WorldWideScience

Sample records for formation root system

  1. Root growth, secondary root formation and root gravitropism in carotenoid-deficient seedlings of Zea mays L

    Science.gov (United States)

    Ng, Y. K.; Moore, R.

    1985-01-01

    The effect of ABA on root growth, secondary-root formation and root gravitropism in seedlings of Zea mays was investigated by using Fluridone-treated seedlings and a viviparous mutant, both of which lack carotenoids and ABA. Primary roots of seedlings grown in the presence of Fluridone grew significantly slower than those of control (i.e. untreated) roots. Elongation of Fluridone-treated roots was inhibited significantly by the exogenous application of 1 mM ABA. Exogenous application of 1 micromole and 1 nmole ABA had either no effect or only a slight stimulatory effect on root elongation, depending on the method of application. The absence of ABA in Fluridone-treated plants was not an important factor in secondary-root formation in seedlings less than 9-10 d old. However, ABA may suppress secondary-root formation in older seedlings, since 11-d-old control seedlings had significantly fewer secondary roots than Fluridone-treated seedlings. Roots of Fluridone-treated and control seedlings were graviresponsive. Similar data were obtained for vp-9 mutants of Z. mays, which are phenotypically identical to Fluridone-treated seedlings. These results indicate that ABA is necessary for neither secondary-root formation nor for positive gravitropism by primary roots.

  2. Root Formation in Ethylene-Insensitive Plants1

    Science.gov (United States)

    Clark, David G.; Gubrium, Erika K.; Barrett, James E.; Nell, Terril A.; Klee, Harry J.

    1999-01-01

    Experiments with ethylene-insensitive tomato (Lycopersicon esculentum) and petunia (Petunia × hybrida) plants were conducted to determine if normal or adventitious root formation is affected by ethylene insensitivity. Ethylene-insensitive Never ripe (NR) tomato plants produced more belowground root mass but fewer aboveground adventitious roots than wild-type Pearson plants. Applied auxin (indole-3-butyric acid) increased adventitious root formation on vegetative stem cuttings of wild-type plants but had little or no effect on rooting of NR plants. Reduced adventitious root formation was also observed in ethylene-insensitive transgenic petunia plants. Applied 1-aminocyclopropane-1-carboxylic acid increased adventitious root formation on vegetative stem cuttings from NR and wild-type plants, but NR cuttings produced fewer adventitious roots than wild-type cuttings. These data suggest that the promotive effect of auxin on adventitious rooting is influenced by ethylene responsiveness. Seedling root growth of tomato in response to mechanical impedance was also influenced by ethylene sensitivity. Ninety-six percent of wild-type seedlings germinated and grown on sand for 7 d grew normal roots into the medium, whereas 47% of NR seedlings displayed elongated taproots, shortened hypocotyls, and did not penetrate the medium. These data indicate that ethylene has a critical role in various responses of roots to environmental stimuli. PMID:10482660

  3. Non-canonical WOX11-mediated root branching contributes to plasticity in Arabidopsis root system architecture.

    Science.gov (United States)

    Sheng, Lihong; Hu, Xiaomei; Du, Yujuan; Zhang, Guifang; Huang, Hai; Scheres, Ben; Xu, Lin

    2017-09-01

    Lateral roots (LRs), which originate from the growing root, and adventitious roots (ARs), which are formed from non-root organs, are the main contributors to the post-embryonic root system in Arabidopsis However, our knowledge of how formation of the root system is altered in response to diverse inductive cues is limited. Here, we show that WOX11 contributes to root system plasticity. When seedlings are grown vertically on medium, WOX11 is not expressed in LR founder cells. During AR initiation, WOX11 is expressed in AR founder cells and activates LBD16 LBD16 also functions in LR formation and is activated in that context by ARF7 / 19 and not by WOX11 This indicates that divergent initial processes that lead to ARs and LRs may converge on a similar mechanism for primordium development. Furthermore, we demonstrated that when plants are grown in soil or upon wounding on medium, the primary root is able to produce both WOX11 -mediated and non- WOX11 -mediated roots. The discovery of WOX11 -mediated root-derived roots reveals a previously uncharacterized pathway that confers plasticity during the generation of root system architecture in response to different inductive cues. © 2017. Published by The Company of Biologists Ltd.

  4. Systems approaches to study root architecture dynamics

    Directory of Open Access Journals (Sweden)

    Candela eCuesta

    2013-12-01

    Full Text Available The plant root system is essential for providing anchorage to the soil, supplying minerals and water, and synthesizing metabolites. It is a dynamic organ modulated by external cues such as environmental signals, water and nutrients availability, salinity and others. Lateral roots are initiated from the primary root post-embryonically, after which they progress through discrete developmental stages which can be independently controlled, providing a high level of plasticity during root system formation.Within this review, main contributions are presented, from the classical forward genetic screens to the more recent high-throughput approaches, combined with computer model predictions, dissecting how lateral roots and thereby root system architecture is established and developed.

  5. A new approach to root formation

    OpenAIRE

    Vatanpour, Mehdi; Zarei, Mina; Javidi, Maryam; Shirazian, Shiva

    2008-01-01

    In endodontics, treatment of an open apex tooth with necrotic pulp is a problem. It seems that with promotion of remnants of Hertwig?s epithelial sheath or rest of malassez accompany with a good irrigation of root canal we can expect root formation. (Iranian Endodontic Journal 2008;3:42-43)

  6. Effect of MET on formation and vigor of wheat roots

    International Nuclear Information System (INIS)

    Wang Bingkui; Jin Ziyu; Zhao Miaozhen; Zhao Yanshen

    1993-01-01

    Effect of MET on the formation and vigor of roots of wheat seedlings were studied. The results showed that 50 ∼ 200 ppm MET inhibited vertical elongation of roots, increased root, shoot ratio and enhanced the formation and vigor of roots. But MET had no effect on the dry weight of roots. The activity of peroxidase was decreased and the proportion of assimilates in roots was increased by MET treatment compared with the control

  7. Lateral root formation and the multiple roles of auxin.

    Science.gov (United States)

    Du, Yujuan; Scheres, Ben

    2018-01-04

    Root systems can display variable architectures that contribute to survival strategies of plants. The model plant Arabidopsis thaliana possesses a tap root system, in which the primary root and lateral roots (LRs) are major architectural determinants. The phytohormone auxin fulfils multiple roles throughout LR development. In this review, we summarize recent advances in our understanding of four aspects of LR formation: (i) LR positioning, which determines the spatial distribution of lateral root primordia (LRP) and LRs along primary roots; (ii) LR initiation, encompassing the activation of nuclear migration in specified lateral root founder cells (LRFCs) up to the first asymmetric cell division; (iii) LR outgrowth, the 'primordium-intrinsic' patterning of de novo organ tissues and a meristem; and (iv) LR emergence, an interaction between LRP and overlaying tissues to allow passage through cell layers. We discuss how auxin signaling, embedded in a changing developmental context, plays important roles in all four phases. In addition, we discuss how rapid progress in gene network identification and analysis, modeling, and four-dimensional imaging techniques have led to an increasingly detailed understanding of the dynamic regulatory networks that control LR development. © The Author(s) 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  8. Influence of temperature and rooting-promoter on the formation of root-primodia and on the rooting of chrysanthemum cuttings under storage

    International Nuclear Information System (INIS)

    Nishio, J.; Fukuda, M.

    1998-01-01

    In order to promote rooting for direct planting cuttings in a lighting cultivation of chrysanthemum, we clarified the effects of light, temperature and term of storage of the cuttings, and analyzed ways of using rooting promoters as a pre-treatment of cuttings for root-primodia formation and rooting. Light as a pre-treatment had little effect, so it seemed to be not necessary for the formation of root primodia. The formation of the root-primodia was most hastened at 25 degrees C; inversely, it was slowed down at low temperatures, that is, the root-primodia were formed in four days at 25 degrees C, five days at 20 degrees C, and seven days at 15 degrees C. With the use of rooting promoters as a pre-treatment for the rooting of cuttings, the root-primodia were formed faster when the whole of cuttings were dipped in 40 mg/L solution of indelebutyric acid (IBA) than when the base of cuttings were dipped or sprayed 400 mg/L solution of IBA. It was appropriate that cuttings were dipped in IBA then put in in plastic-pots (7.5cm) vertically, packed in polyethylene-bags and stored in a corrugated carton box

  9. Automated Root Tracking with "Root System Analyzer"

    Science.gov (United States)

    Schnepf, Andrea; Jin, Meina; Ockert, Charlotte; Bol, Roland; Leitner, Daniel

    2015-04-01

    Crucial factors for plant development are water and nutrient availability in soils. Thus, root architecture is a main aspect of plant productivity and needs to be accurately considered when describing root processes. Images of root architecture contain a huge amount of information, and image analysis helps to recover parameters describing certain root architectural and morphological traits. The majority of imaging systems for root systems are designed for two-dimensional images, such as RootReader2, GiA Roots, SmartRoot, EZ-Rhizo, and Growscreen, but most of them are semi-automated and involve mouse-clicks in each root by the user. "Root System Analyzer" is a new, fully automated approach for recovering root architectural parameters from two-dimensional images of root systems. Individual roots can still be corrected manually in a user interface if required. The algorithm starts with a sequence of segmented two-dimensional images showing the dynamic development of a root system. For each image, morphological operators are used for skeletonization. Based on this, a graph representation of the root system is created. A dynamic root architecture model helps to determine which edges of the graph belong to an individual root. The algorithm elongates each root at the root tip and simulates growth confined within the already existing graph representation. The increment of root elongation is calculated assuming constant growth. For each root, the algorithm finds all possible paths and elongates the root in the direction of the optimal path. In this way, each edge of the graph is assigned to one or more coherent roots. Image sequences of root systems are handled in such a way that the previous image is used as a starting point for the current image. The algorithm is implemented in a set of Matlab m-files. Output of Root System Analyzer is a data structure that includes for each root an identification number, the branching order, the time of emergence, the parent

  10. Direct activation of EXPANSIN14 by LBD18 in the gene regulatory network of lateral root formation in Arabidopsis.

    Science.gov (United States)

    Kim, Jungmook; Lee, Han Woo

    2013-02-01

    Root system architecture is important for plants to adapt to a changing environment. The major determinant of the root system is lateral roots originating from the primary root. The developmental process of lateral root formation can be divided into priming, initiation, primordium development and the emergence of lateral roots, and is well characterized in Arabidopsis. The hormone auxin plays a critical role in lateral root development, and several auxin response modules involving AUXIN RESPONSE FACTORS (ARFs), transcriptional regulators of auxin-regulated genes and Aux/IAA, negative regulators of ARFs, regulate lateral root formation. The LATERAL ORGAN BOUNDARIES DOMAIN/ASYMMETRIC LEAVES2-LIKE (LBD/ASL) gene family encodes a unique class of transcription factors harbouring a conserved plant-specific lateral organ boundary domain and plays a role in lateral organ development of plants including lateral root formation. In our previous study, we showed that LBD18 stimulates lateral root formation in combination with LBD16 downstream of ARF7 and ARF19 during the auxin response. We have recently demonstrated that LBD18 activates expression of EXP14, a gene encoding the cell-wall loosening factor, by directly binding to the EXP14 promoter to promote lateral root emergence. Here we present the molecular function of LBD18 and its gene regulatory network during lateral root formation.

  11. Root system markup language: toward a unified root architecture description language.

    Science.gov (United States)

    Lobet, Guillaume; Pound, Michael P; Diener, Julien; Pradal, Christophe; Draye, Xavier; Godin, Christophe; Javaux, Mathieu; Leitner, Daniel; Meunier, Félicien; Nacry, Philippe; Pridmore, Tony P; Schnepf, Andrea

    2015-03-01

    The number of image analysis tools supporting the extraction of architectural features of root systems has increased in recent years. These tools offer a handy set of complementary facilities, yet it is widely accepted that none of these software tools is able to extract in an efficient way the growing array of static and dynamic features for different types of images and species. We describe the Root System Markup Language (RSML), which has been designed to overcome two major challenges: (1) to enable portability of root architecture data between different software tools in an easy and interoperable manner, allowing seamless collaborative work; and (2) to provide a standard format upon which to base central repositories that will soon arise following the expanding worldwide root phenotyping effort. RSML follows the XML standard to store two- or three-dimensional image metadata, plant and root properties and geometries, continuous functions along individual root paths, and a suite of annotations at the image, plant, or root scale at one or several time points. Plant ontologies are used to describe botanical entities that are relevant at the scale of root system architecture. An XML schema describes the features and constraints of RSML, and open-source packages have been developed in several languages (R, Excel, Java, Python, and C#) to enable researchers to integrate RSML files into popular research workflow. © 2015 American Society of Plant Biologists. All Rights Reserved.

  12. Regulation of root morphogenesis in arbuscular mycorrhizae: what role do fungal exudates, phosphate, sugars and hormones play in lateral root formation?

    Science.gov (United States)

    Fusconi, Anna

    2014-01-01

    Background Arbuscular mycorrhizae (AMs) form a widespread root–fungus symbiosis that improves plant phosphate (Pi) acquisition and modifies the physiology and development of host plants. Increased branching is recognized as a general feature of AM roots, and has been interpreted as a means of increasing suitable sites for colonization. Fungal exudates, which are involved in the dialogue between AM fungi and their host during the pre-colonization phase, play a well-documented role in lateral root (LR) formation. In addition, the increased Pi content of AM plants, in relation to Pi-starved controls, as well as changes in the delivery of carbohydrates to the roots and modulation of phytohormone concentration, transport and sensitivity, are probably involved in increasing root system branching. Scope This review discusses the possible causes of increased branching in AM plants. The differential root responses to Pi, sugars and hormones of potential AM host species are also highlighted and discussed in comparison with those of the non-host Arabidopsis thaliana. Conclusions Fungal exudates are probably the main compounds regulating AM root morphogenesis during the first colonization steps, while a complex network of interactions governs root development in established AMs. Colonization and high Pi act synergistically to increase root branching, and sugar transport towards the arbusculated cells may contribute to LR formation. In addition, AM colonization and high Pi generally increase auxin and cytokinin and decrease ethylene and strigolactone levels. With the exception of cytokinins, which seem to regulate mainly the root:shoot biomass ratio, these hormones play a leading role in governing root morphogenesis, with strigolactones and ethylene blocking LR formation in the non-colonized, Pi-starved plants, and auxin inducing them in colonized plants, or in plants grown under high Pi conditions. PMID:24227446

  13. Direct activation of EXPANSIN14 by LBD18 in the gene regulatory network of lateral root formation in Arabidopsis

    OpenAIRE

    Kim, Jungmook; Lee, Han Woo

    2013-01-01

    Root system architecture is important for plants to adapt to a changing environment. The major determinant of the root system is lateral roots originating from the primary root. The developmental process of lateral root formation can be divided into priming, initiation, primordium development and the emergence of lateral roots, and is well characterized in Arabidopsis. The hormone auxin plays a critical role in lateral root development, and several auxin response modules involving AUXIN RESPO...

  14. The TOR Pathway Is Involved in Adventitious Root Formation in Arabidopsis and Potato.

    Science.gov (United States)

    Deng, Kexuan; Dong, Pan; Wang, Wanjing; Feng, Li; Xiong, Fangjie; Wang, Kai; Zhang, Shumin; Feng, Shun; Wang, Bangjun; Zhang, Jiankui; Ren, Maozhi

    2017-01-01

    In the agriculture industry, adventitious root formation is a core issue of plants asexual propagation. However, the underlying molecular mechanism of adventitious root formation is far beyond understanding. In present study we found that target of rapamycin (TOR) signaling plays a key role in adventitious root formation in potato and Arabidopsis . The core components of TOR complex including TOR, RAPTOR, and LST8 are highly conserved in potato, but the seedlings of potato are insensitive to rapamycin, implying FK506 Binding Protein 12 KD (FKBP12) lost the function to bridge the interaction of rapamycin and TOR in potato. To dissect TOR signaling in potato, the rapamycin hypersensitive potato plants (BP12-OE) were engineered by introducing yeast FKBP12 ( ScFKBP12 ) into potato. We found that rapamycin can significantly attenuate the capability of adventitious root formation in BP12-OE potatoes. KU63794 (KU, an active-site TOR inhibitor) combined with rapamycin can more significantly suppress adventitious root formation of BP12-OE potato than the single treatments, such as KU63794 or rapamycin, indicating its synergistic inhibitory effects on potato adventitious root formation. Furthermore, RNA-seq data showed that many genes associated with auxin signaling pathway were altered when BP12-OE potato seedlings were treated with rapamycin + KU, suggesting that TOR may play a major role in adventitious root formation via auxin signaling. The auxin receptor mutant tir1 was sensitive to TOR inhibitors and the double and quadruple mutants including tir1afb2, tir1afb3 , and tir1afb1afb2afb3 displayed more sensitive to asTORis than single mutant tir1 . Consistently, overexpression of AtTIR1 in Arabidopsis and potato can partially overcome the inhibitory effect of asTORis and promote adventitious root formation under asTORis treatments. These observations suggest that TOR signaling regulates adventitious root formation by mediating auxin signaling in Arabidopsis and potato.

  15. Metabolic analysis of the increased adventitious rooting mutant of Artemisia annua reveals a role for the plant monoterpene borneol in adventitious root formation.

    Science.gov (United States)

    Tian, Na; Liu, Shuoqian; Li, Juan; Xu, Wenwen; Yuan, Lin; Huang, Jianan; Liu, Zhonghua

    2014-08-01

    Adventitious root (AR) formation is a critical process for plant clonal propagation. The role of plant secondary metabolites in AR formation is still poorly understood. Chemical and physical mutagenesis in combination with somatic variation were performed on Artemisia annua in order to obtain a mutant with changes in adventitious rooting and composition of plant secondary metabolites. Metabolic and morphological analyses of the iar (increased adventitious rooting) mutant coupled with in vitro assays were used to elucidate the relationship between plant secondary metabolites and AR formation. The only detected differences between the iar mutant and wild-type were rooting capacity and borneol/camphor content. Consistent with this, treatment with borneol in vitro promoted adventitious rooting in wild-type. The enhanced rooting did not continue upon removal of borneol. The iar mutant displayed no significant differences in AR formation upon treatment with camphor. Together, our results suggest that borneol promotes adventitious rooting whereas camphor has no effect on AR formation. © 2013 Scandinavian Plant Physiology Society.

  16. The jasmonate receptor COI1 plays a role in jasmonate-induced lateral root formation and lateral root positioning in Arabidopsis thaliana.

    Science.gov (United States)

    Raya-González, Javier; Pelagio-Flores, Ramón; López-Bucio, José

    2012-09-15

    Jasmonic acid (JA) regulates a broad range of plant defense and developmental responses. COI1 has been recently found to act as JA receptor. In this report, we show that low micromolar concentrations of JA inhibited primary root (PR) growth and promoted lateral root (LR) formation in Arabidopsis wild-type (WT) seedlings. It was observed that the coi1-1 mutant was less sensitive to JA on pericycle cell activation to induce lateral root primordia (LRP) formation and presented alterations in lateral root positioning and lateral root emergence on bends. To investigate JA-auxin interactions important for remodeling of root system (RS) architecture, we tested the expression of auxin-inducible markers DR5:uidA and BA3:uidA in WT and coi1-1 seedlings in response to indole-3-acetic acid (IAA) and JA and analyzed the RS architecture of a suite of auxin-related mutants under JA treatments. We found that JA did not affect DR5:uidA and BA3:uidA expression in WT and coi1-1 seedlings. Our data also showed that PR growth inhibition in response to JA was likely independent of auxin signaling and that the induction of LRP required ARF7, ARF19, SLR, TIR1, AFB2, AFB3 and AXR1 loci. We conclude that JA regulation of postembryonic root development involves both auxin-dependent and independent mechanisms. Copyright © 2012 Elsevier GmbH. All rights reserved.

  17. Jasmonates act positively in adventitious root formation in petunia cuttings

    OpenAIRE

    Lischweski, Sandra; Muchow, Anne; Guthörl, Daniela; Hause, Bettina

    2015-01-01

    Background Petunia is a model to study the process of adventitious root (AR) formation on leafy cuttings. Excision of cuttings leads to a transient increase in jasmonates, which is regarded as an early, transient and critical event for rooting. Here, the role of jasmonates in AR formation on petunia cuttings has been studied by a reverse genetic approach. Results To reduce the endogenous levels of jasmonates, transgenic plants were generated expressing a Petunia hybrida ALLENE OXIDE CYCLASE (...

  18. Lateral root initiation and formation within the parental root meristem of Cucurbita pepo: is auxin a key player?

    Science.gov (United States)

    Ilina, Elena L; Kiryushkin, Alexey S; Semenova, Victoria A; Demchenko, Nikolay P; Pawlowski, Katharina; Demchenko, Kirill N

    2018-04-19

    In some plant families, including Cucurbitaceae, initiation and development of lateral roots (LRs) occur in the parental root apical meristem. The objective of this study was to identify the general mechanisms underlying LR initiation (LRI). Therefore, the first cellular events leading to LRI as well as the role of auxin in this process were studied in the Cucurbita pepo root apical meristem. Transgenic hairy roots harbouring the auxin-responsive promoter DR5 fused to different reporter genes were used for visualizing of cellular auxin response maxima (ARMs) via confocal laser scanning microscopy and 3-D imaging. The effects of exogenous auxin and auxin transport inhibitors on root branching were analysed. The earliest LRI event involved a group of symmetric anticlinal divisions in pericycle cell files at a distance of 250-350 µm from the initial cells. The visualization of the ARMs enabled the precise detection of cells involved in determining the site of LR primordium formation. A local ARM appeared in sister cells of the pericycle and endodermis files before the first division. Cortical cells contributed to LR development after the anticlinal divisions in the pericycle via the formation of an ARM. Exogenous auxins did not increase the total number of LRs and did not affect the LRI index. Although exogenous auxin transport inhibitors acted in different ways, they all reduced the number of LRs formed. Literature data, as well as results obtained in this study, suggest that the formation of a local ARM before the first anticlinal formative divisions is the common mechanism underlying LRI in flowering plants. We propose that the mechanisms of the regulation of root branching are independent of the position of the LRI site relative to the parental root tip.

  19. Cell wall changes during the formation of aerenchyma in sugarcane roots.

    Science.gov (United States)

    Leite, D C C; Grandis, A; Tavares, E Q P; Piovezani, A R; Pattathil, S; Avci, U; Rossini, A; Cambler, A; De Souza, A P; Hahn, M G; Buckeridge, M S

    2017-11-10

    Aerenchyma develops in different plant organs and leads to the formation of intercellular spaces that can be used by the plant to transport volatile substances. Little is known about the role of cell walls in this process, although the mechanism of aerenchyma formation is known to involve programmed cell death and some cell wall modifications. We assessed the role that cell wall-related mechanisms might play in the formation of aerenchyma in sugarcane roots. Sections of roots (5 cm) were subjected to microtomography analysis. These roots were divided into 1-cm segments and subjected to cell wall fractionation. We performed analyses of monosaccharides, oligosaccharides and lignin and glycome profiling. Sections were visualized by immunofluorescence and immunogold labelling using selected monoclonal antibodies against polysaccharide epitopes according to the glycome profiles. During aerenchyma formation, gas spaces occupied up to 40 % of the cortex cross-section within the first 5 cm of the root. As some of the cortex cells underwent dissolution of the middle lamellae, leading to cell separation, cell expansion took place along with cell death. Mixed-linkage β-glucan was degraded along with some homogalacturonan and galactan, culminating in the formation of cell wall composites made of xyloglucan, arabinoxylans, cellulose and possibly lignin. The composites formed seem to play a role in the physical-chemical properties of the gas chambers, providing mechanical resistance to forces acting upon the root and at the same time decreasing permeability to gases. © The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  20. Lateral root formation and the multiple roles of auxin

    NARCIS (Netherlands)

    Du, Yujuan; Scheres, Ben

    2018-01-01

    Root systems can display variable architectures that contribute to survival strategies of plants. The model plant Arabidopsis thaliana possesses a tap root system, in which the primary root and lateral roots (LRs) are major architectural determinants. The phytohormone auxin fulfils multiple roles

  1. Roles of abscisic acid and auxin in shoot-supplied ammonium inhibition of root system development.

    Science.gov (United States)

    Li, Baohai; Li, Qing; Kronzucker, Herbert J; Shi, Weiming

    2011-10-01

    A plastic root system is a prerequisite for successful plant acclimation to variable environments. The normally functioning root system is the result of a complex interaction of root-borne signals and shoot-derived regulators. We recently demonstrated that AUX1, a well-studied component of auxin transport, mediates shoot-supplied ammonium (SSA) inhibition of lateral root (LR) formation in Arabidopsis. By contrast, the response did not involve ABA pathways, via which several other abiotic stresses affect LR formation. We proposed that SSA regulates LR emergence by interrupting AUX1-mediated auxin transport from shoot to root. Here, by analyzing both ABA- and auxin-related mutants, we show that AUX1 is also required for SSA-mediated suppression of primary root growth. Ammonium content in shoots was furthermore shown to increase linearly with shoot-, but not root-supplied, ammonium, suggesting it may represent the internal trigger for SSA inhibition of root development. Taken together, our data identify AUX1-mediated auxin transport as a key transmission step in the sensing of excessive ammonium exposure and its inhibitory effect on root development. 

  2. Roles of abscisic acid and auxin in shoot-supplied ammonium inhibition of root system development

    OpenAIRE

    Li, Baohai; Li, Qing; Kronzucker, Herbert J; Shi, Weiming

    2011-01-01

    A plastic root system is a prerequisite for successful plant acclimation to variable environments. The normally functioning root system is the result of a complex interaction of root-borne signals and shoot-derived regulators. We recently demonstrated that AUX1, a well-studied component of auxin transport, mediates shoot-supplied ammonium (SSA) inhibition of lateral root (LR) formation in Arabidopsis. By contrast, the response did not involve ABA pathways, via which several other abiotic stre...

  3. Effects of plant growth regulators on callus, shoot and root formation ...

    African Journals Online (AJOL)

    Root and stem explants of fluted pumpkin were cultured in medium containing different types and concentrations of plant growth regulators (PGRs). The explants were observed for callus, root and shoot formation parameters after four months. Differences among explants, plant growth regulators and their interaction were ...

  4. Nitric oxide mediates strigolactone signaling in auxin and ethylene-sensitive lateral root formation in sunflower seedlings

    OpenAIRE

    Bharti, Niharika; Bhatla, Satish C

    2015-01-01

    Strigolactones (SLs) play significant role in shaping root architecture whereby auxin-SL crosstalk has been observed in SL-mediated responses of primary root elongation, lateral root formation and adventitious root (AR) initiation. Whereas GR24 (a synthetic strigolactone) inhibits LR and AR formation, the effect of SL biosynthesis inhibitor (fluridone) is just the opposite (root proliferation). Naphthylphthalamic acid (NPA) leads to LR proliferation but completely inhibits AR development. The...

  5. Effects of wastewater discharge on formation of Fe plaque on root surface and radial oxygen loss of mangrove roots

    Energy Technology Data Exchange (ETDEWEB)

    Pi, N. [Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Kowloon (Hong Kong); Tam, N.F.Y., E-mail: bhntam@cityu.edu.h [Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Kowloon (Hong Kong); Wong, M.H. [Croucher Institute for Environmental Sciences, Baptist University of Hong Kong, Kowloon Tong, Kowloon (Hong Kong)

    2010-02-15

    Effects of wastewater discharge on radial oxygen loss (ROL), formation of iron (Fe) plaque on root surface, and their correlations in Bruguiera gymnorrhiza (L.) Poir and Excoecaria agallocha L. were investigated. ROL along a lateral root increased more rapidly in control than that in strong wastewater (with pollutant concentrations ten times of that in municipal sewage, 10NW) treatment, but less Fe plaque was formed in control for both plants. For B. gymnorrhiza receiving 10NW, Fe plaque formation was more at basal and mature zones than at root tip, while opposite trend was shown in E. agallocha. At day 0, the correlation between ROL and Fe plaque was insignificant, but negative and positive correlations were found in 10NW and control, respectively, at day 105, suggesting that more ROL was induced leading to more Fe plaque. However, excess Fe plaque also served as a 'barrier' to prevent excessive ROL in 10NW plants. - Correlation between Fe plaque formation and ROL.

  6. Plant Hormone Homeostasis, Signaling, and Function during Adventitious Root Formation in Cuttings.

    Science.gov (United States)

    Druege, Uwe; Franken, Philipp; Hajirezaei, Mohammad R

    2016-01-01

    jasmonic acid stimulate AR formation, while both pathways are linked to auxin. Future research on the function of candidate genes should consider their tissue-specific role and regulation by environmental factors. Furthermore, the whole cutting should be regarded as a system of physiological units with diverse functions specifically responding to the environment and determining the rooting response.

  7. Plant hormone homeostasis, signaling and function during adventitious root formation in cuttings

    Directory of Open Access Journals (Sweden)

    Uwe eDruege

    2016-03-01

    accumulation of jasmonic acid stimulate AR formation, while both pathways are linked to auxin. Future research on the function of candidate genes should consider their tissue-specific role and regulation by environmental factors. Furthermore, the whole cutting should be regarded as a system of physiological units with diverse functions specifically responding to the environment and determining the rooting response.

  8. TGeoCad: an Interface between ROOT and CAD Systems

    International Nuclear Information System (INIS)

    Luzzi, C; Carminati, F

    2014-01-01

    In the simulation of High Energy Physics experiment a very high precision in the description of the detector geometry is essential to achieve the required performances. The physicists in charge of Monte Carlo Simulation of the detector need to collaborate efficiently with the engineers working at the mechanical design of the detector. Often, this collaboration is made hard by the usage of different and incompatible software. ROOT is an object-oriented C++ framework used by physicists for storing, analyzing and simulating data produced by the high-energy physics experiments while CAD (Computer-Aided Design) software is used for mechanical design in the engineering field. The necessity to improve the level of communication between physicists and engineers led to the implementation of an interface between the ROOT geometrical modeler used by the virtual Monte Carlo simulation software and the CAD systems. In this paper we describe the design and implementation of the TGeoCad Interface that has been developed to enable the use of ROOT geometrical models in several CAD systems. To achieve this goal, the ROOT geometry description is converted into STEP file format (ISO 10303), which can be imported and used by many CAD systems

  9. TGeoCad: an Interface between ROOT and CAD Systems

    Science.gov (United States)

    Luzzi, C.; Carminati, F.

    2014-06-01

    In the simulation of High Energy Physics experiment a very high precision in the description of the detector geometry is essential to achieve the required performances. The physicists in charge of Monte Carlo Simulation of the detector need to collaborate efficiently with the engineers working at the mechanical design of the detector. Often, this collaboration is made hard by the usage of different and incompatible software. ROOT is an object-oriented C++ framework used by physicists for storing, analyzing and simulating data produced by the high-energy physics experiments while CAD (Computer-Aided Design) software is used for mechanical design in the engineering field. The necessity to improve the level of communication between physicists and engineers led to the implementation of an interface between the ROOT geometrical modeler used by the virtual Monte Carlo simulation software and the CAD systems. In this paper we describe the design and implementation of the TGeoCad Interface that has been developed to enable the use of ROOT geometrical models in several CAD systems. To achieve this goal, the ROOT geometry description is converted into STEP file format (ISO 10303), which can be imported and used by many CAD systems.

  10. Dark exposure of petunia cuttings strongly improves adventitious root formation and enhances carbohydrate availability during rooting in the light.

    Science.gov (United States)

    Klopotek, Yvonne; Haensch, Klaus-Thomas; Hause, Bettina; Hajirezaei, Mohammad-Reza; Druege, Uwe

    2010-05-01

    The effect of temporary dark exposure on adventitious root formation (ARF) in Petuniaxhybrida 'Mitchell' cuttings was investigated. Histological and metabolic changes in the cuttings during the dark treatment and subsequent rooting in the light were recorded. Excised cuttings were exposed to the dark for seven days at 10 degrees C followed by a nine-day rooting period in perlite or were rooted immediately for 16 days in a climate chamber at 22/20 degrees C (day/night) and a photosynthetic photon flux density (PPFD) of 100micromolm(-2)s(-1). Dark exposure prior to rooting increased, accelerated and synchronized ARF. The rooting period was reduced from 16 days (non-treated cuttings) to 9 days (treated cuttings). Under optimum conditions, despite the reduced rooting period, dark-exposed cuttings produced a higher number and length of roots than non-treated cuttings. An increase in temperature to 20 degrees C during the dark treatment or extending the cold dark exposure to 14 days caused a similar enhancement of root development compared to non-treated cuttings. Root meristem formation had already started during the dark treatment and was enhanced during the subsequent rooting period. Levels of soluble sugars (glucose, fructose and sucrose) and starch in leaf and basal stem tissues significantly decreased during the seven days of dark exposure. This depletion was, however, compensated during rooting after 6 and 24h for soluble sugars in leaves and the basal stem, respectively, whereas the sucrose level in the basal stem was already increased at 6h. The association of higher carbohydrate levels with improved rooting in previously dark-exposed versus non-treated cuttings indicates that increased post-darkness carbohydrate availability and allocation towards the stem base contribute to ARF under the influence of dark treatment and provide energy for cell growth subject to a rising sink intensity in the base of the cutting. Copyright 2009 Elsevier GmbH. All rights reserved.

  11. Molecular Physiology of Root System Architecture in Model Grasses

    Science.gov (United States)

    Hixson, K.; Ahkami, A. H.; Anderton, C.; Veličković, D.; Myers, G. L.; Chrisler, W.; Lindenmaier, R.; Fang, Y.; Yabusaki, S.; Rosnow, J. J.; Farris, Y.; Khan, N. E.; Bernstein, H. C.; Jansson, C.

    2017-12-01

    Unraveling the molecular and physiological mechanisms involved in responses of Root System Architecture (RSA) to abiotic stresses and shifts in microbiome structure is critical to understand and engineer plant-microbe-soil interactions in the rhizosphere. In this study, accessions of Brachypodium distachyon Bd21 (C3 model grass) and Setaria viridis A10.1 (C4 model grass) were grown in phytotron chambers under current and elevated CO2 levels. Detailed growth stage-based phenotypic analysis revealed different above- and below-ground morphological and physiological responses in C3 and C4 grasses to enhanced CO2 levels. Based on our preliminary results and by screening values of total biomass, water use efficiency, root to shoot ratio, RSA parameters and net assimilation rates, we postulated a three-phase physiological mechanism, i.e. RootPlus, BiomassPlus and YieldPlus phases, for grass growth under elevated CO2 conditions. Moreover, this comprehensive set of morphological and process-based observations are currently in use to develop, test, and calibrate biophysical whole-plant models and in particular to simulate leaf-level photosynthesis at various developmental stages of C3 and C4 using the model BioCro. To further link the observed phenotypic traits at the organismal level to tissue and molecular levels, and to spatially resolve the origin and fate of key metabolites involved in primary carbohydrate metabolism in different root sections, we complement root phenotypic observations with spatial metabolomics data using mass spectrometry imaging (MSI) methods. Focusing on plant-microbe interactions in the rhizosphere, six bacterial strains with plant growth promoting features are currently in use in both gel-based and soil systems to screen root growth and development in Brachypodium. Using confocal microscopy, GFP-tagged bacterial systems are utilized to study the initiation of different root types of RSA, including primary root (PR), coleoptile node axile root (CNR

  12. Auxins differentially regulate root system architecture and cell cycle protein levels in maize seedlings.

    Science.gov (United States)

    Martínez-de la Cruz, Enrique; García-Ramírez, Elpidio; Vázquez-Ramos, Jorge M; Reyes de la Cruz, Homero; López-Bucio, José

    2015-03-15

    Maize (Zea mays) root system architecture has a complex organization, with adventitious and lateral roots determining its overall absorptive capacity. To generate basic information about the earlier stages of root development, we compared the post-embryonic growth of maize seedlings germinated in water-embedded cotton beds with that of plants obtained from embryonic axes cultivated in liquid medium. In addition, the effect of four different auxins, namely indole-3-acetic acid (IAA), 1-naphthaleneacetic acid (NAA), indole-3-butyric acid (IBA) and 2,4-dichlorophenoxyacetic acid (2,4-D) on root architecture and levels of the heat shock protein HSP101 and the cell cycle proteins CKS1, CYCA1 and CDKA1 were analyzed. Our data show that during the first days after germination, maize seedlings develop several root types with a simultaneous and/or continuous growth. The post-embryonic root development started with the formation of the primary root (PR) and seminal scutellar roots (SSR) and then continued with the formation of adventitious crown roots (CR), brace roots (BR) and lateral roots (LR). Auxins affected root architecture in a dose-response fashion; whereas NAA and IBA mostly stimulated crown root formation, 2,4-D showed a strong repressing effect on growth. The levels of HSP101, CKS1, CYCA1 and CDKA in root and leaf tissues were differentially affected by auxins and interestingly, HSP101 registered an auxin-inducible and root specific expression pattern. Taken together, our results show the timing of early branching patterns of maize and indicate that auxins regulate root development likely through modulation of the HSP101 and cell cycle proteins. Copyright © 2014 Elsevier GmbH. All rights reserved.

  13. Petunia as model for elucidating adventitious root formation and mycorrhizal symbiosis: at the nexus of physiology, genetics, microbiology and horticulture.

    Science.gov (United States)

    Druege, Uwe; Franken, Philipp

    2018-05-17

    Adventitious root formation in cuttings and establishment of arbuscular mycorrhizal symbiosis reflect the enormous plasticity of plants and are key factors in the efficient and sustainable clonal propagation and production of ornamental crops. Based on the high importance of Petunia hybrida for the European and US annual bedding plant markets and its suitability as a model for basic plant sciences, petunia has been established as an experimental system for elucidating the molecular and physiological processes underlying adventitious root formation and mycorrhizal symbiosis. In the present review, we introduce the tools of the Petunia model system. Then, we discuss findings regarding the hormonal and metabolic control of adventitious rooting in the context of diverse environmental factors as well as findings on the function of arbuscular mycorrhiza related to nutrient uptake and resistance to root pathogens. Considering the recent publication of the genomes of the parental species of P. hybrida and other tools available in the petunia scientific community, we will outline the quality of petunia as a model for future system-oriented analysis of root development and function in the context of environmental and genetic control, which are at the heart of modern horticulture. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  14. Proliferation and ajmalicine biosynthesis of Catharanthus roseus (L). G. Don adventitious roots in self-built temporary immersion system

    Science.gov (United States)

    Phuc, Vo Thanh; Trung, Nguyen Minh; Thien, Huynh Tri; Tien, Le Thi Thuy

    2017-09-01

    Periwinkle (Catharanthus roseus (L.) G. Don) is a medicinal plant containing about 130 types of alkaloids that have important pharmacological effects. Ajmalicine in periwinkle root is an antihypertensive drug used in treatment of high blood pressure. Adventitious roots obtained from periwinkle leaves of in vitro shoots grew well in quarter-strength MS medium supplemented with 0.3 mg/l IBA and 20 g/l sucrose. Dark condition was more suitable for root growth than light. However, callus formation also took place in addition to the growth of adventitious roots. Temporary immersion system was applied in the culture of adventitious roots in order to reduce the callus growth rate formed in shake flask cultures. The highest growth index of roots was achieved using the system with 5-min immersion every 45 min (1.676 ± 0.041). The roots cultured in this system grew well without callus formation. Ajmalicine content was highest in the roots cultured with 5-min immersion every 180 min (950 μg/g dry weight).

  15. Plasma membrane H(+)-ATPase is involved in methyl jasmonate-induced root hair formation in lettuce (Lactuca sativa L.) seedlings.

    Science.gov (United States)

    Zhu, Changhua; Yang, Na; Ma, Xiaoling; Li, Guijun; Qian, Meng; Ng, Denny; Xia, Kai; Gan, Lijun

    2015-06-01

    Our results show that methyl jasmonate induces plasma membrane H (+) -ATPase activity and subsequently influences the apoplastic pH of trichoblasts to maintain a cell wall pH environment appropriate for root hair development. Root hairs, which arise from root epidermal cells, are tubular structures that increase the efficiency of water absorption and nutrient uptake. Plant hormones are critical regulators of root hair development. In this study, we investigated the regulatory role of the plasma membrane (PM) H(+)-ATPase in methyl jasmonate (MeJA)-induced root hair formation. We found that MeJA had a pronounced effect on the promotion of root hair formation in lettuce seedlings, but that this effect was blocked by the PM H(+)-ATPase inhibitor vanadate. Furthermore, MeJA treatment increased PM H(+)-ATPase activity in parallel with H(+) efflux from the root tips of lettuce seedlings and rhizosphere acidification. Our results also showed that MeJA-induced root hair formation was accompanied by hydrogen peroxide accumulation. The apoplastic acidification acted in concert with reactive oxygen species to modulate root hair formation. Our results suggest that the effect of MeJA on root hair formation is mediated by modulation of PM H(+)-ATPase activity.

  16. Amide-conjugated indole-3-acetic acid and adventitious root formation in mung bean cuttings

    International Nuclear Information System (INIS)

    Norcini, J.G.

    1986-01-01

    The purpose of this research was to investigate further the relationship between amide-conjugated auxin and adventitious root formation. Indoleacetylaspartic acid (IAA-aspartate) was positively identified as the predominant conjugate isolated from mung bean cuttings after the cuttings has been treated with 10 -3 M IAA. In cuttings treated with [1- 14 C]IAA immediately after excision (0 hr), the percent of extractable 14 C in IAA-aspartate in the hypocotyl sharply increased until 36 hr, then steadily declined. [ 14 C]IAA was completely metabolized between 12 and 24 hr. The rooting activities of IAA-L-aspartate, IAA-L-alanine, and IAA-glycine were determined at various stages of root formation; some cuttings were pretreated with 10 -3 M IAA at 0 hr. Pretreated cuttings that were treated with IAA-glycine at 12, 24, 36 hr exhibited the greatest consistency between replications, the greatest number of long roots, and the longest roots. The conjugates did not stimulate rooting as effectively as IAA, yet like IAA, generally enhanced rooting the greatest when applied before the first cell division (24 hr)

  17. A Bacillus subtilis Sensor Kinase Involved in Triggering Biofilm Formation on the Roots of Tomato Plants

    Science.gov (United States)

    Chen, Yun; Cao, Shugeng; Chai, Yunrong; Clardy, Jon; Kolter, Roberto; Guo, Jian-hua; Losick, Richard

    2012-01-01

    SUMMARY The soil bacterium Bacillus subtilis is widely used in agriculture as a biocontrol agent able to protect plants from a variety of pathogens. Protection is thought to involve the formation of bacterial communities - biofilms - on the roots of the plants. Here we used confocal microscopy to visualize biofilms on the surface of the roots of tomato seedlings and demonstrated that biofilm formation requires genes governing the production of the extracellular matrix that holds cells together. We further show that biofilm formation was dependent on the sensor histidine kinase KinD and in particular on an extracellular CACHE domain implicated in small molecule sensing. Finally, we report that exudates of tomato roots strongly stimulated biofilm formation ex planta and that an abundant small molecule in the exudates, l-malic acid, was able to stimulate biofilm formation at high concentrations in a manner that depended on the KinD CACHE domain. We propose that small signaling molecules released by the roots of tomato plants are directly or indirectly recognized by KinD, triggering biofilm formation. PMID:22716461

  18. Piriformospora indica root colonization triggers local and systemic root responses and inhibits secondary colonization of distal roots.

    Science.gov (United States)

    Pedrotti, Lorenzo; Mueller, Martin J; Waller, Frank

    2013-01-01

    Piriformosporaindica is a basidiomycete fungus colonizing roots of a wide range of higher plants, including crop plants and the model plant Arabidopsis thaliana. Previous studies have shown that P. indica improves growth, and enhances systemic pathogen resistance in leaves of host plants. To investigate systemic effects within the root system, we established a hydroponic split-root cultivation system for Arabidopsis. Using quantitative real-time PCR, we show that initial P. indica colonization triggers a local, transient response of several defense-related transcripts, of which some were also induced in shoots and in distal, non-colonized roots of the same plant. Systemic effects on distal roots included the inhibition of secondary P. indica colonization. Faster and stronger induction of defense-related transcripts during secondary inoculation revealed that a P. indica pretreatment triggers root-wide priming of defense responses, which could cause the observed reduction of secondary colonization levels. Secondary P. indica colonization also induced defense responses in distant, already colonized parts of the root. Endophytic fungi therefore trigger a spatially specific response in directly colonized and in systemic root tissues of host plants.

  19. GLO-Roots: an imaging platform enabling multidimensional characterization of soil-grown root systems

    Science.gov (United States)

    Rellán-Álvarez, Rubén; Lobet, Guillaume; Lindner, Heike; Pradier, Pierre-Luc; Sebastian, Jose; Yee, Muh-Ching; Geng, Yu; Trontin, Charlotte; LaRue, Therese; Schrager-Lavelle, Amanda; Haney, Cara H; Nieu, Rita; Maloof, Julin; Vogel, John P; Dinneny, José R

    2015-01-01

    Root systems develop different root types that individually sense cues from their local environment and integrate this information with systemic signals. This complex multi-dimensional amalgam of inputs enables continuous adjustment of root growth rates, direction, and metabolic activity that define a dynamic physical network. Current methods for analyzing root biology balance physiological relevance with imaging capability. To bridge this divide, we developed an integrated-imaging system called Growth and Luminescence Observatory for Roots (GLO-Roots) that uses luminescence-based reporters to enable studies of root architecture and gene expression patterns in soil-grown, light-shielded roots. We have developed image analysis algorithms that allow the spatial integration of soil properties, gene expression, and root system architecture traits. We propose GLO-Roots as a system that has great utility in presenting environmental stimuli to roots in ways that evoke natural adaptive responses and in providing tools for studying the multi-dimensional nature of such processes. DOI: http://dx.doi.org/10.7554/eLife.07597.001 PMID:26287479

  20. Expression of bone morphogenetic proteins and Msx genes during root formation.

    Science.gov (United States)

    Yamashiro, T; Tummers, M; Thesleff, I

    2003-03-01

    Like crown development, root formation is also regulated by interactions between epithelial and mesenchymml tissues. Bone morphogenetic proteins (BMPs), together with the transcription factors Msx1 and Msx2, play important roles in these interactions during early tooth morphogenesis. To investigate the involvement of this signaling pathway in root development, we analyzed the expression patterns of Bmp2, Bmp3, Bmp4, and Bmp7 as well as Msx1 and Msx2 in the roots of mouse molars. Bmp4 was expressed in the apical mesenchyme and Msx2 in the root sheath. However, Bmps were not detected in the root sheath epithelium, and Msx transcripts were absent from the underlying mesenchyme. These findings indicate that this Bmp signaling pathway, required for tooth initiation, does not regulate root development, but we suggest that root shape may be regulated by a mechanism similar to that regulating crown shape in cap-stage tooth germs. Msx2 expression continued in the epithelial cell rests of Malassez, and the nearby cementoblasts intensely expressed Bmp3, which may regulate some functions of the fragmented epithelium.

  1. Biochemical changes in barberries during adventitious root formation: the role of indole-3-butyric acid and hydrogen peroxide

    Directory of Open Access Journals (Sweden)

    Ali Tehranifar

    2014-03-01

    Full Text Available Peroxidase, polyphenol oxidase (PPO, phenolic compounds and total sugars (TS were investigated during root formation in cuttings of Berberis vulgaris var. asperma (BVA and Berberis thunbergii var. atropurpurea (BTA treated with indole-3-butyric acid (IBA and IBA+H2O2. Rooting was observed on BTA cuttings but not on BVA cuttings. The BTA cuttings treated with IBA and IBA+H2O2 showed higher rooting percentages, number of roots, and root length over the control. Those treated with IBA+H2O2 recorded the lowest peroxidase activity after planting. BTA cuttings treated with IBA+H2O2 showed the highest peroxidase activity at 50 d after planting; BVA cuttings under different treatments showed no significant difference for peroxidase activity at planting time or up to 80 d after planting. PPO activity for the BTA cuttings in the control treatment was lower than for other treatments during root formation. The cuttings in the IBA and IBA+H2O2 treatments showed increased PPO activity from 0 to 50 d after planting and a slight decrease in PPO activity from 60 to 80 d after planting. PPO activity for the BVA cuttings was significantly lower than for BTA during root formation. The BTA cuttings treated with IBA and IBA+H2O2 showed the highest phenolic compound content during root formation. The BVA cuttings displayed higher TS than BTA during the initial stage of root formation. A comparison of the anatomical structure of easy-to-root and difficult-to-root cuttings indicated that physical inhibitors did not affect the rooting capacity of BVA.

  2. An Undergraduate Study of Two Transcription Factors that Promote Lateral Root Formation

    Science.gov (United States)

    Bargmann, Bastiaan O. R.; Birnbaum, Kenneth D.; Brenner, Eric D.

    2014-01-01

    We present a lab that enables students to test the role of genes involved in the regulation of lateral roots growth in the model plant "Arabidopsis thaliana." Here, students design an experiment that follows the effects of the hormone auxin on the stimulation of genes involved in the formation of lateral root initials. These genes, known…

  3. Root systems of chaparral shrubs.

    Science.gov (United States)

    Kummerow, Jochen; Krause, David; Jow, William

    1977-06-01

    Root systems of chaparral shrubs were excavated from a 70 m 2 plot of a mixed chaparral stand located on a north-facing slope in San Diego County (32°54' N; 900 m above sea level). The main shrub species present were Adenostoma fasciculatum, Arctostaphylos pungens, Ceanothus greggii, Erigonum fasciculatum, and Haplopappus pinifolius. Shrubs were wired into their positions, and the soil was washed out beneath them down to a depth of approximately 60 cm, where impenetrable granite impeded further washing and root growth was severely restricted. Spacing and interweaving of root systems were recorded by an in-scale drawing. The roots were harvested in accordance to their depths, separated into diameter size classes for each species, and their dry weights measured. Roots of shrubs were largely confined to the upper soil levels. The roots of Eriogonum fasciculatum were concentrated in the upper soil layer. Roots of Adenostoma fasciculatum tended to be more superficial than those from Ceanothus greggii. It is hypothesized that the shallow soil at the excavation site impeded a clear depth zonation of the different root systems. The average dry weight root:shoot ratio was 0.6, ranging for the individual shrubs from 0.8 to 0.4. The root area always exceeded the shoot area, with the corresponding ratios ranging from 6 for Arctostaphylos pungens to 40 for Haplopappus pinifolius. The fine root density of 64 g dry weight per m 2 under the canopy was significantly higher than in the unshaded area. However, the corresponding value of 45 g dry weight per m 2 for the open ground is still high enough to make the establishment of other shrubs difficult.

  4. Characterization of Root and Shoot Traits in Wheat Cultivars with Putative Differences in Root System Size

    Directory of Open Access Journals (Sweden)

    Victoria Figueroa-Bustos

    2018-07-01

    Full Text Available Root system size is a key trait for improving water and nitrogen uptake efficiency in wheat (Triticum aestivum L.. This study aimed (i to characterize the root system and shoot traits of five wheat cultivars with apparent differences in root system size; (ii to evaluate whether the apparent differences in root system size observed at early vegetative stages in a previous semi-hydroponic phenotyping experiment are reflected at later phenological stages in plants grown in soil using large rhizoboxes. The five wheat cultivars were grown in a glasshouse in rhizoboxes filled to 1.0 m with field soil. Phenology and shoot traits were measured and root growth and proliferation were mapped to quantify root length density (RLD, root length per plant, root biomass and specific root length (SRL. Wheat cultivars with large root systems had greater root length, more root biomass and thicker roots, particularly in the top 40 cm, than those with small root systems. Cultivars that reached anthesis later had larger root system sizes than those that reached anthesis earlier. Later anthesis allowed more time for root growth and proliferation. Cultivars with large root systems had 25% more leaf area and biomass than those with small root systems, which presumably reflects high canopy photosynthesis to supply the demand for carbon assimilates to roots. Wheat cultivars with contrasting root system sizes at the onset of tillering (Z2.1 in a semi-hydroponic phenotyping system maintained their size ranking at booting (Z4.5 when grown in soil. Phenology, particularly time to anthesis, was associated with root system size.

  5. Jasmonates act positively in adventitious root formation in petunia cuttings.

    Science.gov (United States)

    Lischweski, Sandra; Muchow, Anne; Guthörl, Daniela; Hause, Bettina

    2015-09-22

    Petunia is a model to study the process of adventitious root (AR) formation on leafy cuttings. Excision of cuttings leads to a transient increase in jasmonates, which is regarded as an early, transient and critical event for rooting. Here, the role of jasmonates in AR formation on petunia cuttings has been studied by a reverse genetic approach. To reduce the endogenous levels of jasmonates, transgenic plants were generated expressing a Petunia hybrida ALLENE OXIDE CYCLASE (PhAOC)-RNAi construct. The transgenic plants exhibited strongly reduced PhAOC transcript and protein levels as well as diminished accumulation of cis-12-oxo-phytodienoic acid, jasmonic acid and jasmonoyl-isoleucine after wounding in comparison to wild type and empty vector expressing plants. Reduced levels of endogenous jasmonates resulted in formation of lower numbers of ARs. However, this effect was not accompanied by altered levels of auxin and aminocyclopropane carboxylate (ACC, precursor of ethylene) or by impaired auxin and ethylene-induced gene expression. Neither activity of cell-wall invertases nor accumulation of soluble sugars was altered by jasmonate deficiency. Diminished numbers of AR in JA-deficient cuttings suggest that jasmonates act as positive regulators of AR formation in petunia wild type. However, wound-induced rise in jasmonate levels in petunia wild type cuttings seems not to be causal for increased auxin and ethylene levels and for sink establishment.

  6. Comparison of Dentinal Crack Formation With Reciproc, Mtwo and ProTaper Root Canal Preparation Systems

    Directory of Open Access Journals (Sweden)

    Nazari Moghaddam

    2016-06-01

    Full Text Available Background Instrumentation with rotary instruments could potentially cause dentinal cracks possibly leading to tooth fracture. Reciproc files require a single file to finalize the root canal preparation and the effect of this procedure has not been compared with other systems. Objectives The aim of this study was to compare the incidence of dentinal micro-cracks following root canal preparations with ProTaper, Mtwo and Reciproc files. Materials and Methods In an experimental in vitro trial, 80 maxillary and mandibular first molars were selected and their crowns and distal roots were cut. The roots were then examined to remove any previous cracks and defects. An impression polyether material was used to simulate teeth periodontal ligament (PDL. The teeth were divided to four experimental groups (n = 20 and prepared using Reciproc, Mtwo and ProTaper or remained unprepared as a control group. The specimens were then sectioned horizontally on 3, 5 and 9 mm from the apex and number of micro-cracks was determined by stereomicroscope. The incidence of dentinal cracks on different systems or sections were statistically analyzed by means of the chi-square test. Results Dentinal defects on 3-mm, 5-mm and 9-mm sections from the apex were noted in 10 (5.6%; 7 (3.9% and 9 (5.0% samples of all, respectively. Following canal preparation using Reciproc, ProTaper and Mtwo systems, the defects were observed in 7 (3.9%, 12 (6.7% and 7 (3.9% the sections, respectively. No significant differences were observed regarding the defect incidence on the studied instrumentation files or sections. Conclusions Regarding the study limitations, dentinal cracks were observed in all files and distances from the apex. Although there was more crack incidence in ProTaper files, no significant differences were noted regarding the studied systems and sections from the apex.

  7. Introduction to the ROOT System

    CERN Multimedia

    CERN. Geneva

    2008-01-01

    Introduction to the ROOT data handling system. ROOT is used in some for or another by all LHC experiments and will be used by all for final data analysis. The introduction gives an overview of the system. Prerequisite knowledge: C++

  8. Toward a Low-Cost System for High-Throughput Image-Based Phenotyping of Root System Architecture

    Science.gov (United States)

    Davis, T. W.; Schneider, D. J.; Cheng, H.; Shaw, N.; Kochian, L. V.; Shaff, J. E.

    2015-12-01

    Root system architecture is being studied more closely for improved nutrient acquisition, stress tolerance and carbon sequestration by relating the genetic material that corresponds to preferential physical features. This information can help direct plant breeders in addressing the growing concerns regarding the global demand on crops and fossil fuels. To help support this incentive comes a need to make high-throughput image-based phenotyping of plant roots, at the individual plant scale, simpler and more affordable. Our goal is to create an affordable and portable product for simple image collection, processing and management that will extend root phenotyping to institutions with limited funding (e.g., in developing countries). Thus, a new integrated system has been developed using the Raspberry Pi single-board computer. Similar to other 3D-based imaging platforms, the system utilizes a stationary camera to photograph a rotating crop root system (e.g., rice, maize or sorghum) that is suspended either in a gel or on a mesh (for hydroponics). In contrast, the new design takes advantage of powerful open-source hardware and software to reduce the system costs, simplify the imaging process, and manage the large datasets produced by the high-resolution photographs. A newly designed graphical user interface (GUI) unifies the system controls (e.g., adjusting camera and motor settings and orchestrating the motor motion with image capture), making it easier to accommodate a variety of experiments. During each imaging session, integral metadata necessary for reproducing experiment results are collected (e.g., plant type and age, growing conditions and treatments, camera settings) using hierarchical data format files. These metadata are searchable within the GUI and can be selected and extracted for further analysis. The GUI also supports an image previewer that performs limited image processing (e.g., thresholding and cropping). Root skeletonization, 3D reconstruction and

  9. Transcriptional sequencing and analysis of major genes involved in the adventitious root formation of mango cotyledon segments.

    Science.gov (United States)

    Li, Yun-He; Zhang, Hong-Na; Wu, Qing-Song; Muday, Gloria K

    2017-06-01

    A total of 74,745 unigenes were generated and 1975 DEGs were identified. Candidate genes that may be involved in the adventitious root formation of mango cotyledon segment were revealed. Adventitious root formation is a crucial step in plant vegetative propagation, but the molecular mechanism of adventitious root formation remains unclear. Adventitious roots formed only at the proximal cut surface (PCS) of mango cotyledon segments, whereas no roots were formed on the opposite, distal cut surface (DCS). To identify the transcript abundance changes linked to adventitious root development, RNA was isolated from PCS and DCS at 0, 4 and 7 days after culture, respectively. Illumina sequencing of libraries generated from these samples yielded 62.36 Gb high-quality reads that were assembled into 74,745 unigenes with an average sequence length of 807 base pairs, and 33,252 of the assembled unigenes at least had homologs in one of the public databases. Comparative analysis of these transcriptome databases revealed that between the different time points at PCS there were 1966 differentially expressed genes (DEGs), while there were only 51 DEGs for the PCS vs. DCS when time-matched samples were compared. Of these DEGs, 1636 were assigned to gene ontology (GO) classes, the majority of that was involved in cellular processes, metabolic processes and single-organism processes. Candidate genes that may be involved in the adventitious root formation of mango cotyledon segment are predicted to encode polar auxin transport carriers, auxin-regulated proteins, cell wall remodeling enzymes and ethylene-related proteins. In order to validate RNA-sequencing results, we further analyzed the expression profiles of 20 genes by quantitative real-time PCR. This study expands the transcriptome information for Mangifera indica and identifies candidate genes involved in adventitious root formation in cotyledon segments of mango.

  10. Sorghum root-system classification in contrasting P environments reveals three main rooting types and root-architecture-related marker-trait associations.

    Science.gov (United States)

    Parra-Londono, Sebastian; Kavka, Mareike; Samans, Birgit; Snowdon, Rod; Wieckhorst, Silke; Uptmoor, Ralf

    2018-02-12

    Roots facilitate acquisition of macro- and micronutrients, which are crucial for plant productivity and anchorage in the soil. Phosphorus (P) is rapidly immobilized in the soil and hardly available for plants. Adaptation to P scarcity relies on changes in root morphology towards rooting systems well suited for topsoil foraging. Root-system architecture (RSA) defines the spatial organization of the network comprising primary, lateral and stem-derived roots and is important for adaptation to stress conditions. RSA phenotyping is a challenging task and essential for understanding root development. In this study, 19 traits describing RSA were analysed in a diversity panel comprising 194 sorghum genotypes, fingerprinted with a 90-k single-nucleotide polymorphism (SNP) array and grown under low and high P availability. Multivariate analysis was conducted and revealed three different RSA types: (1) a small root system; (2) a compact and bushy rooting type; and (3) an exploratory root system, which might benefit plant growth and development if water, nitrogen (N) or P availability is limited. While several genotypes displayed similar rooting types in different environments, others responded to P scarcity positively by developing more exploratory root systems, or negatively with root growth suppression. Genome-wide association studies revealed significant quantitative trait loci (P root-system development on chromosomes SBI-02 and SBI-03. Sorghum genotypes with a compact, bushy and shallow root system provide potential adaptation to P scarcity in the field by allowing thorough topsoil foraging, while genotypes with an exploratory root system may be advantageous if N or water is the limiting factor, although such genotypes showed highest P uptake levels under the artificial conditions of the present study. © The Author(s) 2018. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  11. Molecular Transducers from Roots Are Triggered in Arabidopsis Leaves by Root-Knot Nematodes for Successful Feeding Site Formation: A Conserved Post-Embryogenic De novo Organogenesis Program?

    Directory of Open Access Journals (Sweden)

    Rocío Olmo

    2017-05-01

    Full Text Available Root-knot nematodes (RKNs; Meloidogyne spp. induce feeding cells (giant cells; GCs inside a pseudo-organ (gall from still unknown root cells. Understanding GCs ontogeny is essential to the basic knowledge of RKN–plant interaction and to discover novel and effective control strategies. Hence, we report for the first time in a model plant, Arabidopsis, molecular, and cellular features concerning ectopic de novo organogenesis of RKNs GCs in leaves. RKNs induce GCs in leaves with irregular shape, a reticulated cytosol, and fragmented vacuoles as GCs from roots. Leaf cells around the nematode enter G2-M shown by ProCycB1;1:CycB1;1(NT-GUS expression, consistent to multinucleated GCs. In addition, GCs nuclei present irregular and varied sizes. All these characteristics mentioned, being equivalent to GCs in root-galls. RKNs complete their life cycle forming a gall/callus-like structure in the leaf vascular tissues resembling auxin-induced callus with an auxin-response maxima, indicated by high expression of DR5::GUS that is dependent on leaf auxin-transport. Notably, induction of leaves calli/GCs requires molecular components from roots crucial for lateral roots (LRs, auxin-induced callus and root-gall formation, i.e., LBD16. Hence, LBD16 is a xylem pole pericycle specific and local marker in LR primordia unexpectedly induced locally in the vascular tissue of leaves after RKN infection. LBD16 is also fundamental for feeding site formation as RKNs could not stablish in 35S::LBD16-SRDX leaves, and likely it is also a conserved molecular hub between biotic and developmental signals in Arabidopsis either in roots or leaves. Moreover, RKNs induce the ectopic development of roots from leaf and root-galls, also formed in mutants compromised in LR formation, arf7/arf19, slr, and alf4. Therefore, nematodes must target molecular signatures to induce post-embryogenic de novo organogenesis through the LBD16 callus formation pathway partially different from those

  12. Influence of a glide path on the dentinal crack formation of ProTaper Next system

    Directory of Open Access Journals (Sweden)

    Sevinç Aktemur Türker

    2015-11-01

    Full Text Available Objectives The aim was to evaluate dentinal crack formation after root canal preparation with ProTaper Next system (PTN with and without a glide path. Materials and Methods Forty-five mesial roots of mandibular first molars were selected. Fifteen teeth were left unprepared and served as controls. The experimental groups consist of mesiobuccal and mesiolingual root canals of remaining 30 teeth, which were divided into 2 groups (n = 15: Group PG/PTN, glide path was created with ProGlider (PG and then canals were shaped with PTN system; Group PTN, glide path was not prepared and canals were shaped with PTN system only. All roots were sectioned perpendicular to the long axis at 1, 2, 3, 4, 6, and 8 mm from the apex, and the sections were observed under a stereomicroscope. The presence/absence of cracks was recorded. Data were analyzed with chi-square tests with Yates correction. Results There were no significant differences in crack formation between the PTN with and without glide path preparation. The incidence of cracks observed in PG/PTN and PTN groups was 17.8% and 28.9%, respectively. Conclusions The creation of a glide path with ProGlider before ProTaper Next rotary system did not influence dentinal crack formation in root canals.

  13. Arabidopsis: an adequate model for dicot root systems?

    Directory of Open Access Journals (Sweden)

    Richard W Zobel

    2016-02-01

    Full Text Available The Arabidopsis root system is frequently considered to have only three classes of root: primary, lateral, and adventitious. Research with other plant species has suggested up to 8 different developmental/functional classes of root for a given plant root system. If Arabidopsis has only three classes of root, it may not be an adequate model for eudicot plant root systems. Recent research, however, can be interpreted to suggest that pre-flowering Arabidopsis does have at least five (5 of these classes of root. This then suggests that Arabidopsis root research can be considered an adequate model for eudicot plant root systems.

  14. Life cycle stage and water depth affect flooding-induced adventitious root formation in the terrestrial species Solanum dulcamara.

    Science.gov (United States)

    Zhang, Qian; Visser, Eric J W; de Kroon, Hans; Huber, Heidrun

    2015-08-01

    Flooding can occur at any stage of the life cycle of a plant, but often adaptive responses of plants are only studied at a single developmental stage. It may be anticipated that juvenile plants may respond differently from mature plants, as the amount of stored resources may differ and morphological changes can be constrained. Moreover, different water depths may require different strategies to cope with the flooding stress, the expression of which may also depend on developmental stage. This study investigated whether flooding-induced adventitious root formation and plant growth were affected by flooding depth in Solanum dulcamara plants at different developmental stages. Juvenile plants without pre-formed adventitious root primordia and mature plants with primordia were subjected to shallow flooding or deep flooding for 5 weeks. Plant growth and the timing of adventitious root formation were monitored during the flooding treatments. Adventitious root formation in response to shallow flooding was significantly constrained in juvenile S. dulcamara plants compared with mature plants, and was delayed by deep flooding compared with shallow flooding. Complete submergence suppressed adventitious root formation until up to 2 weeks after shoots restored contact with the atmosphere. Independent of developmental stage, a strong positive correlation was found between adventitious root formation and total biomass accumulation during shallow flooding. The potential to deploy an escape strategy (i.e. adventitious root formation) may change throughout a plant's life cycle, and is largely dependent on flooding depth. Adaptive responses at a given stage of the life cycle thus do not necessarily predict how the plant responds to flooding in another growth stage. As variation in adventitious root formation also correlates with finally attained biomass, this variation may form the basis for variation in resistance to shallow flooding among plants. © The Author 2015. Published by

  15. Transcriptomic analysis reveals ethylene as stimulator and auxin as regulator of adventitious root formation in petunia cuttings

    OpenAIRE

    Druege, Uwe; Franken, Philipp; Lischewski, Sandra; Ahkami, Amir H.; Zerche, Siegfried; Hause, Bettina; Hajirezaei, Mohammad R.

    2014-01-01

    Adventitious root (AR) formation in the stem base of cuttings is the basis for propagation of many plant species and petunia is used as model to study this developmental process. Following AR formation from 2 to 192 hours after excision (hpe) of cuttings, transcriptome analysis by microarray revealed a change of the character of the rooting zone from stem base to root identity. The greatest shift in the number of differentially expressed genes was observed between 24 and 72 hpe, when the cate...

  16. Nitric oxide mediates strigolactone signaling in auxin and ethylene-sensitive lateral root formation in sunflower seedlings.

    Science.gov (United States)

    Bharti, Niharika; Bhatla, Satish C

    2015-01-01

    Strigolactones (SLs) play significant role in shaping root architecture whereby auxin-SL crosstalk has been observed in SL-mediated responses of primary root elongation, lateral root formation and adventitious root (AR) initiation. Whereas GR24 (a synthetic strigolactone) inhibits LR and AR formation, the effect of SL biosynthesis inhibitor (fluridone) is just the opposite (root proliferation). Naphthylphthalamic acid (NPA) leads to LR proliferation but completely inhibits AR development. The diffusive distribution of PIN1 in the provascular cells in the differentiating zone of the roots in response to GR24, fluridone or NPA treatments further indicates the involvement of localized auxin accumulation in LR development responses. Inhibition of LR formation by GR24 treatment coincides with inhibition of ACC synthase activity. Profuse LR development by fluridone and NPA treatments correlates with enhanced [Ca(2+)]cyt in the apical region and differentiating zones of LR, indicating a critical role of [Ca(2+)] in LR development in response to the coordinated action of auxins, ethylene and SLs. Significant enhancement of carotenoid cleavage dioxygenase (CCD) activity (enzyme responsible for SL biosynthesis) in tissue homogenates in presence of cPTIO (NO scavenger) indicates the role of endogenous NO as a negative modulator of CCD activity. Differences in the spatial distribution of NO in the primary and lateral roots further highlight the involvement of NO in SL-modulated root morphogenesis in sunflower seedlings. Present work provides new report on the negative modulation of SL biosynthesis through modulation of CCD activity by endogenous nitric oxide during SL-modulated LR development.

  17. A statistical approach to root system classification.

    Directory of Open Access Journals (Sweden)

    Gernot eBodner

    2013-08-01

    Full Text Available Plant root systems have a key role in ecology and agronomy. In spite of fast increase in root studies, still there is no classification that allows distinguishing among distinctive characteristics within the diversity of rooting strategies. Our hypothesis is that a multivariate approach for plant functional type identification in ecology can be applied to the classification of root systems. We demonstrate that combining principal component and cluster analysis yields a meaningful classification of rooting types based on morphological traits. The classification method presented is based on a data-defined statistical procedure without a priori decision on the classifiers. Biplot inspection is used to determine key traits and to ensure stability in cluster based grouping. The classification method is exemplified with simulated root architectures and morphological field data. Simulated root architectures showed that morphological attributes with spatial distribution parameters capture most distinctive features within root system diversity. While developmental type (tap vs. shoot-borne systems is a strong, but coarse classifier, topological traits provide the most detailed differentiation among distinctive groups. Adequacy of commonly available morphologic traits for classification is supported by field data. Three rooting types emerged from measured data, distinguished by diameter/weight, density and spatial distribution respectively. Similarity of root systems within distinctive groups was the joint result of phylogenetic relation and environmental as well as human selection pressure. We concluded that the data-define classification is appropriate for integration of knowledge obtained with different root measurement methods and at various scales. Currently root morphology is the most promising basis for classification due to widely used common measurement protocols. To capture details of root diversity efforts in architectural measurement

  18. Transcriptomic analysis reveals ethylene as stimulator and auxin as regulator of adventitious root formation in petunia cuttings

    Science.gov (United States)

    Druege, Uwe; Franken, Philipp; Lischewski, Sandra; Ahkami, Amir H.; Zerche, Siegfried; Hause, Bettina; Hajirezaei, Mohammad R.

    2014-01-01

    Adventitious root (AR) formation in the stem base (SB) of cuttings is the basis for propagation of many plant species and petunia is used as model to study this developmental process. Following AR formation from 2 to 192 hours post-excision (hpe) of cuttings, transcriptome analysis by microarray revealed a change of the character of the rooting zone from SB to root identity. The greatest shift in the number of differentially expressed genes was observed between 24 and 72 hpe, when the categories storage, mineral nutrient acquisition, anti-oxidative and secondary metabolism, and biotic stimuli showed a notable high number of induced genes. Analyses of phytohormone-related genes disclosed multifaceted changes of the auxin transport system, auxin conjugation and the auxin signal perception machinery indicating a reduction in auxin sensitivity and phase-specific responses of particular auxin-regulated genes. Genes involved in ethylene biosynthesis and action showed a more uniform pattern as a high number of respective genes were generally induced during the whole process of AR formation. The important role of ethylene for stimulating AR formation was demonstrated by the application of inhibitors of ethylene biosynthesis and perception as well as of the precursor aminocyclopropane-1-carboxylic acid, all changing the number and length of AR. A model is proposed showing the putative role of polar auxin transport and resulting auxin accumulation in initiation of subsequent changes in auxin homeostasis and signal perception with a particular role of Aux/IAA expression. These changes might in turn guide the entrance into the different phases of AR formation. Ethylene biosynthesis, which is stimulated by wounding and does probably also respond to other stresses and auxin, acts as important stimulator of AR formation probably via the expression of ethylene responsive transcription factor genes, whereas the timing of different phases seems to be controlled by auxin. PMID

  19. Transcriptomic analysis reveals ethylene as stimulator and auxin as regulator of adventitious root formation in petunia cuttings.

    Science.gov (United States)

    Druege, Uwe; Franken, Philipp; Lischewski, Sandra; Ahkami, Amir H; Zerche, Siegfried; Hause, Bettina; Hajirezaei, Mohammad R

    2014-01-01

    Adventitious root (AR) formation in the stem base (SB) of cuttings is the basis for propagation of many plant species and petunia is used as model to study this developmental process. Following AR formation from 2 to 192 hours post-excision (hpe) of cuttings, transcriptome analysis by microarray revealed a change of the character of the rooting zone from SB to root identity. The greatest shift in the number of differentially expressed genes was observed between 24 and 72 hpe, when the categories storage, mineral nutrient acquisition, anti-oxidative and secondary metabolism, and biotic stimuli showed a notable high number of induced genes. Analyses of phytohormone-related genes disclosed multifaceted changes of the auxin transport system, auxin conjugation and the auxin signal perception machinery indicating a reduction in auxin sensitivity and phase-specific responses of particular auxin-regulated genes. Genes involved in ethylene biosynthesis and action showed a more uniform pattern as a high number of respective genes were generally induced during the whole process of AR formation. The important role of ethylene for stimulating AR formation was demonstrated by the application of inhibitors of ethylene biosynthesis and perception as well as of the precursor aminocyclopropane-1-carboxylic acid, all changing the number and length of AR. A model is proposed showing the putative role of polar auxin transport and resulting auxin accumulation in initiation of subsequent changes in auxin homeostasis and signal perception with a particular role of Aux/IAA expression. These changes might in turn guide the entrance into the different phases of AR formation. Ethylene biosynthesis, which is stimulated by wounding and does probably also respond to other stresses and auxin, acts as important stimulator of AR formation probably via the expression of ethylene responsive transcription factor genes, whereas the timing of different phases seems to be controlled by auxin.

  20. Transcriptomic analysis reveals ethylene as stimulator and auxin as regulator of adventitious root formation in petunia cuttings

    Directory of Open Access Journals (Sweden)

    Uwe eDruege

    2014-09-01

    Full Text Available Adventitious root (AR formation in the stem base of cuttings is the basis for propagation of many plant species and petunia is used as model to study this developmental process. Following AR formation from 2 to 192 hours after excision (hpe of cuttings, transcriptome analysis by microarray revealed a change of the character of the rooting zone from stem base to root identity. The greatest shift in the number of differentially expressed genes was observed between 24 and 72 hpe, when the categories storage, mineral nutrient acquisition, anti-oxidative and secondary metabolism, and biotic stimuli showed a notable high number of induced genes. Analyses of phytohormone-related genes disclosed multifaceted changes of the auxin transport system, auxin conjugation and the auxin signal perception machinery indicating a reduction in auxin sensitivity and phase-specific responses of particular auxin-regulated genes. Genes involved in ethylene biosynthesis and action showed a more uniform pattern as a high number of respective genes were generally induced during the whole process of AR formation. The important role of ethylene for stimulating AR formation was demonstrated by the application of inhibitors of ethylene biosynthesis and perception as well as of the precursor aminocyclopropane-1-carboxylic acid, all changing the number and length of AR. A model is proposed showing the putative role of polar auxin transport and resulting auxin accumulation in initiation of subsequent changes in auxin homeostasis and signal perception with a particular role of Aux/IAA expression. These changes might in turn guide the entrance into the different phases of AR formation. Ethylene biosynthesis, which is stimulated by wounding and does probably also respond to other stresses and auxin, acts as important stimulator of AR formation probably via the expression of ethylene responsive transcription factor genes, whereas the timing of different phases seems to be controlled

  1. Morphogengineering roots: comparing mechanisms of morphogen gradient formation

    Science.gov (United States)

    2012-01-01

    Background In developmental biology, there has been a recent focus on the robustness of morphogen gradients as possible providers of positional information. It was shown that functional morphogen gradients present strong biophysical constraints and lack of robustness to noise. Here we explore how the details of the mechanism which underlies the generation of a morphogen gradient can influence those properties. Results We contrast three gradient-generating mechanisms, (i) a source-decay mechanism; and (ii) a unidirectional transport mechanism; and (iii) a so-called reflux-loop mechanism. Focusing on the dynamics of the phytohormone auxin in the root, we show that only the reflux-loop mechanism can generate a gradient that would be adequate to supply functional positional information for the Arabidopsis root, for biophysically reasonable kinetic parameters. Conclusions We argue that traits that differ in spatial and temporal time-scales can impose complex selective pressures on the mechanism of morphogen gradient formation used for the development of the particular organism. PMID:22583698

  2. Influence of light and shoot development stage on leaf photosynthesis and carbohydrate status during the adventitious root formation in cuttings of Corylus avellana L.

    Directory of Open Access Journals (Sweden)

    Sergio eTombesi

    2015-11-01

    Full Text Available Adventitious root formation in plant cuttings is influenced by many endogenous and environmental factors. Leaf photosynthesis during rooting of leafy cuttings in hard to root species can contribute to supply carbohydrates to the intensive metabolic processes related to adventious root formation. Light intensity during rooting is artificially kept low to decrease potential cutting desiccation, but can be limiting for photosynthetic activity. Furthermore, leafy cuttings collected from different part of the shoot can have a different ability to fuel adventitious root formation in cutting stem. The aim of this work was to determine the role of leaf photosynthesis on adventitious root formation in hazelnut (Corylus avellana L (a hard-to-root specie leafy cuttings and to investigate the possible influence of the shoot developmental stage on cutting rooting and survival in the post-rooting phase. Cutting rooting was closely related to carbohydrate content in cutting stems during the rooting process. Cutting carbohydrate status was positively influenced by leaf photosynthesis during rooting. Non saturating light exposure of leafy cuttings can contribute to improve photosynthetic activity of leafy cuttings. Collection of cuttings from different part of the mother shoots influenced rooting percentage and this appear related to the different capability to concentrate soluble sugars in the cutting stem during rooting. Adventitious root formation depend on the carbohydrate accumulation at the base of the cutting. Mother shoot developmental stage and leaf photosynthesis appear pivotal factors for adventitious roots formation.

  3. Iron plaque formation and morphoanatomy of roots from species of restinga subjected to excess iron.

    Science.gov (United States)

    Siqueira-Silva, Advanio Inácio; da Silva, Luzimar Campos; Azevedo, Aristéa Alves; Oliva, Marco Antonio

    2012-04-01

    The restingas, a sandy coastal plain ecosystem of Brazil, have received an additional amount of iron due to the activity of mining industries. The present study aims to characterize morphoanatomically and histochemically the iron plaque formation on roots of Ipomoea pes-caprae L. and Canavalia rosea DC, cultivated in hydroponic solution with and without excess iron. The iron plaque formation as well as changes in the external morphology of the lateral roots of both species were observed after the subjection to excess iron. Changes in the nutrient uptake, and in the organization and form of the pericycle and cortex cells were observed for both species. Scanning electron microscopy showed evident iron plaques on the whole surface of the root. The iron was histolocalized in all root tissues of both species. The species of restinga studied here formed iron plaque in their roots when exposed to excess of this element, which may compromise their development in environments polluted by particulated iron. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. An L-system model for root system mycorrhization

    Science.gov (United States)

    Schnepf, Andrea; Schweiger, Peter; Jansa, Jan; Leitner, Daniel

    2014-05-01

    Mineral phosphate fertilisers are a non-renewable resource; rock phosphate reserves are estimated to be depleted in 50 to 100 years. In order to prevent a severe phosphate crisis in the 21st century, there is a need to decrease agricultural inputs such as P fertilisers by making use of plant mechanisms that increase P acquisition efficiency. Most plants establish mycorrhizal symbiosis as an adaptation to increase/economize their P acquisition from the soil. However, there is a great functional diversity in P acquisition mechanisms among different fungal species that colonize the roots (Thonar et al. 2011), and the composition of mycorrhizal community is known to depend strongly on agricultural management practices. Thus, the agroecosystem management may substantially affect the mycorrhizal functioning and also the use of P fertilizers. To date, it is still difficult to quantify the potential input savings for the agricultural crops through manipulation of their symbiotic microbiome, mainly due to lack of mechanistic understanding of P uptake dynamics by the fungal hyphae. In a first attempt, Schnepf et al. (2008b) have used mathematical modelling to show on the single root scale how different fungal growth pattern influence root P uptake. However, their approach was limited by the fact that it was restricted to the scale of a single root. The goal of this work is to advance the dynamic, three-dimensional root architecture model of Leitner et al. (2010) to include root system infection with arbuscular mycorrhizal fungi and growth of external mycelium. The root system infection model assumes that there is an average probability of infection (primary infection), that the probability of infection of a new root segment immediately adjacent to an existing infection is much higher than the average (secondary infection), that infected root segments have entry points that are the link between internal and external mycelium, that only uninfected root segments are susceptible

  5. Uptake and localisation of lead in the root system of Brassica juncea

    International Nuclear Information System (INIS)

    Meyers, Donald E.R.; Auchterlonie, Graeme J.; Webb, Richard I.; Wood, Barry

    2008-01-01

    The uptake and distribution of Pb sequestered by hydroponically grown (14 days growth) Brassica juncea (3 days exposure; Pb activities 3.2, 32 and 217 μM) was investigated. Lead uptake was restricted largely to root tissue. Examination using scanning transmission electron microscopy-energy dispersive spectroscopy revealed substantial and predominantly intracellular uptake at the root tip. Endocytosis of Pb at the plasma membrane was not observed. A membrane transport protein may therefore be involved. In contrast, endocytosis of Pb into a subset of vacuoles was observed, resulting in the formation of dense Pb aggregates. Sparse and predominantly extracellular uptake occurred at some distance from the root tip. X-ray photoelectron spectroscopy confirmed that the Pb concentration was greater in root tips. Heavy metal rhizofiltration using B. juncea might therefore be improved by breeding plants with profusely branching roots. Uptake enhancement using genetic engineering techniques would benefit from investigation of plasma membrane transport mechanisms. - The sites of Pb sequestration within the root system of hydroponically grown Brassica juncea were identified

  6. Eucalyptus hairy roots, a fast, efficient and versatile tool to explore function and expression of genes involved in wood formation.

    Science.gov (United States)

    Plasencia, Anna; Soler, Marçal; Dupas, Annabelle; Ladouce, Nathalie; Silva-Martins, Guilherme; Martinez, Yves; Lapierre, Catherine; Franche, Claudine; Truchet, Isabelle; Grima-Pettenati, Jacqueline

    2016-06-01

    Eucalyptus are of tremendous economic importance being the most planted hardwoods worldwide for pulp and paper, timber and bioenergy. The recent release of the Eucalyptus grandis genome sequence pointed out many new candidate genes potentially involved in secondary growth, wood formation or lineage-specific biosynthetic pathways. Their functional characterization is, however, hindered by the tedious, time-consuming and inefficient transformation systems available hitherto for eucalypts. To overcome this limitation, we developed a fast, reliable and efficient protocol to obtain and easily detect co-transformed E. grandis hairy roots using fluorescent markers, with an average efficiency of 62%. We set up conditions both to cultivate excised roots in vitro and to harden composite plants and verified that hairy root morphology and vascular system anatomy were similar to wild-type ones. We further demonstrated that co-transformed hairy roots are suitable for medium-throughput functional studies enabling, for instance, protein subcellular localization, gene expression patterns through RT-qPCR and promoter expression, as well as the modulation of endogenous gene expression. Down-regulation of the Eucalyptus cinnamoyl-CoA reductase1 (EgCCR1) gene, encoding a key enzyme in lignin biosynthesis, led to transgenic roots with reduced lignin levels and thinner cell walls. This gene was used as a proof of concept to demonstrate that the function of genes involved in secondary cell wall biosynthesis and wood formation can be elucidated in transgenic hairy roots using histochemical, transcriptomic and biochemical approaches. The method described here is timely because it will accelerate gene mining of the genome for both basic research and industry purposes. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  7. Artificial caries formation around fluoride-releasing restorations in roots.

    Science.gov (United States)

    Dionysopoulos, P; Kotsanos, N; Papadogiannis, Y; Konstantinidis, A

    1998-11-01

    Secondary caries is one of the most important factors leading to replacement of dental restorations. This investigation assessed the capacity of fluoride-releasing restorative materials to resist caries in vitro when used in roots. Class 5 cavities were prepared in the buccal and lingual surfaces of 30 extracted premolars. The six materials used were: glass-ionomer cement (Fuji), glass-ionomer cement with silver particles added (Ketac-silver), fluoride-containing composite resin (Tetric), composite resin (Silux plus), fluoride-containing amalgam (Fluor-Alloy) and high-copper amalgam (Dispersalloy). After 5 weeks in an acid gel for caries-like lesion formation, the teeth were sectioned longitudinally and examined with polarized light. The results showed that repair with glass-ionomer materials of a carious lesion may be of great importance in the prevention of secondary caries around the restorations in roots.

  8. OpenSimRoot: widening the scope and application of root architectural models.

    Science.gov (United States)

    Postma, Johannes A; Kuppe, Christian; Owen, Markus R; Mellor, Nathan; Griffiths, Marcus; Bennett, Malcolm J; Lynch, Jonathan P; Watt, Michelle

    2017-08-01

    OpenSimRoot is an open-source, functional-structural plant model and mathematical description of root growth and function. We describe OpenSimRoot and its functionality to broaden the benefits of root modeling to the plant science community. OpenSimRoot is an extended version of SimRoot, established to simulate root system architecture, nutrient acquisition and plant growth. OpenSimRoot has a plugin, modular infrastructure, coupling single plant and crop stands to soil nutrient and water transport models. It estimates the value of root traits for water and nutrient acquisition in environments and plant species. The flexible OpenSimRoot design allows upscaling from root anatomy to plant community to estimate the following: resource costs of developmental and anatomical traits; trait synergisms; and (interspecies) root competition. OpenSimRoot can model three-dimensional images from magnetic resonance imaging (MRI) and X-ray computed tomography (CT) of roots in soil. New modules include: soil water-dependent water uptake and xylem flow; tiller formation; evapotranspiration; simultaneous simulation of mobile solutes; mesh refinement; and root growth plasticity. OpenSimRoot integrates plant phenotypic data with environmental metadata to support experimental designs and to gain a mechanistic understanding at system scales. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  9. Air lateral root pruning affects longleaf pine seedling root system morphology

    Science.gov (United States)

    Shi-Jean Susana Sung; Dave Haywood

    2016-01-01

    Longleaf pine (Pinus palustris) seedlings were cultured with air lateral root pruning (side-vented containers, VT) or without (solid-walled containers, SW). Seedling root system morphology and growth were assessed before planting and 8 and 14 months after planting. Although VT seedlings had greater root collar diameter than the SW before planting,...

  10. Genetic interaction of two abscisic acid signaling regulators, HY5 and FIERY1, in mediating lateral root formation

    KAUST Repository

    Chen, Hao

    2011-01-01

    Root architecture is continuously shaped in a manner that helps plants to better adapt to the environment. Gene regulation at the transcriptional or post-transcriptional levels largely controls this environmental response. Recently, RNA silencing has emerged as an important player in gene regulation and is involved in many aspects of plant development, including lateral root formation. In a recent study, we found that FIERY1, a bifunctional abiotic stress and abscisic acid (ABA) signaling regulator and an endogenous RNA silencing suppressor, mediates auxin response during lateral root formation in Arabidopsis. We proposed that FRY1 regulates lateral root development through its activity on adenosine 3,5-bisphosphate (PAP), a strong inhibitor of exoribonucleases (XRNs). Interestingly, some of the phenotypes of fry1, such as enhanced response to light in repressing hypocotyl elongation and hypersensitivity to ABA in lateral root growth, are opposite to those of another light- and ABA-signaling mutant, hy5. Here we analyzed the hy5 fry1 double mutant for root and hypocotyl growth. We found that the hy5 mutation can suppress the enhanced light sensitivity in fry1 hypocotyl elongation and restore the lateral root formation. The genetic interaction between HY5 and FRY1 indicates that HY5 and FRY1 may act in overlapping pathways that mediate light signaling and lateral root development. © 2011 Landes Bioscience.

  11. Aplikasi Root Zone Cooling System Untuk Perbaikan Pembentukan Umbi Bawang Merah (Allium cepa var. aggregatum

    Directory of Open Access Journals (Sweden)

    Nurwahyuningsih

    2017-08-01

    Full Text Available Abstract The aim of this research can be formulated as follows: to analyze the effect of different root zone temperature to some extent the temperature is 10oC, 15oC, control and vernalization of plant growth and the formation of shallot bulbs by using aeroponic system. The experimental design used was a draft Plots Divided (Split Plot Design, which is arranged in a randomized block design with four replications. The main plot is a vernalization treatment (without vernalization and with vernalization. The subplots in the form of a nutrient solution temperature at 10oC, 15oC, and without cooling system as a control. The parameters measured were the number of leaves, the number of tillers, the number of bulbs, the weight of bulbs and the wet weight of root. There are no interaction between the annealing temperature by vernalization to the number of leaves, the bulb number, the weight of bulbs, and the weight of the roots. Cooling temperatures nutrient solution to improving root growth and bulb formation of shallot. Optimal root growth can improve nutrient uptaken by plants then can improve plant growth and bulb yield larger and heavier. Temperatures suitable for shallot cultivation in lowland tropical for producing tubers with quenching temperature is 10°C, non vernalization.

  12. Hydrogen Gas Is Involved in Auxin-Induced Lateral Root Formation by Modulating Nitric Oxide Synthesis

    Directory of Open Access Journals (Sweden)

    Zeyu Cao

    2017-10-01

    Full Text Available Metabolism of molecular hydrogen (H2 in bacteria and algae has been widely studied, and it has attracted increasing attention in the context of animals and plants. However, the role of endogenous H2 in lateral root (LR formation is still unclear. Here, our results showed that H2-induced lateral root formation is a universal event. Naphthalene-1-acetic acid (NAA; the auxin analog was able to trigger endogenous H2 production in tomato seedlings, and a contrasting response was observed in the presence of N-1-naphthyphthalamic acid (NPA, an auxin transport inhibitor. NPA-triggered the inhibition of H2 production and thereafter lateral root development was rescued by exogenously applied H2. Detection of endogenous nitric oxide (NO by the specific probe 4-amino-5-methylamino-2′,7′-difluorofluorescein diacetate (DAF-FM DA and electron paramagnetic resonance (EPR analyses revealed that the NO level was increased in both NAA- and H2-treated tomato seedlings. Furthermore, NO production and thereafter LR formation induced by auxin and H2 were prevented by 2-4-carboxyphenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO; a specific scavenger of NO and the inhibitor of nitrate reductase (NR; an important NO synthetic enzyme. Molecular evidence confirmed that some representative NO-targeted cell cycle regulatory genes were also induced by H2, but was impaired by the removal of endogenous NO. Genetic evidence suggested that in the presence of H2, Arabidopsis mutants nia2 (in particular and nia1 (two nitrate reductases (NR-defective mutants exhibited defects in lateral root length. Together, these results demonstrated that auxin-induced H2 production was associated with lateral root formation, at least partially via a NR-dependent NO synthesis.

  13. Plant Hormone Homeostasis, Signaling, and Function during Adventitious Root Formation in Cuttings

    OpenAIRE

    Druege, Uwe; Franken, Philipp; Hajirezaei, Mohammad R.

    2016-01-01

    Adventitious root (AR) formation in cuttings is a multiphase developmental process, resulting from wounding at the cutting site and isolation from the resource and signal network of the whole plant. Though, promotive effects of auxins are widely used for clonal plant propagation, the regulation and function of plant hormones and their intricate signaling networks during AR formation in cuttings are poorly understood. In this focused review, we discuss our recent publications on the involvemen...

  14. GiA Roots: software for the high throughput analysis of plant root system architecture

    Science.gov (United States)

    2012-01-01

    Background Characterizing root system architecture (RSA) is essential to understanding the development and function of vascular plants. Identifying RSA-associated genes also represents an underexplored opportunity for crop improvement. Software tools are needed to accelerate the pace at which quantitative traits of RSA are estimated from images of root networks. Results We have developed GiA Roots (General Image Analysis of Roots), a semi-automated software tool designed specifically for the high-throughput analysis of root system images. GiA Roots includes user-assisted algorithms to distinguish root from background and a fully automated pipeline that extracts dozens of root system phenotypes. Quantitative information on each phenotype, along with intermediate steps for full reproducibility, is returned to the end-user for downstream analysis. GiA Roots has a GUI front end and a command-line interface for interweaving the software into large-scale workflows. GiA Roots can also be extended to estimate novel phenotypes specified by the end-user. Conclusions We demonstrate the use of GiA Roots on a set of 2393 images of rice roots representing 12 genotypes from the species Oryza sativa. We validate trait measurements against prior analyses of this image set that demonstrated that RSA traits are likely heritable and associated with genotypic differences. Moreover, we demonstrate that GiA Roots is extensible and an end-user can add functionality so that GiA Roots can estimate novel RSA traits. In summary, we show that the software can function as an efficient tool as part of a workflow to move from large numbers of root images to downstream analysis. PMID:22834569

  15. Root water uptake and lateral interactions among root systems in a temperate forest

    Science.gov (United States)

    Agee, E.; He, L.; Bisht, G.; Gough, C. M.; Couvreur, V.; Matheny, A. M.; Bohrer, G.; Ivanov, V. Y.

    2016-12-01

    A growing body of research has highlighted the importance of root architecture and hydraulic properties to the maintenance of the transpiration stream under water limitation and drought. Detailed studies of single plant systems have shown the ability of root systems to adjust zones of uptake due to the redistribution of local water potential gradients, thereby delaying the onset of stress under drying conditions. An open question is how lateral interactions and competition among neighboring plants impact individual and community resilience to water stress. While computational complexity has previously hindered the implementation of microscopic root system structure and function in larger scale hydrological models, newer hybrid approaches allow for the resolution of these properties at the plot scale. Using a modified version of the PFLOTRAN model, which represents the 3-D physics of variably saturated soil, we model root water uptake in a one-hectare temperate forest plot under natural and synthetic forcings. Two characteristic hydraulic architectures, tap roots and laterally sprawling roots, are implemented in an ensemble of simulations. Variations of root architecture, their hydraulic properties, and degree of system interactions produce variable local response to water limitation and provide insights on individual and community response to changing meteorological conditions. Results demonstrate the ability of interacting systems to shift areas of active uptake based on local gradients, allowing individuals to meet water demands despite competition from their peers. These results further illustrate how inter- and intra-species variations in root properties may influence not only individual response to water stress, but also help quantify the margins of resilience for forest ecosystems under changing climate.

  16. Longleaf Pine Root System Development and Seedling Quality in Response to Copper Root Pruning and Cavity Size

    Science.gov (United States)

    Mary Anne Sword Sayer; Shi-Jean Susana Sung; James D. Haywood

    2011-01-01

    Cultural practices that modify root system structure in the plug of container-grown seedlings have the potential to improve root system function after planting. Our objective was to assess how copper root pruning affects the quality and root system development of longleaf pine seedlings grown in three cavity sizes in a greenhouse. Copper root pruning increased seedling...

  17. Control of root system architecture by DEEPER ROOTING 1 increases rice yield under drought conditions.

    Science.gov (United States)

    Uga, Yusaku; Sugimoto, Kazuhiko; Ogawa, Satoshi; Rane, Jagadish; Ishitani, Manabu; Hara, Naho; Kitomi, Yuka; Inukai, Yoshiaki; Ono, Kazuko; Kanno, Noriko; Inoue, Haruhiko; Takehisa, Hinako; Motoyama, Ritsuko; Nagamura, Yoshiaki; Wu, Jianzhong; Matsumoto, Takashi; Takai, Toshiyuki; Okuno, Kazutoshi; Yano, Masahiro

    2013-09-01

    The genetic improvement of drought resistance is essential for stable and adequate crop production in drought-prone areas. Here we demonstrate that alteration of root system architecture improves drought avoidance through the cloning and characterization of DEEPER ROOTING 1 (DRO1), a rice quantitative trait locus controlling root growth angle. DRO1 is negatively regulated by auxin and is involved in cell elongation in the root tip that causes asymmetric root growth and downward bending of the root in response to gravity. Higher expression of DRO1 increases the root growth angle, whereby roots grow in a more downward direction. Introducing DRO1 into a shallow-rooting rice cultivar by backcrossing enabled the resulting line to avoid drought by increasing deep rooting, which maintained high yield performance under drought conditions relative to the recipient cultivar. Our experiments suggest that control of root system architecture will contribute to drought avoidance in crops.

  18. Non-destructive digital imaging in poplar allows detailed analysis of adventitious rooting dynamics

    Science.gov (United States)

    R.J. Kodrzycki; R.B. Michaels; A.L. Friend; R.S. Zalesny; Ch.P. Mawata; D.W. McDonald

    2008-01-01

    The dynamics of root formation are difficult to observe directly over time without disturbing the rooting environment. A novel system for a non-destructive, non-invasive root analysis (RootViz FS, Phenotype Screening Corp.) was evaluated for its ability to analyze root formation from cuttings over a 32 day period in three poplar genotypes (DN70, P. Deltoides x...

  19. Effect of localized nitrogen availability to soybean half-root systems on photosynthate partitioning to roots and nodules

    International Nuclear Information System (INIS)

    Singleton, P.W.; van Kessel, C.

    1987-01-01

    Soybean (Glycine max [L.] Merr. cv Davis) was grown in a split-root growth system designed to maintain control of the root atmosphere. Two experiments were conducted to examine how 80% Ar:20%, O 2 (Ar:O 2 ) and air (Air) atmospheres affected N assimilation (NH 4 NO 3 and N 2 fixation) and the partitioning of photosynthate to roots and nodules. Application of NH 4 NO 3 to nonnodulated half-root systems enhanced root growth and root respiration at the site of application. A second experiment applied Ar:O 2 or air to the two sides of nodulated soybean half-root systems for 11 days in the following combinations: (a) Air to both sides (Air/Air); (b) Air to one side, Ar:O 2 to the other (Air/Ar:O 2 ), and (c) Ar:O 2 to both sides (Ar:O 2 /Ar:O 2 ). Results indicated that dry matter and current photosynthate ( 14 C) were selectively partitioned to nodules and roots where N 2 was available. Both root and nodule growth on the Air side of Air/Ar:O 2 plants was significantly greater than the Ar:O 2 side. The relative partitioning of carbon and current photosynthate between roots and nodules on a half-root system was also affected by N 2 availability. The Ar:O 2 sides partitioned relatively more current photosynthate to roots (57%) than nodules (43%), while N 2 -fixing root systems partitioned 36 and 64% of the carbon to roots and nodules, respectively. The Ar:O 2 atmosphere decreased root and nodule respiration by 80% and nitrogenase activity by 85% compared to half-root systems in Air while specific nitrogenase activity in Ar:O 2 was 50% of nodules supplied Air. Results indicated that nitrogen assimilation, whether from N 2 fixation or inorganic sources, had a localized effect on root development

  20. Development and implementation of custom root-cause systems

    International Nuclear Information System (INIS)

    Paradies, M.; Unger, L.

    1990-01-01

    Almost anyone investigating an operating problem can expect their management and the US Nuclear Regulatory Commission (NRC) to ask them if they have really uncovered the root cause of the event. This paper outlines a proven method to develop a custom system to identify and analyze the root causes of events. The method has led to the successful implementation of root-cause analysis systems at the Savannah River Plant and at Philadelphia Electric's Peach Bottom and Limerick nuclear generating stations. The methods are currently being used by System Improvements to develop a root-cause system to be used by the NRC to identify human performance problems at utilities. This paper also outlines the common problems that may be encountered when implementing a root-cause program

  1. Root-Knot and Cyst Nematodes Activate Procambium-Associated Genes in Arabidopsis Roots

    Directory of Open Access Journals (Sweden)

    Yasuka L. Yamaguchi

    2017-07-01

    Full Text Available Developmental plasticity is one of the most striking features of plant morphogenesis, as plants are able to vary their shapes in response to environmental cues. Biotic or abiotic stimuli often promote organogenesis events in plants not observed under normal growth conditions. Root-knot nematodes (RKNs are known to parasitize multiple species of rooting plants and to induce characteristic tissue expansion called galls or root-knots on the roots of their hosts by perturbing the plant cellular machinery. Galls contain giant cells (GCs and neighboring cells, and the GCs are a source of nutrients for the parasitizing nematode. Highly active cell proliferation was observed in galls. However, the underlying mechanisms that regulate the symptoms triggered by the plant-nematode interaction have not yet been elucidated. In this study, we deciphered the molecular mechanism of gall formation with an in vitro infection assay system using RKN Meloidogyne incognita, and the model plant Arabidopsis thaliana. By taking advantages of this system, we performed next-generation sequencing-based transcriptome profiling, and found that the expression of procambium identity-associated genes were enriched during gall formation. Clustering analyses with artificial xylogenic systems, together with the results of expression analyses of the candidate genes, showed a significant correlation between the induction of gall cells and procambium-associated cells. Furthermore, the promoters of several procambial marker genes such as ATHB8, TDR and WOX4 were activated not only in M. incognita-induced galls, but similarly in M. javanica induced-galls and Heterodera schachtii-induced syncytia. Our findings suggest that phytoparasitic nematodes modulate the host’s developmental regulation of the vascular stem cells during gall formation.

  2. Root-Knot and Cyst Nematodes Activate Procambium-Associated Genes in Arabidopsis Roots.

    Science.gov (United States)

    Yamaguchi, Yasuka L; Suzuki, Reira; Cabrera, Javier; Nakagami, Satoru; Sagara, Tomomi; Ejima, Chika; Sano, Ryosuke; Aoki, Yuichi; Olmo, Rocio; Kurata, Tetsuya; Obayashi, Takeshi; Demura, Taku; Ishida, Takashi; Escobar, Carolina; Sawa, Shinichiro

    2017-01-01

    Developmental plasticity is one of the most striking features of plant morphogenesis, as plants are able to vary their shapes in response to environmental cues. Biotic or abiotic stimuli often promote organogenesis events in plants not observed under normal growth conditions. Root-knot nematodes (RKNs) are known to parasitize multiple species of rooting plants and to induce characteristic tissue expansion called galls or root-knots on the roots of their hosts by perturbing the plant cellular machinery. Galls contain giant cells (GCs) and neighboring cells, and the GCs are a source of nutrients for the parasitizing nematode. Highly active cell proliferation was observed in galls. However, the underlying mechanisms that regulate the symptoms triggered by the plant-nematode interaction have not yet been elucidated. In this study, we deciphered the molecular mechanism of gall formation with an in vitro infection assay system using RKN Meloidogyne incognita , and the model plant Arabidopsis thaliana. By taking advantages of this system, we performed next-generation sequencing-based transcriptome profiling, and found that the expression of procambium identity-associated genes were enriched during gall formation. Clustering analyses with artificial xylogenic systems, together with the results of expression analyses of the candidate genes, showed a significant correlation between the induction of gall cells and procambium-associated cells. Furthermore, the promoters of several procambial marker genes such as ATHB8 , TDR and WOX4 were activated not only in M. incognita -induced galls, but similarly in M. javanica induced-galls and Heterodera schachtii -induced syncytia. Our findings suggest that phytoparasitic nematodes modulate the host's developmental regulation of the vascular stem cells during gall formation.

  3. Modelling water uptake efficiency of root systems

    Science.gov (United States)

    Leitner, Daniel; Tron, Stefania; Schröder, Natalie; Bodner, Gernot; Javaux, Mathieu; Vanderborght, Jan; Vereecken, Harry; Schnepf, Andrea

    2016-04-01

    Water uptake is crucial for plant productivity. Trait based breeding for more water efficient crops will enable a sustainable agricultural management under specific pedoclimatic conditions, and can increase drought resistance of plants. Mathematical modelling can be used to find suitable root system traits for better water uptake efficiency defined as amount of water taken up per unit of root biomass. This approach requires large simulation times and large number of simulation runs, since we test different root systems under different pedoclimatic conditions. In this work, we model water movement by the 1-dimensional Richards equation with the soil hydraulic properties described according to the van Genuchten model. Climatic conditions serve as the upper boundary condition. The root system grows during the simulation period and water uptake is calculated via a sink term (after Tron et al. 2015). The goal of this work is to compare different free software tools based on different numerical schemes to solve the model. We compare implementations using DUMUX (based on finite volumes), Hydrus 1D (based on finite elements), and a Matlab implementation of Van Dam, J. C., & Feddes 2000 (based on finite differences). We analyse the methods for accuracy, speed and flexibility. Using this model case study, we can clearly show the impact of various root system traits on water uptake efficiency. Furthermore, we can quantify frequent simplifications that are introduced in the modelling step like considering a static root system instead of a growing one, or considering a sink term based on root density instead of considering the full root hydraulic model (Javaux et al. 2008). References Tron, S., Bodner, G., Laio, F., Ridolfi, L., & Leitner, D. (2015). Can diversity in root architecture explain plant water use efficiency? A modeling study. Ecological modelling, 312, 200-210. Van Dam, J. C., & Feddes, R. A. (2000). Numerical simulation of infiltration, evaporation and shallow

  4. X-ray computed tomography uncovers root-root interactions: quantifying spatial relationships between interacting root systems in three dimensions.

    Science.gov (United States)

    Paya, Alexander M; Silverberg, Jesse L; Padgett, Jennifer; Bauerle, Taryn L

    2015-01-01

    Research in the field of plant biology has recently demonstrated that inter- and intra-specific interactions belowground can dramatically alter root growth. Our aim was to answer questions related to the effect of inter- vs. intra-specific interactions on the growth and utilization of undisturbed space by fine roots within three dimensions (3D) using micro X-ray computed tomography. To achieve this, Populus tremuloides (quaking aspen) and Picea mariana (black spruce) seedlings were planted into containers as either solitary individuals, or inter-/intra-specific pairs, allowed to grow for 2 months, and 3D metrics developed in order to quantify their use of belowground space. In both aspen and spruce, inter-specific root interactions produced a shift in the vertical distribution of the root system volume, and deepened the average position of root tips when compared to intra-specifically growing seedlings. Inter-specific interactions also increased the minimum distance between root tips belonging to the same root system. There was no effect of belowground interactions on the radial distribution of roots, or the directionality of lateral root growth for either species. In conclusion, we found that significant differences were observed more often when comparing controls (solitary individuals) and paired seedlings (inter- or intra-specific), than when comparing inter- and intra-specifically growing seedlings. This would indicate that competition between neighboring seedlings was more responsible for shifting fine root growth in both species than was neighbor identity. However, significant inter- vs. intra-specific differences were observed, which further emphasizes the importance of biological interactions in competition studies.

  5. A comprehensive phylogeny of auxin homeostasis genes involved in adventitious root formation in carnation stem cuttings.

    Directory of Open Access Journals (Sweden)

    Ana Belén Sánchez-García

    Full Text Available Understanding the functional basis of auxin homeostasis requires knowledge about auxin biosynthesis, auxin transport and auxin catabolism genes, which is not always directly available despite the recent whole-genome sequencing of many plant species. Through sequence homology searches and phylogenetic analyses on a selection of 11 plant species with high-quality genome annotation, we identified the putative gene homologs involved in auxin biosynthesis, auxin catabolism and auxin transport pathways in carnation (Dianthus caryophyllus L.. To deepen our knowledge of the regulatory events underlying auxin-mediated adventitious root formation in carnation stem cuttings, we used RNA-sequencing data to confirm the expression profiles of some auxin homeostasis genes during the rooting of two carnation cultivars with different rooting behaviors. We also confirmed the presence of several auxin-related metabolites in the stem cutting tissues. Our findings offer a comprehensive overview of auxin homeostasis genes in carnation and provide a solid foundation for further experiments investigating the role of auxin homeostasis in the regulation of adventitious root formation in carnation.

  6. Hypocotyl adventitious root organogenesis differs from lateral root development.

    Science.gov (United States)

    Verstraeten, Inge; Schotte, Sébastien; Geelen, Danny

    2014-01-01

    Wound-induced adventitious root (AR) formation is a requirement for plant survival upon root damage inflicted by pathogen attack, but also during the regeneration of plant stem cuttings for clonal propagation of elite plant varieties. Yet, adventitious rooting also takes place without wounding. This happens for example in etiolated Arabidopsis thaliana hypocotyls, in which AR initiate upon de-etiolation or in tomato seedlings, in which AR initiate upon flooding or high water availability. In the hypocotyl AR originate from a cell layer reminiscent to the pericycle in the primary root (PR) and the initiated AR share histological and developmental characteristics with lateral roots (LRs). In contrast to the PR however, the hypocotyl is a determinate structure with an established final number of cells. This points to differences between the induction of hypocotyl AR and LR on the PR, as the latter grows indeterminately. The induction of AR on the hypocotyl takes place in environmental conditions that differ from those that control LR formation. Hence, AR formation depends on differentially regulated gene products. Similarly to AR induction in stem cuttings, the capacity to induce hypocotyl AR is genotype-dependent and the plant growth regulator auxin is a key regulator controlling the rooting response. The hormones cytokinins, ethylene, jasmonic acid, and strigolactones in general reduce the root-inducing capacity. The involvement of this many regulators indicates that a tight control and fine-tuning of the initiation and emergence of AR exists. Recently, several genetic factors, specific to hypocotyl adventitious rooting in A. thaliana, have been uncovered. These factors reveal a dedicated signaling network that drives AR formation in the Arabidopsis hypocotyl. Here we provide an overview of the environmental and genetic factors controlling hypocotyl-born AR and we summarize how AR formation and the regulating factors of this organogenesis are distinct from LR

  7. Hypocotyl adventitious root organogenesis differs from lateral root development

    Directory of Open Access Journals (Sweden)

    Inge eVerstraeten

    2014-09-01

    Full Text Available Wound-induced adventitious root (AR formation is a requirement for plant survival upon root damage inflicted by pathogen attack, but also during the regeneration of plant stem cuttings for clonal propagation of elite plant varieties. Yet, adventitious rooting also takes place without wounding. This happens for example in etiolated Arabidopsis thaliana hypocotyls, in which AR initiate upon de-etiolation or in tomato seedlings, in which AR initiate upon flooding or high water availability. In the hypocotyl AR originate from a cell layer reminiscent to the pericycle in the primary root (PR and the initiated AR share histological and developmental characteristics with lateral roots (LR. In contrast to the PR however, the hypocotyl is a determinate structure with an established final number of cells. This points to differences between the induction of hypocotyl AR and LR on the PR, as the latter grows indeterminately. The induction of AR on the hypocotyl takes place in environmental conditions that differ from those that control LR formation. Hence, AR formation depends on differentially regulated gene products. Similarly to AR induction in stem cuttings, the capacity to induce hypocotyl AR is genotype-dependent and the plant growth regulator auxin is a key regulator controlling the rooting response. The hormones cytokinins, ethylene, jasmonic acid and strigolactones in general reduce the root-inducing capacity. The involvement of this many regulators indicates that a tight control and fine-tuning of the initiation and emergence of AR exists. Recently, several genetic factors, specific to hypocotyl adventitious rooting in Arabidopsis thaliana, have been uncovered. These factors reveal a dedicated signaling network that drives AR formation in the Arabidopsis hypocotyl. Here we provide an overview of the environmental and genetic factors controlling hypocotyl-born AR and we summarize how AR formation and the regulating factors of this organogenesis are

  8. Lateral root organogenesis - from cell to organ.

    Science.gov (United States)

    Benková, Eva; Bielach, Agnieszka

    2010-12-01

    Unlike locomotive organisms capable of actively approaching essential resources, sessile plants must efficiently exploit their habitat for water and nutrients. This involves root-mediated underground interactions allowing plants to adapt to soils of diverse qualities. The root system of plants is a dynamic structure that modulates primary root growth and root branching by continuous integration of environmental inputs, such as nutrition availability, soil aeration, humidity, or salinity. Root branching is an extremely flexible means to rapidly adjust the overall surface of the root system and plants have evolved efficient control mechanisms, including, firstly initiation, when and where to start lateral root formation; secondly lateral root primordia organogenesis, during which the development of primordia can be arrested for a certain time; and thirdly lateral root emergence. Our review will focus on the most recent advances in understanding the molecular mechanisms involved in the regulation of lateral root initiation and organogenesis with the main focus on root system of the model plant Arabidopsis thaliana. Copyright © 2010 Elsevier Ltd. All rights reserved.

  9. Root-Contact/Pressure-Plate Assembly For Hydroponic System

    Science.gov (United States)

    Morris, Carlton E.; Loretan, Philip A.; Bonsi, Conrad K.; Hill, Walter A.

    1994-01-01

    Hydroponic system includes growth channels equipped with rootcontact/pressure-plate assemblies. Pump and associated plumbing circulate nutrient liquid from reservoir, along bottom of growth channels, and back to reservoir. Root-contact/pressure-plate assembly in each growth channel stimulates growth of roots by applying mild contact pressure. Flat plate and plate connectors, together constitute pressure plate, free to move upward to accommodate growth of roots. System used for growing sweetpotatoes and possibly other tuber and root crops.

  10. Vertical Root Fracture initiation in curved roots after root canal preparation: A dentinal micro-crack analysis with LED transillumination.

    Science.gov (United States)

    Miguéns-Vila, Ramón; Martín-Biedma, Benjamín; Varela-Patiño, Purificación; Ruíz-Piñón, Manuel; Castelo-Baz, Pablo

    2017-10-01

    One of the causative factors of root defects is the increased friction produced by rotary instrumentation. A high canal curvature may increase stress, making the tooth more susceptible to dentinal cracks. The purpose of this study was to evaluate dentinal micro-crack formation with the ProTaper NEXT and ProTaper Universal systems using LED transillumination, and to analyze the micro-crack generated at the point of maximum canal curvature. 60 human mandibular premolars with curvatures between 30-49° and radii between 2-4 mm were used. The root canals were instrumented using the Protaper Universal® and Protaper NEXT® systems, with the aid of the Proglider® system. The obtained samples were sectioned transversely before subsequent analysis with LED transillumination at 2 mm and 8 mm from the apex and at the point of maximum canal curvature. Defects were scored: 0 for no defects; and 1 for micro-cracks. Root defects were not observed in the control group. The ProTaper NEXT system caused fewer defects (16.7%) than the ProTaper Universal system (40%) ( P Universal system caused significantly more micro-cracks at the point of maximum canal curvature than the ProTaper NEXT system ( P Universal system. A higher prevalence of defects was found at the point of maximum curvature in the ProTaper Universal group. Key words: Curved root, Micro-crack, point of maximum canal curvature, ProTaper NEXT, ProTaper Universal, Vertical root fracture.

  11. Five Roots Pattern of Median Nerve Formation

    Directory of Open Access Journals (Sweden)

    Konstantinos Natsis

    2016-04-01

    Full Text Available An unusual combination of median nerve’s variations has been encountered in a male cadaver during routine educational dissection. In particular, the median nerve was formed by five roots; three roots originated from the lateral cord of the brachial plexus joined individually the median nerve’s medial root. The latter (fourth root was united with the lateral (fifth root of the median nerve forming the median nerve distally in the upper arm and not the axilla as usually. In addition, the median nerve was situated medial to the brachial artery. We review comprehensively the relevant variants, their embryologic development and their potential clinical applications.

  12. Nitrogen remobilisation facilitates adventitious root formation on reversible dark-induced carbohydrate depletion in Petunia hybrida.

    Science.gov (United States)

    Zerche, Siegfried; Haensch, Klaus-Thomas; Druege, Uwe; Hajirezaei, Mohammad-Reza

    2016-10-10

    Adventitious root (AR) formation in axillary shoot tip cuttings is a crucial physiological process for ornamental propagation that is utilised in global production chains for young plants. In this process, the nitrogen and carbohydrate metabolisms of a cutting are regulated by its total nitrogen content (N t ), dark exposure during transport and irradiance levels at distinct production sites and phases through a specific plasticity to readjust metabolite pools. Here, we examined how elevated N t contents with a combined dark exposure of cuttings influence their internal N-pools including free amino acids and considered early anatomic events of AR formation as well as further root development in Petunia hybrida cuttings. Enhanced N t contents of unrooted cuttings resulted in elevated total free amino acid levels and in particular glutamate (glu) and glutamine (gln) in leaf and basal stem. N-allocation to mobile N-pools increased whereas the allocation to insoluble protein-N declined. A dark exposure of cuttings conserved initial N t and nitrate-N, while it reduced insoluble protein-N and increased soluble protein, amino- and amide-N. The increase of amino acids mainly comprised asparagine (asn), aspartate (asp) and arginine (arg) in the leaves, with distinct tissue specific responses to an elevated N supply. Dark exposure induced an early transient rise of asp followed by a temporary increase of glu. A strong positive N effect of high N t contents of cuttings on AR formation after 384 h was observed. Root meristematic cells developed at 72 h with a negligible difference for two N t levels. After 168 h, an enhanced N t accelerated AR formation and gave rise to first obvious fully developed roots while only meristems were formed with a low N t . However, dark exposure for 168 h promoted AR formation particularly in cuttings with a low N t to such an extent so that the benefit of the enhanced N t was almost compensated. Combined dark exposure and low N t of

  13. Unleashing the potential of the root hair cell as a single plant cell type model in root systems biology

    Directory of Open Access Journals (Sweden)

    Zhenzhen eQiao

    2013-11-01

    Full Text Available Plant root is an organ composed of multiple cell types with different functions. This multicellular complexity limits our understanding of root biology because –omics studies performed at the level of the entire root reflect the average responses of all cells composing the organ. To overcome this difficulty and allow a more comprehensive understanding of root cell biology, an approach is needed that would focus on one single cell type in the plant root. Because of its biological functions (i.e. uptake of water and various nutrients; primary site of infection by nitrogen-fixing bacteria in legumes, the root hair cell is an attractive single cell model to study root cell response to various stresses and treatments. To fully study their biology, we have recently optimized procedures in obtaining root hair cell samples. We culture the plants using an ultrasound aeroponic system maximizing root hair cell density on the entire root systems and allowing the homogeneous treatment of the root system. We then isolate the root hair cells in liquid nitrogen. Isolated root hair yields could be up to 800 to 1000 mg of plant cells from 60 root systems. Using soybean as a model, the purity of the root hair was assessed by comparing the expression level of genes previously identified as soybean root hair specific between preparations of isolated root hair cells and stripped roots, roots devoid in root hairs. Enlarging our tests to include other plant species, our results support the isolation of large quantities of highly purified root hair cells which is compatible with a systems biology approach.

  14. Two negative regulatory systems of root nodule symbiosis - how are symbiotic benefits and costs balanced?

    Science.gov (United States)

    Nishida, Hanna; Suzaki, Takuya

    2018-05-30

    Root nodule symbiosis is one of the best-characterized mutualistic relationships between plants-microbes symbiosis, where mainly leguminous species can obtain nitrogen sources fixed by nitrogen-fixing rhizobia through the formation of symbiotic organs root nodules. In order to drive this symbiotic process, plants need to provide carbon sources that should be used for their growth. Therefore, a balance between the benefits of obtaining nitrogen sources and the costs of losing carbon sources needs to be maintained during root nodule symbiosis. Plants have developed at least two negative regulatory systems of root nodule symbiosis. One strategy involves the regulation of nodule number in response to rhizobial infection. For this regulation, a systemic long-range signaling between roots and shoots called autoregulation of nodulation has a pivotal role. Another strategy involves the regulation of root nodule symbiosis in response to nitrate, the most abundant form of nitrogen nutrients in the soil. Recent studies indicate that a long-distance signaling is shared between the two strategies, where NIN and NRSYM1, two paralogous RWP-RK transcription factors, can activate the production of nodulation-related CLE peptides in response to different inputs. Here, we give an overview of such progress in our understanding of molecular mechanisms relevant to the control of the symbiotic balance, including their biological significance.

  15. A New Format for Handling Nuclear Data

    CERN Document Server

    Bak, S I; Tenreiro, C; Kadi, Y; Hong, S W; Manchanda, V; Gheata, M; Chai, J S; Carminati, F; Park, T S; Brun, R

    2011-01-01

    The ASCII ENDF format for nuclear data has been used for four decades. It is practical for human inspection and portability, but; it is not very effective for manipulating and displaying the data or for using them in Monte-Carlo applications. In this paper we present a prototype of a nuclear data manipulation package (TNudy) based on the ROOT system (http://root.cern.ch). The ROOT object-oriented C++ framework is the de-facto standard in high energy and nuclear physics since ten years. Starting from the ENDF format, the data. is stored in machine-portable binary format. Root files also offer a powerful direct access capability to their different sections and compressibility upon writing, minimising the disk occupancy. ROOT offers a complete library of visualisation and mathematical routines and the Virtual Monte-Carlo system, which allows running different transport Monte-Carlo (Geant 4, Geant 3) with common scoring and geometry modellers, which comes as part of ROOT. ROOT contains isotope decay data and the ...

  16. Integration of root phenes revealed by intensive phenotyping of root system architecture, anatomy, and physiology in cereals

    Science.gov (United States)

    York, Larry

    2015-04-01

    Food insecurity is among the greatest challenges humanity will face in the 21st century. Agricultural production in much of the world is constrained by the natural infertility of soil which restrains crops from reaching their yield potential. In developed nations, fertilizer inputs pollute air and water and contribute to climate change and environmental degradation. In poor nations low soil fertility is a primary constraint to food security and economic development. Water is almost always limiting crop growth in any system. Increasing the acquisition efficiency of soil resources is one method by which crop yields could be increased without the use of more fertilizers or irrigation. Cereals are the most widely grown crops, both in terms of land area and in yield, so optimizing uptake efficiency of cereals is an important goal. Roots are the primary interface between plant and soil and are responsible for the uptake of soil resources. The deployment of roots in space and time comprises root system architecture (RSA). Cereal RSA is a complex phenotype that aggregates many elemental phenes (elemental units of phenotype). Integration of root phenes will be determined by interactions through their effects on soil foraging and plant metabolism. Many architectural, metabolic, and physiological root phenes have been identified in maize, including: nodal root number, nodal root growth angle, lateral root density, lateral root length, aerenchyma, cortical cell size and number, and nitrate uptake kinetics. The utility of these phenes needs confirmation in maize and in other cereals. The maize root system is composed of an embryonic root system and nodal roots that emerge in successive whorls as the plant develops, and is similar to other cereals. Current phenotyping platforms often ignore the inner whorls and instead focus on the most visible outer whorls after excavating a maize root crown from soil. Here, an intensive phenotyping platform evaluating phenes of all nodal root

  17. Iron plaque formation on roots of different rice cultivars and the relation with lead uptake.

    Science.gov (United States)

    Liu, Jianguo; Leng, Xuemei; Wang, Mingxin; Zhu, Zhongquan; Dai, Qinghua

    2011-07-01

    The relationships between lead (Pb) uptake and iron/manganese plaque formation on rice roots were investigated with three cultivars. The results showed that the rice cultivars with indica consanguinity were more sensitive to soil Pb stress than the cultivar with japonica consanguinity. Pb concentrations and distribution ratios in root tissues were in the order: Shanyou 63 > Yangdao 6 > Wuyunjing 7, but Pb and Fe concentrations and distribution ratios in the plaques showed a reverse order. Mn concentrations and distribution ratios in the plaques of Wuyunjing 7 were significantly higher (P rice root can provide a barrier to soil Pb stress. The plaque will increase sequestration of Pb on rice root surface and in the rhizosphere, providing a means of external exclusion of soil Pb to some extent. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. NSP-Dependent Simple Nitrile Formation Dominates upon Breakdown of Major Aliphatic Glucosinolates in Roots, Seeds, and Seedlings of Arabidopsis thaliana Columbia-0.

    Science.gov (United States)

    Wittstock, Ute; Meier, Kathrin; Dörr, Friederike; Ravindran, Beena M

    2016-01-01

    One of the best-studied plant defense systems, the glucosinolate-myrosinase system of the Brassicales, is composed of thioglucosides known as glucosinolates and their hydrolytic enzymes, the myrosinases. Tissue disruption brings these components together, and bioactive products are formed as a consequence of myrosinase-catalyzed glucosinolate hydrolysis. Among these products, isothiocyanates have attracted most interest as chemical plant defenses against herbivores and pathogens and health-promoting compounds in the human diet. Previous research has identified specifier proteins whose presence results in the formation of alternative product types, e.g., nitriles, at the expense of isothiocyanates. The biological roles of specifier proteins and alternative breakdown products are poorly understood. Here, we assessed glucosinolate breakdown product profiles obtained upon maceration of roots, seedlings and seeds of Arabidopsis thaliana Columbia-0. We identified simple nitriles as the predominant breakdown products of the major endogenous aliphatic glucosinolates in root, seed, and seedling homogenates. In agreement with this finding, genes encoding nitrile-specifier proteins (NSPs) are expressed in roots, seeds, and seedlings. Analysis of glucosinolate breakdown in mutants with T-DNA insertions in any of the five NSP genes demonstrated, that simple nitrile formation upon tissue disruption depended almost entirely on NSP2 in seeds and mainly on NSP1 in seedlings. In roots, about 70-80% of the nitrile-forming activity was due to NSP1 and NSP3 . Thus, glucosinolate breakdown product profiles are organ-specifically regulated in A. thaliana Col-0, and high proportions of simple nitriles are formed in some parts of the plant. This should be considered in future studies on biological roles of the glucosinolate-myrosinase system.

  19. NSP-dependent simple nitrile formation dominates upon breakdown of major aliphatic glucosinolates in roots, seeds, and seedlings of Arabidopsis thaliana Columbia-0

    Directory of Open Access Journals (Sweden)

    Ute Wittstock

    2016-12-01

    Full Text Available One of the best-studied plant defense systems, the glucosinolate-myrosinase system of the Brassicales, is composed of thioglucosides known as glucosinolates and their hydrolytic enzymes, the myrosinases. Tissue disruption brings these components together, and bioactive products are formed as a consequence of myrosinase-catalyzed glucosinolate hydrolysis. Among these products, isothiocyanates have attracted most interest as chemical plant defenses against herbivores and pathogens and health-promoting compounds in the human diet. Previous research has identified specifier proteins whose presence results in the formation of alternative product types, e.g. nitriles, at the expense of isothiocyanates. The biological roles of specifier proteins and alternative breakdown products are poorly understood. Here, we assessed glucosinolate breakdown product profiles obtained upon maceration of roots, seedlings and seeds of Arabidopsis thaliana Columbia-0. We identified simple nitriles as the predominant breakdown products of the major endogenous aliphatic glucosinolates in root, seed, and seedling homogenates. In agreement with this finding, genes encoding nitrile-specifier proteins (NSPs are expressed in roots, seeds, and seedlings. Analysis of glucosinolate breakdown in mutants with T-DNA insertions in any of the five NSP genes demonstrated, that simple nitrile formation upon tissue disruption depended almost entirely on NSP2 in seeds and mainly on NSP1 in seedlings. In roots, about 70-80 % of the nitrile-forming activity was due to NSP1 and NSP3. Thus, glucosinolate breakdown product profiles are organ-specifically regulated in A. thaliana Col 0, and high proportions of simple nitriles are formed in some parts of the plant. This should be considered in future studies on biological roles of the glucosinolate-myrosinase system.

  20. iTRAQ-Based Proteomic Analysis Reveals Potential Regulation Networks of IBA-Induced Adventitious Root Formation in Apple

    Directory of Open Access Journals (Sweden)

    Chao Lei

    2018-02-01

    Full Text Available Adventitious root (AR formation, which is controlled by endogenous and environmental factors, is indispensable for vegetative asexual propagation. However, comprehensive proteomic data on AR formation are still lacking. The aim of this work was to study indole-3-butyric acid (IBA-induced AR formation in the dwarf apple rootstock ‘T337’. In this study, the effect of IBA on AR formation was analysed. Subsequent to treatment with IBA, both the rooting rate and root length of ‘T337’ increased significantly. An assessment of hormone levels in basal stem cuttings suggested that auxin, abscisic acid, and brassinolide were higher in basal stem cuttings that received the exogenous IBA application; while zeatin riboside, gibberellins, and jasmonic acid were lower than non-treated basal stem cuttings. To explore the underlying molecular mechanism, an isobaric tags for relative and absolute quantification (iTRAQ-based proteomic technique was employed to identify the expression profiles of proteins at a key period of adventitious root induction (three days after IBA treatment. In total, 3355 differentially expressed proteins (DEPs were identified. Many DEPs were closely related to carbohydrate metabolism and energy production, protein homeostasis, reactive oxygen and nitric oxide signaling, and cell wall remodeling biological processes; as well as the phytohormone signaling, which was the most critical process in response to IBA treatment. Further, RT-qPCR analysis was used to evaluate the expression level of nine genes that are involved in phytohormone signaling and their transcriptional levels were mostly in accordance with the protein patterns. Finally, a putative work model was proposed. Our study establishes a foundation for further research and sheds light on IBA-mediated AR formation in apple as well as other fruit rootstock cuttings.

  1. Evaluation of root-end microcrack formation following retropreparation using different ultrasonic instruments

    International Nuclear Information System (INIS)

    AlKahtani, Ahmed

    2009-01-01

    This study evaluated differences among various ultrasonic instruments in the development of root-end cracks following retropreparation of endodontically treated teeth. Three ultrasonic tips were compared: stainless steel, zirconium nitride and diamond. Fifty-seven single rooted extracted teeth were cleaned, shaped and obturated. Their crowns were removed. A 3 mm resection of the root-tip was completed using a straight fissure bur. The teeth were examined under a light microscope. The teeth that developed cracks after resection were discarded. The teeth were divided into three groups of 19 teeth each and a retropreparation was completed with one of the ultrasonic tips for each group. Teeth were again examined under a light microscope. The photomicrographs of the teeth before and after were compared. Examination of the specimens revealed that in the stainless steel group, 26% (5/19) of teeth developed cracks, in the zirconium nitride group, 10.5% (2/19) of teeth developed cracks and in the diamond group, 10.5% (2/19) of teeth developed cracks. The differences in crack formation among the three groups were not statistically significant. The results of the study suggested that more cracks may be evident microscopically in root-ends prepared with stainless steel ultrasonic instruments although this was not statistically significant. (author)

  2. Histobacteriologic Conditions of the Apical Root Canal System and Periapical Tissues in Teeth Associated with Sinus Tracts.

    Science.gov (United States)

    Ricucci, Domenico; Loghin, Simona; Gonçalves, Lucio S; Rôças, Isabela N; Siqueira, José F

    2018-03-01

    This histobacteriologic study described the pattern of intraradicular and extraradicular infections in teeth with sinus tracts and chronic apical abscesses. The material comprised biopsy specimens from 24 (8 untreated and 16 treated) roots of teeth associated with apical periodontitis and a sinus tract. Specimens were obtained by periradicular surgery or extraction and were processed for histobacteriologic and histopathologic methods. Bacteria were found in the apical root canal system of all specimens, in the main root canal (22 teeth) and within ramifications (17 teeth). Four cases showed no extraradicular infection. Extraradicular bacteria occurred as a biofilm attached to the outer root surface in 17 teeth (5 untreated and 12 treated teeth), as actinomycotic colonies in 2 lesions, and as planktonic cells in 2 lesions. Extraradicular calculus formation (mineralized biofilm) was evident in 10 teeth. Teeth with chronic apical abscesses and sinus tracts showed a very complex infectious pattern in the apical root canal system and periapical lesion, with a predominance of biofilms. Copyright © 2017 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  3. Cytokinin-induced promotion of root meristem size in the fern Azolla supports a shoot-like origin of euphyllophyte roots.

    Science.gov (United States)

    de Vries, Jan; Fischer, Angela Melanie; Roettger, Mayo; Rommel, Sophie; Schluepmann, Henriette; Bräutigam, Andrea; Carlsbecker, Annelie; Gould, Sven Bernhard

    2016-01-01

    The phytohormones cytokinin and auxin orchestrate the root meristem development in angiosperms by determining embryonic bipolarity. Ferns, having the most basal euphyllophyte root, form neither bipolar embryos nor permanent embryonic primary roots but rather an adventitious root system. This raises the questions of how auxin and cytokinin govern fern root system architecture and whether this can tell us something about the origin of that root. Using Azolla filiculoides, we characterized the influence of IAA and zeatin on adventitious fern root meristems and vasculature by Nomarski microscopy. Simultaneously, RNAseq analyses, yielding 36,091 contigs, were used to uncover how the phytohormones affect root tip gene expression. We show that auxin restricts Azolla root meristem development, while cytokinin promotes it; it is the opposite effect of what is observed in Arabidopsis. Global gene expression profiling uncovered 145 genes significantly regulated by cytokinin or auxin, including cell wall modulators, cell division regulators and lateral root formation coordinators. Our data illuminate both evolution and development of fern roots. Promotion of meristem size through cytokinin supports the idea that root meristems of euphyllophytes evolved from shoot meristems. The foundation of these roots was laid in a postembryonically branching shoot system. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  4. Roots Air Management System with Integrated Expander

    Energy Technology Data Exchange (ETDEWEB)

    Stretch, Dale [Eaton Corporation, Menomonee Falls, WI (United States); Wright, Brad [Eaton Corporation, Menomonee Falls, WI (United States); Fortini, Matt [Eaton Corporation, Menomonee Falls, WI (United States); Fink, Neal [Ballard Power Systems, Burnaby, BC (Canada); Ramadan, Bassem [Kettering Univ., Flint, MI (United States); Eybergen, William [Eaton Corporation, Menomonee Falls, WI (United States)

    2016-07-06

    PEM fuel cells remain an emerging technology in the vehicle market with several cost and reliability challenges that must be overcome in order to increase market penetration and acceptance. The DOE has identified the lack of a cost effective, reliable, and efficient air supply system that meets the operational requirements of a pressurized PEM 80kW fuel cell as one of the major technological barriers that must be overcome. This project leveraged Roots positive displacement development advancements and demonstrated an efficient and low cost fuel cell air management system. Eaton built upon its P-Series Roots positive displacement design and shifted the peak efficiency making it ideal for use on an 80kW PEM stack. Advantages to this solution include: • Lower speed of the Roots device eliminates complex air bearings present on other systems. • Broad efficiency map of Roots based systems provides an overall higher drive cycle fuel economy. • Core Roots technology has been developed and validated for other transportation applications. Eaton modified their novel R340 Twin Vortices Series (TVS) Roots-type supercharger for this application. The TVS delivers more power and better fuel economy in a smaller package as compared to other supercharger technologies. By properly matching the helix angle with the rotor’s physical aspect ratio, the supercharger’s peak efficiency can be moved to the operating range where it is most beneficial for the application. The compressor was designed to meet the 90 g/s flow at a pressure ratio of 2.5, similar in design to the P-Series 340. A net shape plastic expander housing with integrated motor and compressor was developed to significantly reduce the cost of the system. This integrated design reduced part count by incorporating an overhung expander and motor rotors into the design such that only four bearings and two shafts were utilized.

  5. A specific role of iron in promoting meristematic cell division during adventitious root formation.

    Science.gov (United States)

    Hilo, Alexander; Shahinnia, Fahimeh; Druege, Uwe; Franken, Philipp; Melzer, Michael; Rutten, Twan; von Wirén, Nicolaus; Hajirezaei, Mohammad-Reza

    2017-07-10

    Adventitious root (AR) formation is characterized by a sequence of physiological and morphological processes and determined by external factors, including mineral nutrition, the impacts of which remain largely elusive. Morphological and anatomical evaluation of the effects of mineral elements on AR formation in leafy cuttings of Petunia hybrida revealed a striking stimulation by iron (Fe) and a promotive action of ammonium (NH4+). The optimal application period for these nutrients corresponded to early division of meristematic cells in the rooting zone and coincided with increased transcript levels of mitotic cyclins. Fe-localization studies revealed an enhanced allocation of Fe to the nuclei of meristematic cells in AR initials. NH4+ supply promoted AR formation to a lesser extent, most likely by favoring the availability of Fe. We conclude that Fe acts locally by promoting cell division in the meristematic cells of AR primordia. These results highlight a specific biological function of Fe in AR development and point to an unexploited importance of Fe for the vegetative propagation of plants from cuttings. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  6. Polyamines and meristematic activity in Zea mays roots

    International Nuclear Information System (INIS)

    Schwartz, M.; Arzee, T.; Cohen, Y.; Altman, A.

    1989-01-01

    Polyamine content and biosynthesis were determined in conjunction with meristematic activity and growth of Zea mays roots. Three types of developmental events were investigated: growth of intact primary roots, formation of lateral root primordia following main root decapitation, and activity of the quiescent center following root cap excision. A low ratio of putrescine/spermidine cotents was found to be salient feature of regions with high meristematic activity, in all 3 experimental systems. Arginine decarboxylase (ADC) and ornithine decarboxylase (ODC) activities increased concomitantly with lateral root primordia development and activation of the quiescent center. An increase in the incorporation of arginine and ornithine into spermidine was found in meristematic zones. L-canavanine inhibited primary root elongation and formation of lateral primordia as well as ADC and ODC activity. Similar inhibitory effects were found with MGBG and CHA, both inhibitors of polyamine biosynthesis. A parallel study of ODC localization and DNA synthesis (using α- 14 C-DFMO and 3 H-thymidine microautoradiography, respectively) revealed than root zones with high meristematic activity are characterized by high ODC activity

  7. Elliptic hypergeometric functions associated with root systems

    OpenAIRE

    Rosengren, Hjalmar; Warnaar, S. Ole

    2017-01-01

    We give a survey of elliptic hypergeometric functions associated with root systems, comprised of three main parts. The first two form in essence an annotated table of the main evaluation and transformation formulas for elliptic hypergeometric integeral and series on root systems. The third and final part gives an introduction to Rains' elliptic Macdonald-Koornwinder theory (in part also developed by Coskun and Gustafson).

  8. Tree root systems and nutrient mobilization

    DEFF Research Database (Denmark)

    Boyle, Jim; Rob, Harrison; Raulund-Rasmussen, Karsten

    sometimes stored at depth. Other recent studies on potential release of nutrients due to chemical weathering indicate the importance of root access to deep soil layers. Release profi les clearly indicate depletion in the top layers and a much higher potential in B and C horizons. Review of evaluations......Roots mobilize nutrients via deep penetration and rhizosphere processes inducing weathering of primary minerals. These contribute to C transfer to soils and to tree nutrition. Assessments of these characteristics and processes of root systems are important for understanding long-term supplies...... of nutrient elements essential for forest growth and resilience. Research and techniques have signifi cantly advanced since Olof Tamm’s 1934 base mineral index for Swedish forest soils, and basic nutrient budget estimates for whole-tree harvesting systems of the 1970s. Recent research in areas that include...

  9. Root carbon input in organic and inorganic fertilizer-based systems

    DEFF Research Database (Denmark)

    Chirinda, Ngoni; Olesen, Jørgen E; Porter, John

    2012-01-01

    C input to remain scant. This study aimed at determining macro-root C input and topsoil root related respiration in response to nutrient management and soil fertility building measures. Methods We sampled roots and shoots of cereals and catch crops in inorganic and organic fertilizer-based arable...... season of winter wheat by subtracting soil respiration from soil with and without exclusion of roots. Results Catch crop roots accounted for more than 40 % of total plant C. For spring barley in 2008 and spring wheat in 2010, root C was higher in the organic than in the inorganic fertilizer-based systems...... was higher (31–131 %) in inorganic than in organic fertilizer-based systems. Conclusions Our findings show that macro-roots of both cereal crops and catch crops play a relatively larger role in organically managed systems than in mineral fertilizer based systems; and that the use of fixed biomass S/R ratios...

  10. DigR: a generic model and its open source simulation software to mimic three-dimensional root-system architecture diversity.

    Science.gov (United States)

    Barczi, Jean-François; Rey, Hervé; Griffon, Sébastien; Jourdan, Christophe

    2018-04-18

    Many studies exist in the literature dealing with mathematical representations of root systems, categorized, for example, as pure structure description, partial derivative equations or functional-structural plant models. However, in these studies, root architecture modelling has seldom been carried out at the organ level with the inclusion of environmental influences that can be integrated into a whole plant characterization. We have conducted a multidisciplinary study on root systems including field observations, architectural analysis, and formal and mathematical modelling. This integrative and coherent approach leads to a generic model (DigR) and its software simulator. Architecture analysis applied to root systems helps at root type classification and architectural unit design for each species. Roots belonging to a particular type share dynamic and morphological characteristics which consist of topological and geometric features. The DigR simulator is integrated into the Xplo environment, with a user interface to input parameter values and make output ready for dynamic 3-D visualization, statistical analysis and saving to standard formats. DigR is simulated in a quasi-parallel computing algorithm and may be used either as a standalone tool or integrated into other simulation platforms. The software is open-source and free to download at http://amapstudio.cirad.fr/soft/xplo/download. DigR is based on three key points: (1) a root-system architectural analysis, (2) root type classification and modelling and (3) a restricted set of 23 root type parameters with flexible values indexed in terms of root position. Genericity and botanical accuracy of the model is demonstrated for growth, branching, mortality and reiteration processes, and for different root architectures. Plugin examples demonstrate the model's versatility at simulating plastic responses to environmental constraints. Outputs of the model include diverse root system structures such as tap-root

  11. Property ($T$) for groups graded by root systems

    CERN Document Server

    Ershov, Mikhail; Kassabov, Martin

    2017-01-01

    The authors introduce and study the class of groups graded by root systems. They prove that if \\Phi is an irreducible classical root system of rank \\geq 2 and G is a group graded by \\Phi, then under certain natural conditions on the grading, the union of the root subgroups is a Kazhdan subset of G. As the main application of this theorem the authors prove that for any reduced irreducible classical root system \\Phi of rank \\geq 2 and a finitely generated commutative ring R with 1, the Steinberg group {\\mathrm St}_{\\Phi}(R) and the elementary Chevalley group \\mathbb E_{\\Phi}(R) have property (T). They also show that there exists a group with property (T) which maps onto all finite simple groups of Lie type and rank \\geq 2, thereby providing a "unified" proof of expansion in these groups.

  12. Distinct modes of adventitious rooting in Arabidopsis thaliana.

    Science.gov (United States)

    Correa, L da Rocha; Troleis, J; Mastroberti, A A; Mariath, J E A; Fett-Neto, A G

    2012-01-01

    The literature describes different rooting protocols for Arabidopsis thaliana as models to study adventitious rooting, and results are generally perceived as comparable. However, there is a lack of investigations focusing on the distinct features, advantages and limitations of each method in the study of adventitious rooting with both wild-type (WT) ecotypes and their respective mutants. This investigation was undertaken to evaluate the adventitious rooting process in three different experimental systems, all using A. thaliana, analysing the same rooting parameters after transient exposure to auxin (indole-3-acetic acid) and control conditions: excised leaves, de-rooted plants and etiolated seedlings. The founding tissues and sites of origin of roots differed depending on the system used, whereas all rooting patterns were of the direct type (i.e., without callus formation). None of the systems had an absolute requirement for exogenous auxin, although rooting was enhanced by this phytohormone, with the exception of de-rooted plants, which had adventitious rooting strongly inhibited by exogenous auxin. Root elongation was much favoured in isolated leaves. Auxin-overproducing mutants could not be used in the detached leaf system due to precocious senescence; in the de-rooted plant system, these mutants had a WT-like rooting response, whereas the expression of the 'rooty' phenotype was only evident in the etiolated seedling system. Adventitious rooting of etiolated WT seedlings in the presence of exogenous auxin was inhibited by exogenous flavonoids, which act as auxin transport inhibitors; surprisingly, the flavonoid-deficient mutant chs had a lower rooting response compared to WT. Although Arabidopsis is an excellent model system to study adventitious rooting, physiological and developmental responses differed significantly, underlining the importance of avoiding data generalisation on rooting responses derived from different experimental systems with this species.

  13. Quantifying the contribution of the root system of alpine vegetation in the soil aggregate stability of moraine

    Directory of Open Access Journals (Sweden)

    Csilla Hudek

    2017-03-01

    Full Text Available One fifth of the world's population is living in mountains or in their surrounding areas. This anthropogenic pressure continues to grow with the increasing number of settlements, especially in areas connected to touristic activities, such as the Italian Alps. The process of soil formation on high mountains is particularly slow and these soils are particularly vulnerable to soil degradation. In alpine regions, extreme meteorological events are increasingly frequent due to climate change, speeding up the process of soil degradation and increasing the number of severe erosion processes, shallow landslides and debris flows. Vegetation cover plays a crucial role in the stabilization of mountain soils thereby reducing the risk of natural hazards effecting downslope areas. Soil aggregate stability is one of the main soil properties that can be linked to soil loss processes. Soils developed on moraines in recently deglaciated areas typically have low levels of soil aggregation, and a limited or discontinuous vegetation cover making them more susceptible to degradation. However, soil structure can be influenced by the root system of the vegetation. Roots are actively involved in the formation of water-stable soil aggregation, increasing the stability of the soil and its nutrient content. In the present study, we aim to quantify the effect of the root system of alpine vegetation on the soil aggregate stability of the forefield of the Lys glacier, in the Aosta Valley (NW-Italy. This proglacial area provides the opportunity to study how the root system of ten pioneer alpine species from different successional stages can contribute to soil development and soil stabilization. To quantify the aggregate stability of root permeated soils, a modified wet sieving method was employed. The root length per soil volume of the different species was also determined and later correlated with the aggregate stability results. The results showed that soil aggregate

  14. Transcriptomic and anatomical complexity of primary, seminal, and crown roots highlight root type-specific functional diversity in maize (Zea mays L.).

    Science.gov (United States)

    Tai, Huanhuan; Lu, Xin; Opitz, Nina; Marcon, Caroline; Paschold, Anja; Lithio, Andrew; Nettleton, Dan; Hochholdinger, Frank

    2016-02-01

    Maize develops a complex root system composed of embryonic and post-embryonic roots. Spatio-temporal differences in the formation of these root types imply specific functions during maize development. A comparative transcriptomic study of embryonic primary and seminal, and post-embryonic crown roots of the maize inbred line B73 by RNA sequencing along with anatomical studies were conducted early in development. Seminal roots displayed unique anatomical features, whereas the organization of primary and crown roots was similar. For instance, seminal roots displayed fewer cortical cell files and their stele contained more meta-xylem vessels. Global expression profiling revealed diverse patterns of gene activity across all root types and highlighted the unique transcriptome of seminal roots. While functions in cell remodeling and cell wall formation were prominent in primary and crown roots, stress-related genes and transcriptional regulators were over-represented in seminal roots, suggesting functional specialization of the different root types. Dynamic expression of lignin biosynthesis genes and histochemical staining suggested diversification of cell wall lignification among the three root types. Our findings highlight a cost-efficient anatomical structure and a unique expression profile of seminal roots of the maize inbred line B73 different from primary and crown roots. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  15. Root cause of failure analysis and the system engineer

    International Nuclear Information System (INIS)

    Coppock, M.S.; Hartwig, A.W.

    1990-01-01

    In an industry where ever-increasing emphasis is being placed on root cause of failure determination, it is imperative that a successful nuclear utility have an effective means of identifying failures and performing the necessary analyses. The current Institute of Nuclear Power Operations (INPO) good practice, OE-907, root-cause analysis, gives references to methodology that will help determine breakdowns in procedures, programs, or design but gives very little guidance on how or when to perform component root cause of failure analyses. The system engineers of nuclear utilities are considered the focal point for their respective systems and are required by most programs to investigate component failures. The problem that the system engineer faces in determining a component root cause of failures lies in acquisition of the necessary data to identify the need to perform the analysis and in having the techniques and equipment available to perform it. The system engineers at the Palo Verde nuclear generating station routinely perform detailed component root cause of failure analyses. The Palo Verde program provides the system engineers with the information necessary to identify when a component root cause of failure is required. Palo Verde also has the necessary equipment on-site to perform the analyses

  16. Arbuscular Mycorrhizal Fungus Enhances Lateral Root Formation in Poncirus trifoliata (L.) as Revealed by RNA-Seq Analysis.

    Science.gov (United States)

    Chen, Weili; Li, Juan; Zhu, Honghui; Xu, Pengyang; Chen, Jiezhong; Yao, Qing

    2017-01-01

    Arbuscular mycorrhizal fungi (AMF) establish symbiosis with most terrestrial plants, and greatly regulate lateral root (LR) formation. Phosphorus (P), sugar, and plant hormones are proposed being involved in this regulation, however, no global evidence regarding these factors is available so far, especially in woody plants. In this study, we inoculated trifoliate orange seedlings ( Poncirus trifoliata L. Raf) with an AMF isolate, Rhizophagus irregularis BGC JX04B. After 4 months of growth, LR formation was characterized, and sugar contents in roots were determined. RNA-Seq analysis was performed to obtain the transcriptomes of LR root tips from non-mycorrhizal and mycorrhizal seedlings. Quantitative real time PCR (qRT-PCR) of selected genes was also conducted for validation. The results showed that AMF significantly increased LR number, as well as plant biomass and shoot P concentration. The contents of glucose and fructose in primary root, and sucrose content in LR were also increased. A total of 909 differentially expressed genes (DEGs) were identified in response to AMF inoculation, and qRT-PCR validated the transcriptomic data. The numbers of DEGs related to P, sugar, and plant hormones were 31, 32, and 25, respectively. For P metabolism, the most up-regulated DEGs mainly encoded phosphate transporter, and the most down-regulated DEGs encoded acid phosphatase. For sugar metabolism, the most up-regulated DEGs encoded polygalacturonase and chitinase. For plant hormones, the most up-regulated DEGs were related to auxin signaling, and the most down-regulated DEGs were related to ethylene signaling. PLS-SEM analysis indicates that P metabolism was the most important pathway by which AMF regulates LR formation in this study. These data reveal the changes of genome-wide gene expression in responses to AMF inoculation in trifoliate orange and provide a solid basis for the future identification and characterization of key genes involved in LR formation induced by AMF.

  17. Differential effects of fine root morphology on water dynamics in the root-soil interface

    Science.gov (United States)

    DeCarlo, K. F.; Bilheux, H.; Warren, J.

    2017-12-01

    Soil water uptake form plants, particularly in the rhizosphere, is a poorly understood question in the plant and soil sciences. Our study analyzed the role of belowground plant morphology on soil structural and water dynamics of 5 different plant species (juniper, grape, maize, poplar, maple), grown in sandy soils. Of these, the poplar system was extended to capture drying dynamics. Neutron radiography was used to characterize in-situ dynamics of the soil-water-plant system. A joint map of root morphology and soil moisture was created for the plant systems using digital image processing, where soil pixels were connected to associated root structures via minimum distance transforms. Results show interspecies emergent behavior - a sigmoidal relationship was observed between root diameter and bulk/rhizosphere soil water content difference. Extending this as a proxy for extent of rhizosphere development with root age, we observed a logistic growth pattern for the rhizosphere: minimal development in the early stages is superceded by rapid onset of rhizosphere formation, which then stabilizes/decays with the likely root suberization. Dynamics analysis of water content differences between the root/rhizosphere, and rhizosphere/bulk soil interface highlight the persistently higher water content in the root at all water content and root size ranges. At the rhizosphere/bulk soil interface, we observe a shift in soil water dynamics by root size: in super fine roots, we observe that water content is primarily lower in the rhizosphere under wetter conditions, which then gradually increases to a relatively higher water content under drier conditions. This shifts to a persistently higher rhizosphere water content relative to bulk soil in both wet/dry conditions with increased root size, suggesting that, by size, the finest root structures may contribute the most to total soil water uptake in plants.

  18. The Usage of ROOT in the LHCb Online System

    CERN Document Server

    Frank, M

    2013-01-01

    The online system in the LHCb experiment uses ROOT in various areas. ROOT is used in all processes participating in event data processing. The degree of usage varies quite significantly - from the very rudimentary usage of the ROOT plugin mechanism to fully equipped applications filling histograms with data describing online the detector status for monitoring purposes and the display of these data. An increasing number of processes uses the python binding offered by PyROOT to configure these processes. PyROOT also allows to efficiently and quickly manipulate certain corners of the experiment controls system where necessary. Beside these areas, where the LHCb online team advocated the usage of ROOT, in other areas other technologies were chosen. These deliberate choices like e.g. in the area of persistency of event data from particle collisions will be discussed.

  19. A Pipeline for 3D Digital Optical Phenotyping Plant Root System Architecture

    Science.gov (United States)

    Davis, T. W.; Shaw, N. M.; Schneider, D. J.; Shaff, J. E.; Larson, B. G.; Craft, E. J.; Liu, Z.; Kochian, L. V.; Piñeros, M. A.

    2017-12-01

    This work presents a new pipeline for digital optical phenotyping the root system architecture of agricultural crops. The pipeline begins with a 3D root-system imaging apparatus for hydroponically grown crop lines of interest. The apparatus acts as a self-containing dark room, which includes an imaging tank, motorized rotating bearing and digital camera. The pipeline continues with the Plant Root Imaging and Data Acquisition (PRIDA) software, which is responsible for image capturing and storage. Once root images have been captured, image post-processing is performed using the Plant Root Imaging Analysis (PRIA) command-line tool, which extracts root pixels from color images. Following the pre-processing binarization of digital root images, 3D trait characterization is performed using the next-generation RootReader3D software. RootReader3D measures global root system architecture traits, such as total root system volume and length, total number of roots, and maximum rooting depth and width. While designed to work together, the four stages of the phenotyping pipeline are modular and stand-alone, which provides flexibility and adaptability for various research endeavors.

  20. Genetic and Phenotypic Analysis of Lateral Root Development in Arabidopsis thaliana.

    Science.gov (United States)

    Napsucialy-Mendivil, Selene; Dubrovsky, Joseph G

    2018-01-01

    Root system formation to a great extent depends on lateral root (LR) formation. In Arabidopsis thaliana, LRs are initiated within a parent root in pericycle that is an external tissue of the stele. LR initiation takes place in a strictly acropetal pattern, whereas posterior lateral root primordium (LRP) formation is asynchronous. In this chapter, we focus on methods of genetic and phenotypic analysis of LR initiation, LRP morphogenesis, and LR emergence in Arabidopsis. We provide details on how to make cleared root preparations and how to identify the LRP stages. We also pay attention to the categorization of the LRP developmental stages and their variations and to the normalization of the number of LRs and LRPs formed, per length of the primary root, and per number of cells produced within a root. Hormonal misbalances and mutations affect LRP morphogenesis significantly, and the evaluation of LRP abnormalities is addressed as well. Finally, we deal with various molecular markers that can be used for genetic and phenotypic analyses of LR development.

  1. Incidence of apical crack formation and propagation during removal of root canal filling materials with different engine driven nickel-titanium instruments

    Directory of Open Access Journals (Sweden)

    Taha Özyürek

    2017-11-01

    Full Text Available Objectives To determine the incidence of crack formation and propagation in apical root dentin after retreatment procedures performed using ProTaper Universal Retreatment (PTR, Mtwo-R, ProTaper Next (PTN, and Twisted File Adaptive (TFA systems. Materials and Methods The study consisted of 120 extracted mandibular premolars. One millimeter from the apex of each tooth was ground perpendicular to the long axis of the tooth, and the apical surface was polished. Twenty teeth served as the negative control group. One hundred teeth were prepared, obturated, and then divided into 5 retreatment groups. The retreatment procedures were performed using the following files: PTR, Mtwo-R, PTN, TFA, and hand files. After filling material removal, apical enlargement was done using apical size 0.50 mm ProTaper Universal (PTU, Mtwo, PTN, TFA, and hand files. Digital images of the apical root surfaces were recorded before preparation, after preparation, after obturation, after filling removal, and after apical enlargement using a stereomicroscope. The images were then inspected for the presence of new apical cracks and crack propagation. Data were analyzed with χ2 tests using SPSS 21.0 software. Results New cracks and crack propagation occurred in all the experimental groups during the retreatment process. Nickel-titanium rotary file systems caused significantly more apical crack formation and propagation than the hand files. The PTU system caused significantly more apical cracks than the other groups after the apical enlargement stage. Conclusions This study showed that retreatment procedures and apical enlargement after the use of retreatment files can cause crack formation and propagation in apical dentin.

  2. Incidence of apical crack formation and propagation during removal of root canal filling materials with different engine driven nickel-titanium instruments.

    Science.gov (United States)

    Özyürek, Taha; Tek, Vildan; Yılmaz, Koray; Uslu, Gülşah

    2017-11-01

    To determine the incidence of crack formation and propagation in apical root dentin after retreatment procedures performed using ProTaper Universal Retreatment (PTR), Mtwo-R, ProTaper Next (PTN), and Twisted File Adaptive (TFA) systems. The study consisted of 120 extracted mandibular premolars. One millimeter from the apex of each tooth was ground perpendicular to the long axis of the tooth, and the apical surface was polished. Twenty teeth served as the negative control group. One hundred teeth were prepared, obturated, and then divided into 5 retreatment groups. The retreatment procedures were performed using the following files: PTR, Mtwo-R, PTN, TFA, and hand files. After filling material removal, apical enlargement was done using apical size 0.50 mm ProTaper Universal (PTU), Mtwo, PTN, TFA, and hand files. Digital images of the apical root surfaces were recorded before preparation, after preparation, after obturation, after filling removal, and after apical enlargement using a stereomicroscope. The images were then inspected for the presence of new apical cracks and crack propagation. Data were analyzed with χ 2 tests using SPSS 21.0 software. New cracks and crack propagation occurred in all the experimental groups during the retreatment process. Nickel-titanium rotary file systems caused significantly more apical crack formation and propagation than the hand files. The PTU system caused significantly more apical cracks than the other groups after the apical enlargement stage. This study showed that retreatment procedures and apical enlargement after the use of retreatment files can cause crack formation and propagation in apical dentin.

  3. Bessel functions for root systems via the trigonometric setting

    DEFF Research Database (Denmark)

    Ørsted, Bent; Said, S.B.

    2005-01-01

    In this paper, we study generalized Bessel functions related to root systems and give explicit formulas in several cases.......In this paper, we study generalized Bessel functions related to root systems and give explicit formulas in several cases....

  4. Root systems and soil microbial biomass under no-tillage system

    Directory of Open Access Journals (Sweden)

    Venzke Filho Solismar de Paiva

    2004-01-01

    Full Text Available Some root parameters such as distribution, length, diameter and dry matter are inherent to plant species. Roots can influence microbial population during vegetative cycle through the rhizodeposits and, after senescence, integrating the soil organic matter pool. Since they represent labile substrates, especially regarding nitrogen, they can determine the rate of nutrient availability to the next crop cultivated under no-tillage (NT. The root systems of two crop species: maize (Zea mays L. cultivar Cargill 909 and soybean [Glycine max (L. Merr.] cultivar Embrapa 59, were compared in the field, and their influence on spatial distribution of the microbial C and N in a clayey-textured Typic Hapludox cultivated for 22 years under NT, at Tibagi, State of Paraná (PR, Brazil, was determined. Digital image processing and nail-plate techniques were used to evaluate 40 plots of a 80 ´ 50 ´ 3 cm soil profile. It was observed that 36% and 30% of the maize and soybeans roots, respectively, are concentrated in the 0 to 10 cm soil layer. The percent distribution of root dry matter was similar for both crops. The maize roots presented a total of 1,324 kg C ha-1 and 58 kg N ha-1, with higher root dry matter density and more roots in decomposition in the upper soil layer, decreasing with depth. The soybean roots (392 kg C ha-1 and 21 kg N ha-1 showed higher number of thinner roots and higher density per length unity compared to the maize. The maize roots enhanced microbial-C down to deeper soil layers than did the soybean roots. The microbial N presented a better correlation with the concentration of thin active roots and with roots in decomposition or in indefinite shape, possibly because of higher concentration of C and N easily assimilated by soil microorganisms.

  5. Novel scanning procedure enabling the vectorization of entire rhizotron-grown root systems

    Directory of Open Access Journals (Sweden)

    Lobet Guillaume

    2013-01-01

    Full Text Available Abstract This paper presents an original spit-and-combine imaging procedure that enables the complete vectorization of complex root systems grown in rhizotrons. The general principle of the method is to (1 separate the root system into a small number of large pieces to reduce root overlap, (2 scan these pieces one by one, (3 analyze separate images with a root tracing software and (4 combine all tracings into a single vectorized root system. This method generates a rich dataset containing morphological, topological and geometrical information of entire root systems grown in rhizotrons. The utility of the method is illustrated with a detailed architectural analysis of a 20-day old maize root system, coupled with a spatial analysis of water uptake patterns.

  6. Novel scanning procedure enabling the vectorization of entire rhizotron-grown root systems.

    Science.gov (United States)

    Lobet, Guillaume; Draye, Xavier

    2013-01-04

    : This paper presents an original spit-and-combine imaging procedure that enables the complete vectorization of complex root systems grown in rhizotrons. The general principle of the method is to (1) separate the root system into a small number of large pieces to reduce root overlap, (2) scan these pieces one by one, (3) analyze separate images with a root tracing software and (4) combine all tracings into a single vectorized root system. This method generates a rich dataset containing morphological, topological and geometrical information of entire root systems grown in rhizotrons. The utility of the method is illustrated with a detailed architectural analysis of a 20-day old maize root system, coupled with a spatial analysis of water uptake patterns.

  7. Root development during soil genesis: effects of root-root interactions, mycorrhizae, and substrate

    Science.gov (United States)

    Salinas, A.; Zaharescu, D. G.

    2015-12-01

    A major driver of soil formation is the colonization and transformation of rock by plants and associated microbiota. In turn, substrate chemical composition can also influence the capacity for plant colonization and development. In order to better define these relationships, a mesocosm study was set up to analyze the effect mycorrhizal fungi, plant density and rock have on root development, and to determine the effect of root morphology on weathering and soil formation. We hypothesized that plant-plant and plant-fungi interactions have a stronger influence on root architecture and rock weathering than the substrate composition alone. Buffalo grass (Bouteloua dactyloides) was grown in a controlled environment in columns filled with either granular granite, schist, rhyolite or basalt. Each substrate was given two different treatments, including grass-microbes and grass-microbes-mycorrhizae and incubated for 120, 240, and 480 days. Columns were then extracted and analyzed for root morphology, fine fraction, and pore water major element content. Preliminary results showed that plants produced more biomass in rhyolite, followed by schist, basalt, and granite, indicating that substrate composition is an important driver of root development. In support of our hypothesis, mycorrhizae was a strong driver of root development by stimulating length growth, biomass production, and branching. However, average root length and branching also appeared to decrease in response to high plant density, though this trend was only present among roots with mycorrhizal fungi. Interestingly, fine fraction production was negatively correlated with average root thickness and volume. There is also slight evidence indicating that fine fraction production is more related to substrate composition than root morphology, though this data needs to be further analyzed. Our hope is that the results of this study can one day be applied to agricultural research in order to promote the production of crops

  8. Rooting of microcuttings: Theory and practice

    NARCIS (Netherlands)

    Klerk, de G.J.M.

    2002-01-01

    Poor adventitious root formation is a major obstacle in micropropagation and in conventional propagation. This paper reviews recent progress in the understanding of adventitious root formation as a developmental process focusing on the role of plant hormones and on the effect of rooting conditions

  9. Cadmium induces hypodermal periderm formation in the roots of the monocotyledonous medicinal plant Merwilla plumbea.

    Science.gov (United States)

    Lux, Alexander; Vaculík, Marek; Martinka, Michal; Lisková, Desana; Kulkarni, Manoj G; Stirk, Wendy A; Van Staden, Johannes

    2011-02-01

    Merwilla plumbea is an important African medicinal plant. As the plants grow in soils contaminated with metals from mining activities, the danger of human intoxication exists. An experiment with plants exposed to cadmium (Cd) was performed to investigate the response of M. plumbea to this heavy metal, its uptake and translocation to plant organs and reaction of root tissues. Plants grown from seeds were cultivated in controlled conditions. Hydroponic cultivation is not suitable for this species as roots do not tolerate aquatic conditions, and additional stress by Cd treatment results in total root growth inhibition and death. After cultivation in perlite the plants exposed to 1 and 5 mg Cd L(-1) in half-strength Hoagland's solution were compared with control plants. Growth parameters were evaluated, Cd content was determined by inductively coupled plasma mass spectroscopy (ICP-MS) and root structure was investigated using various staining procedures, including the fluorescent stain Fluorol yellow 088 to detect suberin deposition in cell walls. The plants exposed to Cd were significantly reduced in growth. Most of the Cd taken up by plants after 4 weeks cultivation was retained in roots, and only a small amount was translocated to bulbs and leaves. In reaction to higher Cd concentrations, roots developed a hypodermal periderm close to the root tip. Cells produced by cork cambium impregnate their cell walls by suberin. It is suggested that the hypodermal periderm is developed in young root parts in reaction to Cd toxicity to protect the root from radial uptake of Cd ions. Secondary meristems are usually not present in monocotyledonous species. Another interpretation explaining formation of protective suberized layers as a result of periclinal divisions of the hypodermis is discussed. This process may represent an as yet unknown defence reaction of roots when exposed to elemental stress.

  10. Root system-based limits to agricultural productivity and efficiency: the farming systems context

    Science.gov (United States)

    Thorup-Kristensen, Kristian; Kirkegaard, John

    2016-01-01

    Background There has been renewed global interest in both genetic and management strategies to improve root system function in order to improve agricultural productivity and minimize environmental damage. Improving root system capture of water and nutrients is an obvious strategy, yet few studies consider the important interactions between the genetic improvements proposed, and crop management at a system scale that will influence likely success. Scope To exemplify these interactions, the contrasting cereal-based farming systems of Denmark and Australia were used, where the improved uptake of water and nitrogen from deeper soil layers has been proposed to improve productivity and environmental outcomes in both systems. The analysis showed that water and nitrogen availability, especially in deeper layers (>1 m), was significantly affected by the preceding crops and management, and likely to interact strongly with deeper rooting as a specific trait of interest. Conclusions In the semi-arid Australian environment, grain yield impacts from storage and uptake of water from depth (>1 m) could be influenced to a stronger degree by preceding crop choice (0·42 t ha–1), pre-crop fallow management (0·65 t ha–1) and sowing date (0·63 t ha–1) than by current genetic differences in rooting depth (0·36 t ha–1). Matching of deep-rooted genotypes to management provided the greatest improvements related to deep water capture. In the wetter environment of Denmark, reduced leaching of N was the focus. Here the amount of N moving below the root zone was also influenced by previous crop choice or cover crop management (effects up to 85 kg N ha–1) and wheat crop sowing date (up to 45 kg ha–1), effects which over-ride the effects of differences in rooting depth among genotypes. These examples highlight the need to understand the farming system context and important G × E × M interactions in studies on proposed genetic improvements to root systems for improved

  11. Strigolactones suppress adventitious rooting in Arabidopsis and pea.

    Science.gov (United States)

    Rasmussen, Amanda; Mason, Michael Glenn; De Cuyper, Carolien; Brewer, Philip B; Herold, Silvia; Agusti, Javier; Geelen, Danny; Greb, Thomas; Goormachtig, Sofie; Beeckman, Tom; Beveridge, Christine Anne

    2012-04-01

    Adventitious root formation is essential for the propagation of many commercially important plant species and involves the formation of roots from nonroot tissues such as stems or leaves. Here, we demonstrate that the plant hormone strigolactone suppresses adventitious root formation in Arabidopsis (Arabidopsis thaliana) and pea (Pisum sativum). Strigolactone-deficient and response mutants of both species have enhanced adventitious rooting. CYCLIN B1 expression, an early marker for the initiation of adventitious root primordia in Arabidopsis, is enhanced in more axillary growth2 (max2), a strigolactone response mutant, suggesting that strigolactones restrain the number of adventitious roots by inhibiting the very first formative divisions of the founder cells. Strigolactones and cytokinins appear to act independently to suppress adventitious rooting, as cytokinin mutants are strigolactone responsive and strigolactone mutants are cytokinin responsive. In contrast, the interaction between the strigolactone and auxin signaling pathways in regulating adventitious rooting appears to be more complex. Strigolactone can at least partially revert the stimulatory effect of auxin on adventitious rooting, and auxin can further increase the number of adventitious roots in max mutants. We present a model depicting the interaction of strigolactones, cytokinins, and auxin in regulating adventitious root formation.

  12. Primary root protophloem differentiation requires balanced phosphatidylinositol-4,5-biphosphate levels and systemically affects root branching.

    Science.gov (United States)

    Rodriguez-Villalon, Antia; Gujas, Bojan; van Wijk, Ringo; Munnik, Teun; Hardtke, Christian S

    2015-04-15

    Protophloem is a specialized vascular tissue in growing plant organs, such as root meristems. In Arabidopsis mutants with impaired primary root protophloem differentiation, brevis radix (brx) and octopus (ops), meristematic activity and consequently overall root growth are strongly reduced. Second site mutation in the protophloem-specific presumed phosphoinositide 5-phosphatase cotyledon vascular pattern 2 (CVP2), but not in its homolog CVP2-like 1 (CVL1), partially rescues brx defects. Consistent with this finding, CVP2 hyperactivity in a wild-type background recreates a brx phenotype. Paradoxically, however, while cvp2 or cvl1 single mutants display no apparent root defects, the root phenotype of cvp2 cvl1 double mutants is similar to brx or ops, although, as expected, cvp2 cvl1 seedlings contain more phosphatidylinositol-4,5-biphosphate. Thus, tightly balanced phosphatidylinositol-4,5-biphosphate levels appear essential for proper protophloem differentiation. Genetically, OPS acts downstream of phosphatidylinositol-4,5-biphosphate levels, as cvp2 mutation cannot rescue ops defects, whereas increased OPS dose rescues cvp2 cvl1 defects. Finally, all three mutants display higher density and accelerated emergence of lateral roots, which correlates with increased auxin response in the root differentiation zone. This phenotype is also created by application of peptides that suppress protophloem differentiation, clavata3/embryo surrounding region 26 (CLE26) and CLE45. Thus, local changes in the primary root protophloem systemically shape overall root system architecture. © 2015. Published by The Company of Biologists Ltd.

  13. Analysis of integrated multiple 'omics' datasets reveals the mechanisms of initiation and determination in the formation of tuberous roots in Rehmannia glutinosa.

    Science.gov (United States)

    Li, Mingjie; Yang, Yanhui; Li, Xinyu; Gu, Li; Wang, Fengji; Feng, Fajie; Tian, Yunhe; Wang, Fengqing; Wang, Xiaoran; Lin, Wenxiong; Chen, Xinjian; Zhang, Zhongyi

    2015-09-01

    All tuberous roots in Rehmannia glutinosa originate from the expansion of fibrous roots (FRs), but not all FRs can successfully transform into tuberous roots. This study identified differentially expressed genes and proteins associated with the expansion of FRs, by comparing the tuberous root at expansion stages (initiated tuberous root, ITRs) and FRs at the seedling stage (initiated FRs, IFRs). The role of miRNAs in the expansion of FRs was also explored using the sRNA transcriptome and degradome to identify miRNAs and their target genes that were differentially expressed between ITRs and FRs at the mature stage (unexpanded FRs, UFRs, which are unable to expand into ITRs). A total of 6032 genes and 450 proteins were differentially expressed between ITRs and IFRs. Integrated analyses of these data revealed several genes and proteins involved in light signalling, hormone response, and signal transduction that might participate in the induction of tuberous root formation. Several genes related to cell division and cell wall metabolism were involved in initiating the expansion of IFRs. Of 135 miRNAs differentially expressed between ITRs and UFRs, there were 27 miRNAs whose targets were specifically identified in the degradome. Analysis of target genes showed that several miRNAs specifically expressed in UFRs were involved in the degradation of key genes required for the formation of tuberous roots. As far as could be ascertained, this is the first time that the miRNAs that control the transition of FRs to tuberous roots in R. glutinosa have been identified. This comprehensive analysis of 'omics' data sheds new light on the mechanisms involved in the regulation of tuberous roots formation. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  14. Stimulation of vesicular-arbuscular mycorrhizal fungi by mycotrophic and nonmycotrophic plant root systems.

    Science.gov (United States)

    Schreiner, R P; Koide, R T

    1993-08-01

    Transformed root cultures of three nonmycotrophic and one mycotrophic plant species stimulated germination and hyphal growth of the vesicular-arbuscular mycorrhizal fungus Glomus etunicatum (Becker & Gerd.) in a gel medium. However, only roots of the mycotrophic species (carrot) supported continued hyphal exploration after 3 to 4 weeks and promoted appressoria formation by G. etunicatum.

  15. Stimulation of Vesicular-Arbuscular Mycorrhizal Fungi by Mycotrophic and Nonmycotrophic Plant Root Systems

    OpenAIRE

    Schreiner, R. Paul; Koide, Roger T.

    1993-01-01

    Transformed root cultures of three nonmycotrophic and one mycotrophic plant species stimulated germination and hyphal growth of the vesicular-arbuscular mycorrhizal fungus Glomus etunicatum (Becker & Gerd.) in a gel medium. However, only roots of the mycotrophic species (carrot) supported continued hyphal exploration after 3 to 4 weeks and promoted appressoria formation by G. etunicatum.

  16. Composite potato plants with transgenic roots on non-transgenic shoots: a model system for studying gene silencing in roots.

    Science.gov (United States)

    Horn, Patricia; Santala, Johanna; Nielsen, Steen Lykke; Hühns, Maja; Broer, Inge; Valkonen, Jari P T

    2014-12-01

    Composite potato plants offer an extremely fast, effective and reliable system for studies on gene functions in roots using antisense or inverted-repeat but not sense constructs for gene inactivation. Composite plants, with transgenic roots on a non-transgenic shoot, can be obtained by shoot explant transformation with Agrobacterium rhizogenes. The aim of this study was to generate composite potato plants (Solanum tuberosum) to be used as a model system in future studies on root-pathogen interactions and gene silencing in the roots. The proportion of transgenic roots among the roots induced was high (80-100%) in the four potato cultivars tested (Albatros, Desirée, Sabina and Saturna). No wild-type adventitious roots were formed at mock inoculation site. All strains of A. rhizogenes tested induced phenotypically normal roots which, however, showed a reduced response to cytokinin as compared with non-transgenic roots. Nevertheless, both types of roots were infected to a similar high rate with the zoospores of Spongospora subterranea, a soilborne potato pathogen. The transgenic roots of composite potato plants expressed significantly higher amounts of β-glucuronidase (GUS) than the roots of a GUS-transgenic potato line event. Silencing of the uidA transgene (GUS) was tested by inducing roots on the GUS-transgenic cv. Albatros event with strains of A. rhizogenes over-expressing either the uidA sense or antisense transcripts, or inverted-repeat or hairpin uidA RNA. The three last mentioned constructs caused 2.5-4.0 fold reduction in the uidA mRNA expression. In contrast, over-expression of uidA resulted in over 3-fold increase in the uidA mRNA and GUS expression, indicating that sense-mediated silencing (co-suppression) was not functional in roots. The results suggest that composite plants offer a useful experimental system for potato research, which has gained little previous attention.

  17. The distribution of 32P in the rice plant applied to a single root and to the whole root system

    International Nuclear Information System (INIS)

    Sisworo, E.L.; Gandanegara, S.; Sisworo, W.H.; Rasyid, H.; Sumarna, Nana

    1982-01-01

    Two greenhouse experiments to study the distribution of 32 P applied to a single root and to the whole root system have been carried out. Data from experiment 1 showed that 32 P activity in shoots rose with the progress of time; where 32 P was applied to a single root 6 hours after isotope application the 32 P activity in the shoots of plants was higher than if the isotope was applied to the whole root system. Three hours after 32 P application, plants with 50% of roots had a higher 32 P activity than plants with no root cutting. Data from experiment 2 showed that 32 P activity of plants that received 32 P through a single root only was lower than those that received 32 P through the whole root system. This was in contradiction with the data obtained in experiment 1. Experiment 2 also showed that 32 P activity increased with time. Autoradiographs of plants in experiment 1 and 2 showed that 32 P was distributed through the whole plant, although when the isotope was only applied to a single root. (author)

  18. Non-Hermitian multi-particle systems from complex root spaces

    International Nuclear Information System (INIS)

    Fring, Andreas; Smith, Monique

    2012-01-01

    We provide a general construction procedure for antilinearly invariant complex root spaces. The proposed method is generic and may be applied to any Weyl group allowing us to take any element of the group as a starting point for the construction. Worked-out examples for several specific Weyl groups are presented, focusing especially on those cases for which no solutions were found previously. When applied to the defining relations of models based on root systems, this usually leads to non-Hermitian models, which are nonetheless physically viable in a self-consistent sense as they are antilinearly invariant by construction. We discuss new types of Calogero models based on these complex roots. In addition, we propose an alternative construction leading to q-deformed roots. We employ the latter type of roots to formulate a new version of affine Toda field theories based on non-simply laced root systems. These models exhibit on the classical level a strong–weak duality in the coupling constant equivalent to a Lie algebraic duality, which is known for the quantum version of the undeformed case. (paper)

  19. C-SHAPED CONFIGURATION OF THE ROOT CANAL SYSTEM – PROBLEMS AND SOLUTIONS.

    Directory of Open Access Journals (Sweden)

    Janet Kirilova

    2014-06-01

    Full Text Available Introduction: The patients with C-shaped configuration of the root canal system are definitely a problem in the everyday dental practice. The C-shaped configuration of the root canal can be seen in the mandibular and maxillary molars. The treatment of these teeth is very difficult. Purpose: To trace the treatment of clinical cases with C-shaped configuration of the root canal system. Material and methods: There are some different cases that are described with a C-shaped configuration of the root canal system with one, two, three and four separate root canals. Careful exploration of the floor of the pulp chamber, inspection with magnification, use of ultrasonic irrigation and a modified filling technique are of particular use. Results and Discussion: Clinical cases of a C-shaped pulp chamber and root canal system shows that this root canal aberration occurs in a wide variety and variability with a single root canal up to two, three and four separate root canals. The diameter of the root canal themselves also varies from very wide to such with a small diameter. Conclusions: Knowledge of the different anatomical variations will improve the endododntic practice of the general dental practitioners.

  20. A higher sink competitiveness of the rooting zone and invertases are involved in dark stimulation of adventitious root formation in Petunia hybrida cuttings.

    Science.gov (United States)

    Klopotek, Yvonne; Franken, Philipp; Klaering, Hans-Peter; Fischer, Kerstin; Hause, Bettina; Hajirezaei, Mohammad-Reza; Druege, Uwe

    2016-02-01

    The contribution of carbon assimilation and allocation and of invertases to the stimulation of adventitious root formation in response to a dark pre-exposure of petunia cuttings was investigated, considering the rooting zone (stem base) and the shoot apex as competing sinks. Dark exposure had no effect on photosynthesis and dark respiration during the subsequent light period, but promoted dry matter partitioning to the roots. Under darkness, higher activities of cytosolic and vacuolar invertases were maintained in both tissues when compared to cuttings under light. This was partially associated with higher RNA levels of respective genes. However, activity of cell wall invertases and transcript levels of one cell wall invertase isogene increased specifically in the stem base during the first two days after cutting excision under both light and darkness. During five days after excision, RNA accumulation of four invertase genes indicated preferential expression in the stem base compared to the apex. Darkness shifted the balance of expression of one cytosolic and two vacuolar invertase genes towards the stem base. The results indicate that dark exposure before planting enhances the carbon sink competitiveness of the rooting zone and that expression and activity of invertases contribute to the shift in carbon allocation. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  1. Characterizing root system characteristics with Electrical resistivity Tomography: a virtual rhizotron simulation

    Science.gov (United States)

    Rao, Sathyanarayan; Ehosioke, Solomon; Lesparre, Nolwenn; Nguyen, Frédéric; Javaux, Mathieu

    2017-04-01

    Electrical Resistivity Tomography (ERT) is more and more used for monitoring soil water content in a cropped soil. Yet, the impact of roots on the signal is often neglected and a topic of controversy. In several studies related to soil-root system, it has been showed that the measured root mass density statistically correlates with the electrical conductivity (EC) data obtained from ERT. In addition, some studies suggest that some roots are more electrically conductive than soil for most water content. Thus, higher EC of roots suggest that it might have a measurable impact on ERT signals. In this work, virtual rhizotrons are simulated using the software package called R-SWMS that solves water and solute transport in plant root-soil system, including root growth. The distribution of water content obtained from R-SWMS simulation is converted into EC data using pedo-physical models. The electrical properties of roots and rhizosphere are explicitly included in the EC data to form a conductivity map (CM) with a very detailed spatial resolution. Forward ERT simulations is then carried out for CM generated for various root architectures and soil conditions to study the impact of roots on ERT forward (current and voltage patterns) and inverse solutions. It is demonstrated that under typical injection schemes with lateral electrodes, root system is hardly measurable. However, it is showed that adding electrodes and constraints on the ERT inversion based on root architecture help quantifying root system mass and extent.

  2. Statistical modeling of nitrogen-dependent modulation of root system architecture in Arabidopsis thaliana.

    Science.gov (United States)

    Araya, Takao; Kubo, Takuya; von Wirén, Nicolaus; Takahashi, Hideki

    2016-03-01

    Plant root development is strongly affected by nutrient availability. Despite the importance of structure and function of roots in nutrient acquisition, statistical modeling approaches to evaluate dynamic and temporal modulations of root system architecture in response to nutrient availability have remained as widely open and exploratory areas in root biology. In this study, we developed a statistical modeling approach to investigate modulations of root system architecture in response to nitrogen availability. Mathematical models were designed for quantitative assessment of root growth and root branching phenotypes and their dynamic relationships based on hierarchical configuration of primary and lateral roots formulating the fishbone-shaped root system architecture in Arabidopsis thaliana. Time-series datasets reporting dynamic changes in root developmental traits on different nitrate or ammonium concentrations were generated for statistical analyses. Regression analyses unraveled key parameters associated with: (i) inhibition of primary root growth under nitrogen limitation or on ammonium; (ii) rapid progression of lateral root emergence in response to ammonium; and (iii) inhibition of lateral root elongation in the presence of excess nitrate or ammonium. This study provides a statistical framework for interpreting dynamic modulation of root system architecture, supported by meta-analysis of datasets displaying morphological responses of roots to diverse nitrogen supplies. © 2015 Institute of Botany, Chinese Academy of Sciences.

  3. Symmetries of the octonionic root system of E8

    International Nuclear Information System (INIS)

    Koca, M.

    1990-09-01

    Octonionic root system of E 8 is decomposed as the 9 sets of Hurwitz integers, each set satisfying the binary tetrahedral group structure, and the 12 sets of quaternionic units, each set obeying the dicyclic group structure of order 12. This fact is used to prove that the automorphism group of the octonionic root system of E 7 is the finite subgroup of G 2 , of order 12096; an explicit 7 x 7 matrix realization of which is constructed. Possible use of the octonionic representation of the E 6 root system as orbifolds and the relevance of the binary tetrahedral structures with the statistical mechanics models are suggested. (author). 16 refs, 6 figs

  4. Submergence of Roots for Alveolar Bone Preservation. I. Endodontically Treated Roots.

    Science.gov (United States)

    1977-05-10

    With Endodontic Submerged Roots Scale 0 1 2 3 Periapical 15 0 1 0 Pericoronal 7 3 3 3 (3 cysts ) = 1 _ _ _ _ _ _ _ _ _ = REFERENCES 1. Lam, R.: Contour...with coronal portions of the roots. These epithe lial-lined cysts prevented the formation of osteo- cementum over the coronal surface . In this study...the endodontically treated roots appeared to be primarily a response to the excess root cana l sealer that was expressed coronally and periapically

  5. Polyamines and adventitious root formation in Vitis vinifera L.

    Directory of Open Access Journals (Sweden)

    Laurence Geny

    2002-06-01

    Full Text Available The effects of polyamines were examined for growth and polyamine contents in cultings, callus and primary adventitious roots of Vitis vinifera L. Variations in free, conjugated and wall-bound polyamines in cuttings were observed during rhizogenesis. The main polyamines in cuttings were conjugated polyamines while in callus and primary adventitious roots they were free polyamines. Exogenous polyamine addition did not modify the total number of roots per cutting but increased the mean size and number of long roots. Moreover, exogenous polyamines increased polyamine levels in callus and roots, particurlarly wall-bound and conjugated polyamines. The involvement of these classes of polyamines in morphogenic processes is discussed.

  6. Estimation of runoff mitigation by morphologically different cover crop root systems

    Science.gov (United States)

    Yu, Yang; Loiskandl, Willibald; Kaul, Hans-Peter; Himmelbauer, Margarita; Wei, Wei; Chen, Liding; Bodner, Gernot

    2016-07-01

    Hydrology is a major driver of biogeochemical processes underlying the distinct productivity of different biomes, including agricultural plantations. Understanding factors governing water fluxes in soil is therefore a key target for hydrological management. Our aim was to investigate changes in soil hydraulic conductivity driven by morphologically different root systems of cover crops and their impact on surface runoff. Root systems of twelve cover crop species were characterized and the corresponding hydraulic conductivity was measured by tension infiltrometry. Relations of root traits to Gardner's hydraulic conductivity function were determined and the impact on surface runoff was estimated using HYDRUS 2D. The species differed in both rooting density and root axes thickness, with legumes distinguished by coarser axes. Soil hydraulic conductivity was changed particularly in the plant row where roots are concentrated. Specific root length and median root radius were the best predictors for hydraulic conductivity changes. For an intensive rainfall simulation scenario up to 17% less rainfall was lost by surface runoff in case of the coarsely rooted legumes Melilotus officinalis and Lathyrus sativus, and the densely rooted Linum usitatissimum. Cover crops with coarse root axes and high rooting density enhance soil hydraulic conductivity and effectively reduce surface runoff. An appropriate functional root description can contribute to targeted cover crop selection for efficient runoff mitigation.

  7. Root induced changes of effective 1D hydraulic properties in a soil column.

    Science.gov (United States)

    Scholl, P; Leitner, D; Kammerer, G; Loiskandl, W; Kaul, H-P; Bodner, G

    Roots are essential drivers of soil structure and pore formation. This study aimed at quantifying root induced changes of the pore size distribution (PSD). The focus was on the extent of clogging vs. formation of pores during active root growth. Parameters of Kosugi's lognormal PSD model were determined by inverse estimation in a column experiment with two cover crops (mustard, rye) and an unplanted control. Pore dynamics were described using a convection-dispersion like pore evolution model. Rooted treatments showed a wider range of pore radii with increasing volumes of large macropores >500 μm and micropores <2.5 μm, while fine macropores, mesopores and larger micropores decreased. The non-rooted control showed narrowing of the PSD and reduced porosity over all radius classes. The pore evolution model accurately described root induced changes, while structure degradation in the non-rooted control was not captured properly. Our study demonstrated significant short term root effects with heterogenization of the pore system as dominant process of root induced structure formation. Pore clogging is suggested as a partial cause for reduced pore volume. The important change in micro- and large macropores however indicates that multiple mechanic and biochemical processes are involved in root-pore interactions.

  8. S-nitrosoglutathione promotes cell wall remodelling, alters the transcriptional profile and induces root hair formation in the hairless root hair defective 6 (rhd6) mutant of Arabidopsis thaliana.

    Science.gov (United States)

    Moro, Camila Fernandes; Gaspar, Marilia; da Silva, Felipe Rodrigues; Pattathil, Sivakumar; Hahn, Michael G; Salgado, Ione; Braga, Marcia Regina

    2017-03-01

    Nitric oxide (NO) exerts pleiotropic effects on plant development; however, its involvement in cell wall modification during root hair formation (RHF) has not yet been addressed. Here, mutants of Arabidopsis thaliana with altered root hair phenotypes were used to assess the involvement of S-nitrosoglutathione (GSNO), the primary NO source, in cell wall dynamics and gene expression in roots induced to form hairs. GSNO and auxin restored the root hair phenotype of the hairless root hair defective 6 (rhd6) mutant. A positive correlation was observed between increased NO production and RHF induced by auxin in rhd6 and transparent testa glabra (ttg) mutants. Deposition of an epitope within rhamnogalacturonan-I recognized by the CCRC-M2 antibody was delayed in root hair cells (trichoblasts) compared with nonhair cells (atrichoblasts). GSNO, but not auxin, restored the wild-type root glycome and transcriptome profiles in rhd6, modulating the expression of a large number of genes related to cell wall composition and metabolism, as well as those encoding ribosomal proteins, DNA and histone-modifying enzymes and proteins involved in post-translational modification. Our results demonstrate that NO plays a key role in cell wall remodelling in trichoblasts and suggest that it also participates in chromatin modification in root cells of A. thaliana. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  9. A PandaRoot interface for binary data in the PANDA prototype DAQ system

    Energy Technology Data Exchange (ETDEWEB)

    Fleischer, Soeren; Lange, Soeren; Kuehn, Wolfgang; Hahn, Christopher; Wagner, Milan [2. Physikalisches Institut, Uni Giessen (Germany); Collaboration: PANDA-Collaboration

    2015-07-01

    The PANDA experiment at FAIR will feature a raw data rate of more than 20 MHz. Only a small fraction of these events are of interest. Consequently, a sophisticated online data reduction setup is required, lowering the final output data rate by a factor of roughly 10{sup 3} by discarding data which does not fulfil certain criteria. The first stages of the data reduction will be implemented using FPGA-based Compute Nodes. For the planned tests with prototype detectors a small but scalable system is being set up which will allow to test the concept in a realistic environment with high rates. In this contribution, we present a PandaRoot implementation of a state-machine-based binary parser which receives detector data from the Compute Nodes via GbE links, converting the data stream into the PandaRoot format for further analysis and mass storage.

  10. Colonization of Plant Growth Promoting Rhizobacteria (PGPR) on Two Different Root Systems

    International Nuclear Information System (INIS)

    Chaudhry, M. Z.; Naz, A. U.; Nawaz, A.; Nawaz, A.; Mukhtar, H.

    2016-01-01

    Phytohormones producing bacteria enhance the plants growth by positively affecting growth of the root. Plant growth promoting bacteria (PGPR) must colonize the plant roots to contribute to the plant's endogenous pool of phytohormones. Colonization of these plant growth promoting rhizobacteria isolated from rhizosplane and soil of different crops was evaluated on different root types to establish if the mechanism of host specificity exist. The bacteria were isolated from maize, wheat, rice, canola and cotton and phytohormone production was detected and quantified by HPLC. Bacteria were inoculated on surface sterilized seeds of different crops and seeds were germinated. After 7 days the bacteria were re-isolated from the roots and the effect of these bacteria was observed by measuring increase in root length. Bacteria isolated from one plant family (monocots) having fibrous root performed well on similar root system and failed to give significant results on other roots (tap root) of dicots. Some aggressive strains were able to colonize both root systems. The plant growth promoting activities of the bacteria were optimum on the same plant from whom roots they were isolated. The results suggest that bacteria adapt to the root they naturally inhabit and colonize the same plant root systems preferably. Although the observe trend indicate host specificity but some bacteria were aggressive colonizers which grew on all the plants used in experiment. (author)

  11. Responses of grapevine rootstocks to drought through altered root system architecture and root transcriptomic regulations.

    Science.gov (United States)

    Yıldırım, Kubilay; Yağcı, Adem; Sucu, Seda; Tunç, Sümeyye

    2018-06-01

    Roots are the major interface between the plant and various stress factors in the soil environment. Alteration of root system architecture (RSA) (root length, spread, number and length of lateral roots) in response to environmental changes is known to be an important strategy for plant adaptation and productivity. In light of ongoing climate changes and global warming predictions, the breeding of drought-tolerant grapevine cultivars is becoming a crucial factor for developing a sustainable viticulture. Root-trait modeling of grapevine rootstock for drought stress scenarios, together with high-throughput phenotyping and genotyping techniques, may provide a valuable background for breeding studies in viticulture. Here, tree grafted grapevine rootstocks (110R, 5BB and 41B) having differential RSA regulations and drought tolerance were investigated to define their drought dependent root characteristics. Root area, root length, ramification and number of root tips reduced less in 110R grafted grapevines compared to 5BB and 41B grafted ones during drought treatment. Root relative water content as well as total carbohydrate and nitrogen content were found to be much higher in the roots of 110R than it was in the roots of other rootstocks under drought. Microarray-based root transcriptome profiling was also conducted on the roots of these rootstocks to identify their gene regulation network behind drought-dependent RSA alterations. Transcriptome analysis revealed totally 2795, 1196 and 1612 differentially expressed transcripts at the severe drought for the roots of 110R, 5BB and 41B, respectively. According to this transcriptomic data, effective root elongation and enlargement performance of 110R were suggested to depend on three transcriptomic regulations. First one is the drought-dependent induction in sugar and protein transporters genes (SWEET and NRT1/PTR) in the roots of 110R to facilitate carbohydrate and nitrogen accumulation. In the roots of the same rootstock

  12. Grapevine species from varied native habitats exhibit differences in embolism formation/repair associated with leaf gas exchange and root pressure.

    Science.gov (United States)

    Knipfer, Thorsten; Eustis, Ashley; Brodersen, Craig; Walker, Andrew M; McElrone, Andrew J

    2015-08-01

    Drought induces xylem embolism formation, but grapevines can refill non-functional vessels to restore transport capacity. It is unknown whether vulnerability to embolism formation and ability to repair differ among grapevine species. We analysed in vivo embolism formation and repair using x-ray computed microtomography in three wild grapevine species from varied native habitats (Vitis riparia, V. arizonica, V. champinii) and related responses to measurements of leaf gas exchange and root pressure. Vulnerability to embolism formation was greatest in V. riparia, intermediate in V. arizonica and lowest in V. champinii. After re-watering, embolism repair was rapid and pronounced in V. riparia and V. arizonica, but limited or negligible in V. champinii even after numerous days. Similarly, root pressure measured after re-watering was positively correlated with drought stress severity for V. riparia and V. arizonica (species exhibiting embolism repair) but not for V. champinii. Drought-induced reductions in transpiration were greatest for V. riparia and least in V. champinii. Recovery of transpiration after re-watering was delayed for all species, but was greatest for V. champinii and most rapid in V. arizonica. These species exhibit varied responses to drought stress that involve maintenance/recovery of xylem transport capacity coordinated with root pressure and gas exchange responses. © 2014 John Wiley & Sons Ltd.

  13. Inhibition of Cariogenic Plaque Formation on Root Surface with Polydopamine-Induced-Polyethylene Glycol Coating

    Directory of Open Access Journals (Sweden)

    May Lei Mei

    2016-05-01

    Full Text Available Root caries prevention has been a challenge for clinicians due to its special anatomical location, which favors the accumulation of dental plaque. Researchers are looking for anti-biofouling material to inhibit bacterial growth on exposed root surfaces. This study aimed to develop polydopamine-induced-polyethylene glycol (PEG and to study its anti-biofouling effect against a multi-species cariogenic biofilm on the root dentine surface. Hydroxyapatite disks and human dentine blocks were divided into four groups for experiments. They received polydopamine-induced-PEG, PEG, polydopamine, or water application. Contact angle, quartz crystal microbalance, and Fourier transform infrared spectroscopy were used to study the wetting property, surface affinity, and an infrared spectrum; the results indicated that PEG was induced by polydopamine onto a hydroxyapatite disk. Salivary mucin absorption on hydroxyapatite disks with polydopamine-induced-PEG was confirmed using spectrophotometry. The growth of a multi-species cariogenic biofilm on dentine blocks with polydopamine-induced-PEG was assessed and monitored by colony-forming units, confocal laser scanning microscopy, and scanning electron microscopy. The results showed that dentine with polydopamine-induced-PEG had fewer bacteria than other groups. In conclusion, a novel polydopamine-induced-PEG coating was developed. Its anti-biofouling effect inhibited salivary mucin absorption and cariogenic biofilm formation on dentine surface and thus may be used for the prevention of root dentine caries.

  14. ResDE Two-Component Regulatory System Mediates Oxygen Limitation-Induced Biofilm Formation by Bacillus amyloliquefaciens SQR9.

    Science.gov (United States)

    Zhou, Xuan; Zhang, Nan; Xia, Liming; Li, Qing; Shao, Jiahui; Shen, Qirong; Zhang, Ruifu

    2018-04-15

    Efficient biofilm formation and root colonization capabilities facilitate the ability of beneficial plant rhizobacteria to promote plant growth and antagonize soilborne pathogens. Biofilm formation by plant-beneficial Bacillus strains is triggered by environmental cues, including oxygen deficiency, but the pathways that sense these environmental signals and regulate biofilm formation have not been thoroughly elucidated. In this study, we showed that the ResDE two-component regulatory system in the plant growth-promoting rhizobacterium Bacillus amyloliquefaciens strain SQR9 senses the oxygen deficiency signal and regulates biofilm formation. ResE is activated by sensing the oxygen limitation-induced reduction of the NAD + /NADH pool through its PAS domain, stimulating its kinase activity, and resulting in the transfer of a phosphoryl group to ResD. The phosphorylated ResD directly binds to the promoter regions of the qoxABCD and ctaCDEF operons to improve the biosynthesis of terminal oxidases, which can interact with KinB to activate biofilm formation. These results not only revealed the novel regulatory function of the ResDE two-component system but also contributed to the understanding of the complicated regulatory network governing Bacillus biofilm formation. This research may help to enhance the root colonization and the plant-beneficial efficiency of SQR9 and other Bacillus rhizobacteria used in agriculture. IMPORTANCE Bacillus spp. are widely used as bioinoculants for plant growth promotion and disease suppression. The exertion of their plant-beneficial functions is largely dependent on their root colonization, which is closely related to their biofilm formation capabilities. On the other hand, Bacillus is the model bacterium for biofilm study, and the process and molecular network of biofilm formation are well characterized (B. Mielich-Süss and D. Lopez, Environ Microbiol 17:555-565, 2015, https://doi.org/10.1111/1462-2920.12527; L. S. Cairns, L. Hobley, and

  15. Phenotyping Root System Architecture of Cotton (Gossypium barbadense L. Grown Under Salinity

    Directory of Open Access Journals (Sweden)

    Mottaleb Shady A.

    2017-12-01

    Full Text Available Soil salinity causes an annual deep negative impact to the global agricultural economy. In this study, the effects of salinity on early seedling physiology of two Egyptian cotton (Gossypium barbadense L. cultivars differing in their salinity tolerance were examined. Also the potential use of a low cost mini-rhizotron system to measure variation in root system architecture (RSA traits existing in both cultivars was assessed. Salt tolerant cotton cultivar ‘Giza 90’ produced significantly higher root and shoot biomass, accumulated lower Na+/K+ ratio through a higher Na+ exclusion from both roots and leaves as well as synthesized higher proline contents compared to salt sensitive ‘Giza 45’ cultivar. Measuring RSA in mini-rhizotrons containing solid MS nutrient medium as substrate proved to be more precise and efficient than peat moss/sand mixture. We report superior values of main root growth rate, total root system size, main root length, higher number of lateral roots and average lateral root length in ‘Giza 90’ under salinity. Higher lateral root density and length together with higher root tissue tolerance of Na+ ions in ‘Giza 90’ give it an advantage to be used as donor genotype for desirable root traits to other elite cultivars.

  16. High miR156 Expression Is Required for Auxin-Induced Adventitious Root Formation via MxSPL26 Independent of PINs and ARFs in Malus xiaojinensis

    Directory of Open Access Journals (Sweden)

    Xiaozhao Xu

    2017-06-01

    Full Text Available Adventitious root formation is essential for the vegetative propagation of perennial woody plants. During the juvenile-to-adult phase change mediated by the microRNA156 (miR156, the adventitious rooting ability decreases dramatically in many species, including apple rootstocks. However, the mechanism underlying how miR156 affects adventitious root formation is unclear. In the present study, we showed that in the presence of the synthetic auxin indole-3-butyric acid (IBA, semi-lignified leafy cuttings from juvenile phase (Mx-J and rejuvenated (Mx-R Malus xiaojinensis trees exhibited significantly higher expression of miR156, PIN-FORMED1 (PIN1, PIN10, and rootless concerning crown and seminal roots-like (RTCS-like genes, thus resulting in higher adventitious rooting ability than those from adult phase (Mx-A trees. However, the expression of SQUAMOSA-PROMOTER BINDING PROTEIN-LIKE26 (SPL26 and some auxin response factor (ARF gene family members were substantially higher in Mx-A than in Mx-R cuttings. The expression of NbRTCS-like but not NbPINs and NbARFs varied with miR156 expression in tobacco (Nicotiana benthamiana plants transformed with 35S:MdMIR156a6 or 35S:MIM156 constructs. Overexpressing the miR156-resistant MxrSPL genes in tobacco confirmed the involvement of MxSPL20, MxSPL21&22, and MxSPL26 in adventitious root formation. Together, high expression of miR156 was necessary for auxin-induced adventitious root formation via MxSPL26, but independent of MxPINs and MxARFs expression in M. xiaojinensis leafy cuttings.

  17. Can we manipulate root system architecture to control soil erosion?

    Science.gov (United States)

    Ola, A.; Dodd, I. C.; Quinton, J. N.

    2015-09-01

    Soil erosion is a major threat to soil functioning. The use of vegetation to control erosion has long been a topic for research. Much of this research has focused on the above-ground properties of plants, demonstrating the important role that canopy structure and cover plays in the reduction of water erosion processes. Less attention has been paid to plant roots. Plant roots are a crucial yet under-researched factor for reducing water erosion through their ability to alter soil properties, such as aggregate stability, hydraulic function and shear strength. However, there have been few attempts to specifically manipulate plant root system properties to reduce soil erosion. Therefore, this review aims to explore the effects that plant roots have on soil erosion and hydrological processes, and how plant root architecture might be manipulated to enhance its erosion control properties. We demonstrate the importance of root system architecture for the control of soil erosion. We also show that some plant species respond to nutrient-enriched patches by increasing lateral root proliferation. The erosional response to root proliferation will depend upon its location: at the soil surface dense mats of roots may reduce soil erodibility but block soil pores thereby limiting infiltration, enhancing runoff. Additionally, in nutrient-deprived regions, root hair development may be stimulated and larger amounts of root exudates released, thereby improving aggregate stability and decreasing erodibility. Utilizing nutrient placement at specific depths may represent a potentially new, easily implemented, management strategy on nutrient-poor agricultural land or constructed slopes to control erosion, and further research in this area is needed.

  18. Benefits of flooding-induced aquatic adventitious roots depend on the duration of submergence: linking plant performance to root functioning.

    Science.gov (United States)

    Zhang, Qian; Huber, Heidrun; Beljaars, Simone J M; Birnbaum, Diana; de Best, Sander; de Kroon, Hans; Visser, Eric J W

    2017-07-01

    Temporal flooding is a common environmental stress for terrestrial plants. Aquatic adventitious roots (aquatic roots) are commonly formed in flooding-tolerant plant species and are generally assumed to be beneficial for plant growth by supporting water and nutrient uptake during partial flooding. However, the actual contribution of these roots to plant performance under flooding has hardly been quantified. As the investment into aquatic root development in terms of carbohydrates may be costly, these costs may - depending on the specific environmental conditions - offset the beneficial effects of aquatic roots. This study tested the hypothesis that the balance between potential costs and benefits depends on the duration of flooding, as the benefits are expected to outweigh the costs in long-term but not in short-term flooding. The contribution of aquatic roots to plant performance was tested in Solanum dulcamara during 1-4 weeks of partial submergence and by experimentally manipulating root production. Nutrient uptake by aquatic roots, transpiration and photosynthesis were measured in plants differing in aquatic root development to assess the specific function of these roots. As predicted, flooded plants benefited from the presence of aquatic roots. The results showed that this was probably due to the contribution of roots to resource uptake. However, these beneficial effects were only present in long-term but not in short-term flooding. This relationship could be explained by the correlation between nutrient uptake and the flooding duration-dependent size of the aquatic root system. The results indicate that aquatic root formation is likely to be selected for in habitats characterized by long-term flooding. This study also revealed only limited costs associated with adventitious root formation, which may explain the maintenance of the ability to produce aquatic roots in habitats characterized by very rare or short flooding events. © The Author 2017. Published by

  19. The effect of root temperature on the uptake and metabolism of anions by the root system of Zea mays L. I

    International Nuclear Information System (INIS)

    Holobrada, M.; Mistrik, I.; Kolek, J.

    1980-01-01

    The effect of root temperature upon the uptake of 35 S-sulfate by intact 21 days old maize roots was discussed. The plant roots grown at 20 degC were cooled in steps down to 15 degC or 5 degC. The rate of 35 S uptake was studied both in the whole root system and separately in the individual roots (primary seminal root, seminal adventitious roots and nodal roots). Differences were ascertained at lower uptakes by various root samples from resistant and nonresistant maize cultivars. (author)

  20. Demonstration of osmotically dependent promotion of aerenchyma formation at different levels in the primary roots of rice using a ‘sandwich’ method and X-ray computed tomography

    Science.gov (United States)

    Karahara, Ichirou; Umemura, Konomi; Soga, Yuumi; Akai, Yuki; Bando, Tadafumi; Ito, Yuko; Tamaoki, Daisuke; Uesugi, Kentaro; Abe, Jun; Yamauchi, Daisuke; Mineyuki, Yoshinobu

    2012-01-01

    Background and Aims The effect of environmental factors on the regulation of aerenchyma formation in rice roots has been discussed for a long time, because aerenchyma is constitutively formed under aerated conditions. To elucidate this problem, a unique method has been developed that enables sensitive detection of differences in the development of aerenchyma under two different environmental conditions. The method is tested to determine whether aerenchyma development in rice roots is affected by osmotic stress. Methods To examine aerenchyma formation both with and without mannitol treatment in the same root, germinating rice (Oryza sativa) caryopses were sandwiched between two agar slabs, one of which contained 270 mm of mannitol. The roots were grown touching both slabs and were thereby exposed unilaterally to osmotic stress. As a non-invasive approach, refraction contrast X-ray computed tomography (CT) using a third-generation synchrotron facility, SPring-8 (Super photon ring 8 GeV, Japan Synchrotron Radiation Research Institute), was used to visualize the three-dimensional (3-D) intact structure of aerenchyma and its formation in situ in rice roots. The effects of unilateral mannitol treatment on the development of aerenchyma were quantitatively examined using conventional light microscopy. Key Results Structural continuity of aerenchyma was clearly visualized in 3-D in the primary root of rice and in situ using X-ray CT. Light microscopy and X-ray CT showed that the development of aerenchyma was promoted on the mannitol-treated side of the root. Detailed light microscopic analysis of cross-sections cut along the root axis from the tip to the basal region demonstrated that aerenchyma developed significantly closer to the root tip on the mannitol-treated side of the root. Conclusions Continuity of the aerenchyma along the rice root axis was morphologically demonstrated using X-ray CT. By using this ‘sandwich’ method it was shown that mannitol promoted

  1. Localized gene expression changes during adventitious root formation in black walnut (Juglans nigra L.)

    Science.gov (United States)

    Micah E Stevens; Keith E Woeste; Paula M Pijut

    2018-01-01

    Cutting propagation plays a large role in the forestry and horticulture industries where superior genotypes need to be clonally multiplied. Integral to this process is the ability of cuttings to form adventitious roots. Recalcitrance to adventitious root development is a serious hurdle for many woody plant propagation systems including black walnut (Juglans...

  2. The Effect of Canal Preparation with Four Different Rotary Systems on Formation of Dentinal Cracks: An In Vitro Evaluation.

    Science.gov (United States)

    Khoshbin, Elham; Donyavi, Zakiyeh; Abbasi Atibeh, Erfan; Roshanaei, Ghodratollah; Amani, Faranak

    2018-01-01

    Endodontic rotary systems may result in dentinal cracks. They may propagate to vertical root fracture that compromises the outcome of endodontic treatment. This study aimed to compare Neolix and Reciproc (single-file systems), Mtwo and ProTaper (conventional rotary systems) in terms of dentinal crack formation in root canal walls. This in vitro study was conducted on 110 extracted human single-rooted teeth. The teeth were randomly divided into four experimental groups ( n =25) for root canal preparation with Neolix, Reciproc, Mtwo and ProTaper systems and two control groups ( n =5). The first control group underwent root canal instrumentation with hand files while the second control group received no preparation and was only irrigated. After instrumentation, root canals were horizontally sectioned at 3, 6 and 9 mm from the apex and inspected under a stereomicroscope under 12× magnification for detection of cracks. The data were analyzed using Chi-square, GEE test and Bonferroni tests ( P ProTaper, Reciproc, Mtwo and Neolix caused cracks in 92%, 80%, 68% and 48% of samples. ProTaper caused significantly more cracks than Neolix and Mtwo ( P 0.05). All rotary systems cause dentinal cracks and it is significantly different in apical, middle and coronal third of the root. Neolix appears to be a suitable alternative to other rotary systems since use of this single-file system saves time and cost and minimizes trauma to dentinal walls.

  3. A complete system for 3D reconstruction of roots for phenotypic analysis.

    Science.gov (United States)

    Kumar, Pankaj; Cai, Jinhai; Miklavcic, Stanley J

    2015-01-01

    Here we present a complete system for 3D reconstruction of roots grown in a transparent gel medium or washed and suspended in water. The system is capable of being fully automated as it is self calibrating. The system starts with detection of root tips in root images from an image sequence generated by a turntable motion. Root tips are detected using the statistics of Zernike moments on image patches centred on high curvature points on root boundary and Bayes classification rule. The detected root tips are tracked in the image sequence using a multi-target tracking algorithm. Conics are fitted to the root tip trajectories using a novel ellipse fitting algorithm which weighs the data points by its eccentricity. The conics projected from the circular trajectory have a complex conjugate intersection which are image of the circular points. Circular points constraint the image of the absolute conics which are directly related to the internal parameters of the camera. The pose of the camera is computed from the image of the rotation axis and the horizon. The silhouettes of the roots and camera parameters are used to reconstruction the 3D voxel model of the roots. We show the results of real 3D reconstruction of roots which are detailed and realistic for phenotypic analysis.

  4. The Formation and Evolution of the Solar System

    Science.gov (United States)

    Marov, Mikhail

    2018-05-01

    The formation and evolution of our solar system (and planetary systems around other stars) are among the most challenging and intriguing fields of modern science. As the product of a long history of cosmic matter evolution, this important branch of astrophysics is referred to as stellar-planetary cosmogony. Interdisciplinary by way of its content, it is based on fundamental theoretical concepts and available observational data on the processes of star formation. Modern observational data on stellar evolution, disc formation, and the discovery of extrasolar planets, as well as mechanical and cosmochemical properties of the solar system, place important constraints on the different scenarios developed, each supporting the basic cosmogony concept (as rooted in the Kant-Laplace hypothesis). Basically, the sequence of events includes fragmentation of an original interstellar molecular cloud, emergence of a primordial nebula, and accretion of a protoplanetary gas-dust disk around a parent star, followed by disk instability and break-up into primary solid bodies (planetesimals) and their collisional interactions, eventually forming a planet. Recent decades have seen major advances in the field, due to in-depth theoretical and experimental studies. Such advances have clarified a new scenario, which largely supports simultaneous stellar-planetary formation. Here, the collapse of a protosolar nebula's inner core gives rise to fusion ignition and star birth with an accretion disc left behind: its continuing evolution resulting ultimately in protoplanets and planetary formation. Astronomical observations have allowed us to resolve in great detail the turbulent structure of gas-dust disks and their dynamics in regard to solar system origin. Indeed radio isotope dating of chondrite meteorite samples has charted the age and the chronology of key processes in the formation of the solar system. Significant progress also has been made in the theoretical study and computer modeling

  5. On Split Lie Algebras with Symmetric Root Systems

    Indian Academy of Sciences (India)

    ... and any I j a well described ideal of , satisfying [ I j , I k ] = 0 if j ≠ k . Under certain conditions, the simplicity of is characterized and it is shown that is the direct sum of the family of its minimal ideals, each one being a simple split Lie algebra with a symmetric root system and having all its nonzero roots connected.

  6. On split Lie algebras with symmetric root systems

    Indian Academy of Sciences (India)

    ideal of L, satisfying [Ij ,Ik] = 0 if j = k. Under certain conditions, the simplicity of L is characterized and it is shown that L is the direct sum of the family of its minimal ideals, each one being a simple split Lie algebra with a symmetric root system and having all its nonzero roots connected. Keywords. Infinite dimensional Lie ...

  7. Etiopathogenesis of Post-endodontic Periapical Scar Formation

    Directory of Open Access Journals (Sweden)

    Edita Horká

    2012-01-01

    Full Text Available Introduction: A periapical scar represents a clinically asymptomatic, non-progressive, small, periapical radiolucency in patients with a previously well-performed root canal treatment.The hypothesis: We introduce a hypothesis that periapical scar formation is caused by osseoinhibitory molecular signaling from the epithelial cell rests of Malassez.Evaluation of the hypothesis: When epithelial cell rests of Malassez are present in teeth with an infected root canal system, a periapical cyst develops, whereas in the case of a treated root canal system infection, periapical inflammation is diminished and the periapical leasion heals until the regeneration process reaches the apical part of the tooth where epithelial cell rests of Malassez are present. Cytokines cause rapidly progressive defensive fibroproduction and scar formation, in which osteoblasts cannot differentiate into

  8. The effect of flowering on adventitious root-formation

    NARCIS (Netherlands)

    Selim, H.H.A.

    1956-01-01

    The rooting of cuttings from day-neutral tomato was not influenced by flower development, nor by SD or LD treatments of them or of the mother plants. In cuttings of the SD plant Perilla crispa flower initiation and development severely inhibited rooting. Leaves produced about 61 %

  9. Changes in the level of [14C]indole-3-acetic acid and [14C]indoleacetylaspartic acid during root formation in mung bean cuttings

    International Nuclear Information System (INIS)

    Norcini, J.G.; Heuser, C.W.

    1988-01-01

    Changes in the levels of [ 14 C]indole-3-acetic acid (IAA) and [ 14 C]indoleacetylaspartic acid (IAAsp) were examined during adventitious root formation in mung bean (Vigna radiata [L.] R. Wilcz. Berken) stem cuttings. IAAsp was identified by GC-MS as the primary conjugate in IAA-treated cuttings. During root formation in IAA-treated cuttings, the level of [ 14 C]IAAsp increased rapidly the first day and then declined; [ 14 C]IAA was rapidly metabolized and not detected after 12 hours

  10. Efflux of inorganic substances from young barley roots. II. Movement in roots and efflux of sodium in plants with divided root systems

    Energy Technology Data Exchange (ETDEWEB)

    Fujimoto, H; Kojima, S [Radiation Center of Osaka Prefecture, Sakai (Japan)

    1977-09-01

    The root system of young barley was almost halved, and the two portions were planted in culture grounds with different composition after severing the capillary connection between both root groups. With one portion in the acid medium solution of various compositions and the other in the /sup 22/Na-absorbing medium solution, the sodium absorbed from one root group moved to and flowed out from the other root group, and this state was observed. Also, the efflux of potassium from the root was observed. (1) The Na efflux was small in the culture ground with dilute hydrochloric acid, and larger in that with AlCl/sub 3/ or phosphate. (2) The K efflux was large under short-day condition. (3) Under short-day condition, in the culture ground with soluble Al, the K efflux was promoted by nitrogen-source addition, but the Na efflux was suppressed.

  11. Comparative Analysis of Crack Propagation in Roots with Hand and Rotary Instrumentation of the Root Canal -An Ex-vivo Study.

    Science.gov (United States)

    Kumari, Manju Raj; Krishnaswamy, Manjunath Mysore

    2016-07-01

    Success of any endodontic treatment depends on strict adherence to 'endodontic triad'. Preparation of root canal system is recognized as being one of the most important stages in root canal treatment. At times, we inevitably end up damaging root dentin which becomes a Gateway for infections like perforation, zipping, dentinal cracks and minute intricate fractures or even vertical root fractures, thereby resulting in failure of treatment. Several factors may be responsible for the formation of dentinal cracks like high concentration of sodium hypochlorite, compaction methods and various canal shaping methods. To compare and evaluate the effects of root canal preparation techniques and instrumentation length on the development of apical root cracks. Seventy extracted premolars with straight roots were mounted on resin blocks with simulated periodontal ligaments, exposing 1-2 mm of the apex followed by sectioning of 1mm of root tip for better visualization under stereomicroscope. The teeth were divided into seven groups of 10 teeth each - a control group and six experimental groups. Subgroup A & B were instrumented with: Stainless Steel hand files (SS) up to Root Canal Length (RCL) & (RCL -1 mm) respectively; sub group C & D were instrumented using ProTaper Universal (PTU) up to RCL and (RCL -1mm) respectively; subgroup E & F were instrumented using ProTaper Next (PTN) up to RCL & (RCL -1 mm) respectively. Stereomicroscopic images of the instrumentation sequence were compared for each tooth. The data was analyzed statistically using descriptive analysis by 'Phi' and 'Cramers' test to find out statistical significance between the groups. The level of significance was set at phand file group showed most cracks followed by ProTaper Universal & ProTaper Next though statistically not significant. Samples instrumented up to 1mm short of working length (RCL-1mm) showed lesser number of cracks. All groups showed cracks formation, the stainless steel group being the highest

  12. Research on the Strength Variation of Root-Clay Systems under Freeze-Thaw Action

    Directory of Open Access Journals (Sweden)

    Lin Yang

    2017-01-01

    Full Text Available The aim of this paper is to study the influence of an effective root system of rhizome plants on the reinforcement of slope soil under freeze-thaw conditions. This study focused on the mechanical properties between roots and clay in the root system of four plant species from different regions of China (northeast, northern, central, and southern areas: Setaria viridis, Eleusine indica, Zoysia japonica, and Carex leucochlora. Based on the interfacial friction effects between the plant roots and the soil, pull-out tests and unconfined compressive strength tests were conducted on the reinforced soil system for varying numbers of freeze-thaw cycles. Several stages of the pull-out process of the root system in clay are explicitly proposed based on the interfacial friction test results. The results showed that the friction effect between Zoysia japonica roots and the soil was the most significant and that these roots had the best reinforcement effect. In contrast, the friction and reinforcement effects between Setaria viridis roots and the soil were the worst, and the resulting unconfined compressive strength was the smallest. However, the freeze-thaw resistance ability of the Setaria viridis and soil system was stronger than that of the Zoysia japonica system.

  13. IAA oxidase activity in relation to adventitious root formation on stem cuttings of some forest tree species. [Salix tetrasperma, Populus Robusta, Hibiscus rosa-sinensis, Eucalyptus citriodora

    Energy Technology Data Exchange (ETDEWEB)

    Bansal, M.P.; Nanda, K.K.

    1981-01-01

    In rooting tests with stem cuttings, IAA oxidase activity was found to be very high in Salix tetrasperma and Populus 'Robusta' both of which rooted profusely, less in Hibiscus rosa-sinensis which rooted but weakly and insignificant in Eucalyptus citriodora, which did not root at all. Proteins extracted from the stem cuttings of E. citriodora inhibited IAA oxidase activity, and also root formation on hypocotyl cuttings of Phaseolus mungo.

  14. Exogenous nitrate induces root branching and inhibits primary root growth in Capsicum chinense Jacq.

    Science.gov (United States)

    Celis-Arámburo, Teresita de Jesús; Carrillo-Pech, Mildred; Castro-Concha, Lizbeth A; Miranda-Ham, María de Lourdes; Martínez-Estévez, Manuel; Echevarría-Machado, Ileana

    2011-12-01

    The effects of nitrate (NO₃⁻) on the root system are complex and depend on several factors, such as the concentration available to the plant, endogenous nitrogen status and the sensitivity of the species. Though these effects have been widely documented on Arabidopsis and cereals, no reports are available in the Capsicum genus. In this paper, we have determined the effect of an exogenous in vitro application of this nutrient on root growth in habanero pepper (Capsicum chinense Jacq.). Exposure to NO₃⁻ inhibited primary root growth in both, dose- and time-dependent manners. The highest inhibition was attained with 0.1 mM NO₃⁻ between the fourth and fifth days of treatment. Inhibition of primary root growth was observed by exposing the root to both homogeneous and heterogeneous conditions of the nutrient; in contrast, ammonium was not able to induce similar changes. NO₃⁻-induced inhibition of primary root growth was reversed by treating the roots with IAA or NPA, a polar auxin transport inhibitor. Heterogeneous NO₃⁻ application stimulated the formation and elongation of lateral roots in the segment where the nutrient was present, and this response was influenced by exogenous phytohormones. These results demonstrate that habanero pepper responds to NO₃⁻ in a similar fashion to other species with certain particular differences. Therefore, studies in this model could help to elucidate the mechanisms by which roots respond to NO₃⁻ in fluctuating soil environments. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  15. Quantum systems related to root systems and radial parts of Laplace operators

    OpenAIRE

    Olshanetsky, M. A.; Perelomov, A. M.

    2002-01-01

    The relation between quantum systems associated to root systems and radial parts of Laplace operators on symmetric spaces is established. From this it follows the complete integrability of some quantum systems.

  16. Genetic interaction of two abscisic acid signaling regulators, HY5 and FIERY1, in mediating lateral root formation

    KAUST Repository

    Chen, Hao; Xiong, Liming

    2011-01-01

    has emerged as an important player in gene regulation and is involved in many aspects of plant development, including lateral root formation. In a recent study, we found that FIERY1, a bifunctional abiotic stress and abscisic acid (ABA) signaling

  17. Comprehensive transcriptome analysis unravels the existence of crucial genes regulating primary metabolism during adventitious root formation in Petunia hybrida.

    Science.gov (United States)

    Ahkami, Amirhossein; Scholz, Uwe; Steuernagel, Burkhard; Strickert, Marc; Haensch, Klaus-Thomas; Druege, Uwe; Reinhardt, Didier; Nouri, Eva; von Wirén, Nicolaus; Franken, Philipp; Hajirezaei, Mohammad-Reza

    2014-01-01

    To identify specific genes determining the initiation and formation of adventitious roots (AR), a microarray-based transcriptome analysis in the stem base of the cuttings of Petunia hybrida (line W115) was conducted. A microarray carrying 24,816 unique, non-redundant annotated sequences was hybridized to probes derived from different stages of AR formation. After exclusion of wound-responsive and root-regulated genes, 1,354 of them were identified which were significantly and specifically induced during various phases of AR formation. Based on a recent physiological model distinguishing three metabolic phases in AR formation, the present paper focuses on the response of genes related to particular metabolic pathways. Key genes involved in primary carbohydrate metabolism such as those mediating apoplastic sucrose unloading were induced at the early sink establishment phase of AR formation. Transcriptome changes also pointed to a possible role of trehalose metabolism and SnRK1 (sucrose non-fermenting 1- related protein kinase) in sugar sensing during this early step of AR formation. Symplastic sucrose unloading and nucleotide biosynthesis were the major processes induced during the later recovery and maintenance phases. Moreover, transcripts involved in peroxisomal beta-oxidation were up-regulated during different phases of AR formation. In addition to metabolic pathways, the analysis revealed the activation of cell division at the two later phases and in particular the induction of G1-specific genes in the maintenance phase. Furthermore, results point towards a specific demand for certain mineral nutrients starting in the recovery phase.

  18. Study of root para-nodules formation in wheat (Triticum durum ...

    African Journals Online (AJOL)

    djemel

    2013-08-28

    Aug 28, 2013 ... African Journal of Biotechnology. Full Length Research ... formed when wheat roots were inoculated with Frankia and the root length was enhanced. When the .... are modified lateral roots with structure enhanced by rhizobial.

  19. Understanding alfalfa root systems and their rold in abiotic stress tolerance

    Science.gov (United States)

    The root system architecture (RSA) impacts the capacity of the plant for efficient water and nutrient uptake. Root phenes have been associated with productivity under stress conditions and persistence of perennial species. The objectives of this study were to identify root traits that increase produ...

  20. Roots Withstanding their Environment: Exploiting Root System Architecture Responses to Abiotic Stress to Improve Crop Tolerance

    Science.gov (United States)

    Koevoets, Iko T.; Venema, Jan Henk; Elzenga, J. Theo. M.; Testerink, Christa

    2016-01-01

    To face future challenges in crop production dictated by global climate changes, breeders and plant researchers collaborate to develop productive crops that are able to withstand a wide range of biotic and abiotic stresses. However, crop selection is often focused on shoot performance alone, as observation of root properties is more complex and asks for artificial and extensive phenotyping platforms. In addition, most root research focuses on development, while a direct link to the functionality of plasticity in root development for tolerance is often lacking. In this paper we review the currently known root system architecture (RSA) responses in Arabidopsis and a number of crop species to a range of abiotic stresses, including nutrient limitation, drought, salinity, flooding, and extreme temperatures. For each of these stresses, the key molecular and cellular mechanisms underlying the RSA response are highlighted. To explore the relevance for crop selection, we especially review and discuss studies linking root architectural responses to stress tolerance. This will provide a first step toward understanding the relevance of adaptive root development for a plant’s response to its environment. We suggest that functional evidence on the role of root plasticity will support breeders in their efforts to include root properties in their current selection pipeline for abiotic stress tolerance, aimed to improve the robustness of crops. PMID:27630659

  1. The Influence of Plant Root Systems on Subsurface Flow: Implications for Slope Stability

    Science.gov (United States)

    Although research has explained how plant roots mechanically stabilize soils, in this article we explore how root systems create networks of preferential flow and thus influence water pressures in soils to trigger landslides. Root systems may alter subsurface flow: Hydrological m...

  2. Light and decapitation effects on in vitro rooting in maize root segments.

    Science.gov (United States)

    Golaz, F W; Pilet, P E

    1985-10-01

    The effects of white light and decapitation on the initiation and subsequent emergence and elongation of lateral roots of apical maize (Zea mays L. cv LG 11) root segments have been examined. The formation of lateral root primordium was inhibited by the white light. This inhibition did not depend upon the presence of the primary root tip. However, root decapitation induced a shift of the site of appearance of the most apical primordium towards the root apex, and a strong disturbance of the distribution pattern of primordium volumes along the root axis. White light had a significant effect neither on the distribution pattern of primordium volumes, nor on the period of primordium development (time interval required for the smallest detectable primordia to grow out as secondary roots). Thus, considering the rooting initiation and emergence, the light effect was restricted to the initiation phase only. Moreover, white light reduced lateral root elongation as well as primary root growth.

  3. Avoiding transport bottlenecks in an expanding root system: xylem vessel development in fibrous and pioneer roots under field conditions.

    Science.gov (United States)

    Bagniewska-Zadworna, Agnieszka; Byczyk, Julia; Eissenstat, David M; Oleksyn, Jacek; Zadworny, Marcin

    2012-09-01

    Root systems develop to effectively absorb water and nutrients and to rapidly transport these materials to the transpiring shoot. In woody plants, roots can be born with different functions: fibrous roots are primarily used for water and nutrient absorption, whereas pioneer roots have a greater role in transport. Because pioneer roots extend rapidly in the soil and typically quickly produce fibrous roots, they need to develop transport capacity rapidly so as to avoid becoming a bottleneck to the absorbed water of the developing fibrous roots and, as we hypothesized, immediately activate a specific type of autophagy at a precise time of their development. Using microscopy techniques, we monitored xylem development in Populus trichocarpa roots in the first 7 d after emergence under field conditions. Newly formed pioneer roots contained more primary xylem poles and had larger diameter tracheary elements than fibrous roots. While xylogenesis started later in pioneer roots than in fibrous, it was completed at the same time, resulting in functional vessels on the third to fourth day following root emergence. Programmed cell death was responsible for creating the water conducting capacity of xylem. Although the early xylogenesis processes were similar in fibrous and pioneer roots, secondary vascular development proceeded much more rapidly in pioneer roots. Compared to fibrous roots, rapid development of transport capacity in pioneer roots is not primarily caused by accelerated xylogenesis but by larger and more numerous tracheary elements and by rapid initiation of secondary growth.

  4. Talking through walls: mechanisms of lateral root emergence in Arabidopsis thaliana.

    Science.gov (United States)

    Vilches-Barro, Amaya; Maizel, Alexis

    2015-02-01

    Lateral roots are formed postembryonically and determine the final shape of the root system, a determinant of the plants ability to uptake nutrients and water. The lateral root primordia are initiated deep into the main root and to protrude out the primary root they have to grow through three cell layers. Recent findings have revealed that these layers are not merely a passive physical obstacle to the emergence of the lateral root but have an active role in its formation. Here, we review examples of communication between the lateral root primordium and the surrounding tissues, highlighting the importance of auxin-mediated growth coordination as well as cell and tissue mechanics for the morphogenesis of lateral roots. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  5. Regulation of root hair initiation and expansin gene expression in Arabidopsis

    Science.gov (United States)

    Cho, Hyung-Taeg; Cosgrove, Daniel J.

    2002-01-01

    The expression of two Arabidopsis expansin genes (AtEXP7 and AtEXP18) is tightly linked to root hair initiation; thus, the regulation of these genes was studied to elucidate how developmental, hormonal, and environmental factors orchestrate root hair formation. Exogenous ethylene and auxin, as well as separation of the root from the medium, stimulated root hair formation and the expression of these expansin genes. The effects of exogenous auxin and root separation on root hair formation required the ethylene signaling pathway. By contrast, blocking the endogenous ethylene pathway, either by genetic mutations or by a chemical inhibitor, did not affect normal root hair formation and expansin gene expression. These results indicate that the normal developmental pathway for root hair formation (i.e., not induced by external stimuli) is independent of the ethylene pathway. Promoter analyses of the expansin genes show that the same promoter elements that determine cell specificity also determine inducibility by ethylene, auxin, and root separation. Our study suggests that two distinctive signaling pathways, one developmental and the other environmental/hormonal, converge to modulate the initiation of the root hair and the expression of its specific expansin gene set.

  6. Pulp regeneration in a full-length human tooth root using a hierarchical nanofibrous microsphere system.

    Science.gov (United States)

    Li, Xiangwei; Ma, Chi; Xie, Xiaohua; Sun, Hongchen; Liu, Xiaohua

    2016-04-15

    While pulp regeneration using tissue engineering strategy has been explored for over a decade, successful regeneration of pulp tissues in a full-length human root with a one-end seal that truly simulates clinical endodontic treatment has not been achieved. To address this challenge, we designed and synthesized a unique hierarchical growth factor-loaded nanofibrous microsphere scaffolding system. In this system, vascular endothelial growth factor (VEGF) binds with heparin and is encapsulated in heparin-conjugated gelatin nanospheres, which are further immobilized in the nanofibers of an injectable poly(l-lactic acid) (PLLA) microsphere. This hierarchical microsphere system not only protects the VEGF from denaturation and degradation, but also provides excellent control of its sustained release. In addition, the nanofibrous PLLA microsphere integrates the extracellular matrix-mimicking architecture with a highly porous injectable form, efficiently accommodating dental pulp stem cells (DPSCs) and supporting their proliferation and pulp tissue formation. Our in vivo study showed the successful regeneration of pulp-like tissues that fulfilled the entire apical and middle thirds and reached the coronal third of the full-length root canal. In addition, a large number of blood vessels were regenerated throughout the canal. For the first time, our work demonstrates the success of pulp tissue regeneration in a full-length root canal, making it a significant step toward regenerative endodontics. The regeneration of pulp tissues in a full-length tooth root canal has been one of the greatest challenges in the field of regenerative endodontics, and one of the biggest barriers for its clinical application. In this study, we developed a unique approach to tackle this challenge, and for the first time, we successfully regenerated living pulp tissues in a full-length root canal, making it a significant step toward regenerative endodontics. This study will make positive scientific

  7. Indole-3-butyric acid mediates antioxidative defense systems to promote adventitious rooting in mung bean seedlings under cadmium and drought stresses.

    Science.gov (United States)

    Li, Shi-Weng; Zeng, Xiao-Ying; Leng, Yan; Feng, Lin; Kang, Xiao-Hu

    2018-06-08

    In vitro experiments were performed to determine whether auxin can mediate the formation of adventitious roots in response to heavy metal and drought stresses using a model rooting plant, mung bean [Vigna radiata (L.) Wilczek]. The treatments with CdCl 2 or mannitol alone significantly inhibited the formation and growth of adventitious roots in mung bean seedlings. In contrast, when CdCl 2 or mannitol was applied together with indole-3-butyric acid (IBA), IBA considerably cancelled the inhibition of adventitious rooting by stresses. Treatment with CdCl 2 or mannitol alone significantly increased the soluble protein and malondialdehyde (MDA) contents. CdCl 2 and mannitol stress each induced differentially significant changes in the activities of antioxidative enzyme and antioxidant levels during adventitious rooting. Notably, both CdCl 2 and mannitol stress strongly reduced the peroxidase (POD) and ascorbate peroxidase (APX) activities and glutathione (GSH) and phenols levels. Catalase and superoxide dismutase (SOD) activity were enhanced by CdCl 2 but reduced by mannitol. CdCl 2 increased the ascorbate acid (ASA) level, which was decreased by mannitol. Furthermore, when CdCl 2 or mannitol was applied together with IBA, IBA counteracted the CdCl 2 - or mannitol-induced increase or decrease in certain antioxidants, MDA, and antioxidative enzymes. These results suggest that Cd and mannitol stress inhibition of adventitious rooting is associated with the regulation of antioxidative enzymes and antioxidants in cells to defense the oxidative stress. Moreover, IBA alleviates the effects of Cd and mannitol stress on the rooting process partially through the regulation of antioxidative defense systems. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. An aeroponic culture system for the study of root herbivory on Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Vaughan Martha M

    2011-03-01

    Full Text Available Abstract Background Plant defense against herbivory has been studied primarily in aerial tissues. However, complex defense mechanisms have evolved in all parts of the plant to combat herbivore attack and these mechanisms are likely to differ in the aerial and subterranean environment. Research investigating defense responses belowground has been hindered by experimental difficulties associated with the accessibility and quality of root tissue and the lack of bioassays using model plants with altered defense profiles. Results We have developed an aeroponic culture system based on a calcined clay substrate that allows insect herbivores to feed on plant roots while providing easy recovery of the root tissue. The culture method was validated by a root-herbivore system developed for Arabidopsis thaliana and the herbivore Bradysia spp. (fungus gnat. Arabidopsis root mass obtained from aeroponically grown plants was comparable to that from other culture systems, and the plants were morphologically normal. Bradysia larvae caused considerable root damage resulting in reduced root biomass and water absorption. After feeding on the aeroponically grown root tissue, the larvae pupated and emerged as adults. Root damage of mature plants cultivated in aeroponic substrate was compared to that of Arabidopsis seedlings grown in potting mix. Seedlings were notably more susceptible to Bradysia feeding than mature plants and showed decreased overall growth and survival rates. Conclusions A root-herbivore system consisting of Arabidopsis thaliana and larvae of the opportunistic herbivore Bradysia spp. has been established that mimics herbivory in the rhizosphere. Bradysia infestation of Arabidopsis grown in this culture system significantly affects plant performance. The culture method will allow simple profiling and in vivo functional analysis of root defenses such as chemical defense metabolites that are released in response to belowground insect attack.

  9. Comprehensive Transcriptome Analysis Unravels the Existence of Crucial Genes Regulating Primary Metabolism during Adventitious Root Formation in Petunia hybrida

    Science.gov (United States)

    Ahkami, Amirhossein; Scholz, Uwe; Steuernagel, Burkhard; Strickert, Marc; Haensch, Klaus-Thomas; Druege, Uwe; Reinhardt, Didier; Nouri, Eva; von Wirén, Nicolaus; Franken, Philipp; Hajirezaei, Mohammad-Reza

    2014-01-01

    To identify specific genes determining the initiation and formation of adventitious roots (AR), a microarray-based transcriptome analysis in the stem base of the cuttings of Petunia hybrida (line W115) was conducted. A microarray carrying 24,816 unique, non-redundant annotated sequences was hybridized to probes derived from different stages of AR formation. After exclusion of wound-responsive and root-regulated genes, 1,354 of them were identified which were significantly and specifically induced during various phases of AR formation. Based on a recent physiological model distinguishing three metabolic phases in AR formation, the present paper focuses on the response of genes related to particular metabolic pathways. Key genes involved in primary carbohydrate metabolism such as those mediating apoplastic sucrose unloading were induced at the early sink establishment phase of AR formation. Transcriptome changes also pointed to a possible role of trehalose metabolism and SnRK1 (sucrose non-fermenting 1- related protein kinase) in sugar sensing during this early step of AR formation. Symplastic sucrose unloading and nucleotide biosynthesis were the major processes induced during the later recovery and maintenance phases. Moreover, transcripts involved in peroxisomal beta-oxidation were up-regulated during different phases of AR formation. In addition to metabolic pathways, the analysis revealed the activation of cell division at the two later phases and in particular the induction of G1-specific genes in the maintenance phase. Furthermore, results point towards a specific demand for certain mineral nutrients starting in the recovery phase. PMID:24978694

  10. Comprehensive transcriptome analysis unravels the existence of crucial genes regulating primary metabolism during adventitious root formation in Petunia hybrida.

    Directory of Open Access Journals (Sweden)

    Amirhossein Ahkami

    Full Text Available To identify specific genes determining the initiation and formation of adventitious roots (AR, a microarray-based transcriptome analysis in the stem base of the cuttings of Petunia hybrida (line W115 was conducted. A microarray carrying 24,816 unique, non-redundant annotated sequences was hybridized to probes derived from different stages of AR formation. After exclusion of wound-responsive and root-regulated genes, 1,354 of them were identified which were significantly and specifically induced during various phases of AR formation. Based on a recent physiological model distinguishing three metabolic phases in AR formation, the present paper focuses on the response of genes related to particular metabolic pathways. Key genes involved in primary carbohydrate metabolism such as those mediating apoplastic sucrose unloading were induced at the early sink establishment phase of AR formation. Transcriptome changes also pointed to a possible role of trehalose metabolism and SnRK1 (sucrose non-fermenting 1- related protein kinase in sugar sensing during this early step of AR formation. Symplastic sucrose unloading and nucleotide biosynthesis were the major processes induced during the later recovery and maintenance phases. Moreover, transcripts involved in peroxisomal beta-oxidation were up-regulated during different phases of AR formation. In addition to metabolic pathways, the analysis revealed the activation of cell division at the two later phases and in particular the induction of G1-specific genes in the maintenance phase. Furthermore, results point towards a specific demand for certain mineral nutrients starting in the recovery phase.

  11. Nitrogen remobilisation facilitates adventitious root formation on reversible dark-induced carbohydrate depletion in Petunia hybrida

    OpenAIRE

    Zerche, Siegfried; Haensch, Klaus-Thomas; Druege, Uwe; Hajirezaei, Mohammad-Reza

    2016-01-01

    Background Adventitious root (AR) formation in axillary shoot tip cuttings is a crucial physiological process for ornamental propagation that is utilised in global production chains for young plants. In this process, the nitrogen and carbohydrate metabolisms of a cutting are regulated by its total nitrogen content (Nt), dark exposure during transport and irradiance levels at distinct production sites and phases through a specific plasticity to readjust metabolite pools. Here, we examined how ...

  12. Comparison of the root canal debridement ability of two single file systems with a conventional multiple rotary system in long oval-shaped root canals: In vitro study.

    Science.gov (United States)

    Khoshbin, Elham; Shokri, Abbas; Donyavi, Zakieh; Shahriari, Shahriar; Salehimehr, Golsa; Farhadian, Maryam; Kavandi, Zeinab

    2017-08-01

    This study sought to compare the root canal debridement ability of Neolix, Reciproc and ProTaper rotary systems in long oval-shaped root canals. Eighty five extracted single-rooted human teeth with long oval-shaped single root canals were selected and divided into three experimental groups(n=25) and one control group (n= 10). Root canals were filled with Vitapex radiopaque contrast medium and prepared with Neolix, Reciproc or ProTaper systems. The control group only received irrigation. Digital radiographs were obtained at baseline and postoperatively and subjected to digital subtraction. The percentage of reduction in contrast medium was quantified at 0-5 mm and 5-10 mm distances from the apex. The data were analyzed using one-way ANOVA and t-test. The mean percentage of the contrast medium removed was not significantly different in the 0-5mm segment among the three groups ( P =0.6). In the 5-10mm segment a significant difference was found in this regard among the ProTaper and Reciproc groups ( P =0.02) and the highest mean percentage of contrast medium was removed by ProTaper. But, difference between ProTaper and Neolix as well as Neolix and Reciproc was not significant. In Neolix ( P =0.024) and Reciproc ( P =0.002) systems, the mean percentage of the contrast medium removed from the 0-5mm segment was significantly greater than that in 5-10mm segment; however, this difference was not significant in ProTaper group ( P =0.069). Neolix single-file system may be a suitable alternative to ProTaper multiple-file system in debridement of long oval shaped canals. Key words: Root Canal Preparation, Debridement, Root Canal Therapy.

  13. Early nodulins in root nodule development

    NARCIS (Netherlands)

    Scheres, B.

    1990-01-01

    The symbiotic interaction between bacteria of the genus Rhizobium and leguminous plants leads to the formation of root nodules, which are specific nitrogen-fixing organs on the roots of plants. Bacteria enter the root by infection threads, and concomitantly cell

  14. Phosphate-dependent root system architecture responses to salt stress

    KAUST Repository

    Kawa, Dorota; Julkowska, Magdalena; Montero Sommerfeld, Hector; Horst, Anneliek ter; Haring, Michel A; Testerink, Christa

    2016-01-01

    Nutrient availability and salinity of the soil affect growth and development of plant roots. Here, we describe how phosphate availability affects root system architecture (RSA) of Arabidopsis and how phosphate levels modulate responses of the root to salt stress. Phosphate (Pi) starvation reduced main root length and increased the number of lateral roots of Arabidopsis Col-0 seedlings. In combination with salt, low Pi dampened the inhibiting effect of mild salt stress (75mM) on all measured RSA components. At higher NaCl concentrations, the Pi deprivation response prevailed over the salt stress only for lateral root elongation. The Pi deprivation response of lateral roots appeared to be oppositely affected by abscisic acid (ABA) signaling compared to the salt stress response. Natural variation in the response to the combination treatment of salt and Pi starvation within 330 Arabidopsis accessions could be grouped into four response patterns. When exposed to double stress, in general lateral roots prioritized responses to salt, while the effect on main root traits was additive. Interestingly, these patterns were not identical for all accessions studied and multiple strategies to integrate the signals from Pi deprivation and salinity were identified. By Genome Wide Association Mapping (GWAS) 13 genomic loci were identified as putative factors integrating responses to salt stress and Pi starvation. From our experiments, we conclude that Pi starvation interferes with salt responses mainly at the level of lateral roots and that large natural variation exists in the available genetic repertoire of accessions to handle the combination of stresses.

  15. Phosphate-dependent root system architecture responses to salt stress

    KAUST Repository

    Kawa, Dorota

    2016-05-20

    Nutrient availability and salinity of the soil affect growth and development of plant roots. Here, we describe how phosphate availability affects root system architecture (RSA) of Arabidopsis and how phosphate levels modulate responses of the root to salt stress. Phosphate (Pi) starvation reduced main root length and increased the number of lateral roots of Arabidopsis Col-0 seedlings. In combination with salt, low Pi dampened the inhibiting effect of mild salt stress (75mM) on all measured RSA components. At higher NaCl concentrations, the Pi deprivation response prevailed over the salt stress only for lateral root elongation. The Pi deprivation response of lateral roots appeared to be oppositely affected by abscisic acid (ABA) signaling compared to the salt stress response. Natural variation in the response to the combination treatment of salt and Pi starvation within 330 Arabidopsis accessions could be grouped into four response patterns. When exposed to double stress, in general lateral roots prioritized responses to salt, while the effect on main root traits was additive. Interestingly, these patterns were not identical for all accessions studied and multiple strategies to integrate the signals from Pi deprivation and salinity were identified. By Genome Wide Association Mapping (GWAS) 13 genomic loci were identified as putative factors integrating responses to salt stress and Pi starvation. From our experiments, we conclude that Pi starvation interferes with salt responses mainly at the level of lateral roots and that large natural variation exists in the available genetic repertoire of accessions to handle the combination of stresses.

  16. Endodontic implications of the variability of the root canal systems of posterior teeth.

    Science.gov (United States)

    Biggs, J T; Benenati, F W

    1995-01-01

    Variations in the morphology of roots and root canal systems create challenges which the dental practitioner must be able to recognize. Endodontic therapy is predictable and successful only to the extent that the root canal system can be debrided, disinfected and sealed against future contamination. In order to accomplish these goals it is necessary to become familiar with the variability of the system we seek to treat.

  17. Systemic control of cell division and endoreduplication by NAA and BAP by modulating CDKs in root tip cells of Allium cepa.

    Science.gov (United States)

    Tank, Jigna G; Thaker, Vrinda S

    2014-01-01

    Molecular mechanism regulated by auxin and cytokinin during endoreduplication, cell division, and elongation process is studied by using Allium cepa roots as a model system. The activity of CDK genes modulated by auxin and cytokinin during cell division, elongation, and endoreduplication process is explained in this research work. To study the significance of auxin and cytokinin in the management of cell division and endoreduplication process in plant meristematic cells at molecular level endoreduplication was developed in root tips of Allium cepa by giving colchicine treatment. There were inhibition of vegetative growth, formation of c-tumor at root tip, and development of endoreduplicated cells after colchicine treatment. This c-tumor was further treated with NAA and BAP to reinitiate vegetative growth in roots. BAP gave positive response in reinitiation of vegetative growth of roots from center of c-tumor. However, NAA gave negative response in reinitiation of vegetative growth of roots from c-tumor. Further, CDKs gene expression analysis from normal, endoreduplicated, and phytohormone (NAA or BAP) treated root tip was done and remarkable changes in transcription level of CDK genes in normal, endoreduplicated, and phytohormones treated cells were observed.

  18. Artificial Plant Root System Growth for Distributed Optimization: Models and Emergent Behaviors

    Directory of Open Access Journals (Sweden)

    Su Weixing

    2016-01-01

    Full Text Available Plant root foraging exhibits complex behaviors analogous to those of animals, including the adaptability to continuous changes in soil environments. In this work, we adapt the optimality principles in the study of plant root foraging behavior to create one possible bio-inspired optimization framework for solving complex engineering problems. This provides us with novel models of plant root foraging behavior and with new methods for global optimization. This framework is instantiated as a new search paradigm, which combines the root tip growth, branching, random walk, and death. We perform a comprehensive simulation to demonstrate that the proposed model accurately reflects the characteristics of natural plant root systems. In order to be able to climb the noise-filled gradients of nutrients in soil, the foraging behaviors of root systems are social and cooperative, and analogous to animal foraging behaviors.

  19. Salinity-Induced Callus Browning and Re-Differentiation, Root Formation by Plantlets and Anatomical Structures of Plantlet Leaves in Two Malus Species

    International Nuclear Information System (INIS)

    Gou, W.; Zheng, P.; Zheng, P.; Wang, K.; Zhang, L.; Akram, N. A.

    2016-01-01

    Apple (Malus domestica L.) is widely grown in northern China. However, soil salinization has become one of the most severe factors limiting apple productivity in some regions including the Loess Plateau. In our study, the regeneration system of both rootstock Rehd (Malus robusta Rehd) and scion Fuji (Malus domestica Borkh. cv. Fuji) was established In vitro. The two Malus species were cultured on the MS medium containing 0 or 150 mM NaCl to examine salt-induced effects on callus browning and re-differentiation, root formation of plantlets and anatomical structures of plantlet leaves at 15 days old callus and plantlet stages. Salt stress caused a marked increase in callus browning rate, while a decrease in re-differentiation rate, rooting rate, root number and length in both species. Additionally, anatomical structures of plantlet leave showed salt-induced damage such as reduced palisade tissue and intracellular chloroplast, incomplete development of xylem and severe damage of the phloem tissue. Salt stress also caused a few adaptive structural features in leaves including increased thickness of upper and lower epidermis, elevated proportion of spongy tissue and formation of lignified vessels. The responses of the two Malus species did not differ significantly at the differentiation stage. However, they were more sensitive to salinity at the callus stage than those at the plantlet stage in each species. Therefore, callus stage has been found to be more suitable for evaluating responses of the two apple species to salt stress. The Fuji and Rehd could be treated as a good scion/rootstock combination of apple to adapt to soil salinity based on their similar degree of salt stress-tolerance. (author)

  20. Variation of root system characters in collection of semi-dwarf spring barley mutants

    International Nuclear Information System (INIS)

    Nawrot, M.; Zbieszczyk, J.; Maluszynski, M.

    2000-01-01

    The collection of 371 semi-dwarf mutants, derived from 12 spring barley varieties has been used as material for analysis of root system. The mutants have been obtained after mutagenic treatment with N-methyl-N-nitroso urea (MNH), sodium azide (NaN3), gamma-rays and fast neutrons. The following analysis of root system were performed: seminal root growth of 8-day old seedlings, seminal and adventitious root growth of 6-week old plants and dynamics of root growth during first 6 weeks of plant growth. Seminal root length, root number and the length of the first leaf in barley mutants were investigated with the use of paper rollers. Root system analysis of 6-week old plants was performed on genotypes grown in PVC tubes filled with sand, supplemented with 1 mineral salts of MS medium. The following measurements were made: the length of the longest seminal root and the longest adventitious root, the number of adventitious roots and the number of tillers. Analysis of dynamics of root growth during the first six weeks of vegetation was performed at the end of each 7-day growth period in the PVC tubes filled with sand. Great variability in the seminal root length was found in analysed 8-day old seedling population. Almost half of the analysed mutants showed significant root length reduction, but about ten percent of semi-dwarf mutants developed roots with an increased length in comparison to parents. No significant differences were found between analysed mutants and corresponding parent varieties regarding the number of seminal roots. After six weeks of growth, the selected mutants showed differences in the reduction of root length in comparison to the 8-day old seedlings. The results of root growth dynamics indicated that analysed mutants had different patterns in comparison to the parent variety. Differences in the growth dynamics were also observed among the parent varieties. The observed differences in pattern of root growth between mutants and corresponding parents

  1. Root anatomy, morphology, and longevity among root orders in Vaccinium corymbosum (Ericaceae).

    Science.gov (United States)

    Valenzuela-Estrada, Luis R; Vera-Caraballo, Vivianette; Ruth, Leah E; Eissenstat, David M

    2008-12-01

    Understanding root processes at the whole-plant or ecosystem scales requires an accounting of the range of functions within a root system. Studying root traits based on their branching order can be a powerful approach to understanding this complex system. The current study examined the highly branched root system of the ericoid plant, Vaccinium corymbosum L. (highbush blueberry) by classifying its root orders with a modified version of the morphometric approach similar to that used in hydrology for stream classification. Root anatomy provided valuable insight into variation in root function across orders. The more permanent portion of the root system occurred in 4th- and higher-order roots. Roots in these orders had radial growth; the lowest specific root length, N:C ratios, and mycorrhizal colonization; the highest tissue density and vessel number; and the coarsest root diameter. The ephemeral portion of the root system was mainly in the first three root orders. First- and 2nd-order roots were nearly anatomically identical, with similar mycorrhizal colonization and diameter, and also, despite being extremely fine, median lifespans were not very short (115-120 d; estimated with minirhizotrons). Our research underscores the value of examining root traits by root order and its implications to understanding belowground processes.

  2. Strigolactones Suppress Adventitious Rooting in Arabidopsis and Pea1[C][W][OA

    Science.gov (United States)

    Rasmussen, Amanda; Mason, Michael Glenn; De Cuyper, Carolien; Brewer, Philip B.; Herold, Silvia; Agusti, Javier; Geelen, Danny; Greb, Thomas; Goormachtig, Sofie; Beeckman, Tom; Beveridge, Christine Anne

    2012-01-01

    Adventitious root formation is essential for the propagation of many commercially important plant species and involves the formation of roots from nonroot tissues such as stems or leaves. Here, we demonstrate that the plant hormone strigolactone suppresses adventitious root formation in Arabidopsis (Arabidopsis thaliana) and pea (Pisum sativum). Strigolactone-deficient and response mutants of both species have enhanced adventitious rooting. CYCLIN B1 expression, an early marker for the initiation of adventitious root primordia in Arabidopsis, is enhanced in more axillary growth2 (max2), a strigolactone response mutant, suggesting that strigolactones restrain the number of adventitious roots by inhibiting the very first formative divisions of the founder cells. Strigolactones and cytokinins appear to act independently to suppress adventitious rooting, as cytokinin mutants are strigolactone responsive and strigolactone mutants are cytokinin responsive. In contrast, the interaction between the strigolactone and auxin signaling pathways in regulating adventitious rooting appears to be more complex. Strigolactone can at least partially revert the stimulatory effect of auxin on adventitious rooting, and auxin can further increase the number of adventitious roots in max mutants. We present a model depicting the interaction of strigolactones, cytokinins, and auxin in regulating adventitious root formation. PMID:22323776

  3. Genetic association among root morphology, root quality and root yield in ashwagandha (Withania somnifera)

    OpenAIRE

    Kumar Ramesh R.; Reddy Anjaneya Prasanna L.; Subbaiah Chinna J.; Kumar Niranjana A.; Prasad Nagendra H.N.; Bhukya Balakishan

    2011-01-01

    Ashwagandha (Withania somnifera) is a dryland medicinal crop and roots are used as valuable drug in traditional systems of medicine. Morphological variants (morphotypes) and the parental populations were evaluated for root - morphometric, quality and yield traits to study genetic association among them. Root morphometric traits (root length, root diameter, number of secondary roots/ plant) and crude fiber content exhibited strong association among them and ...

  4. Comparative evaluation of dentinal crack formation after root canal preparation using ProTaper Next, OneShape, and Hyflex EDM.

    Science.gov (United States)

    Das, Sanjib; Pradhan, Prasanti Kumari; Lata, S; Sinha, Sachidananda Prasad

    2018-01-01

    The purpose of this study was to compare the incidence of dentinal crack formation after root canal preparation using ProTaper Next, OneShape, and Hyflex electrodischarge machining (HEDM). A total of 75 extracted mandibular premolars were selected. The root canals were instrumented using ProTaper Next, OneShape, and HEDM rotary files. All roots were horizontally sectioned at 3, 6, and 9 mm from apex with slow-speed saw under water cooling. The sections were observed under a stereomicroscope at ×25 to determine the absence or presence of crack. Data were analyzed using post hoc test and one-way ANOVA. ProTaper Next and HEDM produced significantly less cracks than OneShape. Within the limitation of this in vitro study, it can be concluded that nickel-titanium instruments may cause cracks on the root surface. ProTaper Next and HEDM tend to produce less number of cracks as compared to OneShape.

  5. The effect of sugars in relation to methyl jasmonate on anthocyanin formation in the roots of Kalanchoe blossfeldiana (Poelln.

    Directory of Open Access Journals (Sweden)

    Justyna Góraj-Koniarska

    2015-07-01

    Full Text Available This study investigated the effects of different sugars (sucrose, fructose, glucose and sugar alcohols (mannitol, sorbitol applied alone and in solution with methyl jasmonate (JA-Me on the anthocyanin content in the roots of Kalanchoe blossfeldiana. None of the sugars used individually in the experiment affected anthocyanin accumulation in the roots of intact plants. The anthocyanin level was similar to that in the control. Sucrose at concentrations of 0.5% and 3.0%, and glucose at a concentration of 3.0% inhibited anthocyanin accumulation induced by JA-Me. Only fructose at a concentration of 3.0% stimulated anthocyanin accumulation induced by JA-Me. The sugar alcohols, mannitol at a concentration of 3.0% and sorbitol at 0.5% and 3.0%, inhibited anthocyanin accumulation in the roots of intact K. blossfeldiana plants induced by JA-Me. In excised roots, both sugars and JA-Me used individually did not affect the formation of anthocyanins. Also, the sugar alcohols (mannitol and sorbitol applied simultaneously with JA-Me had no effect on the accumulation of anthocyanins. However, roots treated with sugars (sucrose, fructose, glucose in solution with JA-Me promoted the induction of anthocyanins in the apical parts of the roots.  The results suggest that anthocyanin elicitation in the roots of K. blossfeldiana by methyl jasmonate may be dependent on the interaction of JA-Me with sugars transported from the stems (leaves to the roots.

  6. The bifunctional abiotic stress signalling regulator and endogenous RNA silencing suppressor FIERY1 is required for lateral root formation

    KAUST Repository

    Chen, Hao

    2010-09-28

    The Arabidopsis FIERY1 (FRY1) locus was originally identified as a negative regulator of stress-responsive gene expression and later shown to be required for suppression of RNA silencing. In this study we discovered that the FRY1 locus also regulates lateral root formation. Compared with the wild type, fry1 mutant seedlings generated significantly fewer lateral roots under normal growth conditions and also exhibited a dramatically reduced sensitivity to auxin in inducing lateral root initiation. Using transgenic plants that overexpress a yeast homolog of FRY1 that possesses only the 3\\', 5\\'-bisphosphate nucleotidase activity but not the inositol 1-phosphatase activity, we demonstrated that the lateral root phenotypes in fry1 result from loss of the nucleotidase activity. Furthermore, a T-DNA insertion mutant of another RNA silencing suppressor, XRN4 (but not XRN2 or XRN3), which is an exoribonuclease that is inhibited by the substrate of the FRY1 3\\', 5\\'-bisphosphate nucleotidase, exhibits similar lateral root defects. Although fry1 and xrn4 exhibited reduced sensitivity to ethylene, our experiments demonstrated that restoration of ethylene sensitivity in the fry1 mutant is not sufficient to rescue the lateral root phenotypes of fry1. Our results indicate that RNA silencing modulated by FRY1 and XRN4 plays an important role in shaping root architecture. © 2010 Blackwell Publishing Ltd.

  7. Plant-plant interactions influence developmental phase transitions, grain productivity and root system architecture in Arabidopsis via auxin and PFT1/MED25 signalling.

    Science.gov (United States)

    Muñoz-Parra, Edith; Pelagio-Flores, Ramón; Raya-González, Javier; Salmerón-Barrera, Guadalupe; Ruiz-Herrera, León Francisco; Valencia-Cantero, Eduardo; López-Bucio, José

    2017-09-01

    Transcriptional regulation of gene expression influences plant growth, environmental interactions and plant-plant communication. Here, we report that population density is a key factor for plant productivity and a major root architectural determinant in Arabidopsis thaliana. When grown in soil at varied densities from 1 to 32 plants, high number of individuals decreased stem growth and accelerated senescence, which negatively correlated with total plant biomass and seed production at the completion of the life cycle. Root morphogenesis was also a major trait modulated by plant density, because an increasing number of individuals grown in vitro showed repression of primary root growth, lateral root formation and root hair development while affecting auxin-regulated gene expression and the levels of auxin transporters PIN1 and PIN2. We also found that mutation of the Mediator complex subunit PFT1/MED25 renders plants insensitive to high density-modulated root traits. Our results suggest that plant density is critical for phase transitions, productivity and root system architecture and reveal a role of Mediator in self-plant recognition. © 2017 John Wiley & Sons Ltd.

  8. Morphology and biomass variations in root system of young tomato plants (Solanum sp.)

    International Nuclear Information System (INIS)

    Álvarez Gil, Marta A.; Fernández, Ana Fita; Ruiz Sánchez, María del C.; Bolarín Jiménez, María del C.

    2016-01-01

    The scarce exploitation of genotypic variability present in plant roots is an attractive breeding choice with regard to abiotic stresses and supports the objective of this work, which is to identify genotypic variation in root system traits of tomato genotypes (Solanum sp.). Thus, five tomato genotypes were studied: the commercial hybrid cultivar Jaguar (S. lycopersicum), Pera, Volgogradiskij and PE-47 entry (S. pennellii), which were collected in Peru, and the interspecific hybrid PeraxPE-47. Plants were grown in hydroponics for 26 days since germination; their roots were extracted and images were digitalized on scanner to evaluate total length, average diameter, the projected area and root length, following the categories per diameter of the whole root system through software Win Rhizo Pro 2003. The dry mass of roots and aerial parts was also recorded. Results indicated that genotypes differed in morphology, length according to diameter, root system spatial configuration and biomass, mainly with respect to the wild salinity resistant species PE-47. The interspecific hybrid PxPE-47 could be used as a rootstock to increase salt tolerance of susceptible cultivars. (author)

  9. MMS control system analysis using automated root-locus plot generation

    International Nuclear Information System (INIS)

    Hefler, J.W.

    1987-01-01

    Use of the Modular Modeling System (MMS) for control systems improvement has been impeded by the need to plot eigenvalues manually. This problem has been solved by an automatic eigenvalue plotting routine. A practical procedure for control systems analysis based upon automatically generated root-locus plots has been developed using the Advanced Continuous Simulation Language (ACSL)-based version of the Modular Modeling System. Examples are given of typical ACSL run-time statements. Actual root-locus and time history plots are shown for simple models (4 state variables). More complex models are discussed. The plots show the control systems response before and after the determination of tuning parameters using the methods described

  10. Solving polynomial systems using no-root elimination blending schemes

    KAUST Repository

    Barton, Michael

    2011-12-01

    Searching for the roots of (piecewise) polynomial systems of equations is a crucial problem in computer-aided design (CAD), and an efficient solution is in strong demand. Subdivision solvers are frequently used to achieve this goal; however, the subdivision process is expensive, and a vast number of subdivisions is to be expected, especially for higher-dimensional systems. Two blending schemes that efficiently reveal domains that cannot contribute by any root, and therefore significantly reduce the number of subdivisions, are proposed. Using a simple linear blend of functions of the given polynomial system, a function is sought after to be no-root contributing, with all control points of its BernsteinBézier representation of the same sign. If such a function exists, the domain is purged away from the subdivision process. The applicability is demonstrated on several CAD benchmark problems, namely surfacesurfacesurface intersection (SSSI) and surfacecurve intersection (SCI) problems, computation of the Hausdorff distance of two planar curves, or some kinematic-inspired tasks. © 2011 Elsevier Ltd. All rights reserved.

  11. Optical methods for creating delivery systems of chemical compounds to plant roots

    Science.gov (United States)

    Kuznetsov, Pavel E.; Rogacheva, Svetlana M.; Arefeva, Oksana A.; Minin, Dmitryi V.; Tolmachev, Sergey A.; Kupadze, Machammad S.

    2004-08-01

    Spectrophotometric and fluorescence methods have been used for creation and investigation of various systems of target delivery of chemical compounds to roots of plants. The possibility of using liposomes, incrusted by polysaccharides of the external surface of nitrogen-fixing rizospheric bacteria Azospirillum brasilense SP 245, and nanoparticles incrusted by polysaccharides of wheat roots, as the named systems has been shown. The important role of polysaccharide-polysaccharide interaction in the adsorption processes of bacteria on wheat roots has been demonstrated.

  12. Descendant root volume varies as a function of root type: estimation of root biomass lost during uprooting in Pinus pinaster.

    Science.gov (United States)

    Danjon, Frédéric; Caplan, Joshua S; Fortin, Mathieu; Meredieu, Céline

    2013-01-01

    Root systems of woody plants generally display a strong relationship between the cross-sectional area or cross-sectional diameter (CSD) of a root and the dry weight of biomass (DWd) or root volume (Vd) that has grown (i.e., is descendent) from a point. Specification of this relationship allows one to quantify root architectural patterns and estimate the amount of material lost when root systems are extracted from the soil. However, specifications of this relationship generally do not account for the fact that root systems are comprised of multiple types of roots. We assessed whether the relationship between CSD and Vd varies as a function of root type. Additionally, we sought to identify a more accurate and time-efficient method for estimating missing root volume than is currently available. We used a database that described the 3D root architecture of Pinus pinaster root systems (5, 12, or 19 years) from a stand in southwest France. We determined the relationship between CSD and Vd for 10,000 root segments from intact root branches. Models were specified that did and did not account for root type. The relationships were then applied to the diameters of 11,000 broken root ends to estimate the volume of missing roots. CSD was nearly linearly related to the square root of Vd, but the slope of the curve varied greatly as a function of root type. Sinkers and deep roots tapered rapidly, as they were limited by available soil depth. Distal shallow roots tapered gradually, as they were less limited spatially. We estimated that younger trees lost an average of 17% of root volume when excavated, while older trees lost 4%. Missing volumes were smallest in the central parts of root systems and largest in distal shallow roots. The slopes of the curves for each root type are synthetic parameters that account for differentiation due to genetics, soil properties, or mechanical stimuli. Accounting for this differentiation is critical to estimating root loss accurately.

  13. Establishment of a transgenic hairy root system in wild and domesticated watermelon (Citrullus lanatus) for studying root vigor under drought.

    Science.gov (United States)

    Kajikawa, Masataka; Morikawa, Kaoru; Abe, Yosuke; Yokota, Akiho; Akashi, Kinya

    2010-07-01

    Root vigor is an important trait for the growth of terrestrial plants, especially in water-deficit environments. Although deserts plants are known for their highly developed root architecture, the molecular mechanism responsible for this trait has not been determined. Here we established an efficient protocol for the genetic manipulation of two varieties of watermelon plants: a desert-grown wild watermelon that shows vigorous root growth under drought, and a domesticated cultivar showing retardation of root growth under drought stress. Agrobacterium rhizogenes-mediated transgenic hairy roots were efficiently induced and selected from the hypocotyls of these plants. Transgenic GUS expression was detected in the roots by RT-PCR and histochemical GUS staining. Moreover, a liquid culture system for evaluating their root growth was also established. Interestingly, growth of the hairy roots derived from domesticated variety of watermelon strongly inhibited under high osmotic condition, whereas the hairy roots derived from wild variety of watermelon retained substantial growth rates under the stress condition. The new protocol presented here offers a powerful tool for the comparative study of the molecular mechanism underlying drought-induced root growth in desert plants.

  14. Production of aventitious root of eurycoma longifolia jack using air-lift bioreactor system

    International Nuclear Information System (INIS)

    Wan Nazirah Wan Ali; Siti Sarah Abd Wahab; Zakaria Seman; Muhammad Ruzaini Abdul Wahab; Mohamad Rozi Mohamed Yasin; Sobri Hussein; Abdul Rahim Harun; Azhar Mohamad; Rusli Ibrahim

    2009-01-01

    In Malaysia the Eurycoma longifolia is better known as a Tongkat Ali, where it has great local demand as a health tonic. Observation after 3 months revealed that modified MS medium (1/2 Nitrate) supplemented with IBA at 5.0 mg/L and 6.0 mg/L (5% sucrose) was found to be the best formulation for adventitious root induction. The data obtained showed that 70% (10 + 2 adventitious root per explants) of the explants cultured formed the adventitious root in both treatments. Other treatments tested within the range (1.0- 10.0 mg/L) produced less than four adventitious roots per explant. Meanwhile, in the treatment using IAA, the highest formation of root was recorded in 7.0 mg/L with the number of root produced was 3 + 1 per explant. Apart from that, observation after 2 months revealed that 4 + 1 adventitious root per explant was observed in the treatment using 4 mg/L NAA. The chemical profiling studies was carried out by focusing on the production of 9-methoxycanthine-6-one in callus derived from different explants, namely leaf, petiole, rachis and root. The R f value spots of 9-methoxycanthine-6-one (obtained from the TLC) analysis showed a yellowish green in colour when observed under UV light at 366 nm. Based on the intensity and size of the spots on the chromatogram, it was detected that concentration of 9-methoxycanthine-6-one in root-derived callus was generally higher as compared to other calluses. Therefore, adventitious root culture can be an attractive as it is highly differentiated and can cause stable and extensive production of secondary metabolites. (Author)

  15. Distribution of the root system of peach palm under drip irrigation

    Directory of Open Access Journals (Sweden)

    Adriano da Silva Lopes

    2014-07-01

    Full Text Available The incorporation of technologies has resulted in increased productivity and the more rational management of peach palm, with irrigation being an important tool for certain regions. Thus, studies leading to proper crop management are extremely important, such as the estimate of the effective depth of the root system, which is indispensable for proper irrigation management. The objective of this study was to evaluate the effects of different irrigation depths, as applied by drip irrigation, on the distribution of the root system of peach palm. This experiment was conducted in Ilha Solteira, São Paulo State, Brazil, with drip irrigation, with the two systems (flow of 0.0023 m3 h-1 consisting of four irrigation treatments corresponding to 0, 50, 100 and 150% of Class ‘A’ pan evaporation. After five years, an analysis of the Bactris gasipaes root system was performed at a distance of 0.0, 0.5 and 1.0 meters from the trunk, collecting sampling at two depths (0.0 to 0.3 m and 0.3 to 0.6 m via the auger method (volumetric analysis. We concluded that the effective depth of the root system used for irrigation management should be a maximum of 0.3 meters.

  16. Effectiveness of EDTA as the irrigation solution to remove smear layer in root canal

    Directory of Open Access Journals (Sweden)

    Kurniasri Amas Achiar

    2009-07-01

    Full Text Available One of the objectives of successful endodontic treatment is the hermetic obturation of the root canal system. To achieve this, the root canal filling must seal the canal space both apically and coronally to prevent the ingress of microorganisms or tissue fluids into the canal space. Apical leakage is reported a common reason for the clinical failure of endodontic therapy. Leakage through an obturated root canal is expected to take place at interfaces between sealer and dentin or sealer and gutta-percha, or through voids within the sealer. Hence, the sealing quality of root canal filling depends much on the sealing ability of the sealer. Therefore, anything that may influence the adaptation of the root filling to the canal wall is can determine the degree and the extent of leakage, and ultimately the prognosis of the endodontic therapy. In endodontic therapy, the smear layer formation results from root canal preparation and may influence the effective seal of the root canal system. The smear layer formation is mainly composed of inorganic components (dentin debris and organic materials, such as pulp tissue remnant, bacteria, and blood cells. Removal of the smear layer from the root canal walls before the obturation can reduce the leakage of root canal sealer. To remove the smear layer use 10 ml 17% EDTA followed by 10 ml of 5.25% NaOCl as irrigating solution. This paper discribe about how the effectivity of EDTA as irigating solution to remove the smear layer especially in the apical root canal with many lateral canal to reduce the apical leakage.

  17. IBA levels and substrates in the rooting of UENF/CALIMAN 02 hybrid papaya minicuttings in a semi-hydroponic system

    Directory of Open Access Journals (Sweden)

    Márcio José Vieira de Oliveira

    2018-02-01

    Full Text Available Abstract Mini-cutting is a technique with large applications in various crops, mainly due to the increase in the percentage and quality of adventitious roots, reducing time for the formation of clonal seedlings. The aim of this study was to evaluate IBA levels and substrates on the rooting of UENF/CALIMAN 02 hybrid papaya mini-cuttings. To perform the experiment, papaya mini-cuttings were taken from mother plants grown in pots in greenhouse, induced to produce shoots through pruning and growth regulator applications. Mini-cuttings were fixed in vermiculite or coconut fiver substrates placed in alveolate trays with 4.5x4.5x5.0 cm cells, and styrofoam trays were placed in plastic trays where different IBA levels were added in a modified Hoagland solution. After 45 days, rooted buds were transplanted to plastic pots of 600 mL of volume with soil, sand, well-cured bovine fertilizer, in the proportion of 3:1:1, remaining for 45 days. When they were taken from pots, roots were carefully washed, and the length of shoots, length of the largest root, dried mass of shoots and radicular system and root percentage were measured. The experiment was set up in a randomized complete block 5 x 2 factorial design, with 5 IBA levels: 0; 2.5; 5.0; 7.5 and 10 mg L-1, two substrates: vermiculite and coconut fiber, three replicates, with six plants per replicate. IBA levels of 5.0 mg L-1 and substrate vermiculite are the most adequate for the rooting of ‘UENF/CALIMAN 02’ papaya mini-cuttings in semi-hydroponic system in alveolate styrofoam trays with 4.5x4.5x5.0 cm cells.

  18. Effect of Instrumentation Length and Instrumentation Systems: Hand Versus Rotary Files on Apical Crack Formation - An In vitro Study.

    Science.gov (United States)

    Devale, Madhuri R; Mahesh, M C; Bhandary, Shreetha

    2017-01-01

    Stresses generated during root canal instrumentation have been reported to cause apical cracks. The smaller, less pronounced defects like cracks can later propagate into vertical root fracture, when the tooth is subjected to repeated stresses from endodontic or restorative procedures. This study evaluated occurrence of apical cracks with stainless steel hand files, rotary NiTi RaCe and K3 files at two different instrumentation lengths. In the present in vitro study, 60 mandibular premolars were mounted in resin blocks with simulated periodontal ligament. Apical 3 mm of the root surfaces were exposed and stained using India ink. Preoperative images of root apices were obtained at 100x using stereomicroscope. The teeth were divided into six groups of 10 each. First two groups were instrumented with stainless steel files, next two groups with rotary NiTi RaCe files and the last two groups with rotary NiTi K3 files. The instrumentation was carried out till the apical foramen (Working Length-WL) and 1 mm short of the apical foramen (WL-1) with each file system. After root canal instrumentation, postoperative images of root apices were obtained. Preoperative and postoperative images were compared and the occurrence of cracks was recorded. Descriptive statistical analysis and Chi-square tests were used to analyze the results. Apical root cracks were seen in 30%, 35% and 20% of teeth instrumented with K-files, RaCe files and K3 files respectively. There was no statistical significance among three instrumentation systems in the formation of apical cracks (p=0.563). Apical cracks were seen in 40% and 20% of teeth instrumented with K-files; 60% and 10% of teeth with RaCe files and 40% and 0% of teeth with K3 files at WL and WL-1 respectively. For groups instrumented with hand files there was no statistical significance in number of cracks at WL and WL-1 (p=0.628). But for teeth instrumented with RaCe files and K3 files significantly more number of cracks were seen at WL than

  19. The effect of four different irrigation systems in the removal of a root canal sealer.

    Science.gov (United States)

    Grischke, J; Müller-Heine, A; Hülsmann, M

    2014-09-01

    The aim of this study was to compare the efficiency of sonic, ultrasonic, and hydrodynamic devices in the removal of a root canal sealer from the surface and from simulated irregularities of root canals. Fifty-three root canals with two standardized grooves in the apical and coronal parts of longitudinally split roots were covered with AH Plus root canal sealer. Compared were the effects of (control) syringe irrigation, (1) CanalBrush, (2) passive ultrasonic irrigation, (3) EndoActivator, and (4) RinsEndo on the removal of the sealer. The specimens were divided into four groups (N = 12) and one control group (N = 5) via randomization. The amount of remaining sealer in the root canal irregularities was evaluated under a microscope using a 4-grade scoring system, whereas the remaining sealer on the root canal surface was evaluated with a 7-grade scoring system. Passive ultrasonic irrigation is more effective than the other tested irrigation systems or syringe irrigation in removing sealer from root canal walls (p irrigation shows a superior effect on sealer removal from the root canal surface during endodontic retreatment. Cleaning of lateral grooves seems not to be possible with one of the techniques investigated. Incomplete removal of root canal sealer during re-treatment may cause treatment failure. Passive Ultrasonic irrigation seems to be the most effective system to remove sealer from a root canal.

  20. The function of root-systems in mineral nutrition of watercress (Rorippa nasturtium-Aquaticum (L) Hayek)

    International Nuclear Information System (INIS)

    Cumbus, I.P.; Robinson, L.W.

    1977-01-01

    The ability of 'adventitious' and 'basal' root systems of watercress (Rorippa nasturtium-aquaticum (L) Hayek) to absorb mineral nutrients from surrounding media is demonstrated using radioisotopes 32 P, 86 Rb and 59 Fe. Controlled experiments on single whole plants cultured in a dual-medium-apparatus, indicate that both root systems have a capacity for nutrient absorption. Analysis of axillary shoots formed during a seven day experimental period show that a greater proportion of phosphate and potassium, gained from the ambient media, was absorbed by the adventitious root system, although there was a greater mass of basal root tissue. Extensive translocation of nutrients to actively growing plant organs occurs from absorption sites on both root systems

  1. Locally Finite Root Supersystems

    OpenAIRE

    Yousofzadeh, Malihe

    2013-01-01

    We introduce the notion of locally finite root supersystems as a generalization of both locally finite root systems and generalized root systems. We classify irreducible locally finite root supersystems.

  2. Extension of the root-locus method to a certain class of fractional-order systems.

    Science.gov (United States)

    Merrikh-Bayat, Farshad; Afshar, Mahdi; Karimi-Ghartemani, Masoud

    2009-01-01

    In this paper, the well-known root-locus method is developed for the special subset of linear time-invariant systems commonly known as fractional-order systems. Transfer functions of these systems are rational functions with polynomials of rational powers of the Laplace variable s. Such systems are defined on a Riemann surface because of their multi-valued nature. A set of rules for plotting the root loci on the first Riemann sheet is presented. The important features of the classical root-locus method such as asymptotes, roots condition on the real axis and breakaway points are extended to the fractional case. It is also shown that the proposed method can assess the closed-loop stability of fractional-order systems in the presence of a varying gain in the loop. Moreover, the effect of perturbation on the root loci is discussed. Three illustrative examples are presented to confirm the effectiveness of the proposed algorithm.

  3. RootJS: Node.js Bindings for ROOT 6

    Science.gov (United States)

    Beffart, Theo; Früh, Maximilian; Haas, Christoph; Rajgopal, Sachin; Schwabe, Jonas; Wolff, Christoph; Szuba, Marek

    2017-10-01

    We present rootJS, an interface making it possible to seamlessly integrate ROOT 6 into applications written for Node.js, the JavaScript runtime platform increasingly commonly used to create high-performance Web applications. ROOT features can be called both directly from Node.js code and by JIT-compiling C++ macros. All rootJS methods are invoked asynchronously and support callback functions, allowing non-blocking operation of Node.js applications using them. Last but not least, our bindings have been designed to platform-independent and should therefore work on all systems supporting both ROOT 6 and Node.js. Thanks to rootJS it is now possible to create ROOT-aware Web applications taking full advantage of the high performance and extensive capabilities of Node.js. Examples include platforms for the quality assurance of acquired, reconstructed or simulated data, book-keeping and e-log systems, and even Web browser-based data visualisation and analysis.

  4. Evaluation of the root canal shaping ability of two rotary nickel-titanium systems.

    Science.gov (United States)

    Al-Manei, K K; Al-Hadlaq, S M S

    2014-10-01

    The aim was to investigate the canal shaping abilities of the twisted file (TF) and GT series X file (GTX) systems. Sixty mesial root canals of mandibular molars with curvatures of 15-50° were divided randomly into two groups of 30 canals each. The teeth were sectioned horizontally at 3, 6 and 9 mm from the apex. Root canals were prepared with TF and GTX files, respectively, and the shaping abilities of the systems were evaluated at three levels (coronal, middle and apical) based on the comparison of pre- and post-instrumentation photographs using AutoCAD software. Preparation time was also assessed. Data from the two groups were compared statistically using the Student's t-test. There was no significant difference between the rotary systems in terms of change in root canal cross-sectional area, root canal transportation, centring ability or minimum dentine thickness. Remaining dentine thickness at the coronal and middle levels was similar in the TF and GTX groups, but GTX instruments left significantly less dentine than TF instruments on the mesial aspects of root canals at the apical level. Root canal preparation with TF instruments required significantly less time than with GTX instruments. The TF and GTX NiTi rotary instruments showed similar shaping abilities, but root canal preparation was more rapid with the TF than with the GTX system. © 2014 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  5. Onion root tip cell system for biodosimetry?

    International Nuclear Information System (INIS)

    Paradiz, J; Druskovic, B.; Lovka, M.; Skrk, J.

    1996-01-01

    Methodology for radiation dose assessment based on chromosomal damage to plant cells has no yet been established, although root meristems have been the pioneer cytogenetic materials and profound analyses of irradiated meristematic cells of horse bean (Viciafaba L.) had been performed. Onion (Allium cepa L.) root tips frequently used for radiation cytogenetic studies, are recently considered to be one of the most promising plant test system for the detection of genotoxic environmental pollutants. We studied the possibility of using cytogenetic analyses of irradiated onion cells to determine the effective biological dose of ionizing radiation. The dose-effect relationships for chromosomal damages to onion meristematic cells were established after plants had been irradiated and subsequently grown in both laboratory and field conditions

  6. Tree root intrusion in sewer systems: A review of extent and costs

    Science.gov (United States)

    T.B. Randrup; E.G. McPherson; L.R. Costello

    2001-01-01

    Interference between trees and sewer systems is likely to occur in old systems and in cracked pipes. Factors that contribute to damage include old pipes with joints, shallow pipes, small-dimension pipes, and fast-growing tree species. Because roots are reported to cause >50% of all sewer blockages, costs associated with root removal from sewers is substantial. In...

  7. Effect of Instrumentation Length and Instrumentation Systems: Hand Versus Rotary Files on Apical Crack Formation – An In vitro Study

    Science.gov (United States)

    Mahesh, MC; Bhandary, Shreetha

    2017-01-01

    Introduction Stresses generated during root canal instrumentation have been reported to cause apical cracks. The smaller, less pronounced defects like cracks can later propagate into vertical root fracture, when the tooth is subjected to repeated stresses from endodontic or restorative procedures. Aim This study evaluated occurrence of apical cracks with stainless steel hand files, rotary NiTi RaCe and K3 files at two different instrumentation lengths. Materials and Methods In the present in vitro study, 60 mandibular premolars were mounted in resin blocks with simulated periodontal ligament. Apical 3 mm of the root surfaces were exposed and stained using India ink. Preoperative images of root apices were obtained at 100x using stereomicroscope. The teeth were divided into six groups of 10 each. First two groups were instrumented with stainless steel files, next two groups with rotary NiTi RaCe files and the last two groups with rotary NiTi K3 files. The instrumentation was carried out till the apical foramen (Working Length-WL) and 1 mm short of the apical foramen (WL-1) with each file system. After root canal instrumentation, postoperative images of root apices were obtained. Preoperative and postoperative images were compared and the occurrence of cracks was recorded. Descriptive statistical analysis and Chi-square tests were used to analyze the results. Results Apical root cracks were seen in 30%, 35% and 20% of teeth instrumented with K-files, RaCe files and K3 files respectively. There was no statistical significance among three instrumentation systems in the formation of apical cracks (p=0.563). Apical cracks were seen in 40% and 20% of teeth instrumented with K-files; 60% and 10% of teeth with RaCe files and 40% and 0% of teeth with K3 files at WL and WL-1 respectively. For groups instrumented with hand files there was no statistical significance in number of cracks at WL and WL-1 (p=0.628). But for teeth instrumented with RaCe files and K3 files

  8. Study of the system of tuberous root induction in vitro from ...

    African Journals Online (AJOL)

    Abstract. This study investigated the induction system of tuberous root in vitro from Rehmannia glutinosa. The roles of plant growth substance, carbohydrates, and minerals were evaluated for induction and development of tuberous root in vitro. The results show that Murashige and Skoog (MS) contributed greatly to induction ...

  9. Origin, timing, and gene expression profile of adventitious rooting in Arabidopsis hypocotyls and stems.

    Science.gov (United States)

    Welander, Margareta; Geier, Thomas; Smolka, Anders; Ahlman, Annelie; Fan, Jing; Zhu, Li-Hua

    2014-02-01

    Adventitious root (AR) formation is indispensable for vegetative propagation, but difficult to achieve in many crops. Understanding its molecular mechanisms is thus important for such species. Here we aimed at developing a rooting protocol for direct AR formation in stems, locating cellular AR origins in stems and exploring molecular differences underlying adventitious rooting in hypocotyls and stems. In-vitro-grown hypocotyls or stems of wild-type and transgenic ecotype Columbia (Col-0) of Arabidopsis thaliana were rooted on rooting media. Anatomy of AR formation, qRT-PCR of some rooting-related genes and in situ GUS expression were carried out during rooting from hypocotyls and stems. We developed a rooting protocol for AR formation in stems and traced back root origins in stems by anatomical and in situ expression studies. Unlike rooting in hypocotyls, rooting in stems was slower, and AR origins were mainly from lateral parenchyma of vascular bundles and neighboring starch sheath cells as well as, to a lesser extent, from phloem cap and xylem parenchyma. Transcript levels of GH3-3, LBD16, LBD29, and LRP1 in hypocotyls and stems were similar, but transcript accumulation was delayed in stems. In situ expression signals of DR5::GUS, LBD16::GUS, LBD29::GUS, and rolB::GUS reporters in stems mainly occurred at the root initiation sites, suggesting their involvement in AR formation. We have developed an efficient rooting protocol using half-strength Lepoivre medium for studying AR formation in stems, traced back the cellular AR origins in stems, and correlated expression of rooting-related genes with root initiation sites.

  10. Farming system context drives the value of deep wheat roots in semi-arid environments.

    Science.gov (United States)

    Lilley, Julianne M; Kirkegaard, John A

    2016-06-01

    The capture of subsoil water by wheat roots can make a valuable contribution to grain yield on deep soils. More extensive root systems can capture more water, but leave the soil in a drier state, potentially limiting water availability to subsequent crops. To evaluate the importance of these legacy effects, a long-term simulation analysis at eight sites in the semi-arid environment of Australia compared the yield of standard wheat cultivars with cultivars that were (i) modified to have root systems which extract more water at depth and/or (ii) sown earlier to increase the duration of the vegetative period and hence rooting depth. We compared simulations with and without annual resetting of soil water to investigate the legacy effects of drier subsoils related to modified root systems. Simulated mean yield benefits from modified root systems declined from 0.1-0.6 t ha(-1) when annually reset, to 0-0.2 t ha(-1) in the continuous simulation due to a legacy of drier soils (mean 0-32mm) at subsequent crop sowing. For continuous simulations, predicted yield benefits of >0.2 t ha(-1) from more extensive root systems were rare (3-10% of years) at sites with shallow soils (<1.0 m), but occurred in 14-44% of years at sites with deeper soils (1.6-2.5 m). Earlier sowing had a larger impact than modified root systems on water uptake (14-31 vs 2-17mm) and mean yield increase (up to 0.7 vs 0-0.2 t ha(-1)) and the benefits occurred on deep and shallow soils and in more years (9-79 vs 3-44%). Increasing the proportion of crops in the sequence which dry the subsoil extensively has implications for the farming system productivity, and the crop sequence must be managed tactically to optimize overall system benefits. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  11. Effect of Different Torque Settings on Crack Formation in Root Dentin.

    Science.gov (United States)

    Dane, Asım; Capar, Ismail Davut; Arslan, Hakan; Akçay, Merve; Uysal, Banu

    2016-02-01

    The aim of the present study was to observe the incidence of cracks in root canal dentin using the ProTaper Universal system (Dentsply Maillefer, Ballaigues, Switzerland) at low- and high-torque settings. Sixty-nine mandibular premolar teeth that had been extracted for different reasons were selected. The teeth were divided into 3 groups: an unprepared control group, a low-torque settings group (SX = 3, S1 = 2, S2 = 1, F1 = 1.5, F2 = 2, F3 = 2, F4 = 2 N/cm), and a high-torque settings group (SX = 4, S1 = 4, S2 = 1.5, F1 = 2, F2 = 3, F3 = 3, F4 = 3 N/cm). After a root canal procedure, all the teeth were horizontally sectioned at 2, 4, 6, and 8 mm from the apex. Then, under a stereomicroscope, all the slices were examined to determine the presence of cracks. A chi-square test was used for data analysis. The significance level was set at P = .05. There were no cracks in the unprepared control group. Vertical root fractures were not observed in any of the groups. There were significantly fewer cracks (17.4% of the sections) in the low-torque group than in the high-torque group (29.4% of the sections) (P torque than at low-torque settings. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  12. Effect of reciprocating file motion on microcrack formation in root canals: an SEM study.

    Science.gov (United States)

    Ashwinkumar, V; Krithikadatta, J; Surendran, S; Velmurugan, N

    2014-07-01

    To compare dentinal microcrack formation whilst using Ni-Ti hand K-files, ProTaper hand and rotary files and the WaveOne reciprocating file. One hundred and fifty mandibular first molars were selected. Thirty teeth were left unprepared and served as controls, and the remaining 120 teeth were divided into four groups. Ni-Ti hand K-files, ProTaper hand files, ProTaper rotary files and WaveOne Primary reciprocating files were used to prepare the mesial canals. Roots were then sectioned 3, 6 and 9 mm from the apex, and the cut surface was observed under scanning electron microscope (SEM) and checked for the presence of dentinal microcracks. The control and Ni-Ti hand K-files groups were not associated with microcracks. In roots prepared with ProTaper hand files, ProTaper rotary files and WaveOne Primary reciprocating files, dentinal microcracks were present. There was a significant difference between control/Ni-Ti hand K-files group and ProTaper hand files/ProTaper rotary files/WaveOne Primary reciprocating file group (P ProTaper rotary files producing the most microcracks. No significant difference was observed between teeth prepared with ProTaper hand files and WaveOne Primary reciprocating files. ProTaper rotary files were associated with significantly more microcracks than ProTaper hand files and WaveOne Primary reciprocating files. Ni-Ti hand K-files did not produce microcracks at any levels inside the root canals. © 2013 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  13. Regolith properties under trees and the biomechanical effects caused by tree root systems as recognized by electrical resistivity tomography (ERT)

    Science.gov (United States)

    Pawlik, Łukasz; Kasprzak, Marek

    2018-01-01

    Following previous findings regarding the influence of vascular plants (mainly trees) on weathering, soil production and hillslope stability, in this study, we attempted to test a hypothesis regarding significant impacts of tree root systems on soil and regolith properties. Different types of impacts from tree root system (direct and indirect) are commonly gathered under the key term of "biomechanical effects". To add to the discussion of the biomechanical effects of trees, we used a non-invasive geophysical method, electrical resistivity tomography (ERT), to investigate the profiles of four different configurations at three study sites within the Polish section of the Outer Western Carpathians. At each site, one long profile (up to 189 m) of a large section of a hillslope and three short profiles (up to 19.5 m), that is, microsites occupied by trees or their remnants, were made. Short profiles included the tree root zone of a healthy large tree, the tree stump of a decaying tree and the pit-and-mound topography formed after a tree uprooting. The resistivity of regolith and bedrock presented on the long profiles and in comparison with the short profiles through the microsites it can be seen how tree roots impact soil and regolith properties and add to the complexity of the whole soil/regolith profile. Trees change soil and regolith properties directly through root channels and moisture migration and indirectly through the uprooting of trees and the formation of pit-and-mound topography. Within tree stump microsites, the impact of tree root systems, evaluated by a resistivity model, was smaller compared to microsites with living trees or those with pit-and-mound topography but was still visible even several decades after the trees were windbroken or cut down. The ERT method is highly useful for quick evaluation of the impact of tree root systems on soils and regolith. This method, in contrast to traditional soil analyses, offers a continuous dataset for the entire

  14. Analisis Pindah Panas pada Pipa Pendingin untuk Root Zone Cooling System

    Directory of Open Access Journals (Sweden)

    Nurbaiti Araswati

    2017-12-01

    Full Text Available Root zone cooling system is needed to alleviate high-temperature injury for high-yield greenhouse vegetables production. Analysis of heat transfer along the cooling pipe is very important in designing the root zone cooling system. The objectives of this research were (1 to analyze heat transfer in cooling pipe for zone cooling in a hydroponic system, (2 to validate the heat transfer dynamics model to predict the water temperature at the outlet of the cooling pipe, and (3 to perform model simulations for various types of pipe materials and lengths in several thermal conditions in the greenhouse. Root zone cooling system was performed by flowing water (10oC through a steel pipe along 25 m to the root zone. The analysis showed a decrease up to 2.8oC in the planting medium temperature 28.6oC from control 31.4oC. The validation of heat transfer model was conducted by comparing the predicted water temperature to that of measured on linear regression plot. The result showed a straight line Y=1.0026X and the coefficient of determination (R2 0.9867. Based on data analysis, the temperature of water reaches 1oC in steel and copper cooling pipes along 40 m and significantly different from the PVC that is 0.8oC.

  15. A drought resistance-promoting microbiome is selected by root system under desert farming.

    Directory of Open Access Journals (Sweden)

    Ramona Marasco

    Full Text Available BACKGROUND: Traditional agro-systems in arid areas are a bulwark for preserving soil stability and fertility, in the sight of "reverse desertification". Nevertheless, the impact of desert farming practices on the diversity and abundance of the plant associated microbiome is poorly characterized, including its functional role in supporting plant development under drought stress. METHODOLOGY/PRINCIPAL FINDINGS: We assessed the structure of the microbiome associated to the drought-sensitive pepper plant (Capsicum annuum L. cultivated in a traditional Egyptian farm, focusing on microbe contribution to a crucial ecosystem service, i.e. plant growth under water deficit. The root system was dissected by sampling root/soil with a different degree of association to the plant: the endosphere, the rhizosphere and the root surrounding soil that were compared to the uncultivated soil. Bacterial community structure and diversity, determined by using Denaturing Gradient Gel Electrophoresis, differed according to the microhabitat, indicating a selective pressure determined by the plant activity. Similarly, culturable bacteria genera showed different distribution in the three root system fractions. Bacillus spp. (68% of the isolates were mainly recovered from the endosphere, while rhizosphere and the root surrounding soil fractions were dominated by Klebsiella spp. (61% and 44% respectively. Most of the isolates (95% presented in vitro multiple plant growth promoting (PGP activities and stress resistance capabilities, but their distribution was different among the root system fractions analyzed, with enhanced abilities for Bacillus and the rhizobacteria strains. We show that the C. annuum rhizosphere under desert farming enriched populations of PGP bacteria capable of enhancing plant photosynthetic activity and biomass synthesis (up to 40% under drought stress. CONCLUSIONS/SIGNIFICANCE: Crop cultivation provides critical ecosystem services in arid lands with the

  16. Advanced multivariate data analysis to determine the root cause of trisulfide bond formation in a novel antibody–peptide fusion

    Science.gov (United States)

    Goldrick, Stephen; Holmes, William; Bond, Nicholas J.; Lewis, Gareth; Kuiper, Marcel; Turner, Richard

    2017-01-01

    ABSTRACT Product quality heterogeneities, such as a trisulfide bond (TSB) formation, can be influenced by multiple interacting process parameters. Identifying their root cause is a major challenge in biopharmaceutical production. To address this issue, this paper describes the novel application of advanced multivariate data analysis (MVDA) techniques to identify the process parameters influencing TSB formation in a novel recombinant antibody–peptide fusion expressed in mammalian cell culture. The screening dataset was generated with a high‐throughput (HT) micro‐bioreactor system (AmbrTM 15) using a design of experiments (DoE) approach. The complex dataset was firstly analyzed through the development of a multiple linear regression model focusing solely on the DoE inputs and identified the temperature, pH and initial nutrient feed day as important process parameters influencing this quality attribute. To further scrutinize the dataset, a partial least squares model was subsequently built incorporating both on‐line and off‐line process parameters and enabled accurate predictions of the TSB concentration at harvest. Process parameters identified by the models to promote and suppress TSB formation were implemented on five 7 L bioreactors and the resultant TSB concentrations were comparable to the model predictions. This study demonstrates the ability of MVDA to enable predictions of the key performance drivers influencing TSB formation that are valid also upon scale‐up. Biotechnol. Bioeng. 2017;114: 2222–2234. © 2017 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals, Inc. PMID:28500668

  17. Root anatomical phenes predict root penetration ability and biomechanical properties in maize (Zea Mays)

    OpenAIRE

    Chimungu, Joseph G.; Loades, Kenneth W.; Lynch, Jonathan P.

    2015-01-01

    The ability of roots to penetrate hard soil is important for crop productivity but specific root phenes contributing to this ability are poorly understood. Root penetrability and biomechanical properties are likely to vary in the root system dependent on anatomical structure. No information is available to date on the influence of root anatomical phenes on root penetrability and biomechanics. Root penetration ability was evaluated using a wax layer system. Root tensile and bending strength we...

  18. Comparative study of 6 rotary nickel-titanium systems and hand instrumentation for root canal preparation in severely curved root canals of extracted teeth.

    Science.gov (United States)

    Celik, Davut; Taşdemir, Tamer; Er, Kürşat

    2013-02-01

    Some improvements have been developed with new generations of nickel-titanium (NiTi) rotary instruments that led to their successful and extensive application in clinical practice. The purpose of this in vitro study was to compare the root canal preparations performed by using GT Series X and Twisted File systems produced by innovative manufacturing process with Revo-S, RaCe, Mtwo, and ProTaper Universal systems manufactured directly from conventional nitinol and with stainless steel K-Flexofile instruments. The mesiobuccal root canals of 140 maxillary first permanent molars that had between 30°-40° curvature angle and 4- to 9-mm curvature radius of the root canal were used. After root canal preparations made by using GT Series X, Twisted File, Revo-S, RaCe, Mtwo, and ProTaper Universal NiTi rotary systems and stainless steel K-Flexofile instruments, transportation occurred in the root canal, and alteration of working length (WL) was assessed by using a modified double-digital radiographic technique. The data were compared by the post hoc Tukey honestly significant difference test. NiTi rotary systems caused less canal transportation and alteration of WL than K-Flexofile instruments (P .05) except 2.5 mm from the WL. At this level ProTaper Universal system caused significant canal transportation (P ProTaper Universal rotary systems manufactured by traditional methods. Copyright © 2013 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  19. Root evolution at the base of the lycophyte clade: insights from an Early Devonian lycophyte

    Science.gov (United States)

    Matsunaga, Kelly K. S.; Tomescu, Alexandru M. F.

    2016-01-01

    Background and Aims The evolution of complex rooting systems during the Devonian had significant impacts on global terrestrial ecosystems and the evolution of plant body plans. However, detailed understanding of the pathways of root evolution and the architecture of early rooting systems is currently lacking. We describe the architecture and resolve the structural homology of the rooting system of an Early Devonian basal lycophyte. Insights gained from these fossils are used to address lycophyte root evolution and homology. Methods Plant fossils are preserved as carbonaceous compressions at Cottonwood Canyon (Wyoming), in the Lochkovian–Pragian (∼411 Ma; Early Devonian) Beartooth Butte Formation. We analysed 177 rock specimens and documented morphology, cuticular anatomy and structural relationships, as well as stratigraphic position and taphonomic conditions. Key Results The rooting system of the Cottonwood Canyon lycophyte is composed of modified stems that bear fine, dichotomously branching lateral roots. These modified stems, referred to as root-bearing axes, are produced at branching points of the above-ground shoot system. Root-bearing axes preserved in growth position exhibit evidence of positive gravitropism, whereas the lateral roots extend horizontally. Consistent recurrence of these features in successive populations of the plant preserved in situ demonstrates that they represent constitutive structural traits and not opportunistic responses of a flexible developmental programme. Conclusions This is the oldest direct evidence for a rooting system preserved in growth position. These rooting systems, which can be traced to a parent plant, include some of the earliest roots known to date and demonstrate that substantial plant–substrate interactions were under way by Early Devonian time. The morphological relationships between stems, root-bearing axes and roots corroborate evidence that positive gravitropism and root identity were evolutionarily

  20. The effects of different nickel-titanium instruments on dentinal microcrack formations during root canal preparation.

    Science.gov (United States)

    Ustun, Yakup; Aslan, Tugrul; Sagsen, Burak; Kesim, Bertan

    2015-01-01

    The aim of the present study was to investigate the incidence of dentinal microcracks caused by different preparation techniques. 120 extracted human mandibular incisor teeth were divided into five experimental groups and one control group (n = 20): Group 1: Hand preparation with balanced force technique up to #25 K-file. Group 2: Preparation with only ProTaper F2 instrument in a reciprocating movement. Group 3: Preparation with Reciproc R25 instrument in a reciprocating movement. Group 4: Preparation with ProTaper instruments up to F2 instrument. Group 5: Preparation with ProTaper Next instruments up to X2 instrument. No procedure was applied to control group. The roots were sectioned horizontally at 3, 6 and 9 mm from the apex and examined. Absence or presence of dentinal microcracks was noted. The Chi-square test was performed to compare the appearance of cracked roots between all groups. There were no significant differences among the groups (P > 0.05). In conclusion, except the hand file and control group, all experimental groups showed microcrack formations.

  1. Changes in hormonal balance and meristematic activity in primary root tips on the slowly rotating clinostat and their effect on the development of the rapeseed root system.

    Science.gov (United States)

    Aarrouf, J; Schoevaert, D; Maldiney, R; Perbal, G

    1999-04-01

    The morphometry of the root system, the meristematic activity and the level of indole-3-acetic acid (IAA), abscisic acid (ABA) and zeatin in the primary root tips of rapeseed seedlings were analyzed as functions of time on a slowly rotating clinostat (1 rpm) or in the vertical controls (1 rpm). The fresh weight of the root system was 30% higher throughout the growth period (25 days) in clinorotated seedlings. Morphometric analysis showed that the increase in biomass on the clinostat was due to greater primary root growth, earlier initiation and greater elongation of the secondary roots, which could be observed even in 5-day-old seedlings. However, after 15 days, the growth of the primary root slowed on the clinostat, whereas secondary roots still grew faster in clinorotated plants than in the controls. At this time, the secondary roots began to be initiated closer to the root tip on the clinostat than in the control. Analysis of the meristematic activity and determination of the levels in IAA, ABA and zeatin in the primary root tips demonstrated that after 5 days on the clinostat, the increased length of the primary root could be the consequence of higher meristematic activity and coincided with an increase in both IAA and ABA concentrations. After 15 days on the clinostat, a marked increase in IAA, ABA and zeatin, which probably reached supraoptimal levels, seems to cause a progressive disturbance of the meristematic cells, during a decrease of primary root growth between 15 and 25 days. These modifications in the hormonal balance and the perturbation of the meristematic activity on the clinostat were followed by a loss of apical dominance, which was responsible for the early initiation of secondary roots, the greater elongation of the root system and the emergence of the lateral roots near the tip of the primary root.

  2. Descendant root volume varies as a function of root type: estimation of root biomass lost during uprooting in Pinus pinaster

    OpenAIRE

    Danjon, Frédéric; Caplan, Joshua S.; Fortin, Mathieu; Meredieu, Céline

    2013-01-01

    Root systems of woody plants generally display a strong relationship between the cross-sectional area or cross-sectional diameter (CSD) of a root and the dry weight of biomass (DWd) or root volume (Vd) that has grown (i.e., is descendent) from a point. Specification of this relationship allows one to quantify root architectural patterns and estimate the amount of material lost when root systems are extracted from the soil. However, specifications of this relationship generally do not account ...

  3. computer-aided root aided root aided root aided root-locus

    African Journals Online (AJOL)

    User

    m, stability, transient response, root-locus, iteration he means by which any a machine, mechanism or d or altered in accordance. Introduction of feedback has the advantages of f system performance to in system parameters, ponse and minimizing the ignals. However, feedback of components, increases ain and introduces ...

  4. Densities and Kinematic Viscosities for the Systems Benzene + Methyl Formate, Benzene + Ethyl Formate, Benzene + Propyl Formate, and Benzene + Butyl Formate

    DEFF Research Database (Denmark)

    Emmerling, Uwe; Rasmussen, Peter

    1998-01-01

    a Redlich-Kister type of expression with temperature-independent parameters and the data for the systems benzene + ethyl formate, benzene + propyl formate, and benzene + butyl formate with temperature-dependent parameters. The viscosities have furthermore been compared to values predicted by means of the GC......Densities and kinematic viscosities have been measured for the system benzene + methyl formate at 20°C and for the systems benzene + ethyl formate, benzene + propyl formate, and benzene + butyl formate from 20°C to 50°C. The results for the system benzene + methyl formate have been correlated using...

  5. How Do Rare Earth Elements (Lanthanoids Affect Root Development and Protocorm-Like Body Formation in Hybrid CYMBIDIUM?

    Directory of Open Access Journals (Sweden)

    Teixeira da Silva Jaime A.

    2014-09-01

    Full Text Available Only few studies in the plant tissue culture literature have examined the impact of lanthanoids, or rare earth elements, on in vitro plant organogenesis. In this study, using a model plant, hybrid Cymbidium Twilight Moon ‘Day Light’, the impact of six lanthanoids (lanthanum (III nitrate hexahydrate (La(NO33 · 6H2O, cerium (III nitrate hexahydrate (Ce(NO33 · 6H2O, neodymium (III nitrate hexahydrate (Nd(NO33 · 6H2O, praseodymium (III nitrate hexahydrate (Pr(NO33 · 6H2O, samarium (III nitrate hexahydrate (Sm(NO33 · 6H2O, gadolinium (III nitrate hexahydrate (Gd(NO33 · 6H2O on new protocorm-like body (neo-PLB formation on Teixeira Cymbidium (TC medium was examined. 0 (control, 1, 2, 4 and 8 mg·dm-3 of each lanthanoid was tested. All lanthanoids could produce more neo-PLBs and neo-PLB fresh weight than TC medium lacking plant growth regulators (PGRs, suggesting some PGR-like ability of lanthanoids, although PLB-related traits (percentage of half-PLBs forming neo-PLBs; number of neo-PLBs formed per half-PLB; fresh weight of half-PLB + neo-PLBs was always significantly lower than TC medium containing PGRs. Except for Gd, all other lanthanoids had no negative impact on the number of new leaves from neo-PLB-derived shoots, but all lanthanoids showed a significantly lower plant height, shoot fresh weight and shoot dry weight and, in most cases, SPAD (chlorophyll content value. In addition, using the same concentration of the six lanthanoids, the ability to fortify root formation of neo-PLB-derived plantlets was also assessed. Except for Sm, all other lanthanoids significantly increased the number of roots, root fresh and dry weight.

  6. [Signaling Systems of Rhizobia (Rhizobiaceae) and Leguminous Plants (Fabaceae) upon the Formation of a Legume-Rhizobium Symbiosis (Review)].

    Science.gov (United States)

    Glyan'ko, A K

    2015-01-01

    Data from the literature and our own data on the participation and interrelation of bacterial signaling Nod-factors and components of the calcium, NADPH-oxidase, and NO-synthase signaling systems of a plant at the preinfection and infectious stages of the formation of a legume-rhizobium symbiosis are summarized in this review. The physiological role of Nod-factors, reactive oxygen species (ROS), calcium (Ca2+), NADPH-oxidase, nitric oxide (NO), and their cross influence on the processes determining the formation of symbiotic structures on the roots of the host plant is discussed.

  7. Root Zone Respiration on Hydroponically Grown Wheat Plant Systems

    Science.gov (United States)

    Soler-Crespo, R. A.; Monje, O. A.

    2010-01-01

    Root respiration is a biological phenomenon that controls plant growth and physiological development during a plant's lifespan. This process is dependent on the availability of oxygen in the system where the plant is located. In hydroponic systems, where plants are submerged in a solution containing vital nutrients but no type of soil, the availability of oxygen arises from the dissolved oxygen concentration in the solution. This oxygen concentration is dependent on the , gas-liquid interface formed on the upper surface of the liquid, as given by Henry's Law, depending on pressure and temperature conditions. Respiration rates of the plants rise as biomass and root zone increase with age. The respiration rate of Apogee wheat plants (Triticum aestivum) was measured as a function of light intensity (catalytic for photosynthesis) and CO2 concentration to determine their effect on respiration rates. To determine their effects on respiration rate and plant growth microbial communities were introduced into the system, by Innoculum. Surfactants were introduced, simulating gray-water usage in space, as another factor to determine their effect on chemical oxygen demand of microbials and on respiration rates of the plants. It is expected to see small effects from changes in CO2 concentration or light levels, and to see root respiration decrease in an exponential manner with plant age and microbial activity.

  8. GROWTH AND ROOTING SYSTEM OF ACACIA MANGIUM OBTAINED BY TISSUE CULTURE

    Directory of Open Access Journals (Sweden)

    SUPRIYANTO

    1991-01-01

    Full Text Available Since 1980/1981, the government of Indonesia through the Ministry of Forestry has started to reforest logged-over, alang-alang, unproductive areas and to convert them to Forest Industry Plantation. The target is 300 000 ha per year. It means, 750 million seedlings should be provided per year (planting distance 2 m x 2 m. The tree species to be planted in forest industry plantation should have shorter life cycle (8 - 10 years, good stem-form, good rooting system, and should be fast growing. Acacia mangium has been selected as one of the important tree species for forest industry plantation due to its growth, quality of fiber wood (pulp and paper industry and rooting system (produce a lot of secondary root and nitrogen fixater (Soebardjo 1986. The reforestation of logged-over Dipterocarp forests in Malaysia with A. mangium has also been considered (Appanah and Weinland 1989. Generally, reforestation with A. mangium is done with seedlings obtained by seed germination. A. mangium produce a lot of seeds but its production is still limited by the season, while the conventional method of vegetative propagation through cuttings gave very low percentage of rooted-cuttings (1% (Umboh and Syamsul Yani 1989. The micropropagation of A. mangium through tissue culture is a promising method. The production of A. mangium plantlets through that method has been done at the Forest Genetic Laboratory, Tropical Forest Biology, SEAMEO BIOTROP (Situmorang 1988, Umboh 1988, Umboh et al. 1989, 1990. These rooted-plantlets (plantlings were first put in the green house (acclimatization before planting in the field. Field tests of some agricultural plants have been done but information on forest trees species is still lacking because the production of plantlings through tissue culture is still limited as there are still problems of their rooting. In fact, the progress of reproducing woody plants by tissue culture has been much slower than with herbaceous plants. The major

  9. Heuristic Aspect of the Lateral Root Initiation Index: A Case Study of the Role of Nitric Oxide in Root Branching

    Directory of Open Access Journals (Sweden)

    Veronica Lira-Ruan

    2013-10-01

    Full Text Available Premise of the study: Lateral root (LR initiation (LRI is a central process in root branching. Based on LR and/or LR primordium densities, it has been shown that nitric oxide (NO promotes LRI. However, because NO inhibits primary root growth, we hypothesized that NO may have an opposite effect if the analysis is performed on a cellular basis. Using a previously proposed parameter, the LRI index (which measures how many LRI events take place along a root portion equivalent to the length of a single file of 100 cortical cells of average length, we addressed this hypothesis and illustrate here that the LRI index provides a researcher with a tool to uncover hidden but important information about root initiation. Methods and Results: Arabidopsis thaliana roots were treated with an NO donor (sodium nitroprusside [SNP] and/or an NO scavenger (2-(4-carboxyphenyl-4,4,5,5-tetramethylimidazoline-l-oxyl-3-oxide [cPTIO]. LRI was analyzed separately in the root portions formed before and during the treatment. In the latter, SNP caused root growth inhibition and an increase in the LR density accompanied by a decrease in LRI index, indicating overall inhibitory outcome of the NO donor on branching. The inhibitory effect of SNP was reversed by cPTIO, showing the NO-specific action of SNP on LRI. Conclusions: Analysis of the LRI index permits the discovery of otherwise unknown modes of action of a substance on the root system formation. NO has a dual action on root branching, slightly promoting it in the root portion formed before the treatment and strongly inhibiting it in the root portion formed during the treatment.

  10. A review on the molecular mechanism of plants rooting modulated ...

    African Journals Online (AJOL)

    Adventitious root formation is a key step in vegetative propagation of woody or horticul-tural species, and it is a complex process known to be affected by multiple factors. The process of roots development could be divided into three stages: root induction, root initiation, and root protrusion. Phytohormones, especially auxin ...

  11. Food for thought: how nutrients regulate root system architecture.

    Science.gov (United States)

    Shahzad, Zaigham; Amtmann, Anna

    2017-10-01

    The spatial arrangement of the plant root system (root system architecture, RSA) is very sensitive to edaphic and endogenous signals that report on the nutrient status of soil and plant. Signalling pathways underpinning RSA responses to individual nutrients, particularly nitrate and phosphate, have been unravelled. Researchers have now started to investigate interactive effects between two or more nutrients on RSA. Several proteins enabling crosstalk between signalling pathways have recently been identified. RSA is potentially an important trait for sustainable and/or marginal agriculture. It is generally assumed that RSA responses are adaptive and optimise nutrient uptake in a given environment, but hard evidence for this paradigm is still sparse. Here we summarize recent advances made in these areas of research. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  12. Numeral-Incorporating Roots in Numeral Systems: A Comparative Analysis of Two Sign Languages

    Science.gov (United States)

    Fuentes, Mariana; Massone, Maria Ignacia; Fernandez-Viader, Maria del Pilar; Makotrinsky, Alejandro; Pulgarin, Francisca

    2010-01-01

    Numeral-incorporating roots in the numeral systems of Argentine Sign Language (LSA) and Catalan Sign Language (LSC), as well as the main features of the number systems of both languages, are described and compared. Informants discussed the use of numerals and roots in both languages (in most cases in natural contexts). Ten informants took part in…

  13. Calcium hydroxide induced apexification with apical root development: a clinical case report.

    Science.gov (United States)

    Soares, J; Santos, S; César, C; Silva, P; Sá, M; Silveira, F; Nunes, E

    2008-08-01

    To report the induction of apical root development by calcium hydroxide in teeth with pulp necrosis and periapical radiolucency. A 10-year-old male patient was admitted to the clinic complaining of an intense pain and oedema on the anterior facial region, compatible with an acute dentoalveolar abscess. There was a previous history of dental trauma; only tooth 11 was negative to pulp sensitivity tests. Radiographically, tooth 11 exhibited incomplete root formation, characterized by a wide root canal, thin and fragile dentinal walls, and an extensive, divergent foraminal opening associated with an apical radiolucency. The first appointment focused on urgent local and systemic treatment. Apexification treatment commenced at the second session after 7 days, by means of chemo-mechanical debridement throughout the entire root canal, using K-files and irrigation with a 2.5% sodium hypochlorite solution. Subsequently, a calcium hydroxide paste was applied and changed four times over 8 months, when radiographic examination revealed complete closure of the foraminal opening, resulting in resolution of the periapical radiolucency and associated with 5 mm of additional root development. The root canal was filled by thermomechanical compaction of gutta-percha and sealer. A 3-year follow-up revealed normal periapical tissues and the absence of symptoms. * In young patients, dental trauma may cause pulp necrosis and arrest of root formation. * Under certain circumstances, chemo-mechanical debridement, including the use of a calcium hydroxide paste, is a valid alternative to mineral trioxide aggregate and or surgery for root-end closure. * In teeth with incompletely formed roots associated with periapical lesions, calcium hydroxide can induce periapical repair through the closure of the foramen and apical root development.

  14. In vitro root induction of faba bean (Vicia faba L.).

    Science.gov (United States)

    Ismail, Roba M; Elazab, Heba E M; Hussein, Gihan M H; Metry, Emad A

    2011-01-01

    A major challenge for regeneration of faba bean (Vicia faba L.) plants is the difficulty of in vitro root induction. In the present study, in vitro rooting and its architecture have been studied. Adventitious root formation was successfully induced from regenerated faba bean shoots of four Egyptian cultivars, i.e., Giza 461, Giza 40, Giza 834 and Giza 716 on hormone free MS medium supplemented with 5 mg/l silver nitrate. Among the four cultivars, Giza 461 and Giza 40 were recorded as the highest root formation response (75 % and 65) followed by cultivars Giza716 and Giza843 (20%, and 10%). Anatomical study proved that the produced roots are initiated as the adventitious lateral root (LR) with tri-arch xylem strands as compared with the penta-arch of the primary roots of the intact faba bean seedling. The obtained results overcome the root induction problem in faba bean.

  15. Effect of ionizing radiation and indole butyric acid on rooting of olive cuttings

    International Nuclear Information System (INIS)

    Al-Bachir, Mahfouz

    1993-12-01

    This study was performed to investigate the effects of indole butyric acid (IBA) (2000 and 4000 ppm), low doses of gamma irradiation (2,4, and 6 Gy), combined treatment of IBA followed by irradiation, and irradiation followed by IBA on olive cuttings (Variety Khodairi). Rooting percentage, callus formation, vegetative growth root number, and the length of the roots were measured after 100 days of planting. The results indicated that IBA treatments in both concentrations increased the callus formation, rooting, vegetative growth, and the number and length of the roots. Low doses of gamma irradiation had no effects on rooting percentage in comparison with the hormonal treatments. Callus formation, rooting, vegetative growth, and length of the root of cuttings produced in 1990 were better than those produced in 1991, and cuttings produced in January were better than those produced in March and October. (author). 16 refs., 15 tabs

  16. The root/rhizome system of seagrasses: an asset and a burden

    Science.gov (United States)

    Hemminga, M. A.

    1998-06-01

    Large-scale declines in seagrass vegetation have been frequently observed in recent decades. Many of these declines can be traced to the reduction of light levels in the water column. In this paper, it is argued that the root/rhizome system offers a competitive advantage in nutrient-poor waters, but that it makes the plant vulnerable when changes in water quality lead to reduction of incident light. Seagrasses are capable of exploiting the nutrient stocks of both the water column and the sediment pore water, by leaves and roots, respectively. A survey of the literature shows that the median concentrations of water-column ammonium and phosphate in seagrass beds worldwide are 1.7 and 0.35 μM, respectively, whereas the same compounds in the pore water of the root zone reach median concentrations of 60 and 6.5 μM. The dual possibilities for nutrient uptake may underlie the apparent lack of strongly developed nutrient conservation strategies in seagrasses. The possession of roots becomes a disadvantage when the photosynthetically active radiation available to the plants decreases. At saturating light levels, the maximum rate of net photosynthesis (measured as O 2 production) of the leaves typically exceeds leaf respiration (measured as O 2 consumption) about 5 times. In low-light environments, the respiring below-ground biomass (which can greatly exceed the above-ground biomass) can be a considerable burden to the carbon balance of the plant, limiting its survival potential. In addition, secondary and tertiary effects of light reduction involving the roots and rhizomes may undermine plant vitality as well. Leaf photosynthesis is the major source of oxygen for the roots and rhizomes. Hence, decreased photosynthetic activity following light reduction may lead to hypoxic or anoxic conditions in the below-ground organs, presumably making them vulnerable to carbon starvation. A decreased flux of oxygen to the roots and rhizomes also restricts the possibilities for

  17. Solving polynomial systems using no-root elimination blending schemes

    KAUST Repository

    Barton, Michael

    2011-01-01

    Searching for the roots of (piecewise) polynomial systems of equations is a crucial problem in computer-aided design (CAD), and an efficient solution is in strong demand. Subdivision solvers are frequently used to achieve this goal; however

  18. Advanced multivariate data analysis to determine the root cause of trisulfide bond formation in a novel antibody-peptide fusion.

    Science.gov (United States)

    Goldrick, Stephen; Holmes, William; Bond, Nicholas J; Lewis, Gareth; Kuiper, Marcel; Turner, Richard; Farid, Suzanne S

    2017-10-01

    Product quality heterogeneities, such as a trisulfide bond (TSB) formation, can be influenced by multiple interacting process parameters. Identifying their root cause is a major challenge in biopharmaceutical production. To address this issue, this paper describes the novel application of advanced multivariate data analysis (MVDA) techniques to identify the process parameters influencing TSB formation in a novel recombinant antibody-peptide fusion expressed in mammalian cell culture. The screening dataset was generated with a high-throughput (HT) micro-bioreactor system (Ambr TM 15) using a design of experiments (DoE) approach. The complex dataset was firstly analyzed through the development of a multiple linear regression model focusing solely on the DoE inputs and identified the temperature, pH and initial nutrient feed day as important process parameters influencing this quality attribute. To further scrutinize the dataset, a partial least squares model was subsequently built incorporating both on-line and off-line process parameters and enabled accurate predictions of the TSB concentration at harvest. Process parameters identified by the models to promote and suppress TSB formation were implemented on five 7 L bioreactors and the resultant TSB concentrations were comparable to the model predictions. This study demonstrates the ability of MVDA to enable predictions of the key performance drivers influencing TSB formation that are valid also upon scale-up. Biotechnol. Bioeng. 2017;114: 2222-2234. © 2017 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals, Inc. © 2017 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals, Inc.

  19. Rhizoslides: paper-based growth system for non-destructive, high throughput phenotyping of root development by means of image analysis.

    Science.gov (United States)

    Le Marié, Chantal; Kirchgessner, Norbert; Marschall, Daniela; Walter, Achim; Hund, Andreas

    2014-01-01

    A quantitative characterization of root system architecture is currently being attempted for various reasons. Non-destructive, rapid analyses of root system architecture are difficult to perform due to the hidden nature of the root. Hence, improved methods to measure root architecture are necessary to support knowledge-based plant breeding and to analyse root growth responses to environmental changes. Here, we report on the development of a novel method to reveal growth and architecture of maize root systems. The method is based on the cultivation of different root types within several layers of two-dimensional, large (50 × 60 cm) plates (rhizoslides). A central plexiglass screen stabilizes the system and is covered on both sides with germination paper providing water and nutrients for the developing root, followed by a transparent cover foil to prevent the roots from falling dry and to stabilize the system. The embryonic roots grow hidden between a Plexiglas surface and paper, whereas crown roots grow visible between paper and the transparent cover. Long cultivation with good image quality up to 20 days (four fully developed leaves) was enhanced by suppressing fungi with a fungicide. Based on hyperspectral microscopy imaging, the quality of different germination papers was tested and three provided sufficient contrast to distinguish between roots and background (segmentation). Illumination, image acquisition and segmentation were optimised to facilitate efficient root image analysis. Several software packages were evaluated with regard to their precision and the time investment needed to measure root system architecture. The software 'Smart Root' allowed precise evaluation of root development but needed substantial user interference. 'GiaRoots' provided the best segmentation method for batch processing in combination with a good analysis of global root characteristics but overestimated root length due to thinning artefacts. 'WhinRhizo' offered the most rapid

  20. Multi-frequency electrical impedance tomography as a non-invasive tool to characterize and monitor crop root systems

    Science.gov (United States)

    Weigand, Maximilian; Kemna, Andreas

    2017-02-01

    A better understanding of root-soil interactions and associated processes is essential in achieving progress in crop breeding and management, prompting the need for high-resolution and non-destructive characterization methods. To date, such methods are still lacking or restricted by technical constraints, in particular the charactization and monitoring of root growth and function in the field. A promising technique in this respect is electrical impedance tomography (EIT), which utilizes low-frequency (response in alternating electric-current fields due to electrical double layers which form at cell membranes. This double layer is directly related to the electrical surface properties of the membrane, which in turn are influenced by nutrient dynamics (fluxes and concentrations on both sides of the membranes). Therefore, it can be assumed that the electrical polarization properties of roots are inherently related to ion uptake and translocation processes in the root systems. We hereby propose broadband (mHz to hundreds of Hz) multi-frequency EIT as a non-invasive methodological approach for the monitoring and physiological, i.e., functional, characterization of crop root systems. The approach combines the spatial-resolution capability of an imaging method with the diagnostic potential of electrical-impedance spectroscopy. The capability of multi-frequency EIT to characterize and monitor crop root systems was investigated in a rhizotron laboratory experiment, in which the root system of oilseed plants was monitored in a water-filled rhizotron, that is, in a nutrient-deprived environment. We found a low-frequency polarization response of the root system, which enabled the successful delineation of its spatial extension. The magnitude of the overall polarization response decreased along with the physiological decay of the root system due to the stress situation. Spectral polarization parameters, as derived from a pixel-based Debye decomposition analysis of the multi

  1. Cytokinin signaling during root development.

    Science.gov (United States)

    Bishopp, Anthony; Help, Hanna; Helariutta, Ykä

    2009-01-01

    The cytokinin class of phytohormones regulates division and differentiation of plant cells. They are perceived and signaled by a phosphorelay mechanism similar to those observed in prokaryotes. Research into the components of phosphorelay had previously been marred by genetic redundancy. However, recent studies have addressed this with the creation of high-order mutants. In addition, several new elements regulating cytokinin signaling have been identified. This has uncovered many roles in diverse developmental and physiological processes. In this review, we look at these processes specifically in the context of root development. We focus on the formation and maintenance of the root apical meristem, primary and secondary vascular development, lateral root emergence and development, and root nodulation. We believe that the root is an ideal organ with which to investigate cytokinin signaling in a wider context.

  2. Modification of antioxidant systems in cell walls of maize roots by different nitrogen sources

    International Nuclear Information System (INIS)

    Hadži-Tašković Šukalović V; Vuletić, M.; Marković, K.; Željko, Vučinić; Kravić, N.

    2016-01-01

    Antioxidant systems of maize root cell walls grown on different nitrogen sources were evaluated. Plants were grown on a medium containing only NO3- or the mixture of NO3-+NH4+, in a 2:1 ratio. Eleven-day old plants, two days after the initiation of lateral roots, were used for the experiments. Cell walls were isolated from lateral roots and primary root segments, 2-7 cm from tip to base, representing zones of intense or decreased growth rates, respectively. Protein content and the activity of enzymes peroxidase, malate dehydrogenase and ascorbate oxidase ionically or covalently bound to the walls, as well as cell wall phenolic content and antioxidant capacity, were determined. Cell walls of plants grown on mixed N possess more developed enzymatic antioxidant systems and lower non-enzymatic antioxidant defenses than cell walls grown on NO3-. Irrespective of N treatment, the activities of all studied enzymes and protein content were higher in cell walls of lateral compared to primary roots. Phenolic content of cell walls isolated from lateral roots was higher in NO3--grown than in mixed N grown plants. No significant differences could be observed in the isozyme patterns of cell wall peroxidases isolated from plants grown on different nutrient solution. Our results indicate that different N treatments modify the antioxidant systems of root cell walls. Treatment with NO3- resulted in an increase of constitutive phenolic content, while the combination of NO3-+NH4+ elevated the redox enzyme activities in root cell walls.

  3. Modification of antioxidant systems in cell walls of maize roots by different nitrogen sources

    Energy Technology Data Exchange (ETDEWEB)

    Hadži-Tašković Šukalović V; Vuletić, M.; Marković, K.; Željko, Vučinić; Kravić, N.

    2016-07-01

    Antioxidant systems of maize root cell walls grown on different nitrogen sources were evaluated. Plants were grown on a medium containing only NO3- or the mixture of NO3-+NH4+, in a 2:1 ratio. Eleven-day old plants, two days after the initiation of lateral roots, were used for the experiments. Cell walls were isolated from lateral roots and primary root segments, 2-7 cm from tip to base, representing zones of intense or decreased growth rates, respectively. Protein content and the activity of enzymes peroxidase, malate dehydrogenase and ascorbate oxidase ionically or covalently bound to the walls, as well as cell wall phenolic content and antioxidant capacity, were determined. Cell walls of plants grown on mixed N possess more developed enzymatic antioxidant systems and lower non-enzymatic antioxidant defenses than cell walls grown on NO3-. Irrespective of N treatment, the activities of all studied enzymes and protein content were higher in cell walls of lateral compared to primary roots. Phenolic content of cell walls isolated from lateral roots was higher in NO3--grown than in mixed N grown plants. No significant differences could be observed in the isozyme patterns of cell wall peroxidases isolated from plants grown on different nutrient solution. Our results indicate that different N treatments modify the antioxidant systems of root cell walls. Treatment with NO3- resulted in an increase of constitutive phenolic content, while the combination of NO3-+NH4+ elevated the redox enzyme activities in root cell walls.

  4. The Degeneration of Meniscus Roots Is Accompanied by Fibrocartilage Formation, Which May Precede Meniscus Root Tears in Osteoarthritic Knees.

    Science.gov (United States)

    Park, Do Young; Min, Byoung-Hyun; Choi, Byung Hyune; Kim, Young Jick; Kim, Mijin; Suh-Kim, Haeyoung; Kim, Joon Ho

    2015-12-01

    Fibrocartilage metaplasia in tendons and ligaments is an adaptation to compression as well as a pathological feature during degeneration. Medial meniscus posterior roots are unique ligaments that resist multidirectional forces, including compression. To characterize the degeneration of medial meniscus posterior root tears in osteoarthritic knees, with an emphasis on fibrocartilage and calcification. Cross-sectional study; Level of evidence, 3. Samples of medial meniscus posterior roots were harvested from cadaveric specimens and patients during knee replacement surgery and grouped as follows: normal reference, no tear, partial tear, and complete tear. Degeneration was analyzed with histology, immunohistochemistry, and real-time polymerase chain reaction. Uniaxial tensile tests were performed on specimens with and without fibrocartilage. Quantifiable data were statistically analyzed by the Kruskal-Wallis test with the Dunn comparison test. Thirty, 28, and 42 samples harvested from 99 patients were allocated into the no tear, partial tear, and complete tear groups, respectively. Mean modified Bonar tendinopathy scores for each group were 3.97, 9.31, and 14.15, respectively, showing a higher degree of degeneration associated with the extent of the tear (P fibrocartilage according to the extent of the tear. Tear margins revealed fibrocartilage in 59.3% of partial tear samples and 76.2% of complete tear samples, with a distinctive cleavage-like shape. Root tears with a similar shape were induced within fibrocartilaginous areas during uniaxial tensile testing. Even in the no tear group, 56.7% of samples showed fibrocartilage in the anterior margin of the root, adjacent to the meniscus. An increased stained area of calcification and expression of the ectonucleotide pyrophosphatase/phosphodiesterase 1 gene were observed in the complete tear group compared with the no tear group (P Fibrocartilage and calcification increased in medial meniscus posterior roots, associated

  5. A comparative histologic study on furcal perforation repair with Root MTA and Pro Root MTA in fully developed teeth in dog

    Directory of Open Access Journals (Sweden)

    Rahimi S.

    2005-07-01

    Full Text Available Background and Aim: The goal of endodontics is to seal the root canal system from the orifice to apical constriction completely and tridimensionally.Hence perforations during root canal therapy, because of caries or resorptions must be sealed and obturated with ideal materials. The aim of this study was to histologically compare two kinds of mineral trioxide aggregate Root MTA and Pro Root MTA for furcal perforation repair in developed teeth in dog. Materials and Methods: In this experimental study, thirty teeth consisting of second, third and fourth mandibular premolars of five German shepherd dogs were selected. Twenty-four teeth were randomly divided into four experimental groups (6 teeth each. One pair of Root MTA and Pro Root MTA groups studied in one month and the other in three months intervals. Positive and negative control groups was each contained three teeth. In positive control group, perforations were not treated and negative control group contained intact teeth. In experimental groups perforations repaired after one week exposure to oral cavity with Root MTA or Pro Root MTA. After time intervals animals were subjected to vital perfusion and 6 m histologic sections were prepared. Inflammation and hard tissue formation were ranked by Cox criteria. Data were analysed using Mann-Whitney and Chi-Square statistical tests with P0.05. Conclusion: Mineral Trioxide Aggregate is an adequate material for furcal perforation repair in dog’s teeth. Root MTA could be a good substitute for Pro Root MTA considering the lower cost and similar characteristics.

  6. Root developmental adaptation to phosphate starvation: better safe than sorry.

    Science.gov (United States)

    Péret, Benjamin; Clément, Mathilde; Nussaume, Laurent; Desnos, Thierry

    2011-08-01

    Phosphorus is a crucial component of major organic molecules such as nucleic acids, ATP and membrane phospholipids. It is present in soils in the form of inorganic phosphate (Pi), which has low availability and poor mobility. To cope with Pi limitations, plants have evolved complex adaptive responses that include morphological and physiological modifications. This review describes how the model plant Arabidopsis thaliana adapts its root system architecture to phosphate deficiency through inhibition of primary root growth, increase in lateral root formation and growth and production of root hairs, which all promote topsoil foraging. A better understanding of plant adaptation to low phosphate will open the way to increased phosphorus use efficiency by crops. Such an improvement is needed in order to adjust how we manage limited phosphorus stocks and to reduce the disastrous environmental effects of phosphate fertilizers overuse. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Genetic variants associated with the root system architecture of oilseed rape (Brassica napus L.) under contrasting phosphate supply.

    Science.gov (United States)

    Wang, Xiaohua; Chen, Yanling; Thomas, Catherine L; Ding, Guangda; Xu, Ping; Shi, Dexu; Grandke, Fabian; Jin, Kemo; Cai, Hongmei; Xu, Fangsen; Yi, Bin; Broadley, Martin R; Shi, Lei

    2017-08-01

    Breeding crops with ideal root system architecture for efficient absorption of phosphorus is an important strategy to reduce the use of phosphate fertilizers. To investigate genetic variants leading to changes in root system architecture, 405 oilseed rape cultivars were genotyped with a 60K Brassica Infinium SNP array in low and high P environments. A total of 285 single-nucleotide polymorphisms were associated with root system architecture traits at varying phosphorus levels. Nine single-nucleotide polymorphisms corroborate a previous linkage analysis of root system architecture quantitative trait loci in the BnaTNDH population. One peak single-nucleotide polymorphism region on A3 was associated with all root system architecture traits and co-localized with a quantitative trait locus for primary root length at low phosphorus. Two more single-nucleotide polymorphism peaks on A5 for root dry weight at low phosphorus were detected in both growth systems and co-localized with a quantitative trait locus for the same trait. The candidate genes identified on A3 form a haplotype 'BnA3Hap', that will be important for understanding the phosphorus/root system interaction and for the incorporation into Brassica napus breeding programs. © The Author 2017. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.

  8. High-resolution synchrotron imaging shows that root hairs influence rhizosphere soil structure formation.

    Science.gov (United States)

    Koebernick, Nicolai; Daly, Keith R; Keyes, Samuel D; George, Timothy S; Brown, Lawrie K; Raffan, Annette; Cooper, Laura J; Naveed, Muhammad; Bengough, Anthony G; Sinclair, Ian; Hallett, Paul D; Roose, Tiina

    2017-10-01

    In this paper, we provide direct evidence of the importance of root hairs on pore structure development at the root-soil interface during the early stage of crop establishment. This was achieved by use of high-resolution (c. 5 μm) synchrotron radiation computed tomography (SRCT) to visualise both the structure of root hairs and the soil pore structure in plant-soil microcosms. Two contrasting genotypes of barley (Hordeum vulgare), with and without root hairs, were grown for 8 d in microcosms packed with sandy loam soil at 1.2 g cm -3 dry bulk density. Root hairs were visualised within air-filled pore spaces, but not in the fine-textured soil regions. We found that the genotype with root hairs significantly altered the porosity and connectivity of the detectable pore space (> 5 μm) in the rhizosphere, as compared with the no-hair mutants. Both genotypes showed decreasing pore space between 0.8 and 0.1 mm from the root surface. Interestingly the root-hair-bearing genotype had a significantly greater soil pore volume-fraction at the root-soil interface. Effects of pore structure on diffusion and permeability were estimated to be functionally insignificant under saturated conditions when simulated using image-based modelling. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  9. Effect of cutting medium temperatures on rooting process and root primordium differentiation of hardwood cuttings of tetraploid robinia pseudoacacia cutting medium temperatures of tetraploid robinia pseudoacacia

    International Nuclear Information System (INIS)

    Ling, W.X.; Jine, Q.; Zhong, Z.

    2014-01-01

    In this study, to examine the effect of heat treatment on the rooting and root development of hardwood cuttings of the tetraploid Robinia pseudoacacia, cuttings of 1-year-old stems were taken from 3-year-old mother trees and treated with IBA solution (1000 mg/L) for 6 h, with water was as a control. Treated cuttings were rooted in heated or unheated nursery beds. Samples were collected on day ten after planting, and then for every five days. The bases of the cuttings were embedded in paraffin and sectioned before being examined under a microscope to determine whether there had been any morphological changes. We found no root primordia in the tissues of the hardwood cuttings of the tetraploid Robinia pseudoacacia before cutting. In the heated bed, adventitious roots originated from callus tissue and the junction between the pith rays and cortical parenchyma cells, and in the unheated bed, adventitious roots originated only from callus tissue. The rooting process involved callus formation, adventitious root formation and elongation; rooting occurred 5-7 days earlier in the heated cuttings than in the unheated ones, and rooting rates were significantly higher in the former 30 days and 50 days after cutting; the minimum effective accumulated temperatures for these three stages were 109.25 degree C, 211.68 degree C and 301.38 degree C, respectively. Our results revealed that heating the soil can promote adventitious root formation, speed up the rooting rate, and cut the propagation period of the tetraploid Robinia pseudoacacia. (author)

  10. STUDYING FOREST ROOT SYSTEMS - AN OVERVIEW OF METHODOLOGICAL PROBLEMS

    Science.gov (United States)

    The study of tree root systems is central to understanding forest ecosystem carbon and nutrient cycles, nutrient and water uptake, C allocation patterns by trees, soil microbial populations, adaptation of trees to stress, soil organic matter production, etc. Methodological probl...

  11. Effect of root temperature on the uptake and metabolism of anions by the root system of Zea mays L. I. Uptake of sulphate by resistant and non-resistant plants

    Energy Technology Data Exchange (ETDEWEB)

    Holobrada, M; Mistrik, I; Kolek, J [Institute of Experimental Biology and Ecology of the Slovak Academy of Sciences, Bratislava (Czechoslovakia)

    1980-01-01

    The effect of root temperature upon the uptake of /sup 35/S-sulfate by intact 21 days old maize roots was discussed. The plant roots grown at 20 degC were cooled in steps down to 15 degC or 5 degC. The rate of /sup 35/S uptake was studied both in the whole root system and separately in the individual roots (primary seminal root, seminal adventitious roots and nodal roots). Differences were ascertained at lower uptakes by various root samples from resistant and nonresistant maize cultivars.

  12. The Physiology of Adventitious Roots1

    Science.gov (United States)

    Steffens, Bianka; Rasmussen, Amanda

    2016-01-01

    Adventitious roots are plant roots that form from any nonroot tissue and are produced both during normal development (crown roots on cereals and nodal roots on strawberry [Fragaria spp.]) and in response to stress conditions, such as flooding, nutrient deprivation, and wounding. They are important economically (for cuttings and food production), ecologically (environmental stress response), and for human existence (food production). To improve sustainable food production under environmentally extreme conditions, it is important to understand the adventitious root development of crops both in normal and stressed conditions. Therefore, understanding the regulation and physiology of adventitious root formation is critical for breeding programs. Recent work shows that different adventitious root types are regulated differently, and here, we propose clear definitions of these classes. We use three case studies to summarize the physiology of adventitious root development in response to flooding (case study 1), nutrient deficiency (case study 2), and wounding (case study 3). PMID:26697895

  13. Cinnamaldehyde promotes root branching by regulating endogenous hydrogen sulfide.

    Science.gov (United States)

    Xue, Yan-Feng; Zhang, Meng; Qi, Zhong-Qiang; Li, You-Qin; Shi, Zhiqi; Chen, Jian

    2016-02-01

    Cinnamaldehyde (CA) has been widely applied in medicine and food preservation. However, whether and how CA regulates plant physiology is largely unknown. To address these gaps, the present study investigated the beneficial effect of CA on root branching and its possible biochemical mechanism. The lateral root (LR) formation of pepper seedlings could be markedly induced by CA at specific concentrations without any inhibitory effect on primary root (PR) growth. CA could induce the generation of endogenous hydrogen sulfide (H2S) by increasing the activity of L-cysteine desulfhydrase in roots. By fluorescently tracking endogenous H2S in situ, it could be clearly observed that H2S accumulated in the outer layer cells of the PR where LRs emerge. Sodium hydrosulfide (H2S donor) treatment induced LR formation, while hypotaurine (H2S scavenger) showed an adverse effect. The addition of hypotaurine mitigated the CA-induced increase in endogenous H2S level, which in turn counteracted the inducible effect of CA on LR formation. CA showed great potential in promoting LR formation, which was mediated by endogenous H2S. These results not only shed new light on the application of CA in agriculture but also extend the knowledge of H2S signaling in the regulation of root branching. © 2015 Society of Chemical Industry.

  14. Carotenoid crystal formation in Arabidopsis and carrot roots caused by increased phytoene synthase protein levels.

    Directory of Open Access Journals (Sweden)

    Dirk Maass

    Full Text Available BACKGROUND: As the first pathway-specific enzyme in carotenoid biosynthesis, phytoene synthase (PSY is a prime regulatory target. This includes a number of biotechnological approaches that have successfully increased the carotenoid content in agronomically relevant non-green plant tissues through tissue-specific PSY overexpression. We investigated the differential effects of constitutive AtPSY overexpression in green and non-green cells of transgenic Arabidopsis lines. This revealed striking similarities to the situation found in orange carrot roots with respect to carotenoid amounts and sequestration mechanism. METHODOLOGY/PRINCIPAL FINDINGS: In Arabidopsis seedlings, carotenoid content remained unaffected by increased AtPSY levels although the protein was almost quantitatively imported into plastids, as shown by western blot analyses. In contrast, non-photosynthetic calli and roots overexpressing AtPSY accumulated carotenoids 10 and 100-fold above the corresponding wild-type tissues and contained 1800 and 500 microg carotenoids per g dry weight, respectively. This increase coincided with a change of the pattern of accumulated carotenoids, as xanthophylls decreased relative to beta-carotene and carotene intermediates accumulated. As shown by polarization microscopy, carotenoids were found deposited in crystals, similar to crystalline-type chromoplasts of non-green tissues present in several other taxa. In fact, orange-colored carrots showed a similar situation with increased PSY protein as well as carotenoid levels and accumulation patterns whereas wild white-rooted carrots were similar to Arabidopsis wild type roots in this respect. Initiation of carotenoid crystal formation by increased PSY protein amounts was further confirmed by overexpressing crtB, a bacterial PSY gene, in white carrots, resulting in increased carotenoid amounts deposited in crystals. CONCLUSIONS: The sequestration of carotenoids into crystals can be driven by the

  15. Association of orthodontic force system and root resorption: A systematic review.

    Science.gov (United States)

    Roscoe, Marina G; Meira, Josete B C; Cattaneo, Paolo M

    2015-05-01

    In this systematic review, we assessed the literature to determine which evidence level supports the association of orthodontic force system and root resorption. PubMed, Cochrane, and Embase databases were searched with no restrictions on year, publication status, or language. Selection criteria included human studies conducted with fixed orthodontic appliances or aligners, with at least 10 patients and the force system well described. A total of 259 articles were retrieved in the initial search. After the review process, 21 full-text articles met the inclusion criteria. Sample sizes ranged from 10 to 73 patients. Most articles were classified as having high evidence levels and low risks of bias. Although a meta-analysis was not performed, from the available literature, it seems that positive correlations exist between increased force levels and increased root resorption, as well as between increased treatment time and increased root resorption. Moreover, a pause in tooth movement seems to be beneficial in reducing root resorption because it allows the resorbed cementum to heal. The absence of a control group, selection criteria of patients, and adequate examinations before and after treatment are the most common methodology flaws. Copyright © 2015 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.

  16. Effect of different irrigation systems on root growth of maize and cowpea plants in sandy soil

    Directory of Open Access Journals (Sweden)

    Noha A. Mahgoub

    2017-10-01

    Full Text Available A field experiment was conducted at the Experimental Farm, Faculty of Agriculture, Suez Canal University to study the influence of different irrigation systems on root length density and specific root length of maize and cowpea plants cultivated in sandy soil. Three irrigation systems (Surface, drip and sprinkler irrigation were used in this study. The NPK fertilizers were applied as recommended doses for maize and cowpea. Root samples were collected from the soil profile below one plant (maize and cowpea which was irrigated by the three irrigation systems by using an iron box (30 cm× 20 cm which is divided into 24 small boxes each box is (5× 5 × 5 cm. At surface irrigation, root length density of cowpea reached to soil depth 30-40cm with lateral distances 5-10 cm and 15-20 cm. Vertical distribution of root length density of maize was increased with soil depth till 20-25 cm, and then it decreased till soil depth 35-40cm. Under drip irrigation, root length density of cowpea increased horizontally from 0-5cm to 10-15cm then it decreased till soil depth 25-30 cm and below this depth root length density disappeared. For the root length density and specific root length of maize under drip irrigation, the data showed that root length density and specific root length decreased with increasing in soil depth. The root length density of cowpea under sprinkler irrigation at 0-5cm disappeared from horizontal distance at 25-30 cm. The data showed that root length density of maize under sprinkler irrigation was higher at the soil top layers 0-5 cm and 5-10 cm than other layers from 10-40 cm.

  17. Grass Rooting the System

    Science.gov (United States)

    Perlman, Janice E.

    1976-01-01

    Suggests a taxonomy of the grass roots movement and gives a general descriptive over view of the 60 groups studied with respect to origin, constituency, size, funding, issues, and ideology. (Author/AM)

  18. Cerium oxide nanoparticles alter the salt stress tolerance of Brassica napus L. by modifying the formation of root apoplastic barriers.

    Science.gov (United States)

    Rossi, Lorenzo; Zhang, Weilan; Ma, Xingmao

    2017-10-01

    Rapidly growing global population adds significant strains on the fresh water resources. Consequently, saline water is increasingly tapped for crop irrigation. Meanwhile, rapid advancement of nanotechnology is introducing more and more engineered nanoparticles into the environment and in agricultural soils. While some negative effects of ENPs on plant health at very high concentrations have been reported, more beneficial effects of ENPs at relatively low concentrations are increasingly noticed, opening doors for potential applications of nanotechnology in agriculture. In particular, we found that cerium oxide nanoparticles (CeO 2 NPs) improved plant photosynthesis in salt stressed plants. Due to the close connections between salt stress tolerance and the root anatomical structures, we postulated that CeO 2 NPs could modify plant root anatomy and improve plant salt stress tolerance. This study aimed at testing the hypothesis with Brassica napus in the presence of CeO 2 NPs (0, 500 mg kg -1 dry sand) and/or NaCl (0, 50 mM) in a growth chamber. Free hand sections of fresh roots were taken every seven days for three weeks and the suberin lamellae development was examined under a fluorescence microscope. The results confirmed the hypothesis that CeO 2 NPs modified the formation of the apoplastic barriers in Brassica roots. In salt stressed plants, CeO 2 NPs shortened the root apoplastic barriers which allowed more Na + transport to shoots and less accumulation of Na + in plant roots. The altered Na + fluxes and transport led to better physiological performance of Brassica and may lead to new applications of nanotechnology in agriculture. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Characterization of Pearl Millet Root Architecture and Anatomy Reveals Three Types of Lateral Roots

    Science.gov (United States)

    Passot, Sixtine; Gnacko, Fatoumata; Moukouanga, Daniel; Lucas, Mikaël; Guyomarc’h, Soazig; Ortega, Beatriz Moreno; Atkinson, Jonathan A.; Belko, Marème N.; Bennett, Malcolm J.; Gantet, Pascal; Wells, Darren M.; Guédon, Yann; Vigouroux, Yves; Verdeil, Jean-Luc; Muller, Bertrand; Laplaze, Laurent

    2016-01-01

    Pearl millet plays an important role for food security in arid regions of Africa and India. Nevertheless, it is considered an orphan crop as it lags far behind other cereals in terms of genetic improvement efforts. Breeding pearl millet varieties with improved root traits promises to deliver benefits in water and nutrient acquisition. Here, we characterize early pearl millet root system development using several different root phenotyping approaches that include rhizotrons and microCT. We report that early stage pearl millet root system development is characterized by a fast growing primary root that quickly colonizes deeper soil horizons. We also describe root anatomical studies that revealed three distinct types of lateral roots that form on both primary roots and crown roots. Finally, we detected significant variation for two root architectural traits, primary root lenght and lateral root density, in pearl millet inbred lines. This study provides the basis for subsequent genetic experiments to identify loci associated with interesting early root development traits in this important cereal. PMID:27379124

  20. Deciphering Phosphate Deficiency-Mediated Temporal Effects on Different Root Traits in Rice Grown in a Modified Hydroponic System

    Science.gov (United States)

    Negi, Manisha; Sanagala, Raghavendrarao; Rai, Vandna; Jain, Ajay

    2016-01-01

    Phosphate (Pi), an essential macronutrient for growth and development of plant, is often limiting in soils. Plants have evolved an array of adaptive strategies including modulation of root system architecture (RSA) for optimal acquisition of Pi. In rice, a major staple food, RSA is complex and comprises embryonically developed primary and seminal roots and post-embryonically developed adventitious and lateral roots. Earlier studies have used variant hydroponic systems for documenting the effects of Pi deficiency largely on primary root growth. Here, we report the temporal effects of Pi deficiency in rice genotype MI48 on 15 ontogenetically distinct root traits by using easy-to-assemble and economically viable modified hydroponic system. Effects of Pi deprivation became evident after 4 days- and 7 days-treatments on two and eight different root traits, respectively. The effects of Pi deprivation for 7 days were also evident on different root traits of rice genotype Nagina 22 (N22). There were genotypic differences in the responses of primary root growth along with lateral roots on it and the number and length of seminal and adventitious roots. Notably though, there were attenuating effects of Pi deficiency on the lateral roots on seminal and adventitious roots and total root length in both these genotypes. The study thus revealed both differential and comparable effects of Pi deficiency on different root traits in these genotypes. Pi deficiency also triggered reduction in Pi content and induction of several Pi starvation-responsive (PSR) genes in roots of MI48. Together, the analyses validated the fidelity of this modified hydroponic system for documenting Pi deficiency-mediated effects not only on different traits of RSA but also on physiological and molecular responses. PMID:27200025

  1. Salicylic acid prevents Trichoderma harzianum from entering the vascular system of roots.

    Science.gov (United States)

    Alonso-Ramírez, Ana; Poveda, Jorge; Martín, Ignacio; Hermosa, Rosa; Monte, Enrique; Nicolás, Carlos

    2014-10-01

    Trichoderma is a soil-borne fungal genus that includes species with a significant impact on agriculture and industrial processes. Some Trichoderma strains exert beneficial effects in plants through root colonization, although little is known about how this interaction takes place. To better understand this process, the root colonization of wild-type Arabidopsis and the salicylic acid (SA)-impaired mutant sid2 by a green fluorescent protein (GFP)-marked Trichoderma harzianum strain was followed under confocal microscopy. Trichoderma harzianum GFP22 was able to penetrate the vascular tissue of the sid2 mutant because of the absence of callose deposition in the cell wall of root cells. In addition, a higher colonization of sid2 roots by GFP22 compared with that in Arabidopsis wild-type roots was detected by real-time polymerase chain reaction. These results, together with differences in the expression levels of plant defence genes in the roots of both interactions, support a key role for SA in Trichoderma early root colonization stages. We observed that, without the support of SA, plants were unable to prevent the arrival of the fungus in the vascular system and its spread into aerial parts, leading to later collapse. © 2014 BSPP AND JOHN WILEY & SONS LTD.

  2. Rapid phenotyping of crop root systems in undisturbed field soils using X-ray computed tomography.

    Science.gov (United States)

    Pfeifer, Johannes; Kirchgessner, Norbert; Colombi, Tino; Walter, Achim

    2015-01-01

    X-ray computed tomography (CT) has become a powerful tool for root phenotyping. Compared to rather classical, destructive methods, CT encompasses various advantages. In pot experiments the growth and development of the same individual root can be followed over time and in addition the unaltered configuration of the 3D root system architecture (RSA) interacting with a real field soil matrix can be studied. Yet, the throughput, which is essential for a more widespread application of CT for basic research or breeding programs, suffers from the bottleneck of rapid and standardized segmentation methods to extract root structures. Using available methods, root segmentation is done to a large extent manually, as it requires a lot of interactive parameter optimization and interpretation and therefore needs a lot of time. Based on commercially available software, this paper presents a protocol that is faster, more standardized and more versatile compared to existing segmentation methods, particularly if used to analyse field samples collected in situ. To the knowledge of the authors this is the first study approaching to develop a comprehensive segmentation method suitable for comparatively large columns sampled in situ which contain complex, not necessarily connected root systems from multiple plants grown in undisturbed field soil. Root systems from several crops were sampled in situ and CT-volumes determined with the presented method were compared to root dry matter of washed root samples. A highly significant (P < 0.01) and strong correlation (R(2) = 0.84) was found, demonstrating the value of the presented method in the context of field research. Subsequent to segmentation, a method for the measurement of root thickness distribution has been used. Root thickness is a central RSA trait for various physiological research questions such as root growth in compacted soil or under oxygen deficient soil conditions, but hardly assessable in high throughput until today, due

  3. Traits and selection strategies to improve root systems and water uptake in water-limited wheat crops.

    Science.gov (United States)

    Wasson, A P; Richards, R A; Chatrath, R; Misra, S C; Prasad, S V Sai; Rebetzke, G J; Kirkegaard, J A; Christopher, J; Watt, M

    2012-05-01

    Wheat yields globally will depend increasingly on good management to conserve rainfall and new varieties that use water efficiently for grain production. Here we propose an approach for developing new varieties to make better use of deep stored water. We focus on water-limited wheat production in the summer-dominant rainfall regions of India and Australia, but the approach is generally applicable to other environments and root-based constraints. Use of stored deep water is valuable because it is more predictable than variable in-season rainfall and can be measured prior to sowing. Further, this moisture is converted into grain with twice the efficiently of in-season rainfall since it is taken up later in crop growth during the grain-filling period when the roots reach deeper layers. We propose that wheat varieties with a deeper root system, a redistribution of branch root density from the surface to depth, and with greater radial hydraulic conductivity at depth would have higher yields in rainfed systems where crops rely on deep water for grain fill. Developing selection systems for mature root system traits is challenging as there are limited high-throughput phenotyping methods for roots in the field, and there is a risk that traits selected in the lab on young plants will not translate into mature root system traits in the field. We give an example of a breeding programme that combines laboratory and field phenotyping with proof of concept evaluation of the trait at the beginning of the selection programme. This would greatly enhance confidence in a high-throughput laboratory or field screen, and avoid investment in screens without yield value. This approach requires careful selection of field sites and years that allow expression of deep roots and increased yield. It also requires careful selection and crossing of germplasm to allow comparison of root expression among genotypes that are similar for other traits, especially flowering time and disease and toxicity

  4. Split-root systems applied to the study of the legume-rhizobial symbiosis: what have we learned?

    Science.gov (United States)

    Larrainzar, Estíbaliz; Gil-Quintana, Erena; Arrese-Igor, Cesar; González, Esther M; Marino, Daniel

    2014-12-01

    Split-root system (SRS) approaches allow the differential treatment of separate and independent root systems, while sharing a common aerial part. As such, SRS is a useful tool for the discrimination of systemic (shoot origin) versus local (root/nodule origin) regulation mechanisms. This type of approach is particularly useful when studying the complex regulatory mechanisms governing the symbiosis established between legumes and Rhizobium bacteria. The current work provides an overview of the main insights gained from the application of SRS approaches to understand how nodule number (nodulation autoregulation) and nitrogen fixation are controlled both under non-stressful conditions and in response to a variety of stresses. Nodule number appears to be mainly controlled at the systemic level through a signal which is produced by nodule/root tissue, translocated to the shoot, and transmitted back to the root system, involving shoot Leu-rich repeat receptor-like kinases. In contrast, both local and systemic mechanisms have been shown to operate for the regulation of nitrogenase activity in nodules. Under drought and heavy metal stress, the regulation is mostly local, whereas the application of exogenous nitrogen seems to exert a regulation of nitrogen fixation both at the local and systemic levels. © 2014 Institute of Botany, Chinese Academy of Sciences.

  5. Efficacy of ProTaper universal retreatment files in removing filling materials during root canal retreatment.

    Science.gov (United States)

    Giuliani, Valentina; Cocchetti, Roberto; Pagavino, Gabriella

    2008-11-01

    The aim of this study was to evaluate the efficacy of the ProTaper Universal System rotary retreatment system and of Profile 0.06 and hand instruments (K-file) in the removal of root filling materials. Forty-two extracted single-rooted anterior teeth were selected. The root canals were enlarged with nickel-titanium (NiTi) rotary files, filled with gutta-percha and sealer, and randomly divided into 3 experimental groups. The filling materials were removed with solvent in conjunction with one of the following devices and techniques: the ProTaper Universal System for retreatment, ProFile 0.06, and hand instruments (K-file). The roots were longitudinally sectioned, and the image of the root surface was photographed. The images were captured in JPEG format; the areas of the remaining filling materials and the time required for removing the gutta-percha and sealer were calculated by using the nonparametric one-way Kruskal-Wallis test and Tukey-Kramer tests, respectively. The group that showed better results for removing filling materials was the ProTaper Universal System for retreatment files, whereas the group of ProFile rotary instruments yielded better root canal cleanliness than the hand instruments, even though there was no statistically significant difference. The ProTaper Universal System for retreatment and ProFile rotary instruments worked significantly faster than the K-file. The ProTaper Universal System for retreatment files left cleaner root canal walls than the K-file hand instruments and the ProFile Rotary instruments, although none of the devices used guaranteed complete removal of the filling materials. The rotary NiTi system proved to be faster than hand instruments in removing root filling materials.

  6. Flood-Ring Formation and Root Development in Response to Experimental Flooding of Young Quercus robur Trees

    Science.gov (United States)

    Copini, Paul; den Ouden, Jan; Robert, Elisabeth M. R.; Tardif, Jacques C.; Loesberg, Walter A.; Goudzwaard, Leo; Sass-Klaassen, Ute

    2016-01-01

    Spring flooding in riparian forests can cause significant reductions in earlywood-vessel size in submerged stem parts of ring-porous tree species, leading to the presence of ‘flood rings’ that can be used as a proxy to reconstruct past flooding events, potentially over millennia. The mechanism of flood-ring formation and the relation with timing and duration of flooding are still to be elucidated. In this study, we experimentally flooded 4-year-old Quercus robur trees at three spring phenophases (late bud dormancy, budswell, and internode expansion) and over different flooding durations (2, 4, and 6 weeks) to a stem height of 50 cm. The effect of flooding on root and vessel development was assessed immediately after the flooding treatment and at the end of the growing season. Ring width and earlywood-vessel size and density were measured at 25- and 75-cm stem height and collapsed vessels were recorded. Stem flooding inhibited earlywood-vessel development in flooded stem parts. In addition, flooding upon budswell and internode expansion led to collapsed earlywood vessels below the water level. At the end of the growing season, mean earlywood-vessel size in the flooded stem parts (upon budswell and internode expansion) was always reduced by approximately 50% compared to non-flooded stem parts and 55% compared to control trees. This reduction was already present 2 weeks after flooding and occurred independent of flooding duration. Stem and root flooding were associated with significant root dieback after 4 and 6 weeks and mean radial growth was always reduced with increasing flooding duration. By comparing stem and root flooding, we conclude that flood rings only occur after stem flooding. As earlywood-vessel development was hampered during flooding, a considerable number of narrow earlywood vessels present later in the season, must have been formed after the actual flooding events. Our study indicates that root dieback, together with strongly reduced hydraulic

  7. Two-dimensional Root Phenotyping System Based on Root Growth on Black Filter Paper and Recirculation Micro-irrigation

    Czech Academy of Sciences Publication Activity Database

    Rattanapichai, W.; Klem, Karel

    2016-01-01

    Roč. 52, č. 2 (2016), s. 64-70 ISSN 1212-1975 R&D Projects: GA MŠk(CZ) LO1415 Institutional support: RVO:67179843 Keywords : image analysis * nutrient deficiency * root system architecture * spring barley Subject RIV: EH - Ecology, Behaviour Impact factor: 0.532, year: 2016

  8. A test system to quantify inoculum in runoff from Phytophthora ramorum-infected plant roots

    Science.gov (United States)

    Nina. Shishkoff

    2010-01-01

    Foliar hosts of Phytophthora ramorum are often susceptible to root infection, but the epidemiological significance of such infections is unknown. We used a standardized test system to study inoculum in runoff from root-infected Viburnum tinus cuttings.

  9. Molecular cloning and characterization of the genes encoding an auxin efflux carrier and the auxin influx carriers associated with the adventitious root formation in mango (Mangifera indica L.) cotyledon segments.

    Science.gov (United States)

    Li, Yun-He; Zou, Ming-Hong; Feng, Bi-Hong; Huang, Xia; Zhang, Zhi; Sun, Guang-Ming

    2012-06-01

    Polar auxin transport (PAT) plays an important role in the adventitious root formation of mango cotyledon segments, but the molecular mechanism remains unclear. In this study, we cloned a gene encoding an auxin efflux carrier (designated as MiPIN1), and we cloned four genes encoding auxin influx carriers (designated as MiAUX1, MiAUX2, MiAUX3 and MiAUX4). The results of a phylogenetic tree analysis indicated that MiPIN1 and the MiAUXs belong to plant PIN and AUXs/LAXs groups. Quantitative real-time PCR indicated that the expression of MiPIN1 and the MiAUXs was lowest at 0 days but sharply increased on and after day 4. During the root formation in the mango cotyledon segments, the MiPIN1 expression in the distal cut surface (DCS) was always higher than the expression in the proximal cut surface (PCS) whereas the expression of the MiAUXs in the PCS was usually higher than in the DCS. This expression pattern might be result in the PAT from the DCS to the PCS, which is essential for the adventitious root formation in the PCS. Our previous study indicated that a pre-treatment of embryos with indole-3-butyric acid (IBA) significantly promoted adventitious rooting in PCS whereas a pre-treatment with 2,3,5-triiodobenzoic acid (TIBA) completely inhibited this rooting. In this study, however, IBA and TIBA pre-treatments slightly changed the expression of MiPIN1. In contrast, while the MiAUX3 and MiAUX4 expression levels were significantly up-regulated by the IBA pre-treatment, the expression levels were down-regulated by the TIBA pre-treatment. These findings imply that MiAUX3 and MiAUX4 are more sensitive to the IBA and TIBA treatments and that they might play important roles during adventitious root formation in mango cotyledon segments. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  10. ROOT HYDRAULIC CONDUCTIVITY AND PHOTOSYNTHETIC CAPACITY OF EUCALYPT CLONAL CUTTINGS WITH ROOT MALFORMATION INDUCTIONS

    Directory of Open Access Journals (Sweden)

    Fábio Afonso Mazzei Moura de Assis Figueiredo

    2014-06-01

    Full Text Available http://dx.doi.org/10.5902/1980509814566The gain reduction of wood biomass in trees has been assigned to root deformations even in the nursery phase. The objective of this work was the evaluation of the root system hydraulic conductivity, gas exchanges and photochemical efficiency of eucalypt clonal cuttings with and without root deformation inductions. The treatments were: 1 operational cuttings without root malformation inductions (grown according to the used methodology of Fibria Cellulose S.A.; 2 root deformation inductions. These inductions did not promote decrease in the root volume. However, the deformations brought reduction of the root system hydraulic conductivity. Lower photosynthetic rates were also observed along the day in the cuttings in the root deformed cuttings. This decreasing rate is connected to stomatal and non stomatal factors.

  11. Inheritance and gene expression of a root-growth inhibiting mutant in rice (Oryza sativa L.)

    International Nuclear Information System (INIS)

    Kitano, H.; Futsuhara, Y.

    1990-01-01

    Full text: A root-growth inhibiting mutant was induced in the dwarf mutant line, 'Fukei 71', through ethylene-imine. The mutant is characterised by the excessive inhibition of both seminal and crown roots elongation just after germination, although its shoots grow nearly normal. To study the genetics, the mutant was crossed with its original line 'Fukei 71' and some other normal cultivars. Results show that the root-growth inhibition is controlled by a recessive gene (rt), independent of the dwarf gene, d-50(t) locus in Fukei 71. For elucidating the gene action on root morphogenesis, histological and cytological experiments were carried out using a longitudinal and transverse thin section of seminal and/or crown root tips. Observations suggest that the rt gene affects the normal formation of the epidermal system which is differentiated from the protoderm of the root apical meristem. (author)

  12. Microgravity effects on water supply and substrate properties in porous matrix root support systems

    Science.gov (United States)

    Bingham, G. E.; Jones, S. B.; Or, D.; Podolski, I. G.; Levinskikh, M. A.; Sytchov, V. N.; Ivanova, T.; Kostov, P.; Sapunova, S.; Dandolov, I.; hide

    2000-01-01

    The control of water content and water movement in granular substrate-based plant root systems in microgravity is a complex problem. Improper water and oxygen delivery to plant roots has delayed studies of the effects of microgravity on plant development and the use of plants in physical and mental life support systems. Our international effort (USA, Russia and Bulgaria) has upgraded the plant growth facilities on the Mir Orbital Station (OS) and used them to study the full life cycle of plants. The Bulgarian-Russian-developed Svet Space Greenhouse (SG) system was upgraded on the Mir OS in 1996. The US developed Gas Exchange Measurement System (GEMS) greatly extends the range of environmental parameters monitored. The Svet-GEMS complex was used to grow a fully developed wheat crop during 1996. The growth rate and development of these plants compared well with earth grown plants indicating that the root zone water and oxygen stresses that have limited plant development in previous long-duration experiments have been overcome. However, management of the root environment during this experiment involved several significant changes in control settings as the relationship between the water delivery system, water status sensors, and the substrate changed during the growth cycles. c 2001 Published by Elsevier Science Ltd. All rights reserved.

  13. Evaluation of Root Canal Preparation Using Rotary System and Hand Instruments Assessed by Micro-Computed Tomography.

    Science.gov (United States)

    Stavileci, Miranda; Hoxha, Veton; Görduysus, Ömer; Tatar, Ilkan; Laperre, Kjell; Hostens, Jeroen; Küçükkaya, Selen; Muhaxheri, Edmond

    2015-06-20

    Complete mechanical preparation of the root canal system is rarely achieved. Therefore, the purpose of this study was to evaluate and compare the root canal shaping efficacy of ProTaper rotary files and standard stainless steel K-files using micro-computed tomography. Sixty extracted upper second premolars were selected and divided into 2 groups of 30 teeth each. Before preparation, all samples were scanned by micro-computed tomography. Thirty teeth were prepared with the ProTaper system and the other 30 with stainless steel files. After preparation, the untouched surface and root canal straightening were evaluated with micro-computed tomography. The percentage of untouched root canal surface was calculated in the coronal, middle, and apical parts of the canal. We also calculated straightening of the canal after root canal preparation. Results from the 2 groups were statistically compared using the Minitab statistical package. ProTaper rotary files left less untouched root canal surface compared with manual preparation in coronal, middle, and apical sector (p<0.001). Similarly, there was a statistically significant difference in root canal straightening after preparation between the techniques (p<0.001). Neither manual nor rotary techniques completely prepared the root canal, and both techniques caused slight straightening of the root canal.

  14. Evaluation of Root Canal Preparation Using Rotary System and Hand Instruments Assessed by Micro-Computed Tomography

    Science.gov (United States)

    Stavileci, Miranda; Hoxha, Veton; Görduysus, Ömer; Tatar, Ilkan; Laperre, Kjell; Hostens, Jeroen; Küçükkaya, Selen; Muhaxheri, Edmond

    2015-01-01

    Background Complete mechanical preparation of the root canal system is rarely achieved. Therefore, the purpose of this study was to evaluate and compare the root canal shaping efficacy of ProTaper rotary files and standard stainless steel K-files using micro-computed tomography. Material/Methods Sixty extracted upper second premolars were selected and divided into 2 groups of 30 teeth each. Before preparation, all samples were scanned by micro-computed tomography. Thirty teeth were prepared with the ProTaper system and the other 30 with stainless steel files. After preparation, the untouched surface and root canal straightening were evaluated with micro-computed tomography. The percentage of untouched root canal surface was calculated in the coronal, middle, and apical parts of the canal. We also calculated straightening of the canal after root canal preparation. Results from the 2 groups were statistically compared using the Minitab statistical package. Results ProTaper rotary files left less untouched root canal surface compared with manual preparation in coronal, middle, and apical sector (protary techniques completely prepared the root canal, and both techniques caused slight straightening of the root canal. PMID:26092929

  15. Halogenated auxins affect microtubules and root elongation in Lactuca sativa

    Science.gov (United States)

    Zhang, N.; Hasenstein, K. H.

    2000-01-01

    We studied the effect of 4,4,4-trifluoro-3-(indole-3-)butyric acid (TFIBA), a recently described root growth stimulator, and 5,6-dichloro-indole-3-acetic acid (DCIAA) on growth and microtubule (MT) organization in roots of Lactuca sativa L. DCIAA and indole-3-butyric acid (IBA) inhibited root elongation and depolymerized MTs in the cortex of the elongation zone, inhibited the elongation of stele cells, and promoted xylem maturation. Both auxins caused the plane of cell division to shift from anticlinal to periclinal. In contrast, TFIBA (100 micromolar) promoted elongation of primary roots by 40% and stimulated the elongation of lateral roots, even in the presence of IBA, the microtubular inhibitors oryzalin and taxol, or the auxin transport inhibitor naphthylphthalamic acid. However, TFIBA inhibited the formation of lateral root primordia. Immunostaining showed that TFIBA stabilized MTs orientation perpendicular to the root axis, doubled the cortical cell length, but delayed xylem maturation. The data indicate that the auxin-induced inhibition of elongation and swelling of roots results from reoriented phragmoplasts, the destabilization of MTs in elongating cells, and promotion of vessel formation. In contrast, TFIBA induced promotion of root elongation by enhancing cell length, prolonging transverse MT orientation, delaying cell and xylem maturation.

  16. Nitrogen economics of root foraging: transitive closure of the nitrate-cytokinin relay and distinct systemic signaling for N supply vs. demand.

    Science.gov (United States)

    Ruffel, Sandrine; Krouk, Gabriel; Ristova, Daniela; Shasha, Dennis; Birnbaum, Kenneth D; Coruzzi, Gloria M

    2011-11-08

    As sessile organisms, root plasticity enables plants to forage for and acquire nutrients in a fluctuating underground environment. Here, we use genetic and genomic approaches in a "split-root" framework--in which physically isolated root systems of the same plant are challenged with different nitrogen (N) environments--to investigate how systemic signaling affects genome-wide reprogramming and root development. The integration of transcriptome and root phenotypes enables us to identify distinct mechanisms underlying "N economy" (i.e., N supply and demand) of plants as a system. Under nitrate-limited conditions, plant roots adopt an "active-foraging strategy", characterized by lateral root outgrowth and a shared pattern of transcriptome reprogramming, in response to either local or distal nitrate deprivation. By contrast, in nitrate-replete conditions, plant roots adopt a "dormant strategy", characterized by a repression of lateral root outgrowth and a shared pattern of transcriptome reprogramming, in response to either local or distal nitrate supply. Sentinel genes responding to systemic N signaling identified by genome-wide comparisons of heterogeneous vs. homogeneous split-root N treatments were used to probe systemic N responses in Arabidopsis mutants impaired in nitrate reduction and hormone synthesis and also in decapitated plants. This combined analysis identified genetically distinct systemic signaling underlying plant N economy: (i) N supply, corresponding to a long-distance systemic signaling triggered by nitrate sensing; and (ii) N demand, experimental support for the transitive closure of a previously inferred nitrate-cytokinin shoot-root relay system that reports the nitrate demand of the whole plant, promoting a compensatory root growth in nitrate-rich patches of heterogeneous soil.

  17. Root patterning

    NARCIS (Netherlands)

    Scheres, Ben; Laskowski, Marta

    2016-01-01

    The mechanisms that pattern lateral root primordial are essential for the elaboration of root system architecture, a trait of key importance for future crop breeding. But which are most important: periodic or local cues? In this issue of Journal of Experimental Botany (pages 1411-1420), Kircher

  18. Differential effects of auxin polar transport inhibitors on rooting in some Crassulaceae species

    Directory of Open Access Journals (Sweden)

    Marian Saniewski

    2014-07-01

    Full Text Available Effects of auxin polar transport inhibitors, 2,3,5-triio-dobenzoic acid (TIBA, 1-N-naphthylphthalamic acid (NPA and methyl 2-chloro-9-hydroxyfluorene-9-carboxylate (morphactin IT 3456, as a lanolin paste, on root formation in cuttings of some species of Crassulaceae, such as Bryophyllum daigremontianum, B. calycinum, Kalanchoe blossfeldiana and K. tubiflora, were studied. Cuttings of these plants were easily rooted in water without any treatment. TIBA and morphactin IT 3456 completely inhibited root formation in the cuttings of these plants but NPA did not when these inhibitors were applied around the stem below the leaves. When TIBA and morphactin were applied around the stem near the top, but leaves were present below the treatment, the root formation was observed in B. calycinum and K. blossfeldiana but in a smaller degree than in control cuttings. These results strongly suggest that endogenous auxin is required for root formation in cuttings of Crassulaceae plants. The differential mode of action of NPA is discussed together with its effect on auxin polar transport.

  19. Quality aspects of ex vivo root canal treatments done by undergraduate dental students using four different endodontic treatment systems.

    Science.gov (United States)

    Jungnickel, Luise; Kruse, Casper; Vaeth, Michael; Kirkevang, Lise-Lotte

    2018-04-01

    To evaluate factors associated with treatment quality of ex vivo root canal treatments performed by undergraduate dental students using different endodontic treatment systems. Four students performed root canal treatment on 80 extracted human teeth using four endodontic treatment systems in designated treatment order following a Latin square design. Lateral seal and length of root canal fillings was radiographically assessed; for lateral seal, a graded visual scale was used. Treatment time was measured separately for access preparation, biomechanical root canal preparation, obturation and for the total procedure. Mishaps were registered. An ANOVA mirroring the Latin square design was performed. Use of machine-driven nickel-titanium systems resulted in overall better quality scores for lateral seal than use of the manual stainless-steel system. Among systems with machine-driven files, scores did not significantly differ. Use of machine-driven instruments resulted in shorter treatment time than manual instrumentation. Machine-driven systems with few files achieved shorter treatment times. With increasing number of treatments, root canal-filling quality increased, treatment time decreased; a learning curve was plotted. No root canal shaping file separated. The use of endodontic treatment systems with machine-driven files led to higher quality lateral seal compared to the manual system. The three contemporary machine-driven systems delivered comparable results regarding quality of root canal fillings; they were safe to use and provided a more efficient workflow than the manual technique. Increasing experience had a positive impact on the quality of root canal fillings while treatment time decreased.

  20. Proteomics of Maize Root Development.

    Science.gov (United States)

    Hochholdinger, Frank; Marcon, Caroline; Baldauf, Jutta A; Yu, Peng; Frey, Felix P

    2018-01-01

    Maize forms a complex root system with structurally and functionally diverse root types that are formed at different developmental stages to extract water and mineral nutrients from soil. In recent years proteomics has been intensively applied to identify proteins involved in shaping the three-dimensional architecture and regulating the function of the maize root system. With the help of developmental mutants, proteomic changes during the initiation and emergence of shoot-borne, lateral and seminal roots have been examined. Furthermore, root hairs were surveyed to understand the proteomic changes during the elongation of these single cell type structures. In addition, primary roots have been used to study developmental changes of the proteome but also to investigate the proteomes of distinct tissues such as the meristematic zone, the elongation zone as well as stele and cortex of the differentiation zone. Moreover, subcellular fractions of the primary root including cell walls, plasma membranes and secreted mucilage have been analyzed. Finally, the superior vigor of hybrid seedling roots compared to their parental inbred lines was studied on the proteome level. In summary, these studies provide novel insights into the complex proteomic interactions of the elaborate maize root system during development.

  1. Proteomics of Maize Root Development

    Directory of Open Access Journals (Sweden)

    Frank Hochholdinger

    2018-03-01

    Full Text Available Maize forms a complex root system with structurally and functionally diverse root types that are formed at different developmental stages to extract water and mineral nutrients from soil. In recent years proteomics has been intensively applied to identify proteins involved in shaping the three-dimensional architecture and regulating the function of the maize root system. With the help of developmental mutants, proteomic changes during the initiation and emergence of shoot-borne, lateral and seminal roots have been examined. Furthermore, root hairs were surveyed to understand the proteomic changes during the elongation of these single cell type structures. In addition, primary roots have been used to study developmental changes of the proteome but also to investigate the proteomes of distinct tissues such as the meristematic zone, the elongation zone as well as stele and cortex of the differentiation zone. Moreover, subcellular fractions of the primary root including cell walls, plasma membranes and secreted mucilage have been analyzed. Finally, the superior vigor of hybrid seedling roots compared to their parental inbred lines was studied on the proteome level. In summary, these studies provide novel insights into the complex proteomic interactions of the elaborate maize root system during development.

  2. Virtual Plants Need Water Too: Functional-Structural Root System Models in the Context of Drought Tolerance Breeding.

    Science.gov (United States)

    Ndour, Adama; Vadez, Vincent; Pradal, Christophe; Lucas, Mikaël

    2017-01-01

    Developing a sustainable agricultural model is one of the great challenges of the coming years. The agricultural practices inherited from the Green Revolution of the 1960s show their limits today, and new paradigms need to be explored to counter rising issues such as the multiplication of climate-change related drought episodes. Two such new paradigms are the use of functional-structural plant models to complement and rationalize breeding approaches and a renewed focus on root systems as untapped sources of plant amelioration. Since the late 1980s, numerous functional and structural models of root systems were developed and used to investigate the properties of root systems in soil or lab-conditions. In this review, we focus on the conception and use of such root models in the broader context of research on root-driven drought tolerance, on the basis of root system architecture (RSA) phenotyping. Such models result from the integration of architectural, physiological and environmental data. Here, we consider the different phenotyping techniques allowing for root architectural and physiological study and their limits. We discuss how QTL and breeding studies support the manipulation of RSA as a way to improve drought resistance. We then go over the integration of the generated data within architectural models, how those architectural models can be coupled with functional hydraulic models, and how functional parameters can be measured to feed those models. We then consider the assessment and validation of those hydraulic models through confrontation of simulations to experimentations. Finally, we discuss the up and coming challenges facing root systems functional-structural modeling approaches in the context of breeding.

  3. Virtual Plants Need Water Too: Functional-Structural Root System Models in the Context of Drought Tolerance Breeding

    Directory of Open Access Journals (Sweden)

    Adama Ndour

    2017-09-01

    Full Text Available Developing a sustainable agricultural model is one of the great challenges of the coming years. The agricultural practices inherited from the Green Revolution of the 1960s show their limits today, and new paradigms need to be explored to counter rising issues such as the multiplication of climate-change related drought episodes. Two such new paradigms are the use of functional-structural plant models to complement and rationalize breeding approaches and a renewed focus on root systems as untapped sources of plant amelioration. Since the late 1980s, numerous functional and structural models of root systems were developed and used to investigate the properties of root systems in soil or lab-conditions. In this review, we focus on the conception and use of such root models in the broader context of research on root-driven drought tolerance, on the basis of root system architecture (RSA phenotyping. Such models result from the integration of architectural, physiological and environmental data. Here, we consider the different phenotyping techniques allowing for root architectural and physiological study and their limits. We discuss how QTL and breeding studies support the manipulation of RSA as a way to improve drought resistance. We then go over the integration of the generated data within architectural models, how those architectural models can be coupled with functional hydraulic models, and how functional parameters can be measured to feed those models. We then consider the assessment and validation of those hydraulic models through confrontation of simulations to experimentations. Finally, we discuss the up and coming challenges facing root systems functional-structural modeling approaches in the context of breeding.

  4. Assessment of hairy roots induction in Solenostemon scutellarioides ...

    African Journals Online (AJOL)

    Hairy roots of Solenostemon scutellarioides were induced by inoculation of leaf explants with Agrobacterium rhizogenes strains TR 105, LBA 9402, 8196 and ATCC 15834. These strains showed different abilities to induce hairy root formation on the leaf explants. Assessment of the plant's susceptibility to the different strains ...

  5. A New Anatomically Based Nomenclature for the Roots and Root Canals—Part 1: Maxillary Molars

    Directory of Open Access Journals (Sweden)

    Jojo Kottoor

    2012-01-01

    Full Text Available Numerous terminologies have been employed in the dental literature to describe the roots and root canal systems of maxillary molars. This multiplicity in naming of roots and canals makes the reader susceptible to misinterpretation and confusion. No consensus thus far has been arrived at for defining the names of roots and root canals in maxillary molars, including their various morphological aberrations. The anatomical relation of roots and their root canals were identified and were subsequently named based on definite sets of criteria. A new method for identification and naming of roots and root canal anatomy in maxillary molars, based on their root and canal relationship, was formulated and is presented in this paper. The nomenclature makes certain essential modifications to the traditional approach to accommodate naming of the various aberrations presented in the maxillary molars. A simple, yet extensive, nomenclature system has been proposed that appropriately names the internal and external morphology of maxillary molars.

  6. A new anatomically based nomenclature for the roots and root canals-part 1: maxillary molars.

    Science.gov (United States)

    Kottoor, Jojo; Albuquerque, Denzil Valerian; Velmurugan, Natanasabapathy

    2012-01-01

    Numerous terminologies have been employed in the dental literature to describe the roots and root canal systems of maxillary molars. This multiplicity in naming of roots and canals makes the reader susceptible to misinterpretation and confusion. No consensus thus far has been arrived at for defining the names of roots and root canals in maxillary molars, including their various morphological aberrations. The anatomical relation of roots and their root canals were identified and were subsequently named based on definite sets of criteria. A new method for identification and naming of roots and root canal anatomy in maxillary molars, based on their root and canal relationship, was formulated and is presented in this paper. The nomenclature makes certain essential modifications to the traditional approach to accommodate naming of the various aberrations presented in the maxillary molars. A simple, yet extensive, nomenclature system has been proposed that appropriately names the internal and external morphology of maxillary molars.

  7. Root Systems of Individual Plants, and the Biotic and Abiotic Factors Controlling Their Depth and Distribution: a Synthesis Using a Global Database.

    Science.gov (United States)

    Tumber-Davila, S. J.; Schenk, H. J.; Jackson, R. B.

    2017-12-01

    This synthesis examines plant rooting distributions globally, by doubling the number of entries in the Root Systems of Individual Plants database (RSIP) created by Schenk and Jackson. Root systems influence many processes, including water and nutrient uptake and soil carbon storage. Root systems also mediate vegetation responses to changing climatic and environmental conditions. Therefore, a collective understanding of the importance of rooting systems to carbon sequestration, soil characteristics, hydrology, and climate, is needed. Current global models are limited by a poor understanding of the mechanisms affecting rooting, carbon stocks, and belowground biomass. This improved database contains an extensive bank of records describing the rooting system of individual plants, as well as detailed information on the climate and environment from which the observations are made. The expanded RSIP database will: 1) increase our understanding of rooting depths, lateral root spreads and above and belowground allometry; 2) improve the representation of plant rooting systems in Earth System Models; 3) enable studies of how climate change will alter and interact with plant species and functional groups in the future. We further focus on how plant rooting behavior responds to variations in climate and the environment, and create a model that can predict rooting behavior given a set of environmental conditions. Preliminary results suggest that high potential evapotranspiration and seasonality of precipitation are indicative of deeper rooting after accounting for plant growth form. When mapping predicted deep rooting by climate, we predict deepest rooting to occur in equatorial South America, Africa, and central India.

  8. Formation of adventitious roots on green leaf cuttings of Phaseolus vulgaris L.

    NARCIS (Netherlands)

    Oppenoorth, Johanna Margriet

    1980-01-01

    n this thesis the development of adventitious roots on green leaf cuttings of Phaseolus vulgaris L. is studies. The use of green leaf cuttings has the advantage that the leaf blade provides the developing roots inthe petiole with all the nutrients required, a disadvantage is that the composition of

  9. RUNTIME DICTIONARIES FOR ROOT

    CERN Document Server

    Wind, David Kofoed

    2013-01-01

    ROOT is the LHC physicists' common tool for data analysis; almost all data is stored using ROOT's I/O system. This system benefits from a custom description of types (a so-called dictionary) that is optimised for the I/O. Until now, the dictionary cannot be provided at run-time; it needs to be prepared in a separate prerequisite step. This project will move the generation of the dictionary to run-time, making use of ROOT 6's new just-in-time compiler. It allows a more dynamic and natural access to ROOT's I/O features especially for user code.

  10. A monitoring program of the histograms based on ROOT package

    International Nuclear Information System (INIS)

    Zhou Yongzhao; Liang Hao; Chen Yixin; Xue Jundong; Yang Tao; Gong Datao; Jin Ge; Yu Xiaoqi

    2002-01-01

    KHBOOK is a histogram monitor and browser based on ROOT package, which reads the histogram file in HBOOK format from Physmon, converts it into ROOT format, and browses the histograms in Repeat and Overlap modes to monitor and trace the quality of the data from DAQ. KHBOOK is a program of small memory, easy maintenance and fast running as well, using mono-behavior classes and a communication class of C ++

  11. Specific plant induced biofilm formation in Methylobacterium species

    Science.gov (United States)

    Rossetto, Priscilla B.; Dourado, Manuella N.; Quecine, Maria C.; Andreote, Fernando D.; Araújo, Welington L.; Azevedo, João L.; Pizzirani-Kleiner, Aline A.

    2011-01-01

    Two endophytic strains of Methylobacterium spp. were used to evaluate biofilm formation on sugarcane roots and on inert wooden sticks. Results show that biofilm formation is variable and that plant surface and possibly root exudates have a role in Methylobacterium spp. host recognition, biofilm formation and successful colonization as endophytes. PMID:24031703

  12. Effect of nitrate supply and mycorrhizal inoculation on characteristics of tobacco root plasma membrane vesicles.

    Science.gov (United States)

    Moche, Martin; Stremlau, Stefanie; Hecht, Lars; Göbel, Cornelia; Feussner, Ivo; Stöhr, Christine

    2010-01-01

    Plant plasma membrane (pm) vesicles from mycorrhizal tobacco (Nicotiana tabacum cv. Samsun) roots were isolated with negligible fungal contamination by the aqueous two-phase partitioning technique as proven by fatty acid analysis. Palmitvaccenic acid became apparent as an appropriate indicator for fungal membranes in root pm preparations. The pm vesicles had a low specific activity of the vanadate-sensitive ATPase and probably originated from non-infected root cells. In a phosphate-limited tobacco culture system, root colonisation by the vesicular arbuscular mycorrhizal fungus, Glomus mosseae, is inhibited by external nitrate in a dose-dependent way. However, detrimental high concentrations of 25 mM nitrate lead to the highest colonisation rate observed, indicating that the defence system of the plant is impaired. Nitric oxide formation by the pm-bound nitrite:NO reductase increased in parallel with external nitrate supply in mycorrhizal roots in comparison to the control plants, but decreased under excess nitrate. Mycorrhizal pm vesicles had roughly a twofold higher specific activity as the non-infected control plants when supplied with 10-15 mM nitrate.

  13. Dynamics of organic matters in the root-rhizoplane-soil system of maize [Zea mays], 1: A simple and rapid method for measuring root respiration

    Energy Technology Data Exchange (ETDEWEB)

    Okada, K. [Tokyo Univ., Tokyo (Japan); Kumura, A.

    1990-03-15

    In the analysis of dynamics of organic matter in the root-rhizoplane-soil system, it is essential to estimate various kinds of carbon flows in the system separately. Since a simple and rapid method for measuring root respiration was needed for this purpose, the authors developed the following method. A plastic syringe is used as the chamber. Sample roots are put into a syringe, in which the air is replaced with air of known CO{sub 2} concentration and the syringe is kept at a constant temperature for a certain time. A volume of the air in the syringe is injected into the flow of N{sub 2} gas in the tube which is connected to an infrared gas analyzer. The CO{sub 2} concentration in the syringe is directly related to the reading of the analyzer. From the difference of the CO{sub 2} concentration in the syringe before and after the incubation, the respiration rate of the roots is calculated. The details of the procedure were determined by the results of experiments regarding the effects of factors concerned. (author)

  14. Technological advances in endodontics: treatment of a mandibular molar with internal root resorption using a reciprocating single-file system.

    Science.gov (United States)

    de Souza, Samir Noronha; Marques, André Augusto Franco; Sponchiado-Júnior, EmÍlio Carlos; Roberti Garcia, Lucas da Fonseca; da Frota, Matheus Franco; de Carvalho, Fredson Márcio Acris

    2017-01-01

    The field of endodontics has become increasingly successful due to technological advances that allow clinicians to solve clinical cases that would have been problematic a few years ago. Despite such advances, endodontic treatment of teeth with internal root resorption remains challenging. This article presents a clinical case in which a reciprocating single-file system was used for endodontic treatment of a mandibular molar with internal root resorption. Radiographic examination revealed the presence of internal root resorption in the distobuccal root canal of the mandibular right first molar. A reciprocating single-file system was used for root canal instrumentation and final preparation, and filling was obtained through a thermal compaction technique. No painful symptoms or periapical lesions were observed in 12 months of follow-up. The results indicate that a reciprocating single-file system is an adequate alternative for root canal instrumentation, particularly in teeth with internal root resorption.

  15. Understanding the spatial formation and accumulation of fats, oils and grease deposits in the sewer collection system.

    Science.gov (United States)

    Dominic, Christopher Cyril Sandeep; Szakasits, Megan; Dean, Lisa O; Ducoste, Joel J

    2013-01-01

    Sanitary sewer overflows are caused by the accumulation of insoluble calcium salts of fatty acids, which are formed by the reaction between fats, oils and grease (FOG) and calcium found in wastewaters. Different sewer structural configurations (i.e., manholes, pipes, wet wells), which vary spatially, along with other obstructions (roots intrusion) and pipe deformations (pipe sags), may influence the detrimental buildup of FOG deposits. The purpose of this study was to quantify the spatial variation in FOG deposit formation and accumulation in a pilot-scale sewer collection system. The pilot system contained straight pipes, manholes, roots intrusion, and a pipe sag. Calcium and oil were injected into the system and operated at alkaline (pH = 10) and neutral (pH = 7) pH conditions. Results showed that solid accumulations were slightly higher at neutral pH. Fourier transform infrared (FTIR) analysis on the solids samples confirmed that the solids were indeed calcium-based fatty acid salts. However, the fatty acid profiles of the solids deviated from the profile found from FOG deposits in sewer systems, which were primarily saturated fatty acids. These results confirm the work done previously by researchers and suggest an alternative fate of unsaturated fatty acids that does not lead to their incorporation in FOG deposits in full-scale sewer systems.

  16. Primary root protophloem differentiation requires balanced phosphatidylinositol-4,5-biphosphate levels and systemically affects root branching.

    NARCIS (Netherlands)

    Rodriguez-Villalon, A.; Gujas, B.; van Wijk, R.; Munnik, T.; Hardtke, C.S.

    2015-01-01

    Protophloem is a specialized vascular tissue in growing plant organs, such as root meristems. In Arabidopsis mutants with impaired primary root protophloem differentiation, brevis radix (brx) and octopus (ops), meristematic activity and consequently overall root growth are strongly reduced. Second

  17. Root growth during molar eruption in extant great apes.

    Science.gov (United States)

    Kelley, Jay; Dean, Christopher; Ross, Sasha

    2009-01-01

    While there is gradually accumulating knowledge about molar crown formation and the timing of molar eruption in extant great apes, very little is known about root formation during the eruption process. We measured mandibular first and second molar root lengths in extant great ape osteological specimens that died while either the first or second molars were in the process of erupting. For most specimens, teeth were removed so that root lengths could be measured directly. When this was not possible, roots were measured radiographically. We were particularly interested in the variation in the lengths of first molar roots near the point of gingival emergence, so specimens were divided into early, middle and late phases of eruption based on the number of cusps that showed protein staining, with one or two cusps stained equated with immediate post-gingival emergence. For first molars at this stage, Gorilla has the longest roots, followed by Pongo and Pan. Variation in first molar mesial root lengths at this stage in Gorilla and Pan, which comprise the largest samples, is relatively low and represents no more than a few months of growth in both taxa. Knowledge of root length at first molar emergence permits an assessment of the contribution of root growth toward differences between great apes and humans in the age at first molar emergence. Root growth makes up a greater percentage of the time between birth and first molar emergence in humans than it does in any of the great apes. Copyright (c) 2009 S. Karger AG, Basel.

  18. Ethylene-auxin interactions regulate lateral root initiation and emergence in Arabidopsis thaliana.

    Science.gov (United States)

    Ivanchenko, Maria G; Muday, Gloria K; Dubrovsky, Joseph G

    2008-07-01

    Plant root systems display considerable plasticity in response to endogenous and environmental signals. Auxin stimulates pericycle cells within elongating primary roots to enter de novo organogenesis, leading to the establishment of new lateral root meristems. Crosstalk between auxin and ethylene in root elongation has been demonstrated, but interactions between these hormones in root branching are not well characterized. We find that enhanced ethylene synthesis, resulting from the application of low concentrations of the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC), promotes the initiation of lateral root primordia. Treatment with higher doses of ACC strongly inhibits the ability of pericycle cells to initiate new lateral root primordia, but promotes the emergence of existing lateral root primordia: behaviour that is also seen in the eto1 mutation. These effects are correlated with decreased pericycle cell length and increased lateral root primordia cell width. When auxin is applied simultaneously with ACC, ACC is unable to prevent the auxin stimulation of lateral root formation in the root tissues formed prior to ACC exposure. However, in root tissues formed after transfer to ACC, in which elongation is reduced, auxin does not rescue the ethylene inhibition of primordia initiation, but instead increases it by several fold. Mutations that block auxin responses, slr1 and arf7 arf19, render initiation of lateral root primordia insensitive to the promoting effect of low ethylene levels, and mutations that inhibit ethylene-stimulated auxin biosynthesis, wei2 and wei7, reduce the inhibitory effect of higher ethylene levels, consistent with ethylene regulating root branching through interactions with auxin.

  19. Examining the Relationship Between Edaphic Variables and the Rooting System of Abies concolor in the southern Sierra Nevada

    Science.gov (United States)

    Wilson, A.; Jackson, R. B.; Tumber-Davila, S. J.

    2017-12-01

    An increase in the frequency and severity of droughts has been associated with the changing climate. These events have the potential to alter the composition and biogeography of forests, as well as increase tree mortality related to climate-induced stress. Already, an increase in tree mortality has been observed throughout the US. The recent drought in California led to millions of tree mortalities in the southern Sierra Nevada alone. In order to assess the potential impacts of these events on forest systems, it is imperative to understand what factors contribute to tree mortality. As plants become water-stressed, they may invest carbon more heavily belowground to reach a bigger pool of water, but their ability to adapt may be limited by the characteristics of the soil. In the Southern Sierra Critical Zone Observatory, a high tree mortality zone, we have selected both dead and living trees to examine the factors that contribute to root zone variability and belowground biomass investment by individual plants. A series of 15 cores surrounding the tree were taken to collect root and soil samples. These were then used to compare belowground rooting distributions with soil characteristics (texture, water holding capacity, pH, electric conductivity). Abies concolor is heavily affected by drought-induced mortality, therefore the rooting systems of dead Abies concolor trees were examined to determine the relationship between their rooting systems and environmental conditions. Examining the relationship between soil characteristics and rooting systems of trees may shed light on the plasticity of rooting systems and how trees adapt based on the characteristics of its environment. A better understanding of the factors that contribute to tree mortality can improve our ability to predict how forest systems may be impacted by climate-induced stress. Key words: Root systems, soil characteristics, drought, adaptation, terrestrial carbon, forest ecology

  20. A New Anatomically Based Nomenclature for the Roots and Root Canals—Part 1: Maxillary Molars

    OpenAIRE

    Kottoor, Jojo; Albuquerque, Denzil Valerian; Velmurugan, Natanasabapathy

    2012-01-01

    Numerous terminologies have been employed in the dental literature to describe the roots and root canal systems of maxillary molars. This multiplicity in naming of roots and canals makes the reader susceptible to misinterpretation and confusion. No consensus thus far has been arrived at for defining the names of roots and root canals in maxillary molars, including their various morphological aberrations. The anatomical relation of roots and their root canals were identified and were subsequen...

  1. Methane-rich water induces cucumber adventitious rooting through heme oxygenase1/carbon monoxide and Ca(2+) pathways.

    Science.gov (United States)

    Cui, Weiti; Qi, Fang; Zhang, Yihua; Cao, Hong; Zhang, Jing; Wang, Ren; Shen, Wenbiao

    2015-03-01

    Methane-rich water triggered adventitious rooting by regulating heme oxygenase1/carbon monoxide and calcium pathways in cucumber explants. Heme oxygenase1/carbon monoxide (HO1/CO) and calcium (Ca(2+)) were reported as the downstream signals in auxin-induced cucumber adventitious root (AR) formation. Here, we observed that application of methane-rich water (MRW; 80% saturation) obviously induced AR formation in IAA-depleted cucumber explants. To address the universality, we checked adventitious rooting in soybean and mung bean explants, and found that MRW (50 and 10% saturation, respectively) exhibited the similar inducing results. To further determine if the HO1/CO system participated in MRW-induced adventitious rooting, MRW, HO1 inducer hemin, its activity inhibitor zinc protoporphyrin IX (ZnPP), and its catalytic by-products CO, bilirubin, and Fe(2+) were used to detect their effects on cucumber adventitious rooting in IAA-depleted explants. Subsequent results showed that MRW-induced adventitious rooting was blocked by ZnPP and further reversed by 20% saturation CO aqueous solution. However, the other two by-products of HO1, bilirubin and Fe(2+), failed to induce AR formation. Above responses were consistent with the MRW-induced increases of HO1 transcript and corresponding protein level. Further molecular evidence indicted that expression of marker genes, including auxin signaling-related genes and cell cycle regulatory genes, were modulated by MRW alone but blocked by the cotreatment with ZnPP, the latter of which could be significantly rescued by the addition of CO. By using the Ca(2+)-channel blocker and Ca(2+) chelator, the involvement of Ca(2+) pathway in MRW-induced adventitious rooting was also suggested. Together, our results indicate that MRW might serve as a stimulator of adventitious rooting, which was partially mediated by HO1/CO and Ca(2+) pathways.

  2. Root proliferation in decaying roots and old root channels: A nutrient conservation mechanism in oligotrophic mangrove forests?

    Science.gov (United States)

    McKee, K.L.

    2001-01-01

    1. In oligotrophic habitats, proliferation of roots in nutrient-rich microsites may contribute to overall nutrient conservation by plants. Peat-based soils on mangrove islands in Belize are characterized by the presence of decaying roots and numerous old root channels (0.1-3.5 cm diameter) that become filled with living and highly branched roots of Rhizophora mangle and Avicennia germinans. The objectives of this study were to quantify the proliferation of roots in these microsites and to determine what causes this response. 2. Channels formed by the refractory remains of mangrove roots accounted for only 1-2% of total soil volume, but the proportion of roots found within channels varied from 9 to 24% of total live mass. Successive generations of roots growing inside increasingly smaller root channels were also found. 3. When artificial channels constructed of PVC pipe were buried in the peat for 2 years, those filled with nutrient-rich organic matter had six times more roots than empty or sand-filled channels, indicating a response to greater nutrient availability rather than to greater space or less impedance to root growth. 4. Root proliferation inside decaying roots may improve recovery of nutrients released from decomposing tissues before they can be leached or immobilized in this intertidal environment. Greatest root proliferation in channels occurred in interior forest zones characterized by greater soil waterlogging, which suggests that this may be a strategy for nutrient capture that minimizes oxygen losses from the whole root system. 5. Improved efficiency of nutrient acquisition at the individual plant level has implications for nutrient economy at the ecosystem level and may explain, in part, how mangroves persist and grow in nutrient-poor environments.

  3. Concept for Sustained Plant Production on ISS Using VEGGIE Capillary Mat Rooting System

    Science.gov (United States)

    Stutte, Gary W.; Newsham, Gerard; Morrow, Robert M.; Wheeler, Raymond M.

    2011-01-01

    Plant growth in microgravity presents unique challenges associated with maintaining appropriate conditions for seed germination, seedling establishment, maturation and harvest. They include maintaining appropriate soil moisture content, nutrient balance, atmospheric mixing and containment. Sustained production imposes additional challenges of harvesting, replanting, and safety. The VEGGIE is a deployable (collapsible) plant growth chamber developed as part of a NASA SBIR Phase II by Orbitec, Madison, WI. The intent of VEGGIE is to provide a low-resource system to produce fresh vegetables for the crew on long duration missions. The VEGGIE uses and LED array for lighting, an expandable bellows for containment, and a capillary matting system for nutrient and water delivery. The project evaluated a number of approaches to achieve sustained production, and repeated plantings, using the capillary rooting system. A number of different root media, seed containment, and nutrient delivery systems were evaluated and effects on seed germination and growth were evaluated. A number of issues limiting sustained production, such as accumulation of nutrients, uniform water, elevated vapor pressure deficit, and media containment were identified. A concept using pre-planted rooting packs shown to effectively address a number of those issues and is a promising approach for future development as a planting system for microgravity conditions.

  4. The McMillan and Newton polygons of a feedback system and the construction of root loci

    Science.gov (United States)

    Byrnes, C. I.; Stevens, P. K.

    1982-01-01

    The local behaviour of root loci around zeros and poles is investigated. This is done by relating the Newton diagrams which arise in the local analysis to the McMillan structure of the open-loop system, by means of what we shall call the McMillan polygon. This geometric construct serves to clarify the precise relationship between the McMillan structure, the principal structure, and the branching patterns of the root loci. In addition, several rules are obtained which are useful in the construction of the root loci of multivariable control systems.

  5. Studies using 32P to determine the distribution and activity patterns of the oil palm root system in Nigeria

    International Nuclear Information System (INIS)

    Omoti, U.

    1982-01-01

    Results of studies of the root distribution and root activity which have been conducted by the Nigerian Institute for Oil Palm Research over the last twenty-three years are presented. Previous laborious studies involving washing the soil from the entire root system have shown that the oil palm root system is typically monocotyledonous with superficial and deeply penetrating primaries, ascending and descending secondaries with numerous tertiaries and quaternaries in the surface layers forming the main feeding roots. Radioisotope studies showed that the greatest concentration and activity of the nutrient absorbing roots occurred within the top 30 cm of soil. There were zones of root concentration and root activity close to the palm. High root activity was also obtained up to 4 m from the palm. During the dry season, the oil palm roots die back thus leading to a reduced zone of root activity. The implications of the findings for fertilizer placement for maximum efficiency of utilization by the whole plantation and the need for further experimentation are discussed. (author)

  6. New simple algebraic root locus method for design of feedback control systems

    Directory of Open Access Journals (Sweden)

    Cingara Aleksandar M.

    2008-01-01

    Full Text Available New concept of algebraic characteristic equation decomposition method is presented to simplify the design of closed-loop systems for practical applications. The method consists of two decompositions. The first one, decomposition of the characteristic equation into two lower order equations, was performed in order to simplify the analysis and design of closed loop systems. The second is the decomposition of Laplace variable, s, into two variables, damping coefficient, ζ, and natural frequency, ω n. Those two decompositions reduce the design of any order feedback systems to setting of two complex dominant poles in the desired position. In the paper, we derived explicit equations for six cases: first, second and third order system with P and PI. We got the analytical solutions for the case of fourth and fifth order characteristic equations with the P and PI controller; one may obtain a complete analytical solution of controller gain as a function of the desired damping coefficient. The complete derivation is given for the third order equation with P and PI controller. We can extend the number of specified poles to the highest order of the characteristic equation working in a similar way, so we can specify the position of each pole. The concept is similar to the root locus but root locus is implicit, which makes it more complicated and this is simpler explicit root locus. Standard procedures, root locus and Bode diagrams or Nichol Charts, are neither algebraic nor explicit. We basically change controller parameters and observe the change of some function until we get the desired specifications. The derived method has three important advantage over the standard procedures. It is general, algebraic and explicit. Those are the best poles design results possible; it is not possible to get better controller design results.

  7. Root-soil relationships and terroir

    Science.gov (United States)

    Tomasi, Diego

    2015-04-01

    Soil features, along with climate, are among the most important determinants of a succesful grape production in a certain area. Most of the studies, so far, investigated the above-ground vine response to differente edaphic and climate condition, but it is clearly not sufficient to explain the vine whole behaviour. In fact, roots represent an important part of the terroir system (soil-plant-atmosphere-man), and their study can provide better comprehension of vine responses to different environments. The root density and distribution, the ability of deep-rooting and regenerating new roots are good indicators of root well-being, and represents the basis for an efficient physiological activity of the root system. Root deepening and distribution are strongly dependent and sensitive on soil type and soil properties, while root density is affected mostly by canopy size, rootstock and water availability. According to root well-being, soil management strategies should alleviate soil impediments, improving aeration and microbial activity. Moreover, agronomic practices can impact root system performance and influence the above-ground growth. It is well known, for example, that the root system size is largely diminished by high planting densities. Close vine spacings stimulate a more effective utilization of the available soil, water and nutrients, but if the competition for available soil becomes too high, it can repress vine growth, and compromise vineyard longevity, productivity and reaction to growing season weather. Development of resilient rootstocks, more efficient in terms of water and nutrient uptake and capable of dealing with climate and soil extremes (drought, high salinity) are primary goals fore future research. The use of these rootstocks will benefit a more sustainable use of the soil resources and the preservation and valorisation of the terroir.

  8. Responses of root physiological characteristics and yield of sweet potato to humic acid urea fertilizer.

    Directory of Open Access Journals (Sweden)

    Xiaoguang Chen

    Full Text Available Humic acid (HA, not only promote the growth of crop roots, they can be combined with nitrogen (N to increase fertilizer use efficiency and yield. However, the effects of HA urea fertilizer (HA-N on root growth and yield of sweet potato has not been widely investigated. Xushu 28 was used as the experimental crop to investigate the effects of HA-N on root morphology, active oxygen metabolism and yield under field conditions. Results showed that nitrogen application alone was not beneficial for root growth and storage root formation during the early growth stage. HA-N significantly increased the dry weight of the root system, promoted differentiation from adventitious root to storage root, and increased the overall root activity, total root length, root diameter, root surface area, as well as root volume. HA-N thus increased the activity of superoxide dismutase (SOD, peroxidase (POD, and Catalase (CAT as well as increasing the soluble protein content of roots and decreasing the malondialdehyde (MDA content. HA-N significantly increased both the number of storage roots per plant increased by 14.01%, and the average fresh weight per storage root increased by 13.7%, while the yield was also obviously increased by 29.56%. In this study, HA-N increased yield through a synergistic increase of biological yield and harvest index.

  9. Inference of the Genetic Network Regulating Lateral Root Initiation in Arabidopsis thaliana

    KAUST Repository

    Muraro, D.

    2013-01-01

    Regulation of gene expression is crucial for organism growth, and it is one of the challenges in systems biology to reconstruct the underlying regulatory biological networks from transcriptomic data. The formation of lateral roots in Arabidopsis thaliana is stimulated by a cascade of regulators of which only the interactions of its initial elements have been identified. Using simulated gene expression data with known network topology, we compare the performance of inference algorithms, based on different approaches, for which ready-to-use software is available. We show that their performance improves with the network size and the inclusion of mutants. We then analyze two sets of genes, whose activity is likely to be relevant to lateral root initiation in Arabidopsis, and assess causality of their regulatory interactions by integrating sequence analysis with the intersection of the results of the best performing methods on time series and mutants. The methods applied capture known interactions between genes that are candidate regulators at early stages of development. The network inferred from genes significantly expressed during lateral root formation exhibits distinct scale free, small world and hierarchical properties and the nodes with a high out-degree may warrant further investigation. © 2004-2012 IEEE.

  10. Adventitious rooting declines with the vegetative to reproductive switch and involves a changed auxin homeostasis.

    Science.gov (United States)

    Rasmussen, Amanda; Hosseini, Seyed Abdollah; Hajirezaei, Mohammed-Reza; Druege, Uwe; Geelen, Danny

    2015-03-01

    Adventitious rooting, whereby roots form from non-root tissues, is critical to the forestry and horticultural industries that depend on propagating plants from cuttings. A major problem is that age of the tissue affects the ability of the cutting to form adventitious roots. Here, a model system has been developed using Pisum sativum to differentiate between different interpretations of ageing. It is shown that the decline in adventitious rooting is linked to the ontogenetic switch from vegetative to floral and is mainly attributed to the cutting base. Using rms mutants it is demonstrated that the decline is not a result of increased strigolactones inhibiting adventitious root formation. Monitoring endogenous levels of a range of other hormones including a range of cytokinins in the rooting zone revealed that a peak in jasmonic acid is delayed in cuttings from floral plants. Additionally, there is an early peak in indole-3-acetic acid levels 6h post excision in cuttings from vegetative plants, which is absent in cuttings from floral plants. These results were confirmed using DR5:GUS expression. Exogenous supplementation of young cuttings with either jasmonic acid or indole-3-acetic acid promoted adventitious rooting, but neither of these hormones was able to promote adventitious rooting in mature cuttings. DR5:GUS expression was observed to increase in juvenile cuttings with increasing auxin treatment but not in the mature cuttings. Therefore, it seems the vegetative to floral ontogenetic switch involves an alteration in the tissue's auxin homeostasis that significantly reduces the indole-3-acetic acid pool and ultimately results in a decline in adventitious root formation. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  11. Hardware format pattern banks for the Associative memory boards in the ATLAS Fast Tracker Trigger System

    CERN Document Server

    Grewcoe, Clay James

    2014-01-01

    The aim of this project is to streamline and update the process of encoding the pattern bank to hardware format in the Associative memory board (AM) of the Fast Tracker (FTK) for the ATLAS detector. The encoding is also adapted to Gray code to eliminate possible misreadings in high frequency devices such as this one, ROOT files are used to store the pattern banks because of the compression utilized in ROOT.

  12. The major-effect quantitative trait locus CsARN6.1 encodes an AAA ATPase domain-containing protein that is associated with waterlogging stress tolerance by promoting adventitious root formation.

    Science.gov (United States)

    Xu, Xuewen; Ji, Jing; Xu, Qiang; Qi, Xiaohua; Weng, Yiqun; Chen, Xuehao

    2018-03-01

    In plants, the formation of hypocotyl-derived adventitious roots (ARs) is an important morphological acclimation to waterlogging stress; however, its genetic basis remains fragmentary. Here, through combined use of bulked segregant analysis-based whole-genome sequencing, SNP haplotyping and fine genetic mapping, we identified a candidate gene for a major-effect QTL, ARN6.1, that was responsible for waterlogging tolerance due to increased AR formation in the cucumber line Zaoer-N. Through multiple lines of evidence, we show that CsARN6.1 is the most possible candidate for ARN6.1 which encodes an AAA ATPase. The increased formation of ARs under waterlogging in Zaoer-N could be attributed to a non-synonymous SNP in the coiled-coil domain region of this gene. CsARN6.1 increases the number of ARs via its ATPase activity. Ectopic expression of CsARN6.1 in Arabidopsis resulted in better rooting ability and lateral root development in transgenic plants. Transgenic cucumber expressing the CsARN6.1 Asp allele from Zaoer-N exhibited a significant increase in number of ARs compared with the wild type expressing the allele from Pepino under waterlogging conditions. Taken together, these data support that the AAA ATPase gene CsARN6.1 has an important role in increasing cucumber AR formation and waterlogging tolerance. © 2018 The Authors The Plant Journal © 2018 John Wiley & Sons Ltd.

  13. Fourier transforms related to a root system of rank 1.

    NARCIS (Netherlands)

    Groenevelt, W.G.M.

    2007-01-01

    Abstract : We introduce an algebra $\\mathcal H$ consisting of difference-reflection operators and multiplication operators that can be considered as a q = 1 analogue of Sahi's double affine Hecke algebra related to the affine root system of type $(C^\\vee_1, C_1)$ . We study eigenfunctions of a

  14. Evaluation of apically extruded debris during root canal retreatment with several NiTi systems.

    Science.gov (United States)

    Dincer, A N; Er, O; Canakci, B C

    2015-12-01

    To compare the amount of debris extruded apically during root canal retreatment using ProTaper, Mtwo and Reciproc instruments with hand H-files. In total, 60 freshly extracted human mandibular incisor teeth were used. All root canals were prepared with a Reciproc R25 file than filled with Gutta-percha and AH Plus sealer using cold lateral condensation before being assigned randomly to four groups (n = 15 each). In group 1, root fillings were removed with the Protaper Universal retreatment system; ProTaper Universal F3 and F4 instruments were used for the final preparation. In group 2, root fillings were removed with the Mtwo retreatment system; Mtwo size 30, .06 taper, size 35, .06 taper and size 40, .06 taper files were used for the final preparation. In group 3, root fillings were removed with Reciproc R25 instruments; Reciproc R40 instruments were used for the final preparation. In group 4, the root fillings were removed with Gates Glidden burs and sizes 35, 30 and 25 H-files; for final preparation, a size 40 H-file was used. Glass vials were used for debris collection. The vials were weighed before and after Gutta-percha removal. Additionally, the times required for the retreatment procedures were recorded. Data were analysed statistically using one-way analysis of variance. The Reciproc system produced significantly smaller amounts of apical extruded debris than the other groups (P ProTaper groups. The ProTaper and Reciproc groups required significantly less time than the Mtwo and H-file groups (P hand filing. Use of the ProTaper and Reciproc instruments required less time for retreatment procedures than use of the Mtwo or H-file. © 2014 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  15. Networks for Autonomous Formation Flying Satellite Systems

    Science.gov (United States)

    Knoblock, Eric J.; Konangi, Vijay K.; Wallett, Thomas M.; Bhasin, Kul B.

    2001-01-01

    The performance of three communications networks to support autonomous multi-spacecraft formation flying systems is presented. All systems are comprised of a ten-satellite formation arranged in a star topology, with one of the satellites designated as the central or "mother ship." All data is routed through the mother ship to the terrestrial network. The first system uses a TCP/lP over ATM protocol architecture within the formation the second system uses the IEEE 802.11 protocol architecture within the formation and the last system uses both of the previous architectures with a constellation of geosynchronous satellites serving as an intermediate point-of-contact between the formation and the terrestrial network. The simulations consist of file transfers using either the File Transfer Protocol (FTP) or the Simple Automatic File Exchange (SAFE) Protocol. The results compare the IF queuing delay, and IP processing delay at the mother ship as well as application-level round-trip time for both systems, In all cases, using IEEE 802.11 within the formation yields less delay. Also, the throughput exhibited by SAFE is better than FTP.

  16. Heating systems for heating subsurface formations

    Science.gov (United States)

    Nguyen, Scott Vinh [Houston, TX; Vinegar, Harold J [Bellaire, TX

    2011-04-26

    Methods and systems for heating a subsurface formation are described herein. A heating system for a subsurface formation includes a sealed conduit positioned in an opening in the formation and a heat source. The sealed conduit includes a heat transfer fluid. The heat source provides heat to a portion of the sealed conduit to change phase of the heat transfer fluid from a liquid to a vapor. The vapor in the sealed conduit rises in the sealed conduit, condenses to transfer heat to the formation and returns to the conduit portion as a liquid.

  17. In-depth morphological study of mesiobuccal root canal systems in maxillary first molars: review

    Directory of Open Access Journals (Sweden)

    Seok-Woo Chang

    2013-02-01

    Full Text Available A common failure in endodontic treatment of the permanent maxillary first molars is likely to be caused by an inability to locate, clean, and obturate the second mesiobuccal (MB canals. Because of the importance of knowledge on these additional canals, there have been numerous studies which investigated the maxillary first molar MB root canal morphology using in vivo and laboratory methods. In this article, the protocols, advantages and disadvantages of various methodologies for in-depth study of maxillary first molar MB root canal morphology were discussed. Furthermore, newly identified configuration types for the establishment of new classification system were suggested based on two image reformatting techniques of micro-computed tomography, which can be useful as a further 'Gold Standard' method for in-depth morphological study of complex root canal systems.

  18. Temperature increases on the external root surface during endodontic treatment using single file systems.

    Science.gov (United States)

    Özkocak, I; Taşkan, M M; Gökt Rk, H; Aytac, F; Karaarslan, E Şirin

    2015-01-01

    The aim of this study is to evaluate increases in temperature on the external root surface during endodontic treatment with different rotary systems. Fifty human mandibular incisors with a single root canal were selected. All root canals were instrumented using a size 20 Hedstrom file, and the canals were irrigated with 5% sodium hypochlorite solution. The samples were randomly divided into the following three groups of 15 teeth: Group 1: The OneShape Endodontic File no.: 25; Group 2: The Reciproc Endodontic File no.: 25; Group 3: The WaveOne Endodontic File no.: 25. During the preparation, the temperature changes were measured in the middle third of the roots using a noncontact infrared thermometer. The temperature data were transferred from the thermometer to the computer and were observed graphically. Statistical analysis was performed using the Kruskal-Wallis analysis of variance at a significance level of 0.05. The increases in temperature caused by the OneShape file system were lower than those of the other files (P file showed the highest temperature increases. However, there were no significant differences between the Reciproc and WaveOne files. The single file rotary systems used in this study may be recommended for clinical use.

  19. Wheat shovelomics I: A field phenotyping approach for characterising the structure and function of root systems in tillering species

    OpenAIRE

    Bennett, Malcolm; York, Larry; Foulkes, M; Slack, Shaunagh

    2018-01-01

    Wheat represents a major crop, yet the current rate of yield improvement is insufficient to meet its projected global food demand. Breeding root systems more efficient for water and nitrogen capture represents a promising avenue for accelerating yield gains. Root crown phenotyping, or shovelomics, relies on excavation of the upper portions of root systems in the field and measuring root properties such as numbers, angles, densities and lengths. We report a new shovelomics method that images t...

  20. Comparative study of six rotary nickel-titanium systems and hand instrumentation for root canal preparation.

    Science.gov (United States)

    Guelzow, A; Stamm, O; Martus, P; Kielbassa, A M

    2005-10-01

    To compare ex vivo various parameters of root canal preparation using a manual technique and six different rotary nickel-titanium (Ni-Ti) instruments (FlexMaster, System GT, HERO 642, K3, ProTaper, and RaCe). A total of 147 extracted mandibular molars were divided into seven groups (n = 21) with equal mean mesio-buccal root canal curvatures (up to 70 degrees), and embedded in a muffle system. All root canals were prepared to size 30 using a crown-down preparation technique for the rotary nickel-titanium instruments and a standardized preparation (using reamers and Hedströem files) for the manual technique. Length modifications and straightening were determined by standardized radiography and a computer-aided difference measurement for every instrument system. Post-operative cross-sections were evaluated by light-microscopic investigation and photographic documentation. Procedural errors, working time and time for instrumentation were recorded. The data were analysed statistically using the Kruskal-Wallis test and the Mann-Whitney U-test. No significant differences were detected between the rotary Ni-Ti instruments for alteration of working length. All Ni-Ti systems maintained the original curvature well, with minor mean degrees of straightening ranging from 0.45 degrees (System GT) to 1.17 degrees (ProTaper). ProTaper had the lowest numbers of irregular post-operative root canal diameters; the results were comparable between the other systems. Instrument fractures occurred with ProTaper in three root canals, whilst preparation with System GT, HERO 642, K3 and the manual technique resulted in one fracture each. Ni-Ti instruments prepared canals more rapidly than the manual technique. The shortest time for instrumentation was achieved with System GT (11.7 s). Under the conditions of this ex vivo study all Ni-Ti systems maintained the canal curvature, were associated with few instrument fractures and were more rapid than a standardized manual technique. Pro

  1. Variations in the Root Form and Root Canal Morphology of Permanent Mandibular First Molars in a Sri Lankan Population

    Directory of Open Access Journals (Sweden)

    Roshan Peiris

    2015-01-01

    Full Text Available The present study was conducted to determine the number of roots and morphology of the root canal system of permanent mandibular first molars (M1 in a Sri Lankan population. Sample of 529 M1 teeth was used. The number of roots was examined and the lengths of the mesial and distal roots were measured to the nearest 0.01 mm. Vacuum injection protocol was used to inject China ink into the root canal system, making it transparent. Root canal morphology was recorded using Vertucci’s classification. Presence of furcation canals, position of lateral canals, intercanal communications, level of bifurcation, and convergence of the root canal system were recorded. M1 showed three roots in 4.1% of the sample. Commonest root canal morphology of the mesial root was type IV and the distal root was type I. The level of bifurcation of the root canals was commonly observed in the cervical one-third of the root while convergence was observed in the apical one-third in both roots. Prevalence of three rooted mandibular first molars is less than 5%. Mesial root showed the most variable canal morphology. Prevalence of furcation canals was 1.5% while that of middle mesial canals was 0.2%.

  2. A micro-computed tomographic evaluation of dentinal microcrack alterations during root canal preparation using single-file Ni-Ti systems.

    Science.gov (United States)

    Li, Mei-Lin; Liao, Wei-Li; Cai, Hua-Xiong

    2018-01-01

    The aim of the present study was to evaluate the length of dentinal microcracks observed prior to and following root canal preparation with different single-file nickel-titanium (Ni-Ti) systems using micro-computed tomography (micro-CT) analysis. A total of 80 mesial roots of mandibular first molars presenting with type II Vertucci canal configurations were scanned at an isotropic resolution of 7.4 µm. The samples were randomly assigned into four groups (n=20 per group) according to the system used for root canal preparation, including the WaveOne (WO), OneShape (OS), Reciproc (RE) and control groups. A second micro-CT scan was conducted after the root canals were prepared with size 25 instruments. Pre- and postoperative cross-section images of the roots (n=237,760) were then screened to identify the lengths of the microcracks. The results indicated that the microcrack lengths were notably increased following root canal preparation (Pfiles. Among the single-file Ni-Ti systems, WO and RE were not observed to cause notable microcracks, while the OS system resulted in evident microcracks.

  3. Root cause analysis of pump valve failures of three membrane pump systems

    NARCIS (Netherlands)

    Buijs, L.J.; Eijk, A.; Hooft, L. van

    2014-01-01

    This paper will present the root cause analysis and the solution of fatigue failures of the pump valves of three membrane pump systems installed on a chemical plant of Momentive in Pernis, the Netherlands. The membrane pumps were installed approximately 30 years ago. Each system has encountered

  4. The Accuracy of the Digital imaging system and the frequency dependent type apex locator in root canal length measurement

    International Nuclear Information System (INIS)

    Lee, Byoung Rib; Park, Chang Seo

    1998-01-01

    In order to achieve a successful endodontic treatment, root canals must be obturated three-dimensionally without causing any damage to apical tissues. Accurate length determination of the root canal is critical in this case. For this reason, I've used the conventional periapical radiography, Digora (digital imaging system) and Root ZX (the frequency dependent type apex locator) to measure the length of the canal and compare it with the true length obtained by cutting the tooth in half and measuring the length between the occlusal surface and the apical foramen. From the information obtained by these measurements, I was able to evaluate the accuracy and clinical usefulness of each systems, whether the thickness of files used in endodontic therapy has any effect on the measuring systems was also evaluated in an effort to simplify the treatment planning phase of endodontic treatment. 29 canals of 29 sound premolars were measured with no 15, no 20, no 25 files by 3 different dentists each using the periapical radiography, Digora and Root ZX. The measurements were then compared with the true length. The results were as follows ; 1. In comparing mean discrepancies between measurements obtained by using periapical radiography (mean error : -0.449 ± 0.444 mm), Digora (mean error : -0.417 ± 0.415 mm) and Root ZX (mean error : 0.123 ± 0.458 mm) with true length, periapical radiography and Digora system had statistically significant differences (p 0.05). 2. By subtracting values obtained by using periapical radiography, Digora and Root ZX from the true length and making a distribution table of their absolute values, the following analysis was possible. In the case of periapical film, 140 out of 261 (53.6%) were clinically acceptable satisfying the margin of error of less than 0.5 mm, 151 out of 261 (53,6%) were acceptable in the Digora system while Root ZX had 197 out of 261 (75.5%) within the limits of 0.5 mm margin of error. 3. In determining whether the thickness of

  5. Using coloured roots to study root interaction and competition in intercropped legumes and non-legumes

    DEFF Research Database (Denmark)

    Tosti, Giacomo; Thorup-Kristensen, Kristian

    2010-01-01

    if a species with coloured roots can be used to examine the interaction in a legume-non-legume intercropping system; (ii) to verify the importance of initial root growth on the successive root development of mixture component plants; (iii) to test if the root interaction in the shallow layers has consequences...

  6. Plant roots use a patterning mechanism to position lateral root branches toward available water.

    Science.gov (United States)

    Bao, Yun; Aggarwal, Pooja; Robbins, Neil E; Sturrock, Craig J; Thompson, Mark C; Tan, Han Qi; Tham, Cliff; Duan, Lina; Rodriguez, Pedro L; Vernoux, Teva; Mooney, Sacha J; Bennett, Malcolm J; Dinneny, José R

    2014-06-24

    The architecture of the branched root system of plants is a major determinant of vigor. Water availability is known to impact root physiology and growth; however, the spatial scale at which this stimulus influences root architecture is poorly understood. Here we reveal that differences in the availability of water across the circumferential axis of the root create spatial cues that determine the position of lateral root branches. We show that roots of several plant species can distinguish between a wet surface and air environments and that this also impacts the patterning of root hairs, anthocyanins, and aerenchyma in a phenomenon we describe as hydropatterning. This environmental response is distinct from a touch response and requires available water to induce lateral roots along a contacted surface. X-ray microscale computed tomography and 3D reconstruction of soil-grown root systems demonstrate that such responses also occur under physiologically relevant conditions. Using early-stage lateral root markers, we show that hydropatterning acts before the initiation stage and likely determines the circumferential position at which lateral root founder cells are specified. Hydropatterning is independent of endogenous abscisic acid signaling, distinguishing it from a classic water-stress response. Higher water availability induces the biosynthesis and transport of the lateral root-inductive signal auxin through local regulation of tryptophan aminotransferase of Arabidopsis 1 and PIN-formed 3, both of which are necessary for normal hydropatterning. Our work suggests that water availability is sensed and interpreted at the suborgan level and locally patterns a wide variety of developmental processes in the root.

  7. Fine roots in stands of Fagus sylvatica and Picea abies along a gradient of soil acidification

    International Nuclear Information System (INIS)

    Braun, Sabine; Cantaluppi, Leonardo; Flueckiger, Walter

    2005-01-01

    Root length of naturally grown young beech trees (Fagus sylvatica L.) was investigated in 26 forest plots of differing base saturation and nitrogen deposition. The relative length of finest roots (<0.25 mm) was found to decrease in soils with low base saturation. A similar reduction of finest roots in plots with high nitrogen deposition was masked by the effect of base saturation. The formation of adventitious roots was enhanced in acidic soils. The analysis of 128 soil profiles for fine roots of all species present in stands of either Fagus sylvatica L., Picea abies [Karst.] L. or both showed a decreased rooting depth in soils with ≤20% base saturation and in hydromorphic soils. For base rich, well drained soils an average rooting depth of 108 cm was found. This decreased by 28 cm on acidic, well drained soils. The results suggest an effect of the current soil acidification in Switzerland and possibly also of nitrogen deposition on the fine root systems of forest trees. - Fine root length of Fagus sylvatica and fine root depth in stands of Fagus sylvatica and/or Picea abies were impaired in soils with low base saturation

  8. Comparison of five cone beam computed tomography systems for the detection of vertical root fractures

    NARCIS (Netherlands)

    Hassan, B.; Metska, M.E.; Ozok, A.R.; van der Stelt, P.; Wesselink, P.R.

    2010-01-01

    Introduction This study compared the accuracy of cone beam computed tomography (CBCT) scans made by five different systems in detecting vertical root fractures (VRFs). It also assessed the influence of the presence of root canal filling (RCF), CBCT slice orientation selection, and the type of tooth

  9. Evaluation of bacterial leakage of four root- end filling materials: Gray Pro Root MTA, White Pro Root MTA, Root MTA and Portland Cement (type I

    Directory of Open Access Journals (Sweden)

    Zarabian M.

    2005-07-01

    Full Text Available Background and Aim: Today several materials have been used for root- end filling in endodontic surgery. Optimal properties of Pro Root MTA in in-vitro and in-vivo studies has been proven. On the other hand, based on some studies, Root MTA (Iranian Pro Root MTA and Portland cement are similar to Pro Root MTA in physical and biologic properties. The aim of this study was to evaluate bacterial leakage (amount and mean leakage time of four root- end filling materials. Materials and Methods: In this experimental in-vitro study, seventy six extracted single- rooted human teeth were randomly divided into six groups for root-end filling with gray Pro Root MTA, white Pro Root MTA, Root MTA (Iranian Pro Root MTA, Portland Cement (type I and positive and negative control groups. Root canals were instrumented using the step- back technique. Root- end filling materials were placed in 3mm ultra sonic retro preparations. Samples and microleakage model system were sterilized in autoclave. The apical 3-4 mm of the roots were immersed in phenol red with 3% lactose broth culture medium. The coronal access of each specimen was inoculated every 24h with a suspension of Streptococcus sanguis (ATCC 10556. Culture media were observed every 24h for colour change indicating bacterial contamination for 60 days. Statistical analysis was performed using log- rank test with P<0.05 as the limit of significance. Results: At the end of study 50%, 56.25%, 56.25% and 50% of specimens filled with Gray Pro Root MTA, White Pro Root MTA. Root MTA and Portland Cement (type I had evidence of leakage respectively. The mean leakage time was 37.19±6.29, 36.44±5.81, 37.69±5.97 and 34.81±6.67 days respectively. Statistical analysis of data showed no significant difference among the leakage (amount and mean leakage time of the four tested root- end filling materials (P=0.9958. Conclusion: Based on the results of this study, there were no significant differences in leakage among the four

  10. A comparative evaluation of the increase in root canal surface area and canal transportation in curved root canals by three rotary systems: A cone-beam computed tomographic study

    Science.gov (United States)

    Prasanthi, Nalam NVD; Rambabu, Tanikonda; Sajjan, Girija S; Varma, K Madhu; Satish, R Kalyan; Padmaja, M

    2016-01-01

    Aim: The aim of this study was to measure the increase in root canal surface area and canal transportation after biomechanical preparation at 1, 3, and 5 mm short of the apex with three different rotary systems in both continuous rotary and reciprocating rotary motions. Materials and Methods: Sixty freshly extracted human mandibular molars with mesial root canal curvatures between 20° and 30° were included in the study. Teeth were randomly distributed into three groups (n = 20). Biomechanical preparations were done in all the mesial canals. In Group 1, instrumentation was done with ProTaper universal rotary files, Group 2, with K3XF rotary files, and Group 3, with LSX rotary files. Each group was further subdivided into subgroups A and B (n = 10) where instrumentation was done by continuous rotary and reciprocating rotary techniques, respectively. Increase in root canal surface area and canal transportation was measured using the preoperative and postoperative cone-beam computed tomography scans. Statistical Analysis: The data were analyzed by one-way ANOVA followed by Tukey pairwise multiple comparison tests. Results: Increase in root canal surface area was significantly more (P 0.05) in increase of root canal surface area and canal transportation between continuous rotary and reciprocating rotary techniques for ProTaper Universal, K3XF and LSX groups. Conclusion: LSX rotary system showed minimal increase of root canal surface area and minimal canal transportation when compared to ProTaper and K3XF rotary systems. PMID:27656062

  11. Root growth of tomato seedlings intensified by humic substances from peat bogs

    Directory of Open Access Journals (Sweden)

    Alexandre Christofaro Silva

    2011-10-01

    Full Text Available Peats are an important reserve of humified carbon in terrestrial ecosystems. The interest in the use of humic substances as plant growth promoters is continuously increasing. The objective of this study was to evaluate the bioactivity of alkaline soluble humic substances (HS, humic (HA and fulvic acids (FA isolated from peats with different decomposition stages of organic matter (sapric, fibric and hemic in the Serra do Espinhaço Meridional, state of Minas Gerais. Dose-response curves were established for the number of lateral roots growing from the main plant axis of tomato seedlings. The bioactivity of HA was greatest (highest response in lateral roots at lowest concentration while FA did not intensify root growth. Both HS and HA stimulated root hair formation. At low concentrations, HS and HA induced root hair formation near the root cap, a typical hormonal imbalance effect in plants. Transgenic tomato with reporter gene DR5::GUS allowed the observation that the auxin-related signalling pathway was involved in root growth promotion by HA.

  12. The incidence of root microcracks caused by 3 different single-file systems versus the ProTaper system.

    Science.gov (United States)

    Liu, Rui; Hou, Ben Xiang; Wesselink, Paul R; Wu, Min-Kai; Shemesh, Hagay

    2013-08-01

    The aim of this study was to compare the incidence of root cracks observed at the apical root surface and/or in the canal wall after canal instrumentation with 3 single-file systems and the ProTaper system (Dentsply Maillefer, Ballaigues, Switzerland). One hundred mandibular incisors were selected. Twenty control teeth were coronally flared with Gates-Glidden drills (Dentsply Maillefer). No further preparation was made. The other 80 teeth were mounted in resin blocks with simulated periodontal ligaments, and the apex was exposed. They were divided into 4 experimental groups (n = 20); the root canals were first coronally flared with Gates-Glidden drills and then instrumented to the full working length with the ProTaper, OneShape (Micro-Mega, Besancon, France), Reciproc (VDW, Munich, Germany), or the Self-Adjusting File (ReDent-Nova, Ra'anana, Israel). The apical root surface and horizontal sections 2, 4, and 6 mm from the apex were observed under a microscope. The presence of cracks was noted. The chi-square test was performed to compare the appearance of cracked roots between the experimental groups. No cracks were found in the control teeth and teeth instrumented with the Self-Adjusting File. Cracks were found in 10 of 20 (50%), 7 of 20 (35%), and 1 of 20 (5%) teeth after canal instrumentation with the ProTaper, OneShape, and Reciproc files, respectively. The difference between the experimental groups was statistically significant (P File and Reciproc files caused less cracks than the ProTaper and OneShape files. Copyright © 2013 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  13. Prioritizing quantitative trait loci for root system architecture in tetraploid wheat.

    Science.gov (United States)

    Maccaferri, Marco; El-Feki, Walid; Nazemi, Ghasemali; Salvi, Silvio; Canè, Maria Angela; Colalongo, Maria Chiara; Stefanelli, Sandra; Tuberosa, Roberto

    2016-02-01

    Optimization of root system architecture (RSA) traits is an important objective for modern wheat breeding. Linkage and association mapping for RSA in two recombinant inbred line populations and one association mapping panel of 183 elite durum wheat (Triticum turgidum L. var. durum Desf.) accessions evaluated as seedlings grown on filter paper/polycarbonate screening plates revealed 20 clusters of quantitative trait loci (QTLs) for root length and number, as well as 30 QTLs for root growth angle (RGA). Divergent RGA phenotypes observed by seminal root screening were validated by root phenotyping of field-grown adult plants. QTLs were mapped on a high-density tetraploid consensus map based on transcript-associated Illumina 90K single nucleotide polymorphisms (SNPs) developed for bread and durum wheat, thus allowing for an accurate cross-referencing of RSA QTLs between durum and bread wheat. Among the main QTL clusters for root length and number highlighted in this study, 15 overlapped with QTLs for multiple RSA traits reported in bread wheat, while out of 30 QTLs for RGA, only six showed co-location with previously reported QTLs in wheat. Based on their relative additive effects/significance, allelic distribution in the association mapping panel, and co-location with QTLs for grain weight and grain yield, the RSA QTLs have been prioritized in terms of breeding value. Three major QTL clusters for root length and number (RSA_QTL_cluster_5#, RSA_QTL_cluster_6#, and RSA_QTL_cluster_12#) and nine RGA QTL clusters (QRGA.ubo-2A.1, QRGA.ubo-2A.3, QRGA.ubo-2B.2/2B.3, QRGA.ubo-4B.4, QRGA.ubo-6A.1, QRGA.ubo-6A.2, QRGA.ubo-7A.1, QRGA.ubo-7A.2, and QRGA.ubo-7B) appear particularly valuable for further characterization towards a possible implementation of breeding applications in marker-assisted selection and/or cloning of the causal genes underlying the QTLs. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  14. PhotosynthateRegulation of the Root System Architecture Mediated bythe Heterotrimeric G Protein Complex in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Yashwanti Mudgil

    2016-08-01

    Full Text Available Assimilate partitioning to the root system is a desirable developmental trait to control but little is known of the signaling pathway underlying partitioning. A null mutation in the gene encoding the Gβ subunit of the heterotrimeric G protein complex, a nexus for a variety of signaling pathways, confers altered sugar partitioning in roots. While fixed carbon rapidly reached the roots of wild type and agb1-2 mutant seedlings, agb1 roots had more of this fixed carbon in the form of glucose, fructose, and sucrose which manifested as a higher lateral root density. Upon glucose treatment, the agb1-2 mutant had abnormal gene expression in the root tip validated by transcriptome analysis. In addition, PIN2 membrane localization and level was altered in the agb1-2 mutant. The heterotrimeric G protein complex integrates photosynthesis-derived sugar signaling incorporating both membrane-and transcriptional-based mechanisms. The time constants for these signaling mechanisms are in the same range as photosynthate delivery to the root, raising the possibility that root cells are able to use changes in carbon fixation in real time to adjust growth behavior.

  15. Design and implementation of therapeutic ultrasound generating circuit for dental tissue formation and tooth-root healing.

    Science.gov (United States)

    Woon Tiong Ang; Scurtescu, C; Wing Hoy; El-Bialy, T; Ying Yin Tsui; Jie Chen

    2010-02-01

    Biological tissue healing has recently attracted a great deal of research interest in various medical fields. Trauma to teeth, deep and root caries, and orthodontic treatment can all lead to various degrees of root resorption. In our previous study, we showed that low-intensity pulsed ultrasound (LIPUS) enhances the growth of lower incisor apices and accelerates their rate of eruption in rabbits by inducing dental tissue growth. We also performed clinical studies and demonstrated that LIPUS facilitates the healing of orthodontically induced teeth-root resorption in humans. However, the available LIPUS devices are too large to be used comfortably inside the mouth. In this paper, the design and implementation of a low-power LIPUS generator is presented. The generator is the core of the final intraoral device for preventing tooth root loss and enhancing tooth root tissue healing. The generator consists of a power-supply subsystem, an ultrasonic transducer, an impedance-matching circuit, and an integrated circuit composed of a digital controller circuitry and the associated driver circuit. Most of our efforts focus on the design of the impedance-matching circuit and the integrated system-on-chip circuit. The chip was designed and fabricated using 0.8- ¿m high-voltage technology from Dalsa Semiconductor, Inc. The power supply subsystem and its impedance-matching network are implemented using discrete components. The LIPUS generator was tested and verified to function as designed and is capable of producing ultrasound power up to 100 mW in the vicinity of the transducer's resonance frequency at 1.5 MHz. The power efficiency of the circuitry, excluding the power supply subsystem, is estimated at 70%. The final products will be tailored to the exact size of teeth or biological tissue, which is needed to be used for stimulating dental tissue (dentine and cementum) healing.

  16. Root cortical aerenchyma inhibits radial nutrient transport in maize (Zea mays).

    Science.gov (United States)

    Hu, Bo; Henry, Amelia; Brown, Kathleen M; Lynch, Jonathan P

    2014-01-01

    Formation of root cortical aerenchyma (RCA) can be induced by nutrient deficiency. In species adapted to aerobic soil conditions, this response is adaptive by reducing root maintenance requirements, thereby permitting greater soil exploration. One trade-off of RCA formation may be reduced radial transport of nutrients due to reduction in living cortical tissue. To test this hypothesis, radial nutrient transport in intact roots of maize (Zea mays) was investigated in two radiolabelling experiments employing genotypes with contrasting RCA. In the first experiment, time-course dynamics of phosphate loading into the xylem were measured from excised nodal roots that varied in RCA formation. In the second experiment, uptake of phosphate, calcium and sulphate was measured in seminal roots of intact young plants in which variation in RCA was induced by treatments altering ethylene action or genetic differences. In each of three paired genotype comparisons, the rate of phosphate exudation of high-RCA genotypes was significantly less than that of low-RCA genotypes. In the second experiment, radial nutrient transport of phosphate and calcium was negatively correlated with the extent of RCA for some genotypes. The results support the hypothesis that RCA can reduce radial transport of some nutrients in some genotypes, which could be an important trade-off of this trait.

  17. Differential auxin transport and accumulation in the stem base lead to profuse adventitious root primordia formation in the aerial roots (aer) mutant of tomato (Solanum lycopersicum L.).

    Science.gov (United States)

    Mignolli, F; Mariotti, L; Picciarelli, P; Vidoz, M L

    2017-06-01

    The aerial roots (aer) mutant of tomato is characterized by a profuse and precocious formation of adventitious root primordia along the stem. We demonstrated that auxin is involved in the aer phenotype but ruled out higher auxin sensitivity of mutant plants. Interestingly, polar auxin transport was altered in aer, as young seedlings showed a reduced response to an auxin transport inhibitor and higher expression of auxin export carriers SlPIN1 and SlPIN3. An abrupt reduction in transcripts of auxin efflux and influx genes in older aer hypocotyls caused a marked deceleration of auxin transport in more mature tissues. Indeed, in 20days old aer plants, the transport of labeled IAA was faster in apices than in hypocotyls, displaying an opposite trend in comparison to a wild type. In addition, auxin transport facilitators (SlPIN1, SlPIN4, SlLAX5) were more expressed in aer apices than in hypocotyls, suggesting that auxin moves faster from the upper to the lower part of the stem. Consequently, a significantly higher level of free and conjugated IAA was found at the base of aer stems with respect to their apices. This auxin accumulation is likely the cause of the aer phenotype. Copyright © 2017 Elsevier GmbH. All rights reserved.

  18. Antigenotoxic potential of Asparagus racemosus root extract against electron beam radiation induced micronuclei formation in Swiss albino mice

    International Nuclear Information System (INIS)

    Bhandary, B. Satheesh Kumar; Sharmila, K.P.; Suchetha Kumari, N.; Bhat, Vadish S.; Shetty, Jayaram; Peter, Alex John; Jose, Jerish M.; Fernandes, Ronald

    2016-01-01

    To evaluate the antigenotoxic potential of Asparagus Racemosus Root ethanolic extract (ARE) against electron beam radiation induced micronuclei formation in Swiss albino mice. Micronucleus assay was performed in the bone marrow of Swiss albino mice according to the method of Hosseinimehr et al., 2003. The experimental animals were orally administered 200 mg/kg body weight of ARE once daily for 15 consecutive days. At the end of experimental period, the animals were euthanized and the bone marrow was collected from the femur. Control (C), Radiation control (RC) and drug control (DC) group was also maintained. The number of radiation induced Micronucleated Polychromatic Erythrocytes (MnPCE) and Micronucleated Normochromatic Erythrocytes were decreased in the ARE treated mice which was statistically significant (p<0.05) compared to radiation control group. Present findings demonstrate the antigenotoxic potential of ARE against electron beam radiation induced micronuclei formation which may be attributed to scavenging of radiation-induced free radicals

  19. Induction of nitrate transport in maize roots, and kinetics of influx, measured with nitrogen-13

    International Nuclear Information System (INIS)

    Hole, D.J.; Drew, M.C.; Emran, A.M.; Fares, Y.

    1990-01-01

    Unlike phosphate or potassium transport, uptake of nitrate by roots is induced, in part, by contact with the substrate ion. Plasmalemma influx of 13 N-labeled nitrate in maize roots was studied in relation to induction of the uptake system, and the influence of short-term N starvation. Maize (Zea mays) roots not previously exposed to nitrate had a constitutive transport system (state 1), but influx increased 250% during six hours of contact with 100 micromolar nitrate, by which time the transport mechanism appeared to be fully synthesized (state 2). A three-day period of N starvation prior to induction and measurement of nitrate influx resulted in a greater capacity to transport nitrate than in unstarved controls, but this was fully expressed only if roots were kept in contact with nitrate for the six hours needed for full induction (state 2E). A kinetic analysis indicated a 160% increase in maximum influx in N-starved, induced roots with a small decrease in K m . The inducible component to nitrate influx was induced only by contact with nitrate. Full expression of the nitrate inducible transport system was dependent upon mRNA synthesis. An inhibitor of cytoplasmic protein synthesis (cycloheximide) eliminated the formation of the transport system while inhibition by chloramphenicol of mitochondrial- or plastid-coded protein synthesis had no effect. Poisoning of membrane-bound proteins effectively disabled both the constitutive and induced transport systems

  20. Fruit yield and root system distribution of 'Tommy Atkins' mango under different irrigation regimes

    Directory of Open Access Journals (Sweden)

    Marcelo R. dos Santos

    2014-04-01

    Full Text Available This study aimed to evaluate the fruit yield and the distribution of 'Tommy Atkins' mango root system under different irrigation regimes in the semiarid region of Bahia. The experimental design was completely randomized with five treatments and three replicates: 1 - Irrigation supplying 100% of ETc in phases I, II and III; 2 - Regulated deficit irrigation (RDI supplying 50% of ETc in phase I (beginning of flowering to early fruit growth; 3 - RDI supplying 50% ETc in phase II (start of expansion until the beginning of physiological maturity; 4 - RDI supplying 50% ETc in phase III (physiological mature fruits; 5 - No irrigation during all three phases. The regulated deficit irrigation supplying 50% of the ETc during phase I and II provided larger root length density of 'Tommy Atkins' mango. Regardless of management strategy, the roots were developed in all evaluated soil volume and the highest density is concentrated from 0.50 to 1.50 m distance from the trunk and in 0.20 to 0.90 m depth in the soil, that suggests this region to be the best place for fertilizer application as well for soil water sensor placement. The application of RDI during fruit set does not influence either root distribution or production. Root system and crop production is significantly reduced under no irrigation conditions.

  1. Rooting depth and root depth distribution of Trifolium repens × T. uniflorum interspecific hybrids.

    Science.gov (United States)

    Nichols, S N; Hofmann, R W; Williams, W M; van Koten, C

    2016-05-20

    Traits related to root depth distribution were examined in Trifolium repens × T. uniflorum backcross 1 (BC 1 ) hybrids to determine whether root characteristics of white clover could be improved by interspecific hybridization. Two white clover cultivars, two T. uniflorum accessions and two BC 1 populations were grown in 1 -m deep tubes of sand culture. Maximum rooting depth and root mass distribution were measured at four harvests over time, and root distribution data were fitted with a regression model to provide measures of root system shape. Morphological traits were measured at two depths at harvest 3. Root system shape of the hybrids was more similar to T. uniflorum than to white clover. The hybrids and T. uniflorum had a higher rate of decrease in root mass with depth than white clover, which would result in higher proportions of root mass in the upper profile. Percentage total root mass at 100-200 mm depth was higher for T. uniflorum than white clover, and for Crusader BC 1 than 'Crusader'. Roots of the hybrids and T. uniflorum also penetrated deeper than those of white clover. T. uniflorum had thicker roots at 50-100 mm deep than the other entries, and more of its fine root mass at 400-500 mm. The hybrids and white clover had more of their fine root mass higher in the profile. Consequently, T. uniflorum had a higher root length density at 400-500 mm than most entries, and a smaller decrease in root length density with depth. These results demonstrate that rooting characteristics of white clover can be altered by hybridization with T. uniflorum, potentially improving water and nutrient acquisition and drought resistance. Root traits of T. uniflorum are likely to be adaptations to soil moisture and fertility in its natural environment. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. CLE-CLAVATA1 peptide-receptor signaling module regulates the expansion of plant root systems in a nitrogen-dependent manner.

    Science.gov (United States)

    Araya, Takao; Miyamoto, Mayu; Wibowo, Juliarni; Suzuki, Akinori; Kojima, Soichi; Tsuchiya, Yumiko N; Sawa, Shinichiro; Fukuda, Hiroo; von Wirén, Nicolaus; Takahashi, Hideki

    2014-02-04

    Morphological plasticity of root systems is critically important for plant survival because it allows plants to optimize their capacity to take up water and nutrients from the soil environment. Here we show that a signaling module composed of nitrogen (N)-responsive CLE (CLAVATA3/ESR-related) peptides and the CLAVATA1 (CLV1) leucine-rich repeat receptor-like kinase is expressed in the root vasculature in Arabidopsis thaliana and plays a crucial role in regulating the expansion of the root system under N-deficient conditions. CLE1, -3, -4, and -7 were induced by N deficiency in roots, predominantly expressed in root pericycle cells, and their overexpression repressed the growth of lateral root primordia and their emergence from the primary root. In contrast, clv1 mutants showed progressive outgrowth of lateral root primordia into lateral roots under N-deficient conditions. The clv1 phenotype was reverted by introducing a CLV1 promoter-driven CLV1:GFP construct producing CLV1:GFP fusion proteins in phloem companion cells of roots. The overaccumulation of CLE2, -3, -4, and -7 in clv1 mutants suggested the amplitude of the CLE peptide signals being feedback-regulated by CLV1. When CLE3 was overexpressed under its own promoter in wild-type plants, the length of lateral roots was negatively correlated with increasing CLE3 mRNA levels; however, this inhibitory action of CLE3 was abrogated in the clv1 mutant background. Our findings identify the N-responsive CLE-CLV1 signaling module as an essential mechanism restrictively controlling the expansion of the lateral root system in N-deficient environments.

  3. Initiation and elongation of lateral roots in Lactuca sativa

    Science.gov (United States)

    Zhang, N.; Hasenstein, K. H.

    1999-01-01

    Lactuca sativa cv. Baijianye seedlings do not normally produce lateral roots, but removal of the root tip or application of auxin, especially indole-butyric acid, triggered the formation of lateral roots. Primordia initiated within 9 h and were fully developed after 24 h by activating the pericycle cells opposite the xylem pole. The pericycle cells divided asymmetrically into short and long cells. The short cells divided further to form primordia. The effect of root tip removal and auxin application was reversed by 6-benzylaminopurine at concentrations >10(-8) M. The cytokinin oxidase inhibitor N1-(2chloro4pyridyl)-N2-phenylurea also suppressed auxin-induced lateral rooting. The elongation of primary roots was promoted by L-alpha-(2-aminoethoxyvinyl) glycine and silver ions, but only the latter enhanced elongation of lateral roots. The data indicate that the induction of lateral roots is controlled by basipetally moving cytokinin and acropetally moving auxin. Lateral roots appear to not produce ethylene.

  4. Earthworm activity and decomposition of 14C-labelled grass root systems

    NARCIS (Netherlands)

    Uyl, A.; Didden, W.A.M.; Marinussen, J.

    2002-01-01

    Decomposition of 14C-labelled root systems of the grass species Holcus lanatus and Festuca ovina, representative of mesotrophic and oligotrophic situations, respectively, was monitored during 14 months under field conditions in the presence or absence of earthworms (Lumbricus rubellus). During the

  5. Establishment of Aquilaria malaccensis Callus, cell suspension and adventitious root systems

    International Nuclear Information System (INIS)

    Norazlina Noordin; Rusli Ibrahim

    2010-01-01

    Aquilaria malaccensis is a tropical forest tree from the family Thymelaeaceae, an endangered forest species and was listed in CITES since 1995. Locally known as Pokok Karas, this tree produces agar wood or gaharu, a highly valuable, resinous and fragrant forest product. Karas has been highly recognized for its vast medicinal values and gaharu has been widely use for perfumery, incense and religious purposes. The phyto chemical studies of agar wood showed that Sesqui terpenoid and Phenyl ethy chromone derivatives are the principal compounds that have anti allergic and anti microbe activities. Cell and organ culture systems provide large scale production of biomass and offers feasibilities for the production of secondary metabolites. This paper describes the work done for establishing reproducible systems for callus initiation and production of cell suspension cultures as well as production of adventitious roots that will later be amenable for the production of secondary metabolites of A. malaccensis. Hence, further manipulation with Methyl Jasmonate, a chemical elicitor could be done to induce secondary metabolites using callus, cell suspension and adventitious roots systems. (author)

  6. The Effect of Polyamine Applications on Root Enhancement of Pistachio Seedling Rootstocks of ‘Badamy-E- Riz’

    Directory of Open Access Journals (Sweden)

    S. Sedaghat

    2014-02-01

    Full Text Available Pistacia vera cv Badami-e-Riz is the most important and popular rootstock in Iran, which tolerate salinity soil and phytophthora fungi but its root is less affected. In addition this rootstock is susceptible to excessive B and water deficient. This rootstock has a taproot rooting system without any lateral root. So this study was conducted to evaluate the effects of various concentrations and application methods of polyamines on root regeneration of transplanted bare-rooted ‘Badami-e-Riz’ pistachio rootstocks.The result showed that spermidine at concentration of 2 mM as foliar application method significantly enhanced root length and root diameter in ‘Badami-e-Riz’. Furthermore, the fresh weight of root was increased by 4 mM spermidine by foliar application and 2 mM spermidine by interaction of root tip cut and root dip method, significantly increased dry weight of root and root number in ‘Badami-e-Riz’. Besides, by the use of these chemicals, the survival percentage of seedlings was maintained in higher value. Results suggested that polyamine application was effective to increase lateral root formation and improved root regeneration. Therefore, it would be useful to help the survival of seedlings following transplanting.

  7. An information transfer based novel framework for fault root cause tracing of complex electromechanical systems in the processing industry

    Science.gov (United States)

    Wang, Rongxi; Gao, Xu; Gao, Jianmin; Gao, Zhiyong; Kang, Jiani

    2018-02-01

    As one of the most important approaches for analyzing the mechanism of fault pervasion, fault root cause tracing is a powerful and useful tool for detecting the fundamental causes of faults so as to prevent any further propagation and amplification. Focused on the problems arising from the lack of systematic and comprehensive integration, an information transfer-based novel data-driven framework for fault root cause tracing of complex electromechanical systems in the processing industry was proposed, taking into consideration the experience and qualitative analysis of conventional fault root cause tracing methods. Firstly, an improved symbolic transfer entropy method was presented to construct a directed-weighted information model for a specific complex electromechanical system based on the information flow. Secondly, considering the feedback mechanisms in the complex electromechanical systems, a method for determining the threshold values of weights was developed to explore the disciplines of fault propagation. Lastly, an iterative method was introduced to identify the fault development process. The fault root cause was traced by analyzing the changes in information transfer between the nodes along with the fault propagation pathway. An actual fault root cause tracing application of a complex electromechanical system is used to verify the effectiveness of the proposed framework. A unique fault root cause is obtained regardless of the choice of the initial variable. Thus, the proposed framework can be flexibly and effectively used in fault root cause tracing for complex electromechanical systems in the processing industry, and formulate the foundation of system vulnerability analysis and condition prediction, as well as other engineering applications.

  8. Effects of fine root length density and root biomass on soil preferential flow in forest ecosystems

    Directory of Open Access Journals (Sweden)

    Yinghu Zhang

    2015-04-01

    Full Text Available Aim of study: The study was conducted to characterize the impacts of plant roots systems (e.g., root length density and root biomass on soil preferential flow in forest ecosystems. Area of study: The study was carried out in Jiufeng National Forest Park, Beijing, China. Material and methods: The flow patterns were measured by field dye tracing experiments. Different species (Sophora japonica Linn,Platycladus orientalis Franco, Quercus dentata Thunbwere quantified in two replicates, and 12 soil depth were applied. Plant roots were sampled in the sieving methods. Root length density and root biomass were measured by WinRHIZO. Dye coverage was implied in the image analysis, and maximum depth of dye infiltration by direct measurement. Main results: Root length density and root biomass decreased with the increasing distance from soil surface, and root length density was 81.6% higher in preferential pathways than in soil matrix, and 66.7% for root biomass with respect to all experimental plots. Plant roots were densely distributed in the upper soil layers. Dye coverage was almost 100% in the upper 5-10 cm, but then decreased rapidly with soil depth. Root length density and root biomass were different from species: Platycladus orientalis Franco > Quercus dentata Thunb > Sophora japonica Linn. Research highlights: The results indicated that fine roots systems had strong effects on soil preferential flow, particularly root channels enhancing nutrition transport across soil profiles in forest dynamics.

  9. Deep Roots? Behavioral Inhibition and Behavioral Activation System (BIS/BAS) Sensitivity and Entrepreneurship

    NARCIS (Netherlands)

    Lerner, Daniel; Hatak, Isabella; Rauch, Andreas

    2018-01-01

    A growing number of studies suggest a link between disinhibition and entrepreneurship. Separately, psychology literature has theorized and empirically shown that the roots of disinhibition can largely be traced to two psychophysiological systems – the behavioral inhibition system (BIS) and

  10. Flavonoids Promote Haustoria Formation in the Root Parasite Triphysaria versicolor1

    Science.gov (United States)

    Albrecht, Huguette; Yoder, John I.; Phillips, Donald A.

    1999-01-01

    Parasitic plants in the Scrophulariaceae develop infective root structures called haustoria in response to chemical signals released from host-plant roots. This study used a simple in vitro assay to characterize natural and synthetic molecules that induce haustoria in the facultative parasite Triphysaria versicolor. Several phenolic acids, flavonoids, and the quinone 2,6-dimethoxy-p-benzoquinone induced haustoria in T. versicolor root tips within hours after treatment. The concentration at which different molecules were active varied widely, the most active being 2,6-dimethoxy-p-benzoquinone and the anthocyanidin peonidin. Maize (Zea mays) seeds are rich sources of molecules that induce T. versicolor haustoria in vitro, and chromatographic analyses indicated that the active molecules present in maize-seed rinses include anthocyanins, other flavonoids, and simple phenolics. The presence of different classes of inducing molecules in seed rinses was substantiated by the observation that maize kernels deficient in chalcone synthase, a key enzyme in flavonoid biosynthesis, released haustoria-inducing molecules, although at reduced levels compared with wild-type kernels. We discuss these results in light of existing models for host perception in the related parasitic plant Striga. PMID:9952454

  11. THE SPECIAL STATUS OF EXOGENOUS WORD-FORMATION WITHIN THE GERMAN WORD-FORMATION SYSTEM

    OpenAIRE

    Zhilyuk Sergey Aleksandrovich

    2014-01-01

    The article presents the properties of exogenous word-formation system taking into account the existence of two word-formation systems in modern German. On the basis of foreign research which reveal modern trends in German word-formation connected with the internationalization and the development of new European Latin language. The author defines key features of exogenous word-formation, i.e. foreign origin of wordformation units, unmotivated units, unmotivated interchange in base and affixes...

  12. Development and optimization of hairy root culture systems in ...

    African Journals Online (AJOL)

    Transformation of Withania somnifera was carried out by using three Agrobacterium rhizogenes strains (ATCC 15834, R1000 and K599) for hairy root induction. Induction of hairy root was carried out in leaf, petiole and internodal explants. Hairy root induction was successful only in ATCC 15834 and R1000. The highest ...

  13. Cotton growth potassium deficiency stress is influenced by photosynthetic apparatus and root system

    International Nuclear Information System (INIS)

    Hussain, Z.U.; Arshad, M.

    2010-01-01

    Due to rapid depletion of soil potassium (K) and increasing cost of K fertilizers in Pakistan, the K-use efficient crop genotypes become very important for agricultural sustain ability. However, limited research has been done on this important issue particularly in cotton, an important fibre crop. We studied the growth and biomass production of three cotton genotypes (CIM-506, NIAB- 78 and NIBGE-2) different in K-use efficiency in a K-deficient solution culture. Genotypes differed significantly for biomass production, absolute growth rates (shoot, root, leaf, total), leaf area, mean leaf area and relative growth rate of leaf under K deficiency stress, besides specific leaf area. The relative growth rate (shoot, root, total) did not differ significantly, except for leaf. For all these characters, NIBGE-2 was the best performer followed by NIAB-78 and CIM-506. Shoot dry weight was significantly related with (in decreasing order of significance): mean leaf area, leaf dry weight, leaf area, root dry weight, absolute growth rate of shoot, absolute growth rate of root, absolute growth rate total, absolute growth rate root, relative growth rate leaf, relative growth rate total and relative growth rate shoot. Hence, the enhanced biomass accumulation of cotton genotypes under K deficiency stress is related to their efficient photosynthetic apparatus and root system, appeared to be the most important morphological markers while breeding for K-use efficient cotton genotypes.(author)

  14. archiDART v3.0: A new data analysis pipeline allowing the topological analysis of plant root systems.

    Science.gov (United States)

    Delory, Benjamin M; Li, Mao; Topp, Christopher N; Lobet, Guillaume

    2018-01-01

    Quantifying plant morphology is a very challenging task that requires methods able to capture the geometry and topology of plant organs at various spatial scales. Recently, the use of persistent homology as a mathematical framework to quantify plant morphology has been successfully demonstrated for leaves, shoots, and root systems. In this paper, we present a new data analysis pipeline implemented in the R package archiDART to analyse root system architectures using persistent homology. In addition, we also show that both geometric and topological descriptors are necessary to accurately compare root systems and assess their natural complexity.

  15. Mycorrhization helper bacteria: a case of specificity for altering ectomycorrhiza architecture but not ectomycorrhiza formation.

    Science.gov (United States)

    Aspray, Thomas J; Frey-Klett, Pascale; Jones, Julie E; Whipps, John M; Garbaye, Jean; Bending, Gary D

    2006-11-01

    Mycorrhization helper bacteria (MHB), isolated from phylogenetically distinct ectomycorrhizal symbioses involving Lactarius rufus, Laccaria bicolor or Suillus luteus, were tested for fungus specificity to enhance L. rufus-Pinus sylvestris or L. bicolor-P. sylvestris mycorrhiza formation. As MHB isolated from the L. rufus and S. luteus mycorrhiza were originally characterised using a microcosm system, we assessed their ability to enhance mycorrhiza formation in a glasshouse system in order to determine the extent to which MHB are system-specific. Paenibacillus sp. EJP73, an MHB for L. rufus in the microcosm, significantly enhanced L. bicolor mycorrhiza formation in the glasshouse, demonstrating that the MHB effect of this bacterium is neither fungus-specific nor limited to the original experimental system. Although the five MHB strains studied were unable to significantly enhance L. rufus mycorrhiza formation, two of them did have a significant effect on dichotomous short root branching by L. rufus. The effect was specific to Paenibacillus sp. EJP73 and Burkholderia sp. EJP67, the two strains isolated from L. rufus mycorrhiza, and was not associated with auxin production. Altered mycorrhiza architecture rather than absolute number of mycorrhizal roots may be an important previously overlooked parameter for defining MHB effects.

  16. Endodontic management of C-shaped root canal system of mandibular first molar by using a modified technique of self-adjusting file system.

    Science.gov (United States)

    Helvacioglu-Yigit, Dilek

    2015-01-01

    C-shaped canal system is a seldom-found root canal anatomy which displays a challenge in all stages of endodontic treatment. According to the literature, this type of canal morphology is not a common finding in the mandibular first molar teeth. This case report presents endodontic management of a mandibular first molar with a C-shaped canal system. Root canal system was cleaned and shaped by nickel-titanium (NiTi) rotary instruments combined with self-adjusting file (SAF). Obturation was performed using warm, vertical condensation combined with the injection of warm gutta-percha. Follow-up examination 12 months later showed that the tooth was asymptomatic. The radiological findings presented no signs of periapical pathology. The clinician must be aware of the occurence and complexity of C-shaped canals in mandibular first molar teeth to perform a successful root canal treatment. The supplementary use of SAF after application of rotary instruments in C-shaped root canals might be a promising approach in endodontic treatment of this type of canal morphology.

  17. Primary root protophloem differentiation requires balanced phosphatidylinositol-4,5-biphosphate levels and systemically affects root branching.

    OpenAIRE

    Rodriguez-Villalon Antia; Gujas Bojan; van Wijk Ringo; Munnik Teun; Hardtke Christian S

    2015-01-01

    Protophloem is a specialized vascular tissue in growing plant organs, such as root meristems. In Arabidopsis mutants with impaired primary root protophloem differentiation, brevis radix (brx) and octopus (ops), meristematic activity and consequently overall root growth are strongly reduced. Second site mutation in the protophloem-specific presumed phosphoinositide 5-phosphatase cotyledon vascular pattern 2 (CVP2), but not in its homolog CVP2-like 1 (CVL1), partially rescues brx defects. Consi...

  18. Protein synthesis in geostimulated root caps

    Science.gov (United States)

    Feldman, L. J.

    1982-01-01

    A study is presented of the processes occurring in the root cap of corn which are requisite for the formation of root cap inhibitor and which can be triggered or modulated by both light and gravity. The results of this study indicate the importance of protein synthesis for light-induced gravitropic bending in roots. Root caps in which protein synthesis is prevented are unable to induce downward bending. This suggests that light acts by stimulating proteins which are necessary for the translation of the gravitropic stimulus into a growth response (downward bending). The turnover of protein with time was also examined in order to determine whether light acts by stimulating the synthesis of unique proteins required for downward growth. It is found that auxin in combination with light allows for the translation of the gravitropic stimulus into a growth response at least in part through the modification of protein synthesis. It is concluded that unique proteins are stimulated by light and are involved in promoting the downward growth in roots which are responding to gravity.

  19. Composite potato plants with transgenic roots on non-transgenic shoots: a model system for studying gene silencing in roots

    DEFF Research Database (Denmark)

    Horn, Patricia; Santala, Johanna; Nielsen, Steen Lykke

    2014-01-01

    induced phenotypically normal roots which, however, showed a reduced response to cytokinin as compared with non-transgenic roots. Nevertheless, both types of roots were infected to a similar high rate with the zoospores of Spongospora subterranea, a soilborne potato pathogen. The transgenic roots...

  20. Vertical distribution of the root system of linseed (Linum usitatissimum L. and legumes in pure and mixed sowing

    Directory of Open Access Journals (Sweden)

    Agnieszka Klimek-Kopyra

    2015-03-01

    Full Text Available Root competition for below-ground resources between edible plants may provide for long-term sustainability of agriculture systems. Intercropping can be more productive than a pure crop due to taking advantage of the morphological differences between species. In pure cropping, all biophysical interactions between plants occur through soil conditions. In intercropping, competition for water and nutrients is of major importance, but if the roots of one species occupy the zone just underneath the roots of the other crop, they can better use the resources of the root zone of the crop. The root system demonstrates a high degree of plasticity in its development in response to local heterogeneity of the soil profile and plant density. This study aimed at determining: (i the morphological characteristics of the root systems of linseed, pea and vetch depending on the method of sowing; (ii the root distribution in various soil types and at different soil profile depths (0–15 cm, 15–30 cm. Two three-year field experiments were conducted on two soil types in south Poland: soil A – Luvic Phaeozem (s1 and soil B – Eutric Cambisol (s2. These results show that linseed was more aggressive toward both legumes in mixture, but it produced lower yield compared to pure cropping. The environmental stress of plants in mixtures increased the relative weight of roots, which resulted in decreasing the root-shoot ratio (RSR.

  1. Regrowth of Cirsium arvense from intact roots and root fragments at different soil depths

    Directory of Open Access Journals (Sweden)

    Thomsen, Mette Goul

    2014-02-01

    Full Text Available In the present work we measured the shoot rate from intact roots and from root fragments of Cirsium arvense at different digging depths and the number of leaves were used as estimate of minimum regenerative capacity. The experiments were performed on four sites with three or four repetitions of each treatment. On each site plot, the soil was removed down to a given depth within a 1 x 1 m square. All plant parts was excavated from the soil and the soil was either replaced without any root material, or roots of C. arvense was cut into 10 cm long fragments and replaced into the source hole. Shoot number, aboveground biomass and number of leaves were measured. Digging depth and time explained 50% - 60% of the variation in biomass (P<0.001. Replacement of root fragments increased the shoot number in one out of four treatments but did not affect biomass produced compared to production from undisturbed root systems. Number of leaves showed that shoots from all digging depths passed the level of minimum regenerative capacity. We conclude that the intact root system from all depths was able to regenerate within one season and it has a high contribution to the produced biomass compared with root fragments in the upper soil layers.

  2. The Importance of Juvenile Root Traits for Crop Yields

    Science.gov (United States)

    White, Philip; Adu, Michael; Broadley, Martin; Brown, Lawrie; Dupuy, Lionel; George, Timothy; Graham, Neil; Hammond, John; Hayden, Rory; Neugebauer, Konrad; Nightingale, Mark; Ramsay, Gavin; Thomas, Catherine; Thompson, Jacqueline; Wishart, Jane; Wright, Gladys

    2014-05-01

    Genetic variation in root system architecture (RSA) is an under-exploited breeding resource. This is partly a consequence of difficulties in the rapid and accurate assessment of subterranean root systems. However, although the characterisation of root systems of large plants in the field are both time-consuming and labour-intensive, high-throughput (HTP) screens of root systems of juvenile plants can be performed in the field, glasshouse or laboratory. It is hypothesised that improving the root systems of juvenile plants can accelerate access to water and essential mineral elements, leading to rapid crop establishment and, consequently, greater yields. This presentation will illustrate how aspects of the juvenile root systems of potato (Solanum tuberosum L.) and oilseed rape (OSR; Brassica napus L.) correlate with crop yields and examine the reasons for such correlations. It will first describe the significant positive relationships between early root system development, phosphorus acquisition, canopy establishment and eventual yield among potato genotypes. It will report the development of a glasshouse assay for root system architecture (RSA) of juvenile potato plants, the correlations between root system architectures measured in the glasshouse and field, and the relationships between aspects of the juvenile root system and crop yields under drought conditions. It will then describe the development of HTP systems for assaying RSA of OSR seedlings, the identification of genetic loci affecting RSA in OSR, the development of mathematical models describing resource acquisition by OSR, and the correlations between root traits recorded in the HTP systems and yields of OSR in the field.

  3. Systemic allergic dermatitis caused by Apiaceae root vegetables

    DEFF Research Database (Denmark)

    Paulsen, Evy; Petersen, Thomas H; Fretté, Xavier C

    2014-01-01

    Immediate hypersensitivity reactions to root vegetables of the Umbelliferae plant family (Apiaceae) is well known. Delayed-type hypersensitivity is rarely reported.......Immediate hypersensitivity reactions to root vegetables of the Umbelliferae plant family (Apiaceae) is well known. Delayed-type hypersensitivity is rarely reported....

  4. Mechanics of integrating root causes into PRAs

    International Nuclear Information System (INIS)

    Bruske, S.Z.; Cadwallader, L.C.; Stepina, P.L.; Vesely, W.E.

    1985-01-01

    This paper presents a derivation of root cause importance, root cause data for selected components of a pressurized water reactor auxiliary feedwater system, an Accident Sequence Evaluation Program (ASEP) auxiliary feedwater system model, and the results of root cause importance calculations. The methodology shown herein is straightforward and is easily applied to existing probabilistic risk assessments. Root cause importance can greatly benefit the areas of design, maintenance, and inspection. Root cause importance for various components and circumstances can be evaluated

  5. Hydrogen peroxide is a second messenger in the salicylic acid-triggered adventitious rooting process in mung bean seedlings.

    Directory of Open Access Journals (Sweden)

    Wei Yang

    Full Text Available In plants, salicylic acid (SA is a signaling molecule that regulates disease resistance responses, such as systemic acquired resistance (SAR and hypertensive response (HR. SA has been implicated as participating in various biotic and abiotic stresses. This study was conducted to investigate the role of SA in adventitious root formation (ARF in mung bean (Phaseolus radiatus L hypocotyl cuttings. We observed that hypocotyl treatment with SA could significantly promote the adventitious root formation, and its effects were dose and time dependent. Explants treated with SA displayed a 130% increase in adventitious root number compared with control seedlings. The role of SA in mung bean hypocotyl ARF as well as its interaction with hydrogen peroxide (H2O2 were also elucidated. Pretreatment of mung bean explants with N, N'-dimethylthiourea (DMTU, a scavenger for H2O2, resulted in a significant reduction of SA-induced ARF. Diphenyleneiodonium (DPI, a specific inhibitor of membrane-linked NADPH oxidase, also inhibited the effect of adventitious rooting triggered by SA treatment. The determination of the endogenous H2O2 level indicated that the seedlings treated with SA could induce H2O2 accumulation compared with the control treatment. Our results revealed a distinctive role of SA in the promotion of adventitious rooting via the process of H2O2 accumulation. This conclusion was further supported by antioxidant enzyme activity assays. Based on these results, we conclude that the accumulation of free H2O2 might be a downstream event in response to SA-triggered adventitious root formation in mung bean seedlings.

  6. An auxin transport independent pathway is involved in phosphate stress-induced root architectural alterations in Arabidopsis. Identification of BIG as a mediator of auxin in pericycle cell activation.

    Science.gov (United States)

    López-Bucio, José; Hernández-Abreu, Esmeralda; Sánchez-Calderón, Lenin; Pérez-Torres, Anahí; Rampey, Rebekah A; Bartel, Bonnie; Herrera-Estrella, Luis

    2005-02-01

    Arabidopsis (Arabidopsis thaliana) plants display a number of root developmental responses to low phosphate availability, including primary root growth inhibition, greater formation of lateral roots, and increased root hair elongation. To gain insight into the regulatory mechanisms by which phosphorus (P) availability alters postembryonic root development, we performed a mutant screen to identify genetic determinants involved in the response to P deprivation. Three low phosphate-resistant root lines (lpr1-1 to lpr1-3) were isolated because of their reduced lateral root formation in low P conditions. Genetic and molecular analyses revealed that all lpr1 mutants were allelic to BIG, which is required for normal auxin transport in Arabidopsis. Detailed characterization of lateral root primordia (LRP) development in wild-type and lpr1 mutants revealed that BIG is required for pericycle cell activation to form LRP in both high (1 mm) and low (1 microm) P conditions, but not for the low P-induced alterations in primary root growth, lateral root emergence, and root hair elongation. Exogenously supplied auxin restored normal lateral root formation in lpr1 mutants in the two P treatments. Treatment of wild-type Arabidopsis seedlings with brefeldin A, a fungal metabolite that blocks auxin transport, phenocopies the root developmental alterations observed in lpr1 mutants in both high and low P conditions, suggesting that BIG participates in vesicular targeting of auxin transporters. Taken together, our results show that auxin transport and BIG function have fundamental roles in pericycle cell activation to form LRP and promote root hair elongation. The mechanism that activates root system architectural alterations in response to P deprivation, however, seems to be independent of auxin transport and BIG.

  7. QTL meta-analysis of root traits in Brassica napus under contrasting phosphorus supply in two growth systems.

    Science.gov (United States)

    Zhang, Ying; Thomas, Catherine L; Xiang, Jinxia; Long, Yan; Wang, Xiaohua; Zou, Jun; Luo, Ziliang; Ding, Guangda; Cai, Hongmei; Graham, Neil S; Hammond, John P; King, Graham J; White, Philip J; Xu, Fangsen; Broadley, Martin R; Shi, Lei; Meng, Jinling

    2016-09-14

    A high-density SNP-based genetic linkage map was constructed and integrated with a previous map in the Tapidor x Ningyou7 (TNDH) Brassica napus population, giving a new map with a total of 2041 molecular markers and an average marker density which increased from 0.39 to 0.97 (0.82 SNP bin) per cM. Root and shoot traits were screened under low and 'normal' phosphate (Pi) supply using a 'pouch and wick' system, and had been screened previously in an agar based system. The P-efficient parent Ningyou7 had a shorter primary root length (PRL), greater lateral root density (LRD) and a greater shoot biomass than the P-inefficient parent Tapidor under both treatments and growth systems. Quantitative trait loci (QTL) analysis identified a total of 131 QTL, and QTL meta-analysis found four integrated QTL across the growth systems. Integration reduced the confidence interval by ~41%. QTL for root and shoot biomass were co-located on chromosome A3 and for lateral root emergence were co-located on chromosomes A4/C4 and C8/C9. There was a major QTL for LRD on chromosome C9 explaining ~18% of the phenotypic variation. QTL underlying an increased LRD may be a useful breeding target for P uptake efficiency in Brassica.

  8. Hairy roots of Helianthus annuus: a model system to study phytoremediation of tetracycline and oxytetracycline.

    Science.gov (United States)

    Gujarathi, Ninad P; Haney, Bryan J; Park, Heidi J; Wickramasinghe, S Ranil; Linden, James C

    2005-01-01

    The release of antibiotics to the environment has to be controlled because of serious threats to human health. Hairy root cultures of Helianthus annuus (sunflower), along with their inherent rhizospheric activity, provide a fast growing, microbe-free environment for understanding plant-pollutant interactions. The root system catalyzes rapid disappearance of tetracycline (TC) and oxytetracycline (OTC) from aqueous media, which suggests roots have potential for phytoremediation of the two antibiotics in vivo. In addition, in vitro modifications of the two antibiotics by filtered, cell- and microbe-free root exudates suggest involvement of root-secreted compounds. The modification is confirmed from changes observed in UV spectra of exudate-treated OTC. Modification appears to be more dominant at the BCD chromophore of the antibiotic molecule. Kinetic analyses dismiss direct enzyme catalysis; the modification rates decrease with increasing OTC concentrations. The rates increase with increasing age of cultures from which root exudates are prepared. The decrease in modification rates upon addition of the antioxidant ascorbic acid (AA) suggests involvement of reactive oxygen species (ROS) in the antibiotic modification process.

  9. 3D Ground Penetrating Radar to Detect Tree Roots and Estimate Root Biomass in the Field

    Directory of Open Access Journals (Sweden)

    Shiping Zhu

    2014-06-01

    Full Text Available The objectives of this study were to detect coarse tree root and to estimate root biomass in the field by using an advanced 3D Ground Penetrating Radar (3D GPR system. This study obtained full-resolution 3D imaging results of tree root system using 500 MHz and 800 MHz bow-tie antennas, respectively. The measurement site included two larch trees, and one of them was excavated after GPR measurements. In this paper, a searching algorithm, based on the continuity of pixel intensity along the root in 3D space, is proposed, and two coarse roots whose diameters are more than 5 cm were detected and delineated correctly. Based on the detection results and the measured root biomass, a linear regression model is proposed to estimate the total root biomass in different depth ranges, and the total error was less than 10%. Additionally, based on the detected root samples, a new index named “magnitude width” is proposed to estimate the root diameter that has good correlation with root diameter compared with other common GPR indexes. This index also provides direct measurement of the root diameter with 13%–16% error, providing reasonable and practical root diameter estimation especially in the field.

  10. EXPANSINA17 up-regulated by LBD18/ASL20 promotes lateral root formation during the auxin response.

    Science.gov (United States)

    Lee, Han Woo; Kim, Jungmook

    2013-10-01

    Expansins are non-hydrolytic cell wall-loosening proteins involved in a variety of plant developmental processes during which cell wall modification occurs. Cell wall remodeling proteins including expansins have been suggested to be involved in cell separation to facilitate the emergence of lateral roots (LRs) through the overlaying tissues of the primary root. LBD18/ASL20 activates EXPANSINA14 (EXPA14) expression by directly binding to the EXPA14 promoter to enhance LR emergence in Arabidopsis thaliana. Here we show that EXPA17 is another target gene regulated by LBD18 to promote LR formation in Arabidopsis. We showed that nuclear translocation of the LBD18:GR fusion protein expressed under the Cauliflower mosaic virus (CaMV) 35S promoter or under the LBD18 promoter by dexamethasone treatment results in an increase in EXPA17 transcript levels. β-Glucuronidase (GUS) expression under the EXPA17 promoter, which is detected only in the roots of the wild type, was reduced in the LR primordium and overlaying tissues in an lbd18 mutant background. The number of emerged LRs of the EXPA17 RNAi (RNA interference) Arabidopsis lines was significantly lower than that of the wild type. Overexpression of EXPA17 in Arabidopsis increased the density of emerged LRs in the presence of auxin compared with the wild type. LR induction experiments with a gravitropic stimulus showed that LR emergence is delayed in the EXPA17 RNAi plants compared with the wild type. In addition, EXPA4 expression was also detected in overlaying tissues of the LR primordium and was inducible by LBD18. Taken together, these results support the notion that LBD18 up-regulates a subset of EXP genes to enhance cell separation to promote LR emergence in Arabidopsis.

  11. Aetiology, incidence and morphology of the C-shaped root canal system and its impact on clinical endodontics

    Science.gov (United States)

    Kato, A; Ziegler, A; Higuchi, N; Nakata, K; Nakamura, H; Ohno, N

    2014-01-01

    The C-shaped root canal constitutes an unusual root morphology that can be found primarily in mandibular second permanent molars. Due to the complexity of their structure, C-shaped root canal systems may complicate endodontic interventions. A thorough understanding of root canal morphology is therefore imperative for proper diagnosis and successful treatment. This review aims to summarize current knowledge regarding C-shaped roots and root canals, from basic morphology to advanced endodontic procedures. To this end, a systematic search was conducted using the MEDLINE, BIOSIS, Cochrane Library, EMBASE, Google Scholar, Web of Science, PLoS and BioMed Central databases, and many rarely cited articles were included. Furthermore, four interactive 3D models of extracted teeth are introduced that will allow for a better understanding of the complex C-shaped root canal morphology. In addition, the present publication includes an embedded best-practice video showing an exemplary root canal procedure on a tooth with a pronounced C-shaped root canal. The survey of this unusual structure concludes with a number of suggestions concerning future research efforts. PMID:24483229

  12. Failure of root development of human permanent teeth following irradiation

    International Nuclear Information System (INIS)

    Takeda, Yasunori; Kuroda, Masafumi; Amari, Eiichi; Yanagisawa, Toru

    1987-01-01

    Complete absence of root formation of the upper incisors, canine and first premolar was reported in a 27-year-old female who had received radiation therapy for a retinal glioma of the right eye at age of 3 years 1 month. Ground and decalcified sections showed no remarkable changes in enamel and dentin of the crowns, but the pulp floor was closed by irregular dentin deposit despite the absence of root formation. The outer surface of the irregular dentin was covered by acellular cementum, and the periodontal membrane was undeveloped. A slight degree of fibrosis was seen in the pulp, but the coronal part of the dentin was lined by odontoblasts. The theory that tooth eruption is caused by the growth of the root is not substantiated by the observation in this case. (author)

  13. Unearthing the hidden world of roots: Root biomass and architecture differ among species within the same guild.

    Directory of Open Access Journals (Sweden)

    Katherine Sinacore

    Full Text Available The potential benefits of planting trees have generated significant interest with respect to sequestering carbon and restoring other forest based ecosystem services. Reliable estimates of carbon stocks are pivotal for understanding the global carbon balance and for promoting initiatives to mitigate CO2 emissions through forest management. There are numerous studies employing allometric regression models that convert inventory into aboveground biomass (AGB and carbon (C. Yet the majority of allometric regression models do not consider the root system nor do these equations provide detail on the architecture and shape of different species. The root system is a vital piece toward understanding the hidden form and function roots play in carbon accumulation, nutrient and plant water uptake, and groundwater infiltration. Work that estimates C in forests as well as models that are used to better understand the hydrologic function of trees need better characterization of tree roots. We harvested 40 trees of six different species, including their roots down to 2 mm in diameter and created species-specific and multi-species models to calculate aboveground (AGB, coarse root belowground biomass (BGB, and total biomass (TB. We also explore the relationship between crown structure and root structure. We found that BGB contributes ~27.6% of a tree's TB, lateral roots extend over 1.25 times the distance of crown extent, root allocation patterns varied among species, and that AGB is a strong predictor of TB. These findings highlight the potential importance of including the root system in C estimates and lend important insights into the function roots play in water cycling.

  14. Fine Mapping of QUICK ROOTING 1 and 2, Quantitative Trait Loci Increasing Root Length in Rice.

    Science.gov (United States)

    Kitomi, Yuka; Nakao, Emari; Kawai, Sawako; Kanno, Noriko; Ando, Tsuyu; Fukuoka, Shuichi; Irie, Kenji; Uga, Yusaku

    2018-02-02

    The volume that the root system can occupy is associated with the efficiency of water and nutrient uptake from soil. Genetic improvement of root length, which is a limiting factor for root distribution, is necessary for increasing crop production. In this report, we describe identification of two quantitative trait loci (QTLs) for maximal root length, QUICK ROOTING 1 ( QRO1 ) on chromosome 2 and QRO2 on chromosome 6, in cultivated rice ( Oryza sativa L.). We measured the maximal root length in 26 lines carrying chromosome segments from the long-rooted upland rice cultivar Kinandang Patong in the genetic background of the short-rooted lowland cultivar IR64. Five lines had longer roots than IR64. By rough mapping of the target regions in BC 4 F 2 populations, we detected putative QTLs for maximal root length on chromosomes 2, 6, and 8. To fine-map these QTLs, we used BC 4 F 3 recombinant homozygous lines. QRO1 was mapped between markers RM5651 and RM6107, which delimit a 1.7-Mb interval on chromosome 2, and QRO2 was mapped between markers RM20495 and RM3430-1, which delimit an 884-kb interval on chromosome 6. Both QTLs may be promising gene resources for improving root system architecture in rice. Copyright © 2018 Kitomi et al.

  15. Fine Mapping of QUICK ROOTING 1 and 2, Quantitative Trait Loci Increasing Root Length in Rice

    Directory of Open Access Journals (Sweden)

    Yuka Kitomi

    2018-02-01

    Full Text Available The volume that the root system can occupy is associated with the efficiency of water and nutrient uptake from soil. Genetic improvement of root length, which is a limiting factor for root distribution, is necessary for increasing crop production. In this report, we describe identification of two quantitative trait loci (QTLs for maximal root length, QUICK ROOTING 1 (QRO1 on chromosome 2 and QRO2 on chromosome 6, in cultivated rice (Oryza sativa L.. We measured the maximal root length in 26 lines carrying chromosome segments from the long-rooted upland rice cultivar Kinandang Patong in the genetic background of the short-rooted lowland cultivar IR64. Five lines had longer roots than IR64. By rough mapping of the target regions in BC4F2 populations, we detected putative QTLs for maximal root length on chromosomes 2, 6, and 8. To fine-map these QTLs, we used BC4F3 recombinant homozygous lines. QRO1 was mapped between markers RM5651 and RM6107, which delimit a 1.7-Mb interval on chromosome 2, and QRO2 was mapped between markers RM20495 and RM3430-1, which delimit an 884-kb interval on chromosome 6. Both QTLs may be promising gene resources for improving root system architecture in rice.

  16. Photosynthate Regulation of the Root System Architecture Mediated by the Heterotrimeric G Protein Complex in Arabidopsis.

    Science.gov (United States)

    Mudgil, Yashwanti; Karve, Abhijit; Teixeira, Paulo J P L; Jiang, Kun; Tunc-Ozdemir, Meral; Jones, Alan M

    2016-01-01

    Assimilate partitioning to the root system is a desirable developmental trait to control but little is known of the signaling pathway underlying partitioning. A null mutation in the gene encoding the Gβ subunit of the heterotrimeric G protein complex, a nexus for a variety of signaling pathways, confers altered sugar partitioning in roots. While fixed carbon rapidly reached the roots of wild type and agb1-2 mutant seedlings, agb1 roots had more of this fixed carbon in the form of glucose, fructose, and sucrose which manifested as a higher lateral root density. Upon glucose treatment, the agb1-2 mutant had abnormal gene expression in the root tip validated by transcriptome analysis. In addition, PIN2 membrane localization was altered in the agb1-2 mutant. The heterotrimeric G protein complex integrates photosynthesis-derived sugar signaling incorporating both membrane-and transcriptional-based mechanisms. The time constants for these signaling mechanisms are in the same range as photosynthate delivery to the root, raising the possibility that root cells are able to use changes in carbon fixation in real time to adjust growth behavior.

  17. Gamma ray irradiation to roots of tea-plants and induced mutant system

    International Nuclear Information System (INIS)

    Takeda, Yoshiyuki; Nekaku, Koji; Wada, Mitsumasa

    1990-01-01

    In order to utilize the useful mutation which is induced by irradiation for the breeding of tea-plants, the gamma-ray irradiation to the roots of tea-plants was carried out. The samples were the roots of tea-plants of four varieties dug up in February, 1984, and were adjusted to about 20 cm, then, put in the cold storage at 5degC for 9 months till the time of irradiation in November, 1984. However, a part of them was taken out in August, and planted in a field for 76 days to germinate, thereafter, used as the samples. The gamma-ray from a Co-60 source was irradiated in the radiation breeding laboratory of Agriculture Bioresources Research Institute at the total dose of 1, 2 and 3 kR and the dose rate of 500 R/h. The irradiated roots were planted as they are or in the state of being cut, and the rate of germination, the number of buds and the induced mutation were examined. Clear difference was not observed in the rate of germination and the number of buds between the irradiated samples and those without irradiation. The long roots were superior to the short roots regarding these items. The types of the induced mutation were mostly thin leaves, and also yellowing, mottling, fascination and so on occurred. The mutant system lacking trichomes on the back of new leaves is considered to be strong against tea anthracnose, and is valuable. (K.I.)

  18. Gamma ray irradiation to roots of tea-plants and induced mutant system

    Energy Technology Data Exchange (ETDEWEB)

    Takeda, Yoshiyuki; Nekaku, Koji; Wada, Mitsumasa (National Research Inst. of Vegetables, Ornamental Plants and Tea, Ano, Mie (Japan))

    1990-11-01

    In order to utilize the useful mutation which is induced by irradiation for the breeding of tea-plants, the gamma-ray irradiation to the roots of tea-plants was carried out. The samples were the roots of tea-plants of four varieties dug up in February, 1984, and were adjusted to about 20 cm, then, put in the cold storage at 5degC for 9 months till the time of irradiation in November, 1984. However, a part of them was taken out in August, and planted in a field for 76 days to germinate, thereafter, used as the samples. The gamma-ray from a Co-60 source was irradiated in the radiation breeding laboratory of Agriculture Bioresources Research Institute at the total dose of 1, 2 and 3 kR and the dose rate of 500 R/h. The irradiated roots were planted as they are or in the state of being cut, and the rate of germination, the number of buds and the induced mutation were examined. Clear difference was not observed in the rate of germination and the number of buds between the irradiated samples and those without irradiation. The long roots were superior to the short roots regarding these items. The types of the induced mutation were mostly thin leaves, and also yellowing, mottling, fascination and so on occurred. The mutant system lacking trichomes on the back of new leaves is considered to be strong against tea anthracnose, and is valuable. (K.I.).

  19. The root/rhizome system of seagrasses: an asset and a burden

    NARCIS (Netherlands)

    Hemminga, M.A.

    1998-01-01

    Large-scale declines in seagrass vegetation have been frequently observed in recent decades. Many of these declines can be traced to the reduction of light levels in the water column. In this paper, it is argued that the root/rhizome system offers a competitive advantage in nutrient-poor waters, but

  20. Root Systems Biology: Integrative Modeling across Scales, from Gene Regulatory Networks to the Rhizosphere1

    Science.gov (United States)

    Hill, Kristine; Porco, Silvana; Lobet, Guillaume; Zappala, Susan; Mooney, Sacha; Draye, Xavier; Bennett, Malcolm J.

    2013-01-01

    Genetic and genomic approaches in model organisms have advanced our understanding of root biology over the last decade. Recently, however, systems biology and modeling have emerged as important approaches, as our understanding of root regulatory pathways has become more complex and interpreting pathway outputs has become less intuitive. To relate root genotype to phenotype, we must move beyond the examination of interactions at the genetic network scale and employ multiscale modeling approaches to predict emergent properties at the tissue, organ, organism, and rhizosphere scales. Understanding the underlying biological mechanisms and the complex interplay between systems at these different scales requires an integrative approach. Here, we describe examples of such approaches and discuss the merits of developing models to span multiple scales, from network to population levels, and to address dynamic interactions between plants and their environment. PMID:24143806

  1. Characterisation of bacteria from Pinus sylvestris-Suillus luteus mycorrhizas and their effects on root-fungus interactions and plant growth.

    Science.gov (United States)

    Bending, Gary D; Poole, Elizabeth J; Whipps, John M; Read, David J

    2002-03-01

    Bacteria from Pinus sylvestris-Suillus luteus mycorrhizas were isolated, characterised, and their effects on P. sylvestris-S. luteus interactions and plant growth investigated in vitro. The isolates formed five distinct phenotypic and physiological groups. Two of the groups, accounting for 34 of the 55 isolates, consisted of Bacillus spp., with three subgroups represented. The other groups contained Burkholderia spp., Serratia spp. and Pseudomonas spp. Representatives from each bacterial group were used in microcosm experiments to investigate bacterial effects on P. sylvestris-S. luteus interactions. Most Bacillus isolates stimulated growth of S. luteus along the P. sylvestris root, while isolates of Pseudomonas and Serratia inhibited root colonisation by the fungus. Burkholderia and Serratia isolates inhibited ectomycorrhiza formation by 97 and 41% respectively, while a single Bacillus isolate doubled the formation of first order ectomycorrhizal roots. There were no clear relationships between effects of the bacteria on root colonisation by the fungus after 4 weeks, and chitinase production or subsequent ectomycorrhiza formation. However, isolates that inhibited ectomycorrhiza formation appeared to associate preferentially with ectomycorrhizal roots. Several isolates enhanced plant growth substantially, although these effects were unrelated to either root colonisation by the fungus or ectomycorrhiza formation.

  2. Public-domain software for root image analysis

    Directory of Open Access Journals (Sweden)

    Mirian Cristina Gomes Costa

    2014-10-01

    Full Text Available In the search for high efficiency in root studies, computational systems have been developed to analyze digital images. ImageJ and Safira are public-domain systems that may be used for image analysis of washed roots. However, differences in root properties measured using ImageJ and Safira are supposed. This study compared values of root length and surface area obtained with public-domain systems with values obtained by a reference method. Root samples were collected in a banana plantation in an area of a shallower Typic Carbonatic Haplic Cambisol (CXk, and an area of a deeper Typic Haplic Ta Eutrophic Cambisol (CXve, at six depths in five replications. Root images were digitized and the systems ImageJ and Safira used to determine root length and surface area. The line-intersect method modified by Tennant was used as reference; values of root length and surface area measured with the different systems were analyzed by Pearson's correlation coefficient and compared by the confidence interval and t-test. Both systems ImageJ and Safira had positive correlation coefficients with the reference method for root length and surface area data in CXk and CXve. The correlation coefficient ranged from 0.54 to 0.80, with lowest value observed for ImageJ in the measurement of surface area of roots sampled in CXve. The IC (95 % revealed that root length measurements with Safira did not differ from that with the reference method in CXk (-77.3 to 244.0 mm. Regarding surface area measurements, Safira did not differ from the reference method for samples collected in CXk (-530.6 to 565.8 mm² as well as in CXve (-4231 to 612.1 mm². However, measurements with ImageJ were different from those obtained by the reference method, underestimating length and surface area in samples collected in CXk and CXve. Both ImageJ and Safira allow an identification of increases or decreases in root length and surface area. However, Safira results for root length and surface area are

  3. Assessment of the root system of Brassica juncea (L.) czern. and Bidens pilosa L. exposed to lead polluted soils using rhizobox systems.

    Science.gov (United States)

    Graziani, Natalia Soledad; Salazar, María Julieta; Pignata, María Luisa; Rodriguez, Judith Hebelen

    2016-01-01

    The purpose of this study was to compare the behavior of the root system of one of the most frequently cited species in phytoremediation Indian mustard [Brassica juncea (L.) Czern.] and a representative perennial herb (Bidens pilosa L.) native of Argentina, for different concentrations of lead in soils through chemical and visualization techniques of the rhizosphere. Lead polluted soils from the vicinity of a lead recycling plant in the locality of Bouwer, were used in juxtaposed rhizobox systems planted with seedlings of B. juncea and B. pilosa with homogeneous and heterogeneous soil treatments. Root development, pH changes in the rhizosphere, dry weight biomass, lead content of root and aerial parts and potential extraction of lead by rhizosphere exudates were determined. In both species lead was mainly accumulated in roots. However, although B. juncea accumulated more lead than B. pilosa at elevated concentrations in soils, the latter achieved greater root and aerial development. No changes in the pH of the rhizosphere associated to lead were observed, despite different extractive potentials of lead in the exudates of the species analyzed. Our results indicated that Indian mustard did not behave as a hyperaccumulator in the conditions of the present study.

  4. Simulation of root forms using cellular automata model

    International Nuclear Information System (INIS)

    Winarno, Nanang; Prima, Eka Cahya; Afifah, Ratih Mega Ayu

    2016-01-01

    This research aims to produce a simulation program for root forms using cellular automata model. Stephen Wolfram in his book entitled “A New Kind of Science” discusses the formation rules based on the statistical analysis. In accordance with Stephen Wolfram’s investigation, the research will develop a basic idea of computer program using Delphi 7 programming language. To best of our knowledge, there is no previous research developing a simulation describing root forms using the cellular automata model compared to the natural root form with the presence of stone addition as the disturbance. The result shows that (1) the simulation used four rules comparing results of the program towards the natural photographs and each rule had shown different root forms; (2) the stone disturbances prevent the root growth and the multiplication of root forms had been successfully modeled. Therefore, this research had added some stones, which have size of 120 cells placed randomly in the soil. Like in nature, stones cannot be penetrated by plant roots. The result showed that it is very likely to further develop the program of simulating root forms by 50 variations

  5. Simulation of root forms using cellular automata model

    Energy Technology Data Exchange (ETDEWEB)

    Winarno, Nanang, E-mail: nanang-winarno@upi.edu; Prima, Eka Cahya [International Program on Science Education, Universitas Pendidikan Indonesia, Jl. Dr. Setiabudi no 229, Bandung40154 (Indonesia); Afifah, Ratih Mega Ayu [Department of Physics Education, Post Graduate School, Universitas Pendidikan Indonesia, Jl. Dr. Setiabudi no 229, Bandung40154 (Indonesia)

    2016-02-08

    This research aims to produce a simulation program for root forms using cellular automata model. Stephen Wolfram in his book entitled “A New Kind of Science” discusses the formation rules based on the statistical analysis. In accordance with Stephen Wolfram’s investigation, the research will develop a basic idea of computer program using Delphi 7 programming language. To best of our knowledge, there is no previous research developing a simulation describing root forms using the cellular automata model compared to the natural root form with the presence of stone addition as the disturbance. The result shows that (1) the simulation used four rules comparing results of the program towards the natural photographs and each rule had shown different root forms; (2) the stone disturbances prevent the root growth and the multiplication of root forms had been successfully modeled. Therefore, this research had added some stones, which have size of 120 cells placed randomly in the soil. Like in nature, stones cannot be penetrated by plant roots. The result showed that it is very likely to further develop the program of simulating root forms by 50 variations.

  6. The effects of exogenous hormones on rooting process and the activities of key enzymes of Malus hupehensis stem cuttings.

    Science.gov (United States)

    Zhang, Wangxiang; Fan, Junjun; Tan, Qianqian; Zhao, Mingming; Zhou, Ting; Cao, Fuliang

    2017-01-01

    Malus hupehensis is an excellent Malus rootstock species, known for its strong adverse-resistance and apomixes. In the present study, stem cuttings of M. hupehensis were treated with three types of exogenous hormones, including indole acetic acid (IAA), naphthalene acetic acid (NAA), or green growth regulator (GGR). The effects and mechanisms of exogenous hormone treatment and antioxidant enzyme activity on adventitious root formation were investigated. The results showed that the apparent morphology of the adventitious root had four stages, including root pre-emergence stage (S0), early stage of root formation (S1), massive root formation stage (S2), and later stage of root formation (S3). The suitable concentrations of the three exogenous hormones, IAA, NAA and GGR, were 100 mg·L-1, 300 mg·L-1, and 300 mg·L-1, respectively. They shortened the rooting time by 25-47.4% and increased the rooting percentages of cuttings by 0.9-1.3 times, compared with that in the control. The dispersion in S0 stage was 3.6 times of that in the S1 stage after exogenous hormone application. The earlier the third critical point (P3) appeared, the shorter the rooting time and the greater the rooting percentage of the cuttings. During rhizogenesis, the activities of three antioxidant enzymes (POD, SOD, and PPO) showed an A-shaped trend. However, peak values of enzyme activity appeared at different points, which were 9 d before the P3, P3, and the fourth critical point (P4), respectively. Exogenous hormone treatment reduced the time to reach the peak value by 18 days, although the peak values of the enzymatic activities did not significantly changed. Our results suggested that exogenous hormone treatment mainly acted during the root pre-emergence stage, accelerated the synthesis of antioxidant enzymes, reduced the rooting time, and consequently promoted root formation. The three kinds of antioxidant enzymes acted on different stages of rooting.

  7. Arabidopsis: an adequate model for dicot root systems

    Science.gov (United States)

    In the search for answers to pressing root developmental genetic issues, plant science has turned to a small genome dicot plant (Arabidopsis) to be used as a model to study and use to develop hypotheses for testing other species. Through out the published research only three classes of root are des...

  8. Iron- and ferritin-dependent reactive oxygen species distribution: impact on Arabidopsis root system architecture.

    Science.gov (United States)

    Reyt, Guilhem; Boudouf, Soukaina; Boucherez, Jossia; Gaymard, Frédéric; Briat, Jean-Francois

    2015-03-01

    Iron (Fe) homeostasis is integrated with the production of reactive oxygen species (ROS), and distribution at the root tip participates in the control of root growth. Excess Fe increases ferritin abundance, enabling the storage of Fe, which contributes to protection of plants against Fe-induced oxidative stress. AtFer1 and AtFer3 are the two ferritin genes expressed in the meristematic zone, pericycle and endodermis of the Arabidopsis thaliana root, and it is in these regions that we observe Fe stained dots. This staining disappears in the triple fer1-3-4 ferritin mutant. Fe excess decreases primary root length in the same way in wild-type and in fer1-3-4 mutant. In contrast, the Fe-mediated decrease of lateral root (LR) length and density is enhanced in fer1-3-4 plants due to a defect in LR emergence. We observe that this interaction between excess Fe, ferritin, and root system architecture (RSA) is in part mediated by the H2O2/O2·- balance between the root cell proliferation and differentiation zones regulated by the UPB1 transcription factor. Meristem size is also decreased in response to Fe excess in ferritin mutant plants, implicating cell cycle arrest mediated by the ROS-activated SMR5/SMR7 cyclin-dependent kinase inhibitors pathway in the interaction between Fe and RSA. Copyright © 2015 The Author. Published by Elsevier Inc. All rights reserved.

  9. Evaluation of the anatomical alterations of lower molars mesial root?s apical third

    OpenAIRE

    FRÖNER Izabel Cristina; IMPERADOR Cristina Aparecida; SOUZA Luiz Gustavo de

    1999-01-01

    The anatomical apex of the mesial root of the lower molars presents a morphological complexity related to the number and shape of the root canals as well as of the apical foramen and isthmus presence. The knowledge of the complexity of the endodontic system of the molar root area is essencial to select more carefully the best instrumentation and obturation technique, to obtain a more successful endodontic therapy.

  10. Evaluation of the anatomical alterations of lower molars mesial root?s apical third

    Directory of Open Access Journals (Sweden)

    FRÖNER Izabel Cristina

    1999-01-01

    Full Text Available The anatomical apex of the mesial root of the lower molars presents a morphological complexity related to the number and shape of the root canals as well as of the apical foramen and isthmus presence. The knowledge of the complexity of the endodontic system of the molar root area is essencial to select more carefully the best instrumentation and obturation technique, to obtain a more successful endodontic therapy.

  11. THE SPECIAL STATUS OF EXOGENOUS WORD-FORMATION WITHIN THE GERMAN WORD-FORMATION SYSTEM

    Directory of Open Access Journals (Sweden)

    Zhilyuk Sergey Aleksandrovich

    2014-06-01

    Full Text Available The article presents the properties of exogenous word-formation system taking into account the existence of two word-formation systems in modern German. On the basis of foreign research which reveal modern trends in German word-formation connected with the internationalization and the development of new European Latin language. The author defines key features of exogenous word-formation, i.e. foreign origin of wordformation units, unmotivated units, unmotivated interchange in base and affixes as well as limited distribution rules in combination with German word-formation. The article analyzes various approaches to word-division, as well as motivated and unmotivated interchange of consonants in bases and in affixes. Unmotivated interchange showcases a special status of the exogenous word-formation within German. Another item covered by the article is the issue of confix. The article has opinions of researchers about correctness of its separation and a list of its features. The author presents his definition of confix: a confix is a bound exogenous word-formation unit with a certain lexical and semantic meaning and joining other units directly or indirectly (through linking morpheme -o-, which is able to make a base. Moreover, some confixes are able to participate at word-combination and have unlimited distribution. So far, confix showcases the integration of exogenous word-formation and traditional German word-formation. The research proves the special status of exogenous word-formation in German. Its results can be used as a base for further analysis of co-existing word-formation systems in German and determination of their characteristic features.

  12. Soybean root growth and crop yield in reponse to liming at the beginning of a no-tillage system

    Directory of Open Access Journals (Sweden)

    Edson Campanhola Bortoluzzi

    2014-02-01

    Full Text Available Analyzing the soil near crop roots may reveal limitations to growth and yield even in a no-tillage system. The purpose of the present study was to relate the chemical and physical properties of soil under a no-tillage system to soybean root growth and plant yield after five years of use of different types of limestone and forms of application. A clayey Oxisol received application of dolomitic and calcitic limestones and their 1:1 combination in two forms: surface application, maintained on the soil surface; and incorporated, applied on the surface and incorporated mechanically. Soil physical properties (resistance to mechanical penetration, soil bulk density and soil aggregation, soil chemical properties (pH, exchangeable cations, H+Al, and cation exchange capacity and plant parameters (root growth system, soybean grain yield, and oat dry matter production were evaluated five years after setting up the experiment. Incorporation of lime neutralized exchangeable Al up to a depth of 20 cm without affecting the soil physical properties. The soybean root system reached depths of 40 cm or more with incorporated limestone, increasing grain yield an average of 31 % in relation to surface application, which limited the effect of lime up to a depth of 5 cm and root growth up to 20 cm. It was concluded that incorporation of limestone at the beginning of a no-tillage system ensures a favorable environment for root growth and soybean yield, while this intervention does not show long-term effects on soil physical properties under no-tillage. This suggests that there is resilience in the physical properties evaluated.

  13. Hormonal control of root development on epiphyllous plantlets of Bryophyllum (Kalanchoe) marnierianum: role of auxin and ethylene.

    Science.gov (United States)

    Kulka, Richard G

    2008-01-01

    Epiphyllous plantlets develop on leaves of Bryophyllum marnierianum when they are excised from the plant. Shortly after leaf excision, plantlet shoots develop from primordia located near the leaf margin. After the shoots have enlarged for several days, roots appear at their base. In this investigation, factors regulating plantlet root development were studied. The auxin transport inhibitor 2,3,5-triiodobenzoic acid (TIBA) abolished root formation without markedly affecting shoot growth. This suggested that auxin transport from the plantlet shoot induces root development. Excision of plantlet apical buds inhibits root development. Application of indole-3-acetic acid (IAA) in lanolin at the site of the apical buds restores root outgrowth. Naphthalene acetic acid (NAA), a synthetic auxin, reverses TIBA inhibition of plantlet root emergence on leaf explants. Both of these observations support the hypothesis that auxin, produced by the plantlet, induces root development. Exogenous ethylene causes precocious root development several days before that of a control without hormone. Ethylene treatment cannot bypass the TIBA block of root formation. Therefore, ethylene does not act downstream of auxin in root induction. However, ethylene amplifies the effects of low concentrations of NAA, which in the absence of ethylene do not induce roots. Ag(2)S(2)O(3), an ethylene blocker, and CoCl(2), an ethylene synthesis inhibitor, do not abolish plantlet root development. It is therefore unlikely that ethylene is essential for root formation. Taken together, the experiments suggest that roots develop when auxin transport from the shoot reaches a certain threshold. Ethylene may augment this effect by lowering the threshold and may come into play when the parent leaf senesces.

  14. Importance of root HTO uptake in controlling land-surface tritium dynamics after an-acute HT deposition: a numerical experiment

    International Nuclear Information System (INIS)

    Ota, Masakazu; Nagai, Haruyasu; Koarashi, Jun

    2012-01-01

    To investigate the role of belowground root uptake of tritiated water (HTO) in controlling land-surface tritium (T) dynamics, a sophisticated numerical model predicting tritium behavior in an atmosphere-vegetation-soil system was developed, and numerical experiments were conducted using the model. The developed model covered physical tritiated hydrogen (HT) transport in a multilayered atmosphere and soil, as well as microbial oxidation of HT to HTO in the soil, and it was incorporated into a well-established HTO-transfer organically bound tritium (OBT)-formation model. The model performance was tested through the simulation of an existing HT-release experiment. Numerical experiments involving a hypothetical acute HT exposure to a grassland field with a range of rooting depths showed that the HTO release from the leaves to the atmosphere, driven by the root uptake of the deposited HTO, can exceed the HTO evaporation from the ground surface to the atmosphere when root water absorption preferentially occurs beneath the ground surface. Such enhanced soil-leaf-atmosphere HTO transport, caused by the enhanced root HTO uptake, increased HTO concentrations in both the surface atmosphere and in the cellular water of the leaf. Consequently, leaf OBT assimilation calculated for shallow rooting depths increased by nearly an order of magnitude compared to that for large rooting depths. - Highlights: ► A model that calculates HT deposition from atmosphere to soil was developed. ► Tritium dynamics after an-acute HT deposition was studied by numerical experiments. ► OBT formation highly depends on magnitude of uptake of the deposited HTO by roots.

  15. Interaction of IBA and NAA with enzymes in root induction of Crocus ...

    African Journals Online (AJOL)

    PRECIOUS

    2010-01-11

    Jan 11, 2010 ... Key words: Crocus sativus L., saffron, root formation, IBA, NAA. .... square coefficient. ... Interaction of medium and hormone and its effect on mean number of root per ... It is apparent in Table2 that the fluctuations in protein.

  16. Radiographic technical quality of root canal treatment performed by a new rotary single-file system.

    Science.gov (United States)

    Colombo, Marco; Bassi, Cristina; Beltrami, Riccardo; Vigorelli, Paolo; Spinelli, Antonio; Cavada, Andrea; Dagna, Alberto; Chiesa, Marco; Poggio, Claudio

    2017-01-01

    The aim of the present study was to evaluate radiographically the technical quality of root canal filling performed by postgraduate students with a new single-file Nickel-Titanium System (F6 Skytaper Komet) in clinical practice. Records of 74 patients who had received endodontic treatment by postgraduate students at the School of Dentistry, Faculty of Medicine, University of Pavia in the period between September 2015 and April 2016 were collected and examined: the final sample consisted 114 teeth and 204 root canals. The quality of endodontic treatment was evaluated by examining the length of the filling in relation to the radiographic apex, the density of the obturation according to the presence of voids and the taper of root canal filling. Chi-squared analysis was used to determine statistically significant differences between the technical quality of root fillings according to tooth's type, position and curvature. The results showed that 75,49%, 82,84% and 90,69% of root filled canals had adequate length, density and taper respectively. Overall, the technical quality of root canal fillings performed by postgraduates students was acceptable in 60,78% of the cases.

  17. Root inoculation with Pseudomonas putida KT2440 induces transcriptional and metabolic changes and systemic resistance in maize plants

    Directory of Open Access Journals (Sweden)

    Chantal ePlanchamp

    2015-01-01

    Full Text Available Pseudomonas putida KT2440 (KT2440 rhizobacteria colonize a wide range of plants. They have been extensively studied for their capacity to adhere to maize seeds, to tolerate toxic secondary metabolites produced by maize roots and to be attracted by maize roots. However, the response of maize plants to KT2440 colonization has not been investigated yet. Maize roots were inoculated with KT2440 and the local (roots and systemic (leaves early plant responses were investigated. The colonization behavior of KT2440 following application to maize seedlings was investigated and transcriptional analysis of stress- and defense-related genes as well as metabolite profiling of local and systemic maize tissues of KT2440-inoculated were performed. The local and systemic responses differed and more pronounced changes were observed in roots compared to leaves. Early in the interaction roots responded via jasmonic acid- and abscisic acid-dependent signaling. Interestingly, during later steps, the salicylic acid pathway was suppressed. Metabolite profiling revealed the importance of plant phospholipids in KT2440-maize interactions. An additional important maize secondary metabolite, a form of benzoxazinone, was also found to be differently abundant in roots three days after KT2440 inoculation. However, the transcriptional and metabolic changes observed in bacterized plants early during the interaction were minor and became even less pronounced with time, indicating an accommodation state of the plant to the presence of KT2440. Since the maize plants reacted to the presence of KT2440 in the rhizosphere, we also investigated the ability of these bacteria to trigger induced systemic resistance (ISR against the maize anthracnose fungus Colletotrichum graminicola. The observed resistance was expressed as strongly reduced leaf necrosis and fungal development in infected bacterized plants compared to non-bacterized controls, showing the potential of KT2440 to act as

  18. ROOT - A C++ Framework for Petabyte Data Storage, Statistical Analysis and Visualization

    CERN Document Server

    Naumann, Axel; Ballintijn, Maarten; Bellenot, Bertrand; Biskup, Marek; Brun, Rene; Buncic, Nenad; Canal, Philippe; Casadei, Diego; Couet, Olivier; Fine, Valery; Franco, Leandro; Ganis, Gerardo; Gheata, Andrei; Gonzalez~Maline, David; Goto, Masaharu; Iwaszkiewicz, Jan; Kreshuk, Anna; Marcos Segura, Diego; Maunder, Richard; Moneta, Lorenzo; Offermann, Eddy; Onuchin, Valeriy; Panacek, Suzanne; Rademakers, Fons; Russo, Paul; Tadel, Matevz

    2009-01-01

    ROOT is an object-oriented C++ framework conceived in the high-energy physics (HEP) community, designed for storing and analyzing petabytes of data in an efficient way. Any instance of a C++ class can be stored into a ROOT file in a machine-independent compressed binary format. In ROOT the TTree object container is optimized for statistical data analysis over very large data sets by using vertical data storage techniques. These containers can span a large number of files on local disks, the web, or a number of different shared file systems. In order to analyze this data, the user can chose out of a wide set of mathematical and statistical functions, including linear algebra classes, numerical algorithms such as integration and minimization, and various methods for performing regression analysis (fitting). In particular, the RooFit package allows the user to perform complex data modeling and fitting while the RooStats library provides abstractions and implementations for advance...

  19. Influence of operator's experience on root canal shaping ability with a rotary nickel-titanium single-file reciprocating motion system.

    Science.gov (United States)

    Muñoz, Estefanía; Forner, Leopoldo; Llena, Carmen

    2014-04-01

    The aim of this study was to evaluate the influence of the operator's experience on the shaping of double-curvature simulated root canals with a nickel-titanium single-file reciprocating motion system. Sixty double-curvature root canals simulated in methacrylate blocks were prepared by 10 students without any experience in endodontics and by 10 professionals who had studied endodontics at the postgraduate level. The Reciproc-VDW system's R25 file was used in the root canal preparation. The blocks were photographed before and after the instrumentation, and the time of instrumentation was also evaluated. Changes in root canal dimensions were analyzed in 6 positions. Significant differences (P file reciprocating motion system Reciproc is not seen to be influenced by the operator's experience regarding the increase of the canal area. Previous training and the need to acquire experience are important in the use of this system, in spite of its apparent simplicity. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  20. Distribution of indole-3-acetic acid in Petunia hybrida shoot tip cuttings and relationship between auxin transport, carbohydrate metabolism and adventitious root formation.

    OpenAIRE

    Ahkami, Amir H.; Melzer, Michael; Ghaffari, Mohammad R.; Pollmann, Stephan; Ghorbani, Majid; Shahinnia, Fahimeh; Hajirezaei, Mohammad R.; Druege, Uwe

    2013-01-01

    To determine the contribution of polar auxin transport (PAT) to auxin accumulation and to adventitious root (AR) formation in the stem base of Petunia hybrida shoot tip cuttings, the level of indole-3-acetic acid (IAA) was monitored in non-treated cuttings and cuttings treated with the auxin transport blocker naphthylphthalamic acid (NPA) and was complemented with precise anatomical studies. The temporal course of carbohydrates, amino acids and activities of controlling enzymes was also inves...

  1. Removal of root filling materials.

    LENUS (Irish Health Repository)

    Duncan, H.F. Chong, B.S.

    2011-05-01

    Safe, successful and effective removal of root filling materials is an integral component of non-surgical root canal re-treatment. Access to the root canal system must be achieved in order to negotiate to the canal terminus so that deficiencies in the original treatment can be rectified. Since a range of materials have been advocated for filling root canals, different techniques are required for their removal. The management of commonly encountered root filling materials during non-surgical re-treatment, including the clinical procedures necessary for removal and the associated risks, are reviewed. As gutta-percha is the most widely used and accepted root filling material, there is a greater emphasis on its removal in this review.

  2. Biofilm formation in a hot water system

    DEFF Research Database (Denmark)

    Bagh, L.K.; Albrechtsen, Hans-Jørgen; Arvin, Erik

    2002-01-01

    The biofilm formation rate was measured in situ in a hot water system in an apartment building by specially designed sampling equipment, and the net growth of the suspended bacteria was measured by incubation of water samples with the indigeneous bacteria. The biofilm formation rate reached......, in the sludge, or in the water from the distribution system was negligible. This indicated that bacterial growth took place on the inner surfaces in the hot water system and biofilm formation and detachment of bacteria could account for most of the suspended bacteria actually measured in hot water. Therefore...

  3. Adsorption of heavy metal from aqueous solution by dehydrated root powder of long-root Eichhornia crassipes.

    Science.gov (United States)

    Li, Qiang; Chen, Bo; Lin, Peng; Zhou, Jiali; Zhan, Juhong; Shen, Qiuying; Pan, Xuejun

    2016-01-01

    The root powder of long-root Eichhornia crassipes, as a new kind of biodegradable adsorbent, has been tested for aqueous adsorption of Pb, Zn, Cu, and Cd. From FT-IR, we found that the absorption peaks of phosphorous compounds, carbonyl, and nitrogenous compounds displayed obvious changes before and after adsorption which illustrated that plant characteristics may play a role in binding with metals. Surface properties and morphology of the root powders have been characterized by means of SEM and BET. Energy spectrum analysis showed that the metals were adsorbed on root powders after adsorption. Then, optimum quantity of powder, pH values, and metal ion concentrations in single-system and multi-system were detected to discuss the characteristics and mechanisms of metal adsorption. Freundlich model and the second-order kinetics equation could well describe the adsorption of heavy metals in single-metal system. The adsorption of Pb, Zn, and Cd in the multi-metal system decreased with the concentration increased. At last, competitive adsorption of every two metals on root powder proved that Cu and Pb had suppressed the adsorption performance of Cd and Zn.

  4. Automatic non-destructive three-dimensional acoustic coring system for in situ detection of aquatic plant root under the water bottom

    Directory of Open Access Journals (Sweden)

    Katsunori Mizuno

    2016-05-01

    Full Text Available Digging is necessary to detect plant roots under the water bottom. However, such detection is affected by the transparency of water and the working skills of divers, usually requires considerable time for high-resolution sampling, and always damages the survey site. We developed a new automatic non-destructive acoustic measurement system that visualizes the space under the water bottom, and tested the system in the in situ detection of natural plant roots. The system mainly comprises a two-dimensional waterproof stage controlling unit and acoustic measurement unit. The stage unit was electrically controlled through a notebook personal computer, and the space under the water bottom was scanned in a two-dimensional plane with the stage unit moving in steps of 0.01 m (±0.0001 m. We confirmed a natural plant root with diameter of 0.025–0.030 m in the reconstructed three-dimensional acoustic image. The plant root was at a depth of about 0.54 m and the propagation speed of the wave between the bottom surface and plant root was estimated to be 1574 m/s. This measurement system for plant root detection will be useful for the non-destructive assessment of the status of the space under the water bottom.

  5. Studying the Variable Refrigerant Volume (VRV) System and Determining the Root Cause of its Problem in Building 37, Malaysian Nuclear Agency

    International Nuclear Information System (INIS)

    Suhafizudin Zainal Anuar; Mohamad Suhaimi Yahaya; Jusnan Hasim; Suhilah Mohd Ali; Mohd Khafidz Shamsuddin

    2015-01-01

    Variable Refrigerant Volume (VRV) system is one of the Heating, Ventilation and Air Conditioning (HVAC) type in the building. VRV system is a multi-split type air conditioner that uses variable refrigerant flow control to provide customers with the ability to maintain individual zone control in each room and floor of a building. VRV used in Building 37 is made by Mitsubishi Heavy Industries that was completely installed in 2011 with two pipes system format. The objectives of this study are to understand the Variable Refrigerant Volume (VRV) system and also to study the root cause of its problem in Building 37, Agensi Nuklear Malaysia. The result of the study study suggests poor workmanship during installation process and insufficient electrical grounding are suspected as the causes of on-going and repeating problems occurred. Hence, Bahagian Kejuruteraan (BKJ) has worked out with the service contractor to identify the main problem and leaking area before proceeding with repair and commissioning activities. (author)

  6. Autonomous Formations of Multi-Agent Systems

    Science.gov (United States)

    Dhali, Sanjana; Joshi, Suresh M.

    2013-01-01

    Autonomous formation control of multi-agent dynamic systems has a number of applications that include ground-based and aerial robots and satellite formations. For air vehicles, formation flight ("flocking") has the potential to significantly increase airspace utilization as well as fuel efficiency. This presentation addresses two main problems in multi-agent formations: optimal role assignment to minimize the total cost (e.g., combined distance traveled by all agents); and maintaining formation geometry during flock motion. The Kuhn-Munkres ("Hungarian") algorithm is used for optimal assignment, and consensus-based leader-follower type control architecture is used to maintain formation shape despite the leader s independent movements. The methods are demonstrated by animated simulations.

  7. Rethinking pattern formation in reaction-diffusion systems

    Science.gov (United States)

    Halatek, J.; Frey, E.

    2018-05-01

    The present theoretical framework for the analysis of pattern formation in complex systems is mostly limited to the vicinity of fixed (global) equilibria. Here we present a new theoretical approach to characterize dynamical states arbitrarily far from (global) equilibrium. We show that reaction-diffusion systems that are driven by locally mass-conserving interactions can be understood in terms of local equilibria of diffusively coupled compartments. Diffusive coupling generically induces lateral redistribution of the globally conserved quantities, and the variable local amounts of these quantities determine the local equilibria in each compartment. We find that, even far from global equilibrium, the system is well characterized by its moving local equilibria. We apply this framework to in vitro Min protein pattern formation, a paradigmatic model for biological pattern formation. Within our framework we can predict and explain transitions between chemical turbulence and order arbitrarily far from global equilibrium. Our results reveal conceptually new principles of self-organized pattern formation that may well govern diverse dynamical systems.

  8. Living roots effect on 14C-labelled root litter decomposition

    International Nuclear Information System (INIS)

    Billes, G.; Bottner, P.

    1981-01-01

    Wheat was 14 C-labelled by cultivation on soil in pots, from seedling to maturity, in a chamber with constant CO 2 and 14 CO 2 levels. The 14 C-distribution was constant amongst the aerial parts, the roots and the soil in the whole pots. After cutting the plant tops, the pots were dried without disturbing the soil and root system. The pots were then incubated under controlled humidity and temperature conditions for 62 days. In the same time a second wheat cultivation was grown on one half of the pots in normal atmosphere without plant cultivation. The purpose of the work is to study the effect of living roots on decomposition of the former 14 C labelled roots litter. The CO 2 and the 14 CO 2 released from the soil were continuously measured. On incubation days 0, 18, 33 and 62, the remaining litter was separated from soil, and the organic matter was fractionated by repeated hydrolysis and NaOH extraction. Root litter disappeared faster when living roots were present than in bare soil. The accumulation and mineralization rates of humified components in soil followed two stages. While the roots of second wheat cultivation grew actively (until earing), the strong acid hydrolysable components accumulated in larger amount than in the case of bare soil. After earing, while roots activity was depressed, these components were partly mineralized and the 14 CO 2 release was then higher with plants than with bare soil. The humification and mineralization rate were related with living plant phenology stages. (orig.)

  9. Root exudation and root development of lettuce (Lactuca sativa L. cv. Tizian) as affected by different soils.

    Science.gov (United States)

    Neumann, G; Bott, S; Ohler, M A; Mock, H-P; Lippmann, R; Grosch, R; Smalla, K

    2014-01-01

    Development and activity of plant roots exhibit high adaptive variability. Although it is well-documented, that physicochemical soil properties can strongly influence root morphology and root exudation, particularly under field conditions, a comparative assessment is complicated by the impact of additional factors, such as climate and cropping history. To overcome these limitations, in this study, field soils originating from an unique experimental plot system with three different soil types, which were stored at the same field site for 10 years and exposed to the same agricultural management practice, were used for an investigation on effects of soil type on root development and root exudation. Lettuce (Lactuca sativa L. cv. Tizian) was grown as a model plant under controlled environmental conditions in a minirhizotrone system equipped with root observation windows (rhizoboxes). Root exudates were collected by placing sorption filters onto the root surface followed by subsequent extraction and GC-MS profiling of the trapped compounds. Surprisingly, even in absence of external stress factors with known impact on root exudation, such as pH extremes, water and nutrient limitations/toxicities or soil structure effects (use of sieved soils), root growth characteristics (root length, fine root development) as well as profiles of root exudates were strongly influenced by the soil type used for plant cultivation. The results coincided well with differences in rhizosphere bacterial communities, detected in field-grown lettuce plants cultivated on the same soils (Schreiter et al., this issue). The findings suggest that the observed differences may be the result of plant interactions with the soil-specific microbiomes.

  10. Root exudation and root development of lettuce (Lactuca sativa L.cv. Tizian as affected by different soils

    Directory of Open Access Journals (Sweden)

    Günter eNeumann

    2014-01-01

    Full Text Available Development and activity of plant roots exhibits high adaptive variability. Although it is well-documented, that physicochemical soil properties can strongly influence root morphology and root exudation, particularly under field conditions, a comparative assessment is complicated by the impact of additional factors, such as climate and cropping history. To overcome these limitations, in this study, field soils originating from an unique experimental plot system with three different soil types, which were stored at the same field site for ten years and exposed to the same agricultural management practice, were used for an investigation on effects of soil type on root development and root exudation. Lettuce (Lactuca sativa L. cv. Tizian was used as a model plant, grown under controlled environmental conditions in a minirhizotrone system equipped with root observation windows (rhizoboxes. Root exudates were collected by placing sorption filters onto the root surface followed by subsequent extraction and GC-MS profiling of the trapped compounds. Surprisingly, even in absence of external stress factors with known impact on root exudation, such as pH extremes, water and nutrient limitations/toxicities or soil structure effects (use of sieved soils, root growth characteristics (root length, fine root development as well as profiles of root exudates were strongly influenced by the soil type used for plant cultivation. The results coincided well with differences in rhizosphere bacterial communities, detected in field-grown lettuce plants cultivated on the same soils (Schreiter et al., this issue. The findings suggest that the observed differences may be the result of plant interactions with the soil-specific microbiomes.

  11. Root exudation and root development of lettuce (Lactuca sativa L. cv. Tizian) as affected by different soils

    Science.gov (United States)

    Neumann, G.; Bott, S.; Ohler, M. A.; Mock, H.-P.; Lippmann, R.; Grosch, R.; Smalla, K.

    2014-01-01

    Development and activity of plant roots exhibit high adaptive variability. Although it is well-documented, that physicochemical soil properties can strongly influence root morphology and root exudation, particularly under field conditions, a comparative assessment is complicated by the impact of additional factors, such as climate and cropping history. To overcome these limitations, in this study, field soils originating from an unique experimental plot system with three different soil types, which were stored at the same field site for 10 years and exposed to the same agricultural management practice, were used for an investigation on effects of soil type on root development and root exudation. Lettuce (Lactuca sativa L. cv. Tizian) was grown as a model plant under controlled environmental conditions in a minirhizotrone system equipped with root observation windows (rhizoboxes). Root exudates were collected by placing sorption filters onto the root surface followed by subsequent extraction and GC-MS profiling of the trapped compounds. Surprisingly, even in absence of external stress factors with known impact on root exudation, such as pH extremes, water and nutrient limitations/toxicities or soil structure effects (use of sieved soils), root growth characteristics (root length, fine root development) as well as profiles of root exudates were strongly influenced by the soil type used for plant cultivation. The results coincided well with differences in rhizosphere bacterial communities, detected in field-grown lettuce plants cultivated on the same soils (Schreiter et al., this issue). The findings suggest that the observed differences may be the result of plant interactions with the soil-specific microbiomes. PMID:24478764

  12. Parallelization and implementation of approximate root isolation for nonlinear system by Monte Carlo

    Science.gov (United States)

    Khosravi, Ebrahim

    1998-12-01

    This dissertation solves a fundamental problem of isolating the real roots of nonlinear systems of equations by Monte-Carlo that were published by Bush Jones. This algorithm requires only function values and can be applied readily to complicated systems of transcendental functions. The implementation of this sequential algorithm provides scientists with the means to utilize function analysis in mathematics or other fields of science. The algorithm, however, is so computationally intensive that the system is limited to a very small set of variables, and this will make it unfeasible for large systems of equations. Also a computational technique was needed for investigating a metrology of preventing the algorithm structure from converging to the same root along different paths of computation. The research provides techniques for improving the efficiency and correctness of the algorithm. The sequential algorithm for this technique was corrected and a parallel algorithm is presented. This parallel method has been formally analyzed and is compared with other known methods of root isolation. The effectiveness, efficiency, enhanced overall performance of the parallel processing of the program in comparison to sequential processing is discussed. The message passing model was used for this parallel processing, and it is presented and implemented on Intel/860 MIMD architecture. The parallel processing proposed in this research has been implemented in an ongoing high energy physics experiment: this algorithm has been used to track neutrinoes in a super K detector. This experiment is located in Japan, and data can be processed on-line or off-line locally or remotely.

  13. Physical root-soil interactions

    Science.gov (United States)

    Kolb, Evelyne; Legué, Valérie; Bogeat-Triboulot, Marie-Béatrice

    2017-12-01

    Plant root system development is highly modulated by the physical properties of the soil and especially by its mechanical resistance to penetration. The interplay between the mechanical stresses exerted by the soil and root growth is of particular interest for many communities, in agronomy and soil science as well as in biomechanics and plant morphogenesis. In contrast to aerial organs, roots apices must exert a growth pressure to penetrate strong soils and reorient their growth trajectory to cope with obstacles like stones or hardpans or to follow the tortuous paths of the soil porosity. In this review, we present the main macroscopic investigations of soil-root physical interactions in the field and combine them with simple mechanistic modeling derived from model experiments at the scale of the individual root apex.

  14. PHIV-RootCell: a supervised image analysis tool for rice root anatomical parameter quantification

    Directory of Open Access Journals (Sweden)

    Marc eLartaud

    2015-01-01

    Full Text Available We developed the PHIV-RootCell software to quantify anatomical traits of rice roots transverse section images. Combined with an efficient root sample processing method for image acquisition, this program permits supervised measurements of areas (those of whole root section, stele, cortex and central metaxylem vessels, number of cell layers and number of cells per cell layer. The PHIV-RootCell toolset runs under ImageJ, an independent operating system that has a license-free status. To demonstrate the usefulness of PHIV-RootCell, we conducted a genetic diversity study and an analysis of salt-stress responses of root anatomical parameters in rice (Oryza sativa L.. Using 16 cultivars, we showed that we could discriminate between some of the varieties even at the 6 day-old stage, and that tropical japonica varieties had larger root sections due to an increase in cell number. We observed, as described previously, that root sections become enlarged under salt stress. However, our results show an increase in cell number in ground tissues (endodermis and cortex but a decrease in external (peripheral tissues (sclerenchyma, exodermis and epidermis. Thus, the PHIV-RootCell program is a user-friendly tool that will be helpful for future genetic and physiological studies that investigate root anatomical trait variations.

  15. Effects of glucose and ethylene on root hair initiation and elongation in lettuce (Lactuca sativa L.) seedlings.

    Science.gov (United States)

    Harigaya, Wakana; Takahashi, Hidenori

    2018-05-01

    Root hair formation occurs in lettuce seedlings after transfer to an acidic medium (pH 4.0). This process requires cortical microtubule (CMT) randomization in root epidermal cells and the plant hormone ethylene. We investigated the interaction between ethylene and glucose, a new signaling molecule in plants, in lettuce root development, with an emphasis on root hair formation. Dark-grown seedlings were used to exclude the effect of photosynthetically produced glucose. In the dark, neither root hair formation nor the CMT randomization preceding it occurred, even after transfer to the acidic medium (pH 4.0). Adding 1-aminocyclopropane-1-carboxylic-acid (ACC) to the medium rescued the induction, while adding glucose did not. Although CMT randomization occurred when glucose was applied together with ACC, it was somewhat suppressed compared to that in ACC-treated seedlings. This was not due to a decrease in the speed of randomization, but due to lowering of the maximum degree of randomization. Despite the negative effect of glucose on ACC-induced CMT randomization, the density and length of ACC-induced root hairs increased when glucose was also added. The hair-cell length of the ACC-treated seedlings was comparable to that in the combined-treatment seedlings, indicating that the increase in hair density caused by glucose results from an increase in the root hair number. Furthermore, quantitative RT-PCR revealed that glucose suppressed ethylene signaling. These results suggest that glucose has a negative and positive effect on the earlier and later stages of root hair formation, respectively, and that the promotion of the initiation and elongation of root hairs by glucose may be mediated in an ethylene-independent manner.

  16. The Etiology Behind a Complicated Case With Arrested Root Formation: More Questions Than Answers

    Directory of Open Access Journals (Sweden)

    Kristian Havsed

    2018-01-01

    Full Text Available This case focuses on dental deviations in a girl now 14 years of age. It is questioned in the article if an accident caused by the girl’s fall into a cactus at the age 1 year and 2 months could possibly result in local dental disorders in the permanent dentition. The disorders were the short roots and small crowns. It is discussed in this paper if it is the pins from the cactus or the many medical and operative procedures for the removal of the pins that caused the disorders. Nine questions concerning etiology are raised and discussed and only partly answered. This case gives new information concerning the normal eruption and resorption processes. It demonstrates how the teeth without roots or with short roots can erupt normally and even earlier than the contralateral teeth. Furthermore, it is demonstrated that a second premolar with short root is able to resorb the overlying primary molar. In this dentition with severely malformed teeth, the treatment plan scheduled for the girl still takes into account these normal developmental conditions.

  17. Sistema radicular do fórmio, sisal e bambu imperial Root systems of new zealand flax, sisal, and imperial bamboo

    Directory of Open Access Journals (Sweden)

    Júlio César Medina

    1963-01-01

    Full Text Available Os autores apresentam e discutem os resultados de estudos preliminares sôbre o sistema radicular do fórmio (Phormium tenax Forster, sisal (Agave sisalana Perrine e bambu .imperial (Bambusa vulgaris Schrad. var. vittata A. ,& C, Riv.. Concluem, que o sistema radicular do fórmio é relativamente raso, o do sisal bastante superficial é o do bambu imperial se limitada às primeiras carnadas do solo.Results of preliminary studies on root-systems of New Zealand flax (Phormium tenax Forster, sisal (Agave sisalana Perrine, and imperial bamboo (Bambusa vulgaris Schrad. var. vittata A. & C. Riv. plants by the method of soil block, are apresented and discussed by the authors. According to local soil conditions, it is concluded that the root-system of New Zealand flax is relatively superficial, with the main concentration of roots in the 12 in. soil top layer. In sisal, the root-systems of the three plants investigated were found to occur in the soil surface layer, with more of 90% of the roots in the top 6 in. Finally, in the imperial bamboo clump atudied, the main concentration of roots was found in the layer 6-12 in. deep.

  18. The Effects of IBA and NAA, and Rooting Media on Propagation of Miniature Rose Cuttings (Rosa hybrida

    Directory of Open Access Journals (Sweden)

    azam ranjbar

    2017-09-01

    Full Text Available Introduction: Miniature rose (Rosa hybrida are well known as one of the world’s most popular ornamental plants cultivated worldwide as potted and/or bed plants. Nowadays, more than 100 million pots of miniature roses are propagated by stem cutting in the commercial greenhouses of European countries such as Denmark and Germany. Some treatments such as application of plant growth regulators and suitable rooting medium could be required for accelerating root formation in rose cuttings. Using plant growth regulators like natural or synthetic auxin is a pre-requirement for the initiation of adventitious root in some stem cuttings and it has been reported that the division of the first initiator cells of root depends on internal or synthetic auxin. Methods of application of these chemicals and suitable concentration could be related to several factors, importantly the plant varieties, type of cuttings and the time of cutting preparation. Various kinds of media such as soil, peat moss, perlite and vermiculite are used as bed substrate according to required ratio. Rooting media must provide appropriate moisture and air ventilation for cuttings establishment, which highly affect the cuttings root formation. Appropriate procedure for using wastes materials as culture bed, especially those materials that produced locally, is main aim of some studies to find an alternative medium in ornamental pot plant production. In this regards, evaluation of agricultural wastes to be used to culture bed and introducing suitable materials could be considered. Accordingly, the objective of the present study was to determine the effects of two types of plant growth regulators and bed combinations on rooting percentage of semi-hardwood cuttings in miniature rose. Materials and Methods: In order to evaluate the effects of different concentrations of indolebutyric acid (IBA and naphtaleneacetic acid (NAA, and two media with different composition on root formation of

  19. STUDY OF AZOSPIRILLUM LECTINS INFLUENCE ON HYDROGEN PEROXIDE PRODUCTION IN WHEAT-ROOTS

    Directory of Open Access Journals (Sweden)

    Alen’kina S.A.

    2009-12-01

    Full Text Available It was found that two cell-surface lectins isolated from the nitrogen-fixing soil bacterium Azospirillum brasilense Sp7 and from its mutant defective in lectin activity, A. brasilense Sp7.2.3 can stimulate rapid formation of hydrogen peroxide, associated with an increase in the activities of oxalate oxidase and peroxidase in the roots of wheat seedlings. The most advantageous and most rapidly induced pathway of hydrogen peroxide formation was the oxidation of oxalic acid by oxalate oxidase because in this case, a 10-min treatment of the roots with the lectins at 10 µg ml-1 was sufficient. The data from this study attest that the Azospirillum lectins can act as inducers of adaptation processes in the roots of wheat seedlings.

  20. The major-effect quantitative trait locus CsARN6.1 encodes an AAA ATPase domain-containing protein that is associated with waterlogging stress tolerance by promoting adventitious root formation

    Science.gov (United States)

    In plants, the formation of hypocotyl-derived adventitious roots (AR) is an important morphological acclimation to waterlogging stress, but its genetic basis is largely unknown. In the present study, with combined use of bulked segregant analysis-based high throughput next-gen whole genome sequencin...

  1. Endodontic treatment of mandibular molar with root dilaceration using Reciproc single-file system.

    Science.gov (United States)

    Meireles, Daniely Amorin; Bastos, Mariana Mena Barreto; Marques, André Augusto Franco; Garcia, Lucas da Fonseca Roberti; Sponchiado, Emílio Carlos

    2013-08-01

    Biomechanical preparation of root canals with accentuated curvature is challenging. New rotatory systems, such as Reciproc, require a shorter period of time to prepare curved canals, and became a viable alternative for endodontic treatment of teeth with root dilaceration. Thus, this study aimed to report a clinical case of endodontic therapy of root with accentuated dilaceration using Reciproc single-file system. Mandibular right second molar was diagnosed as asymptomatic irreversible pulpitis. Pulp chamber access was performed, and glide path was created with #10 K-file (Dentsply Maillefer) and PathFile #13, #16 and #19 (Dentsply Maillefer) up to the temporary working length. The working length measured corresponded to 20 mm in the mesio-buccal and mesio-lingual canals, and 22 mm in the distal canal. The R25 file (VDW GmbH) was used in all the canals for instrumentation and final preparation, followed by filling with Reciproc gutta-percha cones (VDW GmbH) and AH Plus sealer (Dentsply Maillefer), using thermal compaction technique. The case has been receiving follow-up for 6 mon and no painful symptomatology or periapical lesions have been found. Despite the difficulties, the treatment could be performed in a shorter period of time than the conventional methods.

  2. Endodontic treatment of mandibular molar with root dilaceration using Reciproc single-file system

    Directory of Open Access Journals (Sweden)

    Daniely Amorin Meireles

    2013-08-01

    Full Text Available Biomechanical preparation of root canals with accentuated curvature is challenging. New rotatory systems, such as Reciproc, require a shorter period of time to prepare curved canals, and became a viable alternative for endodontic treatment of teeth with root dilaceration. Thus, this study aimed to report a clinical case of endodontic therapy of root with accentuated dilaceration using Reciproc single-file system. Mandibular right second molar was diagnosed as asymptomatic irreversible pulpitis. Pulp chamber access was performed, and glide path was created with #10 K-file (Dentsply Maillefer and PathFile #13, #16 and #19 (Dentsply Maillefer up to the temporary working length. The working length measured corresponded to 20 mm in the mesio-buccal and mesio-lingual canals, and 22 mm in the distal canal. The R25 file (VDW GmbH was used in all the canals for instrumentation and final preparation, followed by filling with Reciproc gutta-percha cones (VDW GmbH and AH Plus sealer (Dentsply Maillefer, using thermal compaction technique. The case has been receiving follow-up for 6 mon and no painful symptomatology or periapical lesions have been found. Despite the difficulties, the treatment could be performed in a shorter period of time than the conventional methods.

  3. [Root canal treatment of mandibular first premolar with 4 root canals: a case report].

    Science.gov (United States)

    Liu, Xin-yang; Zhan, Fu-Liang

    2015-10-01

    The mandibular first premolar can be considered one of the most challenging teeth to treat, due to the complexity of its root canal morphology and increased incidence of multiple canals. A case of endodontic treatment of a mandibular first premolar exhibiting a total of 4 distinct root canals and 4 apical foramina was described. Anatomic variation of root canal morphology should be considered in endodontic treatment to ensure a favorable healing outcome, and its identification could be enhanced by careful examination using a dental operating microscope. Obturation of root canals using a warm vertical compaction technique with a highly-radiopaque root canal sealer, such as AH Plus, after careful ultrasonic activated irrigation might allow the flow of sealer into the narrowed but unprepared part of the canal, thereby facilitating optimum chemo-mechanical debridement of the root canal system.

  4. ROOT: A C++ framework for petabyte data storage, statistical analysis and visualization

    International Nuclear Information System (INIS)

    Antcheva, I.; Ballintijn, M.; Bellenot, B.; Biskup, M.; Brun, R.; Buncic, N.; Couet, O.; Franco, L.; Canal, Ph.; Casadei, D.; Fine, V.

    2009-01-01

    ROOT is an object-oriented C++ framework conceived in the high-energy physics (HEP) community, designed for storing and analyzing petabytes of data in an efficient way. Any instance of a C++ class can be stored into a ROOT file in a machine-independent compressed binary format. In ROOT the TTree object container is optimized for statistical data analysis over very large data sets by using vertical data storage techniques. These containers can span a large number of files on local disks, the web or a number of different shared file systems. In order to analyze this data, the user can chose out of a wide set of mathematical and statistical functions, including linear algebra classes, numerical algorithms such as integration and minimization, and various methods for performing regression analysis (fitting). In particular, the RooFit package allows the user to perform complex data modeling and fitting while the RooStats library provides abstractions and implementations for advanced statistical tools. Multivariate classification methods based on machine learning techniques are available via the TMVA package. A central piece in these analysis tools are the histogram classes which provide binning of one- and multi-dimensional data. Results can be saved in high-quality graphical formats like Postscript and PDF or in bitmap formats like JPG or GIF. The result can also be stored into ROOT macros that allow a full recreation and rework of the graphics. Users typically create their analysis macros step by step, making use of the interactive C++ interpreter CINT, while running over small data samples. Once the development is finished, they can run these macros at full compiled speed over large data sets, using on-the-fly compilation, or by creating a stand-alone batch program. Finally, if processing farms are available, the user can reduce the execution time of intrinsically parallel tasks - e.g. data mining in HEP - by using PROOF, which will take care of optimally

  5. Rooting of stem cuttings of ixora

    Directory of Open Access Journals (Sweden)

    Aline De Souza Silva

    2015-08-01

    Full Text Available The ixora is ornamental plant widely used in landscaping. In order to maximize the propagation of cuts, we evaluated the concentrations of auxin (indolbutiric acid and the presence of leaves on the rooting in cuts of Ixora coccinea L. The experiment was conducted in randomized block design, in factorial design 3x4, with three types of cuts (without leaf, with two or four leaves, four concentrations of indolbutiric acid (0, 1000, 2000 and 4000 mg L-1, with four replications and 10 cuts in each experimental unit. After 53 days of implantation the experiment, evaluated the survival(%, rooting(%, sprouting(%, formation of callus(%, number, length and biomass of roots formed. The interaction of the type of cuts with concentrations of auxin was not significant for any of the variables analyzed. The survival of cuttings was not influenced by the treatments. Cuts with two or four leaves presented rooting and length of roots above the cuttings without leaves. The application of auxin does not substitute the presence of leaf in cuts of ixora in vegetative propagation. The vegetative propagation by cut of ixora can be made without application of auxin, and the leaves must be maintained in the cuttings.

  6. Root tips moving through soil

    Science.gov (United States)

    Curlango-Rivera, Gilberto

    2011-01-01

    Root elongation occurs by the generation of new cells from meristematic tissue within the apical 1–2 mm region of root tips. Therefore penetration of the soil environment is carried out by newly synthesized plant tissue, whose cells are inherently vulnerable to invasion by pathogens. This conundrum, on its face, would seem to reflect an intolerable risk to the successful establishment of root systems needed for plant life. Yet root tip regions housing the meristematic tissues repeatedly have been found to be free of microbial infection and colonization. Even when spore germination, chemotaxis, and/or growth of pathogens are stimulated by signals from the root tip, the underlying root tissue can escape invasion. Recent insights into the functions of root border cells, and the regulation of their production by transient exposure to external signals, may shed light on long-standing observations. PMID:21455030

  7. Measurements of water uptake of maize roots: the key function of lateral roots

    Science.gov (United States)

    Ahmed, M. A.; Zarebanadkouki, M.; Kroener, E.; Kaestner, A.; Carminati, A.

    2014-12-01

    Maize (Zea mays L.) is one of the most important crop worldwide. Despite its importance, there is limited information on the function of different root segments and root types of maize in extracting water from soils. Therefore, the aim of this study was to investigate locations of root water uptake in maize. We used neutron radiography to: 1) image the spatial distribution of maize roots in soil and 2) trace the transport of injected deuterated water (D2O) in soil and roots. Maizes were grown in aluminum containers (40×38×1 cm) filled with a sandy soil. When the plants were 16 days old, we injected D2O into selected soil regions containing primary, seminal and lateral roots. The experiments were performed during the day (transpiring plants) and night (not transpiring plants). The transport of D2O into roots was simulated using a new convection-diffusion numerical model of D2O transport into roots. By fitting the observed D2O transport we quantified the diffusional permeability and the water uptake of the different root segments. The maize root architecture consisted of a primary root, 4-5 seminal roots and many lateral roots connected to the primary and seminal roots. Laterals emerged from the proximal 15 cm of the primary and seminal roots. Water uptake occurred primarily in lateral roots. Lateral roots had the highest diffusional permeability (9.4×10-7), which was around six times higher that the diffusional permeability of the old seminal segments (1.4×10-7), and two times higher than the diffusional permeability of the young seminal segments (4.7×10-7). The radial flow of D2O into the lateral (6.7×10-5 ) was much higher than in the young seminal roots (1.1×10-12). The radial flow of D2O into the old seminal was negligible. We concluded that the function of the primary and seminal roots was to collect water from the lateral roots and transport it to the shoot. A maize root system with lateral roots branching from deep primary and seminal roots would be

  8. ROOT — A C++ framework for petabyte data storage, statistical analysis and visualization

    CERN Document Server

    Antcheva, I; Bellenot, B; Biskup,1, M; Brun, R; Buncic, N; Canal, Ph; Casadei, D; Couet, O; Fine, V; Franco,1, L; Ganis, G; Gheata, A; Gonzalez Maline, D; Goto, M; Iwaszkiewicz, J; Kreshuk, A; Marcos Segura, D; Maunder, R; Moneta, L; Naumann, A; Offermann, E; Onuchin, V; Panacek, S; Rademakers, F; Russo, P; Tadel, M

    2009-01-01

    ROOT is an object-oriented C++ framework conceived in the high-energy physics (HEP) community, designed for storing and analyzing petabytes of data in an efficient way. Any instance of a C++ class can be stored into a ROOT file in a machine-independent compressed binary format. In ROOT the TTree object container is optimized for statistical data analysis over very large data sets by using vertical data storage techniques. These containers can span a large number of files on local disks, the web, or a number of different shared file systems. In order to analyze this data, the user can chose out of a wide set of mathematical and statistical functions, including linear algebra classes, numerical algorithms such as integration and minimization, and various methods for performing regression analysis (fitting). In particular, the RooFit package allows the user to perform complex data modeling and fitting while the RooStats library provides abstractions and implementations for advanced statistical tools. Multivariat...

  9. Distributed formation tracking using local coordinate systems

    DEFF Research Database (Denmark)

    Yang, Qingkai; Cao, Ming; Garcia de Marina, Hector

    2018-01-01

    This paper studies the formation tracking problem for multi-agent systems, for which a distributed estimator–controller scheme is designed relying only on the agents’ local coordinate systems such that the centroid of the controlled formation tracks a given trajectory. By introducing a gradient...... descent term into the estimator, the explicit knowledge of the bound of the agents’ speed is not necessary in contrast to existing works, and each agent is able to compute the centroid of the whole formation in finite time. Then, based on the centroid estimation, a distributed control algorithm...

  10. Evaluation of interference of calcium hydroxide-based intracanal medication in filling root canal systems.

    Science.gov (United States)

    Vilela, Deyla Duarte; Neto, Manoel Matos; Villela, Alexandre Mascarenhas; Pithon, Matheus Melo

    2011-09-01

    To evaluate the interference of the intracanal medication Calen® (SSWhite, Sao Paulo, Brazil) on the filling of simulated lateral canals. Twenty human anterior teeth were used. Before the endodontic filling procedures the access of cavity was made, and after this root canals were made in all the teeth to simulate the presence of lateral canals. After preparation, the teeth were randomly divided into two groups (n=10). In group I, the root canal system was filled directly after chemicalmechanical preparation; in group II, endodontic treatment was performed in multiple sessions, and after preparation the calcium hydroxide-based intracanal medication Calen® was inserted. After the period of 7 days, the root canals were vigorously irrigated and then they were filled. Next, the teeth were radiographed to verify the quality of the filling. The results demonstrated that the teeth treated in a single session, without calcium hydroxide medication, presented 47 canals out of 60 with radiographic evidence of filling, whereas the teeth in which intracanal medication was used, only 07 presented a radiographic image compatible with filling (p < 0.05). The use of the calcium hydroxide-based medication Calen made it difficult to obtain a hermetic filling of the root canal system. The clinical significance of this work basing on the fact that once the dentist knowing that property obliteration of calcium hydroxide can be taken care when they are used in the presence of lateral canals.

  11. The Interaction between Auxin and Nitric Oxide Regulates Root Growth in Response to Iron Deficiency in Rice

    Directory of Open Access Journals (Sweden)

    Huwei Sun

    2017-12-01

    Full Text Available Fe deficiency (-Fe is a common abiotic stress that affects the root development of plants. Auxin and nitric oxide (NO are key regulator of root growth under -Fe. However, the interactions between auxin and NO regulate root growth in response to Fe deficiency are complex and unclear. In this study, the indole-3-acetic acid (IAA and NO levels in roots, and the responses of root growth in rice to different levels of Fe supply were investigated using wild type (WT, ospin1b and osnia2 mutants. -Fe promoted LR formation but inhibited seminal root elongation. IAA levels, [3H] IAA transport, and expression levels of PIN1a-c genes in roots were reduced under -Fe, suggesting that polar auxin transport from shoots to roots was decreased. Application of IAA to -Fe seedlings restored seminal root length, but not LR density, to levels similar to those under normal Fe (+Fe, and the seminal root length was shorter in two ospin1b mutants relative to WT under +Fe, but not under -Fe, confirming that auxin transport participates in -Fe-inhibited seminal root elongation. Moreover, -Fe-induced LR density and -Fe-inhibited seminal root elongation paralleled NO production in roots. Interestingly, similar NO accumulation and responses of LR density and root elongation were observed in osnia2 mutants compared to WT, and the higher expression of NOA gene under -Fe, suggesting that -Fe-induced NO was generated via the NO synthase-like pathway rather than the nitrate reductase pathway. However, IAA could restore the functions of NO in inhibiting seminal root elongation, but did not replace the role of NO-induced LR formation under -Fe. Overall, our findings suggested that NO functions downstream of auxin in regulating LR formation; NO-inhibited seminal root elongation by decreasing meristem activity in root tips under -Fe, with the involvement of auxin.

  12. Light requirement for shoot regeneration in horseradish hairy roots.

    Science.gov (United States)

    Saitou, T; Kamada, H; Harada, H

    1992-08-01

    Hairy roots of horseradish (Armoracia rusticana) were induced by inoculation with Agrobacterium rhizogenes harboring Ri plasmid and cultured on phytohormone-free Murashige and Skoog medium after eliminating the bacteria. Hairy roots grew vigorously and sometimes formed yellowish calli under dark conditions. On the other hand, growth of hairy roots stopped after several weeks of culture with light, then shoots were regenerated. Frequency of shoot formation from hairy roots increased as the culture period in light lengthened and the light intensity increased. The shoot regeneration was induced by treatment with white or red light, but not with far-red light. Shoot regeneration by red light was inhibited by following treatment with far-red light. Red and far-red light reversibly affected shoot regeneration. Excised roots of nontransformed plants grew quite slowly on phytohormone-free Murashige and Skoog medium and occasionally formed shoots under white light conditions.

  13. FORMATION OF THE ENTERPRISE COSTS MANAGEMENT SYSTEM

    Directory of Open Access Journals (Sweden)

    Borysiuk Iryna

    2018-01-01

    Full Text Available Introduction. The paper deals with the actual issues of formation of the enterprise management system costs, because in the conditions of an unstable market environment the financial performance depends on the efficiency of the cost management system, competitiveness, financial sustainability and investment attractiveness of any subject of economic activity. Purpose of the article is consolidation of approaches to cost management, theoretical substantiation and development of recommendations regarding the formation of the enterprise cost management system. Results. Development of an enterprise cost management system based on research on the essence and cost management approaches. The goals, tasks, principles, methods, tools, functions and main elements of the cost management system were determined, factors of the external and internal environment of the enterprise, that affect the system of its costs management. Conclusions. Formation of integrated cost management system ensures the successful company operation on the market, production of competitive products based on costs and prices optimization and making a profit, increase of the reasonableness of making managerial decisions.

  14. Polymorphisms in the AOX2 gene are associated with the rooting ability of olive cuttings.

    Science.gov (United States)

    Hedayati, Vahideh; Mousavi, Amir; Razavi, Khadijeh; Cultrera, Nicolò; Alagna, Fiammetta; Mariotti, Roberto; Hosseini-Mazinani, Mehdi; Baldoni, Luciana

    2015-07-01

    Different rooting ability candidate genes were tested on an olive cross progeny. Our results demonstrated that only the AOX2 gene was strongly induced. OeAOX2 was fully characterised and correlated to phenotypical traits. The formation of adventitious roots is a key step in the vegetative propagation of trees crop species, and this ability is under strict genetic control. While numerous studies have been carried out to identify genes controlling adventitious root formation, only a few loci have been characterised. In this work, candidate genes that were putatively involved in rooting ability were identified in olive (Olea europaea L.) by similarity with orthologs identified in other plant species. The mRNA levels of these genes were analysed by real-time PCR during root induction in high- (HR) and low-rooting (LR) individuals. Interestingly, alternative oxidase 2 (AOX2), which was previously reported to be a functional marker for rooting in olive cuttings, showed a strong induction in HR individuals. From the OeAOX2 full-length gene, alleles and effective polymorphisms were distinguished and analysed in the cross progeny, which were segregated based on rooting. The results revealed a possible correlation between two single nucleotide polymorphisms of OeAOX2 gene and rooting ability.

  15. Influence of a passive sonic irrigation system on the elimination of bacteria from root canal systems: a clinical study.

    Science.gov (United States)

    Huffaker, S Kirk; Safavi, Kamran; Spangberg, Larz S W; Kaufman, Blythe

    2010-08-01

    The present investigation evaluated the ability of a new passive sonic irrigation (sonic group) system (EndoActivator) to eliminate cultivable bacteria from root canals in vivo and compared it with that of standard syringe irrigation (control group). Data were obtained by using bacteriologic sampling of root canals treated by endodontic residents. Sampling results from 1 session of treatment were then compared with results obtained after intervisit calcium hydroxide disinfection and a second session of treatment. There was no significant difference in the ability of sonic group and control group to eliminate cultivable bacteria from root canals (P > .05). A second session and intervisit calcium hydroxide disinfection were able to eliminate cultivable bacteria from significantly more teeth than a single session of treatment (P treatment of apical periodontitis. Copyright 2010 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  16. Parallel heater system for subsurface formations

    Science.gov (United States)

    Harris, Christopher Kelvin [Houston, TX; Karanikas, John Michael [Houston, TX; Nguyen, Scott Vinh [Houston, TX

    2011-10-25

    A heating system for a subsurface formation is disclosed. The system includes a plurality of substantially horizontally oriented or inclined heater sections located in a hydrocarbon containing layer in the formation. At least a portion of two of the heater sections are substantially parallel to each other. The ends of at least two of the heater sections in the layer are electrically coupled to a substantially horizontal, or inclined, electrical conductor oriented substantially perpendicular to the ends of the at least two heater sections.

  17. Root cause - A regulatory perspective

    International Nuclear Information System (INIS)

    Huey, F.R.

    1990-01-01

    During the past 3 yr, US Nuclear Regulatory Commission (NRC) region V has been pursuing an initiative with region V power reactor licensees to provide improved and more consistent performance in event evaluation. The objectives of the initiative have been to encourage licensees to (a) develop improved skills within the plant organization for events evaluation, with particular emphasis on formal root-cause analysis, and (b) to increase the number of events subjected to root-cause analysis. The NRC's continuing effort now focuses on the need for more consistent quality of event evaluation by licensees. As current licensee programs continue to develop, the NRC will be paying additional attention to how well licensees maintain these programs as an effective and useful tool. Now that licensees have taken the initial steps to establish these programs, licensee management will need to provide continuing attention to ensure that the process does not become overly cumbersome. It is important that the final format for the root-cause programs be easy to use and recognized as being a valuable tool by all licensee personnel involved in the event evaluation process. This will become increasingly important as licensees expand the population of events requiring root-cause analysis and place additional responsibility on the line organization for the implementation of these programs

  18. Effects of linuron on a rooted aquatic macrophyte in sediment-dosed test systems

    NARCIS (Netherlands)

    Buresova, H.; Crum, S.J.H.; Belgers, J.D.M.; Adriaanse, P.I.; Arts, G.H.P.

    2013-01-01

    Effects of linuron on the sediment-rooted aquatic macrophyte Myriophyllum spicatum L. were studied in sediment-dosed test systems following a proposed guideline with extended test duration. Sediment, pore water, overlying water and macrophyte shoots were sampled weekly for chemical analyses. Linuron

  19. Optimizing the chemical aspect of root canal irrigation

    OpenAIRE

    de Macedo, R.G.

    2013-01-01

    Root canal treatment is aimed at the removal of inflamed and infected tissue present in the root canal system. It will prevent the entrance of new microorganisms or nutrients in order to maintain or create a healthy environment around the root. There is sufficient evidence that shows that traditional endodontic therapy cannot make the root canal system completely free of bacteria. Moreover, it may not always result in complete healing of apical periodontitis, highlighting the need of optimizi...

  20. Universal formats for nonlinear ordinary differential systems

    International Nuclear Information System (INIS)

    Kerner, E.H.

    1981-01-01

    It is shown that very general nonlinear ordinary differential systems (embracing all that arise in practice) may, first, be brought down to polynomial systems (where the nonlinearities occur only as polynomials in the dependent variables) by introducing suitable new variables into the original system; second, that polynomial systems are reducible to ''Riccati systems,'' where the nonlinearities are quadratic at most; third, that Riccati systems may be brought to elemental universal formats containing purely quadratic terms with simple arrays of coefficients that are all zero or unity. The elemental systems have representations as novel types of matrix Riccati equations. Different starting systems and their associated Riccati systems differ from one another, at the final elemental level, in order and in initial data, but not in format

  1. Suberized transport barriers in Arabidopsis, barley and rice roots: From the model plant to crop species.

    Science.gov (United States)

    Kreszies, Tino; Schreiber, Lukas; Ranathunge, Kosala

    2018-02-07

    Water is the most important prerequisite for life and plays a major role during uptake and transport of nutrients. Roots are the plant organs that take up the major part of water, from the surrounding soil. Water uptake is related to the root system architecture, root growth, age and species dependent complex developmental changes in the anatomical structures. The latter is mainly attributed to the deposition of suberized barriers in certain layers of cell walls, such as endo- and exodermis. With respect to water permeability, changes in the suberization of roots are most relevant. Water transport or hydraulic conductivity of roots (Lp r ) can be described by the composite transport model and is known to be very variable between plant species and growth conditions and root developmental states. In this review, we summarize how anatomical structures and apoplastic barriers of roots can diversely affect water transport, comparing the model plant Arabidopsis with crop plants, such as barley and rice. Results comparing the suberin amounts and water transport properties indicate that the common assumption that suberin amount negatively correlates with water and solute transport through roots may not always be true. The composition, microstructure and localization of suberin may also have a great impact on the formation of efficient barriers to water and solutes. Copyright © 2018 The Authors. Published by Elsevier GmbH.. All rights reserved.

  2. A heterogeneous boron distribution in soil influences the poplar root system architecture development

    Science.gov (United States)

    Rees, R.; Robinson, B. H.; Hartmann, S.; Lehmann, E.; Schulin, R.

    2009-04-01

    Poplars are well suited for the phytomanagement of boron (B)-contaminated sites, due to their high transpiration rate and tolerance to elevated soil B concentrations. However, the uptake and the fate of B in poplar stands are not well understood. This information is crucial to improve the design of phytomanagement systems, where the primary role of poplars is to reduce B leaching by reducing the water flux through the contaminated material. Like other trace elements, B occurs heterogeneously in soils. Concentrations can differ up to an order of magnitude within centimetres. These gradients affect plant root growth and thus via preferential flow along the roots water and mass transport in soils to ground and surface waters. Generally there are three possible reactions of plant roots to patches with elevated trace element concentrations in soils: indifference, avoidance, or foraging. While avoidance or indifference might seem to be the most obvious strategies, foraging cannot be excluded a priori, because of the high demand of poplars for B compared to other tree species. We aimed to determine the rooting strategies of poplars in soils where B is either homo- or heterogeneously distributed. We planted 5 cm cuttings of Populus tremula var. Birmensdorf clones in aluminum (Al) containers with internal dimensions of 64 x 67 x 1.2 cm. The soil used was subsoil from northern Switzerland with a naturally low B and organic C concentration. We setup two treatments and a control with three replicates each. We spiked a bigger and a smaller portion of the soil with the same amount of B(OH)3-salt, in order to obtain soil concentrations of 7.5 mg B kg-1 and 20 mg B kg-1. We filled the containers with (a) un-spiked soil, (b) the 7.5 mg B kg-1 soil and (c) heterogeneously. The heterogeneous treatment consisted of one third 20 mg B kg-1 soil and two thirds control soil. We grew the poplars in a small greenhouse over 2 months and from then on in a climate chamber for another 3 months

  3. Do shallow soil, low water availability, or their combination increase the competition between grasses with different root systems in karst soil?

    Science.gov (United States)

    Zhao, Yajie; Li, Zhou; Zhang, Jing; Song, Haiyan; Liang, Qianhui; Tao, Jianping; Cornelissen, Johannes H C; Liu, Jinchun

    2017-04-01

    Uneven soil depth and low water availability are the key limiting factors to vegetation restoration and reconstruction in limestone soils such as in vulnerable karst regions. Belowground competition will possibly increase under limited soil resources. Here, we investigate whether low resource availability (including shallow soil, low water availability, and shallow soil and low water availability combined) stimulates the competition between grasses with different root systems in karst soil, by assessing their growth response, biomass allocation, and morphological plasticity. In a full three-way factorial blocked design of soil depth by water availability by neighbor identity, we grew Festuca arundinacea (deep-rooted) and Lolium perenne (shallow-rooted) under normal versus shallow soil depth, high versus low water availability, and in monoculture (conspecific neighbor) versus mixture (neighbor of the other species). The key results were as follows: (1) total biomass and aboveground biomass in either of the species decreased with reduction of resources but were not affected by planting patterns (monoculture or mixture) even at low resource levels. (2) For F. arundinacea, root biomass, root mass fraction, total root length, and root volume were higher in mixture than in monoculture at high resource level (consistent with resource use complementarity), but lower in mixture than in monoculture at low resource levels (consistent with interspecific competition). In contrast for L. perenne, either at high or low resource level, these root traits had mostly similar values at both planting patterns. These results suggest that deep-rooted and shallow-rooted plant species can coexist in karst regions under current climatic regimes. Declining resources, due to shallow soil, a decrease in precipitation, or combined shallow soil and karst drought, increased the root competition between plants of deep-rooted and shallow-rooted species. The root systems of deep-rooted plants may be

  4. The graphics editor in ROOT

    International Nuclear Information System (INIS)

    Antcheva, Ilka; Brun, Rene; Hof, Carsten; Rademakers, Fons

    2006-01-01

    A well-designed Graphical User Interface (GUI) has critical importance in any computer application. The user interface is where the end users and the complex system intersect. An effective interface design can make a powerful and complex system, such as ROOT, easy and intuitive to learn and operate. This paper describes the main goals we defined and the design solution we found developing the graphics editor in ROOT

  5. The inflow of Cs-137 in soil with root litter and root exudates of Scots pine

    Science.gov (United States)

    Shcheglov, Alexey; Tsvetnova, Olga; Popova, Evgenia

    2017-04-01

    In the model experiment on evaluation of Cs-137 inflow in the soil with litter of roots and woody plants root exudates on the example of soil and water cultures of Scots pine (Pinus sylvestris L.) was shown, that through 45 days after the deposit Cs-137 solution on pine needles (specific activity of solution was 3.718*106 Bk) of the radionuclide in all components of model systems has increased significantly: needles, small branches and trunk by Cs-137 surface contamination during the experiment; roots as a result of the internal distribution of the radionuclide in the plant; soil and soil solution due to the of receipt Cs-137 in the composition of root exudates and root litter. Over 99% of the total reserve of Cs-137 accumulated in the components of the soil and water systems, accounted for bodies subjected to external pollution (needles and small branches) and soil solution, haven't been subjected to surface contamination. At the same contamination of soil and soil solution by Cs-137 in the model experiment more than a> 99.9% was due to root exudates

  6. An In-Situ Root-Imaging System in the Context of Surface Detection of CO2

    Science.gov (United States)

    Apple, M. E.; Prince, J. B.; Bradley, A. R.; Zhou, X.; Lakkaraju, V. R.; Male, E. J.; Pickles, W.; Thordsen, J. J.; Dobeck, L.; Cunningham, A.; Spangler, L.

    2009-12-01

    Carbon sequestration is a valuable method of spatially confining CO2 belowground. The Zero Emissions Research Technology, (ZERT), site is an experimental facility in a former agricultural field on the Montana State University campus in Bozeman, Montana, where CO2 was experimentally released at a rate of 200kg/day in 2009 into a 100 meter underground injection well running parallel to the ground surface. This injection well, or pipe, has deliberate leaks at intervals, and CO2 travels from these leaks upward to the surface of the ground. The ZERT site is a model system designed with the purpose of testing methods of surface detection of CO2. One important aspect of surface detection is the determination of the effects of CO2 on the above and belowground portions of plants growing above sequestration fields. At ZERT, these plants consist of a pre-existing mixture of herbaceous species present at the agricultural field. Species growing at the ZERT site include several grasses, Dactylis glomerata (Orchard Grass), Poa pratensis (Kentucky Bluegrass), and Bromus japonicus (Japanese Brome); the nitrogen-fixing legumes Medicago sativa, (Alfalfa), and Lotus corniculatus, (Birdsfoot trefoil); and an abundance of Taraxacum officinale, (Dandelion). Although the aboveground parts of the plants at high CO2 are stressed, as indicated by changes in hyperspectral plant signatures, leaf fluorescence and leaf chlorophyll content, we are interested in determining whether the roots are also stressed. To do so, we are combining measurements of soil conductivity and soil moisture with root imaging. We are using an in-situ root-imaging system manufactured by CID, Inc. (Camas, WA), along with image analysis software (Image-J) to analyze morphometric parameters in the images and to determine what effects, if any, the presence of leaking and subsequently upwelling CO2 has on the phenology of root growth, growth and turnover of individual fine and coarse roots, branching patterns, and root

  7. Anchorage failure of young trees in sandy soils is prevented by a rigid central part of the root system with various designs

    Science.gov (United States)

    Danquechin Dorval, Antoine; Meredieu, Céline; Danjon, Frédéric

    2016-01-01

    Background and Aims Storms can cause huge damage to European forests. Even pole-stage trees with 80-cm rooting depth can topple. Therefore, good anchorage is needed for trees to survive and grow up from an early age. We hypothesized that root architecture is a predominant factor determining anchorage failure caused by strong winds. Methods We sampled 48 seeded or planted Pinus pinaster trees of similar aerial size from four stands damaged by a major storm 3 years before. The trees were gathered into three classes: undamaged, leaning and heavily toppled. After uprooting and 3D digitizing of their full root architectures, we computed the mechanical characteristics of the main components of the root system from our morphological measurements. Key Results Variability in root architecture was quite large. A large main taproot, either short and thick or long and thin, and guyed by a large volume of deep roots, was the major component that prevented stem leaning. Greater shallow root flexural stiffness mainly at the end of the zone of rapid taper on the windward side also prevented leaning. Toppling in less than 90-cm-deep soil was avoided in trees with a stocky taproots or with a very big leeward shallow root. Toppled trees also had a lower relative root biomass – stump excluded – than straight trees. Conclusions It was mainly the flexural stiffness of the central part of the root system that secured anchorage, preventing a weak displacement of the stump. The distal part of the longest taproot and attached deep roots may be the only parts of the root system contributing to anchorage through their maximum tensile load. Several designs provided good anchorage, depending partly on available soil depth. Pole-stage trees are in-between the juvenile phase when they fail by toppling and the mature phase when they fail by uprooting. PMID:27456136

  8. Cover crop root, shoot, and rhizodeposit contributions to soil carbon in a no- till corn bioenergy cropping system

    Science.gov (United States)

    Austin, E.; Grandy, S.; Wickings, K.; McDaniel, M. D.; Robertson, P.

    2016-12-01

    Crop residues are potential biofuel feedstocks, but residue removal may result in reduced soil carbon (C). The inclusion of a cover crop in a corn bioenergy system could provide additional biomass and as well as help to mitigate the negative effects of residue removal by adding belowground C to stable soil C pools. In a no-till continuous corn bioenergy system in the northern portion of the US corn belt, we used 13CO2 pulse labeling to trace C in a winter rye (secale cereale) cover crop into different soil C pools for two years following rye termination. Corn stover contributed 66 (another 163 was in harvested corn stover), corn roots 57, rye shoot 61, rye roots 59, and rye rhizodeposits 27 g C m-2 to soil C. Five months following cover crop termination, belowground cover crop inputs were three times more likely to remain in soil C pools and much of the root-derived C was in mineral- associated soil fractions. Our results underscore the importance of cover crop roots vs. shoots as a source of soil C. Belowground C inputs from winter cover crops could substantially offset short term stover removal in this system.

  9. Effect of channel size on sweet potato storage root enlargement in the Tuskegee University hydroponic nutrient film system

    Science.gov (United States)

    Morris, Carlton E.; Martinez, Edwin; Bonsi, C. K.; Mortley, Desmond G.; Hill, Walter A.; Ogbuehi, Cyriacus R.; Loretan, Phil A.

    1989-01-01

    The potential of the sweet potato as a food source for future long term manned space missions is being evaluated for NASA's Controlled Ecological Life Support Systems (CELSS) program. Sweet potatoes have been successfully grown in a specially designed Tuskegee University nutrient film technique (TU NFT) system. This hydroponic system yielded storage roots as high as 1790 g/plant fresh weight. In order to determine the effect of channel size on the yield of sweet potatoes, the width and depth of the growing channels were varied in two separate experiments. Widths were studied using the rectangular TU NFT channels with widths of 15 cm (6 in), 30 cm (12 in) and 45 cm (18 in). Channel depths of 5 cm (2 in), 10 cm (4 in), and 15 cm (6 in) were studied using a standard NASA fan shaped Biomass Production Chamber (BPC) channel. A comparison of preliminary results indicated that, except for storage root number, the growth and yield of sweet potatoes were not affected by channel width. Storage root yield was affected by channel depth although storage root number and foliage growth were not. Both experiments are being repeated.

  10. Structure, root systems and periodicity of savanna plants and vegetations in Northern Surinam

    NARCIS (Netherlands)

    Donselaar-ten Bokkel Huinink, van W.A.E.

    1966-01-01

    From July 1958 to May 1959 an investigation was carried out of the relation between physiognomic characteristics of the vegetation and the habitat on some savannas in the vicinity of Zanderij, Surinam. Root systems, structure, periodicity and characteristics of the leaves were considered, both of

  11. To evaluate and compare the efficacy, cleaning ability of hand and two rotary systems in root canal retreatment.

    Science.gov (United States)

    Shivanand, Sunita; Patil, Chetan R; Thangala, Venugopal; Kumar, Pabbati Ravi; Sachdeva, Jyoti; Krishna, Akash

    2013-05-01

    To evaluate and compare the efficacy, cleaning ability of hand and two rotary systems in root canal retreatment. Sixty extracted premolars were retreated with following systems: Group -ProTaper Universal retreatment files, Group 2-ProFile system, Group 3-H-file. Specimens were split longitudinally and amount of remaining gutta-percha on the canal walls was assessed using direct visual scoring with the aid of stereomicroscope. Results were statistically analyzed using ANOVA test. Completely clean root canal walls were not achieved with any of the techniques investigated. However, all three systems proved to be effective for gutta-percha removal. Significant difference was found between ProTaper universal retreatment file and H-file, and also between ProFile and H-file. Under the conditions of the present study, ProTaper Universal retreatment files left significantly less guttapercha and sealer than ProFile and H-file. Rotary systems in combination with gutta-percha solvents can perform superiorly as compared to the time tested traditional hand instrumentation in root canal retreatment.

  12. Effect of Metal Artifacts on Detection of Vertical Root Fractures Using Two Cone Beam Computed Tomography Systems.

    Science.gov (United States)

    Safi, Yaser; Aghdasi, Mohammad Mehdi; Ezoddini-Ardakani, Fatemeh; Beiraghi, Samira; Vasegh, Zahra

    2015-01-01

    Vertical root fracture (VRF) is common in endodontically treated teeth. Conventional and digital radiographies have limitations for detection of VRFs. Cone-beam computed tomography (CBCT) offers greater detection accuracy of VRFs in comparison with conventional radiography. This study compared the effects of metal artifacts on detection of VRFs by using two CBCT systems. Eighty extracted premolars were selected and sectioned at the level of the cemento enamel junction (CEJ). After preparation, root canals were filled with gutta-percha. Subsequently, two thirds of the root fillings were removed for post space preparation and a custom-made post was cemented into each canal. The teeth were randomly divided into two groups (n=40). In the test group, root fracture was created with Instron universal testing machine. The control teeth remained intact. CBCT scans of all teeth were obtained with either New Tom VGI or Soredex Scanora 3D. Three observers analyzed the images for detection of VRF. The sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) for VRF detection and percentage of probable cases were calculated for each imaging system and compared using non-parametric tests considering the non-normal distribution of data. The inter-observer reproducibility was calculated using the weighted kappa coefficient. There were no statistically significant differences in sensitivity, specificity, PPV and NPV between the two CBCT systems. The effect of metal artifacts on VRF detection was not significantly different between the two CBCT systems.

  13. The relationship between growth and development of above ground organs with roots of winter wheat using 32P tracer

    International Nuclear Information System (INIS)

    Wang Zhifen; Chen Xueliu; Yu Meiyan

    1997-01-01

    The relationship of growth and development between above ground organs and roots of winter wheat, Lumai-14, was studied using 32 P tracer. The results showed that before the spike formation, dry matter accumulation in roots, stems and leaves were synchronous, and after that they were asynchronous. The dry matter accumulation in stems and leaves were significantly related to that of roots throughout the whole growing period of winter wheat. After the spike formation, the dry matter accumulation in spikes was not related to that of roots. The 32 P distribution in stems and leaves were related to that of roots significantly, however, the relationship between spikes and roots was not obviously related, which was consistent with the dry matter accumulations in various organs. The metabolic activities of stems, leaves and spike were significantly related to that of roots respectively

  14. Azacytidine and miR156 promote rooting in adult but not in juvenile Arabidopsis tissues.

    Science.gov (United States)

    Massoumi, Mehdi; Krens, Frans A; Visser, Richard G F; De Klerk, Geert-Jan M

    2017-01-01

    Poor adventitious root (AR) formation is a major obstacle in micropropagation and conventional vegetative propagation of many crops. It is affected by many endogenous and exogenous factors. With respect to endogenous factors, the phase change from juvenile to adult has a major influence on AR formation and rooting is usually much reduced or even fully inhibited in adult tissues. It has been reported that the phase change is characterized by an increase in DNA-methylation and a decrease in the expression of microRNA156 (miR156). In this paper, we examined the effect of azacytidine (AzaC) and miR156 on AR formation in adult and juvenile Arabidopsis tissues. To identify the ontogenetic state researchers have used flowering or leaf morphology. We have used the rootability which allows - in contrast with both other characteristics- to examine the ontogenetic state at the cellular level. Overexpression of miR156 promoted only the rooting of adult tissues indicating that the phase change-associated loss in tissues' competence to develop ARs is also under the control of miR156. Azacytidine inhibits DNA methylation during DNA replication. Azacytidine treatment also promoted AR formation in nonjuvenile tissues but had no or little effect in juvenile tissues. Its addition during seedling growth (by which all tissues become hypomethylated) or during the rooting treatment (by which only those cells become hypomethylated that are generated after taking the explant) are both effective in the promotion of rooting. An AzaC treatment may be useful in tissue culture for crops that are recalcitrant to root. Copyright © 2016 Elsevier GmbH. All rights reserved.

  15. Effect of the association between citric acid and EDTA on root surface etching.

    Science.gov (United States)

    Manzolli Leite, Fabio Renato; Nascimento, Gustavo Giacomelli; Manzolli Leite, Elza Regina; Leite, Amauri Antiquera; Cezar Sampaio, Josá Eduardo

    2013-09-01

    This study aims to compare the clot stabilization on root surfaces conditioned with citric acid and ethylenediamine-tetraacetic acid (EDTA). Scaled root samples (n = 100) were set in fve groups: group I-control group (saline solution); group II (24% EDTA); group III (25% citric acid); group IV (EDTA + citric acid); group V (citric acid + EDTA). Fifty samples were assessed using the root surface modifcation index (RSMI). The other 50 received a blood drop after conditioning. Clot formation was assessed using blood elements adhesion index (BEAI). A blind examiner evaluated photomicrographs. Statistical analysis considered p EDTA employment before citric acid (group-IV) reduced clot formation in comparison to citric acid use alone (group-III). Root conditioning with citric acid alone and before EDTA had the best results for smear layer removal and clot stabilization. EDTA inhibited clot stabilization on root surface and must have a residual activity once it has diminished clot adhesion to root even after citric acid conditioning. Thus, EDTA can be used to neutralize citric acid effects on periodontal cells without affecting clot stabilization. Clinical signifcance: To demonstrate that citric acid use on root surfaces previously affected by periodontal disease may favor clot stabilization and may have a benefcial effect on surgical outcomes. Also, EDTA can be used to neutralize citric acid effects on periodontal cells.

  16. ROOT Status and Future Developments

    CERN Document Server

    Brun, R; Canal, P; Rademakers, Fons; Goto, Masaharu; Canal, Philippe; Brun, Rene

    2003-01-01

    In this talk we will review the major additions and improvements made to the ROOT system in the last 18 months and present our plans for future developments. The additons and improvements range from modifications to the I/O sub-system to allow users to save and restore objects of classes that have not been instrumented by special ROOT macros, to the addition of a geometry package designed for building, browsing, tracking and visualizing detector geometries. Other improvements include enhancements to the quick analysis sub-system (TTree::Draw()), the addition of classes that allow inter-file object references (TRef, TRefArray), better support for templated and STL classes, amelioration of the Automatic Script Compiler and the incorporation of new fitting and mathematical tools. Efforts have also been made to increase the modularity of the ROOT system with the introduction of more abstract interfaces and the development of a plug-in manager. In the near future, we intend to continue the development of PROOF and...

  17. A Standardized Method to Assess Infection Rates of Root-Knot and Cyst Nematodes in Arabidopsis thaliana Mutants with Alterations in Root Development Related to Auxin and Cytokinin Signaling.

    Science.gov (United States)

    Olmo, Rocío; Silva, Ana Cláudia; Díaz-Manzano, Fernando E; Cabrera, Javier; Fenoll, Carmen; Escobar, Carolina

    2017-01-01

    Plant parasitic nematodes cause a great impact in agricultural systems. The search for effective control methods is partly based on the understanding of underlying molecular mechanisms leading to the formation of nematode feeding sites. In this respect, crosstalk of hormones such as auxins and cytokinins (IAA, CK) between the plant and the nematode seems to be crucial. Thence, the study of loss of function or overexpressing lines with altered IAA and CK functioning is entailed. Those lines frequently show developmental defects in the number, position and/or length of the lateral roots what could generate a bias in the interpretation of the nematode infection parameters. Here we present a protocol to assess differences in nematode infectivity with the lowest interference of root architecture phenotypes in the results. Thus, tailored growth conditions and normalization parameters facilitate the standardized phenotyping of nematode infection.

  18. Periapical repair after root canal filling with different root canal sealers.

    Science.gov (United States)

    Tanomaru-Filho, Mário; Tanomaru, Juliane Maria Guerreiro; Leonardo, Mario Roberto; da Silva, Lea Assed Bezerra

    2009-01-01

    The aim of this study was to evaluate periapical repair after root canal filling with different endodontic sealers. Sixty-four root canals from dog s teeth were filled, divided into 4 groups (n=16). Root canals were instrumented with K-type files and irrigated with 1% sodium hypochlorite solution. Root canals were filled in the same session by active lateral condensation of the cones and sealers: Intrafill, AH Plus, Roeko Seal and Resilon/Epiphany System. After 90 days, the animals were euthanized and the tissues to be evaluated were processed and stained with hematoxylin and eosin. For histopathological analysis, the following parameters were evaluated: inflammatory process, mineralized tissue resorption, and apical mineralized tissue deposition. Histopathological analysis demonstrated that Intrafill had less favorable results in terms of apical and periapical repair, compared to the other sealers (p0.05). In conclusion, AH Plus and the materials Roeko Seal and Epiphany are good options for clinical use in Endodontics.

  19. Endodontic management of a mandibular first molar with six root canal systems.

    Science.gov (United States)

    Jain, Dilip; Reddy, Smitha; Venigalla, Bhuvan Shome; Kamishetty, Shekhar

    2015-01-01

    Internal anatomy of pulp is complex. The first mandibular molars typically have two roots, one mesial with two root canals and another distal root, which contains one or two canals. A 20-year-old female patient reported with intermittent pain and incomplete root canal treatment in left lower back region since 1-week. Refined access cavity revealed initially two canals in mesial and two canals in the distal root. With operating microscope and cone beam computerized tomography, two additional canals (L-mesio-buccal and B-mesio-lingual) were identified in mesial root. One-year follow-up showed patient was asymptomatic and complete healing of periapical radiolucency.

  20. Tests of a system to exclude roots from buried radioactive waste in a warm, humid climate

    International Nuclear Information System (INIS)

    Murphy, C.E. Jr.; Corey, J.C.; Adriano, D.C.; Decker, O.D.; Griggs, R.D.

    1989-01-01

    Vegetation is commonly used to stabilize the ground covering buried waste sites. However, constituents of buried waste can be brought to the surface if the waste is penetrated by plant roots. An ideal waste burial system would allow the use of vegetation to stabilize the soil above the buried waste but would exclude roots from the waste. One system that shows considerable promise is a slow release encapsulation of a root growth inhibitor (Trifluralin). Projected lifetimes of the capsule are in the order of 100 years. The capsule is bonded to a geotextile, which provides an easy means of distributing the capsule evenly over the area to be protected. Vegetation grown in the soil above the barrier has provided good ground cover, although some decrease in growth has been found in some species. Of the species tested the sensitivity to the biobarrier, as measured by the distance root growth stops near the barrier, is bamboo> bahia grass> bermuda grass> soybean. Potential uses for the biobarrier at the Savannah River Site (SRS) include the protection of clay caps over buried, low-level saltstone and protection of gravel drains and clay caps over decommissioned seepage basins. Trails of the biobarrier as part of waste site caps are scheduled to begin during the next 12 months

  1. Jatropha curcas L. Root Structure and Growth in Diverse Soils

    Science.gov (United States)

    Valdés-Rodríguez, Ofelia Andrea; Sánchez-Sánchez, Odilón; Pérez-Vázquez, Arturo; Caplan, Joshua S.; Danjon, Frédéric

    2013-01-01

    Unlike most biofuel species, Jatropha curcas has promise for use in marginal lands, but it may serve an additional role by stabilizing soils. We evaluated the growth and structural responsiveness of young J. curcas plants to diverse soil conditions. Soils included a sand, a sandy-loam, and a clay-loam from eastern Mexico. Growth and structural parameters were analyzed for shoots and roots, although the focus was the plasticity of the primary root system architecture (the taproot and four lateral roots). The sandy soil reduced the growth of both shoot and root systems significantly more than sandy-loam or clay-loam soils; there was particularly high plasticity in root and shoot thickness, as well as shoot length. However, the architecture of the primary root system did not vary with soil type; the departure of the primary root system from an index of perfect symmetry was 14 ± 5% (mean ± standard deviation). Although J. curcas developed more extensively in the sandy-loam and clay-loam soils than in sandy soil, it maintained a consistent root to shoot ratio and root system architecture across all types of soil. This strong genetic determination would make the species useful for soil stabilization purposes, even while being cultivated primarily for seed oil. PMID:23844412

  2. Jatropha curcas L. root structure and growth in diverse soils.

    Science.gov (United States)

    Valdés-Rodríguez, Ofelia Andrea; Sánchez-Sánchez, Odilón; Pérez-Vázquez, Arturo; Caplan, Joshua S; Danjon, Frédéric

    2013-01-01

    Unlike most biofuel species, Jatropha curcas has promise for use in marginal lands, but it may serve an additional role by stabilizing soils. We evaluated the growth and structural responsiveness of young J. curcas plants to diverse soil conditions. Soils included a sand, a sandy-loam, and a clay-loam from eastern Mexico. Growth and structural parameters were analyzed for shoots and roots, although the focus was the plasticity of the primary root system architecture (the taproot and four lateral roots). The sandy soil reduced the growth of both shoot and root systems significantly more than sandy-loam or clay-loam soils; there was particularly high plasticity in root and shoot thickness, as well as shoot length. However, the architecture of the primary root system did not vary with soil type; the departure of the primary root system from an index of perfect symmetry was 14 ± 5% (mean ± standard deviation). Although J. curcas developed more extensively in the sandy-loam and clay-loam soils than in sandy soil, it maintained a consistent root to shoot ratio and root system architecture across all types of soil. This strong genetic determination would make the species useful for soil stabilization purposes, even while being cultivated primarily for seed oil.

  3. Jatropha curcas L. Root Structure and Growth in Diverse Soils

    Directory of Open Access Journals (Sweden)

    Ofelia Andrea Valdés-Rodríguez

    2013-01-01

    Full Text Available Unlike most biofuel species, Jatropha curcas has promise for use in marginal lands, but it may serve an additional role by stabilizing soils. We evaluated the growth and structural responsiveness of young J. curcas plants to diverse soil conditions. Soils included a sand, a sandy-loam, and a clay-loam from eastern Mexico. Growth and structural parameters were analyzed for shoots and roots, although the focus was the plasticity of the primary root system architecture (the taproot and four lateral roots. The sandy soil reduced the growth of both shoot and root systems significantly more than sandy-loam or clay-loam soils; there was particularly high plasticity in root and shoot thickness, as well as shoot length. However, the architecture of the primary root system did not vary with soil type; the departure of the primary root system from an index of perfect symmetry was 14±5% (mean ± standard deviation. Although J. curcas developed more extensively in the sandy-loam and clay-loam soils than in sandy soil, it maintained a consistent root to shoot ratio and root system architecture across all types of soil. This strong genetic determination would make the species useful for soil stabilization purposes, even while being cultivated primarily for seed oil.

  4. Canopy sink-source partitioning influences root/soil respiration in apple

    Science.gov (United States)

    The root system of plants derives all its energy from photosynthate translocated from the canopy to the root system. Canopy manipulations that alter either the rate of canopy photosynthesis or the translocation of photosynthate are expected to alter dry matter partitioning to the root system. Fiel...

  5. Formation of planetary systems

    International Nuclear Information System (INIS)

    Brahic, A.

    1982-01-01

    It seemed appropriate to devote the 1980 School to the origin of the solar system and more particularly to the formation of planetary systems (dynamic accretion processes, small bodies, planetary rings, etc...) and to the physics and chemistry of planetary interiors, surface and atmospheres (physical and chemical constraints associated with their formation). This Summer School enabled both young researchers and hard-nosed scientists, gathered together in idyllic surroundings, to hold numerous discussions, to lay the foundations for future cooperation, to acquire an excellent basic understanding, and to make many useful contacts. This volume reflects the lectures and presentations that were delivered in this Summer School setting. It is aimed at both advanced students and research workers wishing to specialize in planetology. Every effort has been made to give an overview of the basic knowledge required in order to gain a better understanding of the origin of the solar system. Each article has been revised by one or two referees whom I would like to thank for their assistance. Between the end of the School in August 1980 and the publication of this volume in 1982, the Voyager probes have returned a wealth of useful information. Some preliminary results have been included for completeness

  6. Root causes occurrence of low BIM adoption in Malaysia: System dynamics modelling approach

    Science.gov (United States)

    Mamter, Shahela; Aziz, Abdul Rashid Abdul; Zulkepli, Jafri

    2017-11-01

    The global implementation of BIM in the construction field is increasing worldwide. Due to the advantages offered by BIM, its implementation is considered important in the construction projects. Nevertheless, the Construction Industry Transformation Plan has reported that the adoption of Building Information Modelling (BIM) in Malaysia is still low and it is estimated at only 10 percent adoption amongst construction stake players. The barriers influencing the occurrence of low adoption BIM in Malaysia have been studied by some researchers. However, these researchers did not investigate the root causes which might lead to the recurring of the barriers to BIM adoption. Root causes that immediately occurrence of barriers, also known as precipitants or trigger causes. This conceptual paper developed the causal loop diagram (CLD) which presents the relationship between the perceived variables using system dynamic modelling approach. The findings revealed a novelty validated diagrams that design the holistic dynamic relationship on the root causes occurrence of low BIM adoption. Nonetheless, the diagram subject to more empirical testing for its practicability and further refinement upon more results expected to emerge as the research progresses.

  7. Computed tomography scanning can monitor the effects of soil medium on root system development: An example of salt stress in corn

    Directory of Open Access Journals (Sweden)

    Sowmyalakshmi eSubramanian

    2015-04-01

    Full Text Available Seeds and young seedlings often encounter high soluble salt levels in the upmost soil layers, impeding vigorous growth by affecting root establishment. Computed tomography (CT scanning used at low X-ray doses can help study root development in such conditions non-destructively, because plants are allowed to grow throughout the experiment. Using a high-resolution Toshiba XVision CT scanner, we studied corn (Zea mays L. root growth under optimal and salt-stressed conditions in 3D and on a weekly basis over 3 weeks. Two groups of 3 corn plants were grown in the controlled environment of a growth chamber, in mid-sized plastic pots filled with sieved and autoclaved sand. Seedlings were subjected to first CT scanning one week after seed planting. Our main research objectives concerning root systems were: (i to quantify structural complexity from fractal dimensions estimated on skeletal 3-D images built from CT scanning data; (ii to measure growth from volumes and derived relative rates, after isolating primary and secondary roots from the soil medium in CT scanning data; and (iii to assess differences in complexity and growth per week and over Weeks 1–3 for groups of corn plants. Differences between groups were present from Week 1; starting in Week 2 secondary roots were present and could be isolated, which refined the complexity and growth analyses of root systems. Besides expected Week main effects (P < 0.01 or 0.05, Week x Group interaction (P < 0.05 or 0.10 and Group main effects were observed, which is remarkable given the small sample sizes. Graphical, quantitative and statistical analyses of CT scanning data were thus completed at an unprecedented level, and provided new and important insights regarding root system development. Repeated CT scanning is the key to a better understanding of the establishment in the soil medium of crop plants such as corn and the assessment of salt stress effects on developing root systems, in complexity and

  8. Orthodontic tooth movement and root resorption in ovariectomized rats treated by systemic administration of zoledronic acid.

    Science.gov (United States)

    Sirisoontorn, Irin; Hotokezaka, Hitoshi; Hashimoto, Megumi; Gonzales, Carmen; Luppanapornlarp, Suwannee; Darendeliler, M Ali; Yoshida, Noriaki

    2012-05-01

    The effect of zoledronic acid, a potent and novel bisphosphonate, on tooth movement and orthodontically induced root resorption in osteoporotic animals systemically treated with zoledronic acid as similarly used in postmenopausal patients has not been elucidated. Therefore, this study was undertaken. Fifteen 10-week-old female Wistar rats were divided into 3 groups: ovariectomy, ovariectomy + zoledronic acid, and control. Only the ovariectomy and ovariectomy + zoledronic acid groups underwent ovariectomies. Two weeks after the ovariectomy, zoledronic acid was administered only to the ovariectomy + zoledronic acid group. Four weeks after the ovariectomy, 25-g nickel-titanium closed-coil springs were applied to observe tooth movement and orthodontically induced root resorption. There were significant differences in the amounts of tooth movement and orthodontically induced root resorption between the ovariectomy and the control groups, and also between the ovariectomy and the ovariectomy + zoledronic acid groups. There was no statistically significant difference in tooth movement and orthodontically induced root resorption between the ovariectomy + zoledronic acid and the control groups. Zoledronic acid inhibited significantly more tooth movement and significantly reduced the severity of orthodontically induced root resorption in the ovariectomized rats. The ovariectomy + zoledronic acid group showed almost the same results as did the control group in both tooth movement and orthodontically induced root resorption. Zoledronic acid inhibits excessive orthodontic tooth movement and also reduces the risk of severe orthodontically induced root resorption in ovariectomized rats. Copyright © 2012 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.

  9. Foxtail Millet [Setaria italica (L. Beauv.] Grown under Low Nitrogen Shows a Smaller Root System, Enhanced Biomass Accumulation, and Nitrate Transporter Expression

    Directory of Open Access Journals (Sweden)

    Faisal Nadeem

    2018-02-01

    Full Text Available Foxtail millet (FM [Setaria italica (L. Beauv.] is a grain and forage crop well adapted to nutrient-poor soils. To date little is known how FM adapts to low nitrogen (LN at the morphological, physiological, and molecular levels. Using the FM variety Yugu1, we found that LN led to lower chlorophyll contents and N concentrations, and higher root/shoot and C/N ratios and N utilization efficiencies under hydroponic culture. Importantly, enhanced biomass accumulation in the root under LN was in contrast to a smaller root system, as indicated by significant decreases in total root length; crown root number and length; and lateral root number, length, and density. Enhanced carbon allocation toward the root was rather for significant increases in average diameter of the LN root, potentially favorable for wider xylem vessels or other anatomical alterations facilitating nutrient transport. Lower levels of IAA and CKs were consistent with a smaller root system and higher levels of GA may promote root thickening under LN. Further, up-regulation of SiNRT1.1, SiNRT2.1, and SiNAR2.1 expression and nitrate influx in the root and that of SiNRT1.11 and SiNRT1.12 expression in the shoot probably favored nitrate uptake and remobilization as a whole. Lastly, more soluble proteins accumulated in the N-deficient root likely as a result of increases of N utilization efficiencies. Such “excessive” protein-N was possibly available for shoot delivery. Thus, FM may preferentially transport carbon toward the root facilitating root thickening/nutrient transport and allocate N toward the shoot maximizing photosynthesis/carbon fixation as a primary adaptive strategy to N limitation.

  10. Foxtail Millet [Setaria italica (L.) Beauv.] Grown under Low Nitrogen Shows a Smaller Root System, Enhanced Biomass Accumulation, and Nitrate Transporter Expression.

    Science.gov (United States)

    Nadeem, Faisal; Ahmad, Zeeshan; Wang, Ruifeng; Han, Jienan; Shen, Qi; Chang, Feiran; Diao, Xianmin; Zhang, Fusuo; Li, Xuexian

    2018-01-01

    Foxtail millet (FM) [ Setaria italica (L.) Beauv.] is a grain and forage crop well adapted to nutrient-poor soils. To date little is known how FM adapts to low nitrogen (LN) at the morphological, physiological, and molecular levels. Using the FM variety Yugu1, we found that LN led to lower chlorophyll contents and N concentrations, and higher root/shoot and C/N ratios and N utilization efficiencies under hydroponic culture. Importantly, enhanced biomass accumulation in the root under LN was in contrast to a smaller root system, as indicated by significant decreases in total root length; crown root number and length; and lateral root number, length, and density. Enhanced carbon allocation toward the root was rather for significant increases in average diameter of the LN root, potentially favorable for wider xylem vessels or other anatomical alterations facilitating nutrient transport. Lower levels of IAA and CKs were consistent with a smaller root system and higher levels of GA may promote root thickening under LN. Further, up-regulation of SiNRT1.1, SiNRT2.1, and SiNAR2.1 expression and nitrate influx in the root and that of SiNRT1.11 and SiNRT1.12 expression in the shoot probably favored nitrate uptake and remobilization as a whole. Lastly, more soluble proteins accumulated in the N-deficient root likely as a result of increases of N utilization efficiencies. Such "excessive" protein-N was possibly available for shoot delivery. Thus, FM may preferentially transport carbon toward the root facilitating root thickening/nutrient transport and allocate N toward the shoot maximizing photosynthesis/carbon fixation as a primary adaptive strategy to N limitation.

  11. Regulation of Arabidopsis root development by nitrate availability.

    Science.gov (United States)

    Zhang, H; Forde, B G

    2000-01-01

    When the root systems of many plant species are exposed to a localized source of nitrate (NO3- they respond by proliferating their lateral roots to colonize the nutrient-rich zone. This study reviews recent work with Arabidopsis thaliana in which molecular genetic approaches are being used to try to understand the physiological and genetic basis for this response. These studies have led to the conclusion that there are two distinct pathways by which NO3- modulates root branching in Arabidopsis. On the one hand, meristematic activity in lateral root tips is stimulated by direct contact with an enriched source of NO3- (the localized stimulatory effect). On the other, a critical stage in the development of the lateral root (just after its emergence from the primary root) is highly susceptible to inhibition by a systemic signal that is related to the amount of NO3- absorbed by the plant (the systemic inhibitory effect). Evidence has been obtained that the localized stimulatory effect is a direct effect of the NO3- ion itself rather than a nutritional effect. A NO3(-)-inducible MADS-box gene (ANR1) has been identified which encodes a component of the signal transduction pathway linking the external NO3- supply to the increased rate of lateral root elongation. Experiments using auxin-resistant mutants have provided evidence for an overlap between the auxin and NO3- response pathways in the control of lateral root elongation. The systemic inhibitory effect, which does not affect lateral root initiation but delays the activation of the lateral root meristem, appears to be positively correlated with the N status of the plant and is postulated to involve a phloem-mediated signal from the shoot.

  12. Light Requirement for Shoot Regeneration in Horseradish Hairy Roots 1

    Science.gov (United States)

    Saitou, Tsutomu; Kamada, Hiroshi; Harada, Hiroshi

    1992-01-01

    Hairy roots of horseradish (Armoracia rusticana) were induced by inoculation with Agrobacterium rhizogenes harboring Ri plasmid and cultured on phytohormone-free Murashige and Skoog medium after eliminating the bacteria. Hairy roots grew vigorously and sometimes formed yellowish calli under dark conditions. On the other hand, growth of hairy roots stopped after several weeks of culture with light, then shoots were regenerated. Frequency of shoot formation from hairy roots increased as the culture period in light lengthened and the light intensity increased. The shoot regeneration was induced by treatment with white or red light, but not with far-red light. Shoot regeneration by red light was inhibited by following treatment with far-red light. Red and far-red light reversibly affected shoot regeneration. Excised roots of nontransformed plants grew quite slowly on phytohormone-free Murashige and Skoog medium and occasionally formed shoots under white light conditions. PMID:16669041

  13. Apoplastic interactions between plants and plant root intruders

    Directory of Open Access Journals (Sweden)

    Kanako eMitsumasu

    2015-08-01

    Full Text Available Numerous pathogenic or parasitic organisms attack plant roots to obtain nutrients, and the apoplast including the plant cell wall is where the plant cell meets such organisms. Root-parasitic angiosperms and nematodes are two distinct types of plant root parasites but share some common features in their strategies for breaking into plant roots. Striga and Orobanche are obligate root parasitic angiosperms that cause devastating agricultural problems worldwide. Parasitic plants form an invasion organ called a haustorium, where plant cell wall degrading enzymes (PCWDEs are highly expressed. Plant-parasitic nematodes are another type of agriculturally important plant root parasite. These nematodes breach the plant cell walls by protruding a sclerotized stylet from which PCWDEs are secreted. Responding to such parasitic invasion, host plants activate their own defense responses against parasites. Endoparasitic nematodes secrete apoplastic effectors to modulate host immune responses and to facilitate the formation of a feeding site. Apoplastic communication between hosts and parasitic plants also contributes to their interaction. Parasitic plant germination stimulants, strigolactones (SLs, are recently identified apoplastic signals that are transmitted over long distances from biosynthetic sites to functioning sites. Here, we discuss recent advances in understanding the importance of apoplastic signals and cell walls for plant-parasite interactions.

  14. Apoplastic interactions between plants and plant root intruders.

    Science.gov (United States)

    Mitsumasu, Kanako; Seto, Yoshiya; Yoshida, Satoko

    2015-01-01

    Numerous pathogenic or parasitic organisms attack plant roots to obtain nutrients, and the apoplast including the plant cell wall is where the plant cell meets such organisms. Root parasitic angiosperms and nematodes are two distinct types of plant root parasites but share some common features in their strategies for breaking into plant roots. Striga and Orobanche are obligate root parasitic angiosperms that cause devastating agricultural problems worldwide. Parasitic plants form an invasion organ called a haustorium, where plant cell wall degrading enzymes (PCWDEs) are highly expressed. Plant-parasitic nematodes are another type of agriculturally important plant root parasite. These nematodes breach the plant cell walls by protruding a sclerotized stylet from which PCWDEs are secreted. Responding to such parasitic invasion, host plants activate their own defense responses against parasites. Endoparasitic nematodes secrete apoplastic effectors to modulate host immune responses and to facilitate the formation of a feeding site. Apoplastic communication between hosts and parasitic plants also contributes to their interaction. Parasitic plant germination stimulants, strigolactones, are recently identified apoplastic signals that are transmitted over long distances from biosynthetic sites to functioning sites. Here, we discuss recent advances in understanding the importance of apoplastic signals and cell walls for plant-parasite interactions.

  15. Root exudates from grafted-root watermelon showed a certain contribution in inhibiting Fusarium oxysporum f. sp. niveum.

    Directory of Open Access Journals (Sweden)

    Ning Ling

    Full Text Available Grafting watermelon onto bottle gourd rootstock is commonly used method to generate resistance to Fusarium oxysporum f. sp. niveum (FON, but knowledge of the effect of the root exudates of grafted watermelon on this soil-borne pathogen in rhizosphere remains limited. To investigate the root exudate profiles of the own-root bottle gourd, grafted-root watermelon and own-root watermelon, recirculating hydroponic culture system was developed to continuously trap these root exudates. Both conidial germination and growth of FON were significantly decreased in the presence of root exudates from the grafted-root watermelon compared with the own-root watermelon. HPLC analysis revealed that the composition of the root exudates released by the grafted-root watermelon differed not only from the own-root watermelon but also from the bottle gourd rootstock plants. We identified salicylic acid in all 3 root exudates, chlorogenic acid and caffeic acid in root exudates from own-root bottle gourd and grafted-root watermelon but not own-root watermelon, and abundant cinnamic acid only in own-root watermelon root exudates. The chlorogenic and caffeic acid were candidates for potentiating the enhanced resistance of the grafted watermelon to FON, therefore we tested the effects of the two compounds on the conidial germination and growth of FON. Both phenolic acids inhibited FON conidial germination and growth in a dose-dependent manner, and FON was much more susceptible to chlorogenic acid than to caffeic acid. In conclusion, the key factor in attaining the resistance to Fusarium wilt is grafting on the non-host root stock, however, the root exudates profile also showed some contribution in inhibiting FON. These results will help to better clarify the disease resistance mechanisms of grafted-root watermelon based on plant-microbe communication and will guide the improvement of strategies against Fusarium-mediated wilt of watermelon plants.

  16. Characterization of mature maize (Zea mays L.) root system architecture and complexity in a diverse set of Ex-PVP inbreds and hybrids.

    Science.gov (United States)

    Hauck, Andrew L; Novais, Joana; Grift, Tony E; Bohn, Martin O

    2015-01-01

    The mature root system is a vital plant organ, which is critical to plant performance. Commercial maize (Zea mays L.) breeding has resulted in a steady increase in plant performance over time, along with noticeable changes in above ground vegetative traits, but the corresponding changes in the root system are not presently known. In this study, roughly 2500 core root systems from field trials of a set of 10 diverse elite inbreds formerly protected by Plant Variety Protection plus B73 and Mo17 and the 66 diallel intercrosses among them were evaluated for root traits using high throughput image-based phenotyping. Overall root architecture was modeled by root angle (RA) and stem diameter (SD), while root complexity, the amount of root branching, was quantified using fractal analysis to obtain values for fractal dimension (FD) and fractal abundance (FA). For each trait, per se line effects were highly significant and the most important contributor to trait performance. Mid-parent heterosis and specific combining ability was also highly significant for FD, FA, and RA, while none of the traits showed significant general combining ability. The interaction between the environment and the additive line effect was also significant for all traits. Within the inbred and hybrid generations, FD and FA were highly correlated (rp ≥ 0.74), SD was moderately correlated to FD and FA (0.69 ≥ rp ≥ 0.48), while the correlation between RA and other traits was low (0.13 ≥ rp ≥ -0.40). Inbreds with contrasting effects on complexity and architecture traits were observed, suggesting that root complexity and architecture traits are inherited independently. A more comprehensive understanding of the maize root system and the way it interacts with the environment will be useful for defining adaptation to nutrient acquisition and tolerance to stress from drought and high plant densities, critical factors in the yield gains of modern hybrids.

  17. Early physiological flood tolerance is followed by slow post-flooding root recovery in the dryland riparian tree Eucalyptus camaldulensis subsp. refulgens.

    Science.gov (United States)

    Argus, R E; Colmer, T D; Grierson, P F

    2015-06-01

    We investigated physiological and morphological responses to flooding and recovery in Eucalyptus camaldulensis subsp. refulgens, a riparian tree species from a dryland region prone to intense episodic floods. Seedlings in soil flooded for 88 d produced extensive adventitious roots, displayed stem hypertrophy (stem diameter increased by 93%) and increased root porosity owing to aerenchyma formation. Net photosynthesis (Pn) and stomatal conductance (gs) were maintained for at least 2 weeks of soil flooding, contrasting with previous studies of other subspecies of E. camaldulensis. Gradual declines followed in both gs (30% less than controls) and Pn (19% less). Total leaf soluble sugars did not differ between flooded and control plants. Root mass did not recover 32 d after flooding ceased, but gs was not lower than controls, suggesting the root system was able to functionally compensate. However, the limited root growth during recovery after flooding was surprising given the importance of extensive root systems in dryland environments. We conclude that early flood tolerance could be an adaptation to capitalize on scarce water resources in a water-limited environment. Overall, our findings highlight the need to assess flooding responses in relation to a species' fitness for particular flood regimes or ecological niches. © 2014 John Wiley & Sons Ltd.

  18. Root nodule symbiosis in Lotus japonicus drives the establishment of distinctive rhizosphere, root, and nodule bacterial communities.

    Science.gov (United States)

    Zgadzaj, Rafal; Garrido-Oter, Ruben; Jensen, Dorthe Bodker; Koprivova, Anna; Schulze-Lefert, Paul; Radutoiu, Simona

    2016-12-06

    Lotus japonicus has been used for decades as a model legume to study the establishment of binary symbiotic relationships with nitrogen-fixing rhizobia that trigger root nodule organogenesis for bacterial accommodation. Using community profiling of 16S rRNA gene amplicons, we reveal that in Lotus, distinctive nodule- and root-inhabiting communities are established by parallel, rather than consecutive, selection of bacteria from the rhizosphere and root compartments. Comparative analyses of wild-type (WT) and symbiotic mutants in Nod factor receptor5 (nfr5), Nodule inception (nin) and Lotus histidine kinase1 (lhk1) genes identified a previously unsuspected role of the nodulation pathway in the establishment of different bacterial assemblages in the root and rhizosphere. We found that the loss of nitrogen-fixing symbiosis dramatically alters community structure in the latter two compartments, affecting at least 14 bacterial orders. The differential plant growth phenotypes seen between WT and the symbiotic mutants in nonsupplemented soil were retained under nitrogen-supplemented conditions that blocked the formation of functional nodules in WT, whereas the symbiosis-impaired mutants maintain an altered community structure in the nitrogen-supplemented soil. This finding provides strong evidence that the root-associated community shift in the symbiotic mutants is a direct consequence of the disabled symbiosis pathway rather than an indirect effect resulting from abolished symbiotic nitrogen fixation. Our findings imply a role of the legume host in selecting a broad taxonomic range of root-associated bacteria that, in addition to rhizobia, likely contribute to plant growth and ecological performance.

  19. Root rots

    Science.gov (United States)

    Kathryn Robbins; Philip M. Wargo

    1989-01-01

    Root rots of central hardwoods are diseases caused by fungi that infect and decay woody roots and sometimes also invade the butt portion of the tree. By killing and decaying roots, root rotting fungi reduce growth, decrease tree vigor, and cause windthrow and death. The most common root diseases of central hardwoods are Armillaria root rot, lnonotus root rot, and...

  20. Fertilizer application and root development analyzed by neutron imaging

    International Nuclear Information System (INIS)

    Nihei, Naoto; Tanoi, Keitaro; Nakanishi, Tomoko M.

    2013-01-01

    We studied the development of the soybean root system under different application of fertilizer applying neutron imaging technique. When neutron beam was irradiated, the root image as well as fertilizer imbedded in a thin aluminum container was clearly projected, since water amount in roots are higher than that in soil. Through image analysis, the development of root system was studied under different application of the fertilizer. The development of a main root with lateral roots was observed without applying fertilizer. When the fertilizer was homogeneously supplied to the soil, the morphological development of the root showed the similar pattern to that grown without fertilizer, in different to the amount of the fertilizer. In the case of local application of the fertilizer, lateral position or downward to the main root, the inhibition of the root growth was observed, suggesting that the localization of the fertilizer is responsible for reduction of the soybean yield. (author)