spatial differences in primary drivers of euphausiid community structure. Non-linear effects of predators were common, and must be considered more carefully if a mechanistic understanding of the ecosystem is to be achieved. Quantitative relationships among euphausiid abundance, climate proxies, and predator stock-sizes derived from these time series are valuable for ecological models being used to predict impacts of climate change on the Barents Sea ecosystem, and how the system should be managed.

  11. Changes of climate regimes during the last millennium and the twenty-first century simulated by the Community Earth System Model

    Science.gov (United States)

    Huang, Wei; Feng, Song; Liu, Chang; Chen, Jie; Chen, Jianhui; Chen, Fahu

    2018-01-01

    This study examines the shifts in terrestrial climate regimes using the Köppen-Trewartha (K-T) climate classification by analyzing the Community Earth System Model Last Millennium Ensemble (CESM-LME) simulations for the period 850-2005 and CESM Medium Ensemble (CESM-ME), CESM Large Ensemble (CESM-LE) and CESM with fixed aerosols Medium Ensemble (CESM-LE_FixA) simulations for the period 1920-2080. We compare K-T climate types from the Medieval Climate Anomaly (MCA) (950-1250) with the Little Ice Age (LIA) (1550-1850), from present day (PD) (1971-2000) with the last millennium (LM) (850-1850), and from the future (2050-2080) with the LM in order to place anthropogenic changes in the context of changes due to natural forcings occurring during the last millennium. For CESM-LME, we focused on the simulations with all forcings, though the impacts of individual forcings (e.g., solar activities, volcanic eruptions, greenhouse gases, aerosols and land use changes) were also analyzed. We found that the climate types changed slightly between the MCA and the LIA due to weak changes in temperature and precipitation. The climate type changes in PD relative to the last millennium have been largely driven by greenhouse gas-induced warming, but anthropogenic aerosols have also played an important role on regional scales. At the end of the twenty-first century, the anthropogenic forcing has a much greater effect on climate types than the PD. Following the reduction of aerosol emissions, the impact of greenhouse gases will further promote global warming in the future. Compared to precipitation, changes in climate types are dominated by greenhouse gas-induced warming. The large shift in climate types by the end of this century suggests possible wide-spread redistribution of surface vegetation and a significant change in species distributions.

  12. THE PRINCIPALS’ ROLE IN DEVELOPING SOCIAL CAPITAL FORTHE PROMOTION OF HEALTHY SCHOOL ENVIRONMENTS

    Directory of Open Access Journals (Sweden)

    Siphokazi Kwatubana

    2017-01-01

    Full Text Available Schoolleaders’ individual and collective efforts are essential in the promotion ofhealthy school environments. In this respect, the building of social capital is veryimportant for a school’s improvement. The aim of this paper was to determine therole principals played in developing social capital to enhance healthy schoolenvironments. The study was conducted in two districts, one in the Gauteng andthe other in the Free State provinces of South Africa. It was undertaken as aqualitative research study that involved seven participants. Data collectionstrategies employed included narratives, individual interviews and field notes. Thestudy was considered important in its application of the social capital theory todetermine the role of principals in solicitingeconomic resources for their schools.From the findings, the main challenge that was common in all the participatingschools was the lack of resources for the Promotion ofHealthySchoolEnvironments. It was found that some principals were able to identify andapproach companies that could assist their schools but were then unable to buildtrusting relationships. In view of the findings, this research recommendstrainingto equip principals with skills to enable them tomobilise resources by takingadvantage ofsocial capitalin their communities.

  13. [Description of the organizational climate in primary care teams in an autonomous community].

    Science.gov (United States)

    Menárguez Puche, J F; Saturno Hernández, P J

    1999-03-31

    To describe the organisational atmosphere (OA) in primary care teams (PCTs) in an autonomous community. Crossover and observational. PCTs. A questionnaire on OA was administered after prior validation to all the doctors, nurses and social workers at 29 PCTs. The OA in the different teams was described, comprehensively and by dimensions: team-work, cohesion and commitment. Multiple regression was used to find the relationship between OA (dependent variable) and the independent variables: age of the professionals, years of functioning of the PCT, teaching status, type, location (rural or urban) and profession (coordinators, doctors, nurses, clerical staff). Overall reply rate was 77.5% (402 professionals): it was higher for coordinators. Average score on the questionnaire was 3.53 (SD = 0.56): it was higher for nurses. Results by dimensions were: team-work 3.67 (SD = 0.59), cohesion 3.54 (SD = 0.71) and commitment 3.37 (SD = 0.72). OA was seen as better by teaching teams (p dimensions. Coordinators had better self-perception of the OA, both overall and by dimensions (p < 0.01). Teams who had worked together for a long time thought the atmosphere was worse. The type of job and the number of years doing it did not affect the perception of OA. 1. The evaluation of OA is generally positive, though it can certainly be improved. 2. Perception is not uniform, as coordinators and teaching teams see the OA as better. 3. Teams working together for many years see the OA as worse.

  14. Community.

    Science.gov (United States)

    Grauer, Kit, Ed.

    1995-01-01

    Art in context of community is the theme of this newsletter. The theme is introduced in an editorial "Community-Enlarging the Definition" (Kit Grauer). Related articles include: (1) "The Children's Bridge is not Destroyed: Heart in the Middle of the World" (Emil Robert Tanay); (2) "Making Bridges: The Sock Doll…

  15. Constructing an AIRS Climatology for Data Visualization and Analysis to Serve the Climate Science and Application Communities

    Science.gov (United States)

    Ding, Feng; Keim, Elaine; Hearty, Thomas J.; Wei, Jennifer; Savtchenko, Andrey; Theobald, Michael; Vollmer, Bruce

    2016-01-01

    The NASA Goddard Earth Sciences Data and Information Services Center (GES DISC) is the home of processing, archiving, and distribution services for NASA sounders: the present Aqua AIRS mission and the succeeding SNPP CrIS mission. The AIRS mission is entering its 15th year of global observations of the atmospheric state, including temperature and humidity profiles, outgoing longwave radiation, cloud properties, and trace gases. The GES DISC, in collaboration with the AIRS Project, released product from the version 6 algorithm in early 2013. Giovanni, a Web-based application developed by the GES DISC, provides a simple and intuitive way to visualize, analyze, and access vast amounts of Earth science remote sensing data without having to download the data. Most important variables from version 6 AIRS product are available in Giovanni. We are developing a climatology product using 14-year AIRS retrievals. The study can be a good start for the long term climatology from NASA sounders: the AIRS and the succeeding CrIS. This presentation will show the impacts to the climatology product from different aggregation methods. The climatology can serve climate science and application communities in data visualization and analysis, which will be demonstrated using a variety of functions in version 4 Giovanni. The highlights of these functions include user-defined monthly and seasonal climatology, inter annual seasonal time series, anomaly analysis.

  16. New climatic targets against global warming: will the maximum 2 °C temperature rise affect estuarine benthic communities?

    Science.gov (United States)

    Crespo, Daniel; Grilo, Tiago Fernandes; Baptista, Joana; Coelho, João Pedro; Lillebø, Ana Isabel; Cássio, Fernanda; Fernandes, Isabel; Pascoal, Cláudia; Pardal, Miguel Ângelo; Dolbeth, Marina

    2017-06-20

    The Paris Agreement signed by 195 countries in 2015 sets out a global action plan to avoid dangerous climate change by limiting global warming to remain below 2 °C. Under that premise, in situ experiments were run to test the effects of 2 °C temperature increase on the benthic communities in a seagrass bed and adjacent bare sediment, from a temperate European estuary. Temperature was artificially increased in situ and diversity and ecosystem functioning components measured after 10 and 30 days. Despite some warmness effects on the analysed components, significant impacts were not verified on macro and microfauna structure, bioturbation or in the fluxes of nutrients. The effect of site/habitat seemed more important than the effects of the warmness, with the seagrass habitat providing more homogenous results and being less impacted by warmness than the adjacent bare sediment. The results reinforce that most ecological responses to global changes are context dependent and that ecosystem stability depends not only on biological diversity but also on the availability of different habitats and niches, highlighting the role of coastal wetlands. In the context of the Paris Agreement it seems that estuarine benthic ecosystems will be able to cope if global warming remains below 2 °C.

  17. Access to energy sources in the face of climate change: Challenges faced by women in rural communities

    Directory of Open Access Journals (Sweden)

    Mphemelang J. Ketlhoilwe

    2018-04-01

    Full Text Available Access to energy is a challenge to rural communities, especially among women who are the prime household energy users. This article is based on research carried out in the Tswapong villages in Botswana where energy sources particularly wood, are slowly getting depleted while electricity connection costs remain unaffordable for the poor. The article provides constructivist analysis of experiences in real-life situations among women. Data were generated through observations, documents analysis, interviews and focus group discussions. It has emerged from the research that majority of the respondents use firewood as energy source. Firewood and gas are mainly used for cooking while electricity is mainly used for lighting. The demand for firewood has led to firewood commercialisation, the depletion of preferred firewood tree species and increase in the impact of climate change. The article recommends economic diversification and subsidies to empower the majority of the rural poor to connect to the national electric grid and reduce on firewood dependence. These could be complemented by harnessing of solar energy and low-cost, energy-saving technologies. Subsidies to enable women access to energy services would contribute immensely to the decade of Sustainable Energy for All and to the attainment of the post 2015 sustainable development goal on energy.

  18. One hundred thousand years back and forth: When archaeology meets radioactive waste

    International Nuclear Information System (INIS)

    Holtorf, Cornelius; Hoegberg, Anders

    2012-01-01

    This presentation discussed the final repository of radioactive waste as an issue at the interface of the sciences and the humanities. Archaeologists have learned that a hundred thousand years ago abstract thought and symbolism by humans began. Since then many communities of human beings have succeeded each other. They often intended to leave a mark for eternity, but they established in fact the truism that nothing ages faster than the future. Archaeologists and historians are promoting remembering, learning and understanding of history for contemporary and future generations. Disposal sites of nuclear waste constitute a special case of heritage. We are creating a very distinctive kind of heritage that in the future may be remembered or forgotten, just like any other heritage we create. The presentation addressed what the realms of heritage and radioactive waste disposal can learn from each other regarding making provisions for the future. Rubbish reflects the conditions from which it originates. The final deposition of radioactive waste is by nature a question of historical consciousness and future uses of the past, of memory and forgetting, and of future didactics of history. Heritage studies as well as history and archaeology are thus inherently relevant. Similarities between archaeology and RWM were thus pointed out, for instance the long time frames, specific sites, dealing with the meaning of rubbish, the fact that we both like to think we are doing something good for future generations,.. But there also are differences, notably that archaeology works with precious objects one wishes to keep. How will the future use our present, which is their past, for their own future? The meaning people give to information is important, and meaning is a continuous process of reinterpreting

  19. Exploring recent and projected climate change in a steep monsoonal catchment in the middle Himalaya through innovative synthesis of local observations, gridded datasets and community engagement

    Science.gov (United States)

    Forsythe, Nathan; Pritchard, Davis; Tiwari, Prakash; Fowler, Hayley; Kumaun, Bhagwati

    2016-04-01

    Under the auspices of an "Innovation Partnerships" programme research exchange grant jointly funded by the India Department of Science and Technology and the British Council, Kumaun University and Newcastle University have been collaboratively exploring the recorded historical and projected future climate change implications for a case study catchment, the Ramgad river, in the Kumaon Lesser Himalaya (Uttarakhand state, India). This work weaves together diverse research strands with the aim of producing a coherent thorough characterisation of the impacts of recent/on-going and likely climate evolution on local communities. Participatory research activities in multiple villages in the case study catchment have yielded a consistent narrative of changes posed by the increasingly erratic monsoonal rainfall as well as upward displacement and replacement crops in their historical elevation ranges due to temperature change. Multi-decadal climate records from both local observations and global meteorological records reveal a more complex picture with strong seasonal asymmetry of changes in both temperature and precipitation: a) trend analysis shows mild weakening of the early phase (May, July) but strengthen in the later stages (August, September); b) temperature trends show much stronger warming in late winter and early spring (February to April) than the rest of the year with additional asymmetry in both sign and magnitude of change between individual components (Tmax, Tmin) of the diurnal temperature cycle. On-going research seeks to associate this asymmetry with causal mechanisms (cloud radiative effect, atmospheric circulation). Analysis of historical records will provide the basis for validation and assessment of individual regional climate model projections from the CORDEX South Asia domain ensemble. For the terraced agricultural communities of the Kumaon Himalaya, the most directly consequential effects of climate variability and change are impacts on crop yields

  20. Rainwater Harvesting-based Safe Water Access in Diarrhea-endemic Coastal Communities of Bangladesh under Threats of Climate Change

    Science.gov (United States)

    Akanda, A. S.; Redwan, A. M.; Ali, M. A.; Alam, M.; Jutla, A.; Colwell, R. R.

    2014-12-01

    The highly populated coastal floodplains of the Bengal Delta have a long history of water-related natural calamities such as droughts, floods, and cyclones. Population centers along the floodplain corridors of the GBM (Ganges-Brahmaputra-Meghna) river system remain vulnerable to such natural hazards and waterborne epidemic outbreaks due to increasing intensity and changing frequency of extreme events over many areas in the delta region. Such changes in hydrologic extremes and resulting environmental conditions would likely lengthen the transmission seasons of prevalent waterborne diseases and alter their geographic range as well as seasonality. In addition, the combination of changing upstream precipitation and temperature, and coastal sea-level rise are exposing a vast area in Southwestern Bangladesh to increased diarrheal disease outbreaks due to higher salinity and water scarcity in the dry season as well as coastal flooding and water resources contamination in the wet season. It is thus essential to establish sustainable safe water access practices in these regions for the rural communities of low-income people. The impact of climate change in the recent past on the people of coastal rural areas of Bangladesh has been severe, and the water sector is one of its biggest victims. Previously, pond and groundwater sources were considered dependable, but salinity intrusion in both water resources have left the vulnerable people with only a few scarce ponds and forced them to depend more on rainwater than before. The poorest group is suffering the most for this crisis even though paying more of the percentage of their income especially in the dry season (December-March). As rainwater is their most preferred and dependable option during this part of the year, outbreaks of waterborne diseases can be minimized by installing rainwater harvesting systems with effective disinfection system at both household and community levels. In this study, we explore the technical

  1. Analysis of barriers and levers to the implementation of strategies of adaptation to climate changes - 2014-2015. The case of urban communities. Final report

    International Nuclear Information System (INIS)

    Simonet, Guillaume; Leseur, Alexia

    2015-12-01

    This is the final report of a research project (ABSTRACT-colurba) which aimed at exploring decision mechanisms and organisational dynamics underlying the elaboration of strategies of adaptation to climate changes by using results of a field study among ten previously selected French local communities. The objectives were to determine priority local social and economic challenges associated with expected impacts of climate changes, to identify economic, organisational and cognitive barriers and levers (at the State, representative or collectivity level) to an optimal implementation of measures of reduction of local vulnerabilities to climate changes, to identify possible or already used diagnosis tools for the assessment of costs and of priority investments, and to make comparisons with other referenced cases and to assess possibilities to bypass barriers thanks to a dialogue with stakeholders. After a presentation of the project (objectives, institutional context, guides and methodologies, scientific approach for data acquisition and analysis), the report presents and discusses the obtained results regarding the place given to adaptation in local policies (PCET, the French local climate-energy plans), representations of adaptation, the inclusion of adaptation in the agenda of public climatic action, tools to make adaptation operational, barriers and levers to action implementation

  2. Drinking-water treatment, climate change, and childhood gastrointestinal illness projections for northern Wisconsin (USA) communities drinking untreated groundwater

    Science.gov (United States)

    Uejio, Christopher K.; Christenson, Megan; Moran, Colleen; Gorelick, Mark

    2017-06-01

    This study examined the relative importance of climate change and drinking-water treatment for gastrointestinal illness incidence in children (age first quantified the observed (1991-2010) precipitation and gastrointestinal illness associations after controlling for seasonality and temporal trends. Precipitation likely transported pathogens into drinking-water sources or into leaking water-distribution networks. Building on observed relationships, the second analysis projected how climate change and drinking-water treatment installation may alter gastrointestinal illness incidence. Future precipitation values were modeled by 13 global climate models and three greenhouse-gas emissions levels. The second analysis was rerun using three pathways: (1) only climate change, (2) climate change and the same slow pace of treatment installation observed over 1991-2010, and (3) climate change and the rapid rate of installation observed over 2011-2016. The results illustrate the risks that climate change presents to small rural groundwater municipalities without drinking water treatment. Climate-change-related seasonal precipitation changes will marginally increase the gastrointestinal illness incidence rate (mean: ˜1.5%, range: -3.6-4.3%). A slow pace of treatment installation somewhat decreased precipitation-associated gastrointestinal illness incidence (mean: ˜3.0%, range: 0.2-7.8%) in spite of climate change. The rapid treatment installation rate largely decreases the gastrointestinal illness incidence (mean: ˜82.0%, range: 82.0-83.0%).

  3. Climate science reconsidered

    OpenAIRE

    Rapley, C.; De Meyer, K.

    2014-01-01

    There is a gap between the current role of the climate science community and the needs of society. Closing this gap represents a necessary but insufficient step towards improved public discourse and more constructive policy formulation on climate change.

  4. Climate change influences on environment as a determinant of Indigenous health: Relationships to place, sea ice, and health in an Inuit community.

    Science.gov (United States)

    Durkalec, Agata; Furgal, Chris; Skinner, Mark W; Sheldon, Tom

    2015-07-01

    This paper contributes to the literature on Indigenous health, human dimensions of climate change, and place-based dimensions of health by examining the role of environment for Inuit health in the context of a changing climate. We investigated the relationship between one key element of the environment - sea ice - and diverse aspects of health in an Inuit community in northern Canada, drawing on population health and health geography approaches. We used a case study design and participatory and collaborative approach with the community of Nain in northern Labrador, Canada. Focus groups (n = 2), interviews (n = 22), and participant observation were conducted in 2010-11. We found that an appreciation of place was critical for understanding the full range of health influences of sea ice use for Inuit. Negative physical health impacts were reported on less frequently than positive health benefits of sea ice use, which were predominantly related to mental/emotional, spiritual, social, and cultural health. We found that sea ice means freedom for sea ice users, which we suggest influences individual and collective health through relationships between sea ice use, culture, knowledge, and autonomy. While sea ice users reported increases in negative physical health impacts such as injuries and stress related to changing environmental conditions, we suggest that less tangible climate change impacts related to losses of health benefits and disruptions to place meanings and place attachment may be even more significant. Our findings indicate that climate change is resulting in and compounding existing environmental dispossession for Inuit. They also demonstrate the necessity of considering place meanings, culture, and socio-historical context to assess the complexity of climate change impacts on Indigenous environmental health. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Experiment, monitoring, and gradient methods used to infer climate change effects on plant communities yield consistent patterns

    Science.gov (United States)

    Sarah C. Elmendorf; Gregory H.R. Henry; Robert D. Hollisterd; Anna Maria Fosaa; William A. Gould; Luise Hermanutz; Annika Hofgaard; Ingibjorg I. Jonsdottir; Janet C. Jorgenson; Esther Levesque; Borgbor Magnusson; Ulf Molau; Isla H. Myers-Smith; Steven F. Oberbauer; Christian Rixen; Craig E. Tweedie; Marilyn Walkers

    2015-01-01

    Inference about future climate change impacts typically relies on one of three approaches: manipulative experiments, historical comparisons (broadly defined to include monitoring the response to ambient climate fluctuations using repeat sampling of plots, dendroecology, and paleoecology techniques), and space-for-time substitutions derived from sampling along...

  6. The development of a command language and meta-language in nuclear medicine processing systems, using Forth

    International Nuclear Information System (INIS)

    Goris, M.L.; Briandet, P.A.

    1986-01-01

    A priori, the requirements of flexibility versus ease of use seem antagonistic in dedicated scintigraphic computer systems. This follows from the fact that flexibility is most often achieved by multiplicity of options. In many cases, the flow through the options is directed by decision trees or menus, which have the major disadvantage of requiring multiple, and repetitive answers to often obscure questions. Alternatively the direct call to the program library requires that the operator remember the name of all available programs, which are often mnemonic by courtesy only. Ease of use on the other hand is most often attained by a menu structure with few levels, and rigid data structures. In this paper, the authors briefly describe an attempt to reconcile the requirements, based on Forth, in which the first access of the user is to a two layer menu directing to predefined and well established protocols but further and progressive access to stringing of simple commands and primitives. (Auth.)

  7. Water in the Native World: Hydrological Impacts of Future Land Use and Climate Change in the Lumbee River Watershed and Implications for Ecosystems and Indigenous Communities

    Science.gov (United States)

    Emanuel, R. E.; Singh, N.; Painter, J.; Sikes, J. A.; Vose, J. M.; Wear, D. N.; Martin, K. L.

    2016-12-01

    In the coming decades, the southeastern US will likely experience substantial shifts in land use due to population growth, food and energy production, and other factors. In the same period, climate change is expected to alter ecohydrological processes in terrestrial landscapes while contributing to further land use change. Increasingly, these changes will challenge the ability of the region's freshwater resources to support natural ecosystems and human communities. The impacts of land use and climate change on water are of particular concern to rural indigenous communities of the southeastern US. For these communities, the cultural significance of land and water, together with historical legacies of discrimination, marginalization and other factors, combine to create unique vulnerabilities to environmental change. Assessments of land use and climate impacts on water resources of the southeastern US tend to focus on quantity and quality concerns of large cities or on waters of special economic concern (e.g. estuaries and coastal fisheries). The potential impacts of land use and climate change on American Indian communities are largely overlooked or unknown. With this in mind, we used a semi-distributed hydrological model (SWAT) to assess impacts of climate and land use change on streamflow regimes in the Lumbee (aka Lumber) River, North Carolina (USA). This coastal plain blackwater river is a significant natural and cultural resource for indigenous people of the Lumbee Tribe, and its watershed, containing extensive riparian wetlands and agriculture-dominated uplands, is home to more than 30,000 tribal citizens. We ran SWAT with statistically downscaled output from four general circulation models (GCMs) for the mid-21st century (RCP8.5 scenario), together with a mid-century land use scenario from the US Forest Service's Southern Forest Futures Project. We used these inputs to simulate daily streamflows on the Lumbee River for the 2040-2060 period with uncertainty

  8. The CSAICLAWPS project: a multi-scalar, multi-data source approach to providing climate services for both modelling of climate change impacts on crop yields and development of community-level adaptive capacity for sustainable food security

    Science.gov (United States)

    Forsythe, N. D.; Fowler, H. J.

    2017-12-01

    The "Climate-smart agriculture implementation through community-focused pursuit of land and water productivity in South Asia" (CSAICLAWPS) project is a research initiative funded by the (UK) Royal Society through its Challenge Grants programme which is part of the broader UK Global Challenges Research Fund (GCRF). CSAICLAWPS has three objectives: a) development of "added-value" - bias assessed, statistically down-scaled - climate projections for selected case study sites across South Asia; b) investigation of crop failure modes under both present (observed) and future (projected) conditions; and c) facilitation of developing local adaptive capacity and resilience through stakeholder engagement. At AGU we will be presenting both next steps and progress to date toward these three objectives: [A] We have carried out bias assessments of a substantial multi-model RCM ensemble (MME) from the CORDEX South Asia (CORDEXdomain for case studies in three countries - Pakistan, India and Sri Lanka - and (stochastically) produced synthetic time-series for these sites from local observations using a Python-based implementation of the principles underlying the Climate Research Unit Weather Generator (CRU-WG) in order to enable probabilistic simulation of current crop yields. [B] We have characterised present response of local crop yields to climate variability in key case study sites using AquaCrop simulations parameterised based on input (agronomic practices, soil conditions, etc) from smallholder farmers. [C] We have implemented community-based hydro-climatological monitoring in several case study "revenue villages" (panchayats) in the Nainital District of Uttarakhand. The purpose of this is not only to increase availability of meteorological data, but also has the aspiration of, over time, leading to enhanced quantitative awareness of present climate variability and potential future conditions (as projected by RCMs). Next steps in our work will include: 1) future crop yield

  9. Exposing Underrepresented Groups to Climate Change and Atmospheric Science Through Service Learning and Community-Based Participatory Research

    Science.gov (United States)

    Padgett, D.

    2016-12-01

    Tennessee State University (TSU) is among seven partner institutions in the NASA-funded project "Mission Earth: Fusing Global Learning and Observations to Benefit the Environment (GLOBE) with NASA Assets to Build Systemic Innovation in STEM Education." The primary objective at the TSU site is to expose high school students from racial and ethnic groups traditionally underrepresented in STEM to atmospheric science and physical systems associated with climate change. Currently, undergraduate students enrolled in TSU's urban and physical courses develop lessons for high school students focused upon the analysis of global warming phenomena and related extreme weather events. The GLOBE Atmosphere Protocols are emphasized in exercises focused upon the urban heat island (UHI) phenomenon and air quality measurements. Pre-service teachers at TSU, and in-service teachers at four local high schools are being certified in the Atmosphere Protocols. Precipitation, ambient air temperature, surface temperature and other data are collected at the schools through a collaborative learning effort among the high school students, TSU undergraduates, and high school teachers. Data collected and recorded manually in the field are compared to each school's automated Weatherbug station measurements. Students and teachers engage in analysis of NASA imagery as part of the GLOBE Surface Temperature Protocol. At off-campus locations, US Clean Air Act (CAA) criteria air pollutant and Toxic Release Inventory (TRI) air pollutant sampling is being conducted in community-based participatory research (CBPR) format. Students partner with non-profit environmental organizations. Data collected using low-cost air sampling devices is being compared with readings from government air monitors. The GLOBE Aerosols Protocol is used in comparative assessments with air sampling results. Project deliverables include four new GLOBE schools, the enrollment of which is nearly entirely comprised of students

  10. The Land Use and Cover Change in Miombo Woodlands under Community Based Forest Management and Its Implication to Climate Change Mitigation: A Case of Southern Highlands of Tanzania

    Directory of Open Access Journals (Sweden)

    Z. J. Lupala

    2015-01-01

    Full Text Available In Tanzania, miombo woodland is the most significant forest vegetation with both ecological and socioeconomic importance. The vegetation has been threatened from land use and cover change due to unsustainable utilization. Over the past two decades, community based forest management (CBFM has been practiced to address the problem. Given the current need to mitigate global climate change, little is known on the influence of CBFM to the land use and cover change in miombo woodlands and therefore compromising climate change mitigation strategies. This study explored the dynamic of land use and covers change and biomass due to CBFM and established the implication to climate change mitigation. The study revealed increasing miombo woodland cover density with decreasing unsustainable utilization. The observed improvement in cover density and biomass provides potential for climate change mitigation strategies. CBFM also developed solidarity, cohesion, and social control of miombo woodlands illegal extraction. This further enhances permanence, reduces leakage, and increases accountability requirement for carbon credits. Collectively with these promising results, good land use plan at village level and introduction of alternative income generating activities can be among the best options to further reduce land use change and biomass loss in miombo woodlands.

  11. Shifts in the microbial community structure explain the response of soil respiration to land-use change but not to climate warming

    DEFF Research Database (Denmark)

    Nazaries, Loïc; Tottey, William; Robinson, Lucinda

    2015-01-01

    Soil stores more carbon (C) than plants and atmosphere combined and it is vulnerable to increased microbial respiration under projected global changes including land-use change and future climate scenarios (mainly elevated temperature). Land-use change is known to have a direct impact on soil...... of this feedback response of Rs to global change. To identify the mechanisms of Rs response to land-use change and climate warming, we first investigated Rs from different land use types. Soil respiration was estimated seasonally from four different Scottish land uses: moorland, birch woodland, grassland and pine......, estimated by Multiplex Terminal-Restriction Fragment Length Polymorphism (MT-RFLP) and 454 pyrosequencing, was significantly different under each land use type. A strong correlation of Rs with soil properties (pH, inorganic N, C:N ratio and moisture) and with microbial community structure was identified...

  12. Tools and Techniques to Collaborate and Connect with At-Risk Climate Communities UsingSensors, Remote Sensing Data, and Media

    Science.gov (United States)

    Drapkin, J. K.; Ramamurthy, P.; Vant-Hull, B.; Yuen, K.; Glenn, A.; Jusino, C.; Corbin, C.; Schuerman, M.; Keefe, J.; Brooke, H.

    2016-12-01

    Those most at risk during heat waves and floods are often the socio-economically vulnerable. Yet very few studies exist of indoor temperatures during heat waves or of standing water events at the neighborhood level during extreme events. ISeeChange, a community weather and climate journal, is developing tools and testing techniques in a series of community pilots in Harlem and New Orleans to assess if a combination of citizen science, remote sensing, and journalism can bridge the gap. Our consortium of media (WNYC,Adapt NYC, ISeeChange), scientists (CUNY, CoCoRaHS, NASAJPL), and community partners (WE ACT for Environmental Justice, tenant, and neighborhood associations) are collaborating to engage with residents, report radio stories, as well as develop scientifically valuableinformation for decision-making. Community volunteers place temperature and humidity sensors inside residences (Harlem) or photograph standing water using specific methodologies (New Orleans). Sensordata, photographs, and text documenting the impacts of extreme weather on residents are posted on the ISeeChange platform via mobile app or community ambassadors and compared to other remote sensing data products (surface temperature, precipitation, subsidence) Preliminary results of the Harlem pilot show that indoor temperatures are far more stable than outdoor temperatures, so can be both cooler during the day but warmer at night; preliminary work on the New Orleans pilot is set to begin in fall 2016. A full analysis of the Harlem pilot will be presented along with preliminary results of the New Orleans pilot.

  13. The case study of climate change : the nature of risk and the risk of nature

    Energy Technology Data Exchange (ETDEWEB)

    Good, J. [Cornell Univ., Ithaca, NY (United States). Dept. of Communication

    2000-06-01

    The science of climate change is complex, large-scale and uncertain. The challenges of communicating the risks of climate change were described with particular emphasis on working with communities to explain climate change with its complex, scientific and social realities. The greenhouse effect is a feature of the earth in which a carbon dioxide blanket absorbs the sun's heat as it radiates off the earth. The paper stated that the greenhouse effect is arguably the best accepted theory in climatology, but the question is whether the huge increase in carbon dioxide that the industrial revolution has brought forth has increased the efficiency of this blanket and set the earth on a warming trend. The ultimate question is whether the earth is warming in response to human activity. It could be claimed that apart from the risk of nuclear war, the risk of climate change is the largest scale risk facing today's society. Climate change pits the burning of fossil fuels against the climate and as a modern day risk, climate change is far removed from the historic roots of environmental risks. The paper argued, that in a world based on burning fossil fuels and where those who are involved with the supply of fossil fuels hold tremendous influence, it is difficult to accept that the burning might have to stop. This paper explored how and what people currently learn about the environment and climate change through the media. A three-step communication strategy based in the United States was then proposed. The first step is aimed at journalists with focus on improved accuracy of climate change information. The second step focuses on urban centres and has as its guiding concepts self-efficacy, reasoned action and the importance of reaching people in diverse communities. The final step is aimed at political leaders, beginning with municipalities, and relies on campaigns for alternative energy.

  14. Online Discovery and Mapping of Great Lakes Climate Change Education and Scientific Research Activities: Building an Online Collaborative Learning Community of Scientists and Educators

    Science.gov (United States)

    Tuddenham, P.; Bishop, K.; Walters, H.; Carley, S.

    2011-12-01

    The Great Lakes Climate Change Science and Education Systemic Network (GLCCSESN) project is an NSF-funded CCEP program awarded to Eastern Michigan University in 2010. The College of Exploration is one of the project partners and has conducted a series of online surveys, workshop and focus group to identify a wide range of organizations, individuals, resources and needs related to climate change education and research activities in and about the Great Lakes Region and to provide information about climate change science to the education community. One of the first steps taken to build this community was to build a web site that features a dynamic online map of individuals and organizations concerned about climate change as well as interested in resources and activities specific to the Great Lakes. Individuals and organizations have been, and are still, invited to put themselves on the map at http://greatlakesclimate.org This map of the Great Lakes region provides both a visual representation of activities and resources as well as a database of climate change activities. This map will grow over time as more people and organizations put themselves on the map. The use of online technologies has helped broaden the participation and representation in the GLCCSESN from all states/provinces in the Great Lakes region, encouraging diverse audiences and stakeholders, including scientists, educators, and journalists, etc.to engage with the project. In the fall of 2011 a combined online professional development workshop and focus group is planned. Educators and scientists working on climate change studies and issues related to the Great Lakes will be sharing their work and expertise in an online workshop and focus group. Following the professional development activity a focus group will be conducted online using a model developed as part of a NSF funded COSEE project. The focus group purpose is to review current educational resources and to identify gaps and needs for further

  15. Biosphere-Atmosphere Transfer Scheme (BATS) version le as coupled to the NCAR community climate model. Technical note. [NCAR (National Center for Atmospheric Research)

    Energy Technology Data Exchange (ETDEWEB)

    Dickinson, R.E.; Henderson-Sellers, A.; Kennedy, P.J.

    1993-08-01

    A comprehensive model of land-surface processes has been under development suitable for use with various National Center for Atmospheric Research (NCAR) General Circulation Models (GCMs). Special emphasis has been given to describing properly the role of vegetation in modifying the surface moisture and energy budgets. The result of these efforts has been incorporated into a boundary package, referred to as the Biosphere-Atmosphere Transfer Scheme (BATS). The current frozen version, BATS1e is a piece of software about four thousand lines of code that runs as an offline version or coupled to the Community Climate Model (CCM).

  16. Supporting local farming communities and crop production resilience to climate change through giant reed (Arundo donax L.) cultivation: An Italian case study.

    Science.gov (United States)

    Bonfante, A; Impagliazzo, A; Fiorentino, N; Langella, G; Mori, M; Fagnano, M

    2017-12-01

    Bioenergy crops are well known for their ability to reduce greenhouse gas emissions and increase the soil carbon stock. Although such crops are often held to be in competition with food crops and thus raise the question of current and future food security, at the same time mitigation measures are required to tackle climate change and sustain local farming communities and crop production. However, in some cases the actions envisaged for specific pedo-climatic conditions are not always economically sustainable by farmers. In this frame, energy crops with high environmental adaptability and yields, such as giant reed (Arundo donax L.), may represent an opportunity to improve farm incomes, making marginal areas not suitable for food production once again productive. In so doing, three of the 17 Sustainable Development Goals (SDGs) of the United Nations would be met, namely SDG 2 on food security and sustainable agriculture, SDG 7 on reliable, sustainable and modern energy, and SDG 13 on action to combat climate change and its impacts. In this work, the response of giant reed in the marginal areas of an agricultural district of southern Italy (Destra Sele) and expected farm incomes under climate change (2021-2050) are evaluated. The normalized water productivity index of giant reed was determined (WP; 30.1gm -2 ) by means of a SWAP agro-hydrological model, calibrated and validated on two years of a long-term field experiment. The model was used to estimate giant reed response (biomass yield) in marginal areas under climate change, and economic evaluation was performed to determine expected farm incomes (woodchips and chopped forage). The results show that woodchip production represents the most profitable option for farmers, yielding a gross margin 50% lower than ordinary high-input maize cultivation across the study area. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Climate Literacy Through Learning-by-Doing: Engaging Communities in the Production of Accessible Research-Based Information

    Science.gov (United States)

    Bourqui, M.; Charriere, M. K. M.; Bolduc, C.

    2016-12-01

    This talk presents a case of a learning-by-doing approach used by the Climanosco organisation to produce research-based information written in a language accessible to a large public. In this model, engagement (the "doing") of members of the general public, alongside climate scientists, is fostered at various levels of this production of knowledge. In particular, this engagement plays a key role in our extended peer-review process as non-scientific referees are requested to review the accessibility of manuscripts for a large public. Members of the general public also participate to the scientific inquiry by inviting scientists to write on a particular topic or by co-authoring articles. Importantly, their participation, side-by-side with climate scientists, allows them to naturally raise their climate literacy (the "learning"). This model was tested in the context of a scientific challenge organised for the launch of Climanosco where climate scientists were invited to re-frame their research for the general public. This competition started in the fall 2015 and is due to end in September 2016. It led to 11 published articles and engaged the participation of 24 members of the general public. Six non-scientists participated to the jury alongside six climate scientists and evaluated the 11 articles. Their perceived increase in climate knowledge, as evaluated though a survey, will be presented in this talk. One important challenge now is to evaluate the potential of this model to support the teaching of climate sciences at schools. For that purpose, we are starting a dialog with various teachers in several countries. Progresses on this side will also be discussed in this talk.

  18. The intertidal community in West Greenland: Large-scale patterns and small-scale variation on ecosystem dynamics along a climate gradient

    DEFF Research Database (Denmark)

    Thyrring, Jakob; Blicher, Martin; Sejr, Mikael Kristian

    are largely unknown. The West Greenland coast is north - south orientated. This provides an ideal setting to study the impact of climate change on marine species population dynamics and distribution. We investigated the latitudinal changes in the rocky intertidal community along 18° latitudes (59-77°N......) in West Greenland. Using cleared quadrats we quantified patterns in abundance, biomass and species richness in the intertidal zone. We use this data to disentangle patterns in Arctic intertidal communities at different scales. We describe the effects of different environmental drivers and species...... interactions on distribution and dynamics of intertidal species. Our results indicate that changes in distribution and abundance of foundation species can have large effects on the ecosystem. We also show that the importance of small-scale variation may be of same magnitude as large- scale variation. Only...

  19. Diatom community response to climate variability over the past 37,000 years in the sub-tropics of the Southern Hemisphere

    Energy Technology Data Exchange (ETDEWEB)

    Hembrow, Sarah C., E-mail: sarah.hembrow@scu.edu.au [School of Environment, Science and Engineering, Southern Cross University, Lismore, NSW 2480 (Australia); Taffs, Kathryn H. [School of Environment, Science and Engineering, Southern Cross University, Lismore, NSW 2480 (Australia); Atahan, Pia [Institute for Environmental Research, Australian Nuclear Science and Technology Organisation, Kirrawee, NSW 2232 (Australia); Parr, Jeff [School of Environment, Science and Engineering, Southern Cross University, Lismore, NSW 2480 (Australia); Zawadzki, Atun; Heijnis, Henk [Institute for Environmental Research, Australian Nuclear Science and Technology Organisation, Kirrawee, NSW 2232 (Australia)

    2014-01-01

    Climate change is impacting global surface water resources, increasing the need for a deeper understanding of the interaction between climate and biological diversity. This is particularly the case in the Southern Hemisphere sub-tropics, where little information exists on the aquatic biota response to climate variations. Palaeolimnological techniques, in particular the use of diatoms, are well established and can significantly contribute to the understanding of climatic variability and the impacts that change in climate have on aquatic ecosystems. A sediment core from Lake McKenzie, Fraser Island (Australia), was used to investigate interactions between climate influences and aquatic ecosystems. This study utilises a combination of proxies including biological (diatom), geochemical and chronological techniques to investigate long-term aquatic changes within the perched-dune lake. A combination of {sup 210}Pb and AMS {sup 14}C dates showed that the retrieved sediment represented a history of ca. 37,000 cal. yBP. The sedimentation rate in Lake McKenzie is very low, ranging on average from 0.11 mm to 0.26 mm per year. A sediment hiatus was observed between ca. 18,300 and 14,000 cal. yBP suggesting a period of dry conditions at the site. The diatom record shows little variability over the period of record, with benthic, freshwater acidic tolerant species dominating. Relative abundance of planktonic species and geochemical results indicates a period of increased water depth and lake productivity in the early Holocene and a gradual decrease in effective precipitation throughout the Holocene. Results from this study not only support earlier work conducted on Fraser Island using pollen reconstructions but also demonstrate that diatom community diversity has been relatively consistent throughout the Holocene and late Pleistocene with only minor cyclical fluctuation evident. This record is consistent with the few other aquatic palaeoecological records from the Southern

  20. Diatom community response to climate variability over the past 37,000 years in the sub-tropics of the Southern Hemisphere

    International Nuclear Information System (INIS)

    Hembrow, Sarah C.; Taffs, Kathryn H.; Atahan, Pia; Parr, Jeff; Zawadzki, Atun; Heijnis, Henk

    2014-01-01

    Climate change is impacting global surface water resources, increasing the need for a deeper understanding of the interaction between climate and biological diversity. This is particularly the case in the Southern Hemisphere sub-tropics, where little information exists on the aquatic biota response to climate variations. Palaeolimnological techniques, in particular the use of diatoms, are well established and can significantly contribute to the understanding of climatic variability and the impacts that change in climate have on aquatic ecosystems. A sediment core from Lake McKenzie, Fraser Island (Australia), was used to investigate interactions between climate influences and aquatic ecosystems. This study utilises a combination of proxies including biological (diatom), geochemical and chronological techniques to investigate long-term aquatic changes within the perched-dune lake. A combination of 210 Pb and AMS 14 C dates showed that the retrieved sediment represented a history of ca. 37,000 cal. yBP. The sedimentation rate in Lake McKenzie is very low, ranging on average from 0.11 mm to 0.26 mm per year. A sediment hiatus was observed between ca. 18,300 and 14,000 cal. yBP suggesting a period of dry conditions at the site. The diatom record shows little variability over the period of record, with benthic, freshwater acidic tolerant species dominating. Relative abundance of planktonic species and geochemical results indicates a period of increased water depth and lake productivity in the early Holocene and a gradual decrease in effective precipitation throughout the Holocene. Results from this study not only support earlier work conducted on Fraser Island using pollen reconstructions but also demonstrate that diatom community diversity has been relatively consistent throughout the Holocene and late Pleistocene with only minor cyclical fluctuation evident. This record is consistent with the few other aquatic palaeoecological records from the Southern Hemisphere sub

  1. Assimilation of low-level wind in a high-resolution mesoscale model using the back and forth nudging algorithm

    Directory of Open Access Journals (Sweden)

    Jean-François Mahfouf

    2012-06-01

    Full Text Available The performance of a new data assimilation algorithm called back and forth nudging (BFN is evaluated using a high-resolution numerical mesoscale model and simulated wind observations in the boundary layer. This new algorithm, of interest for the assimilation of high-frequency observations provided by ground-based active remote-sensing instruments, is straightforward to implement in a realistic atmospheric model. The convergence towards a steady-state profile can be achieved after five iterations of the BFN algorithm, and the algorithm provides an improved solution with respect to direct nudging. It is shown that the contribution of the nudging term does not dominate over other model physical and dynamical tendencies. Moreover, by running backward integrations with an adiabatic version of the model, the nudging coefficients do not need to be increased in order to stabilise the numerical equations. The ability of BFN to produce model changes upstream from the observations, in a similar way to 4-D-Var assimilation systems, is demonstrated. The capacity of the model to adjust to rapid changes in wind direction with the BFN is a first encouraging step, for example, to improve the detection and prediction of low-level wind shear phenomena through high-resolution mesoscale modelling over airports.

  2. Strong congruence in tree and fern community turnover in response to soils and climate in central Panama

    DEFF Research Database (Denmark)

    Jones, Mirkka; Ferrier, Simon; Condit, Richard

    2013-01-01

    1. Plant species turnover in central Panamanian forests has been principally attributed to the effects of dispersal limitation and a strong Caribbean to Pacific gradient in rainfall seasonality. Despite marked geological heterogeneity, the role of soil variation has not been rigorously examined. 2....... We modelled the compositional turnover of trees and ferns in the Panama Canal watershed as a function of soil chemistry, climate and geographical separation, using generalized dissimilarity models (GDMs). 3. Predictability in both plant groups was strong, with 74% of turnover explained in trees...... and 49% in ferns. Major trends in the two plant groups were strikingly similar. The independent effects of soils, and of climate for trees, were sizeable, but those of geographical distance were minor. In both plant groups, distance and climatic effects on species turnover covaried strongly. 4. Including...

  3. Running climate model on a commercial cloud computing environment: A case study using Community Earth System Model (CESM) on Amazon AWS

    Science.gov (United States)

    Chen, Xiuhong; Huang, Xianglei; Jiao, Chaoyi; Flanner, Mark G.; Raeker, Todd; Palen, Brock

    2017-01-01

    The suites of numerical models used for simulating climate of our planet are usually run on dedicated high-performance computing (HPC) resources. This study investigates an alternative to the usual approach, i.e. carrying out climate model simulations on commercially available cloud computing environment. We test the performance and reliability of running the CESM (Community Earth System Model), a flagship climate model in the United States developed by the National Center for Atmospheric Research (NCAR), on Amazon Web Service (AWS) EC2, the cloud computing environment by Amazon.com, Inc. StarCluster is used to create virtual computing cluster on the AWS EC2 for the CESM simulations. The wall-clock time for one year of CESM simulation on the AWS EC2 virtual cluster is comparable to the time spent for the same simulation on a local dedicated high-performance computing cluster with InfiniBand connections. The CESM simulation can be efficiently scaled with the number of CPU cores on the AWS EC2 virtual cluster environment up to 64 cores. For the standard configuration of the CESM at a spatial resolution of 1.9° latitude by 2.5° longitude, increasing the number of cores from 16 to 64 reduces the wall-clock running time by more than 50% and the scaling is nearly linear. Beyond 64 cores, the communication latency starts to outweigh the benefit of distributed computing and the parallel speedup becomes nearly unchanged.

  4. Levels of Governance in Policy Innovation Cycles in Community Education: The Cases of Education for Sustainable Development and Climate Change Education

    Directory of Open Access Journals (Sweden)

    Nina Kolleck

    2017-10-01

    Full Text Available While there is little doubt that social networks are essential for processes of implementing social innovations in community education such as Climate Change Education (CCE or Education for Sustainable Development (ESD, scholars have neglected to analyze these processes in the multilevel governance system using Social Network Analysis. In this article, we contribute to closing this research gap by exploring the implementation of CCE and ESD in education at the regional and global levels. We compare the way CCE is negotiated and implemented within and through the global conferences of the UN Framework Convention on Climate Change (UNFCCC with the way the UN Decade of ESD is put into practice through networks in five different German municipalities. We argue that the role of social networks is particularly strong in policy areas like CCE and ESD, which are best characterized as multi-level and multi-actor governance. Based on data derived from standardized surveys and from Twitter we analyze the complex interactions of public and private actors at different levels of governance in the two selected policy areas. We find, amongst others, that the implementation of CCE and ESD in community education depends in part on actors that had not been assumed to be influential at the outset. Furthermore, our analyses suggest the different levels of governance are not well integrated throughout the phases of the policy innovation cycle.

  5. Response of ocean phytoplankton community structure to climate change over the 21st century: partitioning the effects of nutrients, temperature and light

    Directory of Open Access Journals (Sweden)

    I. Marinov

    2010-12-01

    Full Text Available The response of ocean phytoplankton community structure to climate change depends, among other factors, upon species competition for nutrients and light, as well as the increase in surface ocean temperature. We propose an analytical framework linking changes in nutrients, temperature and light with changes in phytoplankton growth rates, and we assess our theoretical considerations against model projections (1980–2100 from a global Earth System model. Our proposed "critical nutrient hypothesis" stipulates the existence of a critical nutrient threshold below (above which a nutrient change will affect small phytoplankton biomass more (less than diatom biomass, i.e. the phytoplankton with lower half-saturation coefficient K are influenced more strongly in low nutrient environments. This nutrient threshold broadly corresponds to 45° S and 45° N, poleward of which high vertical mixing and inefficient biology maintain higher surface nutrient concentrations and equatorward of which reduced vertical mixing and more efficient biology maintain lower surface nutrients. In the 45° S–45° N low nutrient region, decreases in limiting nutrients – associated with increased stratification under climate change – are predicted analytically to decrease more strongly the specific growth of small phytoplankton than the growth of diatoms. In high latitudes, the impact of nutrient decrease on phytoplankton biomass is more significant for diatoms than small phytoplankton, and contributes to diatom declines in the northern marginal sea ice and subpolar biomes. In the context of our model, climate driven increases in surface temperature and changes in light are predicted to have a stronger impact on small phytoplankton than on diatom biomass in all ocean domains. Our analytical predictions explain reasonably well the shifts in community structure under a modeled climate-warming scenario. Climate driven changes in nutrients, temperature and light have

  6. Open Data, Jupyter Notebooks and Geospatial Data Standards Combined - Opening up large volumes of marine and climate data to other communities

    Science.gov (United States)

    Clements, O.; Siemen, S.; Wagemann, J.

    2017-12-01

    The EU-funded Earthserver-2 project aims to offer on-demand access to large volumes of environmental data (Earth Observation, Marine, Climate data and Planetary data) via the interface standard Web Coverage Service defined by the Open Geospatial Consortium. Providing access to data via OGC web services (e.g. WCS and WMS) has the potential to open up services to a wider audience, especially to users outside the respective communities. Especially WCS 2.0 with its processing extension Web Coverage Processing Service (WCPS) is highly beneficial to make large volumes accessible to non-expert communities. Users do not have to deal with custom community data formats, such as GRIB for the meteorological community, but can directly access the data in a format they are more familiar with, such as NetCDF, JSON or CSV. Data requests can further directly be integrated into custom processing routines and users are not required to download Gigabytes of data anymore. WCS supports trim (reduction of data extent) and slice (reduction of data dimension) operations on multi-dimensional data, providing users a very flexible on-demand access to the data. WCPS allows the user to craft queries to run on the data using a text-based query language, similar to SQL. These queries can be very powerful, e.g. condensing a three-dimensional data cube into its two-dimensional mean. However, the more processing-intensive the more complex the query. As part of the EarthServer-2 project, we developed a python library that helps users to generate complex WCPS queries with Python, a programming language they are more familiar with. The interactive presentation aims to give practical examples how users can benefit from two specific WCS services from the Marine and Climate community. Use-cases from the two communities will show different approaches to take advantage of a Web Coverage (Processing) Service. The entire content is available with Jupyter Notebooks, as they prove to be a highly beneficial tool

  7. Climate Change Adaptation in Dutch Local Communities. Risk Perception, Institutional Capacity and the Role of Local Government.

    NARCIS (Netherlands)

    van den Berg, Maya Marieke

    2010-01-01

    This report explains the outcomes of the research project Analysing local climate vulnerability and local adaptation strategies which was carried out from 2005 up till 2009 at the Twente Centre for Studies in Technology and Sustainable Development (CSTM), University of Twente. This project is funded

  8. Measuring social climate in Norwegian residential youth care : A revision of the community oriented programs environment scale

    NARCIS (Netherlands)

    Leipoldt, Jonathan David; Rimehaug, Tormod; Harder, A.T.; Kayed, Nanna; Grietens, Hans

    2016-01-01

    Introduction and objectives: Social climate is an understudied factor in residential youth care (RYC) institutions. Already in the 1950’s, the World Health Organization stated that “atmosphere” is an important factor in psychiatric treatment, but a very difficult element to measure. Assessing the

  9. Evenness and species abundance in graptolite communities: a new proxy for climate change during the end ordovician mass extinction

    Czech Academy of Sciences Publication Activity Database

    Hawkins, A. D.; Mitchell, C. E.; Sheets, H. D.; Loxton, J.; Belscher, K.; Melchin, M. J.; Finney, S.; Štorch, Petr

    2011-01-01

    Roč. 43, č. 5 (2011), s. 83-83 ISSN 0016-7592. [2011 GSA Annual Meeting and Exposition. 09.10.2011-12.10.2011, Minneapolis] Institutional research plan: CEZ:AV0Z30130516 Keywords : graptolites * Ordovician * climate change Subject RIV: DB - Geology ; Mineralogy http://gsa.confex.com/gsa/2011AM/finalprogram/abstract_196574.htm

  10. Theoretical models of the impact of climate change on natural populations, communities and ecosystems. Final report, 1989--1992

    Energy Technology Data Exchange (ETDEWEB)

    Wiegert, R.

    1992-12-31

    Land use change is a relatively understudied aspect of global change. In many cases, the impact of land use on plant and animal species may be far greater than the impact of climate change per se. As an integral part of our long-term studies of the response of animal populations to global change, we have focused on land use change as a dominant driving force. Climate change, no doubt, will also play a role in determining the future abundance and distribution of many species, but, for many species, the signal from climate change per se may be difficult to detect if we do not first understand the impact of land use change. This formed the dominant theme of the research by the PI (Pulliam). Both land use change and year to year climate change can directly affect other populations and two examples of this formed the focus of the remaining research, models of invertebrates in Carolina Bays and a model of a commercial estuarine population of blue crabs.

  11. Ethnographic context and spatial coherence of climate indicators for farming communities – A multi-regional comparative assessment

    Directory of Open Access Journals (Sweden)

    Vincent Moron

    2015-01-01

    The ethnographic surveys, as well as yield–climate functions, emphasized the role played by various intra-seasonal characteristics of the rainy seasons beyond the seasonal rainfall amounts, in both actual yields and people’s representations and/or crop management strategies. For instance, the onset of the rainy season in East Africa and North Cameroon, the season duration in the driest district of the eastern slopes of Mount Kenya, or rains at the core (August and at the end of the rainy season in North Cameroon have been highlighted. The dynamics of farming systems (i.e. soybeanization in Central Argentina, increasing popularity of maize in East Africa, recent decline of cotton in North Cameroon were also emphasized as active drivers; these slow changes could increase climatic vulnerability (i.e. soybean is far more sensitive to rainfall variations than wheat, maize is less drought-resistant than sorghum or millet, at least for the least flexible actors (such as the non-capitalized farmers in Central Argentina. The cross between ethnographic surveys and climatic analyses enabled us to identify climate variables that are both useful to farmers and potentially predictable. These variables do not appear to be common across the surveyed fields. The best example is the rainy season onset date whose variations, depending on regions, crop species and farming practices may either have a major/minor role in crop performance and/or crop management, or may have a high/low potential predictability.

  12. Relevance of Campus Climate for Alcohol and Other Drug Use among LGBTQ Community College Students: A Statewide Qualitative Assessment

    Science.gov (United States)

    Manning, Patricia; Pring, Lauren; Glider, Peggy

    2012-01-01

    Literature suggests that individuals who identify as LGBTQ may engage in more alcohol and other drug (AOD) use/abuse than others. Little data is available about these populations on college campuses where AOD use may be seen as part of the general campus climate and culture. This article will describe a qualitative needs assessment conducted on 10…

  13. Modelling marine community responses to climate-driven species redistribution to guide monitoring and adaptive ecosystem-based management

    NARCIS (Netherlands)

    Marzloff, Martin Pierre; Melbourne-Thomas, Jessica; Hamon, Katell G.; Hoshino, Eriko; Jennings, Sarah; Putten, Van Ingrid E.; Pecl, Gretta T.

    2016-01-01

    As a consequence of global climate-driven changes, marine ecosystems are experiencing polewards redistributions of species – or range shifts – across taxa and throughout latitudes worldwide. Research on these range shifts largely focuses on understanding and predicting changes in the distribution of

  14. Community Perspectives on the On-Farm Diversity of Six Major Cereals and Climate Change in Bhutan

    Directory of Open Access Journals (Sweden)

    Tirtha Bdr. Katwal

    2015-01-01

    Full Text Available Subsistence Bhutanese farmers spread across different agro-ecological zones maintain large species and varietal diversity of different crops in their farm. However, no studies have been undertaken yet to assess why farmers conserve and maintain large agro-biodiversity, the extent of agro-ecological richness, species richness, estimated loss of traditional varieties and threats to the loss of on-farm agro-biodiversity. Information on the number of varieties cultivated by the farmers for six important staple crops were collected from nine districts and twenty sub-districts spread across six different agro-ecological zones of the country to understand farmers reasons for maintaining on-farm crop diversity, estimate agro-ecological richness, species richness and the overall loss of traditional varieties, to know the famers’ level of awareness on climate change and the different threats to crop diversity. The results from this study indicated that an overwhelming 93% of the respondents manage and use agro-biodiversity for household food security and livelihood. The average agro-ecological richness ranged from 1.17 to 2.26 while the average species richness ranged from 0.50 to 2.66. The average agro-ecological richness indicates a large agro-ecological heterogeneity in terms of the different species of staple crops cultivated. The average species richness on the other hand shows that agro-ecological heterogeneity determines the type and extent of the cultivation of the six different staple cereals under consideration. The overall loss of traditional varieties in a time period of 20 years stands at 28.57%. On climate change, 94% of the farmers recognize that local climate is changing while 86% responded that they are aware of the potential impacts of climate change on their livelihoods. Climate change and associated factors was considered the most imminent threat to the management and loss of on-farm agro-biodiversity. The results from this study

  15. Climate changes, environment and infection: facts, scenarios and growing awareness from the public health community within Europe.

    Science.gov (United States)

    Bezirtzoglou, Christos; Dekas, Konstantinos; Charvalos, Ekatherina

    2011-12-01

    Climate change is a current global concern and, despite continuing controversy about the extent and importance of causes and of its effects, it seems likely that it will affect the incidence and prevalence of both residual and imported infections in Europe. Climate affects mainly the range of infectious diseases, whereas weather affects the timing and intensity of outbreaks. Climate change scenarios include a change distribution of infectious diseases with warming and changes in outbreaks associated with weather extremes. The largest health impact from climate change for Europe doesn't come from vector borne infectious diseases. This does not mean that these types of health impacts will not arise in Europe. The ranges of several vector-borne diseases or their vectors are already changing in altitude due to warming. In addition, more intense weather events create conditions conductive to outbreaks of infectious diseases: Heavy rains leave insect breeding sites, drive rodents from burrows, and contaminate clean water systems. The incidence of mosquito-borne parasitic and viral diseases, are among those diseases most sensitive to climate. Climate change affect disease transmission by shifting the vector's geographic range and by shortening the pathogen incubation period. climate-related increases in temperature in sea surface and level would lead to higher incidence of waterborne infectious and toxin-related illnesses, such as cholera and seafood intoxication. Climate changes all around the world with impact in Europe are demonstrated by the fact that recent cases of cholera have been imported to Europe from Kenya, where spreading epidemic has been linked to the El Niño phenomenon, originated from the Pacific Ocean. Human migration and damage to health infrastructures from aberrant climate changes could indirectly contribute to disease transmission. Human susceptibility to infections might be further compounded by alterations in the human immune system caused by

  16. Long-term data from a small mammal community reveal loss of diversity and potential effects of local climate change.

    Science.gov (United States)

    Santoro, Simone; Sanchez-Suarez, Cristina; Rouco, Carlos; Palomo, L Javier; Fernández, M Carmen; Kufner, Maura B; Moreno, Sacramento

    2017-10-01

    Climate change affects distribution and persistence of species. However, forecasting species' responses to these changes requires long-term data series that are often lacking in ecological studies. We used 15 years of small mammal trapping data collected between 1978 and 2015 in 3 areas at Doñana National Park (southwest Spain) to (i) describe changes in species composition and (ii) test the association between local climate conditions and size of small mammal populations. Overall, 5 species were captured: wood mouse Apodemus sylvaticus , algerian mouse Mus spretus , greater white-toothed shrew Crocidura russula , garden dormouse Eliomys quercinus , and black rat Rattus rattus . The temporal pattern in the proportion of captures of each species suggests that the small mammal diversity declined with time. Although the larger species (e.g., E. quercinus ), better adapted to colder climate, have disappeared from our trapping records, M. spretus , a small species inhabiting southwest Europe and the Mediterranean coast of Africa, currently is almost the only trapped species. We used 2-level hierarchical models to separate changes in abundance from changes in probability of capture using records of A. sylvaticus in all 3 areas and of M. spretus in 1. We found that heavy rainfall and low temperatures were positively related to abundance of A. sylvaticus , and that the number of extremely hot days was negatively related to abundance of M. spretus . Despite other mechanisms are likely to be involved, our findings support the importance of climate for the distribution and persistence of these species and raise conservation concerns about potential cascading effects in the Doñana ecosystem.

  17. Evaluating population and community structure against climate and land-use determinants to improve the conservation of the rare Narcissus pseudonarcissus subsp. nobilis

    Directory of Open Access Journals (Sweden)

    Vaz, Ana Sofia

    2016-06-01

    Full Text Available Climate and land-use changes are among the most relevant determinants of future persistence of rare plant species in rural landscapes. We analysed the structure of populations of a rare plant, Narcissus pseudonarcissus subsp. nobilis, and of their respective plant communities against several environmental variables (climate-, topography-, land-use-, and soil-related in order to identify the pressures that may directly or indirectly affect the persistence of the rare species. Overall, local land-use was the primary determinant of traits related to population renewal and community composition. Specifically, traditional farmlands supported higher community diversity and population individuals. Though moderate land-use intensification seemed to benefit plant community diversity, land abandonment could allow the persistence of N. pseudonarcissus subsp. nobilis populations. Also, a relevant influence of regional environment was perceived on species richness as well as on traits related to population condition, highlighting climate change as a potential determinant of the future persistence of the species. This study highlights the importance of considering key population traits as well as of community structure to accomplish conservation goals by accounting with the factors driving changes in the habitats in which rare species occur, from climate change to land-use and landscape management.Las alteraciones del clima y del uso del suelo están entre los factores más relevantes para la persistencia de las especies raras de plantas en paisajes rurales. Este trabajo evalúa la estructura de las poblaciones de una especie rara, Narcissus pseudonarcissus subsp. nobilis, así como de las comunidades de plantas en las cuales se incluyen, frente a variables ambientales (relacionadas con el clima, la topografía, el uso del suelo, y las propiedades del suelo, para identificar las presiones que puedan directa o indirectamente afectar a la especie. En general

  18. Socio-hydrological model to inform community adaptation to seasonal drought and climate variability in rural agricultural watersheds in Costa Rica

    Science.gov (United States)

    Hund, S. V.; Johnson, M. S.; Morillas, L.; McDaniels, T.; Romero Valpreda, J.; Allen, D. M.

    2017-12-01

    Climate variability and seasonal droughts associated with ENSO (El Niño Southern Oscillation) and increasing water demand due to growing population are leading to serious water conflicts in the wet-dry tropics of Central America. Integrated methods are needed to understand the linkages of these complex socio-hydrological systems and design reliable adaption strategies in a period of global change. With increasing pressure on surface and groundwater resources during long annual dry seasons, rural agricultural communities suffer water shortages, especially in those years preceded by wet seasons with lower rainfall (and reduced groundwater recharge). To support community resilience to rainfall variability and droughts, we conducted a combination of fieldwork (development of hydrologic monitoring system and local stakeholder cooperation), and hydrological modeling for two watersheds with a shared aquifer (Potrero and Caimital) in Northwestern Costa Rica. The agricultural land use of the region and the many rural villages that draw directly on their local water resource and live in close interaction with their watersheds necessitated a socio-hydrological systems approach. In this talk we present results from our hydrologic modeling, for which we used the WEAP (Water Evaluation and Planning) model and locally recorded data. With the integrated water supply and demand features of the WEAP model, we were able to synthesize both the hydrological system and the societal system (specifically, household and agricultural water use), and show feedbacks such as that water use tends to increase during the dry season, likely exacerbating water shortages issues. Further, applying a range of ENSO related rainfall scenarios to the model demonstrated that community adaptation will become in particular important in response to lower water availability in future El Niño years. In collaboration with local stakeholders, we identified a set of feasible adaptation strategies to seasonal

  19. Structural and functional responses of plant communities to climate change-mediated alterations in the hydrology of riparian areas in temperate Europe.

    Science.gov (United States)

    Baattrup-Pedersen, Annette; Garssen, Annemarie; Göthe, Emma; Hoffmann, Carl Christian; Oddershede, Andrea; Riis, Tenna; van Bodegom, Peter M; Larsen, Søren E; Soons, Merel

    2018-04-01

    The hydrology of riparian areas changes rapidly these years because of climate change-mediated alterations in precipitation patterns. In this study, we used a large-scale in situ experimental approach to explore effects of drought and flooding on plant taxonomic diversity and functional trait composition in riparian areas in temperate Europe. We found significant effects of flooding and drought in all study areas, the effects being most pronounced under flooded conditions. In near-stream areas, taxonomic diversity initially declined in response to both drought and flooding (although not significantly so in all years) and remained stable under drought conditions, whereas the decline continued under flooded conditions. For most traits, we found clear indications that the functional diversity also declined under flooded conditions, particularly in near-stream areas, indicating that fewer strategies succeeded under flooded conditions. Consistent changes in community mean trait values were also identified, but fewer than expected. This can have several, not mutually exclusive, explanations. First, different adaptive strategies may coexist in a community. Second, intraspecific variability was not considered for any of the traits. For example, many species can elongate shoots and petioles that enable them to survive shallow, prolonged flooding but such abilities will not be captured when applying mean trait values. Third, we only followed the communities for 3 years. Flooding excludes species intolerant of the altered hydrology, whereas the establishment of new species relies on time-dependent processes, for instance the dispersal and establishment of species within the areas. We expect that altered precipitation patterns will have profound consequences for riparian vegetation in temperate Europe. Riparian areas will experience loss of taxonomic and functional diversity and, over time, possibly also alterations in community trait responses that may have cascading effects

  20. Climate Change Projected Effects on Coastal Foundation Communities of the Greater Everglades Using a 2060 Scenario: Need for a New Management Paradigm

    Science.gov (United States)

    Koch, M. S.; Coronado, C.; Miller, M. W.; Rudnick, D. T.; Stabenau, E.; Halley, R. B.; Sklar, F. H.

    2015-04-01

    Rising sea levels and temperature will be dominant drivers of coastal Everglades' foundation communities (i.e., mangrove forests, seagrass/macroalgae, and coral reefs) by 2060 based on a climate change scenario of +1.5 °C temperature, +1.5 foot (46 cm) in sea level, ±10 % in precipitation and 490 ppm CO2. Current mangrove forest soil elevation change in South Florida ranges from 0.9 to 2.5 mm year-1 and would have to increase twofold to fourfold in order to accommodate a 2060 sea level rise rate. No evidence is available to indicate that coastal mangroves from South Florida and the wider Caribbean can keep pace with a rapid rate of sea level rise. Thus, particles and nutrients from destabilized coastlines could be mobilized and impact benthic habitats of southern Florida. Uncertainties in regional geomorphology and coastal current changes under higher sea levels make this prediction tentative without further research. The 2060 higher temperature scenario would compromise Florida's coral reefs that are already degraded. We suggest that a new paradigm is needed for resource management under climate change that manages coastlines for resilience to marine transgression and promotes active ecosystem management. In the case of the Everglades, greater freshwater flows could maximize mangrove peat accumulation, stabilize coastlines, and limit saltwater intrusion, while specific coral species may require propagation. Further, we suggest that regional climate drivers and oceanographic processes be incorporated into Everglades and South Florida management plans, as they are likely to impact coastal ecosystems, interior freshwater wetlands and urban coastlines over the next few decades.

  1. Projections, plans, policies and politics in Prince George: reflections on five years of climate change adaptation in a northern Canadian community

    Science.gov (United States)

    Picketts, I. M.; Dery, S. J.; Curry, J.

    2013-12-01

    The City of Prince George, in central British Columbia, Canada, has partnered with academics and collaborators for over five years to address climate change adaptation at the local level. The first phase of research involved conducting a detailed overview of past climate trends and future projections for the region using the outputs of GCMs and downscaled RCMs. This information was communicated to senior local staff and community members, and feedback was applied to create a detailed adaptation strategy for the City, which identified priority impacts and outlined potential strategies to address them at the local level. The top priority impacts for Prince George are forest changes, increased flooding, and impacts to transportation infrastructure. During a second implementation phase of the project, eight local initiatives were completed focusing on: incorporating adaptation into a local sustainability plan and land use plan; exploring impacts related to forests, flooding and transportation infrastructure; and assessing trends and projections in freeze-thaw cycles and heavy rainfall events. This presentation will outline the adaptation initiatives undertaken in the City of Prince George during the second phase of research, and evaluate their effectiveness through reflections from interviews with local planners, engineers, managers, community champions and politicians. The initiatives deemed to be most successful - and most likely to be implemented - focus on topics that: are of high public concern; have clear cost implications; incorporate adaptation into policy; and/or incorporate adaptation into an ongoing project. Outcomes highlight challenges local researchers, practitioners and leaders face as they strive to implement proactive adaptation measures in policy and practice without strong support from policy and professional practices, and with a paucity of successful case study examples to build upon. Outcomes also reveal challenges as municipalities strive to do

  2. The roles of governments and other actors in adaptation to climate change and variability: The examples of agriculture and coastal communities

    Directory of Open Access Journals (Sweden)

    Antonia D. Bousbaine

    2016-06-01

    Full Text Available There is little question now about the reality of climate change and the importance of adaptation of human activities in reducing the negative impacts of climate change and variability (CCV as well as the reduction of Greenhouse Gas Emissions in mitigating this unprecedented phenomenon. This article focuses on adaptation and the adaptive capacity of actors (decision-takers of all sorts to adopt appropriate strategies and increase their adaptive capacity to cope with CCV by focusing on two types of human activity—agriculture and agricultural territories and coastal communities, both of which have very important roles to play in human society. Given the recent high profile given to the outcomes of COP21 and particularly the potential transfer of significant funding from developed to developing countries to support their battle against CCV, the emphasis has shifted again to the role of governments in this battle. We argue that governments have important roles to play both in developed and developing countries, but supporting funding of initiatives and for developing pertinent action plans is probably the least of our worries! Funding can be important but alone does not solve the challenges, it is what is accomplished with funding that is all important, and this requires the development of effective and pertinent adaptive capacities on the part of the different actors involved in what becomes a co-construction process. We argue that the roles of governments and other actors (collective as well as individual citizens and the activities that they are involved in need to be better understood in order for this to happen. This is illustrated by research of different types on agriculture and coastal communities.

  3. Can resistant coral-Symbiodinium associations enable coral communities to survive climate change? A study of a site exposed to long-term hot water input

    Directory of Open Access Journals (Sweden)

    Shashank Keshavmurthy

    2014-04-01

    Full Text Available Climate change has led to a decline in the health of corals and coral reefs around the world. Studies have shown that, while some corals can cope with natural and anthropogenic stressors either through resistance mechanisms of coral hosts or through sustainable relationships with Symbiodinium clades or types, many coral species cannot. Here, we show that the corals present in a reef in southern Taiwan, and exposed to long-term elevated seawater temperatures due to the presence of a nuclear power plant outlet (NPP OL, are unique in terms of species and associated Symbiodinium types. At shallow depths (<3 m, eleven coral genera elsewhere in Kenting predominantly found with Symbiodinium types C1 and C3 (stress sensitive were instead hosting Symbiodinium type D1a (stress tolerant or a mixture of Symbiodinium type C1/C3/C21a/C15 and Symbiodinium type D1a. Of the 16 coral genera that dominate the local reefs, two that are apparently unable to associate with Symbiodinium type D1a are not present at NPP OL at depths of <3 m. Two other genera present at NPP OL and other locations host a specific type of Symbiodinium type C15. These data imply that coral assemblages may have the capacity to maintain their presence at the generic level against long-term disturbances such as elevated seawater temperatures by acclimatization through successful association with a stress-tolerant Symbiodinium over time. However, at the community level it comes at the cost of some coral genera being lost, suggesting that species unable to associate with a stress-tolerant Symbiodinium are likely to become extinct locally and unfavorable shifts in coral communities are likely to occur under the impact of climate change.

  4. Perception of Educational Materials on Bio climatic Buildings: An Exploratory Study in the School Community; Percepcion de las Unidades Didacticas sobre Edificacion Bioclimatica en el Contexto Educativo

    Energy Technology Data Exchange (ETDEWEB)

    Ferri, S.; Sala, R.; Cornejo, J. M.

    2013-09-01

    In the framework of the ARFRISOL project on bio climatic architecture, a set of educational materials were developed to disseminate the technology in the school community. This report presents the results of an exploratory study on the effects of those educational materials in the classroom, analyzing areas such as satisfaction, level of interest, and knowledge in relation to bio climatic building. The sample consists of two groups: teachers (N = 27) and students (N 313). Two questionnaires were developed ad hoc in order to properly understand the experience with the educational materials by the students and the teachers. The results suggest that the educational materials are a good tool to spread zero emissions buildings advances in educational contexts. Both groups emphasize the need and usefulness of the topic, and the applicability of these innovations to everyday life. However, issues such as the difficulty in understanding some concepts, time dedicated or opportunity to conduct visits to project buildings appears as aspects to be adjusted and/or incorporated into the future versions. This work aims at improving communication strategies and scientific outreach of the project by raising awareness and promoting a better understanding of this topic. (Author)

  5. Using scenario planning to evaluate the impacts of climate change on wildlife populations and communities in the Florida Everglades

    Science.gov (United States)

    Catano, Christopher P.; Romañach, Stephanie S.; Beerens, James M.; Pearlstine, Leonard G.; Brandt, Laura A.; Hart, Kristen M.; Mazzotti, Frank J.; Trexler, Joel C.

    2015-01-01

    It is uncertain how climate change will impact hydrologic drivers of wildlife population dynamics in freshwater wetlands of the Florida Everglades, or how to accommodate this uncertainty in restoration decisions. Using projections of climate scenarios for the year 2060, we evaluated how several possible futures could affect wildlife populations (wading birds, fish, alligators, native apple snails, amphibians, threatened and invasive species) across the Everglades landscape and inform planning already underway. We used data collected from prior research and monitoring to parameterize our wildlife population models. Hydrologic data were simulated using a spatially explicit, regional-scale model. Our scenario evaluations show that expected changes in temperature, precipitation, and sea level could significantly alter important ecological functions. All of our wildlife indicators were negatively affected by scenarios with less rainfall and more evapotranspiration. Under such scenarios, habitat suitability was substantially reduced for iconic animals such as wading birds and alligators. Conversely, the increased rainfall scenario benefited aquatic prey productivity and apex predators. Cascading impacts on non-native species is speculative, but increasing temperatures could increase the time between cold events that currently limit expansion and abundance of non-native fishes, amphibians, and reptiles with natural ranges in the tropics. This scenario planning framework underscored the benefits of proceeding with Everglades restoration plans that capture and clean more freshwater with the potential to mitigate rainfall loss and postpone impacts of sea level rise.

  6. Using Scenario Planning to Evaluate the Impacts of Climate Change on Wildlife Populations and Communities in the Florida Everglades

    Science.gov (United States)

    Catano, Christopher P.; Romañach, Stephanie S.; Beerens, James M.; Pearlstine, Leonard G.; Brandt, Laura A.; Hart, Kristen M.; Mazzotti, Frank J.; Trexler, Joel C.

    2015-04-01

    It is uncertain how climate change will impact hydrologic drivers of wildlife population dynamics in freshwater wetlands of the Florida Everglades, or how to accommodate this uncertainty in restoration decisions. Using projections of climate scenarios for the year 2060, we evaluated how several possible futures could affect wildlife populations (wading birds, fish, alligators, native apple snails, amphibians, threatened and invasive species) across the Everglades landscape and inform planning already underway. We used data collected from prior research and monitoring to parameterize our wildlife population models. Hydrologic data were simulated using a spatially explicit, regional-scale model. Our scenario evaluations show that expected changes in temperature, precipitation, and sea level could significantly alter important ecological functions. All of our wildlife indicators were negatively affected by scenarios with less rainfall and more evapotranspiration. Under such scenarios, habitat suitability was substantially reduced for iconic animals such as wading birds and alligators. Conversely, the increased rainfall scenario benefited aquatic prey productivity and apex predators. Cascading impacts on non-native species is speculative, but increasing temperatures could increase the time between cold events that currently limit expansion and abundance of non-native fishes, amphibians, and reptiles with natural ranges in the tropics. This scenario planning framework underscored the benefits of proceeding with Everglades restoration plans that capture and clean more freshwater with the potential to mitigate rainfall loss and postpone impacts of sea level rise.

  7. Effects of climate change on agriculture, forests and rural communities : submission to the Standing Senate Committee on Agriculture and Forestry

    International Nuclear Information System (INIS)

    Cline, E.

    2003-02-01

    The effects of climate change are already being felt in Saskatchewan. Trend data for the twentieth century showed an increase in mean yearly temperature of 1 to 1.5 degrees C on the prairies. Major droughts are disastrous to Saskatchewan's agriculture and forestry sectors, to rural water availability and to the economy in general. Saskatchewan's strategy to manage the effects of climate change from increasing levels of greenhouse gases is based on adaptation research to maximize biological and geological sinks and to explore cost-effective emission reduction initiatives. The province is a world leader in research and development in carbon dioxide (CO 2 ) capture from fossil-fuel fired electricity generation and sequestration of CO 2 in underground geological formations. The research has the potential to greatly reduce world greenhouse gas emissions by turning coal and other fossil fuels into zero emission sources of energy. The efforts that Saskatchewan has taken to reduce agricultural emissions was also described along with beneficial management practices, such as soil conservation and biological sinks. Saskatchewan is concerned that it may be unfairly affected by Canada's Kyoto commitment because of its emission intensive economy. The province would like recognition of the economic importance of its forestry sector and its potential to reduce carbon emissions and as a carbon sink

  8. Champagne-Ardenne Climate-Air-Energy Plan + Synthesis + Wind energy regional plan + Report and conclusion of the consultation and dialogue organised from January 20 to March 20, 2012. Territorial Climate-Energy Plan Coeur d'Ardenne urban community, Sedan region community of communes

    International Nuclear Information System (INIS)

    Guillot, Michel; Bachy, Jean-Paul

    2012-05-01

    After a recall of stakes and challenges related to climate, air and energy, an introduction presents the Champagne-Ardenne Regional Climate Air Energy Plan (PCAER), recalls national and international commitments (struggle against greenhouse effect, improvement of air quality, development of renewable energies, energy demand management), describes the PCAER elaboration process, indicates its legal status and value, and its relationship with other schemes and plans. The next part proposes a situational analysis with a presentation of the territory (economy, geography, demography, organisation), an assessment of its final energy consumption, and an assessment of potential energy savings, energy efficiency improvements and energy demand management. It proposes an assessment of renewable and recovery energy production and of its potential development, an inventory of greenhouse gas emissions and of atmospheric pollutant emissions, an assessment of air quality, and a discussion of territory vulnerability to climate change. The next part is a more prospective one as it defines orientations for land and urban development, mobility, good transport, agriculture and viticulture, forest and wood valorisation, buildings, renewable and recovery energies, water, natural, technological and health risks, the tertiary sector, industry, communities, and governance for the PCAER implementation. A second document is a synthesis of this PCAER and proposes an overview of the situation and challenges, of objectives to be reached, and the definition of a roadmap, with a focus on the regional scheme for wind energy (SRE). This last one discusses the wind energy development (legal and regulatory framework, role in regional development, issues related to land development, dialogue, impacts), proposes an overview of the different types of constraints and servitudes (environmental, technical, heritage, landscape, and so on). The next document reports the consultation and dialogue process and

  9. Climate change mitigation through adaptation

    NARCIS (Netherlands)

    Hof, Anouschka R.; Dymond, Caren C.; Mladenoff, David J.

    2017-01-01

    Climate change is projected to have negative implications for forest ecosystems and their dependent communities and industries. Adaptation studies of forestry practices have focused on maintaining the provisioning of ecosystem services; however, those practices may have implications for climate

  10. Age, sex, and climate factors show different effects on survival of three different bat species in a woodland bat community

    Directory of Open Access Journals (Sweden)

    Antica Culina

    2017-10-01

    5. Our study provides, for the first time, a robust estimate of annual survival in bats. We advocate careful attention to possible sources of biases when studying survival rates in the wild, considering species-specific life-history and population-specific features. Considering these factors that influence wider community responses to environmental conditions is important for the effective conservation management of an area.

  11. Photovoltaic energy supply in communities of the Xingo program: Case study: Gualte community-Brazilian Northeast Methodology for natural climatization of buildings

    Energy Technology Data Exchange (ETDEWEB)

    Barbosa, Elielza M. de S; Tiba, Chigueru [Universidad Federal de Pernambuco-UFPE (Brazil); Silva, Junior, Ramiro; Ferreira, Fabiana M; Carvalho, Maria A. P [Xingo Program (Brazil)

    2000-07-01

    The Xingo Program is a multidisciplinary initiative, developed jointly by the CNPq-Brazilian National Council for Scientific and Technological Development and CHESF- Hydroelectric Power Company of the Sao Francisco River. Its main objective is to promote the development of a semi-arid region through actions undertaken in different areas; more specifically, to seek energetic solutions on suitable techniques in the region and at the same time identify local demands and business opportunities that may lead to the introduction of enterprises in the region, principally focusing social and citizenship development. Eight rural communities located in the perimeter of Xingo program were selected for implementing the first pilot projects. This paper describes a technical and social diagnosis, and a conceptual project that were made for each community, considering the resources and the local available potentialities, prioritizing energy supply to schools, health centers and the supply of drinking water. In particular, the case study describes the process of energy supply to Guatle community, an old farm without any education/health infrastructure and water is supplied by means of trucks, in which there was a significant increase in the number of families after being occupied by activists of the Landless movement. In this community a school unit was built and electrified (school and park illuminated, TV, refrigerator), a 12 m{sup 3}/day water supply system was installed in and old and abandoned well, the water of which showed an excellent quality and quantity, 6 m{sup 3}/h, a very rare occurrence in that region. Later, literacy courses were given to young people and adults, the natural aptitude of the inhabitants. With the arrival of water, the first conflicts for the management of these resources emerged. The experience in Gualte, in spite of the successes and failures, could be considered as a lesson that should be learned. The feeling of citizenship of the needy community

  12. Investigating the climate and carbon cycle impacts of CMIP6 Land Use and Land Cover Change in the Community Earth System Model (CESM2)

    Science.gov (United States)

    Lawrence, P.; Lawrence, D. M.; O'Neill, B. C.; Hurtt, G. C.

    2017-12-01

    For the next round of CMIP6 climate simulations there are new historical and SSP - RCP land use and land cover change (LULCC) data sets that have been compiled through the Land Use Model Intercomparison Project (LUMIP). The new time series data include new functionality following lessons learned through CMIP5 project and include new developments in the Community Land Model (CLM5) that will be used in all the CESM2 simulations of CMIP6. These changes include representing explicit crop modeling and better forest representation through the extended to 12 land units of the Global Land Model (GLM). To include this new information in CESM2 and CLM5 simulations new transient land surface data sets have been generated for the historical period 1850 - 2015 and for preliminary SSP - RCP paired future scenarios. The new data sets use updated MODIS Land Cover, Vegetation Continuous Fields, Leaf Area Index and Albedo to describe Primary and Secondary, Forested and Non Forested land units, as well as Rangelands and Pasture. Current day crop distributions are taken from the MIRCA2000 crop data set as done with the CLM 4.5 crop model and used to guide historical and future crop distributions. Preliminary "land only" simulations with CLM5 have been performed for the historical period and for the SSP1-RCP2.6 and SSP3-RCP7 land use and land cover change time series data. Equivalent no land use and land cover change simulations have been run for these periods under the same meteorological forcing data. The "land only" simulations use GSWP3 historical atmospheric forcing data from 1850 to 2010 and then time increasing RCP 8.5 atmospheric CO2 and climate anomalies on top of the current day GSWP3 atmospheric forcing data from 2011 to 2100. The offline simulations provide a basis to evaluate the surface climate, carbon cycle and crop production impacts of changing land use and land cover for each of these periods. To further evaluate the impacts of the new CLM5 model and the CMIP6 land

  13. Vertical structure and pH as factors for chitinolytic and pectinolytic microbial community of soils and terrestrial ecosystems of different climatic zones

    Science.gov (United States)

    Lukacheva, Evgeniya; Natalia, Manucharova

    2016-04-01

    technique developed that is used to detect and localize the presence or absence of specific DNA sequences on chromosomes. pH as one of the factors which can have influence on degradation of biopolymers was studied for chitiolytic communities of different zones. And results were compared with direct studyings by method of "sowing" on a Petri dishes. Thus, we compared old classical methods with modern molecular studies. The difference between climatic zones was studied and the mathematical model was created. The mathematic model could be use in different aims, such as prognosis of microbial community composition and their classification.

  14. Temporal variability of neustonic ichthyoplankton assemblages of the eastern Pacific warm pool: Can community structure be linked to climate variability?

    Science.gov (United States)

    Ignacio Vilchis, L.; Ballance, Lisa T.; Watson, William

    2009-01-01

    Considerable evidence exists, showing an accelerated warming trend on earth during the past 40-50 years, attributed mainly to anthropogenic factors. Much of this excess heat is stored in the world's oceans, likely resulting in increased environmental variability felt by marine ecosystems. The long-term effects of this phenomenon on oceanic tropical ecosystems are largely unknown, and our understanding of its effects could be facilitated by long-term studies of how species compositions change with time. Ichthyoplankton, in particular, can integrate physical, environmental and ecological factors making them excellent model taxa to address this question. While on eight (1987-1990, 1992 and 1998-2000) NOAA Fisheries cruises to the eastern Pacific warm pool, we characterized the thermal and phytoplankton pigment structure of the water column, as well as the neustonic ichthyoplankton community using CTD casts and Manta (surface) net tows. Over the 13-year period, 852 CTD and Manta tow stations were completed. We divided the study area into three regions based on regional oceanography, thermocline depth and productivity, as well as a longitudinal gradient in species composition among stations. We then analyzed temporal trends of ichthyoplankton species composition within each region by pooling stations by region and year and making pairwise comparisons of community similarity between all combinations of the eight cruises within each region. We also identified environment-specific species assemblages and station groupings using hierarchical clustering and non-metric multi-dimensional scaling (MDS). Our analyses revealed a longitudinal gradient in community structure and temporal stability of ichthyoplankton species composition. Over the 13 years ichthyoplankton assemblages in the two westernmost regions varied less than in the eastern region. MDS and cluster analyses identified five ichthyoplankton assemblages that corresponded to oceanographic habitats and a gradient in

  15. Lecture Based Versus peer Assisted Learning: Quasi-Experimental Study to Compare Knowledge Gain of Forth Year Medical Students in Community Health and Nutrition Course

    Directory of Open Access Journals (Sweden)

    Seema Daud

    2016-12-01

    Conclusion: The present study concludes that in terms of academic achievements, PAL was equally effective to lectures. Therefore, PAL can be incorporated as a supplement to lectures in medical school curricula.

  16. Climate adaptation

    Science.gov (United States)

    Kinzig, Ann P.

    2015-03-01

    This paper is intended as a brief introduction to climate adaptation in a conference devoted otherwise to the physics of sustainable energy. Whereas mitigation involves measures to reduce the probability of a potential event, such as climate change, adaptation refers to actions that lessen the impact of climate change. Mitigation and adaptation differ in other ways as well. Adaptation does not necessarily have to be implemented immediately to be effective; it only needs to be in place before the threat arrives. Also, adaptation does not necessarily require global, coordinated action; many effective adaptation actions can be local. Some urban communities, because of land-use change and the urban heat-island effect, currently face changes similar to some expected under climate change, such as changes in water availability, heat-related morbidity, or changes in disease patterns. Concern over those impacts might motivate the implementation of measures that would also help in climate adaptation, despite skepticism among some policy makers about anthropogenic global warming. Studies of ancient civilizations in the southwestern US lends some insight into factors that may or may not be important to successful adaptation.

  17. Assessing the impact of rumen microbial communities on methane emissions and production traits in Holstein cows in a tropical climate.

    Science.gov (United States)

    Cunha, Camila S; Veloso, Cristina M; Marcondes, Marcos I; Mantovani, Hilario C; Tomich, Thierry R; Pereira, Luiz Gustavo R; Ferreira, Matheus F L; Dill-McFarland, Kimberly A; Suen, Garret

    2017-12-01

    The evaluation of how the gut microbiota affects both methane emissions and animal production is necessary in order to achieve methane mitigation without production losses. Toward this goal, the aim of this study was to correlate the rumen microbial communities (bacteria, archaea, and fungi) of high (HP), medium (MP), and low milk producing (LP), as well as dry (DC), Holstein dairy cows in an actual tropical production system with methane emissions and animal production traits. Overall, DC cows emitted more methane, followed by MP, HP and LP cows, although HP and LP cow emissions were similar. Using next-generation sequencing, it was found that bacteria affiliated with Christensenellaceae, Mogibacteriaceae, S24-7, Butyrivibrio, Schwartzia, and Treponema were negatively correlated with methane emissions and showed positive correlations with digestible dry matter intake (dDMI) and digestible organic matter intake (dOMI). Similar findings were observed for archaea in the genus Methanosphaera. The bacterial groups Coriobacteriaceae, RFP12, and Clostridium were negatively correlated with methane, but did not correlate with dDMI and dOMI. For anaerobic fungal communities, no significant correlations with methane or animal production traits were found. Based on these findings, it is suggested that manipulation of the abundances of these microbial taxa may be useful for modulating methane emissions without negatively affecting animal production. Copyright © 2017 Elsevier GmbH. All rights reserved.

  18. An easy-to-implement and efficient data assimilation method for the identification of the initial condition: the Back and Forth Nudging (BFN) algorithm

    International Nuclear Information System (INIS)

    Auroux, Didier; Bansart, Patrick; Blum, Jacques

    2008-01-01

    This paper deals with a new data assimilation algorithm called the Back and Forth Nudging. The standard nudging technique consists in adding to the model equations a relaxation term, which is supposed to force the model to the observations. The BFN algorithm consists of repeating forward and backward resolutions of the model with relaxation (or nudging) terms, that have opposite signs in the direct and inverse resolutions, so as to make the backward evolution numerically stable. We then applied the Back and Forth Nudging algorithm to a simple non-linear model: the ID viscous Burgers' equations. The tests were carried out through several cases relative to the precision and density of the observations. These simulations were then compared with both the variational assimilation (VAR) and quasi-inverse (QIL) algorithms. The comparisons deal with the programming, the convergence, and time computing for each of these three algorithms.

  19. An easy-to-implement and efficient data assimilation method for the identification of the initial condition: the Back and Forth Nudging (BFN) algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Auroux, Didier [Institut de Mathematiques, Universite Paul Sabatier Toulouse 3, 31062 Toulouse cedex 9 (France); Bansart, Patrick; Blum, Jacques [Laboratoire J. A. Dieudonne, Universite de Nice Sophia-Antipolis, Pare Valrose, 06108 Nice cedex 2 (France)], E-mail: didier.auroux@math.univ-toulouse.fr

    2008-11-01

    This paper deals with a new data assimilation algorithm called the Back and Forth Nudging. The standard nudging technique consists in adding to the model equations a relaxation term, which is supposed to force the model to the observations. The BFN algorithm consists of repeating forward and backward resolutions of the model with relaxation (or nudging) terms, that have opposite signs in the direct and inverse resolutions, so as to make the backward evolution numerically stable. We then applied the Back and Forth Nudging algorithm to a simple non-linear model: the ID viscous Burgers' equations. The tests were carried out through several cases relative to the precision and density of the observations. These simulations were then compared with both the variational assimilation (VAR) and quasi-inverse (QIL) algorithms. The comparisons deal with the programming, the convergence, and time computing for each of these three algorithms.

  20. From "Duck Factory" to "Fish Factory": Climate induced changes in vertebrate communities of prairie pothole wetlands and small lakes

    Science.gov (United States)

    McLean, Kyle I.; Mushet, David M.; Stockwell, Craig A.

    2016-01-01

    The Prairie Pothole Region’s myriad wetlands and small lakes contribute to its stature as the “duck factory” of North America. The fishless nature of the region’s aquatic habitats, a result of frequent drying, freezing, and high salinity, influences its importance to waterfowl. Recent precipitation increases have resulted in higher water levels and wetland/lake freshening. In 2012–13, we sampled chemical characteristics and vertebrates (fish and salamanders) of 162 Prairie Pothole wetlands and small lakes. We used non-metric multidimensional scaling, principal component analysis, and bootstrapping techniques to reveal relationships. We found fish present in a majority of sites (84 %). Fish responses to water chemistry varied by species. Fathead minnows (Pimephales promelas) and brook sticklebacks (Culaea inconstans) occurred across the broadest range of conditions. Yellow perch (Perca flavescens) occurred in a smaller, chemically defined, subset. Iowa darters (Etheostoma exile) were restricted to the narrowest range of conditions. Tiger salamanders (Ambystoma mavortium) rarely occurred in lakes with fish. We also compared our chemical data to similar data collected in 1966–1976 to explore factors contributing to the expansion of fish into previously fishless sites. Our work contributes to a better understanding of relationships between aquatic biota and climate-induced changes in this ecologically important area.

  1. The great climate debate

    International Nuclear Information System (INIS)

    Sudhakara Reddy, B.; Assenza, Gaudenz B.

    2009-01-01

    For over two decades, scientific and political communities have debated whether and how to act on climate change. The present paper revisits these debates and synthesizes the longstanding arguments. Firstly, it provides an overview of the development of international climate policy and discusses clashing positions, represented by sceptics and supporters of action on climate change. Secondly, it discusses the market-based measures as a means to increase the win-win opportunities and to attract profit-minded investors to invest in climate change mitigation. Finally, the paper examines whether climate protection policies can yield benefits both for the environment and the economy. A new breed of analysts are identified who are convinced of the climate change problem, while remaining sceptical of the proposed solutions. The paper suggests the integration of climate policies with those of development priorities that are vitally important for developing countries and stresses the need for using sustainable development as a framework for climate change policies.

  2. Climate policy, emissions trading and hydrogen : Results of a Mannesmann Pilotentwicklung study and options for the hydrogen community

    International Nuclear Information System (INIS)

    Geres, R.

    2002-01-01

    The use of emissions trading for the introduction of hydrogen technologies into the market was studied under the Mannesmann Pilotentwicklung. It was argued that the integration of environmental effects becomes part of the business planning on the revenue side, provided a scenario with environmental benefits like the reduction of greenhouse gas emissions in the atmosphere. New possibilities and opportunities are available for hydrogen technologies. It enables the definition of more detailed projects within the hydrogen community, considering factors such as economic, strategic, technological and political aims. The projects involve both mobile and stationary applications, and cover regional activities as well as international cooperation. Public institutions or the private sector can undertake them. As a result of the ratification of the Kyoto Protocol, an emissions trading scheme is scheduled to begin in 2005 inside the European Union. 2 refs., 2 tabs., 2 figs

  3. Monitoring natural phytoplankton communities

    DEFF Research Database (Denmark)

    Haraguchi, L.; Jakobsen, H. H.; Lundholm, Nina

    2017-01-01

    The phytoplankton community can vary within hours (physiology) to years (climatic and anthropogenic responses), and monitoring at different timescales is relevant for understanding community functioning and assessing changes. However, standard techniques used in monitoring programmes are time...

  4. Climate Ready Estuaries

    Science.gov (United States)

    Information on climate change impacts to different estuary regions, tools and resources to monitor changes, and information to help managers develop adaptation plans for risk management of estuaries and coastal communities.

  5. Toward a minimal representation of aerosols in climate models: description and evaluation in the Community Atmosphere Model CAM5

    Directory of Open Access Journals (Sweden)

    X. Liu

    2012-05-01

    Full Text Available A modal aerosol module (MAM has been developed for the Community Atmosphere Model version 5 (CAM5, the atmospheric component of the Community Earth System Model version 1 (CESM1. MAM is capable of simulating the aerosol size distribution and both internal and external mixing between aerosol components, treating numerous complicated aerosol processes and aerosol physical, chemical and optical properties in a physically-based manner. Two MAM versions were developed: a more complete version with seven lognormal modes (MAM7, and a version with three lognormal modes (MAM3 for the purpose of long-term (decades to centuries simulations. In this paper a description and evaluation of the aerosol module and its two representations are provided. Sensitivity of the aerosol lifecycle to simplifications in the representation of aerosol is discussed.

    Simulated sulfate and secondary organic aerosol (SOA mass concentrations are remarkably similar between MAM3 and MAM7. Differences in primary organic matter (POM and black carbon (BC concentrations between MAM3 and MAM7 are also small (mostly within 10%. The mineral dust global burden differs by 10% and sea salt burden by 30–40% between MAM3 and MAM7, mainly due to the different size ranges for dust and sea salt modes and different standard deviations of the log-normal size distribution for sea salt modes between MAM3 and MAM7. The model is able to qualitatively capture the observed geographical and temporal variations of aerosol mass and number concentrations, size distributions, and aerosol optical properties. However, there are noticeable biases; e.g., simulated BC concentrations are significantly lower than measurements in the Arctic. There is a low bias in modeled aerosol optical depth on the global scale, especially in the developing countries. These biases in aerosol simulations clearly indicate the need for improvements of aerosol processes (e.g., emission fluxes of anthropogenic aerosols and

  6. Impact of a Stochastic Parameterization Scheme on El Nino-Southern Oscillation in the Community Climate System Model

    Science.gov (United States)

    Christensen, H. M.; Berner, J.; Sardeshmukh, P. D.

    2017-12-01

    Stochastic parameterizations have been used for more than a decade in atmospheric models. They provide a way to represent model uncertainty through representing the variability of unresolved sub-grid processes, and have been shown to have a beneficial effect on the spread and mean state for medium- and extended-range forecasts. There is increasing evidence that stochastic parameterization of unresolved processes can improve the bias in mean and variability, e.g. by introducing a noise-induced drift (nonlinear rectification), and by changing the residence time and structure of flow regimes. We present results showing the impact of including the Stochastically Perturbed Parameterization Tendencies scheme (SPPT) in coupled runs of the National Center for Atmospheric Research (NCAR) Community Atmosphere Model, version 4 (CAM4) with historical forcing. SPPT results in a significant improvement in the representation of the El Nino-Southern Oscillation in CAM4, improving the power spectrum, as well as both the inter- and intra-annual variability of tropical pacific sea surface temperatures. We use a Linear Inverse Modelling framework to gain insight into the mechanisms by which SPPT has improved ENSO-variability.

  7. Immersion freezing by natural dust based on a soccer ball model with the Community Atmospheric Model version 5: climate effects

    Science.gov (United States)

    Wang, Yong; Liu, Xiaohong

    2014-12-01

    We introduce a simplified version of the soccer ball model (SBM) developed by Niedermeier et al (2014 Geophys. Res. Lett. 41 736-741) into the Community Atmospheric Model version 5 (CAM5). It is the first time that SBM is used in an atmospheric model to parameterize the heterogeneous ice nucleation. The SBM, which was simplified for its suitable application in atmospheric models, uses the classical nucleation theory to describe the immersion/condensation freezing by dust in the mixed-phase cloud regime. Uncertain parameters (mean contact angle, standard deviation of contact angle probability distribution, and number of surface sites) in the SBM are constrained by fitting them to recent natural dust (Saharan dust) datasets. With the SBM in CAM5, we investigate the sensitivity of modeled cloud properties to the SBM parameters, and find significant seasonal and regional differences in the sensitivity among the three SBM parameters. Changes of mean contact angle and the number of surface sites lead to changes of cloud properties in Arctic in spring, which could be attributed to the transport of dust ice nuclei to this region. In winter, significant changes of cloud properties induced by these two parameters mainly occur in northern hemispheric mid-latitudes (e.g., East Asia). In comparison, no obvious changes of cloud properties caused by changes of standard deviation can be found in all the seasons. These results are valuable for understanding the heterogeneous ice nucleation behavior, and useful for guiding the future model developments.

  8. Immersion freezing by natural dust based on a soccer ball model with the Community Atmospheric Model version 5: climate effects

    International Nuclear Information System (INIS)

    Wang, Yong; Liu, Xiaohong

    2014-01-01

    We introduce a simplified version of the soccer ball model (SBM) developed by Niedermeier et al (2014 Geophys. Res. Lett. 41 736–741) into the Community Atmospheric Model version 5 (CAM5). It is the first time that SBM is used in an atmospheric model to parameterize the heterogeneous ice nucleation. The SBM, which was simplified for its suitable application in atmospheric models, uses the classical nucleation theory to describe the immersion/condensation freezing by dust in the mixed-phase cloud regime. Uncertain parameters (mean contact angle, standard deviation of contact angle probability distribution, and number of surface sites) in the SBM are constrained by fitting them to recent natural dust (Saharan dust) datasets. With the SBM in CAM5, we investigate the sensitivity of modeled cloud properties to the SBM parameters, and find significant seasonal and regional differences in the sensitivity among the three SBM parameters. Changes of mean contact angle and the number of surface sites lead to changes of cloud properties in Arctic in spring, which could be attributed to the transport of dust ice nuclei to this region. In winter, significant changes of cloud properties induced by these two parameters mainly occur in northern hemispheric mid-latitudes (e.g., East Asia). In comparison, no obvious changes of cloud properties caused by changes of standard deviation can be found in all the seasons. These results are valuable for understanding the heterogeneous ice nucleation behavior, and useful for guiding the future model developments. (letter)

  9. Loco or no loco? Holocene climatic fluctuations, human demography and community base management of coastal resources in northern Chile

    Science.gov (United States)

    Santoro, Calogero M.; Gayo, Eugenia M.; Carter, Chris; Standen, Vivien G.; Castro, Victoria; Valenzuela, Daniela; De Pol-Holz, Ricardo; Marquet, Pablo A.; Latorre, Claudio

    2017-10-01

    The abundance of the southern Pacific mollusk loco (Concholepas concholepas), among other conspicuous marine supplies, are often cited as critical resources behind the long-term cultural and demographic fluctuations of prehistoric hunter-gatherers at the coastal Atacama Desert. These societies inhabited one of the world’s most productive marine environments flanked by one the world’s driest deserts. Both of these environments have witnessed significant ecological variation since people first colonized them at the end of the Pleistocene (c. 13,000 cal yr BP). Here, we examine the relationship between the relative abundance of shellfish (a staple resource) along a 9,500-year sequence of archaeological shell midden accumulations at Caleta (a small inlet or cove) Vitor, with past demographic trends (established via summed probability distributions of radiocarbon ages) and technological innovations together with paleoceanographic data on past primary productivity. We find that shellfish extraction varied considerably from one cultural period to the next in terms of the number of species and their abundance, with diversity increasing during periods of regionally decreased productivity. Such shifts in consumption patterns are considered community based management decisions, and for the most part they were synchronous with large and unusual regional demographic fluctuations experienced by prehistoric coastal societies in northern Chile. When taken together with their technological innovations, our data illustrates how these human groups tailored their socio-cultural patterns to what were often abrupt and prolonged environmental changes throughout the Holocene.

  10. Loco or no Loco? Holocene Climatic Fluctuations, Human Demography, and Community Based Management of Coastal Resources in Northern Chile

    Directory of Open Access Journals (Sweden)

    Calogero M. Santoro

    2017-10-01

    Full Text Available The abundance of the southern Pacific mollusk loco (Concholepas concholepas, among other conspicuous marine supplies, are often cited as critical resources behind the long-term cultural and demographic fluctuations of prehistoric hunter-gatherers in the coastal Atacama Desert. These societies inhabited one of the world's most productive marine environments flanked by one the world's driest deserts. Both of these environments have witnessed significant ecological variation since people first colonized them at the end of the Pleistocene (c. 13,000 cal yr BP. Here, we examine the relationship between the relative abundance of shellfish (a staple resource along a 9,500-year sequence of archeological shell midden accumulations at Caleta (a small inlet or cove Vitor, with past demographic trends (established via summed probability distributions of radiocarbon ages and technological innovations together with paleoceanographic data on past primary productivity. We find that shellfish extraction varied considerably from one cultural period to the next in terms of the number of species and their abundance, with diversity increasing during periods of regionally decreased productivity. Such shifts in consumption patterns are considered community based management decisions, and for the most part they were synchronous with large and unusual regional demographic fluctuations experienced by prehistoric coastal societies in northern Chile. When taken together with their technological innovations, our data illustrates how these human groups tailored their socio-cultural patterns to what were often abrupt and prolonged environmental changes throughout the Holocene.

  11. Toward a Minimal Representation of Aerosols in Climate Models: Description and Evaluation in the Community Atmosphere Model CAM5

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiaohong; Easter, Richard C.; Ghan, Steven J.; Zaveri, Rahul A.; Rasch, Philip J.; Shi, Xiangjun; Lamarque, J.-F.; Gettelman, A.; Morrison, H.; Vitt, Francis; Conley, Andrew; Park, S.; Neale, Richard; Hannay, Cecile; Ekman, A. M.; Hess, Peter; Mahowald, N.; Collins, William D.; Iacono, Michael J.; Bretherton, Christopher S.; Flanner, M. G.; Mitchell, David

    2012-05-21

    A modal aerosol module (MAM) has been developed for the Community Atmosphere Model version 5 (CAM5), the atmospheric component of the Community Earth System Model version 1 (CESM1). MAM is capable of simulating the aerosol size distribution and both internal and external mixing between aerosol components, treating numerous complicated aerosol processes and aerosol physical, chemical and optical properties in a physically based manner. Two MAM versions were developed: a more complete version with seven-lognormal modes (MAM7), and a three-lognormal mode version (MAM3) for the purpose of long-term (decades to centuries) simulations. Major approximations in MAM3 include assuming immediate mixing of primary organic matter (POM) and black carbon (BC) with other aerosol components, merging of the MAM7 fine dust and fine sea salt modes into the accumulation mode, merging of the MAM7 coarse dust and coarse sea salt modes into the single coarse mode, and neglecting the explicit treatment of ammonia and ammonium cycles. Simulated sulfate and secondary organic aerosol (SOA) mass concentrations are remarkably similar between MAM3 and MAM7 as most ({approx}90%) of these aerosol species are in the accumulation mode. Differences of POM and BC concentrations between MAM3 and MAM7 are also small (mostly within 10%) because of the assumed hygroscopic nature of POM, so that freshly emitted POM and BC are wet-removed before mixing internally with soluble aerosol species. Sensitivity tests with the POM assumed to be hydrophobic and with slower aging process increase the POM and BC concentrations, especially at high latitudes (by several times). The mineral dust global burden differs by 10% and sea salt burden by 30-40% between MAM3 and MAM7 mainly due to the different size ranges for dust and sea salt modes and different standard deviations of log-normal size distribution for sea salt modes between MAM3 and MAM7. The model is able to qualitatively capture the observed geographical and

  12. Immersion in a Hudson Valley Tidal Marsh and Climate Research Community - Lamont-Doherty's Secondary School Field Research Program

    Science.gov (United States)

    Peteet, D. M.; Newton, R.; Vincent, S.; Sambrotto, R.; Bostick, B. C.; Schlosser, P.; Corbett, J. E.

    2015-12-01

    A primary advantage of place-based research is the multidisciplinary and interdisciplinary research that can be applied to a single locale, with a depth of continued study through time. Through the last decade, Lamont-Doherty's Secondary School Field Research Program (SSFRP) has promoted scientific inquiry, mostly among groups under-represented in STEM fields, in Piermont Marsh, a federally protected marsh in the Hudson estuary. At the same time, Lamont Doherty Earth Observatory (LDEO) scientists have become more involved, through mentoring by researchers, postdocs and graduate students, often paired with high school teachers. The sustained engagement of high school students in a natural environment, experiencing the Hudson River and its tidal cycles, protection of coastline, water quality improvement, native and invasive plant communities, is fundamental to their understanding of the importance of wetlands with their many ecosystem services. In addition, the Program has come to see "place" as inclusive of the Observatory itself. The students' work at Lamont expands their understanding of educational opportunities and career possibilities. Immersing students in a research atmosphere brings a level of serious inquiry and study to their lives and provides them with concrete contributions that they make to team efforts. Students select existing projects ranging from water quality to Phragmites removal, read papers weekly, take field measurements, produce lab results, and present their research at the end of six weeks. Ongoing results build from year to year in studies of fish populations, nutrients, and carbon sequestration, and the students have presented at professional scientific meetings. Through the Program students gain a sense of ownership over both their natural and the academic environments. Challenges include sustained funding of the program; segmenting the research for reproducible, robust results; fitting the projects to PIs' research goals, time

  13. COREDAR: COmmunicating Risk of sea level rise and Engaging stakeholDers in framing community based Adaptation stRategies

    Science.gov (United States)

    Amsad Ibrahim Khan, S. K.; Chen, R. S.; de Sherbinin, A. M.; Andimuthu, R.; Kandasamy, P.

    2015-12-01

    Accelerated sea-level rise (SLR) is a major long term outcome of climate change leading to increased inundation of low-lying areas. Particularly, global cities that are located on or near the coasts are often situated in low lying areas and these locations put global cities at greater risk to SLR. Localized flooding will profoundly impact vulnerable communities located in high-risk urban areas. Building community resilience and adapting to SLR is increasingly a high priority for cities. On the other hand, Article 6 of the United Nations Framework Convention on Climate Change addresses the importance of climate change communication and engaging stakeholders in decision making process. Importantly, Community Based Adaptation (CBA) experiences emphasize that it is important to understand a community's unique perceptions of their adaptive capacities to identify useful solutions and that scientific and technical information on anticipated coastal climate impacts needs to be translated into a suitable language and format that allows people to be able to participate in adaptation planning. To address this challenge, this study has put forth three research questions from the lens of urban community engagement in SLR adaptation, (1) What, if any, community engagement in addressing SLR occurring in urban areas; (2) What information do communities need and how does it need to be communicated, in order to be better prepared and have a greater sense of agency? and (3) How can government agencies from city to federal levels facilitate community engagement and action?. To answer these questions this study has evolved a framework "COREDAR" (COmmunicating Risk of sea level rise and Engaging stakeholDers in framing community based Adaptation StRategies) to communicate and transfer complex climate data and information such as projected SLR under different scenarios of IPCC AR5, predicted impact of SLR, prioritizing vulnerability, etc. to concerned stakeholders and local communities

  14. ROLE ASSESSMENT OF GIS ANALYSIS AND ITS RELIABILITY WHILE RANKING URBAN SUSTAINABILITY USING SCENARIOS SPECIFIC TO REGIONAL CLIMATE, COMMUNITY AND CULTURE

    Directory of Open Access Journals (Sweden)

    H. Al Salmi

    2012-07-01

    Full Text Available Urban Sustainability expresses the level of conservation of a city while living a town or consuming its urban resources, but the measurement of urban sustainability depends on what are considered important indicators of conservation besides the permitted levels of consumption in accordance with adopted criteria. This criterion should have common factors that are shared for all the members tested or cities to be evaluated as in this particular case for Abu Dhabi, but also have specific factors that are related to the geographic place, community and culture, that is the measures of urban sustainability specific to a middle east climate, community and culture where GIS Vector and Raster analysis have a role or add a value in urban sustainability measurements or grading are considered herein. Scenarios were tested using various GIS data types to replicate urban history (ten years period, current status and expected future of Abu Dhabi City setting factors to climate, community needs and culture. The useful Vector or Raster GIS data sets that are related to every scenario where selected and analysed in the sense of how and how much it can benefit the urban sustainability ranking in quantity and quality tests, this besides assessing the suitable data nature, type and format, the important topology rules to be considered, the useful attributes to be added, the relationships which should be maintained between data types of a geo- database, and specify its usage in a specific scenario test, then setting weights to each and every data type representing some elements of a phenomenon related to urban suitability factor. The results of assessing the role of GIS analysis provided data collection specifications such as the measures of accuracy reliable to a certain type of GIS functional analysis used in an urban sustainability ranking scenario tests. This paper reflects the prior results of the research that is conducted to test the multidiscipline evaluation

  15. Role Assessment of GIS Analysis and its Reliability while Ranking Urban Sustainability Using Scenarios Specific to Regional Climate, Community and Culture

    Science.gov (United States)

    Salmi, H. Al; Abdulmuttalib, H. M.

    2012-07-01

    Urban Sustainability expresses the level of conservation of a city while living a town or consuming its urban resources, but the measurement of urban sustainability depends on what are considered important indicators of conservation besides the permitted levels of consumption in accordance with adopted criteria. This criterion should have common factors that are shared for all the members tested or cities to be evaluated as in this particular case for Abu Dhabi, but also have specific factors that are related to the geographic place, community and culture, that is the measures of urban sustainability specific to a middle east climate, community and culture where GIS Vector and Raster analysis have a role or add a value in urban sustainability measurements or grading are considered herein. Scenarios were tested using various GIS data types to replicate urban history (ten years period), current status and expected future of Abu Dhabi City setting factors to climate, community needs and culture. The useful Vector or Raster GIS data sets that are related to every scenario where selected and analysed in the sense of how and how much it can benefit the urban sustainability ranking in quantity and quality tests, this besides assessing the suitable data nature, type and format, the important topology rules to be considered, the useful attributes to be added, the relationships which should be maintained between data types of a geo- database, and specify its usage in a specific scenario test, then setting weights to each and every data type representing some elements of a phenomenon related to urban suitability factor. The results of assessing the role of GIS analysis provided data collection specifications such as the measures of accuracy reliable to a certain type of GIS functional analysis used in an urban sustainability ranking scenario tests. This paper reflects the prior results of the research that is conducted to test the multidiscipline evaluation of urban

  16. Phosphorus decreases in Lake Geneva but climate warming hampers the recovery of pristine oligochaete communities whereas chironomids are less affected

    Directory of Open Access Journals (Sweden)

    Claude Lang

    2016-03-01

    temperature, the recovery of the pristine oligochaete community was perhaps impeded in 2009 because the transfer of organic matter to the sediment was increased by the impact of fish (mostly Coregonus feeding selectively on zooplankton. Finally, many micro pollutants (pesticides, drugs, and other substances which are present in the lake could have negatively affected sensitive oligochaete species.   

  17. Climate Literacy Ambassadors

    Science.gov (United States)

    Ackerman, S. A.; Mooney, M. E.

    2011-12-01

    The Climate Literacy Ambassadors program is a collaborative effort to advance climate literacy led by the Cooperative Institute of Meteorological Satellite Studies (CIMSS) at the University of Wisconsin-Madison. With support from NASA, CIMSS is coordinating a three-tiered program to train G6-12 teachers to be Ambassadors of Climate Literacy in their schools and communities. The complete training involves participation at a teacher workshop combined with web-based professional development content around Global and Regional Climate Change. The on-line course utilizes e-learning technology to clarify graphs and concepts from the 2007 Intergovernmental Panel on Climate Change Summary for Policy Makers with content intricately linked to the Climate Literacy: The Essential Principles of Climate Science. Educators who take the course for credit can develop lesson plans or opt for a project of their choosing. This session will showcase select lesson plans and projects, ranging from a district-wide action plan that engaged dozens of teachers to Ambassadors volunteering at the Aldo Leopold Climate Change Nature Center to a teacher who tested a GLOBE Student Climate Research Campaign (SCRC) learning project with plans to participate in the SCRC program. Along with sharing successes from the CIMSS Climate Literacy Ambassadors project, we will share lessons learned related to the challenges of sustaining on-line virtual educator communities.

  18. Interpret jazyka Forth jako nástroj pro návrh interních doménově specifickcýh jazyků

    OpenAIRE

    Kováč, Petr

    2011-01-01

    The topic of the thesis is design of the interpreter Forth as domain specific language develo-pment tool . Thesis describes version of Interpreter Forth in enviroment of application JVSEFORTH. Also describes syntax rules, instruction set, plug-in for export and import of dictionary. Define new part of language -- dictionary of synonyms.

  19. Advancing Climate Change Education and Youth Empowerment: Preparing Our Communities with the Skills, Knowledge, and Passion to Push for and Develop Innovative Solutions

    Science.gov (United States)

    Niepold, F., III; Johnston, E.; Rooney-varga, J. N.; Qusba, L.; Staveloz, W.; Poppleton, K.; Cloyd, E. T.; Kretser, J.; Bozuwa, J.; Edkins, M. T.

    2016-12-01

    Today's youth are the first generation to come of age amid rapid climate change, and they have the most at stake in how society responds to it. Climate change will bring economic and environmental challenges as well as opportunities, and citizens who understand the issues at stake will be better prepared to respond. Climate education is a necessary foundation for them to understand and help tackle the complex issue of climate change. Many will become leaders with the skills, knowledge, and passion to push for and develop innovative solutions. As such, this topic requires interdisciplinary and transdisciplinary approaches from a professionally diverse group of experts to effectively build the solid foundation for a low carbon and sustainable economy. Educators from all disciplines need to be enlisted to contribute their talents in building students knowledge and skills to limit human-induced climate change while being prepared for the projected impacts that will continue, and it will accelerate significantly if global emissions of heat-trapping gases continue to increase. This presentation will discuss the new youth and educator engagement partnerships that developed to achieve ways of addressing the problems and opportunities resulting from climate change. We will describe how the partnerships are helping lift up and raise the profile of effective programs that enable transdisciplinary solutions to societal issues. The #Youth4Climate and #Teach4Climate social media campaigns were organized by a flotilla of federal and non-federal partners to inspire young people around the world to take actions on climate change and inspire teachers to prepare students to be part of the solutions to climate change. The largest one, the #Youth4Climate campaign for COP21 youth engagement had over 33 million impressions and opened a discussion for all to join with youth for climate actions at COP21. Each of these three social media campaigns had a simple ask, give young people a voice

  20. State highways as main streets : a study of community design and visioning.

    Science.gov (United States)

    2009-10-01

    The objectives for this project were to explore community transportation design policy to improve collaboration when state highways serve as local main streets, determine successful approaches to meet the federal requirements for visioning set forth ...

  1. Indonesia: bursting forth with supply

    Energy Technology Data Exchange (ETDEWEB)

    1991-06-28

    Indonesia increased its coal production fourfold between 1987 and 1990 and could well triple its output to over 30 mt/yr in 1993. Figures are given for production by the state owned companies, contractors of PT Tambang Batubara Bukit Asam and private companies from 1990 to 1995. Domestic demand for coal is, however, lagging behind production capability. Three or four 400MW units have been commissioned for a coal-fired power station at Paiton in East Java and there should be some growth in Indonesia's cement industry but there is likely to be a large increase in the exportable surplus of coal. When the new Kalimantan terminals are completed Indonesia will be in a position to compete with Australia and South Africa as a coal exporter. The high moisture content of coals from several Indonesian fields may put restrictions on its usage in existing power stations. 1 fig., 3 tabs.

  2. Back-and-Forth Methodology for Objective Voice Quality Assessment: From/to Expert Knowledge to/from Automatic Classification of Dysphonia

    Science.gov (United States)

    Fredouille, Corinne; Pouchoulin, Gilles; Ghio, Alain; Revis, Joana; Bonastre, Jean-François; Giovanni, Antoine

    2009-12-01

    This paper addresses voice disorder assessment. It proposes an original back-and-forth methodology involving an automatic classification system as well as knowledge of the human experts (machine learning experts, phoneticians, and pathologists). The goal of this methodology is to bring a better understanding of acoustic phenomena related to dysphonia. The automatic system was validated on a dysphonic corpus (80 female voices), rated according to the GRBAS perceptual scale by an expert jury. Firstly, focused on the frequency domain, the classification system showed the interest of 0-3000 Hz frequency band for the classification task based on the GRBAS scale. Later, an automatic phonemic analysis underlined the significance of consonants and more surprisingly of unvoiced consonants for the same classification task. Submitted to the human experts, these observations led to a manual analysis of unvoiced plosives, which highlighted a lengthening of VOT according to the dysphonia severity validated by a preliminary statistical analysis.

  3. Back-and-Forth Methodology for Objective Voice Quality Assessment: From/to Expert Knowledge to/from Automatic Classification of Dysphonia

    Directory of Open Access Journals (Sweden)

    Corinne Fredouille

    2009-01-01

    Full Text Available This paper addresses voice disorder assessment. It proposes an original back-and-forth methodology involving an automatic classification system as well as knowledge of the human experts (machine learning experts, phoneticians, and pathologists. The goal of this methodology is to bring a better understanding of acoustic phenomena related to dysphonia. The automatic system was validated on a dysphonic corpus (80 female voices, rated according to the GRBAS perceptual scale by an expert jury. Firstly, focused on the frequency domain, the classification system showed the interest of 0–3000 Hz frequency band for the classification task based on the GRBAS scale. Later, an automatic phonemic analysis underlined the significance of consonants and more surprisingly of unvoiced consonants for the same classification task. Submitted to the human experts, these observations led to a manual analysis of unvoiced plosives, which highlighted a lengthening of VOT according to the dysphonia severity validated by a preliminary statistical analysis.

  4. Real-time high-speed motion blur compensation system based on back-and-forth motion control of galvanometer mirror.

    Science.gov (United States)

    Hayakawa, Tomohiko; Watanabe, Takanoshin; Ishikawa, Masatoshi

    2015-12-14

    We developed a novel real-time motion blur compensation system for the blur caused by high-speed one-dimensional motion between a camera and a target. The system consists of a galvanometer mirror and a high-speed color camera, without the need for any additional sensors. We controlled the galvanometer mirror with continuous back-and-forth oscillating motion synchronized to a high-speed camera. The angular speed of the mirror is given in real time within 10 ms based on the concept of background tracking and rapid raw Bayer block matching. Experiments demonstrated that our system captures motion-invariant images of objects moving at speeds up to 30 km/h.

  5. Climate change vulnerability in Ethiopia : disaggregation of Tigray Region

    NARCIS (Netherlands)

    Gidey Gebrehiwot, T.; Gidey, T.G.; van der Veen, A.

    2013-01-01

    Climate change and variability severely affect rural livelihoods and agricultural productivity, yet they are causes of stress vulnerable rural households have to cope with. This paper investigated farming communities' vulnerability to climate change and climate variability across 34

  6. Learning for Climate Change Adaptation among Selected ...

    African Journals Online (AJOL)

    Learning for Climate Change Adaptation among Selected Communities of Lusaka ... This research was aimed at surveying perceptions of climate change and ... This work is licensed under a Creative Commons Attribution 3.0 License.

  7. EPA's Role in International Climate Adaptation

    Science.gov (United States)

    Climate change will impact communities around the world in varying ways and to varying degrees, over time. Yet people living in developing countries are likely to be more adversely affected by current and anticipated climate changes, especially cities.

  8. Predictability in community dynamics.

    Science.gov (United States)

    Blonder, Benjamin; Moulton, Derek E; Blois, Jessica; Enquist, Brian J; Graae, Bente J; Macias-Fauria, Marc; McGill, Brian; Nogué, Sandra; Ordonez, Alejandro; Sandel, Brody; Svenning, Jens-Christian

    2017-03-01

    The coupling between community composition and climate change spans a gradient from no lags to strong lags. The no-lag hypothesis is the foundation of many ecophysiological models, correlative species distribution modelling and climate reconstruction approaches. Simple lag hypotheses have become prominent in disequilibrium ecology, proposing that communities track climate change following a fixed function or with a time delay. However, more complex dynamics are possible and may lead to memory effects and alternate unstable states. We develop graphical and analytic methods for assessing these scenarios and show that these dynamics can appear in even simple models. The overall implications are that (1) complex community dynamics may be common and (2) detailed knowledge of past climate change and community states will often be necessary yet sometimes insufficient to make predictions of a community's future state. © 2017 John Wiley & Sons Ltd/CNRS.

  9. The climatic change

    International Nuclear Information System (INIS)

    2006-01-01

    In order to take stock on the climatic change situation and initiatives at the beginning of 2006, the INES (National Institute on the Solar Energy) proposes this special document. It presents the Montreal conference of December 2005, realized to reinforced the actions of the international community against the greenhouse gases. The technical decisions decided at this conference are detailed. The document discusses also the causes and consequences of the climatic warming, the intervention sectors and the actions possibilities. (A.L.B.)

  10. Building Capacity to Adapt to Climate Change in Southeast Asia ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    This project will endeavor to meet this need by measuring vulnerability to climate change in selected communities; mapping each community's vulnerability to climate change; analyzing the social vulnerability of local communities to climate change; identifying locally appropriate adaptation options; conducting an economic ...

  11. Climate change: linking traditional and scientific knowledge

    National Research Council Canada - National Science Library

    Riewe, R. R. (Roderick R.); Oakes, Jill E. (Jill Elizabeth)

    2006-01-01

    This book includes papers written by over 50 community experts and scientists addressing theoretical concerns, knowledge transfer, adapting to climate change, implications of changing weather, water...

  12. Climate Change

    Science.gov (United States)

    Climate is the average weather in a place over a period of time. Climate change is major change in temperature, rainfall, snow, ... by natural factors or by human activities. Today climate changes are occurring at an increasingly rapid rate. ...

  13. Agriculture: Climate

    Science.gov (United States)

    Climate change affects agricultural producers because agriculture and fisheries depend on specific climate conditions. Temperature changes can cause crop planting dates to shift. Droughts and floods due to climate change may hinder farming practices.

  14. Climate Change and Health: Nurses as Drivers of Climate Action

    Directory of Open Access Journals (Sweden)

    Cara Cook

    2018-02-01

    Full Text Available Changes to Earth’s climate are occurring globally at unprecedented rates with significant impacts to human and population health, including increased likelihood of mental health illnesses, food and water insecurity, insect-borne and heat-related illnesses, and respiratory diseases. Those in the health sector are seeing the challenges patients and community members are experiencing as a result of current and projected climate threats. Health professionals, including nurses, have an opportunity to lead the charge to significantly improve society’s response to climate change and foster the strategies needed to promote health. This article highlights the current work of the Alliance of Nurses for Healthy Environments, a national nursing organization focused solely on environmental health concerns, in inspiring and empowering nurses across the country to engage in action to reduce their climate impact, move climate solutions forward, and improve the ability of health care institutions and communities