WorldWideScience

Sample records for formic acid electro-oxidation

  1. Hollow Ag@Pd core-shell nanotubes as highly active catalysts for the electro-oxidation of formic acid.

    Science.gov (United States)

    Jiang, Yuanyuan; Lu, Yizhong; Han, Dongxue; Zhang, Qixian; Niu, Li

    2012-03-16

    Ag nanowires are prepared as templates by a polyol reduction process. Then Ag nanotubes coated with a thin layer of Pd are synthesized through sequential reduction accompanied with the galvanic displacement reaction. The products show a hollow core-shell nanotubular structure, as demonstrated by detailed characterizations. The Ag@Pd can significantly improve the electrocatalytic activity towards the electro-oxidation of formic acid and enhance the stability of the Pd component. It is proposed that the enhanced electrochemically active surface area and modulated electron structure of Pd by Ag are responsible for the improvement of electrocatalytic activity and durability. The results obtained in this work are different from those previous reports, in which alloy walls with hollow interiors are usually formed. This work provides a new and simple method for synthesizing novel bimetallic core-shell structure with a hollow interior, which can be applied as high-performance catalysts for the electro-oxidation of formic acid.

  2. Hollow Ag@Pd core-shell nanotubes as highly active catalysts for the electro-oxidation of formic acid

    Science.gov (United States)

    Jiang, Yuanyuan; Lu, Yizhong; Han, Dongxue; Zhang, Qixian; Niu, Li

    2012-03-01

    Ag nanowires are prepared as templates by a polyol reduction process. Then Ag nanotubes coated with a thin layer of Pd are synthesized through sequential reduction accompanied with the galvanic displacement reaction. The products show a hollow core-shell nanotubular structure, as demonstrated by detailed characterizations. The Ag@Pd can significantly improve the electrocatalytic activity towards the electro-oxidation of formic acid and enhance the stability of the Pd component. It is proposed that the enhanced electrochemically active surface area and modulated electron structure of Pd by Ag are responsible for the improvement of electrocatalytic activity and durability. The results obtained in this work are different from those previous reports, in which alloy walls with hollow interiors are usually formed. This work provides a new and simple method for synthesizing novel bimetallic core-shell structure with a hollow interior, which can be applied as high-performance catalysts for the electro-oxidation of formic acid.

  3. Formate adsorption on Pt nanoparticles during formic acid electro-oxidation: insights from in situ infrared spectroscopy.

    Science.gov (United States)

    McPherson, Ian J; Ash, Philip A; Jacobs, Robert M J; Vincent, Kylie A

    2016-10-18

    Adsorbed formate is observed on a supported Pt nanoparticle for the first time during formic acid electro-oxidation. Bands assigned to OCO stretching and CH bending reveal some OCO but little CH bond weakening on adsorption compared to the free anion. The formate potential dependence is similar to polycrystalline electrodes while adsorbed CO persists up to +1.2 V, 0.5 V higher than on polycrystalline Pt.

  4. Enhanced formic acid electro-oxidation reaction on ternary Pd-Ir-Cu/C catalyst

    Science.gov (United States)

    Chen, Jinwei; Zhang, Jie; Jiang, Yiwu; Yang, Liu; Zhong, Jing; Wang, Gang; Wang, Ruilin

    2015-12-01

    Aim to further reduce the cost of Pd-Ir for formic acid electro-oxidation (FAEO), the Cu was used to construct a ternary metallic alloy catalyst. The prepared catalysts are characterized using XRD, TGA, EDX, TEM, XPS, CO-stripping, cyclic voltammetry and chronoamperometry. It is found that the Pd18Ir1Cu6 nanoparticles with a mean size of 3.3 nm are highly dispersed on carbon support. Componential distributions on catalyst are consistent with initial contents. Electrochemical measurements show that the PdIrCu/C catalyst exhibits the highest activity for FAEO. The mass activity of Pd in Pd18Ir1Cu6/C at 0.16 V (vs. SCE) is about 1.47, 1.62 and 2.08 times as high as that of Pd18Cu6/C, Pd18Ir1/C and Pd/C, respectively. The activity enhancement of PdIrCu/C should be attributed to the weakened CO adsorption strength and the removal of adsorbed intermediates at lower potential with the addition of Cu and Ir.

  5. One-pot synthesis of graphene-supported monodisperse Pd nanoparticles as catalyst for formic acid electro-oxidation.

    Science.gov (United States)

    Yang, Sudong; Dong, Jing; Yao, Zhaohui; Shen, Chengmin; Shi, Xuezhao; Tian, Yuan; Lin, Shaoxiong; Zhang, Xiaogang

    2014-03-28

    To synthesize monodisperse palladium nanoparticles dispersed on reduced graphene oxide (RGO) sheets, we have developed an easy and scalable solvothermal reduction method from an organic solution system. The RGO-supported palladium nanoparticles with a diameter of 3.8 nm are synthesized in N-methyl-2-pyrrolidone (NMP) and in the presence of oleylamine and trioctylphosphine, which facilitates simultaneous reduction of graphene oxide and formation of Pd nanocrystals. So-produced Pd/RGO was tested for potential use as electrocatalyst for the electro-oxidation of formic acid. Pd/RGO catalyzes formic acid oxidation very well compared to Pd/Vulcan XC-72 catalyst. This synthesis method is a new way to prepare excellent electrocatalysts, which is of great significance in energy-related catalysis.

  6. One-Pot Synthesis of Graphene-Supported Monodisperse Pd Nanoparticles as Catalyst for Formic Acid Electro-oxidation

    Science.gov (United States)

    Yang, Sudong; Dong, Jing; Yao, Zhaohui; Shen, Chengmin; Shi, Xuezhao; Tian, Yuan; Lin, Shaoxiong; Zhang, Xiaogang

    2014-03-01

    To synthesize monodisperse palladium nanoparticles dispersed on reduced graphene oxide (RGO) sheets, we have developed an easy and scalable solvothermal reduction method from an organic solution system. The RGO-supported palladium nanoparticles with a diameter of 3.8 nm are synthesized in N-methyl-2-pyrrolidone (NMP) and in the presence of oleylamine and trioctylphosphine, which facilitates simultaneous reduction of graphene oxide and formation of Pd nanocrystals. So-produced Pd/RGO was tested for potential use as electrocatalyst for the electro-oxidation of formic acid. Pd/RGO catalyzes formic acid oxidation very well compared to Pd/Vulcan XC-72 catalyst. This synthesis method is a new way to prepare excellent electrocatalysts, which is of great significance in energy-related catalysis.

  7. Electro-oxidation of Formic Acid on Carbon Supported Edge-Truncated Cubic Platinum Nanoparticles Catalysts

    Institute of Scientific and Technical Information of China (English)

    LI She-Qiang; FU Xing-Qiu; HU Bing; DENG Jia-Jun; CHEN Lei

    2009-01-01

    The oxidation of formic acid on edge-truncated cubic platinum nanoparticles/C catalysts is investigated. X-ray photoelectron spectroscopy analysis indicates that the surface of edge-truncated cubic platinum nanoparticles is composed of two types of coordination sites. The oxidation behavior of formic acid on edge-truncated cubic platinum nanoparticles/C is investigated using cyclic voltammetry. The apparent activation energies are found to be 54.2, 55.0, 61.8, 69.5, 71.9, 69.26, 65.28kJ/mol at 0.15, 0.3, 0.4, 0.5, 0.6, 0.65, 0.7 V, respectively. A specific surface area activity of 1.76mA·cm~(-2) at 0.4 V indicates that the edge-truncated cubic Platinum nanoparticles are a promising anode catalyst for direct formic acid fuel cells.

  8. Carbon nanotube/raspberry hollow Pd nanosphere hybrids for methanol, ethanol, and formic acid electro-oxidation in alkaline media.

    Science.gov (United States)

    Liu, Zhelin; Zhao, Bo; Guo, Cunlan; Sun, Yujing; Shi, Yan; Yang, Haibin; Li, Zhuang

    2010-11-01

    In this paper, raspberry hollow Pd nanospheres (HPNs)-decorated carbon nanotube (CNT) was developed for electro-oxidation of methanol, ethanol, and formic acid in alkaline media. The electrocatalyst was fabricated simply by attaching HPNs onto the surface of CNT which had been functionalized by polymer wrapping. The as-prepared HPN-CNTs (CHPNs) were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and X-ray photoelectron spectroscopy (XPS). The increasing interest and intensive research on fuel cell inspire us to investigate the electrocatalytic properties of the prepared nanostructures. Besides that, previous reports about alkaline other than acidic media could supply a more active environment guide us to examine the electrocatalytic properties in alkaline electrolyte. It is found that this novel hybrid electrocatalyst exhibits excellent electrocatalytic properties and can be further applied in fuel cells, catalysts, and sensors. Copyright 2010 Elsevier Inc. All rights reserved.

  9. Hollow Ag@Pd core-shell nanotubes as highly active catalysts for the electro-oxidation of formic acid

    DEFF Research Database (Denmark)

    Jiang, Yuanyuan; Lu, Yizhong; Han, Dongxue

    2012-01-01

    Ag nanowires are prepared as templates by a polyol reduction process. Then Ag nanotubes coated with a thin layer of Pd are synthesized through sequential reduction accompanied with the galvanic displacement reaction. The products show a hollow core-shell nanotubular structure, as demonstrated...... by detailed characterizations. The Ag@Pd can significantly improve the electrocatalytic activity towards the electro-oxidation of formic acid and enhance the stability of the Pd component. It is proposed that the enhanced electrochemically active surface area and modulated electron structure of Pd by Ag...... are responsible for the improvement of electrocatalytic activity and durability. The results obtained in this work are different from those previous reports, in which alloy walls with hollow interiors are usually formed. This work provides a new and simple method for synthesizing novel bimetallic core...

  10. Graphene nanosheets-polypyrrole hybrid material as a highly active catalyst support for formic acid electro-oxidation.

    Science.gov (United States)

    Yang, Sudong; Shen, Chengmin; Liang, Yanyu; Tong, Hao; He, Wei; Shi, Xuezhao; Zhang, Xiaogang; Gao, Hong-jun

    2011-08-01

    A novel electrode material based on graphene oxide (GO)-polypyrrole (PPy) composites was synthesized by in situ chemical oxidation polymerization. Palladium nanoparticles (NPs) with a diameter of 4.0 nm were loaded on the reduced graphene oxide(RGO)-PPy composites by a microwave-assisted polyol process. Microstructure analysis showed that a layer of coated PPy film with monodisperse Pd NPs is present on the RGO surface. The Pd/RGO-PPy catalysts exhibit excellent catalytic activity and stability for formic acid electro-oxidation when the weight feed ratio of GO to pyrrole monomer is 2:1. The superior performance of Pd/RGO-PPy catalysts may arise from utilization of heterogeneous nucleation sites for NPs and the greatly increased electronic conductivity of the supports. This journal is © The Royal Society of Chemistry 2011

  11. Graphene nanosheets-polypyrrole hybrid material as a highly active catalyst support for formic acid electro-oxidation

    Science.gov (United States)

    Yang, Sudong; Shen, Chengmin; Liang, Yanyu; Tong, Hao; He, Wei; Shi, Xuezhao; Zhang, Xiaogang; Gao, Hong-Jun

    2011-08-01

    A novel electrode material based on graphene oxide (GO)-polypyrrole (PPy) composites was synthesized by in situ chemical oxidation polymerization. Palladium nanoparticles (NPs) with a diameter of 4.0 nm were loaded on the reduced graphene oxide(RGO)-PPy composites by a microwave-assisted polyol process. Microstructure analysis showed that a layer of coated PPy film with monodisperse Pd NPs is present on the RGO surface. The Pd/RGO-PPy catalysts exhibit excellent catalytic activity and stability for formic acid electro-oxidation when the weight feed ratio of GO to pyrrole monomer is 2 : 1. The superior performance of Pd/RGO-PPy catalysts may arise from utilization of heterogeneous nucleation sites for NPs and the greatly increased electronic conductivity of the supports.

  12. Synchronized Current Oscillations of Formic Acid Electro-oxidation in a Microchip-based Dual-Electrode Flow Cell

    Science.gov (United States)

    Kiss, István Z.; Munjal, Neil; Martin, R. Scott

    2009-01-01

    We investigate the oscillatory electro-oxidation of formic acid on platinum in a microchip-based dual-electrode cell with microfluidic flow control. The main dynamical features of current oscillations on single Pt electrode that had been observed in macro-cells are reproduced in the microfabricated electrochemical cell. In dual-electrode configuration nearly in-phase synchronized current oscillations occur when the reference/counter electrodes are placed far away from the microelectrodes. The synchronization disappears with close reference/counter electrode placements. We show that the cause for synchronization is weak albeit important, bidirectional electrical coupling between the electrodes; therefore the unidirectional mass transfer interactions are negligible. The experimental design enables the investigation of the dynamical behavior in micro-electrode arrays with well-defined control of flow of the electrolyte in a manner where the size and spacing of the electrodes can be easily varied. PMID:20160883

  13. Synchronized Current Oscillations of Formic Acid Electro-oxidation in a Microchip-based Dual-Electrode Flow Cell.

    Science.gov (United States)

    Kiss, István Z; Munjal, Neil; Martin, R Scott

    2009-12-30

    We investigate the oscillatory electro-oxidation of formic acid on platinum in a microchip-based dual-electrode cell with microfluidic flow control. The main dynamical features of current oscillations on single Pt electrode that had been observed in macro-cells are reproduced in the microfabricated electrochemical cell. In dual-electrode configuration nearly in-phase synchronized current oscillations occur when the reference/counter electrodes are placed far away from the microelectrodes. The synchronization disappears with close reference/counter electrode placements. We show that the cause for synchronization is weak albeit important, bidirectional electrical coupling between the electrodes; therefore the unidirectional mass transfer interactions are negligible. The experimental design enables the investigation of the dynamical behavior in micro-electrode arrays with well-defined control of flow of the electrolyte in a manner where the size and spacing of the electrodes can be easily varied.

  14. Facile and rapid synthesis of spherical porous palladium nanostructures with high catalytic activity for formic acid electro-oxidation.

    Science.gov (United States)

    Tang, Shaochun; Vongehr, Sascha; Zheng, Zhou; Ren, Hua; Meng, Xiangkang

    2012-06-29

    Highly uniform, spherical porous palladium nanostructures (SPPNs) with rough surfaces were prepared by a facile and rapid ultrasound assisted reduction. The synthesis involves sonicating a solution of K(2)PdCl(4) and ascorbic acid for only 7 min at 40 °C without any additives. The products are isolated structures with a narrow size distribution, and their average diameters are controllable in a range from 40 to 100 nm via the K(2)PdCl(4) concentration. Typical products have a diameter of 52 nm and consist of loosely packed grains of 2-3 nm. They are thus very porous, with a specific surface area of 47 m(2) g(-1). The growth mechanism of SPPNs is discussed on the basis of varying relevant reaction parameters and characterizations from different microscopy techniques, nitrogen absorption analysis, and time-dependent UV-vis spectra. The electrocatalytic performance of the SPPNs was evaluated by electro-oxidation of formic acid. The mass current density per mass of SPPNs (1.88 A mg(-1)) exceeds that of commercial Pd black (1.69 A mg(-1)) and is more than twice that of commercial Pd/C catalyst (0.79 A mg(-1)). Long-term stability of the activity makes this material a promising anode catalyst for direct formic acid fuel cells.

  15. Facile and rapid synthesis of spherical porous palladium nanostructures with high catalytic activity for formic acid electro-oxidation

    Science.gov (United States)

    Tang, Shaochun; Vongehr, Sascha; Zheng, Zhou; Ren, Hua; Meng, Xiangkang

    2012-06-01

    Highly uniform, spherical porous palladium nanostructures (SPPNs) with rough surfaces were prepared by a facile and rapid ultrasound assisted reduction. The synthesis involves sonicating a solution of K2PdCl4 and ascorbic acid for only 7 min at 40 °C without any additives. The products are isolated structures with a narrow size distribution, and their average diameters are controllable in a range from 40 to 100 nm via the K2PdCl4 concentration. Typical products have a diameter of 52 nm and consist of loosely packed grains of 2-3 nm. They are thus very porous, with a specific surface area of 47 m2 g-1. The growth mechanism of SPPNs is discussed on the basis of varying relevant reaction parameters and characterizations from different microscopy techniques, nitrogen absorption analysis, and time-dependent UV-vis spectra. The electrocatalytic performance of the SPPNs was evaluated by electro-oxidation of formic acid. The mass current density per mass of SPPNs (1.88 A mg-1) exceeds that of commercial Pd black (1.69 A mg-1) and is more than twice that of commercial Pd/C catalyst (0.79 A mg-1). Long-term stability of the activity makes this material a promising anode catalyst for direct formic acid fuel cells.

  16. Electro-oxidation of methanol and formic acid on platinum nanoparticles with different oxidation levels

    Energy Technology Data Exchange (ETDEWEB)

    Hsieh, Chien-Te, E-mail: cthsieh@saturn.yzu.edu.tw [Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan 320, Taiwan (China); Hsiao, Han-Tsung; Tzou, Dong-Ying; Yu, Po-Yuan [Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan 320, Taiwan (China); Chen, Po-Yen; Jang, Bi-Sheng [Materials and Electro-Optics Research Division, National Chung-Shan Institute of Science and Technology, Taoyuan 325, Taiwan (China)

    2015-01-15

    Herein reported is an atomic layer deposition (ALD) process of platinum (Pt) from (methylcyclopentadienyl) trimethylplatinum (MeCpPtMe{sub 3}) and oxygen (O{sub 2}) for synthesizing the Pt electrocatalysts toward methanol and formic acid oxidation. The as-synthesized Pt catalysts are thermally reduced in 5 vol% H{sub 2} within temperature window of 150–450 °C. The reduction treatment induces a decrease in amount of Pt oxide (Pt–O) species, e.g., PtO and PtO{sub 2}. The presence of Pt–O species not only enhances catalytic activity but also improves anti-poisoning ability toward the oxidation of methanol and formic acid. The improved activity originates from the fact that the Pt–O species, formed by the ALD route, creates a large number of active sites (e.g., Pt–O{sub ads} and Pt–(OH){sub ads}) to strip the CO-adsorbed sites, leading to a high-level of CO tolerance. This work also proposes a stepwise reaction steps to shed some lights on how the Pt–O species promote the catalytic activity. - Highlights: • This study adopts atomic layer deposition (ALD) to grow metallic Pt nanoparticles. • The Pt catalysts show catalytic activity toward methanol and formic acid oxidation. • The reduction treatment induces a decrease in amount of Pt oxide (Pt–O) species. • The Pt–O species creates a number of active sites to strip the CO-adsorbed sites. • A stepwise reaction step concerning the promoted catalytic activity is proposed.

  17. Theoretical elucidation of the competitive electro-oxidation mechanisms of formic acid on Pt(111).

    Science.gov (United States)

    Gao, Wang; Keith, John A; Anton, Josef; Jacob, Timo

    2010-12-29

    The mechanisms of formic acid (HCOOH) oxidation on Pt(111) under electrochemical conditions have been studied using density functional theory and then compared with the analogous gas-phase reaction. Results show that HCOOH oxidation under a water-covered surface behaves substantially differently than in the gas phase or using a solvation model involving only a few water molecules. Using these models, we evaluated the detailed reaction process, including energies and geometric structures of intermediates and transition states under the influence of different solvation models and electrode potentials. Our calculations indicate that this potential-dependent electrochemical oxidation proceeds via a multipath mechanism (involving both the adsorbed HCOOH and HCOO intermediates), a result succinctly rationalizing conflicting experimental observations. Moreover, this study highlights how subtle changes in electrochemical reaction environments can influence (electro)catalysis.

  18. Nanoporous bimetallic Pt-Au alloy nanocomposites with superior catalytic activity towards electro-oxidation of methanol and formic acid.

    Science.gov (United States)

    Zhang, Zhonghua; Wang, Yan; Wang, Xiaoguang

    2011-04-01

    We present a facile route to fabricate novel nanoporous bimetallic Pt-Au alloy nanocomposites by dealloying a rapidly solidified Al(75)Pt(15)Au(10) precursor under free corrosion conditions. The microstructure of the precursor and the as-dealloyed sample was characterized using X-ray diffraction, scanning electron microscopy, transmission electron microscopy, high-resolution transmission electron microscopy, and energy dispersive X-ray (EDX) analysis. The Al(75)Pt(15)Au(10) precursor is composed of a single-phase Al(2)(Au,Pt) intermetallic compound, and can be fully dealloyed in a 20 wt.% NaOH or 5 wt.% HCl aqueous solution. The dealloying leads to the formation of the nanoporous Pt(60)Au(40) nanocomposites (np-Pt(60)Au(40) NCs) with an fcc structure. The morphology, size and crystal orientation of grains in the precursor can be conserved in the resultant nanoporous alloy. The np-Pt(60)Au(40) NCs consist of two zones with distinct ligament/channel sizes and compositions. The formation mechanism of these np-Pt(60)Au(40) NCs can be rationalized based upon surface diffusion of more noble elements and spinodal decomposition during dealloying. Electrochemical measurements demonstrate that the np-Pt(60)Au(40) NCs show superior catalytic activity towards the electro-oxidation of methanol and formic acid in the acid media compared to the commercial JM-Pt/C catalyst. This material can find potential applications in catalysis related areas, such as direct methanol or formic acid fuel cells. Our findings demonstrate that dealloying is an effective and simple strategy to realize the alloying of immiscible systems under mild conditions, and to fabricate novel nanostructures with superior performance.

  19. Long-lasting oscillations in the electro-oxidation of formic acid on PtSn intermetallic surfaces.

    Science.gov (United States)

    Perini, Nickson; Batista, Bruno C; Angelo, Antonio C D; Epstein, Irving R; Varela, Hamilton

    2014-06-23

    Even when in contact with virtually infinite reservoirs, natural and manmade oscillators typically drift in phase space on a time-scale considerably slower than that of the intrinsic oscillator. A ubiquitous example is the inexorable aging process experienced by all living systems. Typical electrocatalytic reactions under oscillatory conditions oscillate for only a few dozen stable cycles due to slow surface poisoning that ultimately results in destruction of the limit cycle. We report the observation of unprecedented long-lasting temporal oscillations in the electro-oxidation of formic acid on an ordered intermetallic PtSn phase. The introduction of Sn substantially increases the catalytic activity and retards the irreversible surface oxidation, which results in the stabilization of more than 2200 oscillatory cycles in about 40 h; a 30-40-fold stabilization with respect to the behavior of pure Pt surfaces. The dynamics were modeled and numerical simulations point to the surface processes underlying the high stability. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Acrylonitrile-contamination induced enhancement of formic acid electro-oxidation at platinum nanoparticles modified glassy carbon electrodes

    Science.gov (United States)

    El-Nagar, Gumaa A.; Mohammad, Ahmad M.; El-Deab, Mohamed S.; Ohsaka, Takeo; El-Anadouli, Bahgat E.

    2014-11-01

    Minute amount (∼1 ppm) of acrylonitrile (AcN), a possible contaminant, shows an unexpected enhancement for the direct electro-oxidation of formic acid (FAO) at Pt nanoparticles modified GC (nano-Pt/GC) electrodes. This is reflected by a remarkable increase of the current intensity of the direct oxidation peak (Ipd, at ca. 0.3 V) in the presence of AcN, concurrently with a significant decrease of the second (indirect) oxidation current (Ipind, at ca. 0.7 V), compared to that observed in the absence of AcN (i.e., at the unpoisoned Pt electrode). The extent of enhancement depends on the surface coverage (θ) of AcN at the surface of Pt nanoparticles. AcN is thought to favor the direct FAO by disturbing the contiguity of the Pt sites, which is necessary for CO adsorption. Furthermore, XPS measurements revealed a change in the electronic structure of Pt in presence of AcN, which has a favorable positive impact on the charge transfer during the direct FAO.

  1. An ambient aqueous synthesis for highly dispersed and active Pd/C catalyst for formic acid electro-oxidation

    Science.gov (United States)

    Cheng, Niancai; Lv, Haifeng; Wang, Wei; Mu, Shichun; Pan, Mu; Marken, Frank

    An experimentally simple process is reported in aqueous solution and under ambient conditions to prepare highly dispersed and active Pd/C catalyst without the use of a stabilizing agent. The [Pd(NH 3) 4] 2+ ion is synthesized with gentle heating in aqueous ammonia solution without formation of Pd(OH) x complex intermediates. The adsorbed [Pd(NH 3) 4] 2+ on the surface of carbon (Vulcan XC-72) is reduced in situ to Pd nanoparticles by NaBH 4. The Pd/C catalyst obtained is characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The results show that highly dispersed Pd/C catalyst with 20 wt.% Pd content and with an average Pd nanoparticle diameter of 4.3-4.7 nm could be obtained. The electrochemical measurements show that the Pd/C catalyst without stabilizer has a higher electro-oxidation activity for formic acid compared to that of a Pd/C catalyst prepared in a traditional high temperature polyol process in ethylene glycol.

  2. The facile synthesis of single crystalline palladium arrow-headed tripods and their application in formic acid electro-oxidation.

    Science.gov (United States)

    Su, Na; Chen, Xueying; Ren, Yuanhang; Yue, Bin; Wang, Han; Cai, Wenbin; He, Heyong

    2015-04-28

    Single crystalline palladium arrow-headed tripods prepared via a simple one-pot strategy exhibit high electro-activity in formic acid oxidation, which could be a promising anodic catalyst for direct formic acid fuel cells.

  3. Formic acid electro-oxidation on carbon supported Pd{sub x}Pt{sub 1-x} (0 {>=} x {>=} 1) nanoparticles synthesized via modified polyol method

    Energy Technology Data Exchange (ETDEWEB)

    Baranova, Elena A., E-mail: elena.baranova@uottawa.c [Department of Chemical and Biological Engineering, University of Ottawa, 161 Louis-Pasteur St., Ottawa, ON, K1N 6N5 (Canada); Miles, Neil [Department of Chemical and Biological Engineering, University of Ottawa, 161 Louis-Pasteur St., Ottawa, ON, K1N 6N5 (Canada); Mercier, Patrick H.J.; Le Page, Yvon; Patarachao, Bussaraporn [Institute for Chemical Process and Environmental Technology, National Research Council Canada, 1200 Montreal Rd., Ottawa, ON, K1A 0R6 (Canada)

    2010-11-30

    Carbon supported nanoparticle catalysts of Pd{sub x}Pt{sub 1-x} (0 {>=} x {>=} 1) were synthesized using a modified polyol method and poly(N-vinyl-2-pyrrolidone) (PVP) as a stabilizer. Resulting nanoparticles were characterized by X-ray photoelectron spectroscopy (XPS), cyclic voltammetry (CV) and chronoamperommetry (CA) study for formic acid electro-oxidation. Surface composition of the synthesized nanoparticles found from XPS revealed the Pt surface segregation even for the Pd-rich compositions. It is suggested that the surface segregation behavior in PdPt nanoparticles supported on carbon may be influenced, in addition to the difference in Pd and Pt surface energies, by particle size and particle interaction with the support. According to CA, the carbon supported Pd nanoparticles show the highest initial activity towards formic acid electro-oxidation at the potential of 0.3 V (RHE), due to the promotion of the direct dehydrogenation mechanism. However its stability is quite poor resulting in the fast deactivation of the Pd surface. Addition of Pt considerably improves the steady-state activity of Pd in 12 h CA experiment. CA measurements show that the most active catalyst is Pd{sub 0.5}Pt{sub 0.5} of 4 nm size, which displays narrow size distribution and Pd to Pt surface atomic ratio of 27-73.

  4. Natural DNA-modified graphene/Pd nanoparticles as highly active catalyst for formic acid electro-oxidation and for the Suzuki reaction.

    Science.gov (United States)

    Qu, Konggang; Wu, Li; Ren, Jinsong; Qu, Xiaogang

    2012-09-26

    Natural DNA has been considered as a building block for developing novel functional materials. It is abundant, renewable, and biodegradable and has a well-defined structure and conformation with many unique features, which are difficult to find in other polymers. Herein, calf thymus DNA modified graphene/Pd nanoparticle (DNA-G-Pd) hybrid materials are constructed for the first time using DNA as a mediator, and the prepared DNA-G-Pd hybrid shows high catalytic activity for fuel cell formic acid electro-oxidation and for organic Suzuki reaction. The main advantages of using DNA are not only because the aromatic nucleobases in DNA can interact through π-π stacking with graphene basal surface but also because they can chelate Pd via dative bonding in such defined sites along the DNA lattice. Our results indicate that isolated, homogeneous, and ultrafine spherical Pd nanoparticles are densely in situ decorated on DNA-modified graphene surfaces with high stability and dispersibility. The prepared DNA-G-Pd hybrid has much greater activity and durability for formic acid electro-oxidation than the commercial Pd/C catalyst and polyvinylpyrrolidone-mediated graphene/Pd nanoparticle (PVP-G-Pd) hybrid used for direct formic acid fuel cells (DFAFCs). Besides, the DNA-G-Pd hybrid can also be an efficient and recyclable catalyst for the organic Suzuki reaction in aqueous solution under aerobic conditions without any preactivation. Since DNA can chelate various transition metal cations, this proof-of-concept protocol provides the possibility for the tailored design of other novel catalytic materials based on graphene with full exploitation of their properties.

  5. Single-crystalline Pd square nanoplates enclosed by {100} facets on reduced graphene oxide for formic acid electro-oxidation.

    Science.gov (United States)

    Jiang, Yi; Yan, Yucong; Chen, Wenlong; Khan, Yousaf; Wu, Jianbo; Zhang, Hui; Yang, Deren

    2016-12-06

    Single-crystalline Pd square nanoplates enclosed by {100} facets were generated on reduced graphene oxide and exhibited the substantially enhanced properties for the formic acid oxidation reaction. The combination of carbonyl groups formed on the surface of annealed graphene oxide and Br(-) ions played important roles in this synthesis.

  6. Enhanced formic acid electro-oxidation on PdIr nanoparticles prepared by ethylene glycol-assisted NaBH4 reduction process.

    Science.gov (United States)

    Chen, Jinwei; Wang, Gang; Wang, Xueqin; Tian, Jing; Zhu, Shifu; Wang, Ruilin

    2013-10-01

    The carbon supported PdIr nanoparticles were synthesized by an ethylene glycol-assisted NaBH4 reduction method, and the mass ratio of Pd to Ir was optimized. Then, their performances for formic acid electro-oxidation (FAEO) were investigated. The XRD and TEM characterizations show that the prepared PdIr/C catalysts have small mean size and good dispersion of PdIr nanoparticles. The electrochemical measurements demonstrate that the PdIr/C catalysts have greatly enhanced performance for FAEO compared with the Pd/C catalyst. The PdIr/C catalysts show higher current density and more than 50 mV negative shift of onset and peak potential than that of the Pd/C catalyst. With the optimal mass ratio of Pd to Ir, the PdIr/C-5 catalyst presents the highest catalytic activity for FAEO.

  7. Poly(sodium-p-styrenesulfonate) assisted microwave synthesis of ordered mesoporous carbon supported Pd nanoparticles for formic acid electro-oxidation

    Science.gov (United States)

    Sun, Zhi-Peng; Zhang, Xiao-Gang; Tong, Hao; Xue, Rui-Li; Liang, Yan-Yu; Li, Hu-Lin

    2009-10-01

    Pd nanoparticles highly dispersed onto the surface of ordered mesoporous carbons (OMCs) were synthesized successfully by poly(sodium-p-styrenesulfonate) (PSS) assisted microwave synthesis. Here, PSS served as a bifunctional molecule both for solubilizing and dispersing OMCs into aqueous solution and for jointing Pd 2+ to facilitate the subsequent uniform formation of Pd nanoparticles on their surfaces. The effects of PSS on structural and electrochemical properties of Pd/OMCs were investigated. It was found that the addition of PSS facilitated Pd nanoparticles to disperse on the carbon surface. Electrochemical properties showed that Pd catalysts prepared with addition of PSS displayed better electrochemical activity and stability for formic acid electro-oxidation than those without PSS.

  8. Nanoporous PdNi Alloy Nanowires As Highly Active Catalysts for the Electro-Oxidation of Formic Acid.

    Science.gov (United States)

    Du, Chunyu; Chen, Meng; Wang, Wengang; Yin, Geping

    2011-02-01

    Highly active and durable catalysts for formic acid oxidation are crucial to the development of direct formic acid fuel cell. In this letter, we report the synthesis, characterization, and electrochemical testing of nanoporous Pd(57)Ni(43) alloy nanowires for use as the electrocatalyst towards formic acid oxidation (FAO). These nanowires are prepared by chemically dealloying of Ni from Ni-rich PdNi alloy nanowires, and have high surface area. X-ray diffraction data show that the Pd(57)Ni(43) nanowires have the face-centered cubic crystalline structure of pure Pd, whereas X-ray photoelectron spectroscopy confirm the modification of electronic structure of Pd by electron transfer from Ni to Pd. Electrocatalytic activity of the nanowires towards FAO exceeds that of the state-of-the-art Pd/C. More importantly, the nanowires are highly resistant to deactivation. It is proposed that the high active surface area and modulated surface properties by Ni are responsible for the improvement of activity and durability. Dealloyed nanoporous Pd(57)Ni(43) alloy nanowires are thus proposed as a promising catalyst towards FAO.

  9. Composition-dependent electrocatalytic activity of palladium-iridium binary alloy nanoparticles supported on the multiwalled carbon nanotubes for the electro-oxidation of formic acid.

    Science.gov (United States)

    Bao, Jianming; Dou, Meiling; Liu, Haijing; Wang, Feng; Liu, Jingjun; Li, Zhilin; Ji, Jing

    2015-07-22

    Surface-functionalized multiwalled carbon nanotubes (MWCNTs) supported Pd100-xIrx binary alloy nanoparticles (Pd100-xIrx/MWCNT) with tunable Pd/Ir atomic ratios were synthesized by a thermolytic process at varied ratios of bis(acetylacetonate) palladium(II) and iridium(III) 2,4-pentanedionate precursors and then applied as the electrocatalyst for the formic acid electro-oxidation. The X-ray diffraction pattern (XRD) and transmission electron microscope (TEM) analysis showed that the Pd100-xIrx alloy nanoparticles with the average size of 6.2 nm were uniformly dispersed on the MWCNTs and exhibited a single solid solution phase with a face-centered cubic structure. The electrocatalytic properties were evaluated through the cyclic voltammetry and chronoamperometry tests, and the results indicated that both the activity and stability of Pd100-xIrx/MWCNT were strongly dependent on the Pd/Ir atomic ratios: the best electrocatalytic performance in terms of onset potential, current density, and stability against CO poisoning was obtained for the Pd79Ir21/MWCNT. Moreover, compared with pure Pd nanoparticles supported on MWCNTs (Pd/MWCNT), the Pd79Ir21/MWCNT exhibited enhanced steady-state current density and higher stability, as well as maintained excellent electrocatalytic activity in high concentrated formic acid solution, which was attributed to the bifunctional effect through alloying Pd with transition metal.

  10. Sacrificial Template-Based Synthesis of Unified Hollow Porous Palladium Nanospheres for Formic Acid Electro-Oxidation

    Directory of Open Access Journals (Sweden)

    Xiaoyu Qiu

    2015-06-01

    Full Text Available Large scale syntheses of uniform metal nanoparticles with hollow porous structure have attracted much attention owning to their high surface area, abundant active sites and relatively efficient catalytic activity. Herein, we report a general method to synthesize hollow porous Pd nanospheres (Pd HPNSs by templating sacrificial SiO2 nanoparticles with the assistance of polyallylamine hydrochloride (PAH through layer-by-layer self-assembly. The chemically inert PAH is acting as an efficient stabilizer and complex agent to control the synthesis of Pd HPNSs, probably accounting for its long aliphatic alkyl chains, excellent coordination capability and good hydrophilic property. The physicochemical properties of Pd HPNSs are thoroughly characterized by various techniques, such as transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy. The growth mechanism of Pd HPNSs is studied based on the analysis of diverse experimental observations. The as-prepared Pd HPNSs exhibit clearly enhanced electrocatalytic activity and durability for the formic oxidation reaction (FAOR in acid medium compared with commercial Pd black.

  11. Fuel blends: Enhanced electro-oxidation of formic acid in its blend with methanol at platinum nanoparticles modified glassy carbon electrodes

    Science.gov (United States)

    El-Deab, Mohamed S.; El-Nagar, Gumaa A.; Mohammad, Ahmad M.; El-Anadouli, Bahgat E.

    2015-07-01

    The current study addresses, for the first time, the enhanced direct electro-oxidation of formic acid (FA) at platinum-nanoparticles modified glassy carbon (nano-Pt/GC) electrode in the presence of methanol (MeOH) as a blending fuel. This enhancement is probed by: (i) the increase of the direct oxidation current of FA to CO2 (Ipd, dehydrogenation pathway), (ii) suppressing the dehydration pathway (Ipind, producing the poisoning intermediate CO) and (iii) a favorable negative shift of the onset potential of Ipd with increasing the mole fraction of MeOH in the blend. Furthermore, the charge of the direct FA oxidation in 0.3 M FA + 0.3 M MeOH blend is by 14 and 21times higher than that observed for 0.3 M FA and 0.3 M MeOH, respectively. MeOH is believed to adsorb at the Pt surface sites and thus disfavor the "non-faradaic" dissociation of FA (which produces the poisoning CO intermediate), i.e., MeOH induces a high CO tolerance of the Pt catalyst. The enhanced oxidation activity indicates that FA/MeOH blend is a promising fuel system.

  12. Remarkable activity of PdIr nanoparticles supported on the surface of carbon nanotubes pretreated via a sonochemical process for formic acid electro-oxidation

    Science.gov (United States)

    Chen, Jinwei; Li, Yuanjie; Liu, Shuangren; Wang, Gang; Tian, Jing; Jiang, Chunping; Zhu, Shifu; Wang, Ruilin

    2013-12-01

    It was reported for the first time that the surface treated multi-walled carbon nanotubes supported PdIr (PdIr/CNT-SCP) catalyst presents remarkable electrocatalytic activity and stability for formic acid electro-oxidation (FAEO). The surface of CNTs was functionalized by a sonochemical process for the deposition of PdIr nanoparticles (NPs). The XRD and TEM characterizations show that the prepared PdIr/CNT-SCP catalyst has small mean size and good dispersion of PdIr NPs on CNTs. The electrochemical measurements show that the onset and anodic peak potentials of FAEO on PdIr/CNT-SCP catalyst are 60 and 50 mV more negative than that on the commercial Pd/C catalyst. The mass-normalized peak current density of PdIr/CNT-SCP is 3365 mA mg-1Pd, which is 4.5, 1.4 and 2.7 times higher than that of PdIr/CNT-Untreated, PdIr/C-SCP and commercial Pd/C, respectively. It demonstrates the promotion of Ir and functionalized CNTs to Pd for FAEO.

  13. High activity of carbon nanotubes supported binary and ternary Pd-based catalysts for methanol, ethanol and formic acid electro-oxidation

    Science.gov (United States)

    Zhu, Fuchun; Ma, Guanshui; Bai, Zhongchao; Hang, Ruiqiang; Tang, Bin; Zhang, Zhonghua; Wang, Xiaoguang

    2013-11-01

    In this study, we have synthesized a series of multi-walled carbon nanotubes supported Pd, PdCu(molar ratio 1:1), PdSn(1:1) and PdCuSn(1:1:1) catalysts by chemical reduction with NaBH4 as a reducing agent. These catalysts are characterized using X-ray diffraction, transmission electron microscopy, energy dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy (XPS), cyclic voltammetry and chronoamperometry. During the potential cycling activation, it is found that the additive Cu is prone to suffer leaching while the dissolution of Sn rarely occurs. Electrochemical measurements demonstrate that, the co-alloying of Pd with Cu and Sn can trigger the best catalytic activity enhancement as compared with the binary PdCu/CNTs, PdSn/CNTs and mono-component Pd/CNTs catalysts. The PdCuSn/CNTs reveals the most excellent activities toward methanol, ethanol and formic acid electro-oxidation and the corresponding mass activity can attain to 395.94, 872.70 and 534.83 mA mg-1 Pd, respectively. The possible promotion effect of additive Sn or/and Cu on the electrocatalytic activity improvement is also analyzed.

  14. Graphene oxide-assisted facile synthesis of platinum-tellurium nanocubes with enhanced catalytic activity for formic acid electro-oxidation

    Science.gov (United States)

    Wang, Yichun; Chen, Jinwei; Zhou, Feilong; Zhang, Jie; Wei, Xiaoyang; Luo, Rui; Wang, Gang; Wang, Ruilin

    2017-08-01

    In order to obtain a loaded Pt-based catalyst with enhanced high activity and stability towards formic acid electro-oxidation (FAO), PtTe nanoparticles loaded on graphene oxide (GO) were fabricated by a facile and scalable method. XRD and HRTEM results show that the morphology of PtTe particles could be affected by the additive amount of GO and Te. It is observed that the supported PtTe particles are cubic. The XPS results show the change in the Pt electronic structure after the incorporation of Te, which impedes the chemisorption of the CO intermediate and promotes the dehydrogenation pathway of FAO. By electrochemical analysis, the performance towards FAO is greatly enhanced. The mass activity of PtTe/GO-67 is 2165.53 {{mA}} {{{mg}}}{{Pt}}-1 at 0.45 V (versus SCE), which is 11.5 times as high as that of Pt/C (188.44 {{mA}} {{{mg}}}{{Pt}}-1). The incorporation of Te atoms and the content of GO are two major parameters for tuning the crystal structure and morphology and enhancing catalytic activity.

  15. Direct evidence for active site-dependent formic acid electro-oxidation by topmost-surface atomic redistribution in a ternary PtPdCu electrocatalyst.

    Science.gov (United States)

    Cui, Chun-Hua; Li, Hui-Hui; Cong, Huai-Ping; Yu, Shu-Hong; Tao, Franklin Feng

    2012-12-25

    The active site-dependent electrochemical formic acid oxidation was evidenced by the increased coverage of Pt in the topmost mixed PtPd alloy layer of ternary PtPdCu upon potential cycling, which demonstrated two catalytic pathways only in one catalyst owing to surface atomic redistribution in an acidic electrolyte environment.

  16. Preparation of PtPb/C Catalyst and Its Electro-oxidation Catalytic Performance for Formic Acid%PtPb/C催化剂的制备及其对甲酸电氧化的催化性能

    Institute of Scientific and Technical Information of China (English)

    刘双任; 陈金伟; 朱雪婧; 张洁; 江义武; 王瑞林

    2015-01-01

    目的:通过Pb元素的添加来提高Pt/C催化剂电催化氧化甲酸的性能。方法通过乙二醇协助硼氢化钠还原法,以氯铂酸为Pt源和硝酸铅为Pb源制备不同原子比的Pt x Pb/C催化剂。采用X射线衍射光谱法( XRD)和透射电子显微镜技术( TEM)表征样品的晶体结构和颗粒形貌;采用循环伏安法表征样品催化氧化甲酸的性能。结果利用乙二醇协助硼氢化钠还原法成功制得了Pt和Pb原子比不同的Ptx Pb/C催化剂,XRD和TEM测试结果表明这些样品均为Pt的面心立方结构,且颗粒大小均一、分散均匀,其平均粒径为4 nm左右。循环伏安测试结果表明Ptx Pb/C催化剂催化氧化甲酸的性能优于商业Pt/C催化剂的催化性能,且受Pt和Pb原子比的影响,当原子比为5:1时,其对氧化甲酸的催化性能最好,峰电位对应的Pt的比质量活性达到2000 mA/( mg Pt),远远高于商业Pt/C,同时计时电流曲线表明其具备良好的稳定性。结论 Pb原子的加入影响了Pt原子的电子结构,与Pb对Pt的协同作用共同促进了CO等中间产物在Pt表面的快速氧化,降低了催化氧化甲酸的初始电位,促使甲酸在低电位直接氧化为CO2和H2 O,提高了其催化氧化甲酸的峰电流,有效减轻了Pt中毒,提高了其催化活性。%ABSTRACT:Objective To improve the electro-oxidation catalytic performance of Pt/C catalyst for formic acid by adding the Pb element. Methods The Ptx Pb/C catalysts with different atomic ratios were prepared by an ethylene glycol-assisted NaBH4 reduction method. The structure and morphology of the catalyst were characterized by X-ray diffraction ( XRD) and transmission electron mi-croscopy ( TEM) , electrochemical performances were investigated by cyclic voltammetry. All electrochemical measurements were carried out in a conventional three-electrode electrochemical cell at 25 ℃ using cyclic voltammetry (CV) on a CHI 760B. Results The results of XRD and TEM showed

  17. Mesoporous Ti(0.5)Cr(0.5)N supported PdAg nanoalloy as highly active and stable catalysts for the electro-oxidation of formic acid and methanol.

    Science.gov (United States)

    Cui, Zhiming; Yang, Minghui; DiSalvo, Francis J

    2014-06-24

    We report a robust noncarbon Ti0.5Cr0.5N support synthesized by an efficient solid-solid phase separation method. This ternary nitride exhibits highly porous, sintered, and random network structure with a crystallite size of 20-40 nm, resulting in a high specific surface area. It is not only kinetically stable in both acid and alkaline media, but also electrochemically stable in the potential range of fuel cell operation. Two typical anode reactions, formic acid oxidation in acid media and methanol oxidation in alkaline media, are employed to investigate the possibility of Ti0.5Cr0.5N as an alternative to carbon. Bimetallic PdAg nanoparticles (∼4 nm) act as anode catalysts for the two anode reactions. PdAg/Ti0.5Cr0.5N exhibits much higher mass activity and durability for the two reactions than PdAg/C and Pd/C catalyst, suggesting that mesoporous Ti0.5Cr0.5N is a very promising support in both acid and alkaline media.

  18. Synthesis of cubic PtPd alloy nanoparticles as anode electrocatalysts for methanol and formic acid oxidation reactions.

    Science.gov (United States)

    Lee, Jin-Yeon; Kwak, Da-Hee; Lee, Young-Woo; Lee, Seul; Park, Kyung-Won

    2015-04-14

    The electrocatalytic properties for electro-oxidation reactions of shape-controlled Pt-based catalysts have been improved by alloying with 2nd elements. In this study, we demonstrate cubic PtPd alloy nanoparticles synthesized using a thermal decomposition method. The cubic PtPd nanoparticles exhibit a homogeneous distribution of alloy nanostructures in the presence of Pt and Pd metallic phases. The improved electrocatalytic activity for the electro-oxidation reactions of methanol and formic acid as chemical fuels might be attributed to the cubic alloy nanostructures. Furthermore, the cubic PtPd alloy nanoparticles as electrocatalysts exhibit excellent stability for electro-oxidation reactions.

  19. GLYCOLIC - FORMIC ACID FLOWSHEET DEVELOPMENT

    Energy Technology Data Exchange (ETDEWEB)

    Pickenheim, B.; Stone, M.; Newell, J.

    2010-11-08

    Flowsheet testing was performed to further develop the nitric/glycolic/formic acid flowsheet as an alternative to the nitric/formic flowsheet currently being processed at the DWPF. This new flowsheet has shown that mercury can be removed in the Sludge Receipt and Adjustment Tank (SRAT) with minimal hydrogen generation. All other processing objectives were also met, including greatly reducing the Slurry Mix Evaporator (SME) product yield stress as compared to the baseline nitric/formic flowsheet. Eight runs were performed in total, including the baseline run. The baseline nitric/formic flowsheet run was extremely difficult to process under existing DWPF acceptance criteria with this simulant at the HM levels of noble metals. While nitrite was destroyed and mercury was removed to near the DWPF limit, the rheology of the SRAT and SME products were well above design basis and hydrogen generation far exceeded the DWPF limit. In addition, mixing during the SME cycle was very poor. In this sense, the nitric/glycolic/formic acid flowsheet represents a significant upgrade over the current flowsheet. In the nitric/glycolic/formic flowsheet runs, mercury was successfully removed with almost no hydrogen generation and the SRAT and SME products yield stresses were within process limits or previously processed ranges. It is recommended that DWPF continue to support development of the nitric/glycolic/formic flowsheet. Although experience is limited at this time, this flowsheet meets or outperforms the current flowsheet in many regards, including off-gas generation, mercury removal, product rheology and general ease of processing. Additional flowsheet testing will allow for a more thorough understanding of the chemistry and effectiveness of the flowsheet over a range of sludge compositions and formic/glycolic ratios. This testing will also show whether the REDOX and metal solubility concerns with this change in the flowsheet can be addressed by just adjusting the volumes of

  20. 21 CFR 573.480 - Formic acid.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Formic acid. 573.480 Section 573.480 Food and... Listing § 573.480 Formic acid. Formic acid may be safely used as a preservative in hay crop silage in an.... The top foot of silage stored should not contain formic acid and silage should not be fed to livestock...

  1. Preparation of the Pd/graphene composite materials and performance investigation of formic acid and methanol electro-oxidation%Pd/石墨烯复合材料的制备及电催化甲酸和甲醇性能研究

    Institute of Scientific and Technical Information of China (English)

    范建凤; 王琳; 王丽静; 李灵星; 王燕飞

    2016-01-01

    Preparation of graphite oxide by electrolytic process of high pure graphite rod system,the oxidation of graphite in ultra pure water ultrasonic forming stable dispersions of graphene oxide. Preparation of Pd/graphene nanocomposite material by direct electrodeposition:Palladium chloride used as precursor was added in a GO solution as electrolyte for carrying out the synthesis of Pd/graphene nanoparticle composite materials. The surface morphology and phase composition were characterized by scanning elec-tron microscopy(SEM),X-ray diffraction(XRD)and UV visible spectrophotometer(UV-vis). Using cyclic voltammetry(CV)and chronoamperometry( CA) to study the electrocatalytic oxidation activity of Pd/graphene modified electrode for formic acid and meth-anol. The testing results indicate:compared with Pd nanoparticles modified electrode,electrocatalytic oxidation activity of Pd/gra-phene modified electrode for formic acid and methanol has greatly improved.%通过电解高纯石墨棒的方法制备氧化石墨,将氧化石墨在超纯水中超声,形成稳定的氧化石墨烯分散液。以氧化石墨烯分散液和氯化钯作为前驱体,采用一步电沉积法制备Pd/石墨烯纳米复合材料。用扫描电子显微镜( SEM)、X射线衍射仪( XRD)及紫外可见分光光度计( UV-vis)对物质的表面形貌及物相组成进行表征分析。用循环伏安法( CV)和计时电流法( CA)研究了Pd/石墨烯催化剂对甲酸和甲醇的电催化氧化活性。结果表明:与纳米钯修饰电极相比,Pd/石墨烯修饰电极对甲酸及甲醇的电催化氧化活性有了极大的提高。

  2. 21 CFR 186.1316 - Formic acid.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Formic acid. 186.1316 Section 186.1316 Food and... Substances Affirmed as GRAS § 186.1316 Formic acid. (a) Formic acid (CH2O2, CAS Reg. No. 64-18-6) is also referred to as methanoic acid or hydrogen carboxylic acid. It occurs naturally in some insects and is...

  3. Ternary Pd-Ni-P hybrid electrocatalysts derived from Pd-Ni core-shell nanoparticles with enhanced formic acid oxidation activity.

    Science.gov (United States)

    Liang, Xin; Liu, Bo; Zhang, Juntao; Lu, Siqi; Zhuang, Zhongbin

    2016-09-25

    Ternary Pd-Ni-P hybrid electrocatalysts were synthesized through low temperature phosphidation of Pd-Ni core-shell nanoparticles. They show enhanced formic acid electro-oxidation activity compared to Pd, Pd-Ni and Pd-P nanoparticles, which is ascribed to the synergistic effect of the Ni and P components with Pd.

  4. The Mechanism of Direct Formic Acid Fuel Cell Using Pd, Pt and Pt-Ru

    Science.gov (United States)

    Kamiya, Nobuyuki; Liu, Yan; Mitsushima, Shigenori; Ota, Ken-Ichiro; Tsutsumi, Yasuyuki; Ogawa, Naoya; Kon, Norihiro; Eguchi, Mika

    The electro-oxidation of formic acid, 2-propanol and methanol on Pd black, Pd/C, Pt-Ru/C and Pt/C has been investigated to clear the reaction mechanism. It was suggested that the formic acid is dehydrogenated on Pd surface and the hydrogen is occluded in the Pd lattice. Thus obtained hydrogen acts like pure hydrogen supplied from the outside and the cell performance of the direct formic acid fuel cell showed as high as that of a hydrogen-oxygen fuel cell. 2-propanol did not show such dehydrogenation reaction on Pd catalyst. Platinum and Pt-Ru accelerated the oxidation of C-OH of 2-propanol and methanol. Slow scan voltammogram (SSV) and chronoamperometry measurements showed that the activity of formic acid oxidation increased in the following order: Pd black > Pd 30wt.%/C > Pt50wt.%/C > 27wt.%Pt-13wt.%Ru/C. A large oxidation current for formic acid was found at a low overpotential on the palladium electrocatalysts. These results indicate that formic acid is mainly oxidized through a dehydrogenation reaction. For the oxidation of 2-propanol and methanol, palladium was not effective, and 27wt.%Pt-13wt.%Ru/C showed the best oxidation activity.

  5. Electrocatalysis by nanoparticles: Oxidation of formic acid at manganese oxide nanorods-modified Pt planar and nanohole-arrays

    Directory of Open Access Journals (Sweden)

    Mohamed S. El-Deab

    2010-01-01

    Full Text Available The electro-oxidation of formic acid (an essential reaction in direct formic acid fuel cells is a challenging process because of the deactivation of anodes by the adsorption of the poisoning intermediate carbon monoxide (CO. Pt electrodes in two geometries (planar and nanohole-array were modified by the electrodeposition of manganese oxide nanorods (nano-MnOx. The modified Pt electrodes were then tested for their electrocatalytic activity through the electro-oxidation of formic acid in a solution of pH 3.45. Two oxidation peaks (Ipd and Ipind were observed at 0.2 and 0.55 V, respectively; these were assigned to the direct and indirect oxidative pathways. A significant enhancement of the direct oxidation of formic acid to CO2 was observed at the modified electrodes, while the formation of the poisoning intermediate CO was suppressed. Ipd increases with surface coverage (θ of nano-MnOx with a concurrent depression of Ipind. An increase in the ratio Ipd/ν1/2 with decreasing potential scan rate (ν indicates that the oxidation process proceeds via a catalytic mechanism. The modification of Pt anodes with manganese oxide nanorods results in a significant improvement of the electrocatalytic activity along with a higher tolerance to CO. Thus nano-MnOx plays a crucial role as a catalytic mediator which facilitates the charge transfer during the direct oxidation of formic acid to CO2.

  6. A preliminary study of the electro-oxidation of L-ascorbic acid on polycrystalline silver in alkaline solution

    Science.gov (United States)

    Majari Kasmaee, L.; Gobal, F.

    Electrochemical oxidation of L-ascorbic acid on polycrystalline silver in alkaline aqueous solutions is studied by cyclic voltammetry (CV), chronoamperometry (CA) and impedance spectroscopy (IS). The anodic electro-oxidation starts at -500 mV versus SCE and shows continued anodic oxidation in the cathodic half cycle in the CV regime signifying slowly oxidizing adsorbates. Diffusion coefficient of ascorbate ion measured under both voltammetric regimes is around 1.4 × 10 -5 cm 2 s -1. Impedance spectroscopy measures the capacitances associated with double layer and adsorption around 50 μF cm -2 and 4 mF cm -2 as well as the adsorption and decomposition resistances (rates).

  7. Importance of acid-base equilibrium in electrocatalytic oxidation of formic acid on platinum.

    Science.gov (United States)

    Joo, Jiyong; Uchida, Taro; Cuesta, Angel; Koper, Marc T M; Osawa, Masatoshi

    2013-07-10

    Electro-oxidation of formic acid on Pt in acid is one of the most fundamental model reactions in electrocatalysis. However, its reaction mechanism is still a matter of strong debate. Two different mechanisms, bridge-bonded adsorbed formate mechanism and direct HCOOH oxidation mechanism, have been proposed by assuming a priori that formic acid is the major reactant. Through systematic examination of the reaction over a wide pH range (0-12) by cyclic voltammetry and surface-enhanced infrared spectroscopy, we show that the formate ion is the major reactant over the whole pH range examined, even in strong acid. The performance of the reaction is maximal at a pH close to the pKa of formic acid. The experimental results are reasonably explained by a new mechanism in which formate ion is directly oxidized via a weakly adsorbed formate precursor. The reaction serves as a generic example illustrating the importance of pH variation in catalytic proton-coupled electron-transfer reactions.

  8. Formic Acid as a Hydrogen Energy Carrier

    KAUST Repository

    Eppinger, Jorg

    2016-12-15

    The high volumetric capacity (S3 g H-2/L) and its low toxicity and flammability under ambient conditions make formic acid a promising hydrogen energy carrier. Particularly, in the past decade, significant advancements have been achieved in catalyst development for selective hydrogen generation from formic acid. This Perspective highlights the advantages of this approach with discussions focused on potential applications in the transportation sector together with analysis of technical requirements, limitations, and costs.

  9. Photoassisted enhancement of the electrocatalytic oxidation of formic acid on platinized TiO₂ nanotubes.

    Science.gov (United States)

    Mojumder, Nazrul; Sarker, Swagotom; Abbas, Syed Arslan; Tian, Zong; Subramanian, Vaidyanathan Ravi

    2014-04-23

    A solvothermal method is used to deposit Pt nanoparticles on anodized TiO2 nanotubes (T_NT). Surface characterization using SEM, EDX, and XRD indicates the formation of polycrystalline TiO2 nanotubes of 110 ± 10 nm diameter with Pt nanoparticle islands. The application of the T_NT/Pt photoanode has been examined toward simultaneous electrooxidation and photo(electro)oxidation of formic acid (HCOOH). Upon UV-vis photoillumination, the T_NT/Pt photoelectrode generates a current density of 72 mA/cm(2), which is significantly higher (∼39-fold) than that of the T_NT electrode (1.85 mA/cm(2)). This boosting in the overall current is attributable to the enhanced oxidation of formic acid at the T_NT/Pt-electrolyte interface. Further, a series of cyclic voltammetric (CV) responses, of which each anodic scan is switched to photoillumination at a certain applied bias (i.e., 0.2 V, 0.4 V, etc.), is used to identify the role of T_NT/Pt as a promoter for the photoelectrooxidation of formic acid and understand a carbon monoxide (CO)-free pathway. Chronoamperometric (j/t) measurements demonstrate the evidence of an external bias dependent variation in the time lag during the current stabilization. An analysis of the CV plots and j/t profiles suggests the existence of both the charge-transfer controlled process and the diffusion-controlled process during formic acid photoelectrooxidation.

  10. Deactivation/reactivation of a Pd/C catalyst in a direct formic acid fuel cell (DFAFC): Use of array membrane electrode assemblies

    Science.gov (United States)

    Yu, Xingwen; Pickup, Peter G.

    Palladium-based catalysts exhibit high activity for formic acid oxidation, but their catalytic activity decreases quite rapidly under direct formic acid fuel cell (DFAFC) operating conditions. This paper presents a systematic study of the deactivation and electrochemical reactivation of a carbon supported palladium catalyst (Pd/C) employing anode arrays in a DFAFC. Deactivation of Pd/C is caused by the electro-oxidation of the formic acid, and does not occur significantly at open circuit. Its rate increases sharply with increasing formic acid concentration but is only dependent on potential at high cell voltages. Reactivation can be achieved by driving the cell voltage to a reverse polarity of -0.2 V or higher. The use of array membrane electrode assemblies allows the rapid generation of statistically significant information on differences between catalysts, and the effects of operational parameters on the deactivation and reactivation processes.

  11. Electrochemical Reduction Reactions Involving Formic Acid.

    Science.gov (United States)

    1984-03-08

    INVOLVING FORMIC ACID by M. H. Mile3, A. N. Fletcher, and G. E. McManis Accepted for Publication in Journal of Electroanalytical Chemistry and...Report) IS. SUPPLEMENTARY NOTES ACCEPTED FOR PUBLICATION IN THE JOURNAL OF ELECTROANALYTICAL CHEMISTRY AND INTERFACIAL ELECTROCHEMISTRY 19. KEY WORDS

  12. Electricity generation devices using formic acid

    KAUST Repository

    Huang, Kuo-Wei

    2017-06-22

    The present disclosure relates generally to new forms of portable energy generation devices and methods. The devices are designed to covert formic acid into released hydrogen, alleviating the need for a hydrogen tank as a hydrogen source for fuel cell power.

  13. Enhancement of anodic oxidation of formic acid on palladium decorated Pt/C catalyst

    Science.gov (United States)

    Wu, Yan Ni; Liao, Shi Jun; Su, Yun Lan; Zeng, Jian Huang; Dang, Dai

    A palladium decorated Pt/C catalyst, Pt@Pd/C, is prepared by a colloidal approach with a small amount of platinum as core. It is found that the catalyst shows excellent activity towards anodic oxidation of formic acid at room temperature and its activity is 60% higher than that of Pd/C. Decoration of palladium shell on the platinum core is supported by XPS results. Due to the use of platinum as core, active components are dispersed very well and the particle sizes are smaller than those of Pd/C. The cyclic voltammetry measurement clearly shows synthetic electro-oxidation effects of formic acid on Pt@Pd/C. It is speculated that the high performance of Pt@Pd/C may result from the unique core-shell structure and synergistic effect of Pt and Pd at the interface. The preparation method for Pt@Pd/C reported in this work will provide additional options for the design of catalysts for direct formic acid fuel cell (DFAFC).

  14. Novel integrated electrodialysis/electro-oxidation process for the efficient degradation of 2,4-dichlorophenoxyacetic acid.

    Science.gov (United States)

    Raschitor, A; Llanos, J; Cañizares, P; Rodrigo, M A

    2017-09-01

    This work presents a novel approach of wastewater treatment technology that consists of a combined electrodialysis/electro-oxidation process, specially designed to allow increasing the efficiency in the oxidation of ionic organic pollutants contained in diluted waste. Respect to conventional electrolysis, the pollutant is simultaneously concentrated and oxidized, enhancing the performance of the cell due to the higher concentration achieved in the nearness of the anode. A proof of concept is tested with the ionic pesticide 2,4-D (2,4-dichlorophenoxyacetic acid) and results show that the efficiency of this new technology overcomes that electrolysis by more than double, regardless the supporting electrolyte used (either NaCl or Na2SO4). Moreover, the removal rate of 2,4-D when using NaCl was found to be more efficient, due to the best performance of the electrode material selected (DSA(®)) towards the formation of oxidants in chloride supporting electrolyte. These results open the way for overcoming the efficiency limitations of electrochemical treatment processes for the treatment of solutions with low concentrated ionic pollutants. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Porous AgPt@Pt Nanooctahedra as an Efficient Catalyst toward Formic Acid Oxidation with Predominant Dehydrogenation Pathway.

    Science.gov (United States)

    Jiang, Xian; Yan, Xiaoxiao; Ren, Wangyu; Jia, Yufeng; Chen, Jianian; Sun, Dongmei; Xu, Lin; Tang, Yawen

    2016-11-16

    For direct formic acid fuel cells (DFAFCs), the dehydrogenation pathway is a desired reaction pathway, to boost the overall cell efficiency. Elaborate composition tuning and nanostructure engineering provide two promising strategies to design efficient electrocatalysts for DFAFCs. Herein, we present a facile synthesis of porous AgPt bimetallic nanooctahedra with enriched Pt surface (denoted as AgPt@Pt nanooctahedra) by a selective etching strategy. The smart integration of geometric and electronic effect confers a substantial enhancement of desired dehydrogenation pathway as well as electro-oxidation activity for the formic acid oxidation reaction (FAOR). We anticipate that the obtained nanocatalyst may hold great promises in fuel cell devices, and furthermore, the facile synthetic strategy demonstrated here can be extendable for the fabrication of other multicomponent nanoalloys with desirable morphologies and enhanced electrocatalytic performances.

  16. La2O3 Promoted Pd/rGO Electro-catalysts for Formic Acid Oxidation.

    Science.gov (United States)

    Ali, Hassan; Kanodarwala, Fehmida K; Majeed, Imran; Stride, John Arron; Nadeem, Muhammad Arif

    2016-11-30

    High activity, a low rate of CO poisoning, and long-term stability of Pd electro-catalysts are necessary for practical use as an anode material in direct formic acid fuel cells. Achieving a high degree of Pd nanoparticle dispersion on a carbon support, without agglomeration, while maintaining a facile electron transfer through the catalyst surface are two challenging tasks to be overcome in fulfilling this aim. Herein, we report the effect of addition of La/La-oxides on the efficiency of Pd nanoparticles supported on reduced graphene oxide (rGO) for formic acid electro-oxidation reaction. A series of electro-catalysts with different Pd-La molar ratios were successfully synthesized and characterized using a range of techniques including PXRD, XPS, TEM, FTIR, and Raman spectroscopy and then tested as anode materials for direct formic acid fuel cells. We explore that the lanthanum species (La/La-oxide) significantly promote the activity and stability of Pd catalyst toward electrocatalytic oxidation of formic acid. The metallic ratio is found to be critical, and the activity order of various catalysts is observed as follows; Pd30La70/rGO > Pd80La20/rGO > Pd70La30 rGO. The obtained mass specific activity for Pd30La70/rGO (986.42 A/g) is 2.18 times higher than that for Pd/rGO (451 A/g) and 16 times higher than that for Pd/C (61.5 A/g) at given onset peak potentials. The high activity and stability of the electro-catalysts are attributed to the uniform dispersion of Pd nanoparticles over the rGO support, as evidenced from TEM images. It is believed that the role of La species in promoting the catalyst activity is to disperse the catalyst particles during synthesis and to facilitate the electron transfer via providing a suitable pathway during electrochemical testing.

  17. Kinetics of wet oxidation of formic acid and acetic acid

    Energy Technology Data Exchange (ETDEWEB)

    Shende, R.V.; Mahajani, V.V. [Univ. of Mumbai (India). Dept. of Chemical Technology

    1997-11-01

    Oxidation of lower molecular weight carboxylic acids such as formic, acetic, glyoxalic, and oxalic acids is often the rate-controlling step during wet oxidation (WO) of an aqueous waste stream exhibiting very high chemical oxygen demand (COD). The kinetics of WO of formic acid was studied in the absence and presence of a cupric sulfate as catalyst in the temperature range 150--240 C and oxygen partial pressure range 0.345--1.380 MPa. Wet oxidation of acetic acid was carried out in the presence of cupric sulfate in the temperature range 215--235 C. Homogeneous copper sulfate was found to be a very good catalyst for oxidation of formic acid and acetic acid.

  18. Pretreatment on Corn Stover with Low Concentration of Formic Acid

    DEFF Research Database (Denmark)

    Xu, Jian; Thomsen, Mette Hedegaard; Thomsen, Anne Belinda

    2009-01-01

    the cellulose easily degraded into sugars and further fermented to ethanol. In this work, hydrothermal pretreatment on corn stover at 195 degrees for 15 min with and without lower concentration of formic acid was compared in terms of sugar recoveries and ethanol fermentation. For pretreatment with formic acid...... pretreatment without formic acid. Toxicity tests of liquor parts showed that there were no inhibitions found for both pretreatment conditions. After simultaneous saccharification and fermentation (SSF) of the pretreated corn stover with Baker's yeast, the highest ethanol yield of 76.5% of the theoretical...... was observed from corn stover pretreated at 195 degrees for 15min with formic acid....

  19. Electrodeposition of Pd catalyst layer on graphite rod electrodes for direct formic acid oxidation

    Science.gov (United States)

    Zhang, Biao; Ye, Dingding; Li, Jun; Zhu, Xun; Liao, Qiang

    2012-09-01

    An electrodeposition method for preparing the Pd catalyst layer on graphite rod electrodes for direct formic acid oxidation is proposed in this study. This method consists of a repeated procedure involving the electrodeposition of Pd catalyst onto the graphite rods, followed by Nafion coating (RENC). The structural features and electrocatalytic properties of the electrode were extensively investigated. X-ray diffraction (XRD) and scanning electron microscopy (SEM) results show that coating the electrode with Nafion during each electrodepositing step plays a crucial role on the morphology, particle size and crystallinity of the electrocatalysts. Although the commercial Pd catalyst has the smaller particle size and more uniform distribution than that prepared by RENC, the RENC electrode exhibits almost the same electrochemical surface area, a better performance and durability toward formic acid electro-oxidation. These results can be attributed to the improved catalyst utilization resulting from the multi-layer structure and the predominance of the highly active Pd (111) crystallite phase on the surface of the catalyst layer.

  20. Sol-gel-modified boron-doped diamond surfaces for methanol and ethanol electro-oxidation in acid medium

    Science.gov (United States)

    Salazar-Banda, G. R.; Suffredini, H. B.; Calegaro, M. L.; Tanimoto, S. T.; Avaca, L. A.

    Studies of the methanol and ethanol electro-oxidation reactions on boron-doped diamond (BDD) electrode surfaces modified with Pt, Pt-RuO 2 and Pt-RuO 2-RhO 2 by the sol-gel method are reported here. The materials were initially characterized by X-ray diffraction (XRD), atomic force microscopy (AFM), scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDX). The XRD analyses indicate that the sol-gel method produces nano-sized deposits on the BDD surfaces. These deposits also form nano-clusters with a size of ca. 100 nm as observed by SEM and AFM. The EDX maps showed that the metals are homogeneously distributed on the BDD surface and have a composition close to the expected one. Cyclic voltammetry experiments in acid medium revealed that the CO poisoning effect for the methanol and the ethanol oxidation reactions is largely inhibited on the Pt-RuO 2-RhO 2/BDD electrode showing the positive contribution of the rhodium oxide to the electrocatalysts performance in these reactions. Potentiostatic polarization curves and the corresponding Tafel plots showed that the addition of RuO 2 and RhO 2 to Pt/BDD produces a more reactive electrocatalyst that adsorbs methanol and ethanol more efficiently and changes the reactions onsets by 120 or 180 mV towards less positive potentials, respectively. Moreover, the stationary current density measured at a fixed potential for ethanol oxidation on the Pt-RuO 2-RhO 2/BDD composite electrode is more than one order of magnitude larger than on a Pt/BDD surface. In addition, chronoamperometric experiments indicate that on those composite electrodes the effect of CO poisoning only appears after a considerable amount of charge has passed through the interface. Consequently, the catalyst containing Pt, RuO 2 and RhO 2 deposited on BDD by the sol-gel method is a very promising composite material to be used in fuel cell anodes.

  1. Acute formic acid poisoning in a rubber plantation worker

    Directory of Open Access Journals (Sweden)

    Dattatrai Kashinath More

    2014-01-01

    Full Text Available Among the workers in a rubber plantation in South India, ingestion of formic acid either accidentally or with suicidal intention is a common problem. Formic acid is diluted and used for coagulation of rubber latex. Easy availability makes formic acid a common poison. The aim of this article is to study the case of formic acid poisoning, its complications and management. Patient was managed symptomatically. Antidote was not used and no nasogastric aspiration was done. Patient had dysphagia; nutrition was maintained with open gastrostomy done on day 5 and subsequent enteral feeding. Measures to prevent anticipated complications were undertaken. Stricture of the esophagus is a common complication leading to long-term morbidity. After initial management, all patients should be on follow-up for prevention and management of strictures. Workers should be educated on complications of formic acid poisoning and easy availability should be curtailed by enforcing remedial measures.

  2. Enhanced electroactivity of Pd nanocrystals supported on H3PMo12O40/carbon for formic acid electrooxidation

    Science.gov (United States)

    Zhao, Xiao; Zhu, Jianbing; Liang, Liang; Liu, Changpeng; Liao, Jianhui; Xing, Wei

    2012-07-01

    The preparation of highly dispersed precious metal catalysts is an important subject for fuel cell applications. Here, using a phosphomolybdic acid (PMo12)-assisted method, a Pd-PMo12/C catalyst with uniform Pd nanoparticles is prepared. The TEM results show that the presence of PMo12 facilitates the formation of uniform Pd particles with an average particle size of 3.2 nm. More importantly, the Pd-PMo12/C catalyst displays an enhanced activity and stability for formic acid electro-oxidation and a better tolerance toward CO poisoning than Pd nanocatalysts prepared with sodium citrate as a stabilizer. A combination of the composition and structure analyses show that the reasons for the improved electro-catalytic activity of the Pd-PMo12/C catalyst involve the metal-support interaction, the richer Pd oxide/hydrous oxide content and the inherent properties of PMo12.

  3. Carbon nanotubes-Nafion composites as Pt-Ru catalyst support for methanol electro-oxidation in acid media

    Institute of Scientific and Technical Information of China (English)

    Shengzhou Chen; Fei Ye; Weiming Lin

    2009-01-01

    Carbon nanotubes-Nafion (CNTs-Nafion) composites were prepared by impregnated CNTs with Nafion in ethanol solution and characterized by FT-IR. Pt-Ru catalysts supported on CNTs-Nafion composites were synthesized by microwave-assisted polyol process. The physical and electrochemical properties of the catalysts were characterized by X-ray diffraction (XRD), transmission electron microscope (TEM), CO stripping voltammetry, cyclic voltammetry (CV) and chronoamperometry (CA). The results showed that the Nafion incorporation in CNTs-Nafion composites did not significantly alter the oxygen-containing groups on the CNTs surface. The Pt-Ru catalyst supported on CNTs-Nafion composites with 2 wt% Nafion showed good dispersion and the best CO oxidation and methanol electro-oxidation activities.

  4. Formic acid oxidation at platinum-bismuth catalysts

    National Research Council Canada - National Science Library

    Popović Ksenija Đ; Lović Jelena D

    2015-01-01

    ..., activity, and stability. The oxidation of formic acid is of permanent interest as a model reaction for the mechanistic understanding of the electrooxidation of small organic molecules and because of its technical relevance...

  5. Selective hydrogen production from formic acid decomposition on Pd-Au bimetallic surfaces.

    Science.gov (United States)

    Yu, Wen-Yueh; Mullen, Gregory M; Flaherty, David W; Mullins, C Buddie

    2014-08-06

    Pd-Au catalysts have shown exceptional performance for selective hydrogen production via HCOOH decomposition, a promising alternative to solve issues associated with hydrogen storage and distribution. In this study, we utilized temperature-programmed desorption (TPD) and reactive molecular beam scattering (RMBS) in an attempt to unravel the factors governing the catalytic properties of Pd-Au bimetallic surfaces for HCOOH decomposition. Our results show that Pd atoms at the Pd-Au surface are responsible for activating HCOOH molecules; however, the selectivity of the reaction is dictated by the identity of the surface metal atoms adjacent to the Pd atoms. Pd atoms that reside at Pd-Au interface sites tend to favor dehydrogenation of HCOOH, whereas Pd atoms in Pd(111)-like sites, which lack neighboring Au atoms, favor dehydration of HCOOH. These observations suggest that the reactivity and selectivity of HCOOH decomposition on Pd-Au catalysts can be tailored by controlling the arrangement of surface Pd and Au atoms. The findings in this study may prove informative for rational design of Pd-Au catalysts for associated reactions including selective HCOOH decomposition for hydrogen production and electro-oxidation of HCOOH in the direct formic acid fuel cell.

  6. GLYCOLIC-FORMIC ACID FLOWSHEET FINAL REPORT FOR DOWNSELECTION DECISION

    Energy Technology Data Exchange (ETDEWEB)

    Lambert, D.; Pickenheim, B.; Stone, M.; Newell, J.; Best, D.

    2011-03-10

    Flowsheet testing was performed to develop the nitric-glycolic-formic acid flowsheet (referred to as the glycolic-formic flowsheet throughout the rest of the report) as an alternative to the nitric/formic flowsheet currently being processed at the DWPF. This new flowsheet has shown that mercury can be removed in the Sludge Receipt and Adjustment Tank (SRAT) with minimal hydrogen generation. All processing objectives were also met, including greatly reducing the Slurry Mix Evaporator (SME) product yield stress as compared to the baseline nitric/formic flowsheet. Forty-six runs were performed in total, including the baseline run and the melter feed preparation runs. Significant results are summarized. The baseline nitric/formic flowsheet run, using the SB6 simulant produced by Harrell was extremely difficult to process successfully under existing DWPF acceptance criteria with this simulant at the HM levels of noble metals. While nitrite was destroyed and mercury was removed to near the DWPF limit, the rheology of the SRAT and SME products were well above design basis and hydrogen generation far exceeded the DWPF SRAT limit. In addition, mixing during the SME cycle was very poor. In this sense, the nitric/glycolic/formic acid flowsheet represents a significant upgrade over the current flowsheet. Mercury was successfully removed with almost no hydrogen generation and the SRAT and SME products yield stresses were within process limits or previously processed ranges. The glycolic-formic flowsheet has a very wide processing window. Testing was completed from 100% to 200% of acid stoichiometry and using a glycolic-formic mixture from 40% to 100% glycolic acid. The testing met all processing requirements throughout these processing windows. This should allow processing at an acid stoichiometry of 100% and a glycolic-formic mixture of 80% glycolic acid with minimal hydrogen generation. It should also allow processing endpoints in the SRAT and SME at significantly higher

  7. Hydrogen Storage in the Carbon Dioxide - Formic Acid Cycle.

    Science.gov (United States)

    Fink, Cornel; Montandon-Clerc, Mickael; Laurenczy, Gabor

    2015-01-01

    This year Mankind will release about 39 Gt carbon dioxide into the earth's atmosphere, where it acts as a greenhouse gas. The chemical transformation of carbon dioxide into useful products becomes increasingly important, as the CO(2) concentration in the atmosphere has reached 400 ppm. One approach to contribute to the decrease of this hazardous emission is to recycle CO(2), for example reducing it to formic acid. The hydrogenation of CO(2) can be achieved with a series of catalysts under basic and acidic conditions, in wide variety of solvents. To realize a hydrogen-based charge-discharge device ('hydrogen battery'), one also needs efficient catalysts for the reverse reaction, the dehydrogenation of formic acid. Despite of the fact that the overwhelming majority of these reactions are carried out using precious metals-based catalysts (mainly Ru), we review here developments for catalytic hydrogen evolution from formic acid with iron-based complexes.

  8. Low contaminant formic acid fuel for direct liquid fuel cell

    Science.gov (United States)

    Masel, Richard I.; Zhu, Yimin; Kahn, Zakia; Man, Malcolm

    2009-11-17

    A low contaminant formic acid fuel is especially suited toward use in a direct organic liquid fuel cell. A fuel of the invention provides high power output that is maintained for a substantial time and the fuel is substantially non-flammable. Specific contaminants and contaminant levels have been identified as being deleterious to the performance of a formic acid fuel in a fuel cell, and embodiments of the invention provide low contaminant fuels that have improved performance compared to known commercial bulk grade and commercial purified grade formic acid fuels. Preferred embodiment fuels (and fuel cells containing such fuels) including low levels of a combination of key contaminants, including acetic acid, methyl formate, and methanol.

  9. Ab initio and kinetic modeling studies of formic acid oxidation

    DEFF Research Database (Denmark)

    Marshall, Paul; Glarborg, Peter

    2015-01-01

    A detailed chemical kinetic model for oxidation of formic acid (HOCHO) in flames has been developed, based on theoretical work and data from literature. Ab initio calculations were used to obtain rate coefficients for reactions of HOCHO with H, O, and HO2. Modeling predictions with the mechanism...... as the fate of HOCO, determines the oxidation rate of formic acid. At lower temperatures HO2, formed from HOCO + O2, is an important chain carrier and modeling predictions become sensitive to the HOCHO + HO2 reaction. © 2014 The Combustion Institute....... on calculations with the kinetic model. Formic acid is consumed mainly by reaction with OH, yielding OCHO, which dissociates rapidly to CO2 + H, and HOCO, which may dissociate to CO + OH or CO2 + H, or react with H, OH, or O2 to form more stable products. The branching fraction of the HOCHO + OH reaction, as well...

  10. Enhanced formic acid oxidation on Cu-Pd nanoparticles

    Science.gov (United States)

    Dai, Lin; Zou, Shouzhong

    Developing catalysts with high activity and high resistance to surface poisoning remains a challenge in direct formic acid fuel cell research. In this work, copper-palladium nanoparticles were formed through a galvanic replacement process. After electrochemically selective dissolution of surface Cu, Pd-enriched Cu-Pd nanoparticles were formed. These particles exhibit much higher formic acid oxidation activities than that on pure Pd nanoparticles, and they are much more resistant to the surface poisoning. Possible mechanisms of catalytic activity enhancement are briefly discussed.

  11. Hydrolysis of bamboo fiber cellulose in formic acid

    Institute of Scientific and Technical Information of China (English)

    Yong SUN; Lu LIN; Haibo DENG; Hong PENG; Jiazhe LI; Runchang SUN; Shijie LIU

    2008-01-01

    Bamboo fiber dissolution and hydrolysis in formic acid were studied. After hydrolysis, formic acid can be recovered in a clean state and reused. Solid water-soluble sugars were obtained. After being dipped into the formic acid solution for 30 min, the bamboo fibers started to swell. After one hour, the bamboo fibers gradually started to dissolve in the formic acid solution. The color of the liquor/solution turned green and dark. In the end, the bamboo fibers became thoroughly dissolved in the liquor after four hours. There was a clear hierarch-ical tissue structure on the fiber surface, as observed by AFM before treatment. The differential structure disap-peared after 30 min of treatment. The fiber surface became plump and glossy. After six hours reaction at 60℃, the solid sugar mixture recovered contained glu-cose, cellobiose, cellotriose, cellotetrose, cellopentose and cellohexaose. A significant fraction of the sugar pro-ducts consisted of monomeric glucose. More than 54.5% of the bamboo fiber mass had been transformed into monomeric glucose.

  12. Thermal decomposition of dilute aqueous formic acid solutions

    DEFF Research Database (Denmark)

    Bjerre, A.B.; Sørensen, E.

    1992-01-01

    or a decarboxylation. In particular the second one is dependent on the reactor vessel used. It is shown to be catalyzed by a mixture of oxides of stainless steel components. The presence of CH3COOH or CH3CHO promotes the decomposition of HCOOH by way of both decarboxylation and oxidation. In any case formic acid...

  13. Formic acid oxidation at platinum-bismuth catalysts

    Directory of Open Access Journals (Sweden)

    Popović Ksenija Đ.

    2015-01-01

    Full Text Available The field of heterogeneous catalysis, specifically catalysis on bimetallic surfaces, has seen many advances over the past few decades. Bimetallic catalysts, which often show electronic and chemical properties that are distinct from those of their parent metals, offer the opportunity to obtain new catalysts with enhanced selectivity, activity, and stability. The oxidation of formic acid is of permanent interest as a model reaction for the mechanistic understanding of the electrooxidation of small organic molecules and because of its technical relevance for fuel cell applications. Platinum is one of the most commonly used catalysts for this reaction, despite the fact that it shows a few significant disadvantages: high cost and extreme susceptibility to poisoning by CO. To solve this problem, several approaches have been used, but generally, they all consist in the modification of platinum with a second element. Especially, bismuth has received significant attention as Pt modifier. According to the results presented in this survey dealing with the effects influencing the formic acid oxidation it was found that two types of Pt-Bi bimetallic catalysts (bulk and low loading deposits on GC showed superior catalytic activity in terms of the lower onset potential and oxidation current density, as well as exceptional stability compared to Pt. The findings in this report are important for the understanding of mechanism of formic acid electrooxidation on a bulk alloy and decorated surface, for the development of advanced anode catalysts for direct formic acid fuel cells, as well as for the synthesis of novel low-loading bimetallic catalysts. The use of bimetallic compounds as the anode catalysts is an effective solution to overcoming the problems of the formic acid oxidation current stability for long term applications. In the future, the tolerance of both CO poisoning and electrochemical leaching should be considered as the key factors in the development

  14. GLYCOLIC-FORMIC ACID FLOWSHEET SLUDGE MATRIX STUDY

    Energy Technology Data Exchange (ETDEWEB)

    Lambert, D.; Koopman, D.

    2011-06-30

    Testing was completed to demonstrate the viability of the newly developed glycolic acid/formic acid flowsheet on processing in the Defense Waste Processing Facility's (DWPF) Chemical Process Cell (CPC). The Savannah River National Laboratory (SRNL) initiated a sludge matrix study to evaluate the impact of changing insoluble solid composition on the processing characteristics of slurries in DWPF. Four sludge simulants were prepared to cover two compositional ranges in the waste. The first was high iron/low aluminum versus low iron/high aluminum (referred to as HiFe or LoFe in this report). The second was high calcium-manganese/low nickel, chromium, and magnesium versus low calcium-manganese/high nickel, chromium, and magnesium (referred to as HiMn or LoMn in this report). These two options can be combined to form four distinct sludge compositions. The sludge matrix study called for testing each of these four simulants near the minimum acid required for nitrite destruction (100% acid stoichiometry) and at a second acid level that produced significant hydrogen by noble metal catalyzed decomposition of formic acid (150% acid stoichiometry). Four simulants were prepared based on the four possible combinations of the Al/Fe and Mn-Ca/Mg-Ni-Cr options. Preliminary simulant preparation work has already been documented. The four simulants were used for high and low acid testing. Eight planned experiments (GF26 to GF33) were completed to demonstrate the viability of the glycolic-formic flowsheet. Composition and physical property measurements were made on the SRAT product. Composition measurements were made on the condensate from the Mercury Water Wash Tank (MWWT), Formic Acid Vent Condenser (FAVC), ammonia scrubber and on SRAT samples pulled throughout the SRAT cycle. Updated values for formate loss and nitrite-tonitrate conversion were found that can be used in the acid calculations for future sludge matrix process simulations with the glycolic acid/formic acid

  15. Kinetic study of formic acid oxidation on carbon supported Pd electrocatalyst

    Science.gov (United States)

    Wang, Yujiao; Wu, Bing; Gao, Ying; Tang, Yawen; Lu, Tianhong; Xing, Wei; Liu, Changpeng

    The oxidation of formic acid at the Pd/C catalyst electrode is a completely irreversible kinetic process with the reaction order of 1.0. The oxidation rate of formic acid is increased with increasing the concentration of formic acid and is decreased with increasing H + concentration. The apparent negative reaction order with respect to H + is about -0.18 or -0.04 in H 2SO 4 or HClO 4 solution respectively, because bisulfate anions would inhibit formic acid oxidation at some extent. The kinetic parameters, charge transfer coefficient and the diffusion coefficient of formic acid were obtained under the quasi steady-state conditions.

  16. A facile synthesis of MPd (M = Co, Cu) nanoparticles and their catalysis for formic acid oxidation.

    Science.gov (United States)

    Mazumder, Vismadeb; Chi, Miaofang; Mankin, Max N; Liu, Yi; Metin, Önder; Sun, Daohua; More, Karren L; Sun, Shouheng

    2012-02-08

    Monodisperse CoPd nanoparticles (NPs) were synthesized and studied for catalytic formic acid (HCOOH) oxidation (FAO). The NPs were prepared by coreduction of Co(acac)(2) (acac = acetylacetonate) and PdBr(2) at 260 °C in oleylamine and trioctylphosphine, and their sizes (5-12 nm) and compositions (Co(10)Pd(90) to Co(60)Pd(40)) were controlled by heating ramp rate, metal salt concentration, or metal molar ratios. The 8 nm CoPd NPs were activated for HCOOH oxidation by a simple ethanol wash. In 0.1 M HClO(4) and 2 M HCOOH solution, their catalytic activities followed the trend of Co(50)Pd(50) > Co(60)Pd(40) > Co(10)Pd(90) > Pd. The Co(50)Pd(50) NPs had an oxidation peak at 0.4 V with a peak current density of 774 A/g(Pd). As a comparison, commercial Pd catalysts showed an oxidation peak at 0.75 V with peak current density of only 254 A/g(Pd). The synthesis procedure could also be extended to prepare CuPd NPs when Co(acac)(2) was replaced by Cu(ac)(2) (ac = acetate) in an otherwise identical condition. The CuPd NPs were less active catalysts than CoPd or even Pd for FAO in HClO(4) solution. The synthesis provides a general approach to Pd-based bimetallic NPs and will enable further investigation of Pd-based alloy NPs for electro-oxidation and other catalytic reactions. © 2012 American Chemical Society

  17. Determination of residues in honey after treatments with formic and oxalic acid under field conditions

    OpenAIRE

    Bogdanov, Stefan; Charrière, Jean-Daniel; IMDORF, Anton; KILCHENMANN, Verena; Fluri, Peter

    2002-01-01

    International audience; Formic acid and oxalic acid field trials for control of Varroa destructor were carried out in autumn according to the Swiss prescriptions during three successive years in different apiaries in Switzerland. The following parameters were determined in honey that was harvested the year after treatment: formic acid, oxalic acid and free acidity. The following range of values were found in honeys of untreated colonies: formic acid, from 17 to 284 mg/kg, n = 34; oxalic acid,...

  18. EFFICACY OF 15% FORMIC ACID ON VARROA MITES IN DIFFERENT FORMS OF APPLICATION

    Directory of Open Access Journals (Sweden)

    M MUŽA

    2002-05-01

    Full Text Available Varroa destructor is a parasitic mite of the honeybee, Apis mellifera, responsible for reduced honey and brood production, higher bee mortality in winter. Because the resistance to the acaricides and they residues to bee products, alternative products and methods have been used against Varroa. One of this methods is treatment with formic acid. Formic acid induce to Varroa mite in brood and do not leave any residues in products. Concentric formic acid (60-85% is very effective, but at higher air temperature, it has influence on bee. In the last few years, except concentric formic acid, 15 % formic acid was recommended as control of varroosis. Diluted formic acid (15% reduced the bee response to treatment. In treatment with 15% formic acid, higher air temperature and different forms of application have positive influence to they function (65 – 95%.

  19. Formic acid production from carbohydrates biomass by hydrothermal reaction

    Energy Technology Data Exchange (ETDEWEB)

    Yun, J; Kishita, A; Tohji, K; Enomoto, H [Graduate School of Environmental Studies, Tohoku University, Sendai, Miyagi 980-8579 (Japan); Jin, F, E-mail: yun@bucky1.kankyo.tohoku.ac.j [State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200091 (China)

    2010-03-01

    The formation of formic acid or formate salts by hydrothermal oxidation of model biomass materials (glucose, starch and cellulose) was investigated. All experiments were conducted in a batch reactor, made of SUS 316 tubing, providing an internal volume of 5.7 cm{sup 3}. A 30 wt% hydrogen peroxide aqueous solution was used as an oxidant. The experiments were carried out with temperature of 250{sup 0}C, reaction time varying from 0.5 min to 5 min, H{sub 2}O{sub 2} supply of 240%, and alkaline concentration varying from 0 to 1.25 M. Similar to glucose, in the cases of the oxidation of hydrothermal starch and cellulose, the addition of alkaline can also improve the yield of formic acid. And the yield were glucose>starch> cellulose in cases of with or without of alkaline addition.

  20. Onboard Catalysis of Formic Acid for Hydrogen Fueled Vehicles

    Science.gov (United States)

    Karim, Altaf; Mamoor, Muhammad

    2015-03-01

    Metal hydrides are used as a medium of hydrogen storage in hydrogen powered vehicles. Such hydride materials cannot store hydrogen more than 10 wt%. The bottleneck in this issue is the reversible storage of hydrogen at ambient temperature and pressure. Alternatively formic acid is becoming more popular medium for the onboard hydrogen production for these vehicles. Its decomposition on metal surfaces and nanostructures is considered to be a potential method to produce CO-free hydrogen at near ambient temperatures. We applied Density Functional Theory (DFT) based Kinetic Monte Carlo (KMC) simulations as our tool to study the reaction kinetics of hydrogen production from formic acid on different catalytic surfaces and nano structures (Au, Pd, Rh, Pt). Our results show that nanostructures and artificially engineered bimetallic catalysts give higher rate of hydrogen production then their monometallic counter parts under various temperature and pressure conditions.

  1. TOXICOLOGY FORMIC ACID%甲酸的毒理学

    Institute of Scientific and Technical Information of China (English)

    胡渝华; 李寿祺; 董奇男

    2003-01-01

    In order to draw up the permit limit value of Formic Acid in air of work place in China, the literatures published during the last 20 years were reviewed to understand it's physic and chemic property, kinetics, mechanism of toxic action, gen-eral toxicity, reproductive and developmental toxicity, mutagenicity, work hygienics, the cases of accidents, the concentration in ertvironmental air and the threshold limit values in different countries.

  2. Chaotic, mixed-mode and periodic oscillations during the electro-oxidation of copper in trichloroacetic acid

    Directory of Open Access Journals (Sweden)

    HAITAO CUIa

    2004-01-01

    Full Text Available The current oscillations of a copper electrode in trichloroacetic acid solutions were studied in this paper. The Cu/CCl3COOH system is a new electrochemical oscillator, showing rich dynamic behaviour on two controllable parameters: the trichloroacetic acid concentration (cCCl3COOH and the imposed potential (E. Phase trajectories were reconstructed from time series using time delay methods in order that the complex oscillations could be analyzed. Five kinds of oscillations, periodic and quasiperiodic, mixed-mode, aperiodic, small amplitude and chaotic current oscillations, were observed. The EDS (energy dispersive spectroscopy technique was used to analyze the elemental composition of the film formed on the surface of the copper electrode after the current oscillations.

  3. Metabolic analysis of the removal of formic acid by unacclimated activated sludge.

    Science.gov (United States)

    Viggi, Carolina Cruz; Dionisi, Davide; Miccheli, Alfredo; Valerio, Mariacristina; Majone, Mauro

    2010-06-01

    This paper investigates the removal of formic acid by unacclimated biomass from a municipal activated sludge wastewater treatment plant. The biomass was initially able to remove formic acid, but its removal rate and Oxygen Uptake Rate (OUR) decreased with time, until formic acid removal stopped before the formic acid had been exhausted. Formaldehyde was removed in a similar way, whereas the same biomass was simultaneously able to grow and store PHAs when acetic acid was used as substrate. Batch tests with glycine and (13)C NMR analysis were performed, showing that unacclimated biomass was not able to synthesize all the metabolic intermediates from formic acid alone. At least glycine needed to be externally supplemented, in order to activate the serine synthesis pathway. A small amount of formic acid removal in the absence of growth was also possible through formaldehyde formation and its further conversion to formalin (1,2-formaldehyde dimer), whereas no PHAs were formed.

  4. Formic acid electrooxidation on Pd in acidic solutions studied by surface-enhanced infrared absorption spectroscopy.

    Science.gov (United States)

    Miyake, Hiroto; Okada, Tatsuhiro; Samjeské, Gabor; Osawa, Masatoshi

    2008-07-07

    A mechanistic study of electrocatalytic oxidation of formic acid on Pd in sulfuric and perchloric acids is reported. Surface-enhanced infrared absorption spectroscopy in the attenuated total reflection mode (ATR-SEIRAS) shows the adsorption of CO, bridge-bonded formate, bicarbonate, and supporting anions on the electrode surface. Poisoning of the Pd surface by CO, formed by dehydration of formic acid, is very slow and scarcely affects formic acid oxidation. The anions are adsorbed more strongly in the order of (bi)sulfate > bicarbonate > perchlorate, among which the most strongly adsorbed (bi)sulfate considerably suppresses formic acid oxidation in the double layer region. The oxidation is suppressed also at higher potentials in both acids by the oxidation of the Pd surface. Adsorbed formate is detected only when formic acid oxidation is suppressed. The results show that formate is a short-lived reactive intermediate in formic acid oxidation and is hence detected when its decomposition yielding CO(2) is suppressed. The high electrocatalytic activity of Pd can be ascribed to the high tolerance to CO contamination and also high catalytic activity toward formate decomposition.

  5. Formic acid triggers the "Acid Crash" of acetone-butanol-ethanol fermentation by Clostridium acetobutylicum.

    Science.gov (United States)

    Wang, Shaohua; Zhang, Yanping; Dong, Hongjun; Mao, Shaoming; Zhu, Yan; Wang, Runjiang; Luan, Guodong; Li, Yin

    2011-03-01

    Solvent production by Clostridium acetobutylicum collapses when cells are grown in pH-uncontrolled glucose medium, the so-called "acid crash" phenomenon. It is generally accepted that the fast accumulation of acetic acid and butyric acid triggers the acid crash. We found that addition of 1 mM formic acid into corn mash medium could trigger acid crash, suggesting that formic acid might be related to acid crash. When it was grown in pH-uncontrolled glucose medium or glucose-rich medium, C. acetobutylicum DSM 1731 containing the empty plasmid pIMP1 failed to produce solvents and was found to accumulate 0.5 to 1.24 mM formic acid intracellularly. In contrast, recombinant strain DSM 1731 with formate dehydrogenase activity did not accumulate formic acid intracellularly and could produce solvent as usual. We therefore conclude that the accumulation of formic acid, rather than acetic acid and butyric acid, is responsible for the acid crash of acetone-butanol-ethanol fermentation.

  6. Fabrication of Nitrogen-Doped Mesoporous-Carbon-Coated Palladium Nanoparticles: An Intriguing Electrocatalyst for Methanol and Formic Acid Oxidation.

    Science.gov (United States)

    Ray, Chaiti; Dutta, Soumen; Sahoo, Ramkrishna; Roy, Anindita; Negishi, Yuichi; Pal, Tarasankar

    2016-05-20

    Inspired by the attractive catalytic properties of palladium and the inert nature of carbon supports in catalysis, a concise and simple methodology for in situ nitrogen-doped mesoporous-carbon-supported palladium nanoparticles (Pd/N-C) has been developed by carbonizing a palladium dimethylglyoximate complex. The as-synthesized Pd/N-C has been exfoliated as a fuel cell catalyst by studying the electro-oxidation of methanol and formic acid. The material synthesized at 400 °C,namely, Pd/N-C-400,exhibitssuperior mass activity and stability among catalysts synthesized under different carbonization temperaturesbetween300 and 500 °C. The unique 1D porous structure in Pd/N-C-400 helps better electron transport at the electrode surface, which eventually leads to about five times better catalytic activity and about two times higher stability than that of commercial Pd/C. Thus, our designed sacrificial metal-organic templatedirected pathway becomes a promising technique for Pd/N-C synthesis with superior catalytic performances. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Direct synthesis of formic acid from carbon dioxide by hydrogenation in acidic media.

    Science.gov (United States)

    Moret, Séverine; Dyson, Paul J; Laurenczy, Gábor

    2014-06-02

    The chemical transformation of carbon dioxide into useful products becomes increasingly important as CO2 levels in the atmosphere continue to rise as a consequence of human activities. In this article we describe the direct hydrogenation of CO2 into formic acid using a homogeneous ruthenium catalyst, in aqueous solution and in dimethyl sulphoxide (DMSO), without any additives. In water, at 40 °C, 0.2 M formic acid can be obtained under 200 bar, however, in DMSO the same catalyst affords 1.9 M formic acid. In both solvents the catalysts can be reused multiple times without a decrease in activity. Worldwide demand for formic acid continues to grow, especially in the context of a renewable energy hydrogen carrier, and its production from CO2 without base, via the direct catalytic carbon dioxide hydrogenation, is considerably more sustainable than the existing routes.

  8. Hydrogenation of CO2 to formic acid promoted by a diamine-functionalized ionic liquid.

    Science.gov (United States)

    Zhang, Zhaofu; Hu, Suqin; Song, Jinliang; Li, Wenjing; Yang, Guanying; Han, Buxing

    2009-01-01

    Amines to an end: The basic diamine-functionalized ionic liquid 1,3-di(N,N-dimethylaminoethyl)-2-methylimidazolium trifluoromethanesulfonate was prepared and used in the hydrogenation of CO(2) to formic acid. One mole of the ionic liquid coordinates two moles of formic acid to promote the reaction. Both the ionic liquid and catalyst can be reused directly after their separation from the formic acid produced.

  9. Carbon Sequestration: Hydrogenation of CO2 to Formic Acid

    OpenAIRE

    2016-01-01

    The concentration CO2 gas has become a great worldwide challenge because CO2 is considered as an important counterpart of greenhouse gases. The tremendous increase in the concentration of CO2 gas, elevated the worldwide temperature as well as it altered the climatic changes. Various physiochemical approached have been reported to trap the CO2 gas and the chemical conversion of CO2 to useful chemicals is one of them. This review covers the conversion of CO2 gas to formic acid. In this CO2 hydr...

  10. Carbon Sequestration: Hydrogenation of CO2 to Formic Acid

    Directory of Open Access Journals (Sweden)

    Upadhyay Praveenkumar

    2016-10-01

    Full Text Available The concentration CO2 gas has become a great worldwide challenge because CO2 is considered as an important counterpart of greenhouse gases. The tremendous increase in the concentration of CO2 gas, elevated the worldwide temperature as well as it altered the climatic changes. Various physiochemical approached have been reported to trap the CO2 gas and the chemical conversion of CO2 to useful chemicals is one of them. This review covers the conversion of CO2 gas to formic acid. In this CO2 hydrogenation reaction, both the homogeneous as well as heterogeneous catalytic systems were discussed along with the effect of solvent systems on reaction kinetics.

  11. Significant enhancement of formic acid oxidation using rhodium nanostructures.

    Science.gov (United States)

    Balan, Beena K; Sathe, Bhaskar R

    2012-12-01

    The electrocatalytic activity of as-synthesized shape selective Rh nanostructures has been demonstrated using cyclic voltammetry, revealing unique shape-dependant performance towards HCOOH oxidation. Interestingly, the enhancement factor (R) for different shapes of Rh with respect to that of commercial Rh towards formic acid oxidation ranges up to 20,000% for cubes as compared to 17,500% for pyramids and 11,000% for hexagons respectively. Mechanistic pathway for comparatively better sensitivity of cubes as compared to other shapes has been correlated with the results of X-ray diffraction.

  12. New Theoretical Insight into the Interactions and Properties of Formic Acid: Development of a Quantum-Based Pair Potential for Formic Acid.

    Energy Technology Data Exchange (ETDEWEB)

    Roszak, S; Gee, R; Balasubramanian, K; Fried, L

    2005-08-08

    We performed ab initio quantum chemical studies for the development of intra and intermolecular interaction potentials for formic acid for use in molecular dynamics simulations of formic acid molecular crystal. The formic acid structures considered in the ab initio studies include both the cis and trans monomers which are the conformers that have been postulated as part of chains constituting liquid and crystal phases under extreme conditions. Although the cis to trans transformation is not energetically favored, the trans isomer was found as a component of stable gas-phase species. Our decomposition scheme for the interaction energy indicates that the hydrogen bonded complexes are dominated by the Hartree-Fock forces while parallel clusters are stabilized by the electron correlation energy. The calculated three-body and higher interactions are found to be negligible, thus rationalizing the development of an atom-atom pair potential for formic acid based on high-level ab initio calculations of small formic acid clusters. Here we present an atom-atom pair potential that includes both intra- and inter-molecular degrees of freedom for formic acid. The newly developed pair potential is used to examine formic acid in the condensed phase via molecular dynamics simulations. The isothermal compression under hydrostatic pressure obtained from molecular dynamics simulations is in good agreement with experiment. Further, the calculated equilibrium melting temperature is found to be in good agreement with experiment.

  13. Direct formic acid microfluidic fuel cell design and performance evolution

    Science.gov (United States)

    Moreno-Zuria, A.; Dector, A.; Cuevas-Muñiz, F. M.; Esquivel, J. P.; Sabaté, N.; Ledesma-García, J.; Arriaga, L. G.; Chávez-Ramírez, A. U.

    2014-12-01

    This work reports the evolution of design, fabrication and testing of direct formic acid microfluidic fuel cells (DFAμFFC), the architecture and channel dimensions are miniaturized from a thousand to few cents of micrometers. Three generations of DFAμFFCs are presented, from the initial Y-shape configuration made by a hot pressing technique; evolving into a novel miniaturized fuel cell based on microfabrication technology using SU-8 photoresist as core material; to the last air-breathing μFFC with enhanced performance and built with low cost materials and processes. The three devices were evaluated in acidic media in the presence of formic acid as fuel and oxygen/air as oxidant. Commercial Pt/C (30 wt. % E-TEK) and Pd/C XC-72 (20 wt. %, E-TEK) were used as cathode and anode electrodes respectively. The air-breathing μFFC generation, delivered up to 27.3 mW cm-2 for at least 30 min, which is a competitive power density value at the lowest fuel flow of 200 μL min-1 reported to date.

  14. Palladium Nanoparticles Supported on Nitrogen and Sulfur Dual-Doped Graphene as Highly Active Electrocatalysts for Formic Acid and Methanol Oxidation.

    Science.gov (United States)

    Zhang, Xin; Zhu, Jixin; Tiwary, Chandra Sekhar; Ma, Zhongyuan; Huang, Huajie; Zhang, Jianfeng; Lu, Zhiyong; Huang, Wei; Wu, Yuping

    2016-05-04

    Optimized designing of highly active electrocatalysts has been regarded as a critical point to the development of portable fuel cell systems with high power density. Here we report a facile and cost-effective strategy to synthesis of ultrafine Pd nanoparticles (NPs) supported on N and S dual-doped graphene (NS-G) nanosheets as multifunctional electrocatalysts for both direct formic acid fuel cell and direct methanol fuel cell. The incorporation of N and S atoms into graphene frameworks is achieved by a thermal treatment process, followed by the controlled growth of Pd NPs via a solvothermal approach. Owning to the unique structural features as well as the strong synergistic effects, the resulting Pd/NS-G hybrid exhibits outstanding electrocatalytic performance toward both formic acid and methanol electro-oxidation, such as higher anodic peak current densities and more exceptional catalytic stability than those of Pd/Vulcan XC-72R and Pd/undoped graphene catalysts. These findings open up new possibility in the construction of advanced Pd-based catalysts, which is conducive to solving the current bottlenecks of fuel cell technologies.

  15. Formic Acid Electrooxidation by a Platinum Nanotubule Array Electrode

    Directory of Open Access Journals (Sweden)

    Eric Broaddus

    2013-01-01

    Full Text Available One-dimensional metallic nanostructures such as nanowires, rods, and tubes have drawn much attention for electrocatalytic applications due to potential advantages that include fewer diffusion impeding interfaces with polymeric binders, more facile pathways for electron transfer, and more effective exposure of active surface sites. 1D nanostructured electrodes have been fabricated using a variety of methods, typically showing improved current response which has been attributed to improved CO tolerance, enhanced surface activity, and/or improved transport characteristics. A template wetting approach was used to fabricate an array of platinum nanotubules which were examined electrochemically with regard to the electrooxidation of formic acid. Arrays of 100 and 200 nm nanotubules were compared to a traditional platinum black catalyst, all of which were found to have similar surface areas. Peak formic acid oxidation current was observed to be highest for the 100 nm nanotubule array, followed by the 200 nm array and the Pt black; however, CO tolerance of all electrodes was similar, as were the onset potentials of the oxidation and reduction peaks. The higher current response was attributed to enhanced mass transfer in the nanotubule electrodes, likely due to a combination of both the more open nanostructure as well as the lack of a polymeric binder in the catalyst layer.

  16. Study on the structure and properties of wool keratin regenerated from formic acid.

    Science.gov (United States)

    Aluigi, A; Zoccola, M; Vineis, C; Tonin, C; Ferrero, F; Canetti, M

    2007-08-01

    Structural characteristics of keratin regenerated from water (KW) and from formic (KF) acid solutions were compared. Amino acid composition and molecular weight distribution of KW and KF samples were studied by high performance liquid chromatography (HPLC) and SDS-PAGE electrophoresis. Turbidity measurement showed that keratin dissolved in formic acid forms transparent and stable solutions and no flocculation occurs. In addition, because of its good solvation properties, studied by viscosity measurements, formic acid can be used as a co-solvent to prepare keratin-based blend solutions. Structural studies carried out by X-ray diffraction (XRD), Fourier transform infrared (FT-IR) and near infrared (NIR) suggest that formic acid stabilizes the beta-sheet structure. Thermogravimetric analysis (TGA) reveals a higher thermal stability of keratin regenerated from formic acid with respect to keratin regenerated from water.

  17. Electrochemical Characterization of Benzoyl Formic Acid at Glassy Carbon Electrode in Ionic Liquid: [emim]Br

    Institute of Scientific and Technical Information of China (English)

    赵鹏; 孙茜; 王欢; 陆嘉星; 何鸣元

    2005-01-01

    The direct electrochemical reduction of benzoyl formic acid was investigated in ionic liquid, 1-ethyl-3-methyl-imidazolium bromide ([emim]Br), using cyclic voltammetry and chronocoulometry. The diffusion coefficient (D) and the transfer coefficient (α) of benzoyl formic acid in [emim]Br were obtained.

  18. Tungsten carbide promoted Pd and Pd–Co electrocatalysts for formic acid electrooxidation

    DEFF Research Database (Denmark)

    Yin, Min; Li, Qingfeng; Jensen, Jens Oluf

    2012-01-01

    Tungsten carbide (WC) promoted palladium (Pd) and palladium–cobalt (Pd–Co) nanocatalysts are prepared and characterized for formic acid electrooxidation. The WC as the dopant to carbon supports is found to enhance the CO tolerance and promote the activity of the Pd-based catalysts for formic acid...

  19. Investigation of secondary formation of formic acid: urban environment vs. oil and gas producing region

    Science.gov (United States)

    Yuan, B.; Veres, P. R.; Warneke, C.; Roberts, J. M.; Gilman, J. B.; Koss, A.; Edwards, P. M.; Graus, M.; Kuster, W. C.; Li, S.-M.; Wild, R. J.; Brown, S. S.; Dubé, W. P.; Lerner, B. M.; Williams, E. J.; Johnson, J. E.; Quinn, P. K.; Bates, T. S.; Lefer, B.; Hayes, P. L.; Jimenez, J. L.; Weber, R. J.; Zamora, R.; Ervens, B.; Millet, D. B.; Rappenglück, B.; de Gouw, J. A.

    2015-02-01

    Formic acid (HCOOH) is one of the most abundant carboxylic acids in the atmosphere. However, current photochemical models cannot fully explain observed concentrations and in particular secondary formation of formic acid across various environments. In this work, formic acid measurements made at an urban receptor site (Pasadena) in June-July 2010 during CalNex (California Research at the Nexus of Air Quality and Climate Change) and a site in an oil and gas producing region (Uintah Basin) in January-February 2013 during UBWOS 2013 (Uintah Basin Winter Ozone Studies) will be discussed. Although the VOC (volatile organic compounds) compositions differed dramatically at the two sites, measured formic acid concentrations were comparable: 2.3 ± 1.3 in UBWOS 2013 and 2.0 ± 1.0 ppb in CalNex. We determine that concentrations of formic acid at both sites were dominated by secondary formation (> 99%). A constrained box model using the Master Chemical Mechanism (MCM v3.2) underestimates the measured formic acid concentrations drastically at both sites (by a factor of > 10). Compared to the original MCM model that includes only ozonolysis of unsaturated organic compounds and OH oxidation of acetylene, when we updated yields of ozonolysis of alkenes and included OH oxidation of isoprene, vinyl alcohol chemistry, reaction of formaldehyde with HO2, oxidation of aromatics, and reaction of CH3O2 with OH, the model predictions for formic acid were improved by a factor of 6.4 in UBWOS 2013 and 4.5 in CalNex, respectively. A comparison of measured and modeled HCOOH/acetone ratios is used to evaluate the model performance for formic acid. We conclude that the modified chemical mechanism can explain 19 and 45% of secondary formation of formic acid in UBWOS 2013 and CalNex, respectively. The contributions from aqueous reactions in aerosol and heterogeneous reactions on aerosol surface to formic acid are estimated to be 0-6 and 0-5% in UBWOS 2013 and CalNex, respectively. We observe that

  20. The electro-oxidation of lignin in Sappi Saiccor dissolving pulp mill ...

    African Journals Online (AJOL)

    2009-10-28

    Oct 28, 2009 ... few electro-oxidation reactions have been carried out on the effluent of a pulp mill which uses the acid ... agent, high temperatures and pressures are necessary and the ... Early studies on graphite, copper, platinum and.

  1. Hydrogen storage and delivery: the carbon dioxide - formic acid couple.

    Science.gov (United States)

    Laurenczy, Gábor

    2011-01-01

    Carbon dioxide and the carbonates, the available natural C1 sources, can be easily hydrogenated into formic acid and formates in water; the rate of this reduction strongly depends on the pH of the solution. This reaction is catalysed by ruthenium(II) pre-catalyst complexes with a large variety of water-soluble phosphine ligands; high conversions and turnover numbers have been realised. Although ruthenium(II) is predominant in these reactions, the iron(II) - tris[(2-diphenylphosphino)-ethyl]phosphine (PP3) complex is also active, showing a new perspective to use abundant and inexpensive iron-based compounds in the CO2 reduction. In the catalytic hydrogenation cycles the in situ formed metal hydride complexes play a key role, their structures with several other intermediates have been proven by multinuclear NMR spectroscopy. In the other hand safe and convenient hydrogen storage and supply is the fundamental question for the further development of the hydrogen economy; and carbon dioxide has been recognised to be a viable H2 vector. Formic acid--containing 4.4 weight % of H2, that is 53 g hydrogen per litre--is suitable for H2 storage; we have shown that in aqueous solutions it can be selectively decomposed into CO-free (CO < 10 ppm) CO2 and H2. The reaction takes place under mild experimental conditions and it is able to generate high pressure H2 (up to 600 bar). The cleavage of HCOOH is catalysed by several hydrophilic Ru(II) phosphine complexes (meta-trisulfonated triphenylphosphine, mTPPTS, being the most efficient one), either in homogeneous systems or as immobilised catalysts. We have also shown that the iron(II)--hydrido tris[(2-diphenylphosphino)ethyl]phosphine complex catalyses with an exceptionally high rate and efficiency (turnover frequency, TOF = 9425 h(-1)mol(-1); turnover number, TON = 92400) the formic acid cleavage, in environmentally friendly propylene carbonate solution, opening the way to use cheap, non-noble metal based catalysts for this

  2. On the origin of reactive Pd catalysts for an electrooxidation of formic acid.

    Science.gov (United States)

    Jeon, Hongrae; Uhm, Sunghyun; Jeong, Beomgyun; Lee, Jaeyoung

    2011-04-07

    We investigated the origin of the reactive surface of Pd catalysts during the electrocatalytic oxidation of formic acid. XPS analysis was the primary tool adapted to characterize the surface changes in Pd catalysts arising from interactions with formic acid. Pd catalysts showed fast deactivation, though their activity could be simply recovered by applying a reduction potential at which hydrogen evolution reaction can occur. XPS analysis revealed that the surface of Pd catalysts is significantly affected by interaction with formic acid, thus confirming that the surface coverage of oxygen species plays an important role in formic acid electrooxidation on the Pd catalysts. At the same time, mass transfer of formic acid also has an effect on the deactivation of Pd catalysts.

  3. Reduction reaction analysis of nanoparticle copper oxide for copper direct bonding using formic acid

    Science.gov (United States)

    Fujino, Masahisa; Akaike, Masatake; Matsuoka, Naoya; Suga, Tadatomo

    2017-04-01

    Copper direct bonding is required for electronics devices, especially power devices, and copper direct bonding using formic acid is expected to lower the bonding temperature. In this research, we analyzed the reduction reaction of copper oxide using formic acid with a Pt catalyst by electron spin resonance analysis and thermal gravimetry analysis. It was found that formic acid was decomposed and radicals were generated under 200 °C. The amount of radicals generated was increased by adding the Pt catalyst. Because of these radicals, both copper(I) oxide and copper(II) oxide start to be decomposed below 200 °C, and the reduction of copper oxide is accelerated by reactants such as H2 and CO from the decomposition of formic acid above 200 °C. The Pt catalyst also accelerates the reaction of copper oxide reduction. Herewith, it is considered that the copper surface can be controlled more precisely by using formic acid to induce direct bonding.

  4. Laboratory Studies on the Formation of Formic Acid (HCOOH) in Interstellar and Cometary Ices

    Science.gov (United States)

    Bennett, Chris J.; Hama, Tetsuya; Kim, Yong Seol; Kawasaki, Masahiro; Kaiser, Ralf I.

    2011-01-01

    Mixtures of water (H2O) and carbon monoxide (CO) ices were irradiated at 10 K with energetic electrons to simulate the energy transfer processes that occur in the track of galactic cosmic-ray particles penetrating interstellar ices. We identified formic acid (HCOOH) through new absorption bands in the infrared spectra at 1690 and 1224 cm-1 (5.92 and 8.17 μm, respectively). During the subsequent warm-up of the irradiated samples, formic acid is evident from the mass spectrometer signal at the mass-to-charge ratio, m/z = 46 (HCOOH+) as the ice sublimates. The detection of formic acid was confirmed using isotopically labeled water-d2 with carbon monoxide, leading to formic acid-d2 (DCOOD). The temporal fits of the reactants, reaction intermediates, and products elucidate two reaction pathways to formic acid in carbon monoxide-water ices. The reaction is induced by unimolecular decomposition of water forming atomic hydrogen (H) and the hydroxyl radical (OH). The dominating pathway to formic acid (HCOOH) was found to involve addition of suprathermal hydrogen atoms to carbon monoxide forming the formyl radical (HCO); the latter recombined with neighboring hydroxyl radicals to yield formic acid (HCOOH). To a lesser extent, hydroxyl radicals react with carbon monoxide to yield the hydroxyformyl radical (HOCO), which recombined with atomic hydrogen to produce formic acid. Similar processes are expected to produce formic acid within interstellar ices, cometary ices, and icy satellites, thus providing alternative processes for the generation of formic acid whose abundance in hot cores such as Sgr-B2 cannot be accounted for solely by gas-phase chemistry.

  5. Formic Acid Oxidation at Platinum-Bismuth Clusters

    DEFF Research Database (Denmark)

    Lovic, J. D.; Stevanovic, S. I.; Tripkovic, D. V.

    2014-01-01

    Formic acid oxidation was studied on platinum-bismuth deposits on glassy carbon (GC) substrate. The catalysts of equimolar ratio were prepared by potentiostatic deposition using chronocoulometry. Bimetallic structures obtained by two-step process, comprising deposition of Bi followed by deposition...... of Pt, were characterized by AFM spectroscopy which indicated that Pt crystallizes preferentially onto previously formed Bi particles. The issue of Bi leaching (dissolution) from PtBi catalysts, and their catalytic effect alongside the HCOOH oxidation is rather unresolved. In order to control Bi...... dissolution, deposits were subjected to electrochemical oxidation, in the relevant potential range and supporting electrolyte, prior to use as catalysts for HCOOH oxidation. Anodic striping charges indicated that along oxidation procedure most of deposited Bi was oxidized. ICP mass spectroscopy analysis...

  6. Screening of Non- Saccharomyces cerevisiae Strains for Tolerance to Formic Acid in Bioethanol Fermentation.

    Science.gov (United States)

    Oshoma, Cyprian E; Greetham, Darren; Louis, Edward J; Smart, Katherine A; Phister, Trevor G; Powell, Chris; Du, Chenyu

    2015-01-01

    Formic acid is one of the major inhibitory compounds present in hydrolysates derived from lignocellulosic materials, the presence of which can significantly hamper the efficiency of converting available sugars into bioethanol. This study investigated the potential for screening formic acid tolerance in non-Saccharomyces cerevisiae yeast strains, which could be used for the development of advanced generation bioethanol processes. Spot plate and phenotypic microarray methods were used to screen the formic acid tolerance of 7 non-Saccharomyces cerevisiae yeasts. S. kudriavzeii IFO1802 and S. arboricolus 2.3319 displayed a higher formic acid tolerance when compared to other strains in the study. Strain S. arboricolus 2.3319 was selected for further investigation due to its genetic variability among the Saccharomyces species as related to Saccharomyces cerevisiae and availability of two sibling strains: S. arboricolus 2.3317 and 2.3318 in the lab. The tolerance of S. arboricolus strains (2.3317, 2.3318 and 2.3319) to formic acid was further investigated by lab-scale fermentation analysis, and compared with S. cerevisiae NCYC2592. S. arboricolus 2.3319 demonstrated improved formic acid tolerance and a similar bioethanol synthesis capacity to S. cerevisiae NCYC2592, while S. arboricolus 2.3317 and 2.3318 exhibited an overall inferior performance. Metabolite analysis indicated that S. arboricolus strain 2.3319 accumulated comparatively high concentrations of glycerol and glycogen, which may have contributed to its ability to tolerate high levels of formic acid.

  7. Airborne observations of formic acid using a chemical ionization mass spectrometer

    Directory of Open Access Journals (Sweden)

    M. Le Breton

    2012-12-01

    Full Text Available The first airborne measurements of formic acid mixing ratios over the United Kingdom were measured on the FAAM BAe-146 research aircraft on 16 March 2010 with a chemical ionization mass spectrometer using I reagent ions. The I ionization scheme was able to measure formic acid mixing ratios at 1 Hz in the boundary layer.

    In-flight standard addition calibrations from a formic acid source were used to determine the instrument sensitivity of 35 ± 6 ion counts pptv−1 s−1 and a limit of detection of 25 pptv. Routine measurements were made through a scrubbed inlet to determine the instrumental background. Three plumes of formic acid were observed over the UK, originating from London, Humberside and Tyneside. The London plume had the highest formic acid mixing ratio throughout the flight, peaking at 358 pptv. No significant correlations of formic acid with NOx and ozone were found, but a positive correlation was observed between CO and HCOOH within the two plumes where coincident data were recorded.

    A trajectory model was employed to determine the sources of the plumes and compare modelled mixing ratios with measured values. The model underestimated formic acid concentrations by up to a factor of 2. This is explained by missing sources in the model, which were considered to be both primary emissions of formic acid of mainly anthropogenic origin and a lack of precursor emissions, such as isoprene, from biogenic sources, whose oxidation in situ would lead to formic acid formation.

  8. Solar to Liquid Fuels Production: Light-Driven Reduction of Carbon Dioxide to Formic Acid

    Science.gov (United States)

    2014-03-29

    from the oxidation of formic acid and the reaction is visualized by an absorbance change at 600 nm. The U140C/C42G FdhF variant was shown to support a...does not appear to have the ability to interact with NADP+/NADPH. FdhF activity will therefore be measured through the formic acid oxidation assay...oxygen stable FDH enzyme, which favors formic acid oxidation , coupled to the reduction of NAD+ to form NADH. From previous experiments described in Aim 2

  9. Catalytic air oxidation of biomass-derived carbohydrates to formic acid.

    Science.gov (United States)

    Li, Jiang; Ding, Dao-Jun; Deng, Li; Guo, Qing-Xiang; Fu, Yao

    2012-07-01

    An efficient catalytic system for biomass oxidation to form formic acid was developed. The conversion of glucose to formic acid can reach up to 52% yield within 3 h when catalyzed by 5 mol% of H(5)PV(2)Mo(10)O(40) at only 373 K using air as the oxidant. Furthermore, the heteropolyacid can be used as a bifunctional catalyst in the conversion of cellulose to formic acid (yield=35%) with air as the oxidant. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. A Facile Synthesis of MPd (M=Co, Cu) Nanoparticles and Their Catalysis for Formic Acid Oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Mazumder, Vismadeb [Brown University; Chi, Miaofang [ORNL; Mankin, Max [Brown University; Liu, Yi [Brown University; Metin, Onder [Ataturk University; Sun, Daohua [Xiamen University, China; More, Karren Leslie [ORNL; Sun, Shouheng [Brown University

    2012-01-01

    Monodisperse CoPd nanoparticles (NPs) were synthesized and studied for catalytic formic acid (HCOOH) oxidation (FAO). The NPs were prepared by coreduction of Co(acac)2 (acac = acetylacetonate) and PdBr2 at 260 C in oleylamine and trioctylphosphine, and their sizes (5-12 nm) and compositions (Co10Pd90 to Co60Pd40) were controlled by heating ramp rate, metal salt concentration, or metal molar ratios. The 8 nm CoPd NPs were activated for HCOOH oxidation by a simple ethanol wash. In 0.1 M HClO4 and 2 M HCOOH solution, their catalytic activities followed the trend of Co50Pd50 > Co60Pd40 > Co10Pd90 > Pd. The Co50Pd50 NPs had an oxidation peak at 0.4 V with a peak current density of 774 A/gPd. As a comparison, commercial Pd catalysts showed an oxidation peak at 0.75 V with peak current density of only 254 A/gPd. The synthesis procedure could also be extended to prepare CuPd NPs when Co(acac)2 was replaced by Cu(ac)2 (ac = acetate) in an otherwise identical condition. The CuPd NPs were less active catalysts than CoPd or even Pd for FAO in HClO4 solution. The synthesis provides a general approach to Pd-based bimetallic NPs and will enable further investigation of Pd-based alloy NPs for electro-oxidation and other catalytic reactions.

  11. Kinetics and mechanism of the oxidation of formic and oxalic acids by benzyltrimethylammonium dichloroiodate

    Indian Academy of Sciences (India)

    Poonam Gupta; Seema Kothari

    2001-04-01

    The oxidation of formic and oxalic acids by benzyltrimethylammonium dichloroiodate (BTMACI), in the presence of zinc chloride, leads to the formation of carbon dioxide. The reaction is first order with respect to BTMACI, zinc chloride and organic acid. Oxidation of deuteriated formic acid indicates the presence of a kinetic isotope effect. Addition of benzyltrimethylammonium chloride enhances the rate. It is proposed that the reactive oxidizing species is [(PhCH2Me3N)+ (IZn2Cl6)−]. Suitablemechanisms have been proposed.

  12. A Direct, Biomass-Based Synthesis of Benzoic Acid: Formic Acid-Mediated Deoxygenation of the Glucose-Derived Materials Quinic Acid and Shikimic Acid

    Energy Technology Data Exchange (ETDEWEB)

    Arceo, Elena; Ellman, Jonathan; Bergman, Robert

    2010-05-03

    An alternative biomass-based route to benzoic acid from the renewable starting materials quinic acid and shikimic acid is described. Benzoic acid is obtained selectively using a highly efficient, one-step formic acid-mediated deoxygenation method.

  13. Catalytic oxidative conversion of cellulosic biomass to formic acid and acetic acid with exceptionally high yields

    KAUST Repository

    Zhang, Jizhe

    2014-09-01

    Direct conversion of raw biomass materials to fine chemicals is of great significance from both economic and ecological perspectives. In this paper, we report that a Keggin-type vanadium-substituted phosphomolybdic acid catalyst, namely H4PVMo11O40, is capable of converting various biomass-derived substrates to formic acid and acetic acid with high selectivity in a water medium and oxygen atmosphere. Under optimized reaction conditions, H4PVMo11O40 gave an exceptionally high yield of formic acid (67.8%) from cellulose, far exceeding the values achieved in previous catalytic systems. Our study demonstrates that heteropoly acids are generally effective catalysts for biomass conversion due to their strong acidities, whereas the composition of metal addenda atoms in the catalysts has crucial influence on the reaction pathway and the product selectivity. © 2013 Elsevier B.V.

  14. Kinetics of gas phase formic acid decomposition on platinum single crystal and polycrystalline surfaces

    Science.gov (United States)

    Detwiler, Michael D.; Milligan, Cory A.; Zemlyanov, Dmitry Y.; Delgass, W. Nicholas; Ribeiro, Fabio H.

    2016-06-01

    Formic acid dehydrogenation turnover rates (TORs) were measured on Pt(111), Pt(100), and polycrystalline Pt foil surfaces at a total pressure of 800 Torr between 413 and 513 K in a batch reactor connected to an ultra-high vacuum (UHV) system. The TORs, apparent activation energies, and reaction orders are not sensitive to the structure of the Pt surface, within the precision of the measurements. CO introduced into the batch reactor depressed the formic acid dehydrogenation TOR and increased the reaction's apparent activation energies on Pt(111) and Pt(100), consistent with behavior predicted by the Temkin equation. Two reaction mechanisms were explored which explain the formic acid decomposition mechanism on Pt, both of which include dissociative adsorption of formic acid, rate limiting formate decomposition, and quasi-equilibrated hydrogen recombination and CO adsorption. No evidence was found that catalytic supports used in previous studies altered the reaction kinetics or mechanism.

  15. Influence of bi modification of pt anode catalyst in direct formic acid fuel cells.

    Science.gov (United States)

    Kang, Sungjin; Lee, Jaeyoung; Lee, Jae Kwang; Chung, Seung-Young; Tak, Yongsug

    2006-04-13

    The influence of Bi modification of Pt anode catalyst on the performance of direct formic acid fuel cells was investigated. Compared with the unmodified Pt anode, the Bi modified Pt (PtBi(m)) electrode prepared by under-potential deposition (UPD) caused faster electrocatalytic oxidation of formic acid at the same value of the overpotential, and thus, PtBi(m) resulted in an increase in the power performance of direct formic acid fuel cells. Electrochemical impedance spectra helped to explain the difference of performance between the unmodified Pt and Bi modified Pt electrodes. Solution conductivity and dehydration phenomena occurring in highly concentrated formic acid solutions can also explain the higher power performance of PtBi(m).

  16. Photoelectrocatalytic Oxidation of Formic Acid at Titania@Polyoxometalate/Gold Nanocomposite Material Modified Electrode.

    Science.gov (United States)

    Pandiyarajan, Chinnappan; Pandikumar, Alagarsamy; Ramaraj, Ramasamy

    2015-09-01

    Amine functionalized silicate sol-gel stabilized titania (P25)-polyoxometalate (PTA)-gold (Au) nanocomposite materials (APS/(P25-PTA-Au)(NCM)) were prepared by a simple chemical reduction method and were used to fabricate modified photoelectrode for the photoelectrocatalytic oxidation of formic acid. The APS/(P25-PTA-Au)(NCM) photoelectrode showed synergistic photoelectrocatalytic behavior towards the oxidation of formic acid. The photoresponse of the APS/(P25-PTA-Au)(NCM) modified photoelectrode was found to be higher when compared to the controlled photoelectrodes. The present study shows that the loading of Au(nps) on APS/P25-PTA is more beneficial to enhance the photoinduced interfacial charge transfer process, which leads to increased photocurrent generation. The present study concludes that the photoelectrocatalytic oxidation of formic acid at the APS/(P25-PTA-Au)(NCM) photoelectrode will boost the formic acid fuel cell performance.

  17. Novel palladium flower-like nanostructured networks for electrocatalytic oxidation of formic acid

    Science.gov (United States)

    Ren, Mingjun; Zou, Liangliang; Yuan, Ting; Huang, Qinghong; Zou, Zhiqing; Li, Xuemei; Yang, Hui

    2014-12-01

    Novel Pd flower-like nanostructured networks are synthesized via a simple CO-assisted reduction. The morphology and size of the Pd nanostructures are found to strongly depend on the temperature and solvent during the synthesis process. Such Pd flower-like nanostructured networks exhibit a much enhanced activity of about 3 times of that on conventional Pd nanoparticles towards the electrocatalytic oxidation of formic acid. The specific activity of formic acid oxidation on Pd nanostructures is also greatly improved, indicating that the formation of flower-like nanostructured networks is beneficial for the electrooxidation of formic acid. Thus, it could be served as highly active catalyst for formic acid electrooxidation although the stability needs to be greatly improved.

  18. Flavin-catalyzed aerobic oxidation of sulfides and thiols with formic acid/triethylamine.

    Science.gov (United States)

    Murahashi, Shun-Ichi; Zhang, Dazhi; Iida, Hiroki; Miyawaki, Toshio; Uenaka, Masaaki; Murano, Kenji; Meguro, Kanji

    2014-09-14

    An efficient and practical catalytic method for the aerobic oxidative transformation of sulfides into sulfoxides, and thiols into disulfides with formic acid/TEA in the presence of a new, readily available, and stable flavin catalyst 5d is described.

  19. High-efficiency palladium catalysts supported on ppy-modified C60 for formic acid oxidation.

    Science.gov (United States)

    Bai, Zhengyu; Yang, Lin; Guo, Yuming; Zheng, Zhi; Hu, Chuangang; Xu, Pengle

    2011-02-14

    A facile preparation of polypyrrole-modified fullerene supported Pd nanoparticles catalyst is introduced; electrochemical measurements demonstrate that the obtained Pd/ppy-C(60) catalyst shows a good electrocatalytic activity and stability for the oxidation of formic acid.

  20. Copper-catalyzed formic acid synthesis from CO2 with hydrosilanes and H2O.

    Science.gov (United States)

    Motokura, Ken; Kashiwame, Daiki; Miyaji, Akimitsu; Baba, Toshihide

    2012-05-18

    A copper-catalyzed formic acid synthesis from CO2 with hydrosilanes has been accomplished. The Cu(OAc)2·H2O-1,2-bis(diphenylphosphino)benzene system is highly effective for the formic acid synthesis under 1 atm of CO2. The TON value approached 8100 in 6 h. The reaction pathway was revealed by in situ NMR analysis and isotopic experiments.

  1. Efficient electrocatalytic oxidation of formic acid using Au@Pt dendrimer-encapsulated nanoparticles.

    Science.gov (United States)

    Iyyamperumal, Ravikumar; Zhang, Liang; Henkelman, Graeme; Crooks, Richard M

    2013-04-17

    We report electrocatalytic oxidation of formic acid using monometallic and bimetallic dendrimer-encapsulated nanoparticles (DENs). The results indicate that the Au147@Pt DENs exhibit better electrocatalytic activity and low CO formation. Theoretical calculations attribute the observed activity to the deformation of nanoparticle structure, slow dehydration of formic acid, and weak binding of CO on Au147@Pt surface. Subsequent experiments confirmed the theoretical predictions.

  2. Tungsten carbide promoted Pd and Pd-Co electrocatalysts for formic acid electrooxidation

    Science.gov (United States)

    Yin, Min; Li, Qingfeng; Jensen, Jens Oluf; Huang, Yunjie; Cleemann, Lars N.; Bjerrum, Niels J.; Xing, Wei

    2012-12-01

    Tungsten carbide (WC) promoted palladium (Pd) and palladium-cobalt (Pd-Co) nanocatalysts are prepared and characterized for formic acid electrooxidation. The WC as the dopant to carbon supports is found to enhance the CO tolerance and promote the activity of the Pd-based catalysts for formic acid oxidation. Alloying of Pd with Co further improves the electrocatalytic activity and stability of the WC supported catalysts, attributable to a synergistic effect of the carbide support and PdCo alloy nanoparticles.

  3. Formic acid as an alternative reducing agent for the catalytic nitrate reduction in aqueous media.

    Science.gov (United States)

    Choi, Eun-Kyoung; Park, Kuy-Hyun; Lee, Ho-Bin; Cho, Misun; Ahn, Samyoung

    2013-08-01

    Formic acid was used for the nitrate reduction as a reductant in the presence of Pd:Cu/gamma-alumina catalysts. The surface characteristics of the bimetallic catalyst synthesized by wet impregnation were investigated by SEM, TEM-EDS. The metals were not distributed homogeneously on the surface of catalyst, although the total contents of both metals in particles agreed well with the theoretical values. Formic acid decomposition on the catalyst surface, its influence on solution pH and nitrate removal efficacy was investigated. The best removal of nitrate (50 ppm) was obtained under the condition of 0.75 g/L catalyst with Pd:Cu ratio (4:1) and two fold excess of formic acid. Formic acid decay patterns resembled those of nitrate removal, showing a linear relationship between k(f) (formic acid decay) and k (nitrate removal). Negligible amount of ammonia was detected, and no nitrite was detected, possibly due to buffering effect of bicarbonate that is in situ produced by the decomposition of formic acid, and due to the sustained release of H2 gas.

  4. Formic acid as an alternative reducing agent for the catalytic nitrate reduction in aqueous media

    Institute of Scientific and Technical Information of China (English)

    Eun-kyoung Choi; Kuy-hyun Park; Ho-bin Lee; Misun Cho; Samyoung Ahn

    2013-01-01

    Formic acid was used for the nitrate reduction as a reductant in the presence of Pd∶Cu/γ-alumina catalysts.The surfatce characteristics of the bimetallic catalyst synthesized by wet impregnation were investigated by SEM,TEM-EDS.The metals were not distributed homogeneously on the surface of catalyst,although the total contents of both metals in particles agreed well with the theoretical values.Formic acid decomposition on the catalyst surface,its influence on solution pH and nitrate removal efficacy was investigated.The best removal of nitrate (50 ppm) was obtained under the condition of 0.75 g/L catalyst with Pd∶Cu ratio (4∶1) and two fold excess of formic acid.Formic acid decay patterns resembled those of nitrate removal,showing a linear relationship between kf (formic acid decay) and k (nitrate removal).Negligible amount of ammonia was detected,and no nitrite was detected,possibly due to buffering effect of bicarbonate that is in situ produced by the decomposition of formic acid,and due to the sustained release of H2 gas.

  5. Deactivation of carbon supported palladium catalyst in direct formic acid fuel cell

    Science.gov (United States)

    Mikołajczuk, A.; Borodzinski, A.; Kedzierzawski, P.; Stobinski, L.; Mierzwa, B.; Dziura, R.

    2011-07-01

    A new carbon black supported palladium catalyst for direct formic acid fuel cell applications has been prepared and characterized by X-ray diffraction. Bi-modal distribution of Pd crystallite sizes was observed. The average Pd size for crystallites in small size and large size ranges were about 2.7 nm and 11.2 nm, respectively. The initial activity of the catalyst in the oxidation of formic acid tested in a fuel cell was similar to a commercial well dispersed 20 wt.% Pd/Vulcan. The rates of the fuel cell power decay were measured for formic acid of two purities for various current loadings. The results showed that various mechanisms contribute to the decrease of cell power with time. In direct formic acid fuel cell (DFAFC) fed with a very pure HCOOH accumulation of CO 2 gas bubbles in anode catalyst layer is responsible for observed power decay. In DFAFC fed with a pure for analysis (p.a.) grade formic acid the formation of CO ads poison from the formic acid impurities is the main deactivation reason.

  6. Carbon-supported Pd-Ir catalyst as anodic catalyst in direct formic acid fuel cell

    Science.gov (United States)

    Wang, Xin; Tang, Yawen; Gao, Ying; Lu, Tianhong

    It was reported for the first time that the electrocatalytic activity of the Carbon-supported Pd-Ir (Pd-Ir/C) catalyst with the suitable atomic ratio of Pd and Ir for the oxidation of formic acid in the direct formic acid fuel cell (DFAFC) is better than that of the Carbon-supported Pd (Pd/C) catalyst, although Ir has no electrocatalytic activity for the oxidation of formic acid. The potential of the anodic peak of formic acid at the Pd-Ir/C catalyst electrode with the atomic ratio of Pd and Ir = 5:1 is 50 mV more negative than that and the peak current density is 13% higher than that at the Pd/C catalyst electrode. This is attributed to that Ir can promote the oxidation of formic acid at Pd through the direct pathway because Ir can decrease the adsorption strength of CO on Pd. However, when the content of Ir in the Pd-Ir/C catalyst is too high the electrocatalytic activity of the Pd-Ir/C catalyst would be decreased because Ir has no electrocatalytic activity for the oxidation of formic acid.

  7. A large and ubiquitous source of atmospheric formic acid

    Science.gov (United States)

    Millet, D. B.; Baasandorj, M.; Farmer, D. K.; Thornton, J. A.; Baumann, K.; Brophy, P.; Chaliyakunnel, S.; de Gouw, J. A.; Graus, M.; Hu, L.; Koss, A.; Lee, B. H.; Lopez-Hilfiker, F. D.; Neuman, J. A.; Paulot, F.; Peischl, J.; Pollack, I. B.; Ryerson, T. B.; Warneke, C.; Williams, B. J.; Xu, J.

    2015-06-01

    Formic acid (HCOOH) is one of the most abundant acids in the atmosphere, with an important influence on precipitation chemistry and acidity. Here we employ a chemical transport model (GEOS-Chem CTM) to interpret recent airborne and ground-based measurements over the US Southeast in terms of the constraints they provide on HCOOH sources and sinks. Summertime boundary layer concentrations average several parts-per-billion, 2-3× larger than can be explained based on known production and loss pathways. This indicates one or more large missing HCOOH sources, and suggests either a key gap in current understanding of hydrocarbon oxidation or a large, unidentified, direct flux of HCOOH. Model-measurement comparisons implicate biogenic sources (e.g., isoprene oxidation) as the predominant HCOOH source. Resolving the unexplained boundary layer concentrations based (i) solely on isoprene oxidation would require a 3× increase in the model HCOOH yield, or (ii) solely on direct HCOOH emissions would require approximately a 25× increase in its biogenic flux. However, neither of these can explain the high HCOOH amounts seen in anthropogenic air masses and in the free troposphere. The overall indication is of a large biogenic source combined with ubiquitous chemical production of HCOOH across a range of precursors. Laboratory work is needed to better quantify the rates and mechanisms of carboxylic acid production from isoprene and other prevalent organics. Stabilized Criegee intermediates (SCIs) provide a large model source of HCOOH, while acetaldehyde tautomerization accounts for ~ 15% of the simulated global burden. Because carboxylic acids also react with SCIs and catalyze the reverse tautomerization reaction, HCOOH buffers against its own production by both of these pathways. Based on recent laboratory results, reaction between CH3O2 and OH could provide a major source of atmospheric HCOOH; however, including this chemistry degrades the model simulation of CH3OOH and NOx

  8. Formic-acid-induced depolymerization of oxidized lignin to aromatics.

    Science.gov (United States)

    Rahimi, Alireza; Ulbrich, Arne; Coon, Joshua J; Stahl, Shannon S

    2014-11-13

    Lignin is a heterogeneous aromatic biopolymer that accounts for nearly 30% of the organic carbon on Earth and is one of the few renewable sources of aromatic chemicals. As the most recalcitrant of the three components of lignocellulosic biomass (cellulose, hemicellulose and lignin), lignin has been treated as a waste product in the pulp and paper industry, where it is burned to supply energy and recover pulping chemicals in the operation of paper mills. Extraction of higher value from lignin is increasingly recognized as being crucial to the economic viability of integrated biorefineries. Depolymerization is an important starting point for many lignin valorization strategies, because it could generate valuable aromatic chemicals and/or provide a source of low-molecular-mass feedstocks suitable for downstream processing. Commercial precedents show that certain types of lignin (lignosulphonates) may be converted into vanillin and other marketable products, but new technologies are needed to enhance the lignin value chain. The complex, irregular structure of lignin complicates chemical conversion efforts, and known depolymerization methods typically afford ill-defined products in low yields (that is, less than 10-20wt%). Here we describe a method for the depolymerization of oxidized lignin under mild conditions in aqueous formic acid that results in more than 60wt% yield of low-molecular-mass aromatics. We present the discovery of this facile C-O cleavage method, its application to aspen lignin depolymerization, and mechanistic insights into the reaction. The broader implications of these results for lignin conversion and biomass refining are also considered.

  9. Formic-acid-induced depolymerization of oxidized lignin to aromatics

    Science.gov (United States)

    Rahimi, Alireza; Ulbrich, Arne; Coon, Joshua J.; Stahl, Shannon S.

    2014-11-01

    Lignin is a heterogeneous aromatic biopolymer that accounts for nearly 30% of the organic carbon on Earth and is one of the few renewable sources of aromatic chemicals. As the most recalcitrant of the three components of lignocellulosic biomass (cellulose, hemicellulose and lignin), lignin has been treated as a waste product in the pulp and paper industry, where it is burned to supply energy and recover pulping chemicals in the operation of paper mills. Extraction of higher value from lignin is increasingly recognized as being crucial to the economic viability of integrated biorefineries. Depolymerization is an important starting point for many lignin valorization strategies, because it could generate valuable aromatic chemicals and/or provide a source of low-molecular-mass feedstocks suitable for downstream processing. Commercial precedents show that certain types of lignin (lignosulphonates) may be converted into vanillin and other marketable products, but new technologies are needed to enhance the lignin value chain. The complex, irregular structure of lignin complicates chemical conversion efforts, and known depolymerization methods typically afford ill-defined products in low yields (that is, less than 10-20wt%). Here we describe a method for the depolymerization of oxidized lignin under mild conditions in aqueous formic acid that results in more than 60wt% yield of low-molecular-mass aromatics. We present the discovery of this facile C-O cleavage method, its application to aspen lignin depolymerization, and mechanistic insights into the reaction. The broader implications of these results for lignin conversion and biomass refining are also considered.

  10. Atmospheric geochemistry of formic and acetic acids at a mid-latitude temperate site

    Science.gov (United States)

    Talbot, R. W.; Beecher, K. M.; Harriss, R. C.; Cofer, R. W., III

    1988-01-01

    Tropospheric concentrations of formic and acetic acids in the gas, the aerosol, and the rainwater phases were determined in samples collected 1-2 m above ground level at an open field site in eastern Virginia. These acids were found to occur principally (98 percent or above) in the gas phase, with a marked annual seasonality, averaging 1890 ppt for formate and 1310 ppt for acetate during the growing season, as compared to 695 ppt and 700 ppt, respectively, over the nongrowing season. The data support the hypothesis that biogenic emissions from vegatation are important sources of atmospheric formic and acetic acid during the local growing season. The same time trends were observed for precipitation, although with less defined seasonality. The relative increase of the acetic acid/formic acid ratio during the nongrowing season points to the dominance of anthropogenic inputs of acetic acid from motor vehicles and biomass combustion in the wintertime.

  11. Formic Acid Free Flowsheet Development To Eliminate Catalytic Hydrogen Generation In The Defense Waste Processing

    Energy Technology Data Exchange (ETDEWEB)

    Lambert, Dan P.; Stone, Michael E.; Newell, J. David; Fellinger, Terri L.; Bricker, Jonathan M.

    2012-09-14

    The Defense Waste Processing Facility (DWPF) processes legacy nuclear waste generated at the Savannah River Site (SRS) during production of plutonium and tritium demanded by the Cold War. The nuclear waste is first treated via a complex sequence of controlled chemical reactions and then vitrified into a borosilicate glass form and poured into stainless steel canisters. Converting the nuclear waste into borosilicate glass canisters is a safe, effective way to reduce the volume of the waste and stabilize the radionuclides. Testing was initiated to determine whether the elimination of formic acid from the DWPF's chemical processing flowsheet would eliminate catalytic hydrogen generation. Historically, hydrogen is generated in chemical processing of alkaline High Level Waste sludge in DWPF. In current processing, sludge is combined with nitric and formic acid to neutralize the waste, reduce mercury and manganese, destroy nitrite, and modify (thin) the slurry rheology. The noble metal catalyzed formic acid decomposition produces hydrogen and carbon dioxide. Elimination of formic acid by replacement with glycolic acid has the potential to eliminate the production of catalytic hydrogen. Flowsheet testing was performed to develop the nitric-glycolic acid flowsheet as an alternative to the nitric-formic flowsheet currently being processed at the DWPF. This new flowsheet has shown that mercury can be reduced and removed by steam stripping in DWPF with no catalytic hydrogen generation. All processing objectives were also met, including greatly reducing the Slurry Mix Evaporator (SME) product yield stress as compared to the baseline nitric/formic flowsheet. Ten DWPF tests were performed with nonradioactive simulants designed to cover a broad compositional range. No hydrogen was generated in testing without formic acid.

  12. Importance of secondary sources in the atmospheric budgets of formic and acetic acids

    Directory of Open Access Journals (Sweden)

    F. Paulot

    2010-10-01

    Full Text Available We present a detailed budget of formic and acetic acids, two of the most abundant trace gases in the atmosphere. Our bottom-up estimate of the global source of formic and acetic acids are ~1200 and ~1400 Gmol/yr, dominated by photochemical oxidation of biogenic volatile organic compounds, in particular isoprene. Their sinks are dominated by wet and dry deposition. We use the GEOS-Chem chemical transport model to evaluate this budget against an extensive suite of measurements from ground, ship and satellite-based Fourier transform spectrometers, as well as from several aircraft campaigns over North America. The model captures the seasonality of formic and acetic acids well but generally underestimates their concentration, particularly in the Northern midlatitudes. We infer that the source of both carboxylic acids may be up to 50% greater than our estimate and report evidence for a long-lived missing secondary source of carboxylic acids that may be associated with the aging of organic aerosols. Vertical profiles of formic acid in the upper troposphere support a negative temperature dependence of the reaction between formic acid and the hydroxyl radical as suggested by several theoretical studies.

  13. Simple and rapid hydrogenation of p-nitrophenol with aqueous formic acid in catalytic flow reactors

    Directory of Open Access Journals (Sweden)

    Rahat Javaid

    2013-06-01

    Full Text Available The inner surface of a metallic tube (i.d. 0.5 mm was coated with a palladium (Pd-based thin metallic layer by flow electroless plating. Simultaneous plating of Pd and silver (Ag from their electroless-plating solution produced a mixed distributed bimetallic layer. Preferential acid leaching of Ag from the Pd–Ag layer produced a porous Pd surface. Hydrogenation of p-nitrophenol was examined in the presence of formic acid simply by passing the reaction solution through the catalytic tubular reactors. p-Aminophenol was the sole product of hydrogenation. No side reaction occurred. Reaction conversion with respect to p-nitrophenol was dependent on the catalyst layer type, the temperature, pH, amount of formic acid, and the residence time. A porous and oxidized Pd (PdO surface gave the best reaction conversion among the catalytic reactors examined. p-Nitrophenol was converted quantitatively to p-aminophenol within 15 s of residence time in the porous PdO reactor at 40 °C. Evolution of carbon dioxide (CO2 was observed during the reaction, although hydrogen (H2 was not found in the gas phase. Dehydrogenation of formic acid did not occur to any practical degree in the absence of p-nitrophenol. Consequently, the nitro group was reduced via hydrogen transfer from formic acid to p-nitrophenol and not by hydrogen generated by dehydrogenation of formic acid.

  14. Formic Acid Triggers the “Acid Crash” of Acetone-Butanol-Ethanol Fermentation by Clostridium acetobutylicum▿

    Science.gov (United States)

    Wang, Shaohua; Zhang, Yanping; Dong, Hongjun; Mao, Shaoming; Zhu, Yan; Wang, Runjiang; Luan, Guodong; Li, Yin

    2011-01-01

    Solvent production by Clostridium acetobutylicum collapses when cells are grown in pH-uncontrolled glucose medium, the so-called “acid crash” phenomenon. It is generally accepted that the fast accumulation of acetic acid and butyric acid triggers the acid crash. We found that addition of 1 mM formic acid into corn mash medium could trigger acid crash, suggesting that formic acid might be related to acid crash. When it was grown in pH-uncontrolled glucose medium or glucose-rich medium, C. acetobutylicum DSM 1731 containing the empty plasmid pIMP1 failed to produce solvents and was found to accumulate 0.5 to 1.24 mM formic acid intracellularly. In contrast, recombinant strain DSM 1731 with formate dehydrogenase activity did not accumulate formic acid intracellularly and could produce solvent as usual. We therefore conclude that the accumulation of formic acid, rather than acetic acid and butyric acid, is responsible for the acid crash of acetone-butanol-ethanol fermentation. PMID:21216898

  15. On the mechanism of the direct pathway for formic acid oxidation at a Pt(111) electrode.

    Science.gov (United States)

    Xu, Jie; Yuan, Daofu; Yang, Fan; Mei, Dong; Zhang, Zunbiao; Chen, Yan-Xia

    2013-03-28

    In order determine whether formate is a reaction intermediate of the direct pathway for formic acid oxidation at a Pt electrode, formic acid (HCOOH) oxidation at a Pt(111) electrode has been studied by normal and fast scan voltammetry in 0.1 M HClO4 solutions with different HCOOH concentrations. The relationship between the HCOOH oxidation current density (j(ox)) and formate coverage (θ(formate)) is quantitatively analyzed. The kinetic simulation reveals that the previously proposed formate pathway, with decomposition of the bridge-bonded formate (HCOO(B)) as a rate determining step (rds), cannot be the main pathway responsible for the majority of the current for HCOOH oxidation. Instead, a kinetic model based on a mechanism with formic acid adsorption [structure: see text], along with simultaneous C-H bond activation as the rds for the direct pathway, explains the measured data well. It was found for the relatively slow rate of formic acid oxidation, that adsorption-desorption of the formate is faster, which competes for the surface sites for formic acid oxidation.

  16. Formic acid oxidation at spontaneously deposited palladium on polyaniline modified carbon fibre paper

    Energy Technology Data Exchange (ETDEWEB)

    Moghaddam, Reza B. [Department of Chemistry, Memorial University of Newfoundland, St. John' s, Newfoundland A1B 3X7 (Canada); Pickup, Peter G., E-mail: ppickup@mun.ca [Department of Chemistry, Memorial University of Newfoundland, St. John' s, Newfoundland A1B 3X7 (Canada)

    2011-09-01

    Highlights: {center_dot} Extended reaction zone anodes for formic acid oxidation have been prepared by the spontaneous deposition of Pd on polyaniline coated carbon fibre paper. {center_dot} The electrochemical mode used for formation of the polyaniline can strongly influence the morphology, particle size, and activity of the Pd. {center_dot} PANI deposited galvanostatically produced electrodes that were much more active for formic acid oxidation than PANI deposited potentiodynamically. - Abstract: Extended reaction zone anodes for formic acid oxidation have been prepared by the spontaneous deposition of Pd on polyaniline coated carbon fibre paper. The PANI supports, deposited on carbon fibre paper either galvanostatically, potentiostatically, or potentiodynamically, were characterized by electron microscopy, cyclic voltammetry and impedance spectroscopy. Pd was deposited on them by spontaneous reduction of Pd(II) by the reduced form of the PANI in order to preserve the characteristics of each type of PANI layer. It was found that galvanostatically deposited PANI produced electrodes that were much more active for formic acid oxidation than PANI produced under potential control. The morphology and mean particle size of Pd was found to depend strongly on the way in which the PANI was prepared and also correlated with the resistance and capacitance of the PANI at low potentials. It is proposed that the electrochemical characteristics of the PANI play a significant role in determining the morphology, particle size, and electrocatalytic activity for formic acid oxidation of the spontaneously deposited Pd.

  17. Formic Acid Modified Co3O4-CeO2 Catalysts for CO Oxidation

    Directory of Open Access Journals (Sweden)

    Ruishu Shang

    2016-03-01

    Full Text Available A formic acid modified catalyst, Co3O4-CeO2, was prepared via facile urea-hydrothermal method and applied in CO oxidation. The Co3O4-CeO2-0.5 catalyst, treated by formic acid at 0.5 mol/L, performed better in CO oxidation with T50 obtained at 69.5 °C and T100 obtained at 150 °C, respectively. The characterization results indicate that after treating with formic acid, there is a more porous structure within the Co3O4-CeO2 catalyst; meanwhile, despite of the slightly decreased content of Co, there are more adsorption sites exposed by acid treatment, as suggested by CO-TPD and H2-TPD, which explains the improvement of catalytic performance.

  18. Rotational Investigation of the Adducts of Formic Acid with Alcohols, Ethers and Esters

    Science.gov (United States)

    Evangelisti, Luca; Spada, Lorenzo; Li, Weixing; Caminati, Walther

    2016-06-01

    Mixtures of formic acid with methyl alcohol, with isopropyl alcohol, with tert-butyl alcohol, with dimethylether and with isopropylformiate have been supersonically expanded as pulsed jets. The obtained cool plumes have been analyzed by Fourier transform microwave spectroscopy. It has been possible to assign the rotational spectra of the 1:1 adducts of formic acid with tert-butyl alcohol, with dimethyl ether and with isopropylformiate. The conformational shapes and geometries of these adducts, as well as the topologies of their itermolecular hydrogen bonds will be presented. An explanation is given of the failure of the assignments of the rotational spectra of the adducts of formic acid with methyl alcohol and isopropyl alcohol.

  19. CATALYTIC CONVERSION OF FORMIC ACID TO METHANOL WITH Cu AND Al UNDER HYDROTHERMAL CONDITIONS

    Directory of Open Access Journals (Sweden)

    Hansong Yao,

    2012-01-01

    Full Text Available Catalytic conversion of formic acid into methanol was investigated with Cu as a catalyst and Al as a reductant under hydrothermal conditions. It was found that formic acid can be converted into methanol by such means. The highest yield of methanol (30.4% was attained with a temperature of 300 °C and a reaction time of 9 h. The AlO(OH formed from Al oxidation may also play a catalytic role in the formation of methanol. This process may provide a promising solution to producing methanol from carbohydrate biomass combined with the process of converting the carbohydrate into formic acid, which is expected to emit no CO2.

  20. Oxidation mechanism of formic acid on the bismuth adatom-modified Pt(111) surface.

    Science.gov (United States)

    Perales-Rondón, Juan Victor; Ferre-Vilaplana, Adolfo; Feliu, Juan M; Herrero, Enrique

    2014-09-24

    In order to improve catalytic processes, elucidation of reaction mechanisms is essential. Here, supported by a combination of experimental and computational results, the oxidation mechanism of formic acid on Pt(111) electrodes modified by the incorporation of bismuth adatoms is revealed. In the proposed model, formic acid is first physisorbed on bismuth and then deprotonated and chemisorbed in formate form, also on bismuth, from which configuration the C-H bond is cleaved, on a neighbor Pt site, yielding CO2. It was found computationally that the activation energy for the C-H bond cleavage step is negligible, which was also verified experimentally.

  1. Shape-dependent electrocatalytic activity of monodispersed palladium nanocrystals toward formic acid oxidation.

    Science.gov (United States)

    Zhang, Xuwei; Yin, Huajie; Wang, Jinfeng; Chang, Lin; Gao, Yan; Liu, Wei; Tang, Zhiyong

    2013-09-21

    The catalytic activity of different-shaped and monodispersed palladium nanocrystals, including cubes, octahedra and rhombic dodecahedra, toward the electrochemical oxidation of formic acid has been systematically evaluated in both HClO4 and H2SO4 solutions. Notably, the cubic palladium nanocrystals wholly exposed with {100} facets exhibit the highest activity, while the rhombic dodecahedra with {110} facets show the lowest electrocatalytic performance. Furthermore, compared with HClO4 electrolyte, the catalytic activity is found to be obviously lower in H2SO4 solution likely due to the competitive adsorption of SO4(2-) ions and formic acid on the surface of Pd nanocrystals.

  2. Nanocrystalline intermetallics on mesoporous carbon for direct formic acid fuel cell anodes

    Science.gov (United States)

    Ji, Xiulei; Lee, Kyu Tae; Holden, Reanne; Zhang, Lei; Zhang, Jiujun; Botton, Gianluigi A.; Couillard, Martin; Nazar, Linda F.

    2010-04-01

    Shape- and size-controlled supported metal and intermetallic nanocrystallites are of increasing interest because of their catalytic and electrocatalytic properties. In particular, intermetallics PtX (X = Bi, Pb, Pd, Ru) are very attractive because of their high activity as fuel-cell anode catalysts for formic acid or methanol oxidation. These are normally synthesized using high-temperature techniques, but rigorous size control is very challenging. Even low-temperature techniques typically produce nanoparticles with dimensions much greater than the optimum formic acid oxidation reported to date, and over double that of Pt-Au.

  3. Investigation of Influential Parameters in Deep Oxidative Desulfurization of Dibenzothiophene with Hydrogen Peroxide and Formic Acid

    Directory of Open Access Journals (Sweden)

    Alireza Haghighat Mamaghani

    2013-01-01

    Full Text Available An effective oxidative system consisting of hydrogen peroxide, formic acid, and sulfuric acid followed by an extractive stage were implemented to remove dibenzothiophene in the simulated fuel oil. The results revealed such a great performance in the case of H2O2 in the presence of formic and sulfuric acids that led to the removal of sulfur compounds. Sulfuric acid was employed to increase the acidity of media as well as catalytic activity together with formic acid. The oxidation reaction was followed by a liquid-liquid extraction stage using acetonitrile as a polar solvent to remove produced sulfones from the model fuel. The impact of operating parameters including the molar ratio of formic acid to sulfur (, hydrogen peroxide to sulfur (, and the time of reaction was investigated using Box-Behnken experimental design for oxidation of the model fuel. A significant quadratic model was introduced for the sulfur removal as a function of effective parameters by the statistic analysis.

  4. Microwave Measurements of the Tropolone-Formic Acid Doubly Hydrogen Bonded DIMER*

    Science.gov (United States)

    Pejlovas, Aaron M.; Serrato, Agapito, III; Lin, Wei; Kukolich, Stephen G.

    2016-06-01

    The microwave spectrum was measured for the tropolone-formic acid doubly hydrogen bonded dimer using a pulsed-beam Fourier transform microwave spectrometer in order to search for the concerted double proton tunneling motion. The tunneling motion was expected for the dimer, as the transition state of this motion exhibits C_2_V symmetry, which has been thought to be a requirement to observe the concerted double proton tunneling. The tunneling motion was not observed for this dimer, as the transitions measured did not show observable splittings into doublets. The barrier height calculated of the dimer using B3LYP/aug-cc-pVTZ was about 15000 cm^-^1, significantly larger than the value determined for the propiolic acid-formic acid dimer (3800 cm^-^1),^a which showed the tunneling motion. The estimated separation of the minima in the potential energy surface is estimated to be very similar to that of propiolic acid-formic acid (about 0.8 Å),^a so the large barrier height may be why the tunneling process was not observed. ^aDaly, A. M.; Bunker, P. R.; Kukolich, S. G. Communications: Evidence for Proton Tunneling from the Microwave Spectrum of the Formic Acid-Propiolic Acid Dimer. J. Chem. Phys. 132, 2010, 201101/1. *Supported by the NSF CHE-1057796

  5. Copper corrosion mechanism in the presence of formic acid vapor for short exposure times

    Energy Technology Data Exchange (ETDEWEB)

    Bastidas, J.M.; Lopez-Delgado, A.; Cano, E.; Polo, J.L.; Lopez, F.A.

    2000-03-01

    The rate of copper corrosion originated by the action of formic acid vapors at 100% relative humidity was studied. Five formic vapor concentration levels (10, 50, 100, 200, and 300 ppm) were used. A copper corrosion rate of up to 1,300 mg/m{sup 2} d was measured for a period of 21 days using a gravimetric method. The patina layers were characterized using cathodic reduction, X-ray powder diffraction. Fourier transform infrared spectrometry, and scanning electron microscopy techniques. Some of the components identified in the corrosion-product layers were cuprite (Cu{sub 2}O), cupric hydroxide hydrate [Cu(OH){sub 2}{sm_bullet}H{sub 2}O], and copper formate hydrate [Cu(HCOO){sub 2}{sm_bullet}4H{sub 2}O]. The latter was formed by both cupric hydroxide and formic acid-cuprous ion complex mechanisms.

  6. Pd nanoparticles supported on functionalized multi-walled carbon nanotubes (MWCNTs) and electrooxidation for formic acid

    Science.gov (United States)

    Yang, Sudong; Zhang, Xiaogang; Mi, Hongyu; Ye, Xiangguo

    To improve the utilization and activity of anodic catalysts for formic acid electrooxidation, palladium (Pd) particles were loaded on the MWCNTs, which were functionalized in a mixture of 96% sulfuric acid and 4-aminobenzenesulfonic acid, using sodium nitrite to produce intermediate diazonium salts from substituted anilines. The composition, particle size, and crystallinity of the Pd/f-MWCNTs catalysts were characterized by X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM) and energy dispersive spectroscopy (EDS) measurements. The electrocatalytic properties of the Pd/f-MWCNTs catalysts for formic acid oxidation were investigated by cyclic voltammetry (CV) and linear sweep voltammetry (LSV) in 0.5 mol L -1 H 2SO 4 solution. The results demonstrated that the catalytic activity was greatly enhanced due to the improved water-solubility and dispersion of the f-MWCNTs, which were facile to make the small particle size (3.8 nm) and uniform dispersion of Pd particles loading on the surface of the MWCNTs. In addition, the functionalized MWCNTs with benzenesulfonic group can provide benzenesulfonic anions in aqueous solution, which may combine with hydrogen cation and then promote the oxidation of formic acid reactive intermediates. So the Pd/f-MWCNTs composites showed excellent electrocatalytic activity for formic acid oxidation.

  7. Base-Free Production of H-2 by Dehydrogenation of Formic Acid Using An Iridium-bisMETAMORPhos Complex

    NARCIS (Netherlands)

    Oldenhof, S.; de Bruin, B.; Lutz, M.; Siegler, M.A.; Patureau, F.W.; van der Vlugt, J.I.; Reek, J.N.H.

    2013-01-01

    An iridium complex based on a cooperative ligand that functions as an internal base is reported. This complex can rapidly and cleanly dehydrogenate formic acid in absence of external base, a reaction that is required if formic acid is to be exploited as an energy carrier (see scheme).

  8. Influence of sodium carbonate on decomposition of formic acid by pulsed discharge plasma inside bubble in water

    Science.gov (United States)

    Iwabuchi, Masashi; Takahashi, Katsuyuki; Takaki, Koichi; Satta, Naoya

    2016-07-01

    The influence of sodium carbonate on the decomposition of formic acid by discharge inside bubbles in water was investigated experimentally. Oxygen or argon gases were injected into the water through a vertically positioned glass tube, in which the high-voltage wire electrode was placed to generate plasmas at low applied voltage. The concentration of formic acid was determined by ion chromatography. In the case of sodium carbonate additive, the pH increased owing to the decomposition of the formic acid. In the case of oxygen injection, the percentage of conversion of formic acid increased with increasing pH because the reaction rate of ozone with formic acid increased with increasing pH. In the case of argon injection, the percentage of conversion was not affected by the pH owing to the high rate loss of hydroxyl radicals.

  9. Hanford waste vitrification plant hydrogen generation study: Preliminary evaluation of alternatives to formic acid

    Energy Technology Data Exchange (ETDEWEB)

    King, R.B.; Bhattacharyya, N.K.; Kumar, V.

    1996-02-01

    Oxalic, glyoxylic, glycolic, malonic, pyruvic, lactic, levulinic, and citric acids as well as glycine have been evaluated as possible substitutes for formic acid in the preparation of feed for the Hanford waste vitrification plant using a non-radioactive feed stimulant UGA-12M1 containing substantial amounts of aluminum and iron oxides as well as nitrate and nitrite at 90C in the presence of hydrated rhodium trichloride. Unlike formic acid none of these carboxylic acids liberate hydrogen under these conditions and only malonic and citric acids form ammonia. Glyoxylic, glycolic, malonic, pyruvic, lactic, levulinic, and citric acids all appear to have significant reducing properties under the reaction conditions of interest as indicated by the observation of appreciable amounts of N{sub 2}O as a reduction product of,nitrite or, less likely, nitrate at 90C. Glyoxylic, pyruvic, and malonic acids all appear to be unstable towards decarboxylation at 90C in the presence of Al(OH){sub 3}. Among the carboxylic acids investigated in this study the {alpha}-hydroxycarboxylic acids glycolic and lactic acids appear to be the most interesting potential substitutes for formic acid in the feed preparation for the vitrification plant because of their failure to produce hydrogen or ammonia or to undergo decarboxylation under the reaction conditions although they exhibit some reducing properties in feed stimulant experiments.

  10. Pd/C synthesized with citric acid: an efficient catalyst for hydrogen generation from formic acid/sodium formate.

    Science.gov (United States)

    Wang, Zhi-Li; Yan, Jun-Min; Wang, Hong-Li; Ping, Yun; Jiang, Qing

    2012-01-01

    A highly efficient hydrogen generation from formic acid/sodium formate aqueous solution catalyzed by in situ synthesized Pd/C with citric acid has been successfully achieved at room temperature. Interestingly, the presence of citric acid during the formation and growth of the Pd nanoparticles on carbon can drastically enhance the catalytic property of the resulted Pd/C, on which the conversion and turnover frequency for decomposition of formic acid/sodium formate system can reach the highest values ever reported of 85% within 160 min and 64 mol H(2) mol(-1) catalyst h(-1), respectively, at room temperature. The present simple, low cost, but highly efficient CO-free hydrogen generation system at room temperature is believed to greatly promote the practical application of formic acid system on fuel cells.

  11. Platinum nanoparticles–manganese oxide nanorods as novel binary catalysts for formic acid oxidation

    Directory of Open Access Journals (Sweden)

    Mohamed S. El-Deab

    2012-01-01

    Full Text Available The current study proposes a novel binary catalyst system (composed of metal/metal oxide nanoparticles as a promising electrocatalyst in formic acid oxidation. The electro-catalytic oxidation of formic acid is carried out with binary catalysts of Pt nanoparticles (nano-Pt and manganese oxide nanorods (nano-MnOx electrodeposited onto glassy carbon (GC electrodes. Cyclic voltammetric (CV measurements showed that unmodified GC and nano-MnOx/GC electrodes have no catalytic activity. While two oxidation peaks were observed at nano-Pt/GC electrode at ca. 0.2 and 0.55 V (corresponding to the direct oxidation of formic acid and the oxidation of the poisoning CO intermediate, respectively. The combined use of nano-MnOx and nano-Pt results in superb enhancement of the direct oxidation pathway. Nano-MnOx is shown to facilitate the oxidation of CO (to CO2 by providing oxygen at low over-potential. This leads to retrieval of Pt active sites necessary for the direct oxidation of formic acid. The higher catalytic activity of nano-MnOx/nano-Pt/GC electrode (with Pt firstly deposited compared to its mirror image electrode (i.e., with MnOx firstly deposited, nano-Pt/nano-MnOx/GC reveals that the order of the electrodeposition is an essential parameter.

  12. Biorefining of wheat straw using an acetic and formic acid based organosolv fractionation process

    NARCIS (Netherlands)

    Snelders, J.; Dornez, E.; Benjelloun-Mlayah, B.; Huijgen, W.J.J.; Wild, de P.J.; Gosselink, R.J.A.; Gerritsma, J.; Courtin, C.M.

    2014-01-01

    To assess the potential of acetic and formic acid organosolv fractionation of wheat straw as basis of an integral biorefinery concept, detailed knowledge on yield, composition and purity of the obtained streams is needed. Therefore, the process was performed, all fractions extensively characterized

  13. Theoretical Insight into the Trends that Guide the Electrochemical Reduction of Carbon Dioxide to Formic Acid

    DEFF Research Database (Denmark)

    Yoo, J.S.; Christensen, Rune; Vegge, Tejs

    2016-01-01

    The electrochemical reduction (electroreduction) of CO2 to formic acid (HCOOH) and its competing reactions, that is, the electroreduction of CO2 to CO and the hydrogen evolution reaction (HER), on twenty-seven different metal surfaces have been investigated using density functional theory (DFT) c...

  14. Glycerol-plasticised silk membranes made using formic acid are ductile, transparent and degradation-resistant.

    Science.gov (United States)

    Allardyce, Benjamin J; Rajkhowa, Rangam; Dilley, Rodney J; Redmond, Sharon L; Atlas, Marcus D; Wang, Xungai

    2017-11-01

    Regenerated silk fibroin membranes tend to be brittle when dry. The use of plasticisers such as glycerol improve membrane ductility, but, when combined with aqueous processing, can lead to a higher degradation rate than solvent-annealed membranes. This study investigated the use of formic acid as the solvent with glycerol to make deformable yet degradation-resistant silk membranes. Here we show that membranes cast using formic acid had low light scattering, with a diffuse transmittance of less than 5% over the visible wavelengths, significantly lower than the 20% transmittance of aqueous derived silk/glycerol membranes. They had 64% β-sheet content and lost just 30% of the initial silk weight over 6h when tested with an accelerated enzymatic degradation assay, in comparison the aqueous membranes completely degraded within this timeframe. The addition of glycerol also improved the maximum elongation of formic acid derived membranes from under 3% to over 100%. They also showed good cytocompatibility and supported the adhesion and migration of human tympanic membrane keratinocytes. Formic acid based, silk/glycerol membranes may be of great use in medical applications such as repair of tympanic membrane perforation or ocular applications where transparency and resistance to enzymatic degradation are important. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Characterization and formic acid oxidation studies of PtAu nanoparticles.

    Science.gov (United States)

    Saipanya, Surin; Srisombat, Laongnuan; Wongtap, Pitak; Sarakonsri, Thapanee

    2014-10-01

    Characterization and electrocatalytic oxidation of formic acid on PtAu nanoparticles supported multiwalled carbon nanotube (MWCNT) were studied. Electrochemical measurements were conducted in a self-made conventional three-electrode glass cell at room temperature. A Pt wire and Ag/AgCl were used as auxiliary and reference electrodes, respectively. The Pt was electrodeposited onto the electrode and their catalytic activities in the electrooxidation of formic acid were examined and compared. The morphology and composition were studied by a combination of transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDX). Cyclic voltamograms of formic acid electrooxidation show a distinguishing shape with a prominent oxidation peak in the forward scan contributed to the formic acid oxidation whilst the backward scan is associated with the oxidation of exclusion of carbonaceous species. On the basis of the onset potential and current density, the resulting PtAu nanoparticles showed much higher electrocatalytic activity than other counterparts. The results show an excellent sign of applications for fuel cell.

  16. Localized Pd overgrowth on cubic Pt nanocrystals for enhanced electrocatalytic oxidation of formic acid.

    Science.gov (United States)

    Lee, Hyunjoo; Habas, Susan E; Somorjai, Gabor A; Yang, Peidong

    2008-04-23

    Binary Pt/Pd nanoparticles were synthesized by localized overgrowth of Pd on cubic Pt seeds for the investigation of electrocatalytic formic acid oxidation. The binary particles exhibited much less self-poisoning and a lower activation energy relative to Pt nanocubes, consistent with the single crystal study.

  17. High performance Pd-based catalysts for oxidation of formic acid

    Science.gov (United States)

    Wang, Rongfang; Liao, Shijun; Ji, Shan

    Two novel catalysts for anode oxidation of formic acid, Pd 2Co/C and Pd 4Co 2Ir/C, were prepared by an organic colloid method with sodium citrate as a complexing agent. These two catalysts showed better performance towards the anodic oxidation of formic acid than Pd/C catalyst and commercial Pt/C catalyst. Compared with Pd/C catalyst, potentials of the anodic peak of formic acid at the Pd 2Co/C and Pd 4Co 2Ir/C catalyst electrodes shifted towards negative value by 140 and 50 mV, respectively, meanwhile showed higher current densities. At potential of 0.05 V (vs. SCE), the current density for Pd 4Co 2Ir/C catalyst is as high as up to 13.7 mA cm -2, which is twice of that for Pd/C catalyst, and six times of that for commercial Pt/C catalyst. The alloy catalysts were nanostructured with a diameter of ca. 3-5 nm and well dispersed on carbon according to X-ray diffraction (XRD) and transmission electron microscopy (TEM) measurements. The composition of alloy catalysts was analyzed by energy dispersive X-ray analysis (EDX). Pd 4Co 2Ir/C catalyst showed the highest activity and best stability making it the best potential candidate for application in a direct formic acid fuel cell (DFAFC).

  18. Mesoporous vanadium nitride as a high performance catalyst support for formic acid electrooxidation.

    Science.gov (United States)

    Yang, Minghui; Cui, Zhiming; DiSalvo, Francis J

    2012-11-04

    Mesoporous vanadium nitride (VN) with high surface area and good electrical conductivity was prepared by a solid-solid phase separation method from a Zn containing vanadium oxide, Zn(3)V(2)O(8). The VN supported Pd catalyst exhibited significant catalytic activity for formic acid oxidation.

  19. Shape-dependent electrocatalytic activity of monodispersed palladium nanocrystals toward formic acid oxidation

    Science.gov (United States)

    Zhang, Xuwei; Yin, Huajie; Wang, Jinfeng; Chang, Lin; Gao, Yan; Liu, Wei; Tang, Zhiyong

    2013-08-01

    The catalytic activity of different-shaped and monodispersed palladium nanocrystals, including cubes, octahedra and rhombic dodecahedra, toward the electrochemical oxidation of formic acid has been systematically evaluated in both HClO4 and H2SO4 solutions. Notably, the cubic palladium nanocrystals wholly exposed with {100} facets exhibit the highest activity, while the rhombic dodecahedra with {110} facets show the lowest electrocatalytic performance. Furthermore, compared with HClO4 electrolyte, the catalytic activity is found to be obviously lower in H2SO4 solution likely due to the competitive adsorption of SO42- ions and formic acid on the surface of Pd nanocrystals.The catalytic activity of different-shaped and monodispersed palladium nanocrystals, including cubes, octahedra and rhombic dodecahedra, toward the electrochemical oxidation of formic acid has been systematically evaluated in both HClO4 and H2SO4 solutions. Notably, the cubic palladium nanocrystals wholly exposed with {100} facets exhibit the highest activity, while the rhombic dodecahedra with {110} facets show the lowest electrocatalytic performance. Furthermore, compared with HClO4 electrolyte, the catalytic activity is found to be obviously lower in H2SO4 solution likely due to the competitive adsorption of SO42- ions and formic acid on the surface of Pd nanocrystals. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr03100d

  20. Biorefining of wheat straw using an acetic and formic acid based organosolv fractionation process

    NARCIS (Netherlands)

    Snelders, J.; Dornez, E.; Benjelloun-Mlayah, B.; Huijgen, W.J.J.; Wild, de P.J.; Gosselink, R.J.A.; Gerritsma, J.; Courtin, C.M.

    2014-01-01

    To assess the potential of acetic and formic acid organosolv fractionation of wheat straw as basis of an integral biorefinery concept, detailed knowledge on yield, composition and purity of the obtained streams is needed. Therefore, the process was performed, all fractions extensively characterized

  1. NiO增强Pt/C催化剂催化氧化甲醇活性的研究%Studies of electro-oxidation of methanol in acidic solution on NiO-enhanced Pt/C catalysts

    Institute of Scientific and Technical Information of China (English)

    白庆星; 陈金伟; 杨鑫; 陆超; 胥诚成; 顾佳林; 姜春萍; 王瑞林

    2012-01-01

    本文基于NiO作为Pt催化甲醇助催化剂的思路,通过Pt纳米颗粒担载在NiO修饰的碳材料载体上制备了Pt/NiO-C催化剂,系统地研究了不同的NiO/C热处理温度对Pt粒径的影响,并重点探讨了Pt对NiO的质量比对催化氧化甲醇的影响.X射线衍射分析结果显示NiO和Pt均为立方晶系,且NiO的加入有利于主催化剂Pt形成较小的粒径,且经400℃热处理NiO修饰的C材料作为载体有利于Pt的有效分散.所获得的Pt/NiO-C催化剂的电化学活性在甲醇酸性溶液中通过循环伏安法(CV)和计时电流法(CA)进行性能测试.CV测试结果显示以Pt/NiO重量比为4∶1的催化剂其电氧化甲醇活性最大,其峰值氧化电流密度达806 mA/mgPt,是Pt/C催化剂的1.64倍.CA测试结果显示Pt/NiO-C比Pt/C具有更好的抗CO中毒性能和稳定性.%In an attempt to utilize NiO as a co-catalyst with Pt for methanol electro-oxidation,Pt/NiO-C were prepared by attaching Pt nanoparticles on NiO coated Vulcan XC-72R carbon blacks in this study. Heat treatment of NiO at different temperatures on the influences of Pt particle size was investigated,and the weight ratio of Pt to NiO on the catalytic oxidation of methanol was also studied. X-ray diffraction results indicated that both NiO and Pt belong to cubic structure and Pt nano-particles on NiO/C supports had smaller particle size than those on Vulcan XC-72R without NiO. NiO/C heat treatment at 400℃ is good for Pt effective dispersion. The methanol electro-oxidation was studied in acid medium by cyclic voltammetry and chronoamperometry. The catalytic activity of Pt for methanol oxidation can be significantly enhanced by introducing NiO. The composition with ratio of Pt to NiO(4:l)exhibited the highest mass activity(806 mA/mgp,)in the as-prepared version,which was 1. 64 times higher that that on the Pt/C catalyst. Pt/NiO-C catalysts showed better stability and CO tolerant capability than Pt/C catalysts from chronoamperometry

  2. Kinetics of Formic Acid-autocatalyzed Preparation of Performic Acid in Aqueous Phase

    Institute of Scientific and Technical Information of China (English)

    孙晓英; 赵雪冰; 杜伟; 刘德华

    2011-01-01

    Performic acid (PFA) is an oxidant used in chemical processing, synthesis and bleaching. The macro kinetic models of synthesis, hydrolysis and decomposition of PFA were investigated via formic acid-autocatalyzed reaction. It was found that the intrinsic activation energies of PFA synthesis and hydrolysis were 75.2 kJ·mol^-1 and 40.4 kJ·mol^-1 respectively. The observed activation energy of PFA decomposition was 95.4 kJ·mol^-1. The experi-mental results indicated that the decomposition of PFA was liable to occur even at the ambient temperature. Both the spontaneous decomposition and the radical-introduced decomposition contributed to the decomposition of PFA.

  3. Evaluation of the effect of formic acid and sodium formate on hair reduction in rat

    Directory of Open Access Journals (Sweden)

    Banihashemi M

    2011-06-01

    Full Text Available Mahnaz Banihashemi1,2, Abolfazl Khajavi Rad2, Seyed Abbas Tabatabaee Yazdi2, Hasan Rakhshande2, Vahid Mashayekhi Ghoyonlo1,2, Zahra Zabihi3, Hadis Yousefzadeh41Research Center for Skin Diseases and Cutaneous Leishmaniasis, Ghaem Hospital, 2School of Medicine, Mashhad University of Medical Sciences (MUMS, Mashad, Iran; 3Neishabour Medical University, Neishabour, Iran; 4Young Researchers Club, Islamic Azad University, Mashhad Branch, Mashhad, IranAbstract: Hirsutism is a common problem in dermatology that imposes high socioeconomical costs on medical care. Consequently, researchers are actively searching for cheaper and safer methods for therapeutic treatment. The objective of the present study is to evaluate formic oil, enriched from formic acid, for the removal of unwanted hair. In this study, 32 female rats (150–200 g were randomly divided into four groups and maintained with normal water and food availability. A patch of skin was shaved on each rat for application of test solutions. The control group was treated with local once-daily applications of normal saline. The formic acid, acetic acid, and sodium formate groups were treated with once-daily applications of formic acid (pH 5.5, acetic acid (pH 5.5, or sodium formate, respectively. After 2 weeks, horizontally cut sample biopsies were removed, and the numbers of hair follicles were counted under high field microscopy by a specialist blinded to the treatments. Kolmogorov–Smirnov test results indicated a nonparametric distribution for the rat groups. ANOVA analysis indicated no statistically significant differences between groups (P < 0.05. There weren't any side effects or evidence for toxicity during the study period. However, hair follicle counts showed a descending order of control, acetic acid, formic acid, and sodium formate. Although the sodium formate group had the lowest hair follicle numbers, the difference was not statistically significant (P > 0.05. Formic acid was not

  4. Electro-oxidation process for molybdenum concentrates

    Institute of Scientific and Technical Information of China (English)

    FU Jian-gang; ZHONG Hong; BU Xiang-ming; WANG Fu-li

    2005-01-01

    Sodium hypochlorite was used to treat the standard molybdenum concentrates; the oxidization conditions for sodium hypochlorite were investigated, and the electro-oxidation process was performed. The results indicate that in the suitable conditions, such as temperature around 25 ℃, NaCl concentration 4.0 mol/L, mass ratio of ore slurry liquid to solid (mL/mS) 20, electric charge per gram Mo 0.522 C, pH value of original slurry 8, anodic current density 700 A·m-2 (cell potential 2.7-2.9 V), the Mo leaching rate and the current efficiency reach 98% and 36%, respectively. In order to overcome some shortages of the electro-oxidation process, such as low current efficiency, low Mo concentration in the leaching solution, ultrasonic was adopted to intensify the leaching process. The results show that the Mo leaching rate exceeds 98%, current efficiency increases from 36% to 50% and the Mo concentration in the leaching solution reaches about 60 g/L at low mL/mS of 8 and low electric charge of 0.373 C.

  5. Application of normal pulse voltammetry to the kinetic study of formic acid oxidation on a carbon supported Pd electrocatalyst

    Science.gov (United States)

    Wang, Yujiao; Wu, Xiaochen; Wu, Bing; Gao, Ying

    The kinetic parameters of formic acid oxidation on a carbon supported Pd electrode, such as the charge transfer coefficient (α) and apparent diffusion coefficient (D) are obtained by applying the technique of normal pulse voltammetry. The standard rate constant (k 0) of formic acid oxidation on a Pd/C electrode is estimated. The results show that formic acid oxidation is more sensitive to temperature at relatively high potential because the activation energy is significantly increased as the potential rose above 0.6 V.

  6. Photoelectrochemical behavior of nanostructured WO3 thin-film electrodes: The oxidation of formic acid.

    Science.gov (United States)

    Monllor-Satoca, Damián; Borja, Luis; Rodes, Antonio; Gómez, Roberto; Salvador, Pedro

    2006-12-11

    Nanostructured tungsten trioxide thin-film electrodes are prepared on conducting glass substrates by either potentiostatic electrodeposition from aqueous solutions of peroxotungstic acid or direct deposition of WO3 slurries. Once treated thermally in air at 450 degrees C, the electrodes are found to be composed of monoclinic WO3 grains with a particle size around 30-40 nm. The photoelectrochemical behavior of these electrodes in 1 M HClO4 apparently reveals a low degree of electron-hole recombination. Upon addition of formic acid, the electrode showed the current multiplication phenomenon together with a shift of the photocurrent onset potential toward less positive values. Photoelectrochemical experiments devised on the basis of a kinetic model reported recently [I. Mora-Seró, T. Lana-Villarreal, J. Bisquert, A. Pitarch, R. Gómez, P. Salvador, J. Phys. Chem. B 2005, 109, 3371] showed that an interfacial mechanism of inelastic, direct hole transfer takes place in the photooxidation of formic acid. This behavior is attributed to the tendency of formic acid molecules to be specifically adsorbed on the WO3 nanoparticles, as evidenced by attenuated total reflection infrared spectroscopy.

  7. Dehydrogenation of Formic Acid Catalyzed by a Ruthenium Complex with an N,N′-Diimine Ligand

    KAUST Repository

    Guan, Chao

    2016-12-17

    We report a ruthenium complex containing an N,N′-diimine ligand for the selective decomposition of formic acid to H and CO in water in the absence of any organic additives. A turnover frequency of 12000 h and a turnover number of 350 000 at 90 °C were achieved in the HCOOH/HCOONa aqueous solution. Efficient production of high-pressure H and CO (24.0 MPa (3480 psi)) was achieved through the decomposition of formic acid with no formation of CO. Mechanistic studies by NMR and DFT calculations indicate that there may be two competitive pathways for the key hydride transfer rate-determining step in the catalytic process.

  8. Efficient Production of Hydrogen from Decomposition of Formic Acid over Zeolite Incorporated Gold Nanoparticles

    DEFF Research Database (Denmark)

    Gallas-Hulin, Agata; Mielby, Jerrik Jørgen; Kegnæs, Søren

    2016-01-01

    Formic acid has a great potential as a safe and convenient source of hydrogen for sustainable chemical synthesis and renewable energy storage. Here, we report a heterogeneous gold nanoparticles catalyst for efficient production of hydrogen from vapor phase decomposition of formic acid using zeolite...... incorporated gold nanoparticles. The catalyst is prepared by pressure assisted impregnation and reduction (PAIR), which results in a uniform distribution of small gold nanoparticles that are incorporated into zeolite silicalite-1 crystals. Consequently, the incorporated nanoparticles exhibit increased...... sintering stability. Based on these results, we believe that incorporation of metal nanoparticles in zeolites may find use as highly active and selective heterogeneous catalysts for the production of hydrogen in future renewable energy applications....

  9. Formic acid electrooxidation on carbon supported platinum catalyst with preferential plane orientation

    Directory of Open Access Journals (Sweden)

    Krstajić Mila N.

    2015-01-01

    Full Text Available Pt-based nanocatalysts supported on Vulcan XC-72R carbon, were prepared by water-in-oil microemulsion method, with addition of various amounts of HCl in the water phase. Polyethileneglycoldodecylether (BRIJ 30 was used as a surfactant, which influenced the Pt surface structure, along with HCl. Catalysts prepared with addition of 0, 15, 25 and 35 % of HCl during the synthesis, were electrochemically characterised in 0,5 M H2SO4 using cyclic voltammetry and CO oxidation. Formic acid electrooxidation was examined on all investigated catalysts, in terms of their electrocatalytic activity and stability. Platinum loading on carbon support was examined by Thermogravimetric analysis. Catalysts showed different features in hydrogen region, and slight differences in formic acid oxidation mechanisms.

  10. Adsorbed formate: the key intermediate in the oxidation of formic acid on platinum electrodes.

    Science.gov (United States)

    Cuesta, Angel; Cabello, Gema; Gutiérrez, Claudio; Osawa, Masatoshi

    2011-12-07

    The electrooxidation of formic acid on Pt and other noble metal electrodes proceeds through a dual-path mechanism, composed of a direct path and an indirect path through adsorbed carbon monoxide, a poisoning intermediate. Adsorbed formate had been identified as the reactive intermediate in the direct path. Here we show that actually it is also the intermediate in the indirect path and is, hence, the key reaction intermediate, common to both the direct and indirect paths. Furthermore, it is confirmed that the dehydration of formic acid on Pt electrodes requires adjacent empty sites, and it is demonstrated that the reaction follows an apparently paradoxical electrochemical mechanism, in which an oxidation is immediately followed by a reduction.

  11. Butylphenyl-functionalized Pt nanoparticles as CO-resistant electrocatalysts for formic acid oxidation.

    Science.gov (United States)

    Zhou, Zhi-You; Ren, Jie; Kang, Xiongwu; Song, Yang; Sun, Shi-Gang; Chen, Shaowei

    2012-01-28

    Butylphenyl-functionalized Pt nanoparticles (Pt-BP) with an average core diameter of 2.93 ± 0.49 nm were synthesized by the co-reduction of butylphenyl diazonium salt and H(2)PtCl(4). Cyclic voltammetric studies of the Pt-BP nanoparticles showed a much less pronounced hysteresis between the oxidation currents of formic acid in the forward and reverse scans, as compared to that on naked Pt surfaces. Electrochemical in situ FTIR studies confirmed that no adsorbed CO, a poisoning intermediate, was generated on the Pt-BP nanoparticle surface. These results suggest that functionalization of the Pt nanoparticles by butylphenyl fragments effectively blocked the CO poisoning pathway, most probably through third-body effects, and hence led to an apparent improvement of the electrocatalytic activity in formic acid oxidation.

  12. Pd oxides/hydrous oxides as highly efficient catalyst for formic acid electrooxidation

    Science.gov (United States)

    Yan, Liang; Yao, Shikui; Chang, Jinfa; Liu, Changpeng; Xing, Wei

    2014-03-01

    A novel Pd-based catalyst for formic acid electrooxidation (FAEO) was prepared by annealing commercial Pd/C catalyst under the O2 atmosphere at 100 °C, which exhibits excellent catalytic activity and stability for FAEO due to introduction of Pd oxides/hydrous oxides (POHOs). The catalytic activity of the as-prepared catalyst towards FAEO is 1.86 times of the commercial Pd/C catalyst in 0.5 M H2SO4 + 0.5 M HCOOH solution. Chronoamperometric curves show obvious improvement of the as-prepared catalyst electrocatalytic stability for FAEO. It is confirmed that POHOs can provide the required oxygen species for intermediate CO oxidation during the oxidation process of formic acid.

  13. Carbon nanofiber supported bimetallic PdAu nanoparticles for formic acid electrooxidation

    Science.gov (United States)

    Qin, Yuan-Hang; Jiang, Yue; Niu, Dong-Fang; Zhang, Xin-Sheng; Zhou, Xing-Gui; Niu, Li; Yuan, Wei-Kang

    2012-10-01

    Carbon nanofiber (CNF) supported PdAu nanoparticles are synthesized with sodium citrate as the stabilizing agent and sodium borohydride as the reducing agent. High resolution transmission electron microscopy (HRTEM) characterization indicates that the synthesized PdAu particles are well dispersed on the CNF surface and X-ray diffraction (XRD) characterization indicates that the alloying degree of the synthesized PdAu nanoparticles can be improved by adding tetrahydrofuran to the synthesis solution. The results of electrochemical characterization indicate that the addition of Au can promote the electrocatalytic activity of Pd/C catalyst for formic acid oxidation and the CNF supported high-alloying PdAu catalyst possesses better electrocatalytic activity and stability for formic acid oxidation than either the CNF supported low-alloying PdAu catalyst or the CNF supported Pd catalyst.

  14. Length tunable penta-twinned palladium nanorods: seedless synthesis and electrooxidation of formic acid

    Science.gov (United States)

    Tang, Yongan; Edelmann, Richard E.; Zou, Shouzhong

    2014-05-01

    Palladium nanorods with controlled lengths from 100 to 500 nm and a fixed width of 20 nm were synthesized for the first time by a seedless approach. These rods show higher peak current densities than Pd cubes for formic acid oxidation and the catalytic activity decreases with increasing rod length.Palladium nanorods with controlled lengths from 100 to 500 nm and a fixed width of 20 nm were synthesized for the first time by a seedless approach. These rods show higher peak current densities than Pd cubes for formic acid oxidation and the catalytic activity decreases with increasing rod length. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr00299g

  15. Synthesis and assembly of Pd nanoparticles on graphene for enhanced electrooxidation of formic acid

    Science.gov (United States)

    Jin, Tao; Guo, Shaojun; Zuo, Jing-Lin; Sun, Shouheng

    2012-12-01

    Monodisperse 4.5 nm Pd nanoparticles (NPs) were synthesized by solution phase reduction of palladium acetylacetonate with morpholine borane in a mixture of oleylamine and 1-octadecene. These NPs were assembled on graphene uniformly in the form of a monolayer, and showed much enhanced catalysis for electrooxidation of formic acid. The work demonstrates the great potential of graphene as a support to enhance NP catalysis and stability for important chemical oxidation reactions.Monodisperse 4.5 nm Pd nanoparticles (NPs) were synthesized by solution phase reduction of palladium acetylacetonate with morpholine borane in a mixture of oleylamine and 1-octadecene. These NPs were assembled on graphene uniformly in the form of a monolayer, and showed much enhanced catalysis for electrooxidation of formic acid. The work demonstrates the great potential of graphene as a support to enhance NP catalysis and stability for important chemical oxidation reactions. Electronic supplementary information (ESI) available. See DOI: 10.1039/c2nr33060a

  16. Molybdenum carbide catalysed hydrogen production from formic acid - A density functional theory study

    Science.gov (United States)

    Luo, Qiquan; Wang, Tao; Walther, Guido; Beller, Matthias; Jiao, Haijun

    2014-01-01

    Density functional theory computations have been employed to investigate the decomposition of formic acid (HCO2H) into CO2 and hydrogen on the β-Mo2C(101) surface. The adsorption configurations and energies of the surface intermediates (HCO2H, CO2, CO, H2O, HCO2, CO2H, CHO, OH, O and H) have been systematically characterized. Among the different dissociation steps considered, our results showed the formate route (HCO2H → H + HCO2; HCO2 → H + CO2) is the minimum energy path for hydrogen formation and CO2 has very strong chemisorption. The adsorption and dissociation of formic acid on the Mo2C(101) surface have been compared with those of Pt group metals.

  17. Electrons Mediate the Gas-Phase Oxidation of Formic Acid with Ozone.

    Science.gov (United States)

    van der Linde, Christian; Tang, Wai-Kit; Siu, Chi-Kit; Beyer, Martin K

    2016-08-26

    Gas-phase reactions of CO3 (.-) with formic acid are studied using Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry. Signal loss indicates the release of a free electron, with the formation of neutral reaction products. This is corroborated by adding traces of SF6 to the reaction gas, which scavenges 38 % of the electrons. Quantum chemical calculations of the reaction potential energy surface provide a reaction path for the formation of neutral carbon dioxide and water as the thermochemically favored products. From the literature, it is known that free electrons in the troposphere attach to O2 , which in turn transfer the electron to O3 . O3 (.-) reacts with CO2 to form CO3 (.-) . The reaction reported here formally closes the catalytic cycle for the oxidation of formic acid with ozone, catalyzed by free electrons.

  18. An XPS study of copper corrosion originated by formic acid vapour at 40% and 80% relative humidity

    Energy Technology Data Exchange (ETDEWEB)

    Cano, E.; Torres, C.L.; Bastidas, J.M. [National Centre for Metallurgical Research (CSIC), Madrid (Spain)

    2001-09-01

    Copper corrosion products originated by the action of formic acid vapours at 40% and 80% relative humidity for a period of 21 days were analysed. Three formic vapour concentration levels (10, 100 and 300 ppm) were generated in laboratory tests at 30 C. The corrosion product layers were characterised using X-ray photoelectron spectroscopy (XPS) in conjunction with Ar{sup +}-ion sputtering. The components identified in the patina layers were cuprite (Cu{sub 2}O), copper hydroxide (Cu(OH){sub 2}) and copper formate (Cu(HCOO){sub 2}). Copper formate was formed by a complex mechanism including copper hydroxide and formic acid. (orig.)

  19. "Raisin bun"-like nanocomposites of palladium clusters and porphyrin for superior formic acid oxidation.

    Science.gov (United States)

    Wang, Xiuxin; Yang, Jiandong; Yin, Huajie; Song, Rui; Tang, Zhiyong

    2013-05-21

    A novel "raisin bun"-like nanocomposite, where Pd clusters are embedded in porphyrin matrix, is developed as a promising electrocatalyst. Thanks to the synergy between the Pd clusters and the porphyrin matrix, this composite exhibits a low oxidation potential, high mass activity and excellent stability toward electrochemical oxidation of formic acid, which opens new routes for the design of high-performance catalysts in fuel cells. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Ruthenium-catalysed decomposition of formic acid: Fuel cell and catalytic applications

    KAUST Repository

    Piola, Lorenzo

    2017-08-08

    The decomposition of formic acid into H2 and CO2 was successfully performed using a ruthenium hydride catalyst, without any concomitant CO evolution. The reaction mechanism is investigated by means of density functional theory calculations (DFT). The generated H2 was further exploited in a fuel cell to produce electricity. The catalytic hydrogenation of conjugated olefins, using this dihydrogen generation procedure, is also reported.

  1. On the activation energy of the formic acid oxidation reaction on platinum electrodes

    OpenAIRE

    Perales-Rondón, Juan V.; Herrero, Enrique; Feliu, Juan M

    2015-01-01

    A temperature dependent study on the formic acid oxidation reaction has been carried out in order to determine the activation energy of this reaction on different platinum single crystal electrodes, namely Pt(1 0 0), Pt(1 1 1), Pt(5 5 4) and Pt(5 4 4) surfaces. The chronoamperometric transients obtained with pulsed voltammetry have been analyzed to determine the current densities through the active intermediate and the CO formation rate. From the temperature dependency of those parameters, th...

  2. Improvement of electrocatalytic performance of carbon supported Pd anodic catalyst in direct formic acid fuel cell by ethylenediamine-tetramethylene phosphonic acid

    Science.gov (United States)

    Lu, Liang; Li, Huanzhi; Hong, Yujie; Luo, Yafen; Tang, Yawen; Lu, Tianhong

    2012-07-01

    The direct formic acid fuel cell (DFAFC) has two major shortcomings that limit its lifespan and performance: (i) the poor electrocatalytic stability of the carbon supported Pd (Pd/C) catalyst for the oxidation of formic acid and (ii) rapid decomposition of formic acid over the Pd/C catalyst. To solve the problems, the Pd/C catalyst is modified with ethylenediamine-tetramethylene phosphonic acid (EDTMP). The resulting catalyst is designated as Pd/C-E catalyst. It is found that the Pd/C-E catalyst can inhibit the decomposition of formic acid and promote the oxidation of formic acid through the direct pathway. Consistently, the Pd/C-E catalyst is significantly protected from CO poisoning. As compared to the Pd/C catalyst, the electrocatalytic performance of the Pd/C-E catalyst is significantly superior. These results provide the first proof of the concept that DFAFC can be significantly improved by Pd/C-E catalyst.

  3. Highly active Pt3Pb and core-shell Pt3Pb-Pt electrocatalysts for formic acid oxidation.

    Science.gov (United States)

    Kang, Yijin; Qi, Liang; Li, Meng; Diaz, Rosa E; Su, Dong; Adzic, Radoslav R; Stach, Eric; Li, Ju; Murray, Christopher B

    2012-03-27

    Formic acid is a promising chemical fuel for fuel cell applications. However, due to the dominance of the indirect reaction pathway and strong poisoning effects, the development of direct formic acid fuel cells has been impeded by the low activity of existing electrocatalysts at desirable operating voltage. We report the first synthesis of Pt(3)Pb nanocrystals through solution phase synthesis and show they are highly efficient formic acid oxidation electrocatalysts. The activity can be further improved by manipulating the Pt(3)Pb-Pt core-shell structure. Combined experimental and theoretical studies suggest that the high activity from Pt(3)Pb and the Pt-Pb core-shell nanocrystals results from the elimination of CO poisoning and decreased barriers for the dehydrogenation steps. Therefore, the Pt(3)Pb and Pt-Pb core-shell nanocrystals can improve the performance of direct formic acid fuel cells at desired operating voltage to enable their practical application. © 2012 American Chemical Society

  4. Ternary Pd2/PtFe networks supported by 3D graphene for efficient and durable electrooxidation of formic acid.

    Science.gov (United States)

    Hu, Chuangang; Zhao, Yang; Cheng, Huhu; Hu, Yue; Shi, Gaoquan; Dai, Liming; Qu, Liangti

    2012-12-18

    A newly-designed network of ternary Pd(2)/PtFe nanowires on a three-dimensional graphene framework has been fabricated via a dual solvothermal approach, which presents superior electrocatalytic activity towards the oxidation of formic acid.

  5. Three-dimensionally ordered mesoporous Pd networks templated by a silica super crystal and their application in formic acid electrooxidation.

    Science.gov (United States)

    Ye, Lin; Wang, Yu; Chen, Xueying; Yue, Bin; Tsang, Shik Chi; He, Heyong

    2011-07-14

    Three-dimensionally ordered mesoporous Pd networks fabricated by a simple reduction method in solution using a face centered cubic silica super crystal as template exhibit high electroactivity in formic acid oxidation.

  6. Electrocatalytic properties of Pt-Bi electrodes towards the electrooxidation of formic acid

    Directory of Open Access Journals (Sweden)

    Lović Jelena D.

    2013-01-01

    Full Text Available Formic acid oxidation was studied on two Pt-Bi catalysts, Pt2Bi and polycrystalline Pt modified by irreversible adsorbed Bi (Pt/Biirr in order to establish the difference between the effects of Biirr and Bi in alloyed state. The results were compared to pure Pt. It was found that both bimetallic catalysts were more active than Pt with the onset potentials shifted to more negative values and the currents at 0.0 V vs. SCE (under steady state conditions improved up to two order of magnitude. The origin of Pt2Bi high activity and stability is increased selectivity toward formic acid dehydrogenation caused by the ensemble and electronic effect and suppression of Bi leaching from the surface during formic acid oxidation. However, although Pt/Biirr also shows remarkable initial activity compared to pure Pt, dissolution of Bi is not suppressed and the poisoning of the electrode surface induced by dehydration path is observed. Comparison of the initial quasi-steady state and potentiodynamic results obtained for these two Pt-Bi catalysts revealed that the electronic effect, existing only in the alloy, contributes earlier start of the reaction, while the maximum current density is determined by the ensemble effect. [Projekat Ministarstva nauke Republike Srbije, br. H-172060

  7. Electrocatalytic oxidation of formic acid and formaldehyde on nanoparticle decorated single walled carbon nanotubes.

    Science.gov (United States)

    Selvaraj, V; Grace, A Nirmala; Alagar, M

    2009-05-01

    A potent catalyst has been prepared consisting of platinum (Pt), and platinum-palladium (Pt-Pd) nanoparticles supported on purified single-walled carbon nanotubes (Pt/CNT and Pt-Pd/CNT). Electrochemical characteristics of formic acid and formaldehyde oxidation on these catalysts are investigated via cyclic voltammetric analysis in mixed 0.5 M HCOOH (or 0.5 M HCHO) and 0.5 M H(2)SO(4) solutions. The results imply that the Pt-Pd/CNT electrodes exhibit a better activity than the corresponding Pt nanoparticles modified SWCNT electrodes. The modified electrode exhibits significant electrocatalytic activity towards formic acid and formaldehyde oxidation, which may be attributed due to the uniform dispersion of nanoparticles on SWCNTs and the efficacy of Pd species in Pt-Pd system. Such nanoparticles modified CNT electrodes exhibit better catalytic behavior towards formic acid and formaldehyde than the corresponding carbon electrodes, indicating that the system studied in the present work is the more promising system for use in fuel cells.

  8. Structural effects of electrochemical oxidation of formic acid on single crystal electrodes of palladium.

    Science.gov (United States)

    Hoshi, Nagahiro; Kida, Kaori; Nakamura, Masashi; Nakada, Miou; Osada, Kazuhito

    2006-06-29

    Structural effects on the rates of formic acid oxidation have been studied on Pd(111), Pd(100), Pd(110), and Pd(S)-[n(100) x (111)] (n = 2-9) electrodes in 0.1 M HClO4 containing 0.1 M formic acid with use of voltammetry. On the low index planes of Pd, the maximum current density of formic acid oxidation (jP) increases in the positive scan as follows: Pd(110) Pd(111) Pd(100). This order differs from that on the low index planes of Pt: Pt(111) Pd(S)-[n(100) x (111)] electrodes with terrace atomic rows n > or = 3 have almost the same jP as Pd(100), except Pd(911) n = 5. The value of jP on Pd(911) n = 5 is 20% higher than those of the other surfaces. Pd(311) n = 2, of which the first layer is composed of only step atoms, has the lowest jP in the Pd(S)-[n(100) x (111)] series. The adsorption geometry of the reaction intermediate (formate ion) is optimized by using density functional theory.

  9. Electrocatalysis of formic acid on palladium and platinum surfaces: from fundamental mechanisms to fuel cell applications.

    Science.gov (United States)

    Jiang, Kun; Zhang, Han-Xuan; Zou, Shouzhong; Cai, Wen-Bin

    2014-10-14

    Formic acid as a natural biomass and a CO2 reduction product has attracted considerable interest in renewable energy exploitation, serving as both a promising candidate for chemical hydrogen storage material and a direct fuel for low temperature liquid fed fuel cells. In addition to its chemical dehydrogenation, formic acid oxidation (FAO) is a model reaction in the study of electrocatalysis of C1 molecules and the anode reaction in direct formic acid fuel cells (DFAFCs). Thanks to a deeper mechanistic understanding of FAO on Pt and Pd surfaces brought about by recent advances in the fundamental investigations, the "synthesis-by-design" concept has become a mainstream idea to attain high-performance Pt- and Pd-based nanocatalysts. As a result, a large number of efficient nanocatalysts have been obtained through different synthesis strategies by tailoring geometric and electronic structures of the two primary catalytic metals. In this paper, we provide a brief overview of recent progress in the mechanistic studies of FAO, the synthesis of novel Pd- and Pt-based nanocatalysts as well as their practical applications in DFAFCs with a focus on discussing studies significantly contributing to these areas in the past five years.

  10. N-doped graphene-supported binary PdBi networks for formic acid oxidation

    Science.gov (United States)

    Xu, Hui; Yan, Bo; Zhang, Ke; Wang, Jin; Li, Shumin; Wang, Caiqin; Du, Yukou; Yang, Ping; Jiang, Shujuan; Song, Shaoqing

    2017-09-01

    As advanced electrodes for direct formic acid cells, nitrogen-doped graphene (NG) supported palladium-bismuth nanoparticles have been successfully fabricated through typical wet-chemical method. In studying the effects of NG support on PdBi nanoparticles for the electrooxidation of formic acid, we find that the as-prepared Pd1Bi1/NG network-like electrocatalysts exhibit much higher electrocatalytic activities than the Pd1Bi1/RGO, Pd1Bi1 and commercially available Pd/C catalysts in term of mass activity (1.69, 4.33 and 15.5times higher, respectively). The remarkably enhanced performances are associated with the electron transport between Bi and N, bi-functional effect between Pd, Bi and NG hybrids as well as the well-dispersed network-like structure on the surface of NG. The investigations of PdBi/NG in this work for promoting the electrocatalytic performances and the electron effect between Bi and N will accelerate the development for the field of direct formic acid fuel cells.

  11. Formic acid aided hot water extraction of hemicellulose from European silver birch (Betula pendula) sawdust.

    Science.gov (United States)

    Goldmann, Werner Marcelo; Ahola, Juha; Mikola, Marja; Tanskanen, Juha

    2017-05-01

    Hemicellulose has been extracted from birch (Betula pendula) sawdust by formic acid aided hot water extraction. The maximum amount of hemicellulose extracted was about 70mol% of the total hemicellulose content at 170°C, measured as the combined yield of xylose and furfural. Lower temperatures (130 and 140°C) favored hemicellulose hydrolysis rather than cellulose hydrolysis, even though the total hemicellulose yield was less than at 170°C. It was found that formic acid greatly increased the hydrolysis of hemicellulose to xylose and furfural at the experimental temperatures. The amount of lignin in the extract remained below the detection limit of the analysis (3g/L) in all cases. Formic acid aided hot water extraction is a promising technique for extracting hemicellulose from woody biomass, while leaving a solid residue with low hemicellulose content, which can be delignified to culminate in the three main isolated lignocellulosic fractions: cellulose, hemicellulose, and lignin. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Processing of formic acid-containing ice by heavy and energetic cosmic ray analogues

    CERN Document Server

    Bergantini, A; Rothard, H; Boduch, P; Andrade, D P P

    2014-01-01

    Formic acid (HCOOH) has been extensively detected in space environments, including interstellar medium (gas and grains), comets and meteorites. Such environments are often subjected to the action of ionizing agents, which may cause changes in the molecular structure, thus leading to formation of new species. Formic acid is a possible precursor of pre-biotic species, such as Glycine (NH2CH2COOH). This work investigates experimentally the physicochemical effects resulting from interaction of heavy and energetic cosmic ray analogues (46MeV 58Ni11+) in H2O:HCOOH (1:1) ice, at 15 K, in ultrahigh vacuum regime, using Fourier transform infrared spectrometry in the mid-infrared region (4000-600 cm-1 or 2.5-12.5 microns). After the bombardment, the sample was slowly heated to room temperature. The results show the dissociation cross-section for the formic acid of 2.4x10^-13 cm2, and half-life due to galactic cosmic rays of 8x10^7 yr. The IR spectra show intense formation of CO and CO2, and small production of more com...

  13. Ultra-uniform PdBi nanodots with high activity towards formic acid oxidation

    Science.gov (United States)

    Xu, Hui; Zhang, Ke; Yan, Bo; Wang, Jin; Wang, Caiqin; Li, Shumin; Gu, Zhulan; Du, Yukou; Yang, Ping

    2017-07-01

    Tuning the morphology and compositions of catalyst is an effective method for promoting electrocatalytic intrinsic activity. However, many newly-generated nanocrystals with better nanostructures often have a large size, which enforces them to display extremely limited surface area and ultimately lead to the limited electrocatalytic activity. To break this bottleneck, we herein report a facile and reproducible wet-chemical method to control the synthesis of a class of ultra-uniform and small PdBi nanodots endowed with both high surface areas and tunable compositions. The presented PdBi nanodots show the ultrasmall size (ca.2.5 nm) and great uniform dispersion property. These significant characteristics enable them to exhibit unprecedented electrocatalytic activities and durability toward formic acid oxidation. The mass activity and electrochemical surface active (ECSA) of prepared PdBi nanodots for the formic acid oxidation is 8.9/3.75 times higher than that of commercial Pd/C, respectively. We speculate that both of this facile synthetic approach and remarkable electrocatalytic performance of the obtained catalysts in this work illustrate that they can be applied as a promising catalyst for direct formic acid cells.

  14. Performance, carcass quality, and gastric alterations in fattening pigs fed additives containing formic acid either coated with sorbate or mixed with lactic acid

    Directory of Open Access Journals (Sweden)

    K. PARTANEN

    2008-12-01

    Full Text Available The growth-promoting effects of two dietary acidifiers based on formic acid were studied with 320 fattening pigs from ca 21 kg to ca 105 kg of body weight. The sorbate-coated formic acid contained formic acid and ammonium formate which were absorbed in diatomaceous earth and coated with potassium sorbate. The investigated liquid blend contained formic and lactic acids as the major components. These acidifiers were added to grower and finisher diets at levels of 3, 6, and 12 g kg-1 of feed. The grower and finisher diets in the negative control treatment contained no growth promoters, but the grower diet in the positive control treatment was supplemented with avilamycin (40 mg kg-1. The investigated acidifiers did not influence the performance of growing pigs (P > 0.05. In finishing pigs, all additions of the sorbate-coated formic acid improved daily weight gain compared to the negative control (P 0.05. The frequency of severe gastric alterations tended to be smaller when the diets contained 12 g kg-of the sorbate-coated formic acid (P = 0.07, but the results of the other acidifier treatments did not differ significantly from those in the negative control. In conclusion, both the sorbate-coated formic acid and the blend of formic and lactic acids have a growth-promoting effect in fattening pigs already in small dosages, but they do not influence carcass quality or cause gastric alterations.;

  15. Properties of nanocellulose isolated from corncob residue using sulfuric acid, formic acid, oxidative and mechanical methods.

    Science.gov (United States)

    Liu, Chao; Li, Bin; Du, Haishun; Lv, Dong; Zhang, Yuedong; Yu, Guang; Mu, Xindong; Peng, Hui

    2016-10-20

    In this work, nanocellulose was extracted from bleached corncob residue (CCR), an underutilized lignocellulose waste from furfural industry, using four different methods (i.e. sulfuric acid hydrolysis, formic acid (FA) hydrolysis, 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO)-mediated oxidation, and pulp refining, respectively). The self-assembled structure, morphology, dimension, crystallinity, chemical structure and thermal stability of prepared nanocellulose were investigated. FA hydrolysis produced longer cellulose nanocrystals (CNCs) than the one obtained by sulfuric acid hydrolysis, and resulted in high crystallinity and thermal stability due to its preferential degradation of amorphous cellulose and lignin. The cellulose nanofibrils (CNFs) with fine and individualized structure could be isolated by TEMPO-mediated oxidation. In comparison with other nanocellulose products, the intensive pulp refining led to the CNFs with the longest length and the thickest diameter. This comparative study can help to provide an insight into the utilization of CCR as a potential source for nanocellulose production. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Kinetic and stoichiometric characterization of organoautotrophic growth of Ralstonia eutropha on formic acid in fed-batch and continuous cultures.

    Science.gov (United States)

    Grunwald, Stephan; Mottet, Alexis; Grousseau, Estelle; Plassmeier, Jens K; Popović, Milan K; Uribelarrea, Jean-Louis; Gorret, Nathalie; Guillouet, Stéphane E; Sinskey, Anthony

    2015-01-01

    Formic acid, acting as both carbon and energy source, is a safe alternative to a carbon dioxide, hydrogen and dioxygen mix for studying the conversion of carbon through the Calvin-Benson-Bassham (CBB) cycle into value-added chemical compounds by non-photosynthetic microorganisms. In this work, organoautotrophic growth of Ralstonia eutropha on formic acid was studied using an approach combining stoichiometric modeling and controlled cultures in bioreactors. A strain deleted of its polyhydroxyalkanoate production pathway was used in order to carry out a physiological characterization. The maximal growth yield was determined at 0.16 Cmole Cmole(-1) in a formate-limited continuous culture. The measured yield corresponded to 76% to 85% of the theoretical yield (later confirmed in pH-controlled fed-batch cultures). The stoichiometric study highlighted the imbalance between carbon and energy provided by formic acid and explained the low growth yields measured. Fed-batch cultures were also used to determine the maximum specific growth rate (μmax  = 0.18 h(-1) ) and to study the impact of increasing formic acid concentrations on growth yields. High formic acid sensitivity was found in R eutropha since a linear decrease in the biomass yield with increasing residual formic acid concentrations was observed between 0 and 1.5 g l(-1) .

  17. Electrocatalytic activity of Pd-Co bimetallic mixtures for formic acid oxidation studied by scanning electrochemical microscopy.

    Science.gov (United States)

    Jung, Changhoon; Sánchez-Sánchez, Carlos M; Lin, Cheng-Lan; Rodríguez-López, Joaquín; Bard, Allen J

    2009-08-15

    The electrochemical oxidation of formic acid was studied by the tip generation-substrate collection (TG-SC) mode of scanning electrochemical microscopy (SECM), extending the number of applications of SECM in electrocatalysis. Formic acid was generated at a Hg on Au ultramicroelectrode (UME) tip by reduction of CO(2) in a 0.1 M KHCO(3) solution saturated with this gas. The electrocatalytic activity of different Pd-Co bimetallic compositions was evaluated using a Pd-Co electrocatalyst array formed by spots deposited onto glassy carbon (GC) as a SECM substrate. The SECM tip, which generated a constant formic acid flux, was scanned above the array and the oxidation current generated when formic acid was collected by active electrocatalytic spots was displayed as a function of tip position. This generated a SECM image that showed the electrocatalytic activity of each spot. SECM screening identified Pd(50)Co(50) (Pd/Co = 50:50, atomic ratio) as a better electrocatalyst toward the formic acid oxidation than pure Pd or Pt in 0.1 M KHCO(3) solution and this result was confirmed by cyclic voltammetry. Positive feedback was observed for the most active compositions of Pd-Co which suggests fast reaction kinetics and chemical reversibility during the oxidation of formic acid to CO(2). Moreover this feedback increases the contrast between active and non-active spots in this imaging mode.

  18. Photooxidation of cyclohexanone in simulated atmosphere: A potential source of atmospheric formic acid

    Science.gov (United States)

    Chattopadhyay, Aparajeo; Mondal, Koushik; Samanta, Monoj; Chakraborty, Tapas

    2017-05-01

    Gas phase photooxidation of cyclohexanone (CH) has been studied in the laboratory in a simulated atmospheric environment (synthetic air, 1 bar pressure) under the exposure of 311 nm UV light. Formic acid along with formaldehyde and ethylene are identified as the major photooxidation products. Quantum yield for the production of these species is measured and the values are compared with previous studies on the photo dissociation of CH. For 6 h of light irradiation with initial CH concentration of 9.19 ± 0.1 × 1016 molecules cm-3, the measured quantum yield values of ethylene and formaldehyde, the two primary photooxidation products, are 0.0395 ± 0.001 and 0.0028 ± 0.002, respectively. These values are comparable with CH dissociation quantum yield, 0.24 ± 0.02, and also the quantum yield of CO production, 0.0940 ± 0.001. The energetic parameters of different steps of the proposed reaction mechanism are calculated by electronic structure theory method at DFT/B3LYP/6-311++G** level. A reaction modeling has been performed, and similarity in simulated quantum yield values with that of the experimentally measured ones validates the suggested reaction mechanism. Experimentally measured values of rate constants of most of the elementary reaction steps incorporated in the modeling are not known, and the calculated values, obtained by use of CVT and RRKM theoretical methods are used. The total yield of formic acid, which has been assigned as a secondary oxidation product, is 3.46 ± 0.25 × 1015 molecules cm-3 as obtained from experiment and this data matches well with the value of 2.67 × 1015 molecules cm-3 obtained from reaction modeling for 6 h of UV irradiation. The yield of formic acid is comparable with the yield of primary photo products. The results imply that photooxidation of CH and analogous compounds might have significant contributions to production of formic acid in the earth's troposphere. According to the prediction of the modeling results presented

  19. Oleylamine-mediated synthesis of Pd nanoparticles for catalytic formic acid oxidation.

    Science.gov (United States)

    Mazumder, Vismadeb; Sun, Shouheng

    2009-04-08

    We report a facile synthesis of monodisperse Pd nanoparticles by the reduction of Pd(acac)(2) with oleylamine and borane tributylamine complex. The oleylamine-coated Pd nanoparticles are readily "cleaned" with a 99% acetic acid wash, and the Pd particles supported on Ketjen carbon are catalytically active for formic acid oxidation in HClO(4) solution. The catalyst shows no obvious activity degradation after 1500 cyclic voltammetry cycles under ambient conditions. These Pd particles hold promise as a highly active non-Pt catalyst for fuel cell applications.

  20. Photo-oxidation of Acetone to Formic Acid in Synthetic Air and Its Atmospheric Implication.

    Science.gov (United States)

    Chattopadhyay, Aparajeo; Chatterjee, Piyali; Chakraborty, Tapas

    2015-07-23

    Acetone photo-oxidation in synthetic air under exposure of 311 nm ultraviolet light has been studied, and the photo-oxidation products are identified by means of infrared spectroscopy. Analysis reveals that formic acid is one of the major products, although there have been debates in the past concerning the authenticity of formation of this acid in synthetic air via the photo-oxidation pathway. The quantum yield of formation of this acid is similar to that of other major photoproducts like methanol, formaldehyde, and carbon monoxide. The reaction yield, however, decreases with an increase in total air pressure in the reaction cell, but it is still significant at pressures relevant to tropospheric conditions. A kinetic model has been used to simulate the measured reaction kinetics, and the quantum yields predicted by the model are found to be consistent with the measured yields for different durations of light exposure. The same model has also been used to investigate the effect of atmospheric nitric oxide on the fate of formation of this acid in the troposphere. Although nitric oxide is known to be a quencher of peroxy radicals, the precursors of formaldehyde and formic acid in acetone photo-oxidation, but our model predicts that this oxide plays a positive role in the overall reaction kinetics for production of this acid in the troposphere.

  1. Selective oxidation of glycerol to formic acid in highly concentrated aqueous solutions with molecular oxygen using V-substituted phosphomolybdic acids

    KAUST Repository

    Zhang, Jizhe

    2014-01-01

    Formic acid is an important commodity chemical as well as a promising medium for hydrogen storage and hydrogen production. In this paper, we report that formic acid can be produced through selective oxidation of glycerol, a low-cost by-product of biodiesel, by using vanadium-substituted phosphomolybdic acids as catalysts and molecular oxygen as the oxidant. Significantly, this catalytic system allows for high-concentration conversions and thus leads to exceptional efficiency. Specifically, 3.64 g of formic acid was produced from 10 g of glycerol/water (50/50 in weight) solution. © 2014 the Partner Organisations.

  2. Formic and acetic acid over the central Amazon region, Brazil. I - Dry season

    Science.gov (United States)

    Andreae, M. O.; Andreae, T. W.; Talbot, R. W.; Harriss, R. C.

    1988-01-01

    The concentrations of formic and acetic acids in the gas phase, atmospheric aerosol, and rainwater samples collected in Amazonia at ground level and in the atmosphere during the Amazon Boundary Layer Experiment in July/August 1985 were analyzed by ion exchange chromatography. The diurnal behavior of both acids at ground level and their vertical distribution in the forest canopy point to the existence of vegetative sources as well as to production by chemical reactions in the atmosphere. The concentrations of formic and acetic acids in the gas phase were about 2 orders of magnitude higher than the corresponding concentrations in the atmospheric aerosol. In rainwater, the total formate and acetate represented about one half of the anion equivalents, in contrast to less than 10 percent of the soluble anionic equivalents contributed by these acids in the atmospheric aerosol. The observed levels of these ions in rainwater are considered to be the result of a combination of chemical reactions in hydrometeors and the scavenging of the gaseous acids by cloud droplets.

  3. Formic and acetic acid over the central Amazon region, Brazil. I - Dry season

    Science.gov (United States)

    Andreae, M. O.; Andreae, T. W.; Talbot, R. W.; Harriss, R. C.

    1988-01-01

    The concentrations of formic and acetic acids in the gas phase, atmospheric aerosol, and rainwater samples collected in Amazonia at ground level and in the atmosphere during the Amazon Boundary Layer Experiment in July/August 1985 were analyzed by ion exchange chromatography. The diurnal behavior of both acids at ground level and their vertical distribution in the forest canopy point to the existence of vegetative sources as well as to production by chemical reactions in the atmosphere. The concentrations of formic and acetic acids in the gas phase were about 2 orders of magnitude higher than the corresponding concentrations in the atmospheric aerosol. In rainwater, the total formate and acetate represented about one half of the anion equivalents, in contrast to less than 10 percent of the soluble anionic equivalents contributed by these acids in the atmospheric aerosol. The observed levels of these ions in rainwater are considered to be the result of a combination of chemical reactions in hydrometeors and the scavenging of the gaseous acids by cloud droplets.

  4. The Carbon Isotopic Content and Concentration of Ambient Formic and Acetic Acid

    Science.gov (United States)

    Johnson, Bryan Jay

    A direct method for source determination of atmospheric formic and acetic acid, through carbon isotopic analysis of the ambient acids and their potential sources, has been successfully developed and tested. These first carbon isotopic measurements of formic acid in the atmosphere were found to be fairly constant, regardless of location. This is consistent with a single dominating source of formic acid, with vegetation emissions being the most likely controlling source. Collection of relatively large quantities (0.3 -3.0 mg) of the organic acids, which was necessary for carbon isotopic measurements, was effectively accomplished by a new method using calcium hydroxide-treated filters with a high-volume sampler. Samples were collected on a regular basis at Mount Lemmon, Arizona (elevation = 9200 feet A.S.L.). Atmospheric concentrations showed a well-defined seasonal pattern, with the lowest concentrations (about 0.2 ppbv) occurring in the middle of the winter, which steadily increased to a maximum of nearly 2 ppbv in the summer. The ^{13}C content (delta ^{13}C) of HCOOH averaged -20.9 +/- 2.5 ^0/_{00 } during the growing season (April-September) and -23.2 +/- 3.5 ^0/_{00} during the non-growing season at Mount Lemmon. Isotopic measurements of formic acid from several other locations included two west coast marine sites ( delta ^{13} C range of -19.1 to -24.6 ^0/_{00} ), three Colorado Rocky Mountain samples averaging -23.2 +/- 1.0 ^0/_{00}, two from the prairie of North Dakota (-23.5 +/- 1.0 ^0/ _{00}) and three samples collected in the urban Tucson, Arizona area (- 20.8 +/- 3.4 ^0 /_{00}). Source measurements included HCOOH emissions from two species of formicine ants (-18.8 +/- 1.7 ^0/_ {00}), and HCOOH in automobile exhaust (-28 ^0/ _{00} from leaded gasoline, and -48.6 ^0/ _{00} from unleaded). Further support for a biogenic source of atmospheric HCOOH came from the carbon-14 analysis of six Mount Lemmon HCOOH samples (93-113% modern carbon), using accelerator

  5. Microwave spectra and structure of the cyclopropanecarboxylic acid-formic acid dimer

    Energy Technology Data Exchange (ETDEWEB)

    Pejlovas, Aaron M.; Kukolich, Stephen G. [Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721 (United States); Lin, Wei [Department of Chemistry, University of Texas Rio Grande Valley, Brownsville, Texas 78520 (United States)

    2015-09-28

    The rotational spectrum of the cyclopropanecarboxylic acid–formic acid doubly hydrogen bonded dimer has been measured in the 4-11 GHz region using a Flygare-Balle type pulsed-beam Fourier transform microwave spectrometer. Rotational transitions were measured for the parent, four unique singly substituted {sup 13}C isotopologues, and a singly deuterated isotopologue. Splittings due to a possible concerted double proton tunneling motion were not observed. Rotational constants (A, B, and C) and centrifugal distortion constants (D{sub J} and D{sub JK}) were determined from the measured transitions for the dimer. The values of the rotational (in MHz) and centrifugal distortion constants (in kHz) for the parent isotopologue are A = 4045.4193(16), B = 740.583 80(14), C = 658.567 60(23), D{sub J} = 0.0499(16), and D{sub JK} = 0.108(14). A partial gas phase structure of the dimer was derived from the rotational constants of the measured isotopologues, previous structural work on each monomer units and results of the calculations.

  6. In Situ Surface-Enhanced Raman Spectroscopy Study of the Electrocatalytic Effect of PtFe/C Nanocatalyst on Ethanol Electro-Oxidation in Alkaline Medium

    Directory of Open Access Journals (Sweden)

    A. C. Gómez-Monsiváis

    2017-03-01

    Full Text Available Currently, the ethanol electro-oxidation reaction has attracted considerable attention in fuel cells because of new green ethanol synthetic methods based on biomass processes that have emerged. In this study, PtFe/C and Pt/C nanoparticles were synthesized by a chemical reduction method and tested in the ethanol electro-oxidation reaction. Furthermore, the electrocatalytic effect of the PtFe bimetallic catalyst was analyzed by in situ surface-enhanced Raman spectroscopy (SERS coupled to an electrochemical cell. X-ray diffractograms showed typical face-centered cubic structures with crystallite sizes of 3.31 and 3.94 for Pt/C and PtFe/C, respectively. TEM micrographs revealed nanoparticle sizes of 2 ± 0.4 nm and 3 ± 0.6 nm for Pt/C and PtFe/C respectively. PtFe/C exhibited a Pt90Fe10 composition by both X-ray fluorescence and energy-dispersive X-ray spectroscopy. A better electrocatalytic activity as function of concentration was obtained through the incorporation of a small amount of Fe into the Pt lattice and the presence of Fe2+/Fe3+ (observed by X-ray photoelectron spectroscopy. According to SERS experiments, the presence of these iron species promotes the chemisorption of ethanol, the formation of formic acid as main product and renewal of the catalytic sites, resulting in current densities that were at least three fold higher than the values obtained for the Pt/C nanocatalyst.

  7. Science Letters: Hydrogen transfer reduction of ketones using formic acid as a hydrogen donor under hydrothermal conditions

    Institute of Scientific and Technical Information of China (English)

    Zheng SHEN; Fang-ming JIN; Ya-lei ZHANG; Bing WU; Jiang-lin CAO

    2009-01-01

    The hydrothermal experiments with ketones and formic acid showed that the hydrogen transfer reduction of ketones can be conducted using formic acid as a hydride donor in the presence of NaOH at 300℃. The yield of alcohols was considerably higher at a much lower ratio of hydrogen source to ketones than the traditional Meerwein-Ponndorf-Verley (MPV) reduction,reaching 60% for isopropanol from acetone and 70% for lactic acid from pyruvic acid. Water molecules may act as a catalyst in the hydrogen transfer reduction of ketones under hydrothermal conditions.

  8. CaCO3 supplementation alleviates the inhibition of formic acid on acetone/butanol/ethanol fermentation by Clostridium acetobutylicum.

    Science.gov (United States)

    Qi, Gaoxiang; Xiong, Lian; Lin, Xiaoqing; Huang, Chao; Li, Hailong; Chen, Xuefang; Chen, Xinde

    2017-01-01

    To investigate the inhibiting effect of formic acid on acetone/butanol/ethanol (ABE) fermentation and explain the mechanism of the alleviation in the inhibiting effect under CaCO3 supplementation condition. From the medium containing 50 g sugars l(-1) and 0.5 g formic acid l(-1), only 0.75 g ABE l(-1) was produced when pH was adjusted by KOH and fermentation ended prematurely before the transformation from acidogenesis to solventogenesis. In contrast, 11.4 g ABE l(-1) was produced when pH was adjusted by 4 g CaCO3 l(-1). The beneficial effect can be ascribed to the buffering capacity of CaCO3. Comparative analysis results showed that the undissociated formic acid concentration and acid production coupled with ATP and NADH was affected by the pH buffering capacity of CaCO3. Four millimole undissociated formic acid was the threshold at which the transformation to solventogenesis occurred. The inhibiting effect of formic acid on ABE fermentation can be alleviated by CaCO3 supplementation due to its buffering capacity.

  9. High activity of Pd-WO3/C catalyst as anodic catalyst for direct formic acid fuel cell

    Science.gov (United States)

    Feng, Ligang; Yan, Liang; Cui, Zhiming; Liu, Changpeng; Xing, Wei

    2011-03-01

    Pd nanoparticles supported on the WO3/C hybrid are prepared by a two-step procedure and the catalysts are studied for the electrooxidation of formic acid. For the purpose of comparison, phosphotungstic acid (PWA) and sodium tungstate are used as the precursor of WO3. Both the Pd-WO3/C catalysts have much higher catalytic activity for the electrooxidation of formic acid than the Pd/C catalyst. The Pd-WO3/C catalyst prepared from PWA shows the best catalytic activity and stability for formic acid oxidation; it also shows the maximum power density of approximately 7.6 mW cm-2 when tested with a small single passive fuel cell. The increase of electrocatalytic activity and stability is ascribed to the interaction between the Pd and WO3, which promotes the oxidation of formic acid in the direct pathway. The precursors used for the preparation of the WO3/C hybrid support have a great effect on the performance of the Pd-WO3/C catalyst. The WO3/C hybrid support prepared from PWA is beneficial to the dispersion of Pd nanoparticles, and the catalyst has potential application for direct formic acid fuel cell.

  10. Effects of Nafion loading in anode catalyst inks on the miniature direct formic acid fuel cell

    Science.gov (United States)

    Morgan, Robert D.; Haan, John L.; Masel, Richard I.

    Nafion, within the anode and cathode catalyst layers, plays a large role in the performance of fuel cells, especially during the operation of the direct formic acid fuel cell (DFAFC). Nafion affects the proton transfer in the catalyst layers of the fuel cell, and studies presented here show the effects of three different Nafion loadings, 10 wt.%, 30 wt.% and 50 wt.%. Short term voltage-current measurements using the three different loadings show that 30 wt.% Nafion loading in the anode shows the best performance in the miniature, passive DFAFC. Nafion also serves as a binder to help hold the catalyst nanoparticles onto the proton exchange membrane (PEM). The DFAFC anode temporarily needs to be regenerated by raising the anode potential to around 0.8 V vs. RHE to oxidize CO bound to the surface, but the Pourbaix diagram predicts that Pd will corrode at these potentials. We found that an anode loading of 30 wt.% Nafion showed the best stability, of the three Nafion loadings chosen, for reducing the amount of loss of electrochemically active area due to high regeneration potentials. Only 58% of the area was lost after 600 potential cycles in formic acid compared to 96 and 99% for 10 wt.% and 50 wt.% loadings, respectively. Lastly we present cyclic voltammetry data that suggest that the Nafion adds to the production of CO during oxidation of formic acid for 12 h at 0.3 V vs. RHE. The resulting data showed that an increase in CO coverage was observed with increasing Nafion content in the anode catalyst layer.

  11. Size effects in electronic and catalytic properties of unsupported palladium nanoparticles in electrooxidation of formic acid.

    Science.gov (United States)

    Zhou, Wei Ping; Lewera, Adam; Larsen, Robert; Masel, Rich I; Bagus, Paul S; Wieckowski, Andrzej

    2006-07-13

    We report a combined X-ray photoelectron spectroscopy (XPS), cyclic voltammetry (CV), and chronoamperometry (CA) study of formic acid electrooxidation on unsupported palladium nanoparticle catalysts in the particle size range from 9 to 40 nm. The CV and CA measurements show that the most active catalyst is made of the smallest (9 and 11 nm) Pd nanoparticles. Besides the high reactivity, XPS data show that such nanoparticles display the highest core-level binding energy (BE) shift and the highest valence band (VB) center downshift with respect to the Fermi level. We believe therefore that we found a correlation between formic acid oxidation current and BE and VB center shifts, which, in turn, can directly be related to the electronic structure of palladium nanoparticles of different particle sizes. Clearly, such a trend using unsupported catalysts has never been reported. According to the density functional theory of heterogeneous catalysis, and mechanistic considerations, the observed shifts are caused by a weakening of the bond strength of the COOH intermediate adsorption on the catalyst surface. This, in turn, results in the increase in the formic acid oxidation rate to CO2 (and in the associated oxidation current). Overall, our measurements demonstrate the particle size effect on the electronic properties of palladium that yields different catalytic activity in the HCOOH oxidation reaction. Our work highlights the significance of the core-level binding energy and center of the d-band shifts in electrocatalysis and underlines the value of the theory that connects the center of the d-band shifts to catalytic reactivity.

  12. Electrochemical oxidation of methanol and formic acid in fuel cell processes

    Energy Technology Data Exchange (ETDEWEB)

    Seland, Frode

    2005-07-01

    The main objectives of the thesis work were: (1), to study the oxidation of methanol and formic acid on platinum electrodes by employing conventional and advanced electrochemical methods, and (2), to develop membrane electrode assemblies based on polybenzimidazole membranes that can be used in fuel cells up to 200 C. D.c. voltammetry and a.c. voltammetry studies of methanol and formic acid on polycrystalline platinum in sulphuric acid electrolyte were performed to determine the mechanism and kinetics of the oxidation reactions. A combined potential step and fast cyclic voltammetry experiment was employed to investigate the time dependence primarily of methanol oxidation on platinum. Charge measurements clearly demonstrated the existence of a parallel path at low potentials and short times without formation of adsorbed CO. Furthermore, experimental results showed that only the serial path, via adsorbed CO, exists during continuous cycling, with the first step being diffusion controlled dissociative adsorption of methanol directly from the bulk electrolyte. The saturation charge of adsorbed CO derived from methanol was found to be significantly lower than CO derived from formic acid or dissolved CO. This was attributed to the site requirements of the dehydrogenation steps, and possibly different compositions of linear, bridged or multiply bonded CO. The coverage of adsorbed CO from formic acid decreased significantly at potentials just outside of the hydrogen region (0.35 V vs. RHE), while it did not start to decrease significantly until about 0.6 V vs. RHE for methanol. Adsorbed CO from dissolved CO rapidly oxidized at potentials above about 0.75 V due to formation of platinum oxide. Data from a.c. voltammograms from 0.5 Hz up to 30 kHz were assembled into electrochemical impedance spectra (EIS) and analyzed using equivalent circuits. The main advantages of collecting EIS spectra from a.c. voltammetry experiments are the ability to directly correlate the impedance

  13. The effects of lactic acid bacteria inoculants and formic acid on the formation of biogenic amines in grass silages.

    Science.gov (United States)

    Steidlová, S; Kalac, P

    2004-06-01

    Silages were prepared in six laboratory experiments from four direct-cut grassland swards and pure swards of perennial ryegrass and false oat with dry matter contents ranging between 180 and 325 g/kg. Grass was fermented at 22 degrees C and silages were stored at the same temperature for 4 months. Untreated silages (negative control) and silages preserved with 3 g/kg of formic acid (positive control) were compared with silages inoculated with commercial strains of Lactobacillus plantarum, Lactobacillus buchneri and a mixed preparation Microsil. The inoculants were applied at a dose of 5.10(6) CFU/g of grass. Seven biogenic amines were extracted from silages with perchloric acid and determined as N-benzamides by micellar electrokinetic capillary chromatography. Common chemical quality parameters of silages were also determined. Tyramine, cadaverine and putrescine were the amines occurring at the highest concentration. As compared to untreated silages, formic acid was most effective to suppress formation of the main amines. Also the inoculants often decreased amine contents significantly (P < 0.05). The inoculants decreased levels of polyamine spermidine more efficiently than formic acid. Contents of histamine, tryptamine and polyamine spermine were very low, commonly below the detection limits.

  14. Reduction of Copper Oxide by Formic Acid an ab-initio study

    CERN Document Server

    Schmeißer, Martin

    2012-01-01

    Four cluster models for a copper(I)oxide (111) surface have been designed, of which three were studied with respect to their applicability in density functional calculations in the general gradient approximation. Formic acid adsorption on these systems was modelled and yielded four different adsorption structures, of which two were found to have a high adsorption energy. The energetically most favourable adsorption structure was further investigated with respect to its decomposition and a few reactions with adsorbed H and OH species using synchronous transit methods to estimate reaction barriers and single point energy calculations for the reaction energy.

  15. Session 4: HDS, HDN and HYD assisted by ultrasound using formic acid as hydrogen precursor

    Energy Technology Data Exchange (ETDEWEB)

    Scott Carlos, E.; Bolivar, C.; Grobas, J. [Universidad Central de Venezuela, Centro de Catalisis Petroleo y Petroquimica, Escuela de Quimica, Facultad de Ciencias, Caracas (Venezuela)

    2004-07-01

    The study of chemical effects of ultrasound is a rapidly growing research area, and its use in heavy crude oil upgrading has been explored. In this work, hydrogenation of cyclohexene and biphenyl, hydrodesulfurization of benzothiophene and hydro-denitrogenation of quinoline, in the presence of a hydrogen precursor, a Pd/C catalyst and ultrasound irradiation was studied. It was found, that the use of formic acid as hydrogen precursor in presence of ultrasonic irradiation was an effective system to promote hydrogenation of cyclohexene (98%) and biphenyl (21%), desulfurization of benzothiophene (18%) and hydrogenation of quinoline (19%), at very mild conditions, i.e. ambient temperature and pressure. (authors)

  16. Direct synthesis of graphene nanosheets support Pd nanodendrites for electrocatalytic formic acid oxidation

    Science.gov (United States)

    Yang, Su-Dong; Chen, Lin

    2015-11-01

    We report a solvothermal method preparation of dendritic Pd nanoparticles (DPNs) and spherical Pd nanoparticles (SPNs) supported on reduced graphene oxide (RGO). Drastically different morphologies of Pd NPs with nanodendritic structures or spherical structures were observed on graphene by controlling the reduction degree of graphene oxide (GO) under mild conditions. In addition to being a commonplace substrate, GO plays a more important role that relies on its surface groups, which serves as a shape-directing agent to direct the dendritic growth. As a result, the obtained DPNs/RGO catalyst exhibits a significantly enhanced electro-catalytic behavior for the oxidation of formic acid compared to the SPNs/RGO catalyst.

  17. SnO2 nanospheres supported Pd catalyst with enhanced performance for formic acid oxidation

    Science.gov (United States)

    Lu, Haiting; Fan, Yang; Huang, Ping; Xu, Dongli

    2012-10-01

    SnO2 nanospheres were employed as the support material for Pd catalyst. The as-prepared Pd/SnO2 catalyst exhibited remarkably improved electrocatalytic activity and stability towards formic acid oxidation, in comparison with that of the Vulcan XC-72 carbon black and the commercial SnO2 nanopowder supported Pd catalyst. The enhanced catalytic performance may arise from the unique structure and surface properties of the SnO2 nanospheres, which process extraordinary promotional effect on Pd catalyst.

  18. Highly dispersed Pd nanoparticles on chemically modified graphene with aminophenyl groups for formic acid oxidation

    Science.gov (United States)

    Yang, Su-Dong; Shen, Cheng-Min; Tong, Hao; He, Wei; Zhang, Xiao-Gang; Gao, Hong-Jun

    2011-11-01

    A novel electrode material based on chemically modified graphene (CMG) with aminophenyl groups is covalently functionalized by a nucleophilic ring-opening reaction between the epoxy groups of graphene oxide and the aminophenyl groups of p-phenylenediamine. Palladium nanoparticles with an average diameter of 4.2 nm are deposited on the CMG by a liquid-phase borohydride reduction. The electrocatalytic activity and stability of the Pd/CMG composite towards formic acid oxidation are found to be higher than those of reduced graphene oxide and commercial carbon materials such as Vulcan XC-72 supported Pd electrocatalysts.

  19. Kinetics and mechanism of the oxidation of formic and oxalic acids by quinolinium fluorochromate

    Indian Academy of Sciences (India)

    Madhu Khurana; Pradeep K Sharma; Kalyan K Banerji

    2000-04-01

    Kinetics and mechanism of oxidation of formic and oxalic acids by quinolinium fluorochromate (QFC) have been studied in dimethylsulphoxide. The main product of oxidation is carbon dioxide. The reaction is first-order with respect to QFC. Michaelis-Menten type of kinetics were observed with respect to the reductants. The reaction is acid-catalysed and the acid dependence has the form: obs = + [H+]. The oxidation of -deuterioformic acid exhibits a substantial primary kinetic isotope effect (H/D = 6.01 at 303 K). The reaction has been studied in nineteen different organic solvents and the solvent effect has been analysed using Taft’s and Swain’s multiparametric equations. The temperature dependence of the kinetic isotope effect indicates the presence of a symmetrical cyclic transition state in the rate-determining step. Suitable mechanisms have been proposed

  20. Sources and sinks of formic, acetic, and pyruvic acids over central Amazonia. II - Wet season

    Science.gov (United States)

    Talbot, R. W.; Andreae, M. O.; Berresheim, H.; Jacob, D. J.; Beecher, K. M.

    1990-01-01

    Potential sources and sinks of formic, acetic, and pyruvic acids over the Amazon forest were investigated using a photochemical model and data collected on gas phase concentrations of these acids in the forest canopy, boundary layer, and free troposphere over the central Amazon Basin during the 1987 wet season. It was found that the atmospheric reactions previously suggested in the literature as sources of carboxylic acids (i.e., the gas phase decomposition of isoprene, the reaction between CH3CO3 and a peroxide, and aqueous phase oxidation of CH2O) appear to be too slow to explain the observed concentrations, suggesting that other atmospheric reactions, so far unidentified, could make a major contribution to the carboxylic acid budgets.

  1. Divergent modulation of swine ileal microbiota by formic acid and methionine hydroxy analogue-free acid.

    Science.gov (United States)

    Apajalahti, J; Rademacher, M; Htoo, J K; Redshaw, M; Kettunen, A

    2009-06-01

    Management of intestinal microbiota of monogastric animals has increased in importance since the ban of growth promoting antibiotics in many countries. Organic acids have been used as alternatives to antibiotics by many feed manufacturers. Regardless of the wide usage, the effect, dose response and mode of action of acids on intestinal microbes is poorly understood. In this study, we investigated the effects of dietary supplementation of three commonly used products, namely formic acid (FA) (90%), dl-methionine (DLM) (99%) and liquid methionine hydroxy analogue-free acid (88%), on ileal microbiota of pigs. Laboratory simulation system, mimicking swine ileum, was used to study the products at various concentrations and combinations. Furthermore, selected combinations were tested in a piglet trial to confirm the findings made in in vitro studies. FA turned out to have a dual effect on ileal microbiota. At concentrations below 0.5%, it significantly stimulated bacteria, but at higher inclusion rates it was highly inhibitory. This finding, which was consistent in in vitro and in vivo studies, implies that reducing the dose of FA does not lead to a diluted inhibitory effect, but in fact, an opposite, stimulatory effect on intestinal microbiota. It is highly important that feed compounders acknowledge this finding. Unlike FA, the inhibitory effect of methionine hydroxy analogue on ileal bacteria was linearly dose dependent and significant at inclusion levels above 0.2%, in vitro. Partial replacement of methionine hydroxy analogue by FA, or FA by methionine hydroxy analogue, led to an unpredictable outcome due to the dual effects of FA; e.g., a minor inclusion of added FA changed the inhibitory effect of methionine hydroxy analogue into microbial stimulation by FA. Inhibition of ileal microbiota by methionine hydroxy analogue was detected only in in vitro studies, suggesting that intact methionine hydroxy analogue may not have reached the ileum, in live animals. Therefore

  2. Mesoporous Silica Supported Pd-MnOx Catalysts with Excellent Catalytic Activity in Room-Temperature Formic Acid Decomposition

    Science.gov (United States)

    Jin, Min-Ho; Oh, Duckkyu; Park, Ju-Hyoung; Lee, Chun-Boo; Lee, Sung-Wook; Park, Jong-Soo; Lee, Kwan-Young; Lee, Dong-Wook

    2016-01-01

    For the application of formic acid as a liquid organic hydrogen carrier, development of efficient catalysts for dehydrogenation of formic acid is a challenging topic, and most studies have so far focused on the composition of metals and supports, the size effect of metal nanoparticles, and surface chemistry of supports. Another influential factor is highly desired to overcome the current limitation of heterogeneous catalysis for formic acid decomposition. Here, we first investigated the effect of support pore structure on formic acid decomposition performance at room temperature by using mesoporous silica materials with different pore structures such as KIE-6, MCM-41, and SBA-15, and achieved the excellent catalytic activity (TOF: 593 h−1) by only controlling the pore structure of mesoporous silica supports. In addition, we demonstrated that 3D interconnected pore structure of mesoporous silica supports is more favorable to the mass transfer than 2D cylindrical mesopore structure, and the better mass transfer provides higher catalytic activity in formic acid decomposition. If the pore morphology of catalytic supports such as 3D wormhole or 2D cylinder is identical, large pore size combined with high pore volume is a crucial factor to achieve high catalytic performance. PMID:27666280

  3. Mesoporous Silica Supported Pd-MnOx Catalysts with Excellent Catalytic Activity in Room-Temperature Formic Acid Decomposition

    Science.gov (United States)

    Jin, Min-Ho; Oh, Duckkyu; Park, Ju-Hyoung; Lee, Chun-Boo; Lee, Sung-Wook; Park, Jong-Soo; Lee, Kwan-Young; Lee, Dong-Wook

    2016-09-01

    For the application of formic acid as a liquid organic hydrogen carrier, development of efficient catalysts for dehydrogenation of formic acid is a challenging topic, and most studies have so far focused on the composition of metals and supports, the size effect of metal nanoparticles, and surface chemistry of supports. Another influential factor is highly desired to overcome the current limitation of heterogeneous catalysis for formic acid decomposition. Here, we first investigated the effect of support pore structure on formic acid decomposition performance at room temperature by using mesoporous silica materials with different pore structures such as KIE-6, MCM-41, and SBA-15, and achieved the excellent catalytic activity (TOF: 593 h-1) by only controlling the pore structure of mesoporous silica supports. In addition, we demonstrated that 3D interconnected pore structure of mesoporous silica supports is more favorable to the mass transfer than 2D cylindrical mesopore structure, and the better mass transfer provides higher catalytic activity in formic acid decomposition. If the pore morphology of catalytic supports such as 3D wormhole or 2D cylinder is identical, large pore size combined with high pore volume is a crucial factor to achieve high catalytic performance.

  4. Optimization of parameters for dye removal by electro- -oxidation using Taguchi Design

    Directory of Open Access Journals (Sweden)

    Mani Nandhini

    2014-12-01

    Full Text Available The aim of the present investigation is to treat the dye house effluent using electro-oxidation and to analyse the result using Taguchi method. L16 orthogonal array was applied as an experimental design to analyse the results and to determine optimum conditions for acid fast red dye removal from aqueous solution. Various operating parameters were selected to study the electro-oxidation for the colour removal of the effluent. The operating parameter such as dye concentration, reaction time, solution pH and current density were studied and the significance of the variables was analysed using Taguchi method. Taguchi method is suitable for the experimental design and for the optimization of process variables for the dye removal.

  5. Heterogeneous uptake and reactivity of formic acid on calcium carbonate particles: a Knudsen cell reactor, FTIR and SEM study.

    Science.gov (United States)

    Al-Hosney, Hashim A; Carlos-Cuellar, Sofia; Baltrusaitis, Jonas; Grassian, Vicki H

    2005-10-21

    The heterogeneous uptake and reactivity of formic acid (HCOOH), a common gas-phase organic acid found in the environment, on calcium carbonate (CaCO(3)) particles have been investigated using a Knudsen cell reactor, Fourier transform infrared (FTIR) spectroscopy and scanning electron microscopy (SEM). FTIR measurements show that the adsorption of formic acid on the surface of calcium carbonate results in the formation of calcium formate. Besides calcium formate, carbonic acid is also a reaction product under dry conditions (dry conditions and at low pressures, the initial uptake coefficient of formic acid on CaCO(3) particles is measured to be 3 +/- 1 x 10(-3) and decreases as the surface saturates with adsorbed products. The maximum surface coverage of formic acid under dry conditions is determined to be (3 +/- 1)x 10(14) molecules cm(-2). Under humidified conditions (RH >10%), adsorbed water on the surface of the carbonate particles participates in the surface reactivity of these particles, which results in the enhanced uptake kinetics and extent of reaction of this organic acid on CaCO(3) as well as opens up several new reaction pathways. These reaction pathways include: (i) the water-assisted dissociation of carbonic acid to CO(2) and H(2)O and (ii) the formation of calcium formate islands and crystallites, as evident by SEM images. The results presented here show that adsorbed water plays a potentially important role in the surface chemistry of gas-phase organic acids on calcium carbonate particles.

  6. Hydrogen bonding in the hydroxysulfinyl radical-formic acid-water system: A theoretical study.

    Science.gov (United States)

    Tušar, Simona; Lesar, Antonija

    2016-06-30

    Quantum chemical methods have been employed to evaluate the possible configurations of the 1:1 and 1:2 HOSO-formic acid complexes and 1:1:1 HOSO-formic acid-water complexes. The first type of complex involves two H bonds, while the other two types comprise three H bonds in a ring. The complexes are relatively stable, with CBS-QB3 computed binding energies of 14.3 kcal mol(-1) , 23.4 kcal mol(-1) , and 21.1 kcal mol(-1) for the lowest-energy structures of the 1:1, 1:2, and 1:1:1 complexes, respectively. Complex formations induce a large spectral red-shift and an enhancement of the IR intensity for the H-bonded OH stretching modes relative to those in the parent monomers. TDDFT calculations of the low-lying electronic excited states demonstrate that the complexes are photochemically quite stable in the troposphere. Small spectral shifts in comparison to the free HOSO radical suggest that the radical and the complexes would not be easily distinguishable using standard UV/vis absorption spectroscopy. © 2016 Wiley Periodicals, Inc.

  7. The Intoxication Effects of Methanol and Formic Acid on Rat Retina Function

    Science.gov (United States)

    Liu, Dong-Mei; Zhou, Shu; Peng, Shu-Ya

    2016-01-01

    Objective. To explore the potential effects of methanol and its metabolite, formic acid, on rat retina function. Methods. Sprague-Dawley rats were divided into 3- and 7-day groups and a control. Experimental groups were given methanol and the control group were provided saline by gavage. Retinal function of each group was assessed by electroretinogram. Concentrations of methanol and formic acid were detected by GC/HS and HPLC, respectively. Results. The a and b amplitudes of methanol treated groups decreased and latent periods delayed in scotopic and photopic ERG recordings. The summed amplitudes of oscillatory potentials (OPs) of groups B and C decreased and the elapsed time delayed. The amplitudes of OS1, OS3, OS4, and OS5 of group B and OS3, OS4, and OS5 of group C decreased compared with the control group. The IPI1 of group B and IPI1-4 of group C were broader compared with the control group and the IPI1-4 and ET of group B were broader than group C. Conclusions. Both of scotopic and photopic retinal functions were impaired by methanol poisoning, and impairment was more serious in the 7-day than in the 3-day group. OPs, especially later OPs and IPI2, were more sensitive to methanol intoxication than other eletroretinogram subcomponents. PMID:27688906

  8. Decomposition of formic acid over silica encapsulated and amine functionalised gold nanoparticles

    DEFF Research Database (Denmark)

    Mielby, Jerrik Jørgen; Kunov-Kruse, Andreas Jonas; Kegnæs, Søren

    2017-01-01

    Formic acid has recently attracted considerable attention as a safe and convenient source of hydrogen for sustainable chemical synthesis and renewable energy storage. Here, we show that silica encapsulated and amine functionalised gold nanoparticles are highly active catalysts for the production...... of hydrogen by vapour phase decomposition of formic acid. The core-shell catalysts are prepared in a reverse micelle system that makes it possible to control the size of the Au nanoparticles and the thickness of the SiO2 shells, which has a large impact on the catalytic activity. The smallest gold...... nanoparticles are 2.2 ± 0.3 nm in diameter and have a turnover frequency (TOF) of up to 958 h−1 at a temperature of 130 °C. Based on detailed in situ ATR-FTIR studies and results from kinetic isotope labelling experiments we propose that the active site is a low-coordinated and amine functionalised Au atom...

  9. Supportless, bismuth-modified palladium nanotubes with improved activity and stability for formic acid oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Atkinson III, Robert [University of Tennessee (UT); ST John, Samuel [ORNL; Dyck, OndrejK [University of Tennessee, Knoxville (UTK); Unocic, Kinga A [ORNL; Unocic, Raymond R [ORNL; Burke, Colten [Tennessee Technological University (TTU); Cisco, Joshua [Tennessee Technological University (TTU); Rice, Cynthia [Tennessee Technological University (TTU); Zawodzinski, Thomas A [ORNL; Papandrew, Alexander B [ORNL

    2015-07-22

    Palladium nanotubes (PdNTs) were synthesized by templated vapor deposition and investigated for formic acid electrooxidation. Annealed PdNTs are 2.4 times more active (2.19 mA/cm2) than commercial carbon-supported palladium (0.91 mA/cm2) at 0.3 V vs RHE. Bismuth modification improved nanotube performance over 4 times (3.75 mA/cm2) vs Pd/C and nearly 2 times vs unmodified PdNTs. A surface Bi coverage of 80% results in optimal site-specific activity by drastically reducing surface-poisoning CO generation during formic acid electrooxidation. The Bi-modified PdNTs are exceptionally stable, maintaining 2 times the area-normalized current density as Pd/C after 24 h at 0.2 V vs RHE. As a result, we attribute the enhanced activity and stability of the nanotube catalysts to the presence of highly coordinated surfaces, mimicking a flat polycrystal while retaining high surface area geometry.

  10. Highly active and durable platinum-lead bimetallic alloy nanoflowers for formic acid electrooxidation

    Science.gov (United States)

    Gong, Mingxing; Li, Fumin; Yao, Zhigang; Zhang, Suqi; Dong, Jingwen; Chen, Yu; Tang, Yawen

    2015-03-01

    The Pt84Pb16 (atomic ratio) bimetallic alloy nanoflowers (Pt84Pb16 BANFs) are synthesized by a simple one-pot hydrothermal reduction method that effectively enhance the dehydrogenation pathway of the formic acid oxidation reaction (FAOR) due to the ensemble effect and the electronic effect. As a result, the mass activity of Pt84Pb16 BANFs for the FAOR is 16.7 times higher than that of commercial Pt black at 0.3 V potential.The Pt84Pb16 (atomic ratio) bimetallic alloy nanoflowers (Pt84Pb16 BANFs) are synthesized by a simple one-pot hydrothermal reduction method that effectively enhance the dehydrogenation pathway of the formic acid oxidation reaction (FAOR) due to the ensemble effect and the electronic effect. As a result, the mass activity of Pt84Pb16 BANFs for the FAOR is 16.7 times higher than that of commercial Pt black at 0.3 V potential. Electronic supplementary information (ESI) available: Experimental details. See DOI: 10.1039/c4nr07375d

  11. Hollow palladium nanospheres with porous shells supported on graphene as enhanced electrocatalysts for formic acid oxidation.

    Science.gov (United States)

    Wang, Bo; Yang, Jun; Wang, Lei; Wang, Ruihong; Tian, Chungui; Jiang, Baojiang; Tian, Mei; Fu, Honggang

    2013-11-28

    The hollow palladium nanospheres with the porous shell comprised of uniform 5 nm Pd nanoparticles (Pd NS-HP) have been synthesized successfully by employing a simple replacement process between PdCl4(2-) ions and Co with the assistance of a structure-directing agent, polyvinyl pyrrolidone (PVP). Then, the obtained Pd NS-HP is supported on graphene nanosheets (GN) to prepare Pd NS-HP/GN composites by a wet-impregnation method. As the catalyst towards formic acid electrooxidation, the Pd NS-HP/GN composite exhibits a larger electrochemically active surface area, better electrocatalytic activity and better stability compared with Pd nanoparticles/graphene (Pd NP/GN) and commercial Pd/C catalysts. The enhancement in electrocatalytic performance of Pd NS-HP/GN is attributed to the abundant connected pore channels in the inner and exterior surfaces of Pd nanospheres, which could provide a large contact surface for adsorption and transmission of reactants, facilitating the oxidation of formic acid molecules on its surface and also improving the utilization of Pd metal. Moreover, the support of graphene could enhance the stability of the catalyst.

  12. An effective low Pd-loading catalyst for hydrogen generation from formic acid

    DEFF Research Database (Denmark)

    Huang, Yunjie; Xu, Junlei; Ma, Xin

    2017-01-01

    roles. In addition, Ag additive was found to benefit catalyst stability. Most interestingly, the obtained low Pd-loading Pd1Ag6/N-rGO catalyst showed a specific Pd loading turnover frequency of 171 mol Pd−1 h−1 and a specific metal cost turnover frequency of 64.2 $−1 h−1, which were predominant among......As an interesting hydrogen carrier, formic acid is bio-renewable, non-toxic and available in the liquid state at room temperature. The development of active and low-cost catalyst is of significance for hydrogen generation from formic acid. In this study, both a relatively cheap metal (Ag......) and a functional support (nitrogen modified reduced graphene oxide, N-rGO) were applied to prepare Pd catalyst. It was found that the Ag atoms facilitated the formation of Pd-rich surface in the preparation strategy, in which the reductive N-rGO and a two-step feeding process of metal precursors played important...

  13. Titanium dioxide-coated silica waveguides for the photocatalytic oxidation of formic acid in water

    Energy Technology Data Exchange (ETDEWEB)

    Miller, L.W.; Tejedor-Tejedor, M.I.; Anderson, M.A. (Univ. of Wisconsin, Madison, WI (United States). Water Chemistry Program)

    1999-06-15

    Photooxidation of organic compounds on the surface of titanium dioxide (TiO[sub 2]) is a potential method of removing organic pollutants from water. By coating TiO[sub 2] on transparent substrates and illuminating the catalyst with internally reflected light, it may be possible to increase the amount of illuminated photocatalyst in a given reactor volume. Planar, silica internal reflection elements (IREs) were coated with thin, porous, nanoparticulate films of TiO[sub 2]. UV-visible internal reflection spectroscopy was performed in order to determine that visible and near-UV light propagated through the modified IREs in an attenuated total reflection (ATR) mode. The TiO[sub 2]-coated IREs were employed in a photocatalytic reactor, and their ability to oxidize formic acid was assessed. Apparent quantum yields and quantum efficiencies of formic acid oxidation as a function of catalyst film thickness and incident angles of internally propagation UV light (310--380 nm) were determined. Quantum efficiency was enhanced when UV light propagated through the TiO[sub 2]-coated waveguide in an ATR mode. Photocatalytic reactors based on waveguide-supported TiO[sub 2] films operating in an ATR mode may utilize light more effectively than reactors based on direct irradiance of TiO[sub 2] and could facilitate the scale-up of photocatalytic oxidation processes for commercial remediation applications.

  14. Kinetics of dissociative adsorption of formic acid on electrodes of tetrahexahedral platinum nanocrystals

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    In the present paper we study the kinetics of dissociative adsorption of formic acid on the electrode of tetrahexahedral platinum nanocrystals (THH Pt NCs). In situ FTIR spectroscopic results demonstrate that HCOOH can be oxidized to CO2 at a low potential (-0.2 V(SCE)) on the THH Pt NCs electrode, and the chemical bonds inside formic acid molecule are broken to form adsorbed COL species. The kinetics of the dissociative adsorption of HCOOH was quantitatively investigated by employing programmed potential step technique. It has been determined that, in 5 × 10-3 mol·L-1 HCOOH + 0.1 mol·L-1 H2SO4 solution, the maximal value of the average rate (υamax) of dissociative adsorption of HCOOH on a commercial Pt/C catalyst electrode is 8.58 × 10-10 mol·cm-2·s-1, while on the THH Pt NCs the υamax is 1.5 times larger than the υamax measured on Pt/C and reaches 13.19 × 10-10 mol·cm-2·s-1. The results have revealed that the reactivity of the THH Pt NCs is much higher than that of the Pt/C catalysts.

  15. The enhancement effect of MoO{sub x} on Pd/C catalyst for the electrooxidation of formic acid

    Energy Technology Data Exchange (ETDEWEB)

    Feng Ligang; Cui Zhiming; Yan Liang [State Key Laboratory of Electro-analytical Chemistry, Changchun Institute of Applied Chemistry, Jilin Province Key Laboratory of Low Carbon Chemical Power, Graduate School of the Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin 130022 (China); Xing Wei, E-mail: xingwei@ciac.jl.c [State Key Laboratory of Electro-analytical Chemistry, Changchun Institute of Applied Chemistry, Jilin Province Key Laboratory of Low Carbon Chemical Power, Graduate School of the Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin 130022 (China); Liu Changpeng [State Key Laboratory of Electro-analytical Chemistry, Changchun Institute of Applied Chemistry, Jilin Province Key Laboratory of Low Carbon Chemical Power, Graduate School of the Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin 130022 (China)

    2011-02-01

    Molybdenum oxide (MoO{sub x}) was added to a Pd/C catalyst using a novel two-step procedure. The enhancement effect of MoO{sub x} on Pd/C catalyst for the electrooxidation of formic acid was verified by electrochemical experiments. Compared to the Pd/C catalyst, the experimental results showed that the addition of MoO{sub x} could significantly enhance the electrocatalytic performances for the electrooxidation of formic acid. Significant improvements in electrocatalytic activity and stability were primarily ascribed to the effect of MoO{sub x} on the Pd catalyst. In addition to the large specific surface area, the hydrogen spillover effect is speculated to have accelerated the electrooxidation rate of formic acid in the direct pathway.

  16. An effective Pd-Ni(2)P/C anode catalyst for direct formic acid fuel cells.

    Science.gov (United States)

    Chang, Jinfa; Feng, Ligang; Liu, Changpeng; Xing, Wei; Hu, Xile

    2014-01-03

    The direct formic acid fuel cell is an emerging energy conversion device for which palladium is considered as the state-of-the-art anode catalyst. In this communication, we show that the activity and stability of palladium for formic acid oxidation can be significantly enhanced using nickel phosphide (Ni(2)P) nanoparticles as a cocatalyst. X-ray photoelectron spectroscopy (XPS) reveals a strong electronic interaction between Ni(2)P and Pd. A direct formic acid fuel cell incorporating the best Pd–Ni(2)P anode catalyst exhibits a power density of 550 mWcm(-2), which is 3.5 times of that of an analogous device using a commercial Pd anode catalyst.

  17. In situ surface-enhanced Raman spectroscopic study of formic acid electrooxidation on spontaneously deposited platinum on gold.

    Science.gov (United States)

    Muralidharan, Ranjani; McIntosh, Michael; Li, Xiao

    2013-06-28

    Present formic acid fuel cell efficiency is limited by low kinetics at the anode, indicating the need for effective catalysts to improve the formic acid oxidation. As a prerequisite, the nature of adsorbed species and specifically the reaction intermediates formed in this process needs to be examined. This work focuses on the electrooxidation of formic acid and the nature of the intermediates at a platinum-modified gold surface prepared through spontaneous deposition using a combination of electrochemistry and in situ surface enhanced Raman spectroscopy (SERS). This Pt-modified gold electrode surface assists in oxidizing formic acid at potentials as low as 0.0 V vs. Ag/AgCl which is 0.15 V more negative than a bare Pt surface. The oxidation current obtained on the Pt-modified gold electrode is 72 times higher than on a bare Au surface and 5 times higher than on a bare Pt surface at the same potential. In situ SERS has revealed the involvement of formate at a low frequency as the primary intermediate in this electrooxidation process. While previous studies mainly focused on the formate mode at ca. 1322 cm(-1), it is the first time that a formate peak at ca. 300 cm(-1) was observed on a Pt or Pt-associated surface. A unique relationship has been observed between the formic acid oxidation currents and the SERS intensity of this formate adsorbate. Furthermore, the characteristic Stark effect of the formate proves the strong interaction between the adsorbate and the catalyst. Both electrochemical and spectroscopic results suggest that the formic acid electrooxidation takes place by the dehydrogenation pathway involving a low frequency formate intermediate on the Pt-modified gold electrode catalyst.

  18. A DFT study on the catalytic hydrogenation of CO2 to formic acid over Ti-doped graphene nanoflake

    Science.gov (United States)

    Esrafili, Mehdi D.; Dinparast, Leila

    2017-08-01

    The aim of this study is to investigate the potential of Ti-doped graphene nanoflake (Ti-GNF) for the reduction of CO2 to formic acid by H2. To get a deeper insight into the mechanism of this reaction, the reliable DFT calculations are performed. It is found that the large positive charge on the Ti atom can greatly regulate the surface reactivity of GNF. The formation of the formate group is the rate determining step for the reduction of CO2. The calculated activation energies demonstrate that Ti-GNF could be utilized as an efficient catalyst for the reduction of CO2 to formic acid.

  19. Low temperature catalytic conversion of methane to formic acid by simple vanadium compound with use of H_2O_2

    Institute of Scientific and Technical Information of China (English)

    Xin Wei; Linmin Ye; Youzhu Yuan

    2009-01-01

    Selective oxidation of methane with hydrogen peroxide was catalyzed by several simple vanadium compounds in CH_3CN. The reaction could afford formic acid as the major product. Vanadyl oxysulfate (VOSO_4) was found to be an efficient catalyst. Specifically,the selectivity to formic acid of 70% at a methane conversion of 6.5% could be achieved over the VOSO_4 catalyst under the reaction conditions of methane pressure 3.0 MPa and temperature 333 K for 4 h. The UV-Vis spectroscopic measurements revealed that the formation of V~(5+) species during the reaction might be vital for the methane activation. The reaction probably proceeded via radical mechanism.

  20. Hydrogen production from formic acid in pH-stat fed-batch operation for direct supply to fuel cell.

    Science.gov (United States)

    Shin, Jong-Hwan; Yoon, Jong Hyun; Lee, Seung Hoon; Park, Tai Hyun

    2010-01-01

    Enterobacter asburiae SNU-1 harvested after cultivation was used as a whole cell biocatalyst, for the production of hydrogen. Formic acid was efficiently converted to hydrogen using the harvested cells with an initial hydrogen production rate and total hydrogen production of 491 ml/l/h and 6668 ml/l, respectively, when 1 g/l of whole cell enzyme was used. Moreover, new pH-stat fed-batch operation was conducted, and total hydrogen production was 1.4 times higher than that of batch operation. For practical application, bio-hydrogen produced from formic acid using harvested cells was directly applied to PEMFC for power generation.

  1. Technical and economical assessment of formic acid to recycle phosphorus from pig slurry by a combined acidification-precipitation process.

    Science.gov (United States)

    Daumer, M-L; Picard, S; Saint-Cast, P; Dabert, P

    2010-08-15

    Dissolution by acidification followed by a liquid/solid separation and precipitation of phosphorus from the liquid phase is one possibility to recycle phosphorus from livestock effluents. To avoid increase of effluent salinity by using mineral acids in the recycling process, the efficiency of two organic acids, formic and acetic acid, in dissolving the mineral phosphorus from piggery wastewater was compared. The amount of formic acid needed to dissolve the phosphorus was reduced three fold, compared to acetic acid. The amount of magnesium oxide needed for further precipitation was decreased by two with formic acid. Neither the carbon load nor the effluent salinity was significantly increased by using formic acid. An economical comparison was performed for the chemical recycling process (mineral fertilizer) vs. centrifugation (organic fertilizer) considering the centrifugation and the mineral fertilizers sold in the market. After optimisation of the process, the product could be economically competitive with mineral fertilizer as superphosphate in less than 10 years. Copyright 2010 Elsevier B.V. All rights reserved.

  2. Mechanistic study of electrocatalytic oxidation of formic acid at platinum in acidic solution by time-resolved surface-enhanced infrared absorption spectroscopy.

    Science.gov (United States)

    Samjeské, Gabor; Miki, Atsushi; Ye, Shen; Osawa, Masatoshi

    2006-08-24

    Surface-enhanced infrared absorption spectroscopy (SEIRAS) combined with cyclic voltammetry or chronoamperometry has been utilized to examine kinetic and mechanistic aspects of the electrocatalytic oxidation of formic acid on a polycrystalline Pt surface at the molecular scale. Formate is adsorbed on the electrode in a bridge configuration in parallel to the adsorption of linear and bridge CO produced by dehydration of formic acid. A solution-exchange experiment using isotope-labeled formic acids (H(12)COOH and H(13)COOH) reveals that formic acid is oxidized to CO(2) via adsorbed formate and the decomposition (oxidation) of formate to CO(2) is the rate-determining step of the reaction. The adsorption/oxidation of CO and the oxidation/reduction of the electrode surface strongly affect the formic acid oxidation by blocking active sites for formate adsorption and also by retarding the decomposition of adsorbed formate. The interplay of the involved processes also affects the kinetics and complicates the cyclic voltammograms of formic acid oxidation. The complex voltammetric behavior is comprehensively explained at the molecular scale by taking all these effects into account.

  3. Glycerol electro-oxidation on a carbon-supported platinum catalyst at intermediate temperatures

    Science.gov (United States)

    Ishiyama, Keisuke; Kosaka, Fumihiko; Shimada, Iori; Oshima, Yoshito; Otomo, Junichiro

    2013-03-01

    The electro-oxidation of glycerol on a carbon-supported platinum catalyst (Pt/C) in combination with a reaction products analysis was investigated at intermediate temperatures (235-260 °C) using a single cell with a CsH2PO4 proton conducting solid electrolyte. A high current density was achieved. The main products were H2, CO2 and CO but the formation of C2 compounds, such as glycolic acid and ethane, was also observed. In addition, several C3 compounds were detected as minor products. A reaction products analysis revealed that the C-C bond dissociation ratio of glycerol was 70-80% at both low and high potentials (>200 mV vs. reversible hydrogen electrode) at 250 °C, suggesting that rapid dissociation occurs on Pt/C. The reaction products analysis also suggested that hydrogen production via thermal decomposition and/or steam reforming of glycerol (indirect path) and direct electro-oxidation of glycerol (direct path) proceed in parallel. More detailed reaction paths involving C1, C2 and C3 reaction products are discussed as well as the possible rate-determining step in glycerol electro-oxidation at intermediate temperatures.

  4. An intercomparison of measurement systems for vapor and particulate phase concentrations of formic and acetic acids

    Science.gov (United States)

    Keene, William C.; Talbot, Robert W.; Andreae, Meinrat O.; Beecher, Kristene; Berresheim, Harold

    1989-01-01

    During June 1986, eight systems for measuring vapor phase and four for measuring particulate phase concentrations of formic acid (HCOOH) and acetic acid (CH3COOH) were intercompared in central Virginia. HCOOH and CH3COOH vapors were sampled by condensate, mist, Chromosorb 103 GC resin, NaOH-coated annular denuders, NaOH-impregnated quartz filters, K2CO3 and NaCO3-impregnated cellulose filters, and Nylasorb membranes. Atmospheric aerosol was collected on Teflon and Nuclepore filters using both hi-vol and lo-vol systems to measure particulate phase concentrations. Performances of the mist chamber and K2CO3-impregnated filter techniques were evaluated using zero air and ambient air spiked with HCOOH(g) and CH3COOH(g), and formaldehyde from permeation sources. The advantages and drawbacks of these methods are reported and discussed.

  5. Use of formic acid as reducing agent for application in catalytic reduction of nitrate in water.

    Science.gov (United States)

    Garron, Anthony; Epron, Florence

    2005-08-01

    The reduction of nitrate in nitrogen using bimetallic palladium tin catalysts and hydrogen is an interesting process for water treatment. The aim of the present study is to use formic acid (FA) as a reducing agent and a pH buffer in order to substitute the mixture of hydrogen and carbon dioxide. The catalytic performances of a palladium tin catalyst supported on silica were evaluated in the presence of FA, as a function of the initial acid concentration and of the gas phase (N(2), CO(2), or H(2)). Results were compared to those obtained with hydrogen in the presence of carbon dioxide. Similar mechanisms seem to explain the identical catalytic performances observed with these two reducing agents.

  6. Particle size control of Pd/C for improved electrocatalytic activity in a formic acid oxidation.

    Science.gov (United States)

    Woo, Seunghee; Kim, In; Bong, Sungyool; Lee, Jaeyoung; Kim, Hasuck

    2011-08-01

    Carbon-supported Pd electrocatalyst is prepared by an improved aqueous impregnation method applying a reducing agent of HCHO and an acidic sedimentation promoter of HCl. We investigate the effect of a solution pH on the zeta potential of both Pd particles and carbon support. The opposite sign of zeta potential results in uniform dispersion of Pd on carbon surface without aggregation problem. TEM analysis shows that optimal solution pH of 4.27 adjusted by NaOH provides a mean particle diameter of 3.2 nm with narrow size distribution. Cyclic voltammograms indicate that home-made Pd/C catalyst exhibits significantly higher electrochemical active surface area and better stability compared with commercial 40 wt.% Pd/C in a formic acid oxidation.

  7. Sulfonation of ordered mesoporous carbon supported Pd catalysts for formic acid electrooxidation.

    Science.gov (United States)

    Sun, Zhi-Peng; Zhang, Xiao-Gang; Tong, Hao; Liang, Yan-Yu; Li, Hu-Lin

    2009-09-15

    A novel supporting material containing benzenesulfonic acid (BSA) groups and ordered mesoporous carbons (OMCs) was first prepared by in situ radical polymerization of 4-styrenesulfonate and isoamyl nitrite under ambient conditions. Then, Pd nanoparticles were deposited on as-produced OMCs (f-OMCs) by the NaBH(4) reduction method. The structure and nature of the resulting composites were characterized by transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and nitrogen adsorption-desorption. The results show that BSA groups are created and the texture and surface chemistry are altered, whereas the ordered porous structure is maintained. The electrocatalytic properties of the Pd/f-OMCs catalysts for formic acid oxidation (HCOOH) have been investigated by cyclic voltammetry and chronoamperometry methods, and excellent electrocatalytic activity can be observed.

  8. Selective Hydrogen Generation from Formic Acid with Well-Defined Complexes of Ruthenium and Phosphorus-Nitrogen PN(3) -Pincer Ligand.

    Science.gov (United States)

    Pan, Yupeng; Pan, Cheng-Ling; Zhang, Yufan; Li, Huaifeng; Min, Shixiong; Guo, Xunmun; Zheng, Bin; Chen, Hailong; Anders, Addison; Lai, Zhiping; Zheng, Junrong; Huang, Kuo-Wei

    2016-05-01

    An unsymmetrically protonated PN(3) -pincer complex in which ruthenium is coordinated by one nitrogen and two phosphorus atoms was employed for the selective generation of hydrogen from formic acid. Mechanistic studies suggest that the imine arm participates in the formic acid activation/deprotonation step. A long life time of 150 h with a turnover number over 1 million was achieved.

  9. Unimolecular decomposition of formic and acetic acids: A shock tube/laser absorption study

    KAUST Repository

    Elwardany, A.

    2014-07-16

    The thermal decomposition of formic acid (HCOOH) and acetic acid (CH3COOH), two carboxylic acids which play an important role in oxygenate combustion chemistry, were investigated behind reflected shock waves using laser absorption. The rate constants of the primary decomposition pathways of these acids:(HCOOH → CO + H2 O (R 1); HCOOH → CO2 + H2 (R 2); CH3 COOH → CH4 + CO2 (R 3); CH3 COOH → CH2 CO + H2 O (R 4)) were measured using simultaneous infrared laser absorption of CO, CO2 and H2O at wavelengths of 4.56, 4.18 and 2.93 microns, respectively. Reaction test conditions covered temperatures from 1230 to 1821 K and pressures from 1.0 to 6.5 atm for dilute mixtures of acids (0.25-0.6%) in argon. The rate constants of dehydration (R1) and decarboxylation (R2) reactions of formic acid were calculated by fitting exponential functions to the measured CO, CO2 and H2O time-history profiles. These two decomposition channels were found to be in the fall-off region and have a branching ratio, k1/k2, of approximately 20 over the range of pressures studied here. The best-fit Arrhenius expressions of the first-order rates of R1 and R2 were found to be:(k1 (1 atm) = 1.03 × 1011 exp (- 25651 / T) s- 1 (± 37 %); k1 (6.5 atm) = 9.12 × 1012 exp (- 30275 / T) s- 1 (± 32 %); k2 (1 atm) = 1.79 × 108 exp (- 21133 / T) s- 1 (± 41 %); k2 (6.5 atm) = 2.73 × 108 exp (- 20074 / T) s- 1 (± 37 %)). The rate constants for acetic acid decomposition were obtained by fitting simulated profiles, using an acetic acid pyrolysis mechanism, to the measured species time-histories. The branching ratio, k4/k3, was found to be approximately 2. The decarboxylation and dehydration reactions of acetic acid appear to be in the falloff region over the tested pressure range:(k3 (1 atm) = 3.18 × 1011 exp (- 28679 / T) s- 1 (± 30 %); k3 (6 atm) = 3.51 × 1012 exp (- 31330 / T) s- 1 (± 26 %); k4 (1 atm) = 7.9 × 1011 exp (- 29056 / T) s- 1 (± 34 %); k4 (6 atm) = 6.34 × 1012 exp (- 31330 / T) s

  10. Determination of water-soluble forms of oxalic and formic acids in soils by ion chromatography

    Science.gov (United States)

    Karicheva, E.; Guseva, N.; Kambalina, M.

    2016-03-01

    Carboxylic acids (CA) play an important role in the chemical composition origin of soils and migration of elements. The content of these acids and their salts is one of the important characteristics for agrochemical, ecological, ameliorative and hygienic assessment of soils. The aim of the article is to determine water-soluble forms of same carboxylic acids — (oxalic and formic acids) in soils by ion chromatography with gradient elution. For the separation and determination of water-soluble carboxylic acids we used reagent-free gradient elution ion-exchange chromatography ICS-2000 (Dionex, USA), the model solutions of oxalate and formate ions, and leachates from soils of the Kola Peninsula. The optimal gradient program was established for separation and detection of oxalate and formate ions in water solutions by ion chromatography. A stability indicating method was developed for the simultaneous determination of water-soluble organic acids in soils. The method has shown high detection limits such as 0.03 mg/L for oxalate ion and 0.02 mg/L for formate ion. High signal reproducibility was achieved in wide range of intensities which correspond to the following ion concentrations: from 0.04 mg/g to 10 mg/L (formate), from 0.1 mg/g to 25 mg/L (oxalate). The concentration of formate and oxalate ions in soil samples is from 0.04 to 0.9 mg/L and 0.45 to 17 mg/L respectively.

  11. Asymmetric Transfer Hydrogenation of Imines in Water by Varying the Ratio of Formic Acid to Triethylamine.

    Science.gov (United States)

    Shende, Vaishali S; Deshpande, Sudhindra H; Shingote, Savita K; Joseph, Anu; Kelkar, Ashutosh A

    2015-06-19

    Asymmetric transfer hydrogenation (ATH) of imines has been performed with variation in formic acid (F) and triethylamine (T) molar ratios in water. The F/T ratio is shown to affect both the reduction rate and enantioselectivity, with the optimum ratio being 1.1 in the ATH of imines with the Rh-(1S,2S)-TsDPEN catalyst. Use of methanol as a cosolvent enhanced reduction activity. A variety of imine substrates have been reduced, affording high yields (94-98%) and good to excellent enantioselectivities (89-98%). In comparison with the common azeotropic F-T system, the reduction with 1.1/1 F/T is faster.

  12. Revealing the active intermediates in the oxidation of formic acid on Au and Pt(111).

    Science.gov (United States)

    Gao, Wang; Song, Er Hong; Jiang, Qing; Jacob, Timo

    2014-08-25

    The mechanisms of formic acid (HCOOH) oxidation on Au(111) under gas-phase and electrochemical conditions was studied by using density functional theory and then compared with the analogous processes on Pt(111). Our results demonstrate that a mechanism involving a single intermediate molecule is preferred on both Au and Pt(111). Furthermore, under gas-phase conditions, HCOOH oxidation proceeds through the same mechanism (formate pathway) on Au and Pt(111), whereas under electrochemical conditions, it can take place through significantly different mechanisms (formate and/or direct pathways), depending on the applied electrode potential. Our calculations help to rationalize conflicting experimental explanations and are crucial for understanding the mechanism of this fundamental (electro-)catalytic process. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Cellulose nanocrystals prepared via formic acid hydrolysis followed by TEMPO-mediated oxidation.

    Science.gov (United States)

    Li, Bin; Xu, Wenyang; Kronlund, Dennis; Määttänen, Anni; Liu, Jun; Smått, Jan-Henrik; Peltonen, Jouko; Willför, Stefan; Mu, Xindong; Xu, Chunlin

    2015-11-20

    Cellulose nanocrystals (CNCs) as a renewable and biodegradable nanomaterial have wide application value. In this work, CNCs were extracted from bleached chemical pulp using two stages of isolation (i.e. formic acid (FA) hydrolysis and 2,2,6,6-tetramethyl-piperidine-1-oxyl (TEMPO) mediated oxidation) under mild conditions. In the first stage, FA was used to remove hemicellulose, swell cellulose fibers, and release CNCs. The FA could be readily recovered and reused. In the second stage, the CNCs isolated by FA were further modified by TEMPO-mediated oxidation to increase the surface charge of CNCs. It was found that the modified CNCs with more ordered crystal structure and higher surface charge had better redispersibility and higher viscosity in aqueous phase. Therefore, the modified CNCs could be more effective when used as rheology modifier in the fields of water based coating, paint, food etc. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Amorphous palladium-silicon alloys for the oxidation of formic acid and formaldehyde. A voltammetric investigation

    Directory of Open Access Journals (Sweden)

    Correia A.N.

    1999-01-01

    Full Text Available The electrocatalytic oxidation of formic acid and formaldehyde on Pd and on amorphous Pd(Si was studied by cyclic voltammetry and the results compared with the literature for similar systems. The oxidation of HCOOH on Pd occurs through direct catalytic dehydrogenation via (:C(OH2ads while on Pd(Si this intermediate does not appear to be formed. This is a consequence of the presence of inert Si on the surface that diminishes the probability of adjacent free sites. At high HCOOH concentrations, that intermediate undergoes dehydration on the Pd surface and COads oxidation peak is observed. For HCHO, the oxidation mechanism on both electrode materials appears similar to that previously proposed for Pt. However, the oxides formed on the amorphous Pd(Si alloy are more reactive than those on Pd thus affecting the overall kinetics of the process for both organic molecules, a fact revealed by the increase in anodic currents observed in the voltammograms.

  15. Oxidation of formic acid on the Pt(111) surface in the gas phase.

    Science.gov (United States)

    Gao, Wang; Keith, John A; Anton, Josef; Jacob, Timo

    2010-09-28

    Formic acid (HCOOH) oxidation on Pt(111) under gas-phase conditions is a benchmark heterogeneous catalysis reaction used to probe electro-catalytic HCOOH conversion in fuel cells, itself an important reaction in energy conversion. We used density functional theory (DFT) calculations to elucidate the fundamental oxidation mechanisms of HCOOH in the gas phase, determining the relative strengths of chemical interactions between HCOOH oxidation intermediates and the Pt(111) surface. We focused on investigating how water and adsorption coverage affects reaction intermediate structures and transition states. Our results show that adsorbed HCOO is a reactive intermediate in gas phase, and co-adsorbed water plays a key role in HCOOH oxidation influencing the structure of reaction intermediates and reaction barriers on Pt(111). The simulations show the preferred catalytic pathway is qualitatively dependent on surface coverage. These results provide a conceptual basis to better interpret its complicated experimental reaction kinetics.

  16. Energetics of methanol and formic acid oxidation on Pt(111): Mechanistic insights from adsorption calorimetry

    Science.gov (United States)

    Silbaugh, Trent L.; Karp, Eric M.; Campbell, Charles T.

    2016-08-01

    The catalytic and electrocatalytic oxidation and reforming of methanol and formic acid have received intense interest due to potential use in direct fuel cells and as prototype models for understanding electrocatalysis. Consequently, the reaction energy diagram (energies of all the adsorbed intermediates and activation energies of all the elementary steps) have been estimated for these reactions on Pt(111) by density functional theory (DFT) in several studies. However, no experimental measurement of these energy diagrams have been reported, nor is there a consensus on the mechanisms. Here, we use energies of key intermediates on Pt(111) from single crystal adsorption calorimetry (SCAC) and temperature programmed desorption (TPD) to build a combined energy diagram for these reactions. It suggests a new pathway involving monodentate formate as a key intermediate, with bidentate formate only being a spectator species that slows the rate. This helps reconcile conflicting proposed mechanisms.

  17. Direct synthesis of graphene nanosheets support Pd nanodendrites for electrocatalytic formic acid oxidation

    Institute of Scientific and Technical Information of China (English)

    杨苏东; 陈琳

    2015-01-01

    We report a solvothermal method preparation of dendritic Pd nanoparticles (DPNs) and spherical Pd nanoparticles (SPNs) supported on reduced graphene oxide (RGO). Drastically different morphologies of Pd NPs with nanodendritic structures or spherical structures were observed on graphene by controlling the reduction degree of graphene oxide (GO) un-der mild conditions. In addition to being a commonplace substrate, GO plays a more important role that relies on its surface groups, which serves as a shape-directing agent to direct the dendritic growth. As a result, the obtained DPNs/RGO catalyst exhibits a significantly enhanced electro-catalytic behavior for the oxidation of formic acid compared to the SPNs/RGO catalyst.

  18. Full- and reduced-dimensionality instanton calculations of the tunnelling splitting in the formic acid dimer

    CERN Document Server

    Richardson, Jeremy O

    2016-01-01

    The ring-polymer instanton approach is applied to compute the ground-state tunnelling splitting of four isotopomers of the formic acid dimer using the accurate PES of Qu and Bowman [Phys. Chem. Chem. Phys., 2016, 18, 24835]. As well as performing the calculations in full dimensionality, we apply a reduced-dimensionality approach to study how the results converge as successively more degrees of freedom are included. The instanton approximation compares well to exact quantum results where they are available but shows that nearly all the modes are required to quantitatively obtain the tunnelling splitting. The full-dimensional instanton calculation reproduces the experimental results, with an error of only about 20 percent.

  19. Microwave Measurements of Maleimide and its Doubly Hydrogen Bonded Dimer with Formic ACID*

    Science.gov (United States)

    Pejlovas, Aaron M.; Kang, Lu; Kukolich, Stephen G.

    2016-06-01

    The microwave spectra were measured for the maleimide monomer and the maleimide-formic acid doubly hydrogen bonded dimer using a pulsed-beam Fourier transform microwave spectrometer. Many previously studied doubly hydrogen bonded dimers are formed between oxygen containing species, so it is important to also characterize and study other dimers containing nitrogen, as hydrogen bonding interactions with nitrogen are found in biological systems such as in DNA. The transition state of the dimer does not exhibit C_2_V symmetry, so the tunneling motion was not expected to be observed based on the symmetry, but it would be very important to also observe the tunneling process for an asymmetric dimer. Single-line b-type transitions were observed, so the tunneling motion was not observed in our microwave spectra. The hydrogen bond lengths were determined using a nonlinear least squares fitting program. *Supported by the NSF CHE-1057796

  20. Infrared and density functional theory studies of formic acid hydrate clusters in noble gas matrices

    Science.gov (United States)

    Ito, Fumiyuki

    2016-08-01

    Infrared absorption spectra of formic acid hydrate clusters (HCOOH)m(H2O)n have been measured in noble gas matrices (Ar and Kr). The concentration dependence of the spectra and the comparison with a previous experimental study on HCOOH(H2O) and HCOOH(H2O)2 [Geoge et al., Spectrochim. Acta, Part A 60 (2004) 3225] led to the identification of large clusters. Density functional theory calculations at the B3LYP-DCP/6-31+G(2d,2p) level were carried out to determine the anharmonic vibrational properties of the clusters, enabling a consistent assignment of the observed vibrational peaks to specific clusters.

  1. Hydrogenation of CO2 to Formic Acid with a Highly Active Ruthenium Acriphos Complex in DMSO and DMSO/Water.

    Science.gov (United States)

    Rohmann, Kai; Kothe, Jens; Haenel, Matthias W; Englert, Ulli; Hölscher, Markus; Leitner, Walter

    2016-07-25

    The novel [Ru(Acriphos)(PPh3 )(Cl)(PhCO2 )] [1; Acriphos=4,5-bis(diphenylphosphino)acridine] is an excellent precatalyst for the hydrogenation of CO2 to give formic acid in dimethyl sulfoxide (DMSO) and DMSO/H2 O without the need for amine bases as co-reagents. Turnover numbers (TONs) of up to 4200 and turnover frequencies (TOFs) of up to 260 h(-1) were achieved, thus rendering 1 one of the most active catalysts for CO2 hydrogenations under additive-free conditions reported to date. The thermodynamic stabilization of the reaction product by the reaction medium, through hydrogen bonds between formic acid and clusters of solvent or water, were rationalized by DFT calculations. The relatively low final concentration of formic acid obtained experimentally under catalytic conditions (0.33 mol L(-1) ) was shown to be limited by product-dependent catalyst inhibition rather than thermodynamic limits, and could be overcome by addition of small amounts of acetate buffer, thus leading to a maximum concentration of free formic acid of 1.27 mol L(-1) , which corresponds to optimized values of TON=16×10(3) and TOFavg ≈10(3)  h(-1) .

  2. Pt-Pd nanoelectrocatalyst of ultralow Pt content for the oxidation of formic acid: Towards tuning the reaction pathway

    Indian Academy of Sciences (India)

    Sourov Ghosh; C Retna Raj

    2015-05-01

    Synthesis of highly efficient functional electrocatalyst that favours the electrochemical oxidation of formic acid via CO-free dehydrogenation pathway is required for direct formic acid fuel cells. Traditional catalysts favour the dehydration pathway involving the generation of poisonous CO. Herein we demonstrate the superior electrocatalytic performance of Pt-Pd bimetallic nanoelectrocatalyst of ultralow Pt content and tuning the reaction pathway by controlling the Pt content. Bimetallic nanoparticles of Pt4Pd96, Pt7Pd93 and Pt47Pd53 compositions are synthesized by electrochemical co-deposition method in aqueous solution. The nanoparticles of ultralow Pt content, Pt4Pd96, favour the CO-free dehydrogenation pathway for formic acid oxidation with an onset potential of 0 V (SHE) whereas the Pt47Pd53 nanoparticles favour the dehydration pathway involving the formation of CO at high positive potential. The Pt content of the bimetallic nanoparticles actually controls the oxidation peak potential and catalytic activity. Significant negative shift (∼350 mV) in the oxidation peak potential and remarkable enhancement in the current density (2.6 times) are observed for Pt4Pd96 nanoparticles with respect to Pt47Pd53. The absence of three adjacent Pt and Pd atoms could be the reason for the suppression of CO pathway. The electrochemical impedance measurements indirectly support the CO-free pathway for the formic acid oxidation on Pt4Pd96 nanoparticles.

  3. Base-Free Production of H2 by Dehydrogenation of Formic Acid Using An Iridium-bisMETAMORPhos Complex

    NARCIS (Netherlands)

    Oldenhof, S.; de Bruin, B.; Lutz, M.|info:eu-repo/dai/nl/304828971; Siegler, M.A.M.|info:eu-repo/dai/nl/31411744X; Patureau, F.W.; van der Vlugt, J.I.; Reek, J.N.H.

    2013-01-01

    Hydrogen holds the potential to be one of the major energy carriers for the future. However, a hydrogen-based economy requires technology that allows efficient and safe storage and release of H2. In this light, the reversible storage of dihydrogen in the form of formic acid (HCOOH) provides an

  4. Amine-borane assisted synthesis of wavy palladium nanorods on graphene as efficient catalysts for formic acid oxidation.

    Science.gov (United States)

    Du, Cheng; Liao, Yuxiang; Hua, Xing; Luo, Wei; Chen, Shengli; Cheng, Gongzhen

    2014-11-04

    Wavy palladium (Pd) nanorods were obtained by controlled synthesis by using amine-boranes as the reducing agents. Thanks to the unique structure and strong interaction with graphene, the as-synthesized Pd nanorods supported on graphene exhibit much enhanced electrocatalytic activity towards formic acid oxidation as compared with Pd nanoparticles.

  5. Enhanced formic acid oxidation on polycrystalline platinum modified by spontaneous deposition of gold. Fourier transform infrared spectroscopy studies

    Science.gov (United States)

    Cappellari, Paula S.; García, Gonzalo; Florez-Montaño, Jonathan; Barbero, Cesar A.; Pastor, Elena; Planes, Gabriel A.

    2015-11-01

    Formic acid and adsorbed carbon monoxide electrooxidation on polycrystalline Pt and Au-modified Pt surfaces were studied by cyclic voltammetry, lineal sweep voltammetry and in-situ Fourier transform infrared spectroscopy techniques. With this purpose, a polycrystalline Pt electrode was modified by spontaneous deposition of gold atoms, achieving a gold surface coverage (θ) in the range of 0 ≤ θ ≤ 0.47. Results indicate the existence of two main pathways during the formic acid oxidation reaction, i.e. dehydration and dehydrogenation routes. At higher potentials than 0.5 V the dehydrogenation pathway appears to be the operative at both Pt and Au electrodes. Meanwhile, the dehydration reaction is the main pathway for Pt at lower potentials than 0.5 V. It was found that reaction routes are easily tuned by Au deposition on the Pt sites responsible for the formic acid dehydration reaction, and hence for the catalytic formation of adsorbed carbon monoxide. Gold deposition on these Pt open sites produces an enhanced activity toward the HCOOH oxidation reaction. In general terms, the surface inhibition of the reaction by adsorbed intermediates (indirect pathway) is almost absent at gold-modified Pt electrodes, and therefore the direct pathway appears as the main route during the formic acid electrooxidation reaction.

  6. Polyhedral Palladium-Silver Alloy Nanocrystals as Highly Active and Stable Electrocatalysts for the Formic Acid Oxidation Reaction

    National Research Council Canada - National Science Library

    Fu, Geng-Tao; Liu, Chang; Zhang, Qi; Chen, Yu; Tang, Ya-Wen

    2015-01-01

    .... As a preliminary electrochemical application, the Pd-Ag alloy polyhedrons are applied in the formic acid oxidation reaction, which shows higher electrocatalytic activity and stability than commercially available Pd black due to the "synergistic effects" between Pd and Ag atoms.

  7. Base-Free Production of H2 by Dehydrogenation of Formic Acid Using An Iridium-bisMETAMORPhos Complex

    NARCIS (Netherlands)

    Oldenhof, S.; de Bruin, B.; Lutz, M.; Siegler, M.A.M.; Patureau, F.W.; van der Vlugt, J.I.; Reek, J.N.H.

    2013-01-01

    Hydrogen holds the potential to be one of the major energy carriers for the future. However, a hydrogen-based economy requires technology that allows efficient and safe storage and release of H2. In this light, the reversible storage of dihydrogen in the form of formic acid (HCOOH) provides an inter

  8. Anode modification with formic acid: A simple and effective method to improve the power generation of microbial fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Weifeng; Cheng, Shaoan, E-mail: shaoancheng@zju.edu.cn; Guo, Jian

    2014-11-30

    Highlights: • Carbon cloth anode is modified with formic acid by a simple and reliable approach. • The modification significantly enhances the power output of microbial fuel cells. • The modified anode surface favors the bacterial attachment and growth on anode. • The electron transfer rate of anode is promoted. - Abstract: The physicochemical properties of anode material directly affect the anodic biofilm formation and electron transfer, thus are critical for the power generation of microbial fuel cells (MFCs). In this work, carbon cloth anode was modified with formic acid to enhance the power production of MFCs. Formic acid modification of anode increased the maximum power density of a single-chamber air-cathode MFC by 38.1% (from 611.5 ± 6 mW/m{sup 2} to 877.9 ± 5 mW/m{sup 2}). The modification generated a cleaner electrode surface and a reduced content of oxygen and nitrogen groups on the anode. The surface changes facilitated bacterial growth on the anode and resulted in an optimized microbial community. Thus, the electron transfer rate on the modified anodes was enhanced remarkably, contributing to a higher power output of MFCs. Anode modification with formic acid could be an effective and simple method for improving the power generation of MFCs. The modification method holds a huge potential for large scale applications and is valuable for the scale-up and commercialization of microbial fuel cells.

  9. Ruthenium Bisphosphine Catalyst on Functionalized Silica:Novel Efficient Catalyst for Carbon Dioxide Hydrogenation to Formic Acid

    Institute of Scientific and Technical Information of China (English)

    Yi Ping ZHANG; Jin Hua FEI; Ymg Min YU; Xiao Ming ZHENG

    2006-01-01

    A novel efficient catalyst for the hydrogenation of carbon dioxide to formic acid ruthenium bisphosphine on functionalized silica was in situ synthesized, affording turnover frequency (TOF) of 1190 h-1 at 100% selectivity under 80C with total pressure of 16.0 MPa. The catalyst can be separated from the reaction mixture easily and reused with moderate loss of activity.

  10. Novel silk fibroin films prepared by formic acid/hydroxyapatite dissolution method

    Energy Technology Data Exchange (ETDEWEB)

    Ming, Jinfa, E-mail: jinfa.ming@gmail.com [National Engineering Laboratory for Modern Silk, Soochow University, Suzhou 215123 (China); College of Textile and Clothing Engineering, Soochow University, Suzhou 215021 (China); Liu, Zhi; Bie, Shiyu [National Engineering Laboratory for Modern Silk, Soochow University, Suzhou 215123 (China); College of Textile and Clothing Engineering, Soochow University, Suzhou 215021 (China); Zhang, Feng [Jiangsu Province Key Laboratory of Stem Cell Research, Medical College, Soochow University, Suzhou 215006 (China); Zuo, Baoqi, E-mail: bqzuo@suda.edu.cn [National Engineering Laboratory for Modern Silk, Soochow University, Suzhou 215123 (China); College of Textile and Clothing Engineering, Soochow University, Suzhou 215021 (China)

    2014-04-01

    Bombyx mori silk fibroin from the silkworm was firstly found to be soluble in formic acid/hydroxyapatite system. The rheological behavior of silk fibroin solution was significantly influenced by HAp contents in dissolved solution. At the same time, silk fibroin nanofibers were observed in dissolved solution with 103.6 ± 20.4 nm in diameter. Moreover, the structure behavior of SF films prepared by formic acid/hydroxyapatite dissolution method was examined. The secondary structure of silk fibroin films was attributed to silk II structure (β-sheet), indicating that the hydroxyapatite contents in dissolved solution were not significantly affected by the structure of silk fibroin. The X-ray diffraction results exhibited obviously hydroxyapatite crystalline nature existing in silk fibroin films; however, when the hydroxyapatite content was 5.0 wt.% in dissolved solution, some hydroxyapatite crystals were converted to calcium hydrogen phosphate dehydrate in silk fibroin dissolution process. This result was also confirmed by Fourier transform infrared analysis and DSC measurement. In addition, silk fibroin films prepared by this dissolution method had higher breaking strength and extension at break. Based on these analyses, an understanding of novel SF dissolution method may provide an additional tool for designing and synthesizing advanced materials with more complex structures, which should be helpful in different fields, including biomaterial applications. - Highlights: • SF fibers were firstly successfully dissolved in FA/HAp solution. • The rheological behavior of SF solution was significantly influenced by HAp contents. • SF nanofibrils were observed in FA/HAp solution with 103.6 ± 20.4 nm in diameter. • SF films prepared by FA/HAp dissolution method had higher mechanical properties.

  11. Improvement on the Nutritive Quality of Napier Grass Silage through Inoculation of Lactobacillus plantarum and Formic Acid

    Directory of Open Access Journals (Sweden)

    Saprilian Stya Hapsari

    2016-08-01

    Full Text Available The potential availability of forage feed is high, but in reality this potential has not been able to meet the requirement of feed both in sustainable quantity and quality. Silage made with the use of liquid fermentation additive (FA can be a solution for those problems. The use of  different levels of FA and addition of Lactobacillus plantarum bacteria as well as formic acid were expected to improve the nutritive quality of napier grass silage. The first experiment was designed to measure the fermentative quality of napier grass silage. The treatments used were the levels of FA, L. plantarum, and formic acid supplementations. The experiment used a completely randomized design with a 3x2x2 factorial arrangement with 3 replications. The first factor was the level of liquid FA (5%, 7.5%, and 10%, and the second factor was the inoculation of L. plantarum (without and with inoculation of the L. plantarum, and the third factor was the addition of formic acid (without and with the addition of 0.15% formic acid. The second experiment was aimed to evaluate chemical and microbiological characteristics, and in vitro digestibility of selected napier grass silage. The results showed that napier grass silage from all treatments showed good qualities. There were interactions between FA, L. plantarum, and formic acid on DM content (P<0.05 and ammonia production (P<0.01. The use of FA showed an interaction (P<0.01 with the addition of L. plantarum and formic acid in Fleigh point. Ammonia production in rumen (P<0.01, total VFA (P<0.05, and in vitro digestibility (P<0.01 were significantly affected by the treatments. The optimal level of liquid FA was 7.5%. Based on the nutritive quality of silage, L. plantarum addition was as effective as control treatment to improve nutritive quality of napier grass silage through the increased  of fermentation characteristics i.e., low pH, high DM product, high fermentation product (VFA, and digestible on rumen. Formic acid

  12. Addition of formic acid or starter cultures to liquid feed. Effect on pH, microflora composition, organic acid concentration and ammonia concentration.

    Science.gov (United States)

    Canibe, N; Miquel, N; Miettinen, H; Jensen, B B

    2001-01-01

    Some of the charateristics of good quality fermented liquid feed (FLF) are low pH, high numbers of lactic acid bacteria, and low numbers of enterobacteria. In order to test strategies to avoid a proliferation of enterobacteria during the initial phase of FLF elaboration, two in vitro studies were carried out. Addition of various doses of formic acid or two different starter cultures were tested. Adding 0.1% formic acid or L. plantarum VTT E-78076 to the liquid feed seemed to be addecuate ways of inhibiting the growth of enterobacteria, without depleting the growth of lactic acid bacteria.

  13. Direct conversion of corn cob to formic and acetic acids over nano oxide catalysts

    Institute of Scientific and Technical Information of China (English)

    Liyuan; Cheng; Hong; Liu; Yuming; Cui; Nianhua; Xue; Weiping; Ding

    2014-01-01

    Considering energy shortage, large molecules in corn cob and easy separation of solid catalysts, nano oxides are used to transform corn cob into useful chemicals. Because of the microcrystals, nano oxides offer enough accessible sites for cellulose, hemicellulose and monosaccharide from corn cob hydrolysis and oxidant. Chemical conversion of corn cob to organic acids is investigated over nano ceria, alumina, titania and zirconia under various atmospheres. Liquid products are mainly formic and acetic acids. A small amount of other compounds, such as D-xylose,D-glucose, arabinose and xylitol are also detected simultaneously. The yield of organic acids reaches 25%–29% over the nano oxide of ceria,zirconia and alumina with 3 h reaction time under 453 K and 1.2 MPa O2. The unique and fast conversion of corn cob is directly approached over the nano oxides. The results are comparative to those of biofermentation and offer an alternative method in chemically catalytic conversion of corn cob to useful chemicals in a one-pot chemical process.

  14. Characteristics and sources of formic, acetic and oxalic acids in PM 2.5 and PM 10 aerosols in Beijing, China

    Science.gov (United States)

    Wang, Ying; Zhuang, Guoshun; Chen, Shuang; An, Zhisheng; Zheng, Aihua

    2007-04-01

    Chemistry of formic, acetic and oxalic acids was studied at four sites representing the urban and rural conditions in Beijing from March 2002 to October 2003. The investigation was based on the PM 2.5 and PM 10 aerosols collected with virtual samplers. The total concentrations of these carboxylic acids averaged at 541 ng m - 3 in PM 2.5 and 615 ng m - 3 in PM 10, contributing 0.4% and 0.3% to the total mass of the aerosol, respectively. Oxalic acid was the most abundant carboxylic acids in aerosols. Formic and acetic acids displayed different seasonal variations (formic: spring summer > autumn > winter), and the variations of these acids were consistent among different sites in urban area. Formic and oxalic acids had a diurnal variation of nighttime waste/biomass burnings, cooking and secondary formation from anthropogenic or natural gas-phase precursors could be the major sources of these acids. Acetic-to-formic acid ratio (A/F) was used to distinguish the primary sources and the secondary sources, and it indicated that the contribution of the primary sources was higher at rural site than at urban sites. A new method was developed to study the contribution of the biomass burning to these acids, which was estimated to be 30-60% for formic and oxalic acids in aerosols.

  15. Simultaneous Determination of Methanol, Ethanol and Formic Acid in Serum and Urine by Headspace GC-FID.

    Science.gov (United States)

    Bursová, Miroslava; Hložek, Tomáš; Čabala, Radomír

    2015-01-01

    A simple, cost-effective headspace gas chromatography (GC) method coupled with GC with flame ionization detection for simultaneous determination of methanol, ethanol and formic acid was developed and validated for clinical and toxicological purposes. Formic acid was derivatized with an excess of isopropanol under acidic conditions to its volatile isopropyl ester while methanol and ethanol remained unchanged. The entire sample preparation procedure is complete within 6 min. The design of the experiment (the face-centered central composite design) was used for finding the optimal conditions for derivatization, headspace sampling and chromatographic separation. The calibration dependences of the method were quadratic in the range from 50 to 5,000 mg/L, with adequate accuracy (89.0-114.4%) and precision (<12%) in the serum. The new method was successfully used for determination of selected analytes in serum samples of intoxicated patients from among those affected by massive methanol poisonings in the Czech Republic in 2012.

  16. A novel photoelectrochemical flow cell with online mass spectrometric detection: oxidation of formic acid on a nanocrystalline TiO2 electrode.

    Science.gov (United States)

    Reichert, Robert; Jusys, Zenonas; Behm, R Jürgen

    2014-12-07

    A novel thin-layer photoelectrochemical flow cell allowing the online mass spectrometric detection of volatile reaction products during photoelectrocatalytic reactions has been developed and applied for separating the contributions from photoelectrochemical water splitting and photoelectrooxidation of formic acid to the overall photocurrent in formic acid containing aqueous solution, using a nanocrystalline TiO2 (P25) thin-film electrode. The data reveal a clear suppression of the water oxidation reaction to O2 in the presence of formic acid. Advantages of this flow cell design over conventional photoelectrochemical cells with stagnant electrolyte in terms of mass transport will be demonstrated and discussed.

  17. Effect of ultrasonic frequency on the mechanism of formic acid sonolysis.

    Science.gov (United States)

    Navarro, Nathalie M; Chave, Tony; Pochon, Patrick; Bisel, Isabelle; Nikitenko, Sergey I

    2011-03-10

    The kinetics and mechanism of formic acid sonochemical degradation were studied at ultrasonic frequencies of 20, 200, and 607 kHz under argon atmosphere. Total yield of HCOOH sonochemical degradation increases approximately 6-8-fold when the frequency increased from 20 to 200 or to 607 kHz. At low ultrasonic frequencies, HCOOH degradation has been attributed to oxidation with OH(•) radicals from water sonolysis and to the HCOOH decarboxylation occurring at the cavitation bubble-liquid interface. With high-frequency ultrasound, the sonochemical reaction is also influenced by HCOOH dehydration. Whatever the ultrasonic frequency, the sonolysis of HCOOH yielded H(2) and CO(2) in the gas phase as well as trace amounts of oxalic acid and formaldehyde in the liquid phase. However, CO and CH(4) formations were only detected under high-frequency ultrasound. The most striking difference between low-frequency and high-frequency ultrasound is that the sonolysis of HCOOH at high ultrasonic frequencies initiates Fischer-Tropsch hydrogenation of carbon monoxide. © 2011 American Chemical Society

  18. Highly active carbon supported Pd cathode catalysts for direct formic acid fuel cells

    Science.gov (United States)

    Mikolajczuk-Zychora, A.; Borodzinski, A.; Kedzierzawski, P.; Mierzwa, B.; Mazurkiewicz-Pawlicka, M.; Stobinski, L.; Ciecierska, E.; Zimoch, A.; Opałło, M.

    2016-12-01

    One of the drawbacks of low-temperature fuel cells is high price of platinum-based catalysts used for the electroreduction of oxygen at the cathode of the fuel cell. The aim of this work is to develop the palladium catalyst that will replace commonly used platinum cathode catalysts. A series of palladium catalysts for oxygen reduction reaction (ORR) were prepared and tested on the cathode of Direct Formic Acid Fuel Cell (DFAFC). Palladium nanoparticles were deposited on the carbon black (Vulcan) and on multiwall carbon nanotubes (MWCNTs) surface by reduction of palladium(II) acetate dissolved in ethanol. Hydrazine was used as a reducing agent. The effect of functionalization of the carbon supports on the catalysts physicochemical properties and the ORR catalytic activity on the cathode of DFAFC was studied. The supports were functionalized by treatment in nitric acid for 4 h at 80 °C. The structure of the prepared catalysts has been characterized by thermogravimetric analysis (TGA), X-ray diffraction (XRD), transmission electron microscope (TEM) and cyclic voltammetry (CV). Hydrophilicity of the catalytic layers was determined by measuring contact angles of water droplets. The performance of the prepared catalysts has been compared with that of the commercial 20 wt.% Pt/C (Premetek) catalyst. The maximum power density obtained for the best palladium catalyst, deposited on the surface of functionalized carbon black, is the same as that for the commercial Pt/C (Premetek). Palladium is cheaper than platinum, therefore the developed cathode catalyst is promising for future applications.

  19. A study about dimers formation of formic acid in gas phase and in the valence region

    Energy Technology Data Exchange (ETDEWEB)

    Arruda, M.S. [Universidade Federal do Reconcavo da Bahia (UFRB), Amargosa, BA (Brazil); Prudente, F.V.; Marinho, R.R.T.; Nascimento, E.M. [Universidade Federal da Bahia (UFBA), Salvador, BA (Brazil)

    2012-07-01

    Full text: Study of simple pre-biotic molecules takes great importance for understanding about complex organic molecules formation like amino acids, proteins and nucleobases within the DNA and RNA. A hypothesis for the appearance of nucleobases is that they could have been synthesized from simpler organic composites contained in interstellar medium (ISM), meteorites and asteroids. Lots of experiments have demonstrated that it is possible to produce complex pre-biotic molecules from simpler molecules under environments that simulate the ISM. Thus, we have performed a theoretical and experimental study about photoionization and photofragmentation processes of simple pre-biotic molecules that are important in the synthesis of complex biomolecules. In this work particularly, we performed photoionization and photofragmentation process of formic acid-D2 (CDOOD) in order to verify if some molecular fragmentations coming from dimers that could be formed before ionization region at TOF mass spectrometer. Experimentally, we measured these molecules mass spectra in gaseous phase. These spectra were got as function of pressures in experimental chamber, temperature samples and photon energy, in the vacuum ultraviolet region, between 11 and 20 eV. These data had been obtained in the Brazilian Laboratory of Synchrotron Light, by using mass spectrometer of flight time. The mass spectra had been obtained by using the photoelectron photoion coincidence technique, PEPICO. For a better understanding of experimental results, we have made a theoretical analysis of the photofragmentation by using Density Functional Theory. (author)

  20. An atom-economic approach to carboxylic acids via Pd-catalyzed direct addition of formic acid to olefins with acetic anhydride as a co-catalyst.

    Science.gov (United States)

    Wang, Yang; Ren, Wenlong; Shi, Yian

    2015-08-21

    An effective Pd-catalyzed hydrocarboxylation of olefins using formic acid with acetic anhydride as a co-catalyst is described. A variety of carboxylic acids are obtained in good yields with high regioselectivities under mild reaction conditions without the use of toxic CO gas.

  1. Suppression of Growth Rate of Colony-Associated Fungi by High Fructose Corn Syrup Feeding Supplement, Formic Acid, and Oxalic Acid

    Science.gov (United States)

    Select colony-associated fungi (bee isolates). Absidia sp., Ascosphaera apis, Aspergillus flavus, Fusarium sp., Penicillium glabrum, Mucor sp., showed a 40% reduction in radial growth rate with formic acid, a 28% reduction with oxalic acid, and a 15% reduction with fructose and high fructose corn sy...

  2. An efficient room temperature core-shell AgPd@MOF catalyst for hydrogen production from formic acid

    Science.gov (United States)

    Ke, Fei; Wang, Luhuan; Zhu, Junfa

    2015-04-01

    Novel core-shell AgPd@MIL-100(Fe) NPs were fabricated by a facile one-pot method. Significantly, the as-prepared core-shell NPs exhibit much higher catalytic activity than the pure AgPd NPs toward hydrogen production from formic acid without using any additive at room temperature.Novel core-shell AgPd@MIL-100(Fe) NPs were fabricated by a facile one-pot method. Significantly, the as-prepared core-shell NPs exhibit much higher catalytic activity than the pure AgPd NPs toward hydrogen production from formic acid without using any additive at room temperature. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr07582j

  3. Selective oxidation of lignocellulosic biomass to formic acid and high-grade cellulose using tailor-made polyoxometalate catalysts.

    Science.gov (United States)

    Albert, Jakob

    2017-06-27

    The main goal of this project was to identify and optimize tailor-made polyoxometalate catalysts for a fractionated oxidation of lignocellulosic biomass (i.e. wood and residues from sugar or paper industries) to produce formic acid (FA) and high-grade cellulose for further processing e.g. in white biotechnology to provide bio-ethanol. Homogeneous vanadium precursors like sodium metavanadate and vanadyl sulfate as well as Keggin-type polyoxometalates (POMs) and more exotic structures like Anderson-, Wells-Dawson- and Lindqvist-type POMs were screened for the desired catalytic performance. The most promising behaviour was found using the Lindqvist-type POM K5V3W3O19, showing for the first time in the literature a selective oxidation of only hemicellulose and lignin to formic acid, while the cellulose fraction was untrapped. However, this can only be a first step towards the project goal as low product yields were obtained.

  4. High-surface step density on dendritic pd leads to exceptional catalytic activity for formic acid oxidation.

    Science.gov (United States)

    Patra, S; Viswanath, B; Barai, K; Ravishankar, N; Munichandraiah, N

    2010-11-01

    Dendritic Pd with corrugated surfaces, obtained by a novel AC technique, exhibits an exceptionally high catalytic activity for the oxidation of formic acid because of the presence of a high density of surface steps. The formation of twinned dendrites leads to a predominance of exposed 111 facets with a high density of surface steps as evident from high resolution electron microscopy investigations. These surface sites provide active sites for the adsorption of the formic acid molecules, thereby enhancing the reaction rate. Control experiments by varying the time of deposition reveal the formation of partially grown dendrites at shorter times indicating that the dendrites were formed by growth rather than particle attachment. Our deposition method opens up interesting possibilities to produce anisotropic nanostructures with corrugated surfaces by exploiting the perturbations involved in the growth process.

  5. Development of Pd and Pd-Co catalysts supported on multi-walled carbon nanotubes for formic acid oxidation

    Science.gov (United States)

    Morales-Acosta, D.; Ledesma-Garcia, J.; Godinez, Luis A.; Rodríguez, H. G.; Álvarez-Contreras, L.; Arriaga, L. G.

    Pd-Co and Pd catalysts were prepared by the impregnation synthesis method at low temperature on multi-walled carbon nanotubes (MWCNTs). The nanotubes were synthesized by spray pyrolysis technique. Both catalysts were obtained with high homogeneous distribution and particle size around 4 nm. The morphology, composition and electrocatalytic properties were investigated by transmission electron microscopy, scanning electron microscopy-energy dispersive X-ray analysis, X-ray diffraction and electrochemical measurements, respectively. The electrocatalytic activity of Pd and PdCo/MWCNTs catalysts was investigated in terms of formic acid electrooxidation at low concentration in H 2SO 4 aqueous solution. The results obtained from voltamperometric studies showed that the current density achieved with the PdCo/MWCNTs catalyst is 3 times higher than that reached with the Pd/MWCNTs catalyst. The onset potential for formic acid electrooxidation on PdCo/MWCNTs electrocatalyst showed a negative shift ca. 50 mV compared with Pd/MWCNTs.

  6. Hydrogenation of biofuels with formic acid over a palladium-based ternary catalyst with two types of active sites.

    Science.gov (United States)

    Wang, Liang; Zhang, Bingsen; Meng, Xiangju; Su, Dang Sheng; Xiao, Feng-Shou

    2014-06-01

    A composite catalyst including palladium nanoparticles on titania (TiO2) and on nitrogen-modified porous carbon (Pd/TiO2@N-C) is synthesized from palladium salts, tetrabutyl titanate, and chitosan. N2 sorption isotherms show that the catalyst has a high BET surface area (229 m(2)  g(-1)) and large porosity. XPS and TEM characterization of the catalyst shows that palladium species with different chemical states are well dispersed across the TiO2 and nitrogen-modified porous carbon, respectively. The Pd/TiO2@N-C catalyst is very active and shows excellent stability towards hydrogenation of vanillin to 2-methoxy-4-methylphenol using formic acid as hydrogen source. This activity can be attributed to a synergistic effect between the Pd/TiO2 (a catalyst for dehydrogenation of formic acid) and Pd/N-C (a catalyst for hydrogenation of vanillin) sites.

  7. Optimization of furfural production from D-xylose with formic acid as catalyst in a reactive extraction system.

    Science.gov (United States)

    Yang, Wandian; Li, Pingli; Bo, Dechen; Chang, Heying; Wang, Xiaowei; Zhu, Tao

    2013-04-01

    Furfural is one of the most promising platform chemicals derived from biomass. In this study, response surface methodology (RSM) was utilized to determine four important parameters including reaction temperature (170-210°C), formic acid concentration (5-25 g/L), o-nitrotoluene volume percentage (20-80 vt.%), and residence time (40-200 min). The maximum furfural yield of 74% and selectivity of 86% were achieved at 190°C for 20 g/L formic acid concentration and 75 vt.% o-nitrotoluene by 75 min. The high boiling solvent, o-nitrotoluene, was recommended as extraction solvent in a reactive extraction system to obtain high furfural yield and reduce furfural-solvent separation costs. Although the addition of halides to the xylose solutions enhanced the furfural yield and selectivity, the concentration of halides was not an important factor on the furfural yield and selectivity.

  8. Accurate determination of the binding energy of the formic acid dimer: The importance of geometry relaxation

    Science.gov (United States)

    Kalescky, Robert; Kraka, Elfi; Cremer, Dieter

    2014-02-01

    The formic acid dimer in its C2h-symmetrical cyclic form is stabilized by two equivalent H-bonds. The currently accepted interaction energy is 18.75 kcal/mol whereas the experimental binding energy D0 value is only 14.22 ±0.12 kcal/mol [F. Kollipost, R. W. Larsen, A. V. Domanskaya, M. Nörenberg, and M. A. Suhm, J. Chem. Phys. 136, 151101 (2012)]. Calculation of the binding energies De and D0 at the CCSD(T) (Coupled Cluster with Single and Double excitations and perturbative Triple excitations)/CBS (Complete Basis Set) level of theory, utilizing CCSD(T)/CBS geometries and the frequencies of the dimer and monomer, reveals that there is a 3.2 kcal/mol difference between interaction energy and binding energy De, which results from (i) not relaxing the geometry of the monomers upon dissociation of the dimer and (ii) approximating CCSD(T) correlation effects with MP2. The most accurate CCSD(T)/CBS values obtained in this work are De = 15.55 and D0 = 14.32 kcal/mol where the latter binding energy differs from the experimental value by 0.1 kcal/mol. The necessity of employing augmented VQZ and VPZ calculations and relaxing monomer geometries of H-bonded complexes upon dissociation to obtain reliable binding energies is emphasized.

  9. Carbon supported ruthenium chalcogenide as cathode catalyst in a microfluidic formic acid fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Gago, A.S.; Alonso-Vante, N. [Laboratory of Electrocatalysis, UMR-CNRS 6503, Universite de Poitiers, 40 Avenue du Recteur Pineau, F-86022 Potiers Cedex (France); Morales-Acosta, D.; Arriaga, L.G. [Centro de Investigacion y Desarrollo Tecnologico en Electroquimica, S.C. Parque Tecnologico Queretaro Sanfandila, P.O. Box 064, Pedro Escobedo, 76703, Queretaro (Mexico)

    2011-02-01

    This work reports the electrochemical measurements of 20 wt.% Ru{sub x}Se{sub y}/C for oxygen reduction reaction (ORR) in presence of different concentration of HCOOH and its use as cathode catalyst in a microfluidic formic acid fuel cell ({mu}FAFC). The results were compared to those obtained with commercial Pt/C. Half-cell electrochemical measurements showed that the chalcogenide catalyst has a high tolerance and selectivity towards ORR in electrolytes containing up to 0.1 M HCOOH. The depolarization effect was higher on Pt/C than on Ru{sub x}Se{sub y}/C by a factor of ca. 23. Both catalysts were evaluated as cathode of a {mu}FAFC operating with different concentrations of HCOOH. When 0.5 M HCOOH was used, maximum current densities of 11.44 mA cm{sup -2} and 4.44 mA cm{sup -2} were obtained when the cathode was Ru{sub x}Se{sub y}/C and Pt/C, respectively. At 0.5 M HCOOH, the peak power density of the {mu}FAFC was similar for both catalysts, ca. 1.9 mW cm{sup -2}. At 5 M HCOOH the power density of the {mu}FAFC using Ru{sub x}Se{sub y}, was 9.3 times higher than the obtained with Pt/C. (author)

  10. Direct ab initio molecular dynamics study of the two photodissociation channels of formic acid

    Energy Technology Data Exchange (ETDEWEB)

    Kurosaki, Yuzuru; Yokoyama, Keiichi; Teranishi, Yoshiaki

    2005-01-31

    A total of {approx}1200 trajectories have been integrated for the two photodissociation channels of formic acid, HCOOH {yields} H{sub 2}O + CO (1) and HCOOH {yields} CO{sub 2} + H{sub 2} (2), which occur with 248 and 193 nm photons, using the direct ab initio molecular dynamics method at the RMP2(full)/cc-pVDZ level of theory. It was found that the percentage of the energy distributed to a relative translational mode in reaction is much larger than that in reaction . This is mainly due to the difference in the geometry of transition state (TS); the H{sub 2}O geometry in the TS of reaction was predicted to significantly deviate from the equilibrium one, whereas the CO{sub 2} and H{sub 2} geometries in the TS of reaction were found to be more similar to their equilibrium ones. It was also found that the product diatomic molecules, CO and H{sub 2}, are both vibrationally and rotationally excited. The calculated relative population of the vibrationally excited CO for the 248 nm photodissociation was consistent with experiment.

  11. Kinetics of Photocatalytic Degradation of Formic Acid over Silica Composite Films Based on Polyoxometalates

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The composite films, XW11O39n-/SiO2, (X refers to Si, Ge or P, respectively) were prepared by tetraethoxysilane (TEOS) hydrolysis sol-gel method via spin-coating technique. Formation of the composite films is due to strong chemical reaction of organic silanol group with the surface oxygen atoms of XW11O39n-, resulted in the saturation of the surface of the lacunary polyoxometalates (POMs). Therefore, the coordination structural model of the films was proposed. As for the films, retention of the primary Keggin structure was confirmed by UV-vis, FT-IR spectra and MAS NMR. The surface morphology of the films was characterized by SEM, indicating that the film surface is relatively uniform, and the layer thickness is in the range of 250~350 nm. Aqueous formic acid (FA) (0-20 mmol/L) was degraded into CO2 and H2O by irradiating the films in the near-UV area. The results show that all the films have photocatalytic activities and the degradation reaction follows Langmuir-Hinshelwood first order kinetics.

  12. Phase properties of carbon-supported platinum-gold nanoparticles for formic acid eletro-oxidation

    Science.gov (United States)

    Liao, Mengyin; Xiong, Jihai; Fan, Min; Shi, Jinming; Luo, Chenglong; Zhong, Chuan-Jian; Chen, Bing H.

    2015-10-01

    The design of active and robust bimetallic nanocatalysts requires the control of the nanoscale alloying, phase-segregation and the correlation between nanoscale phase-segregation and catalytic properties. To enhance the performance and durability of formic acid oxidation reaction in fuel-cell applications, we prepared a platinum-gold (PtAu) nanocatalyst with controlled morphology and composition. The catalyst is further treated by calcination under controlled temperature and atmosphere. The morphology of the bimetallic nanoparticles is determined by transmission electron microscopy. The nanoscale phase properties and surface composition are carried out by X-ray diffraction and X-ray photoelectron spectroscopy. Cyclic voltammetry measurements demonstrated that the catalytic activity is highly dependent on the nanoscale evolution of alloying and phase segregation. The mass activity of as-prepared Pt50Au50/C with 600 °C treatment temperature is about 11 times higher than that of commercial Pt/C. Stability tests showed no obvious loss of activity after 500 potential cycles. The high activity and stability are attributed to lattice contraction effect as a result of the high thermal treatment condition. Our findings demonstrate the importance of phase segregation at the nanoscale in harnessing the true electrocatalytic potential of bimetallic nanoparticles.

  13. Formic acid oxidation on antimony-covered platinum films with a preferential (100) orientation

    Science.gov (United States)

    Bertin, Erwan; Garbarino, Sébastien; Guay, Daniel

    2015-12-01

    The spontaneous adsorption of Sb onto nanostructured platinum electrodeposited films with a preferential (100) surface orientation, hereafter denoted Pt100 pref, was studied by means of electrochemical quartz microbalance (EQCM) and X-ray photoelectron spectroscopy. EQCM results indicated the formation of a Sb monolayer, while XPS analyses confirmed that a fraction of the as-adsorbed Sb adatoms were in a metallic state, while the others were in an oxidized state. After cycling, all of the Sb adatoms were in a metallic state. The electrocatalytic performances towards formic acid oxidation were assessed through cyclic voltammetry and chronoamperometry. On Pt100 pref, the presence of Sb markedly increased the current on the forward scan up to the potential value (typically 0.20 V) corresponding to a redox reaction occurring on the adatom. After one hour of electrolysis, the current on the Pt100 pref electrode covered with 75% Sb was ca. 15 mA cm-2geometric at 0.14 V vs SCE, which is 100 times higher than on the bare Pt100 pref electrode. The short- and long-term activities of the Pt100 pref electrode were maintained even when the electrode was disoriented through potential cycling in the Pt oxide formation and reduction region.

  14. Enhanced catalytic performance of Pd catalyst for formic acid electrooxidation in ionic liquid aqueous solution

    Science.gov (United States)

    Feng, Yuan-Yuan; Yin, Qian-Ying; Lu, Guo-Ping; Yang, Hai-Fang; Zhu, Xiao; Kong, De-Sheng; You, Jin-Mao

    2014-12-01

    A protic ionic liquid (IL), n-butylammonium nitrate (N4NO3), is prepared and employed as the electrolyte for formic acid electrooxidation reaction (FAOR) on Pd catalysts. The oxidation peak potential of FAOR in the IL solution shows about a 200 mV negative shift as compared with those in traditional H2SO4/HClO4 electrolytes, suggesting that FAOR can be more easily carried out on Pd catalysts in IL media. The catalytic properties of Pd toward FAOR are not only dependent on the concentration of IL, as a consequence of the varied electronic conductivity of the IL solution, but also on the high potential limit of the cyclic voltammograms. When the Pd catalyst is cycled up to 1.0 V (vs. SCE), which induces a significant oxidation of Pd, it shows ca. 4.0 times higher activity than that not subjected to the Pd oxidation (up to 0.6 V). The Pd oxides, which are more easily formed in IL solution than in traditional H2SO4/HClO4 electrolytes, may play a crucial role in increasing the catalytic activities of Pd toward FAOR. Our work would shed new light on the mechanism of FAOR and highlight the potential applications of IL as green and environment-friendly electrolytes in fuel cells and other technologies.

  15. Formic Acid Oxidation over Hierarchical Porous Carbon Containing PtPd Catalysts

    Directory of Open Access Journals (Sweden)

    Elena Pastor

    2013-10-01

    Full Text Available The use of high surface monolithic carbon as support for catalysts offers important advantage, such as elimination of the ohmic drop originated in the interparticle contact and improved mass transport by ad-hoc pore design. Moreover, the approach discussed here has the advantage that it allows the synthesis of materials having a multimodal porous size distribution, with each pore size contributing to the desired properties. On the other hand, the monolithic nature of the porous support also imposes new challenges for metal loading. In this work, the use of Hierarchical Porous Carbon (HPC as support for PtPd nanoparticles was explored. Three hierarchical porous carbon samples (denoted as HPC-300, HPC-400 and HPC-500 with main pore size around 300, 400 and 500 nm respectively, are used as porous support. PtPd nanoparticles were loaded by impregnation and subsequent chemical reduction with NaBH4. The resulting material was characterized by EDX, XRD and conventional electrochemical techniques. The catalytic activity toward formic acid and methanol electrooxidation was evaluated by electrochemical methods, and the results compared with commercial carbon supported PtPd. The Hierarchical Porous Carbon support discussed here seems to be promising for use in DFAFC anodes.

  16. [Synthesis, characterization and electrocatalytic performance of Pd/CMK-3 for formic acid oxidation].

    Science.gov (United States)

    Huan, Zhong-Ke; Zong, En-Min; Wei, Dan; Wan, Hai-Qin; Zheng, Shou-Rong; Xu, Zhao-Yi

    2012-10-01

    The synthesis of mesoporous carbons CMK-3 was implemented using SBA-15 samples as the hard templates and sucrose as the carbon source. Ordered mesoporous carbon CMK-3 supported palladium catalyst with a loading amount of 20% (Pd/CMK-3) was prepared by a complexing reduction method. XRD and TEM results showed that the p6mm hexagonal symmetric pore structures of CMK-3 were highly ordered and the Pd nanoparticles with the average size of 4. 2 nm and 4. 5 nm were well dispersed on CMK-3 and activated carbon (AC) surfaces respectively. Raman results revealed that CMK-3 presented higher graphitization and a higher electric conductivity than AC. The most probable pore size of CMK-3 was 4.5 nm, which is larger than that of AC (0.54 nm). The BET surface area of CMK-3 was 1 114 m2 x g(-1), which was also larger than that of AC(871 m2 x g(-1)). The mesoporous structure of CMK-3 was also observed. The Pd/CMK-3 catalyst exhibited more excellent initial electrocatalytic activity for formic acid oxidation than Pd/AC by cyclic voltammetry (CV). But the chronoamperometry (CA) demonstrated that the stability of the two catalysts were almost equal after 100 s polarization at 0.2 V (vs. SCE).

  17. Controlled synthesis of nanosized palladium icosahedra and their catalytic activity towards formic-acid oxidation.

    Science.gov (United States)

    Lv, Tian; Wang, Yi; Choi, Sang-Il; Chi, Miaofang; Tao, Jing; Pan, Likun; Huang, Cheng Zhi; Zhu, Yimei; Xia, Younan

    2013-10-01

    Pd icosahedra with sizes controlled in the range of 5-35 nm were synthesized in high purity through a combination of polyol reduction and seed-mediated growth. The Pd icosahedra were obtained with purity >94 % and uniform sizes controlled in the range of 5-17 nm by using ethylene glycol as both the reductant and solvent. The studies indicate that the formation of Pd nanocrystals with an icosahedral shape was very sensitive to the reaction kinetics. The success of this synthesis relies on the use of HCl to manipulate the reaction kinetics and thus control the twin structure and shape of the resultant nanocrystals. The size of the Pd icosahedra could be further increased up to 35 nm by seed-mediated growth, with 17 nm Pd icosahedra serving as seeds. The multiply twinned Pd icosahedra could grow into larger sizes, and their shape and multiply twinned structure were preserved. Thanks to the presence of twin defects, the Pd icosahedra showed a catalytic current density towards formic-acid oxidation that was 1.9 and 11.6 times higher than that of single-crystal Pd octahedra, which were also fully covered by {111} facets, and commercial Pd/C, respectively. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Sequential lignin depolymerization by combination of biocatalytic and formic acid/formate treatment steps.

    Science.gov (United States)

    Gasser, Christoph A; Čvančarová, Monika; Ammann, Erik M; Schäffer, Andreas; Shahgaldian, Patrick; Corvini, Philippe F-X

    2017-03-01

    Lignin, a complex three-dimensional amorphous polymer, is considered to be a potential natural renewable resource for the production of low-molecular-weight aromatic compounds. In the present study, a novel sequential lignin treatment method consisting of a biocatalytic oxidation step followed by a formic acid-induced lignin depolymerization step was developed and optimized using response surface methodology. The biocatalytic step employed a laccase mediator system using the redox mediator 1-hydroxybenzotriazole. Laccases were immobilized on superparamagnetic nanoparticles using a sorption-assisted surface conjugation method allowing easy separation and reuse of the biocatalysts after treatment. Under optimized conditions, as much as 45 wt% of lignin could be solubilized either in aqueous solution after the first treatment or in ethyl acetate after the second (chemical) treatment. The solubilized products were found to be mainly low-molecular-weight aromatic monomers and oligomers. The process might be used for the production of low-molecular-weight soluble aromatic products that can be purified and/or upgraded applying further downstream processes.

  19. Shape-dependent electrocatalysis: formic acid electrooxidation on cubic Pd nanoparticles.

    Science.gov (United States)

    Vidal-Iglesias, Francisco J; Arán-Ais, Rosa M; Solla-Gullón, José; Garnier, Emmanuel; Herrero, Enrique; Aldaz, Antonio; Feliu, Juan M

    2012-08-07

    The electrocatalytic properties of palladium nanocubes towards the electrochemical oxidation of formic acid were studied in H(2)SO(4) and HClO(4) solutions and compared with those of spherical Pd nanoparticles. The spherical and cubic Pd nanoparticles were characterized by transmission electron microscopy (TEM) and X-ray diffraction (XRD). The intrinsic electrocatalytic properties of both nanoparticles were shown to be strongly dependent on the amount of metal deposited on the gold substrate. Thus, to properly compare the activity of both systems (spheres and nanocubes), the amount of sample has to be optimized to avoid problems due to a lower diffusion flux of reactants in the internal parts of the catalyst layer resulting in a lower apparent activity. Under the optimized conditions, the activity of the spheres and nanocubes was very similar between 0.1 and 0.35 V. From this potential value, the activity of the Pd nanocubes was remarkably higher. This enhanced electrocatalytic activity was attributed to the prevalence of Pd(100) facets in agreement with previous studies with Pd single crystal electrodes. The effect of HSO(4)(-)/SO(4)(2-) desorption-adsorption was also evaluated. The activity found in HClO(4) was significantly higher than that obtained in H(2)SO(4) in the whole potential range.

  20. Lattice contracted Pd-hollow nanocrystals: Synthesis, structure and electrocatalysis for formic acid oxidation

    Science.gov (United States)

    Ren, Mingjun; Chen, Ju; Li, Yuan; Zhang, Haifeng; Zou, Zhiqing; Li, Xuemei; Yang, Hui

    2014-01-01

    Hollow metal nanocrystals with tuned electronic and geometric structure are highly desirable for the efficient catalytic and/or electrocatalytic reactions. Herein, we report the synthesis of carbon-supported Pd hollow nanocrystal (Pd-hollow/C) catalyst through a galvanic replacement reaction combined with Kirkendall effect without the use of polymeric stabilizer. The Pd-hollow structure is verified by scanning transmission electron microscopy. Noticeable lattice contraction in the Pd-hollow nanocrystal has been observed by high resolution transmission electron microscopy and X-ray diffraction with a decrease in the Pd (111) lattice distance. X-ray photoelectron spectroscopy indicates that the surface Pd atoms donate more electrons to the overlap with the sub-layer atoms, suggesting a strengthened d-hybridization and a down-shift of d-band center relative to the Fermi level on the surface. Electrochemical measurements show that the Pd-hollow/C catalyst exhibits a significantly enhanced electrocatalytic activity toward formic acid oxidation. The collective effects of the hollow structure and down-shift of Pd d-band center could explain well such an enhanced catalytic activity. The present study provides new insights into the relevancy of lattice parameter, electronic structure with catalytic property, and suggests design features for excellent nanostructured catalysts.

  1. Kinetics and mechanism of the reaction of gold(III chloride complexes with formic acid

    Directory of Open Access Journals (Sweden)

    Pacławski K.

    2015-01-01

    Full Text Available In this work, the results of kinetic studies of the redox reaction of gold(III chloride complexes ([AuCl4]- with formic acid, are presented. Obtained data suggest the complex character of the reaction which leads to the [AuCl2]- and [AuCl3(COOH]- ions formation as intermediates. In the pH range over 2.5, the final product of the reaction is metallic gold. From the analysis of kinetic data, the rate limiting step is found to be the gold metallic phase formation. The stage of Au(III reduction is relatively fast with the second-order rate constant equal to 61.8 M-1s-1 at temperature 50ºC. The rate of the studied reaction depends on the temperature, reactants concentration and chloride ions concentration. As a result of the data analysis, the scheme of the reaction path has been suggested. Also, the values of enthalpy and entropy of activation for the reaction have been determined.

  2. Ab initio Mechanism Study on the Reaction of Chlorine Atom with Formic Acid

    Institute of Scientific and Technical Information of China (English)

    于海涛; 付宏刚; 等

    2003-01-01

    The potential energy surface(PES) for the reaction of Cl atom with HCOOH is predicted using ab initio molecular orbital calculation methods at UQCIDS(T,full)6-311++G(3df,2p)//UMP2(full)/6-311+G(d,P) level of theory with zero-point vibrational energy (ZPVE) correction.The calculated results show that the reaction mechanism of Cl atom with formic acid is a C-site hydrogen abstraction reaction from cis-HOC(H)O molecule by Cl atom with a 3.73kJ/mol reaction barrier height,leading to the formation of cis-HOCO radical which will reacts with Cl atom or other molecules in such a reaction system.Because the reaction barrier height of O-site hydrogen abstraction reaction from cis-HOC(H)O molecule by Cl atom which leads to the formation of HCO2 radical is 67.95kJ/mol,it is a secondary reaction channel in experiment,This is in good agreement with the prediction based on the previous experiments.

  3. Experimental and computational study of crystalline formic acid composed of the higher-energy conformer.

    Science.gov (United States)

    Hakala, Mikko; Marushkevich, Kseniya; Khriachtchev, Leonid; Hämäläinen, Keijo; Räsänen, Markku

    2011-02-07

    Crystalline formic acid (FA) is studied experimentally and by first-principles simulations in order to identify a bulk solid structure composed of the higher-energy (cis) conformer. In the experiments, deuterated FA (HCOOD) was deposited in a Ne matrix and transformed to the cis conformer by vibrational excitation of the ground state (trans) form. Evaporation of the Ne host above 13 K prepared FA in a bulk solid state mainly composed of cis-FA. Infrared absorption spectroscopy at 4.3 K shows that the obtained solid differs from that composed of trans-FA molecules and that the state persists up to the annealing temperature of at least 110 K. The first-principles simulations reveal various energetically stable periodic chain structures containing cis-FA conformers. These chain structures contain either purely cis or both cis and trans forms. The vibrational frequencies of the calculated structures were compared to the experiment and a tentative assignment is given for a novel solid composed of cis-FA.

  4. Palladium-atom catalyzed formic acid decomposition and the switch of reaction mechanism with temperature.

    Science.gov (United States)

    He, Nan; Li, Zhen Hua

    2016-04-21

    Formic acid decomposition (FAD) reaction has been an innovative way for hydrogen energy. Noble metal catalysts, especially palladium-containing nanoparticles, supported or unsupported, perform well in this reaction. Herein, we considered the simplest model, wherein one Pd atom is used as the FAD catalyst. With high-level theoretical calculations of CCSD(T)/CBS quality, we investigated all possible FAD pathways. The results show that FAD catalyzed by one Pd atom follows a different mechanism compared with that catalyzed by surfaces or larger clusters. At the initial stage of the reaction, FAD follows a dehydration route and is quickly poisoned by CO due to the formation of very stable PdCO. PdCO then becomes the actual catalyst for FAD at temperatures approximately below 1050 K. Beyond 1050 K, there is a switch of catalyst from PdCO to Pd atom. The results also show that dehydration is always favoured over dehydrogenation on either the Pd-atom or PdCO catalyst. On the Pd-atom catalyst, neither dehydrogenation nor dehydration follows the formate mechanism. In contrast, on the PdCO catalyst, dehydrogenation follows the formate mechanism, whereas dehydration does not. We also systematically investigated the performance of 24 density functional theory methods. We found that the performance of the double hybrid mPW2PLYP functional is the best, followed by the B3LYP, B3PW91, N12SX, M11, and B2PLYP functionals.

  5. Formic Acid Dehydrogenation on Au-Based Catalysts at Near-Ambient Temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Ojeda, Manuel; Iglesia, Enrique

    2008-11-24

    Formic acid (HCOOH) is a convenient hydrogen carrier in fuel cells designed for portable use. Recent studies have shown that HCOOH decomposition is catalyzed with Ru-based complexes in the aqueous phase at near-ambient temperatures. HCOOH decomposition reactions are used frequently to probe the effects of alloying and cluster size and of geometric and electronic factors in catalysis. These studies have concluded that Pt is the most active metal for HCOOH decomposition, at least as large crystallites and extended surfaces. The identity and oxidation state of surface metal atoms influence the relative rates of dehydrogenation (HCOOH {yields} H{sub 2} + CO{sub 2}) and dehydration (HCOOH {yields} H{sub 2}O + CO) routes, a selectivity requirement for the synthesis of CO-free H{sub 2} streams for low-temperature fuel cells. Group Ib and Group VIII noble metals catalyze dehydrogenation selectively, while base metals and metal oxides catalyze both routes, either directly or indirectly via subsequent water-gas shift (WGS) reactions.

  6. Microwave measurements of the tropolone-formic acid doubly hydrogen bonded dimer

    Science.gov (United States)

    Pejlovas, Aaron M.; Serrato, Agapito; Lin, Wei; Kukolich, Stephen G.

    2016-01-01

    The microwave spectrum was measured for the doubly hydrogen bonded dimer formed between tropolone and formic acid. The predicted symmetry of this dimer was C2v(M), and it was expected that the concerted proton tunneling motion would be observed. After measuring 25 a- and b-type rotational transitions, no splittings which could be associated with a concerted double proton tunneling motion were observed. The calculated barrier to the proton tunneling motion is near 15 000 cm-1, which would likely make the tunneling frequencies too small to observe in the microwave spectra. The rotational and centrifugal distortion constants determined from the measured transitions were A = 2180.7186(98) MHz, B = 470.873 90(25) MHz, C = 387.689 84(22) MHz, DJ = 0.0100(14) kHz, DJK = 0.102(28) kHz, and DK = 13.2(81) kHz. The B3LYP/aug-cc-pVTZ calculated rotational constants were within 1% of the experimentally determined values.

  7. Microwave measurements of the tropolone–formic acid doubly hydrogen bonded dimer

    Energy Technology Data Exchange (ETDEWEB)

    Pejlovas, Aaron M.; Kukolich, Stephen G. [Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721 (United States); Serrato, Agapito; Lin, Wei [Department of Chemistry, University of Texas Rio Grande Valley, Brownsville, Texas 78520 (United States)

    2016-01-28

    The microwave spectrum was measured for the doubly hydrogen bonded dimer formed between tropolone and formic acid. The predicted symmetry of this dimer was C{sub 2v}(M), and it was expected that the concerted proton tunneling motion would be observed. After measuring 25 a- and b-type rotational transitions, no splittings which could be associated with a concerted double proton tunneling motion were observed. The calculated barrier to the proton tunneling motion is near 15 000 cm{sup −1}, which would likely make the tunneling frequencies too small to observe in the microwave spectra. The rotational and centrifugal distortion constants determined from the measured transitions were A = 2180.7186(98) MHz, B = 470.873 90(25) MHz, C = 387.689 84(22) MHz, D{sub J} = 0.0100(14) kHz, D{sub JK} = 0.102(28) kHz, and D{sub K} = 13.2(81) kHz. The B3LYP/aug-cc-pVTZ calculated rotational constants were within 1% of the experimentally determined values.

  8. Microwave measurements of the tropolone-formic acid doubly hydrogen bonded dimer.

    Science.gov (United States)

    Pejlovas, Aaron M; Serrato, Agapito; Lin, Wei; Kukolich, Stephen G

    2016-01-28

    The microwave spectrum was measured for the doubly hydrogen bonded dimer formed between tropolone and formic acid. The predicted symmetry of this dimer was C2v(M), and it was expected that the concerted proton tunneling motion would be observed. After measuring 25 a- and b-type rotational transitions, no splittings which could be associated with a concerted double proton tunneling motion were observed. The calculated barrier to the proton tunneling motion is near 15,000 cm(-1), which would likely make the tunneling frequencies too small to observe in the microwave spectra. The rotational and centrifugal distortion constants determined from the measured transitions were A = 2180.7186(98) MHz, B = 470.873 90(25) MHz, C = 387.689 84(22) MHz, DJ = 0.0100(14) kHz, DJK = 0.102(28) kHz, and DK = 13.2(81) kHz. The B3LYP/aug-cc-pVTZ calculated rotational constants were within 1% of the experimentally determined values.

  9. High Upward Fluxes of Formic Acid from a Boreal Forest Canopy

    Science.gov (United States)

    Schobesberger, S.; Lopez-Hilfiker, F.; Taipale, D.; Millet, D. B.; D'Ambro, E.; Mammarella, I.; Zhou, P.; Wolfe, G.; Lee, B. H.; Boy, M.; Thornton, J. A.

    2016-12-01

    Formic acid, HCOOH, is one of the most abundant carboxylic acids found in the atmosphere, affecting cloud chemistry and acidity, and as a common product in the oxidative processing of volatile organic compounds (VOC), it provides constraints on the importance of various pathways and precursors. Yet, significant uncertainties in the sources and sinks of HCOOH concentrations remain. We present measurements of HCOOH mixing ratios and eddy fluxes over a boreal forest canopy in spring/summer. Boreal forests have been identified as a key region for much of the global production of HCOOH, as well as for our lack of understanding of the underlying processes. To our knowledge, these are the first direct measurements of HCOOH exchange above a boreal forest ecosystem. The measured HCOOH fluxes were bidirectional, but mostly upward during daytime, in contrast to studies made elsewhere that reported mostly downward fluxes. Episodes of downward flux were explained well by standard resistor models of dry deposition. The sum of net observed flux and modeled deposition yields an upward "gross flux" of HCOOH, which could not be quantitatively explained by literature estimates of direct vegetative/soil emissions nor by efficient chemical production from other VOC (e.g. monoterpenes). These observations suggest greatly underestimated HCOOH sources, by up to a factor of 10, of biogenic origin in the boreal forest. We implemented a vegetative HCOOH source into the GEOS-Chem chemical transport model to match our derived gross flux, and evaluated the updated model against air- and space-borne HCOOH observations. Model biases in the boundary layer were substantially reduced based on this revised treatment, suggesting that a significant fraction of the missing HCOOH source in boreal regions is located within or just above the forest canopy. Biases in the free troposphere remain unexplained.

  10. A highly active Pd-P nanoparticle electrocatalyst for enhanced formic acid oxidation synthesized via stepwise electroless deposition.

    Science.gov (United States)

    Poon, Kee Chun; Khezri, Bahareh; Li, Yao; Webster, Richard D; Su, Haibin; Sato, Hirotaka

    2016-02-28

    A highly active Pd-P nanoparticle electrocatalyst for formic acid oxidation was synthesized using NaH2PO2 as the reducing agent. The Pd-P nanoparticles were amorphous and exhibited higher specific and mass activity values compared to commercial Pd/C electrocatalyts and reported literature values. Furthermore, the Pd-P nanoparticles were found to be more durable than Pd/C electrocatalyts.

  11. Mixed-phase PdRu bimetallic structures with high activity and stability for formic acid electrooxidation.

    Science.gov (United States)

    Wu, Dongshuang; Zheng, Zhaoliang; Gao, Shuiying; Cao, Minna; Cao, Rong

    2012-06-14

    Aiming at investigating the effect of structure on electrocatalytic properties, Pd(50)Ru(50) nanoparticles (NPs) with three different structures were carefully designed in a one-pot polyol process for application in formic acid electrooxidation. The three structures are: (1) single-phase PdRu nanodendrites (denoted as PR-1), (2) a mixed-phase mixture of PdRu nanodendrites and monometallic Ru NPs (denoted as PR-2), and (3) a mixed-phase mixture of monometallic Pd and Ru NPs (denoted as PR-3). From PR-1 to PR-3, the structure was varied from single-phase to mixed-phase. The relative position of Ru was altered from completely Pd-connected (PR-1), to a mixture of Pd-connected and monometallic (PR-2), and completely monometallic (PR-3). All PdRu NPs outperform the commercial Pd/C. PR-2 exhibits the highest peak current density, but its stability is slightly lower than that of PR-3. When both the current density and the durability are taken into consideration, PR-2 is the best choice of catalyst for formic acid oxidation. It indicates that both the Pd-connected Ru NPs and monometallic Ru NPs in the mixed-phase PR-2 are essential to improve the electrocatalytic properties. Our study also illustrates that the electrochemical active surface area (ECSA) and hydrogen storage capacity of the as-prepared PdRu NPs are greatly enhanced after several hundred scans in formic acid, indicating the possibility for highly restorable catalysts in direct formic acid fuel cells.

  12. Selective Hydrogen Generation from Formic Acid with Well-Defined Complexes of Ruthenium and Phosphorus-Nitrogen PN3-Pincer Ligand

    KAUST Repository

    Pan, Yupeng

    2016-04-22

    An unsymmetrically protonated PN3-pincer complex in which ruthenium is coordinated by one nitrogen and two phosphorus atoms was employed for the selective generation of hydrogen from formic acid. Mechanistic studies suggest that the imine arm participates in the formic acid activation/deprotonation step. A long life time of 150 h with a turnover number over 1 million was achieved. Grabbing hold: A PN3-pincer complex was employed for the selective hydrogen generation from formic acid. Mechanistic studies suggest the imine arm participates in the formic acid activation/deprotonation step. A long life time of 150 h with a turnover number over 1 million was achieved. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Dynamics of electrocatalytic oxidation of ethylene glycol, methanol and formic acid at MWCNT platform electrochemically modified with Pt/Ru nanoparticles

    CSIR Research Space (South Africa)

    Maxakato, NW

    2010-03-01

    Full Text Available Comparative electrocatalytic behavior of functionalized multiwalled carbon nanotubes (fMWCNTs) electrodecorated with Pt/Ru nanoparticles towards the oxidation of methanol (MeOH), ethylene glycol (EG) and formic acid (FA) has been investigated...

  14. Fabrication of a palladium nanoparticle/graphene nanosheet hybrid via sacrifice of a copper template and its application in catalytic oxidation of formic acid.

    Science.gov (United States)

    Zhao, Hong; Yang, Jun; Wang, Lei; Tian, Chungui; Jiang, Baojiang; Fu, Honggang

    2011-02-21

    Small and highly dispersed palladium nanoparticles supported on graphene nanosheets were fabricated via a strategy of etching a copper template with Pd(2+). The obtained hybrid exhibited significant catalytic activity for formic acid oxidation.

  15. Understanding the enhanced catalytic activity of Cu1@Pd3(111) in formic acid dissociation, a theoretical perspective

    Science.gov (United States)

    He, Feng; Li, Kai; Xie, Guangyou; Wang, Ying; Jiao, Menggai; Tang, Hao; Wu, Zhijian

    2016-06-01

    The bimetallic Cu1@Pd3(111) catalyst has been synthesized recently and exhibits better catalytic activity and durability compared with pure Pd(111) as anode catalyst in direct formic acid fuel cells (DFAFCs). In this work, we studied the reaction mechanism of formic acid dissociation on both Pd(111) and Cu1@Pd3(111) by using the density functional method. Our calculations showed that the surface adsorption of the poisoning species CO on Cu1@Pd3(111) is weakened mainly by the strain effect rather than the Cusbnd Pd ligand effect. The Cu1@Pd3(111) can effectively promote the catalytic activity for formic acid dissociation by decreasing the barrier of CO2 formation from the preferential trans-COOH intermediate and increasing the barrier of CO formation from the reduction of CO2. We found that the H atom accumulation, electron accumulation and low electrode potential could accelerate the catalyst deactivation due to the contamination of the poisoning species CO. Furthermore, under low anode potential, the Cu1@Pd3(111) has better durability than pure Pd(111), which can be attributed to the unfavorable CO formation and the favorable CO desorption.

  16. Direct determination of mercury in cosmetic samples by isotope dilution inductively coupled plasma mass spectrometry after dissolution with formic acid

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Ying; Shi, Zeming; Zong, Qinxia; Wu, Peng; Su, Jing [Sichuan Provincial Key Laboratory of Nuclear Technology in Geology, College of Nuclear Technology and Automation Engineering, Chengdu University of Technology, Chengdu 610059 (China); Liu, Rui, E-mail: liur.ray@gmail.com [Mineral Resources Chemistry Key Laboratory of Sichuan Higher Education Institutions, College of Materials and Chemistry and Chemical Engineering, Chengdu University of Technology, Chengdu 610059 (China)

    2014-02-17

    Graphical abstract: -- Highlights: •Simple, sensitive, and accurate method is established for mercury determination in cosmetics. •The sample preparation procedure is highly simplified. •Isotope dilution efficiently eliminates matrix effect. •First report of using formic acid based method in combination with PVG-ID-ICP MS for mercury quantitation in cosmetics. -- Abstract: A new method was proposed for the accurate determination of mercury in cosmetic samples based on isotopic dilution (ID)-photochemical vapor generation (PVG)-inductively coupled plasma mass spectrometry (ICP MS) measurement. Cosmetic samples were directly dissolved in formic acid solution and subsequently subjected to PVG for the reduction of mercury into vapor species following by ICP MS detection. Therefore, the risks of analyte contamination and loss were avoided. Highly enriched {sup 201}Hg isotopic spike is added to cosmetics and the isotope ratios of {sup 201}Hg/{sup 202}Hg were measured for the quantitation of mercury. With ID calibration, the influences originating from sample matrixes for the determination of mercury in cosmetic samples have been efficiently eliminated. The effects of several experimental parameters, such as the concentration of the formic acid, and the flow rates of carrier gas and sample were investigated. The method provided good reproducibility and the detection limits were found to be 0.6 pg mL{sup −1}. Finally, the developed method was successfully applied for the determination of mercury in six cosmetic samples and a spike test was performed to verify the accuracy of the method.

  17. Enhancing the activity and tuning the mechanism of formic acid oxidation at tetrahexahedral Pt nanocrystals by Au decoration.

    Science.gov (United States)

    Liu, Hai-Xia; Tian, Na; Brandon, Michael P; Pei, Jun; Huangfu, Zhi-Chao; Zhan, Chi; Zhou, Zhi-You; Hardacre, Christopher; Lin, Wen-Feng; Sun, Shi-Gang

    2012-12-21

    Tetrahexahedral Pt nanocrystals (THH Pt NCs), bound by high index facets, belong to an emerging class of nanomaterials that promise to bridge the gap between model and practical electrocatalysts. The atomically stepped surfaces of THH Pt NCs are extremely active for the electrooxidation of small organic molecules but they also readily accommodate the dissociative chemisorption of such species, resulting in poisoning by strongly adsorbed CO. Formic acid oxidation is an ideal reaction for studying the balance between these competing catalyst characteristics, since it can proceed by either a direct or a CO mediated pathway. Herein, we describe electrochemical and in situ FTIR spectroscopic investigations of formic acid electrooxidation at both clean and Au adatom decorated THH Pt NC surfaces. The Au decoration leads to higher catalytic currents and enhanced CO(2) production in the low potential range. As the CO oxidation behaviour of the catalyst is not improved by the presence of the Au, it is likely that the role of the Au is to promote the direct pathway. Beyond their fundamental importance, these results are significant in the development of stable, poison resistant anodic electrocatalysts for direct formic acid fuel cells.

  18. Pulse electrodeposition to prepare core-shell structured AuPt@Pd/C catalyst for formic acid fuel cell application

    Science.gov (United States)

    Lu, Xueyi; Luo, Fan; Song, Huiyu; Liao, Shijun; Li, Hualing

    2014-01-01

    A novel core-shell structured AuPt@Pd/C catalyst for the electrooxidation of formic acid is synthesized by a pulse electrodeposition process, and the AuPt core nanoparticles are obtained by a NaBH4 reduction method. The catalyst is characterized with X-ray powder diffraction and transmission electron microscopy, thermogravimetric analysis, cyclic voltammetry, CO stripping and X-ray photoelectron spectroscopy. The core-shell structure of the catalyst is revealed by the increase in particle size resulting from a Pd layer covering the AuPt core, and by a negative shift in the CO stripping peaks. The addition of a small amount of Pt improves the dispersion of Au and results in smaller core particles. The catalyst's activity is evaluated by cyclic voltammetry in formic acid solution. The catalyst shows excellent activity towards the anodic oxidation of formic acid, the mass activity reaches 4.4 A mg-1Pd and 0.83 A mg-1metal, which are 8.5 and 1.6 times that of commercial Pd/C. This enhanced electrocatalytic activity could be ascribed to the good dispersion of Au core particles resulting from the addition of Pt, as well as to the interaction between the Pd shell layer and the Au and Pt in the core nanoparticles.

  19. Repellent efficacy of formic acid and the abdominal secretion of carpenter ants (Hymenoptera: Formicidae) against Amblyomma ticks (Acari: Ixodidae).

    Science.gov (United States)

    Falótico, Tiago; Labruna, Marcelo B; Verderane, Michele P; De Resende, Briseida D; Izar, Patrícia; Ottoni, Eduardo B

    2007-07-01

    Formic acid is a substance produced by some ants for defense, trail marking, and recruitment. Some animals are known to rub ants or other arthropods on parts of their plumage or fur to anoint themselves with released substances. A recent study with a semifree-ranging group of capuchin monkeys, Cebus apella L., in the Tietê Ecological Park, Sao Paulo, Brazil, an area of occurrence of the tick species Amblyomma cajennense (F.), revealed that "anting" with carpenter ants, Camponotus rufipes F. (Hymenoptera: Formicidae), occurs frequently, especially during the A. cajennense subadult season. Based on these observations, we tested the repellent effect of the formic acid and the ants themselves against A. cajennense and Amblyomma incisum Neumann nymphs, and Amblyomma parcum Aragdo adult ticks in the laboratory. The results revealed a significant repellent effect of formic acid and ant secretion, and a significant duration of the repellent effect. The results suggest that the anting behavior of capuchin monkeys, and other vertebrates, may be related with repellence of ticks and other ectoparasites.

  20. Graphene decorated with Pd4Ir nanocrystals: Ultrasound-assisted synthesis, and application as a catalyst for oxidation of formic acid.

    Science.gov (United States)

    Zhang, Lian Ying; Liu, Ze

    2017-11-01

    An effective strategy of ultrasmall and surface-clean Pd4Ir nanocrystals uniformly decorated on graphene was developed using ultrasnoic-assisted approach. The prepared Us-Pd4Ir@Graphene reduces Pd loading while holds much higher catalytic activity and better stability toward formic acid oxidation than that of commercial Pd-C, offering great promise as a superior anode catalyst for direct formic acid fuel cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Temperature dependent emission of formic and acetic acid from paper, and its consequences for the air quality in archives

    DEFF Research Database (Denmark)

    Hjerrild Smedemark, Signe; Ryhl-Svendsen, Morten; Vinther Hansen, Birgit;

    2014-01-01

    ) the reaction rate is therefore, among other things, depending on temperature. Some of the emission products from paper, e.g., acetic and formic acid, are problematic from a conservation point of view, because they will re-react with the paper and other archival materials and cause further deterioration......Paper records affect the indoor environment in archives, because the paper may give off acid compounds to the air. These emission products origins from the decay of cellulose and lignin in the paper. As the off-gassing origins from chemical processes within the material (e.g., acid hydrolysis...

  2. Syntrophic interactions improve power production in formic acid fed MFCs operated with set anode potentials or fixed resistances

    KAUST Repository

    Sun, Dan

    2011-10-24

    Formic acid is a highly energetic electron donor but it has previously resulted in low power densities in microbial fuel cells (MFCs). Three different set anode potentials (-0.30, -0.15, and +0.15V; vs. a standard hydrogen electrode, SHE) were used to evaluate syntrophic interactions in bacterial communities for formic acid degradation relative to a non-controlled, high resistance system (1,000Ω external resistance). No current was generated at -0.30V, suggesting a lack of direct formic acid oxidation (standard reduction potential: -0.40V). More positive potentials that allowed for acetic acid utilization all produced current, with the best performance at -0.15V. The anode community in the -0.15V reactor, based on 16S rDNA clone libraries, was 58% Geobacter sulfurreducens and 17% Acetobacterium, with lower proportions of these genera found in the other two MFCs. Acetic acid was detected in all MFCs suggesting that current generation by G. sulfurreducens was dependent on acetic acid production by Acetobacterium. When all MFCs were subsequently operated at an external resistance for maximum power production (100Ω for MFCs originally set at -0.15 and +0.15V; 150Ω for the control), they produced similar power densities and exhibited the same midpoint potential of -0.15V in first derivative cyclic voltammetry scans. All of the mixed communities converged to similar proportions of the two predominant genera (ca. 52% G. sulfurreducens and 22% Acetobacterium). These results show that syntrophic interactions can be enhanced through setting certain anode potentials, and that long-term performance produces stable and convergent communities. © 2011 Wiley Periodicals, Inc.

  3. Pd clusters supported on amorphous, low-porosity carbon spheres for hydrogen production from formic acid.

    Science.gov (United States)

    Bulushev, Dmitri A; Bulusheva, Lyubov G; Beloshapkin, Sergey; O'Connor, Thomas; Okotrub, Alexander V; Ryan, Kevin M

    2015-04-29

    Amorphous, low-porosity carbon spheres on the order of a few micrometers in size were prepared by carbonization of squalane (C30H62) in supercritical CO2 at 823 K. The spheres were characterized and used as catalysts' supports for Pd. Near-edge X-ray absorption fine structure studies of the spheres revealed sp(2) and sp(3) hybridized carbon. To activate carbons for interaction with a metal precursor, often oxidative treatment of a support is needed. We showed that boiling of the obtained spheres in 28 wt % HNO3 did not affect the shape and bulk structure of the spheres, but led to creation of a considerable amount of surface oxygen-containing functional groups and increase of the content of sp(2) hybridized carbon on the surface. This carbon was seen by scanning transmission electron microscopy in the form of waving graphene flakes. The H/C atomic ratio in the spheres was relatively high (0.4) and did not change with the HNO3 treatment. Palladium was deposited by impregnation with Pd acetate followed by reduction in H2. This gave uniform Pd clusters with a size of 2-4 nm. The Pd supported on the original C spheres showed 2-3 times higher catalytic activity in vapor phase formic acid decomposition and higher selectivity for H2 formation (98-99%) than those for the catalyst based on the HNO3 treated spheres. Using of such low-porosity spheres as a catalyst support should prevent mass transfer limitations for fast catalytic reactions.

  4. A New Nanocatalytic Spectrophotometric Assay for Cationic Surfactant Using Phosphomolybdic Acid-Formic Acid-Nanogold as Indicator Reaction%A New Nanocatalytic Spectrophotometric Assay for Cationic Surfactant Using Phosphomolybdic Acid-Formic Acid-Nanogold as Indicator Reaction

    Institute of Scientific and Technical Information of China (English)

    蒋治良; 覃惠敏; 梁爱惠

    2012-01-01

    In the pH 7.4 Na2HPO4-NaH2PO4 buffer solution, the cationic surfactant (CS) interacted with nanogold particles (NG) to form NG aggregations (NGA) that resulted in its color changing from wine red to blue-violet. NG has a strong catalysis on the formic acid-phosphomolybdic acid (PMo) colored reaction, but that of the NGA catalysis is weak. With the increase of CS concentration, the NGA increased and the NG decreased, the catalysis decreased and the absorption value at 700 nm decreased linearly. The concentrations of 6.25-250 nmol/L tetradecyl dimethyl benzyl ammonium chloride (TDBAC), 0.625-250 nmol/L cetyltrimethyl ammonium bromide (CTMAB) and 12.5 -500 nmol-L 1 dodecyldimethylbenzyl ammonium chloride (DDBAC) had good linear responses to the decreased absorption value (AA70o nm), with molar absorption coefficients of 2.2 × 106, 2.1 × 106 and 9 ×105 Lomol 1.cm 1 respectively. This method was simple, highly sensitive and low-cost.

  5. Enhancement of leaching copper by electro-oxidation from metal powders of waste printed circuit board.

    Science.gov (United States)

    Ping, Zhu; ZeYun, Fan; Jie, Lin; Qiang, Liu; Guangren, Qian; Ming, Zhou

    2009-07-30

    Oxidation leaching copper from metal powders of waste printed circuit boards (PCBs) was conducted at room temperature in sulfuric acid solution. The result showed that the copper in metal powders was oxidized by Cu(2+) to form CuCl(2)(-) in the presence of chloride ion without electrochemical oxidation. Then, CuCl(2)(-) was oxidized into CuSO(4) by oxygen derived from the air insufflated into leaching solution. The leaching rate of copper reached 100%. The whole reaction took 5.5h because it was limited by the low solubility of the air in water. In the electro-oxidation conditions, the chloride ion was electro-oxidized into ClO(-), which oxidized CuCl(2)(-) into CuSO(4) and ClO(-) was reduced into Cl(-) itself again at the same time. Since Cl(-) was recycled in the solution not only as a complexing agent but also as an oxidant, which made the reaction speed up to 3.5h to reach 100% leaching rate. Leaching solution was concentrated to crystallize CuSO(4).5H(2)O, and crystal liquor was reused to leach copper from metal powders.

  6. Online stable carbon isotope ratio measurement in formic acid, acetic acid, methanol and ethanol in water by high performance liquid chromatography-isotope ratio mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Tagami, Keiko [National Institute of Radiological Sciences, 4-9-1, Anagawa, Inage-ku, Chiba 263-8555 (Japan)], E-mail: k_tagami@nirs.go.jp; Uchida, Shigeo [National Institute of Radiological Sciences, 4-9-1, Anagawa, Inage-ku, Chiba 263-8555 (Japan)

    2008-05-05

    A suitable analysis condition was determined for high performance liquid chromatography-isotope ratio mass spectrometry (HPLC-IRMS) while making sequential measurements of stable carbon isotope ratios of {delta}{sup 13}C in formic acid, acetic acid, methanol and ethanol dissolved in water. For this online column separation method, organic reagents are not applicable due to carbon contamination; thus, water and KH{sub 2}PO{sub 4} at low concentrations were tested as mobile phase in combination with a HyPURITY AQUASTAR{sup TM} column. Formic acid, acetic acid, methanol and ethanol were separated when 2 mM KH{sub 2}PO{sub 4} aqueous solution was used. Under the determined analysis condition for HPLC-IRMS, carbon concentrations could be measured quantitatively as well as carbon isotope ratio when carbon concentration was higher than 0.4 mM L for each chemical.

  7. Characterization of Polyamide 66 membranes prepared by phase inversion using formic acid and hydrochloric acid such as solvents

    Directory of Open Access Journals (Sweden)

    Patrícia Poletto

    2011-12-01

    Full Text Available The membranes properties prepared from water/formic acid (FA/ polyamide 66 (PA66 and water/hydrochloric acid (HCl/polyamide 66 (PA 66 systems has been studied. The different solvents interact distinctly with the polymer, affecting the membrane morphology. The asymmetric structure of the membranes showed a dense top layer and a porous sublayer. The membranes M-HCl prepared from HCl/PA 66 system showed a larger dense layer (around 23 μm in compared to those prepared from FA/PA 66 system (M-FA (around 10 μm. The membrane morphology was a determinant factor in results of water absorption, porosity and pure water flux. The lower thickness of dense layer in M-FA membranes resulted in a higher water absorption and, consequently, porosity, approximately 50%, compared with M-HCl membranes, approximately 15%. The same trend was observed to permeate flux, the lower thickness of dense layer higher pure water flux.

  8. Electro-oxidation process and mechanism of molybdenite decomposition under ultrasonic effect

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    According to the characteristics and shortcomings of the traditional roasting process and the electro-oxidation process in the molybdenum metallurgical industry,the ultrasound electro-oxidation process was proposed to strengthen the oxidative decomposition or leaching of molybdenum.Laboratory work was carried out in an electrochemical cell with 15 nun electrode spacing at 25℃ under ultrasonic effect.The optimum conditions were found through experiments.The electro-oxidation mechanism of molybdenite decomposition under ultrasonic was investigated.A model of electro-oxidation mechanism of molybdenum under ultrasonic was given.

  9. Au-supported Pt-Au mixed atomic monolayer electrocatalyst with ultrahigh specific activity for oxidation of formic acid in acidic solution.

    Science.gov (United States)

    Huang, Zhao; Liu, Yan; Xie, Fangyun; Fu, Yingchun; He, Yong; Ma, Ming; Xie, Qingji; Yao, Shouzhuo

    2012-12-25

    Au-supported Pt-Au mixed atomic monolayer electrocatalyst was prepared by underpotential deposition of Cu on Au and then redox replacement with noble metal atoms, which shows an ultrahigh Pt-mass (or Pt-area) normalized specific electrocatalytic activity of 102 mA μg(Pt)(-1) (124 mA cm(Pt)(-2)) for oxidation of formic acid in acidic aqueous solution.

  10. Rapid analysis of formic acid, acetic acid, and furfural in pretreated wheat straw hydrolysates and ethanol in a bioethanol fermentation using atmospheric pressure chemical ionisation mass spectrometry

    Directory of Open Access Journals (Sweden)

    Smart Katherine A

    2011-09-01

    Full Text Available Abstract Atmospheric pressure chemical ionisation mass spectrometry (APCI-MS offers advantages as a rapid analytical technique for the quantification of three biomass degradation products (acetic acid, formic acid and furfural within pretreated wheat straw hydrolysates and the analysis of ethanol during fermentation. The data we obtained using APCI-MS correlated significantly with high-performance liquid chromatography analysis whilst offering the analyst minimal sample preparation and faster sample throughput.

  11. Formic acid above the Jungfraujoch during 1985–2007: observed variability, seasonality, but no long-term background evolution

    Directory of Open Access Journals (Sweden)

    R. Zander

    2010-06-01

    Full Text Available This paper reports on daytime total vertical column abundances of formic acid (HCOOH above the Northern mid-latitude, high altitude Jungfraujoch station (Switzerland; 46.5° N, 8.0° E, 3580 m altitude. The columns were derived from the analysis of infrared solar observations regularly performed with high spectral resolution Fourier transform spectrometers during over 1537 days between September 1985 and September 2007. The investigation was based on the spectrometric fitting of five spectral intervals, one encompassing the HCOOH ν6 band Q branch at 1105 cm−1, and four additional ones allowing to optimally account for critical temperature-sensitive or timely changing interferences by other atmospheric gases, in particular HDO, CCl2F2 and CHClF2. The main results derived from the 22 yr long database indicate that the free tropospheric burden of HCOOH above the Jungfraujoch undergoes important short-term daytime variability, diurnal and seasonal modulations, inter-annual anomalies, but no statistically significant long-term background change at the 1-sigma level.

    A major progress in the remote determination of the atmospheric HCOOH columns reported here has resulted from the adoption of new, improved absolute spectral line intensities for the infrared ν6 band of trans-formic acid, resulting in retrieved free tropospheric loadings being about a factor two smaller than if derived with previous spectroscopic parameters. Implications of this significant change with regard to earlier remote measurements of atmospheric formic acid and comparison with relevant Northern mid-latitude in situ findings will be assessed critically. Sparse HCOOH model predictions will also be evoked.

  12. Formic acid above the Jungfraujoch during 1985–2007: observed variability, seasonality, but no long-term background evolution

    Directory of Open Access Journals (Sweden)

    A. Perrin

    2010-10-01

    Full Text Available This paper reports on daytime total vertical column abundances of formic acid (HCOOH above the Northern mid-latitude, high altitude Jungfraujoch station (Switzerland; 46.5° N, 8.0° E, 3580 m alt.. The columns were derived from the analysis of infrared solar observations regularly performed with high spectral resolution Fourier transform spectrometers during over 1500 days between September 1985 and September 2007. The investigation was based on the spectrometric fitting of five spectral intervals, one encompassing the HCOOH ν6 band Q branch at 1105 cm−1, and four additional ones allowing to optimally account for critical temperature-sensitive or time-evolving interferences by other atmospheric gases, in particular HDO, CCl2F2 and CHClF2. The main results derived from the 22 years long database indicate that the free tropospheric burden of HCOOH above the Jungfraujoch undergoes important short-term daytime variability, diurnal and seasonal modulations, inter-annual anomalies, but no significant long-term background change. A major progress in the remote determination of the atmospheric HCOOH columns reported here has resulted from the adoption of new, improved absolute spectral line intensities for the infrared ν6 band of trans-formic acid, resulting in retrieved free tropospheric loadings being about a factor two smaller than if derived with previous spectroscopic parameters. Implications of this significant change with regard to earlier remote measurements of atmospheric formic acid and comparison with relevant Northern mid-latitude findings, both in situ and remote, will be assessed critically. Sparse HCOOH model predictions will also be evoked and assessed with respect to findings reported here.

  13. Electrocatalytic Oxidation of Formic Acid in an Alkaline Solution with Graphene-Oxide- Supported Ag and Pd Alloy Nanoparticles.

    Science.gov (United States)

    Han, Hyoung Soon; Yun, Mira; Jeong, Haesang; Jeon, Seungwon

    2015-08-01

    The electrocatalytic activities of metal-decorated graphene oxide (GO) catalysts were investigated. Electrochemically reduced GO-S-(CH2)4-S-Pd [ERGO-S-(CH2)4-S-Pd] and GO-S-(CH2)4-S-PdAg alloy [ERGO-S-(CH2)4-S-PdAg] were obtained through the electrochemical reduction of GO-S-(CH2)4-S-Pd and GO-S-(CH2)4-S-PdAg in a pH 5 PBS solution. It was demonstrated that the application of ERGO-S-(CH2)4-S-Pd and ERGO-S-(CH2)4-S-PdAg used in a modified GCE improves the electrocatalytic oxidation of formic acid. The addition of an Ag nanoparticle with a carbon chain-Pd in the electrode provides an electrode with very interesting properties for the electrocatalytic oxidation of formic acid. The ERGO-S-(CH2)4-S-Pd and ERGO-S-(CH2)4-S-PdAg were characterized via X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). ERGO-S-(CH2)4-S-Pd and ERGO-S-(CH2)4-S-PdAg can be employed for the electrocatalytic oxidation of formic acid. The electrochemical behaviors of this electrode were investigated using cyclic voltammetry (CV), chronoamperometry (CA) and electrochemical impedance spectroscopy (EIS).

  14. PdCo supported on multiwalled carbon nanotubes as an anode catalyst in a microfluidic formic acid fuel cell

    Science.gov (United States)

    Morales-Acosta, D.; Morales-Acosta, M. D.; Godinez, L. A.; Álvarez-Contreras, L.; Duron-Torres, S. M.; Ledesma-García, J.; Arriaga, L. G.

    This work reports the synthesis of Pd-based alloys of Co and their evaluation as anode materials in a microfluidic formic acid fuel cell (μFAFC). The catalysts were prepared using the impregnation method followed by thermal treatment. The synthesized catalysts contain 22 wt.% Pd on multiwalled carbon nanotubes (Pd/MWCNT) and its alloys with two Co atomic percent in the sample with 4 at.% Co (PdCo1/MWCNT) and 10 at.% Co (PdCo2/MWCNT). The role of the alloying element was determined by XRD and XPS techniques. Both catalysts were evaluated as anode materials in a μFAFC operating with different concentrations of HCOOH (0.1 and 0.5 M), and the results were compared to those obtained with Pd/MWCNT. A better performance was obtained for the cell using PdCo1/MWCNT (1.75 mW cm -2) compared to Pd/MWCNT (0.85 mW cm -2) in the presence of 0.5 M HCOOH. By means of external electrode measurements, it was also possible to observe shifts in the formic acid oxidation potential due to a fuel concentration increment (ca. 0.05 V for both PdCo1/MWCNT and PdCo2/MWCNT catalysts and 0.23 V for Pd/MWCNT) that was attributed to deactivation of the catalyst material. The maximum current densities obtained were 8 mA cm -2 and 5.2 mA cm -2 for PdCo2/MWCNT and Pd/MWCNT, respectively. In this way, the addition of Co to the Pd catalyst was shown to improve the tolerance of intermediates produced during formic acid oxidation that tend to poison Pd, thus improving the catalytic activity and stability of the cell.

  15. Bridge-bonded formate: active intermediate or spectator species in formic acid oxidation on a Pt film electrode?

    Science.gov (United States)

    Chen, Y-X; Heinen, M; Jusys, Z; Behm, R J

    2006-12-01

    We present and discuss the results of an in situ IR study on the mechanism and kinetics of formic acid oxidation on a Pt film/Si electrode, performed in an attenuated total reflection (ATR) flow cell configuration under controlled mass transport conditions, which specifically aimed at elucidating the role of the adsorbed bridge-bonded formates in this reaction. Potentiodynamic measurements show a complex interplay between formation and desorption/oxidation of COad and formate species and the total Faradaic current. The notably faster increase of the Faradaic current compared to the coverage of bridge-bonded formate in transient measurements at constant potential, but with different formic acid concentrations, reveals that adsorbed formate decomposition is not rate-limiting in the dominant reaction pathway. If being reactive intermediate at all, the contribution of formate adsorption/decomposition to the reaction current decreases with increasing formic acid concentration, accounting for at most 15% for 0.2 M DCOOH at 0.7 VRHE. The rapid build-up/removal of the formate adlayer and its similarity with acetate or (bi-)sulfate adsorption/desorption indicate that the formate adlayer coverage is dominated by a fast dynamic adsorption-desorption equilibrium with the electrolyte, and that formate desorption is much faster than its decomposition. The results corroborate the proposal of a triple pathway reaction mechanism including an indirect pathway, a formate pathway, and a dominant direct pathway, as presented previously (Chen, Y. X.; et al. Angew. Chem. Int. Ed. 2006, 45, 981), in which adsorbed formates act as a site-blocking spectator in the dominant pathway rather than as an active intermediate.

  16. Dual hydrogen-bonding motifs in complexes formed between tropolone and formic acid

    Science.gov (United States)

    Nemchick, Deacon J.; Cohen, Michael K.; Vaccaro, Patrick H.

    2016-11-01

    The near-ultraviolet π*←π absorption system of weakly bound complexes formed between tropolone (TrOH) and formic acid (FA) under cryogenic free-jet expansion conditions has been interrogated by exploiting a variety of fluorescence-based laser-spectroscopic probes, with synergistic quantum-chemical calculations built upon diverse model chemistries being enlisted to unravel the structural and dynamical properties of the pertinent ground [X˜ 1A'] and excited [A˜ 1A'(" separators="π*π )] electronic states. For binary TrOH ṡ FA adducts, the presence of dual hydrogen-bond linkages gives rise to three low-lying isomers designated (in relative energy order) as INT, EXT1, and EXT2 depending on whether docking of the FA ligand to the TrOH substrate takes place internal or external to the five-membered reaction cleft of tropolone. While the symmetric double-minimum topography predicted for the INT potential surface mediates an intermolecular double proton-transfer event, the EXT1 and EXT2 structures are interconverted by an asymmetric single proton-transfer process that is TrOH-centric in nature. The A ˜ -X ˜ origin of TrOH ṡ FA at ν˜ 00=27 484 .45 cm-1 is displaced by δ ν˜ 00=+466 .76 cm-1 with respect to the analogous feature for bare tropolone and displays a hybrid type - a/b rotational contour that reflects the configuration of binding. A comprehensive analysis of vibrational landscapes supported by the optically connected X˜ 1A' and A˜ 1A'(" separators="π*π ) manifolds, including the characteristic isotopic shifts incurred by partial deuteration of the labile TrOH and FA protons, has been performed leading to the uniform assignment of numerous intermolecular (viz., modulating hydrogen-bond linkages) and intramolecular (viz., localized on monomer subunits) degrees of freedom. The holistic interpretation of all experimental and computational findings affords compelling evidence that an external-binding motif (attributed to EXT1), rather than the

  17. Red- and blue-shifted hydrogen bonds in the cis-trans noncyclic formic acid dimer.

    Science.gov (United States)

    Zhou, Pan-Pan; Qiu, Wen-Yuan

    2009-08-01

    The cis-trans noncyclic formic acid dimer was studied by means of MP2 method with 6-31G(d,p), 6-31+G(d,p) and 6-311+G(d,p) basis sets. It exhibits simultaneously red-shifted O-H...O and blue-shifted C-H...O hydrogen bonds. AIM and NBO analyses are performed at the MP2/6-31+G(d,p) level to explore their properties and origins. AIM analysis provides the evidence that the O-H bond becomes weaker and the C-H bond becomes stronger upon the hydrogen bond formations. Intermolecular and intramolecular hyperconjugations have important influence on the electron densities in the X-H (X = O, C) sigma bonding orbital and its sigma* antibonding orbital. The electron densities in the two orbitals are closely connected with the X-H (X = O, C) bond length, and they are used to quantitatively estimate the bond length variation. The larger amount of charge transfer in the red-shifted O-H...O hydrogen bond is due to its favorable H...O electron channel, whereas the H...O electron channel in the blue-shifted C-H...O hydrogen bond is weaker. Structural reorganization effects shorten the C-H bond by approximately 30% when compared to the C-H bond contraction upon the dimerization. Strikingly, it leads to a small elongation and a slight red shift of the O-H bond. Both rehybridization and repolarization result in the X-H (X = O, C) bond contraction, but their effects on the O-H bond do not hold a dominant position. The hydrogen-bonding processes go through the electrostatic attractions, van der Waals interactions, charge-transfer interactions, hydrogen-bonding interactions and electrostatic repulsions. Electrostatic attractions are of great importance on the origin of the red-shifted O-H...O hydrogen bond, especially the strong H(delta+)...O(delta-) attraction. For the blue-shifted C-H...O hydrogen bond, the considerable nucleus-nucleus repulsion between H and O atoms caused by the strong electrostatic attraction between C and O atoms is a possible reason for the C-H bond contraction and

  18. He I photoelectron spectroscopy of four isotopologues of formic acid: HCOOH, HCOOD, DCOOH and DCOOD

    Energy Technology Data Exchange (ETDEWEB)

    Leach, Sydney; Schwell, Martin; Talbi, Dahbia; Berthier, Gaston; Hottmann, Klaus; Jochims, Hans-Werner; Baumgaertel, Helmut

    2003-01-01

    He I photoelectron spectra of four isotopologues of formic acid, HCOOH, HCOOD, DCOOH and DCOOD have been measured, mainly with an electron kinetic energy resolution of 15 meV. Quantum chemical calculations of geometries, vibrational mode frequencies and the potential energy distributions characterising each normal mode were made for the neutral 1{sup 1}A{sup '} ground state, the cation ground state 1{sup 2}A{sup '} and first excited ion state 1{sup 2}A{sup '}' of the four isotopologues. The results were used to analyse observed vibronic structure in the two PES bands in the 11.3-13.5 eV energy region and this analysis provided values for several vibrational mode frequencies of the ion states. The calculated structure and internal dynamics of the 1{sup 2}A{sup '} ground state of the ion provide satisfactory agreement with experiment but for the 1{sup 2}A{sup '}' excited state a more refined theoretical treatment, permitting greater structural flexibility, is required. The PES first ionization energy of HCOOH agrees well with that obtained from Rydberg series in absorption spectra, and values more precise than hitherto were obtained for the first and second ionization energies of the four isotopologues. Analysis is also made of PES features concerning the higher energy states of the ions between 12.2 and 21 eV. The adabatic ionization energies of the 2{sup 2}A{sup '}, 2{sup 2}A{sup '}', 3{sup 2}A{sup '} and 4{sup 2}A{sup '} states in this energy region were determined. Vibrational frequencies were obtained for the 3{sup 2}A{sup '} ion state of the isotopologues and new assignments were made concerning the energy and structure of the 4{sup 2}A{sup '} ion state, whose adiabatic energy was found to lie about 60 meV below the 3{sup 2}A{sup '} state.

  19. Coefficient of ozone mass transfer during its interaction with an aqueous solution of formic acid in a bubble column reactor

    Science.gov (United States)

    Levanov, A. V.; Isaikina, O. Ya.; Gasanova, R. B.; Lunin, V. V.

    2017-08-01

    A way of determining the coefficient of ozone mass transfer between the gas phase and liquid aqueous phase using a test compound (formic acid) is described. The values of ozone mass transfer coefficient (in aqueous solutions of 0.1-0.55 M HClO4 and 0-1 M HCOOH, and in 0.75 M H2SO4, 0.125 M KHSO4, and 0-2 M HCOOH) are determined along with the rate constants of the reaction of O3 with undissociated HCOOH molecules and formate ions at 21 ± 1°C.

  20. Regeneration of high-quality silk fibroin fiber by wet spinning from CaCl2-formic acid solvent.

    Science.gov (United States)

    Zhang, Feng; Lu, Qiang; Yue, Xiaoxiao; Zuo, Baoqi; Qin, Mingde; Li, Fang; Kaplan, David L; Zhang, Xueguang

    2015-01-01

    Silks spun by silkworms and spiders feature outstanding mechanical properties despite being spun under benign conditions. The superior physical properties of silk are closely related to its complicated hierarchical structures constructed from nanoscale building blocks, such as nanocrystals and nanofibrils. Here, we report a novel silk dissolution behavior, which preserved nanofibrils in CaCl2-formic acid solution, that enables spinning of high-quality fibers with a hierarchical structure. This process is characterized by simplicity, high efficiency, low cost, environmental compatibility and large-scale industrialization potential, as well as having utility and potential for the recycling of silk waste and the production of silk-based functional materials.

  1. Effect of lactic acid bacteria inoculants, formic acid, potassium sorbate and sodium benzoate on fermentation quality and aerobic stability of wilted grass silage

    Directory of Open Access Journals (Sweden)

    E. SAARISALO

    2008-12-01

    Full Text Available The efficiency of a novel strain of lactic acid bacteria inoculant (Lactobacillus plantarum VTT E-78076, E76 on the fermentation quality of wilted silage was studied. Furthermore, the possibility to improve aerobic stability of silages by combining an inoculant and chemical preservatives was investigated. Two experiments were conducted with wilted timothy-meadow fescue herbage (dry matter 429 and 344 g kg-1 using six treatments. In experiment I, E76 (106 cfu g-1 fresh matter (FM was applied alone and in combination with sodium benzoate (0.3 g kg-1 grass FM or low rate of formic acid (0.4 l t-1 FM. In experiment II, E76 and a commercial inoculant were applied alone and in combination with sodium benzoate. Untreated silage and formic acid (4 l t-1 FM treated silage served as negative and positive controls in both experiments. The effect of sodium benzoate and potassium sorbate in experiment I, on aerobic stability was tested by treating silages prior to aerobic stability measurements. The novel lactic acid bacteria inoculant was equally effective in improving fermentation quality as the commercial inoculant. However, the aerobic stability of both inoculated silages was poorer than that of formic acid treated or the untreated one in one of the experiments. The results suggested that antimicrobial properties of E76 were not effective enough to improve aerobic instability. One option to overcome this problem is to use chemical additives in combination with the inoculants.;

  2. Quantitative determination of caffeine, formic acid, trigonelline and 5-(hydroxymethyl)furfural in soluble coffees by 1H NMR spectrometry.

    Science.gov (United States)

    del Campo, Gloria; Berregi, Iñaki; Caracena, Raúl; Zuriarrain, Juan

    2010-04-15

    A quantitative method for the determination of caffeine, formic acid, trigonelline and 5-(hydroxymethyl)furfural (5-HMF) in soluble coffees by applying the proton nuclear magnetic resonance technique ((1)H NMR) is proposed. Each of these compounds records a singlet signal at the 7.6-9.5 ppm interval of the spectrum, and its area is used to determine the concentration. 3-(Trimethylsilyl)-2,2,3,3-tetradeuteropropionic acid is added in an exact known concentration as a reference for delta=0.00 ppm and as an internal standard. The method is applied to commercial soluble coffees and satisfactorily compared with results obtained by standard methods. The limits of detection and the coefficients of variation (N=10) are, respectively, 1.32 mg/g of solid product and 4.2% for caffeine, 0.45 mg/g and 2.6% for formic acid, 0.58 mg/g and 2.4% for trigonelline, and 0.30 mg/g and 7.3% for 5-HMF. The described method is direct and no previous derivatization is needed.

  3. Non-hydrolytic formation of silica and polysilsesquioxane particles from alkoxysilane monomers with formic acid in toluene/tetrahydrofuran solutions

    Science.gov (United States)

    Boday, Dylan J.; Tolbert, Stephanie; Keller, Michael W.; Li, Zhe; Wertz, Jason T.; Muriithi, Beatrice; Loy, Douglas A.

    2014-03-01

    Silica and polysilsesquioxane particles are used as fillers in composites, catalyst supports, chromatographic separations media, and even as additives to cosmetics. The particles are generally prepared by hydrolysis and condensation of tetraalkoxysilanes and/or organotrialkoxysilanes, respectively, in aqueous alcohol solutions. In this study, we have discovered a new, non-aqueous approach to prepare silica and polysilsesquioxane particles. Spherical, nearly monodisperse, silica particles (600-6,000 nm) were prepared from the reaction of tetramethoxysilane with formic acid (4-8 equivalents) in toluene or toluene/tetrahydrofuran solutions. Polymerization of organotrialkoxysilanes with formic acid failed to afford particles, but bridged polysilsesquioxane particles were obtained from monomers with two trialkoxysilyl group attached to an organic-bridging group. The mild acidic conditions allowed particles to be prepared from monomers, such as bis(3-triethoxysilylpropyl)tetrasulfide, which are unstable to Stöber or base-catalyzed emulsion polymerization conditions. The bridged polysilsesquioxane particles were generally less spherical and more polydisperse than silica particles. Both silica and bridged polysilsesquioxane nanoparticles could be prepared in good yields at monomer concentrations considerably higher than used in Stöber or emulsion approaches.

  4. Acid formic effect in zinc coatings obtained by galvanostatic deposition; Efeito do acido formico em revestimentos de zinco obtidos por deposicao galvanostatica

    Energy Technology Data Exchange (ETDEWEB)

    Lopes, C.; David, M.; Souza, E.C., E-mail: carolinalops@gmail.com [Universidade Federal da Bahia (UFBA), BA (Brazil). Escola Politecnica. Departamento de Engenharia Quimica

    2016-07-01

    Zinc deposits obtained from electrodeposition is widely used for the purpose of protecting steel substrates from corrosion. They are generally added to Zn deposition bath many additives for improving certain characteristics of the deposit. As far as is known there is no information in literature about the effect of formic acid in corrosion resistance of a Zn deposit. Because it is an acid additive, it has the use of cyclohexylamine, in order for the electrolytic bath continue with a pH equal to the one used commercially, around 5. The main goal of this study is analyze the effect of the formic acid addition in the corrosion resistance of an Zn electrodeposition obtained by galvanostatic deposition. The results obtained by performance tests, cyclic voltammetry and X-ray diffraction showed that the formic acid addition may be promising in combating the corrosion of materials. (author)

  5. Effect of Na2CO3 degumming concentration on LiBr-formic acid-silk fibroin solution properties

    Directory of Open Access Journals (Sweden)

    Liu Zhi

    2016-01-01

    Full Text Available Salt-acid system has been proved to be of high efficiency for silk fibroin dissolution. Using salt-acid system to dissolve silk, native silk fibrils can be preserved in the regenerated solution. Increasing experiments indicate that acquirement of silk fibrils in solution is strongly associated with the degumming process. In this study, the effect of sodium carbonate degumming concentration on solution properties based on lithium bromide-formic acid dissolution system was systematically investigated. Results showed that the morphology transformation of silk fibroin in solution from nanospheres to nanofibrils is determined by sodium carbonate concentration during the degumming process. Solutions containing different silk fibroin structure exhibited different rheological behaviors and different electrospinnability, leading to different electrospun nanofibre properties. The results have guiding significance for preparation and application of silk fibroin solutions.

  6. Development of Pd and Pd-Co catalysts supported on multi-walled carbon nanotubes for formic acid oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Morales-Acosta, D.; Godinez, Luis A.; Rodriguez, H.G.; Arriaga, L.G. [Centro de Investigacion y Desarrollo Tecnologico en Electroquimica, Parque Tecnologico Queretaro, Sanfandila, Pedro Escobedo, C.P. 76703 Queretaro (Mexico); Ledesma-Garcia, J. [Division de Investigacion y Posgrado, Facultad de Ingenieria, Universidad Autonoma de Queretaro, Cerro de las Campanas S/N, C.P. 76010, Queretaro, Qro. (Mexico); Alvarez-Contreras, L. [Centro de Investigacion en Materiales Avanzados S. C., Complejo Industrial Chihuahua, C.P. 31109, Chihuahua, Chih. (Mexico)

    2010-01-15

    Pd-Co and Pd catalysts were prepared by the impregnation synthesis method at low temperature on multi-walled carbon nanotubes (MWCNTs). The nanotubes were synthesized by spray pyrolysis technique. Both catalysts were obtained with high homogeneous distribution and particle size around 4 nm. The morphology, composition and electrocatalytic properties were investigated by transmission electron microscopy, scanning electron microscopy-energy dispersive X-ray analysis, X-ray diffraction and electrochemical measurements, respectively. The electrocatalytic activity of Pd and PdCo/MWCNTs catalysts was investigated in terms of formic acid electrooxidation at low concentration in H{sub 2}SO{sub 4} aqueous solution. The results obtained from voltamperometric studies showed that the current density achieved with the PdCo/MWCNTs catalyst is 3 times higher than that reached with the Pd/MWCNTs catalyst. The onset potential for formic acid electrooxidation on PdCo/MWCNTs electrocatalyst showed a negative shift ca. 50 mV compared with Pd/MWCNTs. (author)

  7. One-pot synthesis of intermetallic electrocatalysts in ordered, large-pore mesoporous carbon/silica toward formic acid oxidation.

    Science.gov (United States)

    Shim, Jongmin; Lee, Jaehyuk; Ye, Youngjin; Hwang, Jongkook; Kim, Soo-Kil; Lim, Tae-Hoon; Wiesner, Ulrich; Lee, Jinwoo

    2012-08-28

    This study describes the one-pot synthesis and single-cell characterization of ordered, large-pore (>30 nm) mesoporous carbon/silica (OMCS) composites with well-dispersed intermetallic PtPb nanoparticles on pore wall surfaces as anode catalysts for direct formic acid fuel cells (DFAFCs). Lab-synthesized amphiphilic diblock copolymers coassemble hydrophobic metal precursors as well as hydrophilic carbon and silica precursors. The final materials have a two-dimensional hexagonal-type structure. Uniform and large pores, in which intermetallic PtPb nanocrystals are significantly smaller than the pore size and highly dispersed, enable pore backfilling with ionomers and formation of the desired triple-phase boundary in single cells. The materials show more than 10 times higher mass activity and significantly lower onset potential for formic acid oxidation as compared with commercial Pt/C, as well as high stability due to better resistivity toward CO poisoning. In single cells, the maximum power density was higher than that of commercial Pt/C, and the stability highly improved, compared with commercial Pd/C. The results suggest that PtPb-based catalysts on large-pore OMCSs may be practically applied as real fuel cell catalysts for DFAFC.

  8. Electrocatalytic oxidation of formic acid by poly(diallyldimethylammonium chloride) and Pt/Pd-functionalized carbon nanotubes mixtures.

    Science.gov (United States)

    Kim, Min-Su; Kim, Daekun; Lee, Hyo Kyoung; Jeon, Seungwon

    2012-12-01

    Improving the catalytic activity of the anode catalyst is an important task in the direct formic acid fuel cell (DFAFC). In this study, the catalysts were prepared by dispersing either platinum or palladium metal on the surface of thiolated multi-walled carbon nanotubes (t-MWCNTs), denoted as t-MWCNT-Pt and t-MWCNT-Pd, respectively. These modified t-MWCNT and poly(diallyldimethylammonium chloride) (PDDA) were ultrasonically mixed and loading on a glassy carbon electrode (GCE) for formic acid (FA) oxidation and the catalytic activities were then investigated by using cyclic voltammetry (CV) and chronoamperometry (CA) methods. The as-formed catalysts were characterized by several methods. To optimize the catalytic performance, we investigated the catalysts separately and together (in different ratios) for FA oxidation. The PDDA mixed catalyst demonstrated a slightly better performance. These results indicated that the PDDA/(t-MWCNT-Pt + t-MWCNT-Pd) catalyst exhibited better activity than that of the corresponding other catalysts.

  9. Insight into the Effect of Sn on CO and Formic Acid Oxidation at PtSn Catalysts

    DEFF Research Database (Denmark)

    Stevanović, S.; Tripković, D.; Tripkovic, Vladimir

    2014-01-01

    The role of Sn on the catalytic activity for CO and formic acid oxidation is studied by comparing the activities of differently treated PtSn/C and Pt/C catalysts. The catalysts are prepared by a microwave-assisted polyol synthesis method. As revealed by scanning tunneling and transmission electron...... is present only in the subsurface layers. The subsurface Sn has a mild effect on the CO activity, and hence the onset potential is only marginally shifted to cathodic potentials by ∼50 mV compared to that on Pt/C. The formic acid oxidation is enhanced at any of the PtSn/C surfaces with Sn in the surface...... alloying degree and is mainly composed of Pt and Pt3Sn phases. The remaining Sn is present in the form of very small tin oxide particles. Different surfaces are obtained by double-layer, oxide, and CO annealing of the Pt/C and PtSn/C catalysts and by modifying the CO-annealed surfaces with irreversibly...

  10. Aerobic oxidation of methanol to formic acid on Au20-: a theoretical study on the reaction mechanism.

    Science.gov (United States)

    Bobuatong, Karan; Karanjit, Sangita; Fukuda, Ryoichi; Ehara, Masahiro; Sakurai, Hidehiro

    2012-03-07

    The aerobic oxidation of methanol to formic acid catalyzed by Au(20)(-) has been investigated quantum chemically using density functional theory with the M06 functional. Possible reaction pathways are examined taking account of full structure relaxation of the Au(20)(-) cluster. The proposed reaction mechanism consists of three elementary steps: (1) formation of formaldehyde from methoxy species activated by a superoxo-like anion on the gold cluster; (2) nucleophilic addition by the hydroxyl group of a hydroperoxyl-like complex to formaldehyde resulting in a hemiacetal intermediate; and (3) formation of formic acid by hydrogen transfer from the hemiacetal intermediate to atomic oxygen attached to the gold cluster. A comparison of the computed energetics of various elementary steps indicates that C-H bond dissociation of the methoxy species leading to formation of formaldehyde is the rate-determining step. A possible reaction pathway involving single-step hydrogen abstraction, a concerted mechanism, is also discussed. The stabilities of reactants, intermediates and transition state structures are governed by the coordination number of the gold atoms, charge distribution, cooperative effect and structural distortion, which are the key parameters for understanding the relationship between the structure of the gold cluster and catalytic activity in the aerobic oxidation of alcohols.

  11. Electrocatalytic performance of carbon supported Pd catalyst modified with Keggin type of Sn-substituted polyoxometalatate for formic acid oxidization

    Science.gov (United States)

    Ji, Yun; Shen, Liping; Wang, Anxing; Wu, Min; Tang, Yawen; Chen, Yu; Lu, Tianhong

    2014-08-01

    The carbon supported Pd(Pd/C) catalyst modified by the new polyoxometalate with Keggin type of Sn-Substituted structure K7CoIIW11O39SnIVOH (Pd/C-K7) catalyst is prepared with the simple impregnation-reduction method. This work investigates the effects of Pd/C-K7 catalyst for direct formic acid fuel cells (DFAFCs). The morphology, structure, size and composition of the Pd/C-K7 catalyst are characterized by transmission electron microscopy (TEM) energy dispersive spectrum (EDS), X-ray diffraction (XRD). Cyclic voltammetry, chronoamperometry and CO-stripping voltammetry tests demonstrate the Pd/C-K7 catalyst have higher electrocatalytic activity, better electrochemical stability, and higher resistance to CO poisoning over the unmodified Pd/C catalyst for the formic acid oxidation reaction (FAOR) owing to K7CoIIW11O39SnIVOH with Keggin structure. Therefore, the Pd/C-K7 catalyst could be used as the excellent anodic catalyst in DFAFCs.

  12. Wet air oxidation of formic acid using nanoparticle-modified polysulfone hollow fibers as gas-liquid contactors.

    Science.gov (United States)

    Hogg, Seth R; Muthu, Satish; O'Callaghan, Michael; Lahitte, Jean-Francois; Bruening, Merlin L

    2012-03-01

    Catalytic wet air oxidation (CWAO) using membrane contactors is attractive for remediation of aqueous pollutants, but previous studies of even simple reactions such as formic acid oxidation required multiple passes through tubular ceramic membrane contactors to achieve high conversion. This work aims to increase single-pass CWAO conversions by using polysulfone (PS) hollow fibers as contactors to reduce diffusion distances in the fiber lumen. Alternating adsorption of polycations and citrate-stabilized platinum colloids in fiber walls provides catalytically active PS hollow fibers. Using a single PS fiber, 50% oxidation of a 50 mM formic acid feed solution results from a single pass through the fiber lumen (15 cm length) with a solution residence time of 40 s. Increasing the number of PS fibers to five while maintaining the same volumetric flow rate leads to over 90% oxidation, suggesting that further scale up in the number of fibers will facilitate high single pass conversions at increased flow rates. The high conversion compared to prior studies with ceramic fibers stems from shorter diffusion distances in the fiber lumen. However, the activity of the Pt catalyst is 20-fold lower than in previous ceramic fibers. Focusing the Pt deposition near the fiber lumen and limiting pore wetting to this region might increase the activity of the catalyst.

  13. [Fermentation process during the ensiling of green forage low in nitrate. 2. Fermentation process after supplementation of nitrate, nitrite, lactic acid bacteria and formic acid].

    Science.gov (United States)

    Kaiser, E; Weiss, K

    1997-01-01

    The effect of adding nitrate and nitrite (0.05% and 0.01% N in DM) of two inoculants or formic acid on the ensiling of orchardgrass and a grass-legumes-mixture, both low in nitrate, was proved in two experiments during ensiling starting in an early stage of fermentation silages without additives contained butyric acid, with increasing amounts up to 180 day of storage period. Silages with added nitrate or nitrite (0.1% N in DM) contained no butyric acid despite of a delay in the formation of lactic acid Nitrite was more effective as nitrate (both 0.05% N in DM) to suppress butyric acid fermentation. However, both additives, nitrite and nitrate, increased the lactic acid fermentation. Interpreting this facts it was hypothesized that the clostridia was inhibited by nitrate and nitrite. Addition of inoculants improved the formation of lactic acid, and decreased pH-value in comparison to control silages. The formation of butyric acid was limited, but not suppressed. The effect of inoculants differed in the intensity of fermentation and the formation of by-products of lactic acid fermentation. The effect of formic acid was not sure.

  14. Controls on the microbial utilization of carbon monoxide and formic acid in Acidic Hydrothermal Springs in Yellowstone National Park

    Science.gov (United States)

    Urschel, M.; Kubo, M. W.; Hoehler, T. M.; Boyd, E. S.; Peters, J.

    2012-12-01

    In hydrothermal systems, dissolved carbon dioxide (CO2) in the presence of reduced iron-bearing minerals, such as those found in basalt, can be reduced to form formic acid (HCOOH). HCOOH can then be dehydrated in a side reaction, resulting in the generation of carbon monoxide (CO), which forms an equilibrium with HCOOH. HCOOH can also be further reduced to methane, and longer chain hydrocarbons. Geochemical measurements have demonstrated the presence of elevated concentrations of HCOOH, dissolved CO, and dissolved inorganic carbon (CO2, H2CO3), in high temperature, low pH springs in Yellowstone National Park (YNP). Likewise, a number of compounds that could potentially serve as electron acceptors (e.g. S0, SO42-, NO3-, Fe3+) in the oxidation of CO or formic acid have been detected in many of these systems. We hypothesized that the utilization of CO and HCOOH as carbon and/or energy sources is a broadly-distributed metabolic strategy in high temperature, low pH springs in YNP. To test this hypothesis, radiolabeled CO (14CO) and HCOOH (H14COOH) were used to determine rates of CO and formate oxidation activity in three hot springs in YNP ranging in temperature from 53 °C to 89 °C and pH from 2.5 to 5.3. In parallel, 16S rRNA gene sequencing and enrichment isolation techniques were employed to identify the microorganisms responsible for these activities. Our results indicate that CO and HCOOH are important sources of carbon and/or energy in high temperature, low pH hydrothermal springs in Yellowstone National Park. Rates of CO oxidation appear to be orders of magnitude lower than those of HCOOH oxidation. One possible explanation for this result is that HCOOH is preferentially utilized, consistent with thermodynamic calculations indicating that HCOOH liberates approximately 215 kJ/mol more Gibbs energy (under standard conditions) than CO when oxidized with oxygen (O2) as the electron acceptor. Redox couples of HCOOH oxidation with other electron acceptors (e.g. SO4

  15. The isolation of [Pd{OC(O)H}(H)(NHC)(PR3)] (NHC = N-heterocyclic carbene) and its role in alkene and alkyne reductions using formic acid

    KAUST Repository

    Broggi, Julie

    2013-03-27

    The [Pd(SIPr)(PCy3)] complex efficiently promotes a tandem process involving dehydrogenation of formic acid and hydrogenation of C-C multiple bonds using H2 formed in situ. The isolation of a key catalytic hydridoformatopalladium species, [Pd{OC(O)H}(H)(IPr)(PCy 3)], is reported. The complex plays a key role in the Pd(0)-mediated formation of hydrogen from formic acid. Mechanistic and computational studies delineate the operational role of the palladium complex in this efficient tandem sequence. © 2013 American Chemical Society.

  16. 天然甲酸和甲酸乙酯的制备%Preparation of Natural Formic Acid and Ethyl Formate

    Institute of Scientific and Technical Information of China (English)

    谷运璀; 钱婉珠; 张民; 吴征兵

    2013-01-01

    The preparation method of natural formic acid by oxidation of glucose was investigated,and natural ethyl formate was prepared by the esterification of obtained natural formic acid and ethanol that produced from cereal fermentation as well.%研究利用葡萄糖氧化制备天然甲酸的方法,并采用发酵乙醇与天然甲酸发生酯化反应制备香料工业用天然甲酸乙酯.

  17. Hydrodeoxygenation of phenol over Pd catalysts by in-situ generated hydrogen from aqueous reforming of formic acid

    DEFF Research Database (Denmark)

    Zeng, Ying; Wang, Ze; Lin, Weigang

    2016-01-01

    Hydrodeoxygenation of phenol, as model compound of bio-oil, was investigated over Pd catalysts, using formic acid as a hydrogen donor. The order of activity for deoxygenation of phenol with Pd catalysts was found to be: Pd/SiO2 > Pd/MCM-41 > Pd/CA > Pd/Al2O3 > Pd/HY approximate to Pd/ZrO2 ≈ Pd....../CW > Pd/HSAPO-34 > Pd/HZSM-5. The good performance of Pd/SiO2 is owing to its proper pore structure and large specific surface area. The high level of Bronsted acid sites in SiO2 also favors the deoxygenation of phenol. (C) 2016 Elsevier B.V. All rights reserved....

  18. Preparation of AuPt alloy foam films and their superior electrocatalytic activity for the oxidation of formic acid.

    Science.gov (United States)

    Liu, Jun; Cao, Ling; Huang, Wei; Li, Zelin

    2011-09-01

    AuPt alloy films with three-dimensional (3D) hierarchical pores consisting of interconnected dendrite walls were successfully fabricated by a strategy of cathodic codeposition utilizing the hydrogen bubble dynamic template. The foam films were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). Due to the special porous structure, the electronic property, and the assembly effect, the AuPt alloy foam films show superior electrocatalytic activity toward the electrooxidation of formic acid in acidic solution, and the prepared 3D porous AuPt alloy films also show high activity and long stability for the electrocatalytic oxidation of methanol, where synergistic effect plays an important role in addition to the electronic effect and assembly effect. These findings provide more insights into the AuPt bimetallic nanomaterials for electrocatalytic applications.

  19. Synthesizing Pt nanoparticles in the presence of methylamine: Impact of acetic acid treatment in the electrocatalytic activity of formic acid oxidation

    Science.gov (United States)

    Ooi, M. D. Johan; Aziz, A. Abdul

    2017-05-01

    Surfactant removal from the surface of platinum nanoparticles prepared by solution based method is a prerequisite process to accomplish a high catalytic activity for electrochemical reactions. Here, we report a possible approach of combining acid acetic with thermal treatment for improving catalytic performance of formic acid oxidation. This strategy involves conversion of amine to amide in acetic acid followed by surfactant removal via subsequent thermal treatment at 85 °C. This combined activation technique produced monodisperse nanoparticle with the size of 3 to 5 nm with enhanced formic acid oxidation activity, particularly in perchloric acid solution. Pt treated in 1 h of acetic acid and heat treatment of 9 h shows high electrochemical surface area value (27.6 m2/g) compares to Pt without activation (16.6 m2/g). The treated samples also exhibit high current stability of 0.3 mA/cm2 compares to the as-prepared mA/cm2). Shorter duration of acid wash and longer duration of heating process result in high electrocatalytic activity. This work demonstrates a possible technique in improving catalytic activity of platinum nanoparticles synthesized using methylamine as surfactant.

  20. Pd Nanoparticles Coupled to WO 2.72 Nanorods for Enhanced Electrochemical Oxidation of Formic Acid

    Energy Technology Data Exchange (ETDEWEB)

    Xi, Zheng; Erdosy, Daniel P.; Mendoza-Garcia, Adriana; Duchesne, Paul N.; Li, Junrui; Muzzio, Michelle; Li, Qing; Zhang, Peng; Sun, Shouheng (Brown); (Dalhousie U.); (Huazhong)

    2017-03-02

    We synthesize a new type of hybrid Pd/WO2.72 structure with 5 nm Pd nanoparticles (NPs) anchored on 50 × 5 nm WO2.72 nanorods. The strong Pd/WO2.72 coupling results in the lattice expansion of Pd from 0.23 to 0.27 nm and the decrease of Pd surface electron density. As a result, the Pd/WO2.72 shows much enhanced catalysis toward electrochemical oxidation of formic acid in 0.1 M HClO4; it has a mass activity of ~1600 mA/mgPd in a broad potential range of 0.4–0.85 V (vs RHE) and shows no obvious activity loss after a 12 h chronoamperometry test at 0.4 V. Our work demonstrates an important strategy to enhance Pd NP catalyst efficiency for energy conversion reactions.

  1. Challenges in the Greener Production of Formates/Formic Acid, Methanol, and DME by Heterogeneously Catalyzed CO2 Hydrogenation Processes

    KAUST Repository

    Álvarez, Andrea

    2017-06-28

    The recent advances in the development of heterogeneous catalysts and processes for the direct hydrogenation of CO2 to formate/formic acid, methanol, and dimethyl ether are thoroughly reviewed, with special emphasis on thermodynamics and catalyst design considerations. After introducing the main motivation for the development of such processes, we first summarize the most important aspects of CO2 capture and green routes to produce H2. Once the scene in terms of feedstocks is introduced, we carefully summarize the state of the art in the development of heterogeneous catalysts for these important hydrogenation reactions. Finally, in an attempt to give an order of magnitude regarding CO2 valorization, we critically assess economical aspects of the production of methanol and DME and outline future research and development directions.

  2. Synthesis of Ultrathin PdCu Alloy Nanosheets Used as a Highly Efficient Electrocatalyst for Formic Acid Oxidation.

    Science.gov (United States)

    Yang, Nailiang; Zhang, Zhicheng; Chen, Bo; Huang, Ying; Chen, Junze; Lai, Zhuangchai; Chen, Ye; Sindoro, Melinda; Wang, An-Liang; Cheng, Hongfei; Fan, Zhanxi; Liu, Xiaozhi; Li, Bing; Zong, Yun; Gu, Lin; Zhang, Hua

    2017-08-01

    Inspired by the unique properties of ultrathin 2D nanomaterials and excellent catalytic activities of noble metal nanostructures for renewable fuel cells, a facile method is reported for the high-yield synthesis of ultrathin 2D PdCu alloy nanosheets under mild conditions. Impressively, the obtained PdCu alloy nanosheet after being treated with ethylenediamine can be used as a highly efficient electrocatalyst for formic acid oxidation. The study implicates that the rational design and controlled synthesis of an ultrathin 2D noble metal alloy may open up new opportunities for enhancing catalytic activities of noble metal nanostructures. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Synthesis of cubic and spherical Pd nanoparticles on graphene and their electrocatalytic performance in the oxidation of formic acid.

    Science.gov (United States)

    Yang, Sudong; Shen, Chengmin; Tian, Yuan; Zhang, Xiaogang; Gao, Hong-Jun

    2014-11-07

    Single-crystal palladium nanoparticles (NPs) with controllable morphology were synthesized on the surface of reduced graphene oxide (RGO) by a novel procedure, namely reducing palladium acetylacetonate [Pd(acac)2] with the N-methylpyrrolidone (NMP) solvent in the presence of poly(vinylpyrrolidone) (PVP). The resulting Pd nanocrystals (8 nm in diameter) were uniformly distributed on the RGO. A possible formation mechanism is discussed. The electrocatalytic performance of Pd nanocrystal/RGO catalysts during formic acid oxidation was investigated, which revealed that the cubic Pd/RGO catalyst performed significantly better than the spherical Pd/RGO catalyst. The shape of Pd nanocrystals on the surface of graphene nanosheets can be easily controlled via tuning the synthesis parameters, resulting in tunable catalytic properties. Moreover, this method can be easily extended to fabricate other noble metal nanostructures.

  4. Preparation of Nanoporous Pd by Dealloying Al-Pd Slice and Its Electrocatalysts for Formic Acid Oxidation

    Science.gov (United States)

    Yu, Nana; Wang, Tianning; Nie, Chen; Sun, Lanju; Li, Jie; Geng, Haoran

    2016-01-01

    AlPd alloy slices with a thickness of 0.5 mm were taken as precursors during the fabrication of nanoporous palladium (np-Pd) using chemical dealloying in NaOH solution or electrochemical dealloying in NaCl solution. Scanning electron microscope photos and x-ray diffraction patterns demonstrate a full dealloying of Al out of the precursors and the formation of nP-Pd which is characterized by a three-dimensional, bicontinuous, ligament-channel structure with nanoscale length scales. Electrochemical measurements were performed to evaluate the electrocatalytic activity and structure stability of np-Pd towards formic acid oxidation and it showed a good structure stability.

  5. Polyhedral Palladium-Silver Alloy Nanocrystals as Highly Active and Stable Electrocatalysts for the Formic Acid Oxidation Reaction

    Science.gov (United States)

    Fu, Geng-Tao; Liu, Chang; Zhang, Qi; Chen, Yu; Tang, Ya-Wen

    2015-09-01

    Polyhedral noble-metal nanocrystals have received much attention and wide applications as electrical and optical devices as well as catalysts. In this work, a straightforward and effective hydrothermal route for the controllable synthesis of the high-quality Pd-Ag alloy polyhedrons with uniform size is presented. The morphology, composition and structure of the Pd-Ag alloy polyhedrons are fully characterized by the various physical techniques, demonstrating the Pd-Ag alloy polyhedrons are highly alloying. The formation/growth mechanisms of the Pd-Ag alloy polyhedrons are explored and discussed based on the experimental observations and discussions. As a preliminary electrochemical application, the Pd-Ag alloy polyhedrons are applied in the formic acid oxidation reaction, which shows higher electrocatalytic activity and stability than commercially available Pd black due to the “synergistic effects” between Pd and Ag atoms.

  6. Nanobranched porous palladium-tin intermetallics: One-step synthesis and their superior electrocatalysis towards formic acid oxidation

    Science.gov (United States)

    Sun, Dandan; Si, Ling; Fu, Gengtao; Liu, Chang; Sun, Dongmei; Chen, Yu; Tang, Yawen; Lu, Tianhong

    2015-04-01

    Nanocrystalline intermetallics in bulk with high surface area hold enormous promise as an efficient catalyst for real fuel cell applications due to their unique electrocatalytic properties. In this work, a novel three-dimensional (3D) porous Pd-Sn intermetallics in network nanostructures (Pd-Sn-INNs) has been fabricated at relatively low temperature for the first time by one-step ethylene glycol-assisted hydrothermal reduction method. The structure characteristics of the Pd-Sn-INNs are confirmed by scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive X-ray (EDX), selected-area electron diffraction (SAED), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). The as-prepared 3D Pd-Sn-INNs exhibit remarkably improved electrocatalytic activity and stability towards formic acid oxidation reaction (FAOR) over commercially available Pd black.

  7. Synthesis of cubic and spherical Pd nanoparticles on graphene and their electrocatalytic performance in the oxidation of formic acid

    Science.gov (United States)

    Yang, Sudong; Shen, Chengmin; Tian, Yuan; Zhang, Xiaogang; Gao, Hong-Jun

    2014-10-01

    Single-crystal palladium nanoparticles (NPs) with controllable morphology were synthesized on the surface of reduced graphene oxide (RGO) by a novel procedure, namely reducing palladium acetylacetonate [Pd(acac)2] with the N-methylpyrrolidone (NMP) solvent in the presence of poly(vinylpyrrolidone) (PVP). The resulting Pd nanocrystals (8 nm in diameter) were uniformly distributed on the RGO. A possible formation mechanism is discussed. The electrocatalytic performance of Pd nanocrystal/RGO catalysts during formic acid oxidation was investigated, which revealed that the cubic Pd/RGO catalyst performed significantly better than the spherical Pd/RGO catalyst. The shape of Pd nanocrystals on the surface of graphene nanosheets can be easily controlled via tuning the synthesis parameters, resulting in tunable catalytic properties. Moreover, this method can be easily extended to fabricate other noble metal nanostructures.

  8. Challenges in the Greener Production of Formates/Formic Acid, Methanol, and DME by Heterogeneously Catalyzed CO2 Hydrogenation Processes

    Science.gov (United States)

    2017-01-01

    The recent advances in the development of heterogeneous catalysts and processes for the direct hydrogenation of CO2 to formate/formic acid, methanol, and dimethyl ether are thoroughly reviewed, with special emphasis on thermodynamics and catalyst design considerations. After introducing the main motivation for the development of such processes, we first summarize the most important aspects of CO2 capture and green routes to produce H2. Once the scene in terms of feedstocks is introduced, we carefully summarize the state of the art in the development of heterogeneous catalysts for these important hydrogenation reactions. Finally, in an attempt to give an order of magnitude regarding CO2 valorization, we critically assess economical aspects of the production of methanol and DME and outline future research and development directions. PMID:28656757

  9. An analysis of formic acid decomposition on metal surfaces by the bond-order-conservation-Morse-potential approach

    Science.gov (United States)

    Shustorovich, Evgeny; Bell, Alexis T.

    1989-11-01

    The bond-order-conservation-Morse-potential method, extended to treat the heat of chemisorption of bidentate species and of molecular radicals, has been used to analyze the energetics of formic acid decomposition at low coverages on Ag(111), Ni(111), and Fe/W(110) surfaces. These calculations project that on all three surfaces formate species are produced, with a parallel formation of formyl plus hydroxyl species on Ni and Fe/W. Bidentate coordination of formate species is preferred over monodentate coordination, the energy difference increasing in the order Ag < Ni < Fe/W. The decomposition of formate species leads to atomic hydrogen and CO 2 on Ag, whereas on Ni and especially on Fe/W formate decomposition leads mainly to atomic oxygen and formyl species, the latter of which decomposes practically without activation to CO and atomic hydrogen. The findings of this study are in general agreement with experimental observation.

  10. High efficient electrooxidation of formic acid at a novel Pt-indole composite catalyst prepared by electrochemical self-assembly

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Weiqiang [Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013 (China); College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123 (China); Wang, Chuanyi [Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011 (China); Xu, Jingkun [Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013 (China); Du, Yukou; Yang, Ping [College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123 (China)

    2011-02-01

    Self-assembly of Pt and indole into a novel composite catalyst on a glassy carbon electrode (GC) has been developed by a one-step electrodeposition in the presence of 3.0 mM H{sub 2}PtCl{sub 6} and 0.1 mM indole. Compared to Pt/GC and Pt/C, the novel Pt-indole composite catalyst exhibits higher catalytic activity and stronger poisoning tolerance for electrooxidation of formic acid. The adsorption strength of CO on the prepared Pt-indole composite catalyst is greatly weakened as demonstrated by CO stripping voltammograms. Because of its advantageous catalytic activity and poisoning tolerance, the novel Pt-indole composite catalyst is anticipated to find interesting applications in many important fields such as energy and catalysis. (author)

  11. A photocatalyst-enzyme coupled artificial photosynthesis system for solar energy in production of formic acid from CO2.

    Science.gov (United States)

    Yadav, Rajesh K; Baeg, Jin-Ook; Oh, Gyu Hwan; Park, No-Joong; Kong, Ki-jeong; Kim, Jinheung; Hwang, Dong Won; Biswas, Soumya K

    2012-07-18

    The photocatalyst-enzyme coupled system for artificial photosynthesis process is one of the most promising methods of solar energy conversion for the synthesis of organic chemicals or fuel. Here we report the synthesis of a novel graphene-based visible light active photocatalyst which covalently bonded the chromophore, such as multianthraquinone substituted porphyrin with the chemically converted graphene as a photocatalyst of the artificial photosynthesis system for an efficient photosynthetic production of formic acid from CO(2). The results not only show a benchmark example of the graphene-based material used as a photocatalyst in general artificial photosynthesis but also the benchmark example of the selective production system of solar chemicals/solar fuel directly from CO(2).

  12. The Melting Curve and High-Pressure Chemistry of Formic Acid to 8 GPa and 600 K

    Energy Technology Data Exchange (ETDEWEB)

    Montgomery, W; Zaug, J M; Howard, W M; Goncharov, A F; Crowhurst, J C; Jeanloz, R

    2005-04-13

    We have determined the melting temperature of formic acid (HCOOH) to 8.5 GPa using infrared absorption spectroscopy, Raman spectroscopy and visual observation of samples in a resistively heated diamond-anvil cell. The experimentally determined melting curve compares favorably with a two-phase thermodynamic model. Decomposition reactions were observed above the melting temperature up to a pressure of 6.5 GPa, where principal products were CO{sub 2}, H{sub 2}O and CO. At pressures above 6.5 GPa, decomposition led to solid-like reaction products. Infrared and Raman spectra of these recovered products indicate that pressure affects the nature of carbon-carbon bonding.

  13. Facile one-pot surfactant-free synthesis of uniform Pd6Co nanocrystals on 3D graphene as an efficient electrocatalyst toward formic acid oxidation

    Science.gov (United States)

    Zhang, Lian Ying; Zhao, Zhi Liang; Yuan, Weiyong; Li, Chang Ming

    2016-01-01

    Ultrasmall and uniform Pd6Co nanocrystals were deposited on 3D graphene by a facile one-pot surfactant-free route for a catalyst toward formic acid oxidation, showing a much higher electrocatalytic activity, larger peak current density and better stability than Pd/3DG, Pd/C as well as commercial Pd-C, and thus offering great potential for an efficient anode catalyst toward high performance direct formic acid fuel cells.Ultrasmall and uniform Pd6Co nanocrystals were deposited on 3D graphene by a facile one-pot surfactant-free route for a catalyst toward formic acid oxidation, showing a much higher electrocatalytic activity, larger peak current density and better stability than Pd/3DG, Pd/C as well as commercial Pd-C, and thus offering great potential for an efficient anode catalyst toward high performance direct formic acid fuel cells. Electronic supplementary information (ESI) available: Experimental section and supplementary figures. See DOI: 10.1039/c5nr08512h

  14. Ru-assisted synthesis of {111}-faceted Pd truncated bipyramids: a highly reactive, stable and restorable catalyst for formic acid oxidation.

    Science.gov (United States)

    Wu, Dongshuang; Cao, Minna; Cao, Rong

    2014-11-04

    {111}-Faceted Pd truncated triangular bipyramids (TTBPs) are first presented under the assistance of Ru. Attributed to their unique shape, the TTBPs are highly active and stable for formic acid oxidation. The electrochemical active surface area (ECSA) can be restored to its initial value after a harsh degradation test.

  15. Ultrafast synthesis of flower-like ordered Pd3Pb nanocrystals with superior electrocatalytic activities towards oxidation of formic acid and ethanol

    Science.gov (United States)

    Jana, Rajkumar; Subbarao, Udumula; Peter, Sebastian C.

    2016-01-01

    Ordered intermetallic nanocrystals with high surface area are highly promising as efficient catalysts for fuel cell applications because of their unique electrocatalytic properties. The present work discusses about the controlled synthesis of ordered intermetallic Pd3Pb nanocrystals in different morphologies at relatively low temperature for the first time by polyol and hydrothermal methods both in presence and absence of surfactant. Here for the first time we report surfactant free synthesis of ordered flower-like intermetallic Pd3Pb nanocrystals in 10 s. The structural characteristics of the nanocrystals are confirmed by powder X-ray diffraction, transmission electron microscopy, field emission scanning electron microscopy, X-ray photoelectron spectroscopy and energy-dispersive X-ray spectroscopy. The as synthesized ordered Pd3Pb nanocrystals exhibit far superior electrocatalytic activity and durability towards formic acid and ethanol oxidation over commercially available Pd black (Pd/C). The morphological variation of nanocrystals plays a crucial role in the electrocatalytic oxidation of formic acid and ethanol. Among the catalysts, the flower-like Pd3Pb shows enhanced activity and stability in electrocatalytic formic acid and ethanol oxidation. The current density and mass activity of flower-like Pd3Pb catalyst are higher by 2.5 and 2.4 times than that of Pd/C for the formic acid oxidation and 1.5 times each for ethanol oxidation.

  16. Tropospheric Emission Spectrometer (TES) satellite observations of ammonia, methanol, formic acid, and carbon monoxide over the Canadian oil sands: validation and model evaluation

    Science.gov (United States)

    The wealth of air quality information provided by satellite infrared observations of ammonia (NH3), carbon monoxide (CO), formic acid (HCOOH), and methanol (CH3OH) is currently being explored and used for a number of applications, especially at regional or global scales. These ap...

  17. Reversible cyclometalation at Rh-I as a motif for metal-ligand bifunctional bond activation and base-free formic acid dehydrogenation

    NARCIS (Netherlands)

    Jongbloed, L.S.; de Bruin, B.; Reek, J.N.H.; Lutz, M.; van der Vlugt, J.I.

    2016-01-01

    Reversible cyclometalation is demonstrated as a strategy for the activation of small protic molecules, with a proof-of-principle catalytic application in the dehydrogenation of formic acid in the absence of an exogenous base. The well-defined RhI complex Rh(CO)(L) 1, bearing the reactive cyclometala

  18. Reversible cyclometalation at RhI as a motif for metal–ligand bifunctional bond activation and base-free formic acid dehydrogenation

    NARCIS (Netherlands)

    Jongbloed, L. S.; De Bruin, B.; Reek, J. N. H.; Lutz, M.|info:eu-repo/dai/nl/304828971; Van Der Vlugt, J. I.

    2016-01-01

    Reversible cyclometalation is demonstrated as a strategy for the activation of small protic molecules, with a proof-of-principle catalytic application in the dehydrogenation of formic acid in the absence of an exogenous base. The well-defined RhI complex Rh(CO)(L) 1, bearing the reactive cyclometala

  19. Hydrogenation of CO{sub 2} to formic acid over a Cu-embedded graphene: A DFT study

    Energy Technology Data Exchange (ETDEWEB)

    Sirijaraensre, J., E-mail: fscijkp@ku.ac.th [Department of Chemistry, Faculty of Science, Kasetsart University, Bangkok 10900 (Thailand); Center for Advanced Studies in Nanotechnology and Its Applications in Chemical, Food and Agricultural Industries and NANOTEC Center for Nanoscale Materials Design for Green Nanotechnology, Kasetsart University, Bangkok 10900 (Thailand); Limtrakul, J. [Department of Materials Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong 21210 (Thailand)

    2016-02-28

    Graphical abstract: - Highlights: • The H{sub 2} molecule binds much more strongly on the Cu/dG than the CO{sub 2} molecule. • H{sub 2} dissociation occurs readily on the supported Cu atom. • The CO{sub 2} conversion is significantly promoted by the Cu-H on the graphene. - Abstract: DFT calculations were used to investigate the properties of the atomic copper embedded in the surface of graphene (Cu/dG) and the catalytic reaction pathway for the CO{sub 2} hydrogenation to formic acid (FA). The Cu/dG was active for the adsorption of the hydrogen molecule (H{sub 2}), and provided a reaction site for the heterolytic cleavage of H{sub 2}, leading to the formation of Cu-H deposited on a singly hydrogenated vacancy graphene (Cu-H/H-dG). The protonation of CO{sub 2} takes place facilely over the generated metal-hydride species (Cu-H). Under the dilution of H{sub 2}, the catalytic process would be hampered by the formation of copper-formate deposited on the H-dG due mainly to the very high energy demand for the transformation of the copper-formate to FA through the protonation from the H-dG. It was further found that the presence of H{sub 2} in the system plays a significant role in producing the FA on the Cu/dG catalyst. The copper-formate species can be converted into formic acid via the heterolytic cleavage of the second hydrogen molecule, yielding the FA and Cu-H species.

  20. A Comprehensive Study of Formic Acid Oxidation on Palladium Nanocrystals with Different Types of Facets and Twin Defects

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Sang; Herron, Jeffrey A.; Scaranto, Jessica; Huang, Hongwen; Wang, Yi; Xia, Xiaohu; Lv, Tian; Park, Jinho; Peng, Hsin-Chieh; Mavrikakis, Manos; Xia, Younan

    2015-07-13

    Palladium has been recognized as the best anodic, monometallic electrocatalyst for the formic acid oxidation (FAO) reaction in a direct formic acid fuel cell. Here we report a systematic study of FAO on a variety of Pd nanocrystals, including cubes, right bipyramids, octahedra, tetrahedra, decahedra, and icosahedra. These nanocrystals were synthesized with approximately the same size, but different types of facets and twin defects on their surfaces. Our measurements indicate that the Pd nanocrystals enclosed by {1 0 0} facets have higher specific activities than those enclosed by {1 1 1} facets, in agreement with prior observations for Pd single-crystal substrates. If comparing nanocrystals predominantly enclosed by a specific type of facet, {1 0 0} or {1 1 1}, those with twin defects displayed greatly enhanced FAO activities compared to their single-crystal counterparts. To rationalize these experimental results, we performed periodic, self-consistent DFT calculations on model single-crystal substrates of Pd, representing the active sites present in the nanocrystals used in the experiments. The calculation results suggest that the enhancement of FAO activity on defect regions, represented by Pd(2 1 1) sites, compared to the activity of both Pd(1 0 0) and Pd(1 1 1) surfaces, could be attributed to an increased flux through the HCOO-mediated pathway rather than the COOH-mediated pathway on Pd(2 1 1). Since COOH has been identified as a precursor to CO, a site-poisoning species, a lower coverage of CO at the defect regions will lead to a higher activity for the corresponding nanocrystal catalysts, containing those defect regions.

  1. A facile route to monodisperse MPd (M = Co or Cu) alloy nanoparticles and their catalysis for electrooxidation of formic acid

    Science.gov (United States)

    Ho, Sally Fae; Mendoza-Garcia, Adriana; Guo, Shaojun; He, Kai; Su, Dong; Liu, Sheng; Metin, Önder; Sun, Shouheng

    2014-05-01

    MPd (M = Co, or Cu) nanoparticles (NPs) were synthesized by borane-amine reduction of metal acetylacetonates. The size of the MPd NPs was controlled at 3.5 nm and their compositions were tuned by the molar ratios of the metal precursors. These MPd NPs were active catalysts for electrochemical oxidation of formic acid and the Cu30Pd70 NPs showed the highest mass activity at 1192.9 A gPd-1, much higher than 552.6 A gPd-1 obtained from the 3.5 nm Pd NPs. Our synthesis provides a facile route to MPd NPs, allowing further investigation of MPd NP catalysts for electrochemical oxidation and many other chemical reactions.MPd (M = Co, or Cu) nanoparticles (NPs) were synthesized by borane-amine reduction of metal acetylacetonates. The size of the MPd NPs was controlled at 3.5 nm and their compositions were tuned by the molar ratios of the metal precursors. These MPd NPs were active catalysts for electrochemical oxidation of formic acid and the Cu30Pd70 NPs showed the highest mass activity at 1192.9 A gPd-1, much higher than 552.6 A gPd-1 obtained from the 3.5 nm Pd NPs. Our synthesis provides a facile route to MPd NPs, allowing further investigation of MPd NP catalysts for electrochemical oxidation and many other chemical reactions. Electronic supplementary information (ESI) available: Detailed synthetic and electrochemical analysis procedures, and XRD of the NPs. See DOI: 10.1039/c4nr01107d

  2. Influence of formic acid on electrical, linear and nonlinear optical properties of potassium dihydrogen phosphate (KDP) crystals

    Energy Technology Data Exchange (ETDEWEB)

    Anis, Mohd [Crystal Growth Laboratory, Department of Physics, Milliya Arts, Science and Management Science College, Beed 431122, Maharashtra (India); Shirsat, M.D. [Intelligent Material Research Laboratory, Department of Physics, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad 431005,Maharashtra (India); Muley, Gajanan [Department of Physics, Sant Gadge Baba Amravati University, Amravati 444602, Maharashtra (India); Hussaini, S.S., E-mail: Shuakionline@yahoo.co.in [Crystal Growth Laboratory, Department of Physics, Milliya Arts, Science and Management Science College, Beed 431122, Maharashtra (India)

    2014-09-15

    In present investigation 0.5 and 1 mol% formic acid (FA) added potassium dihydrogen phosphate (KDP) crystals have been grown by a slow evaporation technique. The cell parameters of the grown crystals were determined using single crystal X-ray diffraction analysis. The presence of different functional groups has been qualitatively analyzed by the FT-IR spectral analysis. The optical transparency and optical constants were assessed employing UV–visible studies in the range of 200–900 nm. The wide optical band gap of 1 mol% FA added KDP has been found to be 5 eV. The frequency dependent dielectric measurements were studied for pure and KDP added FA crystals. The enhanced second harmonic generation (SHG) efficiency of grown crystals was determined by a classical Kurtz–Perry powder technique. The encouraging third order nonlinear properties were examined employing a Z-scan technique using He–Ne laser, at 632.8 nm. The effective negative index of refraction and high figure of merit (FOM) essential for laser stabilization were determined for grown crystals. - Highlights: • Study on electrical and optical properties of formic acid (FA) added KDP was reported for the first time. • Optical properties were found to be enhanced with increasing concentration of FA. • The SHG efficiency of 1 mol% FA added KDP was 1.13 times that of KDP. • The high concentration of FA contributed lower dielectric properties to KDP suitable for microelectronics applications. • The improved third order nonlinear parameters were ascertained with addition of FA in KDP crystal.

  3. Effects of plant species, stage of maturity, and level of formic acid addition on lipolysis, lipid content, and fatty acid composition during ensiling.

    Science.gov (United States)

    Koivunen, E; Jaakkola, S; Heikkilä, T; Lampi, A-M; Halmemies-Beauchet-Filleau, A; Lee, M R F; Winters, A L; Shingfield, K J; Vanhatalo, A

    2015-09-01

    Forage type and management influences the nutritional quality and fatty acid composition of ruminant milk. Replacing grass silage with red clover (RC; L.) silage increases milk fat 18:3-3 concentration. Red clover has a higher polyphenol oxidase (PPO) activity compared with grasses, which has been suggested to decrease lipolysis and . The present study characterized the abundance and fatty acid composition of esterified lipid and NEFA before and after ensiling of grass and RC to investigate the influence of forage species, growth stage, and extent of fermentation on lipolysis. A randomized block design with a 2 × 3 × 4 factorial arrangement of treatments was used. Treatments comprised RC or a mixture of timothy ( L.) and meadow fescue ( Huds.) harvested at 3 growth stages and treated with 4 levels of formic acid (0, 2, 4, and 6 L/t). Lipid in silages treated with 0 or 6 L/t formic acid were extracted and separated into 4 fractions by TLC. Total PPO activity in fresh herbage and the content of soluble bound phenols in all silages were determined. Concentrations of 18:3-3 and total fatty acids (TFA) were higher ( ensilage of RC decreases lipolysis . For both plant species, total PPO activity was not associated with the extent of lipolysis . However, bound phenols formed via PPO activity appear to have a role in protecting lipid and protein against degradation in grass and lowering proteolysis of RC during ensiling.

  4. A facile one-pot synthesis and enhanced formic acid oxidation of monodisperse Pd-Cu nanocatalysts.

    Science.gov (United States)

    Park, Kyu-Hwan; Lee, Young Wook; Kang, Shin Wook; Han, Sang Woo

    2011-06-06

    Highly monodisperse spherical 3 nm Pd-Cu alloy nanoparticles (NPs) were synthesized in high yield through the coreduction of [Pd(acac)(2)] (acac=acetylacetonate) and [Cu(acac)(2)] in nonhydrolytic solutions by using trioctylamine and oleic acid. The relative compositions of Pd and Cu could be tuned by controlling the molar ratios between the metal precursors in the raw solutions. The carbon-supported Pd-Cu NPs (Pd-Cu/C) were chemically dealloyed by acetic acid washing, which resulted in the formation of porous structures. The prepared Pd-Cu/C catalysts exhibited at least threefold enhancement of Pd mass activities compared with a commercial Pd/C catalyst toward formic acid oxidation in an acidic medium, and also showed outstanding electrocatalytic stabilities. The improved electrocatalytic properties of the Pd-Cu NPs are attributed to the presence of a large number of active sites on their surfaces owing to their small particle sizes and chemically dealloyed porous structures. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Calculations and measurements of the deuterium tunneling frequency in the propiolic acid-formic acid dimer and description of a newly constructed Fourier transform microwave spectrometer.

    Science.gov (United States)

    Sun, Ming; Wang, Yimin; Carey, Spencer J; Mitchell, Erik G; Bowman, Joel; Kukolich, Stephen G

    2013-08-28

    The concerted proton tunneling frequency for the propiolic acid-formic acid dimer was calculated using a relaxed ab initio double-well potential in the imaginary-frequency mode of the saddle point, and new measurements were made for the deuterated propiolic acid-formic acid (ProOD-FAOD) isotopologue. It is important to have consistent calculated tunneling frequency values between normal and deuterated isotopologues since parameters can be readily adjusted to get good agreement with one isotopologue. High-resolution rotational spectra of deuterated (ProOD-FAOD) dimer were measured using a newly constructed Fourier Transform microwave spectrometer. The new spectrometer has mirror size: 30 cm in diameter with a radius of curvature of 59 cm and is equipped with multiple-FID data collection (5-10 FID's for each gas pulse). For the deuterated (ProOD-FAOD) isotopologue, 45 rotational lines (a type: 34; b type: 11) were measured in the lowest tunneling states range between 6.5 GHz and 15.5 GHz. With the new high-resolution measurements of the tunneling doublets (b-dipole transitions), the double potential well responsible for the deuterium tunneling was depicted much more precisely. The two tunneling states are separated by 3.48 MHz. The rotational constants obtained in this work are quite helpful for further structure analysis as well.

  6. Analytical continuation in coupling constant method; application to the calculation of resonance energies and widths for organic molecules: Glycine, alanine and valine and dimer of formic acid

    Science.gov (United States)

    Papp, P.; Matejčík, Š.; Mach, P.; Urban, J.; Paidarová, I.; Horáček, J.

    2013-06-01

    The method of analytic continuation in the coupling constant (ACCC) in combination with use of the statistical Padé approximation is applied to the determination of resonance energy and width of some amino acids and formic acid dimer. Standard quantum chemistry codes provide accurate data which can be used for analytic continuation in the coupling constant to obtain the resonance energy and width of organic molecules with a good accuracy. The obtained results are compared with the existing experimental ones.

  7. Design and synthesis of palladium/graphitic carbon nitride/carbon black hybrids as high-performance catalysts for formic acid and methanol electrooxidation

    Science.gov (United States)

    Qian, Huayu; Huang, Huajie; Wang, Xin

    2015-02-01

    Here we report a facile two-step method to synthesize high-performance palladium/graphitic carbon nitride/carbon black (Pd/g-C3N4/carbon black) hybrids for electrooxidizing formic acid and methanol. The coating of g-C3N4 on carbon black surface is realized by a low-temperature heating treatment, followed by the uniform deposition of palladium nanoparticles (Pd NPs) via a wet chemistry route. Owning to the significant synergistic effects of the individual components, the preferred Pd/g-C3N4/carbon black electrocatalyst exhibits exceptional forward peak current densities as high as 2155 and 1720 mA mg-1Pd for formic acid oxidation in acid media and methanol oxidation in alkaline media, respectively, far outperforming the commercial Pd-C catalyst. The catalyst also shows reliable stability, demonstrating that the newly-designed hybrids have great promise in constructing high-performance portable fuel cell systems.

  8. 3D-nanoarchitectured Pd/Ni catalysts prepared by atomic layer deposition for the electrooxidation of formic acid

    Directory of Open Access Journals (Sweden)

    Loïc Assaud

    2014-02-01

    Full Text Available Three-dimensionally (3D nanoarchitectured palladium/nickel (Pd/Ni catalysts, which were prepared by atomic layer deposition (ALD on high-aspect-ratio nanoporous alumina templates are investigated with regard to the electrooxidation of formic acid in an acidic medium (0.5 M H2SO4. Both deposition processes, Ni and Pd, with various mass content ratios have been continuously monitored by using a quartz crystal microbalance. The morphology of the Pd/Ni systems has been studied by electron microscopy and shows a homogeneous deposition of granularly structured Pd onto the Ni substrate. X-ray diffraction analysis performed on Ni and NiO substrates revealed an amorphous structure, while the Pd coating crystallized into a fcc lattice with a preferential orientation along the [220]-direction. Surface chemistry analysis by X-ray photoelectron spectroscopy showed both metallic and oxide contributions for the Ni and Pd deposits. Cyclic voltammetry of the Pd/Ni nanocatalysts revealed that the electrooxidation of HCOOH proceeds through the direct dehydrogenation mechanism with the formation of active intermediates. High catalytic activities are measured for low masses of Pd coatings that were generated by a low number of ALD cycles, probably because of the cluster size effect, electronic interactions between Pd and Ni, or diffusion effects.

  9. Biosorption of formic and acetic acids from aqueous solution using activated carbon from shea butter seed shells

    Science.gov (United States)

    Adekola, Folahan A.; Oba, Ismaila A.

    2016-10-01

    The efficiency of prepared activated carbon from shea butter seed shells (SB-AC) for the adsorption of formic acid (FA) and acetic acid (AA) from aqueous solution was investigated. The effect of optimization parameters including initial concentration, agitation time, adsorbent dosage and temperature of adsorbate solution on the sorption capacity were studied. The SB-AC was characterized for the following parameters: bulk density, moisture content, ash content, pH, Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The optimal conditions for the adsorption were established and the adsorption data for AA fitted Dubinin-Radushkevich (D-R) isotherm well, whereas FA followed Langmuir isotherm. The kinetic data were examined. It was found that pseudo-second-order kinetic model was found to adequately explain the sorption kinetic of AA and FA from aqueous solution. It was again found that intraparticle diffusion was found to explain the adsorption mechanism. Adsorption thermodynamic parameters were estimated and the negative values of ∆G showed that the adsorption process was feasible and spontaneous in nature, while the negative values of ∆H indicate that the adsorption process was exothermic. It is therefore established that SB-AC has good potential for the removal of AA and FA from aqueous solution. Hence, it should find application in the regular treatment of polluted water in aquaculture and fish breeding system.

  10. Synthesis of hollow and nanoporous gold/platinum alloy nanoparticles and their electrocatalytic activity for formic acid oxidation.

    Science.gov (United States)

    Lee, Doori; Jang, Ho Young; Hong, Soonchang; Park, Sungho

    2012-12-15

    In this work, hollow Au/Pt alloy nanoparticles (NPs) with porous surfaces were synthesized in a two-step procedure. In the first step, tri-component Ag/Au/Pt alloy NPs were synthesized through the galvanic replacement reaction between Ag NPs and aqueous solutions containing a mixture of HAuCl(4) and H(2)PtCl(4). In the second step, the Ag component was selectively dealloyed with nitric acid (HNO(3)), resulting in hollow di-component Au/Pt alloy NPs with a porous surface morphology. The atomic ratio of Au to Pt in the NPs was easily tunable by controlling the molar ratio of the precursor solution (HAuCl(4) and H(2)PtCl(6)). Hollow, porous Au/Pt alloy NPs showed enhanced catalytic activity toward formic acid electrooxidation compared to the analogous pure Pt NPs. This improved activity can be attributable to the suppression of CO poisoning via the "ensemble" effect. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. 3D-nanoarchitectured Pd/Ni catalysts prepared by atomic layer deposition for the electrooxidation of formic acid.

    Science.gov (United States)

    Assaud, Loïc; Monyoncho, Evans; Pitzschel, Kristina; Allagui, Anis; Petit, Matthieu; Hanbücken, Margrit; Baranova, Elena A; Santinacci, Lionel

    2014-01-01

    Three-dimensionally (3D) nanoarchitectured palladium/nickel (Pd/Ni) catalysts, which were prepared by atomic layer deposition (ALD) on high-aspect-ratio nanoporous alumina templates are investigated with regard to the electrooxidation of formic acid in an acidic medium (0.5 M H2SO4). Both deposition processes, Ni and Pd, with various mass content ratios have been continuously monitored by using a quartz crystal microbalance. The morphology of the Pd/Ni systems has been studied by electron microscopy and shows a homogeneous deposition of granularly structured Pd onto the Ni substrate. X-ray diffraction analysis performed on Ni and NiO substrates revealed an amorphous structure, while the Pd coating crystallized into a fcc lattice with a preferential orientation along the [220]-direction. Surface chemistry analysis by X-ray photoelectron spectroscopy showed both metallic and oxide contributions for the Ni and Pd deposits. Cyclic voltammetry of the Pd/Ni nanocatalysts revealed that the electrooxidation of HCOOH proceeds through the direct dehydrogenation mechanism with the formation of active intermediates. High catalytic activities are measured for low masses of Pd coatings that were generated by a low number of ALD cycles, probably because of the cluster size effect, electronic interactions between Pd and Ni, or diffusion effects.

  12. Extraction of formic and acetic acids from aqueous solution by dynamic headspace-needle trap extraction temperature and pH optimization.

    Science.gov (United States)

    Lou, Da-Wei; Lee, Xinqing; Pawliszyn, Janusz

    2008-08-08

    A combined method of dynamic headspace-needle trap sample preparation and gas chromatography for the determination of formic and acetic acids in aqueous solution was developed in this study. A needle extraction device coupled with a gas aspirating pump was intended to perform sampling and preconcentration of target compounds from aqueous sample before gas chromatographic analysis. The needle trap extraction (NTE) technique allows for the successful sampling of short chain fatty acids under dynamic conditions while keeping the headspace (HS) volume constant. Two important parameters, including extraction temperature and effect of acidification, have been optimized and evaluated using the needle trap device. The method detection limits for the compounds estimated were 87.2microg/L for acetic acid and 234.8microg/L for formic acid in spite of the low flame ionization detection response for formic acid and its low Henry's law constant in aqueous solution. Precision was determined based on the two real samples and ranged between 4.7 and 10.7%. The validated headspace-needle trap extraction method was also successfully applied to several environmental samples.

  13. Electro-oxidation of diclofenac at boron doped diamond: Kinetics and mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Zhao Xu; Hou Yining; Liu Huijuan; Qiang Zhimin [State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085 (China); Qu Jiuhui [State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085 (China)], E-Mail: jhqu@mail.rcees.ac.cn

    2009-07-01

    Diclofenac is a common anti-inflammatory drug. Its electrochemical degradation at boron doped diamond electrode was investigated in aqueous solution. The degradation kinetics and the intermediate products were studied. Results showed that electro-oxidation was effective in inducing the degradation of diclofenac with 30 mg/L initial concentration, ensuring a mineralization degree of 72% after a 4 h treatment with the applied bias potential of 4.0 V. The effects of applied bias potential and addition of NaCl on diclofenac degradation were investigated. Different degradation mechanisms of diclofenac were involved at various applied bias potentials. With the addition of NaCl, some chlorination intermediates including dichlorodiclofenac were identified, which lead to the total organic carbon increase compared with the electrolysis process without NaCl addition at the reaction initial period. The main intermediates including 2,6-dichlorobenzenamine, 2,5-dihydroxybenzyl alcohol, and benzoic acid are identified at the time of 2 h. 1-(2,6-Dichlorocyclohexa-2,4-dienyl)indolin-2-one were also identified. These intermediates disappeared gradually with the extension of reaction time. Small molecular acids were identified finally. Based on these results, a degradation pathway of diclofenac was proposed.

  14. Different catalytic effects of a single water molecule: the gas-phase reaction of formic acid with hydroxyl radical in water vapor.

    Science.gov (United States)

    Anglada, Josep M; Gonzalez, Javier

    2009-12-07

    The effect of a single water molecule on the reaction mechanism of the gas-phase reaction between formic acid and the hydroxyl radical was investigated with high-level quantum mechanical calculations using DFT-B3LYP, MP2 and CCSD(T) theoretical approaches in concert with the 6-311+G(2df,2p) and aug-cc-pVTZ basis sets. The reaction between HCOOH and HO has a very complex mechanism involving a proton-coupled electron transfer process (pcet), two hydrogen-atom transfer reactions (hat) and a double proton transfer process (dpt). The hydroxyl radical predominantly abstracts the acidic hydrogen of formic acid through a pcet mechanism. A single water molecule affects each one of these reaction mechanisms in different ways, depending on the way the water interacts. Very interesting is also the fact that our calculations predict that the participation of a single water molecule results in the abstraction of the formyl hydrogen of formic acid through a hydrogen atom transfer process (hat).

  15. Photoreduction of Carbon Dioxide to Formic Acid in Aqueous Suspension: A Comparison between Phthalocyanine/TiO2 and Porphyrin/TiO2 Catalysed Processes

    Directory of Open Access Journals (Sweden)

    Giuseppe Mele

    2014-12-01

    Full Text Available Composite materials prepared by loading polycrystalline TiO2 powders with lipophilic highly branched Cu(II- and metal-free phthalocyanines or porphyrins, which have been used in the past as photocatalysts for photodegradative processes, have been successfully tested for the efficient photoreduction of carbon dioxide in aqueous suspension affording significant amounts of formic acid. The results indicated that the presence of the sensitizers is beneficial for the photoactivity, confirming the important role of Cu(II co-ordinated in the middle of the macrocycles. A comparison between Cu(II phthalocyanines and Cu(II porphyrins indicated that the Cu(II- phthalocyanine sensitizer was more efficient in the photoreduction of CO2 to formic acid, probably due to its favorable reduction potential.

  16. Communication: Protonation process of formic acid from the ionization and fragmentation of dimers induced by synchrotron radiation in the valence region

    Science.gov (United States)

    Arruda, Manuela S.; Medina, Aline; Sousa, Josenilton N.; Mendes, Luiz A. V.; Marinho, Ricardo R. T.; Prudente, Frederico V.

    2016-04-01

    The ionization and fragmentation of monomers of organic molecules have been extensively studied in the gas phase using mass spectroscopy. In the spectra of these molecules it is possible to identify the presence of protonated cations, which have a mass-to-charge ratio one unit larger than the parent ion. In this work, we investigate this protonation process as a result of dimers photofragmentation. Experimental photoionization and photofragmentation results of doubly deuterated formic acid (DCOOD) in the gas phase by photons in the vacuum ultraviolet region are presented. The experiment was performed by using a time-of-flight mass spectrometer installed at the Brazilian Synchrotron Light Laboratory and spectra for different pressure values in the experimental chamber were obtained. The coupled cluster approach with single and double substitutions was employed to assist the experimental analysis. Results indicate that protonated formic acid ions are originated from dimer dissociation, and the threshold photoionization of (DCOOD)ṡD+ is also determined.

  17. Multi-generation overgrowth induced synthesis of three-dimensional highly branched palladium tetrapods and their electrocatalytic activity for formic acid oxidation.

    Science.gov (United States)

    Zhao, Ruopeng; Fu, Gengtao; Zhou, Tongge; Chen, Yu; Zhu, Xiaoshu; Tang, Yawen; Lu, Tianhong

    2014-03-07

    Highly branched noble metal nanostructures are highly attractive for catalytic applications owing to their specific physical and chemical properties. In this work, three-dimensional highly branched palladium tetrapods (Pd-THBTs) have been constructed in the presence of polyvinylpyrrolidone (PVP) through one-step hydrothermal reduction of ethylenediamine-tetramethylene phosphonate-palladium(II) (EDTMP-Pd(II)) by formaldehyde. The morphology and structure of the Pd-THBTs were fully characterized and the growth mechanism was explored and discussed based on the experimental observation. The concave Pd tetrahedra grew into highly branched Pd tetrapods consisting of four nanothorn-like branches with tetrahedral dimensions through interesting multi-generation nanocrystal overgrowth. The electrocatalytic activities of the as-synthesized Pd-THBTs toward formic acid oxidation were also studied by cyclic voltammetry and chronoamperometry. The Pd-THBTs showed higher catalytic activity and stability for formic acid oxidation than the commercial Pd black.

  18. Photoreduction of carbon dioxide to formic acid in aqueous suspension: a comparison between phthalocyanine/TiO2 and porphyrin/TiO2 catalysed processes.

    Science.gov (United States)

    Mele, Giuseppe; Annese, Cosimo; D'Accolti, Lucia; De Riccardis, Alberto; Fusco, Caterina; Palmisano, Leonardo; Scarlino, Anna; Vasapollo, Giuseppe

    2014-12-30

    Composite materials prepared by loading polycrystalline TiO2 powders with lipophilic highly branched Cu(II)- and metal-free phthalocyanines or porphyrins, which have been used in the past as photocatalysts for photodegradative processes, have been successfully tested for the efficient photoreduction of carbon dioxide in aqueous suspension affording significant amounts of formic acid. The results indicated that the presence of the sensitizers is beneficial for the photoactivity, confirming the important role of Cu(II) co-ordinated in the middle of the macrocycles. A comparison between Cu(II) phthalocyanines and Cu(II) porphyrins indicated that the Cu(II)- phthalocyanine sensitizer was more efficient in the photoreduction of CO2 to formic acid, probably due to its favorable reduction potential.

  19. Comparison of formic acid oxidation at supported Pt catalyst and at low-index Pt single crystal electrodes in sulfuric acid solution

    Directory of Open Access Journals (Sweden)

    AMALIJA V. TRIPKOVIC

    2003-11-01

    Full Text Available The oxidation of formic acid was studied at supported Pt catalyst (47.5 wt%. Pt and a low-index single crystal electrodes in sulfuric acid. The supported Pt catalyst was characterized by the TEM and HRTEM techniques. The mean Pt particle diameter, calculated from electrochemical measurements, fits well with Pt particle size distribution determined by HRTEM. For the mean particle diameter the surface averaged distribution of low-index single crystal facets was established. Comparison of the activities obtained at Pt supported catalyst and low-index Pt single crystal electrodes revealed that Pt(111 plane is the most active in the potential region relevant for fuel cell applications.

  20. A first-principles study on the effect of phosphorus-doped palladium catalyst for formic acid dissociation

    Science.gov (United States)

    He, Feng; Li, Kai; Yin, Cong; Wang, Ying; Jiao, Menggai; Tang, Hao; Wu, Zhijian

    2016-11-01

    The effect of phosphorus-doped Pd(111) catalyst for the formic acid (HCOOH) dissociation has been investigated by using the density functional theory. The adsorption configurations and active sites of the intermediates involved in the HCOOH dissociation on the Pd/P(111) surface are studied. Our results showed that the doping of P on Pd catalyst could strengthen the adsorption of the intermediates. The Pd/P(111) catalyst exhibits higher catalytic activity by the easy formation of CO2 and H2 compared with the Pd(111) catalyst. The dominant HCOOH dissociation product on Pd/P(111) surface is CO2 rather than CO. Based on the computational hydrogen electrode (CHE) model, we found that CO formation is unfavorable on Pd/P(111) under the anode potential condition compared with the Pd(111) catalyst. Furthermore, the microkinetic analysis based on the DFT calculations showed that at high temperatures, the HCOOH dissociation is disfavored on the Pd/P(111) surface.

  1. Nitrogen-doped carbon-TiO2 composite as support of Pd electrocatalyst for formic acid oxidation

    Science.gov (United States)

    Qin, Yuan-Hang; Li, Yunfeng; Lam, Thomas; Xing, Yangchuan

    2015-06-01

    We report Pd nanoparticles supported on a composite consisting of oxide TiO2 and nitrogen-doped carbon for formic acid oxidation (FAO). The nitrogen-doped carbon-TiO2 (NCx-TiO2) composite support was prepared by a simple polymerization-pyrolysis process using commercial TiO2 nanoparticles (P25). Surface analysis showed that elements of Ti, C, O, and N were present on the composite surface, on which nitrogen existed in both pyridinic and quaternary forms. Pd nanoparticles with a mean size of ca. 4 nm were uniformly deposited on the composite via a polyol process. Electrochemical characterizations showed that the NCx-TiO2-supported Pd particles (Pd/NCx-TiO2) exhibited an electrocatalytic activity towards FAO that almost doubled that of the carbon black-supported Pd particles (Pd/C) with much enhanced electrocatalytic stability. The better performance of the composite supported Pd was attributed to a possible electronic structure modification in the metallic Pd particles and bifunctional effect produced by the NCx-TiO2 composite.

  2. One-step electrochemical synthesis of preferentially oriented (111) Pd nanocrystals supported on graphene nanoplatelets for formic acid electrooxidation

    Science.gov (United States)

    Chen, Qing-Song; Xu, Zhong-Ning; Peng, Si-Yan; Chen, Yu-Min; Lv, Dong-Mei; Wang, Zhi-Qiao; Sun, Jing; Guo, Guo-Cong

    2015-05-01

    Pd nanocrystals supported on graphene nanoplatelets (Pd/GNP) have been successfully synthesized by simultaneously electrochemical milling of Pd wire and graphite rod. It should be stressed that without the assistance of graphite rod, the Pd nanocrystals are unable to be obtained individually from Pd wire under the same conditions. Investigations of SEM and TEM demonstrate that Pd/GNP are preferentially decorated with (111) faceted nanocrystals. XPS studies confirm the strong metal-support interaction in Pd/GNP and reveal the surface is almost composed of Pd(0) species. Electrochemical measurements show that the prepared Pd based catalyst exhibits superior electrocatalytic activity towards formic acid oxidation, which may be attributed to the combined effects involving the preferentially oriented (111) surface structure, specific electronic structure and high dispersion of Pd nanocrystals as well as the support effects of graphene nanoplatelets. The synthesis method is simple and effective to prepare excellent new carbon-supported electrocatalysts, which is of great significance for direct organic molecule fuel cell.

  3. Characterization of Au and Bimetallic PtAu Nanoparticles on PDDA-Graphene Sheets as Electrocatalysts for Formic Acid Oxidation

    Science.gov (United States)

    Yung, Tung-Yuan; Liu, Ting-Yu; Huang, Li-Ying; Wang, Kuan-Syun; Tzou, Huei-Ming; Chen, Po-Tuan; Chao, Chi-Yang; Liu, Ling-Kang

    2015-09-01

    Nanocomposite materials of the Au nanoparticles (Au/PDDA-G) and the bimetallic PtAu nanoparticles on poly-(diallyldimethylammonium chloride) (PDDA)-modified graphene sheets (PtAu/PDDA-G) were prepared with hydrothermal method at 90 °C for 24 h. The composite materials Au/PDDA-G and PtAu/PDDA-G were evaluated by transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and thermogravimetric analysis (TGA) for exploring the structural characterization for the electrochemical catalysis. According to TEM results, the diameter of Au and bimetallic PtAu nanoparticles is about 20-50 and 5-10 nm, respectively. X-ray diffraction (XRD) results indicate that both of PtAu and Au nanoparticles exhibit the crystalline plane of (111), (200), (210), and (311). Furthermore, XRD data also show the 2°-3° difference between pristine graphene sheets and the PDDA-modified graphene sheets. For the catalytic activity tests of Au/PDDA-G and PtAu/PDDA-G, the mixture of 0.5 M aqueous H2SO4 and 0.5 M aqueous formic acid was used as model to evaluate the electrochemical characterizations. The catalytic activities of the novel bimetallic PtAu/graphene electrocatalyst would be anticipated to be superior to the previous electrocatalyst of the cubic Pt/graphene.

  4. Au/Pd core-shell nanoparticles with varied hollow Au cores for enhanced formic acid oxidation.

    Science.gov (United States)

    Hsu, Chiajen; Huang, Chienwen; Hao, Yaowu; Liu, Fuqiang

    2013-03-01

    A facile method has been developed to synthesize Au/Pd core-shell nanoparticles via galvanic replacement of Cu by Pd on hollow Au nanospheres. The unique nanoparticles were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy, ultraviolet-visible spectroscopy, and electrochemical measurements. When the concentration of the Au solution was decreased, grain size of the polycrystalline hollow Au nanospheres was reduced, and the structures became highly porous. After the Pd shell formed on these Au nanospheres, the morphology and structure of the Au/Pd nanoparticles varied and hence significantly affected the catalytic properties. The Au/Pd nanoparticles synthesized with reduced Au concentrations showed higher formic acid oxidation activity (0.93 mA cm-2 at 0.3 V) than the commercial Pd black (0.85 mA cm-2 at 0.3 V), suggesting a promising candidate as fuel cell catalysts. In addition, the Au/Pd nanoparticles displayed lower CO-stripping potential, improved stability, and higher durability compared to the Pd black due to their unique core-shell structures tuned by Au core morphologies.

  5. Preparation of Pd-Co-based nanocatalysts and their superior applications in formic acid decomposition and methanol oxidation.

    Science.gov (United States)

    Qin, Yu-ling; Liu, Ya-cheng; Liang, Fei; Wang, Li-min

    2015-01-01

    Formic acid (FA) and methanol, as convenient hydrogen-containing materials, are most widely used for fuel cells. However, using suitable and low-cost catalysts to further improve their energy performance still is a matter of great significance. Herein, PdCo and PdCo@Pd nanocatalysts (NCs) are successfully prepared by the facile method. Pd 3d binding energy decreases due to the presence of Co. Consequently, PdCo@Pd NCs exhibit high catalytic activity and selectivity toward FA dehydrogenation at room temperature. The gas-generation rate at 30 min is 65.4 L h(-1)  g(-1) . PdCo/C has the worst catalytic performance in this reaction, despite the fact that it has a high gas-generation rate in the initial 30 min. Furthermore, both PdCo and PdCo@Pd NCs have enhanced electrocatalytic performance toward methanol oxidation. Their maximum currents are 966 and 1205 mA mg(-1) , respectively, which is much higher than monometallic Pd/C. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Facile synthesis of palladium right bipyramids and their use as seeds for overgrowth and as catalysts for formic acid oxidation.

    Science.gov (United States)

    Xia, Xiaohu; Choi, Sang-Il; Herron, Jeffrey A; Lu, Ning; Scaranto, Jessica; Peng, Hsin-Chieh; Wang, Jinguo; Mavrikakis, Manos; Kim, Moon J; Xia, Younan

    2013-10-23

    Controlling the shape and thus facets of metal nanocrystals is an effective way to enhance their performance in catalytic reactions. While Pd nanocrystals with a myriad of shapes have been successfully prepared with good uniformity and in high yield, Pd right bipyramids (RBPs) that have a singly twinned structure have been elusive. We report a facile route based on polyol reduction for the synthesis of Pd RBPs with purity >90% and sizes controlled in the range 5-15 nm. The success of our synthesis relies on the use of iodide ions to manipulate the strength of an oxidative etchant and selectively cap the Pd{100} facets. The as-prepared RBPs could serve as seeds to generate a set of Pd nanocrystals with novel shapes and structures. The RBPs also exhibited enhanced catalytic activity toward formic acid oxidation, with a current density 2.5 and 7.1 times higher than those of the single-crystal Pd nanocubes (which were also mainly covered by {100} facets) and commercial Pd black, respectively.

  7. Adsorption and decomposition mechanism of formic acid on the Ga2O3 surface by first principle studies

    Science.gov (United States)

    Liu, Yan; Li, Zhen Hua

    2017-02-01

    The adsorption and decomposition of formic acid (FA) on the Ga2O3(100) surface was studied with density functional theory. On the perfect Ga2O3(100) surface, the preferred adsorption state of FA is a monodentate configuration while the most stable adsorption state is a bridging configuration. Heating the surface would convert FA from monodentate to bridging configuration and further heating would decompose FA into CO2 and two surface hydroxyl groups. On the other hand, on the O(2)-defect Ga2O3(100) surface the preferred adsorption state of FA is a bridging formate with one O atom of formate filling the O(2) vacancy. Heating the surface would generate CO and two surface hydroxyl groups. If the Ga2O3(100) surface is used as decomposition catalyst, then at low temperature the formation of a small amount of CO2 can be observed. On the other hand, at high temperature continuous formation of CO and H2O can be observed. The active sites for FA decomposition are the O(2) defects on the surface formed in situ from the removal of water from surface hydroxyl groups. The strong dependence of mechanism on experimental conditions explains why no consensus has been reached in the previous experimental studies regarding the adsorption and decomposition mechanism of FA.

  8. Theoretical insights into the effects of the diameter and helicity on the adsorption of formic acid on silicon carbide nanotube

    Energy Technology Data Exchange (ETDEWEB)

    Chen Ying; Wang Hongxia; Zhao Jingxiang, E-mail: xjz_hmily@yahoo.com.cn; Wang Xiaoguang; Cai Qinghai [Harbin Normal University, Key Lab for Design and Synthesis of Functionalized Materials and Green Catalysis, School of Chemistry and Chemical Engineering (China); Ding Yihong, E-mail: yhdd@jlu.edu.cn [Jilin University, State Key Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry (China); Wang Xuanzhang [Harbin Normal University, Key Lab for Design and Synthesis of Functionalized Materials and Green Catalysis, School of Chemistry and Chemical Engineering (China)

    2012-01-15

    The anchoring of small organic molecules onto the semiconductor surface has a great application for developing various molecular devices, such as novel solar cells, fuel cells, hybrid systems, sensors, and so on. In the present work, by carrying out detailed density-functional theory calculations, we have investigated the adsorption of the formic acid (HCOOH) molecule on planar and various curved silicon carbide (SiC) nanotubes. By considering both the molecular and dissociative adsorptions of HCOOH on these SiC nanomaterials, we found that the HCOOH molecule prefers to dissociate into HCOO and H group. Interestingly, different adsorption modes were found for HCOOH on SiC nanotubes, i.e. dissociative monodentate or bidentate adsorption, which depends on the tube diameter and helicity. For (n, 0) SiC nanotube, the monodentate adsorption mode is energetically favorable when n is less than 10. However, HCOOH prefers to be adsorbed on other (n, 0) SiC nanotubes in a bridged bidentate mode, which is similar to those of on (n, n) SiC nanotubes or planar SiC sheet. Moreover, upon HCOOH adsorption, these SiC nanomaterials remain to be of the semiconducting nature and their band gaps are decreased to different degrees. In addition, we also explored the effects of HCOOH coverage on its adsorption on SiC nanotube.

  9. Characterization of Au and Bimetallic PtAu Nanoparticles on PDDA-Graphene Sheets as Electrocatalysts for Formic Acid Oxidation.

    Science.gov (United States)

    Yung, Tung-Yuan; Liu, Ting-Yu; Huang, Li-Ying; Wang, Kuan-Syun; Tzou, Huei-Ming; Chen, Po-Tuan; Chao, Chi-Yang; Liu, Ling-Kang

    2015-12-01

    Nanocomposite materials of the Au nanoparticles (Au/PDDA-G) and the bimetallic PtAu nanoparticles on poly-(diallyldimethylammonium chloride) (PDDA)-modified graphene sheets (PtAu/PDDA-G) were prepared with hydrothermal method at 90 °C for 24 h. The composite materials Au/PDDA-G and PtAu/PDDA-G were evaluated by transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and thermogravimetric analysis (TGA) for exploring the structural characterization for the electrochemical catalysis. According to TEM results, the diameter of Au and bimetallic PtAu nanoparticles is about 20-50 and 5-10 nm, respectively. X-ray diffraction (XRD) results indicate that both of PtAu and Au nanoparticles exhibit the crystalline plane of (111), (200), (210), and (311). Furthermore, XRD data also show the 2°-3° difference between pristine graphene sheets and the PDDA-modified graphene sheets. For the catalytic activity tests of Au/PDDA-G and PtAu/PDDA-G, the mixture of 0.5 M aqueous H2SO4 and 0.5 M aqueous formic acid was used as model to evaluate the electrochemical characterizations. The catalytic activities of the novel bimetallic PtAu/graphene electrocatalyst would be anticipated to be superior to the previous electrocatalyst of the cubic Pt/graphene.

  10. Facile fabrication of robust silk nanofibril films via direct dissolution of silk in CaCl2-formic acid solution.

    Science.gov (United States)

    Zhang, Feng; You, Xinran; Dou, Hao; Liu, Zhi; Zuo, Baoqi; Zhang, Xueguang

    2015-02-11

    In this study, we report for the first time a novel silk fibroin (SF) nanofibrous films with robust mechanical properties that was fabricated by directly dissolving silk in CaCl2-formic acid solution. CaCl2-FA dissolved silk rapidly at room temperature, and more importantly, it disintegrated silk into nanofibrils instead of separate molecules. The morphology of nanofibrils crucially depended on CaCl2 concentrations, which resulted in different aggregation nanostructure in SF films. The SF film after drawing had maximum elastic modulus, ultimate tensile strength, and strain at break reaching 4 GPa, 106 MPa, and 29%, respectively, in dry state and 206 MPa, 28 MPa, and 188%, respectively, in wet state. Moreover, multiple yielding phenomena and substantially strain-hardening behavior was also observed in the stretched films, indicating the important role played by preparation method in regulating the mechanical properties of SF films. These exceptional and unique mechanical properties were suggested to be caused by preserving silk nanofibril during dissolution and stretching to align these nanofibrils. Furthermore, the SF films exhibit excellent biocompatibility, supporting marrow stromal cells adhesion and proliferation. The film preparation was facile, and the resulting SF films manifested enhanced mechanical properties, unique nanofibrous structures, and good biocompability.

  11. Gold supported on zirconia polymorphs for hydrogen generation from formic acid in base-free aqueous medium

    Science.gov (United States)

    Bi, Qing-Yuan; Lin, Jian-Dong; Liu, Yong-Mei; He, He-Yong; Huang, Fu-Qiang; Cao, Yong

    2016-10-01

    Formic acid (FA) has attracted considerable attention as a safe and convenient hydrogen storage material for renewable energy transformation. However, development of an efficient heterogeneous catalyst for selective FA decomposition for ultraclean H2 gas in the absence of any alkalis or additives under mild conditions remains a major challenge. Based on our previous work on Au/ZrO2 as a robust and efficient catalyst for FA dehydrogenation in amine system, we report here ZrO2 with different nanocrystal polymorphs supported Au nanoparticles can achieve near completion of FA dehydrogenation in base-free aqueous medium. Of significant importance is that an excellent rate of up to 81.8 L H2 gAu-1 h-1 in open system and highly pressurized gas of 5.9 MPa in closed one can be readily attained at 80 °C for Au/m-ZrO2. In situ diffuse reflectance infrared Fourier transform (DRIFT) and CO2-temperature programmed desorption (TPD) techniques revealed that Au/m-ZrO2 exhibits a higher density of surface basic sites than Au/t-ZrO2 and Au/a-ZrO2. Basic sites in surface can substantially facilitate crucial FA deprotonation process which appears to be a key factor for achieving high dehydrogenation activity. The H/D exchange between solvent of H2O and substrate of FA was observed by the kinetic isotope effect experiments.

  12. Au/Pd core-shell nanoparticles with varied hollow Au cores for enhanced formic acid oxidation

    Science.gov (United States)

    Hsu, Chiajen; Huang, Chienwen; Hao, Yaowu; Liu, Fuqiang

    2013-03-01

    A facile method has been developed to synthesize Au/Pd core-shell nanoparticles via galvanic replacement of Cu by Pd on hollow Au nanospheres. The unique nanoparticles were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy, ultraviolet-visible spectroscopy, and electrochemical measurements. When the concentration of the Au solution was decreased, grain size of the polycrystalline hollow Au nanospheres was reduced, and the structures became highly porous. After the Pd shell formed on these Au nanospheres, the morphology and structure of the Au/Pd nanoparticles varied and hence significantly affected the catalytic properties. The Au/Pd nanoparticles synthesized with reduced Au concentrations showed higher formic acid oxidation activity (0.93 mA cm-2 at 0.3 V) than the commercial Pd black (0.85 mA cm-2 at 0.3 V), suggesting a promising candidate as fuel cell catalysts. In addition, the Au/Pd nanoparticles displayed lower CO-stripping potential, improved stability, and higher durability compared to the Pd black due to their unique core-shell structures tuned by Au core morphologies.

  13. A first principles comparison of the mechanism and site requirements for the electrocatalytic oxidation of methanol and formic acid over Pt.

    Science.gov (United States)

    Neurock, Matthew; Janik, Michael; Wieckowski, Andrzej

    2008-01-01

    First principles density functional theoretical calculations were carried out to examine and compare the reaction paths and ensembles for the electrocatalytic oxidation of methanol and formic acid in the presence of solution and applied electrochemical potential. Methanol proceeds via both direct and indirect pathways which are governed by the initial C-H and O-H bond activation, respectively. The primary path requires an ensemble size of between 3-4 Pt atoms, whereas the secondary path is much less structure sensitive, requiring only 1-2 metal atoms. The CO that forms inhibits the surface at potentials below 0.66 V NHE. The addition of Ru results in bifunctional as well as electronic effects that lower the onset potential for CO oxidation. In comparison, formic acid proceeds via direct, indirect and formate pathways. The direct path, which involves the activation of the C-H bond followed by the rapid activation of the O-H bond, was calculated to be the predominant path especially at potentials greater than 0.6 V. The activation of the O-H bond of formic acid has a very low barrier and readily proceeds to form surface formate intermediates as the first step of the indirect formate path. Adsorbed formate, however, was calculated to be very stable, and thus acts as a spectator species. At potentials below 0.6 V NHE, CO, which forms via the non-Faradaic hydrolytic splitting of the C-O bond over stepped or defect sites in the indirect path, can build up and poison the surface. The results indicate that the direct path only requires a single Pt atom whereas the indirect path requires a larger surface ensemble and stepped sites. This suggests that alloys will not have the same influence on formic acid oxidation as they do for methanol oxidation.

  14. Multi-generation overgrowth induced synthesis of three-dimensional highly branched palladium tetrapods and their electrocatalytic activity for formic acid oxidation

    Science.gov (United States)

    Zhao, Ruopeng; Fu, Gengtao; Zhou, Tongge; Chen, Yu; Zhu, Xiaoshu; Tang, Yawen; Lu, Tianhong

    2014-02-01

    Highly branched noble metal nanostructures are highly attractive for catalytic applications owing to their specific physical and chemical properties. In this work, three-dimensional highly branched palladium tetrapods (Pd-THBTs) have been constructed in the presence of polyvinylpyrrolidone (PVP) through one-step hydrothermal reduction of ethylenediamine-tetramethylene phosphonate-palladium(ii) (EDTMP-PdII) by formaldehyde. The morphology and structure of the Pd-THBTs were fully characterized and the growth mechanism was explored and discussed based on the experimental observation. The concave Pd tetrahedra grew into highly branched Pd tetrapods consisting of four nanothorn-like branches with tetrahedral dimensions through interesting multi-generation nanocrystal overgrowth. The electrocatalytic activities of the as-synthesized Pd-THBTs toward formic acid oxidation were also studied by cyclic voltammetry and chronoamperometry. The Pd-THBTs showed higher catalytic activity and stability for formic acid oxidation than the commercial Pd black.Highly branched noble metal nanostructures are highly attractive for catalytic applications owing to their specific physical and chemical properties. In this work, three-dimensional highly branched palladium tetrapods (Pd-THBTs) have been constructed in the presence of polyvinylpyrrolidone (PVP) through one-step hydrothermal reduction of ethylenediamine-tetramethylene phosphonate-palladium(ii) (EDTMP-PdII) by formaldehyde. The morphology and structure of the Pd-THBTs were fully characterized and the growth mechanism was explored and discussed based on the experimental observation. The concave Pd tetrahedra grew into highly branched Pd tetrapods consisting of four nanothorn-like branches with tetrahedral dimensions through interesting multi-generation nanocrystal overgrowth. The electrocatalytic activities of the as-synthesized Pd-THBTs toward formic acid oxidation were also studied by cyclic voltammetry and chronoamperometry. The

  15. One-pot synthesis of Pd-Pt@Pd core-shell nanocrystals with enhanced electrocatalytic activity for formic acid oxidation

    KAUST Repository

    Yuan, Qiang

    2014-01-01

    Well-defined Pd-Pt@Pd core-shell nanocrystals with a Pd-Pt alloy core and a conformal Pd shell of ~2-3 nm were directly synthesized through a one-pot, aqueous solution approach without any preformed Pd or Pt seeds. These Pd-Pt@Pd core-shell nanocrystals show an enhanced electrocatalytic activity for formic acid oxidation compared with commercial Pd black. This journal is © 2014 The Royal Society of Chemistry.

  16. Global distributions of methanol and formic acid retrieved for the first time from the IASI/MetOp thermal infrared sounder

    Directory of Open Access Journals (Sweden)

    A. Razavi

    2011-01-01

    Full Text Available Methanol (CH3OH and formic acid (HCOOH are among the most abundant volatile organic compounds present in the atmosphere. In this work, we derive the global distributions of these two organic species using for the first time the Infrared Atmospheric Sounding Interferometer (IASI launched onboard the MetOp-A satellite in 2006. This paper describes the method used and provides a first critical analysis of the retrieved products. The retrieval process follows a two-step approach in which global distributions are first obtained on the basis of a simple radiance indexing (transformed into brightness temperatures, and then mapped onto column abundances using suitable conversion factors. For methanol, the factors were calculated using a complete retrieval approach in selected regions. In the case of formic acid, a different approach, which uses a set of forward simulations for representative atmospheres, has been used. In both cases, the main error sources are carefully determined: the average relative error on the column for both species is estimated to be about 50%, increasing to about 100% for the least favorable conditions. The distributions for the year 2009 are discussed in terms of seasonality and source identification. Time series comparing methanol, formic acid and carbon monoxide in different regions are also presented.

  17. Effect of Ducks Yolk and Formic Acid in Fat Liquoring Process on the Physical Quality of Broiler Chicken Shank Chrome Tanning

    Directory of Open Access Journals (Sweden)

    Mustakim Mustakim

    2017-07-01

    Full Text Available The purpose of this study was to find out the effect of ducks yolk and formic acid in fat liquoring process of the tanned skin.  The materials used in this study were 30 pieces of 7 weeks of broiler chicken shank. The study was carried out using completely randomized design. The variables measured were softness, tensile strength and stretch of the tanned skin. Data were analyzed by analysis of variance and followed by Duncan’s Multiple Range Test. The research results showed that the addition of ducks yolk and formic acid didn’t gave significantly affect on the softness (p>0.05, while gave highly significant affect on tensile strength and stretch (p0.05 on the softness and stretch, and have significantly (p<0.05 on the tensile strength of leather. The conclusion of this research the addition of 11% duck yolk and 1% formic acid in fat liquoring is the best treatment for broiler chicken shank chrome tanning on the skin softness (2,667, tensile strength (135,707 kg/cm2, and stretch (37,34%, respectively.

  18. Pd and PdCo alloy nanoparticles supported on polypropylenimine dendrimer-grafted graphene: A highly efficient anodic catalyst for direct formic acid fuel cells

    Science.gov (United States)

    Hosseini, Hadi; Mahyari, Mojtaba; Bagheri, Akbar; Shaabani, Ahmad

    2014-02-01

    For the first time, Pd and PdCo alloy nanoparticles supported on polypropylenimine dendrimer-grafted graphene (Pd and PdCo/PPI-g-G) are prepared and characterized with Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance spectroscopy (NMR), thermogravimetric analysis (TGA), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM). The electrocatalytic activity of Pd and PdCo/PPI-g-G are investigated in terms of formic acid electrooxidation in H2SO4 aqueous solution. The PdCo/PPI-g-G shows much higher formic acid oxidation activities in comparison with Pd/PPI-g-G, and it is more resistant to the surface poisoning. This improved electrocatalytic performance may be due to the fine dispersion of PdCo alloy nanoparticles and bi-functional effect. The kinetic parameters such as charge transfer coefficient and the diffusion coefficient of formic acid are estimated under the quasi steady-state conditions.

  19. Preparation and characterizations of highly dispersed carbon supported PdxPty/C catalysts by a modified citrate reduction method for formic acid electrooxidation

    Science.gov (United States)

    Li, Zuopeng; Li, Muwu; Han, Mingjia; Zeng, Jianhuang; Li, Yuexia; Guo, Yanqin; Liao, Shijun

    2014-05-01

    Carbon supported PdxPty/C (atomic ratio x:y from 1:1 to 6:1) have been prepared by a modified citrate reduction method assisted by inorganic stabilizers. Without using high molecular capping agents as stabilizers, the PdxPty/C catalysts are highly dispersed on the carbon support and no particle aggregations are found for the PdxPty/C catalysts. X-ray photoelectron spectroscopy reveals either Pt or Pd segregation for the PdxPty/C catalysts depending on Pd/Pt atomic ratio. CO stripping in 0.5 M H2SO4 and repeated formic acid oxidation cyclic voltammetry in 0.5 M HCHO + 0.5 M H2SO4 have been conducted to test out the CO tolerance and stability of the catalysts, respectively. It has been found that, with the increase of Pd/Pt atomic ratio, the CO stripping peak potential increases (less CO tolerant), whereas the catalyst stability towards formic acid oxidation decreases. The as-prepared catalysts reveal excellent mass-normalized formic acid oxidation activity as compared with published results possibly due to high dispersion and the absence of high molecular capping agents.

  20. Use of Activated Carbon in Packaging to Attenuate Formaldehyde-Induced and Formic Acid-Induced Degradation and Reduce Gelatin Cross-Linking in Solid Dosage Forms.

    Science.gov (United States)

    Colgan, Stephen T; Zelesky, Todd C; Chen, Raymond; Likar, Michael D; MacDonald, Bruce C; Hawkins, Joel M; Carroll, Sophia C; Johnson, Gail M; Space, J Sean; Jensen, James F; DeMatteo, Vincent A

    2016-07-01

    Formaldehyde and formic acid are reactive impurities found in commonly used excipients and can be responsible for limiting drug product shelf-life. Described here is the use of activated carbon in drug product packaging to attenuate formaldehyde-induced and formic acid-induced drug degradation in tablets and cross-linking in hard gelatin capsules. Several pharmaceutical products with known or potential vulnerabilities to formaldehyde-induced or formic acid-induced degradation or gelatin cross-linking were subjected to accelerated stability challenges in the presence and absence of activated carbon. The effects of time and storage conditions were determined. For all of the products studied, activated carbon attenuated drug degradation or gelatin cross-linking. This novel use of activated carbon in pharmaceutical packaging may be useful for enhancing the chemical stability of drug products or the dissolution stability of gelatin-containing dosage forms and may allow for the 1) extension of a drug product's shelf-life when the limiting attribute is a degradation product induced by a reactive impurity, 2) marketing of a drug product in hotter and more humid climatic zones than currently supported without the use of activated carbon, and 3) enhanced dissolution stability of products that are vulnerable to gelatin cross-linking.

  1. Optimal design and experimental validation of a simulated moving bed chromatography for continuous recovery of formic acid in a model mixture of three organic acids from Actinobacillus bacteria fermentation.

    Science.gov (United States)

    Park, Chanhun; Nam, Hee-Geun; Lee, Ki Bong; Mun, Sungyong

    2014-10-24

    The economically-efficient separation of formic acid from acetic acid and succinic acid has been a key issue in the production of formic acid with the Actinobacillus bacteria fermentation. To address this issue, an optimal three-zone simulated moving bed (SMB) chromatography for continuous separation of formic acid from acetic acid and succinic acid was developed in this study. As a first step for this task, the adsorption isotherm and mass-transfer parameters of each organic acid on the qualified adsorbent (Amberchrom-CG300C) were determined through a series of multiple frontal experiments. The determined parameters were then used in optimizing the SMB process for the considered separation. During such optimization, the additional investigation for selecting a proper SMB port configuration, which could be more advantageous for attaining better process performances, was carried out between two possible configurations. It was found that if the properly selected port configuration was adopted in the SMB of interest, the throughout and the formic-acid product concentration could be increased by 82% and 181% respectively. Finally, the optimized SMB process based on the properly selected port configuration was tested experimentally using a self-assembled SMB unit with three zones. The SMB experimental results and the relevant computer simulation verified that the developed process in this study was successful in continuous recovery of formic acid from a ternary organic-acid mixture of interest with high throughput, high purity, high yield, and high product concentration. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Oxidation of formic acid by oxyanions of chlorine and its implications to the Viking Labeled Release experiment

    Science.gov (United States)

    Martinez, P.; Navarro-gonzalez, R.

    2013-05-01

    The Viking Landers that arrived on Mars in 1976 carried out three biological experiments designed to investigate if there was microbial life. These were the Gas-Exchange, Pyrolitic Release and Labeled Release experiments. The three experiments yielded positive responses but the Labeled Release experiment had a kinetic response indicative of microbial activity. The experiment consisted of adding a broth of nutrients (formic acid, glycolic acid, glycine, D- and L-alanine and D- and L-lactic acid uniformly marked with 14C) to martian soil samples. The results were surprising; the nutrients were consumed releasing radioactive gases in a manner that is compatible by terrestrial microorganisms. The existence of Martian life was contradicted by soil chemical analysis that indicated the absence of organic compounds above the detection limits of parts per billion (ppb). Instead the positive response of the Labeled Release Experiment was attributed to the existence of peroxides and/or superoxides in the Martian soils that destroyed the nutrients upon contact. Recently, the Phoenix mission that landed in the Martian Arctic in 2008 revealed the presence of a highly oxidized form of the element chlorine in the soil: perchlorate. Perchlorate is thought to have formed in the Martian atmosphere by the oxidation of chloride from volcanic sources with ozone. Therefore perchlorate is formed by the stepwise oxidation of hypochlorite, chlorite and chlorate. These oxyanions of chlorine are powerful oxidizers that may exist in the Martian soil and may have reacted with the nutrients of the Labeled Release Experiment. This paper aims to better understand these results by designing experiments to determine the kinetics of decomposition of formic acid to carbon dioxide with different oxidized forms of chlorine by headspace technique in gas chromatography coupled to mass spectrometry (GC / MS). Previous studies done in the laboratory showed that only hypochlorite quantitatively reacted with

  3. Ascorbate electro-oxidation by modified electrodes: Polypyrrole and polypyrrole/Ni(OH){sub 2} composite thin films

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues da Silva, Marcelo [Faculdade de Engenharia/Colegio Tecnico Industrial, UNESP, CP 473, 17033-360 Bauru, SP (Brazil); Ferreira, Marcelo Silva [Departamento de Quimica, Centro de Ciencias Exatas, UEL, CP 6001, 86051-980 Londrina, PR (Brazil); Dall' Antonia, Luiz Henrique, E-mail: luizh@uel.br [Departamento de Quimica, Centro de Ciencias Exatas, UEL, CP 6001, 86051-980 Londrina, PR (Brazil)

    2012-08-01

    The present paper describes the utilization of polypyrrole and the composite of polypyrrole doped with nickel hydroxide modified electrodes toward the catalytic oxidation of ascorbate. Films were potentiostatically deposited onto a glassy carbon surface and Fluor-doped tin oxide glass for different times. The physical characterization was performed using the low angle X-ray diffraction technique. Furthermore, the films were electrochemically characterized using cyclic voltammetry. The X-ray diffraction results show the existence of different polymorphic phases of nickel hydroxide in the polymer matrix, and the {beta}-Ni(OH){sub 2} phase appears to be dominant. The cyclic voltammetry profile in KOH solution shows the presence of two redox peaks that are related to the Ni{sup II}/Ni{sup III} and Ni{sup III}/Ni{sup II} couples, at approximately 0.5 and 0.35 V, respectively. The reversible electro-oxidation of ascorbate was observed on the surface of the polypyrrole and composite films. The analytical curves obtained using voltammetric techniques show a linear relationship between the faradaic current and the increase of the ascorbic acid concentration. The sensitivity of these films, which is obtained from the slope of the analytical curves, shows that the composite film is more electroactive than the polypyrrole film: 133.4 mA L mol{sup -1} cm{sup -2} and 83.8 mA L mol{sup -1} cm{sup -2}, respectively. The rate constants of the catalytic ascorbate electro-oxidation were also reported, where the mean values were found to be 217.74 M{sup -1} s{sup -1} and 54.37 M{sup -1} s{sup -1}, for the composite and polypyrrole films, respectively. The low cost of polypyrrole doped with Ni(OH){sub 2} composite electrodes presents a more selective and high sensitivity to determine ascorbic acid concentration. - Highlights: Black-Right-Pointing-Pointer Electrochemical synthesis of polypyrrole and nickel hydroxide composite thin films Black-Right-Pointing-Pointer High sensitivity

  4. Sb Surface Modification of Pd by Mimetic Underpotential Deposition for Formic Acid Oxidation

    OpenAIRE

    Long-Long Wang; Xiao-Lu Cao; Ya-Jun Wang; Qiao-Xia Li

    2015-01-01

    The newly proposed mimetic underpotential deposition (MUPD) technique was extended to modify Pd surfaces with Sb through immersing a Pd film electrode or dispersing Pd/C powder in a Sb(III)-containing solution blended with ascorbic acid (AA). The introduction of AA shifts down the open circuit potential of Pd substrate available to achieve suitable Sb modification. The electrocatalytic activity and long-term stability towards HCOOH electrooxidation of the Sb modified Pd surfaces (film elect...

  5. Bifunctional Pt-Si Alloys for Small Organic Molecule Electro-oxidation

    DEFF Research Database (Denmark)

    Permyakova, Anastasia Aleksandrovna; Suntivich, Jin; Han, Binghong

    Designing highly active catalysts for electro-oxidation of small organic molecules can help to reduce the anodic overpotential for more efficient utilization of hydrocarbon fuels. The challenge in developing more active electrocatalysts for electro-oxidation reactions is to satisfy the stringent...... bifunctional requirement, which demands both adsorption and water oxidation sites. In this contribution, we explore the possibility of using Pt-Si alloys to fulfill this bifunctional requirement. Silicon, a highly oxophillic element, is alloyed into Pt as a site for water oxidation, while Pt serves as a CO...... adsorption site. We will discuss the enhanced activity of Pt-Si alloys for small organic molecule oxidation, which can be attributed to the improved CO electro-oxidation kinetics on Pt-Si....

  6. Measuring acetic and formic acid by proton transfer reaction-mass spectrometry: sensitivity, humidity dependence, and quantifying interferences

    Directory of Open Access Journals (Sweden)

    M. Baasandorj

    2014-10-01

    Full Text Available We present a detailed investigation of the factors governing the quantification of formic acid (FA, acetic acid (AA and their relevant mass analogues by proton transfer reaction-mass spectrometry (PTR-MS, assess the underlying fragmentation pathways and humidity dependencies, and present a new method for separating FA and AA from their main isobaric interferences. PTR-MS sensitivities towards glycolaldehyde, ethyl acetate and peroxyacetic acid at m/z 61 are comparable to that for AA; when present, these species will interfere with ambient AA measurements by PTR-MS. Likewise, when it is present, dimethyl ether can interfere with FA measurements. On the other hand, for E/N = 125 Townsend (Td, the PTR-MS sensitivity towards ethanol at m/z 47 is 5–20× lower than for FA; ethanol will then only be an important interference when present in much higher abundance than FA. Sensitivity towards 2-propanol is m/z 79, which is also commonly used to measure benzene. However, the resulting interference for benzene is only significant when E/N is low (E/N, but decreases with humidity at high E/N due to water-driven fragmentation. Sensitivity towards FA decreases with humidity throughout the full range of E/N. For glycoaldehyde and the alcohols, the sensitivity increases with humidity due to ligand switching reactions (at low E/N and reduced fragmentation in the presence of water (at high E/N. Their role as interferences will typically be greatest at high humidity. For compounds such as AA where the humidity effect depends strongly on the collisional energy in the drift tube, simple humidity correction factors (XR will only be relevant for a specific instrumental configuration. We recommend E/N∼125 Td as an effective condition for AA and FA measurements by PTR-MS, as it optimizes between the competing E/N-dependent mechanisms controlling their sensitivities and those of the interfering species. Finally, we present the design and evaluation of an online acid

  7. Measuring acetic and formic acid by proton transfer reaction-mass spectrometry: sensitivity, humidity dependence, and quantifying interferences

    Science.gov (United States)

    Baasandorj, M.; Millet, D. B.; Hu, L.; Mitroo, D.; Williams, B. J.

    2014-10-01

    We present a detailed investigation of the factors governing the quantification of formic acid (FA), acetic acid (AA) and their relevant mass analogues by proton transfer reaction-mass spectrometry (PTR-MS), assess the underlying fragmentation pathways and humidity dependencies, and present a new method for separating FA and AA from their main isobaric interferences. PTR-MS sensitivities towards glycolaldehyde, ethyl acetate and peroxyacetic acid at m/z 61 are comparable to that for AA; when present, these species will interfere with ambient AA measurements by PTR-MS. Likewise, when it is present, dimethyl ether can interfere with FA measurements. On the other hand, for E/N = 125 Townsend (Td), the PTR-MS sensitivity towards ethanol at m/z 47 is 5-20× lower than for FA; ethanol will then only be an important interference when present in much higher abundance than FA. Sensitivity towards 2-propanol is product ions of AA, glycoaldehyde, and propanols occur at m/z 79, which is also commonly used to measure benzene. However, the resulting interference for benzene is only significant when E/N is low (<∼100 Td). Addition of water vapor affects the PTR-MS response to a given compound by (i) changing the yield for fragmentation reactions, and (ii) increasing the importance of ligand switching reactions. In the case of AA, sensitivity to the molecular ion increases with humidity at low E/N, but decreases with humidity at high E/N due to water-driven fragmentation. Sensitivity towards FA decreases with humidity throughout the full range of E/N. For glycoaldehyde and the alcohols, the sensitivity increases with humidity due to ligand switching reactions (at low E/N) and reduced fragmentation in the presence of water (at high E/N). Their role as interferences will typically be greatest at high humidity. For compounds such as AA where the humidity effect depends strongly on the collisional energy in the drift tube, simple humidity correction factors (XR) will only be

  8. Measuring acetic and formic acid by proton-transfer-reaction mass spectrometry: sensitivity, humidity dependence, and quantifying interferences

    Science.gov (United States)

    Baasandorj, M.; Millet, D. B.; Hu, L.; Mitroo, D.; Williams, B. J.

    2015-03-01

    We present a detailed investigation of the factors governing the quantification of formic acid (FA), acetic acid (AA), and their relevant mass analogues by proton-transfer-reaction mass spectrometry (PTR-MS), assess the underlying fragmentation pathways and humidity dependencies, and present a new method for separating FA and AA from their main isobaric interferences. PTR-MS sensitivities towards glycolaldehyde, ethyl acetate, and peroxyacetic acid at m/z 61 are comparable to that for AA; when present, these species will interfere with ambient AA measurements by PTR-MS. Likewise, when it is present, dimethyl ether can interfere with FA measurements. For a reduced electric field (E/N) of 125 Townsend (Td), the PTR-MS sensitivity towards ethanol at m/z 47 is 5-20 times lower than for FA; ethanol will then only be an important interference when present in much higher abundance than FA. Sensitivity towards 2-propanol is product ions of AA, glycolaldehyde, and propanols occur at m/z 79, which is also commonly used to measure benzene. However, the resulting interference for benzene is only significant when E/N is low (≲100 Td). Addition of water vapor affects the PTR-MS response to a given compound by (i) changing the yield for fragmentation reactions and (ii) increasing the importance of ligand switching reactions. In the case of AA, sensitivity to the molecular ion increases with humidity at low E/N but decreases with humidity at high E/N due to water-driven fragmentation. Sensitivity towards FA decreases with humidity throughout the full range of E/N. For glycolaldehyde and the alcohols, the sensitivity increases with humidity due to ligand switching reactions (at low E/N) and reduced fragmentation in the presence of water (at high E/N). Their role as interferences will typically be greatest at high humidity. For compounds such as AA where the humidity effect depends strongly on the collisional energy in the drift tube, simple humidity correction factors (XR

  9. Selection of a Commercial Anode Oxide Coating for Electro-oxidation of Cyanide

    Directory of Open Access Journals (Sweden)

    Lanza Marcos Roberto V.

    2002-01-01

    Full Text Available This paper presents a study of the performance of two commercial dimensionally stable anode (DSA® oxide coatings in the electrochemical process for cyanide oxidation. The coatings studied were 70TiO2/30RuO2 and 55Ta2O5/45IrO2, on Ti substrate. The efficiency of both materials in the electro-oxidation of free cyanide was compared using linear voltammetry and electrolysis at constant potential. The 70TiO2/30RuO2 electrode shows a better performance in the electro-oxidation of free cyanide.

  10. Performance increase of microfluidic formic acid fuel cell using Pd/MWCNTs as catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Morales-Acosta, D.; Rodriguez G., H.; Godinez, Luis A.; Arriaga, L.G. [Centro de Investigacion y Desarrollo Tecnologico en Electroquimica, S.C. Parque Tecnologico Queretaro Sanfandila, P.O. Box 064, Pedro Escobedo, 76703 Queretaro (Mexico)

    2010-04-02

    This paper shows that the combination of an O{sub 2} saturated acidic fluid setup (O{sub 2}-setup) and a composite of Pd nanoparticles supported on multiwalled-carbon nanotubes (Pd/MWCNTs) as anode catalyst material, results in the improvement of microfluidic fuel cell performance. Microfluidic fuel cells were constructed and evaluated at low HCOOH concentrations (0.1 and 0.5 M) using Pd/V XC-72 and Pd/MWCNTs as anode and Pt/V XC-72 as cathode electrode materials, respectively. The results show a higher power density (2.9 mW cm{sup -2}) for this cell when compared to the value reported in the literature that considers a commercial Pd/V XC-72 and 3.3 mW cm{sup -2} using a Pd/MWCNTs with a 50% less Pd loading than that commercial Pd/V XC-72. (author)

  11. Sb Surface Modification of Pd by Mimetic Underpotential Deposition for Formic Acid Oxidation

    Directory of Open Access Journals (Sweden)

    Long-Long Wang

    2015-07-01

    Full Text Available The newly proposed mimetic underpotential deposition (MUPD technique was extended to modify Pd surfaces with Sb through immersing a Pd film electrode or dispersing Pd/C powder in a Sb(III-containing solution blended with ascorbic acid (AA. The introduction of AA shifts down the open circuit potential of Pd substrate available to achieve suitable Sb modification. The electrocatalytic activity and long-term stability towards HCOOH electrooxidation of the Sb modified Pd surfaces (film electrode or powder catalyst by MUPD is superior than that of unmodified Pd and Sb modified Pd surfaces by conventional UPD method. The enhancement of electrocatalytic performance is due to the third body effect and electronic effect, as well as bi-functional mechanism induced by Sb modification which result in increased resistance against CO poisoning.

  12. Partially and fully de-alloyed glassy ribbons based on Au: Application in methanol electro-oxidation studies

    Energy Technology Data Exchange (ETDEWEB)

    Paschalidou, Eirini Maria, E-mail: epaschal@unito.it [Dipartimento di Chimica e Centro Interdipartimentale NIS (Nanostructured Surfaces and Interfaces), Università di Torino, Via Pietro Giuria 7, 10125, Torino (Italy); Scaglione, Federico [Dipartimento di Chimica e Centro Interdipartimentale NIS (Nanostructured Surfaces and Interfaces), Università di Torino, Via Pietro Giuria 7, 10125, Torino (Italy); Gebert, Annett; Oswald, Steffen [Leibniz Institut für Festkörper- und Werkstoffforschung IFW, Helmholtzstraße 20, 01069, Dresden (Germany); Rizzi, Paola; Battezzati, Livio [Dipartimento di Chimica e Centro Interdipartimentale NIS (Nanostructured Surfaces and Interfaces), Università di Torino, Via Pietro Giuria 7, 10125, Torino (Italy)

    2016-05-15

    In this work, electrochemical de-alloying of an amorphous alloy, Au{sub 40}Cu{sub 28}Ag{sub 7}Pd{sub 5}Si{sub 20}, cast in ribbon form by melt spinning, has been performed, obtaining self standing nanoporous materials suitable for use as electrodes for electrocatalytic applications. The de-alloying encompasses removal of less noble elements and the crystallization of Au, resulting in interconnected ligaments whose size and morphology are described as a function of time. Depending on de-alloying time, the crystals may contain residual amounts of Cu, Ag and Pd, as shown by Auger Electron Spectroscopy (AES), Energy Dispersive Spectroscopy (EDS) and Cyclic Voltammetry (CV) in a basic solution. Current density peaks in the 0.16–0.28 V range (vs Ag/AgCl) indicate that the porous ribbons are active for the electro-oxidation of methanol. The partially de-alloyed samples, which still partially contain the amorphous phase because of the shorter etching times, have finer ligaments and display peaks at lower potential. However, the current density decreases rapidly during repeated potential scans. This is attributed to the obstruction of Au sites, mainly by the Cu oxides formed during the scans. The fully de-alloyed ribbons display current peaks at about 0.20 V and remain active for hundreds of scans at more than 60% of the initial current density. They can be fully re-activated to achieve the same performance levels after a brief immersion in nitric acid. The good activity is due to trapped Ag and Pd atoms in combination with ligament morphology. - Graphical abstract: Fine ligaments and pores made by de-alloying a glassy ribbon of a Au-based alloy, homogeneously produced across the thickness (25 μm) for studying methanol's electro-oxidation behavior. - Highlights: • Size and composition of nanoporous layers tailored in de-alloying Au-based glassy ribbons. • From amorphous precursor fine crystals occur in ligaments with residual Pd and Ag. • Fully de

  13. Temperature dependence studies on the electro-oxidation of aliphatic alcohols with modified platinum electrodes

    Indian Academy of Sciences (India)

    Panadda Katikawong; Tanakorn Ratana; Waret Veerasai

    2009-05-01

    Temperature dependence on the electro-oxidation of methanol, ethanol and 1-propanol in 0.5 M H2SO4 were investigated with Pt and PtRu electrodes. Tafel slope and apparent activation energy were evaluated from the cyclic voltammetric data in the low potential region (0.3-0.5 V vs SHE). The CV results provided Tafel slopes for alcohols in the range of 200-400 mV dec-1 which indicated a difference in the rate determining step. The decrease in Tafel slope was only observed in the case of methanol for the Ru-modified Pt electrode. This indicates that Ru improves the rate of determining step for methanol while hindering it for the other alcohols. The electrochemical impedance spectroscopy was also used to evaluate the electro-oxidation mechanism of alcohols on these electrodes. The simulated EIS results provided two important parameters: charge transfer resistance () and inductance (). The $R^{-1}_{ct}$ and -1 represent the rate of alcohol electro-oxidation and rate of desorption of intermediate species, respectively. These values increased with the increasing of temperature. The results from two techniques were well agreed that the electro-oxidation of methanol was improved by raising the temperature and ruthenium modification.

  14. Analytical continuation in coupling constant method; application to the calculation of resonance energies and widths for organic molecules: Glycine, alanine and valine and dimer of formic acid

    Energy Technology Data Exchange (ETDEWEB)

    Papp, P., E-mail: papp@fmph.uniba.sk [Department of Experimental Physics, Faculty of Mathematics, Physics and Informatics, Comenius University, Mlynská dolina, 84248 Bratislava (Slovakia); Matejčík, Š. [Department of Experimental Physics, Faculty of Mathematics, Physics and Informatics, Comenius University, Mlynská dolina, 84248 Bratislava (Slovakia); Mach, P.; Urban, J. [Department of Nuclear Physics and Biophysics, Faculty of Mathematics, Physics and Informatics, Comenius University, Mlynská dolina, 84248 Bratislava (Slovakia); Paidarová, I. [J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Dolejškova 3, CZ-182 23 Praha 8 (Czech Republic); Horáček, J., E-mail: horacek@mbox.troja.mff.cuni.cz [Charles University, Faculty of Mathematics and Physics, V Holešovičkách 2, CZ-180 00 Praha 8 (Czech Republic)

    2013-06-03

    Highlights: • The anions are stabilized by additional charges on the nuclei. • The energy dependence of anions and neutrals on nuclear charges are calculated by ab initio methods. • Resonance energies and widths are obtained from the energy data by analytical continuation with Padé approximation. • The resonance energies and widths of amino acids are compared with Nestmann–Peyerimhoff’s method and with experiment. • The resonance energies and (widths) of formic acid monomer and dimer are 2.09 (0.33) eV and 1.7 (0.13) eV, respectively. - Abstract: The method of analytic continuation in the coupling constant (ACCC) in combination with use of the statistical Padé approximation is applied to the determination of resonance energy and width of some amino acids and formic acid dimer. Standard quantum chemistry codes provide accurate data which can be used for analytic continuation in the coupling constant to obtain the resonance energy and width of organic molecules with a good accuracy. The obtained results are compared with the existing experimental ones.

  15. Effect of the Pd/MWCNTs anode catalysts preparation methods on their morphology and activity in a direct formic acid fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Lesiak, B., E-mail: blesiak-orlowska@ichf.edu.pl [Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warszawa (Poland); Mazurkiewicz, M.; Malolepszy, A. [Faculty of Chemical and Process Engineering, Warsaw University of Technology, Waryńskiego 1, 00-645 Warszawa (Poland); Stobinski, L. [Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warszawa (Poland); Faculty of Chemical and Process Engineering, Warsaw University of Technology, Waryńskiego 1, 00-645 Warszawa (Poland); Mierzwa, B.; Mikolajczuk-Zychora, A.; Juchniewicz, K.; Borodzinski, A. [Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warszawa (Poland); Zemek, J.; Jiricek, P. [Institute of Physics, Academy of Sciences of the Czech Republic, 162-53 Prague 6, Cukrovarnicka 10 (Czech Republic)

    2016-11-30

    Highlights: • Catalysts properties studied by XRD, STEM, XPS methods. • Differences in Pd particle size, content of Pd, functional groups, PdC{sub x.}. • Catalytic activity studied in a Direct Formic Acid Fuel Cell. • Highest activity–catalyst prepared using a strong reducing agent (NaBH{sub 4}). - Abstract: Impact of Pd/MWCNTs catalysts preparation method on the catalysts morphology and activity in a formic acid electrooxidation reaction was investigated. Three reduction methods of Pd precursor involving reduction in a high pressure microwave reactor (Pd1), reduction with NaBH{sub 4} (Pd2) and microwave-assisted polyol method (Pd3) were used in this paper. Crystallites size and morphology were studied using the scanning transmission electron microscopy (STEM), X-ray diffraction (XRD), whereas elemental composition, Pd chemical state and functional groups content by the X-ray photoelectron spectroscopy (XPS). The prepared catalysts were tested in a direct formic acid fuel cell (DFAFC) as an anode material. The catalytic activity was correlated with a mean fraction of the total Pd atoms exposed at the surface (FE). The value of FE was calculated from the crystallites size distribution determined by the STEM measurements. Non-linear dependence of a current density versus FE, approaching the maximum at FE≈0.25 suggests that the catalytic process proceeded at Pd nanocrystallites faces, with inactive edges and corners. Pd2 catalyst exhibited highest activity due to its smallest Pd crystallites (3.2 nm), however the absence of Pd crystallites aggregation and low content of carbon in PdC{sub x} phase, i.e. x = 4 at.% may also affect the observed.

  16. Co-adsorption of oxygen and formic acid on rutile TiO2 (110) studied by infrared reflection-absorption spectroscopy

    Science.gov (United States)

    Mattsson, Andreas; Österlund, Lars

    2017-09-01

    Adsorption of formic acid and co-adsorption with oxygen have been investigated on the rutile TiO2(110) surface using p- and s-polarized infrared reflection-absorption spectroscopy (IRRAS) at O2 exposures between 45 L to 8100 L and at temperatures between 273 K and 343 K. On the clean surface formic acid dissociates into a formate ion (formate) and a proton. Formate binds to two five-fold coordinated Ti atoms in the troughs along the [001] direction, and the proton binds to neighboring bridging O atoms. Exposure of adsorbed formate to O2 leads to a decrease in the asymmetric νas(OCO) band at 1532 cm-1 and to the concomitant formation of a new vibration band at 1516 cm-1. From the s-and p-polarized IRRAS measurements performed at different O2 exposures, surface pre-treatments and substrate temperatures, and by comparisons with previous reports, we conclude that the new species is a bidentate surface hydrogen carbonate, which is formed by reaction between formate and oxygen adatoms on the surface. The σv reflection plane of the surface hydrogen carbonate molecule is oriented along the [001] direction, i.e. the same direction as the adsorbed formate molecule. On the clean TiO2(110) surface exposed to O2 prior to formic acid adsorption, similar results are obtained. The reaction rate to form surface hydrogen carbonate from formate is found to follow first-order kinetics, with an apparent activation energy of Er=0.25 eV.

  17. Formic acid enhanced effective degradation of methyl orange dye in aqueous solutions under UV-Vis irradiation.

    Science.gov (United States)

    Wang, Jingjing; Bai, Renbi

    2016-09-15

    Developing efficient technologies to treat recalcitrant organic dye wastewater has long been of great research and practical interest. In this study, a small molecule, formic acid (FA), was applied as a process enhancer for the degradation of methyl orange (MO) dye as a model recalcitrant organic pollutant in aqueous solutions under the condition of UV-Vis light irradiation and air aeration at the ambient temperature of 25 °C. It was found that the decolouration of the dye solutions can be rapidly achieved, reducing the time, for example, from around 17.6 h without FA to mostly about less than 2 h with the presence of FA. The mineralization rate of MO dye reached as high as 81.8% in 1.5 h in the case of initial MO dye concentration at 25 mg L(-1), which is in contrast to nearly no mineralization of the MO dye for a similar system without the FA added. The study revealed that the generation of the H2O2 species in the system was enhanced and the produced OH radicals effectively contributed to the degradation of the MO dye. Process parameters such as the initial concentration of MO dye, FA dosage and solution pH were all found to have some effect on the degradation efficiency under the same condition of UV-Vis light irradiation and air aeration. The MO dye degradation performance was found to follow a first-order reaction rate to the MO dye concentration in most cases and there existed a positive correlation between the reaction rate constant and the initial FA concentration. Compared to the traditional H2O2/UV-Vis oxidation system, the use of FA as a process-enhancing agent can have the advantages of low cost, easy availability, and safe to use. The study hence demonstrates a promising approach to use a readily available small molecule of FA to enhance the degradation of recalcitrant organic pollutants, such as MO dye, especially for their pre-treatment.

  18. Germanium(II) hydride mediated reduction of carbon dioxide to formic acid and methanol with ammonia borane as the hydrogen source.

    Science.gov (United States)

    Jana, Anukul; Tavčar, Gašper; Roesky, Herbert W; John, Michael

    2010-10-28

    LGeOC(O)H (3) (L = CH{(CMe)(2,6-iPr(2)C(6)H(3)N)}(2)), from the straightforward conversion of LGeH (2) with CO(2), reacts with LiH(2)NBH(3) giving 2 and LiOC(O)H (4), while the corresponding reaction of 3 with H(3)NBH(3) after aqueous workup releases 2 and CH(3)OH (5). This opens the possibility to use hydride 2 as a mediator in the reduction of carbon dioxide to formic acid and methanol.

  19. Facile template-free synthesis of pine needle-like Pd micro/nano-leaves and their associated electro-catalytic activities toward oxidation of formic acid

    Directory of Open Access Journals (Sweden)

    Wang Chuanyi

    2011-01-01

    Full Text Available Abstract Pine needle-like Pd micro/nano-leaves have been synthesized by a facile, template-free electrochemical method. As-synthesized Pd micro/nano-leaves were directly electrodeposited on an indium tin oxide substrate in the presence of 1.0 mM H2PdCl4 + 0.33 M H3PO4. The formation processes of Pd micro/nano-leaves were revealed by scanning electron microscope, and further characterized by X-ray diffraction and electrochemical analysis. Compared to conventional Pd nanoparticles, as-prepared Pd micro/nano-leaves exhibit superior electrocatalytic activities for the formic acid oxidation.

  20. Facile template-free synthesis of pine needle-like Pd micro/nano-leaves and their associated electro-catalytic activities toward oxidation of formic acid

    Science.gov (United States)

    Zhou, Rong; Zhou, Weiqiang; Zhang, Hongmei; Du, Yukou; Yang, Ping; Wang, Chuanyi; Xu, Jingkun

    2011-05-01

    Pine needle-like Pd micro/nano-leaves have been synthesized by a facile, template-free electrochemical method. As-synthesized Pd micro/nano-leaves were directly electrodeposited on an indium tin oxide substrate in the presence of 1.0 mM H2PdCl4 + 0.33 M H3PO4. The formation processes of Pd micro/nano-leaves were revealed by scanning electron microscope, and further characterized by X-ray diffraction and electrochemical analysis. Compared to conventional Pd nanoparticles, as-prepared Pd micro/nano-leaves exhibit superior electrocatalytic activities for the formic acid oxidation.

  1. Calculation of (e , 2 e ) triple-differential cross sections of formic acid: An application of the multicenter distorted-wave method

    Science.gov (United States)

    Li, Xingyu; Gong, Maomao; Liu, Ling; Wu, Yong; Wang, Jianguo; Qu, Yizhi; Chen, Xiangjun

    2017-01-01

    The calculation of triple-differential cross sections for the electron-impact ionization of 10 a' and 2 a'' orbitals of the formic acid (HCOOH) molecule has been carried out by the multicenter distorted-wave method. The coplanar asymmetric kinematics is considered at incident energies of 100 and 250 eV , where previous experiments and theories are available for comparison. The present calculations reproduce the experimental measurements satisfactorily and the results suggest that the nuclear distribution has important contributions on the cross sections at large momentum transfers.

  2. Application of in-situ attenuated total reflection-Fourier transform infrared spectroscopy for the understanding of complex reaction mechanism and kinetics: formic acid oxidation on a Pt film electrode at elevated temperatures.

    Science.gov (United States)

    Chen, Yan Xia; Ye, Shen; Heinen, Martin; Jusys, Zenonas; Osawa, Masatoshi; Behm, R Jürgen

    2006-05-18

    The potential of in-situ Fourier transform infrared (FTIR) spectroscopy measurements in an attenuated total reflection configuration (ATR-FTIRS) for the evaluation of reaction pathways, elementary reaction steps, and their kinetics is demonstrated for formic acid electrooxidation on a Pt film electrode. Quantitative kinetic information on two elementary steps, formic acid dehydration and CO(ad) oxidation, and on the contributions of the related pathways in the dual path reaction mechanism are derived from IR spectroscopic signals in simultaneous electrochemical and ATR-FTIRS measurements over a wide temperature range (25-80 degrees C). Linearly and multiply bonded CO(ad) and bridge-bonded formate are the only formic acid related stable reaction intermediates detected. With increasing temperature, the steady-state IR signal of CO(ad) increases, while that of formate decreases. Reaction rates for CO(ad) formation via formic acid dehydration and for CO(ad) oxidation as well as the activation energies of these processes were determined at different temperatures, potentials, and surface conditions (with and without preadsorbed CO from formic acid dehydration) from the temporal evolution of the IR intensities of CO(ad) during adsorption/reaction transients, using an IR intensity-CO(ad) coverage calibration. At potentials up to 0.75 V and temperatures from 25 to 80 degrees C, the "indirect" CO pathway contributes less than 5% (at potentials oxidation compared with the effective activation energy of the total reaction, derived from the Faradaic currents, support this conclusion.

  3. Exploration of a ternary deep eutectic solvent of methyltriphenylphosphonium bromide/chalcone/formic acid for the selective recognition of rutin and quercetin in Herba Artemisiae Scopariae.

    Science.gov (United States)

    Ma, Wanwan; Tang, Baokun; Row, Kyung Ho

    2017-08-01

    Methyltriphenylphosphonium bromide/chalcone/formic acid, a green ternary deep eutectic solvent, was applied as a functional monomer and dummy template simultaneously in the synthesis of a new molecularly imprinted polymer. Ternary deep eutectic solvent based molecularly imprinted polymers are used as a solid-phase extraction sorbent in the separation and purification of rutin and quercetin from Herba Artemisiae Scopariae combined with high-performance liquid chromatography. Fourier transform infrared spectroscopy and field-emission scanning electron microscopy were applied to characterize the deep eutectic solvent based molecularly imprinted polymers synthesized using different molar ratios of chalcone. The static and competitive adsorption tests were performed to examine the recognition ability of the molecularly imprinted polymers to rutin and quercetin. The ternary deep eutectic solvent consisting of formic acid/chalcone/methyltriphenylphosphonium bromide (1:0.05:0.5) had the best molecular recognition effect. After optimization of the washing solvents (methanol/water, 1:9) and eluting solvents (acetonitrile/acetic acid, 9:1), a reliable analytical method was developed for strong recognition towards rutin and quercetin in Herba Artemisiae Scopariae with satisfactory extraction recoveries (rutin: 92.48%, quercetin: 94.23%). Overall, the chalcone ternary deep eutectic solvent-based molecularly imprinted polymer coupled with solid-phase extraction is an effective method for the selective purification of multiple bioactive compounds in complex samples. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Complex mechanism of the gas phase reaction between formic acid and hydroxyl radical. Proton coupled electron transfer versus radical hydrogen abstraction mechanisms.

    Science.gov (United States)

    Anglada, Josep M

    2004-08-11

    The gas phase reaction between formic acid and hydroxyl radical has been investigated with high level quantum mechanical calculations using DFT-B3LYP, MP2, CASSCF, QCISD, and CCSD(T) theoretical approaches in connection with the 6-311+G(2df,2p) and aug-cc-pVTZ basis sets. The reaction has a very complex mechanism involving several elementary processes, which begin with the formation of a reactant complex before the hydrogen abstraction by hydroxyl radical. The results obtained in this investigation explain the unexpected experimental fact that hydroxyl radical extracts predominantly the acidic hydrogen of formic acid. This is due to a mechanism involving a proton coupled electron-transfer process. The calculations show also that the abstraction of formyl hydrogen has an increased contribution at higher temperatures, which is due to a conventional hydrogen abstraction radical type mechanism. The overall rate constant computed at 298 K is 6.24 x 10(-13) cm3 molecules(-1) s(-1), and compares quite well with the range from 3.2 +/- 1 to 4.9 +/- 1.2 x 10(-13) cm3 molecules(-1) s(-1), reported experimentally.

  5. Highly dispersed Pd nanoparticles supported on 1,10-phenanthroline-functionalized multi-walled carbon nanotubes for electrooxidation of formic acid

    Science.gov (United States)

    Bai, Zhengyu; Guo, Yuming; Yang, Lin; Li, Lei; Li, Wujv; Xu, Pengle; Hu, Chuangang; Wang, Kui

    2011-08-01

    Functionalization step is generally prerequisite to immobilize metal nanoparticles on multi-walled carbon nanotubes (MWCNTs) for production of a high efficient electrocatalyst. We herein report a novel method to functionalize MWCNTs with 1,10-phenanthroline (phen-MWCNTs) as a catalyst support for Pd nanoparticles. Raman spectroscopic analysis results reveal that this phen functionalization method can preserve the integrity and electronic structure of MWCNTs and provide the highly effective functional groups on the surface for Pd nanoparticles. According to the transmission electron microscopy (TEM) measurements, the as-prepared Pd nanop articles are evenly deposited on the surface of the phen-MWCNTs without obvious agglomeration, and the average particle size of the Pd nanoparticles is 2.3 nm. Electrochemical measurements demonstrate that the as-prepared Pd/phen-MWCNTs catalyst has a better electrocatalytic activity and stability for the oxidation of formic acid than Pd catalyst on acid-treated MWCNTs. It is concluded that the as-prepared Pd/phen-MWCNTs would be a potential candidate as an anode electrocatalyst in direct formic acid fuel cell (DFAFC).

  6. Metabolic pathway engineering based on metabolomics confers acetic and formic acid tolerance to a recombinant xylose-fermenting strain of Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Ishii Jun

    2011-01-01

    Full Text Available Abstract Background The development of novel yeast strains with increased tolerance toward inhibitors in lignocellulosic hydrolysates is highly desirable for the production of bio-ethanol. Weak organic acids such as acetic and formic acids are necessarily released during the pretreatment (i.e. solubilization and hydrolysis of lignocelluloses, which negatively affect microbial growth and ethanol production. However, since the mode of toxicity is complicated, genetic engineering strategies addressing yeast tolerance to weak organic acids have been rare. Thus, enhanced basic research is expected to identify target genes for improved weak acid tolerance. Results In this study, the effect of acetic acid on xylose fermentation was analyzed by examining metabolite profiles in a recombinant xylose-fermenting strain of Saccharomyces cerevisiae. Metabolome analysis revealed that metabolites involved in the non-oxidative pentose phosphate pathway (PPP [e.g. sedoheptulose-7-phosphate, ribulose-5-phosphate, ribose-5-phosphate and erythrose-4-phosphate] were significantly accumulated by the addition of acetate, indicating the possibility that acetic acid slows down the flux of the pathway. Accordingly, a gene encoding a PPP-related enzyme, transaldolase or transketolase, was overexpressed in the xylose-fermenting yeast, which successfully conferred increased ethanol productivity in the presence of acetic and formic acid. Conclusions Our metabolomic approach revealed one of the molecular events underlying the response to acetic acid and focuses attention on the non-oxidative PPP as a target for metabolic engineering. An important challenge for metabolic engineering is identification of gene targets that have material importance. This study has demonstrated that metabolomics is a powerful tool to develop rational strategies to confer tolerance to stress through genetic engineering.

  7. Effect of the Pd/MWCNTs anode catalysts preparation methods on their morphology and activity in a direct formic acid fuel cell

    Science.gov (United States)

    Lesiak, B.; Mazurkiewicz, M.; Malolepszy, A.; Stobinski, L.; Mierzwa, B.; Mikolajczuk-Zychora, A.; Juchniewicz, K.; Borodzinski, A.; Zemek, J.; Jiricek, P.

    2016-11-01

    Impact of Pd/MWCNTs catalysts preparation method on the catalysts morphology and activity in a formic acid electrooxidation reaction was investigated. Three reduction methods of Pd precursor involving reduction in a high pressure microwave reactor (Pd1), reduction with NaBH4 (Pd2) and microwave-assisted polyol method (Pd3) were used in this paper. Crystallites size and morphology were studied using the scanning transmission electron microscopy (STEM), X-ray diffraction (XRD), whereas elemental composition, Pd chemical state and functional groups content by the X-ray photoelectron spectroscopy (XPS). The prepared catalysts were tested in a direct formic acid fuel cell (DFAFC) as an anode material. The catalytic activity was correlated with a mean fraction of the total Pd atoms exposed at the surface (FE). The value of FE was calculated from the crystallites size distribution determined by the STEM measurements. Non-linear dependence of a current density versus FE, approaching the maximum at FE≈0.25 suggests that the catalytic process proceeded at Pd nanocrystallites faces, with inactive edges and corners. Pd2 catalyst exhibited highest activity due to its smallest Pd crystallites (3.2 nm), however the absence of Pd crystallites aggregation and low content of carbon in PdCx phase, i.e. x = 4 at.% may also affect the observed.

  8. Design and synthesis of Pd-MnO2 nanolamella-graphene composite as a high-performance multifunctional electrocatalyst towards formic acid and methanol oxidation.

    Science.gov (United States)

    Huang, Huajie; Wang, Xin

    2013-07-07

    One great challenge in the development of portable fuel cell systems is to explore novel electrocatalysts with better performance and lower costs. Here we report a facile strategy to fabricate a ternary nanocomposite based on Pd/MnO2 nanolamella-graphene sheets (Pd/MNL/GS) and demonstrate its application as a multifunctional catalyst for both the direct formic acid fuel cell (DFAFC) and direct methanol fuel cell (DMFC). The developed route rationally utilizes graphene as both a green reducing agent in the synthesis of MnO2 nanolamella and a superior supporting material for growing and supporting Pd nanoparticles (NPs). Whether for formic acid oxidation or methanol oxidation, the as-prepared Pd/MNL/GS hybrid has extremely large electrochemically active surface area (ECSA) values and exhibits significantly high forward peak current densities, both of which are nearly 3 times greater than those of the Pd/GS catalyst and 6 times the Pd/Vulcan XC-72 catalyst, revealing that metal Pd can be effectively utilized in the presence of promoter components (MNL and GS). Therefore, such a ternary composite with a sophisticated 2D configuration may bring new design opportunities of high-performance energy conversion devices in the future.

  9. Highly catalytic hollow palladium nanoparticles derived from silver@silver-palladium core-shell nanostructures for the oxidation of formic acid

    Science.gov (United States)

    Chen, Dong; Cui, Penglei; He, Hongyan; Liu, Hui; Yang, Jun

    2014-12-01

    Hollow Palladium (hPd) nanoparticles (NPs) are prepared via a simple and mild successive method. Firstly, core-shell NPs with silver (Ag) cores and silver-palladium (Ag-Pd) alloy shells are synthesized in aqueous phase by galvanic replacement reaction (GRR) between Ag NPs and Pd2+ ion precursors. Saturated aqueous sodium chloride (NaCl) solution was then employed to remove the Ag component from the core and shell regions of core-shell Ag@Ag-Pd NPs, resulting in the formation of hPd NPs with shrunk sizes in comparison with their core-shell parents. Specifically, the hPd NPs exhibit superior catalytic activity and durability for catalyzing the oxidation of formic acid, compared with the Pd NPs reduced by NaBH4 in aqueous solution and commercial Pd/C catalyst from Johnson Matthey, mainly due to the large electrochemically active surface areas of the hollow particles. In addition, The Ag component in core-shell Ag@Ag-Pd NPs has an unfavorable influence on catalytic activity of NPs for formic acid oxidation. However, the durability could be improved due to the electron donating effect from Ag to Pd atoms in the core-shell NPs.

  10. Self-assembly of mixed Pt and Au nanoparticles on PDDA-functionalized graphene as effective electrocatalysts for formic acid oxidation of fuel cells.

    Science.gov (United States)

    Wang, Shuangyin; Wang, Xin; Jiang, San Ping

    2011-04-21

    Pt and Au nanoparticles with controlled Pt : Au molar ratios and PtAu nanoparticle loadings were successfully self-assembled onto poly(diallyldimethylammonium chloride) (PDDA)-functionalized graphene (PDDA-G) as highly effective electrocatalysts for formic acid oxidation in direct formic acid fuel cells (DFAFCs). The simultaneously assembled Pt and Au nanoparticles on PDDA-G showed superb electrocatalytic activity for HCOOH oxidation, and the current density associated with the preferred dehydrogenation pathway for the direct formation of CO(2) through HCOOH oxidation on a Pt(1)Au(8)/PDDA-G (i.e., a Pt : Au ratio of 1 : 8) is 32 times higher than on monometallic Pt/PDDA-G. The main function of the Au in the mixed Pt and Au nanoparticles on PDDA-G is to facilitate the first electron transfer from HCOOH to HCOO(ads) and the effective spillover of HCOO(ads) from Au to Pt nanoparticles, where HCOO(ads) is further oxidized to CO(2). The Pt : Au molar ratio and PtAu nanoparticle loading on PDDA-G supports are the two critical factors to achieve excellent electrocatalytic activity of PtAu/PDDA-G catalysts for the HCOOH oxidation reactions.

  11. Correlation between Formic Acid Oxidation and Oxide Species on Pt(Bi/GC and Pt/GC Electrode through the Effect of Forward Potential Scan Limit

    Directory of Open Access Journals (Sweden)

    Jelena D. Lović

    2017-01-01

    Full Text Available Following earlier works from our laboratory, further experiments on electrochemical behavior in formic acid oxidation at electrodeposited Pt(Bi/GC and Pt/GC electrode were performed in order to examine the effect of successive increase of the forward potential scan limit. Correlation between formic acid oxidation and oxide species on Pt(Bi/GC electrode with increases of forward potential scan limit is based on the dependency of the backward peak potential from backward peak current. The obtained dependency reveals Bi influence for the scan limits up to 0.8 V. Since the Pt(Bi/GC electrode is composed of Bi core occluded by Pt and Bi-oxide surface layer, the observed behavior is explained through the influence of surface metal oxide on easier formation of OHad species. Nevertheless, the influence of electronic modification of Pt surface atoms by underlying Bi is present and leads to the stronger adsorption of OH on Pt. At higher forward potential scan limits (from 0.8 V, Pt has a dominant role in HCOOH oxidation.

  12. Enhanced activity of Pd nanoparticles supported on Vulcan XC72R carbon pretreated via a modified Hummers method for formic acid electrooxidation

    Science.gov (United States)

    Cao, Jianyu; Song, Lingzheng; Tang, Jiali; Xu, Juan; Wang, Wenchang; Chen, Zhidong

    2013-06-01

    Vulcan XC72R carbons were pretreated using a modified Hummers method and adopted as the support of palladium nanoparticles for formic acid electrooxidation. XPS analysis was used to investigate the surface species of the pretreated XC72R (XC72R-O), indicating a significant increase in the content of surface carboxyl groups. The structural properties of Pd nanoparticles deposited on the XC72R-O (Pd/XC72R-O) were determined by X-ray diffraction (XRD) and transmission electron microscopy (TEM), and their electrochemical performance was evaluated by cyclic voltammetry (CV) and chronoamperometry. Pd nanoparticles in the Pd/XC72R-O display an average size of ~6.7 nm with narrow size distribution. Electrochemical studies for formic acid oxidation reveal that the Pd/XC72R-O presents much higher electrocatalytic activity than that of the Pd/XC72R and commercial Pd/C, which may be due to the formation of carboxyl groups enhanced the interaction between the Pd particles and the carbon support, facilitating the dispersion of Pd particles and the formation of preferred plane orientation available for electrocatalytic reaction.

  13. Density functional theory study on the adsorption and decomposition of the formic acid catalyzed by highly active mushroom-like Au@Pd@Pt tri-metallic nanoparticles.

    Science.gov (United States)

    Duan, Sai; Ji, Yong-Fei; Fang, Ping-Ping; Chen, Yan-Xia; Xu, Xin; Luo, Yi; Tian, Zhong-Qun

    2013-04-07

    Local structures and adsorption energies of a formic acid molecule and its decomposed intermediates (H, O, OH, CO, HCOO, and COOH) on highly electrocatalytically active mushroom-like Au-core@Pd-shell@Pt-cluster nanoparticles with two atomic layers of the Pd shell and stoichiometric Pt coverage of around half-monolayer (Au@2 ML Pd@0.5 ML Pt) have been investigated by first principles calculations. The adsorption sites at the center (far away from the Pt cluster) and the edge (close to the Pt cluster) are considered and compared. Significant repulsive interaction between the edge sites and CO is observed. The calculated potential energy surfaces demonstrate that, with respect to the center sites, the CO2 pathway is considerably promoted in the edge area. Our results reveal that the unique edge structure of the Pt cluster is responsible for the experimentally observed high electrocatalytic activity of the Au@Pd@Pt nanoparticles toward formic acid oxidation. Such microscopic understanding should be useful for the design of new electrochemical catalysts.

  14. Pt-Si Bifunctional Surfaces for CO and Methanol Electro-Oxidation

    DEFF Research Database (Denmark)

    Permyakova, Anastasia A.; Han, Binghong; Jensen, Jens Oluf

    2015-01-01

    Bimetallic surfaces offer activity benefits derived from synergistic effects among active sites with uniquely different functions, which is particularly important for the development of highly effective heterogeneous catalysts for specific technological applications, such as energy conversion...... and storage. Here we report on Pt-Si bulk samples prepared by arc-melting, for the first time, with high activities toward the electro-oxidation of CO and methanol. Increasing the Si concentration on the surface was correlated with the shifts of onset oxidation potentials to lower values and higher activities...... for CO and methanol electro-oxidation. It is proposed that the reaction on the Pt-Si catalyst could follow a Langmuir-Hinshelwood type of mechanism, where substantially enhanced catalytic activity is attributed to the fine-tuning of the surface Pt-Si atomic structure....

  15. One-pot controlled synthesis of AuPd@Pd core-shell nanocrystals with enhanced electrocatalytic performances for formic acid oxidation and glycerol oxidation.

    Science.gov (United States)

    Liu, Meng-Ting; Chen, Li-Xian; Li, Dong-Ning; Wang, Ai-Jun; Zhang, Qian-Li; Feng, Jiu-Ju

    2017-12-15

    In this work, AuPd@Pd core-shell nanocrystals (AuPd@Pd NCs) were fabricated by a one-pot co-reduction approach, where theophylline-7-acetic acid (TAA) acted asa new structure-directing agent. The crystal structure and composition were mainly characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM), X-ray diffraction (XRD), together with X-ray photoelectron spectroscopy (XPS). The growth mechanism of AuPd@Pd NCs was investigated in detail. The obtained AuPd@Pd NCs exhibited superior catalytic characters for formic acid oxidation reaction (FAOR) and glycerol oxidation reaction (GOR) in contrast with commercial Pd black in alkaline media. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Repeated-batch fermentation of lignocellulosic hydrolysate to ethanol using a hybrid Saccharomyces cerevisiae strain metabolically engineered for tolerance to acetic and formic acids.

    Science.gov (United States)

    Sanda, Tomoya; Hasunuma, Tomohisa; Matsuda, Fumio; Kondo, Akihiko

    2011-09-01

    A major challenge associated with the fermentation of lignocellulose-derived hydrolysates is improved ethanol production in the presence of fermentation inhibitors, such as acetic and formic acids. Enhancement of transaldolase (TAL) and formate dehydrogenase (FDH) activities through metabolic engineering successfully conferred resistance to weak acids in a recombinant xylose-fermenting Saccharomyces cerevisiae strain. Moreover, hybridization of the metabolically engineered yeast strain improved ethanol production from xylose in the presence of both 30 mM acetate and 20mM formate. Batch fermentation of lignocellulosic hydrolysate containing a mixture of glucose, fructose and xylose as carbon sources, as well as the fermentation inhibitors, acetate and formate, was performed for five cycles without any loss of fermentation capacity. Long-term stability of ethanol production in the fermentation phase was not only attributed to the coexpression of TAL and FDH genes, but also the hybridization of haploid strains.

  17. Methanol Electro-Oxidation on Pt-Ru Alloy Nanoparticles Supported on Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Yangchuan Xing

    2009-09-01

    Full Text Available Carbon nanotubes (CNTs have been investigated in recent years as a catalyst support for proton exchange membrane fuel cells. Improved catalyst activities were observed and attributed to metal-support interactions. We report a study on the kinetics of methanol electro-oxidation on CNT supported Pt-Ru alloy nanoparticles. Alloy catalysts with different compositions, Pt53Ru47/CNT, Pt69Ru31/CNT and Pt77Ru23/CNT, were prepared and investigated in detail. Experiments were conducted at various temperatures, electrode potentials, and methanol concentrations. It was found that the reaction order of methanol electro-oxidation on the PtRu/CNT catalysts was consistent with what has been reported for PtRu alloys with a value of 0.5 in methanol concentrations. However, the electro-oxidation reaction on the PtRu/CNT catalysts displayed much lower activation energies than that on the Pt-Ru alloy catalysts unsupported or supported on carbon black (PtRu/CB. This study provides an overall kinetic evaluation of the PtRu/CNT catalysts and further demonstrates the beneficial role of CNTs.

  18. Solvent effects on Pt-Ru/C catalyst for methanol electro-oxidation

    Institute of Scientific and Technical Information of China (English)

    Jinwei Chen; Chunping Jiang; Hui Lu; Lan Feng; Xin Yang; Liangqiong Li; Ruilin Wang

    2009-01-01

    Alloying degree,particle size and the level of dispersion are the key structural parameters of Pt-Ru/C catalyst in fuel cells. Solvent(s) used in the preparation process can affect the particle size and alloying degree of the object substance,which lead to a great positive impact on its properties. In this work,three types of solvents and their mixtures were used in preparation of the Pt-Ru/C catalysts by chemical reduction of metal precursors with sodium borohydride at room temperature. The structure of the catalysts was characterized by X-ray diffraction (XRD) and Transmission electron microscopy (TEM). The catalytic activity and stability for methanol electro-oxidation were studied by Cyclic Voltammetry (CV) and Chronoamperometry (CA). Pt-Ru/C catalyst prepared in H_2O or binary solvents of H_2O and isopropanol had large particle size and low alloying degree leading to low catalytic activity and less stability in methanol electro-oxidation. When tetrahydrofuran was added to the above solvent systems,Pt-Ru/C catalyst prepared had smaller particle size and higher alloying degree which resulted in better catalytic activity,lower onset and peak potentials,compared with the above catalysts. Moreover,the catalyst prepared in ternary solvents of isopropanol,water and tetrahydrofuran had the smallest particle size,and the high alloying degree and the dispersion kept unchanged. Therefore,this kind of catalyst showed the highest catalytic activity and good stability for methanol electro-oxidation.

  19. Electro-oxidation of reverse osmosis concentrates generated in tertiary water treatment.

    Science.gov (United States)

    Pérez, G; Fernández-Alba, A R; Urtiaga, A M; Ortiz, I

    2010-05-01

    This work investigates the application of the electro-oxidation technology provided with boron doped diamond (BDD), an electrode material which has shown outstanding properties in oxidation of organic and inorganic compounds, for the treatment of reverse osmosis (RO) concentrates generated in tertiary wastewater treatment plants (WWTP). Chemical oxygen demand (COD), ammonium and several anions were measured during the electro-oxidation process, and the influence of the applied current density (20-200A/m(2)) was analysed on process kinetics. Analytical assessment showed that several emerging pollutants (pharmaceuticals, personal care products, stimulants, etc.) were presented both in the effluent of the secondary WWTP as well as in the RO concentrate. For this reason, a group of 10 emerging pollutants, those found with higher concentrations, was selected in order to test whether electro-oxidation can be also applied for their mitigation. In the removal of emerging pollutants the electrical current density in the range 20-100A/m(2) did not show influence likely due to the mass transfer resistance developed in the process when the oxidized solutes are present in such low concentrations. Their removal rates were fitted to first order expressions, and the apparent kinetic constants for the anodic oxidation of each compound were calculated. Finally, the formation of trihalomethanes (THMs) has been checked; concluding that after selecting the appropriate operational conditions the attained concentration is lower than the standards for drinking water established in European and EPA regulations.

  20. Electro-oxidation of chlorophenols at glassy carbon electrodes modified with polyNi(II)complexes

    Energy Technology Data Exchange (ETDEWEB)

    Berrios, Cristhian [Facultad de Quimica y Biologia, Departamento de Ciencias del Ambiente, Universidad de Santiago de Chile (USACh), casilla 40, correo 33, Santiago (Chile); Marco, Jose F.; Gutierrez, Claudio [Instituto de Quimica Fisica ' Rocasolano' , CSIC, C. Serrano, 119, 28006, Madrid (Spain); Ureta-Zanartu, Maria Soledad [Facultad de Quimica y Biologia, Departamento de Ciencias del Ambiente, Universidad de Santiago de Chile (USACh), casilla 40, correo 33, Santiago (Chile)], E-mail: soledad.ureta@usach.cl

    2009-11-01

    The effect of the ligand macrocycle (phenylporphyrin (PP) or phthalocyanine (Pc)) and of the ligand substituent (-NH{sub 2} or -SO{sub 3}{sup -}) on the catalytic activity for the electro-oxidation in a pH 11 buffer electrolyte of 2- and 4-chlorophenol (2-CP and 4-CP), 2,4- and 2,6-dichlorophenol (2,4-DCP and 2,6-DCP), 2,4,6-trichlorophenol (2,4,6-TCP), and pentachlorophenol (PCP) at glassy carbon electrodes modified with electropolymerized Ni(II) macrocycles was studied. The polyphenolic residue deposited at the electrode surface was characterized by cyclic voltammetry, impedance measurements, ex situ Fourier transform infrared spectroscopy (FT-IR) and X-ray Photoelectron Spectroscopy (XPS). A band of aliphatic C=O stretching in the IR spectrum of the fouling film produced by potential cycling in 2,4,6-TCP indicated that the aromatic ring had been broken, yielding ketones, aldehydes and/or carboxylic acids. The sulphonated Ni(II) polymers, which showed the Ni(III)/Ni(II) process in the CV, had XP spectra typical of paramagnetic Ni(II), indicating that they contained Ni(OH){sub 2} clusters. On the contrary, the CVs of the amino Ni(II) did not show the Ni(III)/Ni(II) process at all, this process appearing only after previous activation by potential cycling, and only to a small extent. As was to be expected, the XP spectra of activated amino films corresponded to diamagnetic Ni(II), showing that the concentration of Ni(OH){sub 2} clusters was very small. The amino films were less active than the sulpho films for the oxidation of chlorophenols, in agreement with the lower concentration of Ni(OH){sub 2} clusters in the former films. For all electrodes the highest activity was observed for 2,4,6-TCP, since its oxidation yields a phenolic residue which is much more porous than those produced by the other CPs.

  1. 离子色谱法测定工业废气中的甲酸、乙酸和丙酸%Industrial waste gas by ion chromatography determination of formic acid, acetic acid and propionic acid

    Institute of Scientific and Technical Information of China (English)

    吴红星

    2013-01-01

    建立了用离子色谱法测定工业废气中甲酸、乙酸和丙酸的新方法,常规无机阴离子对本方法的测定没有干扰。本方法分析速度快,所需样品量少,且无需要复杂的前处理,简便、灵敏、可靠。%established by ion chromatography determination of formic acid , acetic acid and propionic acid in industrial waste gas , a new method for the determination of inorganic anions , the conventional method without interference .This method is fast , small quantity of sam-ple, and no need of complicated pretreatment , simple, sensitive, reliable.

  2. The use of electrothermal vaporizer coupled to the inductively coupled plasma mass spectrometry for the determination of arsenic, selenium and transition metals in biological samples treated with formic acid

    Energy Technology Data Exchange (ETDEWEB)

    Tormen, Luciano, E-mail: lucianotormen@hotmail.com [Departamento de Quimica, Universidade Federal de Santa Catarina, Depto. Quimica, Campus Trindade, 88040-900 Florianopolis, SC (Brazil); Universidade Federal da Fronteira Sul - UFFS, Campus Laranjeiras do Sul, 85303-775 Laranjeiras do Sul, PR (Brazil); Gil, Raul A. [Instituto de Quimica de San Luis (UNSL-CONICET), Chacabuco y Pedernera, D5700BWQ San Luis (Argentina); Frescura, Vera L.A. [Departamento de Quimica, Universidade Federal de Santa Catarina, Depto. Quimica, Campus Trindade, 88040-900 Florianopolis, SC (Brazil); Martinez, Luis Dante [Instituto de Quimica de San Luis (UNSL-CONICET), Chacabuco y Pedernera, D5700BWQ San Luis (Argentina); Curtius, Adilson J. [Departamento de Quimica, Universidade Federal de Santa Catarina, Depto. Quimica, Campus Trindade, 88040-900 Florianopolis, SC (Brazil)

    2012-03-02

    Highlights: Black-Right-Pointing-Pointer Simple sample treatment of biologic samples with formic acid is proposed. Black-Right-Pointing-Pointer The treatment with formic acid is easy, rapid, less expensive and environmental friendly allowing a high sample throughput. Black-Right-Pointing-Pointer External calibration with aqueous standard allows the simultaneous determination of As, Co, Cu, Fe, Mn, Ni, Se and V. Black-Right-Pointing-Pointer The use of ETV avoids plasma instability, carbon deposit on the cones and does not require sample digestion. - Abstract: A fast method for the determination of As, Co, Cu, Fe, Mn, Ni, Se and V in biological samples by ETV-ICP-MS, after a simple sample treatment with formic acid, is proposed. Approximately 75 mg of each sample is mixed with 5 mL of formic acid, kept at 90 Degree-Sign C for 1 h and then diluted with nitric acid aqueous solution to a 5% (v/v) formic acid and 1% (v/v) nitric acid final concentrations. A palladium solution was used as a chemical modifier. The instrumental conditions, such as carrier gas flow rate, RF power, pyrolysis and vaporization temperatures and argon internal flow rate during vaporization were optimized. The formic acid causes a slight decrease of the analytes signal intensities, but does not increase the signal of the mainly polyatomic ions ({sup 14}N{sup 35}Cl{sup +}, {sup 14}N{sup 12}C{sup +}, {sup 40}Ar{sup 12}C{sup +}, {sup 13}C{sup 37}Cl{sup +}, {sup 40}Ar{sup 36}Ar{sup +}, {sup 40}Ar{sup 35}Cl{sup +}, {sup 35}Cl{sup 16}O{sup +}, {sup 40}Ar{sup 18}O{sup +}) that affect the analytes signals. The effect of charge transfer reactions, that could increase the ionization efficiency of some elements with high ionization potentials was not observed due to the elimination of most of the organic compounds during the pyrolysis step. External calibration with aqueous standard solutions containing 5% (v/v) formic acid allows the simultaneous determination of all analytes with high accuracy. The

  3. Synthesis of carbon-supported PdSn-SnO2 nanoparticles with different degrees of interfacial contact and enhanced catalytic activities for formic acid oxidation.

    Science.gov (United States)

    Wang, Hui; Liu, Ziyue; Ma, Yanjiao; Julian, Key; Ji, Shan; Linkov, Vladimir; Wang, Rongfang

    2013-09-07

    The conjunction of the PdSn alloy and SnO2 is of interest for improving catalytic activity in formic acid oxidation (FAO). Here, we report the synthesis of PdSn-SnO2 nanoparticles and a study of their catalytic FAO activity. Different degrees of interfacial contact between SnO2 and PdSn were obtained using two different stabilizers (sodium citrate and EDTA) during the reduction process in catalyst preparation. Compared to the PdSn alloy, PdSn-SnO2 supported on carbon black showed enhanced FAO catalytic activity due to the presence of SnO2 species. It was also found that interfacial contact between the PdSn alloy and the SnO2 phase has an impact on the activity towards CO oxidation and FAO.

  4. Synergistic catalysis of metal-organic framework-immobilized Au-Pd nanoparticles in dehydrogenation of formic acid for chemical hydrogen storage.

    Science.gov (United States)

    Gu, Xiaojun; Lu, Zhang-Hui; Jiang, Hai-Long; Akita, Tomoki; Xu, Qiang

    2011-08-10

    Bimetallic Au-Pd nanoparticles (NPs) were successfully immobilized in the metal-organic frameworks (MOFs) MIL-101 and ethylenediamine (ED)-grafted MIL-101 (ED-MIL-101) using a simple liquid impregnation method. The resulting composites, Au-Pd/MIL-101 and Au-Pd/ED-MIL-101, represent the first highly active MOF-immobilized metal catalysts for the complete conversion of formic acid to high-quality hydrogen at a convenient temperature for chemical hydrogen storage. Au-Pd NPs with strong bimetallic synergistic effects have a much higher catalytic activity and a higher tolerance with respect to CO poisoning than monometallic Au and Pd counterparts. © 2011 American Chemical Society

  5. Hydrogenation of CO2 to formic acid with iridium(III)(bisMETAMORPhos)(hydride): the role of a dormant fac-Ir-III(trihydride) and an active trans-Ir-III(dihydride) species

    NARCIS (Netherlands)

    Oldenhof, S.; van der Vlugt, J.I.; Reek, J.N.H.

    2016-01-01

    An Ir-III-monohydride species bearing a chemoresponsive ligand is active in catalytic CO2 hydrogenation to formic acid with DBU as the exogenous base. Spectroscopic and computational data reveal a trans-Ir-III-dihydride as the essential catalytic intermediate and an Ir-III(H)(3) species as the dorma

  6. Iron(II) tetrakis(diaquaplatinum)octacarboxyphthalocyanine supported on multi-walled carbon nanotube platform: an efficient functional material for enhancing electron transfer kinetics and electrocatalytic oxidation of formic acid

    CSIR Research Space (South Africa)

    Mamuru, SA

    2010-10-01

    Full Text Available electrochemical response in terms of (i) electron transfer towards outer-sphere redox probe, (ii) catalytic rate constant, and (iii) tolerance towards CO poisoning during formic acid oxidation. The results clearly suggest that the MWCNT–PtFeOCPc is a promising...

  7. Co-catalytic effect of Rh and Ru for the ethanol electro-oxidation in amorphous microparticulated alloys

    Energy Technology Data Exchange (ETDEWEB)

    Blanco, Tamara C.; Pierna, Angel R.; Barroso, Javier [Dpto. de Ingenieria Quimica y del Medio Ambiente, Universidad del Pais Vasco, San Sebastian (Spain)

    2011-11-15

    The ethanol electro-oxidation on platinum catalyst in acid media leads to the formation of acetaldehyde and acetic acid as main products. Another problem is the poisoning of the electro-catalyst surface with CO formed during the fuel oxidation reaction. To increase the performance of Direct Ethanol Fuel Cells (DEFCs) it is necessary to develop new electrode materials or modification of the existing Pt catalysts. This work presents the electrochemical response to ethanol and CO oxidation of different compositional amorphous alloys obtained by ball milling technique, used as electrodes. Alloys with Ni{sub 59}Nb{sub 40}Pt{sub 0.6}Rh{sub 0.4} and Ni{sub 59}Nb{sub 40}Pt{sub 0.6}Rh{sub 0.2}Ru{sub 0.2} composi-tions were studied. The current density towards ethanol oxidation decreases with the presence of ruthenium; however, this electrode shows the best tolerance to CO, with lower surface coverage (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  8. Synthesis of nanoporous CuO/TiO2/Pd-NiO composite catalysts by chemical dealloying and their performance for methanol and ethanol electro-oxidation

    Science.gov (United States)

    Niu, Mengying; Xu, Wence; Zhu, Shengli; Liang, Yanqin; Cui, Zhenduo; Yang, Xianjin; Inoue, Akihisa

    2017-09-01

    Nanoporous CuO/TiO2/Pd-NiO-x (x = 0, 1, 3, 5, 7 at%) catalysts have been synthesized by dealloying Cu-Ti-Pd-Ni alloy ribbons in acid solution. The nanoporous structure and chemical composition of the catalysts distribute uniformly. Based on the electrochemical active area (EASA), electrocatalytic activity and stability, the np-CuO/TiO2/Pd-NiO-3 catalyst possesses the best performance for methanol and ethanol electro-oxidation. For methanol and ethanol electro-oxidation, the anodic current densities in forward scan of the np-CuO/TiO2/Pd-NiO-3 catalyst are about 5.6 times and 2.1 times larger than that of the np-CuO/TiO2/Pd catalyst, respectively. The introduction of NiO provides more electrochemical active sites due to the improved geometrical and bifunctional mechanism. NiO promotes the adsorption of oxygen-containing species (OHads) on the catalyst surface, and electron effect between Pd and Ni is favorable for charge transfer. This accelerates the removal of intermediate products during the oxidation process. The electrocatalytic processes of methanol and ethanol oxidation in alkaline solution are controlled by both charge transfer and diffusion.

  9. Surfactant-Free Synthesis of Carbon-Supported Palladium Nanoparticles and Size-Dependent Hydrogen Production from Formic Acid-Formate Solution.

    Science.gov (United States)

    Zhang, Shuo; Jiang, Bei; Jiang, Kun; Cai, Wen-Bin

    2017-07-26

    Steerable hydrogen generation from the hydrogen storage chemical formic acid via heterogeneous catalysis has attracted considerable interest given the safety and efficiency concerns in handling H2. Herein, a series of carbon-supported capping-agent-free Pd nanoparticles (NPs) with mean sizes tunable from 2.0 to 5.2 nm are developed due to the demand for more efficient dehydrogenation from a formic acid-formate solution of pH 3.5 at room temperature. The trick for the facile size-controlled synthesis of Pd/C catalysts is the selective addition of Na2CO3, NH3·H2O, or NaOH to a Pd(II) solution to attain initial pH values of 7-9.5. For comparison, cuboctahedron modeling and electrochemical COads stripping methods are applied to evaluate active surface Pd sites for turnover frequency (TOF) calculation. Both mass activity and specific activity (TOF) of hydrogen production are not only time-dependent but also Pd-size-dependent. An initial H2 production rate of 246 L·h(-1)·gPd(-1) is achieved on 2.0 nm Pd/C at 303 K, together with a TOF of 1815 h(-1) on the basis of cuboctahedron modeling of surface-active Pd sites. The initial TOF exhibits a significant rise from 3.5 down to 2.8 nm and then levels off below 2.8 nm and even shows a maxima at ca. 2.2 nm using the electrochemical surface area for calculation. The volcano-shaped dependence of TOF on Pd NP size may be better attributed to the changing ratios of terrace sites to defect sites on Pd NPs.

  10. Matrix Isolation Infrared Spectroscopy of an O-H···π Hydrogen-Bonded Complex between Formic Acid and Benzene.

    Science.gov (United States)

    Banerjee, Pujarini; Bhattacharya, Indrani; Chakraborty, Tapas

    2016-05-26

    Mid-infrared spectra of an O-H···π hydrogen-bonded 1:1 complex between formic acid and benzene were measured by isolating the complex in an argon matrix at a temperature of 8 K. The O-H stretching fundamental of formic acid (νO-H) undergoes a red shift of 120 cm(-1), which is the largest among the known π-hydrogen bonded complexes of an O-H donor with respect to benzene as acceptor. Electronic structure theory methods were used extensively to suggest a suitable geometry of the complex that is consistent with a recent study performed at CCSD(T)/CBS level by Zhao et al. (J. Chem. Theory Comput. 2009, 5, 2726-2733), as well as with the measured IR spectral shifts of the present study. It has been determined that density functional theory (DFT) D functionals as well as parametrized DFT functionals like M06-2X, in conjunction with modestly sized basis sets like 6-31G (d, p), are sufficient for correct predictions of the spectral shifts observed in our measurement and also for reproducing the value of the binding energy reported by Zhao et al. We also verified that these low-cost methods are sufficient in predicting the νO-H spectral shifts of an analogous O-H···π hydrogen-bonded complex between phenol and benzene. However, some inconsistencies with respect to shifts of νO-H arise when diffuse functions are included in the basis sets, and the origin of this anomaly is shown to lie in the predicted geometry of the complex. Natural bond orbital (NBO) and atoms-in-molecule (AIM) analyses were performed to correlate the spectral behavior of the complex with its geometric parameters.

  11. Borohydride electro-oxidation by Ag-doped lanthanum chromites

    Indian Academy of Sciences (India)

    S Suresh Balaji; A Usha; V V Giridhar

    2014-05-01

    The electrocatalytic activity of Ag-doped lanthanum chromites electrode materials viz., LaCr0.4Ag0.6O3 and LaCr0.7Ag0.3O3 prepared by decomposing the precursor complex is studied. Pure LaCrO3 is synthesized by combustion route using oxalic acid as a fuel. The decomposition behaviour of the assynthesized powder obtained in the latter method is characterized by TGA-DTA and XRD. Both the precursor complex and the as-synthesized powder are calcined at 900°C for 7 and 10 h, respectively. XRD of the final product after calcinations indicated the formation of perovskite phase with minor amounts of impurity phases of component oxides in the Ag-doped lanthanum chromites and pure perovskite phase in the undoped one. The surface morphology of the perovskites is studied by SEM. The electrocatalytic activity of the perovskite powders for borohydride oxidation is studied by using cyclic voltammetry (CV) at a catalyst loading of 0.7 mgcm−2 for both Ag-doped and undoped LaCrO3 coated on glassy carbon substrate. Calibration plots are obtained by plotting the anodic peak current versus concentration of borohydride in the range of 20-100 mM. The sensitivities of the three perovskites towards borohydride oxidation indicated that LaCr0.4Ag0.6O3 is the best among all the perovskites studied giving a value of 1.395 A/mM.

  12. Effect of cell immobilization on the treatment of olive mill wastewater by a total phenols, acetic acid and formic acid degrading bacterium strain

    Directory of Open Access Journals (Sweden)

    Errami, Mohamed

    2005-06-01

    Full Text Available Olive mill wastewater (OMW is a pure vegetative by-product, containing a high organic and polyphenol content and is resistant to biodegradation. Its disposal lead to major environmental pollution problems in the Mediterranean basin. An aerobic bacterium was isolated from OMW. During three consecutive diluted and supplemented OMW treatment cycles, significant abatement of its phytotoxic substances was observed. In fact, total phenols, acetic and formic acids were reduced between 33 and 64 % when cells of the isolated bacterium were grown free; and between 62 and 78 % when cells of the same isolated bacterium were grown immobilized in a polyurethane sponge. These results suggest that the bacterium culture of the new isolate would decrease the OMW phytotoxicity. Phylogenetic analysis of 16S ribosomal DNA showed that all the related sequences are members of the Enterobacteriaceae family and revealed that the isolated bacterium was characterized as a Klebsiella oxytoca strain.El alpechín (OMW es un residuo puro de la extracción del aceite de oliva, que contiene una elevada carga orgánica y de polifenoles por lo que es resistente a la degradación. Su descarga produce graves problemas de contaminación medioambiental en toda el área mediterránea. Se ha aislado una bacteria anaerobia del OMW, que , durante tres ciclos consecutivos de tratamiento del OMW diluido y suplementado, produjo una disminución significativa de las sustancias fitotóxicas del residuo. De hecho, la concentración en fenoles totales, ácido acético y ácido fórmico se redujeron entre 33 y 64 % cuando las células no estaban inmovilizadas y entre el 62 y 78 % cuando las células bacterianas se inmovilizaron en una esponja de poliuretano. Estos resultados indican que el cultivo de la nueva bacteria aislada puede disminuir la fototoxicidad del alpechín. Análisis filogenético del ribosoma 16S de DNA demostró que todas las secuencias eran miembros de la familia

  13. Cobalt phosphide nanowall array as an efficient 3D catalyst electrode for methanol electro-oxidation

    Science.gov (United States)

    Liu, Danni; Lu, Wenbo; Wang, Kunyang; Du, Gu; Asiri, Abdullah M.; Lu, Qun; Sun, Xuping

    2016-11-01

    In this letter, we report on the use of a cobalt phosphide nanowall array on conductive carbon cloth (CoP NA/CC) as an efficient catalyst electrode for methanol electro-oxidation under alkaline conditions. This CoP NA/CC achieves a current density of 96 mA cm-2 toward 0.5 M methanol at 0.5 V (versus a saturated calomel electrode (SCE)) in 1 M KOH. Moreover, this electrode exhibits superior stability and 93% of the initial anodic current density can be retained after 1000 cyclic voltammetry cycles when re-measured in new electrolyte.

  14. Unraveling the spectroscopy of coupled intramolecular tunneling modes: a study of double proton transfer in the formic-acetic acid complex.

    Science.gov (United States)

    Tayler, Michael C D; Ouyang, Bin; Howard, Brian J

    2011-02-07

    The rotational spectrum of the hetero dimer comprising doubly hydrogen-bonded formic acid and acetic acid has been recorded between 4 and 18 GHz using a pulsed-nozzle Fourier transform microwave spectrometer. Each rigid-molecule rotational transition is split into four as a result of two concurrently ongoing tunneling motions, one being proton transfer between the two acid molecules, and the other the torsion/rotation of the methyl group within the acetyl part. We present a full assignment of the spectrum J = 1 to J = 6 for the ground vibronic states. The transitions are fitted to within a few kilohertz of the observed frequencies using a molecule-fixed effective rotational Hamiltonian for the separate A and E vibrational species of the G(12) permutation-inversion symmetry group. Interpretation of the motion problem uses an internal-vibration and overall-rotation angular momentum coupling scheme and full sets of rotational and centrifugal distortion constants are determined. The tunneling frequencies of the proton-transfer motion are measured for the ground A and E methyl rotation states as 250.4442(12) and -136.1673(30) MHz, respectively. The slight deviation of the latter tunneling frequency from being one half of the former, as simple theory otherwise predicts, is due to different degrees of mixing in wavefunctions between the ground and excited states.

  15. Retention of ionisable compounds on high-performance liquid chromatography XVIII: pH variation in mobile phases containing formic acid, piperazine, tris, boric acid or carbonate as buffering systems and acetonitrile as organic modifier.

    Science.gov (United States)

    Subirats, Xavier; Bosch, Elisabeth; Rosés, Martí

    2009-03-20

    In the present work dissociation constants of commonly used buffering species, formic acid, piperazine, tris(hydroxymethyl)-aminomethane, boric acid and carbonate, have been determined for several acetonitrile-water mixtures. From these pK(a) values a previous model has been successfully evaluated to estimate pH values in acetonitrile-aqueous buffer mobile phases from the aqueous pH and concentration of the above mentioned buffers up to 60% of acetonitrile, and aqueous buffer concentrations between 0.005 (0.001 mol L(-1) for formic acid-formate) and 0.1 mol L(-1). The relationships derived for the presently studied buffers, together with those established for previously considered buffering systems, allow a general prediction of the pH variation of the most commonly used HPLC buffers when the composition of the acetonitrile-water mobile phase changes during the chromatographic process, such as in gradient elution. Thus, they are an interesting tool that can be easily implemented in general retention models to predict retention of acid-base analytes and optimize chromatographic separations.

  16. Electrodeposition of PdCu alloy and its application in methanol electro-oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Hsieh, Ming-Wei [Department of Chemistry, National Cheng Kung University, 1 University Road, Tainan 70101, Taiwan (China); Whang, Thou-Jen, E-mail: twhang@mail.ncku.edu.tw [Department of Chemistry, National Cheng Kung University, 1 University Road, Tainan 70101, Taiwan (China)

    2013-04-01

    This study demonstrates a simple electrodeposition method to fabricate the palladium–copper alloy on an ITO coated glass (PdCu/ITO) and its application in methanol electro-oxidation. Our approaches involve the co-reduction of Pd and Cu using triethanolamine (TEA) as a complexing agent in the electroplating bath and a Pd redox replacement of Cu on the surface of the as-prepared PdCu alloy. The phase structures, alloy compositions and morphologies of catalysts are determined by X-ray diffraction, energy dispersive spectrometer and scanning electron microscopy, respectively. X-ray diffraction shows that the particle size of PdCu deposits shrink when the alloy is deposited in a TEA-contained solution. The electrocatalytic properties of PdCu alloys and Pd redox replacement modified PdCu alloys for methanol oxidation have been investigated by cyclic voltammetry. The PdCu alloy with atomic ratio of 20.5% Cu exhibits higher catalytic activity toward methanol oxidation compared with a pure Pd catalyst. PdCu alloys with smaller particle sizes associated with TEA agent and the surface confined Pd replacement are found to have enhanced catalytic performance in the electro-oxidation of methanol.

  17. A novel system for continuous production of formic acid based on recycling of yellow phosphorous tail gas%连续化回收黄磷尾气副产甲酸的新系统

    Institute of Scientific and Technical Information of China (English)

    刘宝庆; 张义堃; 蒋家羚; 林兴华; 何锦林

    2012-01-01

    The recycling of yellow phosphorous tail gas rich in carbon monoxide is related to energy conservation and environment protection. Based on the analysis of existing technologies for the recycling of yellow phosphorous tail gas, a novel continuous process was developed by combining the resources recycling of yellow phosphorous tail gas with formic acid production, which made phosphoric acid acidification method as the core and could produce formic acid with high quality and low cost on the basis of considering the high and variable viscosity of system and the rationality of energy utilization. At the same time, a multilevel acidification reactor was also designed by integrating the reaction, heating and condensation reflux, which was divided into several reaction regions and equipped with different stirrers. The novel acidification reactor as the core equipment had the advantages of compact structure, energy conservation and wide adaptability.

  18. The electrooxidation mechanism of formic acid on platinum and on lead ad-atoms modified platinum studied with the kinetic isotope effect

    Science.gov (United States)

    Bełtowska-Brzezinska, M.; Łuczak, T.; Stelmach, J.; Holze, R.

    2014-04-01

    Kinetics and mechanism of formic acid (FA) oxidation on platinum and upd-lead ad-atoms modified platinum electrodes have been studied using unlabelled and deuterated compounds. Poisoning of the electrode surface by CO-like species was prevented by suppression of dissociative chemisorption of FA due to a fast competitive underpotential deposition of lead ad-atoms on the Pt surface from an acidic solution containing Pb2+ cations. Modification of the Pt electrode with upd lead induced a catalytic effect in the direct electrooxidation of physisorbed FA to CO2. With increasing degree of H/D substitution, the rate of this reaction decreased in the order: HCOOH > DCOOH ≥ HCOOD > DCOOD. HCOOH was oxidized 8.5-times faster on a Pt/Pb electrode than DCOOD. This primary kinetic isotope effect proves that the C-H- and O-H-bonds are simultaneously cleaved in the rate determining step. A secondary kinetic isotope effect was found in the dissociative chemisorption of FA in the hydrogen adsorption-desorption range on a bare Pt electrode after H/D exchange in the C-H bond, wherein the influence of deuterium substitution in the O-H group was negligibly small. Thus the C-H bond cleavage is accompanied by the C-OH and not the O-H bond split in the FA decomposition, producing CO-like species on the Pt surface sites.

  19. Supported Pt-based nanoparticulate catalysts for the electro-oxidation of methanol: An experimental protocol for quantifying its activity

    DEFF Research Database (Denmark)

    Hernandez-Fernandez, Patricia; Lund, Peter Brilner; Kallesøe, Christian

    2014-01-01

    In here, we propose a simple methodology to evaluate the activity of supported nano-particulate catalysts on the electro-oxidation of methanol in a three-electrode cell. The proof of concept has been made on carbon supported Pt and PtRu commercial catalysts, but the protocol can be extended to all...... kinds of Pt-based nanoparticles. Even though the electro-oxidation of methanol has been studied for many years, there is no established electrochemical procedure for measuring the performance of a catalyst in such reaction. The conditions in which the measurements are carried out differ between research...

  20. Comparative Studies on Control Effect of Rosmarinus officinalis L. and Formic Acid on Bee Mites%迷迭香和甲酸对蜜蜂寄生螨防治效果比较研究

    Institute of Scientific and Technical Information of China (English)

    赵洪木; 卢焕仙

    2011-01-01

    [ Objective ]The study aimed to compare the control effect of Rosmarinus officinalis L. and formic acid on the bee mites. [ Method ]The formic acid was matched into 80% acid solution by adding the water to conduct the treatment by fumigating kill on the bee mite and R. officinalis was extract into the extracting solution by using water extraction to conduct the touch treatment by spraying on the bee mite, with no drug treatment as the CK. The death condition of bee mite after treatment for 24 and 48 h and the changes of bee mite parasitic rate after treatment for 14,21 and 7 d were counted. [ Result ]The deaths of bee mites treated through the fumigating kill by the formic acid and through the touch kill by R. officinalis for 24 and 48 h were higher than CK. Statistics showed that the effect of formic acid had the extremely significant difference with that of R. officinalis and CK and the effect of R. officinalis had no significant difference with that of CK. The parasitic rate of bee mites treated by the formic acid and R. officinalis for 7,14 and 21 d were all decreased while the that of CK was rose,in which,the parasitic rate of bee mites in R. officinalis group with 5 swarm of bees was decreased by 13.3% - 3.4% and that in formic acid group was decreased by 26.7% - 10.0%.Statistics showed that the effects of formic acid and R. officinalis had extremely significant difference with that of CK after drug application for 21 d. [ Conclusion ] After 21 d treatment,R. officinalis and the formic acid all could make the parasitic rate of bee mite dropped significantly ,so R.officinalis can be used as the alternative medicine of acaricidal agent from the pollution-free plant source.%[目的]比较迷迭香和甲酸对蜂螨的治疗效果.[方法]将甲酸加水配成80%溶液,对蜂螨进行熏杀治疗,采用水提法提取迷迭香提取液,对蜂螨进行喷雾触杀治疗,不作药物治疗为对照,计算处理后24、48 h蜂

  1. Cleaning of the diffusers with formic acid for aeration of an active sludge process; Limpieza con acido formico de los difusores demembrana para la aireacion en un proceso de fangos activos

    Energy Technology Data Exchange (ETDEWEB)

    Simon Andre, P.; Lardin Mifsut, C.; Abella Solar, M.; Marc Ponsoda, J.; Garcia del Real, A.; Perez Sanchez, P.

    2009-07-01

    Electric energy costs are one of the main issues inside the total amounts in a WWTP, being the aeration system consumption the highest one but also the most flexible and order to reduce the global costs. In this work it has been quantified the improvement obtained when formic acid is used to do periodic cleanness of the diffusers. When this is used, manual cleanness can be kept apart. During the cleanness processes with formic acid, it has been observed a reduction in the pressure drop, between 6 and 13%, and a reduction in the power demand, between 7 and 12% . These reduction have been correlated with the annual costs, reaching an annual saving of near 3%. (Author) 8 refs.

  2. 甲酸燃料电池中Pd催化剂失活机理研究进展%Recent Advances of Pd Catalyst Deactivation Mechanism in Direct Formic Acid Fuel Cells

    Institute of Scientific and Technical Information of China (English)

    孔祥峰; 侯志强; 杜献明; 范新庄; 徐海波

    2012-01-01

    Catalysts play on important part in performance and commercialization of fuel cells. The progresses in the deactivation mechanism of Pd catalysts for direct formic acid fuel cells (DFAFC) were reviewed based on the brief introduction of electroca-talysis mechanisms of formic acid oxidation.%催化剂是影响燃料电池性能及其产业化进程的关键技术之一.本文在简要介绍直接甲酸燃料电池电催化反应的基础上综述了其阳极Pd催化剂的失活机制的研究进展.

  3. Effect of glycerin and formic acid in the efficiency of deposit on Zn-Ni, obtained by electrodeposition; Efeito da glicerina e do acido formico na eficiencia de deposito da liga Zn-Ni, obtido atraves de eletrodeposicao

    Energy Technology Data Exchange (ETDEWEB)

    Pedroza, G.A.G.; Souza, C.A.C.; Lima, L.R.P.A.; Ferreira, D.M. [Universidade Federal da Bahia - Escola Politecnica, BA (Brazil)

    2010-07-01

    Additives are added to the electrodeposition of metal coatings to improve the characteristics of the deposit. However, the objective was to investigate the effect of adding glycerin and formic acid in the deposition efficiency and deposit structure of zinc-nickel alloy obtained by electrodeposition. The depositions were made at a galvanostatic current density of 10 mA/cm{sup 2} to obtain a deposit of about 5 mm in thickness. The deposition efficiency was determined through measures of mass, chemical composition of the deposit in the presence and absence of additives was examined by X-ray Spectrometer Fluorescence (XRF) and surface characterization of coatings was performed by Scanning Electron Microscopy (SEM). The high levels of glycerin (0,07 M) and formic acid (0,26 M) in bath deposition increased the deposition efficiency of around 10% to 12% by mass, respectively. (author)

  4. Reducing-Agent-Free Instant Synthesis of Carbon-Supported Pd Catalysts in a Green Leidenfrost Droplet Reactor and Catalytic Activity in Formic Acid Dehydrogenation.

    Science.gov (United States)

    Lee, Dong-Wook; Jin, Min-Ho; Lee, Young-Joo; Park, Ju-Hyoung; Lee, Chun-Boo; Park, Jong-Soo

    2016-05-20

    The development of green synthesis methods for supported noble metal catalysts remains important challenges to improve their sustainability. Here we first synthesized carbon-supported Pd catalysts in a green Leidenfrost droplet reactor without reducing agents, high-temperature calcination and reduction procedures. When the aqueous solution containing Pd nitrate precursor, carbon support, and water is dripped on a hot plate, vapor layer is formed between a solution droplet and hot surface, which allow the solution droplet to be levitated on the hot surface (Leidenfrost phenomena). Subsequently, Pd nanoparticles can be prepared without reducing agents in a weakly basic droplet reactor created by the Leidenfrost phenomena, and then the as-prepared Pd nanoparticles are loaded on carbon supports during boiling down the droplet on hot surface. Compared to conventional incipient wetness and chemical synthetic methods, the Leidenfrost droplet reactor does not need energy-consuming, time-consuming, and environmentally unfriendly procedures, which leads to much shorter synthesis time, lower carbon dioxide emission, and more ecofriendly process in comparison with conventional synthesis methods. Moreover, the catalysts synthesized in the Leidenfrost droplet reactor provided much better catalytic activity for room-temperature formic acid decomposition than those prepared by the incipient wetness method.

  5. Kinetic study of formic acid degradation by Fe3+ doped TiO2 self-cleaning nanostructure surfaces prepared by cold spray

    Science.gov (United States)

    Sayyar, Zahra; Akbar Babaluo, Ali; Shahrouzi, Javad Rahbar

    2015-04-01

    A self-cleaning solution was introduced in this paper based on sol-gel and was applied for preparing self-cleaning TiO2. Fe3+ ions have been doped into the TiO2 crystal lattice. XRD analysis indicated that the obtained TiO2 powder contains mainly the anatase phase and TiO2 powder has a crystallite size distribution of 10-12 nm. SEM micrographs have also confirmed nanometric distribution of the obtained powder. A series of uniform and transparent TiO2 and Fe/TiO2 films were prepared by cold spray technique which may result in high uniformity in the final coated surfaces. Photocatalytic activity of the thin films was investigated through degradation of aqueous formic acid under UV-visible light. The Langmuir-Hinshelwood kinetic model was used to interpret quantitatively the observed kinetic experimental result. Comparative study of the obtained coated surfaces with those of uncoated surfaces, demonstrated a remarkable performance. The Fe/TiO2 films and their calcination at 650 °C demonstrated the highest photocatalytic activity.

  6. Fabrication of Supported AuPt Alloy Nanocrystals with Enhanced Electrocatalytic Activity for Formic Acid Oxidation through Conversion Chemistry of Layer-Deposited Pt(2+) on Au Nanocrystals.

    Science.gov (United States)

    Kim, Seong Hyeon; Jeong, Hwakyeung; Kim, Jongwon; Lee, In Su

    2015-10-07

    The exploitation of nanoconfined conversion of Au- and Pt-containing binary nanocrystals for developing a controllable synthesis of surfactant-free AuPt nanocrystals with enhanced formic acid oxidation (FAO) activity is reported, which can be stably and evenly immobilized on various support materials to diversify and optimize their electrocatalytic performance. In this study, an atomic layer of Pt(2+) species is discovered to be spontaneously deposited in situ on the Au nanocrystal generated from a reverse-microemulsion solution. The resulting Au/Pt(2+) nanocrystal thermally transforms into a reduced AuPt alloy nanocrystal during the subsequent solid-state conversion process within the SiO2 nanosphere. The alloy nanocrystals can be isolated from SiO2 in a surfactant-free form and then dispersedly loaded on the carbon sphere surface, allowing for the production of a supported electrocatalyst that exhibits much higher FAO activity than commercial Pt/C catalysts. Furthermore, by involving Fe3O4 nanocrystals in the conversion process, the AuPt alloy nanocrystals can be grown on the oxide surface, improving the durability of supported metal catalysts, and then uniformly loaded on a reduced graphene oxide (RGO) layer with high electroconductivity. This produces electrocatalytic AuPt/Fe3O4/RGO nanocomposites whose catalyst-oxide-graphene triple-junction structure provides improved electrocatalytic properties in terms of both activity and durability in catalyzing FAO. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. A surfactant-free strategy for synthesizing reduced graphene oxide supported palladium nanoparticles with enhanced electrocatalytic performance towards formic acid oxidation

    Science.gov (United States)

    Gao, Xueqing; Li, Fumin; Li, Yumei; Li, Shuni; Chen, Yu; Lee, Jong-Min

    2015-04-01

    A simple noncovalent method is used to graft sulfonate (-SO3H) groups on a graphene oxide (GO) surface by the π-π stacking interaction between 1-propylsulfonic-3-methylimidazolium chloride and GO. The immobilization of sulfonate groups on the GO surface is confirmed by various physical techniques, such as X-ray photoelectron spectroscopy, ultraviolet and visible spectroscopy, and zeta potential analysis, etc. The as-prepared sulfonate functionalized GO composites (GO-SO3H) are further used as supporting material to anchor PdO·H2O nanoparticles through the slow hydrolysis of PdCl2. The sulfonate functionalized reduced GO composites (rGO-SO3H) supported Pd nanoparticles composites (Pd/rGO-SO3H) are obtained through the simultaneous reduction of PdO·H2O and the GO-SO3H with sodium borohydride. As shown by transmission electron microscopy, Pd nanoparticles with good dispersity effectively anchor on the rGO-SO3H surface. The as-prepared Pd/rGO-SO3H composites display the improved electrocatalytic activity and long-term stability towards the formic acid oxidation reaction compared to the un-sulfonated counterpart.

  8. Highly active carbon supported palladium catalysts decorated by a trace amount of platinum by an in-situ galvanic displacement reaction for formic acid oxidation

    Science.gov (United States)

    Li, Zuopeng; Li, Muwu; Han, Mingjia; Wu, Xin; Guo, Yong; Zeng, Jianhuang; Li, Yuexia; Liao, Shijun

    2015-03-01

    Aimed at reducing platinum usage and improved catalytic activity for formic acid oxidation, a series of Pt decorated Pd/C catalysts are prepared by an in-situ galvanic displacement reaction between freshly prepared Pd/C ink and H2PtCl6 in an aqueous solution. The catalysts with 4 nm particle sizes and 20 wt.% loadings have been characterized by transmission electron microscopy, thermogravimetric analysis and X-ray photoelectron spectroscopy (XPS). The electrochemical evaluations by cyclic voltammetry are conducted to test out the CO tolerance and catalytic activities. In addition to XPS analysis, a theoretical calculation has been attempted the first time to find out the surface Pd/Pt molar ratios. The decay rate of the catalysts has been evaluated by the percentage of the forward/backward peak current retained using the value at the 20th cycle divided by that in the first cycle. Compared with a Pd/C benchmark, all Pt decorated Pd/C register enhanced activity while the cost remains virtually unchanged. The optimized catalyst is found to have a Pd/Pt molar ratio of 75:1 but with 2.5 times activity relative to that of Pd/C.

  9. Aerobic oxidation of methanol to formic acid on Au8-: benchmark analysis based on completely renormalized coupled-cluster and density functional theory calculations.

    Science.gov (United States)

    Hansen, Jared A; Ehara, Masahiro; Piecuch, Piotr

    2013-10-10

    The left-eigenstate completely renormalized coupled-cluster (CC) method with singles, doubles, and noniterative triples [CR-CC(2,3)] and a few representative density functional theory (DFT) approaches have been applied to methanol oxidation to formic acid on a Au8(-) cluster, which is a model for aerobic oxidations on gold nanoparticles. It is demonstrated that CR-CC(2,3) supports the previous exothermic reaction mechanism, placing the initial rate-determining transition state, which corresponds to hydrogen transfer from the methoxy species to the molecular oxygen, at about 20 kcal/mol above the reactants, less than 40 kcal/mol above the O2 and CH3O(-) species coadsorbed on Au8(-), and considerably above the remaining two transition states along the reaction pathway. The DFT calculations using the previously exploited M06 hybrid functional show reasonable agreement with CR-CC(2,3), but B3LYP offers additional improvements in the description of the relevant activation energies. Pure functionals, including M06-L, BP86, and TPSS, do not work well, significantly underestimating the activation barriers, but dispersion corrections, as in B97-D, bring the results closer to the M06 accuracy level.

  10. Impact of surface roughness of Au core in Au/Pd core-shell nanoparticles toward formic acid oxidation - Experiment and simulation

    Science.gov (United States)

    Hsu, Chiajen; Huang, Chienwen; Hao, Yaowu; Liu, Fuqiang

    2013-12-01

    The Au/Pd core-shell nanoparticles (NPs) were synthesized via galvanic replacement of Cu by Pd on hollow Au cores by adding different concentrations of Na2SO3 solution. It was found that the higher concentration of Na2SO3 that was used, the rougher the Au nanospheres became. However, the rougher Au surface may cause more defects in the Pd layers and decrease the catalytic abilities. The Au/Pd NPs synthesized using 0 M Na2SO3 (denoted as 0 M-Au/Pd NPs) have the smoothest Pd surface and demonstrate higher formic acid oxidation (FAO) activity (0.714 mA cm-2, normalized to the surface area of Pd) than other Au/Pd NPs and commercial Pd black (0.47 mA cm-2). Additional electrochemical characterization of the 0 M-Au/Pd NPs also demonstrated lower CO-stripping onset and peak potentials, higher stability (8× improvement in stabilized oxidation current), and superior durability (by 1.6×) than the Pd black. In addition, a simple simulation of FAO was adopted to predict the anodic curve by including reaction intermediates of formate and hydroxyl. The 0 M-Au/Pd NPs were found to show higher formate and lower hydroxyl coverage than the Pd black.

  11. PdM nanoparticles (M = Ni, Co, Fe, Mn) with high activity and stability in formic acid oxidation synthesized by sonochemical reactions

    Science.gov (United States)

    Matin, Md. Abdul; Jang, Ji-Hoon; Kwon, Young-Uk

    2014-09-01

    Bimetallic alloy PdnM (n = 1 for M = Mn, Fe, and Co; n = 1, 2, and 3 for M = Ni) nanoparticles (NPs) are synthesized on carbon supports by sonochemical reactions of Pd(acac)2 (acac = acetylacetonate) with M(acac)2 (M = Ni, Co, Mn) or Fe(acac)3 in ethylene glycol. The NPs are characterized by powder X-ray diffractometry, transmission electron microscopy (TEM), and inductively coupled plasma-atomic emission spectroscopy to determine their crystal structures, particle sizes, morphology, and elemental compositions. Alloy formation of the NPs is proven by energy dispersive X-ray spectroscopy line profiles using scanning TEM. The electronic structures and the surface compositions of NPs are analyzed using X-ray photoelectron spectroscopy, and Fourier-transform infrared spectroscopy, respectively. PdnM NPs are applied as electrocatalysts for formic acid oxidation. The incorporation of M in Pd reduces the poisoning by surface hydroxyl groups. Activities based on the current densities are in the order of PdNi > PdFe > PdCo > PdMn. Within the PdnNi series, the activity is in the order of PdNi > Pd2Ni > Pd3Ni. The PdnM NP electrocatalysts show higher activity by a factor of 2-3.5 and improved durability than similarly prepared Pd NP electrocatalyst.

  12. Synthesis, characterization, and application of silica supported ionic liquid as catalyst for reductive amination of cyclohexanone with formic acid and triethyl amine as hydrogen source

    Institute of Scientific and Technical Information of China (English)

    Ashif H. Tamboli; Avinash A. Chaugule; Faheem A. Sheikh; Wook-Jin Chung; Hern Kim

    2015-01-01

    A silica supported ionic liquid was synthesized and characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy, X-ray diffraction, N2 adsorption-desorption, and thermogravimetric analysis. All these techniques, especially SEM results indicated the presence of well-defined spherical particles having diameters larger than the pristine silica particles, confirming the successful immobilization of the ionic liquid. The prepared silica supported ionic liquid was used in the reductive amination of cyclohexanone under different conditions with different azeo-tropic mixtures of formic acid and triethyl amine as a hydrogen source. The catalyst showed effi-cient catalytic performance and excellent yields of N-cyclohexyl amine derivatives in the range of 58%to 84%at 30 °C. After completion of the reaction, the catalyst was easily recovered by simple filtration and reused for another five cycles without any significant impact on product yields. The obtained catalytic performance indicates that the present catalyst is green, very active, and reusable for the reductive amination of cyclohexanone.

  13. Alkanediyl-α, ω-bis (dimethyl cetylammonium bromide gemini surfactants as novel corrosion inhibitors for mild steel in formic acid

    Directory of Open Access Journals (Sweden)

    Mohammad Mobin

    2012-12-01

    Full Text Available Gemini surfactants, butanediyl 1,4-bis(dimethyl cetylammonium bromide, pentanediyl 1,5 - bis (dimethyl cetylammonium bromide and hexanediyl 1,6 - bis (dimethyl cetylammonium bromide from Alkanediyl-α, ω-bis (dimethyl cetylammonium bromide series were synthesized in laboratory and were characterized by using Nuclear Magnetic Resonance (NMR spectroscopy. The surfactants were tested as corrosion inhibitors for mild steel in 20% formic acid. The influence of surfactants on mild steel corrosion inhibition was investigated by measuring the corrosion rate of mild steel in their absence and presence by weight loss measurements, solvent analysis of iron ions into the test solution and potentiodynamic polarization measurements. The surface morphology of the corroded steel samples in presence and absence of surfactants was evaluated by using Scanning Electron Microscopy (SEM. The synthesized gemini surfactants performed as excellent corrosion inhibitor, the inhibition efficiency (IE being in the range of 76.66-97.41%. The IE of surfactants is slightly affected by the spacer length. The IE increased with increase in surfactant concentration and temperature. The adsorption of gemini surfactants on the steel surface was found to obey Langmuir adsorption isotherm. The results of the potentiodynamic polarization studies are consistent with the results of weight loss studies.

  14. N-doped carbon dots derived from bovine serum albumin and formic acid with one- and two-photon fluorescence for live cell nuclear imaging.

    Science.gov (United States)

    Tan, Mingqian; Li, Xintong; Wu, Hao; Wang, Beibei; Wu, Jing

    2015-12-01

    Carbon dots with both one- and two-photon fluorescence have drawn great attention for biomedical imaging. Herein, nitrogen-doped carbon dots were facilely developed by one-pot hydrothermal method using bovine serum albumin and formic acid as carbon sources. They are highly water-soluble with strong fluorescence when excited with ultraviolet or near infrared light. The carbon dots have a diameter of ~8.32 nm and can emit strong two-photon induced fluorescence upon excitation at 750 nm with a femtosecond laser. X-ray photoelectron spectrometer analysis revealed that the carbon dots contained three components, C, N and O, corresponding to the peak at 285, 398 and 532 eV, respectively. The Fourier-transform infrared spectroscopy analysis revealed that there are carboxyl and carboxylic groups on the surface, which allowed further linking of functional molecules. pH stability study demonstrated that the carbon dots are able to be used in a wide range of pH values. The fluorescence mechanism is also discussed in this study. Importantly, these carbon dots are biocompatible and highly photostable, which can be directly applied for both one- and two-photon living cell imaging. After proper surface functionalization with TAT peptide, they can be used as fluorescent probes for live cell nuclear-targeted imaging.

  15. Reducing-Agent-Free Instant Synthesis of Carbon-Supported Pd Catalysts in a Green Leidenfrost Droplet Reactor and Catalytic Activity in Formic Acid Dehydrogenation

    Science.gov (United States)

    Lee, Dong-Wook; Jin, Min-Ho; Lee, Young-Joo; Park, Ju-Hyoung; Lee, Chun-Boo; Park, Jong-Soo

    2016-05-01

    The development of green synthesis methods for supported noble metal catalysts remains important challenges to improve their sustainability. Here we first synthesized carbon-supported Pd catalysts in a green Leidenfrost droplet reactor without reducing agents, high-temperature calcination and reduction procedures. When the aqueous solution containing Pd nitrate precursor, carbon support, and water is dripped on a hot plate, vapor layer is formed between a solution droplet and hot surface, which allow the solution droplet to be levitated on the hot surface (Leidenfrost phenomena). Subsequently, Pd nanoparticles can be prepared without reducing agents in a weakly basic droplet reactor created by the Leidenfrost phenomena, and then the as-prepared Pd nanoparticles are loaded on carbon supports during boiling down the droplet on hot surface. Compared to conventional incipient wetness and chemical synthetic methods, the Leidenfrost droplet reactor does not need energy-consuming, time-consuming, and environmentally unfriendly procedures, which leads to much shorter synthesis time, lower carbon dioxide emission, and more ecofriendly process in comparison with conventional synthesis methods. Moreover, the catalysts synthesized in the Leidenfrost droplet reactor provided much better catalytic activity for room-temperature formic acid decomposition than those prepared by the incipient wetness method.

  16. Emission Ratios for Ammonia and Formic Acid and Observations of Peroxy Acetyl Nitrate (PAN and Ethylene in Biomass Burning Smoke as Seen by the Tropospheric Emission Spectrometer (TES

    Directory of Open Access Journals (Sweden)

    Vivienne H. Payne

    2011-11-01

    Full Text Available We use the Tropospheric Emission Spectrometer (TES aboard the NASA Aura satellite to determine the concentrations of the trace gases ammonia (NH3 and formic acid (HCOOH within boreal biomass burning plumes, and present the first detection of peroxy acetyl nitrate (PAN and ethylene (C2H4 by TES. We focus on two fresh Canadian plumes observed by TES in the summer of 2008 as part of the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS-B campaign. We use TES retrievals of NH3 and HCOOH within the smoke plumes to calculate their emission ratios (1.0% ± 0.5% and 0.31% ± 0.21%, respectively relative to CO for these Canadian fires. The TES derived emission ratios for these gases agree well with previous aircraft and satellite estimates, and can complement ground-based studies that have greater surface sensitivity. We find that TES observes PAN mixing ratios of ~2 ppb within these mid-tropospheric boreal biomass burning plumes when the average cloud optical depth is low ( < 0.1 and that TES can detect C2H4 mixing ratios of ~2 ppb in fresh biomass burning smoke plumes.

  17. Quantum free energy landscapes from ab initio path integral metadynamics: Double proton transfer in the formic acid dimer is concerted but not correlated

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, Sergei D., E-mail: sergei.ivanov@unirostock.de; Grant, Ian M.; Marx, Dominik [Lehrstuhl für Theoretische Chemie, Ruhr–Universität Bochum, 44780 Bochum (Germany)

    2015-09-28

    With the goal of computing quantum free energy landscapes of reactive (bio)chemical systems in multi-dimensional space, we combine the metadynamics technique for sampling potential energy surfaces with the ab initio path integral approach to treating nuclear quantum motion. This unified method is applied to the double proton transfer process in the formic acid dimer (FAD), in order to study the nuclear quantum effects at finite temperatures without imposing a one-dimensional reaction coordinate or reducing the dimensionality. Importantly, the ab initio path integral metadynamics technique allows one to treat the hydrogen bonds and concomitant proton transfers in FAD strictly independently and thus provides direct access to the much discussed issue of whether the double proton transfer proceeds via a stepwise or concerted mechanism. The quantum free energy landscape we compute for this H-bonded molecular complex reveals that the two protons move in a concerted fashion from initial to product state, yet world-line analysis of the quantum correlations demonstrates that the protons are as quantum-uncorrelated at the transition state as they are when close to the equilibrium structure.

  18. Electro-oxidation of ethanol on ternary non-alloyed Pt-Sn-Pr/C catalysts

    Science.gov (United States)

    Corradini, Patricia G.; Antolini, Ermete; Perez, Joelma

    2015-02-01

    Ternary Pt-Sn-Pr/C (70:10:20), (70:15:15) and (45:45:10) electro-catalysts were prepared by a modified formic acid method, and their activity for the ethanol oxidation reaction (EOR) was compared with that of Pt-Pr/C catalysts prepared by the same methods and that of commercial Pt-Sn/C (75:25) and Pt/C catalysts. Among all the catalysts, the Pt-Sn-Pr/C (45:45:10) catalyst presented both the highest mass activity and the highest specific activity. The steady state electrochemical stability of ternary Pt-Sn-Pr catalysts increased with the surface Sn/Pt atomic ratio. Following repetitive potential cycling (RPC), the activity for ethanol oxidation of Pt-Sn-Pr/C catalysts with high surface Sn/Pt atomic ratio was considerably higher than that of the corresponding as-prepared catalysts, and increased with increasing the Sn/Pt ratio. The increase of the EOR mass activity following RPC was ascribed to the increase of either the specific activity (for the Pt-Sn-Pr/C (70:15:15) catalyst) or the electrochemically active surface area (for the Pt-Sn-Pr/C (45:45:10) catalyst). Dissolution of Sn and Pr oxides from Pt-Sn-Pr/C catalyst surface was observed following RPC.

  19. Study of the interaction of formic acid, formaldehyde and formamide with the bulk terminated (1 × 1) and reconstructed (2 × 1) surfaces of rutile TiO2(011)

    Science.gov (United States)

    Muir, J. M. R.; Idriss, H.

    2013-01-01

    The nature of interactions of formaldehyde (HCHO), formamide (NH2CHO) and formic acid (HCOOH) is studied for the bulk terminated TiO2 (011) (1 × 1) surface and its most stable real surface structure the “brookite-like” (2 × 1) reconstruction; denoted (011)R. On the (011) (1 × 1) strong bridging adsorptions are seen for formic acid (1.71 eV) and formamide (1.57 eV) whereas the formaldehyde adsorbs in an η2 (C,O) structure (1.31 eV). On the (011)R there is a marked decrease in binding with only weak monodentate structures seen for formic acid (0.38, 0.27 eV) and formamide (0.44, 0.29 eV) and an η1 (O) adsorption seen for formaldehyde (0.23 eV). The reasons for this weak adsorption are examined. The arrangement of surface O atoms in the (011)R forces longer Tisbnd Oadsorbate bonds resulting in weak adsorption energy. Charge transfer to the surface is also reduced and in the case of bridging adsorptions the destabilising effect of the surface O atoms is considerable. The crystal field of the titanium surface atoms is examined and the (011) (1 × 1) Ti is found to have a higher proportion of states in the conduction band available to bind to the adsorbate when compared to their counterparts of the (011)R surface.

  20. 硅胶催化双氧水甲酸氧化噻吩类化合物的研究%Oxidation of Thiophenes over Silica Gel in Hydrogen Peroxide/Formic Acid System

    Institute of Scientific and Technical Information of China (English)

    陈兰菊; 郭绍辉; 赵地顺

    2006-01-01

    Thiophene (C4H4S) and 3-methylthiophene(3-MC4H4S) are typical thiophenenic sulfur compounds that exist in fluid catalytic cracking (FCC) gasoline. Oxidation of C4H4S and 3-MC4H4S were conducted in hydrogen peroxide (H2O2) and formic acid system over a series of silica gel loaded with metal oxide. The silica gel loaded with copper and cobalt (1:1) oxide was found very active for the model compound oxidation using H2O2/formic acid, while the silica gel unloaded with metal oxide was less active. The sulfur removal rate of thiophenes was different as solvent was changed. And the conversation of C4H4S and 3-MC4H4S was improved at higher temperature,but reduced when olefin was added. The sulfur removal rate of model sulfur compounds was enhanced when the phase transfer catalyst emulsifier polyethylene glycol octyl phenyl ether or tetrabutylammonium bromide(TBAB)in a H2O2 and formic acid system with the addition of TBAB, a bromine substitution trend appeared in the oxidation of thiophenes, suggesting the influence of TBAB.